———
REPORT DOCUMENTATION PAGE oA orosotes
T s e T
e & drrastion wnd Ry Alare, Ofios o Managemers & Suget. Washgicr: 0C s "‘““"‘"““ Buts 1204, Aingien. WA wiw
mﬂﬁﬁEﬂYmm 2 REPORT DATE 3. REPORT TYPE AND DATES COVERED
COPY Final 15 7145 1990 to 15 Jan 1991
O
o 4 TMEANDSUBTIILE Ada Compiler Validation Summary Report Alsys, & FUNDING NUMBERS
To) AlsyCOMP_043, Version 4.4, Macintosh Ilcx (Host & Target),
900115A1.10240
g 6. AUTHOR(S)
N AFNOR, Paris, FRANCE D I l<
< FILECTE
| 7. rerrormnc REORMING Of
WNME(S)A?DW) tgmo?mmu
‘:1 AFNOR CQJ
Tour Europe, Cedex 7 , AFV-VSR-AFNOR-90-01
F-92080 Paris la Defense
FRANCE 1
8. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) . 10. SPONSORINGAMONITORING AGENCY
Ada Joint Program Office REPORT NUMBER
United States Department of Defense
Washington, D.C. 20301-3081
1. SUPPLEMENTARY NOTES

128 DISTRBUTIONAVALABLITY STATEMENT

120. DISTRIBUTION CODE
Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

Alsys, AlsyCOMP_043, Version 4.4, Paris, France, Macintosh IIcx under System 6.0.3
(Host & Target), ACVC 1.10.

14.SUBECTTEAMS Ada programming language, Ada Compiler vValidation

15. NUMBER OF MGES
Summary Report, Ada Compiler Validation Capability, Validation
A e eemtr—
Testing, Ada Validation Office, Ada Validation Facility, ANSI/MIL- ¥6. PRICE CODE
=181 da Joint

: PORT .. 2. LIATTATION OF ABSTRACT
UNCTASSIFIED AN Uﬁﬁ&?ﬁm
NSN 7540.01-280-8800 G

T 07 25 009 o

AVF Control Number: AVF-VSR-AFNOR-90-01

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 900115A1.10240
Alsys
AlsyCOMP_043, Version 4.4
Macintosh IIcx Host and Target

Comple' - o of On-Site Testing:
9 January 1990

Prepared By:
AFNOR
Tour Europe
Cedex 7
F-92049 Paris la Défense

Prepared For:
Ada Joint Program Office
United States Department of Defense
Washington DC 20301-3081

¢ f o0

Azcesion For

NTIS CRa&I
bNiCc TAB

Unannounced
Jusulication .

J ooy

By .
Distribution |

Availability Codes

i Avail and/ or
Dist Special

A-l

Ada Compiler Validation Summary Report:

Compiler Name: AlsyCOMP_043, Version 4.4

Certificate Number: 900115A1.10240

Host: Macintosh IIcx under System 6.0.3

Target: Macintosh IIcx under System 6.0.3
Testing Completed 15 January 1990 Using ACVC 1.10

This report has been reviewed and is approved.

=) ddbarrf

AFNOR

Fabrice Garnier de Labareyre
Tour Europe

Cedex 7

F-92049 Paris la Défense

. Ada Valldatzon Organization
Director, Computer & Software En01neer1ng Division
Institute for Defense Analyses
Alexandria, VA 22311

Dr. John Solomond
Director

Department of Defense
Washington DC 20301

2 AVF-VSR-AFNOR-90-01

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

PURPOSE OF THIS VALIDATION SUMMARY REPORT .

= s
G w e

CHAPTER 2 CONFIGURATION INFORMATION

2.1
2.2 IMPLEMENTATION CHARACTERISTICS. . .

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS. e e e e e e
3.2 SUMMARY OF TEST RESULTS BY CLASS. e e e e e e
3.3 SUMMARY OF TEST RESULTS BY CHAPTER.
3.4 WITHDRAWN TESTS . ¢ ¢ & ¢ ¢ ¢ ¢« o« « o o« o o =
3.5 INAPPLICABLE TESTS.

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS.
3.7 ADDITIONAL TESTING INFORMATION.
3.7.1 Test Method « v ¢ ¢ + ¢ ¢ ¢ ¢« ¢« o« o o &
3.7.2 Test Site . . . & ¢« ¢ ¢ i 4 4 e e e e e e e .

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B TEST PARAMETERS

APPENDIX C WITHDRAWN TESTS

APPENDIX D APPENDIX F OF THE Ada STANDARD

USE OF THIS VALIDATION SUMMARY REPORT
REFERENCES. . . . e e e e e e e e e e e e e
DEFINITION OF TERMS et e e e e e e e e e e e
ACVC TEST CLASSES ¢« . « ¢« v o ¢ &« o « .

CONFIGURATION TESTED.

. . .
N OO U

. 14
. .15
. . 18

. 19

AVF-VSR-AFNOR~90-01

INTRODUCTION

CHAPTER 1

INTRODUCTION

This Validation Summary Report __(VSE} describes the extent to which a specific
Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A. This report
explains all technical terms used within it and thoroughly reports the results
of testing this compiler using the Ada Compiler Validation Capability (ACVC). An
Ada compiler must be implemented according to the Ada Standard, and any
implementation-dependent features must conform to the requirements of the Ada
Standard. The Ada Standard must be implemented in its entirety, and nothing can
be implemented that is not in the Standard.-,

Even though all validated Ada compilers conform to the Ada Standard, it must be
understood that some differences do exist between implementations. The Ada
Standard permits some implementation dependencies--for example, the maximum
length of 1identifiers or the maximum values of integer types. Other differences
between compilers result from the characteristics of particular operating
systems, hardware, or implementation strategies. All the dependencies observed
during the process of testing this compiler are given in this report.

The information in this report is derived from the test results produced during
validation testing. The validation process 1includes submitting a suite of
standardized tests, the ACVC, as inputs to an Ada compiler and evaluating the
results. The purpose of val.dating is to ensure conformity of the compiler to
the Ada Standard by testing that the compiler properly implements legal language
constructs and that it identifies and rejects illegal language constructs.\The
testing also identifies behavior that 1is implementation dependent, but/ is
permitted by the Ada Standard. Six classes of tests are used. These tez}s are
designed to perform checks at compile time, at link time, and during Z;g; tion.

/%?yg)“/£f§;)

)

I Pt ’ . C A S D AL S L T »0 ('ﬁ,¢_g4{f,, e B
[

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

-~
poroar

This VSR documents the results of the validation testing performed on an Ada
compiler. Testing was carried out for the following purposes:

4 AVF-VSR-AFNOR-90-01

,°

INTRODUCTION

. To attempt to 1identify any 1language constructs supported by the
compiler that do not conform to the Ada Standard

. To attempt to 1identify any language constructs not supported by the
compiler but required by the Ada Standard

. To determine that the implementation-dependent behavior is allowed by
the Ada Standard

Testing of this compiler was conducted by Alsys under the direction of the AVF
according to procedures established by the Ada Joint Program Office and
administered by the Ada Validation Organization (AVO). On-site testing was
completed 15 January 1990 at Alsys Inc, in Burlington MA, USA.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national 1laws of the originating country, the AVO may make
full and free public disclosure of this report. In the United States, this is
provided in accordance with the "Freedom of Information Act™ (5 U.S.C. #552).
The results of this validation apply only to the computers, operating systems,
and compiler versions i1dentified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are accurate
and complete, or that the subject compiler has no nonconformities to the Ada
Standard other than those presented. Copies of this report are available to the
public from:

Ada Information Clearinghouse

Ada Joint Program Office

QUSDRE

The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

AFNOR

Tour Europe

cedex 7

F-92049 Paris la Défense

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

5 AVF-VSR-AFNOR-90-01

1.3 RTFERENCES

INTRODUCTION

1. Reference Manual for the Ada Programming Language, ANSI/MIL-STD-1815A,

February 1983, and ISO 8652-1987.

2. Ada Compiler Validation Procedures, Ada Joint Program Office, May 1989.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech, Inc.,
December 1986.

4. Ada Compaler Validation Capability User's Guide, January 1989

1.4 DEFINITION OF TERMS

~CVC

Ada Commentary

Ada Standard
Applicant

AVF

AVO

Compiler

Failed test

Host

The Ada Compiler Validation Capability. The set of Ada programs
that tests the conformity of an Ada compiler to the Ada
programming language.

An Ada Commentary contains all information relevant to the
point addressed by a comment on the Ada Standard. These comments
are given a unique 1identification number having the form
AI-ddddd.

ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.
The agency requesting validation.
The Ada Validation Facility. The AVF 1is responsible for

conducting compiler validations according to procedures
contained in the Ada Compiler Validztion Procedures.

The Ada Validation Organization. The AVO has oversight authority
over all AVF practices for the purpose of maintaining a uniform
process for validation of Ada compilers. The AVO provides
administrative and technical support for Ada validations to
ensure consistent practices.

A processor for the Ada language. In the context of this report,
a compiler is any language processor, including cross-compilers,
translators, and interpreters.

An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

The computer on which the compiler resides.

Inappllcablé test An ACVC test that wuses features of the language that a

Passed test

Target

compiler is not required to support or may legitimately support
in a way other than the one expected by the test.

An ACVC test for which a compiler generates the expected result.

The computer which executes the code generated by the compiler.

6 AVF-VSR-AFNOR-90-01

INTRODUCTION

Test A program that <checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more files.

Withdrawn An ACVC test found to be incorrect and not used to check test
conformity to the Ada Standard. A test may be incorrect because
1t has an invalid test objective, fails to meet 1its test
objective, or contains illegal or erroneous use of the language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard i1s measured using the ACVC. The ACVC contains
both legal and illegal Ada programs structured into six test classes: A, B, C,
D, E, and L. The first letter of a test name identifies the class to which it
belongs. Class A, C, D, and E tests are executable, and special program units
are used to report their results during execution. Class B tests are expected to
produce compilation errors. Class L tests are expected to produce errors because
of the way in which a program library is used at link time.

Class A tests ensure the successful compilation and execution of 1legal Ada
programs with certain language constructs which cannot be verified at run time.
There are no explicit program components in a Class A test to check semantics.
For example, a Class A test checks that reserved words of another language
(other than those already reserved in the Ada language) are not treatéd as
reserved words by an Ada compiler. A Class A test is passed if no errors are
detected at compile time and the program executes to produce a PASSED message.

Class B tests check that a compiler detects 1illegal language usage. Class B
tests are not executable. Each test in this class is compiled and the resulting
compilation listing 1s examined to verify that every syntax or semantic error in
the test 1s detected. A Class B test is passed if every illegal construct that
1t contains is detected by the compiler.

Class C tests check the run time system to ensure that legal Ada programs can be
correctly compiled and executed. Each Class C test is self-checking and produces
a PASSED, FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers permitted
in a compilation or the number of units in a library--a compiler may refuse to
compile a Class D test and still be a conforming compiler. Therefore, if a Class
D test fails to compile because the capacity of the compiler is exceeded, the
test is classified as inapplicable. If a Class D test compiles successfully, it
is self-checking and produces a PASSED or FAILED message during execution.

7 AVF-VSR-AFNOR-90-01

INTRODUCTION

Class E tests are expected to execute successfully and check implementation-
dependent options and r-- -31gulties in © - Ada Standard. Each Class
E test :s self-checking and produces a NOT APPLICABLE, PASSED, or FAILED message
when i1t 1s compiled and executed. However, the Ada Standard permits an
implementation to reject programs containing some features addressed by Class E
tests during compilation. Therefore, a Class E test is passed by a compiler 1if
it is compiled successfully and executes to produce a PASSED message, or if it
15 rejected by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving multiple,
separately compiled units are detected and not allowed to execute. Class L tests
are compiled separately and execution is attempted. A Class L test passes if it
1s rejected at link time--that is, an attempt to execute the main program must
generate an error message before any declarations in the main program or any
units referenced by the main program are elaborated. In some cases, an
implementation may legitimately detec: errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECK_FILE, support the
self-checking features of the executable tests. The package REPORT provides the
mechanism by which executable tests report PASSED, FAILED, or NOT APPLICABLE
results. It also provides a set of identity functions used to defeat some
compiler optimizations allowed by the Ada Standard that would circumvent a test
objective. The procedure CHECK_FILE is used to check the contents of text files
written by some of the Class C tests for Chapter 14 of the Ada Standard. The
operation of REPORT and CHECK_FILE is checked by a set of executable tests.
These tests produce messages that are examined to verify that the units are
operating correctly. If these units are not operating correctly, then the
validation 1s not attempted.

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For example,
the tests make use of only the basic set of 55 characters, contain lines with a
maximum length of 72 characters, use small numeric values, and place features
that may not be supported by all implementations 1in separate tests. However,
some tests contain values that require the test to be customized according to
implementation-specific values--for example, an illegal file name. A list of the
values used for this validation is provided in Appendix C.

A compiler must correctly process each of the tests in the suite and demonstrate
conformity to the Ada Standard by either meeting the pass criteria given for the
test or by showing that the test is inapplicable to the implementation. The
applicability of a test to an implementation 1is considered each time the
implementation is validated. A test that is inapplicable for one validation is
not necessarily inapplicable for a subsequent validation. Any test that was
determined to contain an 1llegal language construct or an erroneous language
construct is withdrawn from the ACVC and, therefore, is not used in testing a
compiler. The tests withdrawn at the time of this validation are given 1in
Appendix D.

8 AVF-VSR-AFNOR-90-01

CONFIGURATION INFORMATION

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED
The candidate compilation system for this validation was tested wunder the
following configuration:

Compiler: AlsyCOMP_043, Version 4.4

ACVC Version: 1.10

Certificate Number: 900115A1.10240

Host Computer:

Machine: Macintosh IIcx
Opefating System: System 6.0.3
Memory Size: 8 Mb

Target Computer:

Machine: Macintosh IIcx
Operating System: System 6.0.3
Memory Size: 8 Mb

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of a
compiler in those areas of the Ada Standard that permit implementations to
differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

a. Capacities.

(1) The compiler correctly processes a compilation containing 723
variables in the same declarative part. (See test D29002K.)

9 AVF-VSR-AFNOR-90-01

CONFIGURATION INFORMATION'

(2) The compiier correctly processes tests containing loop statements
nested to 65 levels. (See tests D55A03A..H (8 tests).)

(3) The compiler correctly processes a test containing block statements
nested to 65 levels. (See test D56001B.)

(4) The compiler . correctly processes tests containing recursive
procedures separately compiled as subunits nested to 17 levels. (See
tests D64005E..G (3 tests).)

Predefined types.

(1) This 1mplementation supports the additional predefined types,
SHORT_INTEGER, LONG_INTEGER, LONG_FLOAT in the package STANDARD. (See
tests B86001T..Z (7 tests).)

Based literals.

(1) An implementation is allowed to raise NUMERIC_ERROR or
CONSTRAINT_ERROR when a value exceeds SYSTEM.MAX_INT . This implemen-
tation raises NUMERIC_ERROR during execution. (See test E24201A.)

Expression evaluation.

The order 1in which expressions are evaluated and the time at which
constraints are checked are not defined by the language. While the ACVC
tests do not specifically attempt to determine the order of evaluation of
expressions, test results indicate the following:

(1) Apparently no default initialization expressions for record
components are evaluated before any value is checked to belong to a
component's subtype. (See test C32117A.)

(2) Assignments for subtypes are performed with the same precision as the
base type. (See test C35712B.)

(3) This implementation uses no extra bits for extra precision. This
implementation uses all extra bits for extra range. (See test
C35903A.)

(4) NUMERIC_ERROR is raised when an integer 1literal operand in a
comparison or membership test is outside the range of the base type.
(See test C45232A.)

(5) NUMERIC_ERROR is raised when a literal operand in a fixed-point
comparison or membership test is outside the range of the base type.
(See test C45252A.)

(6) Underflow 1s not gradual. (See tests C45524A..Z.) (26 tests)

10 AVF-VSR-AFNOR-90-01

g.

CONFIGURATION INFORMATION

Rounding.

The method by which values are rounded in type conversions is not defined by
the language. While the ACVC tests do not specifically attempt to determine
the method of rounding, the test results indicate the following:

(1) The methoi used for rounding to integer is round to even. (See tests
C46012A..Z.) (26 tests)

(2) The method used for rounding to longest integer 1s round to even.
(See tests C46012A..Z.) (26 tests)

(3) The method wused for rounding to integer in static universal real
expressions is round to even. (See test C4A014A.)

Array types.

An implementation 1s allowed to raise NUMERIC_ERROR or CONSTRAINT_ERROR for
an array having a 'LENGTH that exceeds STANDARD.INTEGER'LAST and/or
SYSTEM.MAX_INT. For this implementation:

(1) Declaration of an array type or subtype declaration with more than
SYSTEM.MAX_INT components raises NUMERIC_ERROR . (See test C36003A.)

(2} NUMERIC_ERROR 1s raised when 'LENGTH is applied to an array type with
INTEGER'LAST + 2 components. (See test C36202A.)

(3) NUMERIC_ERROR 1s raised when an array type with SYSTEM.MAX_INT + 2
components is declared. (See test C36202B.)

(4) A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST raises
no exception. (See test C52103X.)

(5) A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises CONSTRAINT_ERROR when the length of a dimension is
calculated and exceeds INTEGER'LAST. (See test C52104Y.)

(6) In assigning one-dimensional array types, the expression 1is
evaluated in 1its entirety before CONSTRAINT_ERROR 1is raised when
checking whether the expression's subtype is compatible with the
target's subtype. (See test C52013A.)

(7) In assigning two-dimensional array types, the expression 1is not
evaluated in its entirety before CONSTRAINT_ERROR is raised when
checking whether the expression's subtype is compatible with the
target's subtype. (See test C52013A.)

A null array with one dimension of length g¢reater than INTEGER'LAST may
raise NUMERIC_ERROR or CONSTRAINT_ERROR either when declared or assigned.
Alternatively, an implementation may accept the declaration. However,
lengths must match in array slice assignments. This implementation raises no
exception. {See test ES52103Y.)

11 AVF-VSR~AFNOR-90-01

CONFIGURATION INFORMATION

h. Discriminated types.

(1)

In assigning record types with discriminants, the expression is
evaluated 1n its entirety before CONSTRAINT_ERROR 1s raised when
checking whether the expression's subtype is compatible with the
target's subtype. (See test C52013A.)

1. Aggregates.

(1)

(3)

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type. (See
tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, not all
choices are evaluated before being checked for identical bounds. (See
test E43212B.)

CONSTRAINT_ERROR is raised after all choices are evaluated when a
bound 1n a non-null range of a non-null aggregate does not belong to
an index subtype. (See test E43211B.)

J. Pragmas.

(L

The pragma INLINE 1s supported for functions or procedures, but not
functions called inside a package specification. (See tests
LA3004A..B, EA3004C..D, and CA3004E..F.)

k. Generics.

(1)

(2)

(6)

(1)

(8)

Generic specifications and bodies can be compiled 1in separate
compilations. (See tests CA1012A, CA2009C, CA2009F, BC3204C, and
BC3205D.)

Generic subprogram declarations and bodies can be compiled in
separate compilations. {(See tests CA1012A and CA2009F.)

Generic library subprogram specifications and bodies can be compiled
in separate compilations. (See test CAl012A.)

Generic non-library package bodies as subunits can be compiled in
separate compilations. (See test CA2009C.)

Generic non-library subprogram bodies can be compiled in separate
compilations from their stubs. (See test CA2009F.)

Generic unit bodies and their subunits can be compiled in separate
compilations. (See test CA3011A.)

Generic package declarations and bodies can be compiled in separate
compilations. (See tests CA2009C, BC3204C, and BC3205D.)

Generic library package specifications and bodies can be compiled in
separate compilations. (See tests BC3204C and BC3205D.)

12 AVF-VSR-AFNOR-90-01

1.

9)

CONFIGURATION INFORMATION

Generic unit bodies and their subunits can be compiled 1in separate
compilations. (See test CA3011A.)

Inpr~ and output.

(1)

(11)

(12)

(13)

(14)

The package SEGQUENTIAL_IO can be instantiated with unconstrained
array types and record types with discriminants without defaults.
(See tests AE2101C, EE2201D, and EE2201E.)

The package DIRECT_IO can be 1nstantiated with unconstrained array
types and record types with discriminants but CREATE will raise
USE_ERROR. (See tests AE2101H, EE2401D, and EE2401G.)

Modes IN_FILE and OUT_FILE are supported for SEQUENTIAL_IO but not
CREATE in mode IN_FILE. (See tests CEZ102D..E, CE210Z.., ZE52102P.)

Modes IN_FILE, OUT_FILE, and INOUT_FILE are supported for DIRECT_IO
but not CREATE in mode IN_FILE. (See tests CE2102F, CE2102I..J,
CE2102R, CE2102T, and CE2102V.)

Modes IN_FILE and OUT_FILE are supported for text files but not
CREATE in mode IN_FILE. (See tests CE3102E and CE3102I..K.)

RESET and DELETE operations are supported for SEQUENTIAL_IO. (See
tests CE2102G and CE2102X.)

RESET and DELETE operations are supported for DIRECT_IO. (See tests
CE2102K and CE2102Y.)

RESET and DELETE operations are supported for text files. (See tests
CE3102F..G, CE3104C, CE3110A, and CE3114A.)

Overwriting to a sequential file truncates to the 1last element
written. (See test CE2208B.)

Temporary sequential fi.es are given names and deleted when closed.
(See test CE2108A.)

Temporary direct files are given names and deleted when closed. (See
test CE2108C.)

Temporary text files are given names and deleted when closed. (See
test CE3112A.)

More than one internal file can be associated with each external file
for sequential files when reading only (See tests CE2107A..E,
CE2102L, CE2110B, and CE2111D.)

More than one internal file can be associated with each external file
for direct files when reading only (See tests CE2107F..H, CE2110D and
CE2111H.)

More than one internal file can be associated with each external file

for text files when reading only. (See tests CE3111A..E, CE3114B, and
CE3115A.)

13 AVF-VSR-AFNOR-90-01

TEST INFORMATION

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was tested, 44
tests had been withdrawn because of test errors. The AVF determined that 358
tests were inapplicable to this implementation. All inapplicable tests were
processed during validation testing except for 201 executable tests that use
floating-point precision exceeding that supported by the implementation.
Modifications to the code, processing, or g¢rading for 53 tests were required.
(See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable conformity to
the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
""""""""" A_B__c_ b E__1____
Passed 129 1132 1965 17 26 46 3315
Inapplicable 0 6 350 0 2 0 358
Withdrawn 1 2 35 0 6 0 44
TOTAL 130 1140 2350 17 34 46 3717

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

. — —— — ——————— —————————————— ———— o ——— —— " T - ——— -

Passed 198 577 555 248 172 99 161 331 137 36 252 259 290 3315

Inappl 14 72 125 0 0 0 5 1 0 0 ¢ 110 31 358
Wdrn 1 1 0 0 0 0 0 2 0 0 1 35 4 44
TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

14 AVF-VSR-AFNOR-90-01

TEST INFORMATION

3.4 VITHDRAWN TESTS

The foillowing 44 tests were withdrawn from ACVC Version 1.10 at the time of this
validation:

A39005G B97102E BC3009B (C97116A CD2A62D CD2A63A CD2A63B CD2A63C CD2A63D
CD2A66A CD2A66B <CD2A66C CD2A66D CD2A73A CD2A73B CD2A73C CD2A73C CD2A76A
CD2A76B CD2A76C <CD2A76D CD2A81G CD2A83G (CD2A84M <CD2A84N CD2D11B CD2B15C
CD5007B CD50110 <CD7105A <CD7203B <CD7204B (CD7205C CD7205D CE2107I CE3111C
CE3301A CE3411B F?°. 3C ED7004B ED7005C ED7005D ED7006C ED7006D

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features that
a compiler 1s not required by the Ada Standard to support. Others may depend on
the result of another test that 1is either inapplicable or withdrawn. The
applicability of a test to an implementation 1is considered each time a
validation i1s attempted. A test that is inapplicable for one validation attempt
1s not necessarily inapplicable for a subsequent attempt. For this validation
attempt, 358 tests were inapplicable for the reasons indicated:

The following 201 tests are not applicable because they have floating-point
type declarations requiring more digits than System.Max_Digits:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) (€35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) <C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

C35702A and B86001T are not applicable because this implementation supports
no predefined type Short_Float.

C45531M..P (4 tests) and C45532M..P (4 tests) are not applicable because
the value of System.Max_Mantissa is less than 32.

C86001F, is not applicable because recompilation of Package SYSTEM is not
allowed.

B86001X, (€45231D, and CD7101G are not applicable because this
implementation does not support any predefined integer type with a name
other than Integer, Long_Integer, or Short_Integer.

B86001Y 1s not applicable because this implementation supports no
predefined fixed-point type other than Duration.

B86001Z 1s not ' applicable because this implementation supports no

predefined floating-point type with a name ot.er than Float, Long_Float, or
Short _Float.

15 AVF-VSR-AFNOR-90-01

TEST INFORMATION

B91001H 1s not applicable because address clause for entries 1s not
supported by this implementation.

BD5006D 1s not applicable because address clause for packages 1s not
supported by this implementation.

The following 10 tests are not applicable because size clause on float is
not supported by this 1implementation:

€D1009cC CD2A41A..B (2 tests)

CD2A41E CD2A42A..B (2 tests)

CD2A42E..F (2 tests) CD2A42I..J (2 tests)

CD1C04B, <CD1CO4E, CD4051A..D (4 tests) are not applicable because
representation clause on derived records or derived tasks is not supported
by this implementation.

CD2A84B..I (8 tests), CD2A84K..L (2 tests) are not applicable because size
clause on access type is not supported by this implementation.

The following 28 tests are not applicable because size clause for derived
private type 1s not supported by this implementation:

CD1CO4A CD2A21C..D (2 tests)
CD2A22C..D (2 tests) CD2422G..H (2 tests)
CD2A31C..D (2 tests) CD2a32C..D (2 tests)
CD2A32G..H (2 tests) CD2A41C..D (2 tests)
CD2A42C..D (2 tests) CD2A42G..H (2 tests)
CD2AS1C..D (2 tests) CD2A52C..D (2 tests)
CD2A52G..H (2 tests) CD2A53D

CD2A54D CD2A54H

The following 29 tests are not applicable because of the way this
implementation allocates storage space for one component, size
specification clause for an array type or for a record type requires
compression of the storage space needed for all the components (without
gaps). .
CD2A61A..D (4 tests) CD2A61F
CD2A61H..L (5 tests) CD2R62A..C (3 tests)
CD2A71R..D (4 tests) CD2A72A..D (4 tests)
CD2A74A..D (4 tests) CD2A75A..D (4 tests)

CD4041A is not applicable because alignment "at mod 8" is not supported by
this implementation.

The following 21 tests are not applicable because address clause for a
constant is not supported by this implementation:
CD5011B,D,F,H,L,N,R (7 tests) €D5012¢C,D,G,H,L (5 tests)
Cp50138,D,F,H,L,N,R (7 tests) CD5014U,¥ (2 tests)

CD5012J, CD5013S, (CD5014S are not applicable because address clause for a
task is not supported by this implementation.

CE2102E 1s 1inapplicable because this implementation supports create with
out_file mode for SEQUENTIAL_IO.

CE2102F 1s 1inapplicable because this implementation supports create with
inout_file mode for DIRECT_IO.

16 AVF-VSR-AFNOR-90-01

TEST INFORMATION

CE2102J 1s 1napplicable because this implementation supports create with
out_file mode for DIRECT_IO.

CE2102N 1s 1inapplicable because this implementation supports open with
in_fiie mode for SEQUENTIAL_IO.

CE21020 1s 1napplicable because this implementation supports RESET with
in_file mode for SEQUENTIAL_IO.

CE2102P is inapplicable because this implementation supports open with
out_file mode for SEQUENTIAL_IO.

CE2102Q is inappiicable because this implementation supports RESET with
out_file mode for SEQUENTTAL_IO.

CE2102R is 1inapplicable because this implementation supports open with
inout_file mode for DIRECT_IO.

CE21025 is inapplicable because this implementation supports RESET with
inout_file mode for DIRECT_IO.

CE2102T 1s 1inapplicable because this implementation supports open with
in_file mode for DIRECT_IO.

CE2102U 1s 1napplicable because this implementation supports RESET with
in_file mode for DIRECT_IO.

CE2102V is 1inapplicable because this implementation supports open with
out_file mode for DIRECT_IO.

CE2102W 1s inapplicable because this implementation supports RESET with
out_file mode for DIRECT_IO.

CE2105A 1s 1inapplicable because CREATE with IN_FILE mode is not supported
by this implementation for SEQUENTIAL_IO.

CE2105B is 1inapplicable because CREATE with IN_FILE mode is not supported
by this implementation for DIRECT_IO.

CE2107B and CE2107D are not applicable because association of multiple
internal sequential files (all opened for writting) to a single external
file 1s not supported.

CE2107E and CE2107L are not applicable because association of an internal
sequential file and an internal direct access file (both opened for
wratting) to a single external file is not supported.

CE21076 is not applicable because association of multiple internal direct
access files (all opened for writting) to a single external file is not
supported.

EE2401D and EE2401G are not applicable because USE_ERROR is raised when the
CREATE of an instantiation of DIRECT_IO with unconstrained type is called.

CE2401H 1s not applicable because create with inout_file mode for

unconstrained records with default discriminants 1s not supported by this
implementation.

17 AVF-VSR-AFNOR-90-01

TEST INFORMATION

CE3102F is 1inapplicable because this implementation supports reset for text
files, for out_file, in_file and from out_file to in_file mode.

CE3102G 1s 1inapplicable because this implementation supports deletion of an
external file for text files.

CE3102I 1s 1napplicable because this implementation supports create with
out_file mode for text files.

CE3102J 1s 1inapplicable because this implementation supports open with
in_file mode for text files.

CE3102¥ -s 1inapplicable because this ix> :mentation s »ith
out_file mode for text files.

CE3109A is 1inapplicable because text file CREATE with IN_FILE mode 1s not
supported by this implementation.

CE3111D and CE3111E are not applicable because association of multiple
internal text files (all opened for writting) to a single external file is
not supported.

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code, processing,
or evaluation in order to compensate for legitimate implementation behavior.
Modifications are made by the AVF in cases where legitimate implementation
behavior prevents the successful completion of an (otherwise) applicable test.
Examples of such modifications include: adding a length clause to alter the
default size of a collection; splitting a Class B test into subtests so that all
errors are detected; and confirming that messages produced by an executable test
demonstrate conforming behavior that wasn't anticipated by the test (such as
raising one exception instead of another).

Modifications were required for 53 tests.

The following 27 tests were split because syntax errors at one point resulted in
the compiler not detecting other errors in the test:

B23004A B24007A B24009A B28003A B32202A B32202B B32202C B33001A B36307A B37004A
B49003A B490052 B61012A B62001B B74304B B74304C B74401F B74401R BS1004A B95032A
B95069A B95069B BA1101B BC2001D BC3009A BC3009C BD5005B

The following 21 tests were split in order to show that the compiler was able to
find the representation clause indicated by the comment
--N/A =>ERROR :

CD2A61A CD2A61B CD2A61F CD2A61I CD2A61J CD2A62A CD2A62B CD2AT1A CD2A71B CD2A72A

CD2A72B CD2A75A CD2A75B CD2A84B CD2A84C CD2A84D CD2A84E CD2A84F CD2A84G CD2A84H
CD2A841

18 AVF-VSR-AFNOR-90-01

TEST INFORMATION

The test EA3004D when run as it 1is, the implementation fails to detect an error
on line 27 of test file EA3004D6M . This 1s because the pragma INLINE has no
effect when 1its object 1s within a package specification. However, the results
of running the test as it 1s does not confirm that the pragma had no effect,
only that the package was not made obsclete. By re-ordering the compilations so
that the two subprograms are compiled after file D5 (the re-compilation of the
"with"ed package that makes the various earlier units obsolete), we create a
test that shows that indeed pragma INLINE has no effect when applied to a
subprogram that 1s called within a package specification: the test then executes
and produces the expected NOT_APPLICABLE result (as though INLINE were not
supported at all). The re-ordering of EA3004D test files is 0-1-4-5-2-3-6.

BA200O1lE requires that duplicate names of subunits with a common ancestor be
detected and rejected at compile time. This implementation detects the error at
link time, and the AVO ruled that this behavior is acceptable.

Modified version was produced for C87B62B, 1in order to have the test run to
completion and fully exhibit the test behavior:

An explicit STORAGE_SIZE clause was added for the access type declared at line
68. This allows the test to execute without raising STORAGE_ERROR and to meet
1ts objective (test overloading resolution in expression within length clause).
The test then produces the expected PASSED result.

Modified versions were produced for CD2C11B, 1in order to have the test run to
completion and fully exhibit the test behavior:

Because the given STORAGE_SIZE 1s to small for the implementation, the length
clause was changed from 1024 to 4096 at line 46. The same change was made also
at line 95 on the identity function IDENT_INT. This allows the test to execute
without raising STORAGE_ERROR and to meet its objective (test if a task storage
size specification <can be given for a task type). The test then produces the
expected PASSED result.

AE2101F was split in two files because compilation failed. This 1is because
STORAGE_ERROR was raised during compilation due to many instanciation of
DIRECT_IO

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Test Methnd

Testing of the AlsyCOMP_043, Version 4.4 compiler using ACVC Version 1.10 was
conducted on-site by a validation team from the AVF. The configuration in which

the testing was performed is described by the following designations of hardware
and software components:

Host computer: Macintosh IIcx

Host operating system: System 6.0.3

Target computer: Macintosh IIcx

Target operating systen": System 6.0.3

Compiler: AlsyCOMP_043, Version 4.4

The full set of tests for ACVC Version 1.10 except withdrawn tests and tests
requiring unsupported floating-point precisions (tests that make use of
implementation-specific values were customized before) was compiled by the
AlsyCOMP_043, Version 4.4 , linked and all executable tests were run on the
Macintosh IlIcx.

19 AVF-VSR-AFNOR-90-01

TEST INFORMATION

The full set of test results produced by the compiler was compared with a set of
test results from a validated compiler. Analysis by the validation team of the
comparison results demonstrated that the compiler successfully passed all
applicable tests, and the compiler exhibited the expected behavior on all
inapplicable tests.

The compiler was tested using command scripts provided by Alsys and reviewed by
the validation team. The compiler was tested using all default option settings
except for the following:

OPTION EFFECT

CALLS=INLINED Allow inline 1insertion of <code for subprograms and take
pragma INLINE into account

REDUCTION=PARTIAL Perform some high level optimizations on checks and loops
Tests were compiled, linked, and executed (as appropriate) using two computers.
Test output, compilation listings, and job logs were captured on Cartridge TK50
and archived at the AVF. The listings examined on-site by the validation team
were also archaved.

3.7.2 Test Site

Testing was conducted at Alsys Inc, in Burlington MA, USA and was completed on
15 January 1990.

20 AVF-VSR-AFNOR-90-01

APPENDIX A

DECLARATION OF CONFORMANCE

DECLARATION OF CONFORMANCE

Alsys has submitted the following Declaration of Conformance
concerning the AlsyCOMP_043, Version 4.4 compiler.

21

AVF-VSR~AFNOR-90-01

DECLARATION OF CONFORMANCE

Compiler Implementor: Alsys

Ada Validation Facility: AFNOR, Tour Europe Cedex 7,
F-92080 Paris la Défense

Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: AlsyCOMP_043, Version 4.4
Host Architecture: APPLE Macintosh IIcx
Host 0S and Version: Macintosh 6.0.3

Target Architecture: APPLE Macintosh IIcx
Target OS and Version: Macintosh 6.0.3

Implementor's Declaration

I, the undersigned, representing Alsys, have implemented no
deliberate extensions to the Ada Language Standard ANSI/MIL-STD-
1815A in the compiler(s) listed in this declaration. I declare
that Alsys is the owner of record of the Ada language compiler(s)
listed above and, as such, is responsible for maintaining said
compiler(s) in conformance to ANSI/MIL-STD-1815A. All
certificates and registrations for Ada <1language compiler(s)
listed in this declaration shall be made only in the owner's
corporate name.

. _ - .

TR ORRAN | Date: RAL AR

Alsys
Mike Blanchette, Vice President and Director of Engineering

owner's Declaration

I, the undersigned, representing Alsys, take full responsibility
for implementatior. and maintenance of the Ada compiler(s) listed
above, and agree to the public disclosure of the final Validation
Summary Report. I declare that all of the Ada language compilers
listed, and their host/target performance, are in compliance with
the Ada Language Standard ANSI/MIL-STD-1815A.

.“J',t\‘». Va N \,(‘L'\L_\/I{/ Date: ‘je .ﬁi—v.\ -l g—

Alsys
Mike Blanchette, Vice President and Director of Engineering

TEST PARAMETERS

APPENDIX B

TEST PARAMETERS

Certain tests 1in the ACVC make use of implementation-dependent values, such as
the maximum length of an input line and invalid file names. A test that makes
use of such values is identified by the extension .TST in its file name. Actual
values to be substituted are represented by names that begin with a dollar sign.
A value must be substituted for each of these names before the test is run. The
values used for this validation are given below.

Name and Meaning Value
SACC_SIZE 32

An integer literal whose value

1s the number of bits sufficient

to hold any value of an access

type.

$BIG_ID1 (254 * 'A') & '1°
Identifier the size of the

maximum input line length

with varying last character.

SBIG_ID2 (254 * 'A) & '2
Identifier the size of the

maximum 1nput line length

with varying last character.

SBIG_ID3 (126 * 'A') & '3' & (128 * 'A")
Identifier the size of the

maximum input line length

with varying middle character.

SBIG_ID4 (126 * 'A') & '4' & (128 * 'A")
Identifier the size of the

maximum input line length

with varying middle character.

*o
[V

AVF-VSR-AFNOR-90-01

Name and Meaning

SBIG_INT_LIT

An 1nteger literal of value
298 with enough leading zeroes
so that 1t 1s the size of the
maximum line length.

SBIG_REAL_LIT

A universal real literal of
value 690.0 with enough
leading zeroes to be the size
of the maximum line length.

SBIG_STRINGI1

A string literal which when
catenated with BIG_STRING2
yields .he image of BIG_ID1.

SBIG_STRING2

A string literal which when
catenated to the end of
BIG_STRINGl yields the 1image
of BIG_ID1.

SBLANKS

A sequence of blanks twenty
characters less than the size
of the maximum line length.

SCOUNT_LAST
A universal integer literal whose
value 1s TEXT_IO.COUNT'LAST.

SDEFAULT_MEM_SIZE
An integer literal whose value
1s SYSTEM.MEMORY_SIZE.

SDEFAULT_STOR_UNIT
An integer literal whose value
1s SYSTEM.STORAGE_UNIT.

$DEFAULT_SYS_NAME
The value of the constant
SYSTEM.SYSTEM_NAME.

SDELTA_DOC
A real literal whose value is
SYSTEM.FINE_DELTA.

(252 * '0') &

(250 * '0') & '690.0'

& (127 * 'R') & '

& (127 * IAI) & ilnl

(235 x ' ')

2147483647

2%%*32

MACINTOSH

2#1.04E-31

24

TEST PARAMETERS

AVF-VSR~AFNOR-90-01

Name and Meaning

SFIELD_LAST

A universal integer literal whose
value .s TEXT_IO.FIELD'LAST.

SFIXED_NAME

The name of a predefined
fixed-point type other than
DURATION.

SFLOAT _NAME

The name of a predefined
floating-point type other than
FLOAT, SHORT_FLOAT, or
LONG_FLOAT.

SGREATER_THAN_DURATION

A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

SGREATER_THAN_DURATION_BASE_LAST
A universal real literal that is
greater than DURATION'BASE'LAST.

SHIGH_PRIORITY

An integer literal whose value
1s the upper bound of the range
for the subtype SYSTEM.PRIORITY.

SILLEGAL_EXTERNAL_FILE_NAMEl
An external file name specifying
a non existent directory

SILLEGAL_EXTERNAL_FILE_NAME2
An external file name different
from SILLEGAL EXTERNAL_FILE_NAME1l

SINTEGER_FIRST
A universal integer literal
whose value i1s INTEGER'FIRST.

SINTEGER_LAST
A universal integer literal
whose value 1s INTEGER'LAST.

SINTEGER_LAST_PLUS_1
A universal integer literal
whose value is INTEGER'LAST + 1.

TEST PARAMETERS

NO_SUCH_~~

NO_SUCH_TYPE

100_00G.0

100_000_000.0

16

Illegal_External_File_Name_l1_xxx

Illegal_External_File_Name_2_xxx

-32768

32767

32768

25 AVF-VSR-AFNOR-90-01

Name and Meaning
SLESS_THAN_DURATION
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

SLESS_THAN_DURATION_BASE_FIRST
A universal real l:teral that is
less than DURATION'BASE'FIRST.

SLOW_PRIORITY

An integer literal whose value
1s the lower bound of the range
for the subtype SYSTEM.PRIORITY.

SMANTISSA_DOC
An 1nteger literal whose value
1s SYSTEM.MAX_MANTISSA.

SMAX_DIGITS
Maximumr digits supported for
floating-point types.

$SMAX_IN_LEN
Maxiwum 1nput line length
permitted by the implementation.

SMAX_INT
A universal integer literal
whose value 1s SYSTEM.MAX_INT.

SMAX_INT_PLUS_1
A universal integer literal
whose value is SYSTEM.MAX_INT+1.

SMAX_LEN_INT_BASED_LITERAL

A universal integer based
literal whose value is 2:11:
with enough leading zeroes in
the mantissa to be MAX_IN_LEN
long.

SMAX_LEN_REAL_BASED_LITERAL

A universal real based literal
whose value is 16: F.E: with
enough leading zeros: 1in the
mantissa to be MAX_IM LEN long.

-100_000.0

-100_003_000.0

31

15

255

2147483647

2_147_483_648

'2:' & (250 * '0') & '1l1:'

TEST PARAMETERS

*16:' & (248 * 'Q0') & 'F.E:'

26

AVF-VSR-AFNOR-90-01

TEST PARAMETERS

Name and Meaning Value
SMAX_STRING_LITERAL tto& (253 * 'A') & '
A string literal of size
MAX_IN_LEN, including the quote
characters.

SMIN_INT -2147483648
A universal integer literal
whose value 1s SYSTEM.MIN_INT.

SMIN_TASK_SIZE 32
An integer literal whose value

1s the number of bits required

to hold a task object which has

no entries, no declarations, and
NULL;" as the only statement in

its body.

SNAME NO_SUCH_TYPE
A name of a predefined numeric

type other than FLOAT, INTEGER,

SHORT_FLOAT, SHORT_INTEGER,

LONG_FLOAT, or LONG_INTEGER.

SNAME_LIST MACINTOSH
A list of enumeration literals

in the type SYSTEM.NAME,

separated by commas.

SNEG_BASED_INT 16#FFFFFFFE#
A based integer literal whose
highest order nonzero bit falls
in the sign bit position of the

" representation for SYSTEM.MAX_INT.

$SNEW_MEM_SIZE 2%*32
An integer literal whose value

1s a permitted argument for

pragma memory_size, other than
DEFAULT_MEM_SIZE. If there 1is

no other value, then use
DEFAULT_MEM_SIZE.

$NEW_STOR_UNIT 8
An integer literal whose valu .

is a permitted argument for

pragma storage_unit, other than
DEFAULT_STOR_UNIT. If there is

no other permitted value, then

use value of SYSTEM.STORAGE_UNIT.

27 AVF-VSR-AFNOR-90-01

Name and Meaning Value

TEST PARAMETERS

o = ———— . ——_—— i — —— e s - — " —— ——— - ———— - - - " - - -

SNEW_SYS_NAME MACINTOSH

A value of the type SYSTEM.NAME,
other than $DEFAULT_SYS_NAME. If
there 1s only one value of that

type, then use that value.

STASK_SIZE 32
An integer literal whose value

is the number of bits required

to hold a task object which has

a single entry with one 1inout
parameter.

STICK 1.0
A real literal whose value is
SYSTEM.TICK.

28

AVF-VSR-AFNOR-90-01

WITHDRAWN TESTS

APPENDIX C

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the Ada
Standard. The following 44 tests had been withdrawn at tue time of validation
testing for the reasons indicated. A reference of the form AI-ddddd is to an Ada
Commentary.

E28005¢C
This test expects that the string "-- TOP OF PAGE. --63" of line 204 will
appear at the top of the listing page due to a pragma PAGE 1in line 203; but
line 203 contains text that follows the pragma, and it 1s this that must
appear at the top of the page.

A39005G
This test unreasonably expects a component clause to pack an array component
into a minimum size (line 30).

B97102E
This test contains an unitended illegality: a select statement contains a
null statement at the place of a selective wait alternative (line 31).

C97116A
This test contains race conditions, and it assumes that guards are evaluated
indivisibly. A conforming implementation may use interleaved execution 1in
such a way that the evaluation of the guards at lines 50 & 54 and the execu-
tion of task CHANGING_OF_THE_GUARD results in a call to REPORT.FAILED at one
of lines 52 or 56.

BC3009B
This test wrongly expects that circular instantiations will be detected in
several compilation units even though none of the units is illegal with re-
spect to the units it depends on; by AI-00256, the illegality need not be
detected until execution is attempted (line 95).

CD2A62D
This test wrongly requires that an array object's size be no greater than 10
although its subtype's size was specified to be 40 (line 137).

CD2A63A..D, CD2"66A..D, CD2A73A..D, CD2A76A..D [16 tests]
These tests wrongly attempt to check the size of objects of a derived type
(for which a 'SIZE length clause 1s given) by passing them to a derived sub-
program (which 1mplicitly converts them to the parent type (Ada standard
3.4:14)). Additionally, they use the 'SIZE length clause and attribute, whose
interpretation is considered problematic by the WG9 ARG.

CD2A81G, CD2A83G, CD2A84N & M, & CD50110 [5 tests]
These tests assume that dependent tasks will terminate while the main pro-
gram executes a loop that simply tests for task termination; this is not the
case, and the main program may loop indefinitely (lines 74, 85, 86 & 96, 86 &
96, and 58, resp.).

29 AVF~VSR~AFNOR-90-01

WITHDRAWN TESTS

CD2B15C & CD7205C
These tests expect that a 'STORAGE_SIZE length clause provides precise con-
trol over the number of designated objects in a collection; the Ada standard
13.2:15 allows that such control must not be expected.

CD2D11B
This test gives a SMALL representation clause for a derived fixed-point type
{at line 30) that defines a set of model numbers that are not necessarily
represented in the parent type; by Commentary AI-00099, all model numbers of
a derived fixed-point type must be representable values of the parent type.

CD5007B
This test wrongly expects an implicitly declared subprogram to be at the the
address that 1is specified for an unrelated subprogram (line 303).

ED7004B, ED7005C & D, ED7006C & D [5 tests]
These tests check various aspects of the use of the three SYSTEM pragmas;
the AVO withdraws these tests as being inappropriate for validation.

CD7105A
This test requires that successive calls to CALENDAR.CLOCK change by at least
SYSTEM.TICK; however, by <Commentary AI-00201, it 1s only the expected
frequency of change that must be at least SYSTEM.TICK--particular instances
of change may be less (line 29).

CD7203B, & CD7204B
These tests use the 'SIZE length clause and attribute, whose interpretation

1s considered problematic by the WG9 ARG.

CD7205D
This test checks an 1invalid test objective: it treats the specification of
storage to be reserved for a task's activation as though it were like the
specification of storage for a collection. .

CE21¢71I
This test requires that objects of two similar scalar types be distinguished
when read from a file--DATA_ERROR is expected to be raised by an attempt to
read one object as of the other type. However, it is not clear exactly how
the Ada standard 14.2.4:4 is to be interpreted; thus, this test objective is
not considered valid. (line 90)

CE3111C
This test requires certain behavior, when two files are associated with the

same external file, that is not required by the Ada standard.

CE3301A
This test contains several calls to END_OF_LINE & END_OF_PAGE that have no
parameter: these calls were 1intended to specify a file, not to refer to
STANDARD _INPUT (lines 103, 107, 118, 132, & 136).

CE3411B
This test requires that a text file's column number be set to COUNT'LAST in
order to check that LAYOUT_ERROR 1s raised by a subsequent PUT operation. But
the former operation will generally raise an exception due to a lack of
available disk space, and the test would thus encumber validation testing.

30 AVF-VSR-AFNOR-90-01

APPENDIX F OF THE Ada STANDARD

APPENDIX D

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to 1implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned 1in
chapter 13 of the Ada Standard, and to certain allowed restrictions on
representation clauses. The implementation-dependent characteristics of the
AlsyCOMP_043, Version 4.4 compiler, as described in this Appendix, are provided
by Alsys. Unless specifically noted otherwise, references in this appendix are
to compiler documentation and not to this report. Implementation-specific
portions of the package STANDARD, which are not a part of Appendix F, are:
package STANDARD 1is

type SHORT_INTEGER is range -128 .. 127;

type INTEGER is range -32_768 .. 32_767;

type LONG_INTEGER 1s range -2_147_483_648 .. 2_147_483_647;

type FLOAT is digits 6 range
-24#1.111 1111 1111_31111_1111_1111#E+127

2#1.111 1111 1111 _1111_1111_1111#E+127;

~yDe LONG_FLOAT is digits 15 range
111111 111111111131 1111 1111 1111 1111 1111 1111 11114#E1023

é*l.1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111#E1023:

type DURATION is delta 2#0.000_000_000_000_O1# range -86_400.0 .. 86_400.0;

end STANDARD:

31 AVF-VSR-AFNOR-90-01

Alsys Ada
Macintosh Compiler

APPENDIX F

Version 4.4

Alsys Inc.
67 South Bedford Street
Burlingron, MA 01803-5152, U.S.A.

Alsys SA.
29, Avenue de Versailles
78170 La Celle St. Cloud, France

Alsys Lid
Partridge House, Newtown Road
Henley-on-Thames,
Oxfordshire RG9 1EN, UK

Copyright 1989 by Alsys

Ali rights reserved. No part of this document may be reproduced in any form or by any
means without permission in writing from Alsys.

Printed: December 1989

Alsys reserves the right to make changes in specifications and other information
contained in this publication without prior notice. Consult Alsys to determine whether
such changes have been made.

TABLE OF CONTENTS

1 INTERFACING THE LANGUAGE ADA WITH OTHER
LANGUAGES

2 IMPLEMENTATION-DEPENDENT PRAGMAS

3 IMPLEMENTATION-DEPENDENT ATTRIBUTES

51
5.3
5.4
55
5.7

5.8

6.1
6.2
6.3

PACKAGES SYSTEM AND STANDARD

TYPE REPRESENTATION CLAUSES

Enumeration Types
Floating Point Types
Fixed Point Types
Access Types

Array Types

Record Types

'ADDRESS CLAUSES

Address Clauses for Objects
Address Clauses for Program Units
Address Clauses for Entries

UNCHECKED CONVERSIONS

INPUT-OUTPUT CHARACTERISTICS

AlsyCOMP_043 Appendix F Version 4.4

13
15
18
21

38

888

39

40

9 INTERRUPT ENTRIES

AlsyCOMP_043 Appendix F Version 4.4

41

i

APPENDIX F

1 INTERFACING THE LANGUAGE ADA WITH OTHER
LANGUAGES

Programs written in Ada can interface with external subprograms written in another
language, by use of the pragma INTERFACE. The format of the pragma is:

pragma INTERFACE (language _name , Ada_subprogram_name) ;
where the language name can be any of
= Assembler
» C
s Pascal

External subprograms written in C and Pascal must follow the conventions of
Apple’s MPW C and Pascal compilers, respectively.

External subprograms written in assemblier must follow the conventions for
assembler subprog.ams defined for the Alsys 680x0 UNIX compilers. The
interface languzge assembler is allowed on Macintosh only for portability of
UNIX assembler code.

AlsyCOMP_043 Appendix F Version 4.4]

2 IMPLEMENTATION-DEPENDENT PRAGMAS
Pragma INTERFACE

This pragma has been described in detail in the previous section.

Pragma IMPROVE and Pragma PACK

These pragmas are discussed in detail in sections 5.7 and 5.8 on representation clauses
for arrays and records.

Note that packing of record types is done systematically by the compiler. The pragma
pack will affect the mapping of each component onto storage. Each component will be
allocated on the logical size of the subtype.

Pragma INDENT

This pragma is only used with the Alsys Reformarter; this tool offers the functionalities of
a pretty-printer in an Ada environment.

The pragma is placed in the source file and interpreted by the Reformatter.
pragma INDENT(OFF)

causes the Reformatter not to modify the source lines after this pragma.
pragma INDENT(ON)

causes the Reformatter to resume its action after ihis pragma.

Pragmas not implemented

The following pragmas are not implemented:

CONTROLLED
MEMORY _SIZE
OPTIMIZE
STORAGE_UNIT
SYSTEM_NAME

AlsyCOMP_043 Appendix F Version 4.4 2

3 IMPLEMENTATION-DEPENDENT ATTRIBUTES

In addition to the Representation Attributes of [13.7.2] and [13.7.3], there are five
attributes which are listed below, for use in record representation clauses.

"OFFSET
'RECORD_SIZE
"VARIANT_INDEX
'ARRAY_DESCRIPTOR
'RECORD_DESCRIPTOR

Limitations on the use of the attribute ADDRESS

The attribute ADDRESS is implemented for all prefixes that have meaningful addresses.
The following entities do not have meaningful addresses and will therefore cause a
compilation error if used as prefix to ADDRESS:

» A constant that is implemented as an immediate value i.¢., does not have any space
allocated forit.

s A package specification that is not a library unit.
= A package body that is not a library unit or a stbunit.

» A function that renames an enumeration literal.

AlsyCOMP_043 Appendix F Version 4.4 3

4 PACKAGES SYSTEM AND STANDARD
This section contains information on two predefined library packages:
a acomplete listing of the specification of the package SYSTEM
= a list of the implementation-dependent declarations in the package STANDARD.
package SYSTEM is
-- Standard Ada definitions

type NAME is (MACINTOSH) ;
SYSTEM_NAME : constant NAME := MACINTOSH;
STORAGE_UNIT : constant := 8 ;

MEMORY_SIZE : constant := 2%¥%32 ;
MIN_INT : constant := -(2**31) ;
MAX_INT : constant := 2**31-1 ;
MAX_ DIGITS : constant := 15 ;
MAX_MANTISSA : constant := 31 ;
FINE_DELTA : constant := 2#1.0#e-31 ;
TICK : constant := 1.0 ;

type ADDRESS is private;
NULL__ADDRESS : constant ADDRESS;

subtype PRIORITY is INTEGER range 1..16;
-- Address arithmetic

function TO_LONG_INTEGER (LEFT : ADDRESS)
return LONG_INTEGER;

function TO_ADDRESS (LEFT : LONG_ INTEGER)
return ADDRESS;

function "+" (LEFT : LONG_INTEGER; RIGHT : ADDRESS)
return ADDRESS;

function "+" (LEFT : ADDRESS; RIGHT : LONG_INTEGER)
return ADDRESS;

AlsyCOMP_043 Appendix F Version 4.4 4

function "-* (LEFT : ADDRESS; RIGHT : ADDRESS)
return LONG_INTEGER;

function "-" (LEFT : ADDRESS; RIGHT : LONG_INTEGER)
return ADDRESS;

function "mod" (LEFT : ADDRESS; RIGHT : POSITIVE)
return NATURAL;

function "<" (LEFT : ADDRESS; RIGHT : ADDRESS)
return BOOLEAN;

function "<=" (LEFT : ADDRESS; RIGHT : ADDRESS)
return BOOLEAN;

function ">" (LEFT : ADDRESS; RIGHT : ADDRESS)
return BOOLEAN;

function ">=" (LEFT : ADDRESS; RIGHT : ADDRESS)
return BOOLEAN;

function IS_NULL (LEFT : ADDRESS)
return BOOLEAN;

function WORD_ALIGNED (LEFT : ADDRESS)
return BOOLEAN;

function ROUND (LEFT : ADDRESS)
return ADDRESS;
- Return the given address rounded to the next lower even value

procedure COPY (FROM : ADDRESS; TO : ADDRESS;

SIZE : NATURAL);
-- Copy SIZE storage units. The result is undefined if the two areas
-- overlap.

-- Direct memory access

generic

type ELEMENT_TYPE is private;
function FETCH (FROM : ADDRESS) return ELEMENT_TYPE;
-~ Return the bit pattern stored at address FROM, as a value of the
-- specified ELEMENT_TYPE. This function is not implemented
-- for unconstrained array types.

AlsyCOMP_043 Appendix F Version 4.4

generic
type ELEMENT_TYPE is private;
procedure STORE (INTO : ADDRESS; OBJECT : ELEMENT_TYPE);
-- Store the bit pattern representing the value of OBJECT, at the
-- address INTO. This function is not implemented for
-- unconstrained array types.

private

-- private part of the system

end SYSTEM;

The package STANDARD

The following are the implementation-dependent parts of the package
STANDARD:

type SHORT _INTEGER is range -(2%*7) ,. (2**7 -1),
type INTEGER is range -(2**15) .. (2**15 -1);
type LONG_INTEGER is range -(2**31) .. (2**31 -1);

type FLOAT is digits 6 range
-(2.0 - 2.0**%(-23)) * 2.0**127 ..
+2.0 - 2.0%*(-23)) * 2.0**127,

type LONG__FLOAT is digits 15 range
-(2.0 - 2.0**(-52)) * 2.0**1023 ..
+2.0 - 2.0%%(-52)) * 2.0**1023;

type DURATION is delta 2.0%%(-14) range -86_ 400.0 .. 86_400.0;

AlsyCOMP_043 Appendix F Version 4.4 6

5 TYPE REPRESENTATION CLAUSES

The aim of this section is to explain how objects are represented ana allocated by the
Alsys Ada compiler for MC680X0 machines and how it is possible to control this using
representation clauses.

The representation of an object is closely connected with its type. For this reason this
section addresses successively the representation of enumeration, integer, floating point,
fixed point, access, task, array and record types. For each class of type the representation
of the corresponding objects is described.

Except in the case of array and record types, the description for each class of type is
independent of the others. To understand the representation of an array type it is
necessary to understand first the representation of its components. The same rule applies

to record types.

Apart from implementation defined pragmas, Ada provides three means to control the
size of objects:

= a (predefined) pragma PACK, when the object is an array, an array component, a
record or a record component

= arecord representation clause, when the object is a record or a record component
= asize specification, in any case.

= an enumeration representation clause

» an implementation defined pragma: IMPROVE

For each class of types the effect of a size specification alone is described. Interference
between size specifications, packing and record representation clauses is described under
array and record types.

5.1 Enumeration Types
Internal codes of enumeration literals

When no enumeration representation clause applies (¢ an enumeration type, the
internal code associated with an enumeration literal is the position number of the
enumeration literal. Then, for an enumeration type with n elements, the internal codes
are the integers 0, 1, 2, .., n-1.

AlsyCOMP_043 Appendix F Version 4.4 _ 7

An enumeration represéntation clause can be provided to specify the value of each
internal code as described in RM 13.3. The Alsys compiler fully implements enumeration
representation clauses.

As internal codes must be machine integers the internal cod&s provided by an
enumeration representation clause must be in the range - 2% 2%,

Encoding of enumeration values

An enumeration value is always represented by its internal code in the program
generated by the compiler.

When an enumeration type is not a boolean type or is a boolean type with an
enumeration representation clause, binary code is used to represent internal codes.
Negative codes are then represented using two’s complement.

When a boolean type has no enumeration representation clause, the internal code 0 is
represented by a succession of Os and the internal code 1 is represented by a succession of
1s. The length of this pattern of Os or of 1s is the size of the boolean value.

Minimum size of an enumeration subtype

The minimum size of an enumeration subtype is the minimum number of bits that is
necessary for representing the internal codes of the subtype values in normal binary
form.

For a static subtype, if it has a null range its minimum size is 1. Otherwise, if m and M are
the values of the internal codes associated with the first and last enumeration values of
the subtype, then its minimum size L is dctermmed as follows. Form >= 0, L is the
smallest positive mte%cr such thatM <= 2 1 For m < 0, L is the smallest positive
integer such that 2"} <= mand M <= 2V"1.1,

type COLOR is (GREEN, BLACK, WHITE, RED, BLUE, YELLOW),
-- The minimum size of COLOR is 3 bits.

subtype BLACK_AND_WHITE is COLOR range BLACK .. WHITE;
-- The minimum size of BLACK_AND_WHITE is 2 bits.

AlsyCOMP_043 Appendix F Version 4.4 8

subtype BLACK_OR_WHITE is BLACK_AND_WHITE range X .. X;
-- Assuming that X is not static, the minimum size of BLACK_OR_WHITE is
-- 2 bits (the same as the minimum size of its type mark BLACK_AND_WHITE).

Size of an enumeration subtype

When no size specification is applied to an enumeration type or first named subtype, the
objects of that type or first named subtype are represented as signed machine integers.
The machine provides 8, 16 and 32 bit integers, and the compiler selects automatically
the smallest signed machine integer which can hold each of the internal codes of the
enumeration type (or subtype). The size of the enumeration type and of any of its
subtypes is thus 8, 16 or 32 bits.

When a size specification is applied to an enumeration type, this enumeration type and
each of its subtypes has the size specified by the length clause. The same rule applies to a
first named subtype. The size specification must of course specify a value greater than or
equal to the minimum size of the type or subtype to which it applies:

type EXTENDED is
(-- The usual American ASCII characters.

NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,
BS, HT, LF, VT, FF, CR, SO, S,
DLE, DC1, DC2, DGC3, DC4, NAK, SYN, ETB,
CAN, EM, SUB, ESC, FS, GS, RS, US,
’ '1 '!'9 "", '#,v ’s,, ’%” ’&’9 ",1
'('v '),’ ".o '+” ’y'o ,"r ’-'1 ’/'9
,0,’ ’ l ,1 '2'1 ’3,’ ’4’1 ’5,’ ’6’) '7"
,8” ’9’1 ':’7 ';’9 ‘<,’ '=" ’>’) '?”
,@” 'A,‘ ’B" ’c’ 'D” 'E" ’F’ ’G'Y
H, T, K, L, M, N, O,
’P,Y 'Q,1 ’R,) ’S’) T) ,U') 'V,Q ’W’v
'x,’ 'Y" 'Z" '[" '\'O ! " T ,9 ’_”
)ﬂ’ ’a!’ 'b" 1cl’ 'd’, lc), ’f, ’g!’
,h” ’i'9 ’j’! ’k” ’l'! 'm’) ’n” '0"
,p" 9q 9’ 9,.” ,SO, ’t', 'u" 1v" ’w’,
’X,Y ,y,’ ’Z" '{" ’ '9 ’ ', '~'7 DEL)

AlsyCOMP_043 Appendix F Version 4.4 9

-- Extended characters
LEFT_ARROW,
RIGHT_ARROW,
UPPER_ARROW,
LOWER_ARROW,
UPPER_LEFT_CORNER,
UPPER_RIGHT_CORNER,
LOWER_RIGHT_CORNER,
LOWER_LEFT_CORNER

)i

for EXTENDED'SIZE use §;
-- The size of type EXTENDED will be one byte. Its objects will be represented
-- as unsigned 8 bit integers.

The Alsys compiler fully implements size specifications. Nevertheless, as enumeration
values are coded using integers, the specified length cannot be greater than 32 bits.

Size of the ohjects of an enumeration subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an
object of an enumeration subtype has the same size as its subtype.

Alignment of an enumeration subtype

An enumeration subtype is byte aligned if the size of the subtype is less than or equal to 8
bits, it is otherwise even byte aligned.

Address of aa object of an enumeration subtype

Provided its alignment is not constrained by a record representation clause or a pragma
PACK, the address of an object of an enumeration subtype is even when its subtype is
even byte aligned.

AisyCOMP_043 Appendix F Version 4.4 10

5.2 Integer Types
Predefined integer types

There are three predefined integer types in the Alsys implementation for MC680X0
machines: _

type SHORT _INTEGER is range -2%%07 .. 2*%07-1;
type INTEGER is range -2%%15 .. 2**]5-1;
type LONG_INTEGER is range -2**3] .. 2%%3]-1;

Selection of the parent of an integer type
An integer type declared by a declaration of the form:
type Tisrange L .. R;

is implicitly derived from a predefined integer type. The compiler automatically selects
the predefined integer type whose range is the shortest that contains the values L to R
inclusive.

Encoding of integer values

Binary code is used to represent integer values. Negative numbers are represented using
two’s complement.

Minimum size of an integer subtype

The minimum size of an integer subtype is the minimum number of bits that is necessary
for representing the internal codes of the subtype values in normal binary form.

For a static subtype, if it has a null range its minimum size is 1. Otherwise, if m and M are
the lower and upper bounds of the subtype, then its minimum size L is determmed as
follows. For m >= 0, L is the smallest posmvc integer such that M <= 2L.1. For m <
0, L is the smallest positive integer that -2 Ll c=mandM <=2"11.

AlsyCOMP_043 Appendix F Version 4.4 Iy

subtype S is INTEGER range 0 .. 7;
-- The minimum size of S is 3 bits.

subtype D is Srange X .. Y;
-- Assuming that X and Y are not static, the minimum size of
-- D is 3 bits (the same as the minimum size of its type mark S).

Size of an integer subtype

The sizes of the predefined integer types SHORT_INTEGER, INTEGER and
LONG_INTEGER are respectively 8, 16 and 32 bits.

When no size specification is applied to an integer type or to its first named subtype (if
any), its size and the size of any of its subtypes is the jize of the predefined type from
which it derives, directly or indirectly. For example:

type S is range 80 .. 100;
-- S is derived from SHORT_INTEGER, its size is 8 bits.

type J is range 0 .. 255;
-- J is derived from INTEGER, its size is 16 bits.

type N is new J range 80 .. 100;
-- N is indirectly derived from INTEGER, its size is 16 bits.

When a size specification is applied to an integer type, this integer type and each of its
subtypes has the size specified by the length clause. The same rule applies to a first
named subtype. The size specification must of course specify a value greater than or
equal to the minimum size of the type or subtype to which it applies:

type S is range 80 .. 100,

for S'SIZE use 32;

-- S is derived from SHORT_INTEGER, but its size is 32 bits
-- because of the size specification.

type J is range 0 .. 255;

for J’'SIZE use 8;

--] is derived from INTEGER, but its size is 8 bits because
-- of the size specification.

AlsyCOMP_043 Appendix F Version 4.4 12

type N is new] range 80 .. 100;
-- N is indirectly derived from INTEGER, but its size is 8 bits
-- because N inherits the size specification of J.

The Alsys compiler fully implements size specifications. Nevertheless, as integers are
implemented using machine integers, the specified length cannot be greater than 32 bits.

Size of the objects of an integer subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an
object of an integer subtype has the same size as its subtype.

Alignment of an integer subtype

An integer subtype is byte aligned if the size of the subtype is less than or equal to 8 bits,
it is otherwise even byte aligned.

Address of an object of an integer subtype

Provided its alignment is not constrained by a record representation clause or a pragma
PACK, the address of an object of an integer subtype is even when its subtype is even
byte aligned.

5.3 Floating Point Types
Predefined floating point types

There are two predefined floating point types in the Alsys implementation for MC680X0
machines:

type FLOAT is
digits 6 range -(2.0 - 2.0**(-23))*2.0°*127 .. (2.0 - 2.0**(-23))*2.0**127;

type LONG_FLOAT is
digits 15 range (2.0 - 2.0**(-52))*2.0**1023 .. (2.0 - 2.0°*(- 52))~2 0**1023;

AlsyCOMP_043 Appendix F Version 4.4 13

Selection of the parent'or a floating point type
A floating point type declared by a declaration of the form:

type T is digits D {range L .. R};

is implicitly derived from a predefined floating point type. The compiler automatically
selects the smallest predefined floating point type whose number of digits is greater than
or equal to D and which contains the values L to R inclusive.

Encoding of floating point values

In the program generated by the compiler, floating point values are represented using
the IEEE standard formats for single and double floats.

The values of the predefined type FLOAT are represented using the single fioat format.
The values of the predefined type LONG_FLOAT are represented using the double float
format. The values of any other floating point type are represented in the same way as
the values of the predefined type from which it derives, directly or indirectly.

Minimum size of a floating point subtype

The minimum size of 2 floating point subtype is 32 bits if its base type is FLOAT or a
type derived from FLOAT; it is 64 bits if its base type is LONG_FLOAT or a type
derived from LONG_FLOAT.

Size of a floating point subtype

The sizes of the predefined floating point types FLOAT and LONG_FLOAT are
respectively 32 and 64 bits.

The size of a floating point type and the size of any of its subtypes is the size of the
predefined type from which it derives directly or indirectly.

The only size that can be specified for a floating point type or first named subtype using a
size specification is its usual size (32 or 64 bits).

AlsyCOMP_043 Appendix F Version 4.4 14

Size of the objects of a floating point subtype

An object of a floating point subtype has the same size as its subtype.

Alignment of a floating point subtype

A floating point subtype is always even byte aligned.

Address of an object of a floating point subtype

Provided its alignment is not constrained by a record representation clause or a pragma
PACK, the address of an object of a floating point subtype is always even, since its
subtype is even byte aligned. '

5.4 Fixed Point Types
Small of a fixed point type

If no specification of small applies to a fixed point type, then the value of small is
determined by the value of delta as defined by RM 3.5.9.

A specification of small can be used to impose a value of small. The value of small is
required to be a power of two.

Predefined fixed point types

To impiement fixed point types, the Alsys compiler for MC680X0 machines uses a set of
anonymous predefined types of the form:

type SHORT _FIXED is delta D range -2**(07*5..(2**7-1)*S;
for SHORT_FIXED'SMALL use S;

type FIXED is defta D range -2**15*5..(2**15-1)*S;
for FIXED’'SMALL use S;

type LONG_FIXEDis delta D range -2**31°5..(2**31-1)*S;
for LONG_FIXED’'SMALL use S;

AlsyCOMP 043 Appendix F Version 4.4 15

where D is any real value and S any power of two less than or equal to D.

Selection of the parent of a fixed point type
A fixea point type declared by a declaration of the form:
type Tis deita D range L .. R;
possiblv with a small specification:
for TSMALL use S;

is implicitly derived from a predefined fixed point type. The compiler automatically
selects the predefined fixed point type whose small and delta are the same as the small
and delta of T and whose range is the shortest that includes the values L to R inclusive.

Encoding of fixed point values

In the program generated by the compiler, a safe value V of a fixed point subtype F is
represented as the integer:

V/FBASE'SMALL

Minimum size of a fixed point subtype

The minimum size of a fixed point subtype is the minimum number of binary digits that
is necessary for representing the values of the range of the subtype using the small of the

base type.

For a static subtype, if it has a null range its minimum size is 1. Otherwise, s and S being
the bounds of the subtype, if i and I are the integer representations of m and M, the
smallest and the greatest model numbers of the base type such thats <mand M < §,
then the minimum size L is determined as follows. For i >= 0, L is the smallest positive
imeiger such that I <= 2.1, Fori <0, Lis the smallest positive integer such that -
2-le=jandl <=2l

AlsyCOMP_043 Appendix F Version 4.4 16

type F is deita 2.0 range 0.0 .. 500.0;
-- The minimum size of F is 8 bits.

subtype S is F delta 16.0 range 0.0 .. 250.0;
-- The minimum size of S is 7 bits.

subtype D is Srange X .. Y;
-- Assuming that X and Y are not static, the minimum size of D is 7 bits
-- (the same as the minimum size of its type mark S).

Size of a fixed point subtype

The sizes of the predefined fixed point types SHORT_FIXED, FIXED and
LONG _FIXED are respectively 8, 16 and 32 bits.

When no size specification is applied to a fixed point type or to its first named subtype,
its size and the size of any of its subtypes is the size of the predefined type from which it
derives directly or indirectly. For example: '

type S is delta 0.01 range 0.8 .. 1.0;

-- S is derived from an 8 bit predefined fixed type, its size is 8 bits.

type F is delta 0.01 range 0.0... 2.0;
-- F is derived from a 16 bit predefined fixed type, its size is 16 bits.

type N is new F range 0.8 .. 1.0;
-- N is indirectly derived from a 16 bit predefined fixed type, its size is 16 bits.

When a size specification is applied 10 a fixed point type, this fixed point type and each'of
its subtypes has the size specified by the length clause. The same rule applies to a first
named subtype. The size specification must of course specify a value greater than or
equal to the minimum size of the type or subtype to which it applies:

type S is delta 0.01 range 0.8 .. 1.0;

for S'SIZE use 32;

-- S is derived from an 8 bit predefined fixed type, but its size is 32 bits
-- because of the size specification.

AlsyCOMP_043 Appendix F Version 4.4 17

type F is delta 0.01 range 0.0 .. 2.0;

for F'SIZE use 8,

-- F is derived from a 16 bit predefined fixed type, but its size is 8 bits
-- because of the size specification.

type N is new Frange 0.8 .. 1.0;
-- N is indirectly derived from a 16 bit predefined fixed type, but its size is
-- 8 bits because N inherits the size specification of F.

The Alsys compiler fully implements size specifications. Nevertheless, as fixed point
objects are represented using machine integers, the specified length cannot be greater
than 32 bits.

Size of the objects of a fixed point subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an
object of a fixed point type has the same size as its subtype.

Alignment of a fixed point subtype

A fixed point subtype is byte aligned if its size is less than or equal to 8 bits, and is
otherwise even byte aligned.

Address of an object of a fixed point subtype

Provided its alignment is not constrained by a record representation clause or a pragma
PACK, the address of an object of a fixed point subtype is even when its subtype is even
byte aligned.

5.5 Access Types

Collection Size

When no specification of collection size applies to an access type, no storage space is
reserved for its collection, and the value of the attribute STORAGE_SIZE is then 0.

As described in RM 13.2, a specification of collection size can be provided in order to
reserve storage space for the collection of an access type. The Alsys compiler fully
implements this kind of specification.

AlsyCOMP_043 Appendix F Version 4.4 18

Encoding of access values.

Access values are machine addresses.

Minimum size of an access subtype

The minimum size of an access subtype is 32 bits.

Size of an access subtype
The size of an access subtype is 32 bits, the same as its minimum size.

The only size that can be specified for an access type using a size specification is its usual
size (32 bits).

Size of an object of an access subtype

An object of an access subtype has the same size as its subtype, thus an object of an
access subtype is always 32 bits long,

Alignment of an access subtype.

An access subtype is always even byte aligned.

Address of an object of an access subtype

Provided its alignment is not constrained by a record representation clause or a pragma
PACK, the address of an object of an access subtype is always even, since its subtype is
even byte aligned.

AlsyCOMP_043 Appendix F Version 4.4 19

5.6 Task Types

Storage for a task activation

When no length clause is used to specify the storage space to be reserved for a task
activation, the storage space indicated at bind time is used for this activation.

As described in RM 13.2, a length clause can be used to specify the storage space for the
activation of each of the tasks of a given type. In this case the value indicated at bind time
is ignored for this task type, and the length clause is obeyed.

It is not allowed to apply such a length clause to a derived type. The same storage space is
reserved for the activation of a task of a derived type as for the activation of a task of the

parent type.

Encoding of task values.

Encoding of a task value is not described here.

Minimum size of a task subtype

The minimum size of a task subtype is 32 bits.

Size of a task subtype
The size of a task subtype is 32 bits, the same as its minimum size.

A size specification has no effect on a task type. The only size that can be specified using
such a length clause is its minimum size.

Size of the objects of a task subtype

An object of a task subtype has the same size as its subtype. Thus an object of a task
subtype is always 32 bits long.

Alignment of a task subtype

A task subtype is always even byte aligned.

AlsyCOMP_043 Appendix F Version 4.4 20

Address of an object of a task subtype

Provided its alignment is not constrained by a record representation clause, the address

of an object of a task subtype is always cven, since its subtype is even byte aligned.

5.7 Array Types

Layout of an array

Each array is allocated in a contiguous area of storage units. All the components have
the same size. A gap may exist between two consecutive components (and after the last

one). All the gaps have the same size.

Component Gap Component

. Components

Gap

Component

Gap

If the array is not packed, the size of the components is the size of the subtype of the

components:

type A is array (1 .. 8) of BOOLEAN;

-- The size of the components of A is the size of the type BOOLEAN: 8 bits.

type DECIMAL_DIGIT is range

0.9

for DECIMAL_DIGITSIZE use 4;
type BINARY_CODED_DECIMAL is
array (INTEGER range <>) of DECIMAL_DIGIT;

-- The size of the type DECIMAL_DIGIT is 4 bits. Thus in an array of

-- type BINARY_CODED_DECIMAL each component will be represented on

-- 4 bits as in the usual BCD representation.

If the array is packed and its components are neither records nor arrays, the size of the
components is the minimum size of the subtype of the components:

AlsyCOMP_043 Appendix F Version 4.4

type A is array (1 8) of BOOLEAN;

pragma PACK(A);

-- The size of the components of A is the minimum size of the type BOOLEAN:
-- 1 bit.

type DECIMAL _DIGIT is range 0.. 9;
for DECIMAL_DIGIT'SIZE use 32;
type BINARY_CODED_DECIMAL is
array (INTEGER range < >) of DECIMAL _DIGIT;
pragma PACK(BINARY_CODED_DECIMAL);
-- The size of the type DECIMAL _DIGIT is 32 bits, but, as
-- BINARY_CODED_DECIMAL is packed, each component of an array of this
-- type will be represented on 4 bits as in the usual BCD representation.

Packing the array has no effect on the size of the components when the components are
records or arrays.

. Gaps

If the components are records or arrays, no size specification applies to the subtype of
the components and the array is not packed, then the compiler may choose a
representation with a gap after each component; the aim of the insertion of such gaps is
10 optimize access to the array components and to their subcomponents. The size of the
gap is chosen so that the relative displacement of consecutive components is a multiple
of the alignment of the subtype of the components. This strategy allows each component
and subcomponent to have an address consistent with the alignment of its subtype:

type R is
record
K : INTEGER; -- INTEGER is even byte aligned.
B : BOOLEAN; -- BOOLEAN is byte aligned.
end record;
-- Record type R is even byte aligned. Its size is 24 bits.

type A is array (1..10) of R;
-- A gap of one byte is inserted after each component in order to respect the
-- alignment of type R. The size of an array of type A will be 320 bits.

(38
o

AlsyCOMP_043 Appendix F Version 4.4

K B K B
Component Gap Component
Arr: f A: h mponent K h n even offset.

If a size specification applies to the subtype of the components or if the array is packed,
no gaps are inserted:

type R is
record
K:INTEGER;
B : BOOLEAN;
end record;

type A is array (1.. 10) of R;

pragma PACK(A);

-- There is no gap in an array of type A because
-- A is packed.

-- The size of an object of type A will be 240 bits.

type NR is new R;
for NR'SIZE use 24;

type B is array (1 .. 10) of NR;

-- There is no gap in an array of type B because
-- NR has a size specification.

-- The size of an object of type B will be 240 bits.

K 8 K 8 X s ||
Component Component Component
Arr f A or B: m Vi f

AlsyCOMP _043 Appendix F Version 4.4 23

Size of an array subtype

The size of an array subtype is obtained by multiplying the number of its components by
the sum of the size of the components and the size of the gaps (if any). If the subtype is
unconstrained, the maximum number of components is considered.

The size of an array subtype cannot be computed at compile time

» if it has non-static constraints or is an unconstrained array type with non-static
index subtypes (because the number of components can then only be determined at
run time).

= if the components are records or arrays and their constraints or the constraints of
their subcomponents (if any) are not static (because the size of the components and
the size of the gaps can then only be determined at run time).

As has been indicated above, the effect of a pragma PACK on an array type is to suppress
the gaps and to reduce the size of the components. The consequence of packing an array
type is thus to reduce its size.

If the components of an array are records or arrays and their constraints or the
constraints of their subcomponents (if any) are not static, the compiler ignores any
pragma PACK applied to the array type but issues a warning message. Apart from this
limitation, array packing is fully implemented by the Alsys compiler.

A size specification applied to an array type or first named subtype has no effect. The
only size that can be specified using such a length clause is its usual size. Nevertheless,
such a length clause can be useful 10 verify that the layout of an array is as expected by
the application.

Size of the objects of an array subtype

The size of an object of an array subtype is always equal to the size of the subtype of the
object.

AlsyCOMP_043 Appendix F Version 4.4 24

Alignment of an array éubtype

If no pragma PACK applies to an array subtype and no size specification applies to its
components, the array subtype is even byte aligned if the subtype of its components is
even byte aligned. Otherwise it is byte aligned.

If a pragma PACK applies to an array subtype or if a size specification applies to its
components (so that there are no gaps), the alignment of the array subtype is as given in
the following table:

relative displacement of components
even number odd number not a whole
of bytes of bytes number of bytes

even byte even byte byte bit
Component
subtype byte byte byte bit
at ignment

bit bit bit bit

Address of an object of an array subtype

Provided its alignment is not constrained by a record representation clause, the address
of an object of an array subtype is even when its subtype is even byte aligned.

5.8 Record Types
Layout of a record

Each record is allocated in a contiguous area of storage units. The size of a record
component depends on its type. Gaps may exist between some components.

The positions and the sizes of the components of a record type object can be controlled
using a record representation clause as described in RM 13.4. In the Alsys
implementation for MC680X0 machines there is no restriction on the position that can
be specified for a component of a record. If a component is not a record or an array, its
size can be any size from the minimum size to the size of its subtype. If a component is a
record or an array, its size must be the size of its subtype:

AlsyCOMP_043 Appendix F Version 4.4 25

type INTERRUPT_MASK is array (0 .. 2) of BOOLEAN;
pragma PACK(INTERRUPT_MASK);
-- The size of INTERRUPT_MASK is 3 bits,

type CONDITION_CODE is0.. I;
-- The size of CONDITION_CODE is 8 bits, its minimum size is 1 bit.

type STATUS_BIT is new BOOLEAN;
for STATUS_BIT'SIZE use 1;
-- The size and the minimum size of STATUS_BIT are 1 bit.

SYSTEM : constant := (,
USER : constant := 1;

type STATUS_REGISTER is

record
T:STATUS_BIT; -- Trace
S:STATUS_BIT; -- Supervisor
1: INTERRUPT_MASK; -- Interrupt mask
X : CONDITION_CODE; -- Extend
N : CONDITION_CODE; -- Negative
Z : CONDITION_CODE; -- Zero
V : CONDITION_CODE; -- Overflow
C : CONDITION_CODE; -- Carry
end record;

-- This type can be used to map the status register of a MC68000 processor:

for STATUS_REGISTER use

record at mod 2;
T at SYSTEM range0..0;
S at SYSTEM range2.. 2;
1 at SYSTEM range 5. 7;
X at USER range3. 3;
N at USER range4 . 4;
Z at USER range 5 .. 5;
V at USER range6 .. 6;
C at USER range7.. 7,

end record;

AlsyCOMP_043 Appendix F Version 4.4

26

A record representation clause need not specify the position and the size for every
component.

If no component clause applies to a component of a record, its size is the size of its
subtype. Its position is chosen by the compiler so as to optimize access to the
components of the record: the offset of the component is chosen as a multiple of 8 bits if
the objects of the component subtype are usually byte aligned, but a multiple of 16 bits if
these objects are usually even byte aligned. Moreover, the compiler chooses the position
of the component 50 as to reduce the number of gaps and thus the size of the record
objects.

Because of these optimizations, there is no connection between the order of the
components in a record type declaration and the positions chosen by the compiler for the
components in a record object.

In the current version, it is not possible to apply a record representation clause to a
derived type. The same storage representation is used for an object of a derived type as
for an object of the parent type.

Indirect components

If the offset of a component cannot be computed at compile time, this offset is stored in
the record objects at run time and used to access the component. Such a component is
said to be indirect while other components are said to be direct:

AlsyCOMP_043 Appendix F Version 4.4 27

Beginning of the record

Compile time offset
DIRECT

Compile time offset
OFFSET

Run time offset
INDIRECY

A direct and an indirect component

If a record component is a record or an array, the size of its subtype may be evaluated at
run time and may even depend on the discriminants of the record. We will call these
components dynamic components:

type DEVICE is (SCREEN, PRINTER);
type COLOR is (GREEN, RED, BLUE);
type SERIE is array (POSITIVE range <>) of INTEGER;
type GRAPH (L : NATURAL) is
record
X : SERIE(1 .. L); -- The size of X depends on L
Y : SERIE(1 .. L); -- The size of Y dependson L

end record;

Q: POSITIVE;

AlsyCOMP _043 Appendix F Version 4.4 28

type PICTURE (N : NATURAL; D : DEVICE) is
record
F : GRAPH(N); -- The size of F depends on N
S : GRAPH(Q); -- The size of S depends on Q
case D is
when SCREEN =>
C:COLOUR;
when PRINTER =>
null;
end case;
end record;

Any component placed after a dynamic component has an offset which cannot be
evaluated at compile time and is thus indirect. In order to minimize the number of

indirect components, the compiler groups the dynamic components together and places
them at the end of the record:

AlsyCOMP_043 Appendix F Version 4.4 29

D = SCREEN D = PRINTER

N=2 N=1
teginning of ithe recory
S OFFSET S OFFSET
Compile time offsets
F OFFSET F OFFSET
— —
N N

Run time offsets e

= S - -
The record t PICTURE: F an re pl he_end of the record

Thanks to this strategy, the only indirect components are dynamic components. But not
all dynamic components are necessarily indirect: if there are dynamic components in a
component list which is not followed by a variant part, then exactly one dynamic
component of this list is a direct component because its offset can be computed at
compilation time (the only dynamic components that are direct components are in this
situation):

AlsyCOMP_043 Appendix F Version 4.4 30

Beginning of the ~ecord

Y OFFSET

Compile time offset
L

Compile time offset

X Size dependent on discriminant L

Run time offset

Y Size dependent on discriminant L

The record type GRAPH: the dynamic component X is a direct component.

The offset of an indirect component is always expressed in storage units.

The space reserved for the offset of an indirect component must be large enough to store
the size of any value of the record type (the maximum potential offset). The compiler
evaluates an upper bound MS of this size and treats an offset as a component having an
anonymous integer type whose range is 0 .. MS.

If C is the name of an indirect component, then the offset of this component can be
denoted in a component clause by the implementation generated name COFFSET.

Implicit components

In some circumstances, access to an object of a record type or to its components involves
computing information which only depends on the discriminant values. To avoid useless
recomputation the compiler stores this information in the record objects, updates it
when the values of the discriminants are modified and uses it when the objects or its
components are accessed. This information is stored in special components cailed
implicit components.

AlsyCOMP_043 Appendix F Version 4.4 31

An implicit component may contain information which is used when the record object nr
several of its components are accessed. In this case the component will be included in any
record object (the implicit component is considered to be declared before any variant
pari in ihi€ record type declaration). There can be two components of this kind; one is
called RECORD_SIZE and the other VARIANT_INDEX.

On the other hand an implicit component may be used to access a given record
component. In that case the implicit component exists whenever the record component
exists (the implicit component is considered to be declared at the same place as the
record component). Components of this kind are called ARRAY_DESCRIPTORs or
RECORD_DESCRIPTORs.

« RECORD_SIZE

This implicit component is created by the compiler when the record type has a variant
part and its discriminants are defaulted. It contains the size of the storage space
necessary to store the current value of the record object (note that the storage effectively
allocated for the record object may be more than this).

The value of a RECORD_SIZE component may denote a number of bits or a number of
storage units. In general it denotes a number of storage units, but if any component
clause specifies that a component of the record type has an offset or a size which cannot
be expressed using storage units, then the value designates a number of bits.

The implicit component RECORD_SIZE must be large enough to store the maximum
size of any value of the record type. The compiler evaluates an upper bound MS of this
size and then considers the implicit component as having an anonymous integer type
whose range is 0.. MS.

If R is the name of the record type, this implicit component can be denoted in a
component clause by the implementation generated name R"RECORD_SIZE.

« VARIANT INDEX

This implicit component is created by the compiler when the record type has a variant
part. It indicates the set of components that are present in a record value. It is used when
a discriminant check is to be done.

Component lists that do not contain a variant part are numbered. These numbers are the
possible values of the implicit component VARIANT_INDEX.

AlsyCOMP_043 Appendix F Version 4.4 32

type VEHICLE Is (AIRCRAFT, ROCKET, BOAT, CAR);

type DESCRIPTION (KIND : VEHICLE := CAR) is
record
SPEED : INTEGER;
case KIND is
when AIRCRAFT | CAR =>
WHEELS : INTEGER,
case KIND is
when AIRCRAFT => --1
WINGSPAN : INTEGER;
when others => --2
null;
end case;
when BOAT => -3
STEAM : BOOLEAN;
when ROCKET => --4
STAGES : INTEGER;
end case;
end record;

The value of the variant index indicates the set of components that are present in a
record value:

Variant Index Set
1 (XIND, SPEED, WHEELS, WINGSPAN)
2 {KIND, SPEED, WHEELS)
3 (KIND, SPEED, STEAM)
4 (KIND, SPEED, STAGES)

A comparison between the variant index of a record value and the bounds of an intcrval
is ¢cnough to check that a given component is present in the value:

AlsyCOMP_043 Appendix F Version 4.4 33

Component Intervsl
L § v
KIND --
SPEED --
WHEELS 1..2
WINGSPAN 1..1
STEAM 3..3
STAGES 4 .. 4

The implicit component VARIANT_INDEX must be large enough to store the number
V of component lists that don’t contain variant parts. The compiier treats this implicit
component as having an anonymous integer type whose rangeis 1.. V.

If R is the name of the record type, this implicit component can be denoted in a
component clause by the implementation generated name R’'VARIANT _INDEX.

" ARRAY _DESCRIPTOR

An implicit component of this kind is associated by the compiler with each record
component whose subtype is an anonymous array subtype that depends on a discriminant
of the record. It contains information about the component subtype.

The structure of an implicit component of kind ARRAY_DESCRIPTOR is not
described in this documentation. Nevertheless, if a programmer is interested in
specifying the location of a component of this kind using a component clause, he can
obtain the size of the component using the ASSEMBLY parameter in the COMPILE
command.

The compiler treats an implicit component of the kind ARRAY_DESCRIPTOR as
having an anonymous array type. If C is the name of the record component whose
subtype is described by the array descriptor, then this implicit component can be denoted
in a component clause by the implementation generated name
CARRAY_DESCRIPTOR.

. RECORD_DESCRIPTOR

An implicit component of this kind is associated by the compiler with each record
component whose subtype is an anonymous record subtype that depends on a
discriminant of the record. It contains information about the component subtype.

AlsyCOMP_043 Appendix F Version 4.4 34

The structure of an implicit component of kind RECORD_DESCRIPTOR is not
described in this documentation. Nevertheless, if a programmer is interested in
specifying the location of a component of this kind using a component clause, he can
obtain the size of the component using the ASSEMBLY parameter in the COMPILE
command.

The compiler treats an implicit component of the kind RECORD_DESCRIPTOR as
having an anonymous array type. if C is the name of the record component whose
subtype is described by the record descriptor, then this implicit component can be
denoted in a component clause by the implementation generated name
CRECORD_DESCRIPTOR.

Suppression of implicit components

The Alsys implementation provides the capability of suppressing the implicit
components RECORD_SIZE and/or VARIANT_INDEX from a record type. This can
be donc using an implementation defined pragma called IMPROVE. The syntax of this
pragma is as follows:

pragma IMPROVE (TIME | SPACE, [ON =>] simple_name);

The first argument specifies whether TIME or SPACE is the primary criterion for the
choice of the representation of the record type that is denoted by the second argument.

If TIME is specified, the compiler inserts implicit components as described above. If on
the other hand SPACE is specified, the compiler only inserts a VARIANT_INDEX or a
RECORD_SIZE component if this component appears in a record representation
clause that applies to the record type. A record representation clause can thus be used to
keep one implicit component while suppressing the other.

A pragma IMPROVE that applies to a given record type can occur anywhere that a
representation clause is allowed for this type.

Size of a record subtype

Unless a component clause specifies that a component of a record type has an offset or a
size which cannot be expressed using storage units, the size of a record subtype is
rounded up to the a whole number of storage units.

AlsyCOMP_043 Appendix F Version 4.4 35

The size of a constrained record subtype is obtained by adding the sizes of its
components and the sizes of its gaps (if any). This size 1s not computed at compile time

s when the record subtype has non-static constraints,

= when a component is an array or a record and its size is not computed at compile
time.

The size of an unconstrained record subtype is obtained by adding the sizes of the
components and the sizes of the gaps (if any) of its largest variant. If the size of a
component or of a gap cannot be evaluated exactly at compile time an upper bound of
this size is used by the compiler to compute the subtype size

A size specification applied to a record type or first named subtvpe has no effect. The
only size that can be specified using such a length clause is its usual size. Nevertheless,
such a length clause can be useful to verify that the layout of a record is as expected by
the application.

Size of an object of a record subtype
An object of a constrained record subtype has the same size as its subtype.

An object of an unconstrained record subtype has the same size as its subtype if this size
is less than or equal to 8 kb. If the size of the subtype is greater than this, the object has
the size necessary to store its current value; storage space is allocated and released as the
discriminants of the record change.

Alignment of a record subtype

When no record representation clause applies to its base type, a record subtype is even
byte aligned if it contains a component whose subtype is even byte aligned. Otherwise the
record subtype is byte aligned.

When a record representation clause that does not contain an alignment clause applies
10 its base type, a record subtype is even byte aligned if it contains a component whose
subtype is even byte aligned and whose offset is a multiple of 16 bits. Otherwise the
record subtype is byte aligned.

AlsyCOMP_043 Appendix F Version 4.4 36

When a record representation clause that contains an alignment clause applies 10 its base
type, a record subtype has an alignment that obeys the alignment clause An alignment
clause can specify that a record type is byte aligned or even byte aligned.

Address of an object of a record subtype

Provided its alignment is not constrained by a representation clause, the address of an
object of a record subtype is even when its subtype is even byte aligned.

AlsyCOMP_043 Appendix F Version 4.4 37

6 ADDRESS CLAUSES

6.1 Address Clauses for Objects

An address clause can be used to specify an address for an object as described in RM
13.5. When such a clause applies to an object no storage is allocated for it in the program
generated by the compiler. The program accesses the object using the address specified
in the clause.

An address clause is not allowed for task objects, nor for unconstrained records whose
size is greater than 8 kb.

Note that the function SYSTEM.TO_ADDRESS belonging to the package SYSTEM
converts LONG_INTEGER 1o SYSTEM.ADDRESS.

6.2 Address Clauses for Program Units

Address clauses for program units are not implemented in the current version of the
compiler.

6.3 Address Clauses for Entries

Address clauses for entries are not implemented in the current version of the compiler.

AlsyCOMP_043 Appendix F Version 4.4 38

7 UNCHECKED CONVERSIONS

Unconstrained arrays are not allowed as target types. Unconstrained record
types without defaulted discriminants are not allowed as target types. Access
to unconstrained arrays are not allowed as target or source types. Note also
that UNCHECKED_CONVERSION cannot be used for access to an
unconstrained string.

If the source and the target types are each scalar or access types, the sizes of
the objects of the source and target types must be equal.

If a composite type is used either as source type or as target type this
restriction on the size does not apply.

If the source and the target types are each of scalar or access type or if they
are both of composite type, the effect of the function is to return the
operand.

In other cases th2 effect of unchecked conversion can be considered as a
copy:

« if an unchecked conversion is achieved of a scalar or access source type
to a compo-:te target type, the result of the function is a copy of the
source oper: nd: the result has the size of the source.

= if an unchecked conversion is achieved of a composite source type to a
scalar or access target type, the result of the function is a copy of the
source ope.and: the result has the size of the target.

AlsyCOMP_043 Appendix F Version 4.4 39

8 INPUT-OUTPUT CHARACTERISTICS

In this part of the Appendix the implementation-specific aspects of the
input-output system are described.

8.1 Introduction

In Ada, input-output operations (I0) are considered to be performed on
objects of a certain file type rather than being performed directly on external
files. An external file is anything external to the program that can produce a
value to be read or receive a value to be written. Values transferred for a
given file must be all of one type.

Generally, in Ada documentation, the term file refers to an object of a
certain file type, whereas a physical manifestation is known as an external
file. An external file is characterized by

s Its NAME, which is a string defining a legal path name under the
current version of the operating system,

» Its FORM, which gives implementation-dependent information on file
characteristics.

Note that the FORM parameter is not supported.

File Structure

(a) Text Files

There is no parameter FORM to define the structure of text files.

A text file consists of a sequence of bytes holding the ASCII codes of characters.

The representation of Ada terminators depends on the file’s mode (IN or OUT) and
whether it is associated with a terminal device or a mass storage file:

» Mass storage files

end of line: ASCILCR
end of page: ASCILCR ASCILFF
end of file: ASCILCR
AlsyCOMP_043 Appendix F Version 4.4 40

s Terminal device with mode IN

end of line: ASCILCR
end of page: ASCILFF
end of file: ASCILEOT

s Terminal device with mode OUT

end of line: ASCILCR
end of page: ASCILCR ASCILFF
end of file: ASCILCR ASCILFF

(b) Binary Files

A binary file can be viewed as a sequence (sequential access) or a set (direct access) of
consecutive RECORDS.

The structure of such a record is:
[HEADER | OBJECT [UNUSED_PART]
and it is formed from up to three items:

« an OBJECT with the exact binary representation of the Ada object in the
executable program, possibly including ar object descriptor

» a HEADER consisting of two fields (each of 32 bits):
- the length of the object in bytes
- the length of the descriptor in bytes
a an UNUSED_PART of variable size to permit full control of the record’s size

The HEADER is implemented only if the actual parameter of the instantiation of the 10
package is unconstrained.

9 INTERRUPT ENTRIES

Interrupt entries as defined by the language are not supported.

AlsyCOMP_043 Appendix F Version 4.4 41

