
REPRTDOCUMENIATN. PAGEE________
I GNYUSE O*LY a1Z w* FIP D ~orATE RE- PJT1YPE AND DAYTES 00EED1ia Feb. 1990 -o 4 Feb. 1991

c4TflUANJ8LTlE Ada Compiler Validation Summary Reot: SD-Scicon LSR MNLMBEf
peXDAda MC68000 V1.0-09, VAX Cluster (Host) to MC68000

men(Target), 900204N1. 10252

NAUfNOM5)
National Computing Centre Limited

((Manchester, UNITED KINGDOM

0 EWOM0G OAAN1MIAN NA&L(S) ANDACOSI(ES) ILjR :V NA0
Ninl Computing Centre Limited
Ox ford Road AVF-VSR-90 502/166
Manchester MI 7ED
UNITED KINGDOM

S. -PNO. 6 tAGENCY NAIE(S) ANDACORSES) 3NOAGIwTt AGENCY

United States Department of Defense V., ?
Washington, D.C. 20301-3081

11. SUPLEbENTARY NOTES

1Lb OfTrPUt1OIvWALBffY STATEBMENT lb. DaIiJfN e

Approved for public release; distribution unlimited.

I S. ASTPACT (Na*wm 2W w d)

SD-Scicon plc, XD Ada MC68000 V1.0-09, Manchester, England, VAX Cluster (Comprising of a
VAX 8600 and 7 MicroVAX II's) under VMS 5.1 (Host) to MC68000 processor running on an
1MVME117-3FP MPU VME module using a MC68881 floating point peripheral (bare machine),
ACVC 1.10.

14.8ULIECTTEM Ada programming language, Ada Cozpiler Validation i WDRO M
Summary Report, Ada Compiler Validation Capability, Validation
Testing, Ada Validation Office, Ada Validation Facility, ANSI/MIL- w.Rm ooE
STD-1815A, Ada Joint Program Office __

IV.

UNCLASSIFIED UNCLASSIFIED LUNCLASSIFIED
NUN 75041-2m B04100

~.')New

AVF Control Number: AVF-VSR-90502/66

Ada COMPILER
VALIDATION SUMMARY REPORT: Dr,0
Certificate Number. #900204N1.10252

SD-Scicon plc
XD Ada MC68000 V1.0-09

VAX Cluster Host and MC68000 target

Access on For

Completion of On-Site Testing: -TIS GR,&IjFebruary 4 1990 DTIC TAB

Unannou ced 0
Justif ication._

Prepared By-. By.--.--...-
Testing Services Distribuiton/

The National Computing Centre Limited Availability Codes
Oxford RoadMancheste Ml7EDAvail and/orManchester M1 7E Dist Special

England

Prepared For.
Ada Joint Program Office

United States Department of Defense
Washington DC 20301-3081

Validation Sumn y Repmt AVF-VSR-9050ZA66

SD-Sac pic XD Ada MOM000 VIA-09 Page i of ii

Ada Compiler Validation Summary Report:

Compiler Name: XD Ada MC68000 V1.0-09

Certificate Number: #900204N1.10252

Host: VAX Cluster (Comprising of a VAX 8600 and 7 MicroVAX [1's) under VMS 5.1

Target: MC68000 processor running on an MVME1l7-3FP MPU VME module using a
MC68881 floating point peripheral (bare machine).

Testing Completed February 4 1990 Using ACVC 1.10

This report has been reviewed and is approved.

Jane Pink
Testing Services Manager
The National Computing Centre Limited
Oxford Road
Manchester M1 7ED
England

SAda Valo~atipj Organization
Dr. John F. Kiamer
Instttfo [Wens Analyses
Alexandria VA 22311

Ada Joint Program Office

Dr. John Solomond
Director AJPO
Department of Defense
Washington DC 20301

Valdatim S-nmny Repot AVF-VSR-9050Z*6

SD-Siam pk XD Ada MC6S8OO V1IA-, Page ii of ii

TABLE OF CONTENTS

TABLE OF CONTENTS

CHAPTER 1
INTRODUCTION ... 1

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1
1.2 USE OF THIS VALIDATION SUMMARY REPORT 2
1.3 REFERENCES 2
1.4 DEFINITION OF TERMS 3
1.5 ACVC TEST CLASSES 4

CHAPTER 2
CONFIGURATION INFORMATION 1

2.1 CONFIGURATION TESTED 1
2.2 IMPLEMENTATION CHARACTERISTICS 1

CHAPTER 3
TEST INFORMATION .. 1

3.1 TEST RESULTS 1
3.2 SUMMARY OF TEST RESULTS BY CLASS 1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 1
3.4 W1THDRAWN TESTS 2
3.5 INAPPLICABLE TESTS 2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS.. 5

3.7 ADDITIONAL TESTING INFORMATION 5

APPENDIX A
DECLARATION OF CONFORMANCE 1

APPENDIX B
APPENDIX F OF THE Ada STANDARD 1

APPENDIX C
TEST PARAMETERS .. 1

APPENDIX D
WITHDRAWN TESTS .. 1

Validatic. Summary Repot AVF-VSR-90502166

SD-Sco pic XD Ada MC6IIX0 V1 0.09 Table of Contents - Page i of i

INTRODUCTION

CHAPTER 1

INTRODUCTION

This Validation Summary Report .(VSR) describes the extent to which a specific Ada compiler
conforms to the Ada Standard, ANSI/MIL-STD-1815A. This report explains all technical terms
used within it and thoroughly reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented according to the Ada
Standard, and any implementation-dependent features must conform to the requirements of the
Ada Standard. The Ada Standard must be implemented in its entirety, anoi nothing can be
implemented that is not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it must be understood that
some differences do exist between implementations. The Ada Standard permits some
implementation dependencies -- for example, the maximum length of identifiers or the maximum
values of integer types. Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All the dependencies
observed during the process of testing this compiler are given in this report.

The information in this report is derived from the test results produced during validation testing.
The validation process includes submitting a suite of standardized tests, the ACVC, as inputs to an
Ada compiler and evaluating the results. The purpose of validating is to ensure conformity of the
compiler to the Ada Standard by testing that the compiler properly implements legal language
constructs and that it identifies and rejects illegal language constructs. The testing also identifies
behavior that is implementation dependent, but is permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile time, at link time, and
during execution.

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an Ada compiler. Testing
was carried out for the following purposes:

o To attempt to identify any language constructs supported by the compiler that do
not conform to the Ada Standard

o To attempt to identify any language constructs not supported by the compiler but
required by the Ada Standard

o To determine that the implementation-dependent behavior is allowed by the Ada
Standard

Testing of this compiler was conducted by The National Computer Centre Limited according to
procedures established by the Ada Joint Program Office and administered by the Ada Validation

Valdation Summ 7ay Report AVF-VSR-9050Z6

SD-5d" pic XD Ada MC68000 V1.0-09 Chapter 1 - Page I of 5

INTRODUCTION

Organization (AVO). On-site testing was completed on February 4 1990 at SD-SCICON plc,
Pembroke House, Pembroke Broadway, Camberley, Surrey, GU15 3XD, UK.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may make full and free
public disclosure of this report. In the United States, this is provided in accordance with the
"Freedom of Information Act" (5 U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not represent or warrant
that all statements set forth in this report are accurate and complete, or that the subject compiler
has no nonconformities to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office

OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)

Washington DC 20301-3081

or from:

Testing Services
The National Computing Centre Limited

Oxford Road
Manchester M1 7ED

England

Questions regarding this report or the validation test results should be directed to the AVF listed
above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street

Aleandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Lanmage,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines
Ada Joint Program Office, 1 January 1987.

Valdatua SmNMary Report AVF-VSR-90502/66

SDSCi= pic XD Ada MC6900 VI.O-09 Chapter 1 - Page 2 of 5

INTRODUCTION

3. Ada Compiler Validation Capability Implementers' Guide,
SofTech, Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide
December 1986.

1.4 DEFINITON OF TERMS

ACVC The Ada Compiler Validation Capability. The set r-f Ada programs
that tests the conformity of an Ada compiler to the Ada
programming language.

Ada Commentary An Ada Commentary contains all information relevant to the point
addressed by a comment on the Ada Standard. These comments
are given a unique identification number having the form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures contained
in the Ada Compiler Validation Procedures and Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of maintaining a
uniform process fur validation of Ada compilers. The AVO
provides administrative and technical support for Ada validations to
ensure consistent practices.

Compiler A processor for the Ada language. In the context of this report,
a compiler is any language processor, including cross-compilers,
translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable test An ACVC test that uses features of the language that a compiler
is not required to support or may legitimately support in a way
other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected result.

v aioab SnmaY Repor AVF-VSR-905"

SD-Sdcoi plk XD Ma MC6WO VI.A-09 Chapter 1 - Page 3 of 5

INTRODUCTION

Target The computer which executes the code generated by the compiler.

Test A program that checks a compiler's conformity regardiag a
particular feature or a combination of features to the Ada Standard.
In the context of this report, the term is used to designate a single
test, which may comprise one or more files.

Withdrawn test An ACVC test found to be incorrect and not used to check
conformity to the Ada Standard. A test may be incorrect because
it has an invalid test objective, fails to meet its test objective, or
contains illegal or erroneous use of the language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC contains both legal and
illegal Ada programs structured into six test classes: A, B, C, D, E, and L. T1-- first letter of a
test name identifies the class to which it belongs. Class A, C, D, and E tests are executable, and
special program units are used to report their results during execution. Class B tests are expected
to produce compilation errors. Class L tests are expected to produce errors because of the way
in which a program library is used at link time.

Class A tests ensure the successful compilation and execution of legal Ada programs with certain
language constructs which cannot be verified at run time. There are no explicit program
components in a Class A test to check semantics. For example, a Class A test checks that reserved
words of another language (other than those already reserved in the Ada language) are not treated
as reserved words by an Ada compiler. A Class A test is passed if no errors are detected at
compile time and the program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class B tests are not executable.
Each test in this class is compiled and the resulting compilation listing is examined to verify that
every syntax or semantic error ia the test is detected. A Class B test is passed if every illegal
construct that it contains is detected by the compiler.

Class C tests check the run time system to ensure that legal Ada programs can be correctly
compiled and executed. Each Class C test is self-checking and produces a PASSED, FAILED, or
NOT APPLICABLE message indicating the result when it is executed.

Class D tests check the compilation and execution capacities of a compiler. Since there are no
capacity requirements placed on a compiler by the Ada Standard for some parameters -- for
example, the number of identifiers permitted in a compilation or the number of units in a library -
- a compiler may refuse to compile a Class D test and still be a conforming compiler. Therefore,
if a Class D test fails to compile because the capacity of the compiler is exceeded, the test is
classified as inapplicable. If a Class D test compiles successfully, it is self-checking and produces
a PASSED or FAILED message during execution.

V a.idaoim Suimy Replr AW-VSR-90502A6

SD-Sdw. plc XD MC6SMCMO VI i).09 Chapter 1 - Page 4 of 5

INTRODUCTION

Class E tests are expected to execute successfully and check implementation-dependent options and
resolutions of ambiguities in the Ada Standard. Each Class E test is self-checking and produces
a NOT APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs containing some features
addressed by Class E tests during compilation. Therefore, a Class E test is passed by a compiler
if it is compiled successfully and executes to produce a PASSED message, or if it is rejected by the
compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving multiple, separately compiled
units are detected and not allowed to execute. Class L tests are compiled separately and execution
is attempted. A Class L test passes if it is rejected at link time -- that is, an attempt to execute
the main program must generate an error message before any declarations in the main program
or any units referenced by the main program are elaborated. In some cases, an implementation
may legitimately detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECKFILE, support the self-
checking features of the executable tests. The package REPORT provides '- mechanism by which
executable tests report PASSED, FAILED, or NOT APPLICABLE results. It also provides a set
of identity functions used to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECKFILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada Standard. The operation
of REPORT and CHECK FILE is checked by a set of executable tests. These tests produce
messages that are examined to verify that the units are operating correctly. If these units are not
operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to ensure that the tests
are reasonably portable without modification. For example, the tests make use of only the basic
set of 55 characters, contain lines with a maximum length of 72 characters, use small numeric
values, and place features that may not be supported by all implementations in separate tests.
However, some tests contain values that require the test to be customized according to
implementation-specific values -- for example, an illegal file name. A list of the values used for
this validation is provided in Appendix C.

A compiler must correctly process each of the tests in the suite and demonstrate conformity to the
Ada Standard by either meeting the pass criteria given for the test or by showing that the test is
inapplicable to the implementation. The applicability of a test to an implementation is considered
each time the implementation is validated. A test that is inapplicable for one validation is not
necessarily inapplicable for a subsequent validation. Any test that was determined to contain an
illegal language construct or an erroneous language construct is withdrawn from the ACVC and,
therefore, is not used in testing a compiler. The tests withdrawn at the time of this validation
are given in Appendix D.

Vad ahon Summuy Report AVF-VSR-90502/66

SD-Sd=a pie XD Ada MCWBU0 Vl.O-09 Chapter I - Page 5 of 5

CONFIGURATION INFORMATION

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the following configuration:

Compiler: XD Ada MC68000 V1.0-09

ACVC Version: 1.10

Certificate Number: #900204N1.10252

Host Computer:

Machine: VAX Custer (comprising of a VAX 8600 and 7 MicroVAX
I's)

Operating System: VMS 5.1

Memory Size: VAX 8600 - 20Mbytes
MicroVAX U's - 1 x 16 Mbytes

6 x 9 Mbytes

Target Computer:

Machine: MC68000 procesor running on an MVME117-3FP MPU

VME module using an MC68881 floating point peripheraL

Operating System Bare machine.

Memory Size: 512Kb

Communications Network: RS232 link

2.2 IMPLEMENTATION CHARACFERISTICS

One of the purposes of validating compilers is to determine the behavior of a compiler in those
areas of the Ada Standard that permit implementations to differ. Class D and E tests specifically

check for such implementation differences. However, tests in other classes also characterize an

implementation. The tests demonstrate the following characteristics:

Validatioa Su-nuy Rqawt AVF-VSR-905OZ66

SD-Sadw pie XD Ads MC6O@O VI04)9 Chapter 2 - Page I of 5

CONFIGURATION INFORMATION

a. Capacities.

(1) The compiler correctly processes a compilation containing 723 variables in the same
declarative part. (See test D29002K.)

(2) The compiler correctly processes tests containing loop statements nested to 65
levels. (See tests D55A03A..H (8 tests).)

(3) The compiler correctly processes tests containing block statements nested to 65
levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive procedures separately
compiled as subunits nested to 17 levels. (See tests D64005E..G (3 tests).)

b. Predefined types.

(1) This implementation supports the additional predefined types SHORTINTEGER,
SHORTSHORT INTEGER, LONGFLOAT, and LONG LONGFLOAT, in the
package STANDARD. (See tests B86001T..Z (7 tests).)

c. Expression evaluation.

The order in which expressions are evaluated and the time at which constraints are checked
are not defined by the language. While the ACVC tests do not specifically attempt to
determine the order of evaluation of expressions, test results indicate the following:

(1) None of the default initialization expressions for record components are evaluated
before any value is checked for membership in a component's subtype. (See test
C32117A.)

(2) Assignments for subtypes are performed with the same precision as the base type.
(See test C35712B).

(3) This implementatioti uses no extra bits for extra precision and uses all extra bits
for extra range. (See test C35903A.)

(4) NUMERIC-ERROR is raised when an integer literal operand in a comparison or
membership test is outside the range of the base type. (See test C45232A.)

(5) NUMERIC ERROR is raised when a literal operand in a fixed-point comparison
or membership test is outside the range of the base type. (See test C45252A.)

(6) Underflow is gradual. (See tests C45524A..Z (26 tests).)

Validation Sumary Rqpt AVF-VSR-90502/66

SD-,Sdau pk XD Ada MC6O0 V1.0-09 Chapter 2 - Page 2 of 5

CONFIGURATION INFORMATION

d. Rounding.

The method by which values are rounded in type conversions is not defined by the
language. While the ACVC tests do not specifically attempt to determine the method of
rounding, the test results indicate the following:

(1) The method used for rounding to integer is round to even. (See tests C46012A..Z
(26 tests).)

(2) The method used for rounding to longest integer is round to even. See tests
C46012A..Z (26 tests).)

(3) The method used for rounding to integer in static universal real expressions is
round away from zero. (See test C4AO14A.)

e. Array types.

An implementation is allowed to raise NUMERICERROR or CONSTRAINTERROR
for an array having a 'LENGTH that exceeds STANDARD.INTEGER'LAST and/or
SYSTEM.MAX INT. For this implementation:

(1) Declaration of an array type or subtype declaration with more than
SYSTEM.MAXINT components raises NUMERICERROR. (See test C36003A.)

(2) NUMERICERROR is raised when an array type with INTEGER'LAST + 2
components is declared. (See test C36202A.)

(3) NUMERICERROR is raised when an array type with SYSTEM.MAXINT + 2
components is declared. (See test C36202B.)

(4) A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST raises
NUMERICERROR when the array type is declared. (See test C52103X.)

(5) A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components NUMERICERROR when the array type is declared. (See test
C52104Y.)

(6) In assigning one-dimensional array types, the expression is evaluated in its entirety
before CONSTRAINTERROR is raised when checking whether the expression's
subtype is compatible with the target's subtype. (See test C52013A.)

(7) In assigning two-dimensional array types, the expression is not evaluated in its
entirety before CONSTRAINT-ERROR is raised when checking whether the
expression's subtype is compatible with the target's subtype. (See test C52013A.)

Valdaltia Saiz Rexxt AVF-VSR-90502/6

SDScwo pic XD Ada MC6 8O V1 O.09 Chapter 2 - Page 3 of 5

CONFIGURATION INFORMATION

A null array with one dimension of length greater than INTEGER'LAST may raise
NUMERICERROR or CONSTRAINTERROR either when declared or assigned.
Alternatively, an implementation may accept the declaration. However, lengths must match
in array slice assignments. This implementation raises no exception. (See test E52103Y.)

g. Discriminated types.

(1) In assigning record types with discriminants, the expression is evaluated in its
entirety before CONSTRAINTERROR is raised when checking whether the
expression's subtype is compatible with the target's subtype. (See test C52013A.)

h. Aggregates.

(1) In the evaluation of a multi-dimens: .al aggregate, the test results indicate that all
choices are evaluated before checking against the index type. (See tests C43207A
and C43207B.)

(2) In the evaluation of an aggregate containing subaggregates, all choices are evaluated
before being checked for identical bounds. (See test E43212B.)

(3) CONSTRAINT ERROR is raised after all choices are evaluated when a bound in
a non-null range of a non-null aggregate does not belong to an index subtype. (See
test E43211B.)

Pragmas.

(1) The pragma INLINE is supported for functions or procedures. (See tests
LA3004A..B (2 tests), EA3004C..D (2 tests), and CA3004E..F (2 tests).)

j. Generics.

(1) Generic specifications and bodies can be compiled in separate compilations. (See
tests CA1012A, CA2009C, CA2009F, BC3204C, and BC3205D.)

(2) Generic subprogram declarations and bodies can be compiled in separate
compilations. (See tests CA1012A and CA2009F.)

(3) Generic library subprogram specifications and bodies can be compiled in separate
compilations. (See test CA1012A.)

(4) Generic non-library package bodies as subunits can be compiled in separate
compilations. (See test CA2009C.)

Validafi- S-uvy Rqmtl AVF-VSR-90502/66

SD-,Sd. pic XD Ado MC69000 V1.0-09 Chaptcr 2 - Page 4 of 5

CONFIGURATION INFORMATION

(5) Generic non-library subprogram bodies can be compiled in separate compilations
from their stubs. (See test CA2009F.)

(6) Generic unit bodies and their subunits can be compiled in separate compilations.
(See test CA3011A.)

(7) Generic package declarations and bodies can be compiled in separate compilations.
(See tests CA2009C, BC3204C, and BC3205D.)

(8) Generic library package specifications and bodies can be compiled in separate
compilations. (See tests BC3204C and BC3205D.)

k. Input and output.

(1) The package SEQUENTIAL_10 can be instantiated with unconstrained array types
and record types with discri-inants without defaults. (See tests AE2101C,
EE2201D, and EE2201E.)

(2) The package DIRECT_10 can be instantiated with unconstrained array types and
record types with discriminants without defaults. (See tests AE2101H, EE2401D,
and EE2401G.)

(3) The director, AJPO, has determined (AI-00332) that every call to OPEN and
CREATE must raise USEERROR or NAMEERROR if file input/output is not
supported. This implementation exhibits this behavior for SEQUENTIAL_IO,
DIRECTIO, and TEXTIO.

ValWatioa Smmary Report AVF-VSR-905 2166

SD-Sdwim pie XD Ada MC6OGO V1.049 Chapter 2 - Page 5 of 5

TEST INFORMATION

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was tested, 44 tests had been
withdrawn because of test errors. The AVF determined that 504 tests were inapplicable to this
implementation. All inapplicable tests were processed during validation testing except for 159
executable tests that use floating-point precision exceeding that supported by the implementation.
Modifications to the code, processing, or grading for 16 tests were required to successfully
demonstrate the test objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL

A B C D E L

Passed 129 1133 1828 17 16 46 3169

Inapplicable 0 5 487 0 12 0 504

Withdrawn 1 2 35 0 6 0 44

TOTAL 130 1140 2350 17 34 46 3717

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 201 592 567 245 172 99 162 331 137 36 252 295 78 3169

Inapp 11 57 111 3 0 0 4 1 0 0 0 74 243 504

Withdrawn 1 1 0 0 0 0 0 2 0 0 1 35 4 44

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

Validation Summary Report AVF-VSR-9052066

SD-Scmaw pl: XD Mda MC600 V1.0-09 Chapter 3 - Pae 1 of 6

TEST INFORMATION

3.4 wrrHDRAWN TESTS

The following 44 tests were withdrawn from ACVC Version 1.10 at the time of this validation:

E28005C A39005G B97102E
C97116A BC3009B CD2A62D
CD2A63A..D (4 tests) CD2A66A..D (4 tests) CD2A73A..D (4 tests)
CD2A76A..D (4 tests) CD2A81G CD2A83G
CD2A84M..N (2 tests) CD2B15C CD2D11B
CD5007B CD50110 ED7004B
ED7005C..D (2 tests) ED7006C..D (2 tests) CD7105A
CD7203B CD7204B CD7205C
CD7205D CE21071 CE3111C
CE3301A CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features that a compiler is not
required by the Ada Standard to support. Others may depend on the result of another test that
is either inapplicable or withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one validation attempt is not
necessarily inapplicable for a subsequent attempt. For this validation attempt, 504 tests were
inapplicable for the reasons indicated:

a. The following 159 tests are not applicable because they have floating-point type
declarations requiring more digits than SYSTEM.MAXDIGITS:

C241130..Y (11 tests) C357050..Y (11 tests) C357060..Y (11 tests)
C357070..Y (11 tests) C357080..Y (11 tests) C358020.Z (12 tests)
C452410..Y (11 tests) C453210..Y (11 tests) C454210..Y (11 tests)
C455210..Z (12 tests) C455240..Z (12 tests) C456210.2 (12 tests)
C456410..Y (11 tests) C460120..Z (12 tests)

b. C35702A and B86001T are not applicable because this implementation supports no
predefined type SHORT-FLOAT.

c The following 16 tests are not applicable because this implementation does not
support a predefined type LONG-INTEGER:

C45231C C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45614C C45631C
C45632C B52004D C55BO7A B55BO9C
B86001W CD7101F

ValidataM Summary Report AVF-VSR-90502/6

SD-Sdwox plc XD Ada MCM V1.0-09 Chapter 3 - Page 2 of 6

TEST INFORMATION

d. C45531M..P (4 tests) and C45532M..P (4 tests) are all inapplicable because this
implementation has a 'MAXMANTISSA of 31 and these tests require the compiler
to support a greater value.

e. C86001F is not applicable because, for this implementation, the package TEXT_10
is dependent upon package SYSTEM. This test recompiles package SYSTEM,
making package TEXTIO, and hence package REPORT, obsolete.

f. B86001Y is not applicable because this implementation supports no predefined
fixed-point type other than DURATION.

g. C96005B is not applicable because there are no values of type DURATION'BASE
that are outside the range of DURATION.

h. CD1009C, CD2A41A..B (2 tests), CD2A41E and CD2A42A..J (10 tests) are not
applicable because 'SIZE representation clauses for floating-point types are not
supported.

i. CD1C04C is inapplicable because this implementation does not support model
numbers of a derived type that are not representable values of the parent type.

j. CD2A52C..D (2 tests), CD2A52G..H (2 tests), CD2A54C..D (2 tests) and CD2A54H
are not applicable because for this implementation the legality of a 'SIZE clause
for a derived fixed point type can depend on the representation chosen for the
parent type.

k. CD2A53C, and CD2A54G are not applicable because within these tests the SMALL
specified for a derived fixed point is finer than the SMALL for the parent type.
As a result some model numbers of the derived type are not representable values
of the parent type which this implementation does not allow.

1. The following 23 tests are not applicable because this implementation does not
support packing by means of a length clause for an array type:

CD2A61A..L (12 tests) CD2A62A..C (3 tests) CD2A64A..D (4tests)
CD2A65A..D (4 tests)

m. The following 16 tests are not applicable because this implementation does not
support packing by means of a length clause for a record type:

CD2A71A..D (4 tests) CD2A72A..D (4 tests) CD2A74A.D (4 tests)
CD2A75A..D (4 tests)

n. CD2A84B..I (8 tests) and CD2A84K..L (2 tests) are not applicable because this
implementation only accepts length clause for access types, if the default size (32
bits) is specified. These tests specify sizes other that 32 bits.

ValW t Susumay Reaot AVF-VSR-90SW446

SD-Sm ple XD Ada MC6W00 VI.04)9 Capter 3 - Pap 3 of 6

TEST INFORMATION

o. The following 241 tests are inapplicable because sequential, text, and direct access
files are not supported:

CE2102A..C (3 tests) CE2102G..H (2 tests) CE2102K
CE2102N..Y (12 tests) CE2103C..D (2 tests) CE2104A..D (4 tests)
CE2105A..B (2 tests) CE2106A..B (2 tests) CE2107A..H (8 tests)
CE2107L CE2108A..H (8 tests) CE2109A..C (3 tests)
CE2110A..D (4 tests) CE2111A..I (9 tests) CE2115A..B (2 tests)
CE2201A..C (3 tests) EE2201D..E (2 tests) CE2201F..N (9 tests)
CE2204A..D (4 tests) CE2205A CE2208B
CE2401A..C (3 tests) EE2401D CE2401E..F (2 tests)
EE2401G CE2401H..L (5 tests) CE2404A..B (2 tests)
CE2405B CE2406A CE2407A..B (2 tests)
CE2408A..B (2 tests) CE2409A.B (2 tests) CE2410A..B (2 tests)
CE2411A CE3102A.B (2 tests) EE3102C
"E3102F..H (3 tests) CE3102J..K (2 tests) CE3103A
CE3104A..C (3 tests) CE3107B CE3108A..B (2 tests)
CE3109A CE3110A CE3111A..B (2 tests)
CE3111D..E (2 tests) CE3112A..D (4 tests) CE3114A..B (2 tests)
CE3115A EE3203A CE3208A
EE3301B CE3302A CE3305A
CE3402A EE3402B CE3402C..D (2 tests)
CE3403A..C (3 tests) CE3403E..F (2 tests) CE3404B..D (3 tests)
CE3405A EE3405B CE3405C..D (2 tests)
CE3406A..D (4 tests) CE3407k.C (3 tests) CE3408A..C (3 tests)
CE3409A CE3409C..E (3 tests) EE3409F
CE3410A CE3410C..E (3 tests) EE341OF
CE3411A CE3411C CE3412A
CE3413A CE3413C CE3602A..D (4 tests)
CE3603A CE3604A..B (2 tests) CE3605A..E (5 tests)
CE3606A..B (2 tests) CE3704A..F (6 tests) CE3704NL.O (3 tests)
CE3706D CE3706F..G (2 tests) CE3804A.P (16 tests)
CE3805A..B (2 tests) CE3806A..B (2 tests) CE3806D..E (2 tests)
CE3806G..H (2 tests) CE3905A..C (3 tests) CE3905L
CE3906A..C (3 tests) CE3906E..F (2 tests)

p. CE3901A is not applicable because this implementation raises NAMEERROR if
a filename parameter to TEXTO.CREATE is non-null. This test assumes that
USE-ERROR will be raised.

q. EE3412C is not applicable for this implementation because their implementation
of the body of the package report does not use TEXT10.

vga"o Snm=Y Rqiar AVF-VSR-90502/6

SD.Sdaon pic XI) A MC6SS0O VI.0-09 Cbapur 3 - Pap 4 of 6

TEST INFORMATION

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code, processing, or evaluation in order
to compensate for legitimate implementation behaviour. Modifications are made by the AVF in
cases where legitimate implementation behaviour prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include: adding a length clause to alter
the default size of a collection; splitting a Class B test into subtests so that all errors are detected;
and confirming that messages produced by an executable test demonstrate conforming behaviour
that was not anticipated by the test (such as raising one exception instead of another).

Modifications were required for 16 tests.

C34006D is classified as passed if the test fails with messages "INCORRECT TYPE'SIZE"
or "INCORRECT OBJECT'SIZE". This test incorrectly assumes that the space allocated
for objects must be less than or equal to the minimum needed by the (sub) type. This is
not true for this implementation.

C45524A..N (14 tests) were modified because these tests expect that the result of continued
division of a real number will be zero; the Ada Standard, however, only requires that the
result be within the type's SAFE SMALL of zero. Thus, these tests were modified to
include a check that the result was in the smallest positive safe interval for the type. The
implementation passed the modified tests. Each test was modified by inserting the following
code after line 138;

The following test was split because syntax errors at one point resulted in the compiler not
detecting other errors in the test:

B97103E

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced by the XD Ada MC68000
V1.0-09 compiler was submitted to the AVF by the applicant for review. Analysis of these results
demonstrated that the compiler successfully passed all applicable tests, and the compiler exhibited
the expected behaviour on all inapplicable tests.

3.7.2 Test Method

Testing of the XD Ada MC68000 V1.0-09 compiler using ACVC Version 1.10 was conducted on-
site by a validation team from the AVF. The configuration in which the testing was performed is
described by the following designations of hardware and software components:

valdatmon S==a Repor AVF-VSR-905OZ166

SD-Sdwu plc XD Ada MC69OO VI.O9 Capter 3 - Page 5 of 6

TEST INFORMATION

Host computer VAX Cluster (comprising of a VAX 8600 and 7 MicroVAX
H's)

Host operating system VMS 5.1
Target computer MC68000 processor running on the MVME117-3FP MPU

VME module using an MC68881 floating point peripheraL
Compiler XD Ada MC68000 V1.0-09
Assembler XD Ada MC68000 V1.0-09
Linker : XD Ada MC68030 V1.0-04
Loader . XD Ada MC68000 S1.0-10
Downloader : XD Ada MC68030 V1.0-04
Runtime System XD Ada MC68000 V1.0-09

The host and target computers were linked via a RS232 link.

A magnetic tape containing all tests except for withdrawn tests and tests requiring unsupported
floating-point precisions was taken on-site by the validation team for processing. Tests that make
use - implementation-specific values were customized before being written to the magnetic tape.
Tests requiring modifications during the prevalidation testing were not included in their modified
form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host computer.

After the test files were loaded to disk, the full set of tests was compiled and linked on the VAX
Cluster, then all executable images were transferred to the MC68000 target via the RS232 link and
run. Results were printed from the host computer.

The compiler was tested using command scripts provided by SD-Scicon plc and reviewed by the
validation team. The compiler was tested using all the following option settings. Details of these
settings are given at the end of Appendix B.

Tests were compiled, linked, and executed (as appropriate) using 8 computers and two target
computers. Test output, compilation listings, and job logs were captured on magnetic media and
archived at the AVF. The listings examined on-site by the validation team were also archived.

3 7.3 Test Site

Testing was conducted at SD-Scicon pic, Pembroke House, Pembroke Broadway, Camberley, Surrey,
GU15 3XD, UK and was completed on February 4 1990.

Vahdalo Sam=" Repa AVF-VSR-90O5t66

D-Sa m pic XD A& MC6OO V.0-9 capter 3 - Pag 6 of 6

DECLARATION OF CONFORMANCE

APPENDIX A

DECLARATION OF CONFORMANCE

SD-Scicon plc has submitted the following Declaration of Conformance
concerning the XD Ada MC68000 V1.0-09 compiler.

V afid Swumy Rqen AVF-VSR-905OZ16

SD-Sow pk XD A&b MC6W0 VI.0 APPdk A- Page 1 of 3

DECLARATION OF CONFORMANCE

DECLARATION OF CONFORMANCE

Compiler Implementor: SD-Scicon pic

Ada Validation Facility: The National Computing Centre Limited
Oxford Road
Manchester
MI 7ED

Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: XD Ada M068000 V1.0-09

Host Architecture: VAX duster (comprising of a VAX 8600 and 7
MicroVAX 1's)

Host OS and Version: VMS 5.1

Target Architecture: MC68000 processor on an MVME117-3FP MPU
VME module using an MC68881 floating point
peripheral (bare machine).

Implementor's Declaration

I, the undersigned, representing SD-Scicon pic, have implemented no deliberate extensions
to the Ada Language Standard ANSI/MIL-STD-1815A in the compiler(s) listed in this
declaration. I declare that SD-Scicon pk is the owner of record of the Ada language
compiler(s) listed above and, as such, is responsible for maintaining said compiler(s) in
conformance to ANSI/MIL-STD-1815A. All certificates and registrations for Ada language
compiler(s) listed in this declaration shall be made only in the owner's corporate name.

__ Date: CI~L O
Bill Davison
WORLDWIDE CUSTOMER SERVICES MANAGER

Vaidatio Sunmy Rept AVF-VSR-9050216

SD-Scaa plc XD Ada MC69000 V1.G.09 Appendix A - Page 2 of 3

DECLARATION OF CONFORMANCE

Owner's Declaration

I, the undersigned, representing SD-Scicon plc, take full responsibility for implementation
and maintenance of the Ada compiler(s) listed above, and agree to the public disclosure
of the final Validation Summary Report. I declare that all of the Ada language compilers
listed, and their host/target performance, are in compliance with the Ada Language
Standard ANSIIMIL-STD-1815A.

~~~Date: < f "

Bill Davison

WORLDWIDE CUSTOMER SERVICES MANAGER

Valdstwoa Swunmy Report AVF-VSR-9OZ16

SD-S1doo pl XD Ada MC6000 V1.049 Appendix A - Paje 3 of 3



APPENDIX F

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-dependent pragmas,
to certain machine-dependent conventions as mentioned in chapter 13 of the Ada Standard, and
to certain allowed restrictions on representation clauses. The implementation-dependent
characteristics of the XD Ada MC68000 V1.0-09 compiler, as described in this Appendix, are
provided by SD-Scicon plc. Unless specifically noted otherwise, references in this appendix are to
compiler documentation and not to this report. Implementation-specific portions of the package
STANDARD, which are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;
type SHORTINTEGER is range -32768 .. 32767;
type SHORTSHORTINTEGER is range -128.. 127;

type FLOAT is digits 6 range -(2**128 - 2**104)
2*128 - 2*104;

type LONGFLOAT is digits 15 range -(2**1024 - 2**971)
2**1024 - 2**971;

type LONGLONG-FLOAT is digits 18 range (-2**16384 - 2**16320)..
2**16384 - 2**16320

type DURATION is delta 1.E-4 range -131072.0000 .. 131071.9999;

end STANDARD;

Validatiom Smmmy Report AVF-VSR-9052/ 6

SD-Sda plc XD Ada MC6WU V1 0O9 Appenbd B



Appendix F

Implementation-Dependent
Characteristics

F.3 Specification of Package System

The package SYSTEM for the MC68000 configuration differs from that
of the standard MC68020 as follows:

F.3.1 Changes to Package SYSTEM for the MC68000 Target

type NAME is (MC'- I;

SYSTEM_*IAME constant NJAME =

STCRAGEUNIT constant q;

MEMORY_SIZE constant : **Z4;

TICE constant 21.1.AE-13;

type ADDRESSINT is range MEMOR'_SU=E-;

for ADDRESSINT'SIZE use 32;

Implementation-Dependent Characteristics F-1



F.6 Interpretation of Exprossions Appearing in Address
Clauses

For address clauses on variables, the address expression is interpreted

as a Motorola 24-bit address.

In XD Ada for MC68000, values of type SYSTEM.ADDRESS are inter-

preted as integers in the range 0 .. 224 _1.

F-2 Implementation-Dependent Characteristics



Appendix F

Implementation-Dependent
Characteristics

NOTE
This appendix is not part of the standard definition of the

Ada programming language.

This appendix summarizes the following implementation-dependent
characteristics of XD Ada:

* Listing the XD Ada pragmas and attributes.
* Giving the specification of the package SYSTEM.
* Presenting the restrictions c.. rtpiesen:ation clauses and unchecked

type conversions.
" Giving the c,,ventions for names denoting implementation-

dependent components in record representation clauses.
* Giving the inter-i taticn of expressions in address clauses.
" Presenting the implementation-dependent characteristics of the

input-output packages.
" Presenting other implementation-dependent characteristics.

Implementation-Dependent Characteristics F-1



F.1 Implementation-Dependent Pragmas

XD Ada provides the following pragmas, which are defined elsewhere
in the text. In addition, XD Ada restricts the predefined language
pragmas INLINE and INTERFACE, provides pragma VOLATILE in
addition to pragma SHARED, and provides pragma SUPPRESS-ALL in
addition to pragma SUPPRESS. See Annex B for a descriptive pragma
summary.

" CALLSEQUENCE-FUNCTION (see Annex B)
* CALLSEQUENCEPROCEDURE (see Annex B)
* EXPORTEXCEPTION (see Section 13.9a.3.2)
• EXPORTFUNCTION (see Section 13.9a.1.2)
* EXPORT-OBJECT (see Section 13.9a.2.2)
* EXPORT-PROCEDURE (see Section 13.9a.1.2)

* IMPORTEXCEPTION (see Section 13.9a.3.1)
" IMPORT-FUNCTION (see Section 13.9a.1.1)
* IMPORT-OBJECT (see Section 13.9a.2.1)
* IMPORT-PROCEDURE (see Section 13.9a.1.1)
" LEVEL (see Section 13.5.1)
* LINK-OPTION (see Annex B)
* SUPPRESS-ALL (see Section 11.7)
* TITLE (see Annex B)
" VOLATILE (see Section 9.11)

F.2 Implementation-Dependent Attributes

XD Ada provides the following attributes, which are defined elsewhere
in the text. See Appendix A for a descriptive attribute summary.

* BIT (see Section 13.7.2)
* MACHINE-SIZE (see Section 13.7.2)
* TYPE-CLASS (see Section 13.7a.2)

F-2 Implementation-Dependent Characteristics



F.3 Specification of the Package System

The package SYSTEM for the MC68020 is as follows:

F.3.1 Package System for the MC68020 Target

package SYSTEM is

type NAME in (MC68020);

SYSTEM NAME constant NAME :- MC68020;
STORAGE UNIT : constant :- 8;
MEMORYSIZE constant 2*31-1;
MIN INT constant - -(2*31);
MAXINT : constant 2**31-1;
MAXDIGITS constant z- 18;
MAX-MANTISSA constant 31;
FINEDELTA i constant -2,0*(-31);
TICK : constant z- 162.5E-6;
subtype PRIORITY Is INTEGER range 0 .. 15;

subtype LEVEL is INTEGER range 0 .. 7;

-- Address type

type ADDRESS is private;

ADDRESS-ZERO : constant ADDRESS;
type ADDRESS_INT is range MININT .. MAXINT;
function TO ADDRESS (X : ADDRESS tNT) return ADDRESS;
function TO ADDRESS (X i{universalinteger}) return ADDRESS;
function TO ADDRESS INT (X : ADDRESS) return ADDRESSINT;

function +" (LEFT ADDRESS; RIGHT ADDRESSINT) return ADDRESS;
function +" (LEFT : ADDRESSINT; RIGHT : ADDRESS) return ADDRESS;
function (LEFT 2 ADDRESS; RIGHT : ADDRESS) return ADDRESS INT;
function (LEFT : ADDRESS; RIGHT : ADDRESS-INT) return ADDRESS;

function (LEFT, RIGHT ADDRESS) return BOOLEAN;
function /- (LEFT, RIGHT 2 ADDRESS) return BOOLEAN;
function < (LEFT, RIGHT : ADDRESS) return BOOLEAN;
function "<-. (LEFT, RIGHT 2 ADDRESS) return BOOLEAN;
function "> (LEFT, RIGHT ADDRESS) return BOOLEAN;
function >=" (LEFT, RIGHT : ADDRESS) return BOOLEAN;

Note that because ADDRESS is a private type
the functions "-" and "/-" are already available

Implementation-Dependent Characteristics F-3



-- Generic functions used to access memory

generic
type TARGET is ptivate;

function FETCHFROMADDRESS (A : ADDRESS) return TARGET;

generic
type TARGET is private;

procedure ASSIGNTOADDRESS (A t ADDRESS; T s TARGET);

type TYPECLASS is (TYPE CLASS ENUMERATION,
TYPE -CLASS INTEGER,
TYPE -CLASS-FIXED POINT,
TYPE -CLASS-FLOATING POINT,
TYPE CLASS-ARRAY,
TYPE CLASS-RECORD,
TYPE -CLASS-ACCESS,
TYPE -CLASS-TASK,
TYPE CLASSADDRESS);

XD Ada hardware-oriented types and functions

typo BIT ARRAY is array (INTEGER range <>) of BOOLEAN;
pragna PACK(BITARRAY);
subtype BIT ARRAY_8 is BITARRAY (0 7);
subtype BIT ARRAY_16 is BITARRAY (0 15);
subtype BITARRAY_32 is BITARRAY (0 31);
subtype BITARRAY_64 is BITARRAY (0 63);
type UNSIGNEDBYTE is range 0 .. 255;
for UNSIGNEDBYTE'SIZE use 8;
function "not" (LEFT a UNSIGNEDBYTE) return UNSIGNEDBYTE;
function *and" (LEFT, RIGHT a UNSIGNED BYTE) return UNSIGNEDBYTE;
function "or" (LEFT, RIGHT UNSIGNEDBYTE) return UNSIGNED-BYTE;
function "xor" (LEFT, RIGHT a UNSIGNEDBYTE) return UNSIGNED BYTE;

function TO UNSIGNEDBYTE (X a BITARRAY_8) return UNSIGNED-BYTE;
function TO BIT ARRAY 8 (X a UNSIGNED-BYTE) return BITARRAY_8;

type UNSIGNEDBYTE ARRAY is array (INTEGER range <>) of UNSIGNED BYTE;

type UNSIGNED-WORD is range 0 .. 65535;
for UNSIGNEDWORD'SIZE use 16;

function "not" (LEFT t UNSIGNEDWORD) return UNSIGNED WORD;
function "and* (LEFT, RIGHT a UNSIGNED WORD) return UNSIGNEDWORD;
function "or' (LEFT, RIGHT a UNSIGNED WORD) return UNSIGNEDWORD;
function "xor* (LEFT, RIGHT a UNSIGNEDWORD) return UNSIGNED-WORD;

function TO UNSIGNED WORD (X a BIT ARRAY_16) return UNSIGNED-WORD;
function TO BIT ARRAY_16 (X a UNSIGNED-WORD) return BITARRAY_16;

type UNSIGNED WORDARRAY is array (INTEGER range <>) of UNSIGNEDWORD;

type UNSIGNEDLONGWORD is range MININT .. MAXINT;

for UNSIGNED LONGWORD SIZE use 32;

F-4 Implementation-Dependent Characteristics



function *not, (LEFT i UNSIGNED LONGWORD) return UNSIGNEDLONGWORD;
function "and" (LEFT, RIGHT : UNSIGNED LONGWORD) return UNSIGNED LONGWORD;
function "or" (LEFT, RIGHT UNSIGNED LONGWORD) return UNSIGNED LONGWORD;
function xor" (LEFT, RIGHT : UNSIGNED LONGWORD) return UNSIGNED LONGWORD;

function TO UNSIGNED LONGWORD (X : BITARRAY_32) return UNSIGNED LONGWORD;
function TO-BIT-ARRAY_32 (X : UNSIGNEDWORD) return BIT ARRAY_32;

type UNSIGNEDLONGWORDARRAY is array (INTEGER range <>) of UNSIGNEDLONGWORD;

Conventional names for static subtypes of type UNSIGNED LONGWORD

subtype UNSIGNED_1 is UNSIGNEDLONGWORD range 0 2** 1-;
subtype UNSIGNED_2 is UNSIGNEDLONGWORD range 0 2"* 2-1;
subtype UNSIGNED_3 is UNSIGNEDLONGWORD range 0 2- 3-1;
subtype UNSIGNED 4 is UNSIGNEDLONGWORD range 0 2** 4-1;
subtype UNSIGNED_5 is UNSIGNEDLONGWORD range 0 2- 5-1;
subtype UNSIGNED 6 is UNSIGNEDLONGWORD range 0 2** 6-1;
subtype UNSIGNED 7 is UNSIGNED LONGWORD range 0 2** 7-1;
subtype UNSIGNED_8 is UNSIGNED LONGWORD range 0 2** 8-1;
subtype UNSIGNED_9 is UNSIGNEDLONGWORD range 0 2* 9-1;
subtype UNSIGNED 10 is UNSIGNEDLONGWORD range 0 2**10-1;
subtype UNSIGNEDl1 is UNSIGNED LONGWORD range 0 2*11-1;
subtype UNSIGNED_12 in UNSIGNEDLONGWORD range 0 2*-12-1;
subtype UNSIGNED-13 is UNSIGNEDLONGWORD range 0 2**13-1;
subtype UNSIGNED_14 is UNSIGNEDLONGWORD range 0 2-14-1;
subtype UNSIGNED_15 is UNSIGNEDLONGWORD range 0 2*15-1;
subtype UNSIGNED 16 is UNSIGNEDLONGWORD range 0 2"'16-1;
subtype UNSIGNED_17 is UNSIGNED LONGWORD range 0 2*17-1;
subtype UNSIGNED_18 is UNSIGNED_LONGWORD range 0 .2*18-1;
subtype UNSIGNED 19 is UNSIGNEDLONGWORD range 0 2**19-1;
subtype UNSIGNED 20 is UNSIGNED_LONGWORD range 0 2"*20-1;
subtype UNSIGNED 21 is UNSIGNED LONGWORD range 0 2**21-1;
subtype UNSIGNED 22 is UNSIGNED LONGWORD range 0 2**22-1;
subtype UNSIGNED_23 is UNSIGNEDLONGWORD range 0 2-*23-1;
subtype UNSIGNED_24 is UNSIGNEDLONGWORD range 0 2-24-1;
subtype UNSIGNED 25 is UNSIGNED LONGWORD range 0 2"'25-1;
subtype UNSIGNED_26 is UNSIGNEDLONGWORD range 0 2"'26-1;
subtype UNSIGNED 27 is UNSIGNEDLONGWORD range 0 2"*27-1;
subtype UNSIGNED_28 is UNSIGNED LONGWORD range 0 2**28-1;
subtype UNSIGNED 29 is UNSIGNEDLONGWORD range 0 2**29-1;
subtype UNSIGNED_30 is UNSIGNEDLONGWORD range 0 2-*30-1;
subtype UNSIGNED 31 is UNSIGNEDLONGWORD range 0 2**31-1;

private
-- Not shown

end SYSTEM;

Implementation-Dependent Characteristics F-5



F.4 Restrictions on Representation Clauses

The representation clauses allowed in XD Ada are length, enumeration,
record representation, and address clauses.

In XD Ada, a representation clause for a generic formal type or a type
that depends on a generic formal type is not allowed. In addition, a
representation clause for a composite type that has a component or
subcomponent of a generic formal type or a type derived From a generic
formal type is not allowed.

Restrictions on length clauses are specified in Section 13.2; restrictions
on enumeration representation clauses are specified in Section 13.3; and
restrictions on record representation clauses are specified in Section
13.4.

F.5 Conventions for Implementation-Generated Names
Denoting Implementation-Dependent Components in
Record Representation Clauses

XD Ada does not allocate implementation-dependent components in
records.

F.6 Interpretation of Expressions Appearing in Address
Clauses

Expressions appear'ng in address clauses must be of the type ADDRESS

defined in package SYSTEM (see Section 13.7a.1 and Section F.3).

XD Ada allows address clauses for variables (see Section 13.5). For
address clauses on variables, the address expression is interpreted as a
Motorola full 32-bit address.

XD Ada supports address clauses on task entries to allow interrupts to
cause a reschedule directly. For address clauses on task entries, the
address expression is interpreted as a Motorola exception vector offset.

F-6 Implementation-Dependent Characteristics



In XD Ada for MC68020, values of type SYSTEM.ADDRESS are inter-
preted as integers in the range 0 .. 232 -1. As SYSTEM.ADDRESS is
a private type, the only operations allowed on objects of this type are
those given in package SYSTEM.

F.7 Restrictions on Unchecked Type Conversions

XD Ada supports the generic function UNCHECKED-CONVERSION
with the restrictions given in Section 13.10.2.

F.8 Implementation-Dependent Characteristics of
Input-Output Packages

The packages SEQUENTIALJO and DIRECTJO are implemented as
null packages that conform to the specification given in the Reference
Manual for the Ada Programming Language. The packages raise the ex-
ceptions specified in Chapter 14 of the Reference Manual for the Ada
Programming Language. The three possible exceptions that are raised by
these packages are given here, in the order in which they are raised.

Exception When Raised

STATUSERROR Raised by an attempt to operate upon or dose a file
that is not open (no files can be opened).

NAME-ERROR Raised if a file name is given with a call of CREATE
or OPEN.

USE-ERROR Raised if exception STATUS-ERROR is not raised.

MODE-ERROR cannot be raised since no file can be opened (therefore
it cannot have a current mode).

The predefined package LOWLEVELJO is not provided.

Implementation-Dependent Characteristics F-7



F.8.1 The Package TEXTJO

The package TEXT-1O conforms to the specification given in the
Reference Manual for the Ada Programming Language. String input-
output is implemented as defined. File input-output is supported to
STANDARD-INPUT and STANDARD-OUTPUT only. The possible
exceptions that are raised by package TEXTIO are as follows:

Exception When Raised

STATUS-ERROR Raised by an attempt to operate upon or dose a file
that is not open (no files can be opened).

NAME-ERROR Raised if a file name is given with a call of CREATE
or OPEN.

MODEERROR Raised by an attempt to read from, or test for
the end of, STANDARD-OUTPUT, or to write to
STANDARD-INPUT.

END-ERROR Raised by an attempt to read past the end of
STANDARD-INPUT.

USE-ERROR Raised when an unsupported operation is attempted,
that would otherwise be legal.

The type COUNT is defined as follows:

type COUNT is range 0 .. INTEGER'LAST;

The subtype FIELD is defined as follows:

type FIELD Li INTEGER range 0 .. 255;

F.8.2 The Package IOEXCEPTIONS

The specification of the package IOEXCEPTIONS is the same as that
given in the Reference Manual for the Ada Programming Language.

F.9 Other Implementation Characteristics

Implementation characteristics associated with the definition of a main
program, various numeric ranges, and implementation limits are sum-
marized in the following sections.

F-8 Implementation-Dependent Characteristics



F.9.1 Definition of a Main Program

Any library procedure can be used as a main program provided that it
has no formal parameters.

F.9.2 Values of Integer Attributes

The ranges of values for integer types declared in package STANDARD
are as follows:

SHORT SHORTINTEGER -2' .. 21 -1 (-128 .. 127)

SHORTINTEGER -21 s 
.. 215 -1 (-32768 .. 32767)

INTEGER -231 .. 231 -1 (-2147483648.. 2147483647)

For the package TEXTIO, the range of values for types COUNT and

FIELD are as follows:

COUNT 0 .. 231 -1 (0 .. 2147483647)

FIELD 0 .. 255

F.9.3 Values of Floating-Point Attributes

Floating-point types are described in Section 3.5.7. The representation
attributes of floating-point types are summarized in the following table:

Implementation-Dependent Characteristics F-9



FLOAT LONG-FLOAT LONGLONGILOAT

DIGITS 6 15 18

SIZE 32 64 96

MANTISSA 21 51 61

EMAX 84 204 244

EPSILON 2 - 20  2- 5 2- 6

SMALL 2- s s 22 - 2

LARGE 2"-26 224 -2 1 22"-213

SAFEEMAX 125 1021 16382

SAFE-SMALL 2-126 2- 1022 2-16M

SAFE-LARGE 2125-2104 21021720 21M -216321

FIRST -(2128-2104) -(21024-29I) -(21634-216320)

LAST 2128-2104 21024 -2971 216384 -216320

MACHINE-RADIX 2 2 2

MACHINE-MANTISSA 24 53 64

MACHINE-EMAX 128 1024 16384

MACHINE-EMIN -125 -1021 -16382

MACHINE-ROUNDS FALSE FALSE FALSE

MACHINEOVERFLOWS FALSE FALSE FALSE

F-i0 Implementation-Dependent Characteristics



F.9.4 Attributes of Type DURATION

The values of the significant attributes of type DURATION are as
follows:

DURATION'DELTA 1.E-4 (10- 1)

DURATION'SMALL 2#1.0#E-14 (2-14)

DURATION, FIRST -131072.0000 (-217)

DURATION, LAST 131071.9999 (217- DELTA)

F.9.5 Implementation Limits

Limit Description

255 Maximum identifier length (number of characters)

255 Maximum number of characters in a source line

210 Maximum number of library units and subunits in a compilation
closure'

212 Maximum number of library units and subunits in an execution
closure2

-1 Maximum number of enumeration literals in an enumeration
type definition

216 -1 Maximum number of lines in a source file

231 -1 Maximum number of bits in any object

216 -1 Maximum number of exceptions

'The compilation closure of a given unit is the total set of units that the given unit
depends on, directly and indirectly.
2The execution closure of a given unit is the compilation closure plus all associated
secondary units.

Implementation-Dependent Characteristics F-11



LINK

LINK

Creates an executable image file for the specified units.

Format LINK unit-name [file-s pec[,... j]
LINK/NOMAIN unit-name[,... ] file-spec[,...]
Command Qualifiers Defaults
/AFTER = time (AFTER = TODAY
(BATCH-LOG =file-spec See text.
/BRIEF See text.
/COMMAND[= file-spec] See text.
/[NO]DEBUG[ =file-spec] /NODEBUG
/ELABORATION = file-spec See text.
/FULL See text.
/[NOJIMAGE[ =file-specl /IMAGE
/[NOJKEEP /KEEP
/INQILOG /NOLOG
/[NOJMAIN (MAIN
/[NOJMAP[ =file-specJ /NOMAP
/NAME = job-name See text.
/[NOJNOTIFY (NOTIFY
/OUTPUT = file-spec (OUTPUT = SYS$OUTPUT
/[NO]PRINTER[ = queue-name] /NOPRINTER
/QU EUE-= queue-name /QUEU E= SYS$BATCH
/SUBMIT [WAIT
/WAIT (WAIT

Parameter Qualifiers Defaults
/LIBRARY See text.
/MAPPING See text.
/TARGET See text.



LINK

Prompts
-Unit:
File:

Command Parameters
unit-name
By default (or if you specify the /MAIN qualifier):

" You can specify only one unit, the source code of which must be
written in XD Ada.

* The parameter unit-name specifies the XD Ada main program, which
must be a procedure or function with no parameters. If the main
program is a function, it must return a value of a discrete type; the
function value is used as the VMS image exit value.

If you specify the /NOMAIN qualifier:

* You can specify one or more foreign units that are to be included
in the executable image. The unit names may include percent
signs (%) and asterisks (*) as wildcard characters. (See the
<REFERENCE> (VMSDCLCONCEPTS) for detailed information
on wildcard characters.)

" The image transfer address comes from one of the foreign files
specified.

file-spec
Specifies a list of object files, object libraries, mapping definition files,
and target definition files, that are to be used in linking the program.
The default directory is the current default directory. The default file
type is .XOB, unless the /LIBRARY, /MAPPING, or /TARGET qualifier is
used. No wildcard characters are allowed in a file specification.

If the file is an object library or shareable image library, you must use
the /LIBRARY qualifier. The default file type is .XLB.

If the file is a mapping definition file, you must use the /MAPPING
qualifier. The default file type is .MPD.

If the file is a target definition file you must use the /TARGET qualifier.
The default file type is .TGD.

2



LINK

If you specify the /NOMAIN qualifier, the image transfer address comes
from one of the files (not units) specified.

Description
The LINK command performs the following steps:

1. Runs the prebuild phase to generate an elaboration list.
2. Checks if a pragma LINKOPTION is specified for the main pro-

gram, and if specified, verifies that the designated link option name
is available in the current program library. If available, the copied
link option files in the library corresponding to the link option are
used, unless overridden by the /TARGET or /MAPPING qualifiers.

Note that, unlike the CHECK command, the pragma LINK-
OPTION association for units other than the main program unit
is not checked.

If no target link option is given for the main program unit or the
designated target link option is not found in the library, and the log-
ical symbol XDADA$TARGET-DEF is not defined, and a /TARGET
qualifier is not specified on the LINK command line, an error is is-
sued. If no mapping link option is given for the main program unit
or the designated mapping link option is not found in the library,
and the logical symbol XDADA$MAPPINGDEF is not defined,
and a /MAPPING qualifier is not specified on the XDACS LINK
command line, the default mapping in the target definition file is
used.

3. If LINK/NOMAIN is not specified, checks that only one unit is
specified and that it is an XD Ada main program.

4. Forms the closure of the main program (LINK/MAIN) or of the
specified units (LINK/NOMAIN) and verifies that all units in the
closure are present, current and complete. If XDACS detects an
error, the operation is terminated at the end of the prebuild phase.

5. Creates a DCL command file for the builder. The command file is
deleted after the LINK operation is completed or terminated, unless
LINK/COMMAND is specified. If LINK/COMMAND is specified,
the command file is retained for future use, and the build phase is
not carried out.

3



LINK

6. Unless the /COMMAND qualifier is specified, pdrforms the build
phase as follows:
a. By default (LINK/WAIT), the command file generatr-I in step

4 is executed in a subprocess. You must wait for the build
operation to terminate before issuing another command. Note
that when you specify the /WAIT qualifier (the default), process
logical names are propagated to the subprocess generated to
execute the command file.

b. If you specify the /SUBMIT qualifier, the builder command file
is submitted as a batch job.

7. If the /DEBUG qualifier is included in the command line the debug
symbol table information is placed in a file with a default file type
of .XDS.

8. Creates a loadable output file with a default file type of RLD.

XDACS output originating before the builder is invoked is reported
to your terminal by default, or to a file specified with the ]OUTPUT
qualifier. Diagnostics are reported to your terminal, by default, or to
a log file if the LINK command is executed in batch mode (XDACS
LINK/SUBMIT).

See <REFERENCE> (target), <REFERENCE> (map), and <REFERENCE> (build)
for more information on the XD Ada target-specific builder commands.

Command Qualifiers
IAFTER = time
Requests that the batch job be held until after a specific time, when
the LINK command is executed in batch mode (LINK/SUBMIT). If the
specified time has already passed, the job is queued for immediate
processing.

You can specify either an absolute time or a combination of absolute
and delta time. See the <REFERENCE -,(VMS_ DCLCONCEPTS)
(or type HELP Specify Date-Time at the DCL prompt) for complete
information on specifying time values.

IBATCHLOG = file-spec
Provides a file specification for the batch log file when the LINK com-
mand is executed in batch mode (LINK/SUBMIT).

4



LINK

If you do not give a directory specification with the file-spec option, the
batch log file is created by default in the current default directory. If
you do not give a file specification, the default file name is the job name
specified with the /NAME-job-name qualifier. If no job name has been
specified, the program library manager creates a file name comprising
up to the first 39 characters of the first unit name specified. If you
specified LINK/NOMAIN and no job name and there is a wildcard
character in the first unit specified, the program library manager uses
the default file name XDACS-LINK. The default file type is .LOG.

IBRIEF
Directs the builder to produce a brief image map file. The /BRIEF
qualifier is valid only if you also specify the /MAP qualifier with the
LINK command. The /BRIEF qualifier is incompatible with the /FULL
qualifier.

A brief image map file contains only the following sections:

* Object module information
• Segment mapping information
* Link run statistics

See also the description of the /FULL qualifier.

ICOMMAND[ = file-spec]
Controls whether the builder is invoked as a result of the LINK com-
mand, and determines whether the command file generated to invoke
the builder is saved. If you specify the /COMMAND qualifier, XDACS
does not invoke the builder, and the generated command file is saved
for you to invoke or submit as a batch job.

The file-spec option allows you to enter a file specification for the gen-
erated command file. The default directory for the command file is the
current default directory. By default, XDACS provides a file name com-
prising up to the first 39 characters of the first unit name specified. If
you specified LINK/NOMAIN and you used a wildcard character in the
first name unit specified, the program library manager uses the default
file name XDACSLINK. The default file type is .COM. No wildcard
characters are allowed in the file specification.

By default, if the /COMMAND qualifier is not specified, XDACS deletes
the generated command file when the LINK command completes
normally or is terminated.

5



LINK

/OEBUG/ = file-spec)
INODEBUG (D)
Controls whether a debugger symbol table is created along with the
loadable image file.

By default, no debugger symbol table is created.

/ELABORATION = file-spec
Provides a file specification for the object file generated by the LINK
command. The file is retained by XDACS only when the /COMMAND
qualifier is used: that is, when the result of the LINK operation is to
produce a builder command file for future use, rather than to invoke the
builder immediately.

The generated object file contains the code that directs the elaboration
of library packages in the closure of the units specified. Unless you also
specify the /NOMAIN qualifier, the object file also contains the image
transfer address.

The default directory for the generated object file is the current default
directory. The default file type is .XOB. No wildcard characters are
allowed in the file specification.

By default, if you do not specify the /ELABORATION qualifier, XDACS
provides a file name comprising up to the first 39 characters of the first
unit name specified.

By default, if you do not specify the /COMMAND qualifier, XDACS
deletes the generated object file when the LINK command completes
normally or is terminated.

IFULL
Directs the builder to produce a full image map file, which is the most
complete image map. The /FULL qualifier is valid only if you also
specify the /MAP qualifier with the LINK command. Also, the /FULL
qualifier is incompatible with the /BRIEF qualifier.

A full image map file contains the following sections:

" Object module information
" Segment mapping information
" Symbol address information
• Exception numbers
• Link run statistics

6



LINK

IIMAGE[ = file-spec] (D)
INOIMAGE
Controls whether the LINK command creates a loadable image file and
optionally provides a file specification for the file. The default file type
is .RLD. No wildcard characters are allowed in the file specification.

By default, an executable image file is created with a file name compris-
ing up to the first 39 characters of the first unit name specified.

IKEEP (D)
INOKEEP
Controls whether the batch log file generated is deleted after it
is printed when the LINK command is executed in batch mode
(LINK/SUBMIT).

By default, the log file is not deleted.

ILOG
/NOLOG (D)
Controls whether a list of all the units included in the executable image
is displayed. The display shows the units according to the order of
elaboration for the program.

By default, a list of all the units included in the executable image is not
displayed.

IMAIN (D)
INOMAIN
Controls where the image transfer address is to be found.

The /MAIN qualifier indicates that the XD Ada unit specified deter-
mines the image transfer address, and hence is to be a main program.

The /NOMAIN qualifier indicates that the image transfer address comes
from one of the files specified, and not from one of the XD Ada units
specified.

By default (/MAIN), only one XD Ada unit can be specified, and that
unit must be an XD Ada main program.

IMAP[ = file-specj
INOMAP (D)
Controls whether the builder creates an image map file and optionally
provides a file specification for the file. The default directory for
the image map file is the current directory. The default file name
comprises up to the first 39 characters of the first unit name specified.

7



LINK

The default file type is MAP. No wildcard characters are allowed in the
file specification.

If neither the /BRIEF nor the IFULL qualifier is specified with the /MAP
qualifier, /BRIEF is assumed.

By default, no image map file is created.

INAME =job-name
Specifies a string to be used as the job name and as the file name for
the batch log file when the LINK command is executed in batch mode
(LINK/SUBMIT). The job name can have from I to 39 characters.

By default, if you do not specify the /NAME qualifier, XDACS creates
a job name comprising up to the first 39 characters of the first unit
name specified. If you specify LINKINOMAIN but do not specify the
/NAME qualifier, and you use a wildcard character in the first unit
name specified, the program library manager uses the default file name
XDACSLINK. In these cases, the job name is also the file name of the
batch log file.

/NOTIFY (D)
INONOTIFY
Controls whether a message is broadcast when the LINK command is
executed in batch mode (LINK/SUBMIT). The message is broadcast to
any terminal at which you are logged in, notifying you that your job has
been completed or terminated.

By default, a message is broadcast.

IOUTPUT = file-spec
Requests that any output generated before the builder is invoked be
written to the file specified rather than to SYS$OUTPUT. Any diagnostic
messages are written to both SYS$OUTPUT and the file.

The default directory is the current default directory. If you specify a
file type but omit the file name, the default file name is XDACS. The
default file type is -LIS. No wildcard characters are allowed in the file
specification.

By default, the LINK command output is written to SYS$OUTPUT.

8



LINK

/PRINTER[ = queue-name]
INOPRINTER (D)
Controls whether the log file is queued for printing when the LINK
command is executed in batch mode (LINK/SUBMIT) and the batch job
is completed.

The /PRINTER qualifier allows you to specify a particular print queue.
The default print queue for the log file is SYS$PRINT.

By default, the log file is not queued for printing. If you specify
/NOPRINTER, /KEEP is assumed.

IQUEUE = queue-name
Specifies the batch job queue in which the job is entered when the
LINK command is executed in batch mode (LINKISUBMIT).

By default, if the /QUEUE qualifier is not specified, the job is placed in
the default system batch job queue, SYS$BATCH.

ISUBMIT
Directs XDACS to submit the command file generated for the builder
to a batch queue. You can continue to issue commands in your current
process without waiting for the batch job to complete. The builder
output is written to a batch log file.

By default, the generated command file is executed in a subprocess
(LINK/WAIT).

IWAIT
Directs XDACS to execute the command file generated for the builder
in a subprocess. Execution of your current process is suspended until
the subprocess completes. The builder output is written directly to
your terminal. Note that process logical names are propagated to the
subprocess generated to execute the command file.

By default, XDACS executes the command file generated for the builder
in a subprocess: you must wait for the subprocess to terminate before
you can issue another command.

Parameter Qualifiers
IUBRARY
Indicates that the associated input file is an object module library to be
searched for modules to resolve any undefined symbols in the input
files. The default file type is .XLB.

9



LINK

By default, if you do not specify the ILIBRARY qualifier, the file is
assumed to be an object file with a default file type of .XOB.

IMAPPING
Indicates that the associated input file is a mapping definition file.
Mapping definition files control the location of the program on the
target system. The default file type is .MPD.

By default, if you do not specify the iMAPPING qualifieL, the tile is
assumed to be an obitct fil wAt a detault file type of .XOB.

ITARGET
Indicates that the associated input file is a target definition file. Target
definition files describe the target system's memory. The default file
type is .TGD.

By default, if you do not specify the /TARGET qualifier, the file is
assumed to be an object file with a default file type of .XOB.

Examples

1. XDACS> LINK CONTROLLOOP

%ACS-I-CL_LINKING, Invoking the XiD Ada -

The LINK command forms the closure of the unit CONTROL
LOOP, which is an XD Ada main program, creates a builder com-
mand file and package elaboration file, then invokes the command
file in a spawned subprocess.

2. XDACS> LINK/SUBMIT CONTROL LOOP LOOPFUNCTIUNS/LIBRARY

%ACS-I-CL_SUBMTTED, Job CONTROLLOOP (queue ALLSATCH, entry 134)
started on FASTBATCH

The LINK command instructs the builder to link the closure of the
XD Ada main program CONTROL-LOOP against the library LOOP
FUNCTIONS.XLB. The /SUBMIT qualifier causes XDACS to submit
the builder command file as a batch job.

10



LINK

3. :,"A 'S> A :L :;E M::::T>2R.:cB

%AJS-L-JL L2;i. I, :.'ok-:; the XD Ada Builder

Tile LINK command builds all the XD Ada units FLUID-VOLUME
and COUNTER with tie foreign object file MONITOR.XOB. The
/NOMAIN qualifier tells the builder that the image transfer address
is in the foreign fiie.

11



XDADA

XDADA

Invokes the XD Adta compiler to comrpile one or more source files.

Format XDADA fle-s pec[,...]

Command Qualifiers Defaults
/LIBRARY directory-spec /LIBRARY = XDADA$LIB

Positional Qualifiers Defaults

/[NO]ANALYSISDATA! = file-spec] /NOANALYSIS DATA
/[NO]CHECK See text.
/[NOJCOPY-SOURCE /COPYSOURCE
/[NOIDEBUG[ = (option[_..))) /DEBUG =ALL
/[NO] DIAGNOSTICS[ file-spec] /NODIAGNOSTICS
/[NO]ERRORLIMIT[=n] /ERROR_LIMIT=30
/[NOJL!ST[ = file-spec] /NOLIST
/[NO]LOAD[ = option] /LOAD =REPLACE
/(NOIMACHINECODE /NOMACHINECODE
/INOINQTESOURCE /NOTESOURCE
/INO]OPTIMIZEL = (option[. 1) See text.
/(NO]PREDEFINEDUNIT /NOPREDEFINED_-UNIT
/LNO]SHOW = option] /SHOW = PORTABILITY
/[NO]SYNTAX-ONLY /NOSYNTAX_.ONLY
/[NOIWARNINGS = (option[ ....])] See text.

Prompt
File:

Command Parameters
file-spec
Specifies one or more XID Ada source files to be compiled. If you do
not specify a file type, the compiler uses the default file type of .ADA.
No wildcard characters are allowed in the file specifications.

12



XDADA

If you specify several source files as arguments to the XDADA com-
mand, you must separate adjacent file specifications with a comma (,).
If you specify more than one input file, you must separate adjacent file
specifications with a comma (, . You cannot use a plus sign ( + ) to
separate file specifications.

Description
The XDADA command is one of three commands used to compile
compilation units. The other two are the XDACS COMPILE and
RECOMPILE commands. All three commands invoke the XD Ada
cross-compiler for the <REFERENCE> (proc).

The XDADA command can be used at any time to compile one or
more source files (.ADA); it must be used to compile units into a library
for the first time or to compile again a set of units where the order of
compilation has changed.

XD Ada source files are compiled in the order in which they appear
on the command line. If a source file contains more than one XD
Ada compilation unit, the units are compiled in the order in which
they appear in the source file. The Ada rules governing the order in
which compilation units are compiled are summarized in Version 2.0 of
< REFERENCE > (dap).

The XDADA command compiles units in the context of the current
program library. Whenever a compilation unit is successfully compiled,
the current program library is updated as follows:

* An object file (.XOB), which contains the object module, is usually
created in the library.

* A compilation unit file (.ACU) is always created in the library.
• Unless suppressed by the /NOCOPYSOURCE qualifier on the

XDADA command, the file specification of the XD Ada source file
is noted in the library.

* The library index file is revised.

* If the unit was previously compiled into the program library, the
obsolete versions ot the associated library files are deleted.

See < REFERENCE > (prg.libmgr) and Version 2.0 of < REFERENCE > (dap)
for more information on program libraries, sublibraries, and compila-
tion.

13



XDADA

Command Qualifiers
/LIBRARY =directory-spec
Specifies the program library that is to be the current program library
for the duration of the compilation. The directory specified must be an
already existing XD Ada program library. No x'ildcard characters are
allowed in the directory specification.

By default, the current program library is the program library last spec-
ified in a SET LIBRARY command. The logical name XDADASLIB is
assigned to the program library specified in a SET LIBRARY command.

Positional Qualifiers
IANALYSISDATA[ = file-spec]
INOANALYSISDATA (D)
Controls whether a data analysis file containing source code cross-
reference and static analysis information is created. The data analysis
file is supported only for use with DIGITAL layered products, such as
the VAX Source Code Analyzer.

One data analysis file is created for each source file compiled. The
default directory for data analysis files is the current default directory.
The default file name is the name of the source file being compiled.
The default file type is ANA. No wildcard characters are allowed in the
file specification.

By default, no data analysis file is created.

ICHECK
INOCHECK
Controls whether all run-time checks are suppressed. The /NOCHECK
qualifier is equivalent to having all possible SUPPRESS pragmas in the
source code.

Explicit use of the /CHECK qualifier overrides any occurrences of the
pragmas SUPPRESS and SUPPRESSAL in the source code, without
the need to edit the source code.

By default, run-time checks are suppressed only in cases where a
pragma SUPPRESS or SUPPRESSALL appears in the source.

See the <REFERENCE>(xlrm) for more information on the pragmas
SUPPRESS and SUPPRESSALL.

14



XDADA

ICOPYSOURCE (D)
/NOCOPY SOURCE
Controls wvhether a copied source tile .0\C> is created in tile current
program library when a compilation unit is compiled without error. The
RECOMPILE command and thus the CO;MPILE command) requires
that a copied source file exist in the cUirrent program library for any unit
that is to be recompiled.

By default, a copied source file is created in the current program library
when a unit is cornpiled without err

IDEBUG[= (option[,...])] (D)
/NODEBUG

Controls which compiler debugging options are provided. " ou
can debug XD Ada programs with the XD Ada Debugger (see
<REFERENCE>(debug-ch)). You can request the following options:

ALL Provide both SYMBOLS and TRACEBACK.

NONE Provides neither SYMBOLS nor TRACEBACK.

INOISYMBOLS Controls whether debugger symbol records are in-
cluded in the object file.

[NOITRACEBACK Controls whether traceback information ia subset of
the debugger symbol infornation is included in the
object file

By default, both debugger symbol records and traceback information are
included in the object file (/DEBUG = ALL, or equivalently: /DEBUG).

IDIAGNOSTICS[ = file-spec]
INODIAGNOSTICS (D)
Controls whether a diagnostics file containing compiler messages and
diagnostic information is created. The diagnostics file is supported only
for use with DIGITAL layered products, such as the VAX Language-
Sensitive Editor.

One diagnostics file is created for each source file compiled. The
default directory for diagnostics files is the current default directory.
The default file name is the name of the source file being compiled.
The default file typ - is .DIA. No wildcard characters are allowed in the
file specification.

By default, no diagnostics file is created.

15



NOERRORLIMIT
-:illffald tor as given

ij n tht occiiii-cnce of the nth E-level

~~t~ Ie..n ~e 0 C copilation
't t 'he <)V.i [I kltioi'i specified, each compilation
'111t ina;, lic p h, 11 t'1101 Without tel'minating the compilation.

to ci Q'1o 1m! cahe iti a c-ompilation unit. compilation Of
tlh 111 1it is Le1int teJ. 1-Llt C mffpilItin Of 'z~ubseqUent units continues.

!The FRIttE IZ-1170 ,~ ption is equivalent to E.RROR _LIMIlT = 1.

BY default. excutionl ot the XDAI)A com11mand is terminated for a given
compilation unit upon the occurrence (A the 30th E-level error within
that unit (equiValent to ?;ERIRRL-IMIT = 30i

I LIST[ = file-spec]
/NOLIST (D)
Controls whether a listing file is created. One listing file is created
for each source file compiled. The default directory for listing files is
the current default director%,. The default file name is the name of the
source file being compiled. The default file type is LIS. No wildcard
characters are allowed in the file specification.

By default, the XDADA command does not create a listing file.

ILOAD[ = option]
/NOLOAD
LOAD = REPLACE (D)
Controls whether the current programr library is updated with the
successfully, processed units contained in the specified source files.
Depending on other qualifiers specified (or not specified) with the ADA
com-mand, processing can involve full compilation, syntax checking
only, and so on. The /NOLOAD qualifier causes the units in the
specified source files to be processed, but prevents the current program
library from being updated.

16



XDADA

You can specify the following option:

[NOIREPLACE

Controls whether a unit added to the current progiin library
replaces an existing unit with the same name. If you specify the
NOREPLACE option, the unit is added to the current program
library only if no existing unit has the same name, except if lhe .ew
unit is the corresponding body of an existing soe,-jKjaion or vice
versa.

By default, the current program library is updated with the success-
fully processed units, and a unit added to the current program library
replaces an existing unit with the same name.

IMA CHINECODE
INOMACHINECODE (D)
Controls whether generated machine code (approximating assembly
language notation) is included in the listing file.

By default, generated machine code is not included in the listing file.

INOTE SOURCE (D)
INONOTESOURCE
Controls whether the file specification of the source file is noted in the
program library when a unit is compiled without error. The COMPILE
command uses this information to locate revised source files.

By default, the file specification of the source file is noted in the pro-
gram library when a unit is compiled without error.

IOPTIMIZE[ = (option[,...1)1
INOOPTIMIZE
Controls the level of optimization that is applied in producing the
compiled code. You can specify one of the following primary options:

TIME Provides full optimization with time as the primary
optimization criterion. Overrides any occurrences of
the pragma OPTIMIZE(SPACE) in the source code.

SPACE Provides full optimization with space as the primary
optimization criterion. Overrides any occurrences of
the pragma OPTIMIZE(TIME) in the source code.

17



XDADA

DEVELOPMENT Recommended when active development of a pro-
gram is in progress. Provides some optimization,
but development considerations and ease of debug-
ging take preference over optimization. This option
overrides pragmas that establish a dependence on a
subprogram (the pragma INLINE), and thus reduces
the need for iecompilations when such bodies are
modified.

NONE Provides no optimization. Suppresses expansions in
line of subprograms, including those specified by the
pragma INLINE.

The /NOOPTIMIZE qualifier is equivalent to /OPTIMIZE -NONE.

By default, the XDADA command applies full optimization with space
as the primary optimization criterion (like /OPTIMIZE =SPACE, but
observing uses of the pragma OPTIMIZE).

The /OPTIMIZE qualifier also has a set of secondary options that you
can use separately or together with the primary options to override the
default behavior for expansion in line.

The INLINE secondary option can have the following values (see the
<REFERENCE> (rts) for more information about expansion in line).

INLINE:NONE Disables subprogram expansion in line. This option
overrides any occurrences of the pragma INLINE
in the source code, without having to edit the
source file. It also disables implicit expansion in
line of subprograms. (Implicit expansion in line means
that the compiler assumes a pragma INLINE for
certain subprograms as an optimization.) A call to a
subprogram in another unit is not expanded in line,
regardless of the /OPTIMIZE options in effect when
that unit was compiled.

INLINE:NORMAL Provides normal subprogram expansion in line.

Subprograms to which an explicit pragma INLINE
applies are expanded in line under certain condi-
tions. In addition, some subprograms are implicitly
expanded in line. The compiler assumes a pragma
INLINE for calls to some small local subprograms
(subprograms that are declared in the same unit as
the unit in which the call occurs).

18



XDADA

IN LINE: SL BPR#iiJRA NIS I'I *% ides Iliia SLILIPrugraml e\ranlSion in line.

II ldditicil tLI thle n10rmal, Subpr ogramn expansion in
linle tHIt occurIS i hen !jNLINE:NORMAL is specified
thiS optionl r'eSUltS il pliici t expansion in line of
czome Small suihprogranus declared in other units.
Vhe compiler aSSUmies a pragmna INLINE for ank
sulbprogrami if it impjroves execution speed and
reduces code size- This option mnay establish a
dependence onl thle body of another" unit, as Would be
thle case if a piragmia INLINE %\ere specified explicitly
in the Source code.

INLINE:MAXIMAI Provides miaximal subprogram expansion in line.
Maximlal subprogram expansion in line Occurs as for
IN LIN E:SU BPROC RANMS.

By default, the /OPTIMIZE qualifier primary options have the following
secondary-option values:

OPTIMIZE=TIN/E =(INLINE:NORNIAL)
OPTIMIZE=SPACE =tlNLNE:NORNIAL)
OPTIMIZE= DEVELOPM ENT =(INLINE:NONE)
OPTIMIZE= NONE =IINLINE:NONE)

See Chapter 3 of Version 2.0 of <REFERENCE >(dap) fatr a further
discussion of the /OPTIMIZE qualifier and its options.

IPREDEFINED UNIT
/NOPREDEFINED..UNIT (D)
Controls the compilation of package $RUN-TIME- SYSTEM, package
$TASKING-SYSTEM, and package MACHINECODE. You must spec-
ify this qualifier in order to be able to compile these packages. The
qualifier is not required for the compilation of any other source files.
See the <REFERENCE> (rts) for more information.

By default, /PREDEFINED_ UNIT is omitted.

19



XDADA

/SHOW/= option] (D)
INOSHOW
Controls the listing file options included when a listing file is provided.
You can specify one of the following options:

ALL ['rovides all listing file options.

!NOIPORTABILITY Controls whether a program portability SUM-
mary is included in the listing file. By default,
the XDADA command provides a portabil-
ity summarv (.SHOW= PORTABILITY). See
<REFERENCE >(port-sumn) for details of what
can be included in a portability summary. See
Chapter 5 of Version 2.0 of <REFERENCE>(dap)
for more information on program portability.

NONE Provides none of the listing file options (same as
NOSHOW).

By default, the XDADA command provides a portability summary
([SHOW- PORTABILITY).

/SYNTAX ONLY
INOSYNTAX ONLY (0)
Controls whether the source file is to be checked only for correct syntax.
If you specify the /SYNTAXONLY qualifier, other compiler checks are
not performed (for example, semantic analysis, type checking, and so
on), and the program library is not updated.

By default, the compiler performs all checks.

/WARNINGS/ = (message-optlonf,...])]
INOWARNINGS
Controls which categories of informational (I-level) and warning (W-
level) messages are displayed and where those messages are displayed.
You can specify any combination of the following message options:

WARNINGS: (destination[ .... )
NOWARNINGS

WEAK WARNINGS: (destiitzion[ .... )
NOWEAKWARNINGS

SUPPLEMENTAL: (destination[,..J.)
NOSUPPLEMENTAL

20



XDADA

COMPILATION_ NOTES: (destination[_.])
NOCOMPILATION_ NOTES

STATUS: (destination[, ..])
NOSTATUS

The possible values of destination are ALL, NONE, or any combination
of TERMINAL (terminal device), LISTING (listing file), DIAGNOSTICS
(diagnostics file). The message categories are summarized as follows:

WARNINGS W-level: Indicates a definite problem in a legal
program, for example, an unknown pragma.

WEAKWARNINGS I-level: Indicates a potential problem in
a legal program; for example, a possible
CONSTRAINTERROR at run time. These
are the only kind of I-level messages that are
counted in the summary statistics at the end of
a compilation.

SUPPLEMENTAL I-level: Additional information associated with
preceding E-level or W-level diagnostics.

COMPILATION-NOTES I-level: Information about how the compiler
translated a program, such as record layout,
parameter-passing mechanisms, or decisions
made for the pragmas INLINE, INTERFACE, or
the import-subprogram pragmas.

STATUS I-level: End of compilation statistics and other
messages.

The defaults are as follows:

/WARNINGS=(WARN:ALL,WEAK:ALL, SUPP:ALL,COMP:NONE,STAT:LIST)

If you specify only some of the message categories with the
/WARNINGS qualifier, the default values for other categories are used.

Examples
1. $ XDADA MODELINTERFACE_,MODEL_INTERFACE,CONTROL_LOOP

The XDADA command compiles the compilation units con-
tained in the three files MODEL INTERFACE_.ADA, MODEL
INTERFACE.ADA, and CONTROLLOOP.ADA, in the order given.

21



XDADA

2. $ XDADA/LIST/SHOW=ALL SCREEN LO ,SCREEN_ C0

The XDADA command compiles the compilation units contained
in the two files SCREEN 10. ADA and SCREENJO.ADA, in the
order given. The /LIST qualifier creates the listing files SCREEN_
IO_.LIS and SCREEN O.LIS in the current default directory. The
/SHOW-ALL qualifier causes all listing file options to be provided
in the listing files.

22



TEST PARAMETERS

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such as the maximum
length of an input line and invalid file names. A test that makes use of such values is identified
by the extension .TST in its file name. Actual values to be substituted are represented by names
that begin with a dollar sign. A value must be substituted for each of these names before the test
is run. The values used for this validation are given below:

Name and Meanine Value

$ACCSIZE 32
An integer literal whose value is the number of bits
sufficient to hold any value of an access type.

$BIG_ID1 (1..254=>'A', 255=>1)
Identifier the size of the maximum input line length with
varying last character.

$BIGID2 (1..254=>'A', 255=>2)
Identifier the size of the maximum input line length with
varying last character.

$BIGID3 (1..127= >'A', 128= >3,
Identifier the size of the maximum input line length with 129..255= >'A')
varying middle character.

$BIGID4 (1..127= >'A', 128= >4,
Identifier the size of the maximum input line length with 129..255 = >'A')
varying middle character.

$BIGINTLIT (1..252= >0,
An integer literal of value 298 with enough leading 253..255 = >298)
zeroes so that it is the size of the maximum line length

$BIGREALLIT (1..249= >0,
A universal real literal of value 690.0 with enough 250..255=>69.OE1)
leading zeroes to be the size of the maximum line length.

$BIGSTRING1 (1..127= >'A')
A string literal which when catenated with
BIGSTRING2 yields the image of BIGID1.

Validation Snmaay Rqxrt AVF-VSR-9050216

D-Scom pic XD Ada MC68000 V1.0-09 Appendix C - Page I of 5



TEST PARAMETERS

$BIGSTRING2 (1..127= >'A', 128= >1)
A string literal which when catenated to the end of
BIGSTRING1 yields the image of BIGIDI.

$BLANKS (1..235=>' ')
A sequence of blanks twenty characters less than the size
of the maximum line length.

$COUNTLAST 2147483647
A universal integer literal whose value is
TEXTIO.COUNT'LAST.

$DEFAULT MEMSIZE 16777216
An integer literal whose value is
SYSTEM.MEMORYSIZE.

$DEFAULTSTORUNIT 8
An integer literal whose value is
SYSTEM.STORAGEUNIT.

$DEFAULTSYSNAME MC68000
The value of the constant SYSTEM.SYSTEMNAME.

$DELTADOC 2#1.0#E-31
A real literal whose value is SYSTEM.FINEDELTA.

$FIELDLAST 255
A universal integer literal whose value is
TEXTIO.FIELD'LAST.

$FIXED_NAME NOSUCHTYPE
The name of a predefined fixed-point type other than
DURATION.

$FLOATNAME LONGLONGFLOAT
The name of a predefined floating-point type other than
FLOAT, SHORTFLOAT, or LONG-FLOAT.

$GREATER THAN DURATION 131072.0
A universal real literal that lies between
DURATION'BASE'LAST and DURATION'LAST or any
value in the range of DURATION.

$GREATERTHAN DURATION BASE LAST 131073.0
A universal real literal that- is greater than
DURATION'BASE'LAST.

Vaidatin S mmy Repot AVF-VSR-905O266

SD-Sac pic XD A&h MC60O VIA-09 Appendiz C - Pae 2 of 5



TEST PARAMETERS

$HIGHPRIORITY 15
An integer literal whose value is the upper bound of the
range for the subtype SYSTEM.PRIORITY.

$ILLEGALEXTERNALFILENAME1 THERE ARE NO ILLEGAL
An external file name which contains invalid characters. FILENAMES

$ILLEGAL EXTERNALFILE NAME2 N/A
An external file name which is too long.

$INTEGER FIRST -2147483648
A universal integer literal whose value is
INTEGER'FIRST.

$INTEGER LAST 2147483647
A universal integer literal whose value is
INTEGER'LAST.

$INTEGER LAST PLUS_1 2147483648
A universal integer literal whose value is
INTEGER'LA 'T+1.

$LESSTHAN DURATION -131072.0
A universal real literal that lies between
DURATION'BASE'FIRST and DURATION'FIRST or
any value in the range of DURATION.

SLESSTHAN DURATION BASE FIRST -131073.0
A universal real literal that is less than
DURATION'BASE'FIRST.

$LOWPRIORITY 0
An integer literal whose value is the lower bound of the
range for the subtype SYSTEM.PRIORITY.

$MANTISSA DOC 31
An integer literal whose value is
SYSTEM.MAXMANTISSA.

$MAXDIGITS 18
Maximum digits supported for floating-point types.

$MAXINLEN 255
Maximum input line length permitted by the
implementation.

Validation Sammzy Repot AVF-VSR-90502/66

SD-Scda pie XD Ado 14C68000 V.O-09 Appeadk C - Page 3 of 5



TEST PARAMETERS

$MAXINT 2147483647
A universal integer literal whose value is
SYSTEM.MAX INT.

$MAXINTPLUS 1 2147483648
A universal integer literal whose value is
SYSTEM.MAXINT+ 1.

$MAXLENINTBASEDLITERAL (1..2 = >'2:',
A universal integer based literal whose value is 2#11# 3..252=>'0',
with enough leading zeroes in the mantissa to be 253..255=>'11:')
MAXIN_LEN long.

$MAXLEN REALBASED LITERAL (1.3 = >'16:'
A universal real based literal whose value is 16:F.E: with 4..251 = >'0',
enough leading zeroes in the mantissa to be 252..255 = >'F.E:')
MAX IN LEN long.

$MAXSTRINGLITERAL (1=>'"', 2..254 >'A',
A string literal of size MAXIN_LEN, including the 255=>'"')
quote characters.

SMININT -2147483648
A universal integer literal whose value is
SYSTEM.MININT.

SMINTASK SIZE 32
An integer literal whose value is the number of bits
required to hold a task object which has no entries, no
declarations, and "NULL;" as the only statement in its
body.

$NAME SHORTSHORTINTEGER
A name of a predefined numeric type other than
FLOAT, INTEGER, SHORT-FLOAT,
SHORT INTEGER, LONG-FLOAT, or
LONGINTEGER.

$NAMELIST MC68000
A list of enumeration literals in the type
SYSTEM.NAME, separated by commas.

$NEGBASED INT 16#FFFFFFFF#
A based integer literal whose highest order nonzero bit
falls in the sign bit position of the representation fer
SYSTEM.MAX INT.

Validatia. SmMiy Repor AVF-VSR-90502166

SD-Sciwo pic XD Ada MC 6WW VI.0-09 Appcndix C - Page 4 of 5



TEST PARAMETERS

$NEWMEMSIZE 123456
An integer literal whose value is a permitted argument
for pragma memorysize, other than
$DEFAULTMEMSIZE. If there is no other value,
then use $DEFAULTMEMSIZE.

$NEWSTORUNIT 8
An integer literal whose value is a permitted argument
for pragma storageunit, other than
$DEFAULT STOR UNIT. If there is no other
permitted value, then use value of
SYSTEM.STORAGEUNIT.

$NEWSYSNAME MC68000
A value of the type SYSTEM.NAME, other than
$DEFAULTSYSNAME. If there is only one value of
that type, then use that value.

$TASKSIZE 32
An integer literal whose value is the number of bits
required to hold a task object which has a single entry
with one inout parameter.

STICK 2#1.0#E-13
A real literal whose value is SYSTEM.TICK.

Valikdaion Summ-y Rqpot AVF-VSR-905O2/66

s'-cm i Tn Ad* MrrAM V1 AAi Appendix C - Page 5 of 5



WITHDRAWN TESTS

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the Ada Standard.
The following 44 tests had been withdrawn at the time of validation testing for the reasons
indicated. A reference of the form AI-ddddd is to an Ada Commentary.

E28005C This test expects that the string "-- TOP OF PAGE. --63" of line 204 will appear
at the top of the listing page due to a pragma PAGE in line 203; but line 203
contains text that follows the pragma, and it is this that must appear at the top of
the page.

A39005G This test unreasonably expects a component clause to pack an array component into
a minimum size (line 30).

B97102E This test contains an unitended illegality: a select statement contains a null
statement at the place of a selective wait alternative (line 31).

C97116A This test contains race conditions, and it assumes that guards are evaluated
indivisibly. A conforming implementation may use interleaved execution in such
a way that the evaluation of the guards at lines 50 & 54 and the execution of task
CHANGING OF THE-GUARD results in a call to REPORT.FAILED at one of
lines 52 or 56.

BC3009B This test wrongly expects that circular instantiations will be detected in several
compilation units even though none of the units is illegal with respect to the units
it depends on; by AI-00256, the illegality need not be detected until execution is
attempted (line 95).

CD2A62D This test wrongly requires that an array object's size be no greater than 10 although
its subtype's size was specified to be 40 (line 137).

CD2A63A..D, CD2A66A..D, CD2A73A..D, CD2A76A..D [16 tests]
These tests wrongly attempt to check the size of objects of a derived type (for
which a 'SIZE length clause is given) by passing them to a derived subprogram
(which implicitly converts them to the parent type (Ada standard 3.4:14)).
Additionally, they use the 'SIZE length clause and attribute, whose interpretation
is considered problematic by the WG9 ARG.

CD2A81G, CD2AS3G, CD2AB4N & M, & CD50110 [5 tests]
These tests assume that dependent tasks will terminate while the main program
executes a loop that simply tests for task termination; this is not the case, and the
main program may loop indefinitely (lines 74, 85, 86 & 96, 86 & 96, and 58, resp.).

VaWlitlio Summy Repr AVF-VSR-9050266

SD-Sdco. pic XD Ada MC6900 VI..9 Appendix D - Page 1 of 2



WITHDRAWN TESTS

CD2B15C & CD7205C
These tests expect that a 'STORAGE SIZE length clause provides precise control
over the number of designated objects in a collection; the Ada standard 13.2:15
allows that such control must not be expected.

CD2D11B This test gives a SMALL representation clause for a derived fixed-point type (at
line 30) that defines a set of model numbers that are not necessarily represented
in the parent type; by Commentary AI-00099, all model numbers of a derived
fixed-point type must be representable values of the parent type.

CD5007B This test wrongly expects an implicitly declared subprogram to be at the the address
that is specified for an unrelated subprogram (line 303).

ED7004B, ED7005C & D, ED7006C & D [5 tests]
These tests check various aspects of the use of the three SYSTEM pragmas; the
AVO withdraws these tests as being inappropriate for validation.

CD7105A This test requires that successive calls to CALENDAR.CLOCK change by at least
SYSTEM.TICK; however, by Commentary AI-00201, it is only the expected
frequency of change that must be at least SYSTEM.TICK--particular instances of
change may be less (line 29).

CD7203B, & CD7204B
These tests use the 'SIZE length clause and attribute, whose interpretation is
considered problematic by the WG9 ARG.

CD7205D This test checks an invalid test objective: it treats the specification of storage to
be reserved for a task's activation as though it were like the specification of storage
for a collection.

CE21071 This test requires that objects of two similar scalar types be distinguished when read
from a file--DATA ERROR is expected to be raised by an attempt to read one
object as of the other type. However, it is not clear exactly how the Ada standard
14.2.4:4 is to be interpreted; thus, this test objective is not considered valid. (line
90)

CE3111C This test requires certain behavior, when two files are associated with the same
external file, that is not required by the Ada standard.

CE3301A This test contains several calls to END OF LINE & ENDOFPAGE that have
no parameter: these calls were intended to specify a file, not to refer to
STANDARDINPUT (lines 103, 107, 118, 132, & 136).

CE3411B This test requires that a text file's column number be set to COUNT'LAST in order
to check that LAYOUTERROR is raised by a subsequent PUT operation. But
the former operation will generally raise an exception due to a lack of available disk
space, and the test would thus encumber validation testing.

Vawati. Summy Repart AVF-VSR-905Z%6

SDSaw. pic XD Ada MC6WOO VI.A-09 Appmdk n - Page 2 of 2



NCC VSR ADDENDUM

This Addendum to the ACVC 1.10 VSR clarifies some items which are contained within the
standard pre-forma Validation Summary Report as supplied by the Ada Maintenance Office
(AMO).

In line with AJPO regulations the contents of the VSR have not been altered in order to keep
consistency between the different AVFs.

The points raised in this addendum are being addressed by the AMO in future issues of the VSR.

1 The last paragraph of Chapter 1 contains the following statement 'Any test that was
determined to contain an illegal language construct or an erroneous language construct is
withdrawn from the ACVC...'

This is incorrect since illegal constructs are legitimately contained within Class B tests.

2 Both the terms 'inapplicable' and 'not applicable' are used within the VSR. These terms
are identical.

3 Chapter 1 of the VSR does not indicate how 'inapplicable' tests are to be analysed. The
analysis is undertaken as follows:

I

'Each inapplicable test is checked to ensure that this behaviour is consistent with the given
reasons for its inapplicability'.



REPORT DOCUMENTATION PAGE W M

P*&; bom O *aaft~m bkw~m.O 0 W *" b mr Nomw 121ow6

1. AGENCY USE ONLY Aw L AE PORT DTE gS.o PCT 1E AND DXE5 OOEED

I I Final 4 Feb. 1990 to 4 Feb. 1991

4. TITIEAm &eruT1 Ada Compiler Validation. Summary Report: SD-Scicon -UDO MER
pie, XD Ada MC68000 Vi1.0-09, VAX Cluster (Host) to MC68000

(Target), 900204N1 .10252

S. AfLnWS)

National Computing Centre Limited
Manchester, UNITED KINGDOM

7. PEORIN OPOAMUJI.I AES AND AVOISK(S) S WOMING OAGZATO

National Computing Centre Limited 
NME

Oxford Road AVF-VSR-90 502/66

Manchester MI 7ED
UNITED KINGDOM

0. Sk ZUURPOWO nUNG rAGENCY NAMgECS) ANDAOWSS(ES) I&. W RINoAGwOITrORAGNCY

Ada Joint Program Office
United States Department of Defense
Washington, D.C. 20301-3081

11. SPPLEMNTARY NOTES

12L DfTRUWfIOWA%%LA1WUTY STATEMENT Ift OISTVhSJON CMO

Approved for public release; distributiohi unlimited.

IS. AISTRACT Waa."m 2 ww)

SD-Scicon plc, XD Ada MC68000 V1.0-09, Manchester, England, VAX Cluster (Comprising of a

VAX 8600 and 7 MicroVAX II's) under VMS 5.1 (Host) to MC68000 processor running on an

MVME117-3FP MPU VME module using a MC68881 floating point peripheral (bare machine),

ACVC 1.10.

%4.SUBJECTTEPM Ada programming language, Ada Compiler Validation &WLG®0W S
Summary Report, Ada Compiler Validation Capability, ValidationI
STD-1815A, Ada Joint Program Office

17. 5 QqIY AhCATON 16 ISECURITY CLASWIAITN I . 15. TU LMIETIO OF ITC

UNCLASSIFIED UNCLASSIFIE UNCASFE

HUN 7501284M5wVU 
-OM M

I-A N& Of



AVF Control Number: AVF-VSR-90502/66

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: #900204N1.10252

SD-Scicon plc
XD Ada MC680 V1.0-09

VAX Cluster Host and MC68000 target

Completion of On-Site Testing:
February 4 1990

Prepared By.
Testing Services

The National Computing Centre Limited
Oxford Road

Manchester M1 7ED
England

Prepared For:.
Ada Joint Program Office

United States Department of Defense
Washington DC 20301-3081

V. hldatio Summary Report AVF-VSR-90502/66

SD-Scaou pic XD Ada MC69000 V1.0-09 Page i of ii



Ada Compiler Validation Summary Report:

Compiler Name: XD Ada MC68000 V1.0-09

Certificate Number: #900204N1.10252

Host: VAX Cluster (Comprising of a VAX 8600 and 7 MicroVAX Il's) under VMS 5.1

Target: MC68000 processor running on an MVME117-3FP MPU VME module using a
MC68881 floating point peripheral (bare machine).

Testing Completed February 4 1990 Using ACVC 1.10

This report has been reviewed and is approved.

Jane Pink
Testing Services Manager
The National Computing Centre Limited
Oxford Road
Manchester Ml 7ED
England

Ada Valo.ati.. rganization
D r. John F.I' amer
Institute for 0ense Analyses
Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond
Director AJPO
Department of Defense
Washington DC 20301

Validation Summary Report AVF-VSR-90502/66

SD-Sdcom pic XD Ada MC6O00 V1.0-09 Page ii of ii



TABLE OF CONTENTS

TABLE OF CONTENTS

CHAPTER 1
INTRODUCTION ........................................... 1

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT .... 1
1.2 USE OF THIS VALIDATION SUMMARY REPORT ........... 2
1.3 REFERENCES ................................... 2
1.4 DEFINITION OF TERMS ........................... 3
1.5 ACVC TEST CLASSES ............................. 4

CHAPTER 2
CONFIGURATION INFORMATION ............................. 1

2.1 CONFIGURATION TESTED ......................... 1
2.2 IMPLEMENTATION CHARACTERISTICS .................. 1

CHAPTER 3
TEST INFORMATION ......................................... 1

3.1 TEST RESULTS .................................. 1
3.2 SUMMARY OF TEST RESULTS BY CLASS ................. 1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER .............. 1
3.4 WITHDRAWN TESTS .............................. 2
3.5 INAPPLICABLE TESTS ............................. 2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS . . 5

3.7 ADDITIONAL TESTING INFORMATION .......................... 5

APPENDIX A
DECLARATION OF CONFORMANCE ............................ 1

APPENDIX B
APPENDIX F OF THE Ada STANDARD .......................... 1

APPENDIX C
TEST PARAMETERS ........................................ 1

APPENDIX D
WITHDRAWN TESTS ........................................ 1

Validat o Samazy Report AVF-VSR-90502/66

SD-Sciwm plc XD Ada MC68W@ VI.0-09 Tabe of Contents - Page i of i



INTRODUCTION

CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a specific Ada compiler
conforms to the Ada Standard, ANSIIMIL-STD-1815A. This report explains all technical terms
used within it and thoroughly reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented according to the Ada
Standard, and any implementation-dependent features must conform to the requirements of the
Ada Standard. The Ada Standard must be implemented in its entirety, and nothing can be
implemented that is not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it must be understood that
some differences do exist between implementations. The Ada Standard permits some
implementation dependencies -- for example, the maximum length of identifiers or the maximum
values of integer types. Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All the dependencies
observed during the process of testing this compiler are given in this report.

The information in this report is derived from the test results produced during validation testing.
The validation process includes submitting a suite of standardized tests, the ACVC, as inputs to an
Ada compiler and evaluating the results. The purpose of validating is to ensure conformity of the
compiler to the Ada Standard by testing that the compiler properly implements legal language
constructs and that it identifies and rejects illegal language constructs. The testing also identifies
behavior that is implementation dependent, but is permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile time, at link time, and
during execution.

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an Ada compiler. Testing
was carried out for the following purposes:

o To attempt to identify any language constructs supported by the compiler that do
not conform to the Ada Standard

o To attempt to identify any language constructs not supported by the compiler but
required by the Ada Standard

0 To determine that the implementation-dependent behavior is allowed by the Ada
Standard

Testing of this compiler was conducted by The National Computer Centre Limited according to
procedures established by the Ada Joint Program Office and administered by the Ada Validation

Validation Summary Rcpon AVF-VSR-90502/66

SD-Scioa pic XD Ada MC68000 VI.O-09 Chapter I - Page 1 of 5



INTRODUCTION

Organization (AVO). On-site testing was completed on February 4 1990 at SD-SCICON plc,
Pembroke House, Pembroke Broadway, Camberley, Surrey, GOU15 3XD, UK.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may make full and free
public disclosure of this report. In the United States, this is provided in accordance with the
"Freedom of Information Act" (5 U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not represent or warrant
that all statements set forth in this report are accurate and complete, or that the subject compiler
has no nonconformities to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office

OUSDRE
The Pentagon, Rm 31-139 (Fern Street)

Washington DC 20301-3081

or from:

Testing Services
The National Computing Centre Limited

Oxford Road
Manchester MI 7ED

England

Questions regarding this report or the validation test results should be directed to the AVF listed
above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street

AlIandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines
Ada Joint Program Office, 1 January 1987.

Vabdabon S-m y Report AVF-VSR-9050Z466

SD-Scicm pie XD Ads MC68WOO V1.0-09 Chapter 1 - Page 2 of 5



INTRODUCTION

3. Ada Compiler Validation Capabilitv Implementers' Guide,
SofTech, Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide.
December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada programs
that tests the conformity of an Ada compiler to the Ada
programming language.

Ada Commentary An Ada Commentary contains all information relevant to the point
addressed by a comment on the Ada Standard. These comments
are given a unique identification number having the form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures contained
in the Ada Compiler Validation Procedures and Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of maintaining a
uniform process for validation of Ada compilers. The AVO
provides administrative and technical support for Ada validations to
ensure consistent practices.

Compiler A processor for the Ada language. In the context of this report,
a compiler is any language processor, including cross-compilers,
translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable test An ACVC test that uses features of the language that a compiler
is not required to support or may legitimately support in a way
other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected result.

Validatiom Summary Repor AVF-VSR-9052166

SD-,Sdoo pic XD Ada MC68000 VI.O.09 Chapter I - Page 3 of 5



INTRODUCTION

Target The computer which executes the code generated by the compiler.

Test A program that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada Standard.
In the context of this report, the term is used to designate a single
test, which may comprise one or more files.

Withdrawn test An ACVC test found to be incorrect and not used to check
conformity to the Ada Standard. A test may be incorrect because
it has an invalid test objective, fails to meet its test objective, or
contains illegal or erroneous use of the language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC contains both legal and
illegal Ada programs structured into six test classes: A, B, C, D, E, and L. T1- first letter of a
test name identifies the class to which it belongs. Class A, C, D, and E tests are executable, and
special program units are used to report their results during execution. Class B tests are expected
to produce compilation errors. Class L tests are expected to produce errors because of the way
in which a program library is used at link time.

Class A tesi s ensure the successful compilation and execution of legal Ada programs with certain
language c-,nstructs which cannot be verified at run time. There are no explicit program
component, in a Class A test to check semantics. For example, a Class A test checks that reserved
words of a c ther language (other than those already reserved in the Ada language) are not treated
as reserved .vords by an Ada compiler. A Class A test is passed if no errors are detected at
compile titre and the program executes to produce a PASSED message.

Class B tes-s check that a compiler detects illegal language usage. Class B tests are not executable.
Each test in this class is compiled and the resulting compilation listing is examined to verify that
every synto- or semantic error in the test is detected. A Class B test is passed if every illegal
construct that it contains is detected by the compiler.

Class C te ts check the run time system to ensure that legal Ada programs can be correctly
compiled and executed. Each Class C test is self-checking and produces a PASSED, FAILED, or
NOT APPI 'CABLE message indicating the result when it is executed.

Class D te:.ts check the compilation and execution capacities of a compiler. Since there are no
capacity ret uirements placed on a cc.npiler by the Ada Standard for some parameters - for
example, the number of identifiers permitted in a compilation or the number of units in a library -
- a compiler may refuse to compile a Class D test and sIJ be a conforming compiler. Therefore,
if a Class D test fails to compile because the capacity of the compiler is exceeded, the test is
classified as inapplicable. If a Class D test compiles successfully, it is self-checking and produces
a PASSED or FAILED message during execution.

V"alid S-umay Rq AVF-VSR-905026

SD-Sdw pik XD A&a MC68M0 V1.0-09 Chapter 1 - Page 4 of 5



INTRODUCTION

Class E tests are expected to execute successfully and check implementation-dependent options and
resolutions of ambiguities in the Ada Standard. Each Class E test is self-checking and produces
a NOT APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs containing some features
addressed by Class E tests during compilation. Therefore, a Class E test is passed by a compiler
if it is compiled successfully and executes to produce a PASSED message, or if it is rejected by the
compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving multiple, separately compiled
units are detected and not allowed to execute. Class L tests are compiled separately and execution
is attempted. A Class L test passes if it is rejected at link time -- that is, an attempt to execute
the main program must generate an error message before any declarations in the main program
or any units referenced by the main program are elaborated. In some cases, an implementation
may legitimately detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECKFILE, support the self-
checking features of the executable tests. The package REPORT provides :' mechanism by which
executable tests report PASSED, FAILED, or NOT APPLICABLE results. It also provides a set
of identity functions used to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECKFILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada Standard. The operation
of REPORT and CHECKFILE is checked by a set of executable tests. These tests produce
messages that are examined to verify that the units are operating correctly. If these units are not
operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to ensure that the tests
are reasonably portable without modification. For example, the tests make use of only the basic
set of 55 characters, contain lines with a maximum length of 72 characters, use small numeric
values, and place features that may not be supported by all implementations in separate tests.
However, some tests contain values that require the test to be customized according to
implementation-specific values -- for example, an illegal file name. A list of the values used for
this validation is provided in Appendix C.

A compiler must correctly process each of the tests in the suite and dtamonstrate conformity to the
Ada Standard by either meeting the pass criteria given for the test or by showing that the test is
inapplicable to the implementation. The applicability of a test to an implementation is considered
each time the implementation is validated. A test that is inapplicable for one validation is not
necessarily inapplicable for a subsequent validation. Any test that was determined to contain an
illegal language construct or an erroneous language construct is withdrawn from the ACVC and,
therefore, is not used in testing a compiler. The tests withdrawn at the time of this validation
are given in Appendix D.

Vaidation Sunmzay Reprt AVF-VSR-905OZ66

SD-Sdao pie XD Ada MC6000 Vl.0-09 Chapter I - Page 5 of 5



CONFIGURATION INFORMATION

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the following configuration:

Compiler: XD Ada MC68000 V1.0-09

ACVC Version: 1.10

Certificate Number: #900204NI.10252

Host Computer:

Machine: VAX Cluster (comprising of a VAX 8600 and 7 MicroVAX
[I's)

Operating System: VMS 5.1

Memory Size: VAX 8600 - 20Mbytes
MicroVAX II's - 1 x 16 Mbytes

6 x 9 Mbytes

Target Computer:

Machine: MC68000 processor running on an MVME117-3FP MPU

VME module using an MC38881 floating point peripheral.

Operating System Bare machine.

Memory Size: 512Kb

Communications Network: RS232 link

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of a compiler in those
areas of the Ada Standard thit permit implementations to differ. Class D and E tests specifically
check for such implementation differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

Validation Sumua y Rqou1 AVF-VSR-90502/66

SD-Scdax pic XD Ada MC6O00 V.0-09 Chapter 2 - Page 1 of 5



CONFIGURATION INFORMATION

a. Capacities.

(1) The compiler correctly proce a compilation containing 723 variables in the same
declarative part. (See test D29002K)

(2) The compiler correctly processes tests containing loop statements nested to 65
levels. (See tests D55A03A..H (8 tests).)

(3) The compiler correctly processes tests containing block statements nested to 65
levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive procedures separately
compiled as subunits nested to 17 levels. (See tests D64005E..G (3 tests).)

b. Predefined types.

(1) This implementation supports the additional predefined types SHORT INTEGER,
SHORTSHORT INTEGER, LONGFLOAT, and LONGLONGFLOAT, in the
package STANDARD. (See tests B86001T..Z (7 tests).)

c. Expression evaluation.

The order in which expressions are evaluated and the time at which constraints are checked
are not defined by the language. While the ACVC tests do not specifically attempt to
determine the order of evaluation of expressions, test results indicate the following:

(1) None of the default initialization expressions for record components are evaluated
before any value is checked for membership in a component's subtype. (See test
C32117A.)

(2) Assignments for subtypes are performed with the same precision as the base type.
(See test C35712B).

(3) This implementation uses no extra bits for extra precision and uses all extra bits
for extra range. (See test C35903A.)

(4) NUMERICERROR is raised when an integer literal operand in a comparison or
membership test is outside the range of the base type. (See test C45232A.)

(5) NUMERICERROR is raised when a literal operand in a fixed-point comparison
or membership test is outside the range of the base type. (See test C45252A.)

(6) Underflow is gradual. (See tests C45524A..Z (26 tests).)

Validation Sumnary Repor AVF-VSR-90502/66

SDSam pic XD Ada MC68000 VI.09 Chapter 2 - Page 2 of 5



CONFIGURATION INFORMATION

d. Rounding.

The method by which values are rounded in type conversions is not defined by the
langn:age. While the ACVC tests do not specifically attempt to determine the method of
rounding, the test results indicate the following:

(1) The methoa used for rounding to integer is round to even. (See tests C46012A..Z
(26 tests).)

(2) The method used for rounding to longest integer is round to even. See tests
C46012A..Z (26 tests).)

(3) The method used for rounding to integer in static universal real expressions is
round away from zero. (See test C4AO14A.)

e. Array types.

An implementation is allowed to raise NUMERICERROR or CONSTRAINTERROR
for an array having a 'LENGTH that exceeds STANDARD.INTEGER'LAST and/or
SYSTEM.MAXINT. For this implementation:

(1) Declaration of an array type or subtype declaration with more than
SYSTEM.MAXINT components raises NUMERIC-ERROR. (See test C36003A.)

(2) NUMERIC-ERROR is raised when an array type with INTEGER'LAST + 2
components is declared. (See test C36202A.)

(3) NUMERIC-ERROR is raised when an array type with SYSTEM.MAXINT + 2
components is declared. (See test C36202B.)

(4) A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST raises
NUMERICERROR when the array type is declared. (See test C52103X.)

(5) ,i packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components NUMERICERROR when the array type is declared. (See test
C52104Y.)

(6) In assigning one-dimensional array types, the expression is evaluated in its entirety
before CONSTRAINTERROR is raised when checking whether the expression's
subtype is compatible with the target's subtype. (See test C52013A.)

(7) In assigning two-dimensional array types, the expression is not evaluated in its
entirety before CONSTRAINTERROR is raised when checking whether the
expression's subtype is compatible with the target's subtype. (See test C52013A.)

Validatiom SunmaW Report AVF-VSR-9050266

SD-.Sdb= pic XD Ada MC69000 VI.049 Chapter 2 - Page 3 of 5



CONFIGURATION INFORMATION

f. A null array with one dimension of length greater than INTEGER'LAST may raise
NUMERICERROR or CONSTRAINT-ERROR either when declared or assigned.
Alternatively, an implementation may accept the declaration. However, lengths must match
in array slice assignments. This implementation raises no exception. (See test E52103Y.)

g. Discriminated types.

(1) In assigning record types with discriminants, the expression is evaluated in its
entirety before CONSTRAINTERROR is raised when checking whether the
expression's subtype is compatible with the target's subtype. (See test C52013A.)

h. Aggregates.

(1) In the evaluation of a multi-dimens" al aggregate, the test results indicate that all
choices are evaluated before checking against the index type. (See tests C43207A
and C43207B.)

(2) In the evaluation of an aggregate containing subaggregates, all choices are evaluated
before being checked for identical bounds. (See test E43212B.)

(3) CONSTRAINTERROR is raised after all choices are evaluated when a bound in
a non-null range of a non-null aggregate does not belong to an index subtype. (See
test E43211B.)

Pragmas.

(1) The pragma INLINE is supported for functions or procedures. (See tests
LA3004A..B (2 tests), EA3004C..D (2 tests), and CA3004E..F (2 tests).)

j. Generics.

(1) Generic specifications and bodies can be compiled in separate compilations. (See
tests CA1012A, CA2009C, CA2009F, BC3204C, and BC3205D.)

(2) Generic subprogram declarations and bodies can be compiled in separate
compilations. (See tests CA1012A and CA2009F.)

(3) Generic library subprogram specifications and bodies can be compiled in separate
compilations. (See test CA1012A.)

(4) Generic non-library package bodies as subunits can be compiled in separate
compilations. (See test CA2009C.)

Valkdatio Sum-ny Rqort AVF-VSR-905O266

SD-Sdcon pc XD Ada MCMO VI.090 Chapter 2 - Page 4 of 5



CONFIGURATION INFORMATION

(5) Generic non-library subprogram bodies can be compiled in separate compilations
from their stubs. (See test CA2009F.)

(6) Generic unit bodies and their subunits can be compiled in separate compilations.
(See test CA3011A.)

(7) Generic package declarations and bodies can be compiled in separate compilations.
(See tests CA2009C, BC3204C, and BC3205D.)

(8) Generic library package specifications and bodies can be compiled in separate
compilations. (See tests BC3204C and BC3205D.)

k. Input and output.

(1) The package SEQUENTIAL_10 can be instantiated with unconstrained array types
and record types with discri-inants without defaults. (See tests AE2101C,
EE2201D, and EE2201E.)

(2) The package DIRECT_10 can be instantiated with unconstrained array types and
record types with discriminants without defaults. (See tests AE2101H, EE2401D,
and EE2401G.)

(3) The director, AJPO, has determined (AI-00332) that every call to OPEN and
CREATE must raise USE-ERROR or NAMEERROR if file input/output is not
supported. This implementation exhibits this behavior for SEQUENTIALIO,
DIRECTTO, and TEXT_10.

Validation Smmmary Rqxou AVF-VSR-90502/66

S-Saam pie XD A MC680O VI.O09 O0apter 2 - Pae 5 of 5



TEST INFORMATION

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was tested, 44 tests had been
withdrawn because of test errors. The AVF determined that 504 tests were inapplicable to this
implementation. All inapplicable tests were processed during validation testing except for 159
executable tests that use floating-point precision exceeding that supported by the implementation.
Modifications to the code, processing, or grading for 16 tests were required to successfully
demonstrate the test objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL

A B C D E L

Passed 129 1133 1828 17 16 46 3169

Inapplicable 0 5 487 0 12 0 504

Withdrawn 1 2 35 0 6 0 44

TOTAL 130 1140 2350 17 34 46 3717

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 201 592 567 245 172 99 162 331 137 36 252 295 78 3169

Inapp 11 57 111 3 0 0 4 1 0 0 0 74 243 504

Withdrawn 1 1 0 0 0 0 0 2 0 0 1 35 4 44

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

Validation Sumary Report AVF-VSR-90502j66

SD-Sdcwa pic XD Ada MC69000 VI.0-09 Chapter 3 - Pae I of 6



TEST INFORMATION

3.4 WITHDIRAWN TESTS

The following 44 tests were withdrawn from ACVC Version 1.10 at the time of this validation:

E28005C A39005G B97102E
C97116A BC3009B CD2A62D
CD2A63A..D (4 tests) CD2A66A..D (4 tests) CD2A73A..D (4 tests)
CD2A76A..D (4 tests) CD2A81G CD2A83G
CD2A84M..N (2 tests) CD2B15C CD2D1B
CD5007B CD50110 ED7004B
ED7005C..D (2 tests) ED7006C..D (2 tests) CD7105A
CD7203B CD7204B CD7205C
CD7205D CE21071 CE3111C
CE3301A CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features that a compiler is not
required by the Ada Standard to support. Others may depend on the result of another test that
is eithe2r inapplicable or withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one validation attempt is not
necessarily inapplicable for a subsequent attempt. For this validation attempt, 504 tests were
inapplicable for the reasons indicated:

a. The following 159 tests are not applicable because they have floating-point type
declarations requiring more digits than SYSTEM.MAXDIGITS:

C241130..Y (11 tests) C357050..Y (11 tests) C357060..Y (1 tests)
C357070..Y (11 tests) C357080..Y (11 tests) C358020..Z (12 tests)
C452410..Y (11 tests) C453210..Y (11 tests) C454210..Y (11 tests)
C455210..Z (12 tests) C455240..Z (12 tests) C456210..Z (12 tests)
C456410..Y (11 tests) C460120..Z (12 tests)

b. C35702A and B86001T are not applicable because this implementation supports no
predefined type SHORTFLOAT.

c The following 16 tests are not applicable because this implementation does not
support a predefined type LONGINTEGER:

C45231C C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45614C C45631C
C45632C B52004D C55B07A B55B09C
B86001W CD7101F

Validation Sumnmu Report AVF-,/SR-90502166

SD-Scion pic XD Ada MC6000 V1.0-09 Chapter 3 - Page 2 of 6



TEST INFORMATION

d. C45531M..P (4 tests) and C45532M..P (4 tests) are all inapplicable because this
implementation has a 'MAXMANTISSA of 31 and these tests require the compiler
to support a greater value.

e. C86001F is not applicable because, for this implementation, the package TEXT_10
is dependent upon package SYSTEM. This test recompiles package SYSTEM,
making package TEXTIO, and hence package REPORT, obsolete.

f. B86001Y is not applicable because this implementation supports no predefined
fixed-point type other than DURATION.

g. C96005B is not applicable because there are no values of type DURATION'BASE
that are outside the range of DURATION.

h. CD1009C, CD2A41A..B (2 tests), CD2A41E and CD2A42A..J (10 tests) are not
applicable because 'SIZE representation clauses for floating-point types are not
supported.

i. CD1C04C is inapplicable because this implementation does not support model
numbers of a derived type that are not representable values of the parent type.

j. CD2A52C..D (2 tests), CD2A52G..H (2 tests), CD2A54C..D (2 tests) and CD2A54H
are not applicable because for this implementation the legality of a 'SIZE clause
for a derived fixed point type can depend on the representation chosen for the
parent type.

k. CD2A53C. and CD2A54G are not applicable because within these tests the SMALL
specified for a derived fixed point is finer than the SMALL for the parent type.
As a result some model numbers of the derived type are not representable values
of the parent type which this implementation does not allow.

1. The following 23 tests are not applicable because this implementation does not
support packing by means of a length clause for an array type:

CD2A61A..L (12 tests) CD2A62A..C (3 tests) CD2A64A.D (4 tests)
CD2A65A..D (4 tests)

m. The following 16 tests are not applicable because this implementation does not
support packing by means of a length clause for a record type:

CD2A71A.D (4 tests) CD2A72A..D (4 tests) CD2A74A..D (4 tests)
CD2A75A.D (4 tests)

n. CD2A84B..I (8 tests) and CD2A84K.L (2 tests) are not applicable because this
implementation only accepts length clause for access types, if the default size (32
bits) is specified. These tests specify sizes other that 32 bits.

Validation Summary Report AVF-VSR-90502%6

SD-Sdco. pic XD Ada MC6M0W0 VI..0-9 Chapter 3 - Page 3 of 6



TEST INFORMATION

o. The following 241 tests are inapplicable because sequential, text, and direct access
files are not supported:

CE2102A..C (3 tests) CE2102G..H (2 tests) CE2102K
CE2102N..Y (12 tests) CE2103C..D (2 tests) CE2104A..D (4 tests)
CE2105A..B (2 tests) CE2106A..B (2 tests) CE2107A..H (8 tests)
CE2107L CE2108A..H (8 tests) CE2109A..C (3 tests)
CE2110A..D (4 tests) CE2111A..I (9 tests) CE2115A..B (2 tests)
CE2201A..C (3 tests) EE2201D..E (2 tests) CE2201F..N (9 tests)
CE2204A..D (4 tests) CE2205A CE2208B
CE2401A..C (3 tests) EE2401D CE2401E..F (2 tests)
EE2401G CE2401H..L (5 tests) CE2404A..B (2 tests)
CE2405B CE2406A CE2407A.B (2 tests)
CE2408A..B (2 tests) CE2409A..B (2 tests) CE2410A..B (2 tests)
CE2411A CE3102A..B (2 tests) EE3102C
'7E3102F..H (3 tests) CE3102J..K (2 tests) CE3103A
CE3104A..C (3 tests) CE3107B CE3108A..B (2 tests)
CE3109A CE3110A CE3111A..B (2 tests)
CE3111D..E (2 tests) CE3112A..D (4 tests) CE3114A..B (2 tests)
CE3115A EE3203A CE3208A
EE3301B CE3302A CE3305A
CE3402A EE3402B CE3402C..D (2 tests)
CE3403A..C (3 tests) CE3403E..F (2 tests) CE3404B..D (3 tests)
CE3405A EE3405B CE3405C..D (2 tests)
CE3406A..D (4 tests) CE3407A..C (3 tests) CE3408A.C (3 tests)
CE3409A CE3409C..E (3 tests) EE3409F
CE3410A CE3410C..E (3 tests) EE341OF
CE3411A CE3411C CE3412A
CE3413A CE3413C CE3602A..D (4 tests)
CE3603A CE3604A..B (2 tests) CE3605A..E (5 tests)
CE3606A..B (2 tests) CE3704A..F (6 tests) CE3704M..O (3 tests)
CE3706D CE3706F..G (2 tests) CE3804A.,P (16 tests)
CE3805A..B (2 tests) CE3806A..B (2 tests) CE3806D..E (2 tests)
CE3806G..H (2 tests) CE3905A..C (3 tests) CE3905L
CE3906A..C (3 tests) CE3906E..F (2 tests)

p. CE3901A is not applicable because this implementation raises NAMEERROR if
a filename narameter to TEXTIO.CREATE is non-null. This test assumes that
'.dSE ERROR will be raised.

q. EE3412C is not applicable for this implementation because their implementation
of the body of the package report does not use TEXT_IO.

VaRdatioa Sammy Rqxwt AVF-VSR-9502S66

SD-scom plc XD Ada MC68000 VI.o-09 amapta 3 - Page 4 of 6



TEST INFORMATION

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code, processing, or evaluation in order
to compensate for legitimate implementation behaviour. Modifications are made by the AVF in
cases where legitimate implementation behaviour prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include: adding a length clause to alter
the default size of a collection; splitting a Class B test into subtests so that all errors are detected;
and confirming that messages produced by an executable test demonstrate conforming behaviour
that was not anticipated by the test (such as raising one exception instead of another).

Modifications were required for 16 tests.

C34006D is classified as passed if the test fails with messages "INCORRECT TYPE'SIZE"
or "INCORRECT OBJECT'SIZE". This test incorrectly assumes that the space allocated
for objects must be less than or equal to the minimum needed by the (sub) type. This is
not true for this implementation.

C4-524A..N (14 tests) were modified because these tests expect that the result of continued
division of a real number will be zero; the Ada Standard, however, only requires that the
result be within the type's SAFESMALL of zero. Thus, these tests were modified to
include a check that the result was in the smallest positive safe interval for the type. The
implementation passed ti.e modified tests. Each test was modified by inserting the following
code after line 138;

The following test was split because syntax errors at one point resulted in the compiler not
detecting other errors in the test:

B97103E

3,7 ADDITIONAL TESTING INFORMATION

3,7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced by the XD Ada MC68000
V1.O-09 compiler was submitted to the AVF by the applicant for review. Analysis of these results
demonstrated that the compiler successfully passed all applicable tests, and the compiler exhibited
the expected behaviour on all inapplicable tests.

3.7.2 Test Method

Testing of the XD Ada MC68000 V1.0-09 compiler using ACVC Version 1.10 was conducted on-
site by a validation team from the AVF. The configuration in which the testing was performed is
described by the following designations of hardware and software components:

Validatioa Summary Reprt AVF-VSR-90502f66

SD-Soco. pic XD Ada MC6 S0 ",T1.0-09 Chapter 3 - Page 5 of 6



TEST INFORMATION

Host computer VAX Cluster (comprising of a VAX 8600 and 7 MicroVAX
U's)

Host operating system VMS 5.1
Target computer MC68000 processor running on the MVME117-3FP MPU

VME module using an MC68881 floating point peripheral.
Compiler XD Ada MC68000 V1.0-09
Assembler XD Ada MC68000 V1.0-09
Linker XD Ada MC68030 Vl.0-04
Loader XD Ada MC68000 $1.0-10
Downloader XD Ada MC68030 V1.0-04
Runtime System XD Ada MC68000 Vl.0-09

The host and target computers were linked via a RS232 link.

A magnetic tape containing all tests except for withdrawn tests and tests requiring unsupported
floating-point precisions was taken on-site by the validation team for processing. Tests that make
use ,-I implementation-specific values were customized before being written to the magnetic tape.
Tests requiring modifications during the prevalidation testing were not included in their modified
form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host computer.

After the test files were loaded to disk, the full set of tests was compiled and linked on the VAX
Cluster, then all executable images were transferred to the MC68000 target via the RS232 link and
run. Results were printed from the host computer.

The compiler was tested using command scripts provided by SD-Scicon plc and reviewed by the
validation team. The compiler was tested using all the following option settings. Details of these
settings are given at the end of Appendix B.

Tests were compiled, linked, and executed (as appropriate) using 8 computers and two target
computers. Test output, compilation listings, and job logs were captured on magnetic media and
archived at the AVF. The listings examined on-site by the validation team were also archived.

3.7.3 Test Site

Testing was conducted at SD-Scicon plc, Pembroke House, Pembroke Broadway, Camberley, Surrey,
GU15 3XD, UK and was completed on February 4 1990.

Validatio Summary Report AVF-VSR-905OZ66

SD-Saw. pic XD Ada MC6OO VI.-09 Chapter 3 - Page 6 of 6



DECLARATION OF CONFORMANCE

APPENDIX A

DECLARATION OF CONFORMANCE

SD-Scicon plc has submitted the following Declaration of Conformance
concerning the XD Ada MC68000 V1.0-09 compiler.

V"datlidm Swun y Rcpt AVF-VSR-950/66

SD,-Sdw pie XD Aft MC6800 V.049 App ndx A - Page I of 3



DECLARATION OF CONFORMANCE

DECLARATION OF CONFORMANCE

Compiler Implementor: SD-Scicon plc

Ada Validation Facility: The National Computing Centre Limited
Oxford Road
Manchester
MI 7ED

Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: XD Ada MC68000 V1.0-09

Host Architecture: VAX Ouster (comprising of a VAX 8600 and 7
MicroVAX 1's)

Host OS and Version: VMS 5.1

Target Architecture: MC68000 processor on an MVME117-3FP MPU
VME module using an MC68881 floating point
peripheral (bare machine).

Implementor's Declaration

I, the undersigned, representing SD-Scicon plc, have implemented no deliberate extensions
to the Ada Language Standard ANSI/MIL-STD-1815A in the compiler(s) listed in this
declaration. I declare that SD-Scicon pk is the owner of record of the Ada language
compiler(s) listed above and, as such, is responsible for maintaining said compiler(s) in
conformance to ANSIIMIL-STD-1815A. All certificates and registrations for Ada language
compiler(s) listed in this declaration shall be made only in the owner's corporate name.

__ ~Date:d L9
Bill Davison
WORLDWIDE CUSTOMER SERVICES MANAGER

Vafidatio Sun-uay Rq AVF-VSR-9502/66

SD-oSn pic XD Ada MC6890 VI.0-09 Appeadi A - Pae 2 of 3



DECLARATION OF CONFORMANCE

Owner's Declaration

I, the undersigned, representing SD-Scicon plc, take full responsibility for implementation
and maintenance of the Ada compiler(s) listed above, and agree to the public disclosure
of the final Validation Summary Report. I declare that all of the Ada language compilers
listed, and their host/target performance, are in compliance with the Ada Language
Standard ANSI/MIL-STD-1815A.

Date : gla -wy 'I ']

Bill Dwavson
WORLDWIDE CUSTOMER SERVICES MANAGER

Validation Sammy Repot AVF-VSR-90502166

SD-Scam plc XD Ads MC6OCO V1.0-9 Appendik A - Page 3 of 3



APPENDIX F

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-dependent pragmas,
to certain machine-dependent convetitions as mentioned in chapter 13 of the Ada Standard, and
to certain allowed restrictions on representation clauses. The implementation-dependent
characteristics of the XD Ada MC68000 V1.0-09 compiler, as described in this Appendix, are
provided by SD-Scicon plc. Unless specifically noted otherwise, references in this appendix are to
compiler documentation and not to this report. Implementation-specific portions of the package
STANDARD, which are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;
type SHORTINTEGER is range -32768 .. 32767;
type SHORTSHORTINTEGER is range -128.. 127;

type FLOAT is digits 6 range -(2**128 - 2**104)
2"'128 - 2**104;

type LONG_FLOAT is digits 15 range -(2**1024 - 2**971)
2**1024 - 2**971;

type LONGLONG-FLOAT is digits 18 range (-2**16384 - 2**16320)..
2**16384 - 2**16320

type DURATION is delta 1.E-4 range -131072.0000 .. 131071.9999;

end STANDARD;

Validation Sumar Report AVF-VSR-9050/66

SD-Sdoou pie XD A MC00 V1.049 Appendx B



Appendix F

Implementation-Dependent
Characteristics

F.3 Specification of Package System

The package SYSTEM for the MCb8000 configuration differs from that
of the standard MC68020 as follows:

F.3.1 Changes to Package SYSTEM for the MC68000 Target

type AME is I =: - ,;

S','STEM :AE : constant NAME -
'

ST ERA 7 :constant
MEMRY SIZE constant :"

TiT-9 c onstant =2 .;I -3

typo ADDRESS:,T is rang . MEMCR'_S.IE-';

for ADDRESS :JT'S:ZE uLo 32;

implementation-Dependent Characteristics F-1



F.6 Interpretation of Expressions Appearing in Address
Clauses

For address clauses on variables, the address expression is interpreted

as a Motorola 24-bit address.

In XD Ada for MC68000, values of type SYSTEM.ADDRESS are inter-

preted as integers in the range 0 .. 224 _1.

F-2 Implementation-Dependent Characteristics



Appendix F

Implementation-Dependent
Characteristics

NOTE

This appendix is not part of the standard definition of the
Ada programming language.

This appendix summarizes the following implementation-dependent
characteristics of XD Ada:

* Listing the XD Ada pragmas and attributes.

* Giving the specification of the package SYSTEM.
* Presenting the restrictions on representation clauses and unchecked

type conversions.
" Giving the conventions for names denoting implementation-

dependent components in record representation clauses.
* Giving the interpretation of expressions in address clauses.
* Presenting the implementation-dependent characteristics of the

input-output packages.
* Presenting other implementation-dependent characteristics.

Implementation-Dependent Characteristics F-1



F.1 Implementation-Dependent Pragmas

XD Ada provides the following pragmas, which are defined elsewhere
in the text. In addition, XD Ada restricts the predefined language
pragmas INLINE and INTERFACE, provides pragma VOLATILE in
addition to pragma SHARED, and provides pragma SUPPRESS-ALL in
addition to pragma SUPPRESS. See Annex B for a descriptive pragma
summary.

" CALLSEQUENCEFUNCTION (see Annex B)
" CALL.SEQUENCE-PROCEDURE (see Annex B)
* EXPORT-EXCEPTION (see Section 13.9a.3.2)
* EXPORT-FUNCTION (see Section 13.9a.1.2)
" EXPORT-OBJECT (see Section 13.9a.2.2)
" EXPORT-PROCEDURE (see Section 13.9a.1.2)
* IMPORT EXCEPTION (see Section 13.9a.3.1)
* IMPORT-FUNCTION (see Section 13.9a.1.1)
* IMPORT-OBJECT (see Section 13.9a.2.1)
• IMPORTPROCEDURE (see Section 13.9a.1.1)
* LEVEL (see Section 13.5.1)
* LINKOPTION (see Annex B)
" SUPPRESS-ALL (see Section 11.7)
* TITLE (see Annex B)
* VOLATILE (see Section 9.11)

F.2 Implementation-Dependent Attributes
XD Ada provides the following attributes, which are defined elsewhere

in the text. See Appendix A for a descriptive attribute summary.

" BIT (see Section 13.7.2)
* MACHINE.SIZE (see Section 13.7.2)
" TYPE-CLASS (see Section 13.7a.2)

F-2 Implementation-Dependent Characteristics



F.3 Specification of the Package System

The package SYSTEM for the MC68020 is as follows:

F.3.1 Package System for the MC68020 Target
package SYSTEM is

type NAME in (MC68020);

SYSTEM NAME constant NAME s- MC68020;
STORAGE UNIT constant 8;
MEMORY SIZE constant 2*-31-1;
MININT constant -(2"'31);

MAX INT constant i- 2**31-1;
MAXDIGITS constant 18;
MAXMANTISSA constant 31;
FINEDELTA constant -2.0*(-31);
TICK : constant :- 162.5E-6;
subtype PRIORITY is INTEGER range 0 .. 15;

subtype LEVEL is INTEGER range 0 .. 7;

Address type

type ADDRESS is private;

ADDRESS ZERO : constant ADDRESS;
type ADDRESS INT is range MININT .. MAXINT;
function TOADDRESS (X I ADDRESSINT) return ADDRESS;
function TO ADDRESS (X (universalinteger}) return ADDRESS;
function TO ADDRESS-INT (X ADDRESS) return ADDRESSINT;

function "+ (LEFT ADDRESS; RIGHT ADDRESSINT) return ADDRESS;
function "+ (LEFT ADDRESSINT; RIGHT ADLRESS) return ADDRESS;
function (LEFT I ADDRESS; RIGHT : ADDRESS) return ADDRESSINT;
function (LEFT ADDRESS; RIGHT ADDRESSINT) return ADDRESS;

function (LEFT, RIGHT ADDRESS) return BOOLEAN;
function '/-" (LEFT, RIGHT I ADDRESS) return BOOLEAN;
function "<" (LEFT, RIGHT I ADDRESS) return BOOLEAN;
function "<- (LEFT, RIGHT ADDRESS) return BOOLEAN;
function > (LEFT, RIGHT I ADDRESS) return BOOLEAN;
function >- (LEFT, RIGHT : ADDRESS) return BOOLEAN;

Note that because ADDRESS is a private type
the functions '-" and "/-" are already available

Implementation-Dependent Characteristics F-3



-- Generic functions used to access memory

generic
type TARGET in private;

function FETCHFROMADDRESS (A t ADDRESS) return TARGET;

generic
type TARGET is private;

procedure ASSIGNTOADDRESS (A : ADDRESS; T s TARGET);

type TYPE CLASS is (TYPECLASSENUMERATION,
TYPE CLASSINTEGER,
TYPE CLASS_FIXED POINT,
TYPE CLASS FLOATINGPOINT,
TYPE CLASS-ARRAY,
TYPE CLASS RECORD,
TYPE CLASS ACCESS,
TYPE CLASS-TASK,
TYPECLASSADDRESS);

-- XD Ada hardware-oriented types and functions

typ BITARRAY is array (INTEGER range <>) of BOOLEAN;
prague PACK(BITARRAY);
subtype BITARRAY_8 in BITARRAY (0 7);
subtype BIT ARRAY 16 in BIT ARRAY (0 15);
subtype BITARRAY_32 in BIT-ARRAY (0 31);
subtype BITARRAY_64 is BITARRAY (0 63);
type UNSIGNED-BYTE is range 0 .. 255;
for UNSIGNEDBYTE'SIZE use 8;
function "not" (LEFT 2 UNSIGNEDBYTE) return UNSIGNED BYTE;
function "and" (LEFT, RIGHT : UNSIGNED BYTE) return UNSIGNEDBYTE;
function "or" (LEFT, RIGHT UNSIGNED BYTE) return UNSIGNED-BYTE;
function "xor" (LEFT, RIGHT UNSIGNED-BYTE) return UNSIGNED-BYTE;

function TOUNSIGNED BYTE (X BITARRAY 8) return UNSIGNED BYTE;
function TO BIT ARRAY_8 (X z UNSIGNED-BYTE) return BITARRAY_8;

type UNSIGNEDBYTEARRAY L array (INTEGER range <>) of UNSIGNED-BYTE;

type UNSIGNED-WORD is range 0 .. 65535;
for UNSIGNED WORD'SIZE uae 16;

function "not" (LEFT % UNSIGNED WORD) return UNSIGNED-WORD;
function "and" (LEFT, RIGHT % UNSIGNED WORD) return UNSIGNED WORD;
function "or" (LEFT, RIGHT i UNSIGNED WORD) return UNSIGNEDWORD;
function "xor" (LEFT, RIGHT : UNSIGNED-WORD) return UNSIGNEDWORD;

function TO UNSIGNEDWORD (X : BITARRAY 16) return UNSIGNED WORD;
function TOBIT-ARRAY-16 (X : UNSIGNED-WORD) return BITARRAY_16;

type UNSIGNEDWORD ARRAY in array (INTEGER rang. <>) of UNSIGNED-WORD;

type UNSIGNEDLONGWORD is range MININT .. MAXINT;

for UNSIGNEDLONGWORD'SIZE use 32;

F-4 Implementation-Dependent Characteristics



function "not" (LEFT UNSIGNED LONGWORD) return UNSIGNED LONGWORD;
function "and" (LEFT, RIGHT : UNSIGD LOOGWORD) return UNSIGNED LONGWORD;
function "or" (LEFT, RIGHT UNSIGNEDLONGWORD) return UNSIGNEDLONGWORD;
function Ixor" (LEFT, RIGHT : UNSIGNED LONGWORD) return UNSIGNED LONGWORD;

function TO UNSIGNEDLONGWORD (X : BIT ARRAY 32) return UNSIGNEDLONGWORD;
function TO BIT ARRAY 32 (X : UNSIGNEDWORD) return BIT ARRAY_32;

type UNSIGNED LONGWORDARRAY is array (INTEGER range <>) of UNSIGNEDLONGWORD;

-- Conventional names for static subtypes of type UNSIGNEDLONGWORD

subtype UNSIGNED_1 is UNSIGNEDLONGWORD range 0 2- 1-1;
subtype UNSIGNED 2 is UNSIGNED LONGWORD range 0 2- 2-1;
subtype UNSIGNED 3 is UNSIGNED LONGWORD range 0 2** 3-1;
subtype UNSIGNED_4 is UNSIGNEDLONGWORD range 0 2** 4-1;
subtype UNSIGNED 5 is UNSIGNED LONGWORD range 0 2** 5-i;
subtype UNSIGNED_6 is UNSIGNED LONGWORD range 0 2** 6-1;
subtype UNSIGNED_7 is UNSIGNEDLONGWORD range 0 2** 7-1;
subtype UNSIGNED_8 is UNSIGNED LONGWORD range 0 2** 8-1;
subtype UNSIGNED_9 is UNSIGNED LONGWORD range 0 2** 9-1;
subtype UNSIGNED 10 is UNSIGNED LONGWORD range 0 2**10-1;
subtype UNSIGNEDl1 is UNSIGNED LONGWORD range 0 2**11-1;
subtype UNSIGNED_12 is UNSIGNED LONGWORD range 0 2**12-1;
subtype UNSIGNED 13 is UNSIGNEDLONGWORD range 0 2**13-1;
subtype UNSIGNED 14 is UNSIGNED LONGWORD range 0 2*"14-1;
subtype UNSIGNED_15 is UNSIGNED_LONGWORD range 0 2*-15-1;
subtype UNSIGNED_16 is UNSIGNEDLONGWORD range 0 2**16-1;
subtype UNSIGNED 17 is UNSIGNEDLONGWORD range 0 2-17-1;
subtype UNSIGNED_18 is UNSIGNED_LONGWORD range 0 2**18-1;
subtype UNSIGNED_19 in UNSIGNEDLONGWORD range 0 2*19-1;
subtype UNSIGNED 20 in UNSIGNEDLONGWORD range 0 2**20-1;
subtype UNSIGNED 21 is UNSIGNEDLONGWORD range 0 2*"21-1;
subty- NSIGNED_22 is UNSIGNEDLONGWORD range 0 2**22-1;
subt" JNSIGNED-23 is UNSIGNEDLONGWORD range 0 2**23-1;
subtl_. UNSIGNED 24 is UNSIGNED LONGWORD range 0 2**24-1;
subtype UNSIGNED_25 is UNSIGNEDLONGWORD range 0 2"'25-1;
subtype UNSIGNED_26 is UNSIGNEDLONGWORD range 0 2*'26-1;
subtype UNSIGNED-27 is UNSIGNEDLONGWORD range 0 2**27-1;
subtype UNSIGNED 28 is UNSIGNEDLONGWORD range 0 2"'28-1;
subtype UNSIGNED729 is UNSIGNEDLONGWORD range 0 2-29-1;
subtype UNSIGNED_30 is UNSIGNED LONGWORD range 0 2*"30-1;
subtype UNSIGNED_31 is UNSIGNED LONGWORD range 0 2*"31-1;

private
-- Not shown

end SYSTEM;

Implementation-Dependent Characteristics F-5



F.4 Restrictions on Representation Clauses

The representation clauses allowed in XD Ada are length, enumeration,
record representation, and address clauses.

In XD Ada, a representation clause for a generic formal type or a type
that depends on a generic formal type is not allowed. In addition, a
representation clause for a composite type that has a component or
subcomponent of a generic formal type or a type derived from a generic
formal type is not allowed.

Restrictions on length clauses are specified in Section 13.2; restrictions
on enumeration representation clauses are specified in Section 13.3; and
restrictions on record representation clauses are specified in Section
13.4.

F.5 Conventions for Implementation-Generated Names
Denoting Implementation-Dependent Components in
Record Representation Clauses

XD Ada does not allocate implementation-dependent components in
records.

F.6 Interpretation of Expressions Appearing in Address
Clauses

Expressiens appearing in address clauses must be of the type ADDRESS
defined in package SYSTEM (see Section 13.7a.1 and Section F.3).
XD Ada allows address clauses for variables (see Section 13.5). For
address clauses on variables, the address expression is interpreted as a
Motorola full 32-bit address.

XD Ada supports address clauses on task entries to allow interrupts to
cause a reschedule directly. For address clauses on task entries, the
address expression is interpreted as a Motorola exception vector offset.

F-6 Implementation-Dependent Characteristics



In XD Ada for MC68020, values of type SYSTEM.ADDRESS are inter-
preted as integers in the range 0 .. 232 -1. As SYSTEM.ADDRESS is
a private type, the only operations allowed on objects of this type are
those given in package SYSTEM.

F.7 Restrictions on Unchecked Type Conversions

XD Ada supports the generic function UNCHECKEDCONVERSION
with the restrictions given in Section 13.10.2.

F.8 Implementation-Dependent Characteristics of
Input-Output Packages

The packages SEQUENTIALIO and DIRECTJO are implemented as
null packages that conform to the specification given in the Reference
Manual for the Ada Programming Language. The packages raise the ex-
ceptions specified in Chapter 14 of the Reference Manual for the Ada
Programming Language. The three possible exceptions that are raised by
these packages are given here, in the order in which they are raised.

Exception When Raised

STATUSERROR Raised by an attempt to operate upon or close a file
that is not open (no files can be opened).

NAME-ERROR Raised if a file name is given with a call of CREATE
or OPEN.

USEERROR Raised if exception STATUS-ERROR is not raised.

MODE-ERROR cannot be raised since no file can be opened (therefore
it cannot have a current mode).

The predefined package LOWLEVELIO is not provided.

Implementation-Dependent Characteristics F-7



F.8.1 The Package TEXT-1O

The package TEXTIO conforms to the specification given in the
Reference Manual for the Ada Programming Language. String input-
output is implemented as defined. File input-output is supported to
STANDARD-INPUT and STANDARD-OUTPUT only. The possible
exceptions that are raised by package TEXTIO are as follows:

Exception When Raised

STATUS-ERROR Raised by an attempt to operate upon or close a file
that is not open (no files can be opened).

NAME-ERROR Raised if a file name is given with a call of CREATE
or OPEN.

MODE-ERROR Raised by an attempt to read from, or test for
the end of, STANDARDOUTPUT, or to write to
STANDARDINPUT.

ENDERROR Raised by an attempt to read past the end of
STANDARD-INPUT.

USE-ERROR Raised when an unsupported operation is attempted,
that would otherwise be legal.

The type COUNT is defined as follows:

type COUNT is range 0 .. INTEGER'LAST;

The subtype FIELD is defined as follows:

type FIELD is INTEGER range 0 .. 255;

F.8.2 The Package IOEXCEPTIONS

The specification of the package 10_EXCEPTIONS is the same as that
given in the Reference Manual for the Ada Programming Language.

F.9 Other Implementation Characteristics

Implementation characteristics associated with the definition of a main
program, various numeric ranges, and implementation limits are sum-
marized in the following sections.

F-8 Implementation-Dependent Characteristics



F.9.1 Definition of a Main Program

Any library procedure can be used as a main program provided that it
ha9 no formal parameters.

F.9.2 Values of Integer Attributes

The ranges of values for integer types declared in package STANDARD
are as follows:

SHORTSHORTJNTEGER -21.. 21 -1 (-128 .. 127)

SHORT-INTEGER -215 .. 21s -1 (-32768 .. 32767)

INTEGER -21 .. 231 -1 (-2147483648 .. 2147483647)

For the package TEXTIO, the range of values for types COUNT and

FIELD are as follows:

COUNT 0 .. 231 -1 (0.. 2147483647)

FIELD 0.. 255

F.9.3 Values of Floating-Point Attributes

Floating-point types are described in Section 3.5.7. The representation
attributes of floating-point types are summarized in the following table:

Implementation-Dependent Characteristics F-9



FLOAT LONG-FLOAT LONG-LONG-FLOAT

DIGITS 6 15 18

SIZE 32 64 96

MANTISSA 21 51 61

EMAX 84 204 244

EPSILON 2- 20 2-50 2- 6
0

SMALL 2- 8s  2- 2
05 2- 24S

LARGE 28-26 22"- 2Is  22"-213

SAFEEMAX 125 1021 16382

SAFESMALL 2- 126 2 - 1022  2- 16"

SAFE-LARGE 2125-2104 21021-2 97 2 16M -216321

FIRST -(2128_2104) -(21o24_2971) -(2 16384 .16320)

LAST 2128-2i 4  21024-2971 2163-21632
0

MACHINERADIX 2 2 2

MACHINE-MANTISSA 24 53 64

MACHINEEMAX 128 1024 16384

MACHINEEMIN -125 -1021 -16382

MACHINE-ROUNDS FALSE FALSE FALSE

MACHINE-OVERFLOWS FALSE FALSE FALSE

F-IO Implementation-Dependent Characteristics



F.9.4 Attributes of Type DURATION

The values of the significant attributes of type DURATION are as
follows:

DURATION, DELTA 1.E-4 (10-4)

DURATION'SMALL 2#1.0#E-14 (2-14)

DURAT[ON 'FIRST -131072.0000 (-217)

DURATION 'LAST 131071.9999 (217 -' DELTA)

F.9.5 Implementation Limits

Limit Description

255 Maximum identifier length (number of characters)

255 Maximum number of characters in a source line

210 Maximum number of library units and subunits in a compilation
closure1

212 Maximum number of library units and subunits in an execution
closure2

216 -1 Maximum number of enumeration literals in an enumeration
type definition

21' -1 Maximum number of lines in a source file

231 -1 Maximum number of bits in any object

216 -1 Maximum number of exceptions

1The compilation closure of a given unit is the total set of units that the given unit
depends on, directly and indirectly.
2The execution closure of a given unit is the compilation closure plus all associated
secondary units.

Implementation-Dependent Characteristics F-11



LINK

LINK

Creates an executable image file for the specified units.

Format LINK unit-name [file-s pec[,. ..ll
LINK/NOMAIN unit-namef,...] file-spec[,...]
Command Qualifiers Defaults
/AFTER = time /AFTER = TODAY
/BATCH-LOG = file-spec See text.
/BRIEF See text.
/COMMAND[ =file-speci See text.
/[NO]DEBUG[ = file-spec] /NODEBUG
/ELABORATION = file-spec See text.
/FULL See text.
/[NOJIMAGE[ = file-spec] /IMAGE
/[NOJKEEP /KEEP
/[NO]LOG /NOLOG
/[NO]MAIN /MAIN
/[NOjMAPf =file-spec] INOMAP
/NAME=job-name See text.
/[NOINOTIFY /NOTIFY
/OUTPUT = file-spec /OUTPUT = SYS$OUTPUT
/[NOJPRINTER[ -queue-name] /NOPRINTER
/QU EU E - queue-name /QUEU E= SYS$BATCH
/SUBMIT /WAIT
[WAIT /WAIT

Parameter Qualifiers Defaults
/LIBRARY See text.
/MAPPING See text.
/TARGET See text.



LINK

Prompts
Unit:

-File:

Command Parameters
unit-name
By default (or if you specify the /MAIN qualifier):

" You can specify only one unit, the source code of which must be
written in XD Ada.

" The parameter unit-name specifies the XD Ada main program, which
must be a procedure or function with no parameters. If the main
program is a function, it must return a value of a discrete type; the
function value is used as the VMS image exit value.

If you specify the /NOMAIN qualifier:

* You can specify one or more foreign units that are to be included
in the executable image. The unit names may include percent
signs (%) and asterisks (*) as wildcard characters. (See the
<REFERENCE> (VMSDCLCONCEPTS) for detailed information
on wildcard characters.)

* The image transfer address comes from one of the foreign files
specified.

file-spec
Specifies a list of object files, object libraries, mapping definition files,
and target definition files, that are to be used in linking the program.
The default directory is the current default directory. The default file
type is .XOB, unless the /LIBRARY, /MAPPING, or /TARGET qualifier is
used. No wildcard characters are allowed in a file specification.

If the file is an object library or shareable image library, you must use
the /LIBRARY qualifier. The default file type is .XLB.

If the file is a mapping definition file, you must use the /MAPPING
qualifier. The default file type is .MPD.

If the file is a target definition file you must use the /TARGET qualifier.
The default file type is .TGD.

2



LINK

If you specify the (NOMAIN qualifier, the image transfer address comes
from one of the files (not units) specified.

Description
The LINK command performs the following steps:

1. Runs the prebuild phase to generate an elaboration list.

2. Checks if a pragma LINK-OPTION is specified for the main pro-
gram, and if specified, verifies that the designated link option name
is available in the current program library. If available, the copied
link option files in the library corresponding to the link option are
used, unless overridden by the /TARGET or /MAPPING qualifiers.

Note that, unlike the CHECK command, the pragma LINK.
OPTION association for units other than the main program unit
is not checked.

If no target link option is given for the main program unit or the
designated target link option is not found in the library, and the log-
ical symbol XDADA$TARGET DEF is not defined, and a /TARGET
qualifier is not specified on the LINK command line, an error is is-
sued. If no mapping link option is given for the main program unit
or the designated mapping link option is not found in the library,
and the logical symbol XDADA$MAPPING-DEF is not defined,
and a /MAPPING qualifier is not specified on the XDACS LINK
command line, the default mapping in the target definition file is
used.

3. If LINK/NOMAIN is not specified, checks that only one unit is
specified and that it is an XD Ada main program.

4. Forms the closure of the main program (LINK/MAIN) or of the
specified units (LINK/NOMAIN) and verifies that all units in the
closure are present, current and complete. If XDACS detects an
error, the operation is terminated at the end of the prebuild phase.

5. Creates a DCL command file for the builder. The command file is
deleted after the LINK operation is completed or terminated, unless
LINK/COMMAND is specified. If LINKICOMMAND is specified,
the command file is retained for future use, and the build phase is
not carried out.

3



LINK

6. Unless the /COMMAND qualifier is specified, performs the build
phase as follows:

a. By default (LINKIWAIT), the command file generated in step
4 is executed in a subprocess. You must wait for the build
operation to terminate before issuing another command. Note
that when you specify the /WAIT qualifier (the default), process
logical names are propagated to the subprocess generated to
execute the command file.

b. If you specify the JSUBMIT qualifier, the builder command file
is submitted as a batch job.

7. If the /DEBUG qualifier is included in the command line the debug
symbol table information is placed in a file with a default file type
of .XDS.

8. C:eates a loadable output file with a default file type of .RLD.

XDACS output originating before the builder is invoked is reported
to your terminal by default, or to a file specified with the /OUTPUT
qualifier. Diagnostics are reported to your terminal, by default, or to
a log file if the LINK command is executed in batch mode (XDACS
LINKISUBMI I').

See < REFERENCE > (target), < REFERENCE > (map), and < REFERENCE > (build)
for more information on the XD Ada target-specific builder commands.

Command Qualifiers
]AFTER = time
Requests that the batch job be held until after a specific time, when
the LINK command is executed in batch mode (LINK/SUBMIT). If the
specified time has already passed, the job is queued for immediate
processing.

You can specify either an absolute time or a combination of absolute
and delta time. See the <REFERENCE> (VMSDCLCONCEPTS)
(or type HELP Specify Date-Time at the DCL prompt) for complete
information on specifying time values.

IBA TCHLOG = file-spec
Provides a file specification for the batch log file when the LINK com-
mand is executed in batch mode (LINK/SUBMIT).

4



LINK

If you do not give a directory specification with the file-spec option, the
batch log file is created by default in the current default directory. If
you do not give a file specification, the default file name is the job name
specified with the /NAME-job-name qualifier. If no job name has been
specified, the program library manager creates a file name comprising
up to the first 39 characters of the first unit name specified. If you
specified LINK/NOMAIN and no job name and there is a wildcard
character in the first unit specified, the program library manager uses
the default file na:ne XDACSLINK. The default file type .s LOG.

IBRIEF
Directs the builder to produce a brief image map file. The /BRIEF
qualifier is valid on!y if you also specify the /MAP qualifier with the
LINK command. The /BRIEF qualifier is incompatible with the /FULL
qualifier.

A brief image map file contains only the following sections:

* Object module information
* Segment mapping information
* Link run statistics

See also the description of the /FULL qualifier.

ICOMMAND[ = file-spec]
Controls whether the builder is invoked as a result of the LINK com-
mand, and determines whether the command file generated to invoke
the builder is saved. If you specify the /COMMAND qualifier, XDACS
does not invoke the builder, and the generated command file is saved
for you to invoke or submit as a batch job.

The file-spec option allows you to enter a file specification for the gen-
erated command file. The default directory for the command file is the
current default directory. By default, XDACS provides a file name com-
prising up to the first 39 characters of the first unit name specified. If
you specified LINK/NOMAIN and you used a wildcard character in the
first name unit specified, the program library manager uses the default
file name XDACS-LINK. The default file type is .COM. No wildcard
characters are allowed in the file specification.

By default, if the /COMMAND qualifier is not specified, XDACS deletes
the generated command file when the LINK command completes
normally or is terminated.

5



LINK

IDEBUG[ = file-spec]
INODEBUG (D)
Controls whether a debugger symbol table is created along with the
loadable image file.

By default, no debugger symbol table is created.

/ELABORATION = file-spec
Provides a file specification for the object file generated by the LINK
command. The file is retained bi, XDACS only when the /COMMAND
qualifier is used: that is, when tfie result of the LINK operation is to
produce a builder command file for future use, rather than to invoke the
builder immediately.

The generated object file contains the code that directs the elaboration
of library packages in the closure of the units specified. Unless you also
specify the /NOMAIN qualifier, the object file also contains the image
transfer address.

The default directory for the generated object file is the current default
directory. The default file type is .XOB. No wildcard characters are
allowed in the file specification.

By default, if you do not specify the /ELABORATION qualifier. XDACS
provides a file name comprising up to the first 39 characters of the first
unit name specified.

By default, if you do not specify the /COMMAND qualifier, XDACS
deletes the generated object file when the LINK command completes
normally or is terminated.

IFULL
Directs the builder to produce a full image map file, which is the most
complete image map. The [FULL qualifier is valid only if you also
specify the /MAP qualifier with the LINK command. Also, the /FULL
qualifier is incompatible with the (BRIEF qualifier.

A full image map file contains the following sections:

* Object module information
" Segment mapping information
" Symbol address information
* Exception numbers
" Link run statistics

6



LINK

IIMAGE[ = file-spec] (D)
INOIMAGE
Controls wh ether the LINK command creates a loadable image file and
optionally provides a file specification for the file. The default file type
is .RLD. No wildcard characters are allowed in the file specification.

By default, an executable image file is created with a file name compris-
ing up to the first 39 characters of the first unit name specified.

IKEEP (D)
INOKEEP
Controls whether the batch log file generated is deleted after it
is printed when the LINK command is executed in batch mode
(LINK/SUBMIT).

By default, the log file is not deleted.

ILOG
INOLOG (D)
Controls whether a list of all the units included in the executable image
is displayed. The display shows the units according to the order of
elaboration for the program.

By default, a list of all the units included in the executable image is not
displayed.

IMAIN (D)
INOMAIN
Controls where the image transfer address is to be found.

The /MAIN qualifier indicates that the XD Ada unit specified deter-
mines the image transfer address, and hence is to be a main program.

The INOMAIN qualifier indicates that the image transfer address comes
from one of the files specified, and not from one of the XD Ada units
specified.

By default (JMAIN), only one XD Ada unit can be specified, and that
unit must be an XD Ada main program.

IMAP[ = file-spec]
INOMAP (D)
Controls whether the builder creates an image map file and optionally
provides a file specification for the file. The default directory for
the image map file is the current directory. The default file name
comprises up to the first 39 characters of the first unit name specified.

7



LINK

The default file type is .MAP. No xvildcard characters are allowed in the
file specification.

If neither the /BRIEF nor the /FULL qualifier is specified with the /MAP

qualifier, /BRIEF is assumed.

By default, no image map file is created.

/NAME = job-name
Specifies a string to be used as the job name and as the file name for
the batch log file when the LINK command is executed in batch mode
(LINK/SUBMIT). The job name can have from 1 to 39 characters.

By default, if you do not specify the /NAME qualifier, XDACS creates
a job name comprising up to the first 39 characters of the first unit
name specified. If you specify LINKINOMAIN but do not specify the
/NAME qualifier, and you use a wildcard character in the first unit
name specified, the program library manager uses the default file name
XDACS LINK. In these cases, the job name is also the file name of the
batch log file.

(NOTIFY (D)
INONOTIFY
Controls whether a message is broadcast when the LINK command is
executed in batch mode (LINK/SUBMIT). The message is broadcast to
any terminal at which you are logged in, notifying you that your job has
been completed or terminated.

By default, a message is broadcast.

(OUTPUT = file-spec
Requests that any output generated before the builder is invoked be
written to the file specified rather than to SYS$OUTPUT. Any diagnostic
messages are written to both SYS$OUTPUT and the file.

The default directory is the current default directory. If you specify a
file type but omit the file name, the default file name is XDACS. The
default file type is .LIS. No wildcard characters are allowed in the file
specification.

By default, the LINK command output is written to SYS$OUTPUT.

8



LINK

IPRINTER[ = queue-name]
/NOPRINTER (D)
Controls wh ether the log file is queued for printing when the LINK
command is executed in batch mode (LINK/SUBMIT) and the batch job
is completed.

The /PRINTER qualifier allows you to specify a particular print queue.
The default print queue for the log file is SYS$PRINT.

By default, the log file is not queued for printing. If you specify
/NOPRINTER, /KEEP is assumed.

IQUEUE = queue-name
Specifies the batch job queue in which the job is entered when the
LINK command is executed in batch mode (LINK/SUBMIT).

By default, if the /QUEUE qualifier is not specified, the job is placed in
the default system batch job queue, SYS$BATCH.

ISUBMIT
Directs XDACS to submit the command file generated for the builder
to a batch queue. You can continue to issue commands in your current
process without waiting for the batch job to complete. The builder
output is written to a batch log file.

By default, the generated command file is executed in a subprocess
(LINK/WAIT).

/WAIT
Directs XDACS to execute the command file generated for the builder
in a subprocess. Execution of your current process is suspended until
the subprocess completes. The builder output is written directly to
your terminal. Note that process logical names are propagated to the
subprocess generated to execute the command file.

By default, XDACS executes the command file generated for the builder
in a subprocess: you must wait for the subprocess to terminate before
you can issue another command.

Parameter Qualifiers
/LIBRARY
Indicates that the associated input file is an object module library to be
searched for modules to resolve any undefined symbols in the input
files. The default file type is .XLB.

9



LINK

By default, if you do nt s.ecif,' the LIBRARY qualifier the file is
assumed to be an object file with a default file type of .XOB.

IMAPPING
Indicates that the associated input file is a mapping definition file.
Mapping definition files control the location of the program on the
target system. The default file type is .MPD.

By default, if you do not specify the /MAPPING qualifier, the file is
assumed to be an object file with a default file type of .XOB.

ITARGET
Indicates that the associated input file is a target definition file. Target
definition files describe the target system's memory. The default file
type is .TGD.

By default, if you do not specify the /TARGET qualifier, the file is
assumed to be an object file with a default file type of .XOB.

Examples

1 XDACS> LINK CONTROL_LOOP

%ACS-I-CL LINKING, Invoking the XD Ada Builder

The LINK command forms the closure of the unit CONTROL-
LOOP, which is an XD Ada main program, creates a builder com-
mand file and package elaboration file, then invokes the command
file in a spawned subprocess.

2. XDACS> LINK/SUBMIT CONTROL_LOOP LOOPFUNCTIONS/LIBRARY

%ACS-I-CL SUBMITTED, Job CONTROL LOOP (queue ALL_BATCH, entry 1341

started on FASTBATCH

The LINK command instructs the builder to link the closure of the
XD Ada main program CONTROL-LOOP against the library LOOP
FUNCTIONS.XLB. The /SUBMIT qualifier causes XDACS to submit
the builder command file as a batch job.

10



LINK

3 . x DA -- L : L: :: F L J .' LU M E , 7: : T ER ic'Ti::r f,. xc

SACS- T-.KLLI ::h, tn,:oki:!q ;e XD Ada Builder

The LINK command builds all the XD Ada units FLUID-VOLUME
and COUNTER with the foreign object file MONITOR.XOB. The
/NOMAIN qualifier tells the builder that the image transfer address
is in the foreign file.

11



XDADA

XDADA

Invokes the XD A~da compiler to comnpile one or more source files.

Format XDADA fle-s pec[,...]

Command Qualifiers Defaults
/LIBRARY = directory-spec /LIBRARY = XDADA$LIB

Positional Qualifiers Defaults
/[NO]ANALYSISDATA[ = file-spec] /NOANALYSISDATA
/(NOICHECK See text.
JINOJCOPYSOURCE /GOPNY_SOURCE
/[NOJDEBUG[ = (option[,....])] /DEBUG = ALL
I(NOJDIAGNOSTICS( = file-speci /NODIAGNOSTICS
/[NOJERRORLIMIT = n] /ERROR..LIMIT =30

/[NO] LIST[ = file-specl /NOLIST
/[ NO] LOAD[ = option] /LOAD = REPLACE
/[NO]MACHINECODE /NOMACHINECODE
/INOJNOTE..SOURCE /NOTE-SOURCE
/INO]OPTIMIZE = (optionj ....))I See text.
/[NO]PREDEFINEDUNIT /NOPREDEFINED-UNIT
/[NOJSHOWf = option] /SHOW = PORTABILITY
/[NOJSYNTA)(...ONLY /NOSYNTA)QONLY
/(NO]WARNINGS[ = (option[, .. 1)] See text.

Prompt
File:

Command Parameters
file-spec
Specifies one or more XD Ada source files to be compiled. If you do
not specify a file type, the compiler uses the default file type of .ADA.
No wildcard characters are allowed in the file specifications.

12



XDADA

If you specify several source files as arguments to the XDADA com-
mand, you must separate adjacent file specifications with a comma (,).
If you specify more than one input file, you must separate adjacent file
specifications with a comma (,). You cannot use a plus sign ( + ) to
separate file specifications.

Description
The XDADA command is one of three commands used to compile
compilation units. The other two are the XDACS COMPILE and
RECOMPILE commands. All three commands invoke the XD Ada
cross-compiler for the <REFERENCE> (proc).

The XDADA command can be used at any time to compile one or
more source files (.ADA); it must be used to compile units into a library
for the first time or to compile again a set of units where the order of
compilation has changed.

XD Ada source files are compiled in the order in which they appear
on the command line. If a source file contains more than one XD
Ada compilation unit, the units are compiled in the order in which
they appear in the source file. The Ada rules governing the order in
which compilation units are compiled are summarized in Version 2.0 of
< REFERENCE > (dap).

The XDADA command compiles units in the context of the current
program library. Whenever a compilation unit is successfully compiled,
the current program library is updated as follows:

* An object file (.XOB), which contains the object module, is usually
created in the library.

* A compilation unit file (.ACU) is always created in the library.
* Unless suppressed by the /NOCOPYSOURCE qualifier on the

XDADA command, the file specification of the XD Ada source file
is noted in the library.

* The library index file is revised.
* If the unit was previously compiled into the program library, the

obsolete versions of the associated library files are deleted.

See < REFERENCE > (prglib-mgr) and Version 2.0 of < REFERENCE > (dap)
for more information on program libraries, sublibraries, and compila-
tion.

13



XDADA

Command Qualifiers
ILIBRARY = directory-spec
Specifies the program library that is to be the current program library
for the duration of the compilation. The directory specified must be an
already existing XD Ada program library. No wildcard characters are
allowed in the directory specification.

By default, the current program library is the program library last spec-
ified in a SET LIBRARY command. The logical name XDADASLIB is
assigned to the program library specified in a SET LIBRARY command.

Positional Qualifiers
IANALYSISDATA[ = fie-spec]
INOANALYSISDATA (D)
Controls whether a data analysis file containing source code cross-
reference and static analysis information is created. The data analysis
file is supported only for use with DIGITAL layered products, such as
the VAX Source Code Analyzer.

One data analysis file is created for each source file compiled. The
default directory for data analysis files is the current default directory.
The default file name is the name o. the source file being compiled.
The default file type is ANA. No ,ildcard characters are allowed in the
file specification.

By default, no data analysis file is created.

/CHECK
INOCHECK
Controls whether all run-time checks are suppressed. The INOCHECK
qualifier is equivalent to having all possible SUPPRESS pragmas in the
source code.

Explicit use of the /CHECK qualifier overrides any occurrences of the
pragmas SUPPRESS and SUPPRESS~ALL in the source code, without
the need to edit the source code.

By default, run-time checks are suppressed only in cases where a
pragma SUPPRESS or SUPPRESSALL appears in the source.

See the <REFERENCE> (xlrm) for more information on the pragmas
SUPPRESS and SUPPRESSALL.

14



XDADA

/COPYSOURCE (D)
INOCOPYSOURCE

Controls whether a copied source file .ADC) is created in the current
program library when a compilation unit is compiled without error. The
RECOMPILE command rand thus the COM1IPILE command) requires
that a copied source file exist in the current program library for any unit
that is to be recompiled.

By default, a copied source file is created in the current program library
when a unit is compiled without error

IDEBUG[ = (option[,..)] (D)
INODEBUG

Controls which compiler debugging options are provided. ou
can debug XD Ada programs with the XD Ada Debugger (.see
<REFERENCE>(debug-ch)). YOU can request the following options:

ALL Provides both SYMBOLS and TRACEBACK.

NONE Provides neither SYMBOLS nor TRACEBACK.

[NOISYMBOLS Controls whether debugger symbol records are in-
cluded in the object file.

INOITRACEBACK Controls whether traceback information (a subset of
the debugger symbol information) is included in the
object file.

By default, both debugger symbol records and traceback information are
included in the object file (IDEBUG = ALL, or equivalently: /DEBUG).

IDIAGNOSTICS[ = file-spec)
INODIAGNOSTICS (D)
Controls whether a diagnostics file containing compiler messages and
diagnostic information is created. The diagnostics file is supported only
for use with DIGITAL layered products, such as the VAX Language-
Sensitive Editor.

One diagnostics file is created for each source file compiled. The
default directory for diagnostics files is the current default directory.
The default file name is the name of the source file being compiled.
The default file type is DIA. No wildcard characters are allowed in the
file specification.

By default, no diagnostics file is created.

15



ERRORL~T
NOERRORLIMIT

i~tv<I ~':h~kv ~ i I' -c.rmland tora P. *-ien

h. c.:~i.'iceof the nth E-level

k,- -OUlt-. l WI .. 0lll~e I.1-'. eLJu e A.~ com1pilationl
i ite l"~i .VI ption i' specified, each comkpiliion

Uo it MaX ha':e uip tk 11 effkv' with. mlt term inaltin il e compilation.
Ahcn the oirojim lt 1, .,chcd Within I com11pilatiOn unit, com1pilation of

f;,It '1111 ijs Iterm1inted. t)Uf (om1Pi1tW11o 01 'iUb.ecquent units continues.

!'he EPP\RR,)LJI*LE=0i option it; equivllent to FRRZOR.LINIIT = 1.

[3v dlefault, execution ot the XDADA comman1d~d is terminated for a given
C0ompilation Unit uIpon thle Occurrence of thle 30th E-level error within
that unit iequiVak'nt to !ERIZRRLIMIT 30).

/LlST[ = file-spec]
INOLIST (D)
Controls whether a listing file is created. One listing file is created
for each source file compiled. The default directory for listing files is
thle current default directory. The default file name is the name of thle
source file being compiled. The default file type is .LIS. No wildcard
characters are allowed in thle file specification.

By dlefaul.1t, the XDADA cormand does not create a listing file.

ILOAD[ = option]
INOLOAD
LOAD = REPLACE (D)
Controls whether the current program library is updated with the
successfully processed units contained in the specified source files.
Depending on other qualifiers specified (or not specified) with the ADA
command, processing can involve full compilation, syntax checking
o-nly, and so on. The INOLOAD qualifier causes the units in the
specified source files to be processed, but prevents the current program
library from being updated.

16



XDADA

You can specify the following option:

(NO]REPLACE

Controls whether a unit added to the current program library
replaces an existing unit with the same narne. If you specify the
NOREPLACE option, the unit is added to the current program
library only if no existing unit has the same narne, except if tile new
unit is the corresponding body of an existing specification or vice
versa.

By default, the current program library is updated with the success-
fully processed units, and a unit added to the current program library
replaces an existing unit with the same name.

IMACHINECODE
INOMACHINECODE (D)
Controls whether generated machine code (approximating assembly
language notation) is included in the listing tile.

By default, generated machine code is not included in the listing file.

INOTESOURCE (D)
/NONOTE_SOURCE
Controls whether the file specification of the source file is noted in the
program library when a unit is compiled without error. The COMPILE
".3mmand uses this information to locate revised source files.

By default, the file specification of the source file is noted in the pro-
gram library when a unit is compiled without error.

IOPTIMIZE/ = (option[,...1)1
INOOPTIMIZE
Controls the level of optimization that is applied in producing the
compiled code. You can specify one of the following primary options:

TIME Provides full optimization with time as the primary
optimization criterion. Overrides any occurrences of
the pragma OPTIMIZE(SPACE) in the source code.

SPACE Provides full optimization with space as the primary
optimization criterion. Overrides any occurrences of
the pragma OPTIMIZE(TIME) in the source code.

17



XDADA

DEVELOr\IENT Recommended when active development of a pro-
gram is in progress. Provides some optimization,
but development considerations and ease of debug-
ging take preference over optimization. This optio.,
overrides pragmas that establish a dependence on a
subprogram (the pragma INLINE), and thus reduces
the need for recompilations when such bodies are
modified.

NONE Provides no optimization. Suppresses expans nsis in
line of subprograms, including those specified by the
pragma INLINE.

The /NOOPTIMIZE qualifier is equivalent to /OPTIMIZE--NONE.

By default, the XDADA command applies full optimization with space
as the primary optimization criterion (like /OPTIMIZE = SPACE, but
observing uses of the pragma OPTIMIZE).

The /OPTIMIZE qualifier also has a set of secondary options that you
can use separately or together with the primary options to override the
default behavior for expansion in line.

The INLINE secondary option can have the following values (see the
<REFERENCE>(rts) for more information about expansion in line).

INLINE:NONE Disables subprogram expansion in line. This option
overrides any occurrences of the pragma INLINE
in the source code, without having to edit tl'e
source file. It also disables implicit expansion in
line of subprograms. (Implicit expansion in line means
that the compiler assumes a pragma INUNE for
certain subprograms as an optimization.) A call to a
subprogram in another unit is not expanded in line,
regardless of the /OPTIMIZE options in effect when
that unit was compiled.

INLINE:NORMAL Provides normal subF-ogram expansion in line.

Subprograms to which an explicit pragma INI NE
applies are expanded in line under certain condi-
tions. In addition, some subprograms are implicitly
expanded in line. The compiler assumes a pragma
INUNE for calls to some small local subprograms
(subprograms that are declared in the same unit as
the unit in which the call occurs).

18



XDADA

AN LI N E: S L Uf'l %c .\\SI s' V! odc m1jla) nal wgia eypansionl il jile.

11) Addit iOn 10 t11V 110-11m1 ILupro0gram expansioni i
linie that etr hen INLINE:NORMIAL is specified
hic Opt ion IstSS is i mplicit expansion inl line of

comne small ;ttprogramns declared inl other units.
he .omriler aSSu~mes a pragma INLINE for aniy
Lubprograw it it improves e.\eCtution speed an~d
eduices code size. Vhik option may establish a

derenldence oln the l'ode of a not her' unit, as WOUld beC
the case if a pragmia INLINE %%ere specified explicitly
inl the sour!ICe Code.

INLINE: MAXI NIAI. I'oxides mlaxili suhlprngfa m expanisioni inl title.

Maximlal subprogrami expanisioni inl tile occurs as for
INLINE:SIL BPRO(;RANIS.

Bv default, the /OPTIMIZE qualifier primiary- options have the followving
secondary-option values:

OPTWMIZE=TIME =(INLINE.NORNIAL)

OPTINMIZE=SPACE =tINL1NE:NORXIALt

OPTIMIIZE=DEVELOPNIENT = INLINE:NONE)

*OPTIMI1ZE =NONE =(INLINE:NONEt

See Chapter 3 of Version 2.0 of <REFERENCE> (dap) for a turther
discussion of the /OPTIMIZE qualifier and its options.

IPREDEFINED UNIT
INOPREDEFINED-JNiT (D)
Controls the compilation of package SRUNTIMvE-SNSTEM, package
$TASKING_-SYSTEM, and package MACHINES- ODE. You must spec-
ify this qualifier in order to be able to compile these packages. The
qualifier is not required for the compilation of any other source files.
See the <REFERENCE> (rts) for more information.

By default, /PREDEFINED-..UNIT is omnitted.



XDADA

/SHOW[ = option] (D)
INOSHOW
Controls the listing file options included when a listing file is provided.
You can specify one of the following options:

ALL r'rovides all listing file options.

[NOIPORTABILITY Controls whether a program portability sum-
mary is included in the listing file. By default,
the XDADA command provides a portabil-
ity summary (!SHOW=PORTABILITY). See
<REFERENCE >(port-summ) for details of what
can be included in a portability summary. See
Chapter 5 of Version 2.0 of <REFERENCE>(dap
for more information on program portability.

NONE Provides none of the listing file options (same as
NOSHOW).

By default, the XDADA command provides a portability summary
(/SHOW = PORTABILITY).

ISYNTAXONLY
INOSYNTAXONLY (D)
Controls whether the source file is to be checked only for correct syntax.
If you specify the /SYNTAX-ONLY qualifier, other compiler checks are
not performed (for example, semantic analysis, type checking, and so
on), and the program library is not updated.

By default, the compiler performs all checks.

IWARNINGS[ = (message-optionf,..1)1
INOWARNINGS
Controls which categories of informational (I-level) and warning (W-
level) messages are displayed and where those messages are displayed.
You can specify any combination of the following message options:

WARNINGS: (destination[, .J.)

NOWARNINGS

WEAKWARNINGS: (destination[ .... 1)
NOWEAKWARNINGS

SUPPLEMENTAL: (destination[ .)
NOSUPPLEMENTAL

20



XDADA

COMPILATION NOTES: (destinaton[ .... ])
NOCOMPILATION-NOTES

STATUS: (destination[ ... ])
NOSTATUS

The possible values of destination are ALL, NONE, or any combination
of TERMINAL (terminal device), LISTING (listing file), DIAGNOSTICS
(diagnostics file). The message categories are summarized as follows:

WARNINGS W-level: Indicates a definite problem in a legal
program, for example, an unknown pr.gma.

WEAK-WARNINGS I-level: Indicates a potential problem in
a legal program; for example, a possible
CONSTRAINTERROR at run time. These
are the only kind of I-level messages that are
counted in the summary statistics at the end of
a compilation.

SUPPLEMENTAL I-level: Additional information associated with
preceding E-level or W-level diagnostics.

COMPILATIONNOTES I-level: Information about how the compiler
translated a program, such as record layout,
parameter-passing mechanisms, or decisions
made for the pragmas INLINE, INTERFACE, or
the import-subprogram pragmas.

STATUS I-level: End of compilation statistics and other
messages.

The defaults are as follows:

/WARNINGS=(WARN:ALL,WEAK:ALL,SUPP:ALL,COMP:NONE, STAT:LIST)

If you specify only some of the message categories with the
/WARNINGS qualifier, the default values for other categories are used.

Examples
1 $ XDADA MODELINTERFACE_,MODELINTERFACE,CONTROLLOOP

The XDADA command compiles the compilation units con-
tained in the three files MODEL INTERFACE_.ADA, MODEL_
INTERFACE.ADA, and CONTROLLOOP.ADA, in the order given.

21



XDADA

2. $ XDADA/LiST/SHOW-ALL SCREEN tO ,SCREEIJ I

The XDADA command compiles the compilation units contained
in the two files SCREEN 10 .ADA and SCREEN [O.ADA, in the
order given. The /LIST qualifier creates the listing files SCREEN-
IO .LIS and SCREENJO.LIS in the current default directory. The
/SHOW = ALL qualifier causes all listing file options to be provided
in the listing files.

22



TEST PARAMETERS

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such as the maximum
length of an input line and invalid file names. A test that makes use of such values is identified
by the extension .TST in its file name. Actual values to be substituted are represented by names
that begin with a dollar sign. A value must be substituted for each of these names before the test
is run. The values used for this validation are given below:

Name and Meaning Value

$ACCSIZE 32
An integer literal whose value is the number of bits
sufficient to hold any value of an access type.

$BIGID1 (1..254=>'A', 255=>1)
Identifier the size of the maximum input line length with
varying last character.

$BIGID2 (1..254=>'A', 255 =>2)
Identifier the size of the maximum input line length with
varying last character.

$BIG_ID3 (1..127= >'A', 128= >3,
Identifier the size of the maximum input line length with 129..255= >'A')
varying middle character.

$BIGID4 (1..127=>'A', 128=>4,
Identifier the size of the maximum input line length with 129..255 = >'A')
varying middle character.

$BIGINTLIT (1..252= >0,
An integer literal of value 298 with enough leading 253..255=>298)
zeroes so that it is the size of the maximum line length

$BIGREAL 7LIT (1..249= >0,
A universal real literal of value 690.0 with enough 250..255=>69.OE1)
leading zeroes to be the size of the maximum line length.

$BIGSTRING1 (1..127= >'A')
A string literal which when catenated with
BIGSTRING2 yields the image of BIGIDI.

Valdatice Suinzy Report AVF-VSR-9050W*

SD-Sdw. pic XD Ma MC V100 Appen dx C - Page I of 5



TEST PARAMETERS

$BIG_STRING2 (1..127=>'A', 128=>1)
A string literal which when catenated to the end of
BIGSTRING1 yields the image of BIGIDI.

$BLANKS (1..235=>' ')
A sequence of blanks twenty characters less than the size
of the maximum line length.

$COUNTLAST 2147483647
A universal integer literal whose value is
TEXTIO.COUNT'LAST.

$DEFAULTMEMSIZE 16777216
An integer literal whose value is
SYSTEM.MEMORY SIZE.

$DEFAULTSTOR UNIT 8
An integer literal whose value is
SYSTEM.STORAGEUNIT.

$DEFAULTSYSNAME MC68000
The value of the constant SYSTEM.SYSTEMNAME.

$DELTADOC 2#1.0#E-31
A real literal whose value is SYSTEM.FINEDELTA.

$FIELDLAST 255
A universal integer literal whose value is
TEXTIO.FIELD'LAST.

$FIXEDNAME NOSUCHTYPE
The name of a predefined fixed-point type other than
DURATION.

$FLOATNAME LONGLONGFLOAT
The name of a predefined floating-point type other than
FLOAT, SHORT-FLOAT, or LONG-FLOAT.

$GREATERTHAN DURATION 131072.0
A universal real literal that lies between
DURATION'BASE'LAST and DURATION'LAST or any
value in the range of DURATION.

SGREATER THAN DURATION BASE LAST 131073.0
A universal real literal that is greater than
DURATION'BASE'LAST.

Vajidadom Samoy Remt AVF-VSR-90502166

SD-Sdwm pic XD A@ MC68O0 V0-" Appmdix C - Pag 2 of 5



TEST PARAMETERS

$HIGHPRIORITY 15
An integer literal whose value is the upper bound of the
range for the subtype SYSTEM.PRIORITY.

$ILLEGALEXTERNALFILENAME1 THERE ARE NO ILLEGAL
An external file name which contains invalid characters. FILENAMES

$ ILLEGAL EXTERNALFILENAME2 N/A
An external file name which is too long.

$INTEGERFIRST -2147483648
A universal integer literal whose value is
INTEGER'FIRST.

$INTEGERLAST 2147483647
A universal integer literal whose value is
INTEGER'LAST.

$INTEGERLASTPLUS_1 2147483648
A universal integer literal whose value is
INTEGER'LAST+ 1.

$LESSTHANDURATION -131072.0
A universal real literal that lies between
DURATION'BASE'FIRST and DURATION'FIRST or
any value in the range of DURATION.

$LESS_THANDURATIONBASEFIRST -131073.0
A universal real literal that is less than
DURATION'BASE'FIRST.

$LOWPRIORITY 0
An integer literal whose value is the lower bound of the
range for the subtype SYSTEM.PRIORITY.

$MANTISSADOC 31
An integer literal whose value is
SYSTEM.MAXMANTISSA.

$MAXDIGITS 18
Maximum digits supported for floating-point types.

$MAXINLEN 255
Maximum input line length permitted by the
implementation.

Valkati Sinwy RqpM AVF-VSR-905021"

SD-Sdcw pie XD A& MC 6300 V1.09 Appeni C - Pag 3ofS



TEST PARAMETERS

$MAXINT 2147483647
A universal integer literal whose value is
SYSTEM.MAXINT.

$MAXINTPLUS_1 2147483648
A universal integer literal whose value is
SYSTEM.MAXINT+1.

$MAXLENINTBASEDLITERAL 0-2 = >'2:',
A universal integer based literal whose value is 2#11# 3..252=>'O',
with enough leading zeroes in the mantissa to be 253..255=>'11:')
MAXIN LEN long.

$MAXLENREALBASEDLITERAL ( 1..3= >'16:'
A universal real based literal whose value is 16:F.E: with 4..251 = >'0',
enough leading zeroes in the mantissa to be 252..255= >'F.E:')
MAXINLEN long.

$MAXSTRINGLITERAL (1 = >'"', 2..254= >'A',
A string literal of size MAXINLEN, including the 255= >")
quote characters.

$MININT -2147483648
A universal integer literal whose value is
SYSTEM.MININT.

$MINTASKSIZE 32
An integer literal whose value is the number of bits
required to hold a task object which has no entries, no
declarations, and "NULL;" as the only statement in its
body.

$NAME SHORTSHORTINTEGER
A name of a predefined numeric type other than
FLOAT, INTEGER, SHORT FLOAT,
SHORT INTEGER, LONGFLOAT, or
LONGINTEGER.

$NAMELIST MC68000
A list of enumeration literals in the type
SYSTEM.NAME, separated by commas.

$NEGBASED INT 16#FFFF FFFF#
A based integer literal whose highest order nonzero bit
falls in the sign bit position of the representation for
SYSTEM.MAXINT.

VaWdatm S==7 Rqm AVF-VSR-9050 2 6

SD,1S. Pk XD M MCMOW VI.0-09 Appenim C - Pq 4 of 5



TEST PARAMETERS

$NEWMEM SIZE 123456
An integer literal whose value is a permitted argument
for pragma memorysize, other than
$DEFAULTMEMSIZE. If there is no other value,
then use $DEFAULTMEMSIZE.

$NEWSTOR UNIT 8
An integer literal whose value is a permitted argument
for pragma storageunit, other than
$DEFAULT STOR UNIT. If there is no other
permitted value, then use value of
SYSTEM.STORAGEUNIT.

$NEWSYS NAME MC68000
A value of the type SYSTEM.NAME, other than
$DEFAULTSYSNAME. If there is only one value of
that type, then use that value.

$TASKSIZE 32
An integer literal whose value is the number of bits
required to hold a task object which has a single entry
with one inout parameter.

$TICK 2#1.0#E-13
A real literal whose value is SYSTEM.TICK.

Validatiam Sammy RqxMt AVF-VSR-9050266

SD-Sdam pic XD Ads MCASOM VIAO09 Appendix C - Pae 5 of 5



WITHDRAWN TESTS

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the Ada Standard.
The following 44 tests had been withdrawn at the time of validation testing for the reasons
indicated. A reference of the form AI-ddddd is to an Ada Commentary.

E28005C This test expects that the string "-- TOP OF PAGE. --63" of line 204 will appear
at the top of the listing page due to a pragma PAGE in line 203; but line 203
contains text that follows the pragma, and it is this that must appear at the top of
the page.

A39005G This test unreasonably expects a component clause to pack an array component into
a minimum size (line 30).

B97102E This test contains an unitended illegality: a select statement contains a null
statement at the place of a selective wait alternative (line 31).

C97116A This test contains race conditions, and it assumes that guards are evaluated
indivisibly. A conforming implementation may use interleaved execution in such
a way that the evaluation of the guards at lines 50 & 54 and the execution of task
CHANGING OF THEGUARD results in a call to REPORT.FAILED at one of
lines 52 or 56.

BC3009B This test wrongly expects that circular instantiations will be detected in several
compilation units even though none of the units is illegal with respect to the units
it depends on; by AJ-00256, the illegality need not be detected until execution is
attempted (line 95).

CD2A62D This test wrongly requires that an array object's size be no greater than 10 although
its subtype's size was specified to be 40 (line 137).

CD2A63A..D, CD2A66A..D, CD2A73A..D, CD2A76A..D [16 tests]
These tests wrongly attempt to check the size of objects of a derived type (for
which a 'SIZE length clause is given) by passing them to a derived subprogram
(which implicitly converts them to the parent type (Ada standard 3.4:14)).
Additionally, they use the 'SIZE length clause and attribute, whose interpretation
is considered problematic by the WG9 ARG.

CD2ASLG, CD2A83G, CD2A84N & M, & CD50110 [5 tests]
These tests assume that dependent tasks will terminate while the main program
executes a loop that simply tests for task termination; this is not the case, and the
main program may loop indefinitely (lines 74, 85, 86 & 96, 86 & 96, and 58, resp.).

Valaiom Simmy Rcq AVF-VSR-90502M6

SD-Sdmm pl XD AdA MCMW VI.04 Appmed D - Pa g of 2



WITHDRAWN TESTS

CD2B15C & CD7205C
These tests expect that a 'STORAGESIZE length clause provides precise control
over the number of designated objects in a collection; the Ada standard 13.2:15
allows that such control must not be expected.

CD2D11B This test gives a SMALL representation clause for a derived fixed-point type (at
line 30) that defines a set of model numbers that are not necessarily represented
in the parent type; by Commentary AI-00099, all model numbers of a derived
fixed-point type must be representable values of the parent type.

CD5007B This test wrongly expects an implicitly declared subprogram to be at the the address
that is specified for an unrelated subprogram (line 303).

ED7004B, ED7005C & D, ED7006C & D [5 tests]
These tests check various aspects of the use of the three SYSTEM pragmas; the
AVO withdraws these tests as being inappropriate for validation.

CD7105A This test requires that successive calls to CALENDAR.CLOCK change by at least
SYSTEM.TICK; however, by Commentary AI-00201, it is only the expected
frequency of change that must be at least SYSTEM.TICK--particular instances of
change may be less (line 29).

CD7203B, & CD7204B
These tests use the 'SIZE length clause and attribute, whose interpretation is
considered problematic by the WG9 ARG.

CD7205D This test checks an invalid test objective: it treats the specification of storage to
be reserved for a task's activation as though it were like the specification of storage
for a collection.

CE21071 This test requires that objects of two similar scalar types be distinguished when read
from a file--DATA ERROR is expected to be raised by an attempt to read one
object as of the other type. However, it is not clear exactly how the Ada standard
14.2.4:4 is to be interpreted; thus, this test objective is not considered valid. (line
90)

CE3111C This test requires certain behavior, when two files are associated with the same
external file, that is not required by the Ada standard.

CE3301A This test contains several calls to END OF LINE & ENDOFPAGE that have
no parameter: these calls were intended to specify a file, not to refer to
STANDARDINPUT (lines 103, 107, 118, 132, & 136).

CE3411B This test requires that a text file's column number be set to COUNT'LAST in order
to check that LAYOUT ERROR is raised by a subsequent PUT operation. But
the former operation will generally raise an exception due to a lack of available disk
space, and the test would thus encumber validation testing.

Valiat Summay Report AVF-VSR-9050266

1-Sawo pl XD Ad MC68E0 VI.0-9 Appendix D - Page 2 of 2



N C C VS R ADDENDUM

This Addendum to the ACVC 1.10 VSR clarifies some items which are contained within the
standard pre-forma Validation Summary Report as supplied by the Ada Maintenance Office
(AMO).

In line with AJPO regulations the contents of the VSR have not been altered in order to keep
consistency between the different AVFs.

The points raised in this addendum are being addressed by the AMO in future issues of the VSR.

1 The last paragraph of Chapter 1 contains the following statement 'Any test that was
determined to contain an illegal language construct or an erroneous language construct is
withdrawn from the ACVC...'

This is incorrect since illegal constructs are legitimately contained within Class B tests.

2 Both the terms 'inapplicable' and 'not applicable' are used within the VSR. These terms
are identical.

3 Chapter 1 of the VSR does not indicate how 'inapplicable' tests are to be analysed. The
analysis is undertaken as follows:

I

'Each inapplicable test is checked to ensure that this behaviour is consistent with the given
reasons for its inapplicability'.


