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0 Abstract SD
A three-dimensional parabolic equation (3DPE) that handles wide angles in the vertical, narrow

angles in the azimuth, and rough ocean surfaces and bottoms is derived. The 3DPE is solved
in numerically using the method of alternating directions. Surface roughness is accounted for by a

reflection coefficient that depends on grazing angle. Calculations are presented to illustrate the
I rough surface model and to demonstrate that azimuthal diffraction can be important in shallow

water. The ability of the 3DPE to accurately handle azimuthal diffraction is demonstrated with a
qt benchmark calculation. Algoritlms for improving the efficiency of 3DPE models are discussed. .

ClJ 1. Introduction

The parabolic equation [1] (PE) method is a very useful model for underwater propagationIO calculations. For most applications of the PE, the domain is assumed to be cylindrically symmetric
with smooth boundaries, and the two-dimensional PE (2DPE) is applied. Including the effects
of three-dimensional variations and rough surfaces in the model would allow one to handle more
realistic problems. The three-dimensional PE (2-5] (3DPE) has been derived for problems involving
variations in both range and azimuth. For some problems, accurate results can be obtained for
problems involving variations in azimuth by using the 2DPE in each direction of interest [3]. For
such problems the azimuthal diffraction term in the 3DPE is apparently less important than the

3azimuthal refraction term. A 3DPE that handles wide-angle propagation in both depth and azimuth
has been derived [4]. However, existing numerical solutions of this 3DPE are inefficient due to
coupling between the depth and azimuth term. A 3DPE that handles wide angles in depth and

3narrow angles in azimuth can be solved very efficiently with the method of alternating directions
(5]. Propagation in the ocean can be significantly affected by rough boundaries. [6] An efficient
approach for modeling rough ocean surfaces and bottoms is to assume that the net result of tie
roughness is an energy loss that depends on grazing angle [7,8].

In this paper, a 3DPE is derived that handles wide angles in depth and narrow angles in azimuth
and includes rough boundaries. Rough ocean surfaces and bottoms are handled approximately by
assuming a reflection coefficient at the ocean surface that depends on grazing angle and transforming
this into a homogeneous boundary condition that is easily incorporated into the numerical solution
of the 3PDE. The reflection coefficient is allowed to vary in both range and azimuth. Calculations
are presented to illustrate the rough surface PE and to demonstrate that the 2DPE can not handle
some shallow-water propagation problems. Efficient algorithms for the numerical solution of the
3DPE are discussed and illustrated with examples. The ability of the 3DPE to accurately handle
azimuthal diffraction is demonstrated with a benchmark calculation.
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2. The three-dimensional parabolic equation

We work in cylindrical coordinates with z being the depth below the ocean surface, 0 being
the azimuth angle, and r being the horizontal distance (range) from a time-harmonic point source
of circular frequency w. For now, we assume that the complex wavenumber K = k + it7/31 k I and
the density p depend only on z, where k -- w/c, J3 is the attenuation in decibels per wavelength, c
is the sound speed, and 7 = (40logle)- l. We define the reference sound speed co and reference
wavenumber k0 = w/co. Cylindrical spreading is handled by removing the factor r-2 from the
complex pressure P.

For kr >> 1, P is assumed to satisfy the farfield equation

a2P 1 ap P 02P 1 02P
z F pzaz + + r2 0 O- + K 2 P = 0 . (2.1)

Since r-2 may be assumed to commute with O/Or in the farfield, we obtain the following factor-
ization for the outgoing solution

P = P. (2.2)r k2

We define the operators

X=k K2 -2k + O2 p zz (2.3)

1 .92Y= i2r a2  (2.4)

and assume that I YP 1<<l XP 1. For the square root in Eq. (2.2), we use the approximation

2X ly

,I+X+Y 1 2- + y +O(X 3,XY) (2.5)
4+X 2

and remove the plane wave factor exp(ikor) from P to obtain the 3DPE

aP 2iko (J2 - k + 0 2  - 1
& = 82  Z) P + 2ko 02p (2.6)
&r 3k, + K 2 + 92 "kazoa
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Figure 1: The modal radiation patterns for Ph at r 300m (dashed curves) and for P (solid curves)
at (a) r = 150m and (b) r = 300m.

Equation (2.6), which reduces to the wide-angle 2DPE [91 for two-dimensional problems, is a valid
leading-order solution to problems in which K and p depend on r and 0 as a perturbation. An
analogous approach based on Eq. (2.5) has been used to derive a wide-angle time-domain PE for
shallow water. (101

We solve the 3DPE numerically with the method of alternating directions, [11] which requires
numerical methods for each of the following

2ik-K 1a2-P 2iko(K 2 - k 2 +-z --:""]
-- =k02 _&_ 10 0 '5 P (2.7)

8?' 3k + '2 + _ (2.7)

OP i 82P(

r = 2kor2 002" (2.8)

Equation (2.7) is the wide-angle 2DPE and can be solved with the numerical methods described in
Ref. 10. Equation (2.8) can be solved with centered differences in 0 with Crank-Nicolson integration
in r. The matrices involved have three diagonals and entries in the upper right and lower left corners
for the continuity condition

PI=o= P e= 2 , • (2.9)
0

To show that the 3DPE accurately handles azimuthal diffraction (i.e. the effect of the 0-term
in the 3DPE), we consider a dipole source with a horizontal polar axis. In an ocean of depth 300m
with c = 1500m/s, we place two 50Hz sources in phase 200m apart both at z = 25m. The point
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Figure 2: Transmission loss at z =30m in an ocean with a corrugated bottom generated with tile
3DPE (solid curves) and with the 2DPE (dashed curves) for (a) 0 = 00, (b) 19 = 20', (c) 9 = 40',
(d) 9 600, (e) 0 = 800, (Figure 2. cant'd on next page)
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Figure 2 cont'd: Transmission loss at z = 30m in an ocean with a corrugated bottom generated
with the 3DPE (solid curves) and with the 2DPE (dashed curves) for (f) 0 = 1000, (g) 0 = 1200,

(h) 0 = 1400, (i) 0 = 1600, (j) 0 = 180 ° .
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Figure 3: Rays traced from the origin in an ocean with a corrugated bottom for (a) 0 400, (b)
0 600, (c) 9 800, (d) 0 = 100', (e) 8 = 1200, (f) 0 = 1400.
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midway between the sources is r = 0. In the sediment, c = 16Om/s, p = 1.5g/cm, and / = 0.5.
The homogeneous half-space field [12)

Ph = exp(ikod) exp (ikod+) (2.10)

d = r2 + (z zo) 2  
(2.11)

is used as an initial condition at r = 150m, and the 3DPE is applied to march the field out to r
= 300m. The modal radiation patterns [13] 201og1 0 1< P,0p1 >1 and 20logl 0 1< Ph,4'l >1 appeal-
in Figure 1, where 01 is the first waveguide normal mode and <, > is the inner product associated
with the depth operator of Eq. (2.1). The half-space radiation pattern evolves substantially over
150m < r < 300m, and the radiation patterns are in excellent agreement at r = 300m.

To demonstrate that azimuthal diffraction can be important, we consider a 25Hz source at z
25m in an ocean of depth

d [3- sin -)]J 50m, (2.12)

which depends only on the Cartesian coordinate x = rcosO. The maximum slope of the ocean
bottom is about 30. In the water column, we take c = 1500m/s. In the sediment, c = 1700m/s, p
= 1.5g/cm 3 , and 3 = 0.5. The domain is truncated at z = 600m, and the attenuation is increased
linearly to 20 in the lower 100m of the domain to prevent reflections. The grid spacings are Ar
= 5m, Az = 1m, and AO = 0.250. Transmission loss computed with the 2PDE and the 3DPE
appears in Figure 2. We observe that the solutions are in good agreement for 0 near 00 and 180'.
Near 900, however, there is a large difference between the solutions because energy gets trapped in
the deep parts of the corrugated bottom and channeled in the y-direction. Similar effects should
be important for many realistic shallow-water problems.

The three-dimensional behavior we have observed can also be illustrated with ray tracing. The
grazing angle 4 of a ray is defined to be the angle the ray makes with the ocean surface. Rays arc
traced from the origin for 0 = 2n" for 1 < n < 15. Rays that encounter the ocean bottom reflect
(terminate) if incident within (beyond) the critical angle. Projections of the ray paths onto the
ocean surface appear in Figure 3. Ray channeling is significant only for 600 < 0 < 1200 , which is
consistent with the 3DPE results. For the case of 0 = 800, the rays in Figure 3 are trapped in the
channel for 5 < n < 13.

3. Rough surface modeling

In the farfield, we consider the plane wave

Pi = exp(ik(rcoso - zsino)] (3.1)

incident upon a rough ocean surface. As in Ref. 7, we assume that the scattered field is given by
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P. = -R(O) exp [ik(r cos + zsin 0)], (3.2)

where R is the reflection coefficient. Since a rough ocean surface results in variations in path lengths
and thus phase distortions, we allow R to be complex. Since a rough surface behaves like a smooth
reflector at small grazing angles, [14] R(O) = 1. Since i << 1 for rays in the farfield, we may
assume

R - I + a + a20 2 + ... (3.3)

We use Eqs. (3.1), (3.2), and (3.3) to determine ji such that the following expression for the total
field P = Pi + P, is correct to the appropriate order in 0 at z = 0:

/$1P + $2-- -- +032p + a 4 P + 05-a- + 06-a
2 p 0. (3.4)

_57 8jz 2  r az +P Z)=0

To avoid a degenerate solution, it is necessary to assume that some of the coefficients in Eq. (3.4)
vanish. For the case #j = 0 for j > 2, we obtain

aP

2kP + ial-z = 0. (3.5)

This approach can also be applied for the cases 31 = 2 = /36 = 0 (wide angle) and /31 = /32 0
(very wide angle) for better accuracy. To model rough surfaces with the 3DPE, we replace the
pressure release boundary condition P = 0 that is usually used in PE models with Eq. (3.4).
This approach is easily implemented numerically into Eq. (2.7). A nonphysical depth grid point is
introduced at z = -Az and Eq. (3.4) is assigned to this point. Equation (3.4) is discretized using
centered differences in both r and z, and Eq. (2.7) is assigned to each of the physical depth grid
points z > 0 and discretized with Galerkin's method and Crank-Nicolson integration as described
in Ref. 10.

The plane wave reflection coefficient can be approximately introduced into the normal mode
solution [15]

P= a1ik,(z)exp (ikjr) (3.6)
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Figure 4: Transmission loss at z =25m in an ocean with a rough surface. The PE solution (solid
curve) versus the normal mode solution (dashed curve). The broken curve is the smooth surface
PE solution.

as a perturbation, where aj are constants, Obj are modes, and kj are complex eigenvaues. We assume
that the leading-order effect of this perturbation is to increase loss. For simplicity, c is taken to
be constant in the water column. The number of surface bounces that a mode propagating at the
angle Obi experiences over the range r in an ocean of depth d is rtanbj/2d. Thus a leading-order
rough surface normal mode solution is

P = aj~bj(z)R(Oj) '"'n,/2d exp (ikjr). (3-7)

Equation (3.7) is similar to the rough surface normal mode model of Ref. 8, which was used to
model both rough ocean surfaces and rough ocean bottoms. Thus the rough surface 3DPE should
be valid even for modeling rough ocean bottoms. Since the boundary condition is applied at the
ocean surface, this is not obvious from the derivation.

To test the rough surface PE, we consider a stratified ocean of depth 200m in which c = 1500m/s.
We take a, = -1 and place a 5011z source at z = 25m. In the ocean bottom, c = 1600m/s, p =
l.Sg/CM 3 , and P = 0.5. Transmission loss computed with Eq. (3.7) and with the rough and smooth
surface 2DPE models appears in Figure 4. The rough surface solution exhibits more loss than tihe
smooth surface solution. Furthermorp, the rough surface 2DPE and normal mode solutions are
inl good agreement. The agreement is not perfect, however, because the normal mode model was
derived from the PE model by approximation. Since a, was taken to be real, the minima of the
transmission loss curves are coincident for the smooth surface and rough surface results.

To illustrate the rough surface PE model in range-dependent domains, we consider the cylindri-
cally symmetric rough bottom problem of Ref. 6. The ocean bottom is smooth for r < 5kin. In the
rough bottom region 5kin < r < rM, d(r) is a square wave with d = 90m at the 50m wide minima
and d = 100m at the 50m wide maxima. The cases rM = 10kin and rM = oo are considered. A
25Hz source is placed at z = 18m. In the bottom, c = 1704.Sin/s, p = 2.Sg/cm 3 , and 0 = 0.5. It
is clear from Figures 4 and 5 of Ref. 6 that the rough bottom alters both phases and amplitude as
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Figure 5: Transmission loss at z = 50m in an ocean with a rough surface for (a) r > 5km and (b)
for 5km < r < 10km. The solid curve is the rough surface PE solution. The dashed curve is the
smooth surface PE solution.

the minima of the transmission loss curves for the smooth and rough cases do not coincide. Thus
R is complex for this problem. Transmission loss for the smooth surface PE solution and the rough
surface PE solution for al = -exp(21ri/9) appear in Figure 5. The discontinuities in a, were
handled with linear variations over short ranges. The rough surface PE solutions are similar to the
normal mode solutions in Ref. 6.

4. Efficient PE algorithms

Finite difference solutions of a 2DPE involve a system of linear equations involving a tridiagonal
matrix. It is natural to solve this system using Gaussian elimination from the ocean surface down
to the bottom of the grid. Since the system is solved repeatedly as the solution is marched in range,
a great deal of efficiency can be gained by decomposing the matrix into upper and lower triangular
matrices. An efficient 2DPE code for range-independent problems would have FORTRAN loops in
the tridiagonal solver subroutine similar to:

DO 1 I = 2, N
U(I) = A(I)*U(I) + B(I)*U(I-1)

I CONTINUE
DO 2 I = N-1, 1,-1
U(I) = U(I) + C(I)*U(I +1)

2 CONTINUE
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The first loop corresponds to downward elimination. The second loop corresponds to back substi-
tution.

The diagonals A, B, and C are determined from the triangular decomposition and stored.
Since computers perform multiplication significantly faster than division, it is better to store these
constants as factors rather than divisors as we illustrate with a benchmark problem. [16,17] We

g consider a range-dependent problem for which the ocean depth decreases linearly from 20 0m at r
= 0 to zero at r = 4km. A 2511z source is placed at z = 100m in an ocean in which c = 1500m/s.
In the bottom, c = 1700m/s, p = 1.5g/cm 3 , and /3 =0.5. We truncate the domain at z = 2kni
and take Ar = 5m and Az = 0.5m. These parameters were used in Ref. 16 to solve this problem
using the PE code IFD, [18,19 which performs division in the loops. The run time reported in Ref.
16 was 7min on an FPS-164 computer. Using Gaussian elimination with the PE code FEPE, [20
which does not have division in the solver loops, the run time is 2min on an FPS-164.

Gaussian elimination is not the most efficient algorithm for problems involving range-dependent
ocean depth. As depth varies, it is necessary to modify the entries of the matrix rows corresponding
to the vicinity of the ocean bottom interface. Thus it is necessary to repeat downward elimination
below the interface. A more efficient approach is to eliminate the entries below the main diagonal
from the ocean surface down to the ocean bottom and to eliminate the entries above the main
diagonal from the bottom of the domain up to the ocean bottom. With this approach, it is
necessary to repeat the elimination process only for the rows near the ocean bottom as depth varies,
and run time is essentially independent of bathymetry variations. Furthermore, this algorithm is
vectorizable and may improve run times by up to a factor of two on a vector machine. Using this
approach in FEPE, the run time for the benchmark problem is Imin on an FPS-164. For rough
surfaces in which the fli require frequent updates, it may be useful to perform Gaussian elimination
from the bottom of the grid up to the ocean surface.

5. Conclusion

A 3DPE that handles wide angles in depth and narrow angels in azimuth and rough surfaces has
been derived and solved numerically using alternating directions. Surface roughness was handled
by assuming a reflection coefficient that depends on grazing angle and implemented into the 3DPE
as a homogeneous boundary condition. The arcuracy of the 3DPE was tested with a benchmark
calculation. Calculations were presented to illustrate the rough surface model and to demonstrate
that azimuthal diffraction can be important in shallow water. Efficient PE algorithms have been
considered.
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