
REPORT DOCUMENTATION PAGE 0Meva
ufter _ o o Or" 6awrr mm wug' i s _
hat. = W,, =1M= p p im lOk , in Okem bl at. V~I D r

.AENCY USE 0t4LY (Line 3. REPORT DATE &. Room TYPE AND DATES COERED
Final 08 Feb 1990 to 08 Feb 1991

4-TWANDUMrr A f pieL-%lNR1m Summary Report: THOMSON- .L H .UiEF4

CSF, DIVISION CIMSA SINTRA, AlsyCOMP041, Version 4.23, VAX 3300
(Host) to THOMSON MLX32/20T (Target), ACVC 1.10.

&A unc s)

AFNOR, Paris, FRANCE

7. PER ORMN OFMANIZAfiON NOM43) AMO ADODES) JUL 519 PERFOMIG OAATON

Tour Europe, Cedex 7 0

F-92080 Paris la Defense AVF-VSR-AFNOR-90-03
FRANCE
. AGNCY FMhECS) AND ADOOESS(ES) 10. SPONSOLAN IITdOORI AENCY

Ada Joint Program Office REPORT NUMBER

United States Department of Defense

Washington, D.C. 20301-3081

11 .SUPPLEMENTARY NOTES

121L DIS I TIMOAVALA1LITY STATE&LENT 12. DOISTmoN CODE

Approved for public release; distribution unlimited.

I. ABSTRACT (Aftmdm2 *o)

THOMSON-CSF, DIVISION CIMSA SINTRA, AlsyCOMPO041, Version 4.23, Paris, France, VAX 3300

under Ultrix-32, Version 3.1B (Host) to THOMSON MLX32/20T under MOP MLX, Version 1, with

ARTK, Version 4.23 (Target), ACVC 1.10.

i4.S0ECTTE Ada programming language, Ada Compiler Validation IS.MEROF MUS

Summary Report, Ada Compiler Validation Capability, Validation

Testing, Ada Validation Office, Ada Validation Facility, ANSI/MIL- -I. mcEOCOE

1S 81MBS, Ada Joint Program Office
17. ,. 31cURITY CL.,45SFJIATSON 19. SEGOUK"ITY LA5UAT[ON 20. IMITATION OF AITMACTOF REPmORT? " 4C I

UNCLASSIFIED U IsU tX 'ED n
NSN 75d4 iW20= t~1*f='9Phmu WM Ii I-S

m~~mm90 01n;m J mmll icnnnnilWi~l

AVF Control Number: AVF-VSR-AFNOR-90-03

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 900208A1.10242
THOMSON-CSF, DIVISION CIMSA SINTRA

AlsyCOMP_041, Version 4.23
VAX 3300 Host and THOMSON MLX32/20T Target

Completion of On-Site Testing:
8 February 1990

Prepared By:
AFNORTour Europe Accesion For

F-92049 Paris la Dfense NTIS CRA&I
DTIC TAB

Unannounced
Justification

Prepared For: By
Ada Joint Program Office Dist*ib ~tionl

United States Department of Defense
Washington DC 20301-3081 Availability Codes

t" A0
Avail and forIlkpec'a

Ada Compiler Validation Summary Report:

Compiler Name: AlsyCOMP_041, Version 4.23

Certificate Number: 900208A1.10242

Host: VAX 3300 under Ultrix-32, Version 3.1B

Target: THOMSON MLX32/20T under MOP MLX, Version 1, with ARTK, Version 4.23

Testing Completed 8 February 1990 Using ACVC 1.10

This report has been reviewed and is approved.

AFNOR
Fabrice Garnier de Labareyre
Tour Europe
Cedex 7
F-92049 Paris la Defense

j-r Ada Validation Organization
Director, Computer & Software Engineering Division
Institute for Defense Analyses
Alexandria, VA 22311

A Joint Prgram Office
r. John Solomond

Director
Department of Defense
Washington DC 20301

2 AVF-VSR-AFNOR-90-03

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 4

1.2 USE OF THIS VALIDATION SUMMARY REPORT 5
1.3 REFERENCES 6
1.4 DEFINITION OF TERMS 6
1.5 ACVC TEST CLASSES 7

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 9
2.2 IMPLEMENTATION CHARACTERISTICS 9

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 14

3.2 SUMMARY OF TEST RESULTS BY CLASS 14
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 14
3-.4 WITHDRAWN TESTS15
3.5 INAPPLICABLE TESTS 15
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS 18
3.7 ADDITIONA!L TESTING INFORMATION 19

3.7.1 Prevalidation19
3.7.2 Test Method19
3.7.3 Test Site20

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B TEST PARAMETERS

APPENDIX C WITHDRAWN TESTS

APPENDIX D APPENDIX F OF THE Ada STANDARD

3 AVF-VSR-AFNOR-90-03

INTRODUCTION

CHAPTER 1

INTRODUCTION

This Validation Summary Report +USidescribes the extent to which a specific
Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A. This report
explains all technical terms used within it and thoroughly reports the results
of testing this compiler using the Ada Compiler Validation Capability (ACVC). An
Ada compiler must be implemented according to the Ada Standard, and any
implementation-dependent features must conform to the requirements of the Ada
Standard. The Ada Standard must be implemented in its entirety, and nothing can
be implemented that is not in the Standard.?

Even though all validated Ada compilers conform to the Ada Standard, it must be
understood that some differences do exist between implementations. The Ada
Standard permits some implementation dependencies--for example, the maximum
length of identifiers or the maximum values of integer types. Other differences
between compilers result from the characteristics of particular operating
systems, hardware, or implementation strategies. All the dependencies observed
during the process of testing this compiler are given in this report.

,The information in this report is derived from the test results produced during
validation testing. The validation process includes submitting a suite of
standardized tests, the ACVC, as inputs to an Ada compiler and evaluating the
results. The purpose of validating is to ensure conformity of the compiler to
the Ada Standard by testing that the compiler properly implements legal language
constructs and that it identifies and rejects illegal language constructs. The
testing also identifies behavior that is implementatior dependent, but is
permitted by the Ada Standard. Six classes of tests ari used. These tests are
designed to perform checks at compile time, at link time , and during exepion.

-/. - ix- , • . -- I ...

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an Ada
compiler. Testing was carried out for the following purposes:

4 AVF-VSR-AFNOR-90-03

INTRODUCTION

* To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

* To attempt to identify any language constructs not supported by the
compiler but required by the Ada Standard

* To determine that the implementation-dependent behavior is allowed by
the Ada Standard

Testing of this compiler was conducted by THOMSON-CSF, DIVISION CIMSA SINTRA
under the direction of the AVF according to procedures established by the Ada
Joint Program Office and administered by the Ada Validation Organization (AVO).
On-site testing was completed 8 February 1990 at THOMSON-CSF, DIVISION CIMSA
SINTRA, 160 Boulevard de Valmy, Colombes, FRANCE.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may make
full and free public disclosure of this report. In the United States, this is
provided in accordance with the "Freedom of Information Act" (5 U.S.C. #552).
The results of this validation apply only to the computers, operating systems,
and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are accurate
and complete, or that the subject compiler has no nonconformities to the Ada
Standard other than those presented. Copies of this report are available to the
public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

AFNOR
Tour Europe
cedex 7
F-92049 Paris la DMfense

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

5 AVF-VSR-AFNOR-90-03

INTRODUCTION

1.3 REFERENCES

1. Reference Manual for the Ada Programming Lancuage, ANSI/MIL-STD-1815A,
February 1983, and ISO 8652-1987.

2. Ada Compiler Validation Procedures, Ada Joint Program Office, May 1989

3. Ada Compiler Validation Capability Implementers' Guide, SofTech, Inc.,
December 1986.

4. Ada Compiler Validation Capability User's Guide, January 1989

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada programs
that tests the conformity of an Ada compiler to the Ada
programming language.

Ada Commentary An Ada Commentary contains all information relevant to the
point addressed by a comment on the Ada Standard. These comments
are given a unique identification number having the form
AI--ddddd.

Ada Standard ANSIIMIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures.

AVO The Ada Validation Organization. The AVO has oversight authority
over all AVF practices for the purpose of maintaining a uniform
process for validation of Ada compilers. The AVO provides
administrative and technical support for Ada validations to
ensure consistent practices.

Compiler A processor for the Ada language. In the context of this report,
a compiler is any language processor, including cross-compilers,
translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable test An ACVC test that uses features of the language that a
compiler is not required to support or may legitimately support
in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected result.

Target The computer which executes the code generated by the compiler.

6 AVF-VSR-AFNOR-90-03

INTRODUCTION

Test A program that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, whic.. may comprise or. : files.

Withdrawn An ACVC test found to be incorrect and not used to check test
conformity to the Ada Standard. A test may be incorrect because
it has an invalid test objective, fails to meet its test
objective, or contains illegal or erroneous use of the language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC contains
both legal and illegal Ada programs structured into six test classes: A, B, C,
D, E, and L. The first letter of a test name identifies the class to which it
belongs. Class A, C, D, and E tests are executable, and special program units
are used to report their results during execution. Class B tests are expected to
produce compilation errors. Class L tests are expected to produce errors because
of the way in which a program library is used at link time.

Class A tests ensure the successful compilation and execution of legal Ada
programs with certain language constructs which cannot be verified at run time.
There are no explicit program components in a Class A test to check semantics.
For example, a Class A test checks that reserved words of another language
(other than those already reserved in the Ada language) are not treated as
reserved words by an Ada compiler. A Class A test is passed if no errors are
detected at compile time and the program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class B
tests are not executable. Each test in this class is compiled and the resulting
compilation listing is examined to verify that every syntax or semantic error in
the test is detected. A Class B test is passed if every illegal construct that
it contains is detected by the compiler.

Class C tests check the run time system to ensure that legal Ada programs can be
correctly compiled and executed. Each Class C test is self-checking and produces
a PASSED, FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers permitted
in a compilation or the number of units in a library--a compiler may refuse to
compile a Class D test and still be a conforming compiler. Therefore, if a Class
D test fails to compile because the capacity of the compiler is exceeded, the
test is classified as inapplicable. If a Class D test compiles successfully, it
is self-checking and produces a PASSED or FAILED message during execution.

7 AVF-VSR-AFNOR-90-03

INTRODUCTION

Class E tests are expected to execute successfully and check implementation-
dependent options and resolutions of ambiguities in the Ada Standard. Each Class
E test is self-checking and produces a NOT APPLICABLE, PASSED, or FAILED message
when it is compiled and executed. However, the Ada Standard permits an
implementation to reject programs containing some features addressed by Class E
tests during compilation. Therefore, a Class E test is passed by a compiler if
it is compiled successfully and executes to produce a PASSED message, or if it
is rejected by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving multiple,
separately compiled units are detected and not allowed to execute. Class L tests
are compiled separately and execution is attempted. A Class L test passes if it
is rejected at link time--that is, an attempt to execute the main p:ogram must
generate an error messag3 before any declarations in the main program or any
units referenced by the main program are elaborated. In some cases, an
implementation may legitimately detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECKFILE, support the
self-checking features of the executable tests. The package REPORT provides the
mechanism by which executable tests report PASSED, FAILED, or NOT APPLICABLE
results. It also provides a set of identity functions used to defeat some
compiler optimizations allowed by the Ada Standard that would circumvent a test
objective. The procedure CHECKFILE is used to check the contents of text files
written by some of the Class C tests for Chapter 14 of the Ada Standard. The
operation of REPORT and CHECK FILE is checked by a set of executable tests.
These tests produce messages that are examined to verify that the units are
operating correctly. If these units are not operating correctly, then the
validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For example,
the tests make use of only the basic set of 55 characters, contain lines with a
maximum length of 72 characters, use small numeric values, and place features
that may not be supported by all implementations in separate tests. However,
some tests contain values that require the test to be customized according to
implementation-specific values--for example, an illegal file name. A list of the
values used for this validation is provided in Appendix C.

A compiler must correctly process each of the tests in the suite and demonstrate
conformity to the Ada Standard by either meeting the pass criteria given for the
test or by showing that the test is inapplicable to the implementation. The
applicability of a test to an implementation is considered each time the
implementation is validated. A test that is inapplicable for one validation is
not necessarily inapplicable for a subsequent validation. Any test that was
determined to contain an illegal language construct or an erroneous language
construct is withdrawn from the ACVC and, therefore, is not used in testing a
compiler. The tests withdrawn at the time of this validation are given in
Appendix D.

8 AVF-VSR-AFNOR-90-03

CONFIGURATION INFORMATION

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: AlsyCOMP_041, Version 4.23

ACVC Version: 1.10

Certificate Number: 900208A1.10242

Host Computer:

Machine: VAX 3300

Operating System: Ultrix-32, Version 3.1B

Memory Size: 20 Mb

Target Computer:

Machine: THOMSON MLX32/20T

Board: UTS 01.0
CPU: Motorola MC68020
Bus: VME
I/O: Zilog Z8530
Timer: Zilog Z8536
Coprocessor: Motorola MC68881

Operating System: MOP MLX, Version 1,

with ARTK, Version 4.23

Memory Size: 1,5 Mb

Communications Network: RS 232 serial connection

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of a
compiler in those areas of the Ada Standard that permit implementations to
differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

9 AVF-VSR-AFNOR-90-03

CONFIGURATION INFORMATION

a. Capacities.

(1) The compiler correctly processes a compilation containing 723
variables in the same declarative part. (See test D29002K.)

(2) The compiler correctly processes tests containing loop statements
nested to 65 levels. (See tests D55AO3A..H (8 tests).)

(3) The compiler correctly processes a test containing block statements
nested to 65 levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to 17 levels. (See
tests D64005E..G (3 tests).)

b. Predefined types.

(1) This implementation supports the additional predefined types,
SHORTINTEGER, LONG_INTEGER, LONGFLOAT in the package STANDARD. (See
tests B86001T..Z (7 tests).)

c. Based literals.

(1) An implementation is allowed to raise NUMERICERROR or
CONSTRAINT ERROR when a value exceeds SYSTEM.MAXINT . This implemen-
tation raises NUMERICERROR during execution. (See test E24201A.)

d. Expression evaluation.

The order in which expressions are evaluated and the time at which
constraints are checked are not defined by the language. While the ACVC
tests do not specifically attempt to determine the order of evaluation of
expressions, test results indicate the following:

(1) None of the default initialization expressions for record components
are evaluated before any value is checked for membership in a
component's subtype. (See test C32117A.)

(2) Assignments for subtypes are performed with the same precision as the
base type. (See test C35712B.)

(3) This implementation uses no extra bits for extra precision. This
implementation uses all extra bits for extra range. (See test
C35903A.)

(4) NUMERICERROR is raised when an integer literal operand in a
comparison or membership test is outside the range of the base type.
(See test C45232A.)

(5) NUMERICERROR is raised when a literal operand in a fixed-point
comparison or membership test is outside the range of the base type.
(See test C45252A.)

10 AVF-VSR-AFNOR-90-03

CONFIGURATION INFORMATION

(6) Underflow is gradual. (See tests C45524A..Z.) (26 tests)

e. Rounding.

The method by which values are rounded in type conversions is not defined by
the language. While the ACVC tests do not specifically attempt to determine
the method of rounding, the test results indicate the following:

(1) The method used for rounding to integer is round to even. (See tests
C46012A..Z.) (26 tests)

(2) The method used for rounding to longest integer is round to even.
(See tests C46012A..Z.) (26 tests)

(3) The method used for rounding to integer in static universal real
expressions is round to even. (See test C4AO14A.)

f. Array types.

An implementation is allowed to raise NUMERICERROR or CONSTRAINTERROR for
an array having a 'LENGTH that exceeds STANDARD.INTEGER'LAST and/or
SYSTEM.MAXINT. For this implementation:

(1) Declaration of an array type or subtype declaration with more than
SYSTEM.MAXINT components raises NUMERICERROR . (See test C36003A.)

(2) NUMERICERROR is raised when 'LENGTH is applied to an array type with
INTEGER'LAST + 2 components. (See test C36202A.)

(3) NUMERICERROR is raised when an array type with SYSTEM.MAXINT + 2
components is declared. (See test C36202B.)

(4) A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST raises
no exception. (See test C52103X.)

(5) A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises CONSTRAINTERROR when the length of a dimension is
calculated and exceeds INTEGER'LAST. (See test C52104Y.)

(6) In assigning one-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINT ERROR is raised when
checking whether the expression's subtype is compatible with the
target's subtype. (See test C52013A.)

(7) In assigning two-dimensional array types, the expression is not
evaluated in its entirety before CONSTRAINT-ERROR is raised when
checking whether the expression's subtype is compatible with the
target's subtype. (See test C52013A.)

g. A null array with one dimension of length greater than INTEGER'LAST may
raise NUMERICERROR or CONSTPAINTERROR either when declared or assigned.
Alternatively, an implementation may accept the declaration. However,
lengths must match in array slice assignments. This implementation raises no
exception. (See test E52103Y.)

11 AVF-VSR-AFNOR-90-03

CONFIGURATION INFORMATION

h. Discriminated types.

(1) In assigning record types with discriminants, the expression is
evaluated in its entirety before CONSTRAINTERROR is raised when
checking whether the expression's subtype is compatible with the
target's subtype. (See test C52013A.)

i. Aggregates.

(1) In the evaluation of a multi-dimensional aggregate, the test results
indicate that all choices are evaluated before checking against the
index type. (See tests C43207A and C43207B.)

(2) In the evaluation of an aggregate containing subaggregates, not all
choices are evaluated before being checked for identical bounds. (See
test E43212B.)

(3) CONSTRAINTERROR is raised after all choices are evaluated when a
bound in a non-null range of a non-null aggregate does not belong to
an index subtype. (See test E43211B.)

j. Pragmas.

(1) The pragma INLINE is supported for functions or procedures, but not
functions called inside a package specification. (See tests
LA3004A..B, EA3004C..D, and CA3004E..F.)

k. Generics.

(1) Generic specifications and bodies can be compiled in separate
compilations. (See tests CAlOl2A, CA2009C, CA2009F, BC3204C, and
BC3205D.)

(2) Generic subprogram declarations and bodies can be compiled in
separate compilations. (See tests CA102A and CA2009F.)

(3) Generic library subprogram specifications and bodies can be compiled
in separate compilations. (See test CAlOl2A.)

(4) Generic non-library package bodies as subunits can be compiled in
separate compilations. (See test CA2009C.)

(5) Generic non-library subprogram bodies can be compiled in separate
compilations from their stubs. (See test CA2009F.)

(6) Generic unit bodies and their subunits can be compiled in separate
compilations. (See test CA3OllA.)

(7) Generic package declarations and bodies can be compiled in separate
compilations. (See tests CA2009C, BC3204C, and BC3205D.)

(8) Generic library package specifications and bodies can be compiled in
separate compilations. (See tests BC3204C and BC3205D.)

12 AVF-VSR-AFNOR-90-03

CONFIGURATION INFORMATION

(9) Generic unit bodies and their subunits can be compiled in separate
compilations. (See test CA3OIIA.)

1. Input and output.

(3) The director, AJPO, has determined (AI-00332) that every call to OPEN
and CREATE must raise USEERROR or NAMEERROR if file input/output is
not supported. This implementation exhibits this behavior for
SEQUENTIAL_IO, DIRECT_IO, and TEXTIO.

13 AVF-VSR-AFNOR-90-03

TEST INFORMATION

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was tested, 44
tests had been withdrawn because of test errors. The AVF determined that 571
tests were inapplicable to this implementation. All inapplicable tests were
processed during validation testing except for 201 executable tests that use
floating-point precision exceeding that supported by the implementation.
Modifications to the code, processing, or grading for 53 tests were required.
(See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable conformity to
the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL

_ A B C D E L

Passed 129 1133 1761 17 16 46 3102

Inapplicable 0 5 554 0 12 0 571

Withdrawn 1 2 35 0 6 0 44

TOTAL 130 1140 2350 17 34 46 3717

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 198 577 555 248 172 99 161 332 137 36 252 259 76 3102

Inappl 14 72 125 0 0 0 5 0 0 0 0 110 245 571

Wdrn 1 1 0 0 0 0 0 2 0 0 1 35 4 44

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

14 AVF-VSR-AFNOR-90-03

TEST INFORMATION

3.4 WITHDRAWN TESTS

The following 44 tests were withdrawn from ACVC Version 1.10 at the time of this
validation:

A39005G B97102E BC3009B C97116A CD2A62D CD2A63A CD2A63B CD2A63C CD2A63D
CD2A66A CD2A66B CD2A.6C CD2A66D CD2A73A CD2A73B CD2A73C CD2A73D CD2A76A
CD2A76B CD2A76C CD2A76D CD2A81G CD2A83G CD2A84M CD2A84N CD2D11B CD2B15C
CD5007B CD50110 CD7105A CD7203B CD7204B CD7205C CD7205D CE2107I CE3111C
CE330'o E3411B E28005C ED7004B ED7005C ED7005D ED7006C ED7006D

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features that
a compiler is not required by the Ada Standard to support. Others may depend on
the result of another test that is either inapplicable or withdrawn. The
applicability of a test to an implementation is considered each time a
validation is attempted. A test that is inapplicable for one validation attempt
is not necessarily inapplicable for a subsequent attempt. For this validation
attempt, 571 tests were inapplicable for the reasons indicated:

The following 201 tests are not applicable because they have floating-point
type declarations requiring more digits than System.Max Digits:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

C35702A and B86001T are not applicable because this implementation supports
no predefined type ShortFloat.

C45531M..P (4 tests) and C45532M..P (4 tests) are not applicable because
the value of System.MaxMantissa is less than 32.

C86001F, is not applicable because recompilation of Package SYSTEM is not
allowed.

B86001X, C45231D, and CD7101G are not applicable because this
implementation does not support any predefined integer type with a name
other than Integer, LongInteger, or Short-Integer.

B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than Duration.

B86001Z is not applicable because this implementation supports no
predefined floating-point type with a name other than Float, LongFloat, or
ShortFloat.

15 AVF-VSR-AFNOR-90-03

TEST INFORMATION

BD5006D is not applicable because address clause for packages is not
supported by this implementation.

The following 10 tests are not applicable because size clause on float is
not supported by this implementation:

CD1O09C CD2A41A..B (2 tests)
CD2A41E CD2A42A..B (2 tests)
CD2A42E..F (2 tests) CD2A42I..J (2 tests)

CDlC04B, CDlC04E, CD4051A..D (4 tests) are not applicable because
representation clause on derived records or derived tasks is not supported
by this implementation.

CD2A84B..I (8 tests), CD2A84K..L (2 tests) are not applicable because size
clause on access type is not supported by this implementation.

The following 28 tests are not applicable because size clause for derived
private type is not supported by this implementation:

CDlC04A CD2A21C..D (2 tests)
CD2A22C..D (2 tests) CD2A22G..H (2 tests)
CD2A31C..D (2 tests) CD2A32C..D (2 tests)
CD2A32G..H (2 tests) CD2A41C..D (2 tests)
CD2A42C..D (2 tests) CD2A42G..H (2 tests)
CD2A51C..D (2 tests) CD2A52C..D (2 tes's)
CD2A52G..H (2 tests) CD2A53D
CD2A54D CD2A54H

The following 29 tests are not applicable because of the way this
implementation allocates storage space for one component, size
specification clause for an array type or for a record type requires
compression of the storage space needed for all the components (without
gaps).

CD2A61A..D (4 tests) CD2A61F
CD2A61H..L (5 tests) CD2A62A..C (3 tests)
CD2A71A..D (4 tests) CD2A72A..D (4 tests)
CD2A74A..D (4 tests) CD2A75A..D (4 tests)

CD4041A is not applicable because alignment "at mod 8" is not supported by
this implementation.

The following 21 tests are not applicable because address clause for a
constant is not supported by this implementation:

CD5011B,D,F,H,L,N,R (7 tests) CD5012C,D,G,H,L (5 tests)
CD5013B,D,F,H,L,N,R (7 tests) CD5Ol4U,W (2 tests)

CD5012J, CD5013S, CD5014S are not applicable because address clause for a
task is not supported by this implementation.

CE2103A is not applicable because USE-ERROR is raised on a CREATE of an
instantiation of SEQUENTIALIO with an ILLEGAL EXTERNAL FILE NAME.

CE2103B is not applicable because USE-ERROR is raised on a CREATE of an
instantiation of DIRECTIO with an ILLEGAL EXTERNAL FILE NAME.

CE3107A is not applicable because USEERROR is raised on a CREATE of a file
of type TEXT_IO.FILETYPE with an ILLEGAL EXTERNAL FILE NAME.

16 AVF-VSR-AFNOR-90-03

TEST INFORMATION

The following 242 tests are inapplicable because sequential, text, and
direct access files are not supported:

CE2102A..C (3 tests) CE2102G..H (2 tests)
CE2102K CE2102N..Y (12 tests)
CE2103C..D (2 tests) CE2104A..D (4 tests)
CE2105A..B (2 tests) CE2106A..B (2 tests)
CE2107A..H (8 tests) CE2107L
CE2108A..H (8 tests) CE2109A..C (3 tests)
CE211OA..D (4 tests) CE2111A..I (9 tests)
CE2115A..B (2 tests) CE2201A..C (3 tests)
EE2201D..E (2 tests) CE2201F..N (9 tests)
CE2204A..D (4 tests) CE2205A
CE2208B CE2401A..C (3 tests)
EE2401D EE2401G
CE2401E..F (2 tests) CE2401H..L (5 tests)
CE2404A..B (2 tests) CE2405B
CE2406A CE2407A..B (2 tests)
CE2408A..B (2 tests) CE2409A..B (2 tests)
CE2410A..B (2 tests) CE2411A
CE3102A..B (2 tests) EE3102C
CE3102F..H (3 tests) CE31O2J..K (2 tests)
CE3103A CE3104A..C (3 tests)
CE3107B CE3108A..B (2 tests)
CE3109A CE3110A
CE3111A..B (2 tests) CE3111D..E (2 tests)
CE3112A..D (4 tests) CE3114A..B (2 tests)
CE3115A EE3203A
CE3208A EE3301B
CE3302A CE3305A
CE3402A EE3402B
CE3402C..D (2 tests) CE3403A..C (3 tests)
CE3403E..F (2 tests) CE3404B..D (3 tests)
CE3405A EE3405B
CE3405C..D (2 tests) CE3406A..D (4 tests)
CE3407A..C (3 tests) CE3408A..C (3 tests)
CE3409A CE3409C..E (3 tests)
EE3409F CE3410A
CE3410C..E (3 tests) EE341OF
CE3411A CE3411C
CE3412A
EE3412C CE3413A
CE3413C CE3602A..D (4 tests)
CE3603A CE3604A..B (2 tests)
CE3605A..E (5 tests) CE3606A..B (2 tests)
CE3704A..F (6 tests) CE3704M..O (3 tests)
CE3706D CE3706F..G (2 tests)
CE3804A..P (16 tests) CE3805A..B (2 tests)
CE3806A..B (2 tests) CE3806D..E (2 tests)
CE3806G..H (2 tests) CE3905A..C (3 tests)
CE3905L CE3906A..C (3 tests)
CE3906E..F (2 tests)

17 AVF-VSR-AFNOR-90-03

TEST INFORMATION

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code, processing,
or evaluation in order to compensate for legitimate implementation behavior.
Modifications are made by the AVF in cases where legitimate implementation
behavior prevents the successful completion of an (otherwise) applicable test.
Examples of such modifications include: adding a length clause to alter the
default size of a collection; splitting a Class B test into suhLests so that all
errors are detected; and confirming that messages produced by an executable test
demonstrate conforming behavior that wasn't anticipated by the test (such as
raising one exception instead of another).

Modifications were required for 53 tests.

The following 27 tests were split because syntax errors at one point resulted in
the compiler not detecting other errors in the test:
B23004A B24007A B24009A B28003A B32202A B32202B B32202C B33001A B36307A B37004A
B49003A B49005A B61012A B62001B B74304B B74304C B74401F B74401R B91004A B95032A
B95069A B95069B BA1101B BC2001D BC3009A BC3009C BD5005B

The following 21 tests were split in order to show that the compiler was able to
find the representation clause indicated by the comment
--N/A =>ERROR :

CD2A61A CD2A61B CD2A61F CD2A61I CD2A61J CD2A62A CD2A62B CD2A71A CD2A71B CD2A72A
CD2A72B CD2A75A CD2A75B CD2A84B CD2A84C CD2A84D CD2A84E CD2A84F CD2A84G CD2A84H
CD2A84I

The test EA3004D when run as it is, the implementation fails to detect an error
on line 27 of test file EA3004D6M (line 115 of "cat -n ea3004d*"). This is
because the pragma INLINE has no effect when its object is within a package
specification. However, the results of running the test as it is does not
confirm that the pragma had no effect, only that the package was not made
obsolete. By re-ordering the compilations so that the two subprograms are
compiled after file D5 (the re-compilation of the "with"ed package that makes
the various earlier units obsolete), we create a test that shows that indeed
pragma INLINE has no effect when applied to a subprogram that is called within a
package specification: the test then executes and produces the expected
NOT APPLICABLE result (as though INLINE were not supported at all). The
re-ordering of EA3004D test files is 0-1-4-5-2-3-6.

BA2001E requires that duplicate names of subunits with a common ancestor be
detected and rejected at compile time. This implementation detects the error at
link time, and the AVO ruled that this behavior is acceptable.

Modified version was produced for C87B62B, in order to have the test run to
completion and fully exhibit the test behavior:
An explicit STORAGESIZE clause was added for the access type declared at line
68. This allows the test to execute without raising STORAGEERROR and to meet
its objective (test overloading resolution in expression within length clause).
The test then produces the expected PASSED result.

18 AVF-VSR-AFNOR-90-03

TEST INFORMATION

Modified versions were produced for CD2C11A and CD2C11B, in order to have the
test run to completion and fully exhibit the test behavior:
Because the given STORAGESIZE is too small for the implementation, the length
clause was changed from 1024 to 4096 at line 43 and 46, respectively, The same
change was made also at line 95 and 98 on the identity function IDENTINT. This
allows the test to execute without raising STORAGE-ERROR and to meet its
objective (test if a task storage size specification can be given for a task
type). The test then produces the expected PASSED result.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced by the
AlsyCOMP 041, Version 4.23 compiler was submitted to the AVF by the applicant
for review. The full set of test results produced by the compiler was compared
with a set of test results from a validated compiler. Analysis of the comparison

results demonstrated that the compiler successfully passed all applicable tests,
and the compiler exhibited the expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the AlsyCOMP_041, Version 4.23 compiler using ACVC Version 1.10 was
conducted on-site by a validation team from the AVF. The configuration in which
the testing was performed is described by the following designations of hardware
and software components:

Host computer: VAX 3300
Host operating system: Ultrix-32, Version 3.1B
Target computer: THOMSON MLX32/20T
Target operating system: MOP MLX, Version 1, with ARTK, Version 4.23
Compiler: AlsyCOMP_041, Version 4.23
Pre-linker: built-in and Alsys proprietary
Linker: LD 20
Loader/Downloader: built-in and Alsys proprietary

The host and target computers were linked via RS 232 serial connection.

The full set of tests for ACVC Version 1.10 except withdrawn tests and tests
requiring unsupported floating-point precisions (tests that make use of
implementation-specific values were customized before) was compiled by the
AlsyCOMP_041, Version 4.23 and linked on the VAX 3300, then all executable
images were transferred to the THOMSON MLX32/20T via RS 232 serial connection,
and run.

The full set of test results was compared on the host with the full set of
prevalidation test results. No difference occurred.

19 AVF-VSR-AFNOR-90-03

TEST INFORMATION

The compiler was tested using command scripts provided by THOMSON-CSF, DIVISION
CIMSA SINTRA and reviewed by the validation team. The compiler was tested using
all default option settings except for the following:

OPTION EFFECT

CALLS=INLINED Allow inline insertion of code for subprograms and take
pragma INLINE are taken into account

OBJECT=PEEPHOLE Local optimization during code generation is made

GENERIC=INLINED Generics are inlined

FLOAT=MC68881 Floating point operations use the MC68881 arithmetic
coprocessor

Tests were compiled, linked, and executed (as appropriate) using a single host
and target computer. Test output, compilation listings, and job logs were
captured on Cartridge TK50 and archived at the AVF. The listings examined on-
site by the validation team were also archived.

3.7.3 Test Site

Testing was conducted at THOMSON-CSF, DIVISION CIMSA SINTRA, 160 Boulevard de
Valmy, Colombes, FRANCE and was completed on 8 February 1990.

20 AVF-VSR-AFNOR-90-03

DECLARATION OF CONFORMANCE

APPENDIX A

DECLARATION OF CONFORMANCE

THOMSON-CSF, DIVISION CIMSA SINTRA and ALSYS have submitted
the following Declaration of Conformance concerning the
AlsyCOMP_041, Version 4.23 compiler.

21 AVF-VSR-AFNOR-90-03

DECLARATION OF CONFORMANCE

DECLARATION OF CONFORMANCE

Customer: THOMSON-CSF, DIVISION CIMSA SINTRA

Licensor: ALSYS

Ada Validation Facility: AFNOR, Tour Europe, Cedex 7
F-92049 PARIS LA DEFENSE

ACVC Version: 1.10

Ada Implementation:

Compiler Name and Version: AlsyCOMP_041, Version 4.23

Host Computer System: VAX 3300 under
Ultrix-32, Version 3.1B

Target Computer System: THOMSON MLX32/20T under
MOP MLX, Version 1, with ARTK, Version 4.23

Customer's Declaration

I, the undersigned, representing THOMSON-CSF, DIVISION CIMSA SINTRA, declare
that THOMSON-CSF, DIVISION CIMSA SINTRA has no knowledge of deliberate
deviations from the Ada Language Standard ANSI/MIL-STD-1815A in the
implementation listed in this declaration.

7 U Date: e________________

Yves COIFFIER, Fojct manager
THOMSON-CSF, DIVSION CIMSA SINTRA
Colombes, France

Licensor's Declaration

I, the undersigned, representing ALSYS, declare that THOMSON-CSF, DIVISION CIMSA
SINTRA is the licensee of the above implementation and the certificate shall be
awarded in the name of THOMSON-CSF, DIVISION CIMSA SINTRA.

Date: -\
Etienne Morel, Managing Director
ALSYS
La Celle Saint-Cloud, France

22 AVF-VSR-AFNOR-90-03

TEST PARAMETERS

APPENDIX B

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such as
the maximum length of an input line and invalid file names. A test that makes
use of such values is identified by the extension .TST in its file name. Actual
values to be substituted are represented by names that begin with a dollar sign.
A value must be substituted for each of these names before the test is run. The
values used for this validation are given below.

Name and Meaning Value

$ACC_SIZE 32
An integer literal whose value
is the number of bits sufficient
to hold any value of an access
type.

$BIG_IDI (254 * 'A') & '1'
Identifier the size of the
maximum input line length
with varying last character.

$BIG_ID2 (254 * 'A) & '2'
Identifier the size of the
maximum input line length
with varying last character.

$BIG_ID3 (126 * 'A') & '3' & (128 * 'A')
Identifier the size of the
maximum input line length
with varying middle character.

SBIG_ID4 (126 * 'A') & '4' & (128 * 'A')
Identifier the size of the
maximum input line length
with varying middle character.

14 juin 1990 23 AVF-VSR-AFNOR-90-03

TEST PARAMETERS

Name and Meaning Value

$BIGINTLIT (252 * '0') & '298'
An integer literal of value
298 with enough leading zeroes
so that it is the size of the
maximum line length.

$BIGREALLIT (250 * '0') & '690.'

A universal real literal of
value 690.0 with enough
leading zeroes to be the size
of the maximum line length.

$BIGSTRING1 fill & (127 * 'A') &
A string literal which when
catenated with BIG STRING2
yields the image of BIGIDl.

$BIGSTRING2 .. & (127 * 'A') & 'i"'
A string literal which when
catenated to the end of
BIGSTRING1 yields the image
of BIGIDl.

$BLANKS (235 * '

A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNTLAST 2147483647
A universal integer literal whose
value is TEXTIO.COUNT'LAST.

$DEFAULTMEMSIZE 2**32
An integer literal whose value
is SYSTEM.MEMORYSIZE.

$DEFAULTSTORUNIT 8
An integer literal whose value
is SYSTEM.STORAGEUNIT.

$DEFAULTSYSNAME ARTK
The value of the constant
SYSTEM.SYSTEMNAME.

SDELTADOC 2#1.08E-31
A real literal whose value is
SYSTEM.FINEDELTA.

14 juin 1990 24 AVF-VSR-AFNOR-90-03

TEST PARAMETERS

Name and Meaning Value

$FIELD_LAST 255
A universal integer literal whose
value is TEXTIO.FIELD'LAST.

-TAME NOSUCHTYPE
The name oL a predefined
fixed-point type other than
DURATION.

$FLOAT__NAME NOSUCHTYPE
The name of a predefined
floating-point type other than
FLOAT, SHORT_FLOAT, or
LONGFLOAT.

$GREATER_THANDURATION -100_000_000.0
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

$GREATERTHANDURATIONBASELAST 100_000_000.0
A universal real literal that is
greater than DURATION'BASE'LAST.

$HIGHPRIORITY 24
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

$ILLEGALEXTERNALFILENAMEl /-/*/fl
An external file name specifying
a non existent directory

$ILLEGAL_EXTERNALFILENAME2 /-/*/f2
An external file name different
from $ILLEGALEXTERNALFILENAMEl

$INTEGERFIRST -32768
A universal integer literal
whose value is INTEGER'FIRST.

SINTEGER_LAST 32767
A universal integer literal
whose value is INTEGER'LAST.

$INTEGERLASTPLUS_1 32768
A universal integer literal
whose value is INTEGER'LAST + 1.

14 juin 1990 25 AVF-VSR-AFNOR-90-03

TEST PARAMETERS

Name and Meaning Value

$LESSTHAN_.DURATION -100_00.0
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

SLESSTHAN DURATIONBASEFIRST -3_000_000.0
A universal real literal that is
less than DURATION'BASE'FIRST.

SLOW_PRIORITY 1
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

$MANTISSADOC 31
An integer literal whose value
is SYSTEM.MAXMANTISSA.

$MAX_DIGITS 15
Maximum digits supported for
floating-point types.

$MAXINLEN 255
Maximum input line length
permitted by the implementation.

SMAX_INT 2147483647
A universal integer literal
whose value is SYSTEM.MAXINT.

$MAXINT_PLUS_1 2_147_483_648
A universal integer literal
whose value is SYSTEM.MAXINT+I.

SMAXLENINTBASEDLITERAL '2:' & (250 * '0') & '11:'
A universal integer based
literal whose value is 2:11:
with enough leading zeroes in
the mantissa to be MAXINLEN
long.

$MAX LENREALBASEDLITERAL '16:' & (248 * '0') & 'F.E:'
A universal real based literal
whose value is 16: F.E: with
enough leading zeroes in the
mantissa to be MAX IN LEN long.

14 juin 1990 26 AVF-VSR-AFNOR-90-03

TEST PARAMETERS

Name and Meaning Value

SMAX_STRINGLITERAL veto & (253 * 'A') & ...
A string literal of size
MAX IN LEN, including the quote
characters.

SMININT -2147483648
A universal integer literal
whose value is SYSTEM.MINTNT.

SMIN TASKSIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
NULL;" as the only statement in
its body.

SNAME NOSUCHTYPE
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORTFLOAT, SHORTINTEGER,
LONGFLOAT, or LONGINTEGER.

SNAMELIST ARTK
A list of enumeration literals
in the type SYSTEM.NAME,
separated by commas.

$NEGBASEDINT 16#FFFFFFFE#
A based integer literal whose
highest order nonzero bit falls
in the sign bit position of the
representation for SYSTEM.MAXINT.

SNEWMEM_SIZE 2**32
An integer literal whose value
is a permitted argument for
pragma memorysize, other than
DEFAULTMEMSIZE. If there is
no other value, then use
DEFAULTMEMSIZE.

SNEW_STOR UNIT 8
An integer literal whose value
is a permitted argument for
pragma storageunit, other than
DEFAULTSTORUNIT. If there is
no other permitted value, then
use value of SYSTEM.STORAGEUNIT.

14 juin 1990 27 AVF-VSR-AFNOR-90-03

TEST PARAMETERS

Name and Meaning Value

$NEWSYS_NAME ARTK
A value of the type SYSTEM.NAME,
other than $DEFAULTSYSNAME. If
there is only one value of that
type, then use that value.

STASK_SIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one inout
parameter.

STICK 1.0
A real literal whose value is
SYSTEM.TICK.

14 juin 1990 28 AVF-VSR-AFNOR-90-03

WITHDRAWN TESTS

APPENDIX C

WITHDRAWN TESTS

Some tests are withdrawn frm the ACVC because they do not conform to the Ada
Standard. The following 44 tests had been 'ithdrawn at the time of validation
testing for the reasons indicated. A reference of the form AI-ddddd is to an Ada
Commentary.

E28005C
This test expects that the string "-- TOP OF PAGE. --63" of line 204 will
appear at the top of the listing page due to a pragma PAGE in line 203; but
line 203 contains text that follows the pragma, and it is this that must
appear at the top of the page.

A39005G
This test unreasonably expects a component clause to pack an array component
into a minimum size (line 30).

B97102E
This test contains an unitended illegality: a select statement contains a
null statement at the place of a selective wait alternative (line 31).

C97116A
This test contains race conditions, and it assumes that guards are evaluated
indivisibly. A conforming implementation may use interleaved execution in
such a way that the evaluation of the guards at lines 50 & 54 and the execu-
tion of task CHANGINGOFTHEGUARD results in a call to REPORT.FAILED at one
of lines 52 or 56.

BC3009B
This test wrongly expects that circular instantiations will be detected in
several compilation units even though none of the units is illegal with re-
spect to the units it depends on; by AI-00256, the illegality need not be
detected until execution is attempted (line 95).

CD2A62D
This test wrongly requires that an array object's size be no greater than 10
although its subtype's size was specified to be 40 (line 137).

CD2A63A..D, CD2A66A..D, CD2A73A..D, CD2A76A..D [16 tests]
These tests wrongly attempt to check the size of objects of a derived type
(for which a 'SIZE length clause is given) by passing them to a derived sub-
program (which implicitly converts them to the parent type (Ada standard
3.4:14)). Additionally, they use the 'SIZE length clause and attribute, whose
interpretation is considered problematic by the WG9 ARG.

CD2A8lG, CD2A83G, CD2A84N & M, & CD50110 [5 tests]
These tests assume that dependent tasks will terminate while the main pro-
gram executes a loop that simply tests for task termination; this is not the
case, and the main program may loop indefinitely (lines 74, 85, 86 & 96, 86 &
96, and 58, resp.).

14 juin 1990 29 AVF-VSR-AFNOR-90-03

WITHDRAWN TESTS

CD2B15C & CD7205C
These tests expect that a 'STORAGESIZE length clause provides precise con-
trol over the number of designated objects in a collection; the Ada standard
13.2:15 allows that such control must not be expected.

CD2D1IB
This test gives a SMALL representation clause for a derived fixed-point type
(at line 30) that defines a set of model numbers that are not necessarily
rerresented in the parent type; by Commentary AI-00099, all model numbers of
a derived fixed-point type must be representable values of the parent type.

CD5007B
This test wrongly expects an implicitly declared subprogram to be at the the
address that is specified for an unrelated subprogram (line 303).

ED7004B, ED7005C & D, ED7006C & D 15 tests]
These tests check various aspects of the use of the three SYSTEM pragmas;

the AVO withdraws these tests as being inappropriate for validation.

CD7105A
This test requires that successive calls to CALENDAR.CLOCK change by at least
SYSTEM.TICK; however, by Commentary AI-00201, it is only the expected
frequency of change that must be at least SYSTEM.TICK--particular instances
of change may be less (line 29).

CD7203B, & CD7204B
These tests use the 'SIZE length clause and attribute, whose interpretation
is considered problematic by the WG9 ARG.

CD7205D
This test checks an invalid test objective: it treats the specification of
storage to be reserved for a task's activation as though it were like the
specification of storage for a collection.

CE2107I
This test requires that objects of two similar scalar types be distinguished
when read from a file--DATAERROR is expected to be raised by an attempt to
read one object as of the other type. However, it is not clear exactly how
the Ada standard 14.2.4:4 is to be interpreted; thus, this test objective is
not considered valid. (line 90)

CE3111C
This test requires certain behavior, when two files are associated with the
same external file, that is not required by the Ada standard.

CE3301A
This test contains several calls to END OF LINE & END OF PAGE that have no
parameter: these calls were intended to specify a file, not to refer to
STANDARDINPUT (lines 103, 107, 118, 132, & 136).

CE3411B
This test requires that a text file's column number be set to COUNT'LAST in
order to check that LAYOUTERROR is raised by a subsequent PUT operation. But
the former operation will generally raise an exception due to a lack of
available disk space, and the test would thus encumber validation testing.

14 juin 1990 30 AVF-VSR-AFNOR-90-03

APPENDIX F OF THE Ada STANDARD

APPENDIX D

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of the Ada Standard, and to certain allowed restrictions on
representation clauses. The implementation-dependent characteristics of the
AlsyCOMP_041, Version 4.23 compiler, as described in this Appendix, are provided
by THOMSON-CSF, DIVISION CIMSA SINTRA and ALSYS. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and not to
this report. Implementation-specific portions of the package STANDARD, which are
not a part of Appendix F, are:

package STANDARD is

type SHORTINTEGER is range -128 .. 127;

type INTEGER is range -32_768 .. 32_767;

type LONGINTEGER is range -2147_483_648 .. 2_147_483_647;

type FLOAT is digits 6 range
-2#1.1111111_1111_1111_1111_1111#E+127

2#1.111_11111111_11111111_1111#E+127;

type LONGFLOAT is digits 15 range
-2#1.1111_1111 1111_1111_1111_1111_1111_1111_1111 _11111111_1111_1111#E1023

2#1.11111111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_11I#E023;

type DURATION is delta 2.0**(-14) range -86_400.0 ..86_400.0;

end STANDARD;

14 juin 1990 31 AVF-VSR-AFNOR-90-03

Alsys Ada

APPENDIX F

for Cross Compilers to 680x0

ALrys S.
29, Avenue Lucien-Reni Duchesne
78170 La Celle S. Cloud, France

ALp Inc.
67 South Bedford Street

Burlington, MA 01803-5152, USA

Abys Ltd
Partridge House, Newtown Road

Henley-on-Thames,
Oxfordshire RG9 1EN, U.K

Copyright 1989 by Alsys

All rights reserved. No part of this document may be reproduced in any form or by any
means without permission in writing from Alsys.

Printed: February 26, 1990

Alsys reserves the right to make changes in specifications and other information
contained in this publication without prior notice. Consult Alsys to determine whether
such changes have been made.

TABLE OF CONTENTS

1 INTERFACING THE LANGUAGE ADA WITH OTHER
LANGUAGES 1

2 IMPLEMENTATION-DEPENDENT PRAGMAS 3

3 IMPLEMENTATION-DEPENDENT ATTRIBUTES 5

4 PACKAGES SYSTEM AND STANDARD 6

5 TYPE REPRESENTATION CLAUSES 10

5.1 Enumeration Types 10
5.2 Integer Types 11
5.3 Floating Point Types 12
5.4 Fixed Point Types 13
5.5 Access Types 14
5.6 Task Types 15
5.7 Array Types 16
5.8 Record Types 17

6 ADDRESS CLAUSES 20

6.1 Address Clauses for Objects 20
6.2 Address Clauses for Program Units 20
6.3 Address Clauses for Entries 20

7 UNCHECKED CONVERSIONS 21

8 INPUT-OUTPUT CHARACTERISTICS 22

8.1 Introduction 22

///

8.2 The FORM Parameter 23

iv

Section 1

INTERFACING THE LANGUAGE ADA WITH OTHER
LANGUAGES

Programs written in Ada can interface with external subprograms written in another

language, by use of the INTERFACE pragma. The format of the pragma is:

pragma INTERFACE (languagename, Ada subprogram name);

where the language_name can be any of

* ASSEMBLER

mC

The convention used for C parameter passing should be compatible with most
C standard compilers.

The Ada subprogram __name is the name by which the subprogram is known
in Ada. For example, to call a subprogram known as FASTFOURIER in
Ada, written in C, the INTERFACE pragma is:

pragma INTERFACE (C, FASTFOURIER);

To relate the name used in Ada with the name used in the original language,
the Alsys Ada compiler converts this name to lower case and truncates it to
32 significant characters.

To avoid naming conflict with routines of the Alsys Ada Executive, external
routine names should not begin with the letters alsy (whether in lower or
upper case or a combination of both).

To allow the use of non-Ada naming conventions, such as special characters,
or case sensitivity, an implementation-dependent pragma
INTERFACENAME has been introduced:

pragma INTERFACENAME (Ada.subprogramname, name-string);

i | |

so that, for example,

pragma INTERFACE-NAME (FAST FOURIER, fit');

will associate the FASTFOURIER subprogram in Ada with the C
subprogram fft.

The pragma INTERFACENAME may be used anywhere in an Ada program where
INTERFACE is allowed (see [13.91). INTERFACE-NAME must occur after the
corresponding pragma INTERFACE and within the same declarative part.

For example:

package SAMPLE LIB is
function SAMPLE DEVICE (X: INTEGER) return INTEGER;
function PROCESS-SAMPLE (X: INTEGER) return INTEGER;

private
pragma INTERFACE (ASSEMBLER, SAMPLE DEVICE);
pragma INTERFACE (C, PROCESSSAMPLE);
pragma INTERFACE NAME (SAMPLE DEVICE, "devl0");
pragma INTERFACE_NAME (PROCESS SAMPLE, 'sample');

end SAMPLE LIB;

2

Section 2

IMPLEMENTATION-DEPENDENT PRAGMAS

Pragma INTERFACE

This pragma has been described in detail in the previous section.

Pragma IMPROVE and Pragma PACK

These pragmas are discussed in detail in sections 5.7 and 5.8 on representation clauses
for arrays and records.

Note that packing of record types is done systematically by the compiler. The pragma
pack will affect the mapping of each component onto storage. Each component will be
allocated on the logical size of the subtype.

Example:

type R is

record
C1: BOOLEAN; C2: INTEGER range 1.. 10;

end record;
pragma PACK(R);
-- the attribute R'SIZE returns 5

Pragma Indent

This pragma is only used with the Alsys Reformatter, this tool offers the functionalities of
a pretty-printer in an Ada environment.

The pragma is placed in the source file and interpreted by the Reformatter.

pragma INDENT(OFF)

The Reformatter does not modify the source lines after the pragma.

pragma INDENT(ON)

The Reformatter resumes its action after the pragma.

3

Pragmas not Implemented

The following pragmas are not implemented:

CONTROLLED
MEMORY SIZE
OPTIMIZE
SHARED
STORAGE UNIT
SYSTEMNAME

4

Section 3

IMPLEMENTATION-DEPENDENT ATRIBUTES

In addition to the Representation Attributes of [13.7.2] and [13.7.31, there are four
attributes which are listed under F.5 below, for use in record representation clauses.

Limitations on the use of the attribute ADDRESS

The attribute ADDRESS is implemented for all prefixes that have meaningful addresses.
The following entities do not have meaningful addresses and will therefore cause a
compilation error if used as prefix to ADDRESS:

" A constant that is implemented as an immediate value i.e., does not have any space

allocated for it.

" A package specification that is not a library unit.

" A package body that is not a library unit or a subunit.

5

Section 4

PACKAGES SYSTEM AND STANDARD

This section contains information on two predefined library packages:

" a complete listing of the specification of the package SYSTEM

" a list of the implementation-dependent declarations in the package aTAN T)ARD.

The package SYSTEM

The specification of the predefined library package SYSTEM is as follows:

package SYSTEM is

-- Standard Ada definitions

type NAME is (ARTK);
SYSTEMNAME : constant NAME := ARTK;
STORAGEUNIT: constant := 8 ;
MEMORY SIZE: constant := 2**32;
MIN INT : constant := -(2"'31)
MAX_ INT: constant := 2"'31-1
MAX DIGITS: constant := 15
MAX MANTISSA : constant "= 31;
FINE DELTA: constant := 2#1.0*e-31
TICK : constant := 1.0 ; -- unused

-- The real basic clock cycle depends on the current hardware
-- and corresponding board support package.

type ADDRESS is private ;
NULLADDRESS: constant ADDRESS;

subtype PRIORITY is INTEGER range 1..24 ; -= 1..248 for VRTX

6

-- Address arithmetic

function TOLONGINTEGER (LEFT: ADDRESS)
return LONGINTEGER ;

function TOADDRESS (LEFT: LONGINTEGER)
return ADDRESS;

function "+" (LEFT: LONG INTEGER; RIGHT: ADDRESS)
return ADDRESS;

function "+" (LEFT: ADDRESS ; RIGHT : LONGINTEGER)
return ADDRESS ;

function -' (LEFT: ADDRESS; RIGHT: ADDRESS)
return LONG INTEGER;

function "-" (LEFT: ADDRESS; RIGHT: LONGINTEGER)
return ADDRESS ;

function "mod" (LEFT : ADDRESS; RIGHT: POSITIVE)
return NATURAL ;

function "<" (LEFT: ADDRESS; RIGHT: ADDRESS)
return BOOLEAN ;

function "<=" (LEFT : ADDRESS; RIGHT: ADDRESS)
return BOOLEAN;

function ">" (LEFT : ADDRESS; RIGHT: ADDRESS)
return BOOLEAN;

function ">=" (LEFT: ADDRESS; RIGHT: ADDRESS)
return BOOLEAN ;

function IS NULL (LEFT: ADDRESS)
return BOOLEAN ;

function WORD ALIGNED (LEFT: ADDRESS)
return BOOLEAN ;

function ROUND (LEFT: ADDRESS)
return ADDRESS ;

-- Returns the given address rounded to the next lower even value

7

procedure COPY (FROM: ADDRESS; TO. ADDRESS;SIZE: NATURAL);
-- Copies SIZE storage unit! The result is undefined if the two areas
-- overlap.

-- Direct memory access

generic
type ELEMENT TYPE is private;

function FETCH (FROM : ADDRESS) return ELEMENT TYPE;
-- Returns the bit pattern stored at address FROM, as a value of the
-- specified ELEMENTTYPE. This function is not implemented
-- for unconstrained array types.

generic
type ELEMENTTYPE is private;

procedure STORE (INTO: ADDRESS ; OBJECT: ELEMENTTYPE);
-- Stores the bit pattern representing the value of OBJECT, at
-- address INTO. This function is not implemented for
-- unconstrained array types.

end SYSTEM;

The package STANDARD

The following are the implementation-dependent aspects of the package
STANDARD.

type SHORT INTEGER is range -(2*7) .. (2**7 -1);
type INTEGER is range -(2** 15) .. (2* 15 - 1);
type LONGINTEGER is range -(2**31) .. (2**31 - 1);

type FLOAT is digits 6 range
-(2.0 - 2.0"*(-23)) * 2.0"'127
+(2.0 - 2.0**(-23)) * 2.0"'127

8

type LONG FLOAT is digits 15 range
-(2.0 - 2.0**(-51)) * 2.0"*1023
+(2.0 - 2.0*(-51)) * 2.0"*1023;

type DURATION is delta 2.0"*(-14) range -86_400.0 .. 86_400.0;

9

Section 5

TYPE REPRESENTATION CLAUSES

The representation of an object is closely connected with its type. For this reason this
section addresses successively the representation of enumeration, integer, floating point,
fixed point, access, task, array and record types. For each class of type the representation
of the corresponding objects is described.

5.1 Enumeration Types

Minimum size of an enumeration subtype

The minimum size of an enumeration subtype is the minimum number of bits that is
necessary for representing the internal codes of the subtype values in normal binary
form.

Size of an enumeration subtype

When no size specification is applied to an enumeration type or first named subtype, the
objects of that type or first nan~ed subtype are represented as signed machine integers.

When a size specification is applied to an enumeration type, this enumeration type and
each of its subtypes has the size specified by the length clause.

The Alsys compiler fully implements size specifications. Nevertheless, as enumeration
values are coded using integers, the specified length cannot be greater than 32 bits.

Size of the objects of an enumeration subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an
object of an enumeration subtype has the same size as its subtype.

10

Alignment of an enumeration subtype

An enumeration subtype is byte aligned if the size of the subtype is less than or equal to 8
bits, it is otherwise even byte aligned.

Address of an object of an enumeration subtype

Provided its alignment is not constrained by a record representation clause or a pragma
PACK, the address of an object of an enumeration subtype is even when its subtype is
even byte aligned.

5.2 Integer Types

Minimum size of an integer subtype

The minimum size of an integer subtype is the minimum number of bits that is necessary
for representing the internal codes of the subtype values in normal binary form.

Size of an integer subtype

The sizes of the predefined integer types SHORT INTEGER, INTEGER and
LONG INTEGER are respectively 8, 16 and 32 bits.

When no size specification is applied to an integer type or to its first named subtype (if
any), its size and the size of any of its subtypes is the size of the predefined type from
which it derives, directly or indirectly.

When a size specification is applied to an integer type, this integer type and each of its
subtypes has the size specified by the length clause.

The Alsys compiler fully implements size specifications. Nevertheless, as integers are
implemented using machine integers, the specified length cannot be greater than 32 bits.

Size of the objects or an Integer subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an
object of an integer subtype has the same size as its subtype.

11

Alignment of an integer subtype

An integer subtype is byte aligned if the size of the subtype is less than or equal to 8 bits,
it is otherwise even byte aligned.

Address of an object of an integer subtype

Provided its alignment is not constrained by a record representation clause or a pragma
PACK, the address of an object of an integer subtype is even when its subtype is even
byte aligned.

5.3 Floating Point Types

Minimum size of a floating po~at subtype

The minimum size of a floating point subtype is 32 bits if its base type is FLOAT or a
type derived from FLOAT; it is 64 bits if its base type is LONG-FLOAT or a type
derived from LONGFLOAT.

Size of a floating point subtype

The sizes of the predefined floating point types FLOAT and LONG-FLOAT are
respectively 32 and 64 bits.

The size of a floating point type and the size of any of its subtypes is the size of the
predefined type from which it derives directly or indirectly.

The only size that can be specified for a floating point type or first nared subtype using a
size specification is its usual size (32 or 64 bits).

Size of the objects of a floating point subtype

An object of a floating point subtype has the same size as its subtype.

12

Alignment of a floating point subtype

A floating point subtype is always even byte aligned.

Address of an object of a floating point subtype

Provided its alignment is not constrained by a record representation clause or a pragma
PACK, the address of an object of a floating point subtype is always even, since its
subtype is even byte aligned.

5.4 Fixed Point Types

Minimum size of a fixed point subtype

The minimum size of a fixed point subtype is the minimum number of binary digits that
is necessary for representing the values of the range of the subtype using the small of the
base type.

Size of a fixed point subtype

The sizes of the predefined fixed point types SHORT FIXED, FIXED and
LONG-FIXED are respectively 8, 16 and 32 bits.

When no size specification is applied to a fixed point type or to its first named subtype,
its size and the size of any of its subtypes is the size of the predefined type from which it
derives directly or indirectly.

When a size specification is applied to a fixed point type, this fixed point type and each of
its subtypes has the size specified by the length clause.

The Alsys compiler fully implements size specifications. Nevertheless, as fixed point
objects are represented using machine integers, the specified length cannot be greater
than 32 bits.

13

Size or the objects of a fixed point subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an
object of a fixed point type has the same size as its subtype.

Alignment of a fixed point subtype

A fixed point subtype is byte aligned if its size is less than or equal to 8 bits, and is
otherwise even byte aligned.

Address of an object of a fixed point subtype

Pro-ided its alignment is not constrained by a record representation clause or a pragma
PACK, the address of an object of a fixed point subtype is even when its subtype is even
byte aligned.

5.5 Access Types

Minimum size of an access subtype

The minimum size of an access subtype is 32 bits.

Size of an access subtype

The size of an access subtype is 32 bits, the same as its minimum size.

The only size that can be specified for an access type using a size specification is its usual
size (32 bits).

Size of an object of an access subtype

An object of an access subtype has the same size as its subtype, thus an object of an
access subtype is always 32 bits long.

14

Alignment of an access subtype.

An access subtype is always even byte aligned.

Address of an object of an access subtype

Provided its alignment is not constrained by a record representation clause or a pragma
PACK, the address of an object of an access subtype is always even, since its subtype is
even byte aligned.

5.6 Task Types

Storage for a task activation

This attribute is described in the chapters 2 and 3 of the Application Developer's Guide.

Encoding of task values.

Encoding of a task value is not described here.

Minimum size of a task subtype

The minimum size of a task subtype is 32 bits.

Size of a task subtype

The size of a task subtype is 32 bits, the same as its minimum size.

A size specification has no effect on a task type. The only size that can be specified using
such a length clause is its minimum size.

Size of the objects of a task subtype

An object of a task subtype has the same size as its subtype. Thus an object of a task
subtype is always 32 bits long.

15

Alignment of a task subtype

A task subtype is always even byte aligned.

Address of an object of a task subtype

Provided its alignment is not constrained by a record representation clause, the address
of an object of a task subtype is always even, since its subtype is even byte aligned.

5.7 Array Types

Size of an array subtype

The size of an array subtype is obtained by multiplying the number of its components by
the sum of the size of the components and the size of the gaps (if any). If the subtype is
unconstrained, the maximum number of components is considered.

The size of an array subtype cannot be computed at compile time

" if it has non-static constraints or is an unconstrained array type with non-static
index subtypes (because the number of components can then only be determined at
run time).

" if the components are records or arrays and their constraints or the constraints of
their subcomponents (if any) are not static (because the size of the components and
the size of the gaps can then only be determined at run time).

The consequence of packing an array type is thus to reduce its size.

If the components of an array are :'cords or arrays and their constraints or the
constraints of their subcomponents (if any) are not static, the compiler ignores any
pragma PACK applied to the array type but issues a warning message. Apart from this
limitation, array packing is fully implemented by the Alsys compiler.

A size specification applied to an array type or first named subtype has no effect. The
only size that can be specified using such a length clause is its usual size. Nevertheless,
such a length clause can be useful to verify that the layout of an array is as expected by
the application.

16

Size of the objects of an array subtype

The size of an object of an array subtype is always equal to the size of the subtype of the
object.

Alignment of an array subtype

If no pragma PACK applies to an array subtype and no size specification applies to its
components, the array subtype is even byte aligned if the subtype of its components is
even byte aligned. Otherwise it is byte aligned.

If a pragma PACK applies to an array subtype or if a size specification applies to its
components (so that there are no gaps), the alignment of the array subtype is as given in
the following table:

relative displacement of components

even nu'er odd nuimber not a whole
of bytes of bytes number of bytes

even byte even byte byte bi t
Component
subtype byte byte byte bit

alignment
bit bit bit bit

Address of an object of an array subtype

Provided its alignment is not constrained by a record representation clause, the address
of an object of an array subtype is even when its subtype is even byte aligned.

5.8 Record Types

Size of a record subtype

Unless a component clause specifies that a component of a record type has an offset or a
size which cannot be expressed using storage units, the size of a record subtype is
rounded up to the a whole number of storage units.

17

The size of a constrained record subtype is obtained by adding the sizes of its

components and the si -:s of its gaps (if any). This size is not computed at conpile time

" when the record subtype has non-static constraints,

" when a component is an array or a record and its size is not computed at compile
time.

The size of an unconstrained record subtype is obtained by adding the sizes of the
components and the sizes of the gaps (if any) of its largest variant. If the size of a
component or of a gap cannot be evaluated exactly at compile time an upper bound of
this size is used by the compiler to compute the subtype size

A size specification applied to a record type or first named subtype has no effect. The
only size that can be specified using such a length clause is its usual size. Nevertheless,
such a length clause can be useful to verify that the layout of a record is as expected by
the application.

Size of an object of a record subtype

An object of a constrained record subtype has the same size as its subtype.

An object of an unconstrained record subtype has the same size as its subtype if this size
is less than or equal to 8 kb. If the size of the subtype is greater than this, the object has
the size necessary to store its current value; storage space is allocated and released as the
discriminants of the record change.

Alignment of a record subtype

When no record representation clause applies to its base type, a record subtype is even
byte aligned if it contains a component whose subtype is even byte aligned. Otherwise the
record subtype is byte aligned.

When a record representation clause that does not contain an alignment clause app!ies
to its base type, a record subtype is even byte aligned if it contains a component whose
subtype is even byte aligned and whose offset is a multiple of 16 bits. Otherwise the
record subtype is byte aligned.

18

When a record representation clause that contains an alignment clause applies to its base
type, a record subtype has an alignment that obeys the alignment clause An alignment
clause can specify that a record type is byte aligned or even byte aligned.

Address of an object of a record subtype

Provided its alignment is not constrained by a representation clause, the address of an
object of a record subtype is even when its subtype is even byte aligned.

19

Section 6

ADDRESS CLAUSES

6.1 Address Clauses for Objects

An address clause can be used to specify an address for an object as described in RM
13.5. When such a clause applies to an object no storage is allocated for it in the program
generated by the compiler. The program accesses the object using the address specified
in the clause.

An address clause is not allowed for task objects, for unconstrained records whose size is
greater than 8 kb. or for a constant.

6.2 Address Clauses for Program Units

Address clauses for program units are not implemented in the current version of the

compiler.

6.3 Address Clauses for Entries

Address clauses are supported

20

Section 7

UNCHECKED CONVERSIONS

Unconstrained arrays are not allowed as target types. Unconstrained record
types without defaulted discriminants are not allowed as target types.

If the source and the target types are each scalar or access types, the sizes of
the objects of the source and target types must be equal.

If a composite type is used either as source type or as target type this
restriction on the size does not apply.

If the source and the target types are each of scalar or access type or if they
are both of composite type, the effect of the function is to return the
operand.

In other cases the effect of unchecked conversion can be considered as a
copy:

w if an unchecked conversion is achieved of a scalar or access source type
to a composite target type, the result of the function is a copy of the
source operand: the result has the size of the source.

a if an unchecked conversion is achieved of a composite source type to a
scalar or access target type, the result of the function is a copy of the
source operand: the result has the size of the target.

21

Section 8

INPUT-OUTPUT CHARACTERISTICS

In this part of the Appendix the implementation-specific aspects of the
input-output system are described.

8.1 Introduction

In Ada, input-output operations (1O) are considered to be performed on
objects of a certain file type rather than being performed directly on external
files. An external file is anything external to the program that can produce a
value to be read or receive a value to be written. Values transferred for a
given file must be all of one type.

Generally, in Ada documentation, the term file refers to an object of a
certain file type, whereas a physical manifestation is known as an external
file. An external file is characterized by

" Its NAME, which is a string defining a legal path name under the
current version of the operating system.

" Its FORM, which gives implementation-dependent information on file
characteristics.

Both the NAME and FORM appear explicitly in the Ada CREATE and
OPEN procedures. Though a file is an object of a certain file type, ultimately
the object has to correspond to an external file. Both CREATE and OPEN
associate a NAME of an external file (of a certain FORM) with a program
file object.

Ada 10 operations are provided by means of standard packages [14].

SEQUENTIAL 10 A generic package for sequential files of a single
element type.

DIRECTIO A generic package for direct (random) access files.

22

TEXT 10 A generic package for human-readable (text, ASCII)
files.

10EXCEPTIONS A package which defines the exceptions needed by the

above three packages.

The generic package LOWLEVEL 10 is not implemented in this version.

The upper bound for index values in DIRECT_10 and for line, column and
page numbers in TEXT_1O is given by

COUNT'LAST = 2*31 -1

The upper bound for fields widths in TEXT_10 is given by

FIELD'LAST = 255

8.2 The FORM Parameter

The FORM parameter to both the CREATE and OPEN procedures in Ada
specifies the characteristics of the external file involved.

The CREATE procedure establishes a new external file, of a given NAME
and FORM, and associates it with a specified program FILE object. The
external file is created (and the FILE object set) with a certain file MODE. If
the external file already exists, the file will be erased. The exception
USEERROR is raised if the file mode is INFILE.

The OPEN procedure associates an existing external file, of a given NAME
and FORM, with a specified program FILE object. The procedure also sets
the current FILE mode. If there is v- inadmissible change of MODE, then an
Ada USEERROR is raised.

The FORM parameter is a string, formed from a list of attributes, with
attributes separated by commas (,). The string is not case sensitive (so that,
for example, HERE and here are treated alike). The attributes specify:

" File sharing

" File structuring

" Buffering

23

* Appending

The general form of any attribute is a keyword followed by => and then a qualifier. The
qualifier may sometimes be omitted. The format for an attribute specifier is thus either
of

KEYWORD

KEYWORD = > QUALIFIER

24

