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I Introduction

In latent trait models and their applications, the test information function has an important role,
and has proved to be useful in many ways. Let 0 be ability, or latent trait, which assumes any real
number. We assume that there is a set of n test items measuring 0 whose characteristics are known.
Let g denote such an item, kg be a discrete item response to item g , and Ph, (0) denote the
operating characteristic of kg , or the conditional probability assigned to kg , given 0 , ie.,

(1.1) PA,(O) = prob.[kg 11 .

We assume that Pk,(0) is three-times differentiable with respect to 0 . We have for the item response
information function (Samejima, 1972)

82 a 82
(1.2) Ak,(0) T6- log P,(a) = I-Pk,4I) {Pk9(9)}- 2  62 (9) [P2k()] ) -

and the item information function is defined as the conditional expectation of Ik, (9) , given 0 , such
that

(1.3) Ig(0) = E[Ikg(0) 10 = )()Pk,(a) = I±Pk,()2[Pk,(9)]-
kg 

kg

In the special case where the item g is scored dichotomously, this item information function is simplified
to become

(1.4) Ig(e) = [ Po.) 2 .{Pg(0)}{l -

where Pg(O) denotes the operatinR characteristic of the correct answer to item g.

Let V be a response pattern such that

(1.5) V = { k ' g = 1,2, ... n

The operating characteristic, P (0) , of the response patten V is defined as the conditional probability
of V , given 6 , and by virtue of local independence we can write

(1.6) )V() = J P,(0) •

The response pattern information function, Iv (0) , (Samejima, 1972) is given by

(1.7) Iv(0) =- -.- ogPV(a) = ' Ik,(0)

k,EV

and the test information function, 1(8) , is defined as the conditional expectation of Iv (0) , given 9,
and we obtain from (1.2), (1.3), (1.5), (1.6) and (1.7)

41.8) 1(0) = E[Iv (0) 101 E IV (O)N (0) = g (a).
V g=1
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It is a big advantage of the modern mental test theory over classical mental test theory that the
standard error of estimation can locally be defined by means of II(e)] - 1/2 , which does not depend
upon the population of ezamineea, but is solely a property of the test itself. In computerised adaptive
testing, for example, this function can be used for the stopping rule indicating the desirable accuracy
of estimation of the examinee's ability (cf. Samejima, 1977b), provided that our itempool contains a
large number of items whose difficulty levels distribute widely over the range of 9 of interest.

In a case where our test does not have a large amount of information for the entire range of 9 of
interest, however, we may have some reservations in using 11(0)] - 1/2 as a measure of local accuracy
of estimation for all 0 .

It has been shown (Samejima, 1977a, 1977b) that in many cases the conditional distribution of iv
given 0 , converges to N(O, [I(9) -1/2) relatively quickly. On the other hand, we have also noticed
that the speed of convergence is not the same even if the amount of test information is kept equal. This
has been demonstrated by using Constant Information Model (Samejima, 1979a), which is represented
by

(1.9) )%(g) = sin2 [a. (6 - bg) + (,/4)1

where, as before, P,(8) denotes the operating characteristic of the correct answer, and a. (> 0) and
b, are the item discrimination and difficulty parameters, respectively. This model provides us with a
constant amount of item information 19(8) which equals 4a' for the interval of 0,

(1.10) - w[4a,] - ' + b, < 8 < r[4a,] - ' + b•

For the purpose of illustration, Figures 1-1 and 1-2 present part of the results obtained by using
Monte Carlo studies (cf. Samejima, 1979b). In this study, twenty hypothetical tests of ten to two
hundred equivalent items with the common parameters, a. = 0.25 and bg = 0.00 , were ad-
ministered to one hundred examinees hypothesized at each of the eight different levels of 0 , i.e.,
0 = -3.0,-2.2,-1.4, -0.6, 0.2, 1.0, 1.8, 2.6 . Thus these items provide us with the same amount of
constant item information, 0.25 , for the interval of 0

In these figures, the results of ten and twenty items for 0 = 0.2 and for 0 = 2.6 are shown, respectively.
In each graph, the cumulative frequency ratio of the maximum likelihood estimates v' 's of the one
hundred hypothetical examinees, the asymptotic normal distribution function N(O, II(e)]-'/ 2 ) and
the normal distribution function using the sample mean and standard deviation of the one hundred
iv as as the two parameters are presented. These figures indicate that, even when the number of items
is as small as 20 or 10 , the normal approximation of the distribution of the maximum likelihood
estimate ;v works well when the level of 0 is close to the common difficulty parameter b. , while
the convergence is much slower when the level of 0 is far away from b, . Note that in both examples
the amounts of test information are the same, i.e., 1(0; 0 = 0.2) = 1(0; 0 = 2.6) , which equals 2.5 for
the ten item case and 5.0 for the twenty item case.

The above examples indicate that in certain situations a teat does not provide us oith as much
amount of test information as its test information function makes us believe on certain levels of ability
9. This fact suggests that we need to be careful, and in some cases we may need some modification of
the test information function.

I



I

I -

Group 5, Session 1

10 item

Co'
03I a-

w
C.

a
*e -1.w -. 0 -. 50 0.00 5.5 8.5N ."0 'LOG

Group 5, Session 2

20 items

C-

is0

FIGURE 1-1

Cumulative F equency Ratio of iv 'a of the One Hundred Hypothetical Examinees with
Ability Level, I -= 0.2, (Step Puaction), the Asymptotic Normal Distribution Fanction
N(D, 1(0) ]- 1/2) (Solid Line) and the Normal Distribution Fanction Using the Sample

Mean and Standard Deviation of v ' As the Two Parameters (Dotted Line).
Ton and Twenty Equivalent Items Following the Constant Information Model

with av - 0.25 and I - 0.00 Were Administered, Respectively, in the
Two Seprate Sesions.
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FIGURE 1-2

Cumulative Frequency Ratio of iv 'a of the One Hundred Hypothetical Examinees with
Ability Level, . = 2.0, (Step Function), the Asymptotic Normal Distribution Function
N(O, fl(0)1-1I2) (Solid Line) and the Normal Distribution Function Using the Sample

Mean and Standard Deviation of iv 's As the Two Parameters (Dotted Line).
Ten and Twenty Equivalent Items Following the Constant Information Model

with as - 0.25 and bg - 0.00 Were Administered, Respectively, in the
Two Separate Sessions.
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The present paper proposes two modification formulae of the test information function 1(0), in order
to provide better measures of local accuracies of the estimation of 0 , when the maximum likelihood
estimation is used to provide us with the estimate of ability 0.

II Minimum Variance Bound

The reciprocal of the test information function 1(0) also provides us with a minimum variance
bound for any unbiased estimator of 0 (cf. Kendall and Stuart, 1961). Since the maximum likelihood
estimate, which is denotedby iv , is only asymptotically unbiased, for a finite number of items we need
to examine if the bias of Ov of a given test over the meaningful range of 0 is practically nil, before
we consider this reciprocal as a minimum variance bound. In this section we shall consider a minimum
variance bound which applies for any estimator of 6, biased or unbiased.

Let 0, denote any estimator of 0 . We can write in general

(2.1) E(e, 18) = 0 + E[(#; - 8) 101

When the item responses are discrete, we have

(2.2) E(6; 18) =--: 0; Lv(6)-- , (),
V V

where Lv (6) denotes the likelihood function. Differentiating both sides of (2.2) with respect to 6
we obtain

(2.3) TE(O; I0) = a C Pv(0)] = F 6c' -Pv(0)]
V V

V a

since we have

(2.4) EPV(q) = 1,
V

(2.5) E [5 Pv,(a)] =0
V

and

(2.6) E(, 16) 12P., (6)1 E(6; 16) , [ (6)] = 0
V V

We can write

(2.7) -- PV() = -- logPV()J Pv (9)

and using this we can rewrite (2.3) into the form

I



(2.8) (, ) = [0; -E( 1) log IV R)
V

From this result, by the Cram6r-Rao inequality, we obtain

(2.9) [aE(;. 18)] 2 < var.(O; I0) E[{± log p. (0))2 161

Since we can write
a2

(2.10) E[{ a log Lv (9)}2 I6] = -E[2- log Lv (g) 1]

from this, (1.7), (1.8) and (2.1) we can rewrite and rearrange the inequality (2.9) into the form

(2.11) Var.(o, I9) > [aE(, I p)]2 JI(q)]-1 -r [1 + aE(p, - 9 1)12 (6)1-1

The rightest hand side of (2.11) provides us with the minimum variance bound of the conditional
distribution of any estimator 0 . When 0, is an unbiased estimator of 0 , the second term of the
first factor equals sero, and we obtain the reciprocal of the test information function for the minimum
variance bound. When 8; is biased, however, the size of the minimum variance bound is determined
by this second term, and it can be greater or less than the reciprocal of the test information function
depending upon the sign of this partial derivative.

III First Modified Test Information Function

Lord has proposed a bias function for the maximum likelihood estimate of 0 in the three-parameter
logistic model whose operating characteristic of the correct answer, Pg(O) , is given by

(3.1) Pg(O) = cg + (1 - c,)[l + exp(-Dag(O - bu)}]- ' ,

where a. , bg , and c. are the item discrimination, difficulty, and guessing parameters, and D is a
scaling factor, which is set equal to 1.7 when the logistic model is used as a substitute for the normal
ogive model. Lord's bias function B(Ov I8) can be written as

(3.2) B(v I#) = D[I(O) 2Za e ()[¢ (8) -

g=1

where

(3.3) Og(0) = [1 + exp{-Dag(O - bg)}]-1

(cf. Lord, 1983). We can see in the above formula of the MLE bias function that the bias should be
negative when Og(G) is less than 0.5 for all the items, which is necessarily the case for lower values of

8 , and should be positive when 0,(0) is greater than 0.5 for all the items, i.e., for higher values of 9, I
and in between the bias tends to be close to sero, for the last factor in the formula assumes negative
values for some items and positive values for some others, provided that the difficulty parameter b.

6
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distributes widely. Lord has applied this MLE bias function for an 85-item SAT Verbal test (Lord,
1984), and the result shows a wide range of 0 in which the bias is practically nil.

In the general case of discrete item responses, we obtain for the bias function of the maximum
likelihood estimate (cf. Samejima, 1987)

(3.4) B(v 1 8) = E[v - 08] = -(1/2)[1(0)] 2  Al, (8) '(,
g=1 kg

- -(1/2)[I(9)]-2 o0e,(0[ ()-

where Ak, (0) is the basic function for the discrete item response k5 , and Pk' (8) and Ph' (0) denote
the first and second partical derivatives of P,,(0) with respect to 0 , respectively. On the graded
response level where item score x. assumes successive integers, 0 through mg , each kg in the
above formula must be replaced by the graded item score xg (cf. Samejima, 1969, 1972). On the
dichotomous response level, it can be reduced to the form

(3.5) B(&v 10) = E[v - e 181 = (-1/2)[(0)]-2  
g() '()[1%(e) -

with P'(6) and P.'(0) indicating the first and second partial derivatives of Pg(O) with respect to
6 , respectively. This formula includes Lord's bias function in the three-parameter logistic model as a
special case.

We can rewrite the inequality (2.11) for the maximum likelihood estimate v

(3.6) Va.(#v I6) > 11 + 2,B(iv 19)12 [1(0)]'

Taking the reciprocal of the right hand side of (3.6), which is an approximate minimum variance bound
of the maximum likelihood estimator, a modified test information function, T(9) , can be defined by

(3.7) T(6) = 1(8) 11 + 2 I( v 10)1- 2

Fom this formula, we can see that the relationship between this new function and the original test
information function depends upon the first derivative of the MLE bias function. To be more precise,
if the derivative is positive, then the new function will assume a lesser value than the original test
information function. If it is negative, then this relationship will be reversed. If it is zero, i.e., if the
MLE is unbiased, then these two functions will assume the same value. We can write from (3.4) for the
general form of the derivative of the MLE bias function

(3.8) ±B( v 10) {()'(/)J8} ~IgOP~()-P()~O{k() 1

g=1 kg

-2B(iv I )P(O)l,

where P'"(8) and '(8) denote the third and the first derivatives of Ph, (0) and 1(#) with respect
to 8 , respectively. It is obvious from (1.3) and (1.8) that we have

7



(3.9) J,(6) = P,()[Pg,(){P,() - ' - I, (e)]

and

(3.10) = r() =
g=1 g=1 kg

where Ig(8) is the first derivative of the item information function g(O) with respect to 6 . For a
set of dichotomous items (3.8) becomes simplified into the form

ft

(3.11) -B(§v 1 6) = {(6)}-x[(1/2){I()
-  -P )}-N1 - ()) -

({1 - 2Pg(9)}{P(6)} 2P'(6) - Pg(e){i - Pg(e)}({'()} 2 + ()

-2B(Ov 18) '(e)],

where B( v 16) is given by (3.5).

IV Minimum Bound of the Mean Squared Error

When the estimator 9; is conditionally biased, however small the conditional variance may be, it
does not reflect the accuracy of estimation of 6 . Thus the mean squared error, E[(O; - 0)2 10]
becomes a more important indicator of the accuracy. We can write for the mean squared error

(4.1) E[(O, - 9)2 1 6] = Var.(O, I 6) + [E(e, 1 6) - 12

(cf. Kendall and Stuart, 1961). We can see in this formula that the mean squared error equals the
conditional variance if 0; is unbiased, and is greater than the variance when 60, is biased. From this
and the inequality (2.11) we obtain for the minimum bound of the mean squared error

(90
(4.2) E[(6 , - 6)2 I 1 _ [1 + aE(8. - 6 j e)]2 I,'(8)]- + IE(6 , I 6) - e]2

Note that this inequality holds for any estimator, 0; , of 6 .

V Second Modified Test Information Function

For the maximum likelihood estimate §v , we can rewrite the inequality (4.2) by using the MLE
biat function, which is given by (3.4), to obtain

(5.1) E[(v _ p)2 181 _ [1 + aB(§v 18)12 [1(0)]'- + [B(§v 10)12

Taking the reciprocal of the right hand side of (5.1), which is an approximate minimum bound of the
mean squared error of the maximum likelihood estimator, the second modified test information function,
'2(6), is proposed by

8

K!



1
I

(5.2) E(O) = 1(0) {[1 + -B("vI )12 + 1(B) [B(§v 1)12 -

We can see that the difference between the two modification formuae of the test information function,
which are defined by (3.7) and (5.2), respectively, is the second and last term in the braces of the right
hand side of the formula (5.2). Since this term is nonnegative, there is a relationship

S(5.3) E (0) !5 T (0) ,

throughout the whole range of 8 , regardless of the slope of the MLE bias function. If there is a range
of B where the maximum likelihood estimate is unbiased, then we will have

(5.4) -(q) = T(9) = 1(e) .

Since under a general condition the maximum likelihood estimator k is asymptotically unbiased as
the number of items approaches positive infinity, (5.4) holds asymptotically for all 0

VI Examples

Samejima has applied formula (3.5) for the MLE bias functions of the Iowa Level 11 Vocabulary
Subtest and Shiba's Test J1 of Word/Phrase Comprehension, based upon the set of data collected for
2,356 and 2,259 subjects, respectively. These tests have forty-three and fifty-five dichotomously scored
items, respectively, and following the normal ogive model, whose operating characteristic for the correct
answer is given by

(6.1) P(B) = [21J- 12 a (0y e-0'/2 d,

the discrimination and difficulty parameters were estimated (Samejima, 1984a, 1984b). Tables 6-1 and
6-2 present those estimated item parameters. The resulting MLE bias functions are illustrated in Figure
6-1. We can see that in each of these two examples there is a wide range of B , i.e., approximately
(-2.0, 1.5), for which the maximum likelihood estimate of B is practically unbiased. The amount of
bias is especially small for Shiba's Test J1. Although this feature indicates good qualities of these tests,
we still have to expect some biases when these tests are administered to groups of examinees whose
ability distributes on the relatively lower side or on the relatively higher side of the ability scale.

When the MLE bias function of the test is monotone increasing, as are those illustrated in Figure 6-1,
it is obvious from (3.7) that T(B) will assume lesser values than those of the original test information
function 1(#) for lower and higher levels of 9 , while these two functions are practically identical in
between. The same applies to -(O) , and we have the relationship,

(6.2) E(O) < T(O) < 1(0)

throughout the whole range of B .

Differentiating (6.1) twice with respect to 0 and rearranging, we obtain

I
9
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TABLE 6-1

Estimated Item Discrimination Parameter A* and Item Difficulty Parameter ;, for Each
of the Forty-Three Dichotomous Test Items of the Level 11 Vocabulary Subtest of the Iowa

Tests of Basic Skills, Based upon the Results Collected for 2,356 School Children of
Approximately Age Eleven.

Discrimination Difficulty Discrimination Difficulty
Item Parameter Parameter Item Parameter Parameter

9 as so g a,, i

24 0.196 4.257 46 0.612 0.318
25 0.829 .1.000 47 0.494 0.781
26 0.614 -0.821 48 0.849 0.054
27 0.594 0.340 49 0.421 .0.626
28 0.669 -0.900 50 0.346 -0.250
29 0.867 -1.077 51 0.664 -0.420
30 0.956 -0.557 52 0.640 0.217
31 0.938 -0.179 53 0.402 0.526
32 0.940 -0.803 54 0.573 0.126
33 0.434 -2.331 55 0.667 -0.342
34 0.598 -1.210 56 0.593 1.007
35 0.489 -0.569 57 0.370 0.398
36 0.657 -0.987 8 0.416 0.782
37 0.351 0.577 59 0.491 -0.731
38 0.665 -0.468 60 0.678 .0.170
39 0.333 -0.676 61 0.519 0.748
40 0.683 0.402 62 0.938 -0.485
41 0.531 0.948 63 0.637 -0.398
42 0.436 0.258 64 0.818 -0.042
43 0.672 0.867 65 0.606 0.595
44 0.143 4.175 66 0.604 -0.376
45 0.898 -0.357

10
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TABLE 6-2

Estimated Item Discrimination Parameter 4 and Item Difficulty Parameter £g for Each
of the Fifty-Five Dichotomous Test Items of Test J1 of Shiba's Word/Phrase Comprehension

Tests, Based upon the Results Collected for 2,259 Junior High School Students.

Discrimination Difficulty Discrimination Difficulty
Item Parameter Parameter Item Parameter Parametera9S. Z.ga, I,

3101 0.726 -0.238 3129 0.761 1.416
3102 0.537 -0.956 3130 0.351 -1.839
J103 0.568 -1.263 J131 0.798 -0.494
3104 0.710 -0.809 J132 0.322 0.162
J105 0.794 -0.097 3133 0.822 -1.377
3106 0.495 -0.741 3134 0.302 1.633
J107 0.583 0.205 J135 0.850 -0.225
J108 0.771 -1.974 J136 0.368 0.264
'109 0.386 -0.872 J137 0.591 0.331
310 0.572 -0.327 J138 - -

J111 0.950 -1.266 J139 0.375 1.602
3112 0.437 -1.036 3140 0.422 0.216
J113 0.508 -1.061 J141 0.566 -0.689
3114 0.472 0.486 J142 0.447 0.132
J115 0.704 .0.224 3143 0.5886 -0.100
J116 0.303 -1.671 3144 0.384 0.399
J117 0.390 -0.626 J145 0.630 -0.479
il18 0.583 -1.573 J146 0.880 0.057
3119 0.653 -0.972 J147 0.333 0.374
3120 0.293 1.058 J148 0.521 -0.052
J121 0.470 -0.904 J149 0.509 -0.108
J122 0.451 -1.038 J150 0.512 -0.040
J123 0.46 0.161 J151 0.462 0.907
J124 0.562 -1.313 J152 0.394 0.478
J125 0.450 -1.691 J153 0.384 2.029
J128 0.367 -0.424 J154 0.242 2.363
J127 0.525 -1.299 315 0.738 1.258
J128 0.679 -1.094 J156 0.655 1.468

11
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FIGURE 6-1

MLE Bias Functions of the lowa. Level 11 Vocabulary Stibtest (Solid Line) and of Shiba's
Teat J3I of Word/Phrase Comprehension (Dashed Line), Following the Normal

Ogive Model.
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the Normal Ogive Model
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(6.3) R,(0) = 2r- 1 /2 a. exp[-(1/2) a,(0 -b,)2)

and

(6.4) _42)=-, (o , ,e

Substituting (6.3) and (6.4) into (3.5) and rearranging, we can write for the MLE bias function following
the normal ogive model on the dichotomous response level

(6.5) B(v 10) (1/2) [1(0)J-2 a. 2(0 - 6g) 4g(6)
9=1

Differentiating (6.5) with respect to 6 , we obtain

(6.8) y-B( v 1 B) I()2((1/2)E a2 (I(6( - ) + Ig(O)l
g=1

-[1(6)1-' '(e) a2(O- bg) I9(8).
g=1

It is obvious from (1.4), (1.8) and (6.6) that we have

(6.7) ),(O) -I(e) [P,(8) {2Fg(e) - 1} (P(O){i - Pg(O)}) - ' - 2a2(O - bg)]

and

(6.8) I'(0) = I(8) 1P, (e) {2P,(0) - 1) (P,(){1 - P(0)' - 2a2(9 - b,).
9=1

Figures 6-2 and 6-3 show the square roots of the original and the two modified test information func-
tions for the Iowa Level 11 Vocabulary Subtest and Shiba's Test J1 of Word/Phrase Comprehension,
respectively, following the normal ogive model. In each of these figures, the curves respresenting the
results of the two modification formulae assume lower values than the square root of the original test
information function for all 0 , as was expected from the shape of the MLE bias function in Figure
6-1. The discrepancies between the results of the two modification formulae are small, however, in each
figure.

In the three-parameter logistic model, the operating characteristic of the correct answer is given by
the formula (3.1), and Lord's MLE bias function for the three-parameter logistic model, which is given
by (3.2), is readily applicable. Differentiating (3.1) three times with respect to 6 and rearranging, we
can write

(6.9) 1,(6) = (1 - c.) Da. O,(e) 11 - O,(O).

(6.10) Fs'(0) = (1 - c.) D2a2 P, (0) [1 - 4o(0)1 (1 - 2,(9)] = Da P, ()[1 - 20v,(8)

and



(6.11) P,"(e) = D 2 a. .Fg(e)[1 - 60,(O) + 6{,#o(p))21

where Og(O) is defined by (3.3). Substituting (6.9) into (1.4) and rearranging, we obtain for the item
information function

(6.12) Ig(e) = (I - cg) D2a2 {#.(9))2 11 - O9 (e)] [Cg + (1 - Cg) #(e)] -1

This and (1.8) will enable us to evaluate Lord's MLE bias function given by (3.2). Differentiating
(3.2) with respect to e and rearranging, we can write

(6.13) "-B(gv 0 ) = D (I()}2I " g I (6)(k(O9) - (1/2)}
9=1

+ D,,~ (9) #9(e){1- €9(e))+ D a g I g O a 1 _ O 0

g=1

- 2 F(e) {(0)) - ' a. 1g(O) {tO.(O) - (1/2))]
9=1

From (1.4), (3.1) and (1.8) we obtain for the first derivatives of the item and the test information
functions with respect to 9

(6.14) 1(0) = (I - cg) Dsa {og(8)}2 11 _ Og(e)J {p
12 - 30g(e ) - (I - cg) 09(0)(l - ,O,(e)){Pg(O)}-*I

= Dag I,(e) [2{1 - O,(e)) - Og(e){Pg(e)j-*]

and

(6.15) P(O) = D a. I9(9) [2{1 - Pg()} -0,(8){e,(e)-']

==1

and we can use these two results in (6.13) in order to evaluate :.B(iv 10) .

When c9 = 0, i.e., for the original logistic model on the dichotomous response level, these formulae
become much more simplified, and we can write

(6.16) PF(O) = 1+ exp{-Da,(# - b5)}] -  -=,0(a)

(6.17) -P.(O) = Da 9 Og(0) 11 - Og(P),

(8.18) P,'(e) = D ,,: ,(9(2 ) 0 1 - 09(6)j Ji - 20g(O)l = Da Pg(0)1 - 2,() ,

(6.19) Fg"(e) = DYa ,,(O) 11 - O9(e)] [1 - 6V(8) + 6{,9V()}] ,
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(6.20) Ig(0) = D24 pg(e) 11 -O(a),

(6.21) I'(8) = Dsa 3pg(ei - ,(e)[1- 21,(6)1 = D a, I,() (1 - 209(9) .

(6.22) 1(0) = D2  a €(e) i -g
q=1

and

(6.23) '(8) = D a, (0) 11 - 2p 0 (0)]
g=1

respectively. Thus the two modified test information functions, T(O) and -(0) , which are defined by
(3.7) and (5.2), respectively, can be evaluated accodingly, both for the original logistic model and for
the three-parameter logistic model.

Figures 6-4 through 6-6 present the MLE bias functions and the square roots of the original and
the two modified test information functions for the Iowa Level 11 Vocabulary Subtest and Shiba's Test
Ji of Word/Phrase Comprehension, respectively, following the logistic model by using the same sets of
estimated item parameters shown in Tables 6-1 and 6-2, and setting D = 1.7. These results are similar
to those following the normal ogive model, which are presented by Figures 6-1 through 6-3, except that
the square roots of the original and the modified test information functions are a little steeper, the
characteristic of the logistic model in comparison with the normal ogive model.

In the homogeneous case of the graded response level (Samejima, 1969, 1972), the general formula
for the operating characteristic of the item score zg (= 0, 1, ..., im) is given by

(6.24) P. 1 (6) = P*, () - P.*. (0)

where

(6.25) P*,(0) --- (t) dt

(6.26) - oo-- be < b, < b2 < ... < bm, < bm+i = oo,

and q,(t) is some specified density function. When we replace the right hand side of (6.25) by that
of (6.1) with b. replaced by b., and use the result in (6.24), we have the operating characteristic of
Xg in the normal ogive model on the graded response level; when we do the same thing using the right
hand side of (3.3), we obtain the operating characteristic of z. in the logistic model on the graded
response level.

Table 6-3 presents the item discrimination parameter a and the two item difficulty parameters,
6., for zg = 1, 2, for each of the thirty-five hypothetical graded items. This hypothetical test gives an
approximately constant amount of test information for the interval of 0 , (-3, 3). Figure 6-7 presents
the MLE bias function for this hypothetical test, following the normal ogive model and the logistic
model on the graded response level, respectively. We can see that a practical unbiasedness holds for
a very wide range of 0 in both cases, as is expected for a set of graded test items whose response i
difficulty levels are widely distributed, an advantage of the graded response item over the dichotomous
response item. We also notice that these two MLE bias functions are almost indistinguishable from
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TABLE 6-3

Item Discrimination Parameter a. and Two Item Difficulty Parameters b8., , = 1,2
for Each of the Thirty-Five Graded Tut Items of a Hypothetical Test.

Item g o , b2 hem I % b2

1 1.8 .4.75 -4.75 19 1.9 -0.25 0.75
2 1.9 -4.50 -4.50 20 1.7 0.00 1.00
8 2.0 .4.25 -. 25 21 1.5 0.25 L2S
4 1.5 -4.00 4.00 22 1.8 0.50 LSO
5 1.6 -4.75 -2.75 23 L4 0.75 1.75
6 1.4 -. 50 -2.50 24 L9 1.00 2.00
7 1.9 -3.00 -2.00 25 2.0 1.25 2.25
a 1.8 -. 00 -. 00 26 L6 1.50 LSO
9 1.6 -2.75 -1.75 27 7 1.75 2.75

10 2.0 -2.50 -1.50 28 L4 2.00 .00
11 1.6 -2.25 -1.25 29 L9 2.25 8.25
12 1.7 .2.00 -1.00 80 LB 2.50 8.50
1 1.9 -1.75 -0.75 81 L5 2.75 8.75
14 1.4 .1.50 -0.50 82 L 8.00 4.00
15 2.0 -1.25 -0.25 89 LI 8.25 4.25
16 1.6 -1.00 0.00 84 2.0 8.50 4.50
17 1.6 -0.75 0.25 5 L4 8.75 4.15
18 1.7 -0.30 0.50

I
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each other. Figures 6-8 and 6-9 present the square roots of the original and the two modified test
information functions of this hypothetical test of graded items, following the normal ogive model and
the logistic model, respectively. As i. expected, the differences among the three functions are small for
a wide range of 0 in both cases. It is interesting to note, however, that in these figures the square roots
of the modified test information functions assume higher values than the square root of the original test
information function at certain points of 9 , and this tendency is especially conspicuous in the results
of the logistic model This comes from the fact that the MLE bias functions, which are presented in
Figure 6-7 for both models, have tiny ups and down, and they are not strictly increasing in 6

We notice that in each of the examples given above, the difficulty parameters of these items in each
test distribute widely over the range of 9 of interest, as we can see in Tables 3-1 through 3-3. This fact
is the main reason that the MLE bias function assumes relatively small values for a wide range of 0 ,
and that the resulting two modified test information functions are reasonably close to the original test
information function. For the sake of comparison, Figures 6-10 and 6-11 present the MLE bias function
and the square roots of the original and the two modified test information functions, respectively, for a
hypothetical test of thirty equivalent items with the common item parameters, a. = 1.0 and bg = 0.0,
following the logistic model. We can see in Figure 6-10 that the amount of bias increases rapidly outside
the range of 9, (-1.0, 1.0) . The resulting square roots of the two modified test information functions
demonstrate substantially large decrements from the original [1(0) /11 outside this interval of 0 , as
we can see in Figure 6-11.

We also notice that in all these examples there are not substantial differences between the results
of the two modification formulae. This indicates that in these examples it does not make so much
difference if we choose Modification Formula No. 1 or Modification Formula No. 2. We should not
generalize this conclusion to other situations, however, until we have tried these modification formulae
on different types of data sets.

VII Effect of the Modifications of the Test Information Func-
tion in Efficiency in Computerized Adaptive Testing

Amount of test information can be used effectively in the stopping rule of the computerized adaptive
testing. A procedure may be to terminate the presentation of a new item out of the itempool to the
individual examinee when 1() has reached an a priori set amount at the current value of his estimated
0.

We notice that for the stopping rule in computerized adaptive testing the modified test informations
will serve better, for in many cases our itempool is limited, and especially for examinees whose ability
levels are close to the upper or the lower end of the configuration of the difficulty parameters of the
items in the itempool there are not so many optimal items. In such a case, even if the amount ot test
information has reached a certain criterion level it does not mean that their ability levels are estimated
with the same accuracy as those of individuals of intermediate ability levels, as was observed in Section
1. Since, taking the MLE bias function into consideration, the two modified test information functions,
T(O) and E(O) , are based upon a more meaningful minimum bound of the conditional variance and
upon a minimum bound of the mean squared error of the maximum likelihood estimator, respectively,
they will be effectively used as stopping rules in computerized adaptive testing, especially for individuals
of lower and higher ends of ability levels.

Since the test information function I($) and its two modification formulae, T(O) and !(O) , are
likely to be the ones exemplified in Figure 6-11 in the process of adaptive testing, provided that the
program for the test is written well, we should expect visible differences between the results obtained
by using 1(6) and one of its modification formulae, especially for subjects whose ability levels are close
to the upper or lower end of the ability interval of interest.
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This is one topic we need to investigate in the future, specifying the amount of improvement with

simulated and empirical data collected in computerised adaptive testing.

VIII Minimum Bounds of Variance and Mean Squared Error

for the Transformed Latent Variable

Since most psychological scales, including those in latent trait models, are subject to monotone

transformation, we need to consider information functions that are based upon the transfomed latent

variable. Let r denote a transformed latent variable, i.e.,

(8.1) r = T(O) .

We assume that r is strictly increasing in, and three times differentiable with respect to, P , and vice

versa. We have for the operating characteristic, P*, (r) , of the discrete item response k. , which is

defined as a function of r ,

(8.2) P,() = prob.[k, I = prob.[Ikg 1 ] = Pk,(O)

and by local independence we can write for the operating characteristic of the response pattern, P; (r),

(8.3,) = i P;,() = II P'(0) = P1 (a)
kg(V kgfV

As before, the item response information function, I, (r) , is defined by

82

(8.4) IZ,(,) = -(r) logP4(,)

and for the item information function, I, (r) , and the test information function, I* (r) , we can write

from (8.4), (1.3) and (1.8)

(8.5) 1(T) = i () ph,(T) =PZ, (r)12 (T)
ke 

k'

= J[a-P,(6)L8J2 I80 (O)J- I_() 2

Lhd ap9' ar a 8
kg

and

(8.6,)1* = I'(") = a()[ 12
gIIR

respectively. Let r; be any estimator of r , which may be biased or unbiased. In general, we can

write

(8.7) E(r I r) = r+ E(r* - rI)

and, differentiating (8.7) with respect to 0 , we obtain i
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8.)E(r+r) = -+ E(; -r I r)

Since from (8.3) we can allo write for E(,r; jr)

(8.9) E(r; I r) = 1: r; PV*(r) r; P (a)
V V

differentiating (8.9) with respect to 9 and following a logic similar to that used in Section 2, we obtain

(8.10) a E(r; I ) ±F r; Pv(9) - E~;Ir)] I±Pv(0)]
V V

- j; - E(,;I ir)] [I logv(0)) P,(0)
V

By the Cramir-Rao inequality, we can write

(8.11) IE(r Ir)12 < Var.(7. 1r) Ei{ logV(0)21

and from this, (1.7), (1.8), (2.10) and (8.8) we obtain

(8.12) Var.(r, Ir) - I±E( I r)) )

= Lr + ±E(r; - r 1 ,)12 [I(o)]-

Thus the rightest hand side of (8.12) provides us with the minimum variance bound of any estimator of
i. When r; is an unbiased estimator of r , the second term of the first factor of the rightest hand
side of (8.12) equals sero, and by virtue of (8.6) the inequality is reduced to

(8.13) Var.(r, I r) >I-' -  = [].(2)]-l .

For the mean squared error, Ej(r; - r) 2 I r] , we can write

(8.14) E[(r; - r)2 1 r] = Ver.(, I r) + IE(r; I r) - .12

and from this and (8.12) we obtain

(8.15) EI(r - r] It + -E(r, -T I r)12 [I($)]1- + [E(r; I r) - rJ2
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IX Modified Test Information Functions Based upon the Trans-
formed Latent Variable

The maximum likelihood estimator, fv , of r , can be obtained by the direct transformation of the
maximum likelihood estimate, iv , of a , i.e.,

(9.1) v = r (v) •

Let B*(v I r) be the MLE bias function defined for the transformed latent variable r , i.e.,

(9.2) B*(V I ) E(fv - r I r)

Faom this, (8.12) and (8.15) we obtain

(97 49(9.3) Var.(fv Ir) [Fe +

and

(9.4) EI(fv - r)2 I r] >- [1 + B*(fvI r)j[I(8)]- + [B(fv Ir)]•

The reciprocals of the right hand sides of the above two inequalities provide us with the two modified
test information functions for the transformed latent variable r , i.e.,

(9.5) T'(r) = 1(0) [L + B*(fv I

and

(9.6) _=*(r) = 1(6) 1*+ QB'v I r)) 2 + I(6) {B(v I 1

In the general case of discrete item responses we can write for the MLE bias function B* (fv r)
and its derivative with respect to 0

(9.7) B*(fv I r) = B(9v I )[LI -. - (1/2),I(8) V'[ 8 6 I- 2,

a?(9
= Bl6v l e)F +(11/2)[1(1-') a2 ,

and

(9.8) -B (fv I r) = B(ivl1) -2 + [±B(1v 0)]

+(1/2)[I(e)j-2[I(e) - I'() " T]

respectively (cf. Samejima, 1987). Thus we can use (9.7) and (9.8) in evaluating the modified test
information functions, T*(r) and 2*(r) , which are given by (9.5) and (9.6).
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X Discussion and Conclusions

A minimum bound of any estimator, biased or unbiased, is considered, and, based on that, Modifica-
tion Formula No. 1 is proposed for the maximum likelihood estimator, in place of the test information
function. A minimum bound of the mean squared error is considered, and, based on that, Modification
Formula No. 2 in the same context is proposed. Examples are given, and the usefulnesses of these
modified test information functions in computerized adaptive testing are discussed. These topics are
also discussed and observed for the monotonically transformed latent variable.

It is expected that these two modification formulae of the test information function can effectively be
used in order to supplement deficiencies of the test information function in different situations. Results
are yet to come, and the author hopes that other researchers will also use these functions in their own

research and observe their effectiveness.
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