- UHB v COPY
REPORT DOCUMENTATION PAGE N o otes

Ww-uuum--“- 1 ey por ape .8, o vy far movisming dutrutiors, Guln ensruse
"o dam @ reviaming T Gullecion of inferaion. Gens SarYROnD & o P g oy Leeip o s
:mmw; mg”.whw%msuukmmgﬂm
1. AGENCY USE ONLY (Loeve Blaw) 2 REPORT DATE 3. REFOST, TYPE AND DATES CC/ERED
M~ Final 4 Feb. 1990 %o 4 Feb. 1991
N
‘oam»owms Ada Compiler Validation Summary Report: SD-Sc icon | & FUNDING NUMBERS
plc, XD Ada MC68000 V1.0-09, VAX Cluster (Host) to MC68000
d‘ (Target), 90Q204N1.10252
1
&Lms))
National Computing Centre Limited
Manchester, UNITED KINGDOM
- | .
() - PERFORMING CRGANIZATION NAME(S) AND ADORERS(ES) | R e R NZATION
National Computing Centre Limited
Oxford Road . AVF-VSR-90502/66
Manchester MI 7ED
UNITED KINGDOM
9. SPONSORINGAMONITORING AGENCY NAME(S) AND ADDRESS(ES)
Ada Joint Program Office .
United States Department of Defense
Washington, D.C. 20301-3081
1. QUPPLEMENTARY NOTES
12a. DISTRBUTIONAVALABLITY STATEMENT 120. DISTRBUTION CODE
Approved for public release; distribution unlimited.
13. ABSTRACT (Me.imum 200 words)
SD-Scicon ple, XD Ada MC68000 V1.0-09, Manchester, England, VAX Cluster (Comprising of a
VAX 8600 and 7 MicroVAX II's) under VMS 5.1 (Host) to MC68000 processor running on an .
MVME117-3FP MPU VME module using a MC68881 floating point peripheral (bare machine),
ACVC 1.10. . .)
* " -.
4. QMECTTERMS Ada programming language, Ada Compiler Validation | 6. NUMBER OF MGES
Summary Report, Ada Compiler Validation Capability, Validation
Testing, Ada Validation Office, Ada Validation Facility, ANSI/MIL- [¥6. PRICE COOE
STD-1815A, Ada Joint Program Office
x) WWW
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

Preswrioed by ANSI B SB-V8
29001

SU U Zu 065

AVF Control Number: AVF-VSR-90502/66

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: #900204N1.10252

SD-Scicon plc
XD Ada MC68000 V1.0-09
VAX Cluster Host and MC68000 target

Accession For {
Completion of On-Site Testing: TNTIS GRaz P—
February 4 1990 e \%'

Unannouriced
Justification_____‘__

—_—

Prepared By: st
Testing Services | Distributions
The National Computing Centre Limited Avallability (;odes

Oxford Road vai
Avail and/or
Manchester M1 7ED Dist Special
England

A

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington DC 20301-3081

AVF-VSR-90502/66

Validation Summary Report
Page i of ii

SD-Scicon pic XD Ada MC68000 V1.009

Ada Compiler Validation Summary Report:

Compiler Name: XD Ada MC68000 V1.0-09

Certificate Number: #900204N1.10252

Host: VAX Cluster (Comprising of a VAX 8600 and 7 MicroVAX [I’s) under VMS 5.1

Target: MC68000 processor running on an MVME117-3FP MPU VME module using a
MC68881 floating point peripheral (bare machine).

Testing Completed February 4 1990 Using ACVC 1.10

This report has been reviewed and is approved.

T20R
Jane Pink
Testing Services Manager
The National Computing Centre Limited
Oxford Road
Manchester M1 7EL
England

Ada Val atiey Organization
Dr. John F."Kfamer
Institute for Defense Analyses
Alexandria VA 22311

Y 3 lomr/

Ada Joint Program Office
Dr. John Solomond
Director AJPO
Department of Defense
Washington DC 20301

Validation Summary Report AVF-VSR-90502/66

SD-Scicon pic XD Ada MC68000 V1.0-02 Page ii of i

TABLE OF CONTENTS

TABLE OF CONTENTS

CHAPTER 1
INTRODUCTION e et e et et e e s i e 1
1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT . . 1
1.2 USE OF THIS VALIDATION SUMMARY REPORT 2
13 REFERENCES ittt et e e e e e 2
1.4 DEFINITION OF TERMS ittt 3
1.5 ACVC TEST CLASSES e iiii . 4
CHAPTER 2
CONFIGURATION INFORMATION i 1
2.1 CONFIGURATION TESTED 1
22 IMPLEMENTATION CHARACTERISTICS 1
CHAPTER 3
TEST INFORMATION e e e e e 1
3.1 TEST RESULTS e e e e e e e e i 1
3.2 SUMMARY OF TEST RESULTSBY CLASS 1
33 SUMMARY OF TEST RESULTS BY CHAPTER 1
34 WITHDRAWN TESTS i et e e e e i 2
35 INAPPLICABLE TESTS it ie e e 2
36 TEST, PROCESSING, AND EVALUATION MODIFICATIONS . . 5
3.7 ADDITIONAL TESTING INFORMATION, 5
APPENDIX A
DECLARATION OF CONFORMANCEttt 1
APPENDIX B
APPENDIX FOF THE Ada STANDARDc¢ouuuou.. 1
APPENDIX C
TEST PARAMETERSttt it et it aae i 1
APPENDIX D
WITHDRAWN TESTS it ittt ittt ettt e e et te e e e 1
Validation Summary Report AVF-VSR-90502/66

SD-Scicon pic XD Ads MC68000 V1.0-09

Table of Contents - Page i of i

INTRODUCTION

CHAPTER 1

INTRODUCTION

This Validation Summary Report -(VSR) describes the extent to which a specific Ada compiler
conforms to the Ada Standard, ANSI/MIL-STD-1815A. This report explains all technical terms
used within it and thoroughly reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented according to the Ada
Standard, and any implementation-dependent features must conform to the requirements of the
Ada Standard. The Ada Standard must be implemented in its entirety, and nothing can be
implemented that is not in the Standard.

Even though all validated Ada coinpilers conform to the Ada Standard, it must be understood that
some differences do exist between implementations. The Ada Standard permits some
implementation dependencies -- for example, the maximum length of identifiers or the maximum
values of integer types. Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All the dependencies
observed during the process of testing this compiler are given in this report.

‘The information in this report is derived from the test results produced during validation testing.
The validation process includes submitting a suite of standardized tests, the ACVC, as inputs to an
Ada compiler and evaluating the results. The purpose of validating is to ensure conformity of the
compiler to the Ada Standard by testing that the compiler properly implements legal language
constructs and that it identifies and rejects illegal language constructs. The testing also identifies
behavior that is implementation dependent, but is permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile time, at link time, and
during execution. _.. N o .

[. - s

[

11 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an Ada compiler. Testing
was carried out for the following purposes:

o To attempt to identify any language constructs supported by the compiler that do
not conform to the Ada Standard

o To attempt to identify any language constructs not supported by the compiler but
required by the Ada Standard

o To determine that the implementation-dependent behavior is allowed by the Ada
Standard

Testing of this compiler was conducted by The National Computer Centre Limited according to
procedures established by the Ada Joint Program Office and administered by the Ada Validation

Validation Summary Report AVF-VSR-90502/66

SD-Scicon pic XD Ada MC68000 V1.0-09 Chapter 1 - Page 1 of §

INTRODUCTION

Organization (AVO). Onssite testing was completed on February 4 1990 at SD-SCICON plc,
Pembroke House, Pembroke Broadway, Camberley, Surrey, GU15 3XD, UK.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may make full and free
public disclosure of this report. In the United States, this is provided in accordance with the
"Freedom of Information Act” (5 U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not represent or warrant
that all statements set forth in this report are accurate and complete, or that the subject compiler
has no nonconformities to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Testing Services
The National Computing Centre Limited
Oxford Road
Manchester M1 7ED

England

Questions regarding this report or the validation test results should be directed to the AVF listed
above or to:

Ada Validation Organization
Institute for Defense Analyses

1801 North Beauregard Street
Alexandria VA 22311

13 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines,
Ada Joint Program Office, 1 January 1987.

Validation Summary Report AVF-VSR-90502/66

SD-Scicos pic XD Ada MC68000 V1.0-09 Chapter 1 - Page 2 of 5

INTRODUCTION

3. Ada Compiler Validation Capability Implementers’ Guide,
SofTech, Inc., December 1986.

4, Ada Compiler Validation Capability User's Guide,
December 1986.

14 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set ~f Ada programs
that tests the conformity of an Ada compiler to the Ada
programming language.

Ada Commentary An Ada Commentary contains all information relevant to the point
addressed by a comment on the Ada Standard. These comments
are given a unique identification number having the form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.
Applicant The agency requesting validation.
AVF The Ada Validation Facility., The AVF is responsible for

conducting compiler validations according to procedures contained
in the Ada Compiler Validation Procedures and_Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of maintaining a
uniform process fur validation of Ada compilers. The AVO
provides administrative and technical support for Ada validations to
ensure consistent practices.

Compiler A processor for the Ada language. In the context of this report,
a compiler is any language processor, including cross-compilers,
translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable test An ACVC test that uses features of the language that a compiler

is not required to support or may legitimately support in a way
other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected result.

Validation Summary Report AVF-VSR-90502/46

SD-Scicon pic XD Ada MC68000 V1.0-09 Chapter 1 - Page 3 of S

INTRODUCTION

Target The computer which executes the code generated by the compiler.

Test A program that checks a compiler’s conformity regarding a
particular feature or a combination of features to the Ada Standard.
In the context of this report, the term is used to designate a single
test, which may comprise one or more files.

Withdrawn test An ACVC test found to be incorrect and not used to check
conformity to the Ada Standard. A test may be incorrect because
it has an invalid test objective, fails to meet its test objective, or
contains illegal or erroneous use of the language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC contains both legal and
illegal Ada programs structured into six test classes: A, B, C, D, E, and L. T*~ first letter of a
test name identifies the class to which it belongs. Class A, C, D, and E tests are executable, and
special program units are used to report their results during execution. Class B tests are expected
to produce compilation errors. Class L tests are expected to produce errors because of the way
in which a program library is used at link time.

Class A tests ensure the successful compilation and execution of legal Ada programs with certain
language constructs which cannot be verified at run time. There are no explicit program
components in a Class A test to check semantics. For example, a Class A test checks that reserved
words of another language (other than those already reserved in the Ada language) are not treated
as reserved words by an Ada compiler. A Class A test is passed if no errors are detected at
compile time and the program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class B tests are not executable.
Each test in this class is compiled and the resulting compilation listing is examined to verify that
every syntax or semantic error ia the test is detected. A Class B test is passed if every illegal
construct that it contains is detected by the compiler.

Class C tests check the run time system to ensure that legal Ada programs can be correctly
compiled and executed. Each Class C test is self-checking and produces a PASSED, FAILED, or
NOT APPLICABLE message indicating the result when it is executed.

Class D tests check the compilation and execution capacities of a compiler. Since there are no
capacity requirements placed on a compiler by the Ada Standard for some parameters -- for
example, the number of identifiers permitted in a compilation or the number of units in a library -
- a compiler may refuse to compile a Class D test and still be a conforming compiler. Therefore,
if a Class D test fails to compile because the capacity of the compiler is exceeded, the test is
classified as inapplicable. If a Class D test compiles successfully, it is self-checking and produces
a PASSED or FAILED message during execution.

Validation Summary Report AVF-VSR-90502/66

SD-Scicoa pic XD Ada MC68000 V1.0-09 Chapter 1 - Page 4 of §

INTRODUCTION

Class E tests are expected to execute successfully and check implementation-dependent options and
resolutions of ambiguities in the Ada Standard. Each Class E test is self-checking and produces
a NOT APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs containing some features
addressed by Class E tests during compilation. Therefore, a Class E test is passed by a compiler
if it is compiled successfully and executes to produce a PASSED message, or if it is rejected by the
compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving multiple, separately compiled
units are detected and not allowed to execute. Class L tests are compiled separately and execution
is attempted. A Class L test passes if it is rejected at link time -- that is, an attempt to execute
the main program must generate an error message before any declarations in the main program
or any units referenced by the main program are elaborated. In some cases, an implementation
may legitimately detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECK_FILE, support the self-
checking features of the executable tests. The package REPORT provides ¢ mechanism by which
executable tests report PASSED, FAILED, or NOT APPLICABLE results. It also provides a set
of identity functions used to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK_FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada Standard. The operation
of REPORT and CHECK_FILE is checked by a set of executable tests. These tests produce
messages that are examined to verify that the units are operating correctly. If these units are not
operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to ensure that the tests
are reasonably portabie without modification. For example, the tests make use of only the basic
set of S5 characters, contain lines with a maximum length of 72 characters, use small numeric
values, and place features that may not be supported by all implementations in separate tests.
However, some tests contain values that require the test to be customized according to
implementation-specific values -- for example, an illegal file name. A list of the values used for
this validation is provided in Appendix C.

A compiler must correctly process each of the tests in the suite and demonstrate conformity to the
Ada Standard by either meeting the pass criteria given for the test or by showing that the test is
inapplicable to the implementation. The applicability of a test to an implementation is considered
each time the implementation is validated. A test that is inapplicable for one validation is not
necessarily inapplicable for a subsequent validation. Any test that was determined to contain an
illegal language construct or an erroneous language construct is withdrawn from the ACVC and,
therefore, is not used in testing a compiler. The tests withdrawn at the time of this validation
are given in Appendix D.

Validation Summary Report AVF-VSR-90502/66
SD-Scicon pic XD Ada MC68000 V1.0-09 Chapter 1 - Page S5of §

CONFIGURATION INFORMATION

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the following configuration:

Compiler: XD Ada MC68000 V1.0-09
ACVC Version: 1.10
Certificate Number: #900204N1.10252

Host Computer:

Machine: VAX Cluster (comprising of a VAX 8600 and 7 MicroVAX
I’s) ‘

Operating System: VMS 5.1

Memory Size: VAX 8600 - 20Mbytes
MicroVAX IF’s - 1 x 16 Mbytes
6 x 9 Mbytes

Target Computer:

Machine: MC68000 processor running on an MVME117-3FP MPU
VME module using an MC68881 floating point peripheral.

Operating System Bare machine.

Memory Size: 512Kb

Communications Network: RS232 link

22 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of a compiler in those
areas of the Ada Standard that permit ;mplementations to differ. Class D and E tests specifically
check for such implementation differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

Validation Summary Report AVF-VSR-90502/66

SD-Scicon pic XD Ada MC68000 V1.0-09 Chapter 2 - Page 1 of §

CONFIGURATION INFORMATION

a. Capacities.

¢y

()

3)

4

The compiler correctly processes a compilation containing 723 variables in the same
declarative part. (See test D29002K.)

The compiler correctly processes tests containing loop statements nested to 65
levels. (See tests DS5A03A..H (8 tests).)

The compiler correctly processes tests containing block statements nested to 65
levels. (See test D56001B.)

The compiler correctly processes tests containing recursive procedures separately
compiled as subunits nested to 17 levels. (See tests D64005E..G (3 tests).)

b. Predefined types.

1 This implementation supports the additional predefined types SHORT_INTEGER,
SHORT_SHORT INTEGER, LONG_FLOAT, and LONG_LONG_FLOAT, in the
package STANDARD. (See tests B86001T..Z (7 tests).)

c. Expression evaluation.

The order in which expressions are evaluated and the time at which constraints are checked
are not defined by the language. While the ACVC tests do not specifically attempt to
determine the order of evaluation of expressions, test results indicate the following:

1) None of the default initialization expressions for record components are evaluated
before any value is checked for membership in a component’s subtype. (See test
C32117A.)

2) Assignments for subtypes are performed with the same precision as the base type.
(See test C35712B).

3) This implementation uses no extra bits for extra precision and uses all extra bits
for extra range. (See test C35903A.)

4) NUMERIC_ERROR is raised when an integer literal operand in a comparison or
membcership test is outside the range of the base type. (See test C45232A.)

5) NUMERIC_ERROR is raised when a literal operand in a fixed-point comparison
or membership test is outside the range of the base type. (See test C45252A.)

(6) Underflow is gradual. (See tests C45524A..Z (26 tests).)

Validation Summary Report AVF-VSR-90502/66

SD-Scicon pic XD Ada MC68000 V1.0-09 Chapter 2 - Page 2 of 5

CONFIGURATION INFORMATION

d. Rounding.

The method by which values are rounded in type conversions is not defined by the
language. While the ACVC tests do not specifically attempt to determine the method of
rounding, the test results indicate the following:

)

()

3

The method used for rounding to integer is round to even. (See tests C46012A..Z
(26 tests).)

The method used for rounding to longest integer is round to even. See tests
C46012A..Z (26 tests).)

The method used for rounding to integer in static universal real expressions is
round away from zero. (See test C4A014A.)

€. Array types.

An implementation is allowed to raise NUMERIC_ERROR or CONSTRAINT_ERROR
for an array having a 'LENGTH that exceeds STANDARD.INTEGER'LAST and/or
SYSTEM.MAX_INT. For this implementation:

)

()

3)

4

©))

(6)

)

Declaration of an array type or subtype declaration with more than
SYSTEM.MAX_INT components raises NUMERIC_ERROR. (See test C36003A.)

NUMERIC_ERROR is raised when an array type with INTEGER’LAST + 2
components is declared. (See test C36202A.)

NUMERIC_ERROR is raised when an array type with SYSTEM.MAX_INT + 2
components is declared. (See test C36202B.)

A packed BOOLEAN array having a ’LENGTH exceeding INTEGER’LAST raises
NUMERIC_ERROR when the array type is declared. (See test C52103X.)

A packed two-dimensional BOOLEAN array with more than INTEGER’LAST
components NUMERIC_ERROR when the array type is declared. (See test
C52104Y.)

In assigning one-dimensional array types, the expression is evaluated in its entirety
before CONSTRAINT_ERROR is raised when checking whether the expression’s
subtype is compatible with the target’s subtype. (See test C52013A.)

In assigning two-dimensional array types, the expression is not evaluated in its
entirety before CONSTRAINT_ERROR is raised when checking whether the
expression’s subtype is compatible with the target’s subtype. (See test C52013A.)

Validation Summary Report AVF-VSR-90502/66

SD-Scicon pic XD Ada MC68000 V1.0-09 Chapter 2 - Page 3 of 5

CONFIGURATION INFORMATION

£ A null array with one dimension of length greater than INTEGER'LAST may raise
NUMERIC_ERROR or CONSTRAINT_ERROR either when declared or assigned.
Alternatively, an implementation may accept the declaration. However, lengths must match
in array slice assignments. This implementation raises no exception. (See test E52103Y.)

g. Discriminated types.

1) In assigning record types with discriminants, the expression is evaluated in its
entirety before CONSTRAINT_ERROR is raised when checking whether the
expression’s subtype is compatible with the target’s subtype. (See test CS2013A.)

h. Aggregates.

&) In the evaluation of a multi-dimens.. .al aggregate, the test results indicate that all
choices are evaluated before checking against the index type. (See tests C43207A
and C43207B.)

@) In the evaluation of an aggregate containing subaggregates, all choices are evaluated
before being checked for identical bounds. (See test E43212B.)

3) CONSTRAINT_ERROR s raised after all choices are evaluated when a bound in
a non-null range of a non-null aggregate does not belong to an index subtype. (See
test E43211B.)
i. Pragmas.
(1) The pragma INLINE is supported for functions or procedures. (See tests
LA3004A..B (2 tests), EA3004C..D (2 tests), and CA3004E..F (2 tests).)

] Generics.

(1) Generic specifications and bodies can be compiled in separate compilations. (See
tests CA1012A, CA2009C, CA2009F, BC3204C, and BC3205D.)

2) Generic subprogram declarations and bodies can be compiled in separate
compilations. (See tests CA1012A and CA2009F.)

3) Generic library subprogram specifications and bodies can be compiled in separate
compilations. (See test CA1012A.)

(4) Generic non-library package bodies as subunits can be compiled in separate
compilations. (See test CA2009C.)

Validation Summary Report AVF-VSR-90502/66

SD-Scicon pic XD Ada MC68000 V1.0-09 Chapter 2 - Page 4 of §

CONFIGURATION INFORMATION

) Generic non-library subprogram bodies can be compiled in separate compilations
from their stubs. (See test CA2009F.)

(6) Generic unit bodies and their subunits can be compiled in separate compilations.
(See test CA3011A.)

) Generic package declarations and bodies can be compiled in separate compilations.
(See tests CA2009C, BC3204C, and BC3205D.)

8) Generic library package specifications and bodies can be compiled in separate
compilations. (See tests BC3204C and BC3205D.)

k. Input and output.

) The package SEQUENTIAL_IO can be instantiated with unconstrained array types
and record types with discriminants without defaults. (See tests AE2101C,
EE2201D, and EE2201E.)

2) The package DIRECT_IO can be instantiated with unconstrained array types and
record types with discriminants without defaults. (See tests AE2101H, EE2401D,
and EE2401G.)

3) The director, AJPO, has determined (AI-00332) that every call to OPEN and
CREATE must raise USE_ERROR or NAME_ERRGOR ff file input/output is not
supported. This implementation exhibits this behavior for SEQUENTIAL_IO,
DIRECT_IO, and TEXT_IO.

Validation Summary Report AVF-YSR-90502/66
SD-Scicon pic XD Ada MC68000 V1.0-09 Chapter 2 - Page 5 of 5

TEST INFORMATION

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was tested, 44 tests had been
withdrawn because of test errors. The AVF determined that 504 tests were inapplicable to this
implementation. All inapplicable tests were processed during validation testing except for 159
executable tests that use floating-point precision exceeding that supported by the implementation.
Modifications to the code, processing, or grading for 16 tests were required to successfully
demonstrate the test objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable conformity to the Ada Standard.

32 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL

A B C D E L
Passed 129 1133 1828 17 16 46 3169
Inapplicable 0 5 487 0 12 0 504
Withdrawn 1 2 35 0 6 0 4
TOTAL 130 1140 2350 17 34 46 N7

33 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 5 _6 _7 8 9 10 1 .12 13 14
Passed 201 592 567 245 172 99 162 331 137 36 252 295 78 3169
Inapp 11 57 111 3 0 0 4 1 0 0 0 74 243 504
Withdlawn 1t 1 0 0 O 0 0 2 o0 0 1 35 4 44

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 n7

Validation Summary Report AVF-VSR-90502/66

SD-Scicon pic XD Ada MC68000 V1.0-09 Chapter 3 - Page 1 of 6

-]

TEST INFORMATION

34 WITHDRAWN TESTS

The following 44 tests were withdrawn from ACVC Version 1.10 at the time of this validation:

E28005C A39005G B97102E

C97116A BC3009B CD2A62D
CD2A63A..D (4 tests) CD2A66A..D (4 tests) CD2A73A..D (4 tests)
CD2A76A.D (4 tests) CD2A81G CD2A83G
CD2A84M..N (2 tests) CD2B15C CD2D11B

CDS007B CD50110 ED7004B
ED7005C..D (2 tests) ED7006C..D (2 tests) CD7105A

CD7203B CD7204B CD7205C

CD7205D CE21071 CE3111C

CE3301A CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features that a compiler is not
required by the Ada Standard to support. Others may depend on the result of another test that
is either inapplicable or withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one validation attempt is not
nccessarily inapplicable for a subsequent attempt. For this validation attempt, 504 tests were
inapplicable for the reasons indicated:

a. The following 159 tests are not applicable because they have floating-point type
declarations requiring more digits than SYSTEM.MAX_DIGITS:
C241130..Y (11 tests) C357050..Y (11 tests) C357060..Y (11 tests)
C357070..Y (11 tests) C357080..Y (11 tests) C358020..Z (12 tests)
C452410..Y (11 tests) C453210..Y (11 tests) C454210..Y (11 tests)
C455210..Z (12 tests) CA455240..Z (12 tests) C456210.Z (12 tests)
CA456410..Y (11 tests) C460120..Z (12 tests)

b. C35702A and B86001T are not applicable because this implementation supports no

predefined type SHORT_FLOAT.

c The following 16 tests are not applicable because this implementation does not
support a predefined type LONG_INTEGER:

C45231C C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45614C C45631C
C45632C B52004D CS5BO7A B55B09C

B86001W CD7101F

Validation Summary Report AVF-VSR-90502/66

SD-Scicon pic XD Ada MC68000 V1.0-09 Chapter 3 - Page 2 of 6

TEST INFORMATION

d. CA45531M..P (4 tests) and C45532M..P (4 tests) are all inapplicable because this
implementation has a 'MAX_MANTISSA of 31 and these tests require the compiler
to support a greater value.

€. C86001F is not applicable because, for this implementation, the package TEXT_IO
is dependent upon package SYSTEM. This test recompiles package SYSTEM,
making package TEXT_IO, and hence package REPORT, obsolete.

f. B86001Y is not applicable because this implementation supports no predefined
fixed-point type other than DURATION.

g C96005B is not applicable because there are no values of type DURATION’BASE
that are outside the range of DURATION.

h. CD1009C, CD2A41A..B (2 tests), CD2A41E and CD2A42A..J (10 tests) are not
applicable because 'SIZE representation clauses for floating-point types are not
supported.

i CD1C04C is inapplicable because this implementation does not support model
numbers of a derived type that are not representable values of the parent type.

J- CD2AS2C..D (2 tests), CD2AS52G..H (2 tests), CD2AS4C..D (2 tests) and CD2AS4H
are not applicable because for this implementation the legality of a *SIZE clause
for a derived fixed point type can depend on the representation chosen for the

parent type.

k. CD2AS3C, and CD2A54G are not applicable because within these tests the SMALL
specified for a derived fixed point is finer than the SMALL for the parent type.
As a result some model numbers of the derived type are not representable values
of the parent type which this implementation does not allow.

1. The following 23 tests are not applicable because this implementation does not
support packing by means of a length clause for an array type:

CD2A61A..L (12 tests) CD2A62A..C (3 tests) CD2A64A..D (4 tests)
CD2A65A..D (4 tests)

m. The following 16 tests are not applicable because this implementation does not
support packing by means of a length clause for a record type:

CD2A71A..D (4 tests) CD2AT72A.D (4 tests) CD2AT4A.D (4 tests)
CD2A75A..D (4 tests)

n. CD2AB84B..1 (8 tests) and CD2A84K..L (2 tests) are not applicable because this
implementation only accepts length clause for access types, if the default size (32
bits) is specified. These tests specify sizes other that 32 bits.

Validation Summary Report AVF-VSR-90502/66

SD-Scicon pic XD Ada MC68000 V1.0-09 Chapter 3 - Page 30l 6

TEST INFORMATION

The following 241 tests are inapplicable because sequential, text, and direct access

files are not supported:

CE2102A..C (3 tests)
CE2102N..Y (12 tests)
CE2105A..B (2 tests)
CE2107L
CE2110A..D (4 tests)
CE2201A..C (3 tests)
CE2204A..D (4 tests)
CE2401A..C (3 tests)
EE2401G

CE2405B
CE2408A..B (2 tests)
CE2411A
“E3102F..H (3 tests)
CE3104A..C (3 tests)
CE3109A
CE3111D..E (2 tests)
CE3115A

EE3301B

CE3402A
CE3403A..C (3 tests)
CE3405A
CE3406A..D (4 tests)
CE3409A

CE3410A

CE3411A

CE3413A

CE3603A
CE3606A..B (2 tests)
CE3706D
CE3805A..B (2 tests)
CE3806G..H (2 tests)
CE3906A..C (3 tests)

CE2102G..H (2 tests)
CE2103C..D (2 tests)
CE2106A..B (2 tests)
CE2108A..H (8 tests)
CE2111A..1 (9 tests)
EE2201D..E (2 tests)
CE2205A

EE2401D
CE2401H..L (5 tests)
CE2406A
CE2409A..B (2 tests)
CE3102A..B (2 tests)
CE3102).K (2 tests)
CE3107B

CE3110A
CE3112A..D (4 tests)
EE3203A

CE3302A

EE3402B
CE3403E..F (2 tests)
EE3405B
CE3407A..C (3 tests)
CE3409C..E (3 tests)
CE3410C..E (3 tests)
CE3411C

CE3413C
CE3604A..B (2 tests)
CE3704A..F (6 tests)
CE3706F..G (2 tests)
CE3806A..B (2 tests)
CE3905A..C (3 tests)
CE3906E..F (2 tests)

CE2102K
CE2104A..D (4 tests)
CE2107A..H (8tests)
CE2109A..C (3 tests)
CE2115A..B (2 tests)
CE2201F..N (9 tests)
CE2208B
CE2401E..F (2 tests)
CE2404A..B (2 tests)
CE2407A. B (2 tests)
CE2410A..B (2 tests)
EE3102C
CE3103A
CE3108A..B (2 tests)
CE3111A..B (2 tests)
CE3114A..B (2 tests)
CE3208A
CE3305A
CE3402C..D (2 tests)
CE3404B..D (3 tests)
CE3405C..D (2 tests)
CE3408A..C (3 tests)
EE3409F
EE3410F
CE3412A
CE3602A..D (4 tests)
CE3605A..E (5 tests)
CE3704M..0 (3 tests)
CE3804A..P (16 tests)
CE3806D..E (2 tests)
CE3905L

CE3901A is not applicable because this implementation raises NAME_ERROR if
a filename parameter to TEXT_IO.CREATE is non-null. This test assumes that

USE_ERROR will be raised.

q. EE3412C is not applicable for this implementation because their implementation
of the body of the package report does not use TEXT_IO.

AVF-VSR-90502/66
Chapter 3 - Page 4 of 6

Validation Summsary Report
SD-Scicon pic XD Ada MC68000 V1.0-09

TEST INFORMATION

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code, processing, or evaluation in order
to compensate for legitimate implementation behaviour. Modifications are made by the AVF in
cases where legitimate implementation behaviour prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include: adding a length clause to alter
the default size of a collection; splitting a Class B test into subtests so that all errors are detected;
and confirming that messages produced by an executable test demonstrate conforming behaviour
that was not anticipated by the test (such as raising one exception instead of another).

Modifications were required for 16 tests.

C34006D is classified as passed if the test fails with messages "INCORRECT TYPE'SIZE"
or "INCORRECT OBJECT'SIZE". This test incorrectly assumes that the space allocated
for objects must be less than or equal to the minimum needed by the (sub) type. This is
not true for this implementation.

C45524A..N (14 tests) were modified because these tests expect that the result of continued
division of a real number will be zero; the Ada Standard, however, only requires that the
result be within the type’s SAFE_SMALL of zero. Thus, these tests were modified to
include a check that the result was in the smallest positive safe interval for the type. The
implementation passed the modified tests. Each test was modified by inserting the following
code after line 138;

The following test was split because syntax errors at one point resulted in the compiler not
detecting other errors in the test:

B97103E

3. ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced by the XD Ada MC68000
V1.0-09 compiler was submitted to the AVF by the applicant for review. Analysis of these results
demonstrated that the compiler successfully passed all applicable tests, and the compiler exhibited
the expected behaviour on all inapplicable tests.

372 Test Method

Testing of the XD Ada MC68000 V1.0-09 compiler using ACVC Version 1.10 was conducted on-
site by a validation team from the AVF. The configuration in which the testing was performed is
described by the following designations of hardware and software components:

Validation Summary Report AVF-VSR-90502/66

SD-Scicon pic XD Ada MC68000 V1.0-09 Chapter 3 - Page S of 6

TEST INFORMATION

Host computer : VAX Cluster (comprising of a VAX 8600 and 7 MicroVAX
II’s)

Host operating system : VMS 5.1

Target computer : MC68000 processor running on the MVME117-3FP MPU
VME module using an MC68881 floating point peripheral.

Compiler : XD Ada MC68000 V1.0-09

Assembler : XD Ada MC68000 V1.0-09

Linker : XD Ada MC68030 V1.0-04

Loader : XD Ada MC68000 S1.0-10

Downloader : XD Ada MC68030 V1.0-04

Runtime System : XD Ada MC68000 V1.0-09

The host and target computers were linked via a RS232 link.

A magnetic tape containing all tests except for withdrawn tests and tests requiring unsupported
floating-point precisions was taken on-site by the validation team for processing. Tests that make
use ~f implementation-specific values were customized before being written to the magnetic tape.
Tests requiring modifications during the prevalidation testing were not included in their modified
form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host computer.

After the test files were loaded to disk, the full set of tests was compiled and linked on the VAX
Cluster, then all executable images were transferred to the MC68000 target via the RS232 link and
run. Results were printed from the host computer.

The compiler was tested using command scripts provided by SD-Scicon plc and reviewed by the
validation team. The compiler was tested using all the following option settings. Details of these
settings are given at the end of Appendix B.

Tests were compiled, linked, and executed (as appropriate) using 8 computers and two target
computers. Test output, compilation listings, and job logs were captured on magnetic media and
archived at the AVF. The listings examined on-site by the validation team were also archived.

[

7.3 Test Site

Testing was conducted at SD-Scicon plc, Pembroke House, Pembroke Broadway, Camberley, Surrey,
GUI15 3XD, UK and was completed on February 4 1990.

Validation Summary Report AVF-VSR-90502/66
SD-Scicon pic XD Ada MC68000 V1.0-09 Chapter 3 - Page 6 of 6

DECLARATION OF CONFORMANCE

APPENDIX A

DECLARATION OF CONFORMANCE

SD-Scicon plc has submitted the following Declaration of Conformance
concerning the XD Ada MC68000 V1.0-09 compiler.

Validation Summary Report AVF-VSR-90502/66
SD-Scicon pic XD Ada MC68000 V1.0-09 Appendix A - Page 1 of 3

DECLARATION OF CONFORMANCE

DECLARATION OF CONFORMANCE

Compiler Implementor: SD-Scicon plc

Ada Validation Facility: The National Computing Centre Limited
Oxford Road
Manchester
M1 7ED

Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: XD Ada MC68000 V1.0-09

Host Architecture: VAX Cluster (comprising of a VAX 8600 and 7
MicroVAX IT's)

Host OS and Version: VMS 5.1

Target Architecture: MOC68000 processor on an MVME117-3FP MPU

VME module using an MC68881 floating point
peripheral (bare machine).

Implementor’s Declaration

I, the undersigned, representing SD-Scicon pic, have implemented no deliberate extensions
to the Ada Language Standard ANSI/MIL-STD-1815A in the compiler(s) listed in this
declaration. 1 declare that SD-Scicon plc is the owner of record of the Ada language
compiler(s) listed above and, as such, is responsible for maintaining said compiler(s) in
conformance to ANSI/MIL-STD-1815A. All certificates and registrations for Ada language
compiler(s) listed in this declaration shall be made only in the owner’s corporate name.

M Date : 28 /){M/ Qo

Bill Davison
WORLDWIDE CUSTOMER SERVICES MANAGER

Validation Summary Report AVF-VSR-90502/66
SD-Scicon pic XD Ads MC68000 V1.0-09 Appendix A - Page 2 of 3

DECLARATION OF CONFORMANCE

Owner’s Declaration

I, the undersigned, representing SD-Scicon plc, take full responsibility for implementation
and maintenance of the Ada compiler(s) listed above, and agree to the public disclosure
of the final Validation Summary Report. I declare that all of the Ada language compilers
listed, and their host/target performance, are in compliance with the Ada Language
Standard ANSI/MIL-STD-1815A.

. - N
W ~. pue : K [410

Bill Davison
WORLDWIDE CUSTOMER SERVICES MANAGER

Validstion Summary Report AVF-VSR-90502/66
SD-Scicon pic XD Ada MC68000 V1.0-09 Appendix A - Page 3 of 3

APPENDIX F

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-dependent pragmas,
to certain machine-dependent conventions as mentioned in chapter 13 of the Ada Standard, and
to certain allowed restrictions on representation clauses. The implementation-dependent
characteristics of the XD Ada MC68000 V1.0-09 compiler, as described in this Appendix, are
provided by SD-Scicon plc. Unless specifically noted otherwise, references in this appendix are to
compiler documentation and not to this report. Implementation-specific portions of the package
STANDARD, which are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647,
type SHORT_INTEGER is range -32768 .. 32767,
type SHORT_SHORT_INTEGER is range -128 .. 127;

type FLOAT is digits 6 range -(2**128 - 2**104) ..
2**128 - 2**104;
type LONG_FLOAT is digits 15 range -(2**1024 - 2**971) ..
2**1024 - 2**971;
type LONG_LONG-FLOAT is digits 18 range (-2**16384 - 2**16320)..
2**16384 - 2**16320

type DURATION is delta 1.E-4 range -131072.0000 .. 131071.9999;

end STANDARD;

Validation Summary Report AVF-VSR-90502/66
SD-Scicon pic XD Ads MC68000 V1.0-09 Appendix B

_——

Appendix F

Implementation-Dependent
Characteristics

F.3 Specification of Package System

The package SYSTEM for the MC68000 configuration differs from that
of the standard MC68020 as follows:

F.3.1 Changes to Package SYSTEM for the MC68000 Target

type UAME is (MCTAZ277);

SYSTEM_NAME : constant MNAME := MZTea "7
STORAGE_UNIT : comnstant := S;

MEMCRY_SICZE : constant := [**_];

TICK : constant := J#1L.O#E-13;

type ADDRESS_INT is range ~ .. MEMCORY_SIZE-1;

for ADDRESS_INT’'SIZE use 3.7

Implementation-Dependent Characteristics F-1

F.6 Interpretatio-r-u_of E)AcipfessiibAns Appearing in Address
Clauses

For address clauses on variables, the address expression is interpreted
as a Motorola 24-bit address.

In XD Ada for MC68000, values of type SYSTEM.ADDRESS are inter-
preted as integers in the range U .. 22* -1.

F-2 Impiementation-Dependent Characteristics

Appendix F

Implementation-Dependent
Characteristics

NOTE

This appendix is not part of the standard definition of the
Ada programming language.

This appendix summarizes the following implementation-dependent
characteristics of XD Ada:

Listing the XD Ada pragmas and attributes.
Giving the specification of the package SYSTEM.

Presenting the restrictions c.. repiesen:ation clauses and unchecked
type conversions.

Giving the ccaventions for names denoting implementation-
dependent components in record representation clauses.

Giving the inter,.: »taticn of expressions in address clauses.

Presenting the implementation-dependent characteristics of the
input-output packages.

Presenting other implementation-dependent characteristics.

Implementation-Dependent Characteristics F-1

F.1 Implementation-Dependent Pragmas

XD Ada provides the following pragmas, which are defined elsewhere
in the text. In addition, XD Ada restricts the predefined language
pragmas INLINE and INTERFACE, provides pragma VOLATILE in
addition to pragma SHARED, and provides pragma SUPPRESS_ALL in
addition to pragma SUPPRESS. See Annex B for a descriptive pragma
summary.

¢ CALL_SEQUENCE_FUNCTION (see Annex B)

¢ CALL_SEQUENCE_PROCEDURE (see Annex B)

¢ EXPORT_EXCEPTION (see Section 13.9a.3.2)

e EXPORT_FUNCTION (see Section 13.9a.1.2)

e EXPORT_OBJECT (see Section 13.9a.2.2)

* EXPORT_PROCEDURE (see Section 13.9a.1.2)

¢ IMPORT_EXCEPTION (see Section 13.9a.3.1)

o IMPORT_FUNCTION (see Section 13.9a.1.1)

o IMPORT_OBJECT (see Section 13.9a.2.1)

e IMPORT_PROCEDURE (see Section 13.9a.1.1)

e LEVEL (see Section 13.5.1)

¢ LINK_OPTION (see Annex B)

¢ SUPPRESS_ALL (see Section 11.7)

¢ TITLE (see Annex B)

e VOLATILE (see Section 9.11)

F.2 Implementation-Dependent Attributes

XD Ada provides the following attributes, which are defined elsewhere
in the text. See Appendix A for a descriptive attribute summary.

e BIT (see Section 13.7.2)
e MACHINE_SIZE (see Section 13.7.2)
e TYPE_CLASS (see Section 13.7a.2)

F-2 Impiementation-Dependent Characteristics

F.3 Specification of the Package System

The package SYSTEM for the MC68020 is as follows:

F.3.1 Package System for the MC68020 Target

package SYSTEM is

type NAME is (MC68020);

SYSTEM_NAME
STORAGE_UNIT
MEMORY_SIZE

constant NAME := MC68020;
constant := 8
constant := 2%*3]1-1;

MIN_INT constant = -(2**3]1);
MAX_DIGITS constant := 18;
MAX_MANTISSA constant := 31;

:
MAX_INT : constant := 2**31-.1;
s

FINE_DELTA constant (= 2.0%*(-31);
TICK : constant = 162.5E-6;
subtype PRIORITY is INTEGER range O .. 15;

subtype LEVEL 4is INTEGER range 0 .. 7;
Address type

type ADDRESS is private;

ADDRESS_ZERO : constant ADDRESS;
type ADDRESS_INT is vange MIN_INT .. MAX_INT;

function TO_ADDRESS (X ¢ ADDRESS_INT) return ADDRESS;
function TO_ADDRESS (X : {universal_integer}) ‘return ADDRESS;
function TO_ADDRESS_INT (X : ADDRESS) retura ADDRESS_INT;
function "+" (LEFT : ADDRESS; RIGHT : ADDRESS_INT) returm ADDRESS;
function "+~ (LBFT : ADDRESS_INT; RIGHT : ADDRESS) return ADDRESS;
function "-" (LEFT : ADDRESS: RIGHT ¢ ADDRESS) return ADDRESS_INT;
function "-* (LEFT : ADDRESS; RIGHT : ADDRESS_INT) returm ADDRESS;

funetion "=" (LEFT, RIGHT
function "/=" (LEFT, RIGHT
function "<" (LEFT, RIGHT
function "<=" (LEFT, RIGHT
function ">" (LEFT, RIGHT
function ">=" (LEFT, RIGHT

ADDRESS) returm BOOLEAN;
ADDRESS) returm BOOLEAN;
ADDRESS) returm BOOLEAN;
ADDRESS) retura BOOLEAN;
ADDRESS) return BOOLEAN
ADDRESS) return BOOLERAN:;

s e ee s e ee

Note that because ADDRESS is a private type
the functions "=”" and "/~" are already available

Implementation-Dependent Characteristics

-- Generic functions used to access memory
generic
type TARGET is ptivate;
function FETCH_FROM_ADDRESS (A : ADDRESS) returm TARGET;

generic
type TARGET is private;
procedure ASSIGN_TO_ADDRESS (A : ADDRESS; T : TARGET);

type TVPE_CLASS is (TYPE_CLASS_ENUMERATION,
TYPE_CLASS_ INTEGER,
TYPE_CLASS_FIXED_POINT,
TYPE_CLASS_FLOATING_POINT,
TYPE_CLASS_ARRAY,
TYPE_CLASS_RECORD,
TYPE_CLASS_ACCESS,
TYPE_CLASS_TASK,
TYPE_CLASS_ADDRESS) ;

-- XD Ada hardware-oriented types and functions

type BIT_ARRAY is array (INTEGER range <>) of BOOLBAN;

pragma PACK(BIT_ARRAY);

subtype BIT_ARRAY_8 is BIT_ARRAY (0 .. 7);

subtype BIT_ARRAY_16 is BIT_ARRAY (0 .. 15);

subtype BIT_ARRAY_32 is BIT_ARRAY (0 .. 31);

subtype BIT_ARRAY_64 is BIT_ARRAY (0 .. 63);

type UNSIGNED_BYTE is range 0 .. 255;

for UNSIGNED_BYTE'’SIZE use 8;

function "not" (LEFT ! UNSIGNED_BYTE) return UNSIGNED_BYTE;
function "and” (LEFT, RIGHT : UNSIGNED_BYTE) return UNSIGNED_BYTE;
function "or" (LEFT, RIGHT : UNSIGNED_BYTE) return UNSIGNED_BYTE;
function “"xor" (LEFT, RIGHT : UNSIGNED_BYTE) return UNSIGNED_BYTE;

function TO_UNSIGNED_BYTE (X : BIT_ARRAY_8) returm UNSIGNED_BYTE;
function TO_BIT_ARRAY_8 (X : UNSIGNED_BYTE) return BIT_ARRAY_8;

type UNSIGNED_BYTE_ARRAY is array (INTEGER range <>) of UNSIGNED_BYTE;

type UNSIGNED_WORD is range 0 .. 65535;
for UNSIGNED_WORD’SIZE use 16;

function "not" (LEFT

function "and” (LEFT, RIGHT
functioa "or” (LEFT, RIGHT
function “"xor" (LEFT, RIGHT

UNSIGNED_WORD) returam UNSIGNED_WORD:
UNSIGNED_WORD) returm UNSIGNED_WORD;
UNSIGNED_WORD) returm UNSIGNED_WORD;
UNSIGNED_WORD) returnm UNSIGNED_WORD;

function TO_UNSIGNED_WORD (X : BIT_ARRAY_16) return UNSIGNED_WORD:
function TO_BIT_ARRAY_16 (X 3 UNSIGNED_WORD) returm BIT_ARRAY_16;

type UNSIGNED_WORD_ARRAY is array (INTEGER range <>) of UNSIGNED_WORD;

type UNSIGNED_LONGWORD is range MIN_INT .. MAX_INT;
for UNSIGNED_LONGWORD'SIZE use 32;

F-4 Implementation-Dependent Characteristics

function
function
fuaction
function

function
function

"not”
“and"
~or®

"xor"

(LEFT
(LEFT,
(LEFT,
{LEFT,

RIGHT

:
RIGHT :
RIGHT 1

UNSIGNED_I.ONGWORD)
UNSIGNED_LONGWORD)
UNSIGNED_LONGWORD)
UNSIGNED_LONGWORD)

return
return
return
return

TO_UNSIGNED_LONGWORD
TO_BIT_ARRAY_32

(X ¢

(X : BIT_ARRAY_32)
UNSIGNED_WORD)

type UNSIGNED_LONGWORD_ARRAY is array (INTEGER

subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype

private

UNSIGNED_1 is
UNSIGNED_2 is
UNSIGNED_3 is
UNSIGNED_4 is
UNSIGNED_S5 is
UNSIGNED_6 is
UNSIGNED_7 is
UNSIGNED_8 is
UNSIGNED_9 is
UNSIGNED_10 is

UNSIGNED_11
UNSIGNED_12
UNSIGNED_13
UNSIGNED_14
UNSIGNED_15
UNSIGNED_16
UNSIGNED_17
UNSIGNED_18
UNSIGNED_19
UNSIGNED_20
UNSIGNED_21
UNSIGNED_22
UNSIGNED_23
UNSIGNED_24
UNSIGNED_25
UNSIGNED_26
UNSIGNED_27
UNSIGNED_28
UNSIGNED_29
UNSIGNED_30
UNSIGNED_31

-~ Not shown

end SYSTEM;

UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD

Implementation-Dependent Characteristics F-5

Conventional names for static subtypes of type

range <>) of UNSIGNBD_LONGWORD;
UNSIGNED_

UNSIGNED_LONGWORD;
UNSIGNED_LONGWORD;
UNSIGNED_LONGWORD;
UNSIGNED_LONGWORD;

return UNSIGNED_LONGWORD:;
return BIT_ARRAY_32;

LONGWORD

range 0 ., 2*+* 1-1;
renge O ., 2*+ 2-1;
range O ., 2@* 3.1;
range 0 .., 2%+ 4-1;
range O ., 2%+ 5-1;
range O ., 2** 6-1;
range O ., 2*+ 7-1;
range O .. 2** 8-1;
range 0 ., 2** 9-1;
range O .. 2*+10-1;
range O .. 2*+*11-1;
range O .. 2**12-1;
range O .. 2**13-1;
range 0 .. 2%**14-1;
range O .. 2*+*]15-1;
range O .. 2**16-1;
range O .. 2**17-1;
range O .. Z2**18-1;
range O .. 2*+*19-1;
range O .. 2**20-1;
range O .. 2**21-1;
range O .. 2*%22-1;
range O .. 2**23-1;
range 0 .. 2+**24-1;
vange O .. 2**25-1;
range 0 .. 2%%*26-1;
range 0 .. 2**27-1;
range 0 .. 2%*28-1;
range O .. 2%**29-1;
range O .. 2**30-1;
range O .. 2**31-1;

F.4 Restrictions on Representation Clauses

The representation clauses allowed in XD Ada are length, enumeration,
record representation, and address clauses.

In XD Ada, a representation clause for a generic formal type or a type
that depends on a generic formal type is not allowed. In addition, a
representation clause for a composite type that has a component or
subcomponent of a generic formal type or a type derived from a generic
formal type is not allowed.

Restrictions on length clauses are specified in Section 13.2; restrictions
on enumeration representation clauses are specified in Section 13.3; and
restrictions on record representation clauses are specified in Section
13.4.

F.5 Conventions for Implementation-Generated Names

Denoting Implementation-Dependent Components in
Record Representation Clauses

XD Ada does not allocate implementation-dependent components in
records.

F.6 Interpretation of Expressions Appearing in Address

F-6

Clauses

Expressions appearing in address clauses must be of the type ADDRESS
defined in package SYSTEM (see Section 13.7a.1 and Section F.3).

XD Ada allows address clauses for variables (see Section 13.5). For
address clauses on variables, the address expression is interpreted as a
Motorola full 32-bit address.

XD Ada supports address clauses on task entries to allow interrupts to
cause a reschedule directly. For address clauses on task entries, the
address expression is interpreted as a Motorola exception vector offset.

Implementation-Dependent Characteristics

In XD Ada for MC68020, values of type SYSTEM.ADDRESS are inter-

preted as integers in the range 0 .. 232 -1, As SYSTEM.ADDRESS is
a private type, the only operations allowed on objects of this type are
those given in package SYSTEM.

F.7 Restrictions on Unchecked Type Conversions

XD Ada supports the generic function UNCHECKED_CONVERSION
with the restrictions given in Section 13.10.2.

F.8 Implementation-Dependent Characteristics of
Input-Output Packages

The packages SEQUENTIAL_IO and DIRECT_IO are implemented as
null packages that conform to the specification given in the Reference
Manual for the Ada Programming Language. The packages raise the ex-
ceptions specified in Chapter 14 of the Reference Manual for the Ada
Programming Language. The three possible exceptions that are raised by
these packages are given here, in the order in which they are raised.

Exception When Raised

STATUS_ERROR Raised by an attempt to operate upon or close a file
that is not open (no files can be opened).

NAME_ERROR Raised if a file name is given with a call of CREATE
or OPEN.

USE_ERROR Raised if exception STATUS_ERROR is not raised.

MODE_ERROR cannot be raised since no file can be opened (therefore
it cannot have a current mode).

The predefined package LOW_LEVEL_IO is not provided.

impiementation-Dependent Characteristics F-7

F.8.1 The Package TEXT_IC

The package TEXT_IO conforms to the specification given in the
Reference Manual for the Ada Programming Language. String input-
output is implemented as defined. File input-output is supported to
STANDARD_INPUT and STANDARD_OUTPUT only. The possible
exceptions that are raised by package TEXT_IO are as follows:

Exception When Raised

STATUS_ERROR Raised by an attempt to operate upon or close a file
that is not open (no files can be opened).

NAME_ERROR Raised if a file name is given with a call of CREATE
or OPEN.

MODE_ERROR Raised by an attempt to read from, or test for

the end of, STANDARD_OUTPUT, or to write to
STANDARD_INPUT.

END_ERROR Raised by an attempt to read past the end of
STANDARD_INPUT.
USE_ERROR Raised when an unsupported operation is attempted,

that would otherwise be legal.

The type COUNT is defined as follows:
type COUNT is range O .. INTEGER'LAST;

The subtype FIELD is defined as follows:

type FIELD is INTEGER range O .. 255;

F.8.2 The Package IO_EXCEPTIONS

The specification of the package IO_EXCEPTIONS is the same as that
given in the Reference Manual for the Ada Programming Language.

F.9 Other implementation Characteristics

Implementation characteristics associated with the definition of a main
program, various numeric ranges, and implementation limits are sum-
marized in the following sections.

F-8 Implementation-Dependent Characteristics

F.9.1 Definition of a Main Program

Any library procedure can be used as a main program provided that it
has no formal parameters.

F.9.2 Values of Integer Attributes

The ranges of values for integer types declared in package STANDARD
are as follows:

SHORT SHORT_INTEGER -27 .. 27 -1 (-128 .. 127)
SHORT_INTEGER L L | (-32768 .. 32767)
INTEGER i S L | (-2147483648 .. 2147483647)

For the package TEXT_IO, the range of values for types COUNT and
FIELD are as follows:

COUNT 0. 24 (0 .. 2147483647)
FIELD 0. 255

F.9.3 Values of Floating-Point Attributes

Floating-point types are described in Section 3.5.7. The representation
attributes of floating-point types are summarized in the following table:

implementation-Dependent Characteristics F-9

FLOAT LONG_FLOAT LONG_LONG_FLOAT
DIGITS 6 15 18
SIZE 32 64 96
MANTISSA 21 51 61
EMAX 84 204 244
EPSILON 2 2-%0 2-%
SMALL 2-8 2-%s 2-s
LARGE 284_263 2204_2153 22“_2183
SAFE_EMAX 125 1021 16382
SAFE_SMALL 2-1% 2-w2 2-168
SAFE_LARGE 217.5_210C 21021_2970 216382_216321
FIRST _(2123_2101) (21028 2571 (216384 _216320)
LAST 2128_2104 21024_2971 21633(_216320
MACHINE_RADIX 2 2 2
MACHINE_MANTISSA 24 53 64
MACHINE_EMAX 128 1024 16384
MACHINE_EMIN -125 -1021 -16382
MACHINE_ROUNDS FALSE FALSE FALSE
MACHINE_OVERFLOWS FALSE FALSE FALSE

F-10 Implementation-Dependent Charactcristics

F.9.4 Attributes of Type DURATION

The values of the significant attributes of type DURATION are as

follows:

DURATION 'DELTA 1.E-4 (10~%)
DURATION 'SMALL 2#1.0#E-14 Q-
DURATION 'FIRST -131072.0000 (-27)
DURATION ‘LAST 131071.9999 (2Y-'DELTA)

F.9.5 Implementation Limits

Limit Description

255 Maximum identifier length (number of characters)

255 Maximum number of characters in a source line

210 Maximum number of library units and subunits in a compilation
closure!

21 Maxdmum number of library units and subunits in an execution
closure?

- -1 Maximum number of enumeration literals in an enumeration

type definition

2% 1 Maximum number of lines in a source file

231 Maximum number of bits in any object

2% 1 Maximum number of exceptions

'The compilation closure of a given unit is the total set of units that the given unit
depends on, directly and indirectly.

2The execution closure of a given unit is the compilation closure plus all associated
secondary units.

Implementation-Dependent Characteristics F-11

LINK

LINK

Creates an executable image file for the specified units.

Format

LINK unit-name [file-spec],...]]
LINK/NOMAIN unit-namef,...] file-spec],...]

Command Qualifiers Defaults
/AFTER =time /AFTER = TODAY
/IBATCH_LOG = file-spec See text.

/IBRIEF See text.
/ICOMMAND(= file-spec] See text.
/[NOJDEBUG] = file-spec] INODEBUG
/ELABORATION =file-spec See text.

/FULL See text.
/INO}JIMAGE] = file-spec] /IMAGE
/[NO]KEEP /IKEEP

/[NOJLOG INOLOG
/INO]MAIN IMAIN

/INO]MAP] = file-spec] INOMAP

/NAME = job-name See text.
/INOINOTIFY INOTIFY
/OUTPUT = file-spec IOUTPUT =SYS$OUTPUT
/INOJPRINTER| = queue-name}] /NOPRINTER
/QUEUE = queue-name /QUEUE = SYS$BATCH
ISUBMIT /WAIT

IWAIT /WAIT
Parameter Qualifiers Defaults
/LIBRARY See text.
IMAPPING See text.

ITARGET See text.

LINK

Prompts

_Unit:
_File:

Command Parameters

unit-name
By default (or if you specify the /IMAIN qualifier):

* You can specify only one unit, the source code of which must be
written in XD Ada.

* The parameter unit-name specifies the XD Ada main program, which
must be a procedure or function with no parameters. If the main
program is a function, it must return a value of a discrete type; the
function value is used as the VMS image exit value.

If you specify the INOMAIN qualifier:

* You can specify one or more foreign units that are to be included
in the executable image. The unit names may include percent
signs (%) and asterisks (*) as wildcard characters. (See the
<REFERENCE > (VMS_DCL_CONCEPTS) for detailed information
on wildcard characters.)

® The image transfer address comes from one of the foreign files
specified.

file-spec

Specifies a list of object files, object libraries, mapping definition files,
and target definition files, that are to be used in linking the program.
The default directory is the current default directory. The default file
type is .XOB, unless the /LIBRARY, IMAPPING, or ITARGET qualifier is
used. No wildcard characters are allowed in a file specification.

If the file is an object library or shareable image library, you must use
the /LIBRARY qualifier. The default file type is .XLB.

If the file is a mapping definition file, you must use the /MAPPING
qualifier. The default file type is .MPD.

If the file is a target definition file you must use the /ITARGET qualifier.
The default file type is .TGD.

LINK

If you specify the INOMAIN qualifier, the image transfer address comes
from one of the files (not units) specified.

Description

The LINK command performs the following steps:

1. Runs the prebuild phase to generate an elaboration list.

2. Checks if a pragma LINK_OPTION is specified for the main pro-
gram, and if specified, verifies that the designated link option name
is available in the current program library. If available, the copied
link option files in the library corresponding to the link option are
used, unless overridden by the ITARGET or /IMAPPING qualifiers.

Note that, unlike the CHECK command, the pragma LINK_
OPTION association for units other than the main program unit
is not checked.

If no target link option is given for the main program unit or the
designated target link option is not found in the library, and the log-
ical symbol XDADASTARGET _DEF is not defined, and a /[TARGET
qualifier is not specified on the LINK command line, an error is is-
sued. If no mapping link option is given for the main program unit
or the designated mapping link option is not found in the library,
and the logical symbol XDADASMAPPING_DEF is not defined,
and a /IMAPPING qualifier is not specified on the XDACS LINK
command line, the default mapping in the target definition file is
used.

3. If LINK/NOMAIN is not specified, checks that only one unit is
specified and that it is an XD Ada main program.

4. Forms the closure of the main program (LINK/MAIN) or of the
specified units (LINK/NOMAIN) and verifies that all units in the
closure are present, current and complete. If XDACS detects an
error, the operation is terminated at the end of the prebuild phase.

5. Creates a DCL command file for the builder. The command file is
deleted after the LINK operation is completed or terminated, unless
LINK/COMMAND is specified. If LINK/COMMAND is specified,
the command file is retained for future use, and the build phase is
not carried out.

LINK

6. Unless the /COMMAND qualifier is specified, performs the build
phase as follows:

a. By default (LINK/WAIT), the command file generatcd in step
4 is executed in a subprocess. You must wait for the build
operation to terminate before issuing another command. Note
that when you specify the IWAIT qualifier (the default), process
logical names are propagated to the subprocess generated to
execute the command file.

b. If you specify the /ISUBMIT qualifier, the builder command file
is submitted as a batch job.

7. If the IDEBUG qualifier is included in the command line the debug
symbol table information is placed in a file with a default file type
of .XDS.

8. Creates a loadable output file with a default file type of RLD.

XDACS output originating before the builder is invoked is reported

to your terminal by default, or to a file specified with the /OUTPUT
qualifier. Diagnostics are reported to your terminal, by default, or to
a log file if the LINK command is executed in batch mode (XDACS

LINK/SUBMIT).

See <REFERENCE > (target), < REFERENCE>(map), and < REFERENCE > (build)

for more information on the XD Ada target-specific builder commands.

Command Qualifiers

IAFTER =time

Requests that the batch job be held until after a specific time, when
the LINK command is executed in batch mode (LINK/SUBMIT). If the
specified time has already passed, the job is queued for immediate
processing.

You can specify either an absolute time or a combination of absolute
and delta time. See the < REFERENCE - (VMS_DCL_CONCEPTS)
(or type HELP Specify Date-Time at the DCL prompt) for complete
information on specifying time values.

IBATCH_LOG =flle-spec
Provides a file specification for the batch log file when the LINK com-
mand is executed in batch mode (LINK/SUBMIT).

LINK

If you do not give a directory specification with the file-spec option, the
batch log file is created by default in the current default directory. If
you do not give a file specification, the default file name is the job name
specified with the /NAME =job-name qualifier. If no job name has been
specified, the program library manager creates a file name comprising
up to the first 39 characters of the first unit name specified. If you
specified LINK/NOMAIN and no job name and there is a wildcard
character in the first unit specified, the program library manager uses
the default file name XDACS_LINK. The default file type is .LOG.

IBRIEF

Directs the builder to produce a brief image map file. The /BRIEF
qualifier is valid only if you also specify the /IMAP qualifier with the
LINK command. The /BRIEF qualifier is incompatible with the /FULL
qualifier.

A brief image map file contains only the following sections:

¢ Object module information
e Segment mapping information
¢ Link run statistics

See also the description of the /FULL qualifier.

/COMMAND[= file-spec] .

Controls whether the builder is invoked as a result of the LINK com-
mand, and determines whether the command file generated to invoke
the builder is saved. If you specify the /COMMAND qualifier, XDACS
does not invoke the builder, and the generated command file is saved
for you to invoke or submit as a batch job.

The file-spec option allows you to enter a file specification for the gen-
erated command file. The default directory for the command file is the
current default directory. By default, XDACS provides a file name com-
prising up to the first 39 characters of the first unit name specified. If
you specified LINK/NOMAIN and you used a wildcard character in the
first name unit specified, the program library manager uses the default
file name XDACS_LINK. The default file type is .COM. No wildcard
characters are allowed in the file specification.

By default, if the /COMMAND qualifier is not specified, XDACS deletes
the generated command file when the LINK command completes
normally or is terminated.

LINK

/DEBUG[=file-spec]
INODEBUG (D)

Controls whether a debugger symbol table is created along with the
loadable image file.

By default, no debugger symbol table is created.

/ELABORATION = file-spec

Provides a file specification for the object file generated by the LINK
command. The file is retained by XDACS only when the /COMMAND
qualifier is used: that is, when the result of the LINK operation is to
produce a builder command file for future use, rather than to invoke the
builder immediately.

The generated object file contains the code that directs the elaboration
of library packages in the closure of the units specified. Unless you also
specify the INOMAIN qualifier, the object file also contains the image
transfer address.

The default directory for the generated object file is the current defauit
directory. The default file type is .XOB. No wildcard characters are
allowed in the file specification.

By default, if you do not specify the JELABORATION qualifier, XDACS
provides a file name comprising up to the first 39 characters of the first
unit name specified.

By default, if you do not specify the /{COMMAND quaiifier, XDACS
deletes the generated object file when the LINK command completes
normally or is terminated.

IFULL

Directs the builder to produce a full image map file, which is the most
complete image map. The (FULL qualifier is valid only if you also
specify the IMAP qualifier with the LINK command. Also, the /FULL
qualifier is incompatible with the /BRIEF qualifier.

A full image map file contains the following sections:

¢ Object module information

* Segment mapping information
¢ Symbol address information

¢ Exception numbers

* Link run statistics

LINK

[IMAGE[=file-spec] (D)

INOIMAGE

Controls whether the LINK command creates a loadable image file and
optionally provides a file specification for the file. The default file type
is .RLD. No wildcard characters are allowed in the file specification.

By default, an executable image file is created with a file name compris-
ing up to the first 39 characters of the first unit name specified.

/KEEP (D)
INOKEEP
Controls whether the batch log file generated is deleted after it

is printed when the LINK command is executed in batch mode
(LINK/SUBMIT).

By defauit, the log file is not deleted.

ILOG

/INOLOG (D)

Controls whether a list of all the units included in the executable image
is displayed. The display shows the units according to the order of
elaboration for the program.

By default, a list of all the units included in the executable image is not
displayed.

IMAIN (D)
INOMAIN
Controls where the image transfer address is to be found.

The /MAIN qualifier indicates that the XD Ada unit specified deter-
mines the image transfer address, and hence is to be a main program.

The INOMAIN qualifier indicates that the image transfer address comes
from one of the files specified, and not from one of the XD Ada units
specified.

By default ({MAIN), only one XD Ada unit can be specified, and that
unit must be an XD Ada main program.

IMAP[=file-spec]

{NOMAP (D)

Controls whether the builder creates an image map file and optionally
provides a file specification for the file. The default directory for

the image map file is the current directory. The default file name
comprises up to the first 39 characters of the first unit name specified.

LINK

The default file tvpe is .MAP. No wildcard characters are allowed in the
file specification.

If neither the /BRIEF nor the /FULL qualifier is specified with the /IMAP
qualifier, /BRIEF is assumed.

By default, no image map file is created.

INAME = job-name

Specifies a string to be used as the job name and as the file name for
the batch log file when the LINK command is executed in batch mode
(LINK/SUBMIT). The job name can have from 1 to 39 characters.

By default, if you do not specify the INAME qualifier, XDACS creates
a job name comprising up to the first 39 characters of the first unit
name specified. If you specify LINK/INOMAIN but do not specify the
INAME qualifier, and you use a wildcard character in the first unit
name specified, the program library manager uses the default file name
XDACS_LINK. In these cases, the job name is also the file name of the
batch log file.

INOTIFY (D)

INONOTIFY

Controls whether a message is broadcast when the LINK command is
executed in batch mode (LINK/SUBMIT). The message is broadcast to
any terminal at which you are logged in, notifying you that your job has
been completed or terminated.

By default, a message is broadcast.

/OUTPUT =file-spec

Requests that any output generated before the builder is invoked be
written to the file specified rather than to SYSSOUTPUT. Any diagnostic
messages are written to both SYSSOUTPUT and the file.

The default directory is the current default directory. If you specify a
file type but omit the file name, the default file name is XDACS. The
default file type is .LIS. No wildcard characters are ailowed in the file
specification.

By default, the LINK command output is written to SYSSOUTPUT.

LINK

/PRINTER[= queue-name]

/INOPRINTER (D)

Controls whether the log file is queued for printing when the LINK
command is executed in batch mode (LINK/SUBMIT) and the batch job
is completed.

The /PRINTER qualifier allows you to specify a particular print queue.
The default print queue for the log file is SYS$PRINT.

By default, the log file is not queued for printing. If you specify
INOPRINTER, /KEEP is assumed.

/QUEUE = queue-name
Specifies the batch job queue in which the job is entered when the
LINK command is executed in batch mode (LINK/SUBMIT).

By default, if the /IQUEUE qualifier is not specified, the job is placed in
the default system batch job queue, SYSSBATCH.

ISUBMIT

Directs XDACS to submit the command file generated for the builder
to a batch queue. You can continue to issue commands in your current
process without waiting for the batch job to complete. The builder
output is written to a batch log file.

By default, the generated command file is executed in a subprocess
(LINK/WAIT).

IWAIT

Directs XDACS to execute the command file generated for the builder
in a subprocess. Execution of your current process is suspended until
the subprocess completes. The builder output is written directly to
your terminal. Note that process logical names are propagated to the
subprocess generated to execute the command file.

By default, XDACS executes the command file generated for the builder
in a subprocess: you must wait for the subprocess to terminate before
you can issue another command.

Parameter Qualifiers

/LIBRARY

Indicates that the associated input file is an object module library to be
searched for modules to resolve any undefined symbols in the input
files. The default file type is .XLB.

LINK

By default, it you do not specify the /LIBRARY qualifier, the file is
assumed to be an object file with a default file type of .XOB.

IMAPPING

Indicates that the associated input file is a mapping definition file.
Mapping definition files control the location of the program on the
target system. The default file type is .MPD.

By default, if you do not specify the /MAPPING qualifies, the file is
assumed to be an object file wwitic a detault file type of .XOB.

ITARGET

Indicates that the associated input file is a target definition file. Target
definition files describe the target system’s memory. The default file
type is .TGD.

By default, if you do not specify the /TARGET qualifier, the file is
assumed to be an object file with a default file type of .XOB.

Examples

1. XDACS> LINK CONTROL_LOOQOP
%ACS-I1-CL_LINKING, Invoking the XD Ada %.. . ier
The LINK command forms the closure of the unit CONTROL_
LOOP, which is an XD Ada main program, creates a builder com-

mand file and package elaboration file, then invokes the command
file in a spawned subprocess.

2. XDACS> LINK/SUBMIT CONTROL_LOOP LOOP_FUNCTICNS/LIBRARY
%ACS-1-CL_SUBMITTED, Job CONTROL_LOCP (queue ALL_BATCH, entry 134)
started on FAST_BATCH

The LINK command instructs the builder to link the closure of the
XD Ada main program CONTROL_LOQOP against the library LOOP_
FUNCTIONS.XLB. The /SUBMIT qualifier causes XDACS to submit
the builder command file as a batch job.

10

LINK

ADRUS» LINK LUMALN FLUID_V LUME, UUUTER MIUITIR.ETB
AUS-1-CL_LIHKITES, Invoiking the XD Ada Bullder

The LINK command builds all the XD Ada units FLUID_VOLUME
and COUNTER with the foreign object file MONITOR.XOB. The
INOMAIN qualifier tells the builder that the image transfer address

is in the foreign fiie.

11

XDADA

XDADA

Invokes the XD Ada compiler to compile one or more source files.

Format XDADA file-spec],...]

Command Qualifiers
/LIBRARY = directory-spec

Positional Qualifiers
/[NOJANALYSIS_DATA| = file-spec]
/[NOJCHECK
/[NO]COPY_SOURCE
/INO]DEBUG] = (option|,...}])]
/INOJDIAGNOSTICS| = file-spec]
/[NOJERROR_LIMIT| =n]
/INOJLIST[= file-spec]
/INOJLOAD| = option]
/INOIMACHINE_CODE
/INO]NOTE_SOURCE
/INOJOPTIMIZE[= (option|,...])]
/(NO]PREDEFINED_UNIT
/[NOJSHOW| = option]
/INO]JSYNTAX_ONLY
/[NOJWARNINGS(= (option{,...})]

Defaults
/LIBRARY = XDADASLIB

Defaults
INOANALYSIS_DATA
See text.
ICOPY_SOURCE
/DEBUG =ALL
INODIAGNOSTICS
/ERROR_LIMIT =30
INOLIST

/LOAD = REPLACE
INOMACHINE_CODE
INOTE_SOURCE

See text.
/INOPREDEFINED_UNIT
/ISHOW = PORTABILITY
INOSYNTAX_ONLY
See text.

Prompt
_File:

Command Parameters

file-spec

Specifies one or more XD Ada source files to be compiled. If you do
not specify a file type, the compiler uses the default file type of .ADA.
No wildcard characters are allowed in the file specifications.

12

XDADA

If you specify several source files as arguments to the XDADA com-
mand, you must separate adjacent file specifications with a comma (,).
If you specify more than one input file, you must separate adjacent file
specifications with a comma (,). You cannot use a plus sign (+) to
separate file specifications.

Description

The XDADA command is one of three commands used to compile
compilation units. The other two are the XDACS COMPILE and
RECOMPILE commands. All three commands invoke the XD Ada
cross-compiler for the < REFERENCE> (proc).

The XDADA command can be used at any time to compile one or
more source files ((ADA); it must be used to compile units into a library
for the first time or to compile again a set of units where the order of
compilation has changed.

XD Ada source files are compiled in the order in which they appear
on the command line. If a source file contains more than one XD

Ada compilation unit, the units are compiled in the order in which
they appear in the source file. The Ada rules governing the order in
which compilation units are compiled are summarized in Version 2.0 of
<REFERENCE > (dap).

The XDADA command compiles units in the context of the current
program library. Whenever a compilation unit is successfully compiled,
the current program library is updated as follows:

¢ An object file (.XOB), which contains the object module, is usually
created in the library.
* A compilation unit file ((ACU) is always created in the library.

* Unless suppressed by the INOCOPY_SOURCE qualifier on the
XDADA command, the file specification of the XD Ada source file
is noted in the library.

¢ The library index file is revised.

¢ If the unit was previously compiled into the program library, the
obsolete versions ot the associated library files are deleted.

See <REFERENCE > (prg_lib_mgr) and Version 2.0 of < REFERENCE >(dap)
for more information on program libraries, sublibraries, and compila-
tion.

13

XDADA

Command Qualifiers

/LIBRARY = directory-spec

Specifies the program library that is to be the current program library
for the duration of the compilation. The directory specified must be an
already existing XD Ada program library. No wildcard characters are
allowed in the directory specification.

By default, the current program library is the program library last spec-
ified in a SET LIBRARY command. The logical name XDADASLIB is
assigned to the program library specified in a SET LIBRARY command.

Positional Qualifiers

14

IANALYSIS_DATA[=file-spec]

INOANALYSIS_DATA (D)

Controls whether a data analysis file containing source code cross-
reference and static analysis information is created. The data analysis
file is supported only for use with DIGITAL layered products, such as
the VAX Source Code Analyzer.

One data analysis file is created for each source file compiled. The
default directory for data analysis files is the current default directory.
The default file name is the name of the source file being compiled.
The default file type is .ANA. No wildcard characters are allowed in the
file specification.

By default, no data analysis file is created.

ICHECK

INOCHECK

Controls whether all run-time checks are suppressed. The INOCHECK
qualifier is equivalent to having all possible SUPPRESS pragmas in the
source code.

Explicit use of the /{CHECK qualifier overrides any occurrences of the
pragmas SUPPRESS and SUPPRESS_ALL in the source code, without
the need to edit the source code.

By default, run-time checks are suppressed only in cases where a
pragma SUPPRESS or SUPPRESS_ALL appears in the source.

See the <REFERENCE > (xlrm) for more information on the pragmas
SUPPRESS and SUPPRESS_ALL.

XDADA

/COPY_SOURCE (D)

/INOCOPY_SQURCE

Controls whether a copied source tile . ADCy s created in the current
program library when a compilation unit is compiled without error. The
RECOMPILE command (and thus the COMPILE command) requires
that a copied source file exist in the current program library for any unit
that is to be recompiled.

By detault, a copied source file is created in the current program library
when a unit is compiled without error

/DEBUG([= (option|,...])] (D)

/NODEBUG

Controls which compiler debugging options are provided. You

can debug XD Ada programs with the XD Ada Debugger (see
<REFERENCE > (debug_ch)). You can request the following options:

ALL Provides both SYMBOLS and TRACEBACK.

NONE Provides neither SYMBOLS nor TRACEBACK.

INO|SYMBOLS Controls whether debugger symbol records are in-
cluded in the object file.

INOJTRACEBACK Controls whether traceback information (a subset of

the debugger symbol information) is included in the
abject file

By default, both debugger symbol records and traceback information are
included in the object file (DEBUG = ALL, or equivalently: /DEBUG).

/DIAGNOSTICS| = file-spec]

/NODIAGNOSTICS (D)

Controls whether a diagnostics file containing compiler messages and
diagnostic information is created. The diagnostics file is supported only
for use with DIGITAL layered products, such as the VAX Language-
Sensitive Editor.

One diagnostics file is created for each source file compiled. The
default directory for diagnostics files is the current default directory.
The default file name is the name of the source file being compiled.
The default file typ » is .DIA. No wildcard characters are allowed in the
file specification.

By default, no diagnostics file is created.

15

16

ERRCR__IMITI =]

NCERROR_LIMNIT

Copreeds whether coooaeen e Wy lommand tor as given
apen e occtrrence of the nth E-level

IR ERIEN SIS TR NN R AR PEPR R

error within thar v
coot condts are eel e cinlated acvoss o sequence of compilation
wats i the ERRQI DT =0 option s specified, each compilation

untt inay hve up teon errors without terminating the compilation.
Uhen the etrordmit s eached within a compilation unit, compilation of
tha anit s lerminated, but compilation of <ubsequent units continues.

Uhe ERROR_LIMIT =0 eption is equivalent to ERROR_LIMIT = 1.

Bu detault. execution ot the XDADA command is terminated for a given
compilation unit upon the occurrence of the 30th E-level error within
that unit (equivatent to /ERROR_LIMIT =301

ILIST[=file-spec]

/NOLIST (D)

Controls whether a listing file is created. One listing file is created
for each source file compiled. The default directory for listing files is
the current default directory. The default file name is the name of the
source file being compiled. The default file type is .LIS. No wildcard
characters are allowed in the file specification.

By default, the XDADA command does not create a listing file.

/LOAD[= option]

INOLOAD

LOAD =REPLACE (D)

Controls whether the current program library is updated with the
successfully processed units contained in the specified source files.
Depending on other qualifiers specified (or not specified) with the ADA
command, processing can involve full compilation, syntax checking
only, and so on. The /INOLOAD qualifier causes the units in the
specified source files to be processed, but prevents the current program
library from being updated.

XDADA

You can specify the following option:
[NOJREPLACE

Controls whether a unit added to the current progiain ubrary
replaces an existing unit with the same name. If you specify the
NOREPLACE option, the unit is added to the current program
library only if no existing unit has the same name, except if the .ew
unit is the corresponding body of an existing spec**:_aiion or vice
versa.

By default, the current program library is updated with the success-
fully processed units, and a unit added to the current program library
replaces an existing unit with the same name.

IMACHINE_CODE

INOMACHINE_CODE (D)

Controls whether generated machine code (approximating assembly
language notation) is included in the listing file.

By default, generated machine code is not included in the listing file.

INOTE_SOURCE (D)

INONOTE_SOURCE

Controls whether the file specification of the source file is noted in the
program library when a unit is compiled without error. The COMPILE
command uses this information to locate revised source files.

By default, the file specification of the source file is noted in the pro-
gram library when a unit is compiled without error.

IOPTIMIZE[= (option],...])]

{NOOPTIMIZE

Controls the level of optimization that is applied in producing the
compiled code. You can specify one of the following primary options:

TIME Provides full optimization with time as the primary
optimization criterion. Overrides any occurrences of
the pragma OPTIMIZE(SPACE) in the source code.

SPACE Provides full optimization with space as the primary
optimization criterion. Overrides any occurrences of
the pragma OPTIMIZE(TIME) in the source code.

17

XDADA

18

DEVELOPMENT

NONE

Recommended when active development of a pro-
gram is in progress. Provides some optimization,
but development considerations and ease of debug-
ging take preference over optimization. This option
overrides pragmas that establish a dependence on a
subprogram (the pragma INLINE), and thus reduces
the need for recompilations when such bodies are
modified.

Provides no optimization. Suppresses expansions in
line of subprograms, including those specified by the
pragma INLINE.

The INOOPTIMIZE qualifier is equivalent to (OPTIMIZE = NONE.

By default, the XDADA command applies full optimization with space
as the primary optimization criterion (like /OPTIMIZE = SPACE, but
observing uses of the pragma OPTIMIZE).

The /IOPTIMIZE qualifier also has a set of secondary options that you
can use separately or together with the primary options to override the
default behavior for expansion in line.

The INLINE secondary option can have the following values (see the
<REFERENCE > (rts) for more information about expansion in line).

INLINE:NONE

INLINE:NORMAL

Disables subprogram expansion in line. This option
overrides any occurrences of the pragma INLINE

in the source code, without having to edit the
source file. It also disables implicit expansion in
line of subprograms. (Implicit expansion in line means
that the compiler assumes a pragma INLINE for
certain subprograms as an optimization.) A call to a
subprogram in another unit is not expanded in line,
regardless of the /OPTIMIZE options in effect when
that unit was compiled.

Provides normal subprogram expansion in line.

Subprograms to which an explicit pragma INLINE
applies are expanded in line under certain condi-
tions. In addition, some subprograms are implicitly
expanded in line. The compiler assumes a pragma
INLINE for calls to some small local subprograms
{subprograms that are declared in the same unit as
the unit in which the call occurs).

XDADA

INLINE:SUBPROGRANS Provides maximal subprogram evpansion in line.

In addition to the normal subprogram expansion in
line that occurs when INUNE:NORMAL is specified.
this option results in ‘'mplicit expansion in line of
some small subprograms declared in other units.
The compiler assumes a pragma INLINE for any
subprogram if it improves execution speed and
reduces code size. This option may establish a
dependence on the body of another unit, as would be
the case if a pragma INLINE were specified explicitly
in the source code.

INLINE:MAXIMAL Provides maximal subprogram expansion in line.

Maximal subprogram expansion in line occurs as for
INLINE:SUBPROGRAMS.

By default, the /OPTIMIZE qualifier primary options have the following
secondary-option values:

OPTIMIZE=TIME =(INLINE:NORMAL)
OPTIMIZE=SPACE =(INLINE:NORMAL)
'OPTIMIZE=DEVELOPMENT =(INLINE:NONE)
{OPTIMIZE=NONE =(INLINE:NONE)

See Chapter 3 of Version 2.0 of <REFERENCE > (dap) for a further
discussion of the /OPTIMIZE qualifier and its options.

/PREDEFINED_UNIT

INOPREDEFINED_UNIT (D)

Controls the compilation of package SRUN_TIME_SYSTEM, package
STASKING_SYSTEM, and package MACHINE_CODE. You must spec-
ify this qualifier in order to be able to compile these packages. The
qualifier is not required for the compilation of any other source files.
See the <« REFERENCE > (rts) for more information.

By default, /PREDEFINED_UNIT is omitted.

19

XDADA

20

{SHOW[= option] (D)

INOSHOW

Contrals the listing file options included when a listing file is provided.
You can specify one of the following options:

ALL Provides all listing file vptions.

[INOIPORTABILITY Controls whether a program portability sum-
mary is included in the listing file. By default,
the XDADA command provides a portabil-
ity summary (‘SHOW=PORTABILITY). See
<REFERENCE > (port_summ) for details of what
can be included in a portability summary. See
Chapter 5 of Version 2.0 of <REFERENCE >(dap}
for more information on program portability.

NONE Provides none of the listing file options (same as
NOSHOW).

By default, the XDADA command provides a portability summary
(/ISHOW =PORTABILITY).

/SYNTAX_ONLY

INOSYNTAX_ONLY (D)

Controls whether the source file is to be checked only for correct syntax.
If you specify the /ISYNTAX_ONLY qualifier, other compiler checks are
not pertormed (for example, semantic analysis, type checking, and so
on), and the program library is not updated.

By default, the compiler performs all checks.

IWARNINGS[= (message-option[,...])]

INOWARNINGS

Controls which categories of informational (I-level) and warning (W-
level) messages are displayed and where those messages are displayed.
You can specify any combination of the following message options:

WARNINGS: (destination|,...])
NOWARNINGS

WEAK_WARNINGS: (destination|,...})
NOWEAK_WARNINGS

SUPPLEMENTAL: (desfination|,...})
NOSUPPLEMENTAL

XDADA

COMPILATION_NOTES: (destination,...])
NOCOMPILATION_NOTES

STATUS: (destination],..

NOSTATUS

D

The possible values of destination are ALL, NONE, or any combination
of TERMINAL (terminal device), LISTING (listing file), DIAGNOSTICS
(diagnostics file). The message categories are summarized as follows:

WARNINGS

WEAK_WARNINGS

SUPPLEMENTAL

COMPILATION_NOTES

STATUS

The defaults are as follows:

We-level: Indicates a definite problem in a legal
program, for example, an unknown pragma.

[-level: Indicates a potential problem in

a legal program; for example, a possible
CONSTRAINT_ERROR at run time. These

are the only kind of I-level messages that are
counted in the summary statistics at the end of
a compilation.

I-level: Additional information associated with
preceding E-level or W-level diagnostics.

I-level: Information about how the compiler
translated a program, such as record layout,
parameter-passing mechanisms, or decisions
made for the pragmas INLINE, INTERFACE, or
the import-subprogram pragmas.

I-level: End of compilation statistics and other
messages.

/WARNINGS=(WARN:ALL,WEAK:ALL, SUPP:ALL,COMP:NONE, STAT:LIST)

If you specify only some of the message categories with the
IWARNINGS qualifier, the default values for other categories are used.

Examples

1. $ XDADA MODEL_INTERFACE_,MODEL_INTERFACE,CONTROL_LOOP

The XDADA command compiles the compilation units con-

tained in the three files

MODEL_INTERFACE_.ADA, MODEL_

INTERFACE.ADA, and CONTROL_LOOP.ADA, in the order given.

21

XDADA

22

2.

$ XDADA/LIST/SHCW=ALL SCREEN_IO_,SCREEN_IC

The XDADA command compiles the compilation units contained
in the two files SCREEN_IO_.ADA and SCREEN_IO.ADA, in the
order given. The /LIST qualifier creates the listing files SCREEN_
IO_.LIS and SCREEN_IO.LIS in the current default directory. The
ISHOW = ALL qualifier causes all listing file options to be provided
in the listing files.

TEST PARAMETERS

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such as the maximum
length of an input line and invalid file names. A test that makes use of such values is identified
by the extension .TST in its file name. Actual values to be substituted are represented by names
that begin with a dollar sign. A value must be substituted for each of these names before the test

is run. The values used for this validation are given below:

Name and Meaning

$ACC_SIZE
An integer literal whose value is the number of bits
sufficient to hold any value of an access type.

$BIG_ID1
Identifier the size of the maximum input line length with
varying last character.

$BIG_ID2
Identifier the size of the maximum input line length with
varying last character.

$BIG_ID3
Identifier the size of the maximum input line length with
varying middle character.

$BIG_ID4
Identifier the size of the maximum input line length with
varying middle character.

$BIG_INT_LIT
An integer literal of value 298 with enough leading
zeroes so that it is the size of the maximum line length

$BIG_REAL LIT
A universal real literal of value 690.0 with enough
leading zeroes to be the size of the maximum line length.

Value

32
(1.254=>A’, 255=>1)
(1.254=>"A’, 255=>2)

(1.127=>"A’, 128=>3,
129.255=>"A")

(1.127=>A’, 128=>4,
129.255=>"A")

(1.252=>0,
253..255=>298)

(1..249=>0,
250..255=>69.0E1)

$BIG_STRING1 (1.127=>'A’)
A string literal which when catenated with
BIG_STRING? yields the image of BIG_ID1.
Validation Summary Report AVF-VSR-90502/66

SD-Scicon pic XD Ada MC68000 V1.0-09

Appendix C - Page 1 of §

TEST PARAMETERS

$BIG_STRING2
A string literal which when catenated to the end of
BIG_STRING1 yields the image of BIG_ID1.

$BLANKS
A sequence of blanks twenty characters less than the size
of the maximum line length.

$COUNT_LAST
A universal integer
TEXT_IO.COUNT'LAST.

literal whose value is

$DEFAULT_MEM_SIZE

An integer literal whose value is

SYSTEM.MEMORY_SIZE.
$DEFAULT_STOR_UNIT

An integer literal whose value s

SYSTEM.STORAGE_UNIT.

$DEFAULT_SYS_NAME
The value of the constant SYSTEM.SYSTEM_NAME.

$DELTA_DOC
A real literal whose value is SYSTEM.FINE_DELTA.

$FIELD_LAST
A universal integer
TEXT_IO.FIELD’LAST.

literal whose value is

$FIXED_NAME
The name of a predefined fixed-point type other than
DURATION.

$FLOAT_NAME
The name of a predefined floating-point type other than
FLOAT, SHORT_FLOAT, or LONG_FLOAT.

$GREATER_THAN_DURATION
A universal real literal that lies between
DURATION’BASE'LAST and DURATION’LAST or any
value in the range of DURATION.

$GREATER_THAN_DURATION_BASE_LAST
A universal real literal that is greater
DURATION’BASE’'LAST.

than

(1.127=>'A’, 128=>1)

(1.235=>"")

2147483647

16777216

MC68000

2#1.0#E-31

255

NO_SUCH_TYPE

LONG_LONG_FLOAT

131072.0

131073.0

Validation Summary Report
SD-Scicon pic XD Ada MC68000 V1.0-09

AVF-VSR-90502/66

Appendix C - Page 2 of 5

TEST PARAMETERS

$HIGH_PRIORITY
An integer literal whose value is the upper bound of the

range for the subtype SYSTEM.PRIORITY.

$ILLEGAL_EXTERNAL_FILE_NAMEI1
An external file name which contains invalid characlers.

$ILLEGAL_EXTERNAL_FILE_NAME2
An external file name which is too long.

S$INTEGER_FIRST
A universal integer
INTEGER’FIRST.

literal whose value is

SINTEGER_LAST
A universal integer
INTEGER’LAST.

literal whose wvalue is

$INTEGER_LAST_PLUS 1
A universal integer
INTEGER'LAST+1.

literal whose wvalue is

SLESS_THAN_DURATION
A universal real literal that lies between
DURATION'BASE'FIRST and DURATION'FIRST or
any value in the range of DURATION.

SLESS_THAN_DURATION_BASE_FIRST
A universal real literal that is
DURATION’BASE’FIRST.

less than

$LOW_PRIORITY
An integer literal whose value is the lower bound of the
range for the subtype SYSTEM.PRIORITY.

$MANTISSA_DOC
An integer literal
SYSTEM.MAX_MANTISSA.

whose value is

$MAX_DIGITS
Maximum digits supported for floating-point types.

$MAX_IN_LEN
Maximum input
implementation.

line length permitted by the

15

THERE ARE NO
FILENAMES

N/A

-2147483648

2147483647

2147483648

-131072.0

-131073.0

31

18

255

Validation Summary Report
SD-Scicon pic XD Ads “4C68000 V1.0-09

AVF-VSR-90502/66
Appendix C - Page 3 of §

ILLEGAL

TEST PARAMETERS

$MAX_INT
A universal integer literal whose value s
SYSTEM.MAX_INT.

$MAX_INT_PLUS_1
A universal integer literal whose value is
SYSTEM.MAX_INT+1.

$MAX _LEN_INT_BASED_LITERAL
A universal integer based literal whose value is 2#11#
with enough leading zeroes in the mantissa to be
MAX_IN_LEN long.

$MAX_LEN_REAL_BASED_LITERAL
A universal real based literal whose value is 16:F.E: with
enough leading zeroes in the mantissa to be
MAX_IN_LEN long.

SMAX_STRING_LITERAL
A string literal of size MAX_IN_LEN, including the
quote characters.

SMIN_INT
A universal integer literal whose wvalue s
SYSTEM.MIN_INT.

$MIN_TASK_SIZE
An integer literal whose value is the number of bits
required to hold a task object which has no entries, no
declarations, and "NULL;" as the only statement in its
body.

SNAME
A name of a predefined numeric type other than
FLOAT, INTEGER, SHORT_FLOAT,
SHORT_INTEGER, LONG_FLOAT, or
LONG_INTEGER.

$NAME _LIST
A list of cnumeration literals in the type
SYSTEM.NAME, separated by commas.

SNEG_BASED_INT
A based integer literal whose highest order nonzero bit
falls in the sign bit position of the representation for
SYSTEM.MAX_INT.

2147483647

2147483648

(1.2=>72",
3.252=>0’,
253.255=>"11"")

(1.3=>"16:
4.251=>"0,
252.255=>"F.E:")

(1=>", 2.254=>"A",
255=>"™)

-2147483648

32

SHORT_SHORT_INTEGER

MC68000

16#FFFF_FFFF#

Validation Summary Report
SD-Scicon pic XD Ada MC68000 V1.0-09

AVF-VSR-90502/66

Appendix C - Page 4 of §

TEST PARAMETERS

$NEW_MEM _SIZE 123456
An integer literal whose value is a permitted argument
for pragma memory_size, other than
$DEFAULT_MEM SIZE. If there is no other value,
then use SDEFAULT MEM_SIZE.

$NEW_STOR_UNIT 8
An integer literal whose value is a permitted argument
for pragma storage_unit, other than
$DEFAULT_STOR_UNIT. If there is no other
permitted value, then wuse value of
SYSTEM.STORAGE_UNIT.

SNEW_SYS_NAME MC68000
A value of the type SYSTEM.NAME, other than
$DEFAULT_SYS_NAME. If there is only one value of
that type, then use that value.

$TASK_SIZE ' 32
An integer literal whose value is the number of bits
required to hold a task object which has a single entry
with one inout parameter.

$TICK 2#1.0#E-13
A real literal whose value is SYSTEM.TICK.

Validation Summary Report AVF-VSR-90502/66
SD-Scionm pic XD Ads MCARNNN V1 0.00 Appendix C - Page 5 of §

WITHDRAWN TESTS

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the Ada Standard.
The following 44 tests had been withdrawn at the time of validation testing for the reasons
indicated. A reference of the form Al-ddddd is to an Ada Commentary.

E28005C This test expects that the string "-- TOP OF PAGE. --63" of line 204 will appear
at the top of the listing page due to a pragma PAGE in line 203; but line 203
contains text that follows the pragma, and it is this that must appear at the top of
the page.

A39005G This test unreasonably expects a component clause to pack an array component into
a minimum size (line 30).

B97102E This test contains an unitended illegality: a select statement contains a null
statement at the place of a selective wait alternative (line 31).

C97116A This test contains race conditions, and it assumes that guards are evaluated
indivisibly. A conforming implementation may use interleaved execution in such
a way that the evaluation of the guards at lines 50 & 54 and the execution of task
CHANGING_OF_THE_GUARD results in a call to REPORT.FAILED at one of
lines 52 or 56. '

BC3009B This test wrongly expects that circular instantiations will be detected in several
compilation units even though none of the units is illegal with respect to the units
it depends on; by AI-00256, the illegality need not be detected until execution is
attempted (line 95).

CD2A62D This test wrongly requires that an array object’s size be no greater than 10 although
its subtype’s size was specified to be 40 (line 137).

CD2A63A..D, CD2A66A..D, CD2A73A..D, CD2A76A..D {16 tests]
These tests wrongly attempt to check the size of objects of a derived type (for
which a 'SIZE length clause is given) by passing them to a derived subprogram
(which implicitly converts them to the parent type (Ada standard 3.4:14)).
Additionally, they use the 'SIZE length clause and attribute, whose interpretation
is considered problematic by the WG9 ARG.

CD2A81G, CD2A83G, CD2A84N & M, & CD50110 [5 tests]
These tests assume that dependent tasks will terminate while the main program
executes a loop that simply tests for task termination; this is not the case, and the
main program may loop indefinitely (lines 74, 85, 86 & 96, 86 & 96, and 58, resp.).

Validation Summary Report AVF-VSR-90502/66
SD-Scicon pic XD Ada MC68000 V1.0-09 Appendix D - Page 1 of 2

WITHDRAWN TESTS

CD2B15C & CD7205C

CD2D11B

CDs007B

These tests expect that a 'STORAGE_SIZE length clause provides precise control
over the number of designated objects in a collection; the Ada standard 13.2:15
allows that such control must not be expected.

This test gives a SMALL representation clause for a derived fixed-point type (at
line 30) that defines a set of model numbers that are not necessarily represented
in the parent type; by Commentary AI-00099, all model numbers of a derived
fixed-point type must be representable values of the parent type.

This test wrongly expects an implicitly declared subprogram to be at the the address
that is specified for an unrelated subprogram (line 303).

ED7004B, ED7005C & D, ED7006C & D (S tests]

CD7105A

These tests check various aspects of the use of the three SYSTEM pragmas; the
AVO withdraws these tests as being inappropriate for validation.

This test requires that successive calls to CALENDAR.CLOCK change by at least
SYSTEM.TICK; however, by Commentary AI-00201, it is only the expected
frequency of change that must be at least SYSTEM.TICK--particular instances of
change may be less (line 29).

CD7203B, & CD7204B

CD7205D

CE21071

CE3111C

CE3301A

CE3411B

These tests use the 'SIZE length clause and attribute, whose interpretation is
considered problematic by the WG9 ARG.

This test checks an invalid test objective: it treats the specification of storage to
be reserved for a task’s activation as though it were like the specification of storage
for a collection.

This test requires that objects of two similar scalar types be distinguished when read
from a file--DATA_ERROR is expected to be raised by an attempt to read one
object as of the other type. However, it is not clear exactly how the Ada standard
14.2.4:4 is to be interpreted; thus, this test objective is not considered valid. (line
90)

This test requires certain behavior, when two files are associated with the same
external file, that is not required by the Ada standard.

This test contains several calls to END_OF_LINE & END_OF_PAGE that have
no parameter: these calls were intended to specify a file, not to refer to
STANDARD_INPUT (lines 103, 107, 118, 132, & 136).

This test requires that a text file’s column number be set to COUNT'LAST in order
to check that LAYOUT_ERROR is raised by a subsequent PUT operation. But
the former operation will generally raise an exception due to a lack of available disk
space, and the test would thus encumber validation testing.

Validation Summary Report AVF-VSR-90502/66

SD-Scicon pic XD Ada MC68000 V1.0-09 Appendix D - Page 2 of 2

-~

NCC VSR ADDENDUM

This Addendum to the ACVC 1.10 VSR clarifies some items which are contained within the

standard pre-forma Validation Summary Report as supplied by the Ada Maintenance Office
(AMO).

In line with AJPO regulations the contents of the VSR have not been altered in order to keep
consistency between the different AVF's.

The points raised in this addendum are being addressed by the AMO in future issues of the VSR.

1 The last paragraph of Chapter 1 contains the following statement 'Any test that was

determined to contain an illegal language construct or an erroneous language construct is
withdrawn from the ACVC..

This is incorrect since illegal constructs are legitimately contained within Class B tests.

9

Both the terms ’inapplicable’ and 'not applicable’ are used within the VSR. These terms
are identical.

3 Chapter 1 of the VSR does not indicate how 'inapplicable’ tests are to be analysed. The
analysis is undertaken as follows:

"Each inapplicable test is checked to ensure that this behaviour is consistent with the given
reasons for its inapplicability’.

REPORT DOCUMENTATION PAGE

zgzaﬂﬁJnn4ouu

Puils Sumdon for s enliscaien of idermation & estivaied W 1 UEPONSS, rayuaions, osurens
g e e L e LT S e e e R S

1. AGENCY USE ONLY (Lesve Bland)

2 REPORT DATE

8. REPORT TYPE AND DATES COVERED

Final 4 Feb. 1990 to 4 Feb. 1991

(Target), 90Q204N1.10252

[« TmeEamsBTME Ada Compiler Validation Summary Report: SD-Sc icon | § FUNDING NUMBERS
plc, XD Ada MC68000 V1.0-09, VAX Cluster (Host) to MC68000

6 AUTHOR(S) .
National Computing Centre Limited
Manchester, UNITED KINGDOM

7. FERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
National Computing Centre Limited
Oxford Road :
Manchester MI 7ED

UNITED KINGDOM

tgmo%amwm

AVF-VSR-90502/66

9. SPONSORINGAMONITORING AGENCY NAME(S) AND ADDRESS(ES)

Ada Joint Program Office .
United States Department of Defense
Washington, D.C. 20301-3081

10. SPONSORINGAMONITORING AGENCY
REPORT NUMBER

1. SUPPLEMENTARY NOTES

128. DISTRBUTIONAVALABLITY STATEMENT

Approved for public release; distribution unlimited.

120. ISTRIBUTION CODE

13. ABSTRACT (Me<imum 200 words)

ACVC 1.10.

’

SD-Scicon plc, XD Ada MC68000 V1.0-09, Manchester, England, VAX Cluster (Comprising of a
VAX 8600 and 7 MicroVAX II's) under VMS 5.1 (Host) to MC68000 processor running on an
MUMEL17-3FP MPU VME module using a MC68881 floating point peripheral (bare machine),

2

14. UBECTTEAMS Ada programming language, Ada Compiler validation
Summary Report, Ada Compiler Validation Capability, Validation

15. NUMBER OF MGES

Testing, Ada Validation Office, Ada Validation Facility. ANSI/MIL- 6. PRICE CODE
STD-1815A, Ada Joint Program Office
' OF REPORT 16 OF s mak ' 5. CRATATION OF ABSTRAC)
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

- AEgiat—

PR

- Preswives by ANSI 4. 8816
2001

AVF Control Number: AVF-VSR-90502/66

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: #900204N1.10252

SD-Scicon plc
XD Ada MC63000 V1.0-09
VAX Cluster Host and MC68000 target

Completion of On-Site Testing:
February 4 1990

Prepared By:
Testing Services
The National Computing Centre Limited
Oxford Road
Manchester M1 7ED
England

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington DC 20301-3081

V. lidation Summary Report AVF-VSR-90502/66

SD-Scicon pic XD Ada MC68000 V1.0-09 Page i of ii

Ada Compiler Validation Summary Report:

Compiler Name: XD Ada MC68000 V1.0-09

Certificate Number: #900204N1.10252

Host: VAX Cluster (Comprising of a VAX 8600 and 7 MicroVAX II’s) under VMS 5.1

Target: MC68000 processor running on an MVME117-3FP MPU VME module using a
MC68881 floating point peripheral (bare machine).

Testing Completed February 4 1990 Using ACVC 1.10

This report has been reviewed and is approved.

T-AnR
Jane Pink
Testing Services Manager
The National Computing Centre Limited
Oxford Road
Manchester M1 7ED
England

Ada Valdationy Qrganization
Dr. John F.” Kramer
Institute for Dfense Analyses
Alexandria VA 22311

e 2 3/

Ada Joint Program Office
Dr. John Solomond
Director AJPO
Department of Defense
Washington DC 20301

Validation Summary Report AVF-VSR-90502/66

SD-Scicon pic XD Ada MC68000 V1.0-09 Page ii of ii

TABLE OF CONTENTS

TABLE OF CONTENTS

CHAPTER 1
INTRODUCTION e e e e 1
1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1
1.2 USE OF THIS VALIDATION SUMMARY REPORT 2
1.3 REFERENCES ittt e i 2
1.4 DEFINITIONOFTERMS 3
1.5 ACVCTESTCLASSES 4
CHAPTER 2
CONFIGURATION INFORMATION 1
21 CONFIGURATION TESTED 1
22 IMPLEMENTATION CHARACTERISTICS 1
CHAPTER 3
TEST INFORMATION e e i 1
31 TEST RESULTSt it it et e i e e e e 1
3.2 SUMMARY OF TEST RESULTS BY CLASS 1
33 SUMMARY OF TEST RESULTS BY CHAPTER 1
34 WITHDRAWN TESTS i i 2
3.5 INAPPLICABLE TESTS, 2
36 TEST, PROCESSING, AND EVALUATION MODIFICATIONS .. 5
3.7 ADDITIONAL TESTING INFORMATION 5
APPENDIX A
DECLARATION OF CONFORMANCE0iin.. 1
APPENDIX B
APPENDIX FOF THE Ada STANDARD 1
APPENDIX C
TEST PARAMETERS i i 1
APPENDIX D
WITHDRAWN TESTS i e e i i e e 1
Validation Summary Report AVF-VSR-90502/66

SD-Scicon pic XD Ada MC68000 V1.0-09

Tabie of Contents - Page i of i

INTRODUCTION

CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a specific Ada compiler
conforms to the Ada Standard, ANSI/MIL-STD-1815A. This report explains all technical terms
used within it and thoroughly reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented according to the Ada
Standard, and any implementation-dependent features must conform to the requirements of the
Ada Standard. The Ada Standard must be implemented in its entirety, and nothing can be
implemented that is not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it must be understood that
some differences do exist between implementations. The Ada Standard permits some
implementation dependencies -- for example, the maximum length of identifiers or the maximum
values of integer types. Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All the dependencies
observed during the process of testing this compiler are given in this report.

The information in this report is derived from the test results produced during validation testing.
The validation process includes submitting a suite of standardized tests, the ACVC, as inputs to an
Ada compiler and evaluating the results. The purpose of validating is to ensure conformity of the
compiler to the Ada Standard by testing that the compiler properly implements legal language
constructs and that it identifies and rejects illegal language constructs. The testing also identifies
behavior that is implementation dependent, but is permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile time, at link time, and
during execution.

11 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an Ada compiler. Testing
was carried out for the following purposes:

o To attempt to identify any language constructs supported by the compiler that do
not conform to the Ada Standard

0 To attempt to identify any language constructs not supported by the compiler but
required by the Ada Standard

o To determine that the implementation-dependent behavior is allowed by the Ada
Standard

Testing of this compiler was conducted by The National Computer Centre Limited according to
procedures established by the Ada Joint Program Office and administered by the Ada Validation

Validation Summary Report AVF-VSR-90502/66

SD-Scicom pic XD Ada MC68000 V1.0-09 Chapter 1 - Page 1 of §

INTRODUCTION

Organization (AVO). On-site testing was completed on February 4 1990 at SD-SCICON plic,
Pembroke House, Pembroke Broadway, Camberley, Surrey, GU1S 3XD, UK.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may make full and free
public disclosure of this report. In the United States, this is provided in accordance with the
“Freedom of Information Act" (5 U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not represent or warrant
that all statements set forth in this report are accurate and complete, or that the subject compiler
has no nonconformities to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Testing Services
The National Computing Centre Limited
Oxford Road
Manchester M1 7ED

England

Questions regarding this report or the validation test results should be directed to the AVF listed
above or to:

Ada Validation Organization

Institute for Defense Analyses

1801 North Beauregard Street
Alexandria VA 22311

13 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada_Compiler Validation Procedures and Guidelines,
Ada Joint Program Office, 1 January 1987.

Validation Summary Report AVF-VSR-90502/66

SD-Scicon pic XD Ada MC68000 V1.0-09 Chapter 1 - Page 2 of 5

INTRODUCTION

3. Ada Compiler Validation Capability Implementers’ Guide,
SofTech, Inc., December 1986.

4. Ada Compiler Validation Capability User’s Guide,

December 1986.

1.4 DEFINITION OF TERMS

ACVC

Ada Commentary

Ada Standard

Applicant

AVF

AVO

Compiler

Failed test

Host

Inapplicable test

Passed test

The Ada Compiler Validation Capability. The set of Ada programs
that tests the conformity of an Ada compiler to the Ada
programming language.

An Ada Commentary contains all information relevant to the point
addressed by a comment on the Ada Standard. These comments
are given a unique identification number having the form Al-ddddd.

ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.
The agency requesting validation.

The Ada Validation Facility., The AVF is responsible for
conducting compiler validations according to procedures contained

in the Ada Compiler Validation Procedures and Guidelines.

The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of maintaining a
uniform process for validation of Ada compilers. The AVO
provides administrative and technical support for Ada validations to
ensure Consistent practices.

A processor for the Ada language. In the context of this report,
a compiler is any language processor, including cross-compilers,
translators, and interpreters.

An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

The computer on which the compiler resides.

An ACVC test that uses features of the language that a compiler
is not required to support or may legitimately support in a way
other than the one expected by the test.

An ACVC test for which a compiler generates the expected result.

Validation Summary Report

AVF-VSR-90502/66

SD-Scicon pic XD Ada MC68000 V1.0-09 Chapter 1 - Page 3 0of 5

INTRODUCTION

Target The computer which executes the code generated by the compiler.

Test A program that checks a compiler’s conformity regarding a
particular feature or a combination of features to the Ada Standard.
In the context of this report, the term is used to designate a single
test, which may comprise one or more files.

Withdrawn test An ACVC test found to be incorrect and not used to check
conformity to the Ada Standard. A test may be incorrect because
it has an invalid test objective, fails to meet its test objective, or
contains illegal or erroneous use of the language.

15 ACVC TEST CILASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC contains both legal and
illegal Ada programs structured into six test classes: A, B, C, D, E, and L. T*~ first letter of a
test name identifies the class to which it belongs. Class A, C, D, and E tests are executable, and
special program units are used to report their results during execution. Class B tests are expected
to produce compilation errors. Class L tests are expected to produce errors because of the way
in which a program library is used at link time.

Class A tes's ensure the successful compilation and execution of legal Ada programs with certain
language c-nstructs which cannot be verified at run time. There are no explicit program
components in a Class A test to check semantics. For example, a Class A test checks that reserved
words of a .c ther language (other than those already reserved in the Ada language) are not treated
as reserved words by an Ada compiler. A Class A test is passed if no errors are detected at
compile time and the program executes to produce a PASSED message.

Class B tes's check that a compiler detects illegal language usage. Class B tests are not executable.
Each test in this class is compiled and the resulting compilation listing is examined to verify that
every synta - or semantic error in the test is detected. A Class B test is passed if every illegal
construct that it contains is detected by the compiler.

Class C te ts check the run time system to ensure that legal Ada programs can be correctly
compiled and executed. Each Class C test is self-checking and produces a PASSED, FAILED, or
NOT APP1 \CABLE message indicating the result when it is executed.

Class D tesrs check the compilation and execution capacities of a compiler. Since there are no
capacity requirements placed on a cc.npiler by the Ada Standard for some parameters - for
example, the number of identifiers permitted in a compilation or the number of units in a library -
- a compiler may refuse to compile a Class D test and sl be a conforming compiler.- Therefore,
if a Class D test fails to compile because the capacity of the compiler is exceeded, the test is
classified as inapplicable. If a Class D test compiles successfully, it is self-checking and produces
a PASSED or FAILED message during execution.

Validation Summary Report AVF-VSR-90502/66

SD-Scicon pic XD Ada MC68000 V1.0-09 Chapter 1 - Page 4 of §

INTRODUCTION

Class E tests are expected to execute successfully and check implementation-dependent options and
resolutions of ambiguities in the Ada Standard. Each Class E test is self-checking and produces
a NOT APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs containing some features
addressed by Class E tests during compilation. Therefore, a Class E test is passed by a compiler
if it is compiled successfully and executes to produce a PASSED message, or if it is rejected by the
compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving multiple, separately compiled
units are detected and not allowed to execute. Class L tests are compiled separately and execution
is attempted. A Class L test passes if it is rejected at link time -- that is, an attempt to execute
the main program must generate an error message before any declarations in the main program
or any units referenced by the main program are elaborated. In some cases, an implementation
may legitimately detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECK_FILE, support the self-
checking features of the executable tests. The package REPORT provides :* mechanism by which
executable tests report PASSED, FAILED, or NOT APPLICABLE results. It also provides a set
of identity functions used to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK_FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada Standard. The operation
of REPORT and CHECK_FILE is checked by a set of executable tests. These tests produce
messages that are examined to verify that the units are operating correctly. If these units are not
operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to ensure that the tests
are reasonably portable without modification. For example, the tests make use of only the basic
set of 55 characters, contain lines with a maximum length of 72 characters, use small numeric
values, and place features that may not be supported by all implementations in separate tests.
However, some tests contain values that require the test to be customized according to
implementation-specific values -- for example, an illegal file name. A list of the values used for
this validation is provided in Appendix C.

A compiler must correctly process each of the tests in the suite and demonstrate conformity to the
Ada Standard by either meeting the pass criteria given for the test or by showing that the test is
inapplicable to the implementation. The applicability of a test to an implementation is considered
each time the implementation is validated. A test that is inapplicable for one validation is not
necessarily inapplicable for a subsequent validation. Any test that was determined to contain an
illegal language construct or an errcaeous language construct is withdrawn from the ACVC and,
therefore, is not used in testing a compiler. The tests withdrawn at the time of this validation
are given in Appendix D.

Validation Summary Report AVF-VSR-90502/66

SD-Scicon pic XD Ada MC68000 V1.0-09 Chapter 1 - Page S of §

CONFIGURATION INFORMATION

2.1

CHAPTER 2

CONFIGURATION INFORMATION

CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the following configuration:

22

Compiler:
ACVC Version:

Certificate Number:

Host Computer:

Machine:

Operating System:

Memory Size:

Target Computer:

Machine:

Operating System

Memory Size:

Communications Network:

XD Ada MC68000 V1.0-09
1.10

#900204N1.10252

VAX Cluster (comprising of a VAX 8600 and 7 MicroVAX
II’s)

VMS 5.1
VAX 8600 - 20Mbytes
MicroVAX IT’s - 1 x 16 Mbytes

6 x 9 Mbytes

MC68000 processor running on an MVMEI117-3FP MPU
VME module using an M(68881 floating point peripheral.

Bare machine.

512Kb

RS232 link

IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of a compiler in those
areas of the Ada Standard that permit implementations to differ. Class D and E tests specifically
check for such implementation differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

Validation Summary Report
SD-Scicon pic XD Ada MC68000 V1.0-09

AVF-VSR-90502/66

Chapter 2 - Page 1 of 5

CONFIGURATION INFORMATION

Capacities.

(1) The compiler correctly proce:scs a compilation containing 723 variables in the same
declarative part. (See test D29002K.)

) The compiler correctly processes tests containing loop statements nested to 65
levels. (See tests DSSA03A..H (8 tests).)

3) The compiler correctly processes tests containing block statements nested to 65
levels. (See test D56001B.)

4) The compiler correctly processes tests containing recursive procedures separately
compiled as subunits nested to 17 levels. (See tests D64005E..G (3 tests).)

Predefined types.

1) This implementation supports the additional predefined types SHORT_INTEGER,
SHORT_SHORT INTEGER, LONG_FLOAT, and LONG_LONG_FLOAT, in the
package STANDARD. (See tests B86001T..Z (7 tests).)

Expression evaluation.

The order in which expressions are evaluated and the time at which constraints are checked
are not defined by the language. While the ACVC tests do not specifically attempt to
determine the order of evaluation of expressions, test results indicate the following:

1) None of the default initialization expressions for record components are evaluated
before any value is checked for membership in a component’s subtype. (See test
C32117A))

2 Assignments for subtypes are performed with the same precision as the base type.
(See test C35712B).

3) This implementation uses no extra bits for extra precision and uses all extra bits
for extra range. (See test C35903A.)

)] NUMERIC_ERROR is raised when an integer literal operand in a comparison or
membership test is outside the range of the base type. (See test C45232A.)

(5) NUMERIC_ERROR is raised when a literal operand in a fixed-point comparison
or membership test is outside the range of the base type. (See test C45252A.)

6) Underflow is gradual. (See tests C45524A..Z (26 tests).)

Validation Summary Report AVF-VSR-90502/66

SD-Scicom pic XD Ads MC68000 V1.0-09 Chapter 2 - Page 2 of 5§

CONFIGURATION INFORMATION

d. Rounding.

The method by which values are rounded in type conversions is not defined by the
langi:age. While the ACVC tests do not specifically attempt to determine the method of
rounding, the test results indicate the {ollowing:

1 The method used for rounding to integer is round to even. (See tests C46012A..Z
(26 tests).)
2) The method used for rounding to longest integer is round to even. See tests
C46012A..Z (26 tests).)
3) The method used for rounding to integer in static universal real expressions is
round away from zero. (See test C4A014A.)
€. Array types.

An implementation is allowed to raise NUMERIC_ERROR or CONSTRAINT_ERROR
for an array having a 'LENGTH that exceeds STANDARD.INTEGER’LAST and/or
SYSTEM.MAX_INT. For this implementation:

(1)

()

3

©)

&)

(6)

M

Declaration of an array type or subtype declaration with more than
SYSTEM.MAX_INT components raises NUMERIC_ERROR. (See test C36003A.)

NUMERIC_ERROR is raised when an array type with INTEGER’LAST + 2
components is declared. (See test C36202A.)

NUMERIC_ERROR is raised when an array type with SYSTEM.MAX_INT + 2
components is declared. (See test C36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER’LAST raises
NUMERIC_ERROR when the array type is declared. (See test C52103X.)

«~ packed two-dimensional BOOLEAN array with more than INTEGER’LAST
components NUMERIC_ERROR when the array type is declared. (See test
C52104Y.)

In assigning one-dimensional array types, the expression is evaluated in its entirety
before CONSTRAINT_ERROR is raised when checking whether the expression’s
subtype is compatible with the target’s subtype. (See test C52013A))

In assigning two-dimensional array types, the expression is not evaluated in its
entirety before CONSTRAINT_ERROR is raised when checking whether the
expression’s subtype is compatible with the target’s subtype. (See test C52013A.)

Validation Summary Report AVF-VSR-90502/66

SD-Scicon pic XD Ada MC68000 V1.0-09 Chapter 2 - Page 30of §

CONFIGURATION INFORMATION

£, A null array with one dimension of length greater than INTEGER’LAST may raise
NUMERIC_ERROR or CONSTRAINT_ERROR either when declared or assigned.
Alternatively, an implementation may accept the declaration. However, lengths must match
in array slice assignments. This implementation raises no exception. (See test ES2103Y.)

g Discriminated types.
1) In assigning record types with discriminants, the expression is evaluated in its

entirety before CONSTRAINT_ERROR is raised when checking whether the
expression’s subtype is compatible with the target’s subtype. (See test C52013A.)

h. Aggregates.

1) In the evaluation of a multi-dimens’. .al aggregate, the test results indicate that all
choices are evaluated before checking against the index type. (See tests C43207A
and C43207B.)

2) In the evaluation of an aggregate containing subaggregates, all choices are evaluated

before being checked for identical bounds. (See test E43212B.)
3) CONSTRAINT_ERROR is raised after all choices are evaluated when a bound in
a non-null range of a non-null aggregate does not belong to an index subtype. (See
test E43211B.)
i. Pragmas.
1) The pragma INLINE is supported for functions or procedures. (See tests
LA3004A..B (2 tests), EA3004C..D (2 tests), and CA3004E..F (2 tests).)

] Generics.

1) Generic specifications and bodies can be compiled in separate compilations. (See
tests CA1012A, CA2009C, CA2009F, BC3204C, and BC3205D.)

2) Generic subprogram declarations and bodies can be compiled in separate
compilations. (See tests CA1012A and CA2009F.)

3) Generic library subprogram specifications and bodies can be compiled in separate
compilations. (See test CA1012A.)

(4) Generic non-library package bodies as subunits can be compiled in separate
compilations. (See test CA2009C.)

Validation Summary Report AVF-VSR-90502/66

SD-Scicon pic XD Ads MC68000 V1.0-09 Chapter 2 - Page 4 of 5

CONFIGURATION INFORMATION

&)

(6)

)

®

Generic non-library subprogram bodies can be compiled in separate compilations
from their stubs. (See test CA2009F.)

Generic unit bodies and their subunits can be compiled in separate compilations.
(See test CA3011A.)

Generic package declarations and bodies can be compiled in separate compilations.
(See tests CA2009C, BC3204C, and BC3205D.)

Generic library package specifications and bodies can be compiled in separate
compilations. (See tests BC3204C and BC3205D.)

Input and output.

¢))

(2

3

The package SEQUENTIAL_IO can be instantiated with unconstrained array types
and record types with discriminants without defaults. (See tests AE2101C,
EE2201D, and EE2201E.)

The package DIRECT_IO can be instantiated with unconstrained array types and
record types with discriminants without defaults. (See tests AE2101H, EE2401D,
and EE2401G.)

The director, AJPO, has determined (AI-00332) that every call to OPEN and
CREATE must raise USE_ERROR or NAME_ERROR if file input/output is not
supported. This implementation exhibits this behavior for SEQUENTIAL IO,
DIRECT_IO, and TEXT _IO.

Validation Summary Report AVF-VSR-90502/66

SD-Scicon pic XD Ada MC68000 V1.0-09

Chapter 2 - Page 5 of 5

TEST INFORMATION

3.1 TEST RESULTS

CHAPTER 3

TEST INFORMATION

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was tested, 44 tests had been
withdrawn because of test errors. The AVF determined that 504 tests were inapplicable to this
implementation. All inapplicable tests were processed during validation testing except for 159
executable tests that use floating-point precision exceeding that supported by the implementation.
Modifications to the code, processing, or grading for 16 tests were required to successfully
demonstrate the test objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable conformity to the Ada Standard.

32 SUMMARY OF TEST RESULTS BY CILASS

RESULT TEST CLASS TOTAL

A B C D E L
Passed 129 1133 1828 17 16 46 3169
Inapplicable 0 5 487 0 12 0 504
Withdrawn 1 2 3s 0 6 0 44
TOTAL 130 1140 2350 17 34 46 3717
33 SUMMARY OF TEST RESULTS BY CHAPTER
RESULT CHAPTER TOTAL
-2 3 4 5 6 _7 _8 9 10 11 12 13 14

Passed 201 592 567 245 172 99 162 331 137 36 252 295 78 3169
Inapp 11 57 111 3 0 0 4 1 0 0 0 74 243 504
Withdrawn 1 1 0 0 0 0 0 2 0 0 1 35 4 44
TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 377
Validation Summary Report AVF-VSR-90502/66

SD-Scicon pic XD Ada MC68000 V1.0-09

Chapter 3 - Page 1 of 6

TEST INFORMATION

The following 44 tests were withdrawn from ACVC Version 1.10 at the time of this validation:

E28005C A39005G

C97116A BC3009B
CDZA63A..D (4 tests) CD2AG66A..D (4 tests)
CD2AT76A..D (4 tests) CD2AB1G
CD2A8B4M..N (2 tests) CD2B15C

CDSs007B CDs50110
ED7005C..D (2 tests) ED7006C..D (2 tests)
CD7203B CD7204B

CD7205D CE21071

CE3301A CE3411B

B97102E
CD2AG2D
CD2AT73A.D (4 tests)
CD2A83G
CD2D11B
ED7004B
CD7105A
CD7205C
CE3111C

See Appendix D for the reason that each of these tests was withdrawn.

35 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features that a compiler is not
required by the Ada Standard to support. Others may depend on the result of another test that
is eithzr inapplicabie or withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one validation attempt is not
necessarily inapplicable for a subsequent attempt. For this validation attempt, S04 tests were

inapplicable for the reasons indicated:

a. The following 159 tests are not applicable because they have floating-point type
declarations requiring more digits than SYSTEM.MAX_DIGITS:

C241130..Y (11 tests) C357050..Y (11 tests) C357060..Y (11 tests)
C357070..Y (11 tests) C357080..Y (11 tests) C358020..Z (12 tests)
C452410..Y (11 tests) C453210..Y (11 tests) CA454210.Y (11 tests)
C455210..Z (12 tests) C455240..Z (12 tests) C456210.Z (12 tests)
C456410..Y (11 tests) C460120..Z (12 tests)

b. C35702A and B86001T are not applicable because this implementation supports no

predefined type SHORT_FLOAT.

c The following 16 tests are not applicable because this implementation does not

support a predefined type LONG_INTEGER:

C45231C C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45614C C45631C
C45632C B52004D C55B07A B55B09C

B86001W CD7101F

Validation Summary Report
SD-Scicon pic XD Ada MC68000 V1.0-09

AVF-VSR-90502/66

Chapter 3 - Page 2 of 6

TEST INFORMATION

d. C45531M..P (4 tests) and C45532M..P (4 tests) are all inapplicable because this
implementation has a ’'MAX_MANTISSA of 31 and these tests require the compiler
to support a greater value.

e. C86001F is not applicable because, for this implementation, the package TEXT_IO
is dependent upon package SYSTEM. This test recompiles package SYSTEM,
making package TEXT_IO, and hence package REPORT, obsolete.

£ B86001Y is not applicable because this implementation supports no predefined
fixed-point type other than DURATION.

g C96005B is not applicable because there are no values of type DURATION’BASE
that are outside the range of DURATION.

h. CD1009C, CD2A41A..B (2 tests), CD2A41E and CD2A42A..J (10 tests) are not
applicable because 'SIZE representation clauses for floating-point types are not
supported.

i CD1C04C is inapplicable because this implementation does not support model
numbers of a derived type that are not representable values of the parent type.

] CD2AS2C..D (2 tests), CD2A52G..H (2 tests), CD2AS4C..D (2 tests) and CD2AS4H
are not applicable because for this implementation the legality of a *SIZE clause
for a derived fixed point type can depend on the representation chosen for the

parent type.

k. CD2AS3C, and CD2AS4G are not applicable because within these tests the SMALL
specified for a derived fixed point is finer than the SMALL for the parent type.
As a result some model numbers of the derived type are not representable values
of the parent type which this implementation does not allow.

1 The following 23 tests are not applicable because this implementation does not
support packing by means of a length clause for an array type:

CD2A61A..L (12 tests) CD2A62A..C (3 tests) CD2AG64A.D (4 tests)
CD2A65A..D (4 tests)

m. The following 16 tests are not applicable because this implementation does not
support packing by means of a length clause for a record type:

CD2A71A..D (4 tests) CD2A72A..D (4 tests) CDR2AT74A.D (4 tests)
CD2A75A..D (4 tests)

n. CD2A84B..I (8 tests) and CD2A84K..L (2 tests) are not applicable because this
implementation only accepts length clause for access types, if the default size (32
bits) is specified. These tests specify sizes other that 32 bits.

Validation Summary Report AVF-VSR-90502/66

SD-Scicon pic XD Ada MC68000 V1.0-09 Chapter 3 - Page 3 of 6

TEST INFORMATION

The following 241 tests are inapplicable because sequential, text, and direct access

files are not supported:

CE2102A..C (3 tests)

CE2102N..Y (12 tests)

CE2105A..B (2 tests)
CE2107L
CE2110A..D (4 tests)
CE2201A..C (3 tests)
CE2204A..D (4 tests)
CE2401A..C (3 tests)
EE2401G
CE2405B
CE2408A..B (2 tests)
CE2411A
~E3102F.H (3 tests)
CE3104A..C (3 tests)
CE3109A
CE3111D..E (2 tests)
CE3115A
EE3301B
CE3402A
CE3403A..C (3 tests)
CE3405A
CE3406A..D (4 tests)
CE3409A
CE3410A
CE3411A
CE3413A
CE3603A
CE3606A..B (2 tests)
CE3706D
CE3805A..B (2 tests)
CE3806G..H (2 tests)
CE3906A..C (3 tests)

CE2102G..H (2 tests)
CE2103C..D (2 tests)
CE2106A..B (2 tests)
CE2108A..H (8 tests)
CE2111A..I (9 tests)
EE2201D..E (2 tests)
CE2205A

EE2401D
CE2401H..L (5 tests)
CE2406A
CE2409A..B (2 tests)
CE3102A..B (2 tests)
CE3102J.K (2 tests)
CE3107B

CE3110A
CE3112A..D (4 tests)
EE3203A

CE3302A

EE3402B
CE3403E..F (2 tests)
EE3405B
CE3407A..C (3 tests)
CE3409C..E (3 tests)
CE3410C..E (3 tests)
CE3411C

CE3413C
CE3604A..B (2 tests)
CE3704A..F (6 tests)
CE3706F..G (2 tests)
CE3806A..B (2 tests)
CE3905A..C (3 tests)
CE3906E..F (2 tests)

CE2102K
CE2104A..D (4 tests)
CE2107A..H (8 tests)
CE2109A..C (3 tests)
CE2115A..B (2 tests)
CE2201F..N (9 tests)
CE2208B
CE2401E..F (2 tests)
CE2404A..B (2 tests)
CE2407A..B (2 tests)
CFE2410A..B (2 tests)
EE3102C
CE3103A
CE3108A..B (2 tests)
CE3111A..B (2 tests)
CE3114A..B (2 tests)
CE3208A
CE3305A
CE3402C..D (2 tests)
CE3404B..D (3 tests)
CE3405C..D (2 tests)
CE3408A..C (3 tests)
EE3409F
EE3410F
CE3412A
CE3602A..D (4 tests)
CE3605A..E (5 tests)
CE3704M..0 (3 tests)
CE3804A.P (16 tests)
CE3806D..E (2 tests)
CE3905L

CE3901A is not applicable because this implementation raises NAME_ERROR if
a filename parameter to TEXT_IO.CREATE is non-null. This test assumes that

*_SE_ERROR will be raised.

q- EE3412C is not applicable for this implementation because their implementation
of the body of the package report does not use TEXT_IO.

Validation Summary Report AVF-VSR-90502/66

SD-Scicon pic XD Ada MC68000 V1.0-09 Chapter 3 - Page 4 of 6

TEST INFORMATION

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code, processing, or evaluation in order
to compensate for legitimate implementation behaviour. Modifications are made by the AVF in
cases where legitimate implementation behaviour prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include: adding a length clause to alter
the default size of a collection; splitting a Class B test into subtests so that all errors are detected:;
and confirming that messages produced by an executable test demonstrate conforming behaviour
that was not anticipated by the test (such as raising one exception instead of another).

Modifications were required for 16 tests.

C34006D s classified as passed if the test fails with messages "INCORRECT TYPE'SIZE"
or "INCORRECT OBJECT'SIZE". This test incorrectly assumes that the space allocated
for objects must be less than or equal to the minimum needed by the (sub) type. This is
not true for this implementation.

C45524A..N (14 tests) were modified because these tests expect that the result of continued
division of a real number will be zero; the Ada Standard, however, only requires that the
result be within the type’s SAFE_SMALL of zero. Thus, these tests were modified to
include a check that the result was in the smallest positive safe interval for the type. The
implementation passed ti.e modified tests. Each test was modified by inserting the following
cade after line 138;

The following test was split because syntax errors at one point resulted in the compiler not
detecting other errors in the test:

B97103E

37 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced by the XD Ada MC68000
V1.0-09 compiler was submitted to the AVF by the applicant for review. Analysis of these results
demonstrated that the compiler successfully passed all applicable tests, and the compiler exhibited
the expected behaviour on all inapplicable tests.

3.7.2 Test Method

Testing of the XD Ada MC68000 V1.0-09 compiler using ACVC Version 1.10 was conducted on-
site by a validation team from the AVF. The configuration in which the testing was performed is
described by the following designations of hardware and software components:

Validation Summary Report AVF-VSR-90502/66

SD-Scicon pic XD Ada MC68003 V1.0-09 Chapter 3 - Page 5 of 6

TEST INFORMATION

Host computer : VAX Cluster (comprising of a VAX 8600 and 7 MicroVAX
’s)

Host operating system : VMS 5.1

Target computer : MC68000 processor running on the MVME117-3FP MPU
VME module using an MC68881 floating point peripheral.

Compiler : XD Ada MC68000 V1.0-09

Assembler : XD Ada MC68000 V1.0-09

Linker : XD Ada MC68030 V1.0-04

Loader : XD Ada MC68000 S1.0-10

Downloader : XD Ada MC68030 V1.0-04

Runtime System : XD Ada MC68000 V1.0-09

The host and target computers were linked via a RS232 link.

A magnetic tape containing all tests except for withdrawn tests and tests requiring unsupported
floating-point precisions was taken on-site by the validation team for processing. Tests that make
use ~f implementation-specific values were customized before being written to the magnetic tape.
Tests requiring modifications during the prevalidation testing were not included in their modified
form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host computer.

After the test files were loaded to disk, the full set of tests was compiled and linked on the VAX
Cluster, then all executable images were transferred to the MC68000 target via the RS232 link and
run. Results were printed from the host computer.

The compiler was tested using command scripts provided by SD-Scicon plc and reviewed by the
validation team. The compiler was tested using all the following option settings. Details of these
settings are given at the end of Appendix B.

Tests were compiled, linked, and executed (as appropriate) using 8 computers and two target

computers. Test output, compilation listings, and job logs were captured on magnetic media and
archived at the AVF. The listings examined on-site by the validation team were also archived.

3.7.3 Test Site

Testing was conducted at SD-Scicon plc, Pembroke House, Pembroke Broadway, Camberley, Surrey,
GU1S 3XD, UK and was completed on February 4 1990.

Validation Summary Report AVF-VSR-90502/66

SD-Scicon pic XD Ada MC68000 V1.0-09 Chapter 3 - Page 6 of 6

DECLARATION OF CONFORMANCE

APPENDIX A

DECLARATION OF CONFORMANCE

SD-Scicon plc has submitted the following Declaration of Conformance
concerning the XD Ada MC68000 V1.0-09 compiler.

Validation Summary Report AVF-VSR-90502/66

SD-Scicon pic XD Ads MC68000 V1.0-09 Appendix A - Page 1 of 3

DECLARATION OF CONFORMANCE

DECLARATION OF CONFORMANCE

Compiler Implementor: SD-Scicon plc

Ada Validation Facility: The National Computing Centre Limited
Oxford Road
Manchester
M1 7ED

Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: XD Ada MC68000 V1.0-09

Host Architecture: VAX Cluster (comprising of a VAX 8600 and 7
MicroVAX II’s)

Host OS and Version: VMS 5.1

Target Architecture: MGOC68000 processor on an MVME117-3FP MPU

VME module using an MC68881 floating point
peripheral (bare machine).

Implementor’s Declaration

I, the undersigned, representing SD-Scicon plc, have implemented no deliberate extensions
to the Ada Language Standard ANSUMIL-STD-1815A in the compiler(s) listed in this
declaration. 1 declare that SD-Scicon pl is the owner of record of the Ada language
compiler(s) listed above and, as such, is responsible for maintaining said compiler(s) in
conformance to ANSI/MIL-STD-1815A. All certificates and registrations for Ada language
compiler(s) listed in this declaration shall be made only in the owner’s corporate name.

Date : 28 /4&4./ Qo

~

Bill Davison
WORLDWIDE CUSTOMER SERVICES MANAGER

Validation Summary Report AVF-VSR-90502/66

SD-Scicon pic XD Ada MC68000 V1.0-09 Appendix A - Page 2 of 3

DECLARATION OF CONFORMANCE

Owner’s Declaration

I, the undersigned, representing SD-Scicon plc, take full responsibility for implementation
and maintenance of the Ada compiler(s) listed above, and agree to the public disclosure
of the final Validation Summary Report. I declare that all of the Ada language compilers
listed, and their host/target performance, are in compliance with the Ada Language
Standard ANSI/MIL-STD-1815A.
. - N
é{[& \v/\ Date : é(t 42/‘ { “10
Bill Davison
WORLDWIDE CUSTOMER SERVICES MANAGER
Validation Summary Report AVF-VSR-90502/66
SD-Scicon pic XD Ads MC68000 V1.0-09 Appendix A - Page 3 of 3

APPENDIX F

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-dependent pragmas,
to certain machine-dependent conveutions as mentioned in chapter 13 of the Ada Standard, and
to certain allowed restrictions on representation clauses. The implementation-dependent
characteristics of the XD Ada MC68000 V1.0-09 compiler, as described in this Appendix, are
provided by SD-Scicon plc. Unless specifically noted otherwise, references in this appendix are to
compiler documentation and not to this report. Implementation-specific portions of the package
STANDARD, which are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;
type SHORT_INTEGER is range -32768 .. 32767,
type SHORT_SHORT_INTEGER is range -128 .. 127;

type FLOAT is digits 6 range -(2**128 - 2**104) ..
2°*128 - 2**104;
type LONG_FLOAT is digits 15 range -(2**1024 - 2**971) ..
2**1024 - 2**971;
type LONG_LONG-FLOAT is digits 18 range (-2**16384 - 2**16320)..
2**16384 - 2**16320

type DURATION is delta 1.E-4 range -131072.0000 .. 131071.9999;

end STANDARD;

Validation Summary Report AVF-VSR-90502/66
SD-Scicon pic XD Ada MC68000 V1.0-09 Appendix B

Appendix F

Implementation-Dependent
Characteristics

F.3 Specification of Package System

The package SYSTEM for the MC68000 configuration differs from that
of the standard MC68020 as foliows:

F.3.1 Changes to Package SYSTEM for the MC68000 Target

type UAME is (MIFTI g

SVSTEM_NAME : constant !AME := M4
STZRAGE_TNIT : constant := %

MEMIRY_SIZE : constant := 24

TICK : constant := ’# 88~

type ACDRESS_INT is range . .. MEMCRY_SIIZE-;

for ADCRESS_INT'SIZE use 3I;

Imptementation-Dependent Characteristics F-~1

F.6

F-2

Interpretation of Expressions Appearing in Address
Clauses
For address clauses on variables, the address expression is interpreted
as a Motorola 24-bit address.

In XD Ada for MC68000, values of type SYSTEM.ADDRESS are inter-
preted as integers in the range 0 .. 22* -1.

Implementation-Dependent Characteristics

Appendix F

Implementation-Dependent
Characteristics

NOTE

This appendix is not part of the standard definition of the
Ada programming language.

This appendix summarizes the following implementation-dependent
characteristics of XD Ada:

Listing the XD Ada pragmas and attributes.
Giving the specification of the package SYSTEM.

Presenting the restrictions on representation clauses and unchecked
type conversions.

Giving the conventions for names denoting implementation-
dependent components in record representation clauses.

Giving the interpretation of expressions in address clauses.

Presentir.,g the implementation-dependent characteristics of the
input-output packages.

Presenting other implementation-dependent characteristics.

Impiementation-Dependent Characteristics F-1

F.1 Implementation-Dependent Pragmas

XD Ada provides the following pragmas, which are defined elsewhere
in the text. In addition, XD Ada restricts the predefined language
pragmas INLINE and INTERFACE, provides pragma VOLATILE in
addition to pragma SHARED, and provides pragma SUPPRESS_ALL in
addition to pragma SUPPRESS. See Annex B for a descriptive pragma
summary.

* CALL_SEQUENCE_FUNCTION (see Annex B)

e CALL_SEQUENCE_PROCEDURE (see Annex B)

¢ EXPORT_EXCEPTION (see Section 13.9a.3.2)

e EXPORT_FUNCTION (see Section 13.9a.1.2)

e EXPORT_OBJECT (see Section 13.9a.2.2)

e EXPORT_PROCEDURE (see Section 13.9a.1.2)

¢ IMPORT_EXCEPTION (see Section 13.9a.3.1)

¢ IMPORT_FUNCTION (see Section 13.9a.1.1)

e IMPORT_OBJECT (see Section 13.9a.2.1)

e IMPORT_PROCEDURE (see Section 13.9a.1.1)

¢ LEVEL (see Section 13.5.1)

e LINK_OPTION (see Annex B)

e SUPPRESS_ALL (see Section 11.7)

o TITLE (see Annex B)

® VOLATILE (see Section 9.11)

F.2 Implementation-Dependent Attributes

XD Ada provides the following attributes, which are defined elsewhere
in the text. See Appendix A for a descriptive attribute summary.

e BIT (see Section 13.7.2)
¢ MACHINE_SIZE (see Section 13.7.2)
* TYPE_CLASS (see Section 13.7a.2)

F-2 implementation-Dependent Characteristics

F.3 Specification of the Package System

The package SYSTEM for the MC68020 is as follows:

F.3.1 Package System for the MC68020 Target

package SYSTEM is

type NAME is (MC68020);

SYSTEM_NAME
STORAGE_UNIT
MEMORY_SIZE

constant NAME ;= MC68020;
counstant := §;
constant := 2**3]1-1;

MIN_INT constant := -(2%*%3]1);
MAX_INT constant := 2*%**3]1-1;
MAX_DIGITS constant := 18;
MAX_MANTISSA constant := 31;
FINE_DELTA : constant (= 2.0%**(-31);
TICK 1 constant := 162 ,SE-6;
subtype PRIORITY is INTEGER range O .. 15;
subtype LEVEL is INTEGER range 0 .. 7;

-~ Address type

type ADDRESS is private;

ADDRESS_ZERO : constant ADDRESS;
type ADDRESS_INT is range MIN_INT .. MAX_INT;

function TO_ADDRESS (X : ADDRESS_INT) return ADDRESS;
function TO_ADDRESS {X ¢ (universal_integer}) return ADDRESS;
function TO_ADDRESS_INT (X : ADDRESS) return ADDRESS_INT;
function "+~ (LEFT : ADDRESS; RIGHT : ADDRESS_INT) return ADDRESS;
function "+" (LEFT : ADDRESS_INT; RIGHT : ADLRESS) return ADDRESS;
function "-" (LEFT : ADDRESS; RIGHT : ADDRESS) return ADDRESS_INT;
function "-" (LEFT : ADDRESS; RIGHT : ADDRESS_INT) return ADDRESS;

-- function "="

-- function /="
function "<"
function "<="
function ">"
function ">="

(LZPT, RIGHT

ADDRESS) return BOOLEAN;

(LEFT, RIGHT : ADDRESS) returnm BOOLBAN;

(LEFT, RIGHT

ADDRESS) return BOOLEAN;

(LEFT, RIGHT : ADDRESS) return BOOLEAN;
(LEFT, RIGHT : ADDRESS) returan BOOLEAN;
(LEFT, RIGHT : ADDRESS) returm BOOLEAN;

-- Note that because ADDRESS is a private type
-- the functions "=" and "/=" are already available

implementation-Dependent Characteristics F-3

-~ Generic functions used to access memory

generic
type TARGET is private;
function FETCH_FROM_ADDRESS (A : ADDRESS) returm TARGET;

gensric
type TARGET is private;
procedure ASSIGN_TO_ADDRESS (A : ADDRESS; T : TARGET);

type TYPE_CLASS is (TYPE_CLASS_ENUMERATION,
TYPE_CLASS_INTEGER,
TYPE_CLASS_FIXED_POINT,
TYPR_CLASS_FLOATING_POINT,
TYPE_CLASS_ARRAY,
TYPE_CLASS_RECORD,
TYPE_CLASS_ACCESS,
TYPE_CLASS_TASK,
TYPE_CLASS_ADDRESS) ;

-~ XD Ada hardware-oriented types and functions

type BIT_ARRAY is array (INTEGER raange <>) of BOOLEAN;
pragma PACK(BIT_ARRAY);

subtype BIT_ARRAY_8 is BIT_ARRAY (0 .. 7
subtype BIT_ARRAY_16 is BIT_ARRAY (0 .. 15
subtype BIT_ARRAY_32 is BIT_ARRAY (0 .. 31
subtype BIT_ARRAY_64 is BIT_ARRAY (0 .. 63

—~——

~e we we we

type UNSIGNED_BYTE is range O .. 255;
for UNSIGNED_BYTE'SIZE use 8;
function "not" (LEFT ¢ UNSIGNED_BYTE) retura UNSIGNED_BYTE;

function "and"” (LEFT, RIGHT : UNSIGNED_BYTE) return UNSIGNED_BYTE;
funetion "or"™ (LBFT, RIGHT : UNSIGNED_BYTE) return UNSIGNED_BYTE:;
function "xor" (LEFT, RIGHT : UNSIGNED_BYTE) return UNSIGNED_BYTE;

function TO_UNSIGNED_BYTE (X : BIT_ARRAY_8) return UNSIGNED_BYTE;
function TO_BIT_ARRAY_8 (X ¢ UNSIGNED_BYTE) returm BIT_ARRAY_S8;

type UNSIGNED_BYTE_ARRAY is array (INTEGER range <>) of UNSIGNED_BYTE;
type UNSIGNED_WORD is range 0 .. 65535;
for UNSIGNED_WORD'SIZE use 16;

function "not" (LEFT t UNSIGNED_WORD) retura UNSIGNED_WORD;
funetion "and” (LEFT, RIGHT : UNSIGNED_WORD) returm UNSIGNED_WORD;
funetion "or” (LEFT, RIGHT t: UNSIGNED_WORD) retura UNSIGNED_WORD;
function "xor” (LEFT, RIGHT : UNSIGNED_WORD) returm UNSIGNED_WORD;

function TO_UNSIGNED_WORD (X : BIT_ARRAY_16) return UNSIGNED_WORD;
function TO_BIT_ARRAY_16 (X : UNSIGNED_WORD) return BIT_ARRAY_16;

type UNSIGNED_WORD_ARRAY is array (INTEGER range <>) of UNSIGNED_WORD:

type UNSIGNED_LONGWORD is range MIN_INT .. MAX_INT;
for UNSIGNED_LONGWORD’SIZE use 32;

F-4 Imptementation-Dependent Characteristics

funetion "not" (LEFT ¢ UNSIGNED_LONGWORD) return UNSIGNED_LONGWORD;
function "and” (LEFT, RIGHT : UNSIGNEZD_LCNGWORD) retura UNSIGNED_LONGWORD;
function "or" (LEFT, RIGHT : UNSIGNED_LONGWORD) return UNSIGNED_LONGWORD;
funetion "xor" (LEFT, RIGHT : UNSIGNED_LONGWORD) retura UNSIGNED_LONGWORD;
function TO_UNSIGNED_LONGWORD (X : BIT_ARRAY_32) retura UNSIGNED_LONGWORD;
function TO_BIT_ARRAY_32 (X : UNSIGNED_WORD) returam BIT_ARRAY_32;

type UNSIGNED_LONGWORD_ARRAY is array (INTEGER range <>) of UNSIGNED_LONGWORD;

Conventional names for static subtypes of type UNSIGNED_LONGWORD

subtype
subtype
subtype
subtype
subtype
subtype
subtype
aubtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subty-
subt-
subty
subtype
subtype
subtype
subtype
subtype
subtype
subtype

private

UNSIGNED_1

UNSIGNED_2

UNSIGNED_3

UNSIGNED_4

UNSIGNED_S

UNSIGNED_6

UNSIGNED_7

UNSIGNED_8

UNSIGNED_S

UNSIGNED_10
UNSIGNED_11
UNSIGNED_12
UNSIGNED_13
UNSIGNED_14
UNSIGNED_1S
UNSIGNED_16
UNSIGNED_17
UNSIGNED_18
UNSIGNED_19
UNSIGNED_20
UNSIGNED_21
INSIGNED_22
JNSIGNED_23
UNSIGNED_24
UNSIGNED_2S
UNSIGNED_26
UNSIGNED_27
UNSIGNED_28
UNSIGNED_29
UNSIGNED_30
UNSIGNED_31

-- Not shown

end SYSTEM;

ie
is
is
is
is
is
is
is
is
is
is
is
is
is

UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD

Implementation-Dependent Characteristics F-§

range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
range

oY eNeoRN-NolsNoNoRoNesNeNolNoNaNoNoNolNoNeNeNoNelojojoRele oo Ne ol

2w
2>
2%

2%
v
2%»
2%
2%

1=
2-
3-
4~
S-
6~
7~
8-
S-

T e
e N6 we e he 6 ne e S

2%
«o 2%**10-1;
2**11-1;
2%%12-1;
2**13-1;
2**14-1;
2**15-1;
2%*16-1;
2**17-1;
2%*18-1;
2**19-1;
2*%20-1;
2*%21-1;
2%%22-1;
2**23-1;
2**24-1;
2%%25-1;
2#%26-1;
2**27-1:
2++28-1;
2%*%29-1;
2**30-1;
2+*31-1;

F.4

Restrictions on Representation Clauses

The representation clauses allowed in XD Ada are length, enumeration,
record representation, and address clauses.

In XD Ada, a representation clause for a generic formal type or a type
that depends on a generic formal type is not allowed. In addition, a
representation clause for a composite type that has a component or
subcomponent of a generic formal type or a type derived from a generic
formal type is not allowed.

Restrictions on length clauses are specified in Section 13.2; restrictions
on enumeration representation clauses are specified in Section 13.3; and
restrictions on record representation clauses are specified in Section
13.4.

F.5

Conventions for Implementation-Generated Names
Denoting Implementation-Dependent Components in
Record Representation Clauses

XD Ada does not allocate implementation-dependent components in
records.

F.6

F-6

Interpretation of Expressions Appearing in Address
Clauses

Expressicns appearing in address clauses must be of the type ADDRESS
defined in package SYSTEM (see Section 13.7a.1 and Section F.3).

XD Ada allows address clauses for variables (see Section 13.5). For
address clauses on variables, the address expression is interpreted as a
Motorola full 32-bit address.

XD Ada supports address clauses on task entries to allow interrupts to
cause a reschedule directly. For address clauses on task entries, the
address expression is interpreted as a Motorola exception vector offset.

Implementation-Dependent Characteristics

In XD Ada for MC68020, values of type SYSTEM.ADDRESS are inter-

preted as integers in the range 0 .. 252 1. As SYSTEM.ADDRESS is
a private type, the only operations allowed on objects of this type are
those given in package SYSTEM.

F.7 Restrictions on Unchecked Type Conversions

XD Ada supports the generic function UNCHECKED_CONVERSION
with the restrictions given in Section 13.10.2.

F.8 Implementation-Dependent Characteristics of
Input-Output Packages

The packages SEQUENTIAL_IO and DIRECT_IO are implemented as
null packages that conform to the specification given in the Reference
Manual for the Ada Programming Language. The packages raise the ex-
ceptions specified in Chapter 14 of the Reference Manual for the Ada
Programming Language. The three possible exceptions that are raised by
these packages are given here, in the order in which they are raised.

Exception When Raised

STATUS_ERROR Raised by an attempt to operate upon or close a file
that is not open (no files can be opened).

NAME_ERROR Raised if a file name is given with a call of CREATE
or OPEN.

USE_ERROR Raised if exception STATUS_ERROR is not raised.

MODE_ERROR cannot be raised since no file can be opened (therefore
it cannot have a current mode).

The predefined package LOW_LEVEL _IO is not provided.

Implementation-Dependent Characteristics F~7

F.8.1 The Package TEXT_IO

The package TEXT_IO conforms to the specification given in the
Reference Manual for the Ada Programming Language. String input-
output is implemented as defined. File input-output is supported to
STANDARD_INPUT and STANDARD_OUTPUT only. The possible
exceptions that are raised by package TEXT_IO are as follows:

Exception When Raised

STATUS_ERROR Raised by an attempt to operate upon or close a file
that is not open (no files can be opened).

NAME_ERROR Raised if a file name is given with a call of CREATE
or OPEN.

MODE_ERROR Raised by an attempt to read from, or test for

the end of, STANDARD_OUTPUT, or to write to
STANDARD_INPUT.

END_ERROR Raised by an attempt to read past the end of
STANDARD_INPUT.
USE_ERROR Raised when an unsupported operation is attempted,

that would otherwise be legal.

The type COUNT is defined as follows:
type COUNT is range O .. INTEGER'LAST;

The subtype FIELD is defined as follows:

type FIELD is INTEGER range 0 .. 255;

F.8.2 The Package IO_EXCEPTIONS

The specification of the package IO_EXCEPTIONS is the same as that
given in the Reference Manual for the Ada Programming Language.

F.9 Other Implementation Characteristics

Implementation characteristics associated with the definition of a main
program, various numeric ranges, and implementation limits are sum-
marized in the following sections.

F-8 Implementation-Dependent Characteristics

F.9.1

Definition of a Main Program

Any library procedure can be used as a main program provided that it
has no formal parameters.

F.9.2 Values of Integer Attributes

The ranges of values for integer types declared in package STANDARD
are as follows:

SHORT_SHORT_INTEGER -27 .. 27 -1 (-128 .. 127)
SHORT_INTEGER 2%, 28 (-32768 .. 32767)
INTEGER 232 (-2147483648 .. 2147483647)

For the package TEXT_IO, the range of values for types COUNT and
FIELD are as follows:

COUNT 0..2%" 1 (0 .. 2147483647)
FIELD 0. 255

F.9.3 Values of Floating-Point Attributes

Floating-point types are described in Section 3.5.7. The representation
attributes of floating-point types are summarized in the following table:

implementation-Dependent Characteristics F-9

FLOAT LONG_FLOAT LONG_LONG_FLOAT

DIGITS . 6 15 18
SIZE 32 64 96
MANTISSA 21 51 61
EMAX 84 204 244
EPSILON 2 2-% 2%
SMALL 2-% 2-us y
LARGE 284_263 2201_2153 22“_2183
SAFE_EMAX 125 1021 16382
SAFE_SMALL 2712 2~ 2-168
SA.FE LARGE 2!7.5_2104 21021 _2970 216382_216321
FIRST _(2123_2104) -(2102‘-297‘) _(215354__ 216320)
LAST 2128_2104 21024_2971 216384_216320
MACHINE_RADIX 2 2 2
MACHINE_MANTISSA 24 53 64
MACHINE_EMAX 128 1024 16384
MACHINE_EMIN -125 -1021 -16382
MACHINE_ROUNDS FALSE FALSE FALSE
MACHINE_OVERFLOWS FALSE FALSE FALSE

F-10 Implamentation-Dependent Characteristics

F.9.4 Attributes of_Type DURATION

The values of the significant attributes of type DURATION are as

follows:

DURATION 'DELTA 1.E-4 (1074
DURATION 'SMALL 2#1.04E-14 2
DURATION 'FIRST ~131072.0000 (-2%)
DURATION’LAST 131071.9999 (2V-'DELTA)

F.9.5 Implementation Limits

Limit Description

255 Maximum identifier length (number of characters)

255 Maximum number of characters in a source line

210 Maximum number of library units and subunits in a compilation
closure'

22 Maximum number of library units and subunits in an execution
closure?

2% 1 Maximum number of enumeration literals in an enumeration
type definition

2'° -1 Maximum number of lines in a source file

2 1 Maximum number of bits in any object

26 1 Maximum number of exceptions

'The compilation closure of a given unit is the total set of units that the given unit
depends on, directly and indirectly.

2The execution closure of a given unit is the compilation closure plus all associated
secondary units.

implementation-Dependent Characteristics F-11

LINK

LINK

Creates an executable image file for the specified units.

Format

LINK unit-name [file-spec],...]]

LINK/NOMAIN unit-name],...] file-spec],...

Command Qualifiers
/AFTER =time

IBATCH_LOG = file-spec

/BRIEF

ICOMMANDI = file-spec]
/INO]DEBUG] = file-spec]
/ELABORATION = file-spec

/FULL

/INOJIMAGE[= file-spec}

/[NOJKEEP

/INOJLOG

/[NO]MAIN
/INOIMAP] =file-spec]
INAME = job-name
/INOJNOTIFY
IOUTPUT =file-spec

/INOJPRINTER|[= queue-name]

/IQUEUE = queue-name
ISUBMIT
TWAIT

Parameter Qualifiers
/LIBRARY

IMAPPING

[TARGET

Defaulits
JAFTER = TODAY
See text.
See text.
See text.
INODEBUG
See text.
See text.
/IMAGE
IKEEP
INOLOG
/MAIN
INOMAP
See text.
INOTIFY

{QUTPUT = SYSSOUTPUT

/INOPRINTER

/QUEUE = SYS$BATCH
WAIT

/WAIT

Defaults
See text.
See text.
See text.

LINK

Prompts

_Unit:
_File:

Command Parameters

unit-name
By default (or if you specify the /IMAIN qualifier):

* You can specify only one unit, the source code of which must be
written in XD Ada.

* The parameter unit-name specifies the XD Ada main program, which
must be a procedure or function with no parameters. If the main
program is a function, it must return a value of a discrete type; the
function value is used as the VMS image exit value.

If you specify the INOMAIN qualifier:

* You can specify one or more foreign units that are to be included
in the executable image. The unit names may include percent
signs (%) and asterisks (*) as wildcard characters. (See the
<REFERENCE > (VMS_DCL_CONCEPTS) for detailed information
on wildcard characters.)

¢ The image transfer address comes from one of the foreign files
specified.

file-spec

Specifies a list of object files, object libraries, mapping definition files,
and target definition files, that are to be used in linking the program.
The default directory is the current default directory. The default file
type is .XOB, unless the /[LIBRARY, /MAPPING, or ITARGET qualifier is
used. No wildcard characters are allowed in a file specification.

If the file is an object library or shareable image library, you must use
the /LIBRARY qualifier. The default file type is .XLB.

If the file is a mappin§ definition file, you must use the /MAPPING
qualifier. The default file type is .MPD.

If the file is a target definition file you must use the /TARGET qualifier.
The default file type is .TGD.

LINK

If you specify the INOMAIN qualifier, the image transfer address comes
from one of the files (not units) specified.

Description

The LINK command performs the following steps:

1.
2.

Runs the prebuild phase to generate an elaboration list.

Checks if a pragma LINK_OPTION is specified for the main pro-
gram, and if specified, verifies that the designated link option name
is available in the current program library. If available, the copied
link option files in the library corresponding to the link option are
used, unless overridden by the /TTARGET or IMAPPING qualifiers.

Note that, unlike the CHECK command, the pragma LINK_
OPTION association for units other than the main program unit
is not checked.

If no target link option is given for the main program unit or the
designated target link option is not found in the library, and the log-
ical symbol XDADASTARGET_DEF is not defined, and a /TARGET
qualifier is not specified on the LINK command line, an error is is-
sued. If no mapping link option is given for the main program unit
or the designated mapping link option is not found in the library,
and the logical symbol XDADASMAPPING_DEEF is not defined,
and a IMAPPING qualifier is not specified on the XDACS LINK
command line, the default mapping in the target definition file is
used.

If LINK/NOMAIN is not specified, checks that only one unit is
specified and that it is an XD Ada main program.

Forms the closure of the main program (LINK/MAIN) or of the
specified units (LINK/NOMAIN) and verifies that all units in the
closure are present, current and complete. If XDACS detects an
error, the operation is terminated at the end of the prebuild phase.

Creates a DCL command file for the builder. The command file is
deleted after the LINK operation is completed or terminated, unless
LINK/COMMAND is specified. If LINKICOMMAND is specified,
the command file is retained for future use, and the build phase is
not carried out.

LINK

6. Unless the (COMMAND qualifier is specified, performs the build
phase as follows:

a. By default (LINK/WAIT), the command file generated in step
4 is executed in a subprocess. You must wait for the build
operation to terminate before issuing another command. Note
that when you specify the /IWAIT qualifier (the default), process
logical names are propagated to the subprocess generated to
execute the command file.

b. If you specify the /SSUBMIT qualifier, the builder command file
is submitted as a batch job.

7. If the IDEBUG qualifier is included in the command line the debug
symbol table information is placed in a file with a default file type
of .XDS.

8. Creates a loadable output file with a default file type of .RLD.

XDACS output originating before the builder is invoked is reported
to your terminal by default, or to a file specified with the /OUTPUT
qualifier. Diagnostics are reported to your terminal, by default, or to
a log file if the LINK command is executed in batch mode (XDACS
LINK/SUBMIT).

See <REFERENCE > (target), < REFERENCE >(map), and <REFERENCE > (build)
for more information on the XD Ada target-specific builder commands.

Command Qualifiers

/AFTER =time

Requests that the batch job be held until after a specific time, when
the LINK command is executed in batch mode (LINK/SUBMIT). If the
specified time has already passed, the job is queued for immediate
processing.

You can specify either an absolute time or a combination of absolute
and delta time. See the < REFERENCE >(VMS_DCL_CONCEPTS)
(or type HELP Specify Date-Time at the DCL prompt) for complete
information on specifying time values.

/IBATCH_LOG =file-spec
Provides a file specification for the batch log file when the LINK com-
mand is executed in batch mode (LINK/SUBMIT).

LINK

If you do not give a directory specification with the file-spec option, the
batch log file is created by defauit in the current default directory. If
you do not give a file specification, the default file name is the job name
specified with the INAME = job-name qualifier. If no job name has been
specified, the program library manager creates a file name comprising
up to the first 39 characters of the first unit name specified. If you
specified LINK/NOMAIN and no job name and there is a wildcard
character in the first unit specified, the program library manager uses
the default file na:ne XDACS_LINK. The default file type s .LOG.

IBRIEF

Directs the builder to produce a brief image map file. The /BRIEF
qualifier is valid only if you alsc specify the IMAP qualifier with the
LINK command. The /BRIEF qualifier is incompatible with the /FULL
qualifier.

A brief image map file contains only the following sections:

* Object module information
* Segment mapping information
* Link run statistics

See also the description of the /FULL qualifier.

/ICOMMAND(=file-spec]

Controls whether the builder is invoked as a resuit of the LINK com-
mand, and determines whether the command file generated to invoke
the builder is saved. If you specify the /COMMAND qualifier, XDACS
does not invoke the builder, and the generated command file is saved
for you to invoke or submit as a batch job.

The file-spec option allows you to enter a file specification for the gen-
erated command file. The default directory for the command file is the
current default directory. By default, XDACS provides a file name com-
prising up to the first 39 characters of the first unit name specified. If
you specified LINK/INOMAIN and you used a wildcard character in the
first name unit specified, the program library manager uses the default
file name XDACS_LINK. The default file type is .COM. No wildcard
characters are allowed in the file specification.

By default, if the /COMMAND qualifier is not specified, XDACS deletes
the generated command file when the LINK command completes
normally or is terminated.

LINK

IDEBUG[=file-spec]
INODEBUG (D)

Controls whether a debugger symbol table is created along with the
loadable image file.

By default, no debugger symbol table is created.

/ELABORATION =file-spec

Provides a file specification for the nbject file generated by the LINK
command. The file is retained bv XDACS only when the /{COMMAND
qualifier is used: that is, when the result of the LINK operation is to
produce a builder command file for future use, rather than to invoke the
builder immediately.

The generated object file contains the code that directs the elaboration
of library packages in the closure of the units specified. Unless you also
specify the INOMAIN qualifier, the object file also contains the image
transfer address.

The default directory for the generated object file is the current default
directory. The default file type is .XOB. No wildcard characters are
allowed in the file specification.

By default, if you do not specify the [ELABORATION qualifier. XDACS
provides a file name comprising up to the first 39 characters of the first
unit name specified.

By default, if you do not specify the /COMMAND qualifier, XDACS
deletes the generated object file when the LINK command completes
normaily or is terminated.

JFULL

Directs the builder to produce a full image map file, which is the most
complete image map. The /FULL qualifier is valid only if you also
specify the IMAP qualifier with the LINK command. Also, the /[FULL
qualifier is incompatible with the /BRIEF qualifier.

A full image map file contains the following sections:

¢ Object module information

¢ Segment mapping information
¢ Symbol address information

* Exception numbers

¢ Link run statistics

LINK

/IMAGE[=flle-spec] (D)

INOIMAGE

Controls whether the LINK command creates a loadable image file and
optionally provides a file specification for the file. The default file type
is .RLD. No wildcard characters are allowed in the file specification.

By default, an executable image file is created with a file name compris-
ing up to the first 39 characters of the first unit name specified.

/KEEP (D)
INOKEEP
Controls whether the batch log file generated is deleted after it

is printed when the LINK command is executed in batch mode
(LINK/SUBMIT).

By default, the log file is not deleted.

ILOG

/NOLOG (D)

Controls whether a list of all the units included in the executable image
is displayed. The display shows the units according to the order of
elaboration for the program.

By default, a list of all the units included in the executable image is not
displayed.

IMAIN (D)
INOMAIN
Controls where the image transfer address is to be found.

The /IMAIN qualifier indicates that the XD Ada unit specified deter-
mines the image transfer address, and hence is to be a main program.

The INOMAIN qualifier indicates that the image transfer address comes
from one of the files specified, and not from one of the XD Ada units
specified.

By default (/MAIN), only one XD Ada unit can be specified, and that
unit must be an XD Ada main program.

IMAP[= file-spec]

/INOMAP (D)

Controls whether the builder creates an image map file and optionally
provides a file specification for the file. The default directory for

the image map file is the current directory. The default file name
comprises up to the first 39 characters of the first unit name specified.

LINK

The default file type is .MAP. No wildcard characters are allowed in the
file specification.

If neither the /BRIEF nor the /FULL qualifier is specified with the IMAP
qualifier, /BRIEF is assumed.

By default, no image map file is created.

INAME = job-name

Specifies a string to be used as the job name and as the file name for
the batch log file when the LINK command is executed in batch mode
(LINK/SUBMIT). The job name can have from 1 to 39 characters.

By default, if you do not specify the INAME qualifier, XDACS creates
a job name comprising up to the first 39 characters of the first unit
name specified. If you specify LINK/INOMAIN but do not specify the
INAME qualifier, and you use a wildcard character in the first unit
name specified, the program library manager uses the default file name
XDACS_LINK. In these cases, the job name is also the file name of the
batch log file.

INOTIFY (D)

INONOTIFY

Controls whether a message is broadcast when the LINK command is
executed in batch mode (LINK/SUBMIT). The message is broadcast to
any terminal at which you are logged in, notifying you that your job has
been completed or terminated.

By default, a message is broadcast.

/OUTPUT =file-spec

Requests that any output generated before the builder is invoked be
written to the file specified rather than to SYSSOUTPUT. Any diagnostic
messages are written to both SYSSOUTPUT and the file.

The default directory is the current default directory. If you specify a
file type but omit the file name, the default file name is XDACS. The
default file type is .LIS. No wildcard characters are allowed in the file
specification.

By default, the LINK command output is written to SYSSOUTPUT.

LINK

/PRINTER[= queue-name]

INOPRINTER (D)

Controls whether the log file is queued for printing when the LINK
command is executed in batch mode (LINK/SUBMIT) and the batch job
is completed.

The /PRINTER qualifier allows you to specify a particular print queue.
The default print queue for the log file is SYS§PRINT.

By default, the log file is not queued for printing. If you specify
INOPRINTER, /KEEP is assumed.

/QUEUE = queue-name
Specifies the batch job queue in which the job is entered when the
LINK command is executed in batch mode (LINK/SUBMIT).

By default, if the /QUEUE qualifier is not specified, the job is placed in
the default system batch job queue, SYSSBATCH.

/ISUBMIT

Directs XDACS to submit the command file generated for the builder
to a batch queue. You can continue to issue commands in your current
process without waiting for the batch job to complete. The builder
ou*put is written to a batch log file.

By default, the generated command file is executed in a subprocess
(LINK/WAIT).

IWAIT

Directs XDACS to execute the command file generated for the builder
in a subprocess. Execution of your current process is suspended until
the subprocess completes. The builder output is written directly to
your terminal. Note that process logical names are propagated to the
subprocess generated to execute the command file.

By default, XDACS executes the command file generated for the builder
in a subprocess: you must wait for the subprocess to terminate before
you can issue another command.

Parameter Qualifiers

ILIBRARY
Indicates that the associated input file is an object module library to be

searched for modules to resolve any undefined symbols in the input
files. The default file type is .XLB.

LINK

By default, if you do not specify the 'LIBRARY qualifier_ the file is
assumed to be an object file with a default file type of . XOB.

IMAPPING

Indicates that the associated input file is a mapping definition file.
Mapping definition files control the location of the program on the
target system. The default file type is .MPD.

By default, if you do not specify the IMAPPING qualifier, the file is
assumed to be an object file with a default file type of .XOB.

ITARGET

Indicates that the associated input file is a target definition file. Target
definition files describe the target system’s memory. The default file
type is . TGD.

By default, if you do not specify the ITARGET qualifier, the file is
assumed to be an object file with a default file type of . XOB.

Examples

10

1. XDACS> LINK CONTROL_LOOP
%ACS-I-CL_LINKING, Invoking the XD Ada Builder

The LINK command forms the closure of the unit CONTROL_
LOQP, which is an XD Ada main program, creates a builder com-
mand file and package elaboration file, then invokes the command
file in a spawned subprocess.

2. XDACS> LINK/SUBMIT CONTROL_LOOP LOOP_FUNCTIONS/LIBRARY

%SACS-I1-CL_SUBMITTED, Job CUNTROL_LOOJP (queue ALL_BATCH, entry 134)
started on FAST_BATCH

The LINK command instructs the builder to link the closure of the
XD Ada main program CONTROL_LOOP against the library LOOP_
FUNCTIONS.XLB. The /SUBMIT qualifier causes XDACS to submit
the builder command file as a batch job.

LINK

ADAUS> LINKJNOMAIN FLUIZ_VOULUME, IUNHTER MMIITOR.XTB

%I\CS-I-—v_:L_LI:JKIIIv;, Invoking =he X0 Ada Bullder

The LINK command builds all the XD Ada units FLUID_VOLUME
and COUNTER with the foreign object file MONITOR.XOB. The
INOMAIN qualifier tells the builder that the image transfer address

is in the foreign file.

11

XDADA

XDADA

Invokes the XD Ada compiler to compile one or more source files.

Format

XDADA file-spec],...]

Command Qualifiers
/LIBRARY = directory-spec

Positional Qualifiers

/INOJANALYSIS_DATA[= file-spec]

/[NOJCHECK
J/INOJCOPY_SOURCE
/INO]DEBUG] = (option....})]

/(NOJDIAGNOSTICS| = file-spec]

/INOJERROR_LIMIT[=n]
/[INQJLIST[= file-spec]
/{NOJLOAD(= optioni
/{NOJMACHINE_CODE
/{NOINOTE_SCURCE -
/[INOJOPTIMIZE[= (option]....})}
/INOJPREDEFINED_UNIT
/INOJSHOW(= option]
/INOJSYNTAX_ONLY

I{NOJWARNINGS| = (option|,...]}]

Defauits
/LIBRARY = XDADASLIB

Defaults
INOANALYSIS_DATA
See text.
IGOPY_SOURCE
/DEBUG=ALL
INODIAGNOSTICS
/ERROR_LIMIT =30
INOLIST

/LOAD = REPLACE
INOMACHINE_CODE
INOTE_SOQURCE

See text.
INOPREDEFINED_UNIT
/SHOW = PORTABILITY
INOSYNTAX_ONLY
See text.

Prompt

_File:

Command Parameters

12

file-spec

Specifies one or more XD Ada source files to be compiled. If you do
not specify a file type, the compiler uses the default file type of .ADA.
No wildcard characters are allowed in the file specifications.

XDADA

[f you specify several source files as arguments to the XDADA com-
mand, you must separate adjacent file specifications with a comma (,).
If you specify more than one input file, you must separate adjacent file
specifications with a comma (,). You cannot use a plus sign (+) to
separate file specifications.

Description

The XDADA command is one of three commands used to compile
compilation units. The other two are the XDACS COMPILE and
RECOMPILE commands. All three commands invoke the XD Ada
cross-compiler for the < REFERENCE > (proc).

The XDADA command can be used at any time to compile one or
more source files ((ADA); it must be used to compile units into a library
for the first time or to compile again a set of units where the order of
compilation has changed.

XD Ada source files are compiled in the order in which they appear
on the command line. If a source file contains more than one XD

Ada compilation unit, the units are compiled in the order in which
they appear in the source file. The Ada rules governing the order in
which compilation units are compiled are summarized in Version 2.0 of
< REFERENCE > (dap).

The XDADA command compiles units in the context of the current
program library. Whenever a compilation unit is successfully compiled,
the current program library is updated as follows:

* An object file (.XOB), which contains the object module, is usuaily
created in the library.
¢ A compilation unit file ((ACU) is always created in the library.

¢ Unless suppressed by the INOCOPY_SOURCE qualifier on the
XDADA command, the file specification of the XD Ada source file
is noted in the library.

¢ The library index file is revised.

¢ If the unit was previously compiled into the program library, the
obsolete versions of the associated library files are deleted.

See <REFERENCE>(prg lib_mgr) and Version 2.0 of <REFERENCE > (dap)

for more information on program libraries, sublibraries, and compila-
tion.

13

XDADA

Command Qualifiers

ILIBRARY =directory-spec

Specifies the program library that is to be the current program library
for the duration of the compilation. The directory specitied must be an
already existing XD Ada program library. No wildcard characters are
allowed in the directory specification.

By default, the current program library is the program library last spec-
ified in a SET LIBRARY command. The logical name XDADASLIB is
assigned to the program library specified in a SET LIBRARY command.

Positional Qualifiers

14

IANALYSIS_DATA[= file-spec]

INOANALYSIS_DATA (D) :
Controls whether a data analysis file containing source code cross-
reference and static analysis information is created. The data analysis
file is supported only for use with DIGITAL layered products, such as
the VAX Source Code Analyzer.

One data analysis file is created for each source file compiled. The
default directory for data analysis files is the current default directory.
The default file name is the name of the source file being compiled.
The default file type is .ANA. No rvildcard characters are allowed in the
file specification.

By default, no data analysis file is created.

/{CHECK

INOCHECK

Controls whether all run-time checks are suppressed. The INOCHECK
qualifier is equivalent to having all possible SUPPRESS pragmas in the
source code.

Explicit use of the /CHECK qualifier overrides any occurrences of the
pragmas SUPPRESS and SUPPRESS_ALL in the source code, without
the need to edit the source code.

By default, run-time checks are suppressed only in cases where a
pragma SUPPRESS or SUPPRESS_ALL appears in the source.

See the < REFERENCE > (xlrm) for more information on the pragmas
SUPPRESS and SUPPRESS_ALL.

XDADA

/{COPY_SOURCE (D)

/NOCOPY_SOURCE

Controls whether a copied source tile 1. ADC) is created in the current
program library when a compilation unit is compiled without error. The
RECOMPILE command (and thus the COMPILE command) requires
that a copied source file exist in the current program library for any unit
that is to be recompiled.

By default, a copied source tile is created in the current program library
when a unit is compiled without error

/{DEBUG[= (option{,...])] (D)

/INODEBUG

Controls which compiler debugging options are provided. You

can debug XD Ada programs with the XD Ada Debugger (see
<REFERENCE > (debug_ch)). You can request the following options:

ALL Provides both SYMBOLS and TRACEBACK.

NONE Provides neither SYMBOLS nor TRACEBACK.

INOISYMBOLS Controls whether debugger svmbol records are in-
cluded in the object file.

INOJTRACEBACK Controls whether traceback information (a subset of

the debugger symbol information) is included in the
object file.

By default, both debugger symbol records and traceback information are
included in the object tile ((DEBUG = ALL. or equivalently: /DEBUG).

/IDIAGNOSTICS[= file-spec]

/NODIAGNOSTICS (D)

Controls whether a diagnostics file containing compiler messages and
diagnostic information is created. The diagnostics file is supported only
for use with DIGITAL layered products, such as the VAX Language-
Sensitive Editor.

One diagnostics file is created for each source file compiled. The
default directory for diagnostics files is the current default directory.
The default file name is the name of the source file being compiled.
The default file type is .DIA. No wildcard characters are allowed in the
file specification.

By default, no diagnostics file is created.

15

-~ -
SaTN Ly ,
N ke Ty

16

CERRGR_LIMIT =1

NOERROH_LIMIT

Contreks whether caesmen e sy conunand tor as given
gl anit s penminatea apoen fhe ocourrence of the nth E-level
erver aathun thar v

Sleer sounts are bt accuniulated acioss o sequence of compilation
weats i the R 1\L‘u\ LT = noption s specified, each compifation
umt inav have up te "errers without terminating the compilation,

Svheh the errov mi s ;c.\chua‘ within a compilation unit, compilation of
nut it s terminated. but compilation of <ubsequent units continues.

The ERROR_LIMIT =0 option is equivalent to ERROR_LIMIT = 1.

By detault, execution ot the XDADA command is terminated for a given
compilation unit upon the occurrence of the 30th E-level error within
that unit (equivalent to ;ERROR_LIMIT =30

ILIST[=file-spec]

INOLIST (D)

Controls whether a listing file is created. One listing file is created
for each source file compiled. The default directory for listing files is
the current default directorv. The default file name is the name of the
source file being compiled. The default file type is .LIS. No wildcard
characters are allowed in the file specification.

By default, the XDADA command does not create a listing file.

/LOAD[= option]

INOLOAD

LOAD =REPLACE (D)

Controls whether the current program library is updated with the
successfully processed units contained in the specified source files.
Depending on other qualifiers specified (or not specified) with the ADA
command, processing can involve full compilation, syntax checking
only, and so on. The INOLOAD qualifier causes the units in the
specified source files to be processed, but prevents the current program
library from being updated.

XDADA

You can specify the following option:
[NOJREPLACE

Controls whether a unit added to the current program library
replaces an existing unit with the same name. If you specify the
NOREPLACE option, the urit is added to the current program
library only if no existing unit has the same name, except if the new
unit is the corresponding body of an existing specification or vice
versa.

By default, the current program library is updated with the success-
fully processed units, and a unit added to the current program library
replaces an existing unit with the same name.

/MACHINE_CODE

INOMACHINE_CODE (D)

Controls whether generated machine code (approximating assembly
language notation) is included in the listing file.

By default, generated machine code is not included in the listing file.

INOTE_SOURCE (D)

{NONOTE_SOURCE

Controls whether the file specification of the source file is noted in the
program library when a unit is compiled without error. The COMPILE
~smmand uses this information to locate revised source files.

By default, the file specification of the source file is noted in the pro-
gram library when a unit is compiled without error.

J/OPTIMIZE[= (option{,...})]

/INOOPTIMIZE

Controls the level of optimization that is applied in producing the
compiled code. You can specify one of the following primary options:

TIME Provides full optimization with time as the primary
optimization criterion. Overrides any occurrences of
the pragma OPTIMIZE(SPACE) in the source code.

SPACE Provides full optimization with space as the primary
optimization criterion. Overrides any occurrences of
the pragma OPTIMIZE(TIME) in the source code.

17

XDADA

18

DEVELOIMENT

NONE

Recomunended when active development of a pro-
gram is in progress. Provides some optimization,
but development considerations and ease of debug-
ging take preference over optimization. This optio..
overrides pragmas that establish a dependence on a
subprogram (the pragma INLINE), and thus reduces
the need for recompilations when such bodies are
modified.

Provides no optimization. Suppresses expansicns in
line of subprograms, including those specified by the
pragma INLINE.

The INOOPTIMIZE qualifier is equivalent to /OPTIMIZE = NONE.

By default, the XDADA command applies full optimization with space
as the primary optimization criterion (like /OPTIMIZE = SPACE, but
observing uses of the pragma OPTIMIZE).

The /OPTIMIZE qualifier also has a set of secondary options that you
can use separately or together with the primary options to override the
default behavior for expansion in line.

The INLINE secondary option can have the following values (see the
<REFERENCE > (rts) for more information about expansion in line).

INLINE:NONE

INLINE:NORMAL

Disables subprogram expansion in line. This option
overrides any occurrences of the pragma INLINE

in the source code, without having to edit tke
source file. It also disables implicit expansion in
line of subprograms. (Implicit expansion in line means
that the compiler assumes a pragma INLINE for
certain subprograms as an optimization.) A call to a
subprogram in another unit is not expanded in line,
regardless of the /OPTIMIZE options in effect when
that unit was compiled.

Provides normal subp-ogram expansion in line.

Subprograms to which an explicit pragma INLINE
applies are expanded in line under certain condi-
tions. In addition, some subprograms are implicitly
expanded in line. The compiler assumes a pragma
INLINE for calls to some small local subprograms
(subprograms that are declared in the same unit as
the unit in which the call occurs).

XDADA

INLINE:SLBPROGRAMS rovides manimal subprogram expansion in line.

In addition to the normal subprogram expansion in
line that occurs when INLINE:NORMAL is specified
this option resulls in implicit expansion in line of
scome small subprograms declared in other units.

Ihe compiler assumes a pragma INLINE for any
subprogram it it improves execution speed and
reduces code size. This option may establish a
dependence on the body of another unit, as would be
the case if a pragma INLINE were specified explicitly
in the source code.

INLINE:MAXIMAL Provides maximal subprogram expansion in line.

NMaximal subprogram expansion in line occurs as for

INLINE:SUBPROGRAMS.

By default. the /OPTIMIZE qualifier primary options have the following
secondary-option values:

-OPTIMIZE=TIME =(INLINE:NORMAL)
OPTIMIZE=SPACE =(INLINE:NORMAL)
OPTIMIZE=DEVELOPMENT ={(INLINE:NONE)
:OPTIMIZE=NONE =(INLINE:NONE)

See Chapter 3 of Version 2.0 of < REFERENCE > (dap) for a further
discussion of the /OPTIMIZE qualifier and its options.

/PREDEFINED _UNIT

/INOPREDEFINED_UNIT (D)

Controls the compilation of package SRUN_TIME_SYSTEM, package
STASKING_SYSTEM, and package MACHINE_CODE. You must spec-
ify this qualifier in order to be able to compile these packages. The
qualifier is not required for the compilation of any other source files.
See the < REFERENCE > (rts) for more information.

By default, /PREDEFINED_UNIT is omitted.

19

XDADA

20

/{SHOW(= option] (D)

INOSHOW

Controls thé listing file options included when a listing file is provided.
You can specify one of the following options:

ALL Provides all listing file options.

INOJPORTABILITY Controls whether a program portability sum-
mary is included in the listing file. By default,
the XDADA command provides a portabil-
ity summary (‘SHOW =PORTABILITY). See
<REFERENCE > (port_summ) for details of what
can be included in a portability summary. See
Chapter 3 of Version 2.0 of <REFERENCE > (dap)
for more information on program portability.

NONE Provides none of the listing file options (same as
NOSHOW).

By default, the XDADA command provides a portability summary
(/SHOW =PORTABILITY).

ISYNTAX_ONLY

INOSYNTAX_ONLY (D)

Controls whether the source file is to be checked only for correct syntax.
If you specify the /ISYNTAX_ONLY qualifier, other compiler checks are
not performed (for example, semantic analysis, type checking, and so
on), and the program library is not updated.

By default, the compiler performs all checks.

IWARNINGS|[=(message-option(,...])]

INOWARNINGS

Controls which categories of informational (I-level) and warning (W-
level) messages are displayed and where those messages are displayed.
You can specify any combination of the following message options:

WARNINGS: (destination,...})
NOWARNINGS

WEAK_WARNINGS: (destination],...])
NOWEAK_WARNINGS

SUPPLEMENTAL: (destination|,...])
NOSUPPLEMENTAL

XDADA

COMPILATION_NOTES: (destination|,...])
NOCOMPILATION_NOTES

STATUS: (destination|,..

NOSTATUS

3)

The possible values of destination are ALL, NONE, or any combination
of TERMINAL (terminal device), LISTING (listing file), DIAGNOSTICS
(diagnostics file). The message categories are summarized as follows:

WARNINGS

WEAK_WARNINGS

SUPPLEMENTAL

COMPILATION_NOTES

STATUS

The defaults are as follows:

W-level: Indicates a definite problem in a legal
program, for example, an unknown progma.

I-level: Indicates a potential problem in

a legal program; for example, a possible
CONSTRAINT_ERROR at run time. These

are the only kind of I-level messages that are
counted in the summary statistics at the end of
a compilation.

I-level: Additional information associated with
preceding E-level or W-level diagnostics.

I-level: Information about how the compiler
translated a program, such as record layout,
parameter-passing mechanisms, or decisions
made for the pragmas INLINE, INTERFACE, or
the import-subprogram pragmas.

I-level: End of compilation statistics and other
messages.

/WARNINGS=(WARN:ALL,WERAK:ALL, SUPP:ALL,COMP:NONE, STAT:LIST)

If you specify only some of the message categories with the
IWARNINGS qualifier, the default values for other categories are used.

Examples

1. $ XDADA MODEL_INTERFACE_,MODEL_INTERFACE, CONTROL_LOOP

The XDADA command compiles the compilation units con-
tained in the three files MODEL_INTERFACE_.ADA, MODEL_
INTERFACE.ADA, and CONTROL_LOOP.ADA, in the order given.

21

XDADA

22

2.

$ XDADA/LIST/SHOW=ALL SCREEN_IO_,SCREEN_IO

The XDADA command compiles the compilation units contained
in the two files SCREEN_IO_.ADA and SCREEN_IQ.ADA, in the
order given. The /LIST qualifier creates the listing files SCREEN_
IO_.LIS and SCREEN_IO.LIS in the current default directory. The
ISHOW = ALL qualifier causes all listing file options to be provided
in the listing files.

TEST PARAMETERS

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such as the maximum
length of an input line and invalid file names. A test that makes use of such values is identified
by the extension .TST in its file name. Actual values to be substituted are represented by names
that begin with a dollar sign. A value must be substituted for each of thesc names before the test

is run. The values used for this validation are given below:

Name and Meaning

$ACC_SIZE

An integer literal whose value is the number of bits

sufficient to hold any value of an access type.

$BIG_ID1

Identifier the size of the maximum input line length with

varying last character.

$BIG_ID2

Identifier the size of the maximum input line length with

varying last character.

$BIG_ID3

Identifier the size of the maximum input line length with

varying middle character.

$BIG_ID4

Identifier the size of the maximum input line length with

varying middle character.

$BIG_INT_LIT

An integer literal of value 298 with enough leading
zeroes so that it is the size of the maximum line length

$BIG_REAL _LIT

A universal real literal of value 690.0 with enough
leading zeroes to be the size of the maximum line length.

$BIG_STRING1

A string literal

which when

BIG_STRING?2 yields the image of BIG_ID1.

catenated with

32

Value

(1..254=>’A", 255=>1)

(1.254=>"A’, 255=>2)

(1.127=>"A’, 128=>3,
129..255=>"A")

(1.127=>"A’, 128=>4,
129.255=>"A")

(1.252=>0,
253..255=>298)

(1.249=>0,
250..255=>69.0E1)

(1.127=>A")

Validation Summary Report
SD-Scicon pic XD Ada MC68000 V1.0-09

AVF-VSR-90502/66

Appendix C - Page 1 of §

TEST PARAMETERS

$BIG_STRING2
A string literal which when catenated to the end of
BIG_STRING]! yields the image of BIG_IDI.

$BLANKS
A sequence of blanks twenty characters less than the size
of the maximum line length.

$COUNT_LAST
A universal integer
TEXT_IO.COUNT’LAST.

literal whose value is

$DEFAULT_MEM_SIZE
An integer literal
SYSTEM.MEMORY_SIZE.

whose value s

$DEFAULT_STOR_UNIT
An integer literal
SYSTEM.STORAGE_UNIT.

whose value is

$DEFAULT_SYS_NAME
The value of the constant SYSTEM.SYSTEM_NAME.

$DELTA_DOC
A real literal whose value is SYSTEM.FINE_DELTA.

$FIELD_LAST
A universal integer
TEXT_IO.FIELD’LAST.

literal whose value is

$FIXED_NAME
The name of a predefined fixed-point type other than
DURATION.

$FLOAT_NAME
The name of a predefined floating-point type other than
FLOAT, SHORT_FLOAT, or LONG_FLOAT.

$GREATER_THAN_DURATION
A universal real literal that lies between
DURATION’BASE’LAST and DURATION’LAST or any
value in the range of DURATION.

$GREATER_THAN_DURATION_BASE_LAST
A universal real literal that is greater
DURATION’BASE’LAST.

than

(1.127=>"A’, 128=>1)

(1.235=>"")

2147483647

16777216

MC68000

2#1.0#E-31

255

NO_SUCH_TYPE

LONG_LONG_FLOAT

131072.0

131073.0

Validation Summary Report
SD-Scicon pic XD Ada MC68000 V1.0-09

AVF-VSR-90502/66
Appendix C - Page 2 of §

TEST PARAMETERS

$HIGH_PRIORITY
An integer literal whose value is the upper bound of the
range for the subtype SYSTEM.PRIORITY.

$ILLEGAL_EX’I’ERNAL_FILE_NAMEI
An external file name which contains invalid characters.

$ILLEGAL_EXTERNAL_FILE_NAME2
An external file name which is too long.

$INTEGER_FIRST
A universal integer
INTEGER’FIRST.

literal whose wvalue is

$INTEGER_LAST
A universal integer
INTEGER’LAST.

literal whose wvalue is

$INTEGER_LAST PLUS_1
A universal integer
INTEGER'LAST +1.

literal whose wvalue s

$LESS_THAN_DURATION
A universal real literal that lies between
DURATION’BASE’FIRST and DURATION'FIRST or
any value in the range of DURATION.

SLESS_THAN_DURATION_BASE__FIRST
A universal real literal that is
DURATION’BASE’'FIRST.

less than

$LOW_PRIORITY
An integer literal whose value is the lower bound of the
range for the subtype SYSTEM.PRIORITY.

$MANTISSA_DOC
An integer literal
SYSTEM.MAX_MANTISSA.

whose value is

$MAX_DIGITS
Maximum digits supported for floating-point types.

$MAX_IN _LEN
Maximum input
implementation.

line length permitted by the

15

THERE ARE NO
FILENAMES

N/A

-2147483648

2147483647

2147483648

-131072.0

-131073.0

31

18

255

Validation Summary Report
SD-Scicon pie XD Ada MC68000 V1.0-09

AVF-VSR-90502/66
Appendix C - Page 3 of 5

ILLEGAL

TEST PARAMETERS

SMAX_INT
A universal integer literal whose value is
SYSTEM.MAX_INT.

$SMAX_INT_PLUS 1
A universal integer literal whose value is
SYSTEM.MAX_INT+1.

$SMAX_LEN_INT_BASED_LITERAL
A universal integer based literal whose value is 2#11#
with enough leading zeroes in the mantissa to be
MAX_IN_LEN long.

$MAX_LEN_REAL_BASED_LITERAL
A universal real based literal whose value is 16:F.E: with
enough leading zeroes in the mantissa to be
MAX_IN_LEN long.

$MAX_STRING_LITERAL
A string literal of size MAX_IN_LEN, including the
quote characters.

SMIN_INT
A universal integer literal whose value s
SYSTEM.MIN_INT.

$MIN_TASK_SIZE
An integer literal whose value is the number of bits
required to hold a task object which has no entries, no
declarations, and "NULL;" as the only statement in its
body.

$NAME
A name of a predefined numeric type other than
FLOAT, INTEGER, SHORT_FLOAT,
SHORT_INTEGER, LONG_FLOAT, or
LONG_INTEGER.

SNAME_LIST
A list of ecnumeration literals in the type
SYSTEM.NAME, separated by commas.

$NEG_BASED_INT
A based integer literal whose highest order nonzero bit
falls in the sign bit position of the representation for
SYSTEM.MAX_INT.

2147483647

2147483648

(1.2=>27,
3.252=>"0",
253.255=>"11")

(1.3=>"167
4.251=>"0",
252.255=>'F.E:")

(1=>", 2.254=>"A",
255=>"")

-2147483648

32

SHORT_SHORT_INTEGER

MC68000

16#FFFF_FFFF#

Validation Summary Report
SD-Scicon pic XD Ada MC68000 V1.0-09

AVF-VSR-90502/66

Appendix C - Page 4 of §

TEST PARAMETERS

SNEW_MEM _SIZE
An integer literal whose value is a permitted argument
for pragma memory_size, other than
SDEFAULT_MEM SIZE. If there is no other value,
then use SDEFAULT_MEM_SIZE.

$NEW_STOR_UNIT
An integer literal whose value is a permitted argument
for pragma storage_unit, other than
$DEFAULT_STOR_UNIT. If there is no other
permitted value, then use value of
SYSTEM.STORAGE_UNIT.

SNEW_SYS_NAME
A value of the type SYSTEM.NAME, other than
$DEFAULT_SYS_NAME. If there is only one value of
that type, then use that value.

$TASK_SIZE
An integer literal whose value is the number of bits
required to hold a task object which has a single entry
with one inout parameter.

$TICK
A real literal whose value is SYSTEM.TICK.

123456

MC68000

32

2#1.0#E-13

Validation Summary Report
SD-Scicon pic XD Ada MC68000 V1.0-09

AVF-VSR-90502/66

Appendix C - Page 5 of 5

WITHDRAWN TESTS

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the Ada Standard.
The following 44 tests had been withdrawn at the time of validation testing for the reasons
indicated. A reference of the form Al-ddddd is to an Ada Commentary.

E28005C This test expects that the string "-- TOP OF PAGE. --63" of line 204 will appear
at the top of the listing page due to a pragma PAGE in line 203; but line 203
contains text that follows the pragma, and it is this that must appear at the top of
the page.

A39005G This test unreasonably expects a component clause to pack an array component into
a minimum size (line 30).

B97102E This test contains an unitended illegality: a select statement contains a null
statement at the place of a selective wait alternative (line 31).

C97116A This test contains race conditions, and it assumes that guards are evaluated
indivisibly. A conforming implementation may use interleaved execution in such
a way that the evaluation of the guards at lines 50 & 54 and the execution of task
CHANGING_OF_THE_GUARD results in a call to REPORT.FAILED at one of
lines 52 or 56.

BC3009B This test wrongly expects that circular instantiations will be detected in several
compilation units even though none of the units is illegal with respect to the units
it depends on; by AI-00256, the illegality need not be detected until execution is
attempted (line 95).

CD2A62D This test wrongly requires that an array object’s size be no greater than 10 although
its subtype’s size was specified to be 40 (line 137).

CD2A63A..D, CD2A66A..D, CD2A73A..D, CD2A76A..D {16 tests]
These tests wrongly attempt to check the size of objects of a derived type (for
which a 'SIZE length clause is given) by passing them to a derived subprogram
(which implicitly converts them to the parent type (Ada standard 3.4:14)).
Additionally, they use the ’SIZE length clause and attribute, whose interpretation
is considered problematic by the WG9 ARG.

CD2A81G, CD2A83G, CD2A84N & M, & CD50110 [5 tests]
These tests assume that dependent tasks will terminate while the main program
executes a loop that simply tests for task termination; this is not the case, and the
main program may loop indefinitely (lines 74, 85, 86 & 96, 86 & 96, and 58, resp.).

Validation Summary Report AVF-VSR-90502/66
SD-Scicoa pic XD Ada MC68000 V1.0-09 Appendix D - Page 1 of 2

WITHDRAWN TESTS

CD2B15C & CD7205C

CD2D11B

CDS007B

These tests expect that a 'STORAGE_SIZE length clause provides precise control
over the number of designated objects in a collection; the Ada standard 13.2:15
allows that such control must not be expected.

This test gives a SMALL representation clause for a derived fixed-point type (at
line 30) that defines a set of model numbers that are not necessarily represented
in the parent type; by Commentary AI-00099, all model numbers of a derived
fixed-point type must be representable values of the parent type.

This test wrongly expects an implicitly declared subprogram to be at the the address
that is specified for an unrelated subprogram (line 303).

ED7004B, ED7005C & D, ED7006C & D [5 tests]

CD7105A

These tests check various aspects of the use of the three SYSTEM pragmas; the
AVO withdraws these tests as being inappropriate for validation.

This test requires that successive calls to CALENDAR.CLOCK change by at least
SYSTEM.TICK; however, by Commentary AI-00201, it is only the expected
frequency of change that must be at least SYSTEM.TICK--particular instances of
change may be less (line 29).

CD7203B, & CD7204B

CD7205D

CE21071

CE3111C

CE3301A

CE3411B

These tests use the 'SIZE length clause and attribute, whose interpretation is
considered problematic by the WG9 ARG.

This test checks an invalid test objective: it treats the specification of storage to
be reserved for a task’s activation as though it were like the specification of storage
for a collection.

This test requires that objects of two similar scalar types be distinguished when read
from a file--DATA_ERROR is expected to be raised by an attempt to read one
object as of the other type. However, it is not clear exactly how the Ada standard
14.2.4:4 is to be interpreted; thus, this test objective is not considered valid. (line
90)

This test requires certain behavior, when two files are associated with the same
external file, that is not required by the Ada standard.

This test contains several calls to END_OF_LINE & END_OF_PAGE that have
no parameter: these calls were intended to specify a file, not to refer to
STANDARD_INPUT (lines 103, 107, 118, 132, & 136).

This test requires that a text file’s column number be set to COUNT’LAST in order
to check that LAYOUT_ERROR is raised by a subsequent PUT operation. But
the former operation will generally raise an exception due to a lack of available disk
space, and the test would thus encumber validation testing.

Validation Summary Report AVF-VSR-90502/66

SD-Scicon pic XD Ada MC68000 V1.0-09 Appendix D - Page 2 of 2

NCC VSR ADDENDUM

This Addendum to the ACVC 1.10 VSR clarifies some items which are contained within the

standard pre-forma Validation Summary Report as supplied by the Ada Maintenance Office
(AMO). .

In line with AJPO regulations the contents of the VSR have not been altered in order to keep
consistency between the different AVF's.

The points raised in this addendum are being addressed by the AMO in future issues of the VSR.

1 The last paragraph of Chapter 1 contains the following statement 'Any test that was
determined to contain an illegal language construct or an erroneous language construct is
withdrawn from the ACVC...

This is incorrect since illegal constructs are legitimately contained within Class B tests.

(28]

Both the terms inapplicable’ and 'not applicable’ are used within the VSR. These terms
are identical.

3 Chapter 1 of the VSR does not indicate how 'inapplicable’ tests are to be analysed. The
analysis is undertaken as follows:

"Each inapplicable test is checked to ensure that this behaviour is consistent with the given
reasons for its inapplicability”.

