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NON-MAXWELLIAN ELECTRON DISTRIBUTION FUNCTIONS IN

Z-PINCH PLASMAS

1. Introduction

A knowledge of the electron distribution function is necessary for accurate

determination of z-pinch fluid and radiation dynamics. Distribution function dynamics

underlie the magnetohydrodynarnic behavior of the pinch, affecting implosion time and

implosion energy as well as the coupling efficiency between generator and load. The

radiation yield of the pinch may depend sensitively on these factors, which determine

the energy input to the pinch and thus influence the energy spectrum of the radiation;

in addition, the flux of high-energy electrons is an immediate influence on the radiation

spectrum due to collisional excitation in the pinch.

Study of the electron distribution function is the only way to investigate non-

thermal phenomena like runaways and the plasma-wave turbulence of anomalous resistivity.

Runaway electrons have been observed in z-pinch experiments,' despite the strong toroidal

magnetic fields at the pinch edge, and may be an important factor in both fluid and

radiation dynamics, reducing coupling by providing an alternative current path and

contributing to radiative instabilities, since they are associated with "bright spots".'

But the production and propagation of z-pinch runaways is not well understood at this

time. Anomalous resistivity and the limiting of electron drift velocity due to particle-wave

interactions play an important role in the pinch, by both increasing the rate of diffusion of

current and fields into the plasma (thereby altering the force structure and so the implosion

dynamics) and by increasing the energy input to the plasma following its assembly on axis.

Information is now needed on how to control these factors for appropriate radiation yields

in a variety of pinch parameters and materials.

The shape of the high-energy distribution of electrons plays an important role in

determining kilovolt x-ray conversion efficiencies in z-pinches. Still, the literature provides

an unclear piiture of the effects that different interactions in a z-pinch have on this part of

the distribution, since these effects depend diversely oil the state of the plasma and oin the

rate of energy input or output from it. Under various conditions the tail of the distribution

may be enhanced or depleted, may be extended or may acquire a high energy plateau.
Manuscript approved February 27, 1990.



Most prior studies of the Fokker-Planck equation have been related to tokomacs or

inertial-confinement fusion. In the former case, the electric and magnetic fields are taken to

be parallel and runaway rates are computed for those conditions. In the latter case, cross-

field transport is computed, but with the assumption of weak magnetic fields. Usually, the

Fokker-Planck equation is linearized about a Maxwell- Boltzmann equilibrium distribution.

An earlier z-pinch study, related to this one, investigated equilibrium (time-independent)

solutions to the nonlinear Fokker-Planck equation in a z-pinch. These earlier approaches

have limited usefulness for studying dynamic z-pinch implosions, which are characterized

by rapid change and strong, perpendicular, spatially varying electric and magnetic fields.

The principal effects that must be accounted for in a kinetic, Fokker-Planck description

of the electron distribution function dynamics are: (1) the strong electric field heating

(ohic heating); (2) the equally strong electron-electron elastic collisions; and (3)

the diffusion-like electron-plasma wave interactions that determine the strength of the

instability-driven plasma turbulence. In this report a basic theory is set up which is

suitable for treating all three of these effects under the dynamically evolving conditions

found in a z-pinch implosion. However, only the effects of ohmic heating and electron-

electron collisions will be studied in this report; the theory of the turbulence interaction

and its contribution to the picture presented here will be discussed in a later report. A

tinhe-dependent theory is essential because the different processes, with different timescales,

change in relative importance during the course of the implosion, and because some of

the phenomena studied, like runaways, are essentially non-equilibrium in nature. Also,

with the time-dependent theory it is possible to continually assess the accuracy of the

approximations used on physical grounds; this provides a check on the results.

The Maxwell-Boltzmann equilibrium distribution is produced by small-angle electron-

electron collisions, and this equilibrium will be maintained on their (< 0.1 ns) time

scale. Heating and cooling processes acting preferentially in one energy range will disrupt

this equilibrium. Because the electron collision time decreases with velocity., returln t,,

equilibrium is especially slow in the distribution tail. The heating and cooling processes

considered here include ohmic heating, compression. and radiation. Ohmnic heating results

from electric field acceleration of electrons. Compressional heating or cooling is calculated

from spatial gradients in the fluid velocity, which are supplied as input (e.g., from MHD z-
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pinch simulations). Radiation losses can be calculated from inelastic electron-ion collisions,

assuming an optically thin medium.

This report forms a compendium of analytic results, drawn from many sources,

which are relevant to z-pinch kinetics. It draws connections to other work, particularly

on laser heating by inverse bremsstrahlung and on electron distributions in tokomacs.

Analytic results are obtained whenever possible, and individual effects on the electron

distribution are analyzed in depth. In particular, expressions for the conductivity and

runaway production rates are given. Finally, a numerical solution is obtained to the fully

non-linear time-dependent Fokker-Planck equation. This numerical solution will later be

used in conjunction with an MHD code to estimate the magnitude of non-thermal effects

in actual z-pinch implosions.

2. Physical Picture

The system is composed of electrons, of mass m, and various ion species cv, each with

mass M4, >> m, charge ?c and density no,. The mean charge number is Z = ne/"i (-- 10),

where n, = 'V' nZ, and ni = n.. The electrons are described by a distribution

function f(r,v,t). The ions are assumed to maintain a Maxwell-Boltzmann distribution.

Electrons are subject to both electrostatic forces maL = ZeE and magnetic forces

rtZ = (Ze/c)B; the fields, E and B, are locally uniform in time and space. (The electric

field E should not be confused with the average electron energy (E)).

The collision frequency for elastic Coulomb scattering (Rutherford frequency) of a

particle of species a moving with velocity v, through a number density no of species/3

particles is

= nstv0(7r [Z log A ],(

where e, = 2e 2/mtv,, called the Landau length, is the distance of closest approach of the

scattering particle and the threshold for large-angle collisions; and the Coulomb logarithm

is given by

log A, = log 2 . 3 k r7) (2)

The first bracketed term in eq. (1) is the cross-sectional flux (the number of particles
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per second passing through particle a's path), and the second term is the Coulomb

scattering factor, giving the interaction strength between the two scattering particles t

Substituting for e, in eq. (1) and simplifying gives

47re 4 Z2_Z2no
= a log Aa. (3)

The "temperature" of the non-equilibrium system is defined to be proportional to the

average energy in the system:
1

kT -(E). (4)
q

Different proportionality constants are used by different authors; the choice consistent with

the expression for temperature in an equilibrium (3D) system, however, is q = 3/2. Tile

thermal velocity is also defined in terms of the average system energy:

V~h 2(~2E) (5)

This is related to the temperature with the constant q: if q = 3/2, Vth = T/m. The

Aectron-electron collision frequency at the thermal velocity will be denoted

VR =_ V,,(Vth). (6)

The geometry of the system is that of a z-pinch, cylindrically symmetric about the

pinch axis. The system is assumed to be spatially uniform in the and -- directions;

important radial gradients do exist, however. Radial variations are included in the model by

dividing the pinch into concentric, spatially uniform thin cells, with time-varying inner and

outer radii and a mean velocity 'V(r. t). The electron distribution function f(v, t) is then

t Other illustrative forms for va, can be obtained, such as, for atomic physics

applications,
Vc a = novctIa( ) mz'/4Ry 2log A,

where a0 is the Bohr radius and Ry = c2 /2ao is the Rydberg energy; or, for high-energy

(non-relativistic) physics, a0 can be replaced by r, = e 2/mc 2, the classical electron radius.

and 2Ry by mec 2, the electron rest-mass energy.
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to be found within the reference frame of each dynamically evolving cell. This approach

includes the important effects (compressional heating or cooling) of bulk electron motion

on the electron dynamics, without requiring that the Fokker-Planck kinetic equation be

solved in configuration space.

3. Basic Equations

In this section the model kinetic (Boltzmann) equation will be presented, an expansion

will be performed and the first-order terms obtained, and a zero-order nonlinear Fokker-

Planck equation will be obtained for analysis.

Relative to a stationary observer, the electron distribution function satisfies the

(collisional) Boltzmann equation 3

49fa wbf )C*,/ (7)O---+ IL'- f + (aL + 1L X C)' - g- V f L

where VL is the particle velocity in the stationary "lab" frame, 6L = ZeE/m and

= (Ze/mc)B. In each z-pinch cell, the system is moving with a time-dependent average

fluid velocity V(r,t). The particle velocity and electric-field acceleration in this reference

frame are

v(r,6L, t) = V'L - V(, t) (8)

+ V x Z - dV; (9)
m dt

the comoving time derivative

d/di = 8/at + V. V (10)

gives changes with respect to the moving frame. Derivatives in the moving frame are given

by

1f(iF) f +af ai .f 49V -
ofof f + o il 9f -- M 6-

Vf(,it) = Vf - (VV) • V1 f. (11)

Therefore, in a reference frame moving with velocity V, the Boltzmann equation becomes"

d +!F.Vf + [d+iF x •] - c • C 'i+Cini (12)

di
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The last term on the left-hand side vanishes if the mean velocity V is spatially uniform;

it is through this term that compressioaal effects enter. Collisions are represented on the

right-hand side of the Boltzmann equation: Ce1 gives the effects of elastic collisions, a

Fokker-Planck term in this model, and Ci,,,i describes inelastic processes. These terms

will be discussed in detail later.

Cartesian tensor expansion

Instead of being a scalar function of the vector position and velocity variables, the

distribution function f(F,",Ut) can be expressed in terms of scalar, vector, tensor, etc.

functions of scalar position and velocity variables.4 If only first-order terms are retained,

the expansion reads

f(i,i,t) . fo(x,t) + [. f (X,1)] (13)

This first-order expansion is sufficient to determine averages of any quantity that is a linear

function of the scalar v and vector V. It can always be used if f, (and higher-order terms)

is sufficiently small, and with certain geometries it can be used regardless of the magnitude

of f'. The different terms of the expansion, when known, can be used to compute average

values such as the density and temperature. For example, the average value of a function

O(v) is

(0) = 4r 0 4foV2 dv (14)

and the average value of a function V,(t) which is linearly dependent on the vector j" is

(4, f= V,(fi(v))v 2 dv. (15)

In particular, the mean number density n(x) = (1) and current density 3 = (en) are

n(x) = 47r j v'fo(x, v) dt. (16)

j(x) = 41r-e t3/f(Xv)dv. (17)

When the expansion of eq. (13) is substituted into the Boltzmann equation, eq. (12).

and the various angular moments are taken (this procedure is illustrated in Appendix II),
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the result is4 :

dfo 8- 'fo 1 2' !', C1C

dt + 3  3 ~ 49v+C U2 8V

__ ifo -'-+ tVfo +- +x W X lVV -fi
dt l

[Vv+vvT + I2 V"V] - 5 ( ), C 1  (18b)

where CFp and C1 come from Ci, and C* comes from Ci,,eI, on the right-hand-side of

eq. (7). There is no contribution to the f l equation from inelastic collisions because these

collisions are assumed to be isotropic and so do no change the average momentum of the

system.

The physical content of eqs. (18) is fairly clear, if one bears in nind that fo describes

the particle density and fl its current. Eq. (18a) describes the change in time of fo resulting

from the net current inflow (the V f and V. V terms), work done on the current by the

electric field (W- -), and collisions, both elastic (CFp) and inelastic (C*). Eq. (18b) gives

changes in fl corresponding to flows driven by density gradients (the Vf 0 and VV terms)

and by the electric field, which moves nonuniformities in f(i,) through velocity space (the

dOfo/8v term). The effect of these driving factors is modified by the deflecting nature of

the magnetic field (c x T), and by elastic collisions (C 1 ).

Eqs. (18) are rigorous, except for the neglect of higher-order expansion terms like f2

in eq. (18b). The procedure now is to solve eq. (18b) for f, under physically reasonable

simplifying assumptions, and then to substitute the resulting expression for d. f, into

eq. (18a) to get an equation that can be numerically solved for fo. An immediate

simplification comes if we ignore the (assumed) weak effects of the currents that are driven

by density and temperature gradients, i.e., only gradients in the fluid velocity V will be

retained. Then V0 f = 0 and ff0 = 0, and eqs. (18) may be summarized as follows:

df0f - CFP + C* + CC + C. (190)

dt

-d -fo xf T C (19b)
dt 19t

where Cpp describes elastic collisions, C* describes inelastic collisions, CC and T contain
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compressional effects, and C, is due to electric-field heating. These terms are discussed in

detail below.

Elastic collisions

The elastic collision terms in eqs. (19) come from the expansion of the C,1 term in

eq. (12), which includes contributions from all particle species: Ce = E., Cei), The zero-

order term CFp describes energy exchange in collisions, while the first-order term describes

momentum transfer, and so has no contributions from like-particle collisions. If F,, is the

i-th order term in the expansion of the distribution function for species a, the general

expressions are4'5 [The CFp equation is derived in Appendix I:
( - ,,Y.'. a M. [ fi o + V a ( I + ill )  (20a)

"- - -- - ' O--(I o+J2-l)+' f-(3m - + 2J2-1~ + f(- Io°+l-29J°-

11 a- 3 , oI I / 3v

3 m -- 5 (20m
*+41rv (f1 F00+ f.1 fo) + _(1 3 +f1 2)+ l 5 a, 2

with the definition;3

3 = 47r(ZZe2/m") 2 logA, - V3 (21)n13

I, (v) =, 4r._ F(V)V -' +2 dV (22)

lt()=47r F

ij t(v) = 4r Fi(V)V- + - dV (23)

These expressions can be simplified.

Electron-electron collisions dominate in CFP because of the extreme mass difference

between electrons and ions (just as there is very little collisional interaction between a

basketball and a Mack truck, which have about the same mass ratio). The electron-io,,

term CF'p) is proportional to m/Mi and so is ignored. With only electron-electron collisions

included, the term CFP in eq. (20a) becomes

CFp = 47r- oi r vfo o- fo(v')v' 4 dt,' + 1, fo(t,')t' dt'
V, -- I-J 3 at) t,- )

(24)



In the C, term it is ion-electron collisions that are important, because no momentum

is exchanged in collisions between like particles. In eq. (20b), the large ion mass allows

us to approximate Fi, _ 0 - the ions acquire no motion from electron-ion collisions. If

the ions are assumed to be in a spherically symmetric Maxweltian distribution, then C,

simplifies considerably. The integrals involved in I' and .// then become functions of the

error function 4(t'v/M/2kT) and its derivatives4 , and because of the relatively large ion

mass only the large-argument limit of these functions need be considered. In this limit,

Jo1  0; I0 - ni; and j2' - 3njkT/Mv2 , and if terms proportional to m/MA are again

dropped, eq. (20b) becomes (see eq. (3))

C1 - L/eifl (25)

Essentially, these approximations assume that the ions affect but are not affected by

the electrons. Ion equilibrium is plausible because of the large ion-ion collision rate

(v,/lv,, - Z 4 ) as well as because of the large ion mass.

Because electron-ion collisions are much more frequent than electron-electron collisions

(vi/v,, = Z), and because fl changes on the timescale of Vj while fo changes like v,

then f, equilibrates much faster than fo. This ordering of time development will be used

later. The electron-ion collisions represented by ve, damp any increase in fl and cause a

drag on electron flow; the decrease of vj. with increasing v results in high-energy electrons

beconing "runaways".

Inelastic collisions

The inelastic collision term C* in eq. (19a) can be obtained by requiring conservation

of particle number in collisions. Inelastic collisions transfer energy from electrons to ions,

exciting the ions to a higher energy level. The ions are assumed to immediately re-radiate

this energy through the optically thir medium, so that electron-ion collisions alone do not

significantly change the ion level populations. The ninimuni free-electron energy to excite

a transition from level a to level b is the excitation energy fb. The number of ion levels

contributing significantly to the electron kinetics is generally small, of the order of 10.

Since ionization and recombination are not considered here, the number of ions and

free electrons is conserved in inelastic collisions. Collisional losses are described, then, by

9



subtracting electrons from a higher energy region of the distribution function and replacing

them at a lower energy region. Each of the possible inelastic scattering processes can be

numbered by an index j; if the collision frequency for process j is v*, then the collision

term is of the form

= [+ + ~ + (26)
)E

The first term in the sum represents the rate of scattering to lower energy of particles

with energy t., while the second term represents the influx of particles to energy E from

collisions involving higher-energy particles. C*(f) thus gives the net rate of increase in

the distribution function at energy f due to all inelastic scattering processes. The factor

( + Ej)/E makes a!lowance for the greater phase-space volume available at the energy

e + Ej from which the electrons scatter to energy i: the number of electrons scattered

between energy f and f + Ej is always v'(E)fo(,)47rfvtde.

The inelastic collision frequency for an electron (velocity v) to excite an ion from level

a (density fani) to level b is

Vab = fani[ - ab)J E1. (27)

The quantity in brackets above is the inelastic cross-section, which is expressed in terms of

the measured dimensionless collision strength flab(-E). The multiplicity of level a is ga. The

Heaviside step function 6 relects the energy threshold for the transition. A plot of typical

collision strengths for argon is given in fig. (1); typically, £Zab is of order 1, varying little

over the energy range. The ratio of the inelastic collision frequency to the electron-electron

collision frequency Vee is

Vab f ,ab( /Ry (E-Eb). (28)

Vee 9d 4ZogA )

This is generally small; since the only terms not, of order one are Z and log A, which are

each near 10, an effect of perhaps a few percent for each transition might be anticipated

from inelastic collisions. Because the ratio increases with E, however, greater effects should

appear in the tail of the distribution, in particular at energies greater than Z times the

10



thermal energy. Also, since the inelastic term is a sum, the cumulative effect of inelastic

collisions could be quite significant, if many important transitions are available to the

system.

Compressional heating

The compressional term in eq. (19a) comes directly from eq. (18a):

C= ( K7) 3 t'fo (29)
3 a9v

This describes changes in the distribution function fo caused by a plasma compression or

expansion which is reflected in the nonuniform fluid velocity V. Taking moments of Cc

reveals that this term conserves neither local particle density nor average energy:

dn -lo V(30)

(d(E)'1  -(E)-V.dt )C~
-d W -] c ( )5 -V(31)

The change in density in eq. (30) is just that resulting from the continuity equation for

compression or expansion of a uniform-density flow of electrons. The change in energy

density in eq. (31) is caused by PdV work: the pressure P = 2(E)/3, and integrating V.

shows it to be the time rate of change of the system volume.

The effect of compression on the first-order equation, eq. (19b), comes from

+ + (32)

where I denotes the 3 x 3 unit tensor. This term is not simple; in a cylindrical coordinate

system and with IV in the i direction only, the components of f are

of[ I
T(r) = # f?.) + + r ] a1

5. P +g +-

- V] 4,. [8V + I V] afo
5 [) = 5 r+5 [ar r j



Since there is no shear in the cylindrically-symmetric flow, no mixing of the different

components of fi occurs as a result of the compression. The effects included in T are

small, since they are second order in the small quantities f, and V. They modify the

response of the fluid to the applied electric field due to a changing plasma density, and

should be small compared to vi. In this treatment, therefore, we take T = 0.

Electric field - Ohmic Heating

Work done on the electrons by the electric field shows up in the zero-order distribution

function through the term C,, in eq. (19a):

3Ca =t -T-." (33)

When this energy is distributed throughout the plasma by electron-ion collisions, it causes

the bulk heating which is ohmic heating. The magnetic field is important in ohlmic heating,

since is alters the electron trajectory. It will be seen that this shifts the heating to lower-

energy electrons; the heat then must be transferred to high-energy electrons by elastic

scattering, whose strength decreases with energy.

To find Ca, eq. (19b) must be solved for i. fl. This is straightforward in the center-

of-mass system. With eq. (25) for C1i and T = 0, eq. (19b) is

d_ 0fo
d- +  0 ×  f = -ve.ili - a a-- (34)

An equilibrium solution is sought for fm (h reaches equilibrium on the timescale of

vi, which is Z times faster than the v,,e timescale of f 0 ). It can readily be verified that if

df, /dt = 0, the equilibrium f, is
1 -x 1'a ] _f

= I_ --- 8fo (35)

PVei j 9v
Thus

,-a 2 
+ * (i (/'2N

a2. + (ff ./v~i)" fo (36)
£/i (I + W /Vj,) O

When the electric field acts parallel to the magnetic field, C' is independent of w'. as

it should be. When the electric and magnetic forces are perpendicular, as in the Bennett

z-pinch, then a w = 0, and the ohmic heating term C,, becomes

Ca = CEB = 3 2  " [v( 1 +W 2/l, J (37)

12



Normalization

For ease of computation, it is useful to express the quantities given above in terms

of dimensionless variables, using characteristic velocity, time and space variables for

normalization. A dimensionless velocity representation is presented and then used as a

stepping stone to the dimensionless energy representation used in the remainder of this

work.

Characteristic magnitudes used in scaling are: for time, the thermal electron-electron

collision time rR = vR 1 (see eq. (6)); for length, the mean electron separation n-I/3 ; for

velocity or energy, the thermal velocity it', (see eq. (5)). The characteristic electric field

is the Dreicer field i ED = mrt,hvR/e, which is the electric field that would accelerate an

electron from rest to the thermal velocity in one thermal collision time. The characteristic

magnetic field has a cyclotron frequency of VR: BD = mcvR/e.

The dimensionless velocity is defined with respect .to the thermal velocity (eq. (5)):

1'
(38)

It can be seen from eq. (16) that fo(v) has dimensions of deoity3 Therefore the

dimensionless distribution function 10 is:

- V3

f0 = th fo (1) (39)
n

The function f0 is a probability distribution whose average density (eq. (16)) is normalized

to one. To make eq. (19a) dimensionless, both sides are multiplied by v'hrR/n. The new

elastic collision term is then

CFP= v~h7-RC = 1aaf
F 2 -o(0V(0 + D W (40)

where

N( ) =41r 1 o0 ' " < (41)

D() 3 [ J °O ')('d' ± j o( ')fd '] . (42)
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The dimensionless inelastic-collision term '* is just eq. (26) with the collision

frequency vj replaced by the dimensionless frequency

INO = V;()/L/R( ). (43)

Since the compression term Cc does not conserve density, a term proportional to

dn/dt results on substituting the dimensionless distribution function fo into eq. (19a). If

this term is evaluated from eq. (30), it can be combined with CC and the normalized

kinetic equation will then maintain a constant normalization. The true density must then

be computed from the integral of eq. (30). The dimensionless compression term is then

Oc= tth kRdCc 1 dn - 0 (44)n n d-rf = 8 g)(4

The dimensionless ohmic heating term is

CE , d( ) (45)

where

S= ZE2 (46)

(47)
(W = 3Z 2 1 + f 2 /Z 2 (

and the dimensionless electric and magnetic field variables are E = E/ED and Q = w/,'R.

The velocity dependence of the collision frequency vei(v) has been used:

Vei =ni Yei -3 Z-'(8--= = Z -3, (48)

VR e1 e

In terms of dimensionless velocity variables, the kinetic equation, eq. (19a) is

dfo 1 [+fNo I +19)
d- iI[3 RO(9

The dimensionless energy variable is defined in terms of the temperature (see eq. (4)):

_ ~ = q 2. (50)

kT
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Important relations between the dimensionless velocity and energy variables are

e~ d =2v fd 1 dF

In terms of the dimensionless energy, and with the following definitions (new definitions

from E-dependent functions are denoted by a new argument):

N(E) 47rf dE'v/_T fo(c '  (52)

D(E) 47r[j dEO(c')E'3/ 2 + C
3 / 2 j d'fo(E')] (5:3)

• E Ze2

Z -2m(E)v E  (54a)

4 e(e) 4 C (54b)

3Z 2 V/- 1 + £12E3 /Z 2q3

+ V!(Ef E+Eab L/b(E+ fab) fo(E±+Eab) (55)
a stat , R r J

( =ab(t') _q/
2 a"-'I fa Qab(E) kT

/ab() -, VR 2ZlogA I 9a1 [mc2 ] 0(E - Eab) (56)

where aFS : 1/137 is the fine-structure constant, the kinetic equation, eq. (19a) becomes:

dfO - 1 2_ N(])+ 3r Or ) 3/" fo(f)+[D(e) + a()] foj +C'(f) (57)

This form of the Fokker-Planck equation will be the basis for the following analysis.

4. Analytical Results

In this section, analytical expressions are found for the conductivity both parallel to

and perpendicular to the magnetic field; different expressions are presented for studying

"runaway" in a magnetic field, self-sinilar solutions are found for the time-development

of the distribution function, and the effects of ohmic heating, compression, and inelastic

collisions are studied.

Conductivity

The conductivity of the plasma can be computed by using the definition of tihe

conductivity tensor a:

E(58)
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with the current j computed from the distribution function according to eq. (17).

With cylindrical symmetry and a nonzero magnetic field, the conductivity tensor

has two different components, a parallel conductivity all along the electric field, and a

perpendicular (or Hall) conductivity o'± perpendicular to the electric field. The parallel

conductivity is easily obtained from eq. (36):

-" _ 4 e f0 (59))0
a, =r - 3 0n0 1 +,2 y dv. (59))

Identifying terms, and expressing the integral in the dimensionless energy form, the parallel

conductivity is
ZVR (WP ) 2 /o9 fo d

= de( (60)
3 WJ 0  Z2 q /112 + C3 af

where wp = V4rne2/m is the electron plasma frequency, and 2 = W/vR, as defined in the

text. The Hall conductivity can be obtained directly from eq. (34), from which follows

(with d tj = 0)

x f, =- - (d.) (61)
Vei\ /

This gives the perpendicular distribution in terms of the parallel one, so that

1W cc 9/ 2  af

± - 3q3 /2 ~J 0  Z 2 q3 /f12 + E3 -q--dE. (62)

Both the magnetic field and the temperature affect the conductivity, as does the electric

field because of its effect on the distribution function. In the strong magnetic field limit

(p > Zq 3/2 ) the conductivity reduces to

o(. _ oo) V- (-) fo(e = 0) - 0 (63a)3
n

a-±(w - 00) n --p2 --* 0. (63b)

2q 3/ 2 W

In the weak magnetic field limit, the conductivity becomes

w" fo0

01 W- 0) q3 ZVR ]Ecfo (f) d (64a)

-0) W I VR f~ j e'1 2 fo (c)d& 0. (64b)( -2q9l2 )tp 1
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These agree, in the appropriate limit, with accepted expressions for the static magneto-

conductivity9 .

At low temperatures, the runaway effect dominates, and raising the temperature

decreases collisions and increases conductivity. At high temperatures, however, the

magnetic field dominates, and collisions increase conductivity by breaking the magnetic

confinement; thus, increasing the temperature and decreasing collisions actually decreases

the conductivity. This behavior is shown in fig. (2), where all (calculated with fo(E) a

Maxwellian) is plotted as a function of temperature.

The current in the pinch is not parallel to the electric field. Instead, from eq. (58),

j [ia + -'al] E, (65)

which is a conical flow of current at an angle 9j = tan-l(ul/a±i) from the pinch axis. In

the actual pinch, this non-axial current will probably be of short duration; as with the

Hall effect in a conductor, a radial charge-separation electric field will quickly develop in

the pinch which will direct the current back onto the axis. The true parallel conductivity

is here taken to be all.

As an alternative to the above calculation, the parallel conductivity in eq. (60) could

also have been obtained by computing the heating rate due to CEB. The ohmic heating is

just equal to alle2, and the coefficient of E' in the resulting expression is just all. These

two methods are eq-iivalent and self-consistent.

Runaway electrons

The Coulomb collision rate decreases with relative energy (see eq. (3)); this implies

that particles with large enough kinetic energy are not significantly affected by collisions.

Electrons ith sufficient energy become runaways, and behave almost as free particles

accelerated by the electric field. With no magnetic field, runaway electrons are those with

a vel -rity greater than the critical velocity' ° Vc m' Vfhv/3ED/qE. (Dreicer's "critical field"

E, is ED/q in the present notation). The critical velocity VC is independent of 'fh 'Since

yR OC vth-3 ); as the system is heated and t'th increases, an increasing number of electrons

have velocities above vc and thus run away.
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When inelastic collisions and a magnetic field are present, the situation is more

complicated. Inelastic collisions may inhibit runaways by providing an energy sink

and so preventing sufficient acceleration. A strong perpendicular magnetic field acts to

stop transport of charged particles on any length scale larger than the cyclotron radius

rc = 2.3845v"K/B cm (where K is the electron energy in eV and B is the magnetic field

in Gauss). If this distance is smaller than the anode-cathode gap, the electrons can only

flow from anode to cathode if collisions break the magnetic field localization. Thus, for

strong magnetic fields, energetic electrons are more efficiently trapped by the field and

freely-accelerating runaways are eliminated. Still, even in this case energetic electrons call

play an important role in the system, and can acquire significant directionality from drifts

or collisions.

It is clear that with tile z-pinch, unlike with the tokomac, one cannot define an

arbitrary energy cutoff beyond which electrons behave as if freely accelerated by the electric

field. The appropriate definition of "runaway" depends on the application. Finite-size

effects can be estimated using the mean free path and the physical dimensions of the

system. The rate at which high-energy electrons are produced can be found by defining a

velocity threshold (e.g., vc) and calculating the electron flux past this threshold. Beams

of electrons can be found by looking for peaks in the distribution function. Because of the

bending effect of the magnetic field, peaks in the distribution function rarely correspond

to monodirectional beams; there is usually comparable electron flux both parallel and

antiparallel to the electric field. Directionality can be checked using the first term in the

expansion: fo(v) + fl (v) is the directional distribution function.

Anisotropy in the electron velocity distribution shows up in f, which call be

considered a "current distribution function" (see eq. (17)). A nonzero fl(E) indicates

a directed streaming at energy e. In the presence of a magnetic field, f is not parallel to

the electric field d, though it is always perpendicular to the magnetic field 0 (this follows

from eq. (34), since a w = 0). The magnetic field induces an E x f drift in the electron

motion, while electron-ion collisions interrupt the drift motion and allow the currenit to

flow along E. In a z-pinch geometry 0 in the direction and E and f, in the i- plane,
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the angle 0(c) between f(c) and d is given by

tan= f

t'ei~kJ)(66)

In the real pinch the electric field is composed of an applied field in the i direction, and all

induced, r-dependent component in the radial direction to inhibit charge collection on the

edge of the pinch (see the discussion following eq. (65)). The flux of electrons at a given

energy, fic(), will also generally have a radial component, which tends to prevent focused

beams and, if the magnetic field is strong enough that collisional electrons flow radially,

to promote radial isotropy in the plasma. Electron-ion collisions, by interfering with this

magnetic field-induced mixing, tend to promote beam-type anisotropy - just the opposite

of the situation with no magnetic field.

The magnitude of the electron directionality can be found from the full distribution

function. Parallel to the electric field, the distribution function is fo(c) + a. f1 (E), while

antiparallel to the field it is fo(e) - a h(e). The dimensional expression for i- f,(f) is

(see eq. (36)):

h - ]fW = -- ' (67)
S = v Z I + S1± E3/(Z2q3) ()

Thus, for small magnetic fields, fi oc e 9cf/&, and the distribution function becomes

more directional at higher energy (the runaway effect), but for large magnetic fields,

f, oc SI-2E-/18foa//, and the distribution function becomes less directional at higher

energy. The anisotropic collision-dominated low-energy behavior changes to the isotropic

magnetic-dominated high-energy behavior at the maximum of ii. fl()/AfB(), which for

a Maxwellian fo(e) is given by

Cmaz = q (68)

Practically, of course, the magnetic field confines particles only within their cyclotron

radius r,; whether any real magnetic field-induced isotropy is obtained, or if instead a

significant loss of particles occurs, is determined by the dimensions of the system. In a
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finite-size system, the mean free path
Vth

(vth) - h (69)VR +

is al important quantity. (Ill this equation, P* denotes the mean inelastic collision

frequency). When an electron's mean free path exceeds the dimensions of the system,

the electron can be said to have "run away", and the distribution function can be cut off

at that energy. To estimate the number of electrons whose free path exceeds tile given

distance p, eq. (16) can be generalized, to give a "runaway" electron density of

p00
n. =47r J & d ffo(c) (70)

where f(p) comes from inverting eq. (69); if only electron-electron collisions are considered,

then

e(p) = qVp/p. (71)

Once an energy is somehow chosen at which electrons are deemed to be lost from

the system by runaway, the rate at which electrons become runaways can be estimated

by calculating the flux of electrons through a suitable surface in velocity space."-2 This

flux is caused both by collisional diffusion and by the overall heating of the system. The

runaway rate through a sphere in velocity space with radius corresponding to energy e is

r(e) - dn() (72)

n(f) dt
where

n(c) = N(c) = 4r jdE' \1-e fo(f'). (73)

Note that the total density n =- n(oo) = 1 in the normalized units adopted here. The

runaway rate can be found by integrating from eq. (57), with N(0) = D(O) = ((0) = 0:

41r r 2 rR 8 r 3/21 ____

TF(f) - -) N(,) + 3r 57 fo() + ID() + k(c) 8(

+ dE'vf'(E')fo(E') (74)

For a Maxwellian distribution the Fokker-Planck ternis N(E)fo(E) and D(f)fo '(f) in this

expression cancel, and electron diffusion in velocity space is due only to compressional,

ohmic and inelastic collision processes.
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Self-Similar Solutions

The "standard" Fokker-Planck equation (which includes CFP only) causes the

electrons to approach a Maxwell-Boltzmann distribution from any initial state. Those

Fokker-Planck terms are present in the description given here; acting against the tendency

to approach a Maxwellian, however, are the two new terms: the heating term represented

by a((c), and the radiative cooling termn represented by C*(E).

The ohmic heating term (eqs. (54)) can be written as

C"(C) = AZq 3 /2 g() (75)

where A is proportional to w- 2 , and the shape function

g(3) + (76)

deternines where the heating is focused. A plot of g(e) and its derivative is given in

fig. (3). The function starts at zero, rises abruptly, and then asymptotically approaches

its maximum value of 1 at high energies. Low-energy particles experience little heating,

because the large low-energy collision rates effectively randomize the electron motion and

prevent the electric field from doing net work. High-energy particles are easier to heat

up because more phase space is available to them (this is reflected in the factor of v2 in

eq. (37)).

Ohmic heating is focused at the inflection point of g(e), located at Em,,a (see eq. (68)),

at the transition point between the collisional and magnetized regions of the plasma. For

"strong" magnetic fields (SI/Z > 2), g(1) - 1, the function g(c) is roughly constant over

most of the distribution, and most of the ohmic heating occurs below the thermal energy.

For weak fields, on the other hand, the heating varies greatly over the distribution and

is strongest-in the tail. Both strong and weak field heating can occur in a z-pinch: the

approximate magnitude of fl is

B kT )'/2 (1018 c-3) (77)T 1kG'-- 100 eV n'

When high-magnetic-field ohmic heating dominates and g(E) is effectively constant.

the distribution function has a self-similar form analogous to that which has been found
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for laser-heated plasmas.A [See Appendix III for a derivation of the laser-heating inverse

bremsstrahlung term.) When inelastic collisions are ignored, the self-similar form is6' 7

fss(E,)- vy(t) 3 /2 e _ , (78)

where m is determined by the relative strengths of the heating and elastic collision terms,

and the normalization and kinetic energy integrals determine

a = (79)8irF(3/m)

y = qkT (3/) (80)

The function fss is an exact solution to eq. (57) with no inelastic or compressional terms

(C* = V.V = 0), in two special cases: When elastic collision dominate (a = 0), the solution

is a Maxwell-Boltzmann distribution, which is just fss with m = 2 and y independent of

time; and when ohno:',. heating dominates (a - oo), the solution is fss with m = 5. In

other cases, fss is an approximate solution to eq. (57).

When only ohmic heating influences the distribution (a -- oo), it is possible to

analytically determine the value of m and y(t) by substituting eq. (78) into eq. (57).

The result is: dy A, m. M/2-2 m [ ~ y -2(1dy _Aim ( [i -2 m(/y)m/2
dr ___ m2-2 rn~/y)~2  j(81)

where
4q5 /2-

A, = c((oo) =-s--a (82)

This has a self-consistent (i.e., e-independent) solution only for r77 5:
2/S

y(t)2= ( At) +const. (83)

An analytic solution for m and y(t) is no longer possible when a is finite, since the elastic

collision terms make the equation nonlinear and the inelastic collision terms are non-local.

However, in the limit a - 0, the m = 2 Maxwell-Boltzmann solution must be recovered.

Numerical solutions have given a reasonably accurate formula for the exponent n1 in the

absence of inelastic scattering:7

3
M(a) = 2 + (84)

1 + 1.66/a .724
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This is plotted as a function of the electric field (in V/cm) in fig. (4).

The time dependence of the kinetic energy of a self-similar solution can be found from

the ohmic heating, compressional and inelasti- collision terms alone, since the Fokker-

Planck terms conserve energy:

d(E) = _ 00 f d +47 0(E) E /_/2C(E)d

d -r Jo 9(3 13

= 41rAa 2-r V. V)yr 47r E b VaE(b] ab(E)f(E)/dE. (85)= 7r,/3-, (3/niE i
a states

where the step function in C* allows the lower limit of the integral to be zero.

It is an interesting fact that the self-similar distribution is left unchanged by

compressional heating or cooling. This may be readily verified by substituting eq. (78)

into the density-conserving compressional term from eq. (57)

cc 32(~ (86)

where A 2 = [2rR/3r]O(rV)/Or. The time-development equation 9f/r = Cc is then

satisfied for any value of rm. More generally, if f(c) is of the form

fa(E) = y- 3 /2 g(E/y) (87)

where g(x) is an arbitrary function of its argument, then the compressional tern can be

written
0y

Cc = -Ay a. (88)

Thus, fa(E) maintains the same form at all times, with only y varying in time according

to dy/dr = A 2 y. The parameter y(t) is linearly proportional to the temperature of these

distributions, since

1
k T ( E)

q

= y- j dxx 3/2g(x), (8g)
q f

and so the temperature changes under compression at the rate

dT
= A 2(r)T. (90)

d-r
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If the compression factor A2 were independent of time, Cc would cause the

temperature of the system to change exponentially. GeneraI!', however, A, depends on

time, and other factors also contribute to fo in general. If the compressional terni is

combined with the electric field heating terms (but not the Fokker-Planck or inelastic

terms), an equation for dy/dr follows which is very similar to eq. (81):

/1 dy _ A , M m / 2 -m . (91)
(Y + A2 ) dr 2 E5 / 2 k y 3 - m(/y)/ 2

As before, this has self-consistent solutions only when m = 5, when y(r) satisfies

dy _5A 1dr - 5A, (1 + A,y) (92)

5. Numerical method of solution

The time-dependent Fokker-Planck equation, eq. (57), is numerically solved, using

implicit finite-differencing. Implicit differencni; waz -hosen for its stability, but the simpler

forward-differencing expression is -Aso used to obtain estimates of the change in f with a

particular time step.

For the differencing procedure, energy (velocity) space is divided into a possibly non-

uniform grid; the grid-poinL index is denoted by a subscript. The energy at grid point j

is Ej, and the grid spacing is given by Afj = j - Ej-l. In addition, the time evolution is

separated into discrete steps of duration Ar, with the value of a quantity at a given time

step denoted by a superscript. Eq. (57) is in the following form:

df 1 0
- 76= - F(f) - GWe (93)

dr a(

with F(f) representing the elastic terms and G(E) representing the inelastic terms. This is

implicitly finite-differenced as

f 7_/ + i F n + 1 / 2 - -F ' " / 2 , .i
lf+1- fp) = fF2j+1

1
2
2 -1/2 G'+11 04)

j,.~E Afj+l/2 J
with the half-gridpoint values defined as (for both space and time):

ffn+/ 2  1 f. , 4 f"]. (95)
2
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Eq. (94) is then written out, with all of the future-time quantities f" 1 on tile left,

and all the past-time quantities ffl on the right-hand side. The abbreviations V =

N(E) + 2rR -E 1 OV/ r and D = D(c) + a((c) are introduced for brevity. The inelastic

collision frequencies are denoted vj, where the first subscript denotes the scattering

process and the second gives the energy grid-point index. Collecting common factors,

the result is:

n 2 n n41

of 7'~ i+2Z Ei'+J+

+ ~ + ¢(A/+a + 
-~ + 2 +w .)~1  ,,+,7

J+,+-- D Jfjl

+4AEj+2/j 2 Ej+ J-2 + -- fl -

2_ 2

,A-. )_ r 1 _F 2. E_ ) I)_ +l~

4Ac+ - +2 J - Alf+ I j+ 2 A 1

+2(1+- 2 V/2 _

(7 _ ,(+u7 - (96)

This can be written in 2atrix form as

T 'f 1 =, r.k U7 "f (97)

which has the formal solution
_ f' h +l - (T")- 1 U2 f (98)

and all of the di~dculty in obtaining the solution lies in inverting the matrix T. If it were

not for the inelastic collision sums, T would be a tridiagonal matrix, whose inverse can be

rapidly computed. With this in nmind, it is worthwhile to examfine howv important these

collision terms are. It has been shown that the overall contribution of inelastic collision

to the kinetic equation is small. If the distribution function does not change rapidly, the
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linear collision sum can be taken as constant between time steps, and the advanced-time

collision term on the left-hand side of eq. (96) call be moved to the right-hand side. In

this case, a tridiagonal matrix equation is obtained, which may be written as follows:

Cvfn + (1- B)f 7+ 1 ± Anf7 = Dn + fn (99)

with

A5 n = A2 D - (100a)

4AJ+ 312 Aj- 2-2

B -Al' V7 - 7  1  (100b)

Cn = A+ (r' + 2 ) (100c)4A~fj+.,V/- _ +2 + Afj+l J+ (0)

S= -C"f7, 1 + B hf7 - A -1 - AT z- (fnf7 - fj (100d)

While the implicit differencing scheme is a particularly stable method for the solution

of eq. (57), a simple forward-differencing of the equation gives simpler results, fron' which

an upper bound to the time step AT can be derived. For the forward-differencing of

eq. (5T), eq. (94) is replaced by:

f 7+1 - AT 1 fn 1
.-. _ __,_____1,71 -+ (7+1 +f7) + +( -f )

_M7)-V i (f 1>)2 - (fn + fn1) _'553 :-:1)

+ (A)G7 (101)

The solution for the advanced-time distribution function (corresponding to eq. (99)), is:

ffl+' = f," + 2D" + (Ar)G (102)

where Dn is defined in eq. (100d).

This estiniate of f"+, can be used to fix an upper bound to Ar such that. the change

over one time step is relatively small. For this estimate, the small inelastic term G",
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involving sums over the different present-time distribution function values f7, is ignored.

If the desired change is limited to b:

I(fn+ l - f")/fnt <_ , i103)

then Ar must satify the following relation:

A < b f(104)- 12 (D/Ar)l

where D"/Ar is independent of Ar. In the numerical computations, (f"+l _ was

limited to b = 0.1 by means of eq. (104).

The procedure followed in the calculations, then, is to: (1) set up the initial state by

specifying f9 on the grid; (2) limit the time step according to eq. (104); and (3) compute

the tridiagonal elements A, B and C of the matrix T from the distribution. Next, (4) the

matrix is inverted and (5) is used in eq. (98) to compute the distribution function at the

next time step. These steps are repeated to follow the progress of the system in time.

Energy conservation and normalization

Since accurate computation of changes in the energy is important in the solution, it is

particularly important to properly difference the nonlinear Fokker-Planck coefficients N(f)

and D(E). It is readily verified that the Fokker-Planck equation without heating or cooling

terms conserves energy; that is, the time derivative of the kinetic energy, as calculated by

eq. (16), proves to be zero. If this calculation is performed, it will be seen that conservation

follows from the following relation:

aD 00o
4- = 7r V d'f f(c'), (105)

waich follows from the definition of eq. (53). Using this formula rather than eq. (53)

to calculate D ensures numerical energy conservation. This result was first reported by

Kho8 . With this relation it is simple to show that, for a Maxwellian distribution of the

form f(c) = A-
D(E)
-() = kT. (106)N(E)

For N(c), a straightforward differencing of eq. (52) is sufficient.
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Since the energy of the dynamic system changes in time, a normalization of tile

energy coordinate which was based on the system energy might also change in time.

This was certainly true of tile density normalization, which changes in time because of

the compressional term; the density variation, however, could be analytically evaluated

and then incorporated into the compressional term (see eq. (44)). This cannot. be

done for the energy variation. Therefore, a time-invariant normalization was employed:

the dimensionless velocity is obtained with the initial thermal velocity, not the time-

varying one. At the start of tle system evolution, the average normalized energy density

(E) = q = 3/2; at later times it varies freely. This means, for example, that a later-time

Maxwellian has the form f(e) = Aexp[-f(kT(O)/kT(t))]. The initial thermal velocity is

simply a convenient scaling factor, as are the other normalization constants employed; of

course, they become less c9nvenient the more the system changes from its initial state.

6. Numerical Results

Relaxation of an initially Gaussian electron distribution to a Maxwell-Boltziannl

distribution is shown in fig. (5). (Note that in all plots of the distribution function, the

quantity plotted is the ratio, -y(f), of the actual distribution function with a Maxwelliail

distribution at the same temperature; thus, the equilibrium point in fig. (5) is a straight

line at 7(e) = 1.) In this calculation, only the electron-electron collision terms were

nonzero. The initial distribution was giveni by f(e) = aoexp(-10[( - p)/u,]2 ), where

is the dimensionless velocity of eq. (38) and ao, p and w are constants determining

normalization, gaussian center position and width, respectively. For fig. (5), the values

p = 0.3 and u, = 0.3 have been taken. The result appears to agree with that of Kho8 for

the same parameters. It can be seen in the plot that the equilibration time at any energy

is roughly proportional to the electron-electron collision time.

When there is ohmic heating, the shape of the evolving distribution depends oil he

strength of the magnetic field. Strong-magnetic-field ohniic heating results in a depressed

tail, as is shown in the time-development plots for both weak heating (fig. (6), ri = 2.5) atid

strong heating (fig. (7), rn = 4.0). These distributions, evolving from an inital Maxwellian.
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rapidly take on the self-similar shape for heating which was described above. (The ratio

of the self-similar distribution, eq. (78), with a Maxwellian has a peak at an energy which

is easily shown to be proportional to the temperature; the heating up of the distribution

can be seen in the figures by the advance in the peak locaton.)

Weak-magnetic-field ohmic heating is centered at an electron energy Ema. (eq. (68))

which depends on 12- 3 ; the distribution is enhanced relative to the same-temperature

Maxwellian in the vicinity of ,,,a.-, and high-energy runaway production is possible. In

fig. (8), the time-evolution of an initially Maxwellian distribution is shown for ohmic

heating focused at e = 5 (SI = 0.2324Z). As long as the magnetic field is finite, the

highest-energy electrons will always be confined, and the distribution tail must be depleted

relative to a Maxwellian; for low enough fields, however, an enhancement can be seen over

a significant fraction of the high-energy electron population.

Inelastic collisions cause a relative enhancement in the distribution function tail. This

can be seen in fig. (9), which shows the evolution of a system under the sole influence of

inelastic collisions. For simplicity, only one inelastic process was included, with a collision

strength Slab = 1; the same behavior holds true in general. There is a depletion in the

distribution function near the threshhold energy cab, but everywhere else the distribution

function is enhanced over the Maxwellian value. This is a surprising result, since the effect

of inelastic collisions is to move electrons from higher to lower energy states. Collisions

lower the temperature much more effectively than they reduce the high-energy electron

population, however, and the enhanced tail of fig. (9) is the result.

The effect of compression is shown in fig. (10), where a non-Maxwellian distribution

(obtained as in fig. (8) by ohmic heating) is compressed. The result is a more or less

isomorphic heating of the distribution. Just as in fig. (6) and the following figures, the

peak in the ratio fo(C)/fMB moves to the right as the distribution is heated. As was shown

here, if the initial distribution has the form of the self-similar solution (eq. (78)), including

the Maxwellian, compressional heating is completely isoniorphic: only the teniperature

is changed by compression (with appropriate shifts in the peak of the ratio with the

Maxwellian).

These figures illustrate the individual effects of the various Fokker-Planck terms of the
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electron distribution. In a z-pinch implosion, these terms are interacting and competing to

produce a dynamically changing distribution function, which may at times be Maxwellian

and at other times be strongly non-Maxwellian. The numerical code spelled out here can

be used both to follow the changes of this distribution function and to estimate the effects

of its variation. The determining factors are the external parameters of temperature,

degree of ionization, mean velocity, and electric and magnetic fields. These parameters

could obtained from a hydrodynamic model, for example, which solves for the spatial

variation of a given system, and the calculated velocity distribution function could be

used to estimate runaway production, radiation output, and the self-consistency of the

hydrodynamic model. Results from this diagnostic use of the Fokker-Planck solution will

be reported in subsequent works. A hybrid hydrodynamic-kinetic model could also be

constructed, where the transport coefficients are calculated from the true distribution

function instead of an assumed Maxwellian. This procedure could be both more accurate

and more robust in analyzing the variety of possible z-pinch implosions.
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APPENDIX I

The Fokker-Planck Collision Term

Here, the Fokker-Planck collision term which is written out in eq. (20a) is derived.

This derivation is not from "first principles"; it is mainly intended to enable comparison

with other forms of tile collision term found the literature. A more detailed treatment of

tile statistics-related Fokker-Planck equation can readily be found in the literature, along
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with the application to Coulomb scattering employed here4.

We consider the effect of collisions with one particle species on the distribution function

of another species. Species a has mass m and distribution function f,(v), while species b

has mass M and distribution function F(t'). Changes are computed which result from a

particles (e.g., electrons), with velocity v, being incident on b particles (e.g., ions), with

velocity v'. The relative velocity is j = 6 - 6'.

The "Landau form" of the Fokker-Planck collision term is

b O

where

F = d 3 [F(v')J[[fvi- ? -f(v),,F(v')] , (1.2)

and Yab is defined in eq. (21). The gradient operator V acts on the variable 67 unless

otherwise specified.

To rewrite eq. (1.1), it is useful to note that

I V_ t92 (1.3)

By commuting the Vv operations, integrating by parts with V.,, and using , = -Vt,

it can easily be shown that

(f )ab=~ [iifi) -VV: [B(7)f~i) (1.4)h " a b 2

where

rn + M/ F(i') (I.5)

-- M dI 6 u,'

B Yabf V dv tF' IF(- ')

The quantity i(F) is called the coefficient of dynamic friction, and B(F) is called the

diffusion coefficient. The integrals f dv'F(,')l? and f dt'F(,')/O in the above expressions

are called the Rosenbluth potentials.
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The Cartesian tensor expansion of eq. (13) can now be e, ?Aoyed in eq. (1.4) to obtain

equations which are satisfied by each expansion term. A spherical coordinate system is used

to evaluate the integrals. Of course, only a magnitude-of-v dependence will be left in the

final expression, though the direction of fl(t,) will preserve (to first order) the directionality

of the system. It is straightforward to calculate the equation for fo(v). Higher-order

terms are more complicated, since these involve vector, tensor, etc. components, and the

coefficients 4(v) and B(v) must be expanded. This will not be done here (see Shkarofsky4 ,

section 7-5, for details).

Expressions are given below for the required derivatives in spherical coordinates, when

there is only a Ii;' dependence (with unit basis vectors {i}).

i t'9D (1.7)
'?

[ 1 0 a ' i j 0 1 0€a

= ~ bj + o,0 (+.8)
V&V Z2 ( aV2  V iV

=I(t,) + i'V&(v) (1.9)

- {+z [ , + + (1.10)

20p a2 p 2 40V, a2 V,

_t' D,5 - + t +v Ov +D 2  (1.11)

In evaluating ,(v) and B(v), the following easily derived identities are useful:

jdO sinG Iinj1 2 (1.12)
0 1 ' iiax(v, v')

jd6 sin 7- 0 - 2 i (1.13)

2 (v, + 3 , if v' > v.

Using these-identities it is easy to show that

Jdi Fo, - 4r{ - dv'' 2 Fo(t/) + 0f d'V'Fo(t') ([14)

f { ~f"1 o

d'6 - i'Fo( ) = 41r { dv't,'2 Fo(v') + 0(1 d' ,1'4Fo(

+ dv'' 3F0 (t"
') + -- ,/ dtv'F0(v') } (I15)
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and so

o = - dt" 4 FoUz) + J dv't'Fo(,')1
=o =4rY,,e - dv'v F (v') - '--  t,4 O( ,

+ f,'j [&, j dv'v"'f(v') - V  dv'v'2f(vf)]} (.17)

These expressions can now be substituted into eq. (1.4), which to zeroth order is

(~fo - -
"0 . -A 0 (t,)f 0 ( ) + 2 "(B o(t)fo(v)) ([.18)

= Ovi nY +N( )fo(v)+D(v)v)] , (1.19)

where the quantities N(v) and D(v) are defined as

N(t) = 47r dv' t,"' F o(v') (1.20)

D(v) = 41 - dt,'v'4 Fo(v') + v2  dt,' t,'Fo(v') . (1.21)

Finally, since
avi t,1 Ox (.22)

then the lowest-order expression for the Fokker-Planck collision term is

(") nY 0 [N(v)f(v) + D(v) .O ] (1.23)
bt ,V2 C91,

This is just eq. (20a).

APPENDIX II

Cartesian-Tensor Component Equations

In this section, component equations for the first two terms of the ('artesian tensor

expansion of f(f, i', f) are derived from eq. (7), the Boltznmann equation in stationary

coordinates. These differ only slightly from eqs. (18), which were derived from eq. (12).
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the Boltzmann equation in moving coordinates, and are identical if V(r) = const. Although

the expansion relies oil spherical symmetry, we will use Cartesian components in tile

development. The Boltzmann equation is
af
T- + 6 " f + (6+ F × Lj ) -V = c(1.1)

The expansion used is

f (,U) = fo + - •f,
V

= fo + f. sin0 cos 0 + fy sin 0 sin 0 + f. cos6 (11.2)

The chain rule gives for V:

O O 8 + ao0 ae + 9. a. ( .3+ - i (11.3)

f09 i ia 1 ai 0
v av v2 00 V0 v2 sin 2  0( 0)

Wken the expansion of eq. (11.2) is substituted into the Boltzmann equation, eq. (11.1),

the -.arious terms become:

af afo af. Ofv f0- = - +  - sin 0 cos + ! si 0 sin + - cos0 1.5)

at at at at a
i7. Vf = v (sin 0 cos 0, sin 0 sin 0, cos 0). V fo

+ v (sin 0 cos 0, sin 0 sin ( , cos 0).

[sine cos 0k(fr + sin0 sin OVfl + cos OVf:] (11.6)

d. V,f =a, sincos0 [afo + sin0 cos 0'-- + sin Osin '-- + cos02-I
av O. v avj

1
+ - Cos 0 Cos 4 (f Cos 0 Cos 0 + fy Cos 0 sin f - f. 8 ]

V

+ sin6[f, sin d-fy cos

+ a. siln 0 sill + sin 0 cos 0 f + sin 0 sinl 0 + cos 62f
6~sn~1 1) t' a V at, at

1
+ -cos 0 sin 0 [f, cos 0 cos 0 + fy cos 0 sink - f sin 0]

V
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1 1
+ - cos 0 [-f; sin 4 + fy cos j

V)

+a. co 0 [ + +sin Osin L+ cos

+ -sin0 [-f cos 0 cos (k - fy cosO sin A- f- sin 0J (I1.7)

1F x CV,.f = -W . 6 X V~f

-w [-fA cos 0 + fZ sll 06 sin ] + Wy [fA cos 0 - sin 0 cos

+ W, [sin 0(-f,, sin 0 + fA cos q5)] (11.8)

To obtain an equation for fo, the Boltzmann equation resuting from these substitutions

is integrated over solid angle (d2 f2 = sin 6 dOdo). The results are

'f sin dOdO = 47r-fo (11.9)

6. f sin 0dOdo 3 r ,.f I.0

4- 0 ( -. 4r 8 (d (+7.11)Jfi. V,,f sitl 0dd = -'-(, i)+3v

3 O t, 3 v

To obtain an equation for fi, the same procedure is followed, multiplying the equation

in turn by sin 6, cos 0, and cos 0. After numerical constants are divided out, the resulting

two equations are4

afo 1,1 a V i+ -'0.f +2-2- [ 11j = C,,+ C- (11.12)
-t 3 3v 2 ' -,

oh -_fo

APPENDIX III

Electric field - Laser Heating equivalence to Ohmic Heating

While this study is primarily concerned with ohmic heating, there is a direct analogy

with laser heating by inverse bremsstrahlung, which has been well studied in the literatire.r

In this appendix, the electric field heating term from laser heating is derived. It. is
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remarkable that, under certain conditions, this is identical in form to that for ohmic heating

derived earlier.

The starting point for the derivation is eq. (33) for the electric field heating terni in

the Fokker-Planck equation, and eq. (34) for fl. With laser heating, time variations ill

cannot be ignored; they are, however, periodic. We assume that any background magnetic

field is negligible compared to the electric field of the laser light, so 4 = 0 ill eq. (19b).

Particles are accelerated by the laser electric field, which has intensity I = cE2 /47r,

wavelength A, and oscillation frequency WL = 27rc/A. The maximum oscillation velocity of

the particles is -i 0, which is related to the intensity and frequency by

221 mwLV°C (1I.l)

47re 2

If I is in W/cm2 , A is in microns, and kT is in keV, then the ratio of the oscillation velocity

to the thermal velocity (with q = 3/2) is mv'o/kT = 3.73.595 x 1O- 6 1A 2 /kT. The laser

acceleration is

d(t) = 6owL cosWLt. (111.2)

Under these assumptions, eq. (34) for A becomes

'y + vei f l = -d(t)-5f (111.3)

As with ohnic heating, it is assumed that f, varies in time much more rapidly than

Jo. But instead of looking for equilibrium solutions for fm(v,t), eq. (111.3) is solved for

the time-dependent l, and this solution is averaged over a full period of the (rapid) laser

oscillation. The solution to the homogeneous version of eq. (111.3) (i.e., a(t) = 0) is

M (t) = 4e - ' '5t (III.4)

with A an arbitrary constant. The solution when a(f) / 0 can be expressed in the same

form:
fm(I) = B(tfe-"" (111.5)

where

B(t) = - '(I')- (111.)
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The lower limit of integration is determined by the boundary condition, which ill this case

is set by the requirement that lir fi(t) = 0. To realize this, the acceleration a(f) froim
t --0

eq. (111.2) is "adiabatically turned on" by multiplying it by a factor exp(d), where f is

infinitesimal, for t < 0. When this a(t) is used, and if Ofo/Ov is assumed to be independent

of time (at least on the time scale of the f, variations), the general solution for fl(t) is

- L afo

fi(t) = -o W Of (Vi COSwLt + WL Sin WLt). (I1I.7)
WL +e;,O

For the calculation of fo, the rapidly oscillating values of f, are averaged. This is

accomplished as follows:

S = (t).f (t)dt
27r WL t=O

= eV _ ,v/2 cOfo(I.8

1 + (V,/,,,L)2 OV

If this expression is used for 6. fl, the laser heating term in eq. (33) is

6vYj 2 a 1 a(e! L

C. =CL = a 1 ] (111.9)

When expressed in terms of the dimensionless-energy representation of eq. (57) (flL =

Wn/LVR), the connection with the ohmic heating term can be clearly seen:

'y 0__)

CL - a , (III.10)

where

aL = Z 2 2,rZ rTc

vt, q w'kT (III.l1a)

_L f =IIIIA lh)
3Z1 ,- 1 4 - 2E3 /Zq 3

The results for ohmic heating and for laser heating are thus equivalent, with an effective

laser-heating "magnetic field"

QL = SIEB (111.12)
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and an effective laser "electric field"

EL =L V

wp I
2 VR c[nrnvih/2J' (Il.13)

where nrnmh/2 is the thermal energy density in the plasma.

APPENDIX IV

Numbers and Units

From the 1986-87 CRC Handbook:

c = 2.99792458 x 1010 cm/sec

m = 9.109534x 10- 2' g

e = 1.6021892x 10 - 19 C = 4.8032423 x 10" 0 statcoul

h1 = 1.0545887 x 10 - 2 T erg-sec

Ry = 13.605826 eV

re = 2.8179380x10 - 13 cm

mnec 2 = 5.1100258x10" eV = 8.1872281 x10 - 7 erg

With these values, and with kT measured in eV and n, in cni - 3 , the following numeric

formulas can be given:

logA = 23.463306 +log I(k§) 2

VR = 2.1030335x 10- 6  n. logA sec -  (IV.2)
(kT) 3/2

wp = 5.641458 x 104 vn. (IV.3)

ED = 9. 7 148016 x 103 (e/c)vpv/3T statvolt/cnm

= 8.0877853 x 10 - 1'6 vR V statvolt/cm I .4)

BD = 5.685680 x 10- 8 vR Gauss (IV.5)
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Figure 1. Some collision strengths for Argon. Each curve corresponds to a different

inelastic process, with a threshold energy where the curve appears.
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Figure 2. Electron conductivity as a function of temperature. Suitable parameters

have been chosen to exhibit the interaction between collisional resistance and magnetic

confinement: Z =1. B = 100 G, n = 1018 cm- 3 .
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Figure 3. The heating function g(e) and its derivative as a function of e for various values

of the factor Z 2 q3 / 2 in the denominator (see eq. (76)).
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Figure 5. Time-evolution of the distribution function from an initial Gaussian shape
f(e) = aoe- 1((f -0.3)/0.31' to the equilibrium Aiaxwellian. Shown is the ratio f()/fMlBf)

of the actual distribution with a Mlaxwellian at the same temperature. The various Curves
correspond to the times: A) initial condition; B) 0.02; C) 0.04; D) 0.08; E) 0.16; F) 0.32;
and C) 0.64, in units of the thermal electron collision time 7R-
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the infiuene of stronig-magnetic- field ohmic heating. The electric field is such that tile
exponent m = 2.5. Shown is the ratio .f(W UB(f) of the actual distribution -ith a

Maxivellian at the same temperature, at times A) initial condition; B) 0.50; (7) 1.00; D)
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Figure 7. Time-evolution of tile distribution function from an initial Maxwellian., under
tile infiuence of s trong-magn etic- field ohmic heating. The electric field is such that tile
exponent mn = 4.0. Shown is the ratio f(e)/fjfB(f) of the actual distribution with a
Maxwellian at tile same temperature, at times A) initial condition; B) 0.06; C) 0.11; D)
0.21; E) 0.31; F) 0.40; G) 0.50; and H) 1.00, in units of the thermal electron collision time
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Electron Distribution, m=2.0
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Figure 9. Time-evolution of the distribution function from at initial Maxwellian under
the influence of inelastic collisions only. Only one inelastic processes is present., with a
threshold at c = 2. The collision strength has been set to fl = 1000, an unrealistically high
value, for display purposes. Shown is the ratio f(e)/,fAB(O) of the actual distribution with
a MAxwellian at the same temperature, at times A) initial condition; B, 0.10; C) 0.29; D)
0.48; and E) 0.67, in units of the thermal electron collision time 7R.
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Figure 10. Time-evolution of a distribution function from an ohunically-heated

distribution under the influence of a constant compressional heating only. (Initial

distribution is that of fig. (8) at r = 1.078). For this plot, the compression coefficient
was set to jrO. IV = I (see eq. (57)). The different curves correspond to times A) initial

condition; B) 0.11; C) 0.21; D) 0.31; E) 0.41; and F) 0.92, in units of the thermal electron

collision time 'rn.
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