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The finite-element technique has the potential to provide a very accurate treatment of the
physics of acoustic-wave propagation in inhomogeneous media. This article describes the
development of a finite-element model for acoustic propagation in complex ocean

Lg environments and its validation. The computational model can handle range and depth
dependence in both sound speed and density, as well as rapid variations in bottom topography.
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INTRODUCTION rately model propagation over several kilometers. It handles

There are many underwater acoustic propagation mod- depth- and range-dependent sound speed, density, and al-

els currently in use in the scientific community, each of most arbitrary variations in bottom topography. It does not

which has its own particular advantages and disadvantages, yet include shear effects, and compared to some other types

The need for more accurate models, particularly for applica- of modeis such as the parabolic equation (PE) model, it is

tions at low frequencies where there can be significant computationally slow. However, unlike the one-way PE

boundary penetration, is growing. It is essential to give a models and most normal-mode models, it is a full-wave solu-

more accurate treatment of the physics of acoustic/elastic- tion, i.e., it includes backscatter and both the discrete modes
wave propagation. This, in turn, means that the computa- and continuous spectra. There are no restrictions on angles

tional models must include the effects of depth- and range- of propagation. Unlike the time-domain models previously

dependent sound speeds, bottom topography, and mentioned, which are often applied to seismic phenomena,

range-dependent shear in ocean sediments. The finite-ele- ours is a frequency-domain model designed primarily for

ment method has the potential to provide a very accurate transmission loss studies.

treatment of the physics of wave propagation in such com- In Sec. I, the finite-element mesh utilized in the model is

plex ocean environments. discussed, as is the particular form of the basis or interpola-
The use of finite-element techniques to model acoustic tion functions. Then, in Sec. II, the development of the finite-

waves is not new. Kalinowski has provided an excellent sum- element equations is sketched, followed by the numerical

mary of the work of many authors, including his own, on the solution technique in Sec. III. Two of the ways in which the

application of finite elements to various acoustic problems.' physics and the computer code were verified are described in

Earlier work has demonstrated that finite elements can be Sec. IV. A brief summary of our results and conclusions, as
used to describe the effect of bottom shear on propagation well as future plans to continue the development of the mod-

over distances of a few wavelengths. A judicious blending of el are given in Sec. V.

finite elements and the boundary integral method has been
used to study sound-structure interactions for submerged
bodies. Kuo and co-workers have used the finite-element 1. FINITE-ELEMENT MESH AND INTERPOLATION

,nethod to model the time domain pulse propagation ob- FUNCTIONS
served in laboratory scale models.2 The two-dimensional fi- In the application of the finite-element technique to
nite-difference model of Stephen is similar in that it models solving partial differential equations, the differential equa-
pulse propagation and includes the effect of shear in the tion, and its unknown solution are replaced by a system of
ocean bottom. These models are well suited to study various algebraic equations in terms of the parameters defining an
types of geophysical phenomena in the time domain. Gold- approximate solution. One partitions the domain of the
stein et al. have studied accelerated convergence methods for problem into nonoverlapping elements and assumes a simple
iterative numerical solution techniques applicable to the form for the approximate solution within each element.
large systems of equations associated with finite-element These local representations are then joined together by using
models.4 These iterative techniques are especially important the appropriate physical continuity conditions to provide a
when one deals with numerical solutions of elliptic equations global solution. The partial differential equations and asso-
that require large quantities of computer memory. ciated boundary conditions that arise in many science and

This article describes a finite-element ocean acoustic engineering problems give matrix systems of equations
model (FOAM) which, in its present form, can very accu- which are sparse, banded, and often symmetric. Fortunate-
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ly, that is the case, too, for the description of ocean acoustic- In the above equations, i 0jj5 k, and i, j. and k permute in a
wave propagation. The reader unfamiliar with finite-ele- natural order. The constant A,, is the area of the triangle.
ment techniques may want to consult the excellent text by Integrals involving products of two or more interpola-
Reddy.' tion functions can be simplified by the use of area coordi-

Consider the typical problem of ocean acoustics sug- nates L,, where
gested by Fig. 1. An actoustic source is placed sonewhere in L, (z,r) = A,/A. = ;b, (z,r). (5)
the water column. The sound speed, whether in the water or
in the ocean bottom, may vary with both depth and range. Geometrically, A, is the area of the triangle formed by the
The depth of the water-bottom interface may vary with point (z,r) and nodes] and k. The following integration for-
range. The acoustic pressure is taken to vanish at the air- mula is quite useful for evaluating several of the required

wate-r interface. If the ocean bottom is assumed to be homo- integrals:

geneous beyond some maximum depth, and if the sound- (L)(L)"(L3)dA m!n!p! 2A (6)
speed profiles do not vary beyond some maximum range, f (m + n +p + 2)!
then along the right and bottom sides of the domain to be where m, n, and p are arbitrary non-negative integers.
modeled one needs to impose some kind of approximate In our computer model, we have used triangular three-
boundary condition which does not reflect any energy back node elements, as previously discussed, so that the pressure
into the interior. within each element will be expressed as a linear combina-

Although basis or interpolation functions can be con- tion of these interpolation functions:
structed for many types of polygonal regions, the triangle is 3
one of the most widely used finite elements. At present, the P"'(z,r) = _ , b'(zr). (7)
computer model FOAM makes use of linear Lagrange inter- -

polation functions. For each finite element fl" that makes up Extensions to four-node, six-node, etc. triangles will allow
the domain to be modeled, one must form a set of interpola- more accurate representations of the pressure field since
tion funct'ns. The unknown solution will be expressed as a these require quadratic, cubic, and higher-order polynomial
linear c ination of these interpolation functions. In addi- expressions for the interpolation functions.
tion to x,.ishing outside the element fl', these functions sat-
isfy the following conditions:

zb (z,, r, 5,, (1) II. THEORY
3The time-harmonic complex pressure resulting from a

V,,e'(z,r) = 1, (2) point source of unit strength and angular frequency &) at
position r, in an inhomogeneous ocean is determined by the

where r,,z, is the location of the ith vertex of the element. wave equation
Finite-element models generally make use of two node num- pV. (p-'VP) + kP= - 6(r - r,), (8)
bering schemes: a local one as used here, i 1, 2, or 3, and a
global one, I = 1,2,...,n, where n is the total number ofnodes and appropriate boundary conditions. We will make the
in the mesh. Given the element number, one can map from common assumption of an ocean environment axially sym-
the local node numbers to the global node numbers. metric about a vertical line passing through the source, so

For triangular elements with linear interpolation func- that in the above equation, p =p(z,r) is the den.;ity,
tions, the d', are given by k = k(z,r) = to/c(z,r) is the wavenumber and c(z,r) is the

' (zr) = (a, + 13, z + yr)/12A,, (3) sound speed To allow for attenuation, the wavenumber can
be given an imaginary part,

where a,, fl,, and y', are the constants b = an i 1 -- t ,
a, =zr - zk r 1 , = r- r , y, = (- z. (4)

where a is the attenuation of the medium in units of dB per
wavelength and y = (40r log,,, e) - '.

The finite-element technique will eventually yield a set
of pressure values at the nodes of the grid as illustrated in

AIR (P=O) , Fig. 1. One of the key features of the method is the ability to

-N -, - c- use a grid of elements adapted to the specific problem. For
SCOURCE " ''- \ example, if the density has a discontinuous jump in going

E5 across the water-bottom interface, the mesh would be
COLUMNformed so that the interface coincides with the boundaries of

. .z the appropriate interior elements.

OCEANBOTTOM
_ A. Finite-element equations

One uses the wave equation within each element (and
RADIATION CONDITION the interpolation functions defined for that element) to ar-

FIG. 1. Schematic drawing illustrating the finite-element mesh, boundary rive at its contribution to the system of equations. Let us
conditions, and nodes adjusted to follow the ocean bottom bathymetry. consider an element 1l" that does not contain the source.
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Multiply Eq. (8) by a test function V and integrate over the condition, 3P/dn = 0, (2) Dirichlet boundary condition,
element fl": P = 0, or (3) radiating boundary condition. The first two

Vr conditions are treated exactly in the computer model using
flp- . VPrdA- p k -vPrdA standard finite-element techniques. In the first case, the

boundary integral is zero; so the first two integrals discussed

- F p 'v ) r dl 0, (10) are the only ones that contribute anything. In the second
Jr an case, the equations involving the nodes for which P = 0 are

where the divergence theorem has been used to transform simply replaced with P, = 0. The third can only be treated
one of the integrals. The integrals are over the volume of the approximately and requires considerably more work.
element 11 and around the boundary F" of the element. Be- The radiating boundary condition means that waves
cause of the assumption of axisymmetry, the solution and should pass through the boundary without reflection. Ideal-
the test function are taken to depend upon z and r only. The ly, one imposes a radiation condition infinitely far from the
volume differential is dr = 27-r dr dz = 27-r dA, and a com- source. Usually, in a computer model one must use an ap-
mon factor of 27" has been canceled everywhere. The partial proximate radiation condition on a finite boundary. At pres-
derivative in the last inlegrand is with respect to the normal ent, in FOAM, this can be treated approximately by one of
to the element's boundary. two boundary conditions-a narrow-angle radiation bound-

Take the test function v to be equal to one of the interpo- ary condition or a wide-angle radiation boundary condition.
lation functions, say, ',. and in the first two integrals express These are both described below. The narrow-angle radiation
the pressure within the element in the form condition, so-called because it is valid for plane waves inci-

I dent on the boundary within a small angular interval about
P P,d',. (VI) the normal, is equivalent to a damping condition used earlier

I by Kalinowski.' It is given by the equation
Eq. (10) becomes, dp... = ikP. (16)

p Vt,, -V0; 'rdA an

The wide-angle radiation condition that we have developed

f p 'k 0g,"d,'"r dA VP is useful for a somewhat wider interval about the normal

I.) direction and is actually a kind of PE used as a boundary
f -p ,,,.,(0_ _np) condition:-- .. , r,=O.(12) OP =k+ i "

an -p= ikP±+( ) d(7
If the density p and wavenumber k are treated as constants an '-)2k as-
within each element, the first and second integrals in Eq. where the derivatives a 

2/3s 2 are taken tangent to the bound-
(12) can be evaluated exactly. They are proportional to the ary. A comparison that shows the advantage of the second
following two integrals: radiating boundary condition over the first is illustrated in

Fig. 2(a), where the effective reflection coefficients for these
K f V0")Vt,7'r dA, (13) two boundary conditions are plotted. The percent of inci-

dent energy reflected is shown in Fig. 2(b). One can con-

M = F b" " ¢t"rdA. (14) clude that the wide-angle radiation condition allows a higher
Sf1 r1 incident angle to be reached before the solution is seriously

The second of these can be evaluated using the substitution contaminated by false reflections.
3

r= rkl10k (15)
1.0 (a)

and then the integration formula given above in Eq. (6). (a)

Note that both K and M I are symmetric matrices. They I
are usually referred to as stiffness and mass matrices, respec- I
tively. I R.l

0

B. Boundary integrals and boundary conditions 1, /
For those elements that are in the interior, the boundary 1 2 2

integral is not zero, but its contributions to the global system
of equations will exactly cancel with like terms coming from 2

neighboring elements. One only need recall that the term - 100 1 RNWI
p -dP/an is proportional to particle displacement normal to 0

P0 90
the boundary and it must be continuous across the bound- 0 (DEG)

ary. For the case where the element has one or two of its sides FIG. 2. Comparisons of ( a ) reflection cocfficients and (h) Intensities as a
on an actual boundary of the FE model, one of three possible function of incident angle for the narros,-angle (NA) and ,de-aiingle

boundary conditions are allowed: ( I ) Neumann boundary (WA) radiation conditions.
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Upon substituting these approximate radiating bound- Since D is a diagonal matrix, the Y, are simply equal to
ary conditions into Eq. (12) in the last term, one finds that Zi/D,. Finally, the desired pressure vector results from solv-
their contributions can be written in terms of one or both of ing the upper triangular system:
the integrals: UP = Y. (27)

B = (e) dt -rdl' (18) The elements of P are found by a series of back substitutions:aj as /1dse

CW 
P (19) Y, UjPj, i< n. (28)

The computer model uses a banded version of a factori-
Both are symmetric matrices, and the global equations re- zation algorithm to take full advantage of the banded nature
suiting from either of these boundary conditions are still of GSTIFF and U to minimize tle storage requirements.7

symmetric, an important feature for the solution technique.
A small amount of attenuation can be introduced near any IV. MODEL VERIFICATION
radiating boundaries to further extinguish unwanted reflec- In addition to solving a number of boundary value prob-
tions. ionce tlems with boundary conditions selected to yield solutions
mined, the global system of equations is formed by mapping with particular types of symmetries, the model has been used
the localnode numbersonto theglobalnode numbers, giving to solve two problems more familiar to the underwater
rise to the globalpressure vector P, and combining all of the acoustics community, i.e., the Lloyd's mirror effect and an
subsystems into a single global system of equations. The upslope wedge propagation benchmark problem recently

source contribution appears as a single entry in the global discussed at Acoustical Society of America meetings.
force vector GF, and the stiffness, mass, and boundary con- A. Lloyd's mirror effect
tributions finally yield a global stiffness matrix GSTIFF.
One then must solve the system As an early test of the accuracy of our FE model, the

GSTIFF - P = GF, (20) Lloyd's mirror effect was examined. This image-interference
effect occurs in underwater acoustics when the acoustic

where P and GF are n-dimensional vectors, and GSTIFF is source is near the sea surface and the sea surface is not very
the n X n system matrix; here, n is the total number of pres- rough (i.e., the sea surface acts as a pressure-release sur-
sure nodes in the finite element mesh. face). Then, an interference pattern in the sound field results

from constructive and destructive interference between the
Ill. NUMERICAL SOLUTION direct and surface-reflected acoustic waves. There is an ana-

The global stiffness matrix is a complex, symmetric ma- lytic solution' that was used as a baseline result against
trix that can be factored in the following form': which the FOAM calculations could be compared. Figure 3

UTDU, (21) shows two contour plots of constant pressure at 2-dB inter-
GSTIFF = Uvals for an upper half-space of air and a lower half-space of

where U is an upper triangular n X n matrix with ones along
its diagonal, and D is an n X n diagonal matrix. The most
time consuming part of the calculations is the factorization
of GSTIFF. One can generate the U, and D1 in a column-
wise fashion by using the recurrence equations given below 0
forj = 2,3,...,n:

U,~

D. A,- 1k U , l<i=j. (23)
- 500

Afterwards, the complex pressure is obtained in three steps.
In the first step, one solves for the complex vector Z in the
lower triangular system,

UTZ = GF. (24) \ '

Since UT is a lower triangular matrix, the Z, can be calculat- - -_'
ed in a series of forward substitutions: .

Z, = GF, - i>GF, >1. (25) 5000S0 (bo)2

RANGE (KM)
The second step consists of solving for the complex vector Y

defined by the diagonal system F-'l(; 3. Contour plots o lthe IHo dtl mirror effect computed b% (a) ) an exact
s(lution and (h) FOAN using the wide-angle radiation condition. C 11-

DY = Z. (26) tlourss flarl t (I d1 II and illcreadse i r i , icral'o 3 tit1.
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water with 0.5 dB per wavelength absorption. The 25-Hz cw 25 HZ, SOURCE = 100 M
source was placed 100 m below the surface. The familiar 40
Lloyd's mirror beams' are quite evident. Unlike the analytic - - - EVANS COUPLE MODE

solution, our model must simulate the lower half-space using
a bounded medium terminating with a radiation boundary
condition. The results shown in Fig. 3 (b) were obtained us-
ing the wide-angle radiation boundary condition on the bot-

C,,M
tom and right boundaries of our model, and compare favor- in RECEIVER 30 M

0ably with the analytic solution [Fig. 3 (a)] except near the -
z

radiating boundaries. Some low grazing angle reflections are o 90
evident along the bottom and right side as can be seen by W 40

comparing the two figures below. - . -- FINITE ELEMENTS
) - - - EVANS COUPLE MODE

Although this appears to be a very simple problem, i.e., Z
a point source in a homogeneous half-space with a pressure - - RECEIVER 150 M

release surface, it is one that cannot be done very well with
most PE's since they cannot handle the steep beams, nor will
they give correct results at very short ranges. It also provides
a rather stringent test of the radiation boundary condition
that we have developed for the bottom and far right boun- 90
daries of the computational model. 0 1 2 3 4

RANGE (KM)
B. ASA benchmark problem FIG. 4. Transmission loss plots (in dB) for the ASA benchmark wedge

problem, comparing FOAM with the ASA benchmark solution obtained
In 1987 at the 13th meeting of the Acoustical Society of from the Evans' coupled mode model.

America (ASA), a special session was devoted to numerical
solutions of several types of benchmark problems. "' One
problem dealt with upslope propagation in a wedge-shaped
underwater channel. A 25-Hz cw acoustic source was placed
at a depth of !'1O m below the surface of the water. The ocean problem discussed extensively at recent ASA meetings have
bottom was initially 200 m deep and gradually decreased in been shown. The transmission loss calculations using the
depth at a 2.86-deg rise until it intersected the ocean surface finite-element model compare very favorably with the analy-
at a range of 4.0 km. The density of the water was I g/cc and tical and benchmark solutions. Because of its potential to
the sound spee'd was 1500 m/s. The wedge half-space had a provide a very complete treatment of propagation in com-
density of 1.5 g/cc, a sound speed of 1700 m/s, and an atten- plex ocean environments, we believe that it is important to
ution of 0.5-dB/wavelength. In addition to the continuous continue its development, particularly to include shear ef-
spectia, the source excites three propagating modes that pass fects in the ocean bottom and to extend it to three-dimen-
through their cutoff depths at ranges of approximately 813, sional environments, while at the same time working to im-
2088, and 3363 m. prove its computational efficiency and to remove its current

A range-dependent coupled-mode model"' was used as restriction to short ranges. The latter is principally a com-
the benchmark result' 2 against which other models were puter memory problem, not a restriction of the finite-ele-
compared. Figure 4 shows a comparison of our FOAM re- ment technique itself.
suits (solid curve) compared to the coupled-mode bench-
mark model results (broken curve). The transmission loss
curves are almost indistinguishable. A contour plot showing
transmission loss is given in Fig. 5. One can see the effect of
mode dumping at the appropriate ranges. Both of these mod-
els are full-wave range-depcndent models and can account
for the backscatter and interference that comes from the
wedge. Clearly, the finite-element results compare very fa- - ,
vorably with the benchmark results. Because the many pre- "

senters at the benchmark session used a number of different
computers and did not all give cpu times, we are not able to 0 ......
make a comparison of relative computational effort.

V. SUMMARY AND CONCLUSIONS 300

The development of a finite-element model for acoustic 0 1 2 3 4

propagation in complex ocean environments, FOAM, has RANGE (KM)

been described. Results of two tests used to verify the model, FIG. 5. Contour plot (i Lill) from FOAM for the ASA benchmark %edge

the Lloyd's mirror effect, and an upslope wedge propagation problem.
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