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Abstract

A

k - ra
“}\ higher-order parabolic equation (PE) based on a Padé series [13] and an elastic PE [10) are

applied to wave propagation in the ocean. In contrast to the standaid PE models of underwater
acoustics, the higher-order PE provides accurate solutions for problems involving arbitrarily long
ranges, propagation nearly normal to the preferred direction, and large variations in sound speed. .
The most important applications of the higher-order PE are for problems involving elastic ocean
bottoms. A new numerical approach based on centered differences is applied to handle interface
conditions. The accuracy of the elastic PE is demonstrated with benchmark calculations. The
clastic PE is applied to a range-dependent propagation problem. / -7

1. Introduction

The parabolic equation [1] (PE) is very useful for wave propagation problems because it can
be solved with an efficient marching algorithm. However, PE solutions are only approximate and
thus are valid for only certain types of propagaticn problems. The original narrow-angle PE,
which is based on a rational linear approximation ¢ a square root function, is fairly accurate if
the propagation direction is limited to within abour 15 degrees of the preferred direction. The
wide-angle PE, {2-4] which is based on a rational I'near approximation of a square root function, is
fairly accurate for propagation angles up to about 10 degrees. These standard versions of the PE
are applicable to a large category of occanic wave propagation problems. However, they can not
handle problems involving very hard ocean bottoms or propagation very close to or very far from
the sound source.

Several PE models have been derived for wave propagation in elastic media.fs5-10] A few of these
moilels were implemented and produced promising results. {5,9] However, no conclusive evidence
has been provided that the elastic PE is capable of solving realistic problems. PE models that are
derived by assuming that energy propagates at specds close to a reference speed obviously can not
handle problems involving coupling between compressional and shear waves. Furthermore, elastic
ocean bottoms are often very hard and thus support very wide angle propagation.

Te handle problems invelving propagation at very wide angles or of a superposition of different
wave types, a higher-order PE based on a very accurate approximation of the square root function
is required. Several generalizations of the standard PE madels have been investigated. {11-13]
In this paper, a Padé series approximation (13] is applied to derive both acoustic and elastic PE
models. Calculations are presented that demonstrate that these models are valid for propagation
nearly orthogonal to the preferred direction and for wave speeds quite different from the reference
speed. The results of Ref. 10 are implemented and extended: the clastic PE is generalized to
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168 M.D. Collins

higher order and to media in which the Lamé constants and density vary continuously and solved
numerically with Galerkin’s method; a new numerical approach is used to handle the interface
conditions between layers.

2. Standard PE approximations

We work in cylindrical coordinates with z being the depth below the ocean surface and r
being the horizontal distance (range) from a time-harmonic point source of circular frequency w.
For now, the complex waveaumber i = k + in8 | & | and density p are assumed to depend only
on z, where k = w/f¢, 3 is the attenuation in decibels per wavelength, ¢ is the sound speed, and
1 = (407log,ge)™. We define the reference sound speed cg and reference wavenumber ko = w/co.
Cylindrical spreading is handled by removing the factor r=3% from all field variables.

For kr >> 1, the complex pressure P satisfies the farfield equation

a2p 18p8P a*p .2
—— o —— — = 2.1
822 pOz 8z + oz T kP =0, (2.1)

which factors exactly to

) 1000

Kr-i2+ 251920
8 i 14— 1050 (22)
or 1

t By allowing & and p to depend on rin Eq. (2.2), which we refer to as PE, a leading-order solution
is obtained for problems in which range-dependence is a perturbation. {14] The exact solution of
PE.. can be obtained in terms of outgoing coupled modes. {15

Approximate solutions of PE,, are obtained by approximating the square root in Eq. (2.2) and
applying numerical methods. The narrow-angle PE is obtained using the first term of the Taylor
series

\/l+z-1=%r-—-l-z’+—l~z3-.... (2.3)

The plane wave factor exp(iker) is removed from P, and we assume that K = ko to obtain

[
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The terms on the right side of Eq. (2.4) are the refraction term, which accounts for vanations m
sound speed: the density term, which accounts for density variations; the loss term, which accounts
for sediment attenuation; and the diffraction term, which accounts tor the vertical component of
propagation.
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Table I: Comparison of Taylor and Padé series.

4-term l1-term  2-term  3-term
z Taylor Padé Padé Padé 1+z
0.25 1.11801 1.11765 1.11803 1.11803 1.11803
0.50 1.22412 1.22222 1.22472 1.22474 1.22474
0.75 1.31870 131579 1.32274 1.32287 1.32288
1.00 1.39844 1.30000 1.41379 1.41420 1.41421
1.25 145639 147619 1.49904 149996 1.50000
1.50 1.48193 1.54545 1.57931 1.58105 1.58114
1.75 1.46078 1.60870 1.65523 1.65812 1.65831
2,00 1.37500 1.72000 1.79584 1.80221 1.80278
2.50 091943 1.76923 1.86124 1.86994 1.87083
2.75 0.49545 1.81481 1.92376 1.93519 1.93649
3.00 -0.10156 1.85714 1.98361 1.99817 2.00000
L .
-1 = 20 o(z2"+), 2.5
Vitdz ;__l-i-b_,.nl‘ + Oz ) (2.5)
where n is the number of terms in the Padé series and

2 2 JF .

T e 2.6

B P (26)

J7 "y =

byn = cos? Smal {2.7)

The wide-angle PE
g2 1adp o
3k It g - -—-——-) 1
( L 971 pdzo: ar
(2.8)
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is based on the 1-term Padé series, The wide-angle PE does not separate into terms corresponding,
to simple physical processes,

We solve Eqs. (2.4) and (2.8) numerically by first discrotizing depth dependence with Galerhin's
method as deseribed in the Appendix. This approach, which is valid for piecewive continuous
variations in I and p, i» casier to apply thau finite difference scheries. The resulting system
shen solved with Crank-Nicol«on integration.

e S - - - e .
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We consider NORDA Test Problem 3B, {16] which involves a 250Hz source at z = 99.5m in
an ocean 100m deep in which ¢ = 1500m/s. In the sediment, ¢ = 1590m/s, p = 1.2g/cm3, and B
= 0.5. We use Greene’s wide-angle PE starter [4] as an initial condition at r = 0. The narrow-
angle and wide-angle PE solutions are compared with the normal mode solution in Figure 1. The
narrow-angle PE solution has a large phase error. The wide-angle PE solution is very accurate.

3. The higher-order PE

Since the Padé series is valid outside the radius of convergence of the Taylor series, relatively
few terms are needed for z = 1. We illustrate this in Table I. The 4-term Taylor series is better
than the 1-term Padé series for z < 1, but the 1-ierm Padé series is better for z > 1. The 2-term
Padé series and the 4-term Taylor series are both correct to O(z®) for small z. Yet the 2-term
Padé series is substantially better than the 4-term Taylor series. The 3-term Padé series is fairly
accurate well beyond the radius of convergence of the Taylor series near z = 3.

The Padé series gives the higher-order PE

2 dp ? .
P _ “""(%f - P55 I‘Q'k‘z’)
s L -~ P

—-— = ik, s 3p 3 A (3.1)
ar 3= K2 + by ('08‘_2 - 71)_!3__ + K- 5)

which we refer to as PE,. Equation {3.1) can be solved with the method of alternating directions.
This approach involves n steps with step j requiring the solution of the equation

(3.2)
2
il-'()(l_,_n (53:)- - %.(Z’.).?. + 1\2_,‘.3) P

Equation (3.2} is solved with the approach used to solve Eq. (2.8).

To illustrate the ability of PE,, to handle long-range and very-wide-angle propagation, we con-
sider a waveguide 230m thick with pressure-release top and bottom boundaries in which ¢ =
1500m/fs. A 25Hz point source is placed at z = 25m. and we take ¢g = 1500m/s. The cight
normal modes for this problem propagate at approximately 7, 14, 21, 29, 37, 46, 57, and 74 degrees
from horizontal. PE, colutions (initialized with the normal mode solution at r = 0) are compared
with the normal mode solution in Figure 2. We observe that the PE, solutions break down very
rapidly with r for small n. However, the PE; solution is very accurate at r = Akm.

We now consider an example that illustrates the application of PE, for low-frequency under-
water acoustic propagation in deep water. In the water column, we assume the Munk profile [17]

P

o(z) = cn {1 +,u[2 nzd' + oxp (—2" "”"d‘) - 1} } (3.3)
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Figure 3: Transmission loss at z = 200m for 2 10Hz source in deep water over a hard acoustic
bottom. The dashed curve is the PE; solution. The solid curve is the PEs solution.
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Figure 4: Transmission loss at z = 25m for a 501z sonrce in shallow water. The dashed curve is
the PE; solution for ¢g = 1500m/s. The solid curve is the PE,5 solution for co = 300m/s.
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Figure 5: Transmission loss at z = 25m for a soft elastic bottom. The elastic PE solution with
inteface conditions (solid curve) and FFP solution (dashed curve) are in nearly perfect agreement.
The acoustic PE solution (broken curve) is included to show the importance of shear effects.

whoere i = 0.0071, ¢ = 1500m/s, z = 1000m, and H = 1200m. The ocean depth is 5000m. In
the sediment, ¢ = 1850m/fs, p = 1.5gfem3, and B = 0.5. A 10Hz point source is placed at z =
209m, and we take cp = 1500m/s. The homogencous half-space field [18] is used to initialize the
field at r = 400m. The Lloyd’s mirror beams produced by the source propagafe at approximately
11, 34, and 70 degrees. PE; should accurately account for the 11 and 34 degree beams for well
beyvond r = 20km. From the PE; and PE; solutions appearing in Figure 3, however, we observe
that PE; can not handle the 70 degree beam which is partially reflected from the ocean bottom
and makes a significant contribution to the field for 5km < r <15km.

Toillustrate a possible application of PE,, in elastic media, we consider a problem for which ¢ =
1500m/s in the water and the ocean depth is 200m. In the sediment, ¢ = 1700m/s, p = L5g/em?,
and 3 = 0.5. A 50Hz point source is placed at z = 25m. The PE, solution for ¢g = 1500m/s and
the PE;; solution for ¢ = 300 m/s appear in Figure 4. The agreement of the solutions suggests
that a higher-order clastic PE based on the Padé series would handle both compressional and shear
waves simultaneously.

4, 'The elastic PE

The farfield equations for the horizontal and vertical displacement u and v in an elastic medium
are [19]
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u%i—z + ;z% + pwlu + (,\+,;)%€- + %%g %g{- =0 (4.1)
W22 kT8 pute s 0 52 4 925+ =0, (42)
where the dil- - tion A is defined by
a2 (43)

Loss is handled by using the complex compressional and shear speeds ¢, = Re(ep)/(1 + infy)
and ¢, = Re(c,)/(1 + infs), where B, and B, are the compressional and shear attenuation and
1 = (407 logyee)~". The Lamé constants A and ps are related to the wave speeds and the density p
by A = p(cZ—2c3)and = pct.

We differentiate Fq. (4.1) with respect to r and Eq. (4.2) with respect to z and sum them
using Eq. (4.3) to obtain

%A 22A 2 I Pu 20
Ar2d + Q2TR + pua + 2t P+

(4.4)
i) dp\AA . 8 (A 3 (dudv)
(2 +238) 92+ & (Ba) + 24 (%4 = o
Equations (4.2) and (4.4) provide a coupled system of the form
P A A
— = 4.5

11 ar2 + A‘[ = 0, (L))

v v

which reduces to the formulation used in Ref. 10 for a homogencous medium. Since the operators
L and M commute with 3/dr, we may factor Fq. {4.5) to obtain the outgoing wave equation

2 ( 4 -l | 2
3 = ko (1 4 mnt S0l . (1.6)
ar \ v K "

The plane wave factor exp(1kyr} is removed from A and v and the square root in Fq. (4.6) is
approximated with the Padé series to obtain the higher-order elastic PL

o 2 L NM = K31) a

— = ik
or o ,; 12+ by (M - K31)

(4.7)

r v

Cn e v ek
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Figure 6: Transmission loss at z = 25m for a soft elastic bottom. The elastic PE s>lution with
Galerkin’s method for the interface (solid curve) and the FFP solution (dashed curve; are in fairly
good agreement.

We solve the elastic PE numerically with the method of alternating directions and Crank-
Nicolson integration to march the solution in r. The depth operators are replaced with matrices
using Galerkin’s method within layers in which A, p, and p are continuous as described in the
Appendix. Conditions for the continnity of the displacements and the normal and tangential
stresses are used at interfaces between solid layers. At a fluid-solid interface, however, horizontal
displacement is not required 10 be continuous.

Let us consider a fluid-solid interface at z = z, (the grid points z, are defined in the Appendix)
and introduce the subscripts w and b for the fluid (water) and solid (bottom) layers. We use the
physical values A,.(2)), As(2,), 142 ). An(2)=1), An(zy41), and 14(2,41) and the nonphysical values
Ay(2y41), Aa{2y-1), and vy(z,-1) in the discretized equations of motion in both layers at =z = z;.
We also use these values to form differences at z = z, for the following conditions for continuity of
vertical displacement, normal stress, and tangential stress {10}:

9]

é'z'(AuvAu') + ﬂuuzl", =0 (,LR)
(')l'g

Avdy = Ay + '2[“.’,)— (-1.9)
dz

a . 8 Ony 2
5;(,\;..35} + ?E(u;—‘,};) + putey = 0, (1.10)

>




Higher-Order and Elastic Parabolic Equations for Wave Propagation 177

50
Elad R T
= ER LIt tre
(@ & : }!!‘ g}%\'}n{; Lo
g o I :?"r&jf“" jf W
‘ ” LI I WA
3 8o ‘ { ;
| 'J
90 : i ; i
0 2 1 6 8 10
Range (km)
50 1
s
’-E\ 60~ ‘:' ﬁ
(b £ {{\T
% 70- -' /{ \ o
0
3
2

80

——

90

i ¥

2 4

[

6

Range (km)

Fignre T: Transmission loss at ¢ = 25m for a hard elastic bottom. The eiastic PE (solid curves)
and the FFP solution (dashed curves). (a) The solutions do not agree for n = 1. (b) The solutions
are in good agreement for n = 3.

The nonphysical values are climinated in the equations of motion at = = =z, using the difference
formulas for Eqs. (4.8), {4.9), and (4.10). A solid-solid interface is handled similarly using the
inter’ace conditions described in Ref. 10.

In & flud medium, P = AA can be initialized at r = 7y with the homogeneous half-space field
(18] Py, for a point source at z = 24

l wd.. i wd,
P, = ——oex ~f = = aX 4.11)
k d_ P {Cp(:q]] d+ P [c;(:ﬂ)] (
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&=+ (), (4.12)

where krg >> 1. The half-space field accounts for the direct arrival and the surface-reflected arrival.
This PE starter is generalized to elastic media by applying the half-space quantities

31
Ay = —— P 4.13
= e B (4.13)
_ 1 8P,
%= -5y (4.14)

to initialize A and v. This starter is valid only if the source is at least a foew wavelengths away
from the ocean bottom. We define transmission loss to be —20log,q | Mz0)A | +10log,or. This
definition corresponds to the usual definition of transmission loss in a homogencous fluid.

We first consider a problem involving a 50Hz soutce at z = 23m in an ocean of depth 100m in
which ¢, = 1500m/s. In the uniform elastic sediment, ¢, = 1700m/s, ¢, = $00m/s, p = lgfem?,
Bp = 0.5, and 8, = 0.5. For the numerical solution of the elastic PE, we used the values n = 1,
Ar = 5m, Az = 0.5, and 1 = 100m. To eliminate an instability in the numerical solution, it was
necessary to extend the computational domzin 2km below the ocean surface at which we assumed
that both A and v vanish. Both the compressional and the shear attenuation were increased linearly
10 10 in the lower 100m of the domain to prevent reflections. Transmission loss generated with the
clastic PE and with an FFP model [20,21] appears in Figure 5. The solutions are in nearly perfect
agreement.

We also performed an elastic PE calculation for this problem using the difference equations
obtained with Galerkin's method to model the ocean bottom interface. This approach, whick
produces accurate results for acoustics problems, [22] is easier to implement. Although L=! does
not exist where p vanishes, the v solution of Eq. (4.2) is also a v solution of Eq. (4.7) in a fluid.
Thus the clastic PE should be valid for s = 0. We observe from the transmission loss data appearing
in Figure 6 that Galerkin’s method handles discontinuities fairly well. This is consistent with the
discussion in Ref. 23. We deduce that Galerkin's method should handle continuous variations very
well.

We now consider a problem involving a 20Hz source at z = 25m in an ocean of depth 600m in
which ¢, = 1500m/s. In the uniform elastic sediment, ¢, = 3460m/s, ¢, = 1700m/s, p = 2gfcm3. 3,
= 0.5, and 3, = 0.5. The hard ocean bottom supports very wide propagation angles in the water
column. For the numerical ~olution of the elastic PE, we extended the computational domain to z
= 10km and used the values Ar = 10m, Az = Im, and rg = 200m. The attenuation was increased
linearly 10 100 in the lower 1km of the domain. The elastic PE solution appears in Figure 7 for
n = 1and for n = 3, The elastic PE can not baundle the wide propagation angles for n = 1.
However, the n = 3 solution is in good agreement with the FFP solution.

In PE modeling, range-dependent problems are handled approximately by allowing the en-
tries of the matrices for the depth operators to depend on range. This approach, which is casily
implemented, produces aceurate results for acoustics problems if range dependence is sufliciently
gradual.




179

Higher-Order and Elastic Parabolic Equations for Wave Propagation

(vt ax gp) ssog

(wy a1 gp) sso

() yyda(

(b)

1 and (b) n

sloping elastic ocean bottom for (a) n

Figure 8. Transmiscion loss contours for a
10. The black lines mark the acean bottom.




180 M.D. Collins
40
__ 50+
B
-
o 60
E
S
pe( L
4]
Q
-
80-]
90 ] 1 I
0 1 2 3 4

Range (k)

Figure 9: Transmission loss at z = 30m for a sloping elastic bottom. The elastic PE solution for n
= 10 (solid curve) and n = 1 (dashed curve) and the acoustic PE solution (broken curve).

This approach should also be valid for weakly range-dependent problems in elastic media.

We modify a range-dependent benchmark problem [24] to illustrate the higher-order elastic PE
model for a range-dependent problem. A 25Hz source is located at ¥ = 100m in an ocean in which
¢ = 150Cm/s and the depth d is given by

,
={1~——1\ 200m. 4.15
d (l flkm) 200in (4.15)

In the sediment, cp = 1700m/fs, p = 1.5gfem, and 3, = 0.5 for the original acoustic problem. We
take ¢, = 800m/s and 3, = 0.5. Due to the sloping ocean bottor, a significant amount of energy
is transmitted into both shear and compressional waves in the bottom. Thus one might expect the
n = 1 elastic PE to have difficulty handling this problem.

We extend the grid down to z = 10km and take Ar = 3m, Az = lm. rg = 100m, and g =
1500m/~. Contour plots of transmission los~ appear in Figure 8 for n = 1 and n = 10, The n = |
solution breaks down in the sediment because it does not handle the trapsmitted shear waves. The
n = 10 solution doe« not appear to break down in the <sediment. Transmission low. curves appear in
Figure 9. We observe that the elastic PE solution exhibits more loss than the acoustic PE solution
and that the n = 1 and n = 10 solutivns are in good agreement in the water column.
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5. Conclusion

Higher-order acoustic and clastic PE models based on a Padé series have been derived and
solved numerically. The higher-order PE models produce accurate solutions for propagation nearly
orthogonal to the preferred direction and for large variations in sound speed. In particular, the
sound specu may deviate far from the reference sound speed. The clastic PE allows hard ocean
bottoms as well as continuous variations in the Lamé constants and density. It appears to handle
propagation of a superposition of different types of elastic waves. Galerkin’s method was used
to discretize the elastic PE, which has relatively complicated depth operators. A new numerical
approach was used for the interface conditions between layers. The half-space PE starter has been
generalized to elastic media. Benchmark calculations demonstrate that the elastic PE and the half-
space elastic PE starter produce accurate solutions for range-independent problems. The elastic
PE was applied to a range-dependent problem.

The half-space starter is not valid for very low frequencies or for sources close to the ocean
bottom. Since these kinds of problems involve strong coupling into shear and interface waves, an
clastic PE starter that handles them would be useful. With the boundary conditions we used at
the bottom of the grid, the elastic PE is stable only if the domain is truncated at a large depth.
Bottom boundary conditions that allow smaller truncation depths would improve the efficiency of
the model. It might be possible to accurately handle interfaces with Galerkin's method by slightly
modifying the formulation of the elastic PE and/or by using different basis functions. This would
improve the simplicity of the model.
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Appendix: Depth discretization with Galerkin’s method

We define the depth grid points z, = iAz. The basis functions ¥,(z) vanish for | z—2, > Az,
| E increase linearly from 0 to 1 over %4-1 < 2 < 7, and decrease from 1 to 0 over 2 <2< 21, We
define Q; = O(z;) for an arbitrary coefficient function © and ¢, = §(z,) for the dependent variable

®. The basis functions provide the approximations

Ofz) Z 0,%,(z) (A.1)
d(z)z E ,¥,(2). (A.2)

The depth operator Q. is discretized with Galerkin's method as follows:
Q2 Pl & I ‘p'Q’M:. (A4.3)

| ¥.dz

Substituting Eqs. (A Iy and (A.2) into Eq. {A.3). we obtain the following approximations for the
depth operators:

vl >0ty

9’-’~‘M1+ G%L.L(?At! &, + Pt Tzi 0,

LT (A4h
Ot ¥ Mg
BT ¢ g (45)
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Fer g, 20, 9, \
O N S Yt o s e Pt 1.6
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30 ~ =0i + 0,4
8= = 6(Az) Pi1 +
Oiy + Gisrgy , Qg1 —0;
z o + %‘Az Bisr
2005|  ~ Qi — 0,4
Jzdz =% = 2(Az) $ier +

20, - 0,“ - Oi-l Oﬂ-l - 01 .
Q(AZ)Z 'p] + 2(:32)2 q>|+l

a (30 ~ Oy - O,
a—:(m:q') lz::, = —:-)'z]‘;_\—:—)}'— q’l-l +

01—! - 29: + 0l+| (b' + 01-{»1 - O:q,‘+‘
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