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ABSTRACT: This work deals with the quantum dynamics of a narrow band

particle interacting with phonons and static disorder. The present theory is exact in

the limit of small band width compared with the Debye energy, and covers various

regimes in the parameter space of temperature and disorder strength. Therefore.

the theory provides a unified framework for studying when and how the particle

motion changes from coherent band like behavior to incoherent hopping, as the

temperature and/or disorder strength are increased. The theory also includes the

double well problem as a special case, where rather complete description of the

particle motion is obtained.
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1. Introduction

In this paper, we study the quantum dynamics of a narrow band particle moving in

the bulk or on the surface of a crystalline solid. We are interested in the case where only

the lowest level of each potential well can be occupied, and where the particle moves from

one well to the next through quantum tunneling. We are concerned with the influence of

phonons and static disorder on the particle motion. In particular, we want to know when

and how the particle changes its behavior from coherent band like motion to incoherent

hopping.

This is an old problem with lasting interest. It has been the subject of small po-

laron theories[I-71, and is one of the central issues on quantum diffusion of light atoms or

muons[8-14]. In the general context of quantum dynamics with dissipation. the present

s-ystem serves as a fine model for the so called super-ohmic coupling category.j5-21]

The main objective of the present work is to develop a general theory which is exact

in the limit of small band width compared with the Debye energy of the phonons. The

theory will be valid for essentially the whole parameter space spanned by the temperature

and disorder strength. It therefore not only unifies earlier theories for the various regimes

of the parameter space, but also make it possible to investigate the intermediate regions

where transition from coherent to incoherent motion of the particle takes place.

The physics of transport phenomena usually has three levels of description: micro-

scopic, macroscopic and intermediate. On the macroscopic level, one observes a hydrody-

namic law such as a diffusion equation characterized by a diffusion constant depending on

temperature, isotope mass, etc. On the microscopic level, one tries to single out the part

of the microscopic system which is eventually responsible to the macroscopic phenomenon

and which is describable by the Schroedinger equation. These two worlds are connected

by an intermediate level, where one describes the system in terms of VIarkovian equations

involving a few degrees of freedom. Boltzmann equations and master equations are such
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examples. It is only on this level of description that the question of quantum coherence

is relevant. On the microscopic level everything is coherent. On the macroscopic level ev-

erything is incoherent (excluding, of course, particular systems such as a superfluid). We

emphasize that quantum coherence is not equivalent to the Markovian nature in the trans-

port equations. It has something to do with the quantum uncertainty between position

and momentum. In this paper, the particle motion is termed 'incoherent' if it is Markovian

in position basis. The usual Boltzmann equation is Markovian only in momentum basis.

and therefore describes a coherent motion. Further refinement of this notion will be done

in the text.

The derivation of transport equations usually starts from the microscopic level, follow-

ing totally different routes for cases with qualitatively different behaviors. Unfortunately.

such an approach can draw, at best, scattered pieces of a whole picture. and is unable

to answer questions like how a transition from coherence to incoherence takes place. For

example, the conventional small polaron theory follows such a practice. For the low tem-

perature side, one starts with the renormalized Bloch states, and uses perturbation theory

to determine their life times. When the inverse life times are smaller than the renormalized

band width, the particle motion is said to be coherent. When the inverse life times are no

longer small for high enough temperatures, it is said that the original picture of coherent

motion breaks down. The theory for the high temperature side then takes a totally differ-

ent route: one starts with the unperturbed site diagonal states. and then uses perturbation

theory to calculate the rate of transitions.

The path integral approach of Leggett et al[19] was designed to give a consistent

picture of the particle motion in various regimes. Their non-interacting blip approximation

works remarkably well for the subohmic and ohmic cases, and has correctly predicted a

bias induced transition from coherent to incoherent tunneling for the superohmic case.

The approximation fails, however, for the intermediate region. It is valid in both the zero

bias limit and the large bias limit, but for totally different reasons. Recently, Gorlich et
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al[20] made an improvement of the approximation, giving correct result also for moderate

bias. However, it is still not clear how their results may be generalized to high temperature

cases and multi-site problems.

In this paper. we take a different approach. We start with a path int:gral represen-

tation of the transition probability for the particle to move from one place to another in

time t. This is a path integral defined in the phase space of the particle, i.e., the space

spanned by the two position variables appearing in the particle density matrix[22]. The

phase space path integral defines a phase space propagator (or Green function). A Dyson

equation is then obtained by regrouping the terms of a diagramatic expansion of the prop-

agator in some small parameter to be specified below. The first order approximation of the

self-energy operator then reduces the original many body problem involving the phonons,

essentially to a single particle eigenvalue problem in the phase space of the particle[23-25].

This provides a very convenient basis for further explorations of various regimes and their

inter-connections.

For a heavy particle such as the hydrogen atom, the tunneling energy splitting is

extremely small compared with the Debye energy of the lattice vibrations[12,131. The

ratio of the two energy scales provides us with a small parameter. Our theory is based on

a systematic expansion in this small parameter. Truncation after the first nontrivial order

should give a very good approximation. This is somewhat in line with the philosophy of

the small polaron theory of Holstein[I] which also treats the tunneling energy splitting as a

small parameter, but we do not make a priori assumptions on the character of the particle

motion (band motion or hopping). The noninteracting-blip approximation of Leggett et

al[19] was also designed to take advantage of this small parameter, but our theory is more

systematic.

Equipped with our general theory, we have studied the particle motion in various

regimes: low temperature versus high temperature, weak static disorder versus strong

disorder, and two wells versus an array of wells. We have rederived the transport equations
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in various extremes of the parameter space and revealed once again the fact: the particle

motion is coherent at temperatures low compared with the Debye temperature and with site

energy disorder weak compared with the renormalized tunneling energy splitting; whereas

the motion is incoherent at either high temperature or with strong disorder. The results

on decay rates and diffusion constants have been reproduced exactly. We have given a

very detailed analysis for the two well case, and have obtained rather complete results for

the time dependence of the interwell transition probability.

The organization of the paper is as follows. In Section 2, we set up our system

Hanmiltonian, define our problem, and derive an exact path integral expression for the

transition probability. In Section 3, we make a systematic expansion of the expression.

and derive a simple yet general result, useful for later explorations. Section 4 is devoted

to the two well case. where the effects of temperature and disorder are studied in great

detail. In section 5. we study the case of low temperature and large site energy disorder

for an array of wells. In section 6, we consider the translationally invariant case at low

and high temperatures. Finally, we discuss and conclude in Section 7.
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2. General formulation

2.1 -The system and the problem

We begin with a discussion of the Hamiltonian governing the motion of our system.

Consider first the case of an external particle moving in or on the surface of a crystalline

solid. A particular example in our mind is a hydrogen atom (or its isotopes) moving on

the tungsten surface[12,13.26,27]. When the lattice atoms are fixed at their equilibrium

positions, the particle sees a periodic array of potential wells. We assume that the tem-

perature is sufficiently low such that only the lowest level of each potential well can be

occupied. This is appropriately described by a tight binding model. Let Ix > be the

Wannier state corresponding to a well centered at x, and the particle tunnels from one

well to another according to

Hp Ix>= elx> +AZ Ix + 1>, (2.1)

where e is the site energy and A the tunnelling energy splitting, and I is a vector connecting

nearest neighboring sites.

The motion of the lattice atoms is described by a phonon field whose Hamiltonian in

the absence of the external particle is given by

HL -: hwkakak (2.2
k

twhere ak creates a phonon of wave vector k (a mode branch index is omitted for simpler

notations). When the lattice atoms are displaced from their equilibrium positions, the site

energies of the particle also change. To first order in these displacement, the site energy e

changes by

H 1  g(k)e'kX(ak + at k) (2.3)I-V/:- k

where N is the total number of lattice atoms. The actual form of g(k) depends on the type

of interaction between the particle and the lattice atoms.[28] In an ionic crystal, the particle
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interacts strongly with the optical longitudinal phonons through the dipole field that they

generate. The coupling function takes the form g(k) = tK/k, where r, is independent of

the particle mass. In a piezoelectric material, the particle also interacts strongly with

the acoustical longitudinal phonons. The coupling function is g(k) = (c(k)//Vj, and it

is again independent of the particle mass. In Appendix A, we give a derivation of (2.3)

for a short ranged repulsive interaction, where we find that the particle interacts with the

longitudinal phonons with a coupling function g(k) -, k/xi' for small k. The overall

energy scale of the coupling is of the order of

be Wdl 2  (2.4)

In this expression. be is the energy level spacing in a well, M the mass of the lattice atoms,

Wd the Debye frequency of the lattice, and I the lattice constant. The coupling strongly

depends on the particle mass through the level spacing &e.

If (2.3) is the only form of particle-phonon interaction, our system Hamiltonian is

then given by

H 0tt = Hp + HL + HI. (2.5)

Before we proceed further, we would like to remark on the reality of this Hamiltonian. The

reduction of the original continuous system to the tight binding form has been worked out

in various ways. Sethna[29] has given a quite detailed analysis, showing that the different

reduction schemes are equally valid, but the interpretation of A may be different. Our

interpretation of A as the bare tunneling amplitude relies on the assumption that the intra

well level spacing is large compared with kBT and with the Debye energy. Second. the

hopping amplitude A may also have an explicit dependence on the the positions of the

lattice atoms and therefore giving rise to an off-diagonal coupling to the phonons. This

is the so called 'effect of fluctuation preparation of barrier'. [30] It is estimated, however.

that this effect is not important for a low mass particle, such as a hydrogen atom. moving

on a heavy substrate, such as the tungsten metal.[31]
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The Hamiltonian (2.5) is translationally invariant. In our later discussions, we will.

however, generalize our system to include situations without translational invariance: 1

the site energies may have a positional dependence, and 2) only a subset of the sites may

be accessible to the particle. We thus modify (2.1) to

Hpix>= e xx> +A ZIx + 1>, (2.6)

where {x} is the tight binding lattice or a subset of it. Due to the smallness of the tunneling

energy splitting, static disorder due to impurities or strain can play an important role. Also.

the inclusion of a two site case allows for a very detailed analysis of the fundamental step

of the particle motion, and allows for direct comparison with results in the literature.

We wish to study the following problem. Suppose the particle was at xo at time

t=O. and the phonons were in equilibrium at temperature T with the particle fixed at x0 .

we ask for the probability of finding the particle at xf at later times, regardless of the

final states of the phonon field. It is however more convenient to pose the problem in an

alternative but equivalent way.[9] We take a time to in the distant past. We set up the

initial distribution of the system as

Ptot(to) = Ix0 >< xole-;HL /tr(e - 3HL), (2.7)

where 3 = 1/(kBT). Wc then allow the system to evolve according to

Htot(t) = Hp(t) + HL + H1 . (2.8)

where Hp(t) is the same as given in (2.6) but with A replaced by AO(t), with 0(t) being

the unit step function. We finally take to --- - o, and ask for the probability P(xf.xo. t)

of finding the particle at xf at time t > 0. The evolution of the system in the infinite

time interval (to < t < 0) should have prepare the system at t = 0 in equilibrium with the

particle fixed at xO.



2.2 -Path integral expression for P(xf, xO, t)

In this subsection, we will derive a path integral expression for the probability

P(Xf'xo,t). The mathematical details will be presented in Appendices B and C and

references therein. Here we just illustrate the basic ideas and establish notations used

throughout this paper. It is sufficient to know the reduced density matrix p(t) for the

particle, defined as the total density matrix of the system with the phonon degrees of

freedom traced out. In the absence of the particle phonon interactions, the reduced density

matrix satisfies the Liouvillian equation

P(x. y' t)= £P(x.y; x'y'; t)PX y, t), (2.9)
-- x ,y,

where Cp is the Liouvillian operator corresponding to the particle Hamiltonian Hp(t).

defined as

'Cp(x. y: X"Y','t) =+{<xIHp(t)Ix' ><y'y> - <xlx'><y'jHp(t)y>}, (2.10)

which is nothing but the commutator [Hp(t), . J/(ih).

The Liouvillian equation (29) has the same linear structure as the Schrodinger equa-

tion. The real space x is replaced with the phase space (x, y).[221 The wave function

is replaced with the density matrix. The Hamiltonian is replaced wit'i the Liouvillian.

Therefore, all the algebraic techniques developed for solving Schrodinger equations can be

transplanted here. In order to simplify notations. we will now on denote the pair (x. y)

by z. so that p(zt) = p(xy,t) and Cp(z,z',t) = £Cp(x,y;x',y';t). Also, it will be con-

venient to introduce a 'bra-ket' notation (not to be confused with those for the states as

in (2.10)) fcr the quantities in the linear equation (2.9):

P(t) > - p(z)Iz >

Z'

= =p

< ztz'I > = ,' = 6X,,s6YY,.
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Equation (2.9) can then be written as

0,
IlpOt >= £,p(t)Ip(t)> . (2.12)

This is integrated with the initial condition Ip(to) >= zo>, z0 -- (x0 . xo). yielding

Ip(t) >= 't dt,, dt,-1 .. t2 d

n= 0 tt 0  (2.13)
x ec.0t)Z~nZ~n1).. 1)Z >.

where

Zh(t) = e - h (t-t)th(t)e. (t-to) (2.14)

with C, (time independent) corresponding (as in (2.10)) to the site diagonal part of Hp(t)

and Ch(t) corresponding to the hopping part of Hp(t). The probability of finding the

particle at xf is then given by

SP(t) >= E dt dt.- 1.. dtr
n=0 f0 f0 ft{,

X <ZfI.Ch(tn) IZ,-I>< Zni )Ch(t,_- z1 -2> ... < Z 11h(ti )IZo> (2.15)
n

x exp{ A(z,)(t+ -t),

J=0

where z, = (xj,y,) with yI = xf. and A(z,) = (E,, - 6y, )/(ih).

The expression (2.15) is in fact a sum over all possible paths Z, in the phase space

starting at z0 and ending at s1 . A particular path is specified by the number of jumps n.

the jumping instants {t, }. and the -positions' {zj } between the jumps. More specifically.

a path z,. of n jumps is a sectionally constant function of time 7. given by

- .,, fort, < 0 t,+ , j 01... n, (2.16)

where t,.+ = t. The weighting factor is a product of jumping amplitudes and the phase

factors accumulated between the jumps due to the site energies.
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In the presence of interactions with the phonors, the expression (2.15) is modified by

inserting an influence functional as (see Appendix B)

< Zfjp(t) >= E I d, dtn- ... dt 1
n=0 t{i zj

X <Zf[Lh(tn)jZn-1 >< Zn.-.1 ILh(t n.1 )z.- 2 > ... <z LCh(tl)IZo> (2.17)
n

x exp{5 A(zj)(t,+i - exp(D[z]),
J =0

where
] - ds Ig(k)12

Jt , t. k

x (eikxr - e kY,)[Yk(7 - s)e - kx ' - .,(r - s)e- kY]. (2.18)
2

Yfk(7) - eAWk - 1 cos(kr) + e- i' kT.

The influence functional fully takes care of the effects of the phonons on the particle

motion.

With some tedious but straightforward manipulations (see Appendix C), the expres-

sion (2.17) can be rewritten as

< z-fP(t) >= E dt/ dt- 1 ... dt,
n=O JJ {- }

x <Zf-.hIZn.-l ><z.- 1 ,-hCjZ-2> ... <zi C1--zo> (2.19)

n

xexp{A(zo)ti + 5 A(zj)(tj+l - tj)} 1. F1j,
j=1 nj J '

In this expression eh is the renormalized hopping Liouvillian operator. given by
<.lZhl'>= A {< xIx' + l><y'ly> _ <xx >yy+1>

A 1 (2.20)

A =exp{-~ > J(k)coth(Jhwk/2)1 - ekll 12},
k

with 11 being any one lattice vector among those of the nearest neighboring ones {1}. and

F,, is an influence factor given by

Fjj, = F(tj - tj,, jzj-l,zj,,z ,)

-- exp{- E J(k){(coth(^lI,,k/2)COS Wk(tj - t') (Uj - Uj-1)(Uj, - Uj,_i) (2.21)

k

-isin wk(tj - tI)(U 3 -- I - 1 )(V*, - V

11



The other quantities in the above expressions are defined as

J (k ) =- h k ) 2'
N(h~k )2

= eikxi _ e i k y , (2.22)

17, =eikxi + ei ky i .

And it is understood that U- 1 = V-1 = L,, = 0.

It is seen that the hopping energy A gets renormalized by the phonons. The renor-

malization factor is just the usual Frank-Condon factor in small polaron theory.[1] In the

next section, we will have a closer examination of the physical contents in the expressions

(2.19)- (2.21), and will present a useful approximation scheme to evaluate them.
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3. The 'rare hopping' approximation

-Diagram expansion

In the last section. we have derived a path integral expression (2.19) for the probability

of finding the particle at xf at time t > 0, assuming the particle was at xo at t = 0. and

that the phonons were in equilibrium with the particle fixed at x0 . The effects of the

phonons on the particle motion come in two ways: 1) to renormalize the hopping energy

A by the Frank-Condon factor (2.20), and 2) to dress up the particle propagation by

the influence factors Fj, (2.21) for each pair of hopping events. An influence factor Fj,3

depends only on the time difference (tj - tj,) between the two hopping events, and on the

.positions' immediately before and after each of the hops. From now on. we will use the

expression (2.19) as the formal definition of a propagator, G(zf, z0, t), even if Zo and zf

are not in diagonal form. For diagonal (zf, z0 ), G coincides with the propagator of the

reduced density matrix.

If the influence factors were unity, the expression (2.19) would be equal to

< z/fe(4"+Ith)tlzo >= Go(z 1 , Zo, t), (3.1)

that is, the particle would propagate under the action of the renormalized particle Liou-

villian

LP = C, + 'Ch. (3.2)

The typical time scale between two hopping events is h/ .

On the other hand, an influence factor differs appreciably from unity only in a typical

time scale of 1/wd, assuming that the coupling function J(k) varies smoothly. There is. in

general, a long time tail (decaying to zero as an inverse power of time) in Fj,, - 1 associated

with the low frequency end of the phonon spectrum, but this will be small due to the small

spectral weight there.

13



We will now on treat A/(hwd) as a small parameter. It is then useful to write

rjj, = 1 + (Fjj, - 1), (3.3)

and to expand the product H- Fj3 , in (2.19) in powers of (Fjj, - 1). This is analogous to the

technique used in the low density expansion of thermodynamic quantities for a hard core

interacting gas. There, the expansion is in terms of e- V/kB T _ 1 instead of the potential V.

Here, we may say that we are dealing with a 'low density' (in time) of scattering events.

Regarding the exp'-ession (2.19) as a propagator G(zf, zo, t), then it is equal to

Go(z 1 , zo, t) dressed with zero. one, two, ... factors of the retarded self-interactions (Fj, - 1)

in all passible ways. Diagramatically this is shown in Figure 1, where a heavy directed line

represents the dressed propagator G, a light directed line the 'free' propagator Go, and the

dashed lines the self-interactions (Fj, - 1). Two self-interactions can share at most one

hopping time. The detailed structures of these diagrams will be made clear below.

Consider first the term with a single self-interaction,

G(zf, zo,t) - dE fi d](-i.. dt1
n=0 0:1 }

x < Z:fL 14 .,-1 >< Zn-l 14 Iyn-2 > ... < Z, 14 J-o > (3.4)

x exp{A(zo)ti + E A(z,)(tj+l-t)} (F,-i1).
j=I f>j>j'>_

The structure of this expression is more transparent, if we make a Laplace transform of it.

The result is
Gl(zf, zo, A)

o o n j- 1

•0 no =2 j=2 j'= 1{:}

* ( { < Zf ,h 1zn-1 > ( ..)" < Zj+j h JZj > _ z)

S 1 1 1

I1 1
< Zil-l 1ChlZ,'-2 > A-A(Zr12 ..< ZlIChIZ0 > A(Zo)

* {<:ZjIL, 1Z-1 > _F(w, Z. .:,_ , zj,, I Z,_,) < zj, jL, lZj,-1 >},
(3.3)

14



where F is defined by

:)10 F(W, zj, ZJ-1, zj,', -1l (36
= F(7, z j, zj -, zj,, z, _-I) - 1.

with F(...) given in (2.21). we now change the labels such that Z4 = Zj, Z3  Zj-1, z 2 = :,.

and zi = zj,-. After summing up the intermediate positions other than these z's, the

expression (3.5) becomes

G(Zf zo A) =dW Z Z:1 :1
,,0 n=2 i=2 j'=1 {I }

{<f 1 - I _4IA -.C, A -,,
1 1 (3.7){<z1AC,+ AC

A , + i w A - , +£ )>}j>

*J ITI _ I A )I1zo >I

Z {< 'C I--z' > W, < Z2  J' >}.

Now, the powers n - j, j - - 1 and j' - 1 are ranged from 0 to oc independent of one

another. and the summation over them gives

G,(zfzoA) = dw
(:2 }

1 <Z I -z 4 ><z 31 _IZ2><zl IIIZ
A .- C, - 4 A- C, Ah +-

x <z 4  > F(.wZ 4 Z3, 2. _) <Z2

(3.8)

Notice that the quantity

1

<z1 - I >=- Go(z. z', A) (3.9)

appeared in (3.8) is just the Laplace transform of Go(z, z', t) defined in (3.1).

As a result of the above analysis, the first order diagram in Figure 1. after Laplace

transformation, has the detailed structure shown in Figure 2. A directed line still represents
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a free propagator Go, with its position variables labelled at the ends of the line. and its

Laplace variable labelled beside the line. The hatched circle with four legs represents

the self-interaction F, with its position variables labelled at the ends of the legs. and its

frequency labelled beside the circle. Finally, the undirected short lines between pairs of

dots are the hops, < z4 I[z 3 > and < z2 1'hz1 >. The 'value' Gl(zf, zo, A) of the diagram

is equal to the product of the quantities associated with the parts of the diagram, with the

internal positions summed up and the frequency integrated out.

Similarly, the second order diagrams in Figure 1 can be shown to have the detailed

structures displayed in Figure 3. The meanings of the various parts of these diagrams

are the same as for the first order one. Once the first and second order diagrams are

understood, it is not difficult to imagine how the higher order ones should look like. In

a mth order diagram, the otherwise free propagation of the particle is interrupted by m

self-interactions between m pairs of hopping steps. Two self-interactions can share at most

one hopping step, but one hopping step can be shared by any number of self-interactions.

Each allowed topologically distinct diagram contribute a term for G.

The propagator G satisfies the Dyson equation (in operator notation).

G(A) = Go(A)V(A)G(A), (3.10)

where the self-energy

< z(( )z -E : ' )(3.11)

is given by the diagrams shown in Figure 4. These diagrams start and end with hops and

each of them cannot be disconnected by removing one Go line. The first order diagram

has the value < z J-I (A)lIz' >

CLEP(WZ I= d wz l~'~' (3.12)

'0 'lz z''
x < zjCh Izl > Go(zi,z , A + IW) <jIhIz'>-

as can also be read off from (3.8).
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3.2 -The approximation

We then make the approximation

E (z. z', A) _- 'S1(--,z', A). (3.13)

The ignored higher order terms contain at least three -hops' and two self-interactions.

and therefore they are at least 'A/(h&;d) times smaller than the kept one. With this

approximation, we can write

G(A) 1 (3.14)

The Laplace transform of the probability P(xf, xO, t) is then given by

P(xf,xO, A) =<zfIG(A);zo >
1 (3.15)

-< Z1 1 ZO >.zfIA - Ip- Ed(A)

where Zf and z0 are in diagonal form. Thus the problem becomes solving for EI(A), finding

the inverse of A - tp - EI(A) and inverting the Laplace transform.

The expressions (3.12) and (3.15) are the central result of this section. The operator

inversion is facilitated by studying the eigenvalue problem,

Aj >= [Cp + Ei(A)] 1w > .

This is analogous to the generalized Boltzmann equations in the literature.[23-25] The

problem is further simplified by restricting to small values of A. if we are interested only

in the long time behavior of the particle.

The rest of this subsection deals with the detailization of the expression (3.12). The

reader may wish to skip this part. and come back later when the formulas are referred to.

It will be useful to write (3.12) in a more detailed form. It is easy to see that (3.12)

is the Laplace transform of the following expression:

< ZfI(r)lz'>= Z(F(r.z,zi, zi,z')- 1] <:IL.h.41>< le"l i ><Zil 2 hl=z> - (3.16)
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From (2.20) we have,

< Zl~hl>zi = 1 - 1Zx{x+I6YY <x - l, yl - bx.x,6y,yY,- <X.Y + II}.

, 2 ,
JZI >< Z'! 141Z' >= 6x y X{ , ,+It,6Y , 6 'y ,,, l' ' '}

(3.17)

Substituting this into (3.16) and using the definition (2.21) for F(r-, z. z 1 , z , z'). we have

< Z (r) 1z' >

()2 E{- <x - I.yllezPlx' + l',y'> FI,(7 + itZ/2,x x' - 1/2 - 1'/2)
I,l"

- <x,y + lleCprIxIy? -1'> F1, (r - ih/2, y- y' + 1/2 + 1'/2) (3.18)

+ <x - Lyle zprlx',y -1I'> F,(r - ih/2, x y' - 1/2 + 1'/2)

+ <x.y + Ile prIx ' + 1'.y'> Fill(r + ih3/2, y - x' + 1/2 - 1'/2)},

where

Fi(T-,x) = exp (-4Z J(k) sin(kI/2) sin(kl'/2) cos(kr)e ikx -1. (3.19)
(- k sinh( 3hWk/2)

The Laplace transform of (3.18) then gives

< z 1E,(A) IZ' >
A )2 1, Y 1 e Ix- '-/ >'2
=('h E i l(w k ){ - < x - l y  A+i ~ Ix+ 'y>

1,1 V , k

<xy + 1
e - w/2 ezk(y - y'+I/2+i'/2) , I >

A+iw-p Ixy (3.20)

" <x- 1, y1 e - hw/2 e i k (x-y'-1/2+1'/2)
A + x' y'- '>

e+J w2eik (y - x '+ l[ 2 - 1'/2)

+<x.y+II +i-P Ix'+ Yy>}.

where F'(w, k) is the Fourier transform of F1,(r, x) given by

Z k i'(L , k)e '-w( ekx( 

.

exp( - 4 1: J(k)sin(kI/2)sin(kl'/2) 
C s( :k r ) kx (3 21)

ekp sinh( Wk/2)-1
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At temperatures low compared with the Debye temperature, the exponent in the above

exponential is small. To first order in the exponent, we have

'(. k) =-2( + 6.) J(k) sin(ki/2) sin(kl'/2)sinh(Ohwk/2) (3.22)

It is not difficult to see that we can obtain the same result from (3.16) if we replace

F(r,z, zjz',z') - I by

- Z J(k){coth(3hwk/2)coswk(r)(U - Ui)(U* - U'*)
k (3.23)

- i'sinWk(r) (U - U1 )(V* - V'*)

which is the argument of the exponential in the definition (2.21).
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4. Two level system

In this section, we consider the case that the particle is restricted to only two sites.

which are located, for instance, at x = 1,/2 and x = -1, /2. Our system then becomes a

two level system coupled to a heat bath of phonons. The analysis will be done in three

subsecti6n: 1) general considerations, 2) the case of low temperature but arbitrary bias.

and 3) the case of zero bias but arbitrary temperature.

4.1 -General considerations

We can parametrize the position of the particle as x = l/2 and y = yll/ 2 with

x, y = ±1. Then we can write

U _eikx - eiky

(4.1)
= i(x - y)sin(k1 /2),

and
V e ikx + esky

(4.2)
= 2 cos(kl1/2) + i(x + y) sin(kl/2).

The influence factor in (2.21) is then simplified as

Fji, =F(tj - tj,,zj,Zj_-1, zj,, zj,_

= exp{ -- J(wo)[coth(0hw1/2) cosw(tj - t r, )( j - j a) ' - ' (4.3)

- isin(t, - tj,) ( j - j-0)(rh' - rlip-0)},

where = x - y, ql = x + y, and

J(w) = w2 1 J(k) sin 2(kll /2)b(w - Wk)

k (4.4)
1 Z g(k)j2 sin 2 (kli/2)6(w - Wk).

Nh 2 k

The renormalization relation (2.20) becomes

= Aexp (-2 -- J(w)coth(/3hw/2)). (4.5)
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The spectral density J(, ), with a dimension of frequency, contains all the information

of the phonons relevant to the dynamics of the two level system.[19] It vanishes beyond

a frequency around -'d. At the low frequency side, it vanishes as a power of ,;. For a

short ranged repulsive interaction between the particle and the lattice atoms. Ig(k)12 goes

to zero linearly with I k, so J(w) vanishes like ,5 at low frequency. For a piezoelectric

coupling J(w) vanishes like w'. In Ref.19. the general case of J(w) w' has been studied

for the low temperature dynamics of a two level system. Our case lies well in the regime of

superohmic coupling (s > 1), where the low spectral density at small ' makes the coupling

effectively weak at low temperatures. However, the low frequency behavior of J(,) will

not be so important for higher temperatures.

In order to find the probability P(xf,xo, A) (3.15), we need to know E (A) which is

the Laplace transform of E1 (t) given by

<--lIx(OWlz >

= "(F(t,z,z ,z,z')- ) (4.6)
-I *

× < zlih Jz1 >< Z1 le CPtlz' >< z'lj.hl'> .

Throughout this section we will use z to denote the pair (x, y). Then the operators Zh

and tp are given by

'ChlX. Y> = -(IZ.--Y -IX-9>) (4.7)

£,,x, y> = -(x - Y)lx. y >.

where t = -x. 0 = -y. and ex is the site energy of the site x = xli/2. Therefore.

<z1IChlZ1 >< =I I
th (4.8)

I Z' ><Z'iieh IZ'> =, > 6, ,y, ' > b'X, 6y,).
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Substituting the above relations into (4.5), we have

< zllt!">

' I- <2 yle ijpt-t > (e t 'g(t+ih3/2)

- <z. P)lecdPt ', gti> (ey y ' g (t-i hA/2 - 1) (4.9)

+ <.e, Yle" ct i. gi' > (e-x y'g(t- h/2 - 1)

+ <x, gledtj t,y'> (e - y,'9(t+ih3/2) -1

where

g(t + ih3/2) = 4 - .J(w)[coth( 31/2) cos(wt) F i sin(,(i)0
fo a2(4.10)

= 4 0d ~) cosw(t±i1h312).1 "2 sinh( 3hw/2) o (t--i3/)

We now introduce the Pauli matrices { o, y = 1, 2, 3}, defined as

01 Ix, y >= 1- , y >

021X, y >= ixxgY> (4.11)

a3JX, y >= XlX, y > .

The particle Liouvillian Ip can then be written as

£C = 1[(h0., + e0) - (Aa' + 603)], (4.12)

where o,' acts on the y variable the same way as o,, on the x variable. It can then be

shown that

(-)2{ -0e'CPt'.C(t + ih3/2) - 03aie'CP't.0 3 S(t + ih3/2)

01 e a - a e aC(t -h3/2)- a' ' S(t - h3/2) (4.13)

+ ,leZPatoC(t - ih3/2) - a 3 0IeCPto - a3S(t - ih3/2)
+r', e C+ /) p C 3S(t + i3/2)}'aec'aUt~ + th312)1

where
C(t) = cosh(g(t)) - 1

(4.14)
S(t) = sinh(g(t)).
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The operator ep is diagonalized by the following transformation

= -(_ - q. 1), (4.15)
e ~ih(a 03

where
Q = /A2 + E 2

sin(20) = (4.16)

cos(20) =

Under the same transformation, the self-energy operator E 1(A) becomes

'i = ( )2 dw[C(w)Al + S(w)A 2], (4.17)
)o

where C(w) and S(w) are the Fourier transform of C(t) and S(t) respectively, and A 1 and

A2 are given by

A e3hwl2 E 1+ 3

+ IL;3) + + (03 -0)/h Q1+ -)

0'+ 0' ________ __+__a3+(~jo~ (- 20Q A + iw + i(9 3 -&)f/t ' +173'

- (0l + -03)__ ____)/_(__ + -a3)

(4.1S)
e2 =MI

A0 + -a3 +l +( 0'3~~1+ A + 1w + i( 03 - (4.1S)

e- dhw/2
+a4301 A + ILI + 1(0'3 - or'3)Q/h O '

A A + iw + i(03 - 0.')Q/th

+ I A 4.9

In terms of the transformed operators, the probability (3.15) can be written as

P(x., xOA) =<zf. xfle'8(2+a2) 1 - e'2 +T2) xo,xo>. (419)
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When xf = -1. xo = +1. we have

A +.A)-=< 1  + (4.20)

where

Iv++ >= [o + )1++ > +(1 - >1 -4.21)

I'0-- >= )K(1- g)I++ > +(0 + j)I-- > +*'i+-> + 1+>].

4.2 -Low temperature and arbitrary bias

When the temperature is low compared with tle Debye temperature. the function

g(t) (real time) in (4.10) will be small du.e to the high frequency cut off by sinh(3%;/2)

and the low spectral weight of s(,') at low frequencies. We can therefore set C(t) = 0 and

S(t) = g(t) to leading order in kBT/(hiWd). The expression (4.17) then becomes

- £A )2/f dw 2J(w)E(A) = W2 -. sinh(3h:a/2).42, (4.22)

where J(.') - -J(-,,-) for ,; < 0.

Now. both 't(A) and i(9 3 -a' )Q/h are block diagonal in the sectors with a393= 1.

Written in matrix form. A + i(o'3 - o')Q/h - Ei1 (A) is equal to

(A +a(A) -b(A) (4.23)
-a(A) A-+b(A) J

in the subspace of { ++ >. I >}. and it is equal to

(A -1i2//h + c(A) c(A) 4.24)Sc(,\) A -- i2Ql/h + c(\)]

in the subspace of {I+ >. + >}. where

-(A dw 2J(w) 2.\e - Aw / 2

a(1) - ) J)h W2 sinh(3hw/2) A2 + (' + 2?/h )2

b(A) A )2/ d 2J(,,;) 2Ae h a/ 2

b J_ 2 sinh(3hwl/2) A2 + (; + 2Q/h) 2

-)2/ &u 2J(w) 2\e- Aw1
c(M) h ( ,4)J 2 sinh(3h/ 2 ) A2 +; 2
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The matrices (4.23) and (4.24) can be easily inverted to give an explicit expression

for P(-, +, A) in (4.20) as

1 (b(A) - a(A)) + ( )2
_ 1 A )2

P(-,+ A)= 2/h2 (4.26)2A 2A(A +a(A) + b(A)) 2A 2 + 2Ac(A) + 422/ "

This expression has four poles located at

A=0.

A = -(a(A) 4- b(A)) : -(a(0+) + b(0+)),
(4.27)

A i2£2/h - c(O+ + i2£/h),

A ;z -i212/h - c(O+ - i2£/h),

respectively. With their residues approximated to first order in (A/h) 2 , we have

P(-, A) I [1 + tanh(3)]
± tanh(O) + ( )2(4.28)

2(A + 2r)
A )2 A + r

2 £2 (A +r) 2 +(2£2'/h) 2 '

where

r = 7r(-)2 J(2Q/h) coth(3£)

Q =Q1Q 1 + A)2 d 8J(w)coth(3hw/2) (4.29)

£2 =0 W2 +2/ )2 j w2

Recall that £ is the eigenvalue of the renormalized particle Hamiltonian. Hp. now Q is

further renormalized to £' by the residual interaction with the phonons. After transforming

back to the time domain, we finally have

1
P(-,+t) =[1 + - tanh(3fQ)]

1 , 21,-2rt-~e [tanh(3!2) + t£2 re (4.30)

1 5( A) 2cos(2f ,t/h)e-rt.

This agrees with the results of Leggett et al[19] in the limits of zero bias (E=O) and large

bias ( > > Z\). and it fills out the intermediate region where the non-interacting blips

approximation used by these authors is invalid.
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The above result may be interpreted as follows. At low enough temperatures. our

system is effectively described by the renormalized particle Hamiltonian Hp = 60'3 + ,,al,

which is weakly perturbed by the residual interaction with the phonons.[7] In the repre-

sentation where ip is diagonalized, the diagonal parts of the particle density matrix relax

exponentially at a rate of 21F to the equilibrium distribution exp(-3Hp)/tr exp(-3Hp),

while the off-diagonal parts oscillates with a frequency 2Q'/h 2 2!Q/h and damps to zero

at a rate of F, the inverse life time of the eigenstates of Hp. The probability P(-. +. t)

for the particle to go from site x = +1 to site x - -l , will have contributions from both

the diagonal and off-diagonal parts of the density matrix. In the limit of f > > -. the new

representation is almost site diagonal, so that P(-, +, t) mainly comes from the diagonal

parts and relaxes purely exponentially. In the other limit, f << A, we should have

P(-, +It) =p(- ,-, t)

1 1
- 2 2 [(+, -, t) + (, +, t)],

where , is the density matrix p in the new representation, and we have used the fact that

the trace of a density matrix is unity.

4.3 -Zero bias and arbitrary temperature

When the potential bias e is zero, A + i(0 3 - 03)9/h - ' (A) is again block diagonal

in the sectors with o303 = +1. In matrix form, it is equal to

A + a(,A) -b(A ) (431

-a(A) A + b(A)

in the subspace of {l++ >. I_ >, and it is equal to

(A+ + d(A+) + c(A) + (A ) (4.32)
c(A) A-_ + d(A) + c()
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in the subspace of {I+>, [- >}, where A± = A + i2//h. and

a(A) = 2 0 LSw) 2Ae-dhw 2

h( dwS(w),A2 + (w + 2f2/h) 2

b(A) = 2 
2Aeh/2

h d0' W)A2 + (w + 2Q/h) 2

c(A ),=A )2 jd wS(w ) Ae 3 a/ 2  (4.33)
T2 f/ d0A +(W

d(A) = (A )2 dC()4 cosh(3hw/2)
h(A) A + 1w

With the above matrices inverted and substituted into (4.20), we have

S1 A + [d(A+) + d(A)(
2A 2 [A+ + d(A+)][A_ + d(A_)] + 2c(A)[A + L(d(A+) + d(A_ )) (3

Using the definitions of S(w) and C(w), we can rewrite c(A) and d(A) explicitly as

c(A) = 2()2 j dte -A t sinh(R(t)) cos(I(t)),
- 0 (4.35)

d() =4( )2 dte-At[cosh(R(t)) cos(I(t)) - 1],

where

R(t) =4 J(w)coth(3hwl2) cos((t),

I(t) = 4 J() sin(Lt).

The expression (4.34) is valid for any temperature. In the last subsection, we have

considered the case of low temperature, where we found an underdamped oscillation for

P(-, +. t), indicating a coherent motion of the particle. Here we explore the possibility of

a transition to incoherent motion as the temperature is raised.

We first give an estimate of the poles in the second term of the expression (4.34). So

long as A and A± are small compared with Wd, the frequency scale of R(t) and 1(t), we

may replace them by zero in c(A) and d(A±). We then find that

A = -[d(0) + c(O)] [ c(0)] 2 - 4( )2. (4.37)
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It is seen that the poles become real when c(O) 2 > 4( 4-)2, or when

dt sinh(R(t)) cos(I(t)) >_ 1, (4.38)

which can be satisfied only when the temperature is high enough. The transition temper-

ature may be estimated by a steepest descent evaluation of the time integral.

j dt sinh(R(t)) cos(I(t))

100 & (, ) x p 2d- 4J(Wo)

sw2sinh(,3hw/2)

The left-hand side of the inequality (4.38) then becomes,

11 dw J(w) wxp 2

sinh(hw/2) exp sinh(3hw/2) coth(3hw/2))

21 A~ (2kBT I' dw) 2 (4kB 3~d
8 h

(4.40)

where in the last step we have made a high temperature expansion. This result can also be

obtained from the condition that the life time of bonding or anti-bonding state be shorter

than A-, a time scale associated with the level spacing 2A.

Right at the transition temperature, the two poles merge together at

A= -[d(0) + c(0)]

3- ir a T --T, /T (4.41)

4 h kBT To

where

TO 'o0 d6,J(,.?), (4.42)
kB JoW

and we have used again the steepest descent method and high temperature expansion. It

is seen that the pole is of order A/h or smaller, which is much smaller than ,.d, justifying

the replacements of A and A± by zero in c(A) and d(A+), respectively.

When the inequality (4.38) is well satisfied, we can write (4.34) as

1 1 A + d(O)

2A 2 [A + d(O)][A + d(O) + 2cO)] (4.43)
1 1

2A 2(A + F)'

28



and therefore
P(-,+, t) (4.44)

-hr =!-!- -r- (4.44)

where
F = d(O) + 2c(O)

= 4 ( )2  dt [exp(R(t)) cos(I(t)) - 1] 445)

hr 0 T(-.45T

hkTT 
T IT

The initial transition rate is 1/2 according to (4.44), and its value agrees with the result

obtained from the Fermi golden rule by Holstein(].
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5. Strong site energy disorder and Markoving motion

In this section we consider a general multi-site case with site energy fluctuations 6E

large compared with the renormalized hopping energy A. For the two site case studied

in the last section, we found an exponential time dependence in P(-, +, t), suggesting

a Markoving description of the particle motion. This motivates us to derive a master

equation for the particle motion for the general multi-site case here.

We consider first the self-energy operator given in (3.12). We will restrict our attention

to low temperatures (kBT << hwl'd) to simplify calculations. According to the arguments

given at the end of Section 3, we may make the approximation

F(r,z, Z1,Z',Z') - 1

- sinh(3hk/2){ cosk(7 + ih3/2)(ei kx - e&kxj )(e kxl - e - ikx')

+ coswk(r - ih3/2)(eky - &kyl )(e - kyt - e - ky') (5.1)

- COS,,'k( r - ih3/2)(eikx - e kx, )(e - ky ' - e - ky ')

- COSwk(r + ih/2)(e ky - e iky )(e-ikx, _ e - tkx') }

Substituting this into (3.16), we have (in operator notation)

! J(k) th3/2)[X.LpjeCpr[ZpX-]
k sinh(3hwk/2){cosk(r +

+ cOSWk(r - iU3/2)[Y' -pe]epr [Ip.Y*] (5.2)

- cos Wk(r - ih3/2)[X. p]e CP[ep. '*]

-cos Wk(r + ih3/2)[Y. tp]e dpr[p,1X*] },

where [, ] denotes a comutator, and X and Y are operators coreponding to elkx and e'Cy.

respectively.

Suppose Im > is an eigenstate of Hp with energy e, then an eigenstate of C£p may

be written as Im,n > with eigenvalue (e, - e,)/(ih). The 'diagonal' states {In,nr >}

are special: they share the same eigenvalue 0 of 1 p, and are separated from others by
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a frequency scale of be/h. Under the condition bf >> . they are effectively not mixed

with the others by EI(A). The inverse in (3.15) may therefore be carried out within the

subspace of the diagonal states.

The matrix element of EI(-r) between two diagonal states is given by

< n, njv(7)jn',n' >

-J(k)

h2 sinh(3hWk/2)k

{coswk(- + ih3/2)6.., 1 < nIXIn > -

ft (5.3)

+cos .k(r - ih3/2)6,n, E <n 2IYIn> 2 (E ,-E, 2 )e

n2

- coswk(r - ih3/2) <niXln'><n'IY'jn> (En -

- cosk(T + ih3/2) <n'jYjn><niX'In'> (en -E,)2e

where, with the definition < xln >= Wn(x), we have

<nIXln' >= e(xi"On' (X)

X (5 .4 )
nlYln' >= b(y)e ik y W.,n(y).

y

We then Laplace transform (5.3) and set A = 0+, yielding

<n. nE(A = 0+)In',n'>

= Z ,J(k)wk 2  
>12e 3 , -e) )/2 [6(Ek + (+n -n')/ + 6 (,'k -(En- n')/

= s-in( 2) {<n~n "

- 6.., E 1< nIXIni >I2 e (t, -enj )/ 2 [6( 'k+(E, -En)/h) + 6(-k-(,-E,)/h I]}.
nf

(5.5)

The density matrix then satisfies the master equation

n n, t) = E V. [e ,' ',)/2 p(n',n , t)- el("-"')/2p(n, t)], (5.6)
n'

where p(n, n, t) =< n, nIp(t) >, and

rJ(k))wk2n
Wn n, _-,, i2 < n I n' > 12 6(11;k - If,,-Ij/h)3 (5.7)

k
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The master equation involves only the propabilities on the eigenstates of ip. indicating

the incoherence of the particle motion.

The physical picture is very clear. When the site energy disorder 6e exceeds the

renormalized band width l. the particle localizes essentially on a lattice site. The particle

is mobalized only because the scattering of the phonons, which knock it from a localized

state to another. This picture is very much the same as for electron hopping conduction

in impurity bands, except for the degeneracy and Fermi statistics in the latter case.[32]

The master equation (5.6) describes a random walk in a random environment.J33]

Various techniques have been developped for the evaluation of the diffusion constant. If

the hopping probabilities do not vary too much, we can ignore the percolation effect.[34]

The diffusion constant may be estimated by

D = Wl12, (5.S)

where I is the lattice constant, and IT the typical value of the quantity in (5.7) for a pair of

states localized at nearest neighboring sites. Here, we have assumed that the eigenenergy

differences IEn' -- enI are small compared with kBT. The overlapping factor I< nIe'kxin' > 12

can be calculated perturbatively as (e - 1)12. where 1 is the vector between the

sites at which the two states are localized. We then have

WA, _z )2 1 :g(k)121eik l 
- 112

Wnn =2(6(..' - l . - Enllh )
h. n-2n N k sinh(3Wk/2)

7r )2 1 I 112  
-In n j/h)

E- nE' sinh(3 efn- En,1/2)k k

2-r A )2 koT 1 Ig(k ) 1
2 1eikl _ 1126(.k - -T fn- En,, Ifn - EntI NV ' gk ) 1  12(' - ' - "l

The diffusion constant thus depends quadratically on the renormalized tunnuling en-

ergy splitting , linearly on temperature, and quadratically on the particle phonon cou-

pling energy g(k). The dependence on the strength of disorder be differs for different type

of couplings. For short ranged interaction we have jg(k)12 , k2 /wk (see the remarks on
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(2.3)), therefore D , (6E)2. The diffusion constant increases with disorder! The more

surprising thing occurs for a piezoelectric coupling, for which Ig(k) 2 _ -L-. therefore IV,,

is independent of e,, - eT,. The diffusion constant is independent of disorder! Of course.

these arguments are valid only in the regime of << 6e << kBT << hWd.
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6. Lattice with constant site energies

6.1 -General consideration

In the case of translational invariance, it will be convenient to work in the momentum

space. Introducing the momentum eigenstates,

lp,q>= 1 E e-iPXe-iqy x,y>, (6.1)
xy

where N, is the total number of sites. then the probability (3.15) may be written as

P(xf, xo, A)

1 , e.{(p'+q')xo-(p+q)xf] < p,q A - q P q (6.2)

'*p'qp 
' q1

We now make a variable change (p. q) - (u, v), where u = p + q and v = (p - q)/2. then

both Cp and Ej(A) are diagonal in u (see below), and we may write

P(xflxo ) = -,Z P(u.)e'u(x° -xf).

u z 1 (6.3)

P(u.A)= N <' A p(u) - Ej(u, A)Iv>

In general, there is a pole A(u) of P(u, A), which approaches zero as

A(u) = -Du 2  (6.4)

for small u. The coefficient D is the diffusion constant. Therefore, we only need to study

P(u, A) for small u and A.

We first derive the operator EI(u, A). From (3.20) and the definition (6.1). we have

<p,ql E1 (A)

A )2 - -- e 3hw/2e-i(p-k/2)(l+')
( ZZFI1#(w~k){A~~-iw+(Ep Eq)/h

1.1' .,,k

e- '.Aw12 e t q-k/2) (I+ i') <pq
A + - '- + " 1- (f - f q- /h <P l(65)

e-3j"i/2 e-t( p-k/2 )1+ i(q+ k/2 ) k
A+ 2w + (ep-k-q)/h <p-k,q+kj

"e 3hwl2 e - i
( p+k/2)l'+i(q-k/21 )l kq kl1+ A~W iE~-)h <p+k~q-kI },

A+ ZW + I(p - q-k)/,
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where ep is the band energy function of th. It is seen that u p + q is conserved under

E1 (A). Within the sector of a given u, we write < p,ql =< vj, and define 'Cp(u) by

<vjZCp(u) =<p,qjep, therefore

1

<vI1p(u) =< v1 -(e,+u/ 2 - fv-u/2), (6.6)

where we have used the fact that ep = e.p. Similarly, we define E,(u, A) by <v~ij( u. A) =

< p, qi1 (A). We therefore have

<v El1 (u,A)

=()2 ZZ(,~,kev+k/
2 )(I+I')[-fl e- 3 hw12 <V I + f2 e4lh-/ 2  v+ki (6.7)-- E P<1,(,%i)+ <v +ki 1, (6

1,' V.k

where the f's are defined as

e -iu(1+1')/2 eiuil+l')/2

A - iLU + i(ev+k+u/2 - e-ul 2 )/h A + iW - i( v+k-u/2 - v+ 2 )/h '

f2 = +(6.S)

A - iw + i(fv+k+u/2 - fv-ul 2 )/h A + iw - i(Ev+k-u/2 - f,+u!2)/h"

and we have used the fact that F1'(w, k) is invariant under the change of sign in k and ,.

In the limit of u = 0 and A = 0. we have

<V11 ~(0,0) 2r( A)2 F)ez(v+k/ 2 )(I+I')(w - (Ev+k -
1,1 V w, k (6.9)

x [-e- hw/ 2 < vl + eA w12/ <v + ki ].

6.2 -Low temperature

According to (6.3), the poles of P(u, A) are given by the eigenmodes of the equation

Alw>= Cp(u)ft > +Ei(u.A)Iik>• (6.10)

We are interested in solutions with small A and u. We can set E1 (u, A) = E'(0,0), if its A

derivative is small compared with unity, and if its u derivative is small compared with the
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typical band velocity (the u derivative of Cp(u), to be precise). When the temperature is

not high compared with the Debye temperature, these conditions are satisfied. Equation

(6.10) can then be written in the form of a Boltzmann equation

A ,(v) =u -y- w(v)

+( ,)/2 e,- f,,)/2- ,v  (6.11)

+ E... lWVv, [e W(v,) -ei(vv) 2 v 1V1

where V,, = Wv,v is given by

wv, = 27r(-)2 ZZ ,(w.v'-v)e-(v'+"'),(- (,-, e,)/h). (6.12)

The left hand side of (6.11) corresponds to the time derivative term. The first term on

the right hand side of the equation corresponds to a drifting term, while the second term

corresponds to the collision term. The rate of 'scattering in' is Wvv, e'3(E,, - )/2, and the

rates of 'scattering out' is lVvv,e (ev - v)/ 2 .The two rates have the ratio of e4 (E '- ). the

Boltzmann factor. This immediately gives rise to the equilibrium distribution

w0(v) = e- JeV (6.13)

in the absence of the drifting term (u = 0). When u 54 0, the Boltzmann distribution is no

longer a zero mode of (6.11). As u deviates from zero, the pole of the original zero mode

gets shifted to A(u) < 0. In Appendix D. we show that A(u) depends quadratically on u

as in (6.4). We found that the diffusion constant is given by

D{ Ev(O9ev)2e-3ev P 6-4D - - (6.14)__ _ __ _ _ __ _ __ _ __ _ _

h2 d Ell e-Ev , WvV,e- 3 (v+ v')/ 2 (9Ev - ae, )2(

where d is the dimension of the tight-binding lattice. When the temperature is much higher

than the band width i, we may replace the Boltzmann factors by unity. Thus

D 2 < (aev )2 >2

h2 d V V, W~V,(OV - aev, )26

where the angular brackets denote average over the energy band.
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The quantity W,, can be written more explicitly as

W"" A2 1 df (-V)e,/ -ev)rlh Fl7,x)e-,(v/+v)(I+I')/2,(.6

x ' 1,1'

where F11,(7. X) was given in (3.19). For temperatures lower than the Debye temperature.

we may expand the exponential in the expression (3.19) for Fi1,(7, x). The first order term is

zero, due to energy and momentum conservation. A somewhat tedious but straightforward

evaluation of the second order term gives D -- 1/T 2 s 1 , where s is the power of '.U with

which the quantity J(w) in (4.4) goes to zero. For short ranged interaction. s = 5. so

D 1/T 9 , in agreement with Gogolin[35]. For a piezoelectric interaction. s = 3. so

D ,1,1 l/T.

6.3 -High temperature

What will happen when the temperature gets high? Let us look back to equation

(6.10). The temperature dependence of Zp(u) and 71 (u, A) are quite different. The Frank-

Condon factor decreases exponentially with temperature, so are Z and Cp(u). However.

the Frank-Condon factor in Ej(u, A) in (6.7) will be largely cancelled by F1n'(w, k), which

grows exponentially with temperature for I' = -1. Therefore, we can no longer ignore the

u dependence in E,(u, A). As the temperature is raised to a certain point, the linear u

correction to L1(00) will dominate the Cp(u) term, marking the transition out of the

coherent regime.

At very high temperatures we can ignore all the exponentially small terms, then (6.10)

becomes
A ',( v)

( ) E - (, k) 2A2A [-e- ^h 12 ,(v) + cos(ul)eh-/2?W (v + k) ], (6.17)

I w,k

where F = F11 ' with ' = -1, and is actually independent of I due to the cubic symmetry

of the system. This equation has the solution of W(v) =contant, with

A=72A -e-A12+ < cos(ul) > e 3
hwl

2  (618)
h ,' A2+,;
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where z is the coordination number of the Lattice, and the angular brackets denotes an

average over I. Finally, we let A --* 0+ on the right hand side of the above expression. and

substitute (3.19) into it, we obtain

A = ( drF(7,0)[-l+ < cos(ul) >], (6.19)

where z is the coordination number of the tight binding lattice, and F(r, x) is just F11, r, x)

in (3.19) with ' = -1. The diffusion constant is then given by

12( A)2J_ d-rJ(k) sin 2 ( k11 /2)D =2( d exp (4 sinh(hWk/2) cos(Wk 7) . 6.20)

The physics behind these arguments can be more clearly seen by examining the self-

energy operator (3.20) in the position representation. At high temperatures. the terms

with ' = -1 dominate, so that

< z1E1 (A)Iz'>
=( \'Z 7(k)J eA"" ,___,y,, ___~6,,,6yy

)2kJbX.X 
6 YY' 6XX 

6 YY (2I w,k + A+W6.21
-Ohw/2 ik(x-y) e3hwl2e k(y-x)

+ - , +i0 xxI+l6y'y,+l +  )-- i 6d x'-l6y-y'--}+ + +L +1

It is noted that only the diagonal transitions take place, i.e. the changes in x and y are

the same. This is in fact a general feature of high temperature transport theory known as

the quasi-classical limit.[36]
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7. Conclusion and discussion

In summary, we have studied the question of quantum coherence for a narrow band

particle interacting with phonons and static disorders. We have focussed our attention

on the transition probability P(xf,xo,t) for the particle to move from position x0 to

xf in time t. The calculation of P(xf, xo, t) and its properties has been reduced to an

eigenvalue problem in the phase space of the particle, i.e., the space coordinated by the two

position var:ables appearing in the particle density matrix. Th reduction is essentially

a renormalization of the tunneling amplitude by the Frank-Condon factor, followed by

an expansion in the small parameter A/(hwd), i.e., the ratio of the renormalized band

width to the Debye energy of the substrate lattice. The eigenvalue problem is simple yet

general enough to serve as a convenient basis for further explorations of the various regimes

and their inter-connections: low temperature versus high temperature, weak versus strong

static disorder, two wells versus an array of wells.

We have studied the two-well problem in great detail. We have obtained complete

solutions for P(xf, x0 , t) in the case of low temperature but arbitrary bias, and the case

of zero bias but arbitrary temperatures. We have demonstrated how the particle motion

becomes incoherent as the temperature or bias are increased. In the extreme cases, our

results agree with earlier ones in the literature.[1],[19] These results provide useful guidance

in our study of the many-well cases discussed below.

For the case where the site energy disorder becomes much stronger than the tunneling

amplitude, we have derived a master equation for the particle motion. We have found a

rather surpri-ing result in the regime defined by A << 6e << kBT << hwd. The diffusion

constant is independent of the disorder if the particle couples with the phonons through

the piezo-electric effect, and it increases with disorder if the coupling is mediated by a

short ranged interaction. We also find that the diffusion constant depends linearly on

temperature, and depends quadratically on the renormalized tunneling amplitude.

39



In the translationally invariant case, we have rederived the Boltzmann equation at

low temperatures, yielding D T',-2 where s = 3 for piezoelectric coupling and s = 5

for short ranged interaction. At higher temperatures, the Boltzmann description breaks

down. and a transition to incoherent hopping occurs. We have confirmed the Holstein

formula for the hopping rate on more rigorous grounds.

In this paper, the term 'incoherence' is used to indicate the Markovian nature of the

particle motion in positional basis. There is, however, a difference between the incoherence

occurring at high temperatures and that induced by disorder at low temperatures. The

physical principle operating in the former case is the quasi-classical tendency, the tendency

to move in parallel with the diagonal (x = y) of the phase space. In the strongly disordered

case. the phase space diagonal itself acquires a special meaning. It decouples from the

offdiagonal sites, and becomes the main channel for the particle motion.

It should be noticed that even at zero temperature, the relaxation rate F is non-zero

for the two-well case. biased or unbiased. One might think that this is the reason for the

temperature independence of the diffusion constant reported in Ref.26 &27. In view of

our results for the case of an infinite lattice, one has to conclude, however, that this is

not the case. We expect that the zero-bias and zero-temperature relaxation rate should

go as F - J(26A/h) [see Equ.(4.29)] for a multi-well case, where bA is the level spacing of

the renormalized particle Hamiltonian. This rate decreases to zero as the number of wells

increases to infinity. The coherence of the particle motion makes it impossible to obtain a

finite diffusion constant at zero temperature.

It is also noticed that the coherence (in zero bias) persists up to a temperature of the

order of the Debye temperature rather than the tunneling amplitude. This is in line with

the results of Leggett et al[191, who have studied the general case of a two-well particle

interacting with a heat bath through the coupling spectral function -() -'. [see (4.4)].

They concluded that the transition to incoherence occurs at kBT = 0 for 0 < s < 1. and at

kBT -hw, ( )--2- for 1 < s < 2, where w, is a typical frequency of the heat bath modes.
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It is easy to see from (4.40) that the transition takes place at kBT ,- r.,, for s > 2. For the

piezoelectric coupling we have s = 3, and for the short ranged interaction we have s = 5.

Thus, a narrow band does not necessarily imply an incoherent motion. In fact, the low

temperature relaxation rate goes like F - &, whose ratio with the tunneling amplitude

decreases with A for s > 1. indicating that the motion is more coherent when the band

width gets narrower.

Finally, it should be pointed out that the incoherent hopping rate at high temperature

is proportional to the square of the bare tunneling amplitude A rather than the renormal-

ized one, A. The Frank-Condon factor cancells out. In Ref.13, the high temperature rate

of Flynn and Stoneham[37] was used. but the tunneling amplitude was still interpreted as

the renormalized one. We believe this is inappropriate.
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Appendix A. Site energy change due to displacements of lattice atoms

Suppose the particle interacts with the lattice atoms through short ranged repulsive

forces. The potential wells seen by the particle are centered at the interstitials of the

atomic lattice. Suppose the lowest level energy e(L) of a potential well depends on the

linear dimension L of the well. A measure of L may be taken as

L = /X (X7-x)2, (41

where X, is the position of a lattice atom bordering the well centered at x. Expanding to

first order in the displacements X, - XP, and reexpressing them in terms of the phonon

field operators, we then obtain the correction to the site energy as given in (2.3). The

coupling function g(k) has the expression
E X -2 X,)/ - ' tkXox 2o

(LO)- x). k 1 (.42)

where Ek is a polarization vector of the phonon mode. The estimate (2.4) follows from a

dimensional analysis of the above expression.

Appendix B. Reduced density matrix and influence functional

With a generalization of the 'bra-ket' notations in (2.11) to the system of our particle

plus phonons, we have in place of (2.12)

lPto,(t) >= Ltot(t)ptot(t) >, .1

where 12tot(t) is the Liouvillian operator corresponding to Htot(t) in (2.8). This is integrated

with the initial condition Iptot(to) >= ]z0 > SIpph(tO) >. where IPph(to) > corresponds to

the canonical distribution of phonons given in (2.7), yielding

Iptot(t) >= jdt. , ... dtB
n=o t (B.2)

e("+ 1 X(t-°) Zh( t, )£.h( t,4 )2... Z.(ti )IZo > SIPph(to ) >.
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where CIL corresponds to H1 + HL, and

L(t) = e-(C +CI)(t-tO) Ch(t)e(C°+C1L)(tt°) iB.3)

with everything else defined as in the text. We can then insert in (B.2) the complete sets

{ zJ >< zI} for the particle sector, and trace out the phonon degrees of freedom. yieldingt' t 2
< zf I tr [ptot(t) >= E dt, dtn-1 ... dti

n-=O !0 0. iti

X < ZI h ( t n Zn- I > <Zn - L h (t n- )Zn - 2> ... < zl ] h(tl )JZo > ( .(B.4
n

x exp{ E  A(z,)(tj+l - t,)}
j=1

x tr {e1(s(-"e 1( -)t= t-J.e I~ °( tJPph(to ) >I.

where LIL(Z) =< zLIL > now acts only on the phonon degrees of freedom. In the above

and hereafter, "tr' means tracing out of the phonon degrees of freedom. If the phonon

coordinates are collectively denoted as R, then the phonon phase space is coordinated

as (R. R'). The trace operation in the 'bra-ket' notation is simply, tr Ip >= 7'R=R' <

R. R'Jp>. Recall that the reduced density matrix is defined as

p(zf, t) =< zfI tr Iptot(t) >, B.3,

the expression (B.4) is just (2.17) with

exp(P[z]) = tr {eCL(I )(t-n)eCtL( )( t-t-) ... e £IL( z()(tt (to) ) >} (B.6)

The usual definition for the influence functional is, in our language,

exp(4,[z]) = trlpPh([:].*)>. B.7,

where

°O Pph([Z], T-) >-- £tL(Zl)lPph( [Z]. 7) > . B

The two definitions are the same, if we make the recognition of z,. as defined in (2.16).

Finally. the expression (2.18) for the influence functional has been calculated in Ref. 15.
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Appendix C. Evaluating the influence functional

For a particular path of n jumps, we can use (2.16) to carry out the double time

integral in (2.18). The result is a sum over contributions from the pieces of the r - plane

partitioned by the times {tjl.[191 After some rearrangements, we have

i[z] = - E J(k)[coth(3hWk/2)F - iF 2]
k

TI

F, =Z(UjU - UU"1 )
j=O

+ Z Jcosk(t)+l - tp.-)(Uj+i - U)(U;_,- U;_r_ ,c'.

+2 ZLOS')wkttj+ -t,) ) U ~ U .
j=O r=O

n

F2 = ) ] I-jk (tj+ I - tj)

n j+ E E Sin~k(tj+l - tj-,) (Uj+1 - UJ)(5"_, r V) -i ),
)=0 r=O

where J(k), the U's and V's are defined in (2.21).

A number of simplifications are in order. First, since Ig(k)l and -'k are invariant under

k - -k, the first sum in the expression for F, can be replaced by

n1

_ US i- Uj-, 12 + IjU0 
2 + _I U ,2 C.2

and the first sum in F2 can bo replaced by zero. These replacements do not change the

value of (D[z]. Secondly, since £h(ti) = 0 for t, < 0, we can replace the lower limit to of the

multiple integrals over {tj} in (2.17) by zero. Thirdly, since zo and z,, = zf are diagonal.
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i.e., yo xo and yn = x., we have Uo = U= = 0. We can therefore write

I n

F1  EZ1UJ) - U,1 I

n-i j-1

+ Z Z COSk(t.±i - t,_-)(b, + - Uj)(U_, - U_r-i),
j=i r=o

(C.3)
n-i j-1

F2 = Z sin 'k(tj+i - tr) (Uj+i - Uj)(VL*_r - V_-,)
ji=1 r=O

n-1
+ 1: sin";k(tj+i - to) ( Y+1 - UJJ)IO*

)=0

Finally, we let to -, -o. This now only affects the last sum in F2 in the above expressions.

whose contribution to ,D[z] approaches zero, because

ZJ(k)(17 +i - U,)V'*6(W - Ik) (C.4)
k

does not have sharp peaks as a function of frequency ,7. In fact, for any finite time t.

(x,,y,) are at finite distances from x0 . Therefore, (U,+, - U's) is a smooth function

of k and vanishes quadratically with k as k -- 0. According to discussions in Section 1.

the quantity (C.4) should behave smoothly near ,' = 0. Finally, since J(k) does not have

sharp peaks away from k = 0, we expect the quatity (C.4) to have no sharp peaks in

With all these simplifications. we can now rewrite (2.17) as

< Z, P(t) >=E dt,, dt,_,... dt 1
n=O { z3 }
× < Zf Jh 1,--n ><Z,,-i h 1Zn-2 > ... < - L~h IZ0 > (C.5)

n

x exp{ A(zo)tI + 1: A (zj)(t,+I - t)} exp(o[z])exp('I[z),
j=1
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where

oI0 z] = - E Z Z J(k)coth(3hWk/2)UJ - U , 1
2 .

j=l k

n- -1

S[-l = Z f(tJ+, t,; Z.j+l , z, Zj-,. Zp..r- ),
j=1 r=O

f('")= - Z J(k){coth(3hAWk/2) cOSWk(tj.i - t-r) (Uj+l -" J)(Ui*_r -L__r-i

k

- Sin .k(ti+I - t.-r)(Uji+. - UJ)(Vj-_ - V_-r-I)}.

(C.6)

The factor exp(qbI [z]) is just the product of F, in (2.19).

Finally, the time independent factor exp(4o[zJ) can be absorbed into the hopping

matrix elements as

< :Ch I' > -< ZihiZ' >
1 (C.)

-<ztIlhli'> exp(-9 1 J(k)coth(3hWk/2)LU - U'12)
k

Written explicitly, we have

<X.ylhlX',y' >
=i- I{xx + I>< y'ly> exp(- J(k)cth(3h&'k/2 )le'kx-- e'kx ' )

I k

xlx' >< y'y +I> exp(- E J(k)cth(3hALk/2)[e ky e iky'12)}

k

i Z{<x1x' + l><y'Iy> - < xx' ><:y'ly + I>}
11

x exp(-- X J(k)coth(3hU,'k/2)Jl - elk'l2),
k

where we have used the constraints implied by < xlx' + I > and so forth. For an atomic

lattice of cubic symmetry, the exponential in the last line of the above equations is inde-

pendent of the direction of the nearest neighbor lattice vector I, and can be factored out

as in (2.20). These arguments are still valid even if the particle is restricted to a subset of

the sites (potential wells).
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Appendix D. Evaluating the diffusion pole

As u - 0, the drift term can be treated as a small perturbation. We first symmetrize

the collision kernal by writing

Z (v) = C-3,,/20(v). D1

Then 6(v) satisfies the equation

A ¢(v) = Qo(v) + Q,0(v). D.2)

where

QoO(v) = Z wvv,[c(v') -J('--'- I2o(v)],
VI (D.3)

QIo(v) = u-3-- 0(v).

We now apply the Lanczos iterative method to evaluate A(u).[38] We take oo(v) -

e--3 e/2 as the starting state. We first calculate Qoo, project it onto on, and call the

remainder ol. We thus have

A 60 = a60 + 1, (D.4)

where by definition

= Z 0o(v)Qpo(v)/ E 6o(v)6o(v). (D.)
V V

The coefficient a is actually zero, because 00 is a zero mode of Qo and the thermal average

of Q, = u is zero. Next, we calculate Qol(v), project it onto 0o and oi, and call the

remainder 62. Therefore

A 0 1 =boo+co,+02, (D.6)

where

b = E 00o(v)Q o (v)/ 00()00(
V V (D.7)

c = 5 o(v)Qi QoQ10o(V)/5 t0(v)Q 00(v).
V V

Note that while b goes to zero quadratically with u, c approaches a finite constant.
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If we ignore 02 in (D.6), we then have a two dimensional eigenvalue problem (D.4)

and (D.6) to solve. The eigenvalues are easily found to be

A(u) = -[c ± (c2 + 4b) ' / 2]
2 (D.S)
1 [c ± c(1 + 2b/ 2 ),
2

where in the second step we have used the fact that b << c2 as u goes to zero. The Sou:,ui

with the negative sign in (D.8) goes continuously to zero as u --- 0, and corresponds to the

diffusion mode. We thus take A(u) = -b/c. The expression (6.4) and (6.14) in the text

then follows from (D.7). D is isotropic because of the cubic symmetry of the lattice.
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FIGURE CAPTIONS

Figure 1. Diagrams for the propagator in the time domain.

Figure 2. The first order diagram for the propagator.

Figure 3. The second order diagrams for the propagator.

Figure 4. The self-energy diagrams.
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