
OTIC FILE M
SI REPORT DOCUMENTATION PAGE _________730

~~~wt iwe "m "Wt 0bu im. w ~ S~ ---

1. AGECY UISE ONL.Y (Lmiw Bk* IL REPom DATE I. REOR TYP AD TES COVERED

j jFinal 08 Dec 1989 to 08 Dec 1990

4-MTIEADUffTTLE Ada Compiler Validation Summary Report: Alsys, L UINMNER

AlsyCOMP- 010, Version 4.32, MicroVAX II (Host & Target),

S 891208A1.10229

DT~n (ID
AFNOR, Paris, FRANCE DI

JUL ~ ~ ~ a Z ud PROMN OPQM4IZATION
RPORT NUMBER

TourEuroe, edex7 U AVF-VSR-AFNOR-89- 14
F-92080 Paris la DefenseD
FRANCE

0. UPN UOIOTRIG AGENCY NANE(S) ANDADMSS(S) 10s. SPCN9ORNG#ArORM AGENCY
Ada Joint Program Office *PORT NIAER

United States.Department of Defense
Washington, D.C. 20301-3081

11. SUPPLEMIENTARY NOTES

1Lb DIS IUUTIWAVARALADUY STATELWMT ib. OIsTRunoN CODE

Approved for public release; distribution unlimited.

13. ASTRACT (Sutm2OO ww*)

Alsys, AlsyCOMP_010, Version 4.32, Paris, Franc, MicroVAX [I under Ultrix 32, Version 3.0

(Host & Target), ACVC 1.10.

14.9UNJECTTEMS Ada programming language, Ada Compiler Validation is. NUMER OPAGES
Summary Report, Ada Compiler Validation Capability, Validation1-
Testing, Ada Validation Office, Ada Validation Facility, ANSI/MIL- .~ise ccEM

S17.1IRY i5Fa Joint Program Office 1
UNCLASSIFIED UNO LA ME UIT. MSI1EDNOFAPD~

NSN 54001-8045 89~ar F&M8SW.



AVF Control Number: AVF-VSR-AFNOR-89-14

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 891208A1.10229
Alsys

AlsyCOMP -010, Version 4.32
MicroVAX II Host and Target

Completion of On-Site Testing:
8 December 1989

Prepared By:
Tou OruoeAcsoFo

Cedex 7 ___

F-92049 Paris la Defense NTIS CRA&f
DTIC TAB 0
Unannounced 0
Justifica tion

Prepared For:
Ada Joint Program Office B__ ______

United States Department of Defense Distribution I
Washington DC 20301-3081 Availability Codes

IAvail arid/loODimt special 0
9d3 A

0-Ij _



Ada Compiler Validation Summary Report:

Compiler Name: AlsyCOMP_010, Version 4.32

Certificate Number: 891208A1.10229

Host: MicroVAX II under Ultrix 32, Version 3.0

Target: MicroVAX II under Ultrix 32, Version 3.0

Testing Completed 8 December 1989 Using ACVC 1.10

This report has been reviewed and is approved.

AFNOR
Fabrice Garnier de Labareyre
Tour Europe
Cedex 7
F-92049 Paris la DMfense

i-" Ada Validation Organization
Director, Computer & Software Engineering Division
Institute for Defense Analyses
Alexandria VA 22311

Ada ointP;6ram Office
/Dr. John Soelomond

Director
Department of Defense
Washington DC 20301

2 AVF-VSR-AFNOR-89-14



TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT ............... 4
1.2 USE OF THIS VALIDATION SUMMARY REPORT .................. 5
1.3 REFERENCES ............. .......................... 6
1.4 DEFINITION OF TERMS .......... ..................... 6
1.5 ACVC TEST CLASSES ................................. 7

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED .......... ..................... 9
2.2 IMPLEMENTATION CHARACTERISTICS ....... ................ 9

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS .................................. .. 14
3.2 SUMMARY OF TEST RESULTS BY CLASS ..... .............. .14
3.3 SUMMARY OF TEST RESULTS BY CHAPTER .... ............. .. 14
3.4 WITHDRAWN TESTS ............................... .15
3.5 INAPPLICABLE TESTS ........ ..................... 15
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS ......... .. 18
3.7 ADDITIONAL TESTING INFORMATION ..... ............... .. 19
3.7.1 Prevalidation ......... ....................... .. 19
3.7.2 Test Method ................................... .19
3.7.3 Test Site ........... ......................... .20

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B TEST PARAMETERS

APPENDIX C WITHDRAWN TESTS

APPENDIX D APPENDIX F OF THE Ada STANDARD

3 AVF-VSR-AFNOR-89-14



INTRODUCTION

CHAPTER 1

INTRODUCTION

'kThis Validation Summary Report (VSR4---describes the extent to which a specific
Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A. This report
explains all technical terms used within it and thoroughly reports the results
of testing this compiler using the Ada Compiler Validation Capability (ACVC). An
Ada compiler must be implemented according to the Ada Standard, and any
implementation-dependent features must conform to the requirements of the Ada
Standard. The Ada Standard must be implemented in its entirety, and nothing can
be implemented that is not in the Standard.7

Even though all validated Ada compilers conform to the Ada Standard, it Wust be
understood that some differences do exist between implementations. The Ada
Standard permits some implementation dependencies--for example, the maximum
length of identifiers or the maximum values of integer types. Other differences
between compilers result from the characteristics of particular operating
systems, hardware, or implementation strategies. All the dependencies observed
during the process of testing this compiler are given in this report.

The information in this report is derived from the test results produced during
validation testing. The validation process includes submitting a suite of
standardized tests, the ACVC, as inputs to an Ada compiler and evaluating the
results. The purpose of validating is to ensure conformity of the compiler to
the Ada Standard by testing that the compiler properly implements legal language
constructs and that it identifies and rejects illegal language constructs. The
testing also identifies behavior that is implementation dependent, but is
permitted by the Ada Standard. Six classes of tests are used. These tests are
designed to perform checks at compile time, at link time, and during execution.

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT i,, /

This VSR documents the results of the validation testing performed on an Ada
compiler. Testing was carried out for the following purposes:

4 AVF-VSR-AFNOR-89-14



INTRODUCTION

* To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

* To attempt to identify any language constructs not supported by the
compiler but required by the Ada Standard

* To determine that the implementation-dependent behavior is allowed by
the Ada Standard

Testing of this compiler was conducted by Alsys under the direction of the AVF
according to procedures established by the Ada Joint Program Office and
administered by the Ada Validation Organization (AVO). On-site testing was
completed 8 December 1989 at Alsys SA, in La Celle Saint Cloud, FRANCE.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may make
full and free public disclosure of this report. In the United States, this is
provided in accordance with the "Freedom of Information Act" (5 U.S.C. #552).
The results of this valilation apply only to the computers, operating systems,
and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are accurate
and complete, or that the subject compiler has no nonconformities to the Ada
Standard other than those presented. Copies of this report are available to the
public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

AFNOR
Tour Europe
cedex 7
F-92049 Paris la Dkfense

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

5 AVF-VSR-AFNOR-89-14



INTRODUCTION

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language, ANSI/MIL-STD-1815A,

February 1983, and ISO 8652-1987.

2. Ada Compiler Validation Procedures, Ada Joint Program Office, May 1989.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech, Inc.,
December 1986.

4. Ada Compiler Validation Capability User's Guide, January 1989

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada programs
that tests the conformity of an Ada compiler to the Ada
programming language.

Ada Commentary An Ada Commentary contains all information relevant to the
point addressed by a comment on the Ada Standard. These comments
are given a unique identification number having the form
AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures.

AVO The Ada Validation Organization. The AVO has oversight authority
over all AVF practices for the purpose of maintaining a uniform
process for validation of Ada compilers. The AVO provides
administrative and technical support for Ada validations to
ensure consistent practices.

Compiler A processor for the Ada language. In the context of this report,
a compiler is any language processor, including cross-compilers,
translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity Zo the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable test An ACVC test that uses features of the language that a
compiler is not required to support or may legitimately support
in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected result.

Target The computer which executes the code generated by the compiler.

6 AVF-VSR-AFNOR-89-14



INTRODUCTION

Test A program that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more files.

Withdrawn An ACVC test found to be incorrect and not used to check test
conformity to the Ada Standard. A test may be incorrect because
it has an invalid test objective, fails to meet its test
objective, or contains illegal or erroneous use of the language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC contains
both legal and illegal Ada programs structured into six test classes: A, B, C,
D, E, and L. The first letter of a test name identifies the class to which it
belongs. Class A, C, D, and E tests are executable, and special program units
are used to report their results during execution. Class B tests are expected to
produce compilation errors. Class L tests are expected to produce errors because
of the way in which a program library is used at link time.

Class A tests ensure the successful compilation and execution of legal Ada
programs with certain language constructs which cannot be verified at run time.
There are no explicit program components in a Class A test to check semantics.
For example, a Class A test checks that reserved words of another language
(other than those already reserved in the Ada language) are not treated as
reserved words by an Ada compiler. A Class A test is passed if no errors are
detected at compile time and the program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class B
tests are not executable. Each test in this class is compiled and the resulting
compilation listing is examined to verify that every syntax or semantic error in
the test is detected. A Class B test is passed if every illegal construct that
it contains is detected by the compiler.

Class C tests check the run time system to ensure that legal Ada programs can be
correctly compiled and executed. Each Class C test is self-checking and produces
a PASSED, FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers permitted
in a compilation or the number of units in a library--a compiler may refuse to
compile a Class D test and still be a conforming compiler. Therefore, if a Class
D test fails to compile because the capacity of the compiler is exceeded, the
test is classified as inapplicable. If a Class D test compiles successfully, it
is self-checking and produces a PASSED or FAILED message during execution.

7 AVF-7SR-AFNOR-89-14



Class E tests are expected to execute successfully and check implementation-
dependent options and resolutions of ambiguities in the Ada Standard. Each Class
E test is self-checking and produces a NOT APPLICABLE, PASSED, or FAILED message
when it is compiled and executed. However, the Ada Standard permits an
implementation to reject programs containing some features addressed by Class E
tests during compilation.. Therefore, a Class E test is passed by a compiler if
it is compiled successfully and executes to produce a PASSED message, or if it
is rejected by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving multiple,
separately compiled units are detected and not allowed to execute. Class L tests
are compiled separately and execution is attempted. A Class L test passes if it
is rejected at link time--that is, an attempt to execute the main program must
generate an error message before any declarations in the main program or any
units referenced by the main program are elaborated. In some cases, an
implementation may legitimately detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECKFILE, support the
self-checking features of the executable tests. The package REPORT provides the
mechanism by which executable tests report PASSED, FAILED, or NOT APPLICABLE
results. It also provides a set of identity functions used to defeat some
compiler optimizations allowed by the Ada Standard that would circumvent a test
objective. The procedure CHECK FILE is used to check the contents of text files
written by some of the Class C tests for Chapter 14 of the Ada Standard. The
operation of REPORT and CHECK FILE is checked by a set of executable tests.
These tests produce messages that are examined to verify that the units are
operating correctly. If these units are not operating correctly, then the
validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For example,
the tests make use of only the basic set of 55 characters, contain lines with a
maximum length of 72 characters, use small numeric values, and place features
that may not be supported by all implementations in separate tests. However,
some tests contain values that require the test to be customized according to
implementation-specific values--for example, an illegal file name. A list of the
values used for this validation is provided in Appendix C.

A compiler must correctly process each of the tests in the suite and demonstrate
conformity to the Ada Standard by either meeting the pass criteria given for the
test or by showing that the test is inapplicable to the implementation. The
applicability of a test to an implementation is considered each time the
implementation is validated. A test that is inapplicable for one validation is
not necessarily inapplicable for a subsequent validation. Any test that was
determined to contain an illegal language construct or an erroneous language
construct is withdrawn from the ACVC and, therefore, is not used in testing a
compiler. The tests withdrawn at the time of this validation are given in
Appendix D.

8 AVF-VSR-AFNOR-89-14



CONFIGURATION INFORMATION

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: AlsyCOMP_010, Version 4.32

ACVC Version: 1.10

Certificate Number: 891208A1.10229

Host Computer:

Machine: MicroVAX II

Operating System: Ultrix 32, Version 3.0

Memory Size: 8 Mb

Target Computer:

Machine: MicroVAX II

Operating System: Ultrix 32, Version 3.0

Memory Size: 8 Mb

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of a
compiler in those areas of the Ada Standard that permit implementations to
differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

a. Capacities.

(1) The compiler correctly processes a compilation containing 723
variables in the same declarative part. (See test D29002K.)

9 AVF-VSR-AFNOR-89-14



CONFIGURATION INFORMATION

(2) The compiler correctly processes tests containing loop statements
nested to 65 levels. (See tests D55A03A..H (8 tests).)

(3) The compiler correctly processes a test containing block statements
nested to 65 levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to 17 levels. (See
tests D64005E..G (3 tests).)

b. Predefined types.

(1) This implementation supports the additional predefined types,
SHORTSHORT INTEGER, SHORTINTEGER, LONGFLOAT in the package
STANDARD. (See tests B86001T..Z (7 tests).)

c. Based literals.

(1) An implementation is allowed to raise NUMERICERROR or
CONSTRAINTERROR when a value exceeds SYSTEM.MAXINT . This implemen-
tation raises NUMERICERROR during execution. (See test E24201A.)

d. Expression evaluation.

The order in which expressions are evaluated and the time at which
constraints are checked are not defined by the language. While the ACVC
tests do not specifically attempt to determine the order of evaluation of
expressions, test results indicate the following:

(1) Apparently no default initialization expressions for record
components are evaluated before any value is checked to belong to a
component's subtype. (See test C32117A.)

(2) Assignments for subtypes are performed with the same precision as the
base type. (See test C35712B.)

(3) This implementation uses no extra bits for extra precision. This
implementation uses all extra bits for extra range. (See test
C35903A.)

(4) NUMERICERROR is raised when an integer literal operand in a
comparison or membership test is outside the range of the base type.
(See test C45232A.)

(5) NUMERICERROR is raised when a literal operand in a fixed-point
comparison or membership test is outside the range of the base type.
(See test C45252A.)

(6) Underflow is gradual. (See tests C45524A..Z.) (26 tests)

10 AVF-VSR-AFNOR-89-14



CONFIGURATION INFORMATION

e. Rounding.

The method by which values are rounded in type conversions is not defined by
the language. While the ACVC tests do not specifically attempt to determine
the method of rounding, the test results indicate the following:

(1) The method used for rounding to integer is round away from zero. (See
tests C46012A..Z.) (26 tests)

(2) The method used for rounding to longest integer is round away from
zero. (See tests C46012A..Z.) (26 tests)

(3) The method used for rounding to integer in static universal real
expressions is round away from zero. (See test C4AO14A.)

f. Array types.

An implementation is allowed to raise NUMERICERROR or CONSTRAINTERROR for
an array having a 'LENGTH that exceeds STANDARD.INTEGER'LAST and/or
SYSTEM.MAXINT. For this implementation:

(1) Declaration of an array type or subtype declaration with more than
SYSTEM.MAXINT components raises NUMERICERROR . (See test C36003A.)

(2) NUMERICERROR is raised when an array type with INTEGER'LAST + 2
components is declared. (See test C36202A.)

(3) NUMERIC ERROR is raised when an array type with SYSTEM.MAXINT + 2
components is declared. (See test C36202B.)

(4) A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST raises
NUMERIC ERROR when the array type is declared. (See test C52103X.)

(5) A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises NUMERICERROR when the array type is declared. (See
test C52104Y.)

(6) In assigning one-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINT ERROR is raised when
checking whether the expression's subtype is compatible with the
target's subtype. (See test C52013A.)

(7) In assigning two-dimensional array types, the expression is not
evaluated in its entirety before CONSTRAINTERROR is raised when
checking whether the expression's subtype is compatible with the
target's subtype. (See test C52013A.)

g. A null arLay with one dimension of length greater than INTEGER'LAST may
raise NUMERICERROR or CONSTRAINTERROR either when declared or assigned.
Alternatively, an implementation may accept the declaration. However,
lengths must match in array slice assignments. This implementation raises
NUMERICERROR when the array type is declared . (See test E52103Y.)

11 AVF-VSR-AFNOR-89-14



CONFIGURATION INFORMATION

h. Discriminated types.

(1) In assigning record types with discriminants, the expression is
evaluated in its entirety before CONSTRAINTERROR is raised when
checking whether the expression's subtype is compatible with the
target's subtype. (See test C52013A.)

i. Aggregates.

(1) In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type. (See
tests C43207A and C43207B.)

(2) In the evaluation of an aggregate containing subaggregates, not all
choices are evaluated before being checked for identical bounds. (See
test E43212B.)

(3) CONSTRAINTERROR is raised after all choices are evaluated when a
bound in a non-null range of a non-null aggregate does not belong to
an index subtype. (See test E43211B.)

j. Pragmas.

(1) The pragma INLINE is supported for functions or procedures, but not
functions called inside a package specification. (See tests
LA3004A..B, EA3004C..D, and CA3004E..F.)

k. Generics.

(1) Generic specifications and bodies can be compiled in separate
compilations. (See tests CAlO12A, CA2009C, CA2009F, BC3204C, and
BC3205D.)

(2) Generic subprogram declarations and bodies can be compiled in
separate compilations. (See tests CAlOl2A and CA2009F.)

(3) Generic library subprogram specifications and bodies can be compiled
in separate compilations. (See test CAl012A.)

(4) Generic non-library package bodies as subunits can be compiled in
separate compilations. (See test CA2009C.)

(5) Generic non-library subprogram bodies can be compiled in separate
compilations from their stubs. (See test CA2009F.)

(6) Generic unit bodies and their subunits can be compiled in separate
compilations. (See test CA3011A.)

(7) Generic package declarations and bodies can be compiled in separate
compilations. (See tests CA2009C, BC3204C, and BC3205D.)

(8) Generic library package specifications and bodies can be compiled in
separate compilations. (See tests BC3204C and BC3205D.)

12 AVF-VSR-AFNOR-89-14



CONFIGURATION INFORMATION

(9) Generic unit bodies and their subunits can be compiled in separate

compilations. (See test CA3OllA.)

1. Input and output.

(1) The package SEQUENTIAL_I0 can be instantiated with unconstrained
array types and record types with discriminants without defaults.
(See tests AE2101C, EE220ID, and EE2201E.)

(2) The package DIRECT 10 can be instantiated .constrained array
types and record types with discriminants but CREATE will raise
USEERROR. (See tests AE2101H, EE2401D, and EE2401G.)

(4) Modes INFILE and OUT-FILE are supported for SEQUENTIALIO. (See
tests CE2102D..E, CE2102N, and CE2102P.)

(5) Modes INFILE, OUT-FILE, and INOUTFILE are supported for DIRECT_10.
(See tests CE2102F, CE2102I..J, CE2102R, CE2102T, and CE2102V.)

(6) Modes IN FILE and OUTFILE are supported for text files. (See tests
CE3102E and CE3102I..K.)

(7) RESET and DELETE operations are supported for SEQUENTIALIO. (See
tests CE2102G and CE2102X.)

(8) RESET and DELETE operations are supported for DIRECTIO. (See tests
CE2102K and CE2102Y.)

(9) RESET and DELETE operations are supported for text files. (See tests
CE3102F..G, CE3104C, CE3110A, and CE3114A.)

(10) Overwriting to a sequential file truncates to the last element
written. (See test CE2208B.)

(11) Temporary sequential files are given names and deleted when closed.
(See test CE2108A.)

(12) Temporary direct files are given names and deleted when closed. (See
test CE2108C.)

(13) Temporary text files are given names and deleted when closed. (See
test CE3112A.)

(14) More than one internal file can be associated with each external file
for sequential files when reading or writing (See tests CE2107A..E,
CE2102L, CE2110B, and CE2111D.)

(15) More than one internal file can be associated with each external file
for direct files when reading or writing (See tests CE2107F..I,
CE2110D and CE2111H.)

(16) More than one internal file can be associated with each external file
for text files when reading or writing. (See tests CE3111A..E,
CE3114B, and CE3115A.)

13 AVF-VSR-AFNOR-89-14



TEST INFORMATION

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was tested, 44
tests had been withdrawn because of test errors. The AVF determined that 365
tests were inapplicable to this implementation. All inapplicable tests were
processed during validation testing except for 201 executable tests that use
floating-point precision exceeding that supported by the implementation.
Modifications to the code, processing, or grading for 53 tests were required.
(See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable conformity to
the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL

_ _ _ _ A B C D E L_ _
Passed 129 1130 1960 17 26 46 3308

Inapplicable 0 8 355 0 2 0 365

Withdrawn 1 2 35 0 6 0 44

TOTAL 130 1140 2350 17 34 46 3717

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 198 577 545 245 172 99 161 331 137 36 252 259 296 3308

Inappl 14 72 135 3 0 0 5 1 0 0 0 110 25 365

Wdrn 1 1 0 0 0 0 0 2 0 0 1 35 4 44

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

14 AVF-VSR-AFNOR-89-14



TEST INFORMATION

3.4 WITHDRAWN TESTS

The following 44 tests were withdrawn from ACVC Version 1.10 at the time of this
validation:

-,,05G B97102E BC3009B C97116A CD2A62D CD2A63A CD2A63B CD2A63C CD2A63D
CD2A66A CD2A66B CD2A66C CD2A66D CD2A73A CD2A73B CD2A73C CD2A73D CD2A76A
CD2A76B CD2A76C CD2A76D CD2A8lG CD2A83G CD2A84M CD2A84N CD2D1lB CD2Bl5C
CD5007B CD50110 CD71O5A CD7203B CD7204B CD7205C CD7205D CE2107I CE3111C
CE3301A CE3411B E28005C ED7004B ED7005C ED7005D ED7006C ED7006D

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features that
a compiler is not required by the Ada Standard to support. Others may depend on
the result of another test that is either inapplicable or withdrawn. The
applicability of a test to an implementation is considered each time a
validation is attempted. A test that is inapplicable for one validation attempt
is not necessarily inapplicable for a subsequent attempt. For this validation
attempt, 365 tests were inapplicable for the reasons indicated:

The following 201 tests are not applicable because they have floating-point
type declarations requiring more digits than System.MaxDigits:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

C35702A and B86001T are not applicable because this implementation supports
no predefined type ShortFloat.

C45531M..P (4 tests) and C45532M..P (4 tests) are not applicable because
the value of System.MaxMantissa is less than 32.

The following 16 tests are not applicable because this implementation does
not support a predefined type LONG INTEGER:

C45231C C45304C C45502C C45503C C45504C C45504F C45611C C45613C
C45614C C45631C C45632C B52004D C55B07A B55B09C B86001W CD7101F

C86001F, is not applicable because recompilation of Package SYSTEM is not
allowed.

B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than Duration.

15 AVF-VSR-AFNOR-89-14



TEST INFORMATION

B86001Z is not applicable because this implementation supports no
predefined floating-point type with a name other than Float, Long Float, or
ShortFloat.

B910O1H is not applicable because address clause for entries is not
supported by this implementation.

BD5006D is not applicable because address clause for packages is not
supported by this implementation.

The following 10 tests are not applicable because size clause on float is
not supported by this implementation:

CD1O09C CD2A41A..B (2 tests)
CD2A41E CD2A42A..B (2 tests)
CD2A42E..F (2 tests) CD2A42I..J (2 tests)

* CDlCO4B, CD1C04E, CD4O5lA..D (4 tests) are not applicable because
representation clause on derived records or derived tasks is not supported
by this implementation.

CD2A84B..I (8 tests), CD2A84K..L (2 tests) are not applicable because size
clause on access type is not supported by this implementation.

The following 28 tests are not applicable because size clause for derived
private type is not supported by this implementation:

CDlC04A CD2A21C..D (2 tests)
CD2A22C..D (2 tests) CD2A22G..H (2 tests)
CD2A31C..D (2 tests) CD2A32C..D (2 tests)
CD2A32G..H (2 tests) CD2A41C..D (2 tests)
CD2A42C..D (2 tests) CD2A42G..H (2 tests)
CD2A51C..D (2 tests) CD2A52C..D (2 tests)
CD2A52G..H (2 tests) CD2A53D
CD2A54D CD2A54H

The following 29 tests are not applicable because of the way this
implementation allocates storage space for one component, size
specification clause for an array type or for a record type requires
compression of the storage space needed for all the components (without
gaps).

CD2A61A..D (4 tests) CD2A61F
CD2A61H..L (5 tests) CD2A62A..C (3 tests)
CD2A71A..D (4 tests) CD2A72A..D (4 tests)
CD2A74A..D (4 tests) CD2A75A..D (4 tests)

CD4041A is not applicable because alignment "at mod 8" is not supported by
this implementation.

The following 21 tests are not applicable because address clause for a
constant is not supported by this implementation:

CD5011B,D,FH,L,N,R (7 tests) CD5012C,D,G,H,L (5 tests)
CD5013B,D,:',H,L,N,R (7 tests) CD5O14U,W (2 tests)

CD5Ol2J, CD5013S, CD5014S are not applicable because address clause for a
task is not supported by this implementation.

CE2102D is inapplicable because this implementation supports create with
in_file mode for SEQUENTIAL_IO.

16 AVF-VSR-AFNOR-89-14



TEST INFORMATION

CE2102E is inapplicable because this implementation supports create with
outfile mode for SEQUENTIAL_IO.

CE2102F is inapplicable because this implementation supports create with
inout file mode for DIRECTIO.

CE2102I is inapplicable because this implementation supports create with
infile mode for DIRECTIO.

CE2102J is inapplicable because this implementation supports create with
outfile mode for DIRECTIO.

CE2102N is inapplicable because this implementation supports open with
infile mode for SEQUENTIAL_IO.

CE21020 is inapplicable because this implementation supports RESET with
in-file mode for SEQUENTIAL_IO.

CE2102P is inapplicable because this implementation supports open with
outfile mode for SEQUENTIAL_IO.

CE2102Q is inapplicable because this implementation. supports RESET with
outfile mode for SEQUENTIALIO.

CE2102R is inapplicable because this implementation supports open with
inoutfile mode for DIRECTIO.

CE2102S is inapplicable because this implementation supports RESET with
inout file mode for DIRECTIO.

CE2102T is inapplicable because this implementation supports open with
infile mode for DIRECTIO.

CE2102U is inapplicable because this implementation supports RESET with
in_file mode for DIRECTIO.

CE2102V is inapplicable because this implementation supports open with
outfile mode for DIRECT IO.

CE2102W is inapplicable because this implementation supports RESET with
outfile mode for DIRECTIO.

EE2401D and EE2401G are not applicable because USEERROR is raised when the
CREATE of an instantiation of DIRECTIO with unconstrained type is called.

CE2401H is not applicable because create with inout file mode for
unconstrained records with default discriminants is not supported by this
implementation.

CE3102E is inapplicable because this implementation supports create with
infile mode for text files.

CE3102F is inapplicable because this implementation supports reset for text
files, for out-file, in-file and from outfile to infile mode.

CE3102G is inapplicable because this implementation supports deletion of an
external file for text files.

17 AVF-VSR-AFNOR-89-14



TEST INFORMATION

CE3102I is inapplicable because this implementation supports create with
outfile mode for text files.

CE3102J is inapplicable because this implementation supports open with
in-file mode for text files.

-"02K is inapplicable because this implementation supports open with
out-file mode for text files.

CE3202A is inapplicable because it requires the association of a name with
the standard input and output files. This is not supported by the
implementation and USEERROR is raised at execution. This behavior is
accepted by the AVO pending a ruling by the langage maintenance body.

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code, processing,
or evaluation in order to compensate for legitimate implementation behavior.
Modifications are made by the AVF in cases where legitimate implementation
behavior prevents the successful completion of an (otherwise) applicable test.
Examples of such modifications include: adding a length clause to alter the
default size of a collection; splitting a Class B test into subtests so that all
errors are detected; and confirming that messages produced by an executable test
demonstrate conforming behavior that wasn't anticipated by the test (such as
raising one exception instead of another).

Modifications were required for 53 tests.

The following 27 tests were split because syntax errors at one point resulted in
the compiler not detecting other errors in the test:
B23004A B24007A B24009A B28003A B32202A B32202B B32202C B33001A B36307A B37004A
B49003A B49005A B61012A B62001B B74304B B74304C B74401F B74401R B91004A B95032A
B95069A B95069B BA1101B BC2001D BC3009A BC3009C BD5005B

The following 21 tests were split in order to show that the compiler was abl.e to
find the representation clause indicated by the comment
--N/A =)ERROR :

CD2A61A CD2A61B CD2A61F CD2A61I CD2A61J CD2A62A CD2A62B CD2A71A CD2A71B CD2A72A
CD2A72B CD2A75A CD2A75B CD2A84B CD2A84C CD2A84D CD2A84E CD2A84F CD2A84G CD2A84H
CD2A84I

The test EA3004D when run as it is, the implementation fails to detect an error
on line 27 of test file EA3004D6M (line 115 of "cat -n ea3004d*"). This is
because the pragma INLINE has no effect when its object is within a package
specification. However, the results of running the test as it in does not
confirm that the pragma had no effect, only that the package was not made
obsolete. By re-ordering the compilations so that the two subprograms are
compiled after file D5 (the re-compilation of the "with"ed package that makes
the various earlier units obsolete), we create a test that shows that indeed
pragma INLINE has no effect when applied to a subprogram that is called within a
package specification: the test then executes and produces the expected
NOTAPPLICABLE result (as though INLINE were not supported at all). The
re-ordering of EA3004D test files is 0-1-4-5-2-3-6.

18 AVF-VSR-AFNOR-89-14



TEST INFORMATION

BA2001E requires that duplicate names of subunits with a common ancestor be
detected and rejected at compile time. This implementation detects the error at
link time, and the AVO ruled that this behavior is acceptable.

Modified version was produced for C87B62B, in order to have the test run to
completion and fully exhibit the test behavior:
An explicit STORAGESIZE clause was added for the access type declared at line
68. This allows the test to execute without raising STORAGE ERROR and to meet
its objective (test overloading resolution in expression within length clause).
The test then produces the expected PASSED result.

Modified version was produced for CC1223A, in order to have the test run to
completion and fully exhibit the test behavior:
This test uses an expression within a generic body that cause the test to raise
an NUMERICOVERFLOW unexpected exception at line 262. The expression
"2**T'MANTISSA -1" on line 262 was changed to the equivalent form
"( 2**(T'MANTISSA-I)-l + 2**(T'MANTISSA-) )" in order to avoid generating the
exception-raising value 2**31. The test then produces the expected PASSED
result.

CE3202A requires the association of a name with the standard input and output
files. This is not supported by the implementation and USEERROR is raised at
execution. The NAME (STANDARDINPUT) and NAME (STANDARD-OUTPUT) calls at lines
25 and 29 were encapsulated in blocks with explicit exception handlers that
produce a NOTAPPLICABLE result in the USE-ERROR case, and a FAILED result in
the OTHERS case. The test then produces the expected NOTAPPLICABLE result. This
behavior is accepted by the AVO pending a ruling by the langage maintenance
body.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced by the
AlsyCOMP_010, Version 4.32 compiler was submitted to the AVF by the applicant
for review. Analysis of these results demonstrated that the compiler
successfully passed all ;pplicable tests, and the compiler exhibited the
expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the AlsyCOMP_010, Version 4.32 compiler using ACVC Version 1.10 was
conducted on site by a validation team from the AVF. The configuration in which
the testing was performed is described by the following designations of hardware
and software components:

Host computer: MicroVAX II
Host operating system: Ultrix 32, Version 3.0
Target computer: MicroVAX II
Target operating system: Ultrix 32, Version 3.0
Compiler: AlsyCOMP_010, Version 4.32

19 AVF-VSR-AFNOR-89-14



TEST INFORMATION

A Cartridge TK50 containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of implementation-specific
values were customized before being written to the Cartridge TK50. Tests
requiring modifications during the prevalidation testing were included in their
modified form on the Cartridge TK50.

The contents of the Cartridge TK50 were loaded directly onto the host computer.

After the test files were loaded to disk, the full set of tests was compiled,
linked and all executable tests were run on the MicroVAX II.

The compiler was tested using command scripts provided by Alsys and reviewed by
the validation team. The compiler was tested using all default option settings
except for the following:

OPTION EFFECT

CALLS=INLINED The pragma INLINE are taken into account

REDUCTION=EXTENSIVE Perform some high level optimization

Tests were compiled, linked, and executed (as appropriate) using a single
computer. Test output, compilation listings, and job logs were captured on
Cartridge TK50 and archived at the AVF. The listings examined on-site by the
validation team were also archived.

3.7.3 Test Site

Testing was conducted at Alsys SA, in La Celle Saint Cloud, FRANCE and was
completed on 8 December 1989.

20 AVF-VSR-AFNOR-89-14



DECLARATION OF CONFORMANCE

APPENDIX A

DECLARATION OF CONFORMANCE

Alsys has submitted the following Declaration of Conformance
concerning the AlsyCOMP_010, Version 4.32 compiler.

21 AVF-VSR-AFNOR-89-14



DECLARATION OF CONFORMANCE

DECLARATION OF CONFORMANCE

Compiler Implementor: Alsys

Ada Validation Facility: AFNOR, Tour Europe Cedex 7,
F-92080 Paris la D6fense

Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: AlsyCOMP_010, Version 4.32
Host Architecture: MicroVAX II
Host OS and Version: Ultrix 32, Version 3.0
Target Architecture: MicroVAX II
Target OS and Version: Ultrix 32, Version 3.0

Implementor's Declaration

I, the undersigned, representing Alsys, have implemented no deliberate
extensions to the Ada Language Standard ANSI/MIL-STD-1815A in the compiler(s)
listed in this declaration. I declare that Alsys is the owner of record of the
Ada language compiler(s) listed above and, as such, is responsible for
maintaining said compiler(s) in conformance to ANSI/MIL-STD-1815A. All
certificates and registrations for Ada language compiler(s) listed in this
declaration shall be made only in the owner's corporate name.

_-_D a te : N O. .. 9
Alsys
Etienne Morel, Managing Director

Owner's Declaration

I, the undersigned, representing Alsys, take full responsibility for
implementation and maintenance of the Ada compiler(s) listed above, and agree to
the public disclosure of the final Validation Summary Report. I declare that all
of the Ada language compilers listed, and their host/target performance, are in
compliance with the Ada Language Standard ANSI/MIL-STD-1815A.

. . ... 2 : NOV. !

_ _ _ _ _ _ Date: : ...

Alsys
Etienne Morel, Managing Director

22



TEST PARAMETERS

APPENDIX B

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such as
the maximum length of an input line and invalid file names. A test that makes
use of such values is identified by the extension .TST in its file name. Actual
values to be substituted are represented by names that begin with a dollar sign.
A value must be substituted for each of these names before the test is run. The
values used for this validation are given below.

Name and Meaning Value

$ACCSIZE 32
An integer literal whose value
is the number of bits sufficient
to hold any value of an access
type.

$BIGIDi (254 * 'A') & ''
Identifier the size of the
maximum input line length
with varying last character.

$BIGID2 (254 * 'A) & '2'
Identifier the size of the
maximum input line length
with varying last character.

SBIGID3 (126 * 'A') & '3' & (128 * 'A')
Identifier the size of the
maximum input line length
with varying middle character.

$BIG_- ID4 (126 * 'A') & '4' & (128 * 'A')
Identifier the size of the
maximum input line length
with varying middle character.

23 AVF-VSR-AFNOR-89-14



TEST PARAMETERS

Name and Meaning Value
--------------------- --------------------------------------

$BIGINTLIT (252 * '0') & '298'
An integer literal of value
298 with enough leading zeroes
so that it is the size of the
maximum line length.

$BIGREALLIT (250 * '0') & '690.0'
A universal real literal of
value 690.0 with enough
leading zeroes to be the size
of the maA.imum line length.

$BIGSTRINGl ... & (127 * 'A') &

A string literal which when
catenated with BIGSTRING2
yields the image of BIGIDl.

$BIGSTRING2 ... & (127 * 'A') & '1"'
A string literal which when
catenated to the end of
BIG_STRING1 yields the image
of BIGIDl.

$BLANKS (235 * '

A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNTLAST 2147483647
A universal integer literal whose
value is TEXTIO.COUNT'LAST.

$DEFAULTMEMSIZE 2**31
An integer literal whose value
is SYSTEM.MEMORYSIZE.

$DEFAULTSTORUNIT 8
An integer literi whose value
is SYSTEM.STORAGEUNIT.

$DEFAULT_SYSNAME VAXULTRIX
The value of the constant
SYSTEM.SYSTEMNAME.

$DELTADOC 2#1.0#E-31

A real literal whose value is
SYSTEM.FINEDELTA.

24 AVF-VSR-AFNOR-89-14



TEST PARAMETERS

Name and Meaning Value

SFIELDLAST 255
A universal integer literal whose
value is TEXTIO.FIELD'LAST.

$FIXEDNAME NOSUCHTYPE
The name of a predefined
fixed-point type other than
DURATION.

SFLOAT NAME NOSUCHTYPE
The name of a predefined
floating-point type other than
FLOAT, SHORTFLOAT, or
LONG_FLOAT.

$GREATERTHANDURATION 100_000.0
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

SGREATERTHANDURATIONBASELAST 100_000_000.0
A universal real literal that is
greater than DURATION'BASE'LAST.

$HIGHPRIORITY 127
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

$ILLEGALEXTERNALFILENAMEl /-/*/fl
An external file name specifying
a non existent directory

$ILLEGAL.EXTERNALFILENAME2 //*/f2
An external file name different
from $ILLEGALEXTERNALFILENAMEl

$INTEGERFIRST -2147483648
A universal integer literal
whose value is INTEGER'FIRST.

$INTEGERLAST 2147483647
A universal integer literal
whose value is INTEGER'LAST.

$INTEGER LASTPLUS 1 2147483648
A uniiersal integer literal
whose value is INTEGER'LAST + 1.

25 AVF-VSR-AFNOR-89-14



TEST PARAMETERS

Name and Meaning Value

SLESSTHANDURATION -100_000.0
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

SLESSTHANDURATIONBASEFIRST -100_000_000.0
A universal real literal that is
less than DURATION'BASE'FIRST.

$LOW PRIORITY 1
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

$MANTISSADOC 31
An integer literal whose value
is SYSTEM.MAXMANTISSA.

$MAXDIGITS 15
Maximum digits supported for
floating-point types.

$MAX IN LEN 25Z
Maximum input line length
permitted by the implementation.

$MAXINT 2147483647
A universal integer literal
whose value is SYSTEM.MAXINT.

$MAXINTPLUS_1 2_147_483_648
A universal integer literal
whose value is SYSTEM.MAXINT+l.

$MAXLENINTBASEDLITERAL '2:' & (250 * '0') & '11:'
A universal integer based
literal whose value is 2:11:
with enough leading zeroes in
the mantissa to be MAXINLEN
long.

$:,XLENREALBASEDLITERAL '16:' & (248 * '0') & 'F.E:'
A universal real based literal
whose value is 16: F.E: with
enough leading zeroes in the
mantissa to be MAXINLEN lonr.

26 AVF-VSR-AFNOR-89-14



TEST PARAMETERS

Name and Meaning Value

$MAXSTRINGLITERAL ... & (253 * 'A') &
A string literal of size
MAXINLEN, including the quote
characters.

SMININT -2147483648
A universal integer literal
whose value is SYSTEM.MININT.

SMINTASK SIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
NULL;" as the only statement in
its body.

SNAME SHORTSHORTINTEGER
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT_FLOAT, SHORTINTEGER,
LONGFLOAT, or LONGINTEGER.

SNAMELIST VAXULTRIX
A list of enumeration literals
in the type SYSTEM.NAME,
separated by commas.

SNEGBASEDINT 16#FFFFFFFE#
A based integer literal whose
highest order nonzero bit falls
in the sign bit position of the
representation for SYSTEM.MAXINT.

$NEW_MEMSIZE 2**31
An integer literal whose value
is a permitted argument for
pragma memorysize, other than
DEFAULT_MEMSIZE. If there is
no other value, then use
DEFAULTMEMSIZE.

SNEW STOR UNIT 8
An integer literal whose value
is a permitted argument for
pragma storageunit, other than
DEFAULTSTORUNIT. If there is
no other permitted value, then
use value of SYSTEM.STORAGEUNIT.

27 AVF-VSR-AFNOR-89-14



TEST PARAMETERS

Name and Meaning Value

$NEWSYSNAME VAXULTRIX
A value of the type SYSTEM.NAME,
other than $DEFAULTSYSNAME. If
there is only one value of that
type, then use that value.

$TASK_- SIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one inout
parameter.

STICK 0.01
A real literal whose value is
SYSTEM.TICK.

28 AVF-VSR-AFNOR-89-14



WITHDRAWN TESTS

APPENDIX C

WITHDRkWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the Ada
Standard. The following 44 tests had been withdrawn at the time of validation
testing for the reasons indicated. A reference of the form AI-ddddd is to an Ada
Commentary.

E28005C
This test expects that the string "-- TOP OF PAGE. --63" of line 204 will
appear at the top of the listing page due to a pragma PAGE in line 203; but
line 203 contains text that follows the pragma, and it is this that must
appear at the top of the page.

A39005G
This test unreasonably expects a component clause to pack an array component
into a minimum size (line 30).

B97102E
This test contains an unitended illegality: a select statement contains a
null statement at the place of a selective wait alternative (line 31).

C97116A
This test contains race conditions, and it assumes that guards are evaluated
indivisibly. A conforming implementation may use interleaved execution in
such a way that the evaluation of the guards at lines 50 & 54 and the execu-
tion of task CHANGINGOFTHEGUARD results in a call to REPORT.FAILED at one
of lines 52 or 56.

BC3009B
This test wrongly expects that circular instantiations will be detected in
several compilation units even though none of the units is illegal with re-
spect to the units it depends on; by AI-00256, the illegality need not be
detected until execution is attempted (line 95).

CD2A62D
This test wrongly requires that an array object's size be no greater than 10
although its subtype's size was specified to be 40 (line 137).

CD2A63A..D, CD2A66A..D, CD2A73A..D, CD2A76A..D [16 tests]
These tests wrongly attempt to check the size of objects of a derived type
(for which a 'SIZE length clause is given) by passing them to a derived sub-
program (which implicitly converts them to the parent type (Ada standard
3.4:14)). Additionally, they use the 'SIZE length clause and attribute, whose
interpretation is considered problematic by the WG9 ARG.

CD2A81G, CD2A83G, CD2A84N & M, & CD501O [5 tests]
These tests assume that dependent tasks will terminate while the main pro-
gram executes a loop that simply tests for task termination; this is not the
case, and the main program may loop indefinitely (lines 74, 85, 86 & 96, 86 &
96, and 58, resp.).

29 AVF-VSR-AFNOR-89-14



WITHDRAWN TESTS

CD2B15C & CD7205C
These tests expect that a 'STORAGESIZE length clause provides precise con-
trol over the number of designated objects in a collection; the Ada standard
13.2:15 allows that such control must not be expected.

CD2DllB
This test gives a SMALL representation clause for a derived fixed-point type
(at line 30) that defines a set of model numbers that are not necessarily
represented in the parent type; by Commentary AI-00099, all model numbers of
a derived fixed-point type must be representable values of the parent type.

CD5007B
This test wrongly expects an implicitly declared subprogram to be at the the
address that is specified for an unrelated subprogram (line 303).

ED7004B, ED7005C & D, ED7006C & D [5 tests]
These tests check various aspects of the use of the three SYSTEM pragmas;
the AVO withdraws these tests as being inappropriate for validation.

CD7105A
This test requires that successive calls to CALENDAR.CLOCK change by at least
SYSTEM.TICK; however, by Commentary AI-00201, it is only the expected
frequency of change-that must be at least SYSTEM.TICK--particular instances
of change may be less (line 29).

CD7203B, & CD7204B
These tests use the 'SIZE length clause and attribute, whose interpretation
is considered problematic by the WG9 ARG.

CD7205D
This test checks an invalid test objective: it treats the specification of
storage to be reserved for a task's activation as though it were like the
specification of storage for a collection.

CE2107I
This test requires that objects of two similar scalar types be distinguished
when read from a file--DATAERROR is expected to be raised by an attempt to
read one object as of the other type. However, it is not clear exactly how
the Ada standard 14.2.4:4 is to be interpreted; thus, this test objective is
not considered valid. (line 90)

CE3111C
This test requires certain behavior, when two files are associated with the
same external file, that is not required by the Ada standard.

CE3301A
This test contains several calls to ENDOFLINE & ENDOFPAGE that have no
parameter: these calls were intended to specify a file, not to refer to
STANDARDINPUT (lines 103, 107, 118, 132, & 136).

CE3411B
This test requires that a text file's column number be set to COUNT'LAST in
order to check that LAYOUTERROR is raised by a subsequent PUT operation. But
the former operation will generally raise an exception due to a lack of
available disk space, and the test would thus encumber validation testing.

30 AVF-VSR-AFNOR-89-14



APPENDIX F OF THE Ada STANDARD

APPENDIX D

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of the Ada Standard, and to certain allowed restrictions on
representation clauses. The implementation-dependent characteristics of the
AlsyCOMP_010, Version 4.32 compiler, as described in this Appendix, are provided
by .sys. Unless specifically noteC otherwise, ref- ippendix are
to compiler documentation and not to this report. Implementation-specific
portions of the package STANDARD, which are not a part of Appendix F, are:

package STANDARD is

type SHORT_SHORTINTEGER is range -128 .. 127;

type SHORT_INTEGER is range -32_768 .. 32_767;

type INTEGER is range -2_147_483_648 .. 2_147_483_647;

type FLOAT is digits 6 range
-2#1.111_1111_11111111_1111_1111#E+126

2#1.111_11111111111111111111II#E+126;

type LONGFLOAT is digits 15 range

-211.1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111#E1022

2#1.111111111111111111111111_1111_1111_111j1_111_1111IIll#E022;

type DURATION is delta 2#0.000_000_000_000_01# range -86400.0 .. 86_400.0;

end STANDARD;

31 AVF-VSR-AFNOR-89-14



Alsys Ada

VAX/VMS and VAX/Ultrix Compiler

APPENDIX F

Version 4.32

Alsys Inc.

One Burlington Business Center
67 South Bedford Street

Burlington, MA 01803-515Z U.S.A.

Abys S.A.
29, Avenue de Versailles

78170 La Celle SL Cloud, France

Alsys Ltd
Partridge House, Newtown Road

Henley-on. Thames,
Oxfordshire RG9 1EN, UK



Copyright 1989 by Alsys

All rights reserved. No part of this document may be reproduced in any form or by any
means without permission in writing from Alsys.

Printed: November 1989

Alsys reserves the right to make changes in specifications and other information
contained in this publication without prior notice. Consult Alsys to determine whether
such changes have been made.



TABLE OF CONTENTS

1 INTERFACING THE LANGUAGE ADA WITH OTHER
LANGUAGES 1

2 IMPLEMENTATION-DEPENDENT PRAGMAS 2

3 IMPLEMENTATION-DEPENDENT AWTRIBUTES 3

4 PACKAGES SYSTEM AND STANDARD 3

5 TYPE REPRESENTATION CLAUSES 5

5.1 Enumeration Types 5
5.2 Integer Types 5
5.3 Floating Point Types 6
5.4 Fixed Point Types 6
5.5 Access Types 6
5.6 Task Types 7
5.7 Array Types 7
5.8 Record Types 7

6 ADDRESS CLAUSES 8

6.1 Address Clauses for Objects 8
6.2 Address Clauses for Program Units 8
6.3 Address Clauses for Entries 8
6.4 Address Clauses for 8

Table of Contents Wi



7 UNCHECKED CONVERSIONS 8

8 INPUT-OUTPUT CHARACTERISTICS 9

8.1 Introduction 9
8.2 The FORM Parameter 10



APPENDIX F

1 INTERFACING THE LANGUAGE ADA WITH OTHER
LANGUAGES

Programs written in Ada can interface with external subprograms written in another language, by use

of the INTERFACE pragma. The format of the pragma is:

pragma INTERFACE ( language-name , Ada subprogram name);

where the language-name can be any of

" Assembler

" C (VAX/Ultrix only)

The Ada subprogram name s ,he name by which the subprogram is known in Ada. For
example, to call a subpr,,,-'.i known as FASTFOURIER in Ada, written in C, the
INTERFACE pragm- i-

pragma INTFtZFACE (C, FASTFOURIER);

To relate the name used in Ada with the name used in the original language, the Alsys
Ada comriler converts the latter name to lower case and truncates it to 32 significant
charactei s.

To avoid naming conflict with routines of the Alsys Ada Executive, external routine
names should not begin with the letters alsy (whether in lower or upper case or a
combination of both).

To allow the use of non-Ada naming conventions, such as special characters, or case
sensitivity, an implementation-dependent pragma INTERFACE-NAME has been
introduced:

pragma INTERFACENAME ( Adasubprogram name. name-string );

so that, for example,

pragma INTERFACE-NAME (FASTFOURIER, *fft*);

will associate the FASTFOURIER subprogram in Ada with the C subprogram fft.

VAX/VMS:

In order to conform to the naming conventions of the VMS linker, the name is truncated to 255
characters.

AlsyCOMPAppendir F Version 4.32



VAXIUltrix:

In order to conform to the naming conventions of the Ultrix Linker, an underscore is prepended to
the name given by name-string, the result is then truncated to 255 characters.

The pragma INTERFACE NAME may be used anywhere in an Ada program where INTERFACE is
allowed (see [13.9]). INTERFACE NAME must occur after the corresponding pragma
INTERFACE and within the same declarative part.

2 IMPLEMENTATION-DEPENDENT PRAGMAS

Pragma INTERFACE

This pragma has been described in the previous section.

Pragma IMPROVE and Pragma PACK

These pragmas are discussed in sections 5.7 and 5.8 on representation clauses for arrays and records.

Note that packing of record types is done systematically by the compiler. The pragma pack will affect
the mapping of each component onto storage. Each component will be allocated on the logical size of
the subtype.

Example:

type R Is
record

Cl: BOOLEAN; C2: INTEGER range 1.. 10,
end record;

pragma PACK(R);
-- the attribute R'SIZE returns 5

Pragma INDENT

This pragma is only used with the Alsys Reformaer, this tool offers the functionalities of a pretty-
printer in an Ada environment.

The pragma is placed in the source file and interpreted by the Reformatter.

pragma INDENT(OFF)

causes the Reformatter not to modify the source lines after this pragma.

pragma INDENT(ON)

causes the Reformatter to resume its action after this pragma.

Pragmas not Implemented

The following pragmas are not implemented:

CONTROLLED
MEMORY SIZE
OPTIMIZE
STORAGE-UNIT
SYSTEM NAME

Aly(COMP Appendix F Version 4.32 2



3 IMPLEMENTATION-DEPENDENT ATTRIBUTES

In addition to the Representation Attributes of [13.7.21 and [13.7.31, there are four attributes which
are listed under F.5 below, for use in record representation clauses.

Limitations on the use of the attribute ADDRESS

The attribute ADDRESS is implemented for all prefixes that have meaningful addresses. The
following entities do not have meaningful addresses and will therefore cause a compilation error if
used as prefix to ADDRESS:

" A constant that is implemented as an immediate value i.e., does not have any space allocated for

it.

" A package specification that is not a library unit.

" A package body that is not a library unit or a subunit.

4 PACKAGES SYSTEM AND STANDARD

This section contains information on two predefined library packages:

" a listing of the specification of the package SYSTEM

" a list of the implementation-dependent declarations in the package STANDARD.

packane SYSTEM Is

-- Standard Ada definitions

type NAME Is (VAX_ULTRIX); -- or VAX VMS
SYSTEM NAME "constant NAME := VAXULTRIX; -- or VAX-VMS
STORAGEUNIT : constant := 8
MEMORY SIZE : constant := 2031;
MININT : constant := -(2*31)
MAX INT • constant "= 2"31-1
MAX DIGITS • constant := 15
MAX MANTISSA • constant "= 31;
FINE DELTA constant "= 2#1.0#e-31
TICK : constant := 0.01

type ADDRESS Is private;

NULLADDRESS: constant ADDRESS;

subtype PRIORITY Is INTEGER range 1..127;

-- Address arithmetic

function TO INTEGER (LEFT: ADDRESS)
return INTEGER;

function TOADDRESS (LEFT: INTEGER)
return ADDRESS;

ALsyCOMP Appendix F Version 4.32 3



function "+" (LEFT: INTEGER; RIGHT: ADDRESS)
return ADDRESS;

function "+" (LEFT: ADDRESS; RIGHT: INTEGER)
return ADDRESS;

function "-" (LEFT: ADDRESS; RIGHT: ADDRESS)
return INTEGER;

function "-" (LEFT: ADDRESS; RIGHT: INTEGER)
return ADDRESS;

function "mod" (LEFT: ADDRESS; RIGHT: POSITIVE)
return NATURAL;

function "<" (LEFT: ADDRESS; RIGHT: ADDRESS)
return BOOLEAN;

function "<=" (LEFT: ADDRESS; RIGHT: ADDRESS)
return BOOLEAN;

function ">" (LEFT: ADDRESS; RIGHT: ADDRESS)
return BOOLEAN;

function ">=" (LEFT: ADDRESS; RIGHT: ADDRESS)
return BOOLEAN;

function IS-NULL (LEFT: ADDRESS)
return BOOLEAN;

function LONGWORDALIGNED (LEFT: ADDRESS)
return BOOLEAN;

function ROUND (LEFT: ADDRESS)
return ADDRESS;

-- Return the given address rounded to the next lower even value

end SYSTEM;

The package STANDARD

The following are the implementation-dependent parts of the package STANDARD:

type SHORTSHORTINTEGER is range -(2**7) .. (2**7 - 1);
type SHORT INTEGER is range -(2** 15) .. (2** 15 -1);
type INTEGER is range -(2**31) .. (2**31 -1);

type FLOAT is digits 6 range
-(2.0 - ;'.0**(-23)) * 2.0"'127
+(2.0 - 2.0**(-23)) * 2.0"'127;

type LONGFLOAT is digits 15 range
-(2.0 - 2.0"*(-51)) * 2.0"'1023
+(2.0 - 2.0"*(-51)) * 2.0"'1023;

type DURATION Is delta 2.0"*(-14) range -86_400.0 .. 86400,0;

ALsyCOMP Appendix F Version 4.32 4



5 TYPE REPRESENTATION CLAUSES

The representation of an object is closely connected with its type. For this reason this section
addresses successively the representation of enumeration, integer, floating point, fixed point, access,
task, array and record types. For each class of type the representation of the corresponding objects is
described.

Except in the case of array and record types, the description for each class of type is independent of
the others. To understand the representation of an array type it is necessary to understand first the
representation of its components. The same rule applies to record types.

Apart from implementation defined pragmas, Ada provides three means to control the size of objects:

" a (predefined) pragma PACK, when the object is an array, an array component, a record or a
record component

" a record representation clause, when the object is a record or a record component

" a size specification, in any case.

For each class of types the effect of a size specification alone is described. Interference between size
specifications, packing and record representation clauses is described under array and record types.

5.1 Enumeration Types

Size of the objects of an enumeration subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an object of an
enumeration subtype has the same size as its subtype.

Alignment of an enumeration subtype

An enumeration subtype is byte aligned if the size of the subtype is less than or equal to 8 bits, it is
otherwise even byte aligned.

Address of an object of an enumeration subtype

Provided its alignment is not constrained by a record representation clause or a pragma PACK, the
address of an object of an enumeration subtype is even when its subtype is even byte aligned.

5.2 Integer Types

Size of the objects of an integer subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an object of an
integer subtype has the same size as its subtype.

Alignment of an integer subtype

An integer subtype is byte aligned if the size of the subtype is less than or equal to 8 bits, it is word
aligned if the size of the subtype is less than or equal to a word, it is long-word aligned otherwise.

ALbyCOMP Appendix F Version 4.32 5



Address of an object or an integer subtype

Provided its alignment is not constrained by a record representation clause or a pragma PACK, the
address of an object of an integer subtype is byte, word or long-word depending on the previous
alignment.

5.3 Floating Point Types

Size of the objects of a floating point subtype

An object of a floating point subtype has the same size as its subtype.

Alignment of a floating point subtype

A floating point subtype is always long-word aligned.

Address of an object of a floating point subtype

Provided its alignment is not constrained by a record representation clause or a pragma PACK, the
address of an object of a floating point subtype is always long-word aligned.

5.4 Fixed Point Types

Size of the objects of a fixed point subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an object of a
fixed point type has the same size as its subtype.

Alignment of a fixed point subtype

A fixed point subtype is byte aligned if its size is less than or equal to 8 bits, it is word aligned if the
size of the subtype is less than or equal to a word, it is long-word aligned otherwise.

Address of an object of a fixed point subtype

Provided its alignment is not constrained by a record representation clause or a pragma PACK, the
address of an object of a fixed point subtype is byte, word or long-word depending on the previous
alignment.

5.5 Access Types

Size of an object of an access subtype

An object of an access subtype has the same size as its subtype, thus an object of an access subtype is
always 32 bits long.

Alignment of an access subtype.

An access subtype is always long-word aligned.

AIiyCOMP Appendix F Version 4.32 6



Address of an object of an access subtype

Provided its alignment is not constrained by a record representation clause or a pragma PACK, the
address of an object of an access subtype is always long-word aligned.

5.6 Task Types

Size of the objects of a task subtype

An object of a task subtype has the same size as its subtype. Thus an object of a task subtype is always
32 bits long.

Alignment of a task subtype

A task subtype is always long-word aligned.

Address of an object of a task subtype

Provided its alignment is not constrained by a record representation clause, the address of an object
of a task subtype is always long-word aligned.

5.7 Array Types
Size of the objects of an array subtype

The size of an object of an array subtype is always equal to the size of the subtype of the object.

Alignment of an array subtype

If no pragma PACK applies to an array subtype and no size specification applies to its components,
the array subtype is aligned according to the type of the components.

Address of an object of an array subtype

Provided its alignment is not constrained by a record representation clause, the address of an object
of an array subtype is aligned according to the previous alignment.

5.8 Record Types

Size of an object of a record subtype

An object of a constrained record subtype has the same size as its subtype.

An object of an unconstrained record subtype has the same size as its subtype if this size is less than or
equal to 8 kb. If the size of the subtype is greater than this, the object has the size necessary to store
its current value; storage space is allocated and released as the discriminants of the record change.

AbyCOMP Appendix F Version 4.32 7



Alignment of a record subtype

When no record representation clause applies to its base type, a record subtype is byte, word or long-
word aligned according to the components.

When a record representation clause that does not contain an alignment clause applies to its base
type, a record subtype is byte, word or long-word aligned according to the components.

When a record representation clause that contains an alignment clause applies to its base type, a
record subtype has an alignment that obeys the alignment clause.

Address of an object of a record subtype

Provided its alignment is not constrained by a representation clause, the address of an object of a
record subtype is byte, word or long-word aligned according to the previous alignment.

6 ADDRESS CLAUSES

6.1 Address Clauses for Objects

An address clause can be used to specify an address for an object as described in RM 13.5. When such
a clause applies to an object no storage is allocated for it in the program generated by the compiler.
The program accesses the object using the address specified in the clause.

An address clause is not allowed for task objects, nor for unconstrained records whose size is greater
than 8 kb.

6.2 Address Clauses for Program Units

Address clauses for program units are not implemented in the current version of the compiler.

6.3 Address Clauses for Entries

Address clauses for entries are not implemented in the current version of the compiler.

6.4 Address Clauses for Constants

Address clauses for constants are not implemented in the current version of the compiler.

7 UNCHECKED CONVERSIONS

Unconstrained arrays are not allowed as target types. Unconstrained record types without
defaulted discriminants are not allowed as target types. Access to unconstrained arrays
are not allowed as target or source types.

If the source and the target types are each scalar or access types, the sizes of the objects
of the source and target types must be equal.

AlyCOMP Appendix F Version 4.32 8



If a composite type is used either as source type or as target type this restriction on the
size does not apply.

If the source and the target types are each of scalar or access type or if they are both of
composite type, the effect of the function is to return the operand.

In other cases the effect of unchecked conversion can be considered as a copy:

" if an unchecked conversion is achieved of a scalar or access source type to a
composite target type, the result of the function is a copy of the source operand: the
result has the size of the source.

" if an unchecked conversion is achieved of a composite source tyoe to a scalar or
access target type, the result of the function is a copy of the source operand: the
result has the size of the target.

8 INPUT-OUTPUT CHARACTERISTICS
In this part of the Appendix the implementation-specific aspects of the input-output
system are described.

8.1 Introduction
In Ada, input-output operations (10) are considered to be performed on objects of a
certain file type rather than being performed directly on external files. An external file
is anything external to the program that can produce a value to be read or receive a
value to be written. Values transferred for a given file must be all of one type.

Generally, in Ada documentation, the term file refers to an object of a certain file type,
whereas a physical manifestation is known as an external file. An external file is
characterized by

" Its NAME, which is a string defining a legal path name under the current version
of the operating system.

" Its FORM, which gives implementation-dependent information on file
characteristics.

Both the NAME and THE FORM appear explicitly as parameters of the Ada CREATE
and OPEN procedures. Though a file is an object of a certain file type, ultimately the
object has to correspond to an external file. Both CREATE and OPEN associate a
NAME of an external file (of a certain FORM) with a program file object.

Ada 10 operations are provided by means of standard packages [141.

ALsyCOMP Appendix F Version 4.32 9



SEQUENTIAL_10 A generic package for sequential files of a single element type.

DIRECTIO A generic package for direct (random) access files.

TEXT_O A generic package for human readable (text, ASCII) filer

IOEXCEPTIONS A package which defines the exceptions needed by the above
three packages.

The generic package LOW LEVEL1 is not implemented in this version.

The upper bound for index values in DIRECT_10 and for line, column and page
numbers in TEXT_10 is given by

COUNT'LAST = 2**31 -1

The upper bound for field widths in TEXT 10 is given by

FIELD'LAST = 255

8.2 The FORM Parameter
The FORM parameter of both the CREATE and OPEN procedures in Ada specifies the
characteristics of the external file involved.

The CREATE procedure establishes a new external file, of a given NAME and FORM,
and associates it with a specified program file object. The external file is created (and
the file object set) with a specified (or default) file mode. If the external file already
exists, the file will be erased. The exception USEERROR is raised if the file mode is
INFILE.

Example:

CREATE(F, OUTFILE, "MYFILE' ,

FORM = >
*WORLD = > READ, OWNER = > READWRITE*);

The OPEN procedure associates an existing external file, of a given NAME and FORM,
with a specified program file object. The procedure also sets the current file mode. If
there is an inadmissible change of mode, then the Ada exception USEERROR is
raised.

The FORM parameter is a string, formed from a list of attributes, with attributes
separated by commas (,). The string is not case sensitive (so that, for example, HERE
and here are treated alike). (FORM attributes are distinct from Ada attributes.)

The general form of each attribute is a keyword followed by => and then a qualifier. The arrow and
qualifier may sometimes be omitted. The format for an attribute specifier is thus either of

KEYWORD

KEYWORD = > QUALIFIER

AlbyCOMP Appendix F Version 4.32 10


