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Higher-order and elastic parabolic equations
for wave propagation in the ocean T I C
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Abstract

Whigher-order parabolic equation (PE) based on a Pad6 series an elastic PE [10] are
applied to wave propagation in the ocean. In contrast to the standard PE models of underwater
acoustics, the higher-order PE provides accurate solutions for problems involving arbitrarily long
ranges, propagation nearly normal to the preferred direction, and large variations in sound speed..
The most important applications of the higher-order PE are for problems involving elastic ocean
bottoms. A new numerical approach based on centered differences is applied to handle interface

I conditions. The accuracy of the elastic PE is demonstrated with benchmark calculations. The
elastic PE is applied to a range-dependent propagation problem.

O 1. Introduction

<The parabolic equation [1 (PE) is very useful for wave propagation problems because it can
be solved with an efficient marching algorithm. However, PE solutions are only approximate and
thus are valid for only certain types of propagaticn problems. The original narrow-angle PE,
which is based on a rational linear approximation t, a square root function, is fairly accurate if
the propagation direction is limited to within abo'it 15 degrees of the preferred direction. The
wide-angle PE, [2-4] which is based on a rational I near approximation of a square root function, is
fairly accurate for propagation angles up to about 10 degrees. These standard versions of the PE
are applicable to a large category of oceanic wave propagation problems. lowever, they can not
handle problems involving very hard ocean bottoms or propagation very close to or very far from
the sound source.

Several PE models have been derived for wave propagation in ,lastic media.[5- 10 A few of these
models were implemented and produced promising r-sults. [5,91 However, no conclusive evidence
has been provided that the elastic PE is capable ,f solving realistic problems. PE models that are
derived by assuming that energy propagates at speeds close to a reference speed obviously can not
handle problems involving coupling between comprexsional and shear waves. Furthermore, elastic
ocean bottoms are often very hard and thus support very wide angle propagation.

To handle problems involving propagation at very wide angles or of a superposition of different
wave types, a higher-order PE based on a very accurate approximation of the square root function
is required. Several generalizations of the standard PE models have been investigated. 11-131
In this paper, a Pad6 series approximation *13] is applied to derive both acoustic and elastic PE
models. Calculations are presented that demonstrate that these models are valid for propagation
nearly orthogonal to the preferred direction and for wave speeds quite different from the reference
peed. The results of Ilef. 10 are implemented and extended: the elastic PE is generalized to
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higher order and to media in which the Lam6 constants and density vary continuously and solved
numerically with Galerkin's method; a new numerical approach is used to handle the interface
conditions between layers.

2. Standard PE approximations

We work in cylindrical coordinates with z being the depth below the ocean surface and r
being the horizontal distance (range) from a time-harmonic point source of circular frequency W.
For now, the complex wavenumber K = k + iijp I k I and density p are assumed to depend only
on z, where k = ca/c,fl is the attenuation in decibels per wavelength, c is the sound speed, and
il = (,0l logt 0e) - . We define the reference sound speed co and reference wavenumber ko = L'/co.
Cylindrical spreading is handled by removing the factor r-I from all field variables.

For kr >> 1, the complex pressure P satisfies the farfield equation

D2P l0pOP a2
2P -pOzOz + + + K 2 P = 0, (2.1)

which factors exactly to

K 2 - -2+a oaap = iP + p. (2.2)Tr k0

By allowing K and p to depend on r in Eq. (2.2), which we refer to as PE,,, a leading-order solution
is obtained for problems in which range-dependence is a perturbation. (1.1] The exact solution of
PE, can be obtained in terms of outgoing coupled modes. [15]

Approximate solutions of PE, are obtained by approximating the square root in Eq. (2.2) and
applying numerical methods. The narrow-angle PE is obtained using the first term of the Taylor
series

_=- .2- + (r-.. 2.3)
2 16

The plane wave factor exp(ikor) is removed from P, and we assume that K : A0 to obtain

Op OpOaP a2P (2..
r 0 p-2kop Oz 20

The terms on the right side of Eq. (2.4) are the refraction term, which accounts for variations in
%ound speed: the density term, which accounts for density variations; the loss term, which account,
for sediment attenuation; and the diffraction term, which accounts lor the vertical component of
propagation.
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Table I: Comparison of Taylor and Pad6 series.

4-term 1-term 2-term 3-term

x Taylor Pad6 Pad6 Pad6 ,/-+-

0.25 1.11801 1.11765 1.11803 1.11803 1.11803
0.50 1.22412 1.22222 1.22472 1.22474 1.22474
0.75 1.31870 1.31579 1.32274 1.32287 1.32288
1.00 1.39844 .;3000 1.41379 1.41420 1.41421
1.25 1.45639 1.47619 1.4990 1 49996 1.50000

1.50 1.48193 1.54545 1.57931 1.58105 1.58114
1.75 1.46078 1.60870 1.65523 1.65812 1.65831
2.00 1.37500 1.72000 1.7958, 1.80221 1.80278
2.50 0.91943 1.76923 1.86124 1.86994 1.87083
2.75 0.49545 1.81481 1.92376 1.93519 1.936,19
3.00 -0.10156 1.8571,1 1.98361 1.99817 2.00000

a.nX + O(x 2 z+l),

V=7 1 + bI,,nx (

where n is the number of terms in the Pad6 series and

2 *i2 3r (2.6)

2n + I 2n + 1

b,., = cos 2  " (27)
2n+ I

The wide-angle PE

(31. + K(2 + i,2 _ l p I ) ,p

2sko0 (i 2 - k[2 + I O . li Pp

is based on the I-term Oad, series. The wide1-angle PE d(ws not separate into terms corre.,pondmng
to simple physical proces .(s.

We olve Eqs. (2.4) and (2.8) numerically by first discretizing depth dependence with Gaierkjl'x
method as described in the Appendix. Tids approach, which is valid for piecewise contilnuou
variations in K and p, is easier to apply than finite difference scher.aes. The resulting sy.stem v-,
then solved with Crank-.Nicol.ot integration.
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We consider NORDA Test Problem 3B, [16] which involves a 25011z source at z = 99.5m in
an ocean 100m deep in which c = 1500m/s. In the sediment, c = 1590m/s, p = 1.2g/cm3 , and '0
= 0.5. We use Greene's wide-angle PE starter [4] as an initial condition at r = 0. The narrow-
angle and wide-angle PE solutions are compared with the normal mode solution in Figure 1. The
narrow-angle PE solution has a large phase error. The wide-angle PE solution is very accurate.

3. The higher-order PE

Since the Padd series is valid outside the radius of convergence of the Taylor series, relatively
few terms are needed for x 1. We illustrate this in Table I. The 4-term Taylor series is better
than the 1-term Padd series for x < 1, but the 1-term Padd series is better for x > 1. The 2-term
Padd series and the 4-term Taylor series are both correct to O(x5 ) for small x. Yet the 2-term
Padd series is substantially better than the -- term Taylor series. The 3-term Padd series is fairly
accurate well beyond the radius of convergence of the Taylor series near x = 3.

The Pad6 series gives the higher-order PE

(2 P 00  
+ 2k2

O.-r = ik( 2  ) P, (3.1)
= 1 -02 + b . -8f Oz + K -k 2

which we refer to as PER. Equation (3.1) can be solved with the method of alternating directions.
This approach involves n steps with step j requiring the solution of the equation

[Lk2 + 'C92 I a.-a +l OP

(3.2)[ 2  OP A 2 k2) p
ik°' z P Oz Oz + -

Equation (3.2) is solved with the approach used to solve Eq. (2.R).

To illustrate the ability of PE,, to handle long-range and very-wide-angle propagation, we con-
sider a waveguide 250ni thick with pressure-release top and bottom boundaries in which c =
1500m/s. A 2511z point source is placed at z = 25m. and we take co = 1500m/s. The eight
normal modes for this problem propagate at approximately 7, 1.1, 21, 29, 37, 16, 57. an d 7.1 degrees
from horizontal. PE, colutions (initialized with the normal mode solution at r = 0) are compared
with the normal mode solution in Figure 2. We observe that the PE,. solutions break down very
rapidly with r for small n. lowever, the PE6 solution is very accurate at r = 4km.

We now consider an example that illustrates the application of PE,, for low-frequency under-
water acoustic propagation in deep water. In the water column, we assume the Munk profile [171

C(Z) C.!h I+P[ -- zCh+ CXI 2 (33)
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Figure 3: Transmission loss at z =20Dm fnr a 1011z source in deep water over a hard acoustic
bottom. The dashed curve is the PEI solution. The solid curve is the PES solution.
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Figure 4- Transmission loss at z = 25m for a 5011z source in shallow water. The (lashed curve is
the PE 2 ,solution for cu = iSO0n/s. The solid curve is the P, solution for co =300mi/s.
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Figure 5: Transmission loss at z = 25m for a soft elastic bottom. The elastic PE solution with
interface conditions (solid curve) and FFP solution (dashed curve) are in nearly perfect agreement.
The acoustic PE solution (broken curve) is included to show the importance of shear effects.

whre it = 0.0071, ccj = I$00m/s, -ch = 1000m, and H = 1200m. The ocean depth is 5000m. In
th( sediment, c = 1850m/s, p = l.5g/cm3, and 3 = 0.5. A 1011z point source is placed at z =
20)m, and we take co = 1500m/s. The homogeneous half-space field [18] is used to initialize the
field at r = 400m. The Lloyd's mirror beams produced by the source propagate at approximately
11, 34, and 70 degrees. PEI should accurately account for the 11 and 31 degree beams for well
beyond r = 20km. From the PEI and PEs solutions appearing in Figure 3, however, we observe
that PEI can not handle the 70 degree beam which is partially reflected from the ocean bottom
and makes a significant contribution to the field for 5kin < r <15km.

To illustrate a possible application of PE,, in elastic media, we consider a problem for which c
1500ni/s in the water and the ocean depth is 200m. In the sediment, c = 1700im/s, p = 1.5g/cm3 ,
and 3 = 0.5. A 5011z point source is placed at z = 25m. The PE solution for co = 1500m/s and
the PE13 solution for c0 = 300 m/s appear in Figure 4. The agreement o the solutions suggests
that a higher-order elastic PE based on the Pad& series would handle both (ompressional and shear
waves simultaneously.

4. The elastic PE

The farfield equations for the horizontal and vertical displacement u and I in an elastic medium
are 1191
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02UpW 2U ( A + i- u +9 y = 0 (4.1)
-5 r-2 + - + +  + Or Oz8z Oz-r

It + a2 2 + p W2 + (A+)L + 2L- + OA=, (4.2)7r2~- + 7z2 +z az A O,

where the dili' .tion A is defined by

Lu av
Or T. (4.3)

Loss is handled by using the complex compressional and shear speeds c, = Re(cp)/(l + iqgp)

and c, = Re(c,)/(l + ir/3), where Op and P, are the compressional and shear attenuation and

q = (40w loglo) - l. The Lam6 constants A and it are related to the wave speeds and the density p

by A = p (c - 2c,) and it = pc2.

We differentiate Eq. (4.1) with respect to r and Eq. (4.2) with respect to z and sum them

using Eq. (4.3) to obtain

(A+2p1j) , + (A+ 2,t) + pw' A + 2 0 2V + +

OA + R0,l)OA I ON +2 a ( Ov)
S W U-3 (U ) + z( = ,.

Equations (1.2) and (4.4) provide a coupled system of the form

0r2 / A
Sr ) " , A ) =.0,

which reduce- to the formulation used in Ref. 10 for a homogeneous medium. Since the operators

I, and M commute with O/Or. we may factor Fq. (1.5) to obtain the outgoing wave equation

O r = ko - ( ko h ( . .)

The plane wave factor exp(-zkr) is removed from A and v and the square root in Eq. (4.6) is

approximated with the PadsI series to obtain tlie higher.order elastic PI"

0 ~~~ ( A \k0nL0 ,
- - + )j "a,-,JA( - k-"L)kr b , .=1 IP ~)
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Figure 6: Transmission loss at z 25m for a soft elastic bottom. The elastic PE s ilution with
Galerkin's method for the interface (solid curve) and the FFP solution (dashed curve) are in fairly
good agreement.

We solve the elastic PE numerically with the method of alternating directions and Crank-
Nicolson integration to march the solution in r. The depth operators are replaced with matrices
using Galerkin's method within layers in which A,pi, and p are continuous as described in the
Appendix. Conditions for the continuity of the displacements and the normal and tangential
stresses are used at interfaces between solid layers. At a fluid-solid interface, however, horizontal
displacement is not required to be continuous.

Let us consider a fluid-solid interface at z = z. (the grid points z, are defined in the Appendix)
and introduce the subscripts to and b for the fluid (water) and solid (bottom) layers. We use the
physical values A,.(zj), At(z,), v (z,). A,j,(z._ ), Ah(z,+), and t,(z, +) and the nonphysical values
A, (z2+t), At(p-t), and tv(z2-) in the discretized equations of motion in both layers at : = z).
We also use these values to form difforences at z = -, for the following conditions for continuity of
vertical displacement, normal stre,;s, and tangential stress (101:

- (,,A, + p,,w 2r4, = 0 ,,)
r

A, = AbAf + 2pA,U (.9)

a 0/) (t',

(,Ax) + '-(p--) + pwv,- = 0. (.10)
. . . .. .8
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di r + (z-zo)2 , (4.12)

where kro >> 1. The half-space field accounts for the direct arrival and the surface-reflected arrival.
This PE starter is generalized to elastic media by applying the half-space quantities

Ah - P, (4.13)

_ I oP,
Vh 82 Oz (4.14)

to initialize A and v. This starter is valid only if the source is at least a few wavelengths away
from the ocean bottom. We define transmission loss to be -20oglo I A(zo)A I +101oglor. This
definition corresponds to the usual definition of transmission loss in a homogeneous fluid.

We first consider a problem involving a 50H1z source at z = 2.5m in an ocean of depth 100m in
which cp = 1500ms. In the uniform elasic sediment, c, = 1700m/s, c, = $00m/s, p = lg/cm3,
/3,p = 0.5, and /3, = 0.5. For the numerical solution of the elastic PE, we used the values n = 1,
Ar 5m, Az = 0.5, and ro = 100m. To eliminate an instability in the numerical solution, it was
necessary to extend the computational domain 2kin below the ocean surface at which we assumed
that both A and v vanish. Both the compressional and the shear attenuation were increased linearly
to 10 in the lower 100m of the domain to prevent reflections. Transmission loss generated with the
elastic PE and with an FFP model [20,211 appears in Figure 5. The solutions are in nearly perfcct
agreement.

We also performed an elastic PE calculation for this problem using tile difference equations
obtained with Galerkin's method to model the ocean bottom interface. This approach, which
produces accurate results for acoustics problems, [221 is easier to implement. Although L -' does
not exist where t vanishes, the , solution of Eq. (4.2) is also a v solution of Eq. (.1.7) in a fluid.
Thus the elastic PE should be valid for i = 0. We observe from the transmission loss data appearing
in Figure 6 that Galerkin's method handles discontinuities fairly well. This is consistent with the
discussion in Ref. 23. We deduce that Galerkin's method should handle continuous variations very
well.

We now consider a problem involving a 20Hz source at z = 25m in an ocean of depth GOm in
which c = 1S00m/s. In the uniform elastic sediment, . = 3,100m/s. c, = 1700m/s, p = 2g/cm3 , 3,,
- 0.5, and 3 = 0.5. V he hard ocean bottom supports very wide propagation angles in the water
column. For the numerical ,olution of the elastic PE, we extended the computational domain to z
= 10kim and used the values Ar = 10m, Az = Ira, and rc = 200m. The attenuation was increased
linearly to 100 in the lower lkm of the domain. The elastic PE solution appears in Figure 7 for
n = 1 and for n = 3. 'rite elastic PE can not handle the wide propagation angles for n I.
However, the in = 3 solution is in good agreement with the FFP solution.

In PE modeling, range-dependent problems are handled approximately by allowing the en-
tries of tile matrices for the depth operators to depend on range. This approach, which is easily
implemented, produces accurate results for acoustics problems if range dependence is sufficiently
gradual.
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Figure 9: Transmission loss at z =30m for a sloping elastic bottom. The elastic PE solution for n
= 10 (solid curve) and n = I (dashed curve) and the acoustic PE solution (broken curve).

This approach should also be valid for weakly range- dependent problems in elastic media.

We modify a range-dependent benchmark problem 12411 to illustrate the higher-order elastic PE
model for a range.-dependent problem. A 2511z source is located at 100Om in an ocean in which
c = 15O0m/s and the depth d is given by

V - km) 200mn. (.

In thle sedimnirt. cp = 700rj/s, p =1.5g/cni3, andl 0, 0.5 for the original acoustic problem. Wec
take c, = 800m/s and 0, = 0.5. D~ue to the sloping ocean bottom, a significant amiount of energy
is transmitted into both shear aiid compressional waves in the bottom. Thu~s one might expect the
it I elastic PE to have difficulty handling this problem.

We extend the grid down to z = 10kmn andl take Ar = Sm. Az = im ro =l10m. and co
1500m/s. Contour plots of transmni-;sion lo,;- appear in Figure 8 for nt = and n = 10. Trhe it=
solution brea.ks down in the sediment. because it doe.- not handle the transmnitted shear waves. The
it 10 solution doe% not appear to break down in the sediment.- Transnji%-4on los'% curve,% appear in
Figure 9. We observe that the elastic PE solution exhibits more loss. than the acoustic IT solution
and that the n = I and nt 10 %olutiins are in good agreement in thme water column.
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5. Conclusion

Higher-order acoustic and elastic PE models based on a Pad6 series have been derived and
solved numerically. The higher-order PE models produce accurate solutions for propagation nearly
orthogonal to the preferred direction and for large variations in sound speed. In particular, the
sound spec may deviate far from the reference sound speed. The elastic PE allows hard ocean
bottoms as well as continuous variations in the Lam6 constants and density. It appears to handle
propagation of a superposition of different types of elastic waves. Galerkin's method was used
to discretize the elastic PE, which has relatively complicated depth operators. A new numerical
approach was used for the interface conditions between layers. The half-space PE starter has been
generalized to elastic media. Benchmark calculations demonstrate that the elastic PE and the half-
space elastic PE starter produce accurate solutions for range-independent problems. The elastic
PE was applied to a range-dependent problem.

The half-space starter is not valid for very low frequencies or for sources close to the ocean
bottom. Since these kinds of problems involve strong coupling into shear and interface waves, an
elastic PE starter that handles them would be useful. With the boundary conditions we used at
the bottom of the grid, the elastic PE is stable only if the domain is truncated at a large depth.
Bottom boundary conditions that allow smaller truncation depths would improve the efficiency of
the model. It might be possible to accurately handle interfaces with Galerkin's method by slightly
modifying the formulation of the elastic PE and/or by using different basis functions. This would
improve the simplicity of the model.
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Appendix: Depth discretization with Galerkin's method
We define the depth grid points z, = iAz. The basis functions Vi(z) vanish for I z-z, J> Az,increase linearly from 0 to I over z,.-I < z < z,, and decrease from I to 0 over z, < z < z,+,. W1edefine Oi = O(zi) for an arbitrary coefficient function 0 and tD, = 4)(z,) for the dependent variableID. The basis functions provide the approximations

O(Z) op;r,(z) Gt.)

The depth operator Qz is discretized with Galerkin's method as follows:

_/[. . f 'P,Q ,( ddz
Q'fl= '= -(A1.3)j P,dz ".I.

Substituting Eqs. (A 1) and (A.2) into Eq. (A.3). we obtain tho following approximations for thedepth operators:

Ol"b1, 0- 1 +"0' .,, 4

0,-, + 6~0, + 0 , 0[+ I

0' 
+

+ ,' I+ (.-1.A)

i = _ , 20 4,(S -i ' -  -. - + ,. (.1.,)

f
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D 0(Ii + 0, +
0,T1 +

3A-1 +

20, - 0,+,.)2- O I~ + 01.4.1 0,,

j+1 A."

a (PD 4 .) IZ: -1 - 0, ~,,+

Uz( 2Az)

- 0,~ ~ +01 - 0
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