- HDLSOI25%

Copy 170131 copies

pTe e E COPY

(2

IDA PAPER P-2311

MERGING THE Ada COMPILER EVALUATION CAPABILITY (ACEC)
AND THE Ada EVALUATION SYSTEM (AES)

™
(o]
n
< Richard P. Morton
N Jonathan D. Wood
g Audrey A. Hook
A

October 1989

Prepared for " D T l C “

Ada Joint Program Office (AJPO) ELECTE
JUL 3 01990
(&

DISTRIBUTION STATEMENT K

Approved for public release;
Distribution Unlimited

INSTITUTE FOR DEFENSE ANALYSES
1801 N. Beauregard Street, Alexandria, Virginia 22311-1772

90 07 3¢ 031' IDA Log No. HQ 89-834385

DEFINITIONS
10A publishes the loliowing documents to repeit the resuits of iis work.

Reports

Reperts are the mast asthoritative and most carstuily considered preducis (DA publishes.
They surmally embedy ressits of majer prejects which (3) have a direct bearing on
docisions affecting major pregrams, (b) address issuss of significant concera io the
Executive Branch, the Congress and/or the public, ar (¢) address issues that have
sigaificant econemic impiications. (DA Reports are reviewed by outside paneis of experts
ts ensure their high quality and raievance o the problems studied, and they are reieased
by the President of IDA.

Group Reports

Greup Reperis racerd the tindings and resaits of IDA ostablished warking groups and
panels composad of senior individusis addressing major issues which otherwise weuid be
the subject of an IDA Report. IDA Group Reperts are reviowed by the sesior individuals
responsible for the project and ethers as selected by IDA to ensure their high quality and
relevance to the probiems studied, snd are reieated by the President of IDA.

,\:m

! ~3pars, aiso astheritative and carefuily considered products of IDA, address studies th.®
are narower in scopa than thase covered in Regerts. IDA Papers are reviewed (o ensure
that they mest the high standards expected of refereed papers in grofessions! jeurnals or
formal Agency reports.

Documents

DA Decuments are used for the comvenience of the spensors or the anelysts (a) to record
substantive werk dene in quick resction studies, (b} la record the precesdings of
contoroncas and meetings, (c) to make availahie preliminary and tentative resuits of
ansiyses, (d) ts recerd dats develepoed in the caurse of s investigation, or (o) to forwsrd
Intormation that is casentisily unanalyzed and unevaiuated. The review of 10A Decumants
Is suited te their content and intonded use.

The work reported in this document was cenducted uader contract MDA 983 39 C 0003 for
the Depariment of Defense. The publication of this IDA decument does not indicate
sadorsemant by the Depariment of Detense, nor should the comtents be construed a8
reflecting the sfficial position of that Agency.

This Paper has been reviowsd by IDA e assure that it meets the high standards of
thersughness, ohjectivily, and apprepriats analytical mothedology and thet the resuits,
conclusions sad recommendations are properly supperiod by the material presenied.

© 1900 institwte for Defonse Ansiyset

The Government of the United States is grantad an uniimited license ts reproduce this
document.

Approved for public reisase, miimiled distribution. Uncisasified.

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Pubiic reporting burden for this collection of information is estimated 10 average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this cotiection ot information,

including suggestions fof reducing this burden, to ¥ ington H rs Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arfington,

VA 22202-4302, and to the Office of Management and Budget, Paperwark Reduction Project (0704-0188), Washington, DC 20503,

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

September 1989 Final

4. TITLE AND SUBTITLE s. FUNDING NUMBERS
Merging the Ada Compiler Evaluation Capability (ACEC) and
the Ada Evaluation System (AES) MDA 903 89 C 0003

6. AUTHOR(S) T-D5-304

Richard P. Morton, Jonathan D. Wood, Audrey A. Hook

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Institute for Defense Analyses REPORT NUMBER
1801 N. Beauregard St. IDA Paper P-2311
Alexandria, VA 22311-1772

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Ada Joint Program Office AGENCY REPORT NUMBER
Room 3E114, The Pentagon
Washington, D.C. 20301-3081

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release, unlimited distribution. 2A

13. ABSTRACT (Maximum 200 words)

This IDA Paper documents the results of a special analysis requested by the Ada Joint Program Office.
The purpose of this analysis was to determine the feasiblity and desirability of merging two

separately developed software systems which can be used to expose compiler performance charac-
teristics. The two systems were the Ada Compiler Evaluation Capability (ACEC) and the Ada
Evaluation System (AES). The study itself consisted primarily of reviewing documents related

to each system. In addition, it was necessary to load both systems and inspect test cases to determine
the degree of overlap.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Ada Programming Language; Ada Compiler Evaluation Capability 70
(ACECQ); Ada Evaluation System (AES); Compilers; Test Suites. 16. PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION [19. SECURITY CLASSIFICATION |20. LIMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT
Unclassified ‘ Unclassified Unclassified UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANS| Std. Z39-18
298-102

—]

IDA PAPER P-2311

MERGING THE Ada COMPILER EVALUATION CAPABILITY (ACEC)
AND THE Ada EVALUATION SYSTEM (AES)

Richard P. Morton
Jonathan D. Wood
Audrey A. Hook

Accession For

T NTIS GRA&I
DTIC TAB

October 1989 Unannounced a
Justification |

By
Distribu}{gg/
s Availability Codes
N0, € Avall and/or
<.
? %, Dist Special

Al |

)

INSTITUTE FOR DEFENSE ANALYSES

Contract MDA 903 89 C 0003
Task T-DS5-304

PREFACE

The purpose of IDA Paper P-2311, Merging the Ada Compiler Evaluation Capability (ACEC)
and the Ada Evaluation System (AES), is to communicate the results of a special analysis
requested by the Ada Joint Program Office (AJPO). The purpose of this analysis was to determine
the feasibility and desirability of merging two separately developed software systems which can
be used to expose compiler performance characteristics.

The importance of this document is based on fulfilling the objective of Task order T-D5-306,
Ada Technology Insertion, which is not a specific deliverable under this task but is a paper
mutually agreed upon by the Sponsor and IDA. P-2311 documents the comparison of the
capabilities of the ACEC and AES and the resulting conclusions on the desirability and effort for
undertaking the merger of these two software software systems. The paper is directed towards the
AJPO staff who will make program decisions on the use of compiler evaluation technology.

This document was reviewed on September 18, 1989 by the following members of the CSED
Peer Review: Dr. David Camey, and David Hough. An external review was also performed by
Dr. John Solomond and Dr. Erhard Ploedereder.

CONTENTS

1. Introduction
1.1 Background
1.2 Scope .
1.3 Organization of thxs Report
1.4 Acronyms

2. Study Approach

3.Findings L 0 0 0 e v e e e e e e
3.1 Finding 1: The Overlap Between the Two Test Suites is Small .
3.2 Finding2: The User Interfaces to the Two Systems are Different .
3.3 Finding 3: Merging the AES into the ACEC Would be Difficult
3.4 Finding 4: Merging the ACEC into the AES Would be Much Less
Difficult
3.5 Finding 5: The Two Systems Appear to Have Been Developed with
Different Primary Users in Mind . e e e e e
4. Conclusions .
4.1 Conclusion 1: There is Beneﬁt in Usmg Both Test Smtes
4.2 Conclusion 2: There is Benefit in Merging the Two Test Suites .
4.3 Conclusion 3: The AES Test Harness Should be the Basis for the
Merge . .
4.4 Conclusion 4: Mergmg the ACEC Into the AES is the Least Expenswe
Way to Obtain a Comparable Capability in a Single Product

4.5 Conclusion 5: The Merged Product Must be Easily Partitionable for Ease

of Use by Users Who Are Only Interested in an Subset of the
Tests .o e e e e

5. Recommendations
5.1 Recommendation 1: Make Use ot' Both Test Sultes .
5.2 Recommendation 2: Combine Them Under the AES Test Harness and
Database
5.3 Recommendation 3: Negotiate for Joint Distribution and
Maintenance ¢ ¢ ¢ 4 4 e e e e e e e
5.4 Recommendation 4: Establish a DoD Program for Ada Compiler and
APSE Evaluation
5.5 Recommendation 5: Repeat This Evaluation After Delivery of the Next
Version of the ACEC . .
APPENDIX A: AES/ACEC Test Suite Overlap .
A.1 AES Tests Which Don’t Duplicate ACEC Tests
A.1.1 Compiler Efficiency (Group A) . .
Compiler Informational Quality (Group B)
Compiler Error Reporting (Group C)
Compiler Error Recovery (Group D)
Compiler Warning (Group E)
Compiler Behavioral (Group F) .
Compiler Capacity (Group G)
MASCOT Tasking (Group K)

1

>p > 2>
SLRDEED

vii

NG INC TR N T 7 S I S [SN

~}

\O O \O

11

11

11

13
13

13
13
13

14

18
18
19
20
21
21
22
22
23
25

9 Storage Management (Group M)

10 Input/Output (Group N)

11 Run-Time Limit (Group Q) .

12 Implementation Dependency (Group R)

13 Erroneous Execution (Group S) .

A.1.14 Incorrect Order Dependency (Group T)
A.1.15 Link/Load Tests (GroupU) . .

A.2 AES Tests Which Partially Duplicate ACEC Tests
A.2.1 Compiler Run-Time Efficiency (Group I)
A.2.2 NPL Test Suite (Group J) .
A.2.3 General Tasking (Group L)

A.2.4 Optimizing Tests (Group Q) . .
A.2.5 Dhrystone and code-by-the-yard (Group V)

A.3 Preprocessing Benefits for ACEC Tests

A.4 ACEC Tests . e e e e

A.S Other AES Tests

APPENDIX B: Converting ACEC Tests to AES Format .

Al
Al
Al
Al
Al

viii

26
26
27
27
28
29
30
31
31
32
33
34
35
36
37
37

50

Table 1.
Table A-1.
Table A-2.
Table A-3.
Table A-4.
Table A-S.
Table A-6.
Table A-7.
Table A-8.
Table A-9.

Table A-10.
Table A-11.
Table A-12.
Table A-13.
Table A-14.
Table A-15.
Table A-16.

Table A-17.

Table A-18.
Table A-19.

Table A-20.

Table A-21.
Table A-22.
Table A-23.

Table A-24.

Table A-25.
Table A-26.
Table A-27.
Table A-28.

LIST OF TABLES

Summary of Characteristics

AES Tests which do not duplicate ACEC Tests
AES Compiler Efficiency Tests

AES Compiler Informational Quality Tests
AES Compiler Error Reporting Tests

AES Compiler Error Recovery Tests

AES Compiler Warning Tests

AES Compiler Behavioral Tests .

AES Capacity Tests .

AES Capacity Tests (Continued)

AES MASCOT Tasking Tests

AES Storage Management Tests .

AES Input Output Tests

AES Run-Time Limit Tests

AES Implementation Dependency Tests

AES Erroneous Execution Tests .

AES Incorrect Order Dependency Tests
Link/Load Tests . e e e e e
AES Tests which partially duplicate ACEC Tests
AES Run-Time Efficiency Tests .

AES NPL Test Suite Tests .

AES General Tasking Tests

AES Optimizing Tests

AES Dhrystone and code-by-the-yard Tests
ACEC Tests

ACEC Tests

Other Tests in AES Test Suite
TESTSUITE/CLI/PERFORMANCE .
TESTSUITE/CLI/ERROR-REP

10
18
20
21
21
22

23
24
25
26
26
27
27
28
29
30
31
31
32
33
34
35
36
36
37
38
39
39

Table A-29.
Table A-30.
Table A-31.
Table A-32.
Table A-33.
Table A-34.
Table A-35.
Table A-36.
Table A-37.
Table A-38.
Table A-39.
Table A-40.
Table A-41.
Table A-42.
Table A-43.
Table A-44.
Table A-45.
Table A-46.
Table A-47.
Table A-48.
Table A-49.
Table A-50.
Table A-51.
Table A-52.
Table A-53.
Table A-54.
Table A-55.

TESTSUITE/CLI/ERROR-RECOVERY
TESTSUITE/CLI/CAPACITY .
TESTSUITE/CHECK-OUT .
TESTSUITE/CLI/IMPL-DEP
TESTSUITE/CLI/SCENARIOS
TESTSUITE/DEBUGGER
TESTSUITE/DEBUGGER
TESTSUITE/EDITOR/CAPACITY
TESTSUITE/EDITOR
TESTSUITE/PLS/SCENARIO .
TESTSUITE/NAME EXPANDER
TESTSUITE/NAME EXPANDER
TESTSUITE/PRETTY PRINTER .
TESTSUITE/PRETTY PRINTER .
TESTSUITE/PRETTY PRINTER .
TESTSUITE/RA/PERFORMANCE .
TESTSUITE/RA/CAPACITY
TESTSUITE/SOURCE GENERATOR
TESTSUITE/SOURCE GENERATOR
TESTSUITE/TST
TESTSUITE/CHECK-OUT .

TESTSUITE/CROSS REFERENCE ANALYZER

TESTSUITE/VCCS/SCENARIO
TESTSUITE/PRETTY PRINTER .

TESTSUITE/CROSS REFERENCE ANALYZER

TESTSUITE/CROSS REFERENCE ANALYZER
TESTSUITE/UTILITIES .

39
40
41
41
42
42
42
43
43

I

MERGING THE ACEC AND THE AES

1. Intreduction
1.1 Background

The Computer and Software Engineering Division (CSED) of the Institute for
Defense Analyses (IDA) was requested by the Director, Ada Joint Program Office
(AJPO) to investigate the technical feasibility of merging the Ada Compiler Evaluation
Capability (ACEC) suite of tests developed by the US Air Force and the Ada Evaluation
System (AES) developed by the Ministry of Defense (MOD) United Kingdom (UK).

The AES was provided to the US under the terms of the Memorandum of
Understanding (MOU) which established the NATO Special Working Group (SWG) on
APSE project. The MOU has the following ten nations as current signatories (Belgium,
an original signer, has since withdrawn): Canada, Denmark, France, Germany, Italy,
Netherlands, Norway, Spain, United Kingdom and United States. Under the terms of the
agreement, each of the nations, except France and Denmark, are contributing a part of
the APSE or related technology to all the member nations. However, these contributions
are restricted outside their developing country to military purposes only. Furthermore, at
the moment, there is no agreement on any follow-on maintenance on any contributed
product. No new updates to the AES are expected to be received until the NATO SWG
on APSE evaluations are performed in approximately two to three years.

The ACEC is being developed by Boeing under contract to US Air Force Systems
Command, Aeronautical Systems Division, Wright-Patterson Air Force Base (WPAFB).
It is distributed by the Data and Analysis Center for Software (DACS), Griffiss AFB.
The ACEC is subject to export control restrictions, and is not available outside the US.
Within the US it is available only with the proper approvals. Since the DACS was in the
process of changing operating contractors at the time of this study, a copy of the ACEC
was borrowed from the AJPO after the specified documents were filed with WPAFB.

The ACEC is designed as a collection of test programs and support packages which
are compiled and linked to set up file directories so that the entire collection of test
programs can be run after a command script or files have been prepared by the user. The
ACEC also has the capability of comparing results from a system under test with results
from other systems and computing a normalized statistical comparison.

AES is designed with a test harness and a results database. The test harness
functionality allows a user to run one or many test programs, to associate tests into
ordered groups, to track the status of tests, to define relationships between tests, and to
generate reports where whole phrases or sentences are determined by values in a central
results database. The results data base contains all known information about the test
suite and results, including the value of implementation dependent information.

1.2 Scope

The authors of this study have interpreted the concept of technical feasibility as
encompassing a concern for reasonable benefit if the merge were to take place.
Consequently, the study attempted to answer the following questions:

a. What is the benefit to the user in using both products?
b. What is the benefit in combining them?
c. Isthere atechnically reasonable way to do the merge?

The materials available to the authors were not necessarily the latest products of
either supplier of evaluation technology. In particular, the analysis of the ACEC was
based entirely on Version 1. We were told that a second version is under development but
we did not receive any documentation. Also, another version of the AES, superior to the
version available, was demonstrated to one of the team members by the UK MOD. At
this time, it is not known if that version will ever be released to the US.

1.3 Organization of this Report

Section 2 of this report describes the approach taken in conducting this analysis.
Section 3 contains findings, the facts uncovered in the investigation. Section 4 reports the
conclusion which represent our interpretations derived from those findings. Section 5
contains our recommendation for acting upon the conclusions. A bibliography of the
documents used for this study is included at the end of the report.

Appendix A presents the analysis of the test suites that lead to Finding 1 is Section
3.1. Appendix B demonstrates the process of converting ACEC tests to run under the
AES. '

1.4 Acronyms

ACEC Ada Compiler Evaluation Capability

AES Ada Evaluation System

AJPO Ada Joint Program Office

APSE Ada Programming Support Environment
CSED Computer and Software Engineering Division
DACS Data and Analysis Center for Software

DES Data Encryption Algorithm

EW Electronic Warfare
IDA Institute for Defense Analyses
10 Input/Qutput

LOC Lines of Code

MOD Ministry of Defense

MOU Memorandum of Understanding
NATO North Atlantic Treaty Organization
SEI Software Engineering Institute

o

SWG Special Working Groups
UK United Kingdom
WPAFB Wright-Patterson Air Force Base

2. Study Approach

Some of the members of the study team had prior exposure to the AES. One member,
Jon Wood, had previously installed and used the AES, including writing additional tests
for it. Audrey Hook had attended a briefing and demonstration of the AES given by the
the UK sponsors.

The study itself consisted of reviewing the documents related to each system, loading
both systems, and inspecting test cases. In addition, telephone conversations were held
with 1Lt Robert Marmelstein, the ACEC project manager for the US Air Force, and Dr.
Nelson Weiderman who has conducted related studies at the Software Engineering
Institute (SEI).

3. Findings
3.1 Finding 1: The Overlap Between the Two Test Suites is Small

The data to support this finding is presented in Appendix A. Briefly, the AES
comprises 521 tests and the ACEC 1069 tests. Of these, only 53 AES tests appear to be
:uplicated in the ACEC. This represents approximately 10% of the AES tests and 5% of
the ACEC. However, because of the difference in test generation, it is difficult to count
the tests precisely. For example, an AES test file that generates multiple versions of the
same test is counted as only one test, but where the ACEC has multiple versions of the
same test that differ only slightly, each version is counted.

3.2 Finding 2: The User Interfaces to the Two Systems are Different

The ACEC is completely batch oriented. The tests are executed with the aid of batch
command files, and the results are written to files. Two data reduction programs are
provided for generating output, one for formating and printing the data produced by the
tests, and one for performing statistical analyses on that data and data from comparable
tests of other compilers and system configurations.

The AES uses both interactive and batch processing modes. Testing is performed
interactively, while reports of results are generated in batch mode. The outputs of the
tests are stored in a database, but no user language is provided for retrieving individual or
aggregate results interactively.

3.3 Finding 3: Merging the AES into the ACEC Would be Difficult

The primary reason for this finding is that the AES test harness provides functionality
that is not in the spirit of the ACEC. This problem is illustrated by two particular areas,
capacity tests and the error analysis tests. The tests for the capacity of both the compiler
and the run-time environment make use of the capability to dynamically generate tests to
conform to the search strategy chosen to determine capacity. One search strategy used in
some of the tests is the binary search. In some cases, the test harness asks the user for the
initial values of the parameters to be used. Combining both of these capabilities results in
a unique series of tests to be run for the specific settings of the parameters chosen. The
ACEC has no capability to generate tests dynamically. In effect, the most sophisticated
capabilities of the AES test harness would have to be added to the ACEC.

The ACEC currently has no support for tests that fail, but the AES has many tests
that are designed to test the robustness of error handling and the readability of error
messages by creating situations that are expected to fail. The ACEC functionality would
have to be extended to add the capability to capture, analyze and report failure
conditions.

3.4 Finding 4: Merging the ACEC into the AES Would be Much Less Difficult

The only functionality of the ACEC that is not specifically in the AES is the Median
program. However, since the AES has a statistical analysis package, the major
requirement would be to adapt the program to the AES database as its source of input.

Adapting the functionality of one system to the other is only part of the problem. It is
also necessary to convert the tests from one format to the other. In both cases, the effort
required is considerable but straightforward. All of the tests need to be converted in
essentially the same way. In converting ACEC tests to AES tests, for example, the
statements that write to the output file need to be changed to update the database. The

7

opposite is true for converting from AES to ACEC. The work is seen as tedious but
simple, once a design has been established on how one system is to be reflected in the
other system.

3.5 Finding 5: The Two Systems Appear to Have Been Developed with Different Primary
Users in Mind

Ada compiler and APSE evaluation technology could reasonably be used for several
purposes:

1. The selection of a suitable compiling system or tools for a specific project by
project managers.

2. Enhancing the understanding of the pluses and minuses of a compiling system or
tool by its users (programmers and others).

3. Identifying weaknesses in a compiling system or tool under development by the
developing organization.

Generally, managers selecting tools for a project do not want to run the tests
themselves. In all likelihood, they would be satisfied with buying the results from an
independent and reliable testing organization because that would undoubtedly be the least
expensive way to obtain the results, which are only needed once for an acquisition
decision.

Users and developers, however, are more likely to be in the situation of wanting to run
specific tests many times, possibly even writing some additional tests for some special
need. Such users would undoubtedly find the delays of using a testing service to be too
slow and costly. They would be much better off having their own copy of the testing
system to use whenever it is needed.

This line of reasoning leads to the observation that testing technology is needed to
serve the needs of both individual users who want to run their own tests and testing
laboratories who need to generate reports suitable for reading by someone else.

Both the ACEC and the AES could be used by either kind of organization, but it
appears that each has only one in mind as the primary user. The AES includes a large
number of tests of human factors in the form of checklists with supporting test programs.
The results are then entered into the database for use in generating reports. The report
generator has extensive capabilities for generating English text as part of the reports.
These capabilities are most suitable for a testing laboratory whose reports are to be read
by others.

The ACEC has no human factors tests. In fact, the ACEC documentation
specifically says that there is no need for such tests because just running the test suite will
give the user enough exposure to the compiler under test to draw his own conclusions
regarding its ease of use. The clear intention here is that the user is the person directly
concerned with such issues. The AES contains a large number of tests that require result
evaluations involving considerable subjectivity of the evaluator. Examples are AES
Group B, C, D, and E tests.

4. Conclusions
4.1 Conclusion 1: There is Benefit in Using Both Test Suites

This conclusion stems from the finding that the overlap between the two test suites is
small. The two systems have complementary capabilities: the ACEC tests provide
analysis of performance-related criteria related to Ada language constructs at a finer
level of granularity, while the AES provides for the evaluation of additional factors and
additional tools. The benefit to be derived from using both test suites is the ability to
accomplish both objectives. Of course, there may be some users who have only one
objective, but making both test suites available does not require anyone to use both.

4.2 Conclusion 2: There is Benefit in Merging the Two Test Suites

All the following standard benefits of combining two products into one should apply to
this case if the merger is performed in a rational way:

a. Maintenance and continued enhancement for one product should be easier than
for two.

b. A common user interface would make it'easier for the user to learn and use.
Duplicate tests could be eliminated to reduce the size of the combined product.

d. Focused user experience on one product leading to suggested improvements
which benefit the entire Ada community.

One can also focus on four usability attributes (coverage, selectivity, application
metrics, user interface) of these evaluation tools and compare the differences between a
merged set of tools and separate use of these tools. Coverage is an important usability
attribute which, ideally, would provide tests which expose resource usage, robustness,
and limitation characteristics of the software under test. Selectivity refers to the user’s
ability to select tests and parameters which help answer specific user questions: this is
another important usability attribute of an evaluation tool (e.g., how much overhead is
associated with using generics and/or task rendezvous?) The availability of application
specific metrics is also important because there is wide variability of application
performance requirements. Finally, the user interface is an important usability attribute
because it determines how much effort a user must expend to achieve some control over
the results from the tool (e.g., tailoring a test set and metrics for application
requirements). Table 1 is a summary of the characteristics of these merged and separate
evaluation tools which leads to the conclusion that the merger provides superior usability
characteristics. In addition, it is likely that by combining the outputs from the two test
suites into a common database that additional information will be obtainable that was not
available from either one separately.

Table 1. Summary of Characteristics

‘suojjdo

puu sefes eunided eiep 'siS6) JO UOHBZIWOISND
ueAlp-nuew ‘suojido uonnoexe pue

UoneIRUL SAIPORISIU JO0) 8OBJEIU| JOSN QUO - STV

‘|soeds epoo ‘ewn

uotinoexe “6°9) suolido esmdes ejep Buinoejes
0] peyun) J0580201d-01 "WOY} 8sn O} MOY jO
eBpomouy s10sn pue selin Wepuedep weisis
uo spuedop UojORIelU| 8pOW YIeq - DIV

uses) o) eJepeiut BUQ -
UOIRZIWOISND UBALP-NUBK -
[uoreqyenioeIeIn] sepow reuondQ -

AJVIUALNI HISN

‘Oi)190dS JUSWUOHAUS pue

uogeaydde sj ‘ywi Ayoeded ‘spnisuco ebenbue)
POI06}es 10} SOUIOW PREYIBAO jO uosiedwoo
‘{pesn Aicwew ‘suwn NdD SE \Pns exnsesw

1o yun e w1 6°e] suojido peljreds Jesn - SI¥

‘ojpoeds JUBWUONAUS pue
uoieddde JON [epow eousiejel eysodwod © Yum
uosyedwod Aq peindwoo weu! jo enby - 930V

‘suofisenb atpoeds ewuosaue
pue uoneoydde lemsue o) peubisep suondo sesn

SOL3IN
NOILYOINddY

“sweiboxd jse) peiope; ejeseued
Kresyewone o} 10ssedaid-e1d 8y} Auo esn - SV

"epow yoleq
W wey) epoexe O} 1055020:1d-01d 8Y] 830U Uey)
‘Sopj 1S0) JOjE) O} JOUPO UR @SN ISnW 08N - IOV

‘uoyieandde 1o} Jop1e] 0} JO 8ISel e un)) uoNdo Jesn

ALIAILD3T3S

‘se)ns }s0) Yloq SN O} 8Aey pinom sise] Bupyse}
oAIsueyeidwoo pue sywy Ayoeded Ul pelselelu

$] OYM 195N B ‘sjdUEX® J04 '9lINS POUQWOD B UBY)
volewioju Ayrenb sse| sepiroid oins isel yoe3

‘odA) s1y1 o 8180} o1€ (1 18) SIsel DIV

10 Jequnu 1sebse] oyl -enjea sejewesed e v Ao Jolp
yarym sise} IOV ezuejewered of sossedord-0xd Sy
oyl Buisn Aq pue sise; ealleddnp Buaowes Aq pedonpes
eq ued (065 1) $1Sel JO JeqUINU [BI0] O] ‘J0ABMOH (8180}
£5) feunuiw) SONNS 186) OM} By} UeBMIeq deliOAD '12S
SUIRIUOO SV SYI PUR $199] 6901 SUTRIVCO DIDV SUL

alvyvd3as

a3avHan

JOVHIAOD

10

4.3 Conclusion 3: The AES Test Harness Should be the Basis for the Merge

This conclusion stems from the combination of findings that adding the ACEC tests to
the AES would be far less expensive than adding the AES tests to the ACEC. In
addition, the AES test harness provides a more flexible capability than the present
ACEC preprocessor. Granted, the ACEC approach may be easier to use for some
situations, but the AES is judged to be easier to use when the full complement of
capabilities is being considered. It is also judged easier to expand into new areas in the
future because of both the test harness and the database.

4.4 Conclusion 4: Merging the ACEC Into the AES is the Least Expensive Way to Obtain a
Comparable Capability in a Single Product

The cost to add the ACEC tests and Median capability to the AES is considered to be
substantially below the cost to produce the combined capability any other way. We
estimate that one staff-year of focused effort should be adequate to merge the ACEC
with the AES. This work should include deleting redundant tests, converting output
generation to AES database updates, and converting input formats including combining
similar tests into a single parametric test. Much of the repetitive work is expected to be
done using editing macros or some other simple automated method.

4.5 Conclusion 5: The Merged Product Must be Easily Partitionable for Ease of Use by
Users Who Are Only Interested in an Subset of the Tests

As indicated in Finding 5, hands-on users may not be interested in those tests
developed specifically to support third party evaluations, and tool developers are likely to
be interested only in those tests related to the tools they are developing. This means that
those users who are only interested in a subset should only have to pay for the part of
interest, or even if the entire system is free, should only have to load the part of interest in
order to run that part. However, evaluations based upon partitioned test suites may result
in isolated and subjective data points. A high incidence of disputes and unfairness claims
is to be expected from vendors, especially if the tests are not freely available to them.

11

5. Recommendations
5.1 Recommendation 1: Make Use of Both Test Suites

Since the ACEC and the AES are more complementary than competitive, each
should be used for the functions it performs best. The mechanism for using both test
suites has to permit selective execution of tests because not all users will need all tests.

5.2 Recommendation 2: Combine Them Under the AES Test Harness and Database

As in Conclusion 3, this conclusion stems from the combination of findings that adding
the ACEC tests to the AES would be far less expensive than adding the AES tests to the
ACEC. In addition, the AES test harness provides a more flexible capability than the
present ACEC preprocessor. Granted, the ACEC approach may be easier to use for
some situations, but the AES is judged to be easier to use when the full complement of
capabilities is being considered. It is also judged easier to expand into new areas in the
future because of both the test harness and the database. However, neither of these
current test suites should continue to be developed on their own without regard to the
merged capability.

5.3 Recommendation 3: Negotiate for Joint Distribution and Maintenance

The current restrictions on the distribution of the ACEC and the AES will, in a very
short time, negate some of the advantages of combining the two systems. We
recommend, therefore, that the US enter into a negotiation with the UK to relax those
restrictions and to agree on a joint plan for the long term evolution and maintenance of
the combined evaluation technology. Negotiations with the UK should attempt to obtain
the right for public release of the AES tests; the ACEC should equally be available.
Evaluations conducted by DoD evaluation centers should, as a matter of course, include
solicited comments by the respective vendor on the evaluation results. Maximum benefit
to the Ada community at large will be achieved if such agreements include commercial
use as well as military use.

5.4 Recommendation 4: Establish a DoD Program for Ada Compiler and APSE
Evaluation

DoD needs to decide how compiler and environment evaluation technology is to be
used to its benefit. We recommend the establishment of at least two centers within each
service to act as a testing laboratory and distribution point for testing technology. It is
appropriate for some DoD programs to make use of the testing technology in a hands-on
way, while others should simply buy reports from a central evaluation service. Under the
current terms of the MOU that makes the AES available, that service and all its
customers must be within DoD. If those conditions are changed, it may become, in time,
more appropriate for DoD to buy evaluation results commercially. In the meantime,
Ada-based programs need access to the technology, and the DoD should take steps to
make it available to them.

13

5.5 Recommendation S: Repeat This Evaluation After Delivery of the Next Version of the
ACEC

At least two changes in the findings are likely. First, the degree of overlap is likely to
increase because ACEC version 2 may include some tests for tools other than the
compiler. Second, the cost of merging the ACEC into the AES will be greater because
there will be more tests to merge. It is not likely, however, that these changes will be
substantial enough to invalidate any of the conclusions or recommendations.

14

BIBLIOGRAPHY
AES Documents

AES/1 User Introduction to the Ada Evaluation System, Release 1, Version 1,
Issue 2, I. Marshall, 27th September 1988

® AES/2 Volume 1, Reference Manual for the Ada Evaluation Compiler Tests,
Release 1, Version 1, Issue 2, I. Marshall, Sth December 1988

AES/2 Volume 2, Reference Manual for the Ada Evaluation Compiler Tests,
Release 1, Version 1, Issue 2, I. Marshall, Sth December 1988

AES/3 Ada Evaluation System User Manual Parts 0 and I Introduction and
General Information, Release 1, Version 1, Issue 2, 1. Marshall, 25th
November 1988

AES/3 Ada Evaluation System User Manual Part IV Evaluation of the Linker
) and Loader, Release 1, Version 1, Issue 2, I. Marshall, 30th September 1988

AES/3 Ada Evaluation System User Manual Part V Evaluation of the
Symbolic Debugger, Release 1, Version 1, Issue 3, I. Marshall, 25th
November 1988

AES/3 Ada Evaluation System User Manual Part VI Evaluation of the Version
and Configuration Control System, Release 1, Version 1, Issue 2, I.
Marshall, 3rd October 1988

AES/3 Ada Evaluation System User Manual Part VII Evaluation of the Pretty
Printer, Release 1, Version 1, Issue 3, I. Marshall, 24th November 1988

AES/3 Ada Evaluation System User Manual Part VIII Evaluation of the
Editor, Release 1, Version 1, Issue 2, I. Marshall, 25th October 1988

AES/3 Ada Evaluation System User Manual Part X Evaluation of the
Requirements Analyzer, Release 1, Version 1, Issue 2, I. Marshall, 19th
September 1988

AES/3 Ada Evaluation System User Manual Part XI Evaluation of the Test
Support Tools, Release 1, Version 1, Issue 2, I. Marshall, 24th November
1988

AES/3 Ada Evaluation System User Manual Part XIII Evaluation of the
Cross-Reference Analyzer, Release 1, Version 1, Issue 2, [. Marshall, 24th
November 1988

AES/3 Ada Evaluation System User Manual Part XIV Evaluation of the Name
Expander, Release 1, Version 1, Issue 2, I. Marshall, 5th October 1988

15

AES/3 Ada Evaluation System User Manual Part XV Evaluation of the Source
Generator, Release 1, Version 1, Issue 2, I. Marshall, 3rd October 1988

AES/3 Ada Evaluation System User Manual Part XVI Appendices System,
Release 1, Version 1, Issue 2, I. Marshall, 5th October 1988

AES/5 Ada Evaluation Test Harness - VAX/VMS Installation Guide, Release,
1 Version 1, Issue 2, S.D. Bluck, 5th October 1988

16

ACEC Documents
Ada Compiler Evaluation Capability (ACEC) Version Description Document,
AFWAL-TR-88-1093, T. Leavitt, K. Terrell, Boeing Military Airplane,
August 1988

Ada Compiler Evaluation Capability (ACEC) Reader’s Guide, AFWAL-
TR-88-1094, T. Leavitt, K. Terrell, Boeing Military Airplane, August 1988

ACEC Technical Operating Keport: User’s Guide, AFWAL-TR-88-1095, T.
Leavitt, K. Terrell, Boeing Military Airplane, August 1988

SEI Documents

Ada Adoption Handbook: Compiler Evaluation and Selection, Version 1.0,
N. Weiderman, March 1989, CMU/SEI-89-TR-13

Other Documents

B. Wichmann, Letter to Dr. John Solomond dated 18 April 1989.

17

APPENDIX A: AES/ACEC Test Suite Overlap

AES tests are organized into test groups, each of which is identified by a letter of the
alphabet. Some of the groups of tests in general do not duplicate the functionality of
ACEC tests. These groups are listed in the following section. The section after that (at
the same level) lists the AES test groups which partially duplicate the functionality of
ACEC tests. In both sections, the AES tests ure identified and the differences with the
ACEC tests explained. The names and descriptions of each of the tests is include ’
because the test descriptions themselves make a case that the extent of overlap between
the AES and ACEC test suites is minimal. Of all 311 AES compilation system tests, 258
(83%) do not duplicate ACEC tests and 53 (17%) do duplicate ACEC tests.

Many of the tables in this appendix were automatically constructed from data in the
AES test suite. Inconsistencies in spelling, the case of letters, and the use of phrases
rather than sentences often reflect the actual menu items in the used in the AES Test
Harness. No attempt has been made to standardize the entries in those tables. Some of
the menu entries use the word “erroneous” when “illegal” would be more in accord with
the usual Ada terminology.

A.1 AES Tests Which Don’t Duplicate ACEC Tests
The following AES test groups do not duplicate the functionality of ACEC tests:

Table A-1. AES Tests which do not duplicate ACEC Tests

Group Test Group Name Number of Tests in Group
A Compiler Efficiency 22
B Compiler Informational Quality 5
C Compiler Error Reporting 7
D Compiler Error Recovery 17
E Compiler Warning 9
F Compiler Behavioral 6
G Compiler Capacity 53
K MASCOT Tasking 7
M Storage Management 10
N Input Output 18
Q Run-Time Limit 7
R Implementation Dependency 25
S Erroneous Execution 13
T Incorrect Order Dependency 17
U Link/Load 14

Total 230

The ACEC tests have time and space performance as their test information domain.
The ACEC documentation identifies several areas of compiler test information as being
outside the scope of the ACEC effort, in particular, questions about compiler features
such as automatic recompilation, the quality of error messages, user friendliness, and
diagnostics. The AES test domain includes most of these types of compiler test
information. All of these test groups determine information about compiler features that
varies from compiler to compiler. In particular, Groups B, C, and E seek information

18

that characterizes the quality of messages emanating from the compiler. Groups B, C, D,
and E are very similar in form. Groups D, F, M, N, R, and T seek to answer questions
about the particular compiler implementation features which can vary from compiler to
compiler. Group G is concerned with measuring a compiler’s capacity to handle large
numbers of Ada language features. Each of these groups is discussed in greater detail
below.

A.1.1 Compiler Efficiency (Group A)

The tests in this group measure the speed at which the compiler compiles legal Ada
source code, but does not do so in a language feature-by-feature manner. Instead, global
issues are probed. For example, tests AA, AB, AC, AD, and AE measure a mix of Ada
language features, and tests TA18-TA22 take advantage of the AES preprocessor to
determine the relative speed of the compiler with and without listings and with and
without other compiler settings in effect. TA25 measures the effect of simultaneous
compilations, which is practical information indeed. Finally, tests TA30-TA32 determine
whether the compiler can take advantage of information from previous compiles. Thus,
while this group at first appears to duplicate ACEC tests, closer examination shows these
tests to be of different character from similar tests in the ACEC.

19

=

Table A-2. AES Compiler Efficiency Tests

Name

Description

TAO1
TAOQ2
TAO3
TA04
TAOS
TA06
TAO8
TAQ9
TA12
TA13
TA14
TA1S
TA16
TA17
AA

AB

AC

AD

AE

TA18
TA19
TA21
TA22
TA25
TA30
TA31
TA32

Compiling a minimal main procedure

Compiling generic units

Compiling WITHed units

Compiling USEd units

Compiling large uninitialized arrays

Compiling large initialized arrays

Producing error messages

Compiling overloaded identifiers

Compiling a large number of strings

Compiling a large number of enumeration literals

Compiling identifiers with the same name but different scope
Compiling subunits

Compiling local optimizations

Compiling global optimizations

Code-by-the-yard tests compiled in single-user mode
Code-by-the-yard tests compiled in multi-user mode
Code-by-the-yard tests compiled with syntax-only checking
Code-by-the-yard tests compiled with syntax and semantic checking only
Code-by-the-yard tests compiled in batch mode

Compiling with debug information

Compiling when listings produced

Compiling a null procedure with syntax checking only

Compiling a null procedure with syntax and semantic checking only
Multiple simultaneous compilations

Recompilation where only minor modifications have occurred
Recompilation where only minor modifications to a withed unit have occurred
Recompilation when there are no changes to the source

A.1.2 Compiler Informational Quality (Group B)

This group causes compilation of valid Ada code such that as many listings as possible
are generated. While the process of generating the listings is automatic, the actual
evaluation of the listings is not. None of the AES Group B tests duplicates any ACEC

tests.

Table A-3. AES Compiler Informational Quaﬁty Tests

Name Description

TBO01 Quality of assembler code I sting, data map, concordance listing and general
compiler information

TB02 Quality of compilation and elaboration dependency information

TB03 Quality of resolution overloading information

TB04 Quality of listing of calls to the run-time system

TBO0S5 Quality of source related information

TB06 Quality of information relating to the source of dependent compilation units

TB07 Quality of information relating to the optimization of code

TBO08 Further test of the quality of information indicating calls to the
run-time system

A.1.3 Compiler Error Reporting (Group C)

Each of the tests in this group causes illegal Ada source code to be compiled. The
generation of compiler output is automatic, but the evaluation of the results is not. The
ACEC contains no tests which examine the behavior of the compiler when it is presented
with illegal Ada source code.

Table A-4. AES Compiler Error Reporting Tests

Name Description

TCO1 Reporting of unresolved overloading, no applicable overloading and
type mis-match without overloading '

TCO02 Reporting of erroneous type definitions and hidden identifiers

TCO03 Reporting of common mistakes

TC04 Reporting of illegally specified aggregates, illegal non-conformance,
illegal-declarations in package specifications and illegal type conversions

TCO5 Reporting of declarative errors and error clarity

TCO06 Reporting of the omission of the prime in an initialized allocation

TCO07 Errors hidden by others occurring later

A.1.4 Compiler Error Recovery (Group D)

Each of the tests in this group causes illegal Ada source code to be compiled. The
generation of compiler output is automatic, but the evaluation of the results is not. The
ACEC contains no tests which examine the behavior of the compiler when it is presented
with illegal Ada source code.

21

Table A-5. AES Compiler Error Recovery Tests

Name Description

TDO01 Recovery from missing semicolons

TDO02 Recovery from missing generic keyword

TDO03 Recovery from mis-matched BEGIN and END and from missing keywords

TDO04 Check whether semantic analysis occurs when syntax errors are found

TDOS Recovery from illegal assignments and use of ’_’

TDO06 Recovery from mis-spelled keywords

TDO7 Recovery from illegal type declarations and discriminants

TD08 Recovery from using wrong subprogam specification keyword

TDO09 Recovery from mis-matched parentheses and quotes

TD10 Recovery from compiling CORAL 66 source and Pascal source

TD11 Recovery from using illegal comments

TD12 Recovery from finding the incorrect order of declarations

TD13 Recovery from missing subprogram and package specifications and the
use of a specification where a body is required

TD14 Recovery from the use of keywords as identifiers

TD15 Recovery from the use of anonymous array types in record components

TD16 Recovery from the use of a parenthesised range

TD17 Further tests on the recovery from the use of illegal type declarations

A.1.5 Compiler Warning (Group E)

Each of the tests in this group causes legal but suspect Ada source code to be
compiled. The generation of compiler output is automatic, but the evaluation of the
results is not. The ACEC contains no corresponding tests.

Table A-6. AES Compiler Warning Tests

Name Description

TEO1 Reporting of unrecognized pragmas, pragmas containing syntax errors and
illegally placed pragmas

TE02 Reporting of unset variables

TEO3 Reporting of endless loops

TEO4 Reporting of exceptions which will be raised at run-time

TEQS Reporting of warnings when errors are present

TEQ6 Reporting of dead variables and dead code

TEQ07 Reporting of whether a divide by zero is replaced by code which
raises an exception

TEO08 Further tests on the reporting of unset variables

TEQ9 Further tests on the reporting of endless loops

A.1.6 Compiler Behavioral (Group F)

These tests examine the behavior of the compiler when it compiles a file containing
more than one compilation unit, some of which are legal and some of which are not legal.
No ACEC tests deal with any type of illegal Ada source code conditions.

22

_

Table A-7. AES Compiler Behavioral Tests

Name Description

TF01 Compilation of a file containing three compilation units, the second
unit being invalid and not a dependent of the third unit

TF02 Compilation of a file containing two compilation units, the first unit

being invalid (but already existing in the Program Library) and a
dependent of the third unit

TF03 Compilation of a file containing two compilation units, the first unit

being invalid (but already existing in the Program Library), the remainder
being valid subunits

TF04 Compilation of a file containing three compilation units, the second unit
being an invalid generic package body (but already existing in the Program
Library) and being instantiated in the third

TF05 Compilation of a file containing two compilation units, the first unit

being invalid (but already existing in the Program Library) and not
referenced by the second unit

TF06 Compilation of a file containing three compilation units, the first unit
being invalid (but already existing in the Program Library), the remainder
being valid task subunits

A.1.7 Compiler Capacity (Group G)

This group coasists of several tests of compiler capacity. These tests are made
possible by the use of the preprocessor which is at the heart of the AES test harness
design.

Capacities are not always determined to the nearest unit, since the cost of compiling a
family of large Ada source files may be prohibitive. Sometimes, a binary search method
is employed to generate Ada source files which are successively closer (over or under the
capacity limit) to the real capacity. It is not always necessary to measure capacity to the
nearest unit if knowing that a capacity exceeds a large number is sufficient, as it often is.
Since the total space that a compiler has must usually be divided between each individual
capacity, each capacity exercised separately is likely to be greater than when the
capacities are exercised together. This is the motivation for the “code-by-the-yard” tests
found in Groups A and V.

No ACEC tests measure compiler capacity.

23

Table A-8. AES Capacity Tests

Name Description
TGO1 Number of distinct identifiers
TGO02 Depth of static nesting of blocks
TGO03 Depth of static nesting of packages
TGO04 Depth of static nesting of generics
TGOS Expression complexity
TGO6A Number of enumeration literals for an enumeration type
TG06B Number of IMAGE:s of enumeration literals for an enumeration type
TGO7 Number of WITHed units
TGO8 Number of USEd units
TGOSA Number of elements in a 1D array
TG09B Number of elements in a 2D array
TGOSC Number of elements in a 3D array
TG10 Number of elements of an aggregate
TG11 Number of components of a record
TG12A Number of parameters to a procedure
TG12B Number of parameters to a function
TG13 Number of parameters to a generic unit
TG14 Number of discriminants for a record
TG1S Number of declarations in a declarative part
TG17 Depth of static nesting of variant parts of a record
TG18 Depth of nesting of aggregates
TG19 Number of case statement alternatives
TG20 Precision of universal integer and universal real arithmetic
TG21 Depth of nesting of mixtures of various constructs
TG23 Number of types declarable
TG24 Number of subprograms allowed in a compilation unit
TG2S Number of packages allowed in a compilation unit
TG26 Number of subunits allowed in a compilation unit
TG27 Number of generics allowed in a compilation unit
TG28 Depth of nesting of subprograms
TG29 Depth of nesting of loops
TG30 Depth of nesting of subunits
TG31 Depth of nesting of accept statements
TG32 Depth of nesting of case statements
TG33 Depth of nesting of if statements
TG34 Number of task entries
TG3S Number of array dimensions
TG36 Number of elsif statements
TG37 Number of select statements
TG38 Number of generic subprogram instantiations in a subprogram
TG38A Number of generic package instantiations in a subprogram
TG39 Number of characters on a line

24

Table A-9. AES Capacity Tests (Continued)

Name Description
TG40 Number of characters in an identifier
TG41A Number of digits in a universal integer of the form 9999...
TG41B Number of digits in a universal integer of the form 9999...e9
TG41C Number of digits in a universal integer of the form 7#6666...#¢10
TG41D Number of digits in a universal real of the form 9.9999...
TG41E Number of digits in a universal real of the form 9.9999...e9
TG41F Number of digits in a universal real of the form 7#6.6666...#e10
TG42A Number of characters in an initialized string object
TG42B Number of characters assigned to an uninitialized string object
TG43 Number of overloaded identifiers
TG44 Number of constraints on a subtype
TG45 Number of identifiers in an identifier list
TG46A Number of statically nested renamed exceptions
TG46B Number of statically nested renamed objects
TG46C Number of statically nested renamed packages
TG46D Number of statically nested renamed subprograms
TG47 Number of statically nested object names
TG48 Number of types derived from another type
TG49 Number of exceptions declared
TG50 Number of exception handled
TGS1 Number of labels on a statement
TGS2 Number of tasks in an abort statement
TGS3 Number of compilation units allowed in a file
TG54 Number of errors detectable on a single line
TGSS Number of errors detectable in a compilation unit

A.1.8 MASCOT Tasking (Group K)

These tests are tailored to the MASCOT run-time system. Clearly, no overlap exists
with any ACEC tests. One might question why tests were written for a specific target
processor when the preprocessor permits the writing of more general tests which can be
preprocessed into several tests of many target machines. These tests might be suitable for

extension to a whole family of target processors.

Table A-10. AES MASCOT Tasking Tests

Name Description
TKO1 Check that pragma PRIORITY is acted upon
TKO02 Determine time for simple rendezvous

TKO3 Determine time for rendezvous with guards

TKO4 Check that expiry of a delay causes an immediate reschedule
TKO5 Determination of time-slicing between equal-priority tasks

TKO06 Determination of time taken to call CALENDAR.CLOCK

TKO7 Determination of whether the occurrence of an interrupt causes an
immediate reschedule

A.1.9 Storage Management (Group M)

These tests determine the behaviour of memory management by the compiler run-time
system. No ACEC tests exist to determine storage management functions.

Table A-11. AES Storage Management Tests

Name Description

TMO1A Treatment of STORAGE_ERROR and limits at which it is raised
TMO01B Tests heap followed by stack exhaustion.

TMO2A Same as above

T™™O02B Same as above

T™MO03 Check of UNCHECKED_DEALLOCATION

T™MO04 - Storage reclamation check

TMOS Creeping of heap storage when returning unconstrained types
TMO06 Use of STORAGE_SIZE length clause

T™O07 Fragmentation of heap storage

T™MO08 Heap space overhead for allocated objects

TMO09 Use of heap storage by the Ada run-time system

T™M10 Re-use of heap storage by the Ada run-time system

A.1.10 Input/Output (Group N)

The ACEC Input/Output (I/O) tests determine the speed of GETs and PUTS for
reads and writes of different numbers of bytes. The AES tests, on the other hand,
determine the behavior of I/O where there are implementation differences, For example,
there are tests to determine the effect of control characters, whether input output is
buffered, whether the I/O packages are re-entrant, whether restrictions exist on the

character set, and whether file sharing is permitted. None of these tests is duplicated by
the ACEC.

Table A-12. AES Input Output Tests

Name Description

TNO1 Check whether file deletion is supported

TNO2 | Check whether file resetting is supported

TNO3 Determine the maximum number of open files

TNO4 Check whether external file sharing is supported

TNOS Check whether an I/0 performing task blocks other tasks
TNO6 Check whether the I/O packages are reentrant

TNO7 Instantiation with unconstrained arrays and variant records
TNO8 What happens to external files on completion of main program
TNO9 Examination of the effect of I/O for access types

TN10 Size of a file created for direct access

TN11 Check whether there is a check on the element type

TN12 Examination of the effect of I/O of control characters
TN13 Examination of page and line lengths

TN14 Determination of whether I/O is flushed

TN15 Examination of the effect of file creation on existing files
TN16 Restrictions in the character set accepted by TEXT_IO
TN17 Examination of the rounding of real values

TN18 Determination of whether 1/0 is buffered

A.1.11 Run-Time Limit (Group Q)

These tests are similar to the Group M Storage Management tests. None of these
tests is duplicated by ACEC tests either.

Table A-13. AES Run-Time Limit Tests

Name Description
TQO1 Maximum number of tasks created by a single program
TQO02 Minimum size of the run-time system

TQO03 Minimum size of the run-time system - no I/O

TQO4 Minimum size of the run-time system - with [/O

TQO5 Size of the tasking system

TQO6 Maximum amount of generated data a program may have

TQO7 Maximum amount of code that may be generated in a compilation unit

A.1.12 Implementation Dependency (Group R)

Since implementation dependency tests are out of the scope of the ACEC, none of
these tests is duplicated by the ACEC.

Table A-14. AES Implementation Dependency Tests

Name ' Description

TRO1 Termination of tasks that depend on library packages

‘TRO2 Restrictions on objects for which pragma SHARED is allowed
TRO3 Restrictions on representation clauses

TRO4 Restrictions on unchecked conversions

TROS Values of predefined floating point, fixed point types attributes
TRO6 Special circumstances in which NUMERIC_ERROR is raised
TRO7 Circumstances in which language-defined pragmas are acted upon

TRO8 Rounding convention on conversion of a real number

TRO9 Find the value of scalar variables when uninitialized.

TR10 Propagation of user-defined exception out of the main program
TR11 Propagation of predefined exception out of the main program
TR12 Test to determine if lexical replacement characters are allowed.
TR13 IMAGE applied to non-graphic character.

TR14 Generic declaration and body have to be in the same compilation.
TR15 Subunits of a generic unit have to be in the same compilation.

TR16 Determine when bodies of generics are actually instantiated.
TR17 Does pragma INLINE create dependencies between compilation units.

TR18 Type conversion of uninitialized scalar subcomponents.
TR19 Do composite types contain any undeclared extra data fields
TR20 Effects of type CALENDAR.TIME on execution

TR21 Requirements on parameters to results from a main program
TR22 Does optimization create compilation units dependencies
TR23 Program outcome affected by optimizations.

TR24 Determine system dependent values
TR25 Effectiveness of time slicing, and effect of pragma SHARED

A.1.13 Erroneous Execution (Group S)

Tests designed to execute with errors are outside the scope of the ACEC, thus none of
these tests overlaps with the ACEC.

Table A-15. AES Erroneous Execution Tests

Name Description

TSO1 Evaluating a scalar variable with an undefined value and attempting
to apply a predefined operator to variable that has undefined
subcomponents

TS02 Assignment to a variable which is a depending on discriminants,
which changes value of the discriminant

TS03 The effect of the program depends on the passing mechanism

TS04 Call a subprogram with an actual parameter which a subcomponent depending on
discriminants, its execution changes the value of the discriminant

TS05 Calling a subprogram which is abandoned by exception, where the action of
the program depends the final value of one of its parameters

TS06 A subprogram where the actual parameter changes updating the formal, then
tries to use the formal

TS07 Calling a subprogram with an undefined parameter returning an undefined
value

TS08 Using value of deferred constant before elaboration of the corresponding full
declaration

TS09 Violating the assumptions concerning shared variables

TS10 In which an error situation arises in the absence run-time checks suppressed
via pragma SUPPRESS

TS11 Using an address clause to achieve overlays of objects

TS12 Examines what happens when one of two variables, both accessing the same
object, deallocated and the other is used to access the object

TS13 An UNCHECKED_CONVERSION which violates the guaranteed for objects of the

target type

A.1.14 Incorrect Order Dependency (Group T)

As for Group S, the Group T tests are not duplicated by the ACEC.

Table A-16. AES Incorrect Order Dependency Tests

Name Description

TTO01 Depending on the order of evaluation of default expressions for components
or discriminants

TTO02 Depending on the order of evaluation of the expressions for the bounds of
a range constraint

TTO3 Depending on the order of evaluation of the discrete ranges the index
constraint of a constrained array definition

TT04 In a constrained array definition, depending on the order of elaboration of
the component subtype indication for evaluation of range of index constrain

TTOS In the elaboration of a discriminant constraint, depending on the
evaluation order of expressions given in discriminant associations

TTO06 For evaluation of an indexed component, depending on the evaluation order of
the prefix and the component expressions

TTO07 Depending on the order of evaluation of the prefix and discrete
range of a slice

TTO08 Depending on the order of evaluation of the expressions given in the
component associations of an aggregate

TTQ09 Depending on the order of evaluation of the choices choices of an array
aggregate that is not a subaggregate, and the choices of its subaggregates

TT10 Depending on the order of evaluation of the expressions of the component
associations of an array aggregate

TT11 Depending on order of evaluation of the operands of either a factor, term,
simple expression, relation or expression operands without short circuit form

TT12 Depending on the order of evaluation of the variable name and expression of
an assignment statement

TT13 Depending on the order of evaluation of parameter associations of a
subprogram call

TT14 Depending on the order of evaluation of any conditions specified in a select
alternative

TT15 Depending on the order of evaluation of the task names in an abort statement

TT16 For elaboration of a generic instantiation, depends on evaluation order of
each expression supplied as an explicit generic actual parameter

TT17 Test to determine the action taken when there is a dependency on the order

of elaboration of the bounds of an array

A.1.15 Link/Load Tests (Group U)

Group U tests the linker and loader. None of the ACEC tests address the linker or
loader, thus none of these tests duplicate ACEC tests.

30

Table A-17. Link/Load Tests

Name Description

TUO1 Test detection of circular elaboration order

TU02 Test detection of missing CUs

TUO03 Test detection of obsolete units

TUO04 Errors in linking separately compiled subunits

TUOS Errors in linking non-Ada code

TUO06 Linking with number of subprograms up to compiler limit
TU07 Errors in linking with generic units

TUO08 Errors in linking run-time library components

TUO9 Linking large systems

TU10 Linking a unit with same name length as compiler limit
TU11 Test determining maximum number of names in a program
TU12 Test examining overheads of subunits on linking

TU13 Test examining partial linking

TU14 Test examining linking of foreign units

A.2 AES Tests Which Partially Duplicate ACEC Tests

The following groups contain both tests which determine the same information as
some ACEC tests and tests which determine different information. Tests which exist in
both test suites can have joint value. In some cases, tests from the AES test suite can
validate or verify the correct operation and timing of the corresponding test from the
ACEC test suite and vice versa.

Table A-18. AES Tests which partially duplicate ACEC Tests

Group Test Group Name Number of Tests | Duplicate Tests
I Compiler Run-Time Efficiency 19 19
J NPL Test Suite 18 4
L General Tasking 17 9
O Optimizing Tests 20 20
\% Dhrvstone and code-by-the-yard 7 1
Toral 81 53

A.2.1 Compiler Run-Time Efficiency (Group I)

This group comes closest to the ACEC tests. Most or all of these tests have
equivalents in the ACEC.

31

Table A-19. AES Run-Time Efficiency Tests

Name Description

TIO1A Efficiency of selecting record components

TIO1B Efficiency of selecting a record within a record

TIO1C Efficiency of making record assignments

TIO1D Efficiency of making record comparisons

TIO2A Efficiency of indexing array components

TI02B Efficiency of making array assignments

TI02C Efficiency of making array comparisons

TI02D Efficiency of using boolean arrays

TIO2E Efficiency of array concatenation

TIO2F Efficiency of array slicing

TIO3 Efficiency of matrix operations

T104 Efficiency of integer computations

TIOS Efficiency of floating point computations

TIOSB Further tests on the efficiency of floating point computations
TI06 Efficiency of fixed point computations

TI07 Efficiency of heap objects

TI08 Efficiency of stack objects

TIOSA Efficiency of generics with paran:zters of enumerated types
TI09B Efficiency of generics with parameters of array types
TI09C Efficiency of generics with parameters of fixed point types
TIOSD Efficiency of generics with parameters of floating point types
TIOSE Efficiency of generics with parameters of record types
TIOSF Efficiency of generics with parameters of discriminated record types
TIOG Efficiency of generics with subprogram calls

TI10 Efficiency of subprogram calls

TI11 Efficiency of loop statements

T112 Efficiency of exception handling

TI13 Efficiency of constraint checking

TI14 Efficiency of I/0O of scalar types

TI1S Efficiency of I/0 of array types

TI16 Efficiency of 1/O of record types

TI17 Efficiency of file management operations

TI18 Efficiency of type conversions

TI19 Efficiency of pragma INTERFACE c. lls

A.2.2 NPL Test Suite (Group J)

Group J contains 18 of the 21 National Physical Laboratory (NPL) tests. That test
suite contains some of the same tests or benchmarks that the ACEC carries. In
particular, the Gamm, Ackermann, Habermann-Nassi and Whetstone optimization tcsts

are duplicative. The rest of the AES tests in this group appear to not dup.icate the
ACEC tests.

Table A-20. AES NPL Test Suite Tests

Name Description

TIO1 Standard Gamm benchmark
TJO2 Standard Whetstone benchmark
TJO3 Standard Ackermann benchmark

TJO4 Formal parameter modes
TJOS Overloading operators
TJ06 Inline expansion

TJO7 Generics

TJO8 Record types

TJO9 Discriminant types

TJ10 Operator and expression evaluation
TJ11 If statements

TJ12 Task Activation

TI13 Habermann-Nassi Optimization
TJ14 Subtype declarations

TJ16 Suppressing checks

TI7 Integer operations

TI18 Operations of array types

TJ19 Assignment statements

A.2.3 General Tasking (Group L)

The ACEC test suite has approximately 80 tasking tests. Many of the tests in this
AES test group are redundant with ACEC tests: tests 1-6, inclusive and tests 15-17,
inclusive. The remaining tests appear to be different.

33

Table A-21. AES General Tasking Tests

Name Description

TLO1 Overhead of task creation

TLO2 Effect of idle tasks on performance

TLO3 Effect of number of select statements on performance

TLO4 Effect of guards on entry statements on performance

TLOS5 Effect of passing parameters in rendezvous on performance

TLO6 Difference in efficiency of having lots of little tasks with single entry
choices versus a few big tasks with many select choices

TLO7 Effect of ordering on entry clauses in a select

TLO8 Check on number of times an else alternative of a selective wait is
executed before a reschedule is forced

TLO9 Determination of the residual storage of a terminated task

TL10 A check that delay statements are meaningful

TL11 Determination of the overhead of nested accept statements

TL12 Determination of the rules for selecting open accept alternatives

TL13 Determination of the rules for selecting open delay alternatives

TL14 Determination of the overheads involved in processing an interrupt

TL15 Effect of passing various numbers of parameters in rendezvous on performance

TL16 Overheads of conditional entry call and selective wait

TL17 Efficiency of entry families

A.2.4 Optimizing Tests (Group O)

The ACEC contains many tests of optimization and this group appears to duplicate

those ACEC optimization tests.

34

Table A-22. AES Optimizing Tests

Name Description

TOO01 Value propagation

TO02 Common subexpression elimination

TO03 Loop optimizations

TO04 Use of registers for variables/ register allocation

TOO0S Inlining subprograms

TO06 Packing data

TO07 Suppressing run-time checks

TO08 Loading only referenced subprograms

TO09 Sharing generic bodies

TO10 Subexpression evaluation

TO11 Further tests on suppressing run-time checks

TO12 Further tests on register allocation

TO13 Loading only referenced subunits

TO14 Removing redundant/unreachable code

TO15 Use of special hardware instructions

TO16 Replacing code by exception raising code

TO17A “Case” optimizations with an ordered contiguous range

TO17B “Case” optimizations with a disordered contiguous range

TO17C “Case” optimizations with an ordered contiguous set of ordered
contiguous ranges '

TO17D “Case” optimizations with a sparse random range

TO1TE “Case” optimizations with a dense random range

TO1”F “Case” optimizations with few explicit choices and most of
alternatives in ’others’

TO18 Reducing context switching when an accept statement has a null body

TO19 Optimizing a passive task that protects a shared variable

TO20 Optimizing a passive task that controls a buffered channel

A.2.5 Dhrystone and code-by-the-yard (Group V)
The Dhyrstone test is duplicated in the ACEC test suite, but the code-by-the-yard

tests are not.

35

Table A-23. AES Dhrystone and code-by-the-yard Tests

Name Description

TV01 Dhrystone tests

12,500 LOC)

TVO03 Link time of a 9 compilation unit system contained 1 file. 12,500 LOC

TV04 Link time of a 1 compilation unit system contained in 1 file. 12,500

LOC

TVOS Link time of a 35 compilation unit system contained in 3 files. 25,000

LOC

TV06 Link time of a 69 compilation unit system contained in 5 files. 50,000 LOC
TV07 Link time of a 137 compilation unit system contained in 9 files. 100,000 LOC

TV02 Link time of a 21 compilation unit system contained in 1 file. (Executable benchmark,

A.3 Preprocessing Benefits for ACEC Tests

Some of the ACEC tests exhibit a high degree of commonality. The slight differences
in each of the test cases may be a result of changing the type of a variable or it may be the
result of changing a literal number which must be present in the Ada source and cannot be
changed at execution time. In these cases, the AES preprocessor could be used to factor
out the changes in a test. Tests so modified would be easier to maintain in the future and
the possibility of slight differences in the Ada source code affecting tests results would be
reduced. Implementation dependent tests could also benefit from the use of the AES
preprocessor, specifically to factor out implementation specific portions of the test
programs. Additional tests could be quickly added to the evaluation test suite by
factoring out variable types on existing tests. Tests which require large portions of code
to be included, such as large exception handling blocks can also benefit. In the table
below, ACEC tests are identified which would benefit from being placed into
preprocessor form. ‘“Number” refers to the number of tests which could be collapsed to
either one or a small number of tests. “Full extent” means that the tests could be
collapsed into a single test, “Partial extent” means that some of the tests could be
collapsed, but probably into more than one test.

Table A-24. ACEC Tests

Test Name Description Number Extent
delay(n) Delay Statement - 14 full
DES(n) DES 1 partial
dhry(n) Dhrystone 3 full
gamm, gamm?2 Gamm 2 full
io(n) I/O/tests 24 partial
reclaim Reclaim 4 full
Task_num(n) Tasking 7 full
Task2_num(n) Tasking 7 full

36

A.4 ACEC Tests

The following table lists the types of tests found in the ACEC:

Table A-25. ACEC Tests

Number of Tests

Description

811
12
2

6
10
14
11

o o =
NOWNEF AEONNO W

o
PO =00 = h

Language specific tests

Avionics application

Ackerman’s function (classic)
Computer Family Architecture (classic)
Sort tests (classic)

Delay statement tests

Data Encryption Standard
Dhrystone

Electronic Warface application
Optimization tests

Radar application

Gamm (classic)

Interrupt handler

/O

Kalman filter

“Kernal” Livermore loops (classic)
Knuth loops (classic)

puzzles

Reclaim

Reed Solomon

Runge-Kutta

Search

Sieve

Simulation application

Serial Search

Procedure call and parameter passing
Tasking

Whetstone

A.5 Other AES Tests

37

Table A-26. Other Testsin AES Test Suite

Group Description Number
CA TESTSUITE/CLI/PERFORMANCE 9
CC TESTSUITE/CLI/ERROR-REP 4
CD TESTSUITE/CLI/ERROR-RECOVERY 7
CG TESTSUITE/CLI/CAPACITY 19
CH TESTSUITE/CHECK-OUT 18
CR TESTSUITE/CLI/IMPL-DEP 15
CS TESTSUITE/CLI/SCENARIOS 5
DF TESTSUITE/DEBUGGER 3
DG TESTSUITE/DEBUGGER 11
EG TESTSUITE/EDITOR/CAPACITY 7
ES TESTSUITE/EDITOR 1
LS TESTSUITE/PLS/SCENARIO 19
NF TESTSUITE/NAME EXPANDER 3
NG TESTSUITE/NAME EXPANDER 5
- TESTSUITE/PRETTY PRINTER 2
PF TESTSUITE/PRETTY PRINTER 5
PG TESTSUITE/PRETTY PRINTER 7
RA TESTSUITE/RA/PERFORMANCE 4
RG TESTSUITE/RA/CAPACITY 8
SF TESTSUITE/SOURCE GENERATOR 2
SG TESTSUITE/SOURCE GENERATOR 8
TA TESTSUITE/TST 3
CH TESTSUITE/CHECK-OUT 6
VG TESTSUITE/VCCS/CAPACITY 5
A TESTSUITE/VCCS/SCENARIO 26
- TESTSUITE/CROSS REFERENCE ANALYZER 2
XF TESTSUITE/CROSS REFERENCE ANALYZER 1
XG TESTSUITE/CROSS REFERENCE ANALYZER 3
N4 TESTSUITE/UTILITIES 2

Total 210

38

Table A-27. TESTSUITE/CLI/PERFORMANCE

Name Description
TCAO01A Performance tests for string concatenation operations
TCA01B Performance tests for string slicing operations
TCA01C Performance tests for conversion operations
TCAO01D Performance tests for integer arithmetic operations
TCAQ02 Performance tests for deeply nested conditions
TCAO3 Performance tests for FOR-loops
TCAO04 Time to enter a command procedure (with and without parameters)
TCAOS Time to enter a command script (with and without parameters)
TCAO06 Time to invoke a user-defined tool (with and without parameters
Table A-28. TESTSUITE/CLI/ERROR-REP
Name Description
TCCO1 Error reporting for invoking a non-existent tool
TCCO02A Error reporting for invoking a tool with too few parameters
TCCO02B Error reporting for invoking a tool with the wrong type of parameters
TCC02C Error reporting for invoking a tool with unknown parameters
Table A-29. TESTSUITE/CLI/ERROR-RECOVERY
Name Description -
TCDO1 Error test for using variables of wrong type expressions
TCDO02 Error test for using strings in expressions
TCDO03 Error test for use of erroneous dereferencing
TCD04 Test for effect of using uninitialized command data
TCDOS Effect of command script termination on files within scripts
TCDO06 Error test for specifying parameters more than once
TCDO7 Error test for a tool containing an unhandled exception

39

Table A-30. TESTSUITE/CLI/CAPACITY

Name Description

TCGO1 Maximum number of continuation lines

TCGO2A Maximum size of a command script

TCGO2B Maximum size of a command procedure

TCGO02C Maximum size of a macro declaration

TCGO3 Maximum number of variables in a command script

TCGO04 Maximum size of string which can be used in a command script

TCGOS Maximum number of arms in a conditional statement in a command
script

TCGO06A Maximum depth of nesting of a simple conditional statement in
a command script

TCGO6B Maximum depth of nesting of a more general conditional statement
in a command script

TCGO7 Maximum depth of loop nesting in a command script

TCGO8 Maximum depth of command procedure nesting

TCGOS Maximum depth of command script nesting

TCG10 Maximum number of parameters to a command procedure

TCG11 Maximum number of parameters to a command script

TCGI12A Maximum number of elements in a superstring

TCGI12B Maximum level of explicit dereferencing

TCG12C Maximum number of slices in a string expression

TCG13 Maximum size of arithmetic expression allowed

TCG14 Maximum number of parameters to be passed to a user-defined tool

40

Table A-31. TESTSUITE/CHECK-OUT

Name Description
TCHO06 Check-out BEGIN, ADA, LINK, EXECUTE and END .PRE
TCHO07 Simple test of exception raising and handling
TCHO8 Simple test of allocation and deallocation
TCHO09 Simple test of tasking features
TCH10 Simple test of passing unconstrained objects
TCH11 Simple test of CALENDAR.CLOCK
TCHO1 Configuration and check-out of full RUN_TIME package
TCHO02 Checks terminal input and output for executable tests in MANUAL mode
TCHOS Checks support of SEQUENTIAL_IO and DIRECT_IO
TCHI12 Simple test of RUN_TIME.START_TEST and RUN_TIME.END_TEST
TCH13 Simple test of RUN_TIME.TIMER
TCH14 Static checkout of the PRETTY JCL-file
TCHI1S Static checkout of the XREF JCL-file
TCH16 Static checkout of the EXPAND JCL-file
TCH17 Static checkout of the SOURCEGEN JCL-file
TCH18 Generate RUN_TIME without configuration of LABADR or timing
TCHI19 Generate RUN_TIME with timing facilities, but no LABADR
TCH20 Static checkout of the EDITOR JCL-file

Table A-32. TESTSUITE/CLI/IMPL-DEP

Name Description
TCRO1 Examine the use of arithmetic operators + and -
TCRO02 Examine the use of arithmetic operators * and /
TCRO3 Examine the use of relational operators <, >, = and /=
TCR04 Examine the use of logical operators and / or on relational operators
TCROSA Examine the use of string concatenation
TCRO5B Examine the use of string subtraction
TCRO6 Examine the use of string reduction (slicing)
TCRO7 Examine the use of string dereferencing
TCRO8 Examine the use of superstrings
TCRO09 Examine the use of logical names
TCR10 Examine the use of string to integer conversion
TCR11 Examine the use of integer to string conversion
TCR12 Examine how to extract substrings from strings
TCR13 Examine the use of length operations on stringr
TCR14 Examine how to find the offset of substrings in strings

41

Table A-33. TESTSUITE/CLI/SCENARIOS

Name Description
TCS05 Test of file searching
TCS06A Test to execute an Ada program in various types of process
TCSO07A Test to install procedure with no parameters as an APSE tool
TCSO07B Test to install procedure with parameters as an APSE tool
TCS07C Test to install a command script as an APSE tool

Table A-34. TESTSUITE/DEBUGGER

Name Description
TDF01 Examine most of the debugger features and behaviour
TDF02 Delay statement handling
TDFO03 Examine task execution during debugger input requests

Table A-35. TESTSUITE/DEBUGGER

Name Description
TDGO1 Determine maximum number of break- & watchpoints
TDGO02 Determine maximum number of Ada symbols
TDGO3A Processing a file with 250 lines
TDGO03B Processing a file with 500 lines
TDGO3C Processing a file with 1000 lines
TDGO3D Processing a file with 2500 lines
TDGO3E Processing a file with 5000 lines
TDGO3F Processing a file with 10000 lines
TDGO03G Processing a file with 12500 lines
TDGO04 Maximum number of tasks that can be monitored
TDG9Y9 Preprocess debug command file

42

Table A-36. TESTSUITE/EDITOR/CAPACITY

Name Description
TEGO1 Number of distinct identifiers
TEGO02 Depth of static nesting of blocks
TEGO03 Expression complexity
TEG04 Depth of nesting of mixtures of subprograms, loops, blocks, packages,

subunits, accepts, case statements, generics and if statements
TEGOS Number of subprograms allowed in a compilation unit
TEGO06 Number of overloaded identifiers
TEGO07 Number of compilation units allowed in a file
Table A-37. TESTSUITE/EDITOR

Name Description

TESO1 Generate TES01.TXT and TES02.ADA .. TES04.ADA
Table A-38. TESTSUITE/PLS/SCENARIO

Name Description
TLSO01A Compile package TVS1 into library A
TLS01B Compile package TVS1 into sublibrary Al
TLS02A Compile the TVS2 subsystem into library A
TLS02B Compile the TVS2 subsystem into library B
TLS02C Compile the TVS2 subsystem into sublibrary Al
TLS04A Compile the TVS4 subsystem into library B
TLS04B Make the TVS4 subsystem obsolete in library B
TLSO06A Compile the TVS6 subsystem into library A
TLS06B Compile the TVS6 subsystem into library A and time this
TLS06C Recompile the TVS6 subsystem into library A and time this
TLS10 Compile TLSO01 into library A
TLS12A Obtain time to compile unit TLS03 into empty library A
TLS12B Obtain time to compile unit TLS03 into full library A
TLS13A Compile all units of the VCCS Live system into library A
TLS13B Compile all units of the VCCS Live system into library B
TLS14 Compile TLS04, substitute for TVS1 into library A
TLS99 Preprocess all the sources of the VCCS Live system
TLGO1 Examine limits to the depth of dependency structure
TLGO2 Examine limits to the number of units automatically recompiled

43

Table A-39. TESTSUITE/NAME EXPANDER

5 Name Description
TNF01 Test containing several types of objects
TNFO02 Test containing long qualification names
TNF03 Compiling the output of test TNF01 and TNF02
Table A-40. TESTSUITE/NAME EXPANDER
Name Description
TNGO01 Number of characters on an input line
TNGO02 Number of identifiers
TNGO3 Number of USEd units
TNGO04 Number of characters in a qualified name
TNGOS Number of identifiers in a qualified name
Table A-41. TESTSUITE/PRETTY PRINTER
Name Description
PAA Code-by-the-yard tests pretty printing in single-user mode
PAB Code-by-the-yard tests pretty printing in multi-user mode
Table A-42. TESTSUITE/PRETTY PRINTER
Name Description
TPFO1 Testing the whole of the ADA syntax
TPF02 Difficult to format source
TPFO03 Testing the compilability of pretty printer output
TPF04 Totally unformatted source
TPF99 Set up pretty printer parameters

r

Table A-43. TESTSUITE/PRETTY PRINTER

Description

Number of characters on an input line
Depth of nesting of block-structures
Depth of nesting of loop-structures
Depth of nesting of case-structures
Depth of nesting of if-structures
Depth of bracketing expressions

Set up pretty printer parameters

Table A-44. TESTSUITE/RA/PERFORMANCE

Description

Time to enter and leave requirements analyzer with an empty
requirements database.

Time to enter and leave requirements analyzer with a requirements
database holding ten requirements.

Time to enter and leave requirements analyzer with a requirements
database holding one hundred requirements.

Time to enter and leave requirements analyzer with a requirements

~database holding one thousand requirements.

Table A-45. TESTSUITE/RA/CAPACITY

Description

Maximum number of function components in a functional decomposition

Maximum number of dataflows in a functional decomposition
Maximum number of dataflows that can be connected to a function
Maximum number of events definable in total

Maximum number of events definable for a function

Maximum number of lines of text permitted for the action statements
describing a function

Maximum number of data type entries in the data dictionary

Maximum number of components that may appear in a composite type

definition

]
@
Name
TPGO1
TPGO2
TPGO03
® TPGO4
TPGOS
TPGO6
TPGY9
®
Name
TRAO1
@
TRAQ2
TRAO3
e TRAO4
®
Name
TRGO1
TRGO2
TRGO3
@ TRGO4
TRGOS
TRGO06
TRGO7
TRGO8
o
@®
o

45

Table A-46. TESTSUITE/SOURCE GENERATOR

‘ Name Description
TSFO1 Test containing the whole of Ada syntax
TSF02 Test containing complex structures and statements
Table A-47. TESTSUITE/SOURCE GENERATOR

Name Description
TSGO1A Code-by-the-yard test with 12500 lines
TSGO01B Code-by-the-yard test with 10000 lines
TSGO1C Code-by-the-yard test with 5000 lines
TSG01D Code-by-the-yard test with 2500 lines
TSGO1E Code-by-the-yard test with 1000 lines
TSGO1F Code-by-the-yard test with 500 lines
TSGO01G Code-by-the-yard test with 250 lines
TSGO1H Code-by-the-yard test with 100 lines

Table A-48. TESTSUITE/TST

Name Description
TAA Test Bed Generator Large Sizing Test
TAB Coverage Analyzer Large Sizing Test
TAC Timing Analyzer Large Sizing Test

Table A-49. TESTSUITE/CHECK-OUT

Name Description
TSETUP Choose timing method and way of obtaining code addresses
TBUILD (Re-)Build RUN_TIME package
TCHO1A Check-out obtaining code addresses and variable addresses
TCHO1B Check-out target CPU timer and RUN_TIME.EAT
TCHO1C Check-out and determine CPU time for a standard rendezvous
TFINAL Perform final build of RUN_TIME after all checks ok

46

Table A-50. TESTSUITE/CROSS REFERENCE ANALYZER

Name Description

TVGO1 “Test to find the maximum number of versions of an item...

TVGO2 Test to find the maximum number of distinct configurations
which may exist.

TVGO3 Test to find the maximum number of entities permissible in
a configuration.

TVGO4 Test to find the maximum depth of hierarchy of .. »nfigurations
which may exist.

TVGOS Test to find the maximum number of configurations in which a
component may appear.

47

Table A-51. TESTSUITE/VCCS/SCENARIO

Name Description

TVSO1A Preprocessing components so that they can be placed under version
control

TVS01B Placing components for both systems under version control

TVS02A Building the TVS2 subsystem for the live system

TVS02B Building the TVS2 subsystem for the training system

TVS02C Building the TVS3 subsystem for the training system

TVS02D Building the TVS4 subsystem for the live system

TVSO2E Building the TVS4 subsystem for the training system

TVSO02F Building the TVSS subsystem for the live system

TVS02G Building the TVSS subsystem for the training system

TVS02H Building the TVS6 subsystem for the live system

TVS02I Building the TVS6 subsystem for the training system

TVS02J Building the TVS7 subsystem for the training system

TVS02K Building the TVS8 subsystem for the live system

TVS02L Building the TVS8 subsystem for the training system

TVS02M Building the TVS9 subsystem for the live system

TVSO2N Building the TVS9 subsystem for the training system

TVSO03A Editing files in the TVS2 subsystem for release 2

TVS03B Editing files in the TVSS subsystem for release 2

TVS03C Editing files in the TVS7 subsystem for release 2

TVS03D Editing files in the TVS9 systems for release 2

TVS03X This test should only be performed if automatic recompilation
is not supported. It recompiles the live system after the
amendments made to its components.

TVS03Y This test should only be performed if automatic recompilation
is not supported. It recompiles the training system after the
amendments made to its components.

TVSO04A Editing files in the training version of the TVS4 subsystem
in release 3

TVS04B Editing files in the TVS7 subsystem for release 3

TVS04X This test should only be performed if automatic recompilation
is not supported. It recompiles the training system after the
amendments made to its components.

Table A-52. TESTSUITE/PRETTY PRINTER
Name Description
XAA Code-by-the-yard tests cross referencing in single-user mode
XAB Code-by-the-yard tests cross referencing in multi-user mode

48

Table A-53. TESTSUITE/CROSS REFERENCE ANALYZER

Name Description

TXF01 Several types of objects in several environments

Table A-54. TESTSUITE/CROSS REFERENCE ANALYZER

Name ' Description
TXGO1 Number of available identifiers
TXGO02 Number of references to a single identifier
TXGO03 Overall number of references to identifiers

Table A-55. TESTSUITE/UTILITIES

Name Description
TZZ01 Generate 7 Ada files with 250, ... 12500 lines
TZZ02 Provides a simulated mix of jobs for the TA20 tests
49

APPENDIX B: Converting ACEC Tests to AES Format

Minimal interfacing to the AES Test Harness (to report success/failure) requires use
of the following template:

with RUN_TIME;
procedure TAOl is
begin
RUN_TIME. START_TEST("TAO1");
—— body of test here
if <test performed ok> then
RUN_TIME.END_TEST (RUN_TIME.SUCCESS);
else
RUN_TIME.END_TEST (RUN_TIME.FAILURE);
end if;
exception
when <(test specific exception)> =>
RUN_TIME.END_TEST("!<test specific exception>");
{INCLUDE "EXCEPT"}
end TAO1;

Other results in an ACEC test that would be written to a file and interpreted by a user or
by a file formatting program ~uch as ACEC MEDIAN or ACEC FORMAT would
instead go to the AES databas .

The timing device found in the ACEC include files would have to be replaced also.

The following is one of the ACEC test files as found in the file acker2.a:

with text_io ; use text_ijo;
with calendar;use calendar;
with global,use global;

procedure acker2 is

package int_io is new integer_io (int), wuse int_io;
package flt_io is new float_io (real); use flt_io;

pragma suppress(access_check);
pragma suppress(discriminant_check);
pragma suppress(index_check);

pragma suppress(length_check);
pragma suppress(range_check);

pragma suppress(division_check);

50

pragma suppress(overflow_check);,
pragma suppress(elaboration_cleck);
————————————————————————————— pragma suppress(storage_check);

m,n, kk:int ;

function ackermann(m,n:in int) return int is
begin
if m=0 then return n+1;
elsif n=0 then return ackermann(m-1,1);
else return ackermann(m—-1l,ackermann(m,n-1));
end if ;
end ackermann;

begin

pragma include("inittime");
pragma include("startime");
kk:=ackermann(3,6) ;
pragma include("stoptimeQ”);
put("acker2 - ackerman(3,6) no pragma suppress ");
pragma include("stoptime2");

—— Test Name : acker2

~- Prime Purpose : Classical test, Ackermann’s function, no suppression
-= intensive test of function calling

-- LRM Features : 2.4 4.5.2 4.5.3 5.2 5.3 5.8 6.1 6.2 6.3 6.4
- 6.5

—-— LRM Version : A

-- Optimization :

—~- Related tests : ackerl

—— Author : Thomas C. Leavitt

—— Reviewer

—— Date

—-— Source

—- Dependencies

—— Other Information

if kk /= 509 then
put("incorrect result ");
put (kk)
new_line;

end if;

put(” time per call is");
put(1000000.0*min_time/172233.0,8,1,0);

new_line;

end acker2;

51

That file would be enveloped in the AES Test Hainess commands until it looked like:

with text_io ; use text_io;
with calendar;use calendar;
with global,use global;

with RUN_TIME; —-—- added

procedure TAO0l is --"acker2 is " changed to reflect AES test names
package int_io is new integer_io (int); wuse int_io;

package flt_jio is new float_io (real); use flt_ io;

pragma suppress(access_check);

pragma suppress(discriminant_check);

pragma suppress(index_check);

pragma suppress(length_check);

pragma suppress(range_check);

pragma suppress({division_check);

pragma suppress(overflow_check);

pragma suppress(elaboration_check);

—————————— pragma suppress(storage_check);

m,n,kk:int ;

TEST_SUCCESS : BOOLEAN; -- a new boolean to track success/failure
-- The new boolean is not always needed. 1In
-- this case, the expression (kk /= 509)
-- already exists and could be used to signal
-- to the AES Test Harness whether the test
-— succeeded or failed.

function ackermann(m,n:in int) return int is
begin
if m=0 then return n+l;
elsif n=0 then return ackermann(m-1,1);
else return ackermann(m-1,ackermann(m,n-1));
end if ;
end ackermann;

begin
RUN_TIME.START TEST("TAOl"); ~- added to signal start of test

pragma include("inittime");
pragma include("startime");

kk:=ackermann(3,6) ;
pragma include("stoptime(");

put("acker2 - ackerman(3,6) no pragma suppress ");
pragma include("stoptime2");

-- Test Name : acker2

~- Prime Purpose : Classical test, Ackermann’s function, no suppression
- intensive test of function calling

52

--— LRM Features

l
e W N
U b

-- LRM Version

-— Optimization :

-- Related tests : ackerl

—— Author : Thomas C. Leavitt
-— Reviewer

—— Date

-- Source

-- Dependencies

——- Other Information

if kk /= 509 then

put("incorrect result ");

put(kk);

new line;

TEST_SUCCESS := false; -- added
end if;

put(¢” time per call is");
put(1000000.0*min_time/172233.0,8,1,0);

new_line;
if TEST_SUCCESS then -~ This block added to
RUN_TIME.END_TEST (RUN_TIME.SUCCESS); -- record success or
else -- failure
RUN_TIME.END TEST (RUN_TIME.FAILURE);
end if;
exception

-~ " when (test specific exception> =>" not added as no test specific
-= "RUN_TIME.END_TEST("!<test specific exception>");" exceptions

- occur

{INCLUDE "EXCEPT") -- added to include exception handlers, doesn’t
-- have to be added.

end TAOl; -- changed from "end acker2;"

53

.3

6.

Distribution List for IDA Paper P-2311

NAME AND ADDRESS NUMBER OF COPIES
Sponsor

Dr. John P. Solomond 2

Director

Ada Joint Program Office

Room 3E114, The Pentagon
Washington, D.C. 20301-3081

Other

Defense Technical Information Center 2
Cameron Station
Alexandna, VA 22314

IIT Research Institute 1
4600 Forbes Blvd., Suite 300

Lanham, MD 20706

Attn. Anne Eustice

Mr. Karl H. Shingler 1
Department of the Air Force

Software Engineering [nstitute

Joint Program Office (ESD)

Carnegie Mellon University

Pittsburgh, PA 15213-3890

CSED Review Panel

Dr. Dan Alpert, Director 1
Program in Science, Technology & Society

University of [llinois

Room 201

912-1/2 West Illinois Street

Urbana, Illinois 61801

Dr. Thomas C. Brandt 1
10302 Bluet Terrace

Upper Marlboro, MD 20772

Dr. Ruth Davis 1
The Pymatuning Group, Inc.

2000 N. 15th Street, Suite 707
Arlington, VA 22201

Distribution List-1

NAME AND ADDRESS NUMBER OF COPIES

Dr. C.E. Hutchinson, Dean 1
Thayer School of Engineering

Dartmouth College

Hanover, NH 03755

Mr. A.J. Jordano 1
Manager, Systems & Software

Engineering Headquarters

Federal Systems Division

6600 Rockledge Dr.

Bethesda, MD 20817

Dr. Ernest W. Kent 1
Philips Laboratories

345 Scarborogh Road

Briarcliff Manor, NY 10510

Dr. John M. Palms, President 1
Georgia State University

University Plaza

Atlanta, GA 30303

Mr. Keith Uncapher 1
University of Southern California

Olin Hall

330A University Park

Los Angeles, CA 90089-1454

IDA

General W.Y. Smith, HQ

Ms. Ruth L. Greenstein, HQ
Mr. Philip L. Major, HQ

Dr. Robert E. Roberts, HQ

Ms. Anne Douville, CSED

Ms. Audrey A. Hook, CSED
Dr. Richa.d L. Ivanetich, CSED
Mr. Terry Mayfield, CSED

Dr. Richard P. Morton, CSED
Ms. Katydean Price, CSED

Dr. Richard Wexelblat, CSED
Mr. Jonathan D. Wood, CSED
IDA Control & Distribution Vault

BN RO jud b B M s f) Pt b by

Distribution List-2

