
I Form Approved
REPORT DOCUMENTATION PAGE fOMB No. 0704-0188

PW.ik reorting Iurde for this collection of information is etimated to average I hour e respors, including the time fo renewing amtructaon, tearchng exi$ting data sourc
gathering a matiin the dat nelded. and comoietang and reewing the collecton of information. Send comments regardden estimate or any other ofect of
olecto of information. ricludirg ist.ons for rr "u t btrden, to Washington Headquaners Services. Oirevorite for Information Opeiations and RepOrts. 1215 Jeflef

Oav s Hghway. Suite 1204. Alinton., VA 22202-430,. and to the Office of Management and Budget. Paperwork Reduction Project (0704-018). Washington, OC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

August 1990 ftrtm/ rtatrin
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

An Evalution of a Modified Simulated Annealing

G Algorithm for Various Formulations

6. AUTHOR(S)(0
James Scott Shedden

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
AFIT Student at: Arizona State University REPORT NUMBER

AFIT/CI/CIA - 90-020D

I
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AFIT/CI AGENCY REPORT NUMBER

Wright-Ptatterson AFB OH 45433

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for Public Release lAW AFR 190-1
Distribution Unlimited
ERNEST A. HAYGOOD, 1st Lt, USAF
Executive Officer, Civilian Institution Programs

13. ABSTRACT (Maximum 200 words)

DTIC
ELECTE

S AUG O 1190

14. SUBJECT TERMS 15. NUMBER OF PAGES

208
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRA(
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED I I _

NSN7540-01-280-5500 1 0T Standard Form 298 (Rev. 2-89)90 071 t 1q1i

AN EVALUATION OF A MODIFIED SIMULATED ANNEALING ALGORITHM

FOR VARIOUS FORMULATIONS

by

James Scott Shedden

A Dissertation Presented in Partial Fulfillment
of the Requirments for the Degree

Doctor of Philosophy

ARIZONA STATE UNIVERSITY

August 1990

TABLE OF CONTENTS

Page

LIST OF TABLES vii

LIST OF FIGURES viii

I. INTRODUCTION 1
II. BACKGROUND 4.....................................4
A. Combinatorics 5
B. Combinatorial Optimization 7
C. Computational Complexity 8
D. Industrial Engineering Problems 11
E. The Appeal of Simulated Annealing 13
F. Purpose of the Study 14

III. REVIEW OF RELATED LITERATURE 15
A. Computational Complexity 15
B. The Traveling Salesman Problem 21
C. Heuristic Approaches 23
D. Simulated Annealing Background 27

IV. SIMULATED ANNEALING'S SUITABILITY FOR INDUSTRIAL
ENGINEERING PROBLEMS 44

A. Features of the Algorithm 46
B. Requirements of a Dynamic Shop Floor

Environment 50
C. Ways to Modify the Algorithm 51

V. A MODIFIED SIMULATED ANNEALING FORMULATION 57
A. The General Structure 57
B. Using Simulated Annealing in an Applied

Setting 70
C. Parameter Settings 71
D. Cooling Schedules Employed 72
E. Formulation of a Problem 74

VI. APPLICATION OF THE MODIFIED SIMULATED ANNEALING
ALGORITHM TO THE JOB SHOP SCHEDULING PROBLEM .. 90 For

A. Job Shop Formulation 90
B. Job Shop Scheduling Results 94cI

3d 0
Ju LL cL:tio-

By
Distribution/

iv Avnilability Codes
fAvail and/or

S Special

Page

VII. APPLICATION OF THE MODIFIED SIMULATED ANNEALING
ALGORITHM TO THE FLOW SHOP SCHEDULING PROBLEM. 101

A. Flow Shop Formulation 101
B. Simulated Annealing Versus Palmer's

Heuristic 102
C. Simulated Annealing Versus Johnson's

Algorithm 109
D. Large Flow-Shop Problems 114

VIII. SIMULATED ANNEALING'S POTENTIAL FOR OTHER
INDUSTRIAL ENGINEERING PROBLEMS 121

A. Types of Problems Appropriate for Simulated
Annealing 121

B. Example Formulations 122
C. Faster Implementations 134

IX. CONCLUSION 142
A. Summary 142
B. Recommendations for Future Work 145

REFERENCES ... 147

APPENDIX

A - TSP Program Code 154

B - Assignment Problem Code 158

C - Zero-One Programming Code 161

D - Minimum Cut Program Code 164

E - Flow-shop Problem Code 167

F - Continuous Function Program Code 170

G - Job-Shop Scheduling Program Code 172

H - Additional Formulations 176

v

LIST OF TABLES

Table Page

3.1 Time Requirements 17
3.2 Increase in Instance Size 17
3.3 A Biased Random Walk 42
4.1 Simulated Annealing Analogy 47
6.1 Job Shop Results 94
6.2 Job Shop Results for Alternate Acceptance

Functions 98
7.1 Flow Shop Results Using Simulated Annealing 103
7.2 Alpha Sensitivity for Flow Shop Problems 107
7.3 Flow Shop Results for Large Problems 108
7.4 Flow Shop Evaluation for Known Optimal Solutions. 109
7.5 Flow Shop Results for Alternate Acceptance

Functions 113
7.6 Flow Shop Results from the CRAY Computer 115
7.7 Flow Shop Results, Large Instances (on a CRAY) .. 118
8.1 Results of the Assignment Problem 129
H.1 Summary of Computational Results 189
H.2 Repeated Application of the 2-Opt Algorithm 191
H.3 Results From Literature 193
H.1 Results for the Traveling Salesman Problem 196
H.2 Results for Large Traveling Salesman Problems ... 197

vi

LIST OF FIGURES

Figure Page

1.1 Shop Floor Scheduler Formulation 3
3.1 Pseudo PASCAL Program for Simulated Annealing ... 37
3.2 Typical Simulated Annealing Algorithm Performance 39
3.3 Random Walk 40
4.1 A General Structure for the Simulated Annealing

Algorithm 49
5.1 A Modified Structure for the Simulated Annealing

Algorithm 59
5.2 Modification Impacts 61
5.3 Probability of Acceptance - Standard Form 63
5.4 Probability of Acceptance - Uniform Version 64
5.5 FSl Probability of Acceptance 66
5.6 FS2 Probability of Acceptance 67
5.7 Pseudo Code for the Modified Simulated Annealing

Algorithm Applied to the TSP 70
5.8 Swapping Permutation for Zero-One Programming

Problem ... 77
5.9 Reversal Permutation for the Traveling Salesman

Problem 78
5.10 Relationship Between Probability of Acceptance

and Ratio (-6C/T) 82
5.11 Relationship Between Probability of Acceptance

and Ratio (-6C/T) Continued 83
6.1 Shop Floor Sceduler 91
6.2 Job Shop Results 97
6.3 Job Shop Pesults for Alternate Acceptance

Functions 100
7.1 Flow Shop Results 106
7.2 Flow Shop Results (XT) 112
7.3 Flow Shop Results, 40x40 Problem 117
7.4 Flow Shop Results (on CRAY) 120
8.1 Pseudo Code for Simulated Annealing Algorithm

Applied to the TSP 124
8.2 Pseudo Code for an Assignment Problem 128
8.3 Assignment Problem Results 132
8.4 A Classification of Parallel-Machine Models 137

vii

ABSTRACT

Many combinatorial optimization problems are too large

to allow exact solution methods to give results in a

reasonable amount of time. An alternative is the use of

heuristics that sacrifice a degree of optimality in return

for timelier solutions. One such heuristic, simulated

annealing, is a form of iterative improvement that

probabilistically accepts less optimal configurations. This

procedure allows the algorithm to escape local minima (or

maxima) in its search for a global minimum.

This paper presents modified simulated annealing

formulations of common industrial engineering problems. The

modified algorithm behaves like a biased random walk that

can be tailored to suit a user's particular bias set.

Modifications to the standard application include: an expert

system front end, a constraints module, a user interrupt

capability, and the creation of alternatiive acceptance

functions. Recent availability of low cost computational

speed makes this method a very attractive approach to

obtaining "on-time" solutions to many combinatorial

optimization problems.

90 17 074

I. INTRODUCTION

The availability of low cost computational speed has

made it possible to implement heuristic algorithms that

provide near optimal "on-time" solutions. Specifically, the

new 80386 and 486i based processors and the reduced

instruction set architectures provide increased speeds at

relatively low cost. These fast machines allow us to take

advantage of a new optimization technique that trades

elegance for speed. Simulated annealing is a form of local

search that results in a biased random walk in its search

for an optimal solution. The flexibility of this algorithm

makes it possible to attach an expert system. a constraints

module, and a user interface to tailor the algorithm to a

particular user bias. Each bias set will yield a slightly

different answer. The algorithm is also capable of running

for a variable length of time. One scenario shows a

dedicated processor running the simulated annealing

algorithm continuously with users querying the system and

extracting solutions as they are needed. The more

processing time available the greater the likelihood of

obtaining better solutions. The resuilt of this system is

"on-time" solutions that are acceptable to the users'

particular set of biases.

Figure 1.1 shows the modified simulated annealing

algoritm. There are four modification to the standard

formulation. First, the user has the option of selecting

2

from a family of acceptance functions for the particular

problem at hand. These functions trade off computational

time for solution quality. Second, parameter settings can

be input directly or a front end expert system can be

queried, resulting the selection of appropriate values.

Selection is made based on the problem size, computational

power, and processing time available. Third, a consLraints

module allows the user to input restrictions that eliminate

unacceptable solutions. Finally, there is a user interrupt

capability that allows the algorithm to react to real time

changes in the problem domain.

This paper introduces formulations for the job shop and

flow shop problems. These formulations are then used to

perform parametric analysis and to evaluate the alternative

acceptance functions. Parametric analysis is performed to

establish efficient parameter settings for the job shop and

flow shop problems. Under certain conditions two of the

alternative acceptance functions outperform the standard

formulation.

3

A MODIFIED SIMULATED ANNEALING ALGORITHM

IOGANQEB In PROSLEM DOMAIN

EXPERT SYTEM aOPTIMIZER li NTIxSLTO

1-ONAINTS MDE

Figure 1.1 Shop floor scheduler formulation.

This paper presents background material in Chapter II,

a literature review in Chapter III, and Chapter IV examines

the suitability of simulated annealing for common industrial

engineering problems. The modified algorithm is presented

in Chapter V. A job shop formulation and results for the

modified algorithm are shown in Chapter VI. Chapter VII

shows the flow shop formulation and its results. Finally.

potential for other industrial engineering problems, as well

as results are shown in Chapter VIII.

II. BACKGROUND

Simulated annealing is a general purpose approximation

algorithm applicable to many combinatorial optimization

problems. It behaves like a local search that

probabilistically accepts transitions away from optimality,

thus allowing it to escape local optimas in its search for

the global optimum. Therefore, unlike local search, one of

the algorithm's key features is its independence of initial

configurations. Other strengths are the algorithm's

flexibilty, enabling it to be formatted for many diverse

types of problems, and its ability to solve large problems.

The algorithm has a short history of seven years with very

little concentration on industrial engineering problems.

Since many of the scheduling problems are types of

combinatorial optimization problems, there is great

opportunity to exploit the power of this heuristic for

industrial engineering applications.

A. Combinatorics

One of the fastest growing fields of modern mathematics

is combinatorics. This discipline is concerned with the

study of arrangements, patterns, designs, assignments,

schedules, connections, and configurations. A broad

definition is offered by Riordan (1958) as anything

enumerative. A major reason for the rapid growth is its

wealth of applications; to computer science, communications,

transportation, genetics, experimental design, scheduling,

5

and more (Roberts, 1984). People in numerous industries are

faced with combinatorial problems. A shop supervisor must

find an optimal allocation of workers to machines. An

industrial engineer must choose, among many production

schedules, one that will best support management's goals.

Much of the growth of combinatorics has been accompanied by

commensurate developments in computers. Today's fast

computers make it possible to implement algorithms for

practical combinatorial problems that were not feasible to

implement on slower computers. The result has been an

increased emphasis on developing fast algorithms to find

solutions to these problems. Thus, it is difficult to

separate combinatorial mathematics from computing.

1. History

Although most of the impetus of combinatorics has been

in modern times, it is an old branch of mathematics.

Permutations, ordered arrangements, were known in China

before 1100 B.C. The binomial expansion [the expansion of

(a + b)n] was known to Euclid about 300 B.C. for the case

where n=2. In 1100 A.D., Rabbi Ibn Ezra knew the formula

for the number of combinations of n things taken r at a

time. Shortly thereafter, Hindu, Arab, and Chinese works

mentioned binomial coefficients in primitive ways (Roberts,

1984).

In more recent times, the seventeenth century scholars

Pascal and Fermat studied combinatorial problems associated

6

with gambling - figuring out odds. This work laid the

foundation for probability theory in the eighteenth century

by Laplace. He gets credited with defining probability in

terms of the number of favorable cases. Also, Euler

invented graph theory and Bernoulli published the first book

presenting combinatorial methods. Liebniz in his "ars

combinatoria" is credited with originating the subject

titled combinatorial analysis (Riordan, 1958). In the

nineteenth century Hamilton used combinatorial techniques to

study puzzles and games. In modern times the techniques

have had far reaching effects on the fields of computer

science, transportation, information processing, industrial

planning, electrical engineering, experimental design,

coding, genetics, and a variety of other important areas

(Roberts, 1984).

2. Problems

There are three basic types of problems: existence

problems, counting problems, and optimization problems

(Roberts, 1984).

Existence Problems. The existence problem attempts to

answer the question: Is there at least one arrangement of a

particular kind (Roberts, 1984).

Counting Problems. A counting problem asks: How many

arrangements are there (Roberts, 1984)?

Optimization Problems. The combinatorial optimization

problem (the focus of this paper) is concerned with finding

7

the 'best' or optimal solution among a finite or countably

infinite number of alternative solutions (Papadimitriou &

Steiglitz, 1982).

B. Combinatorial Optimization

"The process of optimization lies at the root of

engineering, since the classical function of engineers is to

design new, better, more efficient, and less expensive

systems as well as to devise plans and procedures for the

improved operation of existing systems (Reklaitis,

Ravindran, & Ragsdell, 1983)." A gas pipeline flow problem

is used to illustrate an optimization problem. The problem

of designing a pipeline system involves many variables

including the size of the various links between junctions

that will minimize the total cost of construction and

operation. A modest network of 40 links and 7 possible pipe

diameters has 740 potential networks. This is a very large

number, 6.367 x 10" , when attempting to find an optimum

(best, maximum, minimum).

As already pointed out, progress in solving

combinatorial optimization problems has gone hand in hand

with the developments with the computer. Integer, linear

and non-linear programming, and dynamic programming have

experienced major breakthroughs in recent years (Aarts &

Korst, 1989). Even with the amazing speeds attained by

today's computers, there are limitations as to what can be

accomplished (Roberts, 1984). One approach to solving this

8

problem is to evaluate each possible network configuration.

This is the exhaustive enumeration approach. Returning to

our problem, if a computer is capable of analyzing 1 billion

different networks per second (one each nanosecond), it will

still take 1.9 x 10 17 years to solve the problem. This

problem is not tractable using current high-speed computers

(Roberts, 1984). Among all of the combinatorial

optimization problems the traveling salesman problem is

probably the best known (Lawler et al., 1985). This is

discussed more thoroughly in the next section. Much of

modern combinatorial optimization is concerned with creating

algorithms that solve efficiently these types of problems.

There are two broad approaches to solving these problems:

one can attempt to find optimality at the risk of great

computational time, or one finds a quickly attainable

solution at the risk of sub-optimality (Aarts, & Korst

1989). For practical reasons, it is very important to

analyze these algorithms in terms of their speed and memory

requirements. Before implementation on a machine, we want

an assurance that the computations can be carried out in a

reasonable amount of time and within the available storage

capacity of the machine.

C. Computational Complexity

As pointed out, before running a program we must know

if it will run in a reasonable amount of time and require no

more than a reasonable amount of memory. To measure the

9

expense of a program, we try to calculate a cost function or

complexity function f. For our purposes, f will measure the

cost in terms of time required to find the solution, as a

function of the input size n. As an example we might ask

how many operations are required to multiply two square nxn

matrices. The number of operations is f(n). Since there

can be a significant difference in program running times

depending on the efficiency of the code and the speed of the

computer, the focus will be on the algorithm and the number

of calculations required.

There are classes of problems depending on performance

of algorithms designed to solve them. These are discussed

more thoroughly in Chapter III. The class "P" includes

problems for which algorithms with polynomial time behavior

have been found. The class "NP" is essentially the set of

problems for which algorithms with exponential time behavior

has been found (French, 1982). NP-hard and NP-complete are

also terms that are used to define the "NP" class of

problems for which it is unlikely there will be good

algorithms.

One problem that is of particular interest due to its

simplicity of definition, but great difficulty in solving is

the Traveling Salesman Problem (TSP). This is one of the

most studied problems in combinatorial optimization. The

TSP can be stated as follows. A salesman, starting from a

city must travel to each of (n-l) other cities once and only

10

once and then return to the starting location. The problem

is to determine the order that will result in the shortest

path route. Distance can be replaced by other performance

measures such as time or cost (Phillips & Garcia-Diaz 1981).

An analogous industrial engineering problem would be the

routing of a robot, in an automated warehouse, that must

visit n different locations to fill an order. To estimate

the computational complexity we must consider the

enumeration of all possible routes and the calculation of

the associated cost of each route. There are n ways of

picking the first city on the route, n-l ways of picking the

second, and so on. This results in n! possible routes, when

we must pick the starting location. For a problem instance

that has 25 cities this becomes 25! or 1.55 x 102s , a very

large number. Although work has been reported on a problem

having 6,406 cities (Kirkpatrick, 1984), the largest problem

known to have been solved (proven optimal) has 318 cities

(Lawler et al., 1985). This was solved by Crowder and

Padberg (1980). The huge amount of computational time

required to find the precise optimal solution to many of

these NP-hard problems has led researcher in recent years to

focus on heuristic approaches to finding near-optimal

solutions (Tucker, 1984). A heuristic is simply a rule-of-

thumb method or approach to solving the problem. The best

solution is not guaranteed, but is sacrificed as a tradeoff

11

for saving processing time. Examples of heuristics include

local search and randomization algorithms.

D. Industrial Engineering Problems

Many of the problems encountered in industrial

engineering concern the optimal scheduling or sequencing of

jobs. In fact, the basic terminology of scheduling theory

arose in the processing and manufacturing industry (French,

1982). The basic problem is to schedule n jobs on m

machines. Depending on the scenario and the performance

objective there are numerous variations to the general job-

shop scheduling problem. Virtually any manufacturing firm

that is not mass producing a single product will encounter

some form of job-shop scheduling problem. Each product will

have its own route through a set of machines. An automated

guided vehicle (agv) must sequence a route to its various

pick-up and delivery points in the shortest time.

The goal of scheduling varies from one industry to

another and often from one day to another. The objective

might be to maintain an equal level of activity throughout

all departments. Another goal might be to make a suspense

date or to simply finish all work as soon as possible

(French, 1982).

As pointed out earlier, problems that are hard to solve

in a timely manner are classified as "NP-hard". Most of the

scheduling problems fall into this classification. In fact,

informed mathematical opinion states that there will never

12

be any easy solutions for these type problems (French,

1982).

Schedules are often very dynamic. One schedule might

be optimal at one point in time and the arrival of a "hot"

job, necessitating a revision to the schedule, results in a

sub-optimal plan. Other dynamic factors include the

rerouting of parts, machine breakdowns, rework, worker

accidents, and more. Although these problems are very hard

to solve to optimality, they nevertheless do arise in

industry and their solutions are sought. Therefore, there

is a need for some form of real-time scheduling approach to

address the dynamic nature of scheduling problems.

13

E. The Appeal Of Simulated Annealing

One method, termed simulated annealing, offers a

heuristic approach that is applicable to a very broad range

of combinatorial optimization problems (including

scheduling). By setting the various parameters to different

values, this algorithm is tailored to the particular problem

at hand. The recent emphasis in parallel processing

provides opportunities for exploiting some of the features

of simulated annealing. Finally, in implementing this

approach there is potential for establishing a dedicated

processor constantly searching for "better" solutions.

Schedulers can query the processor whenever they are in need

of a current "best" solution.

14

F. Purpose Of The Study

The purpose of this effort is to present a structured

approach to solving various combinatorial optimization

problems. The methodology uses a Monte Carlo technique,

common to the field of quantum mechanics, titled simulated

annealing. In practical implementations this is viewed as a

general purpose approximation technique or heuristic.

Several algorithms are formulated that are designed to solve

a variety of combinatorial optimization problems. The

performance of the various algorithms are analyzed relative

to processing time used and percentage of optimality

achieved.

III. REVIEW OF RELATED LITERATURE

A. Computational Complexity

To introduce this section a hypothetical situation will

be presented. Suppose you are asked to develop an algorithm

that will solve a scheduling problem. The objective is to

sequence jobs on a machine(s) in a way that minimizes total

processing time. The order of the jobs will determine the

amount of setup time to be included in each job's total

processing time. Depending on a further description of the

problem, one of three broad classes of algorithms may be

attempted.

Constructive algorithms are used to find quickly the

optimal solution. Examples are Johnson's Algorithm (French,

1982) for the two machine flow-shop problem, or the greedy

algorithm (Forgionne, 1986) for a minimal spanning tree

problem. Constructive techniques, however, have been found

for only the simplest of problems (French, 1982). The next

best alternative is to use implicit enumeration. Here, the

search space is pruned using some approach tailored to the

problem being considered. The most common methods are forms

of dynamic programming and branch-and-bound (Hillier &

Lieberman, 1980). If we are unable to develop a suitable

recursion for dynamic programming or lower bound for branch

and bound, these techniques can not be used. As a result we

are forced to use explicit enumeration, or simply evaluate

all possible configurations in the solution space.

16

Problems that are appropriate for implicit enumeration

can involve great computational effort. French (1982)

estimates that at a rate of 1 mathematical operation per

micro-second the dynamic programming solution to scheduling

40 jobs on one machine will require more than four years to

solve. Ignall and Schrage (1965) report that their

algorithm for scheduling jobs on three machines requires

approximately twice the time for (n+l) jobs as for n jobs.

Thus if it takes one second to solve an n job problem it

will take 2r seconds to solve the (n+r) job problem. With

r=20, this translates into 12 days (French, 1982). The

results for problems requiring explicit enumeration are

exponentially worse. For these reasons we are encouraged to

employ constructive methods whenever possible.

An algorithm's time complexity function f(v) yields the

maximum number of operations required to solve an instance

of size v. In practice, the time complexity function is not

solved completely, rather an indication of its growth is

made as the problem size increases. To see the dramatic

growth in computational requirements for various time

complexity functions examine Tables 3.1 and 3.2 taken from

French (1982).

17

Table 3.1

The Time Requirements of Alqorithms with Certain Time

Complexity Functions Under the Assumption that One

Mathematical Operation Takes One Micro-second. (Garey, 1979)

Time v
Complexity
Function 10 20 30 40 60

v .00001 s .00002 s .00003 s .00004 s .00006 s
v2 .0001 s .0004 s .0009 s .0016 s .0036 s
v s .1 s 3.2 s 24.3 s 1.7 m 13 m
vio 2.7 h 118.5 d 18.7 y 3.3 c 192 c

27 .001 s 1.0 s 17.9 m 12.7 d 366 c
3v .59 s 58 m 6.5 y 3855 c 1.3x].0'c

V! 3.6 s 770 c 8.4xi0'6 c 2.5x103 2 c 2.6x196 6 c

s=seconds, m=minutes, h=hours, d=days, y=years, c=centuries

Table 3.2

Increase in Instance Size Solvable in a Given Time for a

Thousand-fold Increase in Computing Speed. (Garey, 1979)

Time Size of instance Size of instance
Complexity solved in given solved in same time on
Function time on slow computer 1000-times

computer faster

v v, 1000 v,
v 2 V2 31.62 V 2

v5 v, 3.98 v,
v1 o V4 1.99 v4

2v vs v, + 10
3v v6 v6 + 6

v, + 3 , v! < 10
v! v7 v, + 2 , 10 < v7 -< 30

v, + 1, 30 < v, 51000

18

Entries above the dotted lines indicate time requirements

for algorithms exhibiting polynomial time behavior, while

entries below are for exponential behavior. The increase in

time requirements grows much more dramatically for the

exponentially bounded algorithms than for the polynomially

bounded ones. Table 3.2 shows that algorithms with

polynomial time complexity allow multiplicative increases in

the instance size for a given gain in computational speed,

while those with exponential time complexity allow only an

additive increase (French, 1982).

Problemz are said to be well solved when we can create

an algorithm with polynomial time complexity. Exponential

time algorithms are predominantly forms of exhaustive search

(French, 1982). Furthermore, polynomial-time algorithms are

in better position to take advantage of the increases in

computer speeds as technology matures. Lawler et al. (1985)

presents a good illustration. Suppose we have two

algorithms, one running in time O(v3), the other in 0(2v),

both of which can solve a problem with v=100 in an hour. If

we get a new computer that is twice as fast, the polynomial-

time algorithm can now in one hour solve instances of v=126

(a multiplicative factor of 1.26). The exponential

algorithm can only obtain an additive increase in instance

size, v=1Ol.

19

Up to this point we have restricted our discussion to a

classification of the algorithm's performance. A similar

classification applies to the type of problem.

1. The Class "P"

We classify a problem as being either 'hard' or 'easy'

depending on whether or not it is solvable by an algorithm

with polynomial time complexity (Lawler et al., 1985).

"Such a problem can be regarded as tractable if and only if

there is an algorithm for its solution whose running time is

bounded by a polynomial in the size of its input (Karp,

1972)." Problems for which algorithms with polynomial time

behavior have been found belong to the class P. Problems

for which algorithms with exponential time behavior have

been found belong to the class NP. Since we can always make

a polynomial algorithm inefficient to the point where it

runs in exponential time we say that P is contained in NP.

For a problem v,, to be polynomially reducible to 2 ,

means that we can reduce 7, to 7, in polynomial time. In

other words, we can take an instance of 7, with size v and

convert it to an instance of 7, in some polynomial number of

operation p(v). The two instances are also equivalent, in

that a yes answer to the first is obtained if and only if a

yes answer to the second is obtained (Lawler et al., 1985).

The discussion up to this point has laid the foundation for

the important concept of NP-completeness.

20

2. "NP-complete"

"We say that a problem w lying in NP is NP-complete if

every other problem in NP is polynomially reducible to v

(French, 1982)." This subclass of NP contains the hardest

problems in NP. If we can find a polynomial time algorithm

for any NP-complete problem, then we have found a polynomial

time algorithm for all problems in NP. This concept was

originally introduced by Cook (1971) and elaborated on by

Karp (1972). Carey and Johnson (1979) list about 300 NP-

complete problem types. The real value of this theory is

that it provides many straightforward techniques for proving

that a given problem is "just as hard" as a large number of

other problems that are widely recognized as being hard and

have confounded experts for years (Garey & Johnson, 1979).

Prior to Cook's theory people had been trying for many years

to solve problems that have subsequently been proven to be

NP-complete (French, 1982).

In Cook's (1972) work he lists a number of NP-complete

problems. These include: 0-i integer programming, the

knapsack problem, job sequencing, max cut, and many more.

Later, Carey and Johnson (1979) categorize 300 problems into

one of 12 groupings. These include, but certainly are not

limited to: traveling salesman, graph partitioning (max

flow/min cut), sequencing problems, and flow-shop scheduling

problems. These problems will get detailed treatment in

later chapters.

21

Now that we respect the difficulty involved in solving

these problems we can move on to looking at one of the NP-

complete problems, the traveling salesman problem.

B. The Traveling Salesman Problem (TSP)

The importance of this problem is not for its

applications, but for the developments it has inspired. The

first appearance of the problem is in a German book by

Voight in 1831, but the first use of the term in

mathematical circles was in 1931. Flood (1956) is

responsible for publicizing it in the math and operations

research communities (Lawler et al., 1985). In 1948 John

Williams urged Flood to popularize the term TSP at the RAND

Corporation. It quickly became the topic of discussion at

RAND which was becoming the intellectual center for much of

operations research. One reason for the popularity of the

problem was its connection with prominent topics in

combinatorial problems arising in the new subject of].inear

programming, namely the assignment and transportation

problems. The appearance of 'Solution of a Large-scale

Traveling Salesman Problem' (Dantzig, Fulkerson, & Johnson,

1954) was one of the principle events in the history of

combinatorial optimization. In this paper they introduced

two important new concepts, those of cutting planes and the

branch and bound.

Another enumerative method, the recursive technique of

dynamic programming, was also applied to the TSP by Bellman

22

(1962). Due to its enormous storage requirements, this

technique can only solve relatively small problem instances

(Lawler et al., 1985).

Although, Kirkpatrick (1984) has reported progress on a

problem having 6,406 cities, the largest TSP known to be

solved (Crowder & Padberg, 1980) to optimality contains 318

cities.

Similar to the TSP, the assignment problem uses the

same cost matrix as the TSP. Here the objective is to

choose n elements from the nxn matrix, one from each column

and row, in a way that minimizes the sum of the elements

chosen. Since there are n! possible ways of making the

choices, something other than an enumerative procedure must

be employed. Birkhoff (1946) showed how to formulate this

as a linear programming problem and solve it efficiently.

By the 1960s the people appreciated the distinction

between hard problems such as the TSP (requiring enumerative

algorithms) and easy ones like the assignment problem, for

which polynomial time algorithms exist (Lawler et al.,

1985).

The alternative to optimization is the use of a

heuristic to provide a near optimal solution at much less

computational cost.

23

C. Heuristic Approaches

Heuristics are, very simply, rule-of-thumb methods for

judging the relative merits of alternative actions (Pearl,

1984).

1. Purpose of Heuristics

The purpose of a heuristic is to find a near optimal

solution in the allotted amount of time. They are employed

in an attempt to trade-off a degree of optimality for an

improvement in speed. Heuristics are only applicable to

problems where constructive algorithms do not exist and

where implicit enumeration is computationally infeasible.

For these cases heuristics are often the only practical

approach. Many heuristic methods have been developed with

computational requirements proportional to small powers of

N, where N represents the instance size (number of cities

for a TSP) (Kirkpatrick, Gelatt, & Vecchi, 1983).

Although the primary performance measure of a heuristic

is often the quality of the solution, there are other

important criteria for judging one's worth. Ball and

Magazine (1981) list the following:

(1) Running Time,

(2) Ease of Implementation,

(3) Flexibility, and

(4) Simplicity.

24

Running time is often the second most important

consideration. Ease of implementation can be very important

depending on how much easier one approach is compared to its

alternative. Flexibility refers to the algorithm's ability

to solve problem variations. A TSP heuristic that can solve

only undirected TSPs is clearly inferior to one that can

handle both undirected and directed TSPs. Finally, simple

algorithms are more appealing to the user than cumbersome

ones and more readily lend themselves to various types of

analysis (Lawler et al., 1985).

2. Types of Heuristics

Heuristics can be categorized in different ways. One

scheme differentiates between applications. Those that can

be used for a wide range of problems are general purpose,

while those that solve a narrow class of problems are

tailored heuristics. Another method of classifying them is

to look at their problem-solving methodology. Kirkpatrick,

Gelatt, and Vecchi (1983) state that there are basically two

strategies for heuristics: divide-and-conquer and iterative

improvement. In divide-and-conquer, the problem is divided

into subproblems of a manageable size, then the subproblems

are solved. This requires that the subproblems be naturally

disjoint. Solutions to the subproblems must then be patched

back together. In iterative improvement, the system starts

in a known configuration. Some form of rearrangement is

applied to the current configuration. If the new

25

configuration represents an improvement, then it becomes the

current configuration. The process continues until no

improvements can be found. Since this process often gets

stuck in a local (but not global) optimum, it is usually

carried out many times with different starting

configurations.

One form of divide-and-conquer heuristic we have

previously discussed is the branch-and-bound method. By

making some heuristic guesses at the most promising branches

to explore we can prune the search tree and reduce the time

needed to get a solution. The efficiency of the search

strategy is directly related to the goodness, or strength,

of the heuristic. A weak heuristic will not guide the

search well and tends to build a wandering tree, while

strong heuristics build narrow and focused search trees

(Nilsson, 1980). Suppose, for a scheduling problem, that

instead of searching the entire tree we stop as soon as we

reach a feasible configuration (a complete schedule).

Ashour (1970a, 1970b) has studied this approach. Empirical

results for 100 scheduling problems tested show an average

efficiency of 95 percent and in no case was the efficiency

below 75 percent (French, 1982). Here, efficiency is

assumed to refer to optimality.

Local search is a form of iterative improvement. These

type of algorithms are discussed extensively by

Papadimitriou and Steiglitz (1982). A brief description

26

will be presented here. Given the current configuration,

trial configurations are generated which are closely related

(neighbors) to it. Each is examined to see if a better

configuration exists. The process stops with a solution

that is at least a local optimum. If there is still time

remaining until a solution is needed, we can start over with

an initial configuration that is more optimal than the

previous initial configuration. The process eventually

stops and the best solution is used. The definition of

Iclosely related' varies with different heuristics. Lin

and Kernighan (1973) define the 'neighbors of a tour (TSP

problems) to be those tours which can be obtained from it by

performing a limited number of interchanges of tour edges.

Two comprehensive studies (Golden et al., 1980) and

(Adrabinski & Syslo, 1983) evaluate the performance of many

heuristic algorithms designed to solve the TSP. Results

show the heuristics achieve five to seven percent of

optimality in a relatively efficient manner, but further

improvements require repeated application.

The next section introduces a generalization of

iterative improvement where controlled 'less-optimal' moves

are allowed.

27

D. Simulated Annealing Background

1. Quantum Mechanics Roots

The underlying distribution used in the standard form

of simulated annealing has its foundations in the field of

quantum mechanics. Fromhold (1981) describes this field as

a theory that is used to predict the behavior of atomic and

subatomic systems. These systems make up the microscopic

domain of nature, while the predictions can be used to

understand the macroscopic domain. A quantum-mechanical

model features atoms with electrons in certain patterns

which constitute the electronic states. These discrete

states are characterized by specific values for the energy

and angular momentum of the electrons. Collision of the

atoms or absorption of electromagnetic radiation promotes

the electron in the atom to a higher energy state. Emission

of electromagnetic radiation, then follows a transition to a

lower energy state. The lowest energy state for the system

is termed the ground state (Fromhold, 1981). The concept of

a stationary quantum state, first conceived by Niels Bohr

(1913), is defined as a condition of a system such that all

observable physical properties are independent of time.

Each stationary quantum state has a definite energy, but

several may have identical or nearly identical levels

(Kittel, 1969).

Similarly, statistical mechanics deals with calculating

thermodynamic properties of the macroscopic physical system

28

in terms of the microscopic constituents, such as atoms or

molecules (Farquhar, 1964). Described by Schrodinger

(1946), statistical mechanics is the central discipline of

condensed matter physics, a collection of methods for

analyzing aggregate properties of the large number of atoms

found in samples of liquids or solids. A thermodynamical

description of a system is characterized by relatively few

parameters needed to specify completely the thermodynamic

state of the system. If such a macroscopic description is

possible, in terms of the vastly more numerous parameters

describing all the particles of the system, then grouping

and averaging these dynamic parameters is necessary

(Farquhar, 1964). The term ensemble refers to the grouping

of configurations into sets. "In order to calculate

thermodynamical properties of a single system the

corresponding properties at one instant of each of an

ensemble of systems are averaged over this ensemble; these

ensemble averages are then assumed to represent the

properties of the single system (Farquhar, 1964)."

The probability that the system will be in a particular

energy level, E(jrj), at temperature T is given by the

Boltzman occupation probability-

P(Ejrlj) is distributed exp'-,'i,,, a

where, k, is Boltzman's constant.

29

Kirkpatrick, Gelatt, and Vecchi (1983) use this

probability as a weighting scheme to enable the calculation

of ensemble averages. To illustrate, the number of atoms in

one cubic centimeter of matter is on the order of 1023

With such a large number, only the most probable behavior of

the system in thermal equilibrium at a given temperature is

observed in experiments (Kirkpatrick, Gelatt, & Vecchi,

1983). This is characterized by the average and small

fluctuations about the average, when the average is taken

over the ensemble of identical systems. In this ensemble,

each configuration, defined by the set of atomic positions

Irij, of the system is weighted by its Boltzman probability

factor, exp - 1r ,11k aT) (Kirkpatrick, Gelatt, & Vecchi,

1983). Normalizing, we get the Boltzman distribution, which

characterizes the probability of being in a state with

energy E.

PfE=Ej = I/Z(T) * exp"
- .T)

Where, Z(T) is the normalization factor (Van Laarhoven &

Aarts, 1987).

Although statistical mechanics has historically dealt

with thermodynamics it can be applied in more general terms,

answering the question: 'Given partial information about a

physical system, how are we to make the best prediction of

30

the results of further measurements of the system?' (Wyllie,

1970).

2. Simulated Annealing's Methodology

In the previous section the Boltzman distribution for

characterizing thermal equilibrium was introduced (Wyllie,

1970).

PTX=ij = 1/Z(T) exp(-Ei/k.T),

where

Z(T) = I exp(-Ej/kT)
j

This gives the probability of a solid being in state i with

energy Ej at temperature T, where X is a stochastic

variable. Z(T) is the partition function, with the

summation extending over all possible states (Aarts, 1989).

In this section we will show the distribution's relation to

combinatorial optimization problems and why it works.

Metropolis et al. (1953) introduced an algorithm that

simulates a collection of atoms at equilibrium for a given

temperature. For a combinatorial optimization problem we

would have a very large, but finite number of

configurations. Let vr be the number of configurations in

state r. Here r refers to a random variable defining the

state (energy) of the system. For a TSP we could have 20

31

different routes each with a distance of 50 miles. We must

prove that after many moves the ensemble approaches the

distribution:

V, is distributed: exp(-Er/kT)

Let Pr. be the probability that we transition from state r

to state s. It should be clear that, prior to weighting

trawiitions, Pr, = P,.. A particle is equally likely to

move anywhere within the volume. Thus, if r and s differ

only by the position of the moved particle, the transition

probabilities are equal. Now, assume that Er > E., , E is

the measure of energy. The number of transitions from r to

s will be VrP,. (all moves to a lower energy state are

accepted). Weighting moves to higher energy states by the

exponential factor, we get the number of transitions from s

to r equal to VP,,exp(-(Er-E)/kT). The net number of

transitions from s to r is:

Net = V.P.rexp(-(Er-E,)/kT) - VrPr,

since P.r = Prn

Net = Pr.(V exp(-(E,-E,)/kT)-Vr)

Therefore, for any two states r and s, where

(V /V.) > Jexp(-Er/kT)/exp(-E./kT)j,

32

on the average, there are more transitions from state r to

state s. In words, if the ratio of the number of

configurations in state r to the number in state s is

greater than their ratio of probabilities of being in that

state, then there are more transitions from r to s. This

can be shown with a simple numerical example:

Let: V, = 20, V = 5, Er = 2, E, = 1, T = 1, P,r=Pr,=.5

Prob(r)= exp(-2/1) = .14

Prob(s)= exp(-1/1)= .37

Then: Vr/V-, > Prob(r)/Prob(s)

20/5 > .14/.37

4 > .38

and: Net R to S: .5(20) = 10

Net S to R: .5(5(.37)-20) = -9

Thus, there will be more transitions to the lower energy

state s. Metropolis et al. (1953) states that when the

process is ergodic (any state can transition to any other

state, albeit in several moves) and, based on the above

weighting scheme, more systems move from r to s, then the

ensemble must approach the canonical distribution:

33

Vr is distributed: exp(-Er/kT)

In relating this to combinatorial optimization, information

theory provides us with a valuable measurement. To be an

unbiased estimate, the probability distribution must

maximize our degree of uncertainty, measured by the

statistic entropy, concerning the occurrence of any

configuration (Bonomi & Lutton, 1984). The resulting set of

probabilities is known as the Boltzman distribution.

Bonomi and Lutton (1984) present a good illustration

using an example of a hidden object in one of n identical

boxes. Similarly, these could represent n possible

configurations of a particular instance. Let P, be the

probability assigned to each.

(1) P, > 0 , i = 1,2,...n,

(2) 1 = 1.
i-I

With perfect knowledge we know exactly where the object is

and our uncertainty would be zero. At the other extreme,

with no information, then all possibilities are equally

likely, P,=I/n, implying that our uncertainty is maximal.

C. Shannon (1948) introduced a measure of degree of

uncertainty:

34

(3) SiP, Po = -K E P, lnP,
i- I

where K is an arbitrary positive constant used to fix the

units of information. This is also the expression for

entropy. E.T. Jaynes (1957) suggests a reinterpretation of

statistical mechanics stating it is the result of

statistical inference representing "the best estimate that

could have been made on the basis of the information

available." We know from classical statistics that the

expected value of a function is:

<f(X)> = I Pif(xi).
i-I

The problem is how to statistically describe the set of

admissible states xi (Bonomi, 1984). The distribution Pi

maximizes the uncertainty (3) subject to the available

information. To maximize (2), subject to (1) and (3), the

method of Lagrange multipliers is used:

n TI n

L = -K Z Pi InPi - 0(P,) - p(EP, f(x)
i-1 i-I i-I

which reduces to:

L = inP - 0- (f(x,))

Taking the partial derivative with respect to P, yields:

35

P - - f(= 0, or

(4) P, = i1,2, . . .

where 8 and p are the Lagrange multipliers. Substituting

(4) into (1) and (2), yields:

n

E =1
i- i

E e-0 E e-uPf(x) = 1
i-I i-1

e+ =Z(u)

where Z(u) = E e-"fx1
i- 1

Therefore, this reduces to the Boltzman distribution:

P= [1/ 1 e- fex') I -"
Pi'

With f(x,) = (-E,/T), this is identical to the standard form

used in the Metropolis procedure. In this procedure an atom

is given a small random displacement and the resulting

change in energy is computed, 6E. If 6E 5 0, the displaced

configuration is accepted and used as the starting point.

Where 6E > 0, the acceptance is treated probabilistically:

36

P(6E) = exp(-6E/T). A random number from a uniform (0,I)

distribution is drawn and compared to P(6E). If P(6E) >

UN(0,I) then the new configuration is accepted, otherwise

the current configuration is retained. Figure 3.1 is a

pseudo PASCAL program taken from Aarts and Korst (1989) to

illustrate this procedure.

37

procedure SIMULATEDANNEALING

begin

INITIALIZE (i.t.rt, cO , L.);

k:=O;

i: =i.t rt

repeat

for 1:=i to L, do

begin

GENERATE (j from S,)

if f(j) f(i) then i:=j

else

if expfc±- j k) > rand[0,1) then

i:=j

end;

k:=k+l;

CALCULATELENGTH(L);

CALCULATECONTROL(ck);

until stopcriterion

end;

Figure 3.1 Pseudo PASCAL program for simulated

annealing.

"It is obvious that the Metropolis procedure is

independent of any considerations concerning the microscopic

laws governing the transition amongst the set of states.

This makes it possible to apply the algorithm in a more

38

general context including combinatorial optimization

problems (Bonomi, 1984)."

Let the probability of finding a system in a particular

configuration with energy E be given by the Boltzman-Gibbs

distribution:

P(conf) = exp(-Eo,,f/T) / Z E exp(-Eco,/T)1.
con £

Then, the mean energy of the system at equilibrium is given

by:

(5) E = I E Ei exp(-Ei/T)] / [I exp(-Ei/T)].
i-I i-I

This can be thought of as a conditional expectation for the

energy level. The numerator represents the joint

probability distribution, while the denominator is the

marginal distribution for the configurations.

Cerny (1985) states that all that is needed is an

implementation that maintains an equilibrium as T is

decreased. Further, one reaches the equilibrium when using

the Metropolis procedure after a reasonable number of trials

as depicted below.

39

Energy

E
- equilibrium regime -

computational time

Figure 3.2 Typical simulated annealing algorithm

performance.

The result is a biased random walk that favors lower

energy states. Therefore, by decreasing T in equation (5)

the average energy can be lowered systematically.

40

3. A Biased Random Walk

Feller (1966) describes a random walk on a number line

starting at the origin. A particle moves with probability P

one step to the right and with probability Q (Q=l-P) one step

to the left. He extends this thought to a gambler that can

either win his bet or lose it. Here players A and B each

have probability h of winning a dollar from the opposing

player. If N represents the number of dollars that A has,

at any time N can change to N-i or N+1. each with probability

h. The process continues until one of the gamblers has won

all the money and the opposing gambler is broke. Figure 3.3

depicts this random walk.

<-- (Prob) -->

0--,--2--3--4--S--6--7--8--9--10

Figure 3.3 Random walk.

Hausner (1971) extends this treatment to look at the initial

amount of money each gambler has and their respective

probabilities of winning a bet. He lets X. be the

probability that A will win everything when he currently has

n dollars. For our game, X=O and X,,=l. For 0 < X < 10,

we get: X. = VX,_- + hX,.,. This results in a system of

nine equations and nine unknowns. Adding the quantity _ X,

41

- hX,-, to both sides of the above equation yields -X. -

= X .,- hX . This reduces to:

X. I,- X = X,X. ,_, (3.1)

Setting each of these numbers equal to k, results in:

X, = Xo+k, X2 = X1 +k = X. +2k, ... ,X, = X0 +lOk

Since Xo=0, this gives: 1 = 0 + 10k and k=1/10. Therefore,

if A starts with four dollars, the probability he wins the

game X, is 4/10. An extension that will illustrate a biased

random walk is also provided by Hausner (1971). Here th(

gamblers have uneven probabilities of winning their bets.

Say A has probability p and B has probability q (q=l-p).

Suppose A and B both start with five dollars. Now, X. =

pX, + qX._,, for 0 < n < 10. To solve these equations,

subtract pX,, from each side of the above. This yields:

X. -pX. = p(X., - X)) + qX,

q(X. - X.,) = p(X. - X.)

X. - X= q/p (X - X., _) 0 < n < 10 (3.2)

Letting r = q/p , X,-Xo = a, and taking n=1,2,...,9 in

equation 3.2, gives: X

With Xo=O and Xl,=1, this reduces to: a = 11-r/1-r1 ° .

Finally, substitution yields:

& r = q/p (3.3)

42

If we let k=5 and p=.6 for gambler A, Table 3.3 shows how

the random walk is biased by A's greater probability of

winning. Here, X, = (l-r)/(l-r' 0).

Table 3.3

A Biased Random Walk

p .1 .2 .3 .4 5 .6 .7 .8 .9

r 9 4 7/3 3/2 1 2/3 3/7 1/4 1/9

X, .000 .001 .014 .116 .500 .884 .986 .999 .999

Therefore, with p > .5 there is a much greater tendency to

terminate by winning all the dollars from the opposing

gambler and a much smaller tendency to lose all the money.

Eisen (1969) reaches the same conclusion. "Thus a skillful

gambler, even with a small capital, stands less chance of

being ruined than a less skillful gambler with a large

amount of capital." Related to simulated annealing, there

is a greater likelihood of transitioning to lower values of

the objective function (minimization problem) at lower

values of the control parameter. The procedure accepts all

of the transitions to lower values and probabilistically

accepts transitions to higher values, depending on the level

of the control parameter. Since these transition

probabilities are not equal (I versus p<l) the result is a

biased random walk. As we reduce the value of the control

43

parameter, the probability of accepting worse configurations

is lowered and we get more bias in the random walk.

As a summary, in this section we began by discussing

the weighting function used by Metropolis that enables his

canonical distribution, Vr distributed exp(Er/T), to be

approached. This relates the number of configurations to

the energy level of the configuration and the temperature

parameter. The statistic entropy is used to derive an

unbiased estimate of the probability distribution of

configurations for combinatorial optimization problems. The

resulting Boltzman distribution, characterizing thermal

equilibrium, is used to obtain an equation for the average

energy level relative to the temperature parameter T. As T

is lowered, the probability of accepting worse

configurations is lowered and the result is a biased random

walk that favors lower energy values. Finally, by gradually

lowering the value of T, maintaining thermal equilibrium

throughout the process, the average energy can be lowered to

its minimum value.

IV. SIMULATED ANNEALING'S SUITABILITY FOR INDUSTRIAL

ENGINFERING

Although there are many applications of simulated

annealing, few are found in industrial engineering. This

chapter examines the hypothesis that simulated annealing can

be modified to address the requirements of typical

industrial engineering problems. More specifically, the

real time needs of a dynamic shop floor environment are

addressed. The strengths of the algorithm are its

flexibility, ease of implementation, and ability to find

good solutions to large problems. Its weakness is the large

computational time needed to converge to optimality.

Therefore, the premise is that simulated annealing can be

modified to find near-optimal solutions to various

industrial engineering problems.

Simulated annealing is a general purpose heuristic

approach to solving optimization problems. There has been a

great deal of interest in this approach following the

articles of Kirkpatrick et al. (1983) and Cerny (1985). The

Science article by Kirkpatrick, with its wide circulation,

focused on the potential uses of simulated annealing. Many

diverse fields, ranging from mathematics to computer

science, soon showed interest in this approach.

The name of the algorithm shows the analogy between

solving optimization problems and the physical annealing of

a solid, originally introduced by Metropolis et al. (1953).

45

Here, the objective function (minimization) corresponds to

the energy (E) of the solid. The system starts in an

initial configuration and gets a random pertuirbation within

the neighborhood of the original configuration. Thie change

is accompanied by a change in the value of the objective

function, E. If the change results in a lower value, the

new configuration is accepted as the new starting point. If

the change increases the objective function value, then the

new configuration is accepted probabilistically. The

acceptance function usually takes the form of exp(- 4 T ' ,

where T is the control parameter, analogous to temperature

in annealing. This provides a mechanism for escaping local

minimas. In the implementation of the algorithm, a cooling

schedule must be specified. This is used to control. the

rate of decrease in the control parameter, the number of

permutations at each level of the control parameter, the

initial value of the control parameter, and the stopping

criteria. These are discussed below.

Figure 3.1 gave a very curse description of the

simulated annealing algorithm. In the following section we

examine the details of this approach and show the seemingly

endless variations available for its implementation.

46

A. Features of the Al_gorithm

A brief description is given of the algorithm's

terminology (relating to the physical annealing process),

its structure, and the various control parameters it uses.

1. Terminology

Table 4.1 below shows the annealing analogy to

combinatorial problems and specific examples for a linear

programming formulation and the TSP.

47

Table 4.1

Simulated Annealing Analogy

Physical Combinatorial
Annealing Optimization LP TSP

atoms of the solid variables X cities

description of attribute vector c roite
atomic structure or configuration

energy, E objective fuiwtion Z distance
value of a route

average energy, <E> mean value of <Z' average
objective function distance

average energy at mean value of <Z T -- average
specific temperature objective function distance
<ET > at control parameter at control

setting parameter
setting

thermal equilibrium current solution at Z, distance
at temperature control parameter within
setting setting-- within epsilon of

epsilon of the average
average valuie dist. at

T setting

ground state, E,, global optimal Z' globally
lowest energy state configuration optimal

route

The atoms in the physical. annealing process are similar

to the variables determining th nuimber of dpgrees of

freedom in a configuration. They determine what energy

levels or solutions are attainable. The description of the

atoms include their position in a confined space and their

momentum. Similarly, a configiiration is represented by an

48

attribute vector describing the variables. Tn a l.inear

programming problem this is the set of objective function

coefficients. Energy is a performance measure that fully

describes the atomic structure. More than one structure can

have the same value of energy. In the combinatorial

optimization problem, this would simply be the value of the

function we are attempting to optimize. A linear

programming formulation assigns Z to represent this value.

As we control the annealing process by reducing the

temperature we get lower values of energy as the solid

cools. Similarly, as we reduce the value of our equivalent

control parameter for combinatnrial optimization problems,

we move in the direction of lower values of our objective

function. Equilibrium is a concept that refers to a steady

state relative to a particular temperature setting. This is

represented by a value near the average objective function

value at a particular setting for the control parameter.

Finally, the lowest energy state is equivalent to our

globally optimal value.

2. A General Structure for the Algorithm

The following pseudo code is a general otline of the

flow for typical simulated annpnlinq algorithms. It is

intentionally unspecific to allow future references to

tailor it to particular applications.

49

Set T. (and other parameters) and generate initial
configuration
while stopcriterion not satisfied do

begin
while no convergence do

begin
generate permutation and calculate new
objective function value
if accept then update current configuration

outer and current optimal value else
loop apply acceptance function

if probabilistically accept then update
inner current configuration and current
loop optimal value

end
Update T (and other parameters)

end

Figure 4.1 A general structure for the simulated annealing
algorithm.

The two loops determine the running time and performance of

the algorithm. Control of the loops is maintained by the

"other parameter" settings. The inner loop is repeated

until there is reasonable confidence that an equilibrium

value has been reached at the current setting of the control

parameter. The outer loop is repeated until there is

reasonable confidence that a globally optimal value or near

optimal value has been reached. There are many different

schemes or cooling schedules adopted for various problems

that claim to be the most efficient. Many schedIs perform

well, but require much CPU time when asymptotically reaching

the optimum. The difficulty lies in establishing criteria

for ensuring this "relative confidence." This process

requires a large number of computer operations.

50

B. Requirements of apDynamic Shop Floor Environment

Dynamic shop floor environments do not provide enough

time for simulated annealing to converge to optimality on

large problems. By the time a solution is returned, the

decision has been made and implemented or characteristics of

the shop floor have changed. Therefore, there is a great

need to build flexiblity into the algorithm if it is to be

of any value on a shop floor. To be useful, the algorithm

must be tailored to the problem and run as a heuristic,

sacrificing a degree of optimality in return for faster

solutions. The algorithm must be flexible enough to allow

for the inclusion of raw data from the shop floor. If a

machine is operating at less than normal efficiency, its new

processing time must be fed back into the algorithm, as this

impacts the final schedule. Similarly, if a machine breaks

down the operator must be able to suspend and reinitialize

the algorithm. The algorithm must allow for the inclusion

of constraints that prevent unacceptable schedules. If all

jobs must be processed on machine five prior to machine

eight, then there must be a mechanism built into the

algorithm that prevents schedules that violate this order.

To be used by inexperienced operators, a front end expert

system must set the various parameters for the efficient

running of the algorithm. Results are very spnsitive to

initial parameter values.

51

Chapter V presents real time modificationis that address

the above shop floor requirements.

C. Ways to Modify the Algorithm

As stated previously, the heart of the ilgorithm is its

probability of accepting transitions away from optimalty.

This is what allows the algorithm to escape local minimas.

Therefore, the area representing the greatest potential for

change is the basic probability of acceptance. Other

modifications ultimately impact this probability as well.

An exapmle using a Markov Chain is used to illustrate this.

1. An Example Using Markov Chains

Another method of characterizing the behavior of the

algorithm is through the use of Markov Chains. The

following example shows a simple three state system. Qi

represents the number of configurations in state i, while E,

is the energy or objective function value for state i (a

minimization problem). The statp diagram is shown below.

52

3 STATE SYSTEM:

Probability of Acceptance

State

S2= 6 E, = 4 --- <--*----- --

9, 4~ E, =2 1 .135
2

S2, I EI I > - - .05

1 .37
3

e 1, T T=1

A transition from one configuration to another occurs

after the new configuration is generated from the current

one and then it is accepted. Therfore, generation and

acceptance matrices are needed to obtain the transition

matrix. These are shown in the following example.

53

S teady__State Markov Chain

Generation Acceptance (T-.5) Transition

i\j 1 2 3 1 2 3 1 2 3

1 .5 .4 .1 1 1 1 1 1 .5 .4 .1

2 .6 .3 .1 2 .018 1 1 2 .011 .889 .1

3 .6 .4 0 3 .0025 .135 1 3 .0015 .054 .945

(Metropolis Criterion)

The acceptance matrix is non-stochastic since all moves

towards optimality are accepted and moves away from

optimality are probabilistically accepted. The following

notation is used, where Ck denotes the control parameter.

Generation Probability = Gi (C,.)

Acceptance Probability = Air(C,.) - 1. f(j) < f(i)

e
(f (t I . r I i

I 1 O .W .

Transition Probability = T, i (C.) G j (C,)Aj i (C,) , i<>j

1 -- Z T,, (Ck) , i=j

To determine the transition prnbability, simply multiply the

corresponding off-diagonal elements nf the gpneration and

acceptance matrices. Diagonal elempnts are then found by

subtracting the sum of off-diagonal elements from one. The

greatest potential for modifying th algorithm lies in the

54

probability of accepting worse configurations, the lower

triangular portion of the acceptance matrix.

For T=.5:

Boltzman at equilibrium: Steady_ StateM.C.-

e- 4/ . .0003
P, x=l = - = .002 Px1 = .01

Z(T) .1533

.018
P,lx=21 = - - --- .12 Pjx=21 = .35

.1533

.135
P3 Ix=31 = --- .88 Pfx=31 = .64

.1533

This example is also used to compare the Boltzman

distribution (characterizing thermal equilibrium) to results

for a steady state Markov Chain. Tt is seen that at high

values of the control parameter the Boltzman somewhat

appraoches the steady state Markov Chain. It must be

pointed out that this simple example. containing only three

states, was not chosen for its good results, but rather to

illustrate the performance of the algorithm. Reducing the

control parameter gives a much closer approximation to

steady state.

Generation Acceptance (T=.25) Transition

1 2 3 1 2 3 1 2 3

1 .5 .4 .1 1 1 1 1 1 .5 .4 .1

2 .6 .3 .1 2 .0003 1 1 2 .00018 .89 .1

3 .6 .4 0 3 0 .018 1 3 .0000037 .0072 .993

55

For T=. 25:

Boltzman at equilibrium: SteadyState M.C.-

e-4/ 25 .000
P x=lj = ------- -- - 0 Pjx=l = 0

Z(T) .01834

.00034

P2 [x=21 = -. 0-34 .02 Pjx=21 = .06
.01834

.018
P3 [x=31 = -- 0-8- .98 Pjx=31 = .94

.01834

As the control parameter is further reduced (.125), the

Boltzman distribution is equivalent to the steady state

Markov Chain. Therefore, the asymptotic, steady state

behavior of the algorithm is accurately represented by the

Boltzman distribution. Romeo and Sangiovanni-Vincentelli

(1985) formally prove that the algorithm will produce the

optimal solution when it is run long enough. They first

show that the Markov chain is irreducible, aperiodic, and

recurrent. Thus, a stationary probability distribution does

exist. The form of the limitting distribution is then

examined as the control parameter approaches zero. The

56

steady state probability for each optimal soluition is equal

to:

l/(the number of optimal solutions), while all other states

have a probability of zero. Finally, they give conditions

regarding the generation and acceptance probabilities that

ensure the steady state results above. The finctions

specified by simulated annealing satisfy such conditions.

Although it is reasuring to know that the global

optimum is guaranteed under certain conditions, the real

time aspects of a shop floor environment will not permit

these conditions. The modifications presented in the next

chapter address the real time needs of the shop floor. They

basically alter the probability of accepting transitions to

worse configurations, the lower triangular portion of the

acceptance matrix. The modification with the greatest

impact is the probability of acceptance.

V. A MODIFIED SIMULATED ANNEALING FORMULATION

A. The General Structure

This section uses the material in Chapter IV as a

foundation to present the modified formulation. The

modified approach simply gives the user some additional

capabilities that address real time needs. Specifically,

the ability to accept shop floor data and interactively

adjust the algorithm's parameters to reflect these updates.

A surge of data will often cause a previously good solution

to be inappropriate. Adjusting the parameters to run the

algorithm longer allows a user to find accurate solutions

that reflect current system status. The use of alternate

acceptance functions gives the user some added flexibility.

He can make a direct tradeoff between solution quality and

processing time. With more decision time available, the

standard acceptance function is employed. The search slowly

migrates to better solutions and more search time is spent

in lower regions of the configuration space. When a

decision is needed soon, an acceptance function such as JS2

is used to quickly find acceptable solutions at the risk of

getting trapped in a suboptimal local minimum. This feature

capitalizes on the main purpose of all heuristics - trading

off a degree of optimality for processing time. With this

modification each user can make j individual tradeoff to

reflect current conditions surrounding the process. The

expert system relieves an inexperienced user from having to

58

select an efficient set of parameters for a given size

problem and an allotted amount of processing time. Finally,

the constraints module prevents unacceptable solutions. The

result of these modifications is an algorithm that is

tailored to the particular needs of each user. An operator

in one situation selects a set of parameters, constraints,

and an acceptance function that yields a solution when it is

needed. Another operator in a different situation tailors

the algorithm for his needs to give a different solution

when it is needed. The modifications provide a means for

each user to bias the random walk in a way that addresses

their particular needs.

Figure 5.1 shows pseudo code for the modified simulated

annealing formulation.

59

set user interrupt key

query expert system if needed

Set parameters
generate initial configuration
while stopcriterion not satisfied do

begin
while no convergence do

begin
generate permutation <---infeasible

Icheck for constraints violation

calculate new objective function value
if accept then update current configuration

outer and current optimal value else
loop

Sapply alternate acceptance function

if probabilistically accept then update
inner current configuration and current
loop optimal value
-end

Update T (and other parameters)
end

Figure 5.1 A modified structure for the simulated annealing
algorithm.

The modified algorithm begins by establishing the user

interrupt key. At any time during the running of the

algorithm this key can be activated, causing the algorithm

to be suspended. A subroutine is then accessed, allowing

the user to reinitialize parameter settings to respond to

changes on the shop floor (a surge of data). Execution is

60

resumed at the point where the interrupt occurred. Next,

the front end expert system is provided for the

inexperienced user. If queried, this module simply asks the

user for the size of the problem (number of jobs and

machines), the amount of processing time available, and the

frequency of shop floor data. With a variety of processors

to choose from, it would also ask for the type of processor.

Based on the user's response, the expert system selects a

set of parameters that will run efficiently the algorithm

and provide a quality solution when it is needed.

Contrary to most heuristics (branch and bound, dynamic

programming) simulated annealing is flexible enough to allow

the user to build in constraints that prevent infeasible

solutions. If there are constraints that define acceptable

solutions, the constraints module is checked immediately

after the permutation is made. This prevents the

unnecessary calculation of an objective function value for

unacceptable solutions. Once an acceptable solution is

found, the standard flow is resumed and the two

configurations (current one and trial one) are compared.

The last modification simply replaces the acceptance

function e""fi - f j 'T' by an alternative function. Here,

the aim is to arrive at a solution faster. The rest of the

algorithm remains unchanged, with the same inner and outer

loop construction.

61

Figure 5.2 displays the four modifications and their

major area of impact on the algorithm's performance. These

impact areas are the points where bias is being introduced

to the random walk.

Modification Primary Impact on Traditional Form

1. Constraints Module Generation of Initial Configuration

Permutation Mechanism

2. Expert System Cooling Schedule

Temerature Parameter

3. User Interrupt Cooling Schedule

4. Acceptance Function Acceptance Function

Cooling Schedule

Figure 5.2 Modification impacts.

Figure 5.2 depicts the modifications to the standard

use of simulated annealing. Appendix G shows the code with

the inclusion of these modifications.

The principle modification is the use of alternate

acceptance functions. Again, these allow the user to

exploit the heuristic by trading off a degree of optimality

for computational time. We must examine the probability of

acceptance when attempting to explain the differences in

performance for the two versions of simulated annealing.

62

Since their starting configurations and permutations are

identical, the only difference is their acceptance function.

This function defines the shape of the cooling schedule.

The acceptance functions for the standard form and the

uniform version are shown below, where X is the probability

of acceptance.

SA-NE: X = expj(D-TD)/T)

SA-UN: X = 1 - {a*(TD-D/T)

This function defines the shape of the cooling schedule.

Figures 5.3 and 5.4 show the curves for the standard form

and inverted uniform version respectively.

63

Plot of P[Acce pt]
VERSUS TEMI (T2=T I.g)

0.9-

0.8-

0.7-

0.8

CL
Q 0.5-

0.4-

0.3

0.2

0.1

0 i l I 111I I1 i i ll I I I If

1 0.59 0.34 0 2 0.12 0.07 0.04- 0.02 0.01

TEMPERATURE

Figure 5.3 Probability of accepting worse configurations

versus control parameter (for standard form acceptance

function and fixed delta cost).

64

Plot of P[Accept]
VERSUS TEMP (T2=T1 *.9)

0.9-

0.7

0.5

0.4

0.3

0.2

0.1

I | I | I I I I IIII I I I I I I p t 1 1 1 1 5 1 1 1 1 l l T lv lr rlTr rTl" l l*

10 5.9 3.4 2 1.2 0.7 0.4 0.2 0.1

TE"5ERATURE

Figure 5.4 Probability of accepting worse configurations

versus control parameter (for pseudod uniform acceptance

function and fixed delta cost).

As depicted, the curves are initially very similar.

Asymptotically, however, the inverted uniform becomes

essentially a greedy heuristic only accepting better

configurations. The relatively good performance (see Table

7.4) of this version prompted the creation of two additional

family of acceptance functions. Curves for FS1 and FS2

below are displayed in figures 5.5 and 5.6 respectively.

65

FSI: X = B * (T/TD-D)

FS2: X = T * (D/TD)

Here, X represents the probability of accepting the worse

configuration. T is the control parameter, D is the current

solution, TD is the trial solution, and B is input by the

user as a weighting function. Large values of B (ESi)

weight T more and the heuristic behaves more like a local

search, finding quickly the local optimum, but risking

suboptimality. This acceptance function performs better on

configuration spaces containing many low lying local

minimas.

66

Plot of P[Ac cept]
VERSUS TEM~P (T2=71 1".9)

0.9

0.8

0.7

0.5

0.-

0.5

0.4

0.13

10 5.9 3.4 2 1.2 0.7 0.4 0.2 0.1

TEMP'ERATURE
0 Alpha=l +. Alpho=1.5

Figure 5.5 FS1 probability of acceptance.

67

Plot of P[Accept]
VERSUS TEMP (T2-T1v.9)

1.2

1.1

0.g

0.8

0.7
0.6

U 0.5

0.5

0.4

0.3

0.2

0.1

0.
1.2 0.709 0.418 0.24.7 0.146 0.086

TEMPERATURE
0 X=T,"(D/TD)

Figure 5.6 FS2 probability of acceptance.

This function is a weighting of the relative ratio of the

objective function values (D/TD). The control parameter T

is used as the weighting factor.

Table 7.5 of chapter VII gives results for the

alternate acceptance functions tested.

1. A Modified TSP Formulation

The attached TSP code provides some additional

capabilities to support an operational application. This

program graphically displays the performance of the

68

algorithm as it searches for the optimal route. Current

global optimums are recorded and the F1O function key allows

the operator to briefly interrupt the algorithm and display

the current optimal solution. The four modifications

preveiously discussed are implemented and reflected in

Figure 5.7. There is also a stopping criterion based on the

amount of available computer time prior to the decision

point.

69

BEGIN

INITIALIZE

SET USER INTERRUPT KEY

CONSULT EXPERT SYSTEM AND INITIALIZE PARAMETERS

Generate Route (RP)(N))

CHECK CONSTRAINTS MODULE

Calculate Distance (D,)

Set Temp Decrement (a) and Repetitions Increment (B)

Set Number of Trials Counter (NT) 'stop criterion

REPEAT

For L=1 to L,,

Begin Permute Temporary Route (TR(N))

Generate 2 Random Integers(I-N), J and K

Reverse Direction Between cities J and K

CHECK CONSTRAINTS - IF INFEASIBLE GOTO BEGIN

Calculate Distance for Temporary Route (TD)

If TD < D Then UPDATE Else

CALCULATE P [A] PROBABILITY OF ACCEPTANCE

If P[A] > Random[O,1) Then UPDATE

End

L, = L, *B

T = T*a

UNTIL Stopcriterion (NT) is met

END

70

UPDATE Reset Current Route and Distance

R(N) = TR(N)

D = TD

RETURN

Figure 5.7 Pseudo code for the modified simulated annealing

algorithm applied to the TSP.

B. Using Simulated Annealing in an Applied Setting

The majority of the literature is focussed on finding a

set of parameters that allows the algorithm to find

efficiently the global optimum. Although this is useful for

understaning the performance of the algorithm, in practice

too much time is spent asymptotically converging to the

optimum. The strength of this heuristic is its simplicity,

flexibility, and ability to quickly find a good solution.

We will attempt to capitalize on the algorithm's strong

features when implementing it in an applied setting.

The attached program code for the TSP problem provides

the user with a "hot" key. The F1O function key is used to

interrupt briefly the algorithm and print the current best

solution found. This requires the use of an additional

variable to store and update the globally optimal solution.

Used this way, an operator can set up the program input and

let it run for a variable length of time. Whenever a

solution is needed the algorithm can be interrupted. With

71

the low cost of small computers there can be a dedicated

processor running the simulated annealing algorithm non-stop

while users query the system on an as needed basis.

In addition to the hot key, a graphical depiction of

the algorithm's performance is displayed to the user.

This provides user feedback regarding the current status of

the algorithm. If the search is in an area far from the

global minimum the operator immediately uses the best

solution found. If the search is near the global minimum

and seems to be finding new minimums the operator is free to

trade off processing time for an improved solution. With

the additional information provided by the graph, the

algorithm can take advantage of operator judgement and

becomes a more useful tool.

C. Parameter Settings

The common approach to simulated annealing is to start

off with a high temperature setting, allowing many

transitions to higher cost configurations, and gradually

lower the temperature parameter until it approaches zero.

This procedure is governed by the cooling schedule. The

parameters that determine this cooling are:

72

(1) the initial value for the temperature, c,

(the control parameter),

(2) the function for decrementing the temperature,

(3) the number of trials at each temperature

setting, referred to as individual Markov

chains, and

(4) the stopping criterion.

Referring to Figure 5.7, the initial temperature is T0 and

the Markov chains are of length L,. In addition to the

cooling schedule, we must also specify the initial

configuration, i

D. Cooling Schedules Employed

Collins, Eglese, and Golden (1988) have listed a number

of different schemes for (2) through (4) above. Some of

these are shown below:

(2) Temperature Decrement, T(t)

Constant T(t) = C

Arithmetic T(t) = T(t-l) - C

Geometric T(t) = a(t)T(t-l)

Inverse T(t) = C/(l+6t)

Logarithmic T(t) = C/(ln(l+t))

73

(3) Number of Trials, N(t)

Single N(t) = 1

Constant N(t) = C

Arithmetic N(t) = N(t-l) + C

Geometric N(t) = N(t-l)/a(t)

Logarithmic N(t) = C/log(T(t))

Energy Repeat until average energy

is changing little

Acceptances Repeat until a number of

acceptances have occurred

Rejections Repeat until a number of

rejections have occurred

(4) Stopping Criterion

Iterations Fixed number of iterations

Temperature T(t) final value of T

Energy <E> is changing little at

successive temperatures

Acceptance Few acceptances are

occurring at successive

temperatures

Aarts and Van Laarhoven (1988) propose a cooling

schedule that allows the annealing process to maintain a

74

state of quasi equilibrium at each temperature setting.

This is a requirement for reaching a global optimum. In

general, the temperature must start off at a relatively high

setting to avoid getting trapped in local optimums. At each

update of the temperature parameter the number of trials is

increased. Say we are trying to minimize a function. As we

get lower values of our objective function there will be

proportionately more trial configurations to choose from

with higher objective function values. To obtain enough

accepted transitions to allow an estimate of the average

equilibrium value, we must generate a greater number of

trial configurations.

E. Formulation of a Problem

The remainder of this chapter relates previous

theoretical material to an industrial engineering

application. The problem involves scheduling jobs on

machines such that the makespan is minimized.

Although the formulation of a problem is fairly

straightforward, generating configurations is sometimes non-

trivial. The various parameter settings allows for a great

deal of variation in the algorithm's performance and

requires some sophistication on the part of the user.

1. Generating the Initial Configuration

Since the algorithm is independent of the initial

configuration (Kirkpatrick, Gelatt, & Vecchi, 1983), it will

eventually converge from any point. That is, providing it

75

uses a cooling schedule that guarantees optimality. Some

random selection of starting values is usually recommended

(Catthoor, de Man, & Vandewalle, 1988). In practice

however, we are seldom afforded the necessary time to reach

optimality. For this example, the starting configuration is

the initial schedule. The mechanics of generating the

configuration ranges from being simple to being complex. It

can require some creative insights into the problem at hand.

An example is presented in the formulation of the minimum

cut problem.

2. Generating A Permutation

A permutation is a configuration or vector that is in a

neighborhood of the current configuration. By neighborhood,

we mean that some simple procedure maps one vector into the

other. To guarantee convergence, permutations must allow

all configurations to be reached from all other

configurations. In terms of a Markov Chain, there is some

probability greater than zero that we can transition from

one configuration to the other. Here, all states

communicate and the Markov chain is said to be irreducible

(Hillier & Lieberman, 1980). Since permutations are minor

modifications, one vector's solution will not differ greatly

from the other's. Two types of permutations are swapping

and reversal. Examples of these common permutations are

given in Figures 5.8 and 5.9 for zero-one programming and

TSP problems respectively.

76

In the first example there are two sets. Those with

coefficients equal to zero and those with coefficients equal

to one. A variable is chosen at random from one set and

another from the opposite set. The assignments to their

coefficients are then swapped. The current configulration

for a 10 variable problem might be the vector

(0,0.1,1,0,1,1,1,0,0). Permuting this by randomly selecting

x2 and x, we get the vector (0,1,0,1,0,1,1,1,0,0). The

objective function value is only slightly different for the

new configuration. For a maximization problem, it changes

by an amount (c 2 -c,), where ci is the objective function

coefficient for variable x. . This is illustrated in Figure

5.8.

77

ZERO-ONE PROGRAMMING PERMUTATION

IDS7 x 11 X-01 BET (Y 9 Y1il

OVAP X and Y

Figure 5.8 Swapping permutation for zero-one programming

problem.

A similar permutation for the TSP reverses the

direction of travel between two randomly selected nodes. A

current configuration that traverses five nodes in the order

(1-2-5-3-4) is transformed into a new configuration (1-4-3-

5-2). Here, the second and fifth node along the route are

selected as endpoints and the path between them is reversed.

For most TSPs, the new route will only differ slightly from

the current route. The illustration is provided in Figure

5.9.

78

ORDER

I a 4 a

1 0 0 0 0

20' 0 0

NODE s0 0 0

40 0 "

.00 0

Figure 5.9 Reversal permutation for the traveling salesmen

problem.

An alternative permutation is obtained by simply

switching the position of two randomly selected nodes. This

79

results in a route whose path can be much larger than the

current route. Therefore, the new route is not in the

neighborhood of the current route and this scheme is not

recommended.

For the shop floor formulation, the swap permutation is

used. Two randomly selected processes (assignment of a job

to a machine) interchange positions in the overall sequence.

The new makespan is slightly different.

3. The Concept of Energy

Energy in the physical annealing process is a measure

used to represent the configuration of atoms in the solid.

In an optimization problem energy is the solution or value

of the objective function for a given assignment to the

variables. For example, in the job shop scheduler it is the

makespan for a given schedule. High energy states equate to

sub-optimal solutions and low energy states equate to near

optimal solutions. The lowest energy state is referred to

as the ground state. In optimization problems this is

called the globally optimal soluticn.

4. The Temperature Parameter

Just as temperature is used in annealing to lower the

energy state of the solid, it is used in optimization to

move in the direction of better solutions. The units of the

temperature parameter must be in the same units as the

objective function. In optimization temperature is a

meaningless term and is replaced by the term control

80

parameter. The purpose of this parameter is to control the

probability of accepting transitions to "worse"

configurations. Initially, it is set high to allow

transitions to less optimal configurations. This allows the

algorithm to move out of local optimals. As the global

optimum is being approached, the control parameter is

reduced and fewer sub optimal moves are allowed. When the

parameter is set to zero, the algorithm behaves like a

greedy heuristic, allowing only those moves that improve the

objective function value.

The actual probability of accepting a worse

configuration is a function of the amount of degradation in

the solution and the value of the control parameter. This

forms a ratio as depicted by (-6C/T). Here, -6C is the

amount of degradation in the solution and T is the value of

the control parameter. Figures 5.10 and 5.11 show the

relation between the probability of accepting sub-optimal

transitions and this ratio.

81

Plot of P[Accept]
Versus Ratio (-Delto/T)

0.9

0.8

0.7

0.5

0.4

0.3
-0.05 -0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1

Ratio

Figure 5.10 Relation between the probability of accepting a

sub-optimal configuration and the ratio (-6C/T) over the

range 0 to -1.0.

82

Plot of P[Accept]
Versus Ratio (-Delto/T)

0.4-

0.35

0.3

0.25

I 0.2

0.15

0.1

0.05

0-

-1 -1,5 -2 -2.5 -3 -3.5 -4 -4.5 -5

Ratio

Figure 5.11 Relation between the probability of accepting a

sub-optimal configuration and the ratio (-6C/T) over the

range -1.0 to -5.0.

As displayed, large deviations are accepted with the

control parameter set relatively high and only small ones

are permitted with a low setting.

The initial value for the control parameter must be set

relative to the range of values for the objective function.

There is a tradeoff between the amount of running time

required and the assurance that the algorithm will not get

stuck in a local optimum. Aarts and Korst (1985) introduce

83

the idea of an acceptance ratio equal to the number of

accepted transitions divided by the number of attempted

transitions. His approach is to continue to update the

starting value of the control parameter until this ratio

becomes acceptable. Kirkpatrick (1984) equates this process

to melting the solid in the physical annealing sense. He

implements this approach by doubling the control parameter

until the acceptance ratio is greater than 80 percent.

This has the drawback of requiring more computer time. An

alternative and easily implemented approach is given by

Cerny (1985) for the hole drilling problem. He assigns the

initial control parameter a value equal to the average

distance between holes (nodes of a TSP). A similar approach

is used for the shop floor formulation. Here, the initial

control parameter is given a value equal to the average

processing time of a machine on a job.

5. The Cooling Schedule

The cooling schedule is comprised of two sets of

values. First, a set of values for the control parameter.

Second, each valae of the control parameter has a finite

number of transitions. This set of transitions we call a

finite length homogeneous Markov chain. Again, in this

example it is the number of trial schedules at each value of

the control parameter.

Settings for the control parameter include the initial

value, the sequence obtained by applying a decrement

84

function, and the final value. We have discussed the

starting value and will discuss the final value (stopping

criterion). The decrement function allows the algorithm to

gradually lower the probability of accepting transitions to

less optimal configurations. A number of different

strategies can be employed, depending on the problem at

hand. Most of the literature recommends using a geometric

function for decrementing the control parameter. This is of

the form: T(t) = a T(t-l). In words, the control parameter

T at time t is equal to some constant a times the control

parameter at time (t-l). The value of a is recommended to

be in the range .8 to .99 (Aarts & Korst, 1989). For

instance, if we want to find a solution that is very close

to optimal and are willing to commit much computer time, we

then decrement the parameter very slowly. Here, we use an a

equal to .99. If we want a faster solution and are willing

to sacrifice some degree of optimality we set a equal to .8.

In a situation where we must have a reasonable solution very

fast, then we set a much lower, to say .5. Bonomi and

Lutton (1984) cautions, however, that a temperature decrease

that is too rapid is likely to trap the algorithm in a

configuration that is "far" from the optimal one.

The second set that makes up the cooling schedule, the

number of trials at each value of the control parameter, is

determined by the requirement to maintain quasi equilibrium

at each setting Let Lk denote the length of the Kh Markov

85

chain and c, the corresponding value of the control

parameter. Quasi equilibrium is achieved if a(Lk ,ck), i.e.

the probability distribution of the solutions after L,

trials of the K"h Markov chain, is sufficiently close to

q(c,), the stationary distribution at ck

la(Lk,c,,) - q(c.) < epsilon

Requiring the final value of the Markov chain to be within

some small range of the equilibrium or average value (at

each c,) prevents the algorithm from being trapped in local

optimas. Since transitions are accepted with decreasing

probability, as ch approaches 0, L, approaches -. Thus,

there is a trade-off between large decrements of the control

parameter and small Markov chains. Usually, most approaches

apply small decrements in ck, to avoid long Markov chains.

For practical applications we need to bound the length of

the Markov chains for small values of ck (Aarts & Korst,

1989). Another approach given by Aarts for achieving a

polynomial time cooling schedule assumes a condition for

quasi equilibrium being:

'q(c.) - q(c.,)l < epsilon, for each k 0.

At each control parameter setting we are within some small

range of the previous equilibrium value.

86

Much of the work reported on in the literature focuses

on finding optimal annealing schedules given a fixed number

of Monte Carlo steps. Randelman and Grest (1986) report

that much less attention is given to the dependence of the

optimal value on the total number of Monte Carlo steps. In

their work, they show empirically that cooling slower yields

better results.

6. The Acceptance Function

Although the function that is generally used is the

negative exponential, provided by Boltzman, there are a

number of others that could be employed. We need not be

restricted to the physical annealing analogy that is

responsible for originating the use of simulated annealing

for optimization problems. One of the pioneers of simulated

annealing, Cerny (1985), states that the algorithm rould be

proposed without any reference to statistical physics.

Nahar, Sahni, and Shragowitz (1985, 1986) implement a number

of alternative acceptance functions. Their contention is

that although annealing has a sound theoretical basis in the

physical domain, no such basis exists for its application to

combinatorial optimization problems. They report good

results for optimal linear arrangement problems and mixed

results for the TSP. In a real time industrial engineering

application, where a solution is needed in a limited amount

of time, other acceptance functions find superior solutions.

87

The three alternative functions previously presented are

used in the shop floor formulation.

7. The Stopping Criterion

After the problem is mapped into a simulated annealing

space and t.n'ie algorithm initiated, there must be some

mechanism for terminating the algorithm. Again, there is a

great deal of flexibility for the stopping criterion. Three

of the most common, simple, and intuitively appealing are

given below.

1) when the control parameter is sufficiently small:

ck ! epsilon

2) when the value of objective function at quasi

equilibrium is not changing significantly Romeo (1984):

Iq(c.) - q(c,_1)l ! epsilon

3) when it becomes very difficult t find a better

solution, i.e. the acceptance ratio is very small:

the number of trials (without an acceptance) 2 N

88

The specific parameter setting is a function of the decision

makers' attempt to trade-off running time for the degree of

optimality.

In summary, to apply the algorithm we need three

components. We must have a problem depiction, consisting of

an initial configuration (from the solution space) and an

expression for calculating the objective function value.

For each configuration we must have a permutation mechanism

that provides a means of generating a local permutation.

Finally, we need a cooling schedule to control the rate of

decrease in the control parameter. With these three

components we can apply simulated annealing. Tailoring the

algorithm to run efficiently for a particular problem

requires fine tuning the parameter settings for the cooling

schedule. This schedule is comprised of the set of values

for the control parameter, ch, and the number of trials at

each value necessary to reach quasi equilibrium. Three

parameters are needed to determine the range of values for

the control parameter. We must specify the initial control

parameter setting, co, the decrement function, and the final

control parameter value.

89

To Apply Simulated:

1. problem depiction

- an initial configuration

- an expression for obtaining the objective function

value

2. a permutation mechanism

3. a cooling schedule

To Tailor Simulated Annealing:

4. cooling schedule parameters

- an initial value for the control parameter, co

- a decrement function for the control parameter

- a final control parameter value

- a finite number of repetitions (trials) at each

value of the control parameter.

The focus of the remainder of the material is on the

actual performance of the modified simulated annealing

algorithms for the job shop and flow shop problems.

VI. APPLICATION OF THE MODIFIED SIMULATED ANNEALING

ALGORITHM TO THE JOB SHOP SCHEDULING PROBLEM

A. Job shop Formulation

The general Metropolis procedure is followed in the

formulation of two common industrial engineering problems.

The job shop and flow shop problem formulations incorporate

the following modifications to the standard use of simulated

annealing:

1) a front end expert system for.inexperienced users,

2) a constraints module,

3) a user interrupt capability, and

4) the use of alternate acceptance functions.

Figure 6.1 shows the schematic of a proposed shop floor

scheduling system employing the four changes. The

modifications are intended to capitalize on the strengths of

the algorithm, while addressing the real time operational

needs of a job shop environment. The choice of alternate

acceptance functions provides the user a degree of

flexibility in trading off solution quality for comupational

time, which is the purpose of any heuristic.

91

PROPOSED SHOP-FLOOR SCHEDULER

SHOP-FLOOR DATA

OPERATOR

ExPERT SYSTEM I CHEDULER unmm ON-TIME SCHEDUL E

SHOP FLOOR CONSTRAINTS

Figure 6.1 Shop floor scheduler.

The optimizer, the main part of this system, is simply

the simulated annealing algorithm formulated for the job-

shop scheduling problem. The algorithm allows new shop-

floor data to be entered. If there is a surge of data that

severely degrades the solution the user can interrupt the

process through the user interface block. New parameter

values are then assigned for the cooling schedule. For a

worst case scenario the user can reset the parameters to

reinitialize the algorithm. If there are only minor

disturbances the user can simply refine the parameters in an

92

attempt to find quickly a better solution. Tnexperienced

users have the option of consulting a front end expert

system. The system querries the user to find the size of

the job, the speed of the computer, and when a schedule is

needed. The result is a set of cooling schedule parameters

that will efficiently run the algorithm within the

limitations defined by the i"ser. The user also has the

option of creating a set of constraints. One such

constraint might say the schedule must sequence job 3 to be

processed on machine 4 prior to machine 6. Trial schedules

must satisfy all constraints prior to being evaluated and

possibly accepted. The output of the system is a schedule

that is acceptable to management and that is on-time for

implementation on the shop floor.

The permutation mechanism randomly selects two

assignments of jobs to machines and swaps there sequence in

the schedule. The most difficult part of the formulation is

the calculation of the objective function va.lue. Here, as

before, the objective is to minimize the makespan or total

production time. The calculation of the produiction time

keeps separate totals for each job and each machine. As new

operations are scheduled the totals for both that job and

machine get updated to their previous totals plus the

processing time for that operation. A check is made for the

maximum total (job total or machine total) and both of the

93

new totals are updated to this mAximim value. This is shown

below.

TJ(P) = TJ(P) + P(L,P)

TM(L) = TM(L) + P(L,P)

IF TJ(P) > TM(L) THEN TM(L) = TJ(P), PT = TJ(P) FLSE

TJ(P) = TM(L), PT = TM(L)

Here, TJ(P) is the job total array, TM(L) is the machine

total array, and PT is the total processing time. Each

operation (assignment of a job to a machine) is given a

sequence number. Operations are then scheduled from one to

N, where N equals the number of jobs multilpied by the

number of machines.

Table 6.1 shows results for the job shop scheduling

formulation presented in Chapter V. The results show the

amount of schedule improvement achievable, indicate the

computational times needed, and compare the different

versions of the algorithm. All results are from programs

run on a machine with a 80386 based microprocessor operating

at 22 megahertz.

94

B. Job Shop Scheduling Results

Table 6.1

Job Shop Results

4 Jobs, 4 Machines (1-20 sec)

Initial Make-span Final Make-span
46 32
47 25
58 30
39 27
45 27

5 Jobs, 5 Machines (1-1.5 min)

Initial Make-span Final Make-span
69 40
65 36
63 41
46 33
56 34

6 Jobs, 6 Machines (2-4 min)

Initial Make-span Final Make-span
73 49
68 41
86 49
74 38
81 44

95

8 Jobs, 8 Machines (2-8 min)

Initial Make-span Final Make-span
108 72
105 71
il 77
89 53
110 79

10 Jobs, 10 Machines (5-15 min)

Initial Make-span Final Make-span
133 102
140 92
148 106
109 84
148 110

12 Jobs, 12 Machines (15-30 min)

Initial Make-span Final Make-span
175 126
177 133
164 131
159 108
166 121

The initial schedule is generated by an heuristic that

provides a fair starting point to attempt to optimize from.

Simulated annealing then performs a biased random walk in an

attempt to get better schedules. Results indicate that even

when we start with a fairly good schedule we can find

improvements in a reasonable amount of time.

96

Figure 6.2 shows a bar chart of the 1Ox1O instsiice.

This represents the typical improvements achievable form

good starting solutions.

97

1131\ LO

Cl)d

Wa) LZ

:D0

COZ

00

-0 ca

C 0..

a) 4)

C/ 0

LO 0 -LOI

98

Just as in the flow shop case we test the alternate

acceptance functions for the job shop formulation. Here JSU

z SA-UN, JSI z FSI, and JS2 z FS2. Table 6.2 shows the

results.

Table 6.2

Job Shop Results for Aternate Acceptance Functions

4 Jobs, 4 Machines

JSNE/time JSU/time JSI/time JS2/time

32 / 0:06 32 / 0:03 32 / 0:19 32 / 0:01
25 / 0:12 25 / 0:23 26 / 0:34 25 / 0:22
30 / 0:50 30 / 0:17 31 / 0:21 30 / 0:28
27 / 0:01 27 / 0:01 28 / 0:13 27 / 0:02
27 / 0:17 27 / 0:11 28 / 0:13 27 / 0:04

5 Jobs, 5 Machines

JSNE/time JSU/time JS1/time JS2/time

40 / 1:25 40 / 0:41 44 / 0:51 40 / 0:20
36 / 0:57 36 / 0:37 39 / 0:42 36 / 0:44
41 / 0:53 41 / 0:40 42 / 0:18 42 / 0:45
33 / 0:19 33 / 0:10 33 / 0:09 33 / 0:03
34 / 1:38 34 / 0:32 37 / 1:07 33 / 0:35

6 Jobs, 6 Machines

JSNE/time JSU/time JSl/time JS2/time

49 / 1:36 45 / 1:50 48 / 2:12 45 / 1:15
41 / 1:57 42 / 2:19 46 / 1:12 41 / 1:49
49 / 2:55 45 / 2:04 49 / 2:08 45 / 3:27
38 / 2:39 38 / 2:38 41 / 1:36 38 / 1:51
44 / 4:13 44 / 2:25 49 / 2:19 44 / 1:06

99

The interesting results are thst JS2 performs very well. it

not only has very competitive final. sol.utions. but often

gets good solutions very quickly. qpecificall1y for the 6x6

instances. Overall results are shown graphir-nlly in Figure

6.3.

100

z
0
LLCD-

Do
CO) L)-

Qo o

oww z7

0 c
LL O l

0 4

CUY

C C'J I,*- II
c1) CY'JO C~j 4

VII. APPLICATION OF THE MODIFIED SIMULATED ANNEALING

ALGORITHM TO THE FLOW SHOP SCHEDULING PROBLEM

A. Flow shop Formulation

In a flow-shop problem all jobs are processed on the

various machines in the same order. If job one must be

processed on machine 10 prior to machine 12 then the same is

true for job five. Similarly, if machine 10 processes job

one before job five then the same is true for all machines.

The objective is to order the machines in such a way that

the completion of the last job is minimized. We want to

minimize the makespan.

For an n job m machine problem, let P=PIP 2 ,...,P, be

a sequence of jobs and C, (Pq) be the completion time of job

P, on machine Mk. From the above we have the following

relations (Bellman, 1982).

Ci (Pq) = C' (P" ,) + t',.

(1) C, (Pq) = max IC,, (Pq),C. (Pq.,) + tpq

q-l,2,...,n; k=2,3,...,m

where C,(Po)=0, k=1,2,...n, and tpq k represents the

processing time of job Pq on machine k. The only tricky

part of the formulation is (1) above. The completion time

of job Pq on machine k is the sum of the time to process job

Pq on machine k plus the larger of the completion time

102

of: 1) job P. on the prior machine (k-i) or 2) the

completion time of the previous job (Pq,,) on machine k.

We are attempting to minimize E(P) = C.(P.). To

generate a permutation of the current sequence we simply

choose two jobs at random and interchange (swap) their

positions in the sequence.

This formulation follows the same modified simulated

annealing structure established for the job shop problem.

Actual code is found in Attachment E.

B. Simulated Annealing Versus Palmer's Heuristic

Analytical results are from models based on the flow

shop formulation presented in Chapter IV. The processing

times are randomly generated with different starting seeds.

All times are integer values ranging from 1 to 10 units.

Table 7.1 shows results for four different methods using

various size problems. The approaches employing simulated

annealing (SA-NE and SA-UN) have parameter settings: a=.98,

T,=3, and the temperature is updated for every accepted

transition (one repetition at each temperature setting).

103

Table 7.1

Flow Shop Results Using Simulated Annealing

10 Jobs, 3 Machines

SA-NE SA-UN Palmer's Local Search

74 74 73* 74
66 66 76 70
60 60 72 60
88 88 92 89
79* 80 90 79
75 75 79 77

10 Jobs, 4 Machines

66 65* 73 71
74 73* 76 76
67 66* 72 69
89 85* 92 86
83 83 90 83
77 77 79 79

10 Jobs, 5 Machines

74 74 78 75
78 74* 78 75
75 75 89 77
87 87 91 90
88 88 92 88
87* 88 94 90

10 Jobs, 6 Machines

80 80 80 80
76 76 82 82
81 81 81 84
98 94* 98 103

100 100 106 103
94* 98 97 95

* indicates a unique "best" solution found

All 24 cases limit the search to two minutes. Column

titles are: SA-NE for stanoard simulated annealing (with a

negative exponential acceptance function), SA-UN for

104

simulated annealing with a uniform acceptance function. The

different calculations for the probability of accepting

worse configurations (X) are shown below.

SA-NE: X = exp(D-TD/Temp)

SA-UN: X = l-(TD-D/Temp),

where D is the current configuration's processing duration

and TD is that of the trial configuration's. Palmer's

method is a widely accepted heuristic (Germain &

Sriskandarajan, 1985) that assigns a slope index to the

jobs. Slope indexes are highest for jobs that have the

strongest tendency to progress from short to long processing

times as they pass from machine to machine (French, 1982).

Jobs are then ordered in decreasing value of their slope

index. Finally, a local search is performed that uses the

same permutation scheme and starting order as the simulated

annealing approaches, but only accepts transitions that

improve the objective function value.

In one of the 24 cases, Palmer's heuristic found a

unique best solution. In the remaining 23 cases one of the

forms of simulated annealing found the best solution. In

six cases the approach using a uniform acceptance function

found the unique best while the negative exponential form

found it three times. Only two of the cases show the local

105

search to find better solutions than the standard form of

simulated annealing.

The ten job, four machine instance is displayed

graphically in Figure 7.1. Here, LS represents results for

the local search routine. In this particular instance the

pseudo uniform (SA-UN) version is superior to the other

three methods.

106

CO,

Uz z

W L-J

C CD

CL
Li 0
00

CCz a.

co c
oNC 0

<2
0.'- 0

a<. L,

coI o I
w 63

107

Using the "hot" key to interrupt the algorithm and

monitor its performance shows that the local search routine

quickly converges to its local minimum and remains there.

The performance of SA-NE and SA-UN are very similar, finding

like solutions after the same amounts of processing time.

To investigate the sensitivity of the final solution to

the temperature decrement parameter, a, some additional runs

are presented. Table 7.2 compares results for settings of

.98 and .995.

Table 7.2

Alpha Sensitivity for Flow Shop Problem

10 Jobs , and 5 Machines

SA-UN a=.98 SA-UN a=.995

74 73
74 78
75 81
87 89
88 88
88 89

10 Jobs , and 5 Machines

80 80
76 85
81 87
94 101
100 103
98 96

Only one of the cases result in a better solution with

the alpha set high (slower decrease in the temperature

108

parameter). On the average, the higher setting yields

solutions that are .036 percent below those found using the

lower alpha. This is not surprising since the search time

is limited to two minutes. At a=.995 the algorithm accepts

too many inferior configurations and spends too much time

bouncing around poor quality solutions.

Table 7.3 shows results for larger problems.

Table 7.3

Flow Shop Results for Large Problems

20 Jobs , and 8 Machines (5 min)

SA-EX SA-UN Palmer's

179 180 182

30 Jobs , and 8 Machines (5 min)

SA-EX SA-UN Palmer's

241 238 252

40 Jobs , and 8 Machines (10 min)

SA-EX SA-UN Palmer's

312 305 314

60 Jobs , and 8 Machines (60 min)

SA-EX SA-UN Palmer's

411 407 426

109

All cases show better solutions found with simulated

annealing than Palmer's heuristic. For the first case, the

standard form found the best solution. In three of the four

cases, the form using an inverted uniform acceptance

function found superior solutions.

C. Simulated Annealing Versus Johnson's Algorithm

All the solutions above are for heuristic approaches

with no guarantee of optimality. Table 7.4 compares the two

forms of simulated annealing versus an optimal solution.

All cases are for the two machine case, with Johnson's

algorithm providing the optimal solution.

Table 7.4

Flow Shop Evaluation for Known Optimal Solutions

10 Jobs, and 2 Machines (30 sec search)

Johnson's SA-NE % above Opt SA-UN % above Opt

55 55 0 55 0
62 62 0 62 0
54 54 0 55* 1.8
85 P5 0 87* 2.3
70 70 0 71* 1.4
64 64 0 64 0

20 Jobs, and 2 Machines (1 min search)

104 104 0 104 0
10.. 107 3.9 107 3.9
100 101 1.0 102 2.0
147 149 1.4 149 1.4
131 132 0.7 132 0.7
121 121 0 121 0

110

30 Jobs, and 2 Machines (5 min search)

148 148 0 148 0
139 154 10.8 154 10.8
168 168 0 168 0
196 196 0 198 0.10
190 191 0.5 191 0.5
191 191 0 191 0

40 Jobs, and 2 Machines (5 min search)

202 208 2.9 206 2.0

50 Jobs, and 2 Machines (5 min search)

254 254 0 256 0.8

60 Jobs, and 2 Machines (5 min search)

308 310 0.6 309 0.3

With only ten jobs the processing time is limited to 30

seconds and a is set to .98. With more jobs, thus more

configurations possible, a is increased (.99 for 20 jobs and

.995 for 30 jobs) and the search time is increased. Of the

21 cases the optimal solution is found 14 times. Only one

case results in a solution more than 4 percent above the

optimal. Even in the large cases (40, 50, and 60 jobs)

solutions are within 3 percent of the optimal. With 50 jobs

the optimal is found in three minutes.

111

Figure 7.2 shows various instances of this problem

using the first random number stream. As the instance size

grows, there is a greater likelihood that the algorithm gets

trapped in a suboptimal local minima.

112

....... C 'J

I . m m X.
0

0 C

Wz wOzz
EEU

000
cm,

0

04) 0
xx0 0 0

0

CJ 0

00 0
IL

£0 0 10 0 10 0 10 I

113

We must examine the probability of acceptance when

attempting to explain the differences in performance for the

two versions of simulated annealing. Since their starting

configurations and permutations are identical, the only

difference is their acceptance function.

Table 7.5

Flow Shop Results for Alternate Acceptance Functions

10 Jobs, 3 Machines

NE/time UN/time FSI/time FS2/time

74 / 0:29 74 / 0:30 74 / 0:27 74 / 0:18
66 / 1:01 66 / 0:17 67 / 0:21 67 / 1:10
60 / 0:38 60 / 0:46 65 / 0:25 60 / 0:24
88 / 0:57 88 / 0:32 88 / 0:05 88 / 0:05
79 / 1:16 80 / 0:01 79 / 0:14 79 / 0:03
75 / 0:19 75 / 0:43 76 / 0:14 76 / 0:05

10 Jobs, 4 Machines

NE/time UN/time FSl/time FS2/time

66 / 1:30 66 / 1:1.2 69 / 0:33 69 / 2:07
74 / 1:25 74 / 0:46 72 / 1:48 73 / 1:19
67 / 2:00 67 / 0:35 67 / 1:14 68 / 1:06
89 / 1:49 89 / 0:33 90 / 0:51 92 / 0:19
83 / 0:42 83 / 1:08 83 / 0:58 83 / 0:40
77 / 1:00 77 / 0:40 77 / 1:18 79 / 1:18

114

10 Jobs, 5 Machines

NE/time UN/time FSI/time FS2/time

74 / 0:43 74 / 1:47 76 / 0:09 75 / 2:06
78 / 0:42 74 / 1:08 73 / 2:37 77 / 1:38
75 / 0:54 75 / 0:38 75 / 1:32 80 / 1:02
87 / 1:10 87 / 0:53 85 / 2:14 90 / 1:20
88 / 1:37 88 / 0:49 88 / 1:06 88 / 1:32
87 / 1:12 86 / 2:14 86 / 2:26 92 / 1:56

Although the algorithms appear to perform similarly, as the

problem size grows, the standard form has greater

opportunity to find quality solutions and the other forms

tend to get stuck more. The other versions do find fairly

good solutions quickly.

D. Large Flow Shop Problems

To investigate the algorithm's performance for larger

problems the code is converted to FORTRAN and executed on a

CRAY X-MP/14se computer. Table 7.6 shows results compared

to Palmer's heuristic and gives the running times for the

standard version of simulated annealing.

115

Table 7.6

Flow Shop Results from the CRAY Computer

20 Jobs, 20 Machines

Makeshift
Initial Final Run Time(sec) Palmer's
306 242 2.18 276
316 254 .35 272
295 252 .34 281
294 247 .47 267
280 243 .82 282

30 Jobs, 30 Machines

Makeshift
Initial Final Run Time(sec) Palmer's

439 382 1.27 432
454 389 1.03 427
439 376 1.52 425
428 365 1.62 400
464 381 1.59 417

40 Jobs. 40 Machines

Makeshift
Initial Final Run Time(sec) Palmer's
619 531 2.36 577
616 530 2.59 581
616 520 2.65 565
605 508 3.06 565
604 520 2.79 581

The results show that in all of the 15 cases examined

the simulated annealing algorithm finds superior solutions

than Palmer's heuristic. CPU time is also minimal with the

worst case being 3.06 seconds.

116

In the 40x40 instance, average solution improvements of

15 percent are achieved in approximately 2.7 seconds. This

assumes starting from a random configuration. When compared

to Palmer's heuristic, simulated annealing finds solutions

that average ten percent better. These results are

presented graphically in Figure 7.3.

117

)4

co c)

C9u

0V~ 0)

(~~~C/ z \

Li m E
0I 0

CLL

o o 0 0O

LL0 LO 0ICD 10 m

118

Table 7.7 provides results for large instances of the flow

shop problem where known optimal solutions are available.

As before, the programs are in FORTRAN and executed on a

CRAY computer. There are four cases, employing different

random number streams. The three optimization techniques

are Johnson's algorithm, simulated annealing with a negative

exponential acceptance function, and simulated annealing

with a pseudo uniform acceptance function.

Table 7.7

Flow Shop Results, Large Instances (on a CRAY)

100 Jobs, 2 Machines

Johnson's SA-NE Time SA-UN Time

531 572 .046 572 .061
568 568 .050 568 .050
575 575 .069 575 .105
569 587 .041 587 .045

400 Jobs, 2 Machines

Johnson's SA-NE Time SA-UN Time

2245 2245 .272 2245 .192
2245 2271 .140 2270 .212
2092 2181 .187 2181 .142
2162 2200 .167 2200 .145

119

500 Jobs, 2 Machines

Johnson's SA-NE Time SA-UN Time

2857 2857 .271 2857 .250
2836 2836 .224 2837 .176
2779 2779 .226 2779 .157
2703 2713 .208 2713 .157

Results are presented graphically, as well, in Figure 7.4.

Notice that better solutions are found with the larger

instances of 400 and 500 jobs. This shows the importance of

trial and error runs to find appropriate parameter settings

needed to prevent the algorithm from getting trapped in a

suboptimal local minima.

120

Cl)O

..
..

.I)

w w
D 0f)

..*0

Cu 0 a

0 0
0L to - U,.

C 00

00
IL r U..

0 1 0... 1 0
... 4) C.............. I

VIII. SIMULATED ANNEALING'S POTFNTTAL FOR OTHER INDUSTRIAL

ENGINEERING PROBLEMS

A. Types of Problems Appropriate for SimulatedAnnealing

Aarts and Van Laarhoven (1989) have grouped a number of

problems solved by simulated annealing into one of 1.3

types. These categories are below:

1. Traveling Salesman Problems

2. Matching Problems

3. Graph Partitioning Problems

4. Quadratic Assignment Problems

5. Linear Arrangement Problems

6. Graph Colouring Problems

7. Scheduling Problems

8. VLSI Design Problems

9. Facilities Layout

10. Image Processing

11. Code Design

12. Biology

13. Physics

The authors further state that simuilated annealing has been

applied to optimization problems with continuious variables.

As previously stated, one of the measures of a good

heuristic is its flexibility in handling variations of a

problem. As indicated by the Above list simulated anne(.1ing

122

gives its user the ability to address a broad range of

problem types. Another measure of a heuristic is its ease

of implementation. Although the algorithm itself is rather

simple to implement, the process of reformulating the

problem into an equivalent format prior to using simulated

annealing is not always trivial.

B. Example Formulations

This section brings together the various components for

selected problems. The TSP is presented in detail, followed

by a less thorough treatment of two additional formulations.

Appendices A-G contain BASIC code for the respective

problems, while H shows three additional formulations.

1. The Traveling Salesman Problem Formulation

Aarts and Korst (1989) provide a concise description of

the general problem formulation. He defines the TSP problem

as follows. Let n be the number of cities and D=Id, j) be the

distance matrix whose elements d1 j denote the distance

between cities i and j. The Problem is to find the shortest

route visiting each city exactly one time. The solution

space S is the set of all cyclic permutations

=(T(l),...,1(n)), where (i), i=1,2,...,n, denotes the

successor city of city i in the route represented by n. The

cost function to be minimized is:

c(w)= d d.1 ,,,.
i-I

123

Permutations can be generated by randomly selecting two

cities, p and q, and reversing the direction between them.

The difference in the cost for such s permutation is

calculated from:

6c = -d . . - d , + d" ., I .,

Figure 8.1 shows the pseudo code, based on the BASIC

code found in attachment A.

124

BEGIN

INITIALIZE

Set Temp (T,)

Generate Route (R (N))

Calculate Distance (D,)

Set Temp Decrement (a) and Repetitions Increment (B)

Set Number of Trials Couinter (NT) 'stop criterion

REPEAT

For L=I to L,

Begin Permute Temporary Route (TR(N))

Generate 2 Random Tntegers(l-N), J and K

Reverse Direction Between cities J and K

Calculate Distance for Temporary Route (TD)

If TD : D Then UPDATE Else

If exp(D-TD/T) > Random(01) Then UPDATE

End

L,~

T T*a

UNTIL Stopcriterion (NT) is met

END

125

UPDATE Reset Current Route and Distance

R(N) = TR(N)

D = TD

RETURN

Figure 8.1 Pseudo code for simulated annealing algorithm

applied to the TSP.

We begin by initializing the various parameters and

generating the initial route. In attachment A, the code

used for this formulation generates an initial route by

simply placing city one in position one, city two in

position two, etcetera along the roite. The purpose of 6 is

to increase the number of repetitions, or accepted

permutations, at each control parameter setting. The number

of trials (NT) parameter is used as a check to determine if

the algorithm has failed to find an acceptable permutation

after NT attempts. If no acceptable permutation is found.

then we are reasonably close to the optimal and the

algorithm terminates. Permutations are generated by the

reversal method discussed previously. Two random positions

are selected along the route and the direction between the

cities occupying those positions is reversed.

2. The Assignment Problem

Assignment problems are very similar to the TSP, but

much less restrictive. Here, subtours are allowed. For

instance, the optimal assignment matrix below is acceptable.

126

MACHINE
1 2 3 4

M I x
A 2 X
N 3X

4 X

Clearly, this does not represent an acceptable solution to a

TSP. For this problem the objective function is:

II E Ci J Xi j
i-1 J-1

Subject to the constraints:

EXi J =I, n~ .. n

J-1

SXJ =1 , j=l n (French 1985).
i-2

Figure 8.2 illustrates the use of simulated annealing

for the assignment problem. The permutation is performed by

making a one-for-one swap of two randomly generated

assignments. Pseudo code for An N by N matrix is shown

below:

127

INITIALIZE:

generate initial set of assignments

for I=1 to N

for J=l to N

select the lowest cost element in row I

remove col J and record its position

next J

next I

from distance matrix calculate total distance, D

GEN: if timer > TIME then end

generate J and K, two random integers from 1 to N

swap column positions for rows J and K

calculate the difference in distances, DL

if DL<=O then update

x=exp(-DL/0)

if x>rnd(O,1) then update

swap back column positions for rows J and K

goto gen

UPATE: D=D+DL

0=e * a

goto gen

128

END: print assignments and D

stop

Figure 8.2 Pseudo code for an assignment problem.

This simulated annealing formulation is very similar to

the TSP formulation, with the exception of the permutation

to the current configuration. The assignment problem

employs the swap permutation. Two random assignees are

selected and there corresponding assignments are exchanged.

Attachment B contains the code for this formuilation.

3. Assignment Problem Results

Thirty cases of the assignment problem are evaluated.

Each case generates a square matrix of assignment costs,

which are random integers from one to ten. The permutation

mechanism simply swaps two randomly selected assignments.

Smaller problems (less then 20) are solved on an IBM XT

using a 8088 processor and larger problems ar solved on a

80386 processor. Table 8.1 provides restilts.

129

Table 8.1

Results of the Assignment Problem

10 Assignments (XT)

Simulated Annealing / Time Hungarian
21 :54 21
16 1:41 16
21 2:25 21
11 1:40 11
29 1:20 29

12 Assignments.(XT)

Simulated Annealing / Time Hung ian
24 2:40 24
17 1:39 17
22 .2:44 22
18 2:21 18
26 3:46 26

15 Assignnments (XT)

Simulated Annealing /Time H grian
24 5:00 24
20 8:27 20
23 2:51 23
18 5:00 18
28 4:46 28

130

20 Assign ments_(386)

Simulated Annealing / Time Hungarian
27 .14 27
25 :20 25
28 :07 28
25 2:03 25
28 :36 28

30 Assignments (386)

Simulated Annealing / Time Hungarian
35 5:40 35
32 3:18 32
34 6:45 34
32 6:26 32
33 2:59 33

50 Assignments (386)

Simulated Annealing / Time Hungarian
50 6:18 50
51 8:05 51
50 5:37 50
51 4:51 51
50 8:10 50

In all 30 cases tested the optimal set of assignments

was found. For cases with fewer than 20 assigniments an IBM-

XT processor found the optimal. Only one of the 15 problems

required more than five minutes. For problems with 20 or

more assignments an 80386 procpssor found the optimal set of

assignments. In all 15 cases the optimal set is found

within approximately eight minites.

131

Figure 8.3 shows how the al-gorithm performs over time.

The 50 node assignment problem is displayed, showing cost

(objective function value) improvements relative to

processing time on a 80386 machine. Notice the large

initial improvement and gradual convergence to the optimal

solution, typical of the algorithm's performance.

Additional formulations for zero-one programming,

continuous functions, and linear programming are found in

Appendix H.

132

0

-0

ci:o

0(Y)
WL 00

000 00i

0 - C

Z O 0"
CM

/)

0 0

CDC
ClE

coc

U) 0)O i
CD U) UO

133

4. Minimum Cut Formulation

Minimum cut and maximum cuit problems are subsets of the

larger class known as graph partitioning problems. These

can be either weighted or non weighted and have great

practical relevance (Ullman 1984). Aarts and Korst (1989)

provides a general formulation that is modified for the

minimum cut problem, shown below.

Given a graph G = (V,E) with positive weights on its

edges, find a partition of its vertices (V) into two

disjoint sets V0 and V, such that the sum of weights of

edges with one vertex in V0 and the other in V, is minimal.

Simulated annealing is applied by defining thp solution

space, the cost function, and a permiftation mechanism. The

solution space consists of all possible partitions of V into

V) and V, . The cost function, to be minimized, is:

f(Vo ,V,) = E w({Iu,vl)
0 1

where w(Iu,vJ) denotes the weight of edge tu.vl, and

6(Vo ,V,) is the cut of a partition of V defined by:

6(Vo,V,) = {{u,vI -E 1 u V, n v V, l.

Permutations are generated by randomly selecting one vertex

from one of the two sets and placing it in thf opposite set.

134

For example, select u' E V, is placpd in V,. The cost

difference is computed below.

6f = (E w(u',v) - w({u',v)
Cu",v E\A(V V) , ,v), (V V

0 1 0 1

This notation adds the weights of the newly created edges

and subtracts the weights of all edges removed by the new

partition. When partitioning the sets the start and end

nodes must always remain in sets V, and V, respectively.

The algorithm's flow follows the same pattern of previous

formulations. Actual code is found in Attachment D.

C. Faster Implementations

As we have seen, there are a number of advantages

associated with the simulated annealing algorithm. It finds

near-optimal solutions, it is easy to implement, and it is

flexible. The disadvantage is that it takes a great deal of

time to asymptotically converge to optimality. We shall

discuss three approaches to incressing its speed, with

primary emphasis on parallel processing.

1. Faster Sequential Alqgorithms

Aarts and Korst (1989) identify two areas that offer

opportunities for speeding up the basic sequential

algorithm. Focus is on the generation mechanism (generates

neighboring permutations) and the cooling schedule. Green

and Supowit (1986) provide the "generate less" method which

135

creates shorter length Markov chains for a nuimber of

problems. This method depends stronqly on the neighboring

structure of permutations and is not: applicabl for

combinatorial optimization problems. Cooling schedules can

also be tailored for the problem at |hand. However, this

approach generally does not resutit in large savings in

computational time. Catthor, DeMan, and Vanderwalle (1988)

provide an example for problems that exhibit clustering in

their solution space.

136

2. Hardware Accelerators

The idea here is to provide dedicated hardware for the

time consuming portions of the algorithm. lostipovici, King,

and Breuer (1983) use dedicated hardware for evaluating the

cost of a trial configuration for a wire placement problem.

Another scheme for placement problems is offered by Spira

and Hage (1985), who report increanse in speed ranging up to

20 percent. They rewrite the tim- rrnnsuming portions of the

algorithm in micro code and execute it on a fast micro

engine attached to the host computer.

3. Parallel Processing

Aarts and Korst (1989) give a good account of designing

simulated annealing algorithms for parallel machines. The

parallel algorithm must distribute the execution of the

various parts over a number of communicating parallel

processors. This is not a trivial task due to the

sequential nature of the simulated annealing algorithm.

Transitions from one configuration to another are attempted

serially. According to Flynn (1966). there are four basic

types of parallel-machine models. Theise are shown below:

137
I nput Ou tpu t

+ 4- a+b
SISD - MIST

a+b a, b a-b
a,b

+ 4

a,b SIMD a+b -- MIMD a+b
c,d a,b

c+d c'd c-d

Figure 8.4 A classification of parallel-machine models
according to Flynn (1966).

Flynn describes these four general classes as:

- SISD (Single Instruction, Single Data): one

instruction at a time is executed on one set of data. This

class includes the classical sequential compuiter.

- SIMD (Single Instruction, Multiple Data): one

instruction at a time is executed on multipl] sets of data.

This class includes vector compuiters and array processors.

- MISD (Multiple Instructions, Single Data):

multiple instructions at a time are executed on one set of

data. This class has received little attention.

138

- MIMD (Multiple Instructions, Multiple Data):

multiple instructions at a time are executed on multiple

sets of data. The processors in a MIMD machine are either

synchronized, performing each successive set of instructions

simultaneously, or unsynchronized, performing all

instructions independently. This class is currently

receiving a great deal of attention.

In converting sequential simulated annealing algorithms

to parallel algorithms the focus is on the generation

mechanism. Aarts and Korst (1989) state that the evaluation

of a trial configuration consists of the following four

tasks.

1. Selecting a new configuration from the neighbors of the

current configuration.

2. Calculating the cost difference between thp solutions to

the two configurations.

3. Accepting or rejecting the new configuration.

4. Replacing the new configuration and solution if step

three results in an acceptance.

Examining these four steps in detail leads Aarts to two

observations.

139

1. The first three steps can bh performed in parallel for

different trials, since they are essentially independent.

Executing the fourth step in parallel creates several

problems. It is impossible to replace accepted solutions in

parallel. Say processors A and R both accept transitions

from the current configuration. Transitioning to

configuration A is performed first. Now, the transition to

configuration B will be made from the new configuration A

which results in an unknown configuration and a potentially

poor solution. As a result, correct local decisions may

lead to incorrect global decisions.

2. Based on the typical performanre of the simulated

annealing algorithm, we know that the ratio between the

number of executions of steps 1-3 and the number of times

step 4 is executed will change during the running of the

algorithm. This ratio is called the acceptance ratio. It

will be close to one when the control parameter, c, is high

and approaches zero as c approaches zero. Thus, the

relative frequency of step 4 decreases as the algorithm runs

longer. This provides the opportunity to use different

parallel algorithms in different regimes of the control

parameter.

Two strategies are given by Aarts: single-trial

parallelism and multiple-trial parallelism. With single-

trial parallelism, the task of evaluating the single trial

140

is divided over the number of processors. The amount of

speed-up achievable is a function of the type of problem.

Speed-up is defined by Aarts as the running time of the

sequential algorithm executed on one processor divided by

the running time of the parallel algorithm executing on

several processors. If the generati.on and evaluation of new

configurations can be divided into independent subtasks,

then the speed-up is significant. However, for the TSP and

many other combinatorial optimization problems, this is not

the case (Aarts & Korst, 1989).

Multiple-trial parallelism is a routine that evaluates

trial configurations simultaneously. Aarts provides the

following scenario. Many processors simultaneously generate

trial configurations from the current one. This process is

repeated until one of the processors accepts a new

configuration. At this point execution is frozen until all

processors are reset to the new configuration. Execution

resumes with the processors generating trials from the new

current configuration. If more thnn one processor accepts a

trial at the same time, then an arbiter decides which one to

select. Using this scheme, the speed-up is s;mall qt low

values of the control parameter, ilnce most trial

configurations are accepted and in Pssence one ?)rocessor at

a time is active. As the value of the control parameter

decreases, the speed-up increases and eventually becomes

proportional to the number of processors. An example of a

141

placement and routing problem for VT,,I design is found in

Darema-Rogers, Kirkpatrick, and Norton (1987) and Banerjee

and Jones (1986).

A good example that combines both forms of parallelism

is reported by Kravitz and Rutenbar (1987). Tn the regime

where the control parameter is high they ue :i single-move

decomposition algorithm, based on single-trial parallelism.

Tasks involved in generating and evaluating a trial

configuration are divided into several subtasks that are

performed in parallel. In the regime associated with small

values of the control parameter they switch to a parallel-

move algorithm, a form of multiple-trial parallelism. They

report the speed-up of the single move decomposition

algorithm is a constant (z2) as a function of the control

parameter. The speed-up for the parallel-moves algorithm is

small (zI) in the large-value regime and large (z3.5) in the

small-value regime of the control parameter. This is for

implementation on a four-processor system.

The algorithms presented -xecute those tasks in

parallel that are independent. These are tasks 1-3

identified earlier. These algorithms are suited for

execution on synchronous MIMD machines (Aarts & Korst,

1989).

IX. CONCLUS I nN

A. Summary

In this is paper we added to the body of knowledge a

method that takes advantage of a biased random walk.

More specifically, we introduced the modified simulated

annealing algorithm as a means of biasing a random walk to

move in the direction of more favorable solutions to

combinatorial optimization problems. To formilate i problem

we need a concise description of the configuration of the

system, a random permutation mechanism, an objective

function value, and an annealing schedule. Modifications to

the standard formulation include: a front end expert system,

a constraints module, a user interrupt capability, and the

use of alternative acceptance fuinctions. The algorithm

behaves much like a local search, with one exception, it

probabilistically allows transitions to less optimal states.

Thus, it allows the algorithm to escape local minima.s

(minimization problems). Although simulated annealing has

its foundations in the field of statistical m-chanics, we

have seen that the algorithm performs well with alternative

acceptance functions. Specifically, for the flow shop and

job shop cases, the various acceptatce fuinctionis performed

as well or better than the standard formutlation. Th'

seemingly mystical connection between combinatorial

optimization problems and statistical mechanics is best

summed up by N.S. Krylov (1979) "the problem of establishing

143

a connection between statistics and mechanic-; should be

regarded as being absolutely unsolved."

A simpler explanation of the algorithm's behavior is

that of a biased random walk. The iiser can provide many

elements that introduce bias. Some of these are: the

various parameter settings (a, B, T), the acceptance

function, and constraints regarding acceptable solutions.

The families of acceptance functions we introduiced in

Chapter V represent ways to bias the random walk. Dpending

on the users' willingness to sacrifice the degree of

optimality for the timeliness of solutions, an appropriate

acceptance function can be selected. The final solition

will differ depending on the collective bias of the user.

Kirkpatrick, Gelatt, and Vecchi (19R3) conclide that the

annealing schedule may be arrived at through trial and error

for a given problem. Cerny (1985) states that there is

perhaps more poetry than mathematics when selecting the best

set of parameters for running the algorithm ni a particli-ar

problem. In general, problems with many low lying local.

minimums allow the use of functions with steep (slopes)

decreases in their probability of acceptance. The ,iniform

and FS1 functions work well. Altersnatively, problems with

few local minimums require the use of functions with more

gradual decreases in their prohability of acceptanca. Thus.

allowing more search time tc be spent. near the asymptote.

Here, the standard version and JS2 do best.

144

ft is easy to envision an appl ir:ation wirI-h a dr1icated

processor continuously running the simil.ated annealinq

algorithm. The algorithm can be i.nterrupted to all-w for

updated shop floor data. It clearly lends itself to

applications in dynamic environments. When a solution is

needed, the user simply queries the algorithm to get tbe

best solution found. The algorithm is capable of finding

solutions over a variable amount of time. Feasible

solutions are available for decisions that are needed

quickly. With more decision time, better soliitions ar

achievable. This scenario assimes the deleqation of some of

the decision making. In a very chantic scenario,

appropriate for the implementation of simvTlRtd annealing,

Tom Peters (1987) suggests delegation of decision making and

sharing of data.

Simulation was introduced in the 1960's as a good

analysis tool appropriate when more analytical apprnaches

fail. Similarly, the simulated annealing algorithm is a

good optimizer when you can not Afford to wait for an

optimal solution or when good hoiuristics do not exist. In a

sense we are using the computer's speed to solve problems

that to date have not been solvable. The major drawback to

the implementatic,n of simulated anneali.inq is that the

algorithm takes a long time to coiverge to opcimality. On

the positive side, there is a slow increase in effort with

an increase in the problem sizt, and the generality of the

145

algorithm makes it a widely applicable heuristic

optimization technique (Kirkpatrick, Gelatt, & Vecchi,

1983).

With the modified formulation presented in this work,

the user has the option of selecting acceptance functions

that trade computational time for solution qtiality.

Constraints can be input to prevent unacceptable solutions.

With limited processing time available, the uiniform

acceptance function outperforms the standard form of

simulated annealing. More specifically, solution quality is

as good or better and computational time is less. For the

job shop formulation, the acceptance function titled JS2

outperforms both the standard version and the uniform

version.

B. Recommendation for Future Work

There is a great deal of work to be done in converting

the sequential form of the algorithm to parallel versions

capable of running on parallel architecture machines. Cerny

(1985) concludes that these algorithms might be even more

appropriate for the next generation of multiprocessing

machines, where different degrees of freedom can be treated

simultaneously. Another approach, discussed in Chapter IV,

involves ten processors each generating permutations from

the existing configuration. Some arbitrator would break

ties and the current configuration gets updated. Initially,

at high values of the control parameter, speed-ups would be

146

slight. As the control parameter iP decreased the szpped-ups

achievable would be much greater. Finally, the greatest

speed-ups are achieved where the algorithm tqles the

longest, during convergence.

The algorithm could be formi1.at-d to evaluate PERT,/CPM

problems. One of the biggest problems experienced by these

approaches is the lack of credible input estimates of the

task durations. Simulated annealing could ai-cept updaIt-d

estimates, perform the optimization, and make time and cost

tradeoffs.

This paper only looked at three alternative families of

acceptance functions. The same approach could be userl to

evaluate other forms of acceptance fuinctions.

REFERENCES

147

Aarts, Emile, & Korst,Jan (1989). Simulated annealingaId
Boltzman machines. New York: Jnhn Wiley and Sons.

Aarts, E. H. L., & Van Laarhoven, P. J. M. (1985).
Statistical cooling: A general approach to combinatorial
optimization problems, Philips Journal of Research, 40(4),
193-226.

Adrabinski, A., & Syslo, M. M. (1983). Computacional
experiments with some approximation algorithms for the
traveling salesman problem, Zastos. Mat., 18, 91-95.

Ashour, S. (1970a). An experimental investigation and
comparative evaluation of flow-shop scheduling techniques,
Operations Research, 12, 541-549.

Ashour, S. (1970b). A branch and bound algorithm for the
flow-shop scheduling problem, A.I.I.E. Transactions, 2, 172-
176.

Ball, M., & Magazine, M. (1981). The design and analysis of
heuristics, Networks, 11, 215-219.

Banerjee, P., & Jones, M. (1986). A parallel simulated
annealing algorithm for standard cell placement on a
hypercube computer, Proceedings of the IEEE International
Conference on Computer-Aided Design, Santa Clara, CA,
34-37.

Beaton, R., Adams, M. B., James, V. A., & Harrison, J. S.
(1987). Real-timp ,ission and trajectory planning
(technical report 1987-8). The Charles Stark Draper
Laboratory, Cambridge, Ma.

Bellman, R. E., Esogbue, A. 0., & Nabeshima, 1.(1982).
Mathematical aspects of scheduling and applications. New
York: Pergamon Press.

Bellman, R. E. (1957). Dynamic programming. New Jersey:
Princeton University Press.

Bellman, R. E. (1962). Dynamic programming treatment of the
travewling salesman problem, Journal of the Association of
Computing Machinery, 9, 61-63.

Birkhoff, G. (1946). Tres observaciones sobre el algebra
lineal, Rev. Univ. Nac. TucumanSer. A, 5, 147-151.

Bohr, Niels (1913). Old quantum theory, Philosophical
Magazine, 26, 1.

148

Bonomi, Ernesto, & Lutton, Jean-Luic (1984). The N-city
traveling salesman problem: statistical mechanics and the
metropolis algorithm, SIAM Review, 26(4), 551-568.

Brooks, Daniel A., & Verdini, William A. (1989).
Computational experiments with generalized simulated
annealing over continuous variables, Simulated Annealing
(SA) and Optimization, Syracuse, New York: American Sciences
Press.

Burkard, R. E., & Rendl, F. (1984). A thermodynamically
motivated simulation procedure for combinatorial
optimization problems, European Journal of Operational
Research, 17(2), 169-174.

Catthor, F., de Man, H., & Vandewalle, J. (1988). SAMURAI: A
general and efficient simulated annealing schedule with
fully adaptive annealing parameters, Inteqration, 6, 147-
178.

Cerny, V. (1985). Thermodynamical approach to the traveling
salesman problem: an efficient simulation algorithm, Journal
of Optimization Theory and App_lications, 45(1), 41-52.

Cook, S. A. (1971). The complexity of theorem-proving
procedures, Proceedings of the Third ACM Symposium on Theory
of Computing, Association for Computing Machinery, New York.

Croll, Tim, & Cady, Larry (1988). Dynamic programming
algorithm applications to automated mission planning, La
Jolla, Ca: Systems Control Technology, Inc.

Crowder, H., & Padberg, M .W. (1980). Solving large-scale
symmetric traveling salesman problems to optimality,
Management Science, 26, 495-509.

Dantzig, G. B., Fulkerson, D. R., & Johnson, S. M. (1954).
Solution of a large-scale traveling salesman problem,
Operations Research, 2, 393-410.

Darema-Rogers, F., Kirkpatrick, S.,& Norton, V. A. (1987).
Parallel algorithms for chip placement by simulated
annealing, IBM Journal of Research and Development, 31. 391-
402.

Drexl, A. (1988). A simulated annealing approach to the
multiconstraint zero-one knapsack problem, Computing, 40, 1-
8.

Dreyfus, Stuart E., & Law, Averili M. (1977). The art and
theory of dynamic programming. New York: Academic Press,
Inc.

149

Eisen, Martin (1969). Introduction to mathematical
probability theory. Englewood Cliffs, New Jersey:
Prentice-Hall.

Farquhar, I. E. (1964). Ergodic theory in statistical
mechanics. New York: Interscience Publishers, ,John Wiley and
Sons.

Feller, William (1966). An introduction to probability
theory and its applications (Vol IT). New York: John Wiley
and Sons, Inc.

Flood, M. M. (1956). The traveling salesman problem,
Operation Research, 4, 61-75.

Forgionne, Guisseppi A. (1986). Quantitative decision
making. Belmont, Ca: Wadsworth Publishing Company.

French, S. (1982). Sequencing and scheduling, An
introduction to the mathematics of thejob-shop. New York:
John Wiley and Sons.

Freville, A., & Plateau, G. (1982). Methodes heuristiqules
performantes pour les problemes en variables 0-1 a plusieurs
costraintes en inegalite, publication ANO-91, Universite des
Sciences et Techniques de Lille.

Freville, A., & Plateau, G. (1987). Hard 0-1 knapsack test
problems for size reduction methods, Universite Paris-Nord.

Fromhold, Albert Thomas, Jr. (1q8l). Quantum mechanics for
applied physics and engineering. New York: Academic Press.

Garey, Michael R., & Johnson, David S. (1979). Computers and
intractability: A guide to the theory of NP-completeness.
San Francisco: W. H. Freeman and Company.

Gavish, B., & Pirkul, H. (1985). Efficient algorithms for
solving zero-one knapsack problems to optimality.
Mathematical Programming, 31, 78-105.

Germain, R., & Sriskandarajan, C. (1985). A heuristic for
job shop scheduling, Internatiuonal Federation of Automatic
Control, Control Sciences and Technology for Development,
Proceedings.

Golden, B. L., Bodin, L. D., Doyle, T., & Stewart, W. .r.
(1980). Approximate traveling salesman algorithms,
Operations Research, 28, 694-711.

150

Greene, J. W., & Supowit, K. J. (1986). Simulated annealing
without rejection moves, IEEE Transactions on Computer-Aided
Design, 5, 221-228.

Hausner, Melvin (1971). Elementaryprobability theory. New
York: Harper and Row, Publishers.

Hillier, Frederick S., & Lieberman, Gerald J. (1980).
Introduction to operations research. San Francisco: Holden-
Day.

Ignall, E., & Schrage, L. E. (1965). Application of the
branch and bound technique to some flow-shop problems,
Operations Research, 14, 400-412.

Iosupici, A., King, C., & Breuer, M. (1983). A module
interchange placement machine, Proceedings of the IEEE 20th
Design Automation Conference,_ Port Chester, 495-498.

Jaynes, E. T. (1957). Information theory and statistical
mechanics, Physics Review, 106, 620-630.

Karp, R. M. (1972). Reducibility among combinatorial
problems, in R. E. Miller and J. W. Thatcher (eds.),
Complexity of computer computations. New York: Plenum Press.

Kirkpatrick, S. (1984). Optimization by simulated annealing:
quantitative studies, The Journal of Statistical Physics,
34, 975-986.

Kirkpatrick, S., Gelatt, C. D. Jr., & Vecchi, M. P. (1983).
Optimization by simulated annealing. Science, 220, 671-680.

Kittel, Charles (1969). Thermal physics. New York: John
Wiley and Sons.

Kravitz, S. A., & Rutenbar, R. (1987). Placement by
simulated annealingon a multiprocessor, IEEE Transactions on
Computer-Aided Design, 6, 534-549.

Krylov, Nikolai S. (1979). Works on the foundations of
statistical physics. New Jersey: Princeton University
Press.

Lawler, E. L., et at. (1985). The traveling salesman
problem: A guided tour of combinatorial optimization.
Chichester, Great Britain: Wiley and Sons.

Lin, S., & Kernighan, B. W. (1973a). An effective heuristic
algorithm for the traveling salesman problem, Operations
2esearch, 21, 498-516.

151

Lin, S., & Kernighan, B. W. (1973b). An effective heuristic
algorithm for the traveling salesman problem, Murray Hill,
New Jersey: Bell Telephone Laboratories, Inc.

Nahar, Surendra, Sahni, Sartaj, & Shragowitz, Eugene (1985).
Experiments with simulated annealing, 22nd Design Automation
Conference, 748-752.

Nahar, Surendra, Sahni, Sartaj, & Shragowitz, Eugene (1986).
Simulated annealing and combinatorial optimization, 23rd
Design Automation Conference, 293-299.

Nilsson, Nils J. (1980). Principles of artificial
intelligence. Palo Alto, Ca: Tioga Publishing Company.

Papadamitriou, C. H., & Steiglitz, K. (1982). Combinatorial
optimization: algorithms and complexitty . Englewood Cliffs,
New Jersey: Prentice-Hall.

Pearl, Judea (1983). On the discovery and generation of
certain heuristics, The AI Magazine, Winter/Spring, 25-33.

Pearl, Judea (1984). Heuristics: intelligent search
strategies for computer problem solvinq. Reading, Ma:
Addison-Wesley Publishing Company.

Peters, Tom (1987). Thriving on chaos: handbook for a
management revolution. New York: Alfred A. Knopf, Inc.

Phillips, Don T., & Garcia-Diaz, Alberto (1981).
Fundamentals of network analysis. Englewood Cliffs, New
Jersey: Prentice-Hall.

Randelman, R. E., & Grest, G. S. (1986). N-city traveling
salesman problem: optimization by simulated annealings,
Journal of Statistical Physics, 45(5/6), 885-890.

Reklaitis, G. V., Ravindran, A., & Ragsdell, K. M. (1983).
Engineering optimization - methods and applications. New
York: John Wiley and Sons.

Riordan, John (1958). An introduction to combinatorial
analysis. New York: Wiley and Sons.

Roberts, Fred S. (1984). Applied combinatorics. Fnqg]wood,
New Jersey: Prentice-Hall.

Romeo, F., Sangiovanni-Vincentelli, A., & Sechen, C. (1984).
Research on simulated annealing at Berkeley, Proceedings of
the IEEE International Conference on Computer Design, 652-
657.

152

Romeo, F., Sangiovanni-Vincentelli, A., & Sechen, C. (1985).
Probabilistic hill climbing algorithms: properties and
applications, Proceedings of the 1985 Conference on VLSI,
Chapel Hill, NC, 393-418.

Shannon, C. (1948). A mathematical theory of communication,
Bell Systems Technical Journal, 379-623.

Shrodinger, E. (1946). Statistical thermo4ynamics. London:
Cambridge University Press.

Skiscim, Christopher C.,& Golden, Bruce L. (1983).
Optimization by simulated annealing: A preliminary
computational study for the traveling salesman problem,
Proceedings 1983 Winter Simulation Conference. Arlington,
Va, 523-538.

Spira, P., & Hage, C. (1985). Hardware acceleration of gate
array layout, Proceedings of the 22nd Design Automation
Conference, Las Vegas, 359-366.

Spitzer, F. L. (1964). Principles of random walk. Princeton,
New Jersey: Van Nostrand.

Tucker, Alan (1984). Applied combinatorics (2nd ed.). New
York: John Wiley and Sons.

Ullman, J. D. (1984). Computational aspects of VLSI.
Rockville, MD: Computer Science Press.

Van Laarhoven, P. J. M., & Aarts, E. H. L. (1987). Simulated
annealing: theory and applications. Dordecht. Netherlands:
Kluwer Academic Publishers.

153

Voight, B. F. (1831). Der handlungsreisende (republished
(1981)). Kiel, Germany: Verlag Bernd Schramm.

White, D. J. (1969). Dynamic progrmjmg. Edinburgh,
England: Oliver and Boyd.

Wyllie, G. A. P. (1970). Elementarystatistical mechanics.
London: Hutchison and Company LTD.

APPENDIX A

TSP PROGRAM CODE

155

1 ******* TSP PROGRAM USING SIMULATED ANNEALING *******
5 CLS:SCREEN 2
6 LINE (0,35)-(620,180),,B
8 LINE (0,0)-(620,33),,B
10 KEY (10) ON 'OPT INTERRUPT KEY
12 ON KEY(10) GOSUB 1000
15 GM=100
20 N=30 'N=CITIES
22 SD=25 'RN SEED
25 F=10 'GRAPHICS SCALE FACTOR
30 DIM D(N,N), T(N), S(N), C(N),GM(N)
40 T=I 'INITIAL TEMP
45 TN=T 'RECORDS INIT TEMP
50 C=5 'C=COLOR
60 PAINT (10,10),I,C
65 LINE (0,90)-(0,100)
70 D=O
120 FOR I=l TO N 'INITIAL CONFIG
130 C(I)=I
140 NEXT I
270 RANDOMIZE SD
273 '*** FILL DISTANCE MATRIX WITH RAND NUMBERS 0-1 *
275 FOR 1=1 TO N
276 FOR J=l TO N
282 IF I=J THEN D(I,J)=999:GOTO 288
284 D(I,J)=RND 'D=DISTANCE MATRIX
288 NEXT J
292 NEXT I
295 '***** CALCULATE INITIAL DISTANCE *********************

300 DI=D(C(N),C(1))
320 FOR K=I TO N-I
330 D2=D2+D(C(K),C(K+I))
340 NEXT K
341 TIMER ON 'STOP TIMER
342 ON TIMER(600) GOSUB 900
350 D=DI+D2 'D=TOTAL DISTANCE
360 D2=0 'RESET DISTANCES
370 D1=0
390 I=l 'POSITION MARKER
395 '************************* PERMUTE ********************
400 J=INT(RND*N)+1 'RAND INT 1-N
410 'IF J>N THEN 400
430 IF J=I THEN 400
460 IF I<J THEN 470 ELSE 500
465 ****************** SET ENDPOINTS *********************
470 IMIN=I
480 JMAX=J
490 GOTO 540
500 IMIN=J
510 JMAX=I
530 '************* SET TEMPORARY ROUTE ********************
540 FOR K=1 TO I-I

156

550 T(K)=C(K)
560 NEXT K
570 FOR K=O TO JMAX-IMIN
580 T(IMIN+K)=C(JMAX-K)
590 NEXT K
600 FOR K=JMAX+I TO N
610 T(K)=C(K)
620 NEXT K
630 DI=D(T(N),T(1))
640 FOR K=I TO N-I
650 D2=D2+D(T(K),T(K+1))
660 NEXT K
670 DP=DI+D2 'CALC TEMPORARY DISTANCE
680 D2 = 0
690 DI=0
710 IF DP < D THEN 760 'ACCEPT
715 '*********** APPLY SIM ANNEALG ACCETANCE TEST *
720 RN=RND
730 X=EXP((D-DP)/T)
750 IF RN<X THEN 760 ELSE 872
760 FOR K=I TO N 'UPDATE CURRENT CONFIG
770 C(K)=T(K)
790 NEXT K
800 D=DP 'UPDATE DISTANCE
801 '************* GRAPHICS ROUTINE ***********************
803 NX=NX+2
804 ND=D*F
806 LINE -(NX,ND)
808 IF D<GM THEN GOSUB 2000 'CHECK FOR GLOBAL MIN
840 A=A+1 'INCREMENT NO. OF REPS
850 IF A=15 THEN 852 ELSE 871 'CHECK NO. REPS
852 T=T*.9 'DECREMENT TEMP
854 LINE -(NX,180) 'GRAPHICS-DISPLAYS T UPDT
856 LINE -(NX,ND) 'GRAPHICS-CURRENT CONFIG
860 '*************** COLOR ROUTINE ************************
861 IF T<.8*TN THEN C=1
862 IF T<.2*TN THEN C=3
863 IF T<.3*TN THEN C=2
864 IF T<.4*TN THEN C=14
865 IF T<.5*TN THEN C=12
866 IF T<.6*TN THEN C=4
867 IF T<.8*TN THEN C=13
869 PALETTE 1,C
870 A=O 'RESET NO. REPS COUNTER
871 R=O 'RESET NO. TRIALS COUNTER
872 R=R+I
874 IF R=100000! THEN 900
880 I=I+l 'INCREMENT MARKER
890 IF I<N THEN 400 ELSE 390
895 * PRINT RESULTS *
900 PRINT "DISTANCE " GM
905 PRINT "CURRENT DISTANCE = " D

157

908 PRINT "TEMP = "T
910 'PRINT "ROUTE
920 FOR I=i TO N
930 - PRINT "C("I")="C(I)
940 NEXT I
950 END
1000 '****** F10 INT-RRUPT - PRINTS CURRENT OPTIMAL *******

1010 PRINT "CURRENT OPTIMAL = " GM
1020 RETURN
2000 *************** UPDATE GLOBAL MIN (GM) *
2002 FOR K=1 TO N
2004 GM(K)=T(K)
2006 NEXT K
2008 GM=D
2010 RETURN

APPENDIX B

ASSIGNMENT PROBLEM CODE

159

10 ASSIGNMENT PROBLEM
20 N=50
30 DIM C(N),T(N),M(N,N)
40 T=5
50 - DATA*************

60 FOR 1=1 TO N
70 FOR J=l TO N
85 M(I,J)=INT(RND*10)+1
90 NEXT J
100 NEXT I
360 STARTING SOL-TN *********

370 FOR 1=1 TO N
375 MIN=100
380 FOR J=1 TO N
385 IF M(I,J)>=MIN THEN 450
390 FOR K=1 TO N
400 IF J=C(K) THEN 450
410 NEXT K
420 IF M(I,J)=1 THEN C(I)-J:GOTO 460

430 MIN=M(I,J)
440 C(I)Ji
450 NEXT J
460 NEXT I
470 FOR I=1 TO N
480 T(I)=C(I)
485 'PRINT "C("I")= C(I)
490 NEXT I
491 FOR 1=1 TO N
492 D=D+M(I,C(I))
493 NEXT I
495 PRINT "D= "D
500 TIMER ON
510 ON TIMER(180) GOSUB 2010

520 **********PERMUTE, SWAP J & K********

530 TD=0
540 J=INT(N*RND)+1
550 K=INT(N*RND)+1
560 IF K=J THEN 550
570 SWAP T(J),T(K)
580 DL=M(J,T(J))+M(K,T(K))-M(J,C(J))-M(K.C(K))
590 IF DL<=0 THEN 1000
600 X=EXP(-DL/T)
610 RN=RND
620 IF X>RN THEN 1000
625 SWAP T(J),T(K)
630 GOTO 530
1000 ********ACCEPT CHANGE*******

1010 FOR I~1 TO N
1020 C(I)=T(l)
1030 NEXT I
1040 D=D+DL

160

1050 T=T*. 9
1060 GOTO 530
2000 RESULTS
2010 SWAP C(J),C(K)
2040 PRINT "D= "D
2045 BEEP: BEEP: BEEP
2050 END

APPENDIX C

JOB-SHOP (ZERO-ONE PROGRAMMING) CODE

162

10 "*** BINARY PROGRAMMING PROBLEM - USING SIM ANNEALG *
20 N=3
30 M=3
35 T=2.3
40 DIM C(N),X(N),A(M,N),R(M),RHS(M)
45 *************************** DATA **********************
50 C(1)=2
60 C(2)=I.5
70 C(3)=3.4
80 FOR J=l TO N
90 X(J)=0
100 NEXT J
110 FOR I=l TO M
120 FOR J=l TO N
130 A(I,J)=O
140 NEXT J
150 NEXT I
160 A(1,1)=2
170 A(1,2)=3
180 A(2,2)=2
190 A(2,3)=3
200 A(3,1)=1
210 A(3,3)=2
220 RHS(1)=6
230 RHS(2)=4
240 RHS(3)=5
250 ************** GENERATION OF INITIAL SOLUTION *
260 FOR J=l TO N
270 X(J)=l
280 GOSUB 1000
290 NEXT J
300 FOR I=l TO N
310 CP=CP+C(I)*X(I)
320 PRINT "X("I")= "X(I)
330 NEXT I
335 PRINT "CP= "CP
340 TP=O
350 °**************** PERMUTE *
360 J=INT((RND(1)*N)+I)
370 IF X(J)=1 THEN 360
380 X(J)=1
390 GOSUB 1000
400 IF X(J)=O THEN 500
405 CP=CP+C(J)
410 GOTO 6000
500 - ********* CHECK FOR SWAP J (IN) FOR K (OUT) *********
510 K=INT((RND(1)*N)+I)
520 IF X(K)=O THEN 510
530 X(K)=O
540 X(J)=I
550 GOSUB 1000 'CHECK FOR FEAS

163

560 IF X(J)=O THEN 5000 "INFEAS
570 D=C(J)-C(K) 'FEAS
580 IF D>=O THEN 700
590 X=EXP(D/T)
600 RN=RND(1)
610 IF RN>X THEN 5000
700 X(K)=O
710 X(J)=I
720 CP=CP+D
730 GOTO 6000
990 REM * FEAS CHECK *
1000 FOR H=l TO M
1010 R(H)=O
1020 NEXT H
1030 FOR H=l TO M
1040 FOR L=l TO N
1050 R(H)=R(H)+A(H,L)*X(L)
1060 NEXT L
1070 IF R(H)<=RHS(H) THEN 1080 ELSE 1100
1080 NEXT H
1090 GOTO 1110
1100 X(J)=0
1110 RETURN
1140 * TP UPDATE ********************
1150 TP=O
1155 FOR J=l TO N
1160 TP=TP+C(J)*X(J)
1170 PRINT "X("J") = "X(J)
1180 NEXT J
1190 PRINT "TP = "TP
1200 RETURN
5000 '****************** CHECK TO DROP VAR K *
5010 PK=EXP(-C(K)/T)
5020 RN=RND(1)
5030 IF RN>=PK THEN 350
5040 X(K)=O
5050 CP=CP-C(K)
5060 GOTO 350
5990 "******** INCREMENT PARAMETERS *
6000 T=T*.3
6005 IF T<=9.999999E-35 THEN END
6008 GOSUB 1150
6010 GOTO 350

APPENDIX D

MINIMUM CUT PROGRAM CODE

165

10 ' BINARY PROGRAMMING PROBLEM - USING SIM ANNEALG **

15 **TO SOLVE MAX FLOW FORMULATION
20 N=10
35 T=6
40 DIM C(N).,X(N),A(N,N)
80 FOR J=l TO N-i
90 X(J)=0
100 NEXT J
105 X(N)1l
110 FOR I~l TO N
120 FOR J=1 TO N
130 A(I,J)0O
140 NEXT J
150 NEXT I
155 '*************DATA *******~***

160 A(1,2)=6
170 A(1,4)=8
180 A(2,5)=5
190 A(2,3)=7
200 A(3,5)=4
210 A(4,5)=7
211 A(3,6)=4
212 A(5,6)=3
213 A(5,8)=9
214 A(6,7)=6
215 A(6,9)=4
216 A(89)=7
217 A(7,10)=8
218 A(9,10)=5
250 ******GENERATION OF INITIAL SOLUTION ~q~r
300 FOR I11 TO N
305 FOR J=I+1 TO N
310 MF=MF+(A(I,J)*(((1-X(I))*X(J))+(X(I)*(1-X(J)))))
325 NEXT J
330 NEXT I
335 PRINT "MF= "MF
337 'TIMER ON 'OPTIONAL TIMER
340 -ON TIMER(60) GOSUB 7000
350 *********PERMUTE***************

360 J=INT(RND*(N-2))+2 'RN FROM 2 TO N-i
555 IF X(J)=O THEN X(J)=1 ELSE X(J)=O
559 TF=O
560 FOR I=1 TO N
565 FOR L=I+1 To N
570 TF=TF+(A(I,L)*(((i-X(I))*X(L))+(X(I)*(1-X(L)))))
575 NEXT L
580 NEXT I
585 IF TF<=MF THEN 1150
590 X=EXP((MF-TF)/T)
600 RN=RND
610 IF X>RN THEN 1150

166

620 IF X(J)=O THEN X(J)=1 ELSE X(J)=O
622 T=T*.9
625 IF T<=.002 THFN 7000
730 GOTO 360
1140 REM **********MAX FLOW UPDATE*******
1150 ME=TF
1190 PRINT "MF = "ME
5990 ********INCREMENT PARAMETERS *******

6000 T=T*.9
6005 IF T<=.002 THEN 7000
6010 GOTO 360
6998 ***********PRINT RESULTS*********
7000 FOR 1=1 TO N
7010 PRINT "X("I")= "X(I)
7020 NEXT I
7030 PRINT "MF= "MF
7040 END

APPENDIX E

FLOW-SHOP CODE

168

10 '*******FLOW-SHOP FOR > 2 MACHINES
12 SEED=20
15 T=3 'INITIAL TEMP
20 N=10 'N = # JOBS
21 K=2 'K = # MACHINES
25 NA=1 'NA=# OF ACCEPTANCES
27 ALPHA=.98 'TEMP DECREMENT PARAMETER
28 MCI=O 'MCI=MARKOV CHAIN INCREMENT
32 GM1N=999
35 RANDOMIZE SEED
37 TIME$="O"
38 KEY (10) ON 'F10 = HOT INTERRUPT KEY
39 ON KEY(1O) GOSUB 4000
40 DIM S(N),C(N,K),D(N,K),GS(N)
45 '******* FILL PROCESSING TIME MATRIX
50 FOR J=1 TO N
60 FOR M=l TO K
70 D(J,M)=INT(RND*10)+l
80 NEXT M
90 NEXT J
100 '******INITIAL CONFIGURATION*******
110 FOR I11 TO N
112 S(I)=N+'-I
114 NEXT I
170 '********** MAX
180 FOR J=1 TO N
190 C(S(J),.)=C(S(J-1) ,)+D(S(J), 1)
200 NEXT J
210 FOR M=2 TO K
220 FOR I=1 TO N
230 IF C(S(l),(M-1)) <C(S(I-1),M) THEN GOTO 260
240 C(S(I),M)=C(S(I),(M-1)) + D(S(I),M)
250 GOTO 270
260 C(S(I),M)=C(S(I-1),M) + D(S(I),M)
270 NEXT I
280 NEXT M
283 CLS
285 CMAX =C(S(N),K)

290 PRINT "CMAX = "C(S(N),K)
300 '*********PERMUTE**********

310 A=INT(RND*N)+1
320 B=INT(RND*N)+1
330 IF A=B THEN 320
340 SWAP S(A),S(B)
350 GOSUB 1000
360 IF TMAX < CMAX THEN 2000
370 X=EXP((CMAX-TMAX)/T)
380 IF X>RND THEN 2000
390 SWAP S(A),S(B)
400 GOTO 310
1000 '*********TMAX

169

1010 FOR J=l TO N
1020 C(S(J),I)=C(S(J-1),I)+D(S(J),I)
1030 NEXT J
1040 FOR M=2 TO K
1050 FOR I=l TO N
1060 IF C(S(I),(M-1)) < C(S(I-1),M) THEN GOTO 1090
1070 C(S(I),M)=C(S(I),(M-1)) + D(S(I),M)
1080 GOTO 1100
1090 C(S(I),M)=C(S(I-1),M) + D(S(I),M)
1100 NEXT I
1110 NEXT M
1120 TMAX = C(S(N),K)
1130 RETURN
2000 '******************** ACCEPT ************************
2005 AC=AC+1
2010 IF AC>=NA THEN GOSUB 3000
2020 CMAX=TMAX
2030 GOSUB 3500
2040 IF T>.002 THEN 310 'STOP CRITERION
2050 END
2999 ********** UPDATE T & NA *********************
3000 T=T*ALPHA
3010 AC=O
3020 NA=NA+MCI
3030 RETURN
3500 '********** UPDATE GLOBAL MIN *
3510 IF CMAX<GMIN THEN 1520 ELSE 3600
3520 GMIN=CMAX
3530 'FOR I=l TO N 'OPTIONAL
3540 ' GS(I)=S(I)
3550 'NEXT I
3600 RETURN
3999 * INTERRUPT FOR GLOBAL MIN *
4000 LOCATE 4,5
4010 PRINT "CURRENT OPTIMAL = " GMIN,"TIME = "TIMES
4020 RETURN

APPEN4DIX F

CONTINUOUS FUNCTION CODE

171

5 '** SOLVING A COTINUOUS FUNCTION -SIMULATED ANNEALING *

10 K=50 ,K=RANGE FOR RANDOM #

11 T=10
12 X=O
14 Y=0
16 C=4*X^2 -64*X +3*Y^2 -42*Y + 24 'FUNCTION
17 PRINT "C= "C
20 TIME2R ON
21 ON TIMER (120) GOSUB 300 '2 MIN TIMER
22 P=P+1
23 IF P=10 THEN GOSUB 200
28 - ***********PERMUTE ************

29 - GEN RANDOM VARIABLE ASSIGNMENTS WITHIN RANGE K
30 TX=INT((1+(2*K))*RND)+(X-K) 'TRIAL X VALUE
40 TY=INT((1+(2*K))*RND)+(Y-K) 'TRIAL Y VALUE
50 TC=4*TX^2 -64*TX +3*TY-2 -42*TY + 24
60 IF TC<C THEN 100
70 XPD=EXP((C-TC)/T)
80 RN=RND
90 IF XPD>RN THEN 100 ELSE 22
100 R=R+1
110 T=T*.5
120 X=TX
125 Y=TY
130 C=TC
138 IF R=10 THEN GOSUB 200
140 GOTO 30
200 K=INT(K*.5) 'REDUCE RANGE FOR VAR VALUES
210 R=0
220 IF K<1 THEN 300 ELSE 230
230 RETURN
300 PRINT "C= "C, fix= fix fly:= fY
310 END

APPENDIX G

JOB-SHOP SCHEDULING CODE

172

1 '********** JOB-SHOP SCEDULING W/SIM ANNEALG * ******

2 CLS
3 FOR I = 1 TO 10: KEY I, "": NEXT I
4 INPUT "THE NUMBER OF MACHINES = ", M
5 INPUT "THE NUMBER OF JOBS = ", J
6 INPUT "THE SEED = ", SEED
7 RANDOMIZE SEED
8 N=M*J
9 INPUT "DO YOU WANT A CONSULTATION SESSION? ", A$
10 IF A$ = "Y" OR A$ = "YES" OR A$ = "y" THEN GOSUB 9000
ELSE GOSUB 4000
11 DIM S(M, J), P(M, J), TJ(J), TM(M)
12 KEY(9) ON
13 ON KEY(9) GOSUB 6000
14 LOCATE 23, 1
15 PRINT , "Fl...STOP", "F2...RESET", "F9.. .SF DATA",
"F10... STATUS"
20 KEY(l) ON
21 ON KEY(l) GOSUB 3000
22 KEY(10) ON
23 ON KEY(10) GOSUB 900
24 KEY(2) ON
25 ON KEY(2) GOSUB 4000
26 A = 0
35 " PROCESSING DATA *
40 FOR L = 1 TO M
50 FOR P = 1 TO J
60 P(L, P) = INT(RND * 10) + 1
70 NEXT P
80 NEXT L
85 "***************** INITIAL CONFIG. *
87 K = 1
90 FOR L = 1 TO M
100 FOR P = 1 TO J
110 S(L, P) = K
115 K = K + 1
120 NEXT P
130 NEXT L
140 'DATA 60,25,10,1,30,75,15,1,2,3,5,1,5,10,30,90
145 'DATA 4,10,11,13,7,2,6,15,9,8,1,16,5,12,14,3
149 "************** CALC INITIAL PROCESSING TIME *
150 FOR K = 1 TO N
160 FOR L = 1 TO M
170 FOR P = 1 TO J
180 IF P > J THEN 600
190 IF S(L, P) = K THEN 200 ELSE 500
200 TJ(P) = TJ(P) + P(L, P)
210 TM(L) = TM(L) + P(L, P)
220 IF TJ(P) > TM(L) THEN 400
230 TJ(P) = TM(L)
240 IF PT < TM(L) THEN PT.= TM(L)

173

250 GOTO 700
260 TM'(L) = TJ(P)
400 TM(L) = TJ(P)
410 IF PT < TJ(P) THEN PT = TJ(P)
420 GOTO 700
500 NEXT P
600 NEXT L
610 'PRINT "PT = "PT,1"K = "K,"MA= "L,"JOB = "P
700 NEXT K
705 GMIN = PT
707 LOCATE 9, 1
710 PRINT "INITIAL PROCESSING TIME "; PT;
720 TIME$ = "0"
799 ********************* PERMUTE *************************
800 IF A > NA THEN 801 ELSE 810
801 T = T * ALPHA
802 IF T < .5 THEN GOTO 3000
803 'IF PT < 145 THEN GOTO 900
805 NA = INT(NA * BETA)
806 A = 9
810 Ml = INT(RND * M) + 1
820 Jl = INT(RND * J) + 1
830 M2 = INT(RND * M) + 1
840 J2 = INT(RND * J) + 1
850 IF Ml = M2 AND Jl = J2 THEN 840
857 SWAP S(MI, JI), S(M2, J2)
858 "GOTO 5000 "FEAS CHECK
859 TPT = 0
860 FOR P = 1 TO J
861 TJ(P) = 0
862 NEXT P
865 FOR L = 1 TO M
866 TM(L) = 0
867 NEXT L
869 GOSUB 1000
870 IF TPT <= PT THEN GOTO 2000
875 X = EXP((PT - TPT) / T)
880 IF X > RND THEN GOTO 2000
885 SWAP S(MI, Jl), S(M2, J2)
890 GOTO 810
899 ************ INTERRUPT - PRINT STATUS ****************
900 LOCATE 10, 1
905 PRINT "GLBL MIN = "; GMIN, "TEMP = "; T, "NA = "; NA
910 PRINT "CRNT MIN = "; PT, "TIME = "; TIME$
920 'FOR L=I TO M
930 FOR P=I TO J
935 PRINT "S(";LP;") = "S(L,P)
940 NEXT P
945 'NEXT L
950 RETURN
1000 "************** CALC TRIAL PROCESSING TIME *
1150 FOR K = 1 TO N

174

1160 FOR L = 1 TO M
1170 FOR P = 1 TO J
1180 IF P > J THEN 1600
1190 IF S(L, P) = K THEN 1200 ELSE 1500
1200 TJ(P) = TJ(P) + P(L, P)
1210 TM(L) = TM(L) + P(L, P)
1220 IF TJ(P) > TM(L) THEN 1400
1230 TJ(P) = TM(L)
1240 IF TPT < TM(L) THEN TPT = TM(L)
1250 GOTO 1700
1400 TM(L) = TJ(P)
1410 IF TPT < TJ(P) THEN TPT = TJ(P)
1420 GOTO 1700
1500 NEXT P
1600 NEXT L
1700 NEXT K
1710 RETURN
1999 ******** ACCEPT CURRENT MIN & CHECK GMIN *
2000 PT = TPT
2010 IF PT < GMIN THEN GMIN = PT
2015 A = A + 1
2020 GOTO 800
2999 ************* PRINT RESULTS & STOP ******************
3000 LOCATE 14, 1
3005 PRINT "GLBL MIN ="; GM!N, "TEMP = "; T, "NA = "; NA
3010 PRINT "CRNT MIN ="; PT, "TIME = "; TIME$
3020 END
3999 ***************** PARAMETER INPUT *

4000 LOCATE 18, 1
4010 INPUT "ALPHA = " ALPHA
4016 INPUT "THE NUMBER OF ACCEPTANCES = ", NA
4017 INPUT "BETA = ", BETA
4018 INPUT "TEMP = ", T
4020 RETURN
4999 "***************** FEAS CHECK ***********************
5000 IF S(1, 1) < S(2, 1) AND S(2, 1) < S(3, 1) AND S(3, 1)
< S(4, 2) THEN 5010 ELSE 885
5010 IF S(2, 2) < S(3, 2) AND S(3, 2) < S(1, 2) AND S(I, 2)
< S(4, 2) THEN 5020 ELSE 885
5020 IF S(3, 3) < S(2, 3) AND S(2, 3) < S(1, 3) AND S(1, 3)
< S(4, 3) THEN 5030 ELSE 885
5030 IF S(4, 4) < S(I, 4) AND S(1, 4) < S(2, 4) AND S(2, 4)
< S(3, 4) THEN 5040 ELSE 885
5040 GOTO 859
5999 ************ SHOP-FLOOR DATA INTERRUPT **************

6000 M3 = INT(RND * M) + 1
6010 J3 = INT(RND * J) + 1
6020 RP = INT(RND * 10) + .
6030 GMIN = PT
6040 P(M3, J3) = RP
6050 RETURN
8999 " CONSULTANT SESSION MODULE ************

175

9000 PRINT "YOUR PROBLEM CURRENTLY HAS "; M;"MACHINES AND
9010 PRINT J; " JOBS. IF THIS IS INCORRECT PLEASE RESTART."
9020 INPUT "FNTEP THE AMOUNT OF PROCESSING TIME AVAILABLE
(MIN) "; DT
9030 PRINT "ENTER THE FREQUENCY OF CHANGE IN THE SHOP-FLOOR
DATA"
9040 INPUT "IN THE FORM: CHANGES PER HOUR "; SFD
10000 IF N <= 16 AND DT >= 10 THEN 11000
10010 IF N <= 16 AND DT <= 2 THEN 12000
10020 IF N <= 16 AND DT >= 2 AND DT < 10 AND SFD > 15 THEN
13000
10030 IF N <= 16 AND DT > 2 AND DT < 10 AND SFD <= 15 THEN
14000
10040 IF N >= 64 AND DT >= 10 AND SFD > 15 THEN 15000
10050 IF N >= 64 AND DT >= 10 AND SFD <= 15 THEN 16000
10070 IF N >= 64 AND DT < 10 THEN 17000
10080 IF N > 16 AND N < 64 AND DT >= 10 AND SFD > 15 THEN
15000
10090 IF N > 16 AND N < 64 AND DT >= 10 AND SFD <= 15 THEN
18000
10100 IF N > 16 AND N < 64 AND DT <= 2 THEN 17000
10110 IF N > 16 AND N < 64 AND DT > 2 AND DT < 10 THEN 12000
10999 "************* SET PARAMETERS ***********************
11000 T = N * 2.5: ALPHA = .9: BETA = 1.1: NA = 10: GOTO
19000
12000 T = N * .5: ALPHA = .9: BETA = 1: NA = 1: GOTO 19000
13000 T = N: ALPHA = .95: BETA = 1: NA = 1: GOTO 19000
14000 T = N * 2: ALPHA = .9: BETA = 1.1: NA = 10: GOTO 19000
15000 T = N * .75: ALPHA = .9: BETA = 1: NA = 1: GOTO 19000
16000 T = N * .75: ALPHA = .9: BETA = 1.05: NA = 21: GOTO
19000
17000 T = N * .5: ALPHA = .8: BETA = 1: NA = 1: GOTO 19000
18000 T = N * 2: ALPHA = .9: BETA = 1.05: NA = 21: GOTO
19000
19000 RETURN

APPENDIX H

ADDITIONAL FORMULATIONS

APPENDIX H

Appendix H presents formulations for zero-one

programming, continuous functions, and linear programming

problems. Results from the literature for various problems

follows the formulation section.

A. Formulations

1. Zero-One Programming

Drexl (1988) formulates a 0-1 multiconstraint knapsack

problem as:

maximize z = I c x
J-1

subject to I aijxj b1 , (i=... m),(j=l, ... ,n)J - xj E 0,]

The variables are partitioned into two sets, those that are

equal to zero and those that are equal to one. We begin

applying simulated annealing with an initial configuration

that has all variables equal to zero. Drexl recommends

setting the initial temperature (control parameter) equal to

half the range of the cost coefficients. More formally,

To = .5 * (max(cj)-min(cj)), for all j. Permutations from

the current configuration are generated by randomly

selecting a variable from the set that are equal to zero.

This variable is then set equal to one and the constraints

177

are checked. If the new solution is still feasible the new

configuration is accepted. If the new configuration is

infeasible, then another random selection is made, but from

the set equal to one. A swap of the variables' assignments

is perform and the constraints are again checked. Once

feasibility is passed, the simulated annealing routine takes

place. The algorithm now follows the same general format as

the TSP. Better solutions are always accepted. Worse ones

are accepted probabilistically, based on the amount of

degradation in the objective function and the current value

of the control parameter.

A job-shop scheduling problem with n jobs and one

machine is polynomially reducible to this form. The

equivalent formulation is:

maximize L,, = pjx
j- 1

subject to I dij xj b i , (i1, . . .,m),(j=l .. ,n)
J-1 xj E 10,11.

Given a set of processing times P=Jp ,p2 ,.... P, l, due dates

d, i=1,2, ... ,n, and a number y, is there a schedule such

that L., = y? Here, the objective is to maximize the use

of the machine or minimize its idle time for a given

processing period.

178

2. Continuous Functions

In the continuous case, the generation of a neighboring

configuration requires the selection of a direction and a

distance. Brooks and Verdini (1988) report that this is

difficult since the optimal direction and step size are not

known prior to any attempt to locate the function's optimum.

These two parameters are also very function dependent.

Their rule-of-thumb is to select values that result in

accepting approximately 60 percent of the detrimental moves.

They ran a simulated annealing algorithm against seven test

problems and compared results to other stochastic search

routines. Results show that the simulated annealing

algorithm is competitive with the other routines for the

size of problems attempted. The added complexity, however,

invl ved in esimating optimal direction and step size

parameters make this appr4och difficult to use in practical

settings. They conclude that the algorithm's sensitivity to

these parameter values necessitates substantial user

expertise to fine-tune the algorithm.

Our appr~och to permuting a neighboring configuration

is to generate a random number close to the current best

value for that variable. By successively narrowing the

range of possible random variables, while also narrowing the

acceptable limits for the temperature parameter 0, we can

gradually hone-in on the optimal values. 8 serves to limit,

in stages, the width of acceptable "bouncing around." While

179

large moves are initially tolerated, once we've selected a

set of values for the function, we then approach the minimum

with only small departures being tolerated. This approach

is aimed at avoiding getting "stuck" in a local minimum.

The pseudo-code is shown below:

INIT: set values for variables: x0, yo, 0, K, a, B

calculate the cost c=f(xo ,yo)

GEN: while P < 20

generate random values for x and y within +K of their

current values

calculate the temporary cost ct=f(x,,y,)

if c, < c then update

xp=exp((c-ct)/T)

if xp > rnd(0,l) then update, else P=P+l:goto gen

UPDATE: r=r+1

8=0 * a

X=Xt

y=y,.

C=ct

if R=10 then gosub narrow

180

NARROW:K=K * B

if K<I then end

R reset to 0

return

END: print c, x, y

stop

Figure H.1 Pseudo-code for a continuous function using

simulated annealing.

It is important to know something about the shape of

the function we are attempting to optimize in order to

correctly and efficiently set the parameters 0, a, K, P, and

R. For a given function f(x,y), we set initial values for

the variables x, and y, and their bounds +K. This

establishes the range for the random numbers we will be

testing. R sets the number of repititions within each

temperature setting (i.e. before decrementing the

temperature, 0 = 0 * a). Finally, P sets the number of

repitions within a temperature setting when no better

solutions are found and B is the decrement factor for K. To

prevent the technique from initially finding a local minimum

and failing to move to the global minimum we must set P

fairly high.

181

This method was applied to four verifiable functions

and in all cases quickly arrived at the minimum. The

functions and there optimal values are shown below:

1) F(x,y) = 2x2 - 16x + 3y 2 + 50

c=18 x=4 y=O

2) F(x,y) = 4x2 + 3y2 - 64x - 42y + 24

c=-379 x=8 y=7

3) F(x,y,z) = 4x 2 + 3y 2 + 2z2 - 64x - 4 2y - 8z + 24

c=-387 x=8 y=7 z=2

4) F(x,y,z,w) = 4x 2 + 3y2 + 2z2 - 64x - 42y - 8z + 24

+w2 -100w

c=-2887 x=8 y=7 z=2 w=50

Here, Simulated Annealing is seen to offer a good

heuristic approach to getting close to optimal solutions in

a short amount of time. In the first three cases above, the

182

optimal values were found in approximately 30 seconds. In

case four it took 62 seconds, but a very close solution was

found (c=-2885, x=8, y=7, z=3, w=50) in 22 seconds. This

routine could also be used in conjunction with another

optimization technique (Hooke-Jeeves Pattern Search,

Powell's Conjugate Direction) in an effort to incorporate

the speed of the traditional method while using Simulated

Annealing to avoid getting trapped in a local minimum.

This use of Simulated Annealing differs from the

application to combinatorial optimization problems, in that

there are an infinite ner of possible solutions to test,

whereas in optimizing combinatorial problems there are a

finite number of arrangements or states. Also,the movement

to a new state (set of variables) depends more heavily on

the prior state. Once the integer portion of a variable is

set it can not be changed as you move to values of K less

than 1. In the discrete case this movement is not

restricted, unless it requires movement through a higher

cost state and the temperature parameter 0 has reached a

relatively low value.

The next formulation presented is for the flow-shop

problem.

183

3. A Linear Programming Formulation

The linear programming (LP) example is presented as

merely a demonstration of the flexibility of this algorithm.

It is not the recommended solution technique for solving

LPs. Problem formulation takes the standard approach of the

previous examples with the exception that we now include a

constraints module. After generating random values for the

decision variable coefficients, the constraints are checked

to ensure feasibility. If any of the constraints are

violated the trial solution is discarded and a new set of

coefficient assignments is generated. After a feasible

trial solution is obtained the trial objective function

value is calculated and the simulated annealing algorithm is

resumed. Another modification is made in the generation of

coefficient values. A permutation is simply a set of

coefficient values. We generate random assignments within a

range K. After a number of accepted transitions, we reduce

this range around the current values of each decision

variable. If X and Y are decision variables with current

coefficient values of 3 and 8 respectively and the range K

is set at 2, then the random generator will select values

for X between 1 and 5 and values for Y between 6 and 10.

This is accomplished with the BASIC statement:

TX = INT((l+(2*K))*RND) + (X-K)

The following problems were solved and verified through a

commercial software package (LINDO).

184

1) Min Z = 2X + 5Y

Subject To: X < 4

Y <_ 3

X + 2Y < 8

X 2! 2

Y k 1

Solution: Z=9, X=2, Y=I Time: 3 seconds

2) Max Z =3X + 5Y

Subject r" X < 4

2Y < 12

3X + 2Y < 18

X,Y -> 0

Solution: Z=36, X=2, Y=6 Time: 2 seconds

3) Max Z = 2X + Y

Subject To: Y < 10

2X + 5Y < 60

X + Y < 18

3X + Y < 44

X,Y k 0

Solution: z=31, X=13, Y=5 Time: 7 seconds

Solving the same set of probelms in LINDO yields the

same solutions in approximately 1.2 seconds on an IBM XT.

185

Problems 2 and 3 are taken from Hillier and Lieberman

(1980).

To demostrate how essentailly the same formulation can

be used to solve quadratic problems, the first problem is

modified to: Min Z = 2X2 + XY + 5Y subject to the same set

of constraints. The same solution was found. Another

problem from Hiller and Lieberman (1980) is shown below.

Max Z = 5X + Y - (X-Y)2

Subject To: X + Y < 2

X,Y 0

Solution: Z=7, X=1.5, Y=.5

This again is simply a demonstration of the flexiblilty

of the simulated annealing algorithm.

B. Results From the Literature

Most of the analytical results found in the literature

are derived from the traveling salesman problem. Other

problems have been studied, such as chip design and binary

programming, but not nearly as extensively as the TSP.

Therefore, we shall present the findings with primary

emphasis on the TSP.

186

1. The Traveling Salesman Problem

Cerny (1985) uses the TSP as a test case for evaluating

the simulated annealing algorithm's ability to find an

optimal solution to carefully designed problems. The

structure of the algorithm is presented in Chapter IV. The

permutation mechanism is termed a 2-opt transformation.

Here, two randomly chosen nodes (cities) are selected as

endpoints and the tour between them is reversed.

The first case contains 100 points uniformly

distributed on a unit circle. The optimal path is clearly

the one that forms a circle, and its length is reported as

6.28 units. The starting point is a randomly chosen path

that has length 150.9 units. Simulated annealing is applied

starting at a high value for the temperature parameter

(T=.l). Figure 4.1 shows a plot of the algorithm's

performance. Each point corresponds to the length of the

current path after every 200 Monte Carlo trials. The

picture shows the behavior expected of the physical

annealing process. Equilibrium is approached after

approximately 4000 trials, with a corresponding average

length of 20. After approaching equilibrium, the control

parameter (T) is decreased. This has the effect of

restricting the size of acceptable higher-cost paths. Cerny

reports that after 25,000 trials the optimal path is found

with a length of exactly 6.28. This corresponds to finding

one of 99! possible configurations.

187

Since this represents a rather special geometry, the

author performed the same procedure on an embellishment of

the unit circle. Staring with the same configuration of

points, Cerny randomly alters the points slightly so that

the optimal path is the same as above, but the geometry is

completely different. This is shown below:

D(i,j) = D(i,j) + P, + PJ , i,j=1,2,..., 00,

where D(i,j) are the distances given by the previous

example

100

and [Pil 1 = set of randomly chosen numbers.

Cerny then sets up a test case to see if the algorithm

eliminates quickly configurations that are far from optimal.

He distributes 200 points randomly within two unit squares,

which are ten units apart. Odd points lie in one square and

even points in the other. The starting configuration is

arranged 1,2,3,...,199,200. The associated path has 200

jumps across squares. Cerny reports that after 12,000

trials at a temperature 3etting of T=O.01 the algorithm

correctly eliminated 198 unnecessary jumps.

The intent of the past three examples is to illustrate

that the algorithm does eventually converge to optimality.

Obviously, for practical implementation we must set the

188

parameters to find near optimal solutions in less than

12,000 Monte Carlo trials.

In a real industrial application, Lin and Kernighan

(1973) used simulated annealing to route a laser drill to

318 hole positions. Numerically controlling a drilling

machine efficiently through a set of hole positions is a TSP

problem. If the drilling time outweighs greatly the travel

time then there is little advantage associated with an

optimal path. However, with drilling being performed by

pulsed laser, almost all of the cost is in travel time. The

problem was solved earlier by hand (by R. Habermann). The

tour found by simulated annealing is quite different than

the hand derived solution and is .85 inches shorter (41.883

inches versus 42.739 inches). Although the difference is

not great, if the drilling procedure is repeated by several

machines per day, the savings can be substantial.

Skiscim and Golden (1983) investigate the performance

for different size TSPs and compare it to local search

heuristics. A portion of their results are shown in Tables

H.1 and H.2.

189

Table H.1

Summary of Computational Results (Skiscim, 1983)

Best
No. of Known Swaps/ Base CPU +1 CPU -1 CPU
Nodes Sol'tn Epoch (%over) (secs)

60 290.28 50 4.69 290.8 3.39 181.0 .0 829.9

70 300.21 50 .0 1296.9 5.96 1314.2 .7 1217.2

75 303.09 50 5.3 1000.9 3.66 984.6 2.2 921.4

80 314.15 5 1.9 401.1 9.22 509.8 7.4 455.6

85 323.45 25 8.6 1002.1 2.31 1142.7 .2 1278.8

The column titled Swaps/Epoch needs some explanation.

The term epoch refers to the interval between equilibrium

testing. The authors perform a simple test to determine if

equilibrium is being approached prior to decreasing the

temperature parameter. An epoch consists of n attempted

transformations of the current path, or swaps. If

equilibrium is not attained, based on their test, another n

swaps are attempted. Thus a number of epochs elapse prior

to reaching equilibrium. Node locations are obtained from a

uniform random number generator, filling a rectangular

space. Their cooling schedule allows for, a rule of thumb,

25 temperature levels. The +1 case adds one to every

temperature greater than one and the -1 case subtracts one

190

from every temperature greater than one. Thus +1 accepts a

greater number of "worse" paths. Table 4.1 only shows

entries in the table that contain the best solutions. For

example, we do not show 50, 25, 15, and 5 swaps/epoch cases

for all of the five TSP instances.

Results regarding the impact of problem size are not

too surprising. As the problem size increases, the running

time also increases.

Table H.2 shows similar results for a 2-opt heuristic

that only accepts configurations that are of shorter

distances. The algorithm is started from 15 different

initial configurations.

191

Table H. 2

Repeated Application of the 2-OPT Algorithm (Skiscim,1983)

No. of Best Known 2-OPT Best CPU
Nodes Solution Runs (% over) (secs)

5 1.53 200.12
60 290.28 10 1.53 403.31

15 0.00 604.92

5 1.46 380.14
70 300.21 10 0.69 766.19

15 0.00 1152.34

5 3.86 533.25
75 303.09 10 2.86 1056.50

15 1.51 1598.25

5 2.41 673.45
80 314.15 10 0.81 1373.43

15 0.81 1905.98

5 3.10 737.48
35 323.45 10 1.56 1495.93

15 0.82 2257.08

The authors conclude that numerous efforts to find a

set of parameters failed to arrive at an annealing schedule

that performed consistently well. Repeated application of

the 2-opt algorithm appears to outperform simulated

annealing for the smaller size TSPs. The 2-opt appears to

have a barrier of about .8 percent above optimal that is

difficult to break through. The authors recommend further

testing with a different density function for the

probability of acceptance and investigating

probabilistically accepting small decreases in the objective

function.

192

Kirkpatrick (1984) examines the potential for using

simulated annealing on very large TSP instances. Here, he

considers an actual industrial engineering problem, drilling

6,406 holes in a printed circuit board with an automatically

positioned laser. The approach is to begin with a "greedy"

heuristic to find the initial path and apply the 2-opt

permutation mechanism to rearrange current paths. After 20

minutes of cpu time its path was 25 percent shorter than the

one arrived at using the greedy heuristic alone.

2. Zero-One Programming

The zero-one programming problem is described by

looking at a prototype knapsack problem. Here, the hiker

must choose items to pack in his knapsack. Each item has an

associated value to him and an associated weight and volume.

The objective is for him to maximize the total value of all

items packed subject to weight and volume restrictions. The

formulation is shown below:

Maximize z = E cixi
J-1

Subject to: I a b (i= m),(j=l,....n),
i1' xi E[0,1

Drexl (1988) examines the performance of simulated annealing

compared to a greedy heuristic that only accepts transitions

to more optimal configurations. Table H.3 shows results

193

from 57 test problems taken from Freville and Plateau (1982,

1987). PROEXC (probabilistic exchange) is the simulated

annealing routine using the 2-opt permutation. DETEXC

(deterministic exchange) only accepts transitions to

configurations that are more optimal. In all cases the cpu

time is fixed for the comparison. An IBM 3090/200 computer

was used for the analysis.

Table H.3

Results From Literature (Drexl, 1987)

PROEXC CPU time DETEXC
Problem m n Gap to Opt (%) (millisec) Gap to Opt (%)

Wei Shih
26 5 90 1.00 65.3 1.52
27 5 90 0.00 68.2 3.03
28 5 90 0.26 64.6 0.73
29 5 90 0.98 33.7 1.36
30 5 90 0.48 35.7 2.53

Petersen
1 10 6 0.00 0.7 0.00
2 10 10 0.00 5.4 0.64
3 10 15 0.00 4.1 0.25
4 10 20 0.16 1.0 1.47
5 10 28 0.08 10.5 0.24
6 5 39 0.32 31.3 1.06
7 5 50 0.56 36.8 8.86

Hansen, Plateau
1 4 28 0.37 9.3 2.87
2 4 35 0.42 19.0 4.52

Weingartner
1 2 28 0.00 17.8 0.67
2 2 28 0.63 22.8 4.76
3 2 28 0.27 17.6 1.05
4 2 28 0.00 12.9 2.95
5 2 28 0.49 25.0 3.05
6 2 28 0.13 15.6 0.00
7 2 105 0.10 127.8 0.38
8 2 105 0.68 71.1 1.96

Senju, Toyoda
1 30 60 0.00 31.4 1.16
2 30 60 0.25 49.4 0.23

194

Fleisher
1 10 20 0.78 3.4 2.01

Freville, Plateau
1 4 27 0.79 9.2 3.53
2 4 34 0.41 15.5 5.48
3 2 19 0.17 10.1 0.00
4 2 29 0.41 10.1 4.48
5 10 20 0.79 3.0 2.01
6 30 40 0.00 12.2 7.73
7 30 37 0.10 10.5 2.13

One of the results is that the algorithm finds good

solutions very fast. In all cases the solution found is

less than one percent away from the optimal solution. The

deterministic exchange algorithm usually performed worse

with gaps ranging up to about nine percent. This is a

partial table, showing results for 33 problems. Looking at

results for all 57 problems, the optimal solution was found

in 23 of the cases (40 percent). Currently, a restricted

branch and bound approach developed by Gavish and PLrkul

(1985), which terminates early, seems to work the best for

problems with m<5.

The author concludes that simulated annealing is fast

and easy to implement. Thus, it is a very attractive

alternative to existing methods of solving zero-one

programming problems Drexl (1987).

195

C. Results from the Modified TSP Formulation

Although the traveling salesman problem gives good

results in a reasonable amount of time, the major drawback

to its implementation is the lengthy search times needed for

convergence to the global minimum. Results for various

sizes of the TSP are given in table H.4.

196

Table H.4

Results for the Traveling Salesman Problem

5 Nodes

SA-NE SA-UN Branch & Bound
19 19 19
15 15 15
16 16 16
19 19 19
12 12 12
16 16 16

8 Nodes

SA-NE SA-UN Branch & Bound
19 19 19
20 20 20
15 17 15
14 14 14
14 14 14
26 26 26

10 Nodes

SA-NE SA-UN Branch & Bound
21 26 21
18 20 18
17 23 16
20 25 20
15 18 14
27 32 26

At this point it was noted that the search was not spending

a sufficient amount of time near the local minimums. In an

effort to force it to spend more time searching this region,

197

modifications to the programs were made. The columns titled

SA-ANE and AE-AUN in Table H.5 are the standard forms, but

now the algorithms force the route to be near the average

for that control parameter setting prior to decrementing the

control parameter. A new parameter is also introduced. Beta

increases the number of accepted routes that must be found

prior to decrementing the control parameter. As the search

progresses, the number of accepted routes increases and the

algorithm spends a greater amount of time searching the

regions near the local minimum. Table H.5 shows the impact

of these modifications.

Table H.5

Results for Larger Traveling Salesman Problems

12 Nodes

SA-NE SA-UN SA-ANE SA-AUN Branch & Bound
30 28 26 26 26
25 24 21 22 ERROR
24 26 19 21 19
21 24 19 19 19
24 23 19 20 19
30 32 28 30 28

198

15 Nodes

SA-NE SA-UN SA-ANE SA-AUN Branch & Bound
37 37 31 34 29
38 40 31 30 27
31 36 24 26 19
41 42 32 33 28
29 31 27 27 23
35 40 33 29 28

The error entry for the branch and bound routine resulted

from an insufficient memory message sent by the computer.

Forcing a configuration near the average for each value of

the control parameter and requiring more acceptances at

lower levels of the search yields better solutions.

Comparing the columns SA-NE and SA-ANE (ANE for average,

negative exponential) we see that in all 12 cases we

achieved shorter routes. Similarly, looking at SA-UN

versus SE-AUN we again obtain better solutions in all 12

cases. Comparing the standard form against the version with

a modified uniform acceptance function, it appears that the

standard form gives better solutions.

When considering that most of the cases returned

solutions in less than one minute on an 80386 machine and

that the 15 node problems have 15! (1.3 trillion) possible

solutions, the results indicate potential application in a

real time setting. A 112 node TSP returned an initial

solution with a distance of 595 units. After 9 minutes and

16 seconds of run time the solution was reduced to 304 units

199

- almost a fifty percent decrease in less than ten minutes.

After approximately 26 minutes the solution was further

reduced to 286 units.

Comparing the different versions of simulated

annealing, we can see that the modifications result in

improved solutions. In both SA-NE and SA-UN, forcing the

algorithm to move to an average (quasi-equilibrium) at each

level of the control parameter results in improved final

solutions. This can be seen by comparing SA-NE with SA-ANE

and SA-UN with SA-AUN. Versions with negative exponential

and pseudo uniform acceptance functions perform equally

well.

Biographical Sketch

James Scott Shedden
. He graduated from high school in Maumee, Ohio

in-1973 and attended the Unites States Air Force Academy
from which he received the degree Bachelor of Science in
Organizational Behavior in June 1977. Upon graduation, he
received a commission in the USAF. In December of 1984 he
was awarded a Master of Science Degree from the Air Force
Institute of Technology in Dayton, Ohio. His most recent
assignment was program manager in the B-IB Bomber Program
Office, Wright-Patterson Air Force Base, Ohio. In August,
1987 he began his doctoral studies at Arizona State
University. He is currently the liaison officer for 37 Air
Force officers assigned to Arizona State University.

