
I'1 COPY cm I 17sf1,1

IDA PAPER P-2311

MERGING THE Ada COMPILER EVALUATION CAPABILITY (ACEC)
AND THE Ada EVALUATION SYSTEM (AES)

0
In

Richard P. Morton
NJonathan D. Wood
-. Audrey A. Hooki I:

October 1989

Prepared for D TIC
Ada Joint Program Office (AJPO) jI ELECTE

JUL3 019MIu

Approved for public release;
Distribution Unlhmtd

4 INSTITUTE FOR DEFENSE ANALYSES
1801 N. Beauregard Street. Alexandria, Virginia 22311-1772

90 07 30 031f IDA Log " Me.HO89-OU

DEi'uMOuS
IDA pbIse lbs lale~muagdsm btorpt bmutafitwek

Report
Rpasts- em at aleulvadb W m med sreftll 11 ldo rdsIDA pulishes.
Tbe, nseot embody rwlt dt maW projecis wilab (a) have.a direct bual so
dacdam veetg majo pogrm (b) address Ioons of skgm~t aomers to the
bactivo budb. the Coer and/e the publi, or it) address Issae that! hav
slgeflid oon osmclpicaless. IDA Roporis are revieweda by oulid panel of espert
to ommae Sbi hNo qult and roevuac to the poblem s al, and a"hey -relased
by soe noew"e of M&A

Or"u Reprt
&Mas Nepast record the Iludisge and .ult of IDA nUMbilMe working groups a&d
pamoteceamood ofsal ldhsal ddrelm ajo losewhdch Ilows would h
the su-cto - IDA Rer. IDA GroupRepot am reiewed by thessor lodloist
reopomslmefor the poetandelows U slete byIDA14 -aesr theirhigh quality sd

mhva, toltheprolom stoid and ae relAed bythe Preodoat MfIDA.

-ipen, aloe aelhrlhiv sand camelly considered pedec ft d MA, address dedles Wb
an earrowor Ina @ seep Moa n to coee Is Repot. IDA Paper we reiwdto ornate
tho the meod the high idodrds expoclod of refered paper in prfa leul ore or
formofm DAieo t.

ma Decummooks marend far the cemolsoc of the spoe se o he a s (a) to rcr
saholsffv work doug Is 4"c reectos stdies. (k? to record the promaidflsp of
noabee amd meetags (c) to mk w ww"aalal preflisw sad tatI o sli of

lalowalem that Is saWAWdlawl uasyzad sad smalasted. The reviw e MA Deemedst
Is oulhod to their coste aid Walede m.[The work oenete In tIS decunm wa cadcldader saibac oMM MtC M far

the Deputmai of Deleusa. The poblialis of this IDA decmoat does set lnodsl
#adao~ai by the Deputmeant of Delouse, o ssiod thes esmatbe cosirued a

IThie Pape ha bea reviwed by IDA to -at tha it meet the hlg sloodarde of
theroghiern, abjeeivily. and appeprl" sualiol melbodoog and tha the results,
ceulia s and rucmmoodaienswse propel i m pp rl i he materi -proee. 1

a IM teto~ #or Deame Aomosm

Appovd for putbs1 mie oulWmit1d Mihble .Uilasofed.

R DForm Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Pubic reporting burden for this collection of Information is estirIated to average 1 hour per response, including the time for reviewing intrjctions. searching existing data sources, gatheing and
maintaining the data needed, and completing and reviewing the collection of Intonmaton. Send coffiments regarding this burden estieise or any other aspect of this collection of information.
including suggestion for reducing this burden, to Washington Headquarters Services. Diectorate for Information Operations and Reports. 1215 Jefferson Davis Highway. Suite 1204. Aringlon.

VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188). Washington. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

September 1989 Final

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Merging the Ada Compiler Evaluation Capability (ACEC) and
the Ada Evaluation System (AES) MDA 903 89 C 0003

6. AUTHOR(S) T-D5-304
Richard P. Morton, Jonathan D. Wood, Audrey A. Hook

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Institute for Defense Analyses REPORT NUMBER

1801 N. Beauregard St. IDA Paper P-2311
Alexandria, VA 22311-1772

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGIMONITORING

Ada Joint Program Office AGENCY REPORT NUMBER

Room 3E1 14, The Pentagon
Washington, D.C. 20301-3081

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABIUTY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release, unlimited distribution. 2A

13. ABSTRACT (Maximum 200 words)

This IDA Paper documents the results of a special analysis requested by the Ada Joint Program Office.
The purpose of this analysis was to determine the feasiblity and desirability of merging two
separately developed software systems which can be used to expose compiler performance charac-

* teristics. The two systems were the Ada Compiler Evaluation Capability (ACEC) and the Ada
Evaluation System (AES). The study itself consisted primarily of reviewing documents related
to each system. In addition, it was necessary to load both systems and inspect test cases to determine
the degree of overlap.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Ada Programming Language; Ada Compiler Evaluation Capability 70
(ACEC); Ada Evaluation System (AES); Compilers; Test Suites. 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF

OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT

Unclassified Unclassified Unclassified UL
NSN 7540,01-280-5500 Standard Form 298 (Rev. 2-80

Prescribed by ANSI Std. Z39-18

* 298-102

IDA PAPER P-2311

MERGING THE Ada COMPILER EVALUATION CAPABILITY (ACEC)
AND THE Ada EVALUATION SYSTEM (AES)

Richard P. Morton
Jonathan D. Wood
Audrey A. Hook

Accession For

NTIS GRA&I
DTIC TAB

* October 1989 Unannounced 5
Justification

By
Distribution/

Availability Codes

Avail and/or
Dist Special

IDA
!NSTITUTE FOR DEFENSE ANALYSES

Contract MDA 903 89 C 0003
Task T-D5-304

0

PREFACE

The purpose of IDA Paper P-23 11, Merging the Ada Compiler Evaluation Capability (ACEC)
and the Ada Evaluation System (AES), is to communicate the results of a special analysis
requested by the Ada Joint Program Office (AJPO). The purpose of this analysis was to determine
the feasibility and desirability of merging two separately developed software systems which can
be used to expose compiler performance characteristics.

The importance of this document is based on fulfilling the objective of Task order T-D5-306,
Ada Technology Insertion, which is not a specific deliverable under this task but is a paper
mutually agreed upon by the Sponsor and IDA. P-2311 documents the comparison of the

* capabilities of the ACEC and AES and the resulting conclusions on the desirability and effort for
undertaking the merger of these two software software systems. The paper is directed towards the
AJPO staff who will make program decisions on the use of compiler evaluation technology.

This document was reviewed on September 18, 1989 by the following members of the CSED
Peer Review: Dr. David Carney, and David Hough. An external review was also performed by

* Dr. John Solomond and Dr. Erhard Ploedereder.

V

CONTENTS

1. Introduction 1
1.1 Background . 1
1.2 Scopc . 1
1.3 Organization of this Report 2

* 1.4 Acronyms 2

2. Study Approach 5

3. Findings 7
3.1 Finding 1: The Overlap Between the Two Test Suites is Small 7
3.2 Finding 2: The User Interfaces to the Two Systems are Different 7

* 3.3 Finding 3: Merging the AES into the ACEC Would be Difficult 7
3.4 Finding 4: Merging the ACEC into the AES Would be Much Less

Difficult 7
3.5 Finding 5: The Two Systems Appear to Have Been Developed with

Different Primary Users in Mind 8

• 4. Conclusions 9
4.1 Conclusion 1: There is Benefit in Using Both Test Suites 9
4.2 Conclusion 2: There is Benefit in Merging the Two Test Suites 9
4.3 Conclusion 3: The AES Test Harness Should be the Basis for the

Merge 11
• • 4.4 Conclusion 4: Merging the ACEC Into the AES is the Least Expensive

Way to Obtain a Comparable Capability in a Single Product 11
4.5 Conclusion 5: The Merged Product Must be Easily Partitionable for Ease

of Use by Users Who Are Only Interested in an Subset of the
Tests 11

0 5. Recommendations 13
5.1 Recommendation 1: Make Use of Both Test Suites 13
5.2 Recommendation 2: Combine Them Under the AES Test Harness and

Database 13
5.3 Recommendation 3: Negotiate for Joint Distribution and

Maintenance 13
• 5.4 Recommendation 4: Establish a DoD Program for Ada Compiler and

APSE Evaluation 13
5.5 Recommendation 5: Repeat This Evaluation After Delivery of the Next

Version of the ACEC 14

APPENDIX A: AES/ACEC Test Suite Overlap 18
* A. 1 AES Tests Which Don't Duplicate ACEC Tests 18

A. 1.1 Compiler Efficiency (Group A) 19
A.1.2 Compiler Informational Quality (Group B) 20
A.1.3 Compiler Error Reporting (Group C) 21
A. 1.4 Compiler Error Recovery (Group D) 21

• A.1.5 Compiler Warning (Group E) 22
A.1.6 Compiler Behavioral (Group F) 22
A.1.7 Compiler Capacity (Group G) 23
A. 1.8 MASCOT Tasking (Group K) 25

0
Vii

A.1.9 Storage Management (Group M) 26
A.1.10 Input/Output (Group N) 26
A.1.11 Run-Time Limit (Group Q) 27
A.1.12 Implementation Dependency (Group R) 27
A.1.13 Erroneous Execution (Group S) 28
A.1.14 Incorrect Order Dependency (Group T) 29
A.1.15 Link/Load Tests (Group U) 30

A.2 AES Tests Which Partially Duplicate ACEC Tests 31
A.2.1 Compiler Run-Time Efficiency (Group I) 31
A.2.2 NPL Test Suite (Group J) 32
A.2.3 General Tasking (Group L) 33
A.2.4 Optimizing Tests (Group 0) 34
A.2.5 Dhrystone and code-by-the-yard (Group V) 35

A.3 Preprocessing Benefits for ACEC Tests 36
A.4 ACEC Tests 37
A.5 Other AES Tests 37

APPENDIX B: Converting ACEC Tests to AES Format 50

viii

LIST OF TABLES

Table 1. Summary of Characteristics 10

0 Table A-1. AES Tests which do not duplicate ACEC Tests 18

Table A-2. AES Compiler Efficiency Tests 20

Table A-3. AES Compiler Informational Quality Tests 21

Table A-4. AES Compiler Error Reporting Tests 21

Table A-5. AES Compiler Error Recovery Tests 22

Table A-6. AES Compiler Warning Tests 22

Table A-7. AES Compiler Behavioral Tests 23

0 Table A-8. AES Capacity Tests 24

Table A-9. AES Capacity Tests (Continued) 25

Table A-10. AES MASCOT Tasking Tests 26

Table A-11. AES Storage Management Tests 26

* Table A-12. AES Input Output Tests 27

Table A-13. AES Run-Time Limit Tests 27

Table A-14. AES Implementation Dependency Tests 28

Table A-15. AES Erroneous Execution Tests 29
Table A-16. AES Incorrect Order Dependency Tests 30

Table A-17. Link/Load Tests 31

Table A-18. AES Tests which partially duplicate ACEC Tests 31

0 Table A-19. AES Run-Time Efficiency Tests 32

Table A-20. AES NPL Test Suite Tests 33

Table A-21. AES General Tasking Tests 34

Table A-22. AES Optimizing Tests 35

0 Table A-23. AES Dhrystone and code-by-the-yard Tests 36

Table A-24. ACEC Tests 36

Table A-25. ACEC Tests 37

Table A-26. Other Tests in AES Test Suite 38
Table A-27. TESTSUITE/CLI/PERFORMANCE 39

Table A-28. TESTSUITE/CLI/ERROR-REP 39

ix

Table A-29. TESTSUITE/CLIIERROR-RECOVERY 39

Table A-30. TESTSUITE/CLI/CAPACITY 40

Table A-31. TESTSUITE/CHECK-OUT 41

Table A-32. TESTSUITE/CLI/IMPL-DEP...............41

Table A-33. TESTSUITE/CLI/SCENARIOS..............42

Table A-34. TESTSUITEIDEBUGGER 42

Table A-35. TESTSUITE/DEBUGGER 42

Table A-36. TESTSUTE/EDITOR/CAPACITY 43

Table A-37. TESTSUITE/EDITOR.................43

Table A-38. TESTSUITE/PLS/SCENARIO 43

Table A-39. ThSTSUITE/NAME EXPANDER.............44

Table A-40. TESTSUITE/NAME EXPANDER.............44

Table A-41. TESTSUITE/PRETTY PRINTER 44

Table A-42. TESTSUITE/PRETTY PRINTER 44

Table A-43. TESTSUITE/PRETTY PRINTER 45

Table A-44. TESTSUITE/RA/PERFORMANCE 45

Table A-45. TESTSUITE/RA/CAPACITY 45

Table A-46. TESTSUITE/SOURCE GENERATOR 46

Table A-47. TESTSUITE/SOURCE GENERATOR 46

Table A-48. TESTSUITE/TST..................46

Table A-49. TESTSU1TE/CI{ECK-OUT 46

Table A-SO. TESTSUITE/CROSS REFERENCE ANALYZER. 47

Table A-Si. TESTSUITE/VCCS/SCENARIO 48

Table A-52. TESTSIJITE/PRE'ITY PRINTER 48

Table A-53. TESTSUITE/CROSS REFERENCE ANALYZER. 49

Table A-54. TESTSUITE/CROSS REFERENCE ANALYZER. 49

Table A-55. TESTSUITE/UTILITES 49

MERGING THE ACEC AND THE AES

1. Introduction

0 1.1 Background

The Computer and Software Engineering Division (CSED) of the Institute for
Defense Analyses (IDA) was requested by the Director, Ada Joint Program Office
(AJPO) to investigate the technical feasibility of merging the Ada Compiler Evaluation
Capability (ACEC) suite of tests developed by the US Air Force and the Ada Evaluation

• System (AES) developed by the Ministry of Defense (MOD) United Kingdom (UK).

The AES was provided to the US under the terms of the Memorandum of
Understanding (MOU) which established the NATO Special Working Group (SWG) on
APSE project. The MOU has the following ten nations as current signatories (Belgium,
an original signer, has since withdrawn): Canada, Denmark, France, Germany, Italy,

0 Netherlands, Norway, Spain, United Kingdom and United States. Under the terms of the
agreement, each of the nations, except France and Denmark, are contributing a part of
the APSE or related technology to all the member nations. However, these contributions
are restricted outside their developing country to military purposes only. Furthermore, at
the moment, there is no agreement on any follow-on maintenance on any contributed
product. No new updates to the AES are expected to be received until the NATO SWG

• on APSE evaluations are performed in approximately two to three years.

The ACEC is being developed by Boeing under contract to US Air Force Systems
Command, Aeronautical Systems Division, Wright-Patterson Air Force Base (WPAFB).
It is distributed by the Data and Analysis Center for Software (DACS), Griffiss AFB.
The ACEC is subject to export control restrictions, and is not available outside the US.

0 Within the US it is available only with the proper approvals. Since the DACS was in the
process of changing operating contractors at the time of this study, a copy of the ACEC
was borrowed from the AJPO after the specified documents were filed with WPAFB.

The ACEC is designed as a collection of test programs and support packages which
are compiled and linked to set up file directories so that the entire collection of test

0 programs can be run after a command script or files have been prepared by the user. The
ACEC also has the capability of comparing results from a system under test with results
from other systems and computing a normalized statistical comparison.

AES is designed with a test harness and a results database. The test harness
functionality allows a user to run one or many test programs, to associate tests into

0 ordered groups, to track the status of tests, to define relationships between tests, and to
generate reports where whole phrases or sentences are determined by values in a central
results database. The results data base contains all known information about the test
suite and results, including the value of implementation dependent information.

1.2 Scope
The authors of this study have interpreted the concept of technical feasibility as

encompassing a concern for reasonable benefit if the merge were to take place.
Consequently, the study attempted to answer the following questions:

01

a. What is the benefit to the user in using both products?

b. What is the benefit in combining them?

c. Is there a technically reasonable way to do the merge?

The materials available to the authors were not necessarily the latest products of
either supplier of evaluation technology. In particular, the analysis of the ACEC was
based entirely on Version 1. We were told that a second version is under development but
we did not receive any documentation. Also, another version of the AES, superior to the
version available, was demonstrated to one of the team members by the UK MOD. At
this time, it is not known if that version will ever be released to the US.

1.3 Organization of this Report

Section 2 of this report describes the approach taken in conducting this analysis.
Section 3 contains findings, the facts uncovered in the investigation. Section 4 reports the
conclusion which represent our interpretations derived from those findings. Section 5
contains our recommendation for acting upon the conclusions. A bibliography of the
documents used for this study is included at the end of the report.

Appendix A presents the analysis of the test suites that lead to Finding 1 is Section
3.1. Appendix B demonstrates the process of converting ACEC tests to run under the
AES.

1.4 Acronyms

ACEC Ada Compiler Evaluation Capability

AES AJa Evaluation System

AJPO Ada Joint Program Office

APSE Ada Programming Support Environment

CSED Computer and Software Engineering Division

DACS Data and Analysis Center for Software

DES Data Encryption Algorithm

EW Electronic Warfare

IDA Institute for Defense Analyses

10 Input/Output

LOC Lines of Code

MOD Ministry of Defense

MOU Memorandum of Understanding

NATO North Atlantic Treaty Organization

SEI Software Engineering Institute

2

SWG Special Working Groups

* UK United Kingdom

WPAFB Wright-Patterson Air Force Base

4

3

I4

2. Study Approach

Some of the members of the study team had prior exposure to the AES. One member,
Jon Wood, had previously installed and used the AES, including writing additional tests
for it. Audrey Hook had attended a briefing and demonstration of the AES given by the
the UK sponsors.

The study itself consisted of reviewing the documents related to each system, loading
both systems, and inspecting test cases. In addition, telephone conversations were held
with Lt Robert Marmelstein, the ACEC project manager for the US Air Force, and Dr.
Nelson Weiderman who has conducted related studies at the Software Engineering
Institute (SEI).

.... -- m m m m 6

3. Findings
• 3.1 Finding 1: The Overlap Between the Two Test Suites is Small

The data to support this finding is presented in Appendix A. Briefly, the AES
comprises 521 tests and the ACEC 1069 tests. Of these, only 53 AES tests appear to be
iuplicated in the ACEC. This represents approximately 10% of the AES tests and 5% of
the ACEC. However, because of the difference in test generation, it is difficult to count

0 the tests precisely. For example, an AES test file that generates multiple versions of the
same test is counted as only one test, but where the ACEC has multiple versions of the
same test that differ only slightly, each version is counted.

3.2 Finding 2: The User Interfaces to the Two Systems are Different

* The ACEC is completely batch oriented. The tests are executed with the aid of batch
command files, and the results are written to files. Two data reduction programs are
provided for generating output, one for formating and printing the data produced by the
tests, and one for performing statistical analyses on that data and data from comparable
tests of other compilers and system configurations.

• The AES uses both interactive and batch processing modes. Testing is performed
interactively, while reports of results are generated in batch mode. The outputs of the
tests are stored in a database, but no user language is provided for retrieving individual or
aggregate results interactively.

3.3 Finding 3: Merging the AES into the ACEC Would be Difficult
* The primary reason for this finding is that the AES test harness provides functionality

that is not in the spirit of the ACEC. This problem is illustrated by two particular areas,
capacity tests and the error analysis tests. The tests for the capacity of both the compiler
and the run-time environment make use of the capability to dynamically generate tests to
conform to the search strategy chosen to determine capacity. One search strategy used in

0 some of the tests is the binary search. In some cases, the test harness asks the user for the
initial values of the parameters to be used. Combining both of these capabilities results in
a unique series of tests to be run for the specific settings of the parameters chosen. The
ACEC has no capability to generate tests dynamically. In effect, the most sophisticated
capabilities of the AES test harness would have to be added to the ACEC.

* The ACEC currently has no support for tests that fail, but the AES has many tests
that are designed to test the robustness of error handling and the readability of error
messages by creating situations that are expected to fail. The ACEC functionality would
have to be extended to add the capability to capture, analyze and report failure
conditions.

0 3.4 Finding 4: Merging the ACEC into the AES Would be Much Less Difficult

The only functionality of the ACEC that is not specifically in the AES is the Median
program. However, since the AES has a statistical analysis package, the major
requirement would be to adapt the program to the AES database as its source of input.

Adapting the functionality of one system to the other is only part of the problem. It is
* also necessary to convert the tests from one format to the other. In both cases, the effort

required is considerable but straightforward. All of the tests need to be converted in
essentially the same way. In converting ACEC tests to AES tests, for example, the
statements that write to the output file need to be changed to update the database. The

* 7

opposite is true for converting from AES to ACEC. The work is seen as tedious but
simple, once a design has been established on how one system is to be reflected in the
other system.

3.5 Finding 5: The Two Systems Appear to Have Been Developed with Different Primary
Users in Mind

Ada compiler and APSE evaluation technology could reasonably be used for several
purposes:

1. The selection of a suitable compiling system or tools for a specific project by
project managers.

2. Enhancing the understanding of the pluses and minuses of a compiling system or
tool by its users (programmers and others).

3. Identifying weaknesses in a compiling system or tool under development by the
developing organization.

Generally, managers selecting tools for a project do not want to run the tests
themselves. In all likelihood, they would be satisfied with buying the results from an
independent and reliable testing organization because that would undoubtedly be the least
expensive way to obtain the results, which are only needed once for an acquisition
decision.

Users and developers, however, are more likely to be in the situation of wanting to run
specific tests many times, possibly even writing some additional tests for some special
need. Such users would undoubtedly find the delays of using a testing service to be too
slow and costly. They would be much better off having their own copy of the testing
system to use whenever it is needed.

This line of reasoning leads to the observation that testing technology is needed to
serve the needs of both individual users who want to run their own tests and testing
laboratories who need to generate reports suitable for reading by someone else.

Both the ACEC and the AES could be used by either kind of organization, but it
appears that each has only one in mind as the primary user. The AES includes a large
number of tests of human factors in the form of checklists with supporting test programs.
The results are then entered into the database for use in generating reports. The report
generator has extensive capabilities for generating English text as part of the reports.
These capabilities are most suitable for a testing laboratory whose reports are to be read
by others.

The ACEC has no human factors tests. In fact, the ACEC documentation
specifically says that there is no need for such tests because just running the test suite will
give the user enough exposure to the compiler under test to draw his own conclusions
regarding its ease of use. The clear intention here is that the user is the person directly
concerned with such issues. The AES contains a large number of tests that require result
evaluations involving considerable subjectivity of the evaluator. Examples are AES
Group B, C, D, and E tests.

8

4. Conclusions

4.1 Conclusion 1: There is Benefit in Using Both Test Suites

This conclusion stems from the finding that the overlap between the two test suites is
small. The two systems have complementary capabilities: the ACEC tests provide
analysis of performance-related criteria related to Ada language constructs at a finer
level of granularity, while the AES provides for the evaluation of additional factors and
additional tools. The benefit to be derived from using both test suites is the ability to
accomplish both objectives. Of course, there may be some users who have only one
objective, but making both test suites available does not require anyone to use both.

4.2 Conclusion 2: There is Benefit in Merging the Two Test Suites

* All the following standard benefits of combining two products into one should apply to
this case if the merger is performed in a rational way:

a. Maintenance and continued enhancement for one product should be easier than

for two.

b. A common user interface would make iteasier for the user to learn and use.

c. Duplicate tests could be eliminated to reduce the size of the combined product.

d. Focused user experience on one product leading to suggested improvements
which benefit the entire Ada community.

One can also focus on four usability attributes (coverage, selectivity, application
metrics, user interface) of these evaluation tools and compare the differences between a
merged set of tools and separate use of these tools. Coverage is an important usability
attribute which, ideally, would provide tests which expose resource usage, robustness,
and limitation characteristics of the software under test. Selectivity refers to the user's
ability to select tests and parameters which help answer specific user questions: this is

* another important usability attribute of an evaluation tool (e.g., how much overhead is
associated with using generics and/or task rendezvous?) The availability of application
specific metrics is also important because there is wide variability of application
performance requirements. Finally, the user interface is an important usability attribute
because it determines how much effort a user must expend to achieve some control over
the results from the tool (e.g., tailoring a test set and metrics for application

* requirements). Table 1 is a summary of the characteristics of these merged and separate
evaluation tools which leads to the conclusion that the merger provides superior usability
characteristics. In addition, it is likely that by combining the outputs from the two test
suites into a common database that additional information will be obtainable that was not
available from either one separately.

9

Table 1. Summary of Characteristics

C

V '

aQ
a

x
-,43 2 0 2,~ c 0

ts - -2j.

0 '* C

0 g .2 c

.2 0 E c

G~o

-, '24-0A=V'

Eu~ E

U0 ED04

ig -CF.3

O-S c 6, 12
LU C 0) L , ;9 1 0 U 92

j E U4

.2I
a r=

U U

SM 2.8B
o SM ecc C

a12

4.3 Conclusion 3: The AES Test Harness Should be the Basis for the Merge

This conclusion stems from the combination of findings that adding the ACEC tests to
the AES would be far less expensive than adding the AES tests to the ACEC. In
addition, the AES test harness provides a more flexible capability than the present
ACEC preprocessor. Granted, the ACEC approach may be easier to use for some
situations, but the AES is judged to be easier to use when the full complement of

• capabilities is being considered. It is also judged easier to expand into new areas in the
future because of both the test harness and the database.

4.4 Conclusion 4: Merging the ACEC Into the AES is the Least Expensive Way to Obtain a
Comparable Capability in a Single Product

The cost to add the ACEC tests and Median capability to the AES is considered to be
substantially below the cost to produce the combined capability any other way. We
estimate that one staff-year of focused effort should be adequate to merge the ACEC
with the AES. This work should include deleting redundant tests, converting output
generation to AES database updates, and converting input formats including combining
similar tests into a single parametric test. Much of the repetitive work is expected to be

* done using editing macros or some other simple automated method.

4.5 Conclusion 5: The Merged Product Must be Easily Partitionable for Ease of Use by
Users Who Are Only Interested in an Subset of the Tests

As indicated in Finding 5, hands-on users may not be interested in those tests
developed specifically to support third party evaluations, and tool developers are likely to
be interested only in those tests related to the tools they are developing. This means that
those users who are only interested in a subset should only have to pay for the part of
interest, or even if the entire system is free, should only have to load the part of interest in
order to run that part. However, evaluations based upon partitioned test suites may result
in isolated and subjective data points. A high incidence of disputes and unfairness claims

* is to be expected from vendors, especially if the tests are not freely available to them.

9

* 11

12

5. Recommendations

0 5.1 Recommendation 1: Make Use of Both Test Suites

Since the ACEC and the AES are more complementary than competitive, each
should be used for the functions it performs best. The mechanism for using both test
suites has to permit selective execution of tests because not all users will need all tests.

5.2 Recommendation 2: Combine Them Under the AES Test Harness and Database

As in Conclusion 3, this conclusion stems from the combination of findings that adding
the ACEC tests to the AES would be far less expensive than adding the AES tests to the
ACEC. In addition, the AES test harness provides a more flexible capability than the
present ACEC preprocessor. Granted, the ACEC approach may be easier to use for
some situations, but the AES is judged to be easier to use when the full complement of
capabilities is being considered. It is also judged easier to expand into new areas in the
future because of both the test harness and the database. However, neither of these
current test suites should continue to be developed on their own without regard to the
merged capability.

5.3 Recommendation 3: Negotiate for Joint Distribution and Maintenance

The current restrictions on the distribution of the ACEC and the AES will, in a very
short time, negate some of the advantages of combining the two systems. We
recommend, therefore, that the US enter into a negotiation with the UK to relax those
restrictions and to agree on a joint plan for the long term evolution and maintenance of
the combined evaluation technology. Negotiations with the UK should attempt to obtain
the right for public release of the AES tests; the ACEC should equally be available.
Evaluations conducted by DoD evaluation centers should, as a matter of course, include
solicited comments by the respective vendor on the evaluation results. Maximum benefit
to the Ada community at large will be achieved if such agreements include commercial
use as well as military use.
5.4 Recommendation 4: Establish a DoD Program for Ada Compiler and APSE

Evaluation

DoD needs to decide how compiler and environment evaluation technology is to be
used to its benefit. We recommend the establishment of at least two centers within each
service to act as a testing laboratory and distribution point for testing technology. It is
appropriate for some DoD programs to make use of the testing technology in a hands-on
way, while others should simply buy reports from a central evaluation service. Under the
current terms of the MOU that makes the AES available, that service and all its
customers must be within DoD. If those conditions are changed, it may become, in time,
more appropriate for DoD to buy evaluation results commercially. In the meantime,

* Ada-based programs need access to the technology, and the DoD should take steps to
make it available to them.

0 13

5.5 Recommendation 5: Repeat This Evaluation After Delivery of the Next Version of the
ACEC

At least two changes in the findings are likely. First, the degree of overlap is likely to
increase because ACEC version 2 may include some tests for tools other than the
compiler. Second, the cost of merging the ACEC into the AES will be greater because
there will be more tests to merge. It is not likely, however, that these changes will be
substantial enough to invalidate any of the conclusions or recommendations.

14

BIBLIOGRAPHY

0 AES Documents

AES/1 User Introduction to the Ada Evaluation System, Release 1, Version 1,
Issue 2, I. Marshall, 27th September 1988

* AES/2 Volume 1, Reference Manual for the Ada Evaluation Compiler Tests,
Release 1, Version 1, Issue 2, I. Marshall, 5th December 1988

AES/2 Volume 2, Reference Manual for the Ada Evaluation Compiler Tests,
Release 1, Version 1, Issue 2, I. Marshall, 5th December 1988

AES/3 Ada Evaluation Sys:em User Manual Parts 0 and I Introduction and
General Information, Release 1, Version 1, Issue 2, I. Marshall, 25th
November 1988

AES/3 Ada Evaluation System User Manual Part IV Evaluation of the Linker
* and Loader, Release 1, Version 1, Issue 2, I. Marshall, 30th September 1988

AES/3 Ada Evaluation System User Manual Part V Evaluation of the
Symbolic Debugger, Release 1, Version 1, Issue 3, 1. Marshall, 25th
November 1988

* AES/3 Ada Evaluation System User Manual Part VI Evaluation of the Version
and Configuration Control System, Release 1, Version 1, Issue 2, I.
Marshall, 3rd October 1988

AES/3 Ada Evaluation System User Manual Part VII Evaluation of the Pretty
• Printer, Release 1, Version 1, Issue 3, I. Marshall, 24th November 1988

AES13 Ada Evaluation System User Manual Part VIII Evaluation of the
Editor, Release 1, Version 1, Issue 2, I. Marshall, 25th October 1988

AES13 Ada Evaluation System User Manual Part X Evaluation of the
P Requirements Analyzer, Release 1, Version 1, Issue 2, 1. Marshall, 19th

September 1988

AES13 Ada Evaluation System User Manual Part XI Evaluation of the Test
Support Tools, Release 1, Version 1, Issue 2, I. Marshall, 24th November

* 1988

AES/3 Ada Evaluation System User Manual Part XIII Evaluation of the
Cross-Reference Analyzer, Release 1, Version 1, Issue 2, 1. Marshall, 24th
November 1988

* AES13 Ada Evaluation System User Manual Part XIV Evaluation of the Name
Expander, Release 1, Version 1, Issue 2, I. Marshall, 5th October 1988

0
15

AES/3 Ada Evaluation System User Manual Part XV Evaluation of the Source
Generator, Release 1, Version 1, Issue 2, I. Marshall, 3rd October 1988

AES/3 Ada Evaluation System User Manual Part XVI Appendices System,
Release 1, Version 1, Issue 2, 1. Marshall, 5th October 1988

AES15 Ada Evaluation Test Harness - VAX/VMS Installation Guide, Release,
1 Version 1, Issue 2, S.D. Bluck, 5th October 1988

16

ACEC Documents

Ada Compiler Evaluation Capability (ACEC) Version Description Document,
AFWAL-TR-88-1093, T. Leavitt, K. Terrell, Boeing Military Airplane,
August 1988

* Ada Compiler Evaluation Capabiliy (ACEC) Reader's Guide, AFWAL-
TR-88-1094, T. Leavitt, K. Terrell, Boeing Military Airplane, August 1988

ACEC Technical Operating Report: User's Guide, AFWAL-TR-88-1095, T.
Leavitt, K. Terrell, Boeing Military Airplane, August 1988

SEI Documents

Ada Adoption Handbook: Compiler Evaluation and Selection, Version 1.0,
N. Weiderman, March 1989, CMU/SEI-89-TR-13

* Other Documents

B. Wichmann, Letter to Dr. John Solomond dated 18 April 1989.

0

S1

0 17

APPENDIX A: AES/ACEC Test Suite Overlap

AES tests are organized into test groups, each of which is identified by a letter of the
alphabet. Some of the groups of tests in general do not duplicate the functionality of
ACEC tests. These groups are listed in the following section. The section after that (at
the same level) lists the AES test groups which partially duplicate the functionality of
ACEC tests. In both sections, the AES tests are identified and the differences with the
ACEC tests explained. The names and descriptions of each of the tests is include'
because the test descriptions themselves make a case that the extent of overlap between
the AES and ACEC test suites is minimal. Of all 311 AES compilation system tests, 258
(83%) do not duplicate ACEC tests and 53 (17%) do duplicate ACEC tests.

Many of the tables in this appendix were automatically constructed from data in the
AES test suite. Inconsistencies in spelling, the case of letters, and the use of phrases
rather than sentences often reflect the actual menu items in the used in the AES Test
Harness. No attempt has been made to standardize the entries in those tables. Some of
the menu entries use the word "erroneous" when "illegal" would be more in accord with
the usual Ada terminology.

A.1 AES Tests Which Don't Duplicate ACEC Tests

The following AES test groups do not duplicate the functionality of ACEC tests:

Table A-1. AES Tests which do not duplicate ACEC Tests

Group Test Group Name Number of Tests in Group

A Compiler Efficiency 22
B Compiler InformationalQuality 5
C Compiler Error Reporting 7
D Compiler Error Recovery 17
E Compiler Warning 9
F Compiler Behavioral 6
G Compiler Capacity 53
K MASCOT Tasking 7
M Storage Management 10
N Input Output 18
Q Run-Time Limit 7
R Implementation Dependency 25
S Erroneous Execution 13
T Incorrect Order Dependency 17
U Link/Load 14

Total 230

The ACEC tests have time and space performance as their test information domain.
The ACEC documentation identifies several areas of compiler test information as being
outside the scope of the ACEC effort, in particular, questions about compiler features
such as automatic recompilation, the quality of error messages, user friendliness, and
diagnostics. The AES test domain includes most of these types of compiler test
information. All of these test groups determine information about compiler features that
varies from compiler to compiler. In particular, Groups B, C, and E seek information

18

that characterizes the quality of messages emanating from the compiler. Groups B, C, D,
* and E are very similar in form. Groups D, F, M, N, R, and T seek to answer questions

about the particular compiler implementation features which can vary from compiler to
compiler. Group G is concerned with measuring a compiler's capacity to handle large
numbers of Ada language features. Each of these groups is discussed in greater detail
below.

* A.1.1 Compiler Efficiency (Group A)

The tests in this group measure the speed at which the compiler compiles legal Ada
source code, but does not do so in a language feature-by-feature manner. Instead, global
issues are probed. For example, tests AA, AB, AC, AD, and AE measure a mix of Ada
language features, and tests TA18-TA22 take advantage of the AES preprocessor to

* determine the relative speed of the compiler with and without listings and with and
without other compiler settings in effect. TA25 measures the effect of simultaneous
compilations, which is practical information indeed. Finally, tests TA30-TA32 determine
whether the compiler can take advantage of information from previous compiles. Thus,
while this group at first appears to duplicate ACEC tests, closer examination shows these
tests to be of different character from similar tests in the ACEC.

1

• 19

Table A-2. AES Compiler Efficiency Tests

Name Description

TA01 Compiling a minimal main procedure
TA02 Compiling generic units
TA03 Compiling WITHed units
TA04 Compiling USEd units
TA05 Compiling large uninitialized arrays
TA06 Compiling large initialized arrays
TA08 Producing error messages
TA09 Compiling overloaded identifiers
TA12 Compiling a large number of strings
TA13 Compiling a large number of enumeration literals
TA14 Compiling identifiers with the same name but different scope
TA15 Compiling subunits
TA16 Compiling local optimizations
TA17 Compiling global optimizations
AA Code-by-the-yard tests compiled in single-user mode
AB Code-by-the-yard tests compiled in multi-user mode
AC Code-by-the-yard tests compiled with syntax-only checking
AD Code-by-the-yard tests compiled with syntax and semantic checking only
AE Code-by-the-yard tests compiled in batch mode
TA18 Compiling with debug information
TA19 Compiling when listings produced
TA21 Compiling a null procedure with syntax checking only
TA22 Compiling a null procedure with syntax and semantic checking only
TA25 Multiple simultaneous compilations
TA30 Recompilation where only minor modifications have occurred
TA31 Recompilation where only minor modifications to a withed unit have occurred
TA32 Recompilation when there are no changes to the source

A. 1.2 Compiler Informational Quality (Group B)

This group causes compilation of valid Ada code such that as many listings as possible
are generated. While the process of generating the listings is automatic, the actual
evaluation of the listings is not. None of the AES Group B tests duplicates any ACEC
tests.

20

Table A-3. AES Compiler Informational Quality Tests

Name Description

TBO1 Quality of assembler code I sting, data map, concordance listing and general
compiler information

TB02 Quality of compilation and elaboration dependency information
TB03 Quality of resolution overloading information
TB04 Quality of listing of calls to the run-time system
TBO5 Quality of source related information
TB06 Quality of information relating to the source of dependent compilation units
TB07 Quality of information relating to the optimization of code

* TB08 Further test of the quality of information indicating calls to the
run-time system

A.1.3 Compiler Error Reporting (Group C)

Each of the tests in this group causes illegal Ada source code to be compiled. The
* generation of compiler output is automatic, but the evaluation of the results is not. The

ACEC contains no tests which examine the behavior of the compiler when it is presented
with illegal Ada source code.

Table A-4. AES Compiler Error Reporting Tests

Name Description

TC01 Reporting of unresolved overloading, no applicable overloading and
type mis-match without overloading

TC02 Reporting of erroneous type definitions and hidden identifiers
0 TC03 Reporting of common mistakes

TC04 Reporting of illegally specified aggregates, illegal non-conformance,
illegal-declarations in package specifications and illegal type conversions

TC05 Reporting of declarative errors and error clarity
TC06 Reporting of the omission of the prime in an initialized allocation

0 TC07 Errors hidden by others occurring later

A.1.4 Compiler Error Recovery (Group D)

Each of the tests in this group causes illegal Ada source code to be compiled. The
generation of compiler output is automatic, but the evaluation of the results is not. The
ACEC contains no tests which examine the behavior of the compiler when it is presented
with illegal Ada source code.

* 21

Table A-S. AES Compiler Error Recovery Tests

Name Description

TDO1 Recovery from missing semicolons
TD02 Recovery from missing generic keyword
TD03 Recovery from mis-matched BEGIN and END and from missing keywords
TD04 Check whether semantic analysis occurs when syntax errors are found
TDO5 Recovery from illegal assignments and use of '_
TD06 Recovery from mis-spelled keywords
TD07 Recovery from illegal type declarations and discriminants
TD08 Recovery from using wrong subprogam specification keyword
TD09 Recovery from mis-matched parentheses and quotes
TD10 Recovery from compiling CORAL 66 source and Pascal source
TD11 Recovery from using illegal comments
TD12 Recovery from finding the incorrect order of declarations
TD13 Recovery from missing subprogram and package specifications and the

use of a specification where a body is required
TD14 Recovery from the use of keywords as identifiers
TD15 Recovery from the use of anonymous array types in record components
TD16 Recovery from the use of a parenthesised range
TD17 Further tests on the recovery from the use of illegal type declarations

A.1.5 Compiler Warning (Group E)

Each of the tests in this group causes legal but suspect Ada source code to be
compiled. The generation of compiler output is automatic, but the evaluation of the
results is not. The ACEC contains no corresponding tests.

Table A-6. AES Compiler Warning Tests

Name Description

TE01 Reporting of unrecognized pragmas, pragmas containing syntax errors and
illegally placed pragmas

TE02 Reporting of unset variables
TE03 Reporting of endless loops
TE04 Reporting of exceptions which will be raised at run-time
TE05 Reporting of warnings when errors are present
TE06 Reporting of dead variables and dead code
TE07 Report;ng of whether a divide by zero is replaced by code which

raises an exception
TE08 Further tests on the reporting of unset variables
TE09 Further tests on the reporting of endless loops

A. 1.6 Compiler Behavioral (Group F)

These tests examine the behavior of the compiler when it compiles a file containing
more than one compilation unit, some of which are legal and some of which are not legal.
No ACEC tests deal with any type of illegal Ada source code conditions.

22

Table A-7. AES Compiler Behavioral Tests

Name Description

TF01 Compilation of a file containing three compilation units, the second
unit being invalid and not a dependent of the third unit

TF02 Compilation of a file containing two compilation units, the first unit
* being invalid (but already existing in the Program Library) and a

dependent of the third unit
TF03 Compilation of a file containing two compilation units, the first unit

being invalid (but already existing in the Program Library), the remainder
being valid subunits

TF04 Compilation of a file containing three compilation units, the second unit
being an invalid generic package body (but already existing in the Program
Library) and being instantiated in the third

TF05 Compilation of a file containing two compilation units, the first unit
being invalid (but already existing in the Program Library) and not
referenced by the second unit

* TF06 Compilation of a file containing three compilation units, the first unit
being invalid (but already existing in the Program Library), the remainder

I being valid task subunits

A. 1.7 Compiler Capacity (Group G)

* This group consists of several tests of compiler capacity. These tests are made
possible by the use of the preprocessor which is at the heart of the AES test harness
design.

Capacities are not always determined to the nearest unit, since the cost of compiling a
family of large Ada source files may be prohibitive. Sometimes, a binary search method

* is employed to generate Ada source files which are successively closer (over or under the
capacity limit) to the real capacity. It is not always necessary to measure capacity to the
nearest unit if knowing that a capacity exceeds a large number is sufficient, as it often is.
Since the total space that a compiler has must usually be divided between each individual
capacity, each capacity exercised separately is likely to be greater than when the
capacities are exercised together. This is the motivation for the "code-by-the-yard" tests
found in Groups A and V.

No ACEC tests measure compiler capacity.

0

* 23

Table A-8. AES Capacity Tests

Name Description

TGO1 Number of distinct identifiers
TGO2 Depth of static nesting of blocks
TG03 Depth of static nesting of packages
TGO4 Depth of static nesting of generics
TGO5 Expression complexity
TG06A Number of enumeration literals for an enumeration type
TG06B Number of IMAGEs of enumeration literals for an enumeration type
TG07 Number of WITHed units
TG08 Number of USEd units
TG09A Number of elements in a 1D array
TG09B Number of elements in a 2D array
TG09C Number of elements in a 3D array
TG10 Number of elements of an aggregate
TG11 Number of components of a record
TG12A Number of parameters to a procedure
TG12B Number of parameters to a function
TG13 Number of parameters to a generic unit
TG14 Number of discriminants for a record
TG15 Number of declarations in a declarative part
TG17 Depth of static nesting of variant parts of a record
TG18 Depth of nesting of aggregates
TG19 Number of case statement alternatives
TG20 Precision of universal integer and universal real arithmetic
TG21 Depth of nesting of mixtures of various constructs
TG23 Number of types declarable
TG24 Number of subprograms allowed in a compilation unit
TG25 Number of packages allowed in a compilation unit
TG26 Number of subunits allowed in a compilation unit
TG27 Number of generics allowed in a compilation unit
TG28 Depth of nesting of subprograms
TG29 Depth of nesting of loops
TG30 Depth of nesting of subunits
TG31 Depth of nesting of accept statements
TG32 Depth of nesting of case statements
TG33 Depth of nesting of if statements
TG34 Number of task entries
TG35 Number of array dimensions
TG36 Number of elsif statements
TG37 Number of select statements
TG38 Number of generic subprogram instantiations in a subprogram
TG38A Number of generic package instantiations in a subprogram
TG39 Number of characters on a line

24

Table A-9. AES Capacity Tests (Continued)

Name Description

TG40 Number of characters in an identifier
TG41A Number of digits in a universal integer of the form 9999...
TG41B Number of digits in a universal integer of the form 9999... e9

* TG41C Number of digits in a universal integer of the form 7#6666... #elO
TG41D Number of digits in a universal real of the form 9.9999...
TG41E Number of digits in a universal real of the form 9.9999.. .e9
TG41F Number of digits in a universal real of the form 7#6.6666.. .#elO
TG42A Number of characters in an initialized string object
TG42B Number of characters assigned to an uninitialized string object
TG43 Number of overloaded identifiers
TG44 Number of constraints on a subtype
TG45 Number of identifiers in an identifier list
TG46A Number of statically nested renamed exceptions
TG46B Number of statically nested renamed objects

* TG46C Number of statically nested renamed packages
TG46D Number of statically nested renamed subprograms
TG47 Number of statically nested object names
TG48 Number of types derived from another type
TG49 Number of exceptions declared
TG50 Number of exception handled

0 TG51 Number of labels on a statement
TG52 Number of tasks in an abort statement
TG53 Number of compilation units allowed in a file
TG54 Number of errors detectable on a single line
TG55 Number of errors detectable in a compilation unit

A.1.8 MASCOT Tasking (Group K)

These tests are tailored to the MASCOT run-time system. Clearly, no overlap exists
with any ACEC tests. One might question why tests were written for a specific target
processor when the preprocessor permits the writing of more general tests which can be

* preprocessed into several tests of many target machines. These tests might be suitable for
extension to a whole family of target processors.

* 25

Table A-10. AES MASCOT Tasking Tests

Name Description

TK01 Check that pragma PRIORITY is acted upon
TK02 Determine time for simple rendezvous
TK03 Determine time for rendezvous with guards
TK04 Check that expiry of a delay causes an immediate reschedule
TK05 Determination of time-slicing between equal-priority tasks
TK06 Determination of time taken to call CALENDAR.CLOCK
TK07 Determination of whether the occurrence of an interrupt causes an

immediate reschedule

A.1.9 Storage Management (Group M)

These tests determine the behaviour of memory management by the compiler run-time
system. No ACEC tests exist to determine storage management functions.

Table A-11. AES Storage Management Tests

Name Description

TM01A Treatment of STORAGE-ERROR and limits at which it is raised
TM01B Tests heap followed by stack exhaustion.
TM02A Same as above
TM02B Same as above
TM03 Check of UNCHECKED.DEALLOCATION
TM04 Storage reclamation check
TM05 Creeping of heap storage when returning unconstrained types
TM06 Use of STORAGE-SIZE length clause
TM07 Fragmentation of heap storage
TM08 Heap space overhead for allocated objects
TM09 Use of heap storage by the Ada run-time system
TM10 Re-use of heap storage by the Ada run-time system

A.I.10 Input/Output (Group N)

The ACEC Input/Output (I/O) tests determine the speed of GETs and PUTS for
reads and writes of different numbers of bytes. The AES tests, on the other hand,
determine the behavior of I/O where there are implementation differences, For example,
there are tests to determine the effect of control characters, whether input output is
buffered, whether the I/O packages are re-entrant, whether restrictions exist on the
character set, and whether file sharing is permitted. None of these tests is duplicated by
the ACEC.

26

Table A-12. AES Input Output Tests

Name Description

TNO1 Check whether file deletion is supported
TN02 Check whether file resetting is supported
TN03 Determine the maximum number of open files
TN04 Check whether external file sharing is supported
TNO5 Check whether an I/O performing task blocks other tasks
TN06 Check whether the I/O packages are reentrant
TN07 Instantiation with unconstrained arrays and variant records
TNO8 What happens to external files on completion of main program

* TN09 Examination of the effect of I/O for access types
TN10 Size of a file created for direct access
TN11 Check whether there is a check on the element type
TN12 Examination of the effect of I/O of control characters
TN13 Examination of page and line lengths
TN14 Determination of whether I/O is flushed
TN15 Examination of the effect of file creation on existing files
TN16 Restrictions in the character set accepted by TEXTIO
TN17 Examination of the rounding of real values
TN18 Determination of whether I/O is buffered

* A. 1.11 Run-Time Limit (Group Q)

These tests are similar to the Group M Storage Management tests. None of these
tests is duplicated by ACEC tests either.

Table A-13. AES Run-Time Limit Tests

Name Description

TQ01 Maximum number of tasks created by a single program
TQ02 Minimum size of the run-time system

* TQ03 Minimum size of the run-time system - no I/O
TQ04 Minimum size of the run-time system - with I/O
TQ05 Size of the tasking system
TQ06 Maximum amount of generated data a program may have
TQ07 Maximum amount of code that may be generated in a compilation unit

* A. 1.12 Implementation Dependency (Group R)

Since implementation dependency tests are out of the scope of the ACEC, none of
these tests is duplicated by the ACEC.

* 27

Table A-14. AES Implementation Dependency Tests

Name Description

TR01 Termination of tasks that depend on library packages
TR02 Restrictions on objects for which pragma SHARED is allowed
TR03 Restrictions on representation clauses
TRO4 Restrictions on unchecked conversions
TRO5 Values of predefined floating point, fixed point types attributes
TR06 Special circumstances in which NUMERIC-ERROR is raised
TR07 Circumstances in which language-defined pragmas are acted upon
TR08 Rounding convention on conversion of a real number
TR09 Find the value of scalar variables when uninitialized.
TR10 Propagation of user-defined exception out of the main program
TRll Propagation of predefined exception out of the main program
TR12 Test to determine if lexical replacement characters are allowed.
TR13 IMAGE applied to non-graphic character.
TR14 Generic declaration and body have to be in the same compilation.
TR15 Subunits of a generic unit have to be in the same compilation.
TR16 Determine when bodies of generics are actually instantiated.
TR17 Does pragma INLINE create dependencies between compilation units.
TR18 Type conversion of uninitialized scalar subcomponents.
TR19 Do composite types contain any undeclared extra data fields
TR20 Effects of type CALENDAR.TIME on execution
TR21 Requirements on parameters to results from a main program
TR22 Does optimization create compilation units dependencies
TR23 Program outcome affected by optimizations.
TR24 Determine system dependent values
TR25 Effectiveness of time slicing, and effect of pragrna SHARED

A. 1.13 Erroneous Execution (Group S)

Tests designed to execute with errors are outside the scope of the ACEC, thus none of
these tests overlaps with the ACEC.

28

Table A-15. AES Erroneous Execution Tests

Name Description

TS01 Evaluating a scalar variable with an undefined value and attempting
to apply a predefined operator to variable that has undefined
subcomponents

TS02 Assignment to a variable which is a depending on discriminants,
which changes value of the discriminant

TS03 The effect of the program depends on the passing mechanism
TS04 Call a subprogram with an actual parameter which a subcomponent depending on

discriminants, its execution changes the value of the discriminant
* TS05 Calling a subprogram which is abandoned by exception, where the action of

the program depends the final value of one of its parameters
TS06 A subprogram where the actual parameter changes updating the formal, then

tries to use the formal
TS07 Calling a subprogram with an undefined parameter returning an undefined

value
* TS08 Using value of deferred constant before elaboration of the corresponding full

declaration
TS09 Violating the assumptions concerning shared variables
TS10 In which an error situation arises in the absence run-time checks suppressed

via pragma SUPPRESS
TS11 Using an address clause to achieve overlays of objects
TS12 Examines what happens when one of two variables, both accessing the same

object, deallocated and the other is used to access the object
TS13 An UNCHECKEDCONVERSION which violates the guaranteed for objects of the

target type

0 A. 1.14 Incorrect Order Dependency (Group T)

As for Group S, the Group T tests are not duplicated by the ACEC.

* 29

Table A-16. AES Incorrect Order Dependency Tests

Name Description

I'01 Depending on the order of evaluation of default expressions for components
or discriminants

TT02 Depending on the order of evaluation of the expressions for the bounds of
a range constraint

T'03 Depending on the order of evaluation of the discrete ranges the index
constraint of a constrained array definition

TF04 In a constrained array definition, depending on the order of elaboration of
the component subtype indication for evaluation of range of index constrain

TTf05 In the elaboration of a discriminant constraint, depending on the
evaluation order of expressions given in discriminant associations

T'F06 For evaluation of an indexed component, depending on the evaluation order of
the prefix and the component expressions

Trf07 Depending on the order of evaluation of the prefix and discrete
range of a slice

T'f08 Depending on the order of evaluation of the expressions given in the
component associations of an aggregate

TT09 Depending on the order of evaluation of the choices choices of an array
aggregate that is not a subaggregate, and the choices of its subaggregates

T.I Depending on the order of evaluation of the expressions of the component
associations of an array aggregate

'1f11 Depending on order of evaluation of the operands of either a factor, term,
simple expression, relation or expression operands without short circuit form

'Ff12 Depending on the order of evaluation of the variable name and expression of
an assignment statement

'Ff713 Depending on the order of evaluation of parameter associations of a
subprogram call

T14 Depending on the order of evaluation of any conditions specified in a select
alternative

T'F15 Depending on the order of evaluation of the task names in an abort statement
T'16 For elaboration of a generic instantiation, depends on evaluation order of

each expression supplied as an explicit generic actual parameter
T17 Test to determine the action taken when there is a dependency on the order

of elaboration of the bounds of an array

A. 1.15 Link/Load Tests (Group U)

Group U tests the linker and loader. None of the ACEC tests address the linker or
loader, thus none of these tests duplicate ACEC tests.

30

Table A-17. Link/Load Tests

Name Description

TU01 Test detection of circular elaboration order
TU02 Test detection of missing CUs
TU03 Test detection of obsolete units

* TU04 Errors in linking separately compiled subunits
TU05 Errors in linking non-Ada code
TU06 Linking with number of subprograms up to compiler limit
TU07 Errors in linking with generic units
TU08 Errors in linking run-time library components
TU09 Linking large systems
TU10 Linking a unit with same name length as compiler limit
TUll Test determining maximum number of names in a program
TU12 Test examining overheads of subunits on linking
TU13 Test examining partial linking
TU14 Test examining linking of foreign units

A.2 AES Tests Which Partially Duplicate ACEC Tests

The following groups contain both tests which determine the same information as
some ACEC tests and tests'which determine different information. Tests which exist in
both test suites can have joint value. In some cases, tests from the AES test suite can

* validate or verify the correct operation and timing of the corresponding test from the
ACEC test suite and vice versa.

Table A-18. AES Tests which partially duplicate ACEC Tests

* Group Test Group Name Number of Tests Duplicate Tests

I Compiler Run-Time Efficiency 19 19
J NPL Test Suite 18 4
L General Tasking 17 9
0 Optimizing Tests 20 20

* V Dhrvstone and code-by-the-yard 7 1

Total 81 53

A.2.1 Compiler Run-Time Efficiency (Group I)

This group comes closest to the ACEC tests. Most or all of these tests have
equivalents in the ACEC.

• 31

Table A-19. AES Run-Time Efficiency Tests

Name Description

TI01A Efficiency of selecting record components
TIO1B Efficiency of selecting a record within a record
TI01C Efficiency of making record assignments
TIOD Efficiency of making record comparisons
TI02A Efficiency of indexing array components
TI02B Efficiency of making array assignments
TI02C Efficiency of making array comparisons
TI02D Efficiency of using boolean arrays
TI02E Efficiency of array concatenation
TI02F Efficiency of array slicing
T103 Efficiency of matrix operations
T104 Efficiency of integer computations
TI05 Efficiency of floating point computations
TI05B Further tests on the efficiency of floating point computations
T106 Efficiency of fixed point computations
T107 Efficiency of heap objects
T108 Efficiency of stack objects
TI09A Efficiency of generics with parameters of enumerated types
TI09B Efficiency of generics with parameters of array types
TI09C Efficiency of generics with parameters of fixed point types
TI09D Efficiency of generics with parameters of floating point types
TI09E Efficiency of generics with parameters of record types
TI09F Efficiency of generics with parameters of discriminated record types
TI09G Efficiency of generics with subprogram calls
TI10 Efficiency of subprogram calls
Till Efficiency of loop statements
TI12 Efficiency of exception handling
T113 Efficiency of constraint checking
T114 Efficiency of I/O of scalar types
TI15 Efficiency of I/O of array types
TI16 Efficiency of I/O of record types
T117 Efficiency of file management operations
T118 Efficiency of type conversions
T119 Efficiency of pragma INTERFACE c: Its

A.2.2 NPL Test Suite (Group J)

Group J contains 18 of the 21 National Physical Laboratory (NPL) tests. That test
suite contains some- of the same tests or benchmarks that the ACEC carries. In
particular, the Gamin, Ackermann, Habermann-Nassi and Whetstone optimization tcsts
are duplicative. The rest of the AES tests in this group appear to not dup.icate the
ACEC tests.

32

Table A-20. AES NPL Test Suite Tests

Name Description

TJ01 Standard Gamin benchmark
TJ02 Standard Whetstone benchmark
TJ03 Standard Ackermann benchmark
TJ04 Formal parameter modes
TJ05 Overloading operators
TJ06 Inline expansion
TJ07 Generics
TJO8 Record types
TJ09 Discriminant types
TJ1O Operator and expression evaluation
TJ11 If statements
TJ12 Task Activation
TJ13 Habermann-Nassi Optimization
TJ14 Subtype declarations
TJ16 Suppressing checks
TJ17 Integer operations
TJ18 Operations of array types
TJ19 Assignment statements

A.2.3 General Tasking (Group L)

The ACEC test suite has approximately 80 tasking tests. Many of the tests in this
AES test group are redundant with ACEC tests: tests 1-6, inclusive and tests 15-17,
inclusive. The remaining tests appear to be different.

0 33

Table A-21. AES General Tasking Tests

Name Description

TLO1 Overhead of task creation
TL02 Effect of idle tasks on performance
TL03 Effect of number of select statements on performance
TL04 Effect of guards on entry statements on performance
TL05 Effect of passing parameters in rendezvous on performance
TL06 Difference in efficiency of having lots of little tasks with single entry

choices verst3 a few big tasks with many select choices
TL07 Effect of ordering on entry clauses in a select
TL08 Check on number of times an else alternative of a selective wait is

executed before a reschedule is forced
TL09 Determination of the residual storage of a terminated task
TL10 A check that delay statements are meaningful
TL11 Determination of the overhead of nested accept statements
TL12 Determination of the rules for selecting open accept alternatives
TL13 Determination of the rules for selecting open delay alternatives
TL14 Determination of the overheads involved in processing an interrupt
TL15 Effect of passing various numbers of parameters in rendezvous on performance
TL16 Overheads of conditional entry call and selective wait
TL17 Efficiency of entry families

A.2.4 Optimizing Tests (Group 0)

The ACEC contains many tests of optimization and this group appears to duplicate
those ACEC optimization tests.

34

Table A-22. AES Optimizing Tests

Name Description

TO01 Value propagation
T002 Common subexpression elimination
T003 Loop optimizations
T004 Use of registers for variables/ register allocation
T005 Inlining subprograms
T006 Packing data
T007 Suppressing run-time checks
T008 Loading only referenced subprograms

* T009 Sharing generic bodies
TO10 Subexpression evaluation
TOll Further tests on suppressing run-time checks
T012 Further tests on register allocation
T013 Loading only referenced subunits
TO14 Removing redundant/unreachable code

0 T015 Use of special hardware instructions
T016 Replacing code by exception raising code
TO17A "Case" optimizations with an ordered contiguous range
TO17B "Case" optimizations with a disordered contiguous range
TO17C "Case" optimizations with an ordered contiguous set of ordered

* contiguous ranges
TO17D "Case" optimizations with a sparse random range
TO17E "Case" optimizations with a dense random range
TOI'F "Case" optimizations with few explicit choices and most of

alternatives in 'others'
T018 Reducing context switching when an accept statement has a null body

* T019 Optimizing a passive task that protects a shared variable
T020 Optimizing a passive task that controls a buffered channel

A.2.5 Dhrystone and code-by-the-yard (Group V)

The Dhyrstone test is duplicated in the ACEC test suite, but the code-by-the-yard
• tests are not.

* 35

Table A-23. AES Dhrystone and code-by-the-yard Tests

Name Description

TV01 Dhrystone tests
TV02 Link time of a 21 compilation unit system contained in 1 file. (Executable benchmark,

12,500 LOC)
TV03 Link time of a 9 compilation unit system contained 1 file. 12,500 LOC
TV04 Link time of a 1 compilation unit system contained in 1 file. 12,500

LOC
TV05 Link time of a 35 compilation unit system contained in 3 files. 25,000

LOC
TV06 Link time of a 69 compilation unit system contained in 5 files. 50,000 LOC
TV07 Link time of a 137 compilation unit system contained in 9 files. 100,000 LOC

A.3 Preprocessing Benefits for ACEC Tests

Some of the ACEC tests exhibit a high degree of commonality. The slight differences
in each of the test cases may be a result of changing the type of a variable or it may be the
result of changing a literal number which must be present in the Ada source and cannot be
changed at execution time. In these cases, the AES preprocessor could be used to factor
out the changes in a test. Tests so modified would be easier to maintain in the future and
the possibility of slight differences in the Ada source code affecting tests results would be
reduced. Implementation dependent tests could also benefit from the use of the AES
preprocessor, specifically to factor out implementation specific portions of the test
programs. Additional tests could be quickly added to the evaluation test suite by
factoring out variable types on existing tests. Tests which require large portions of code
to be included, such as large exception handling blocks can also benefit. In the table
below, ACEC tests are identified which would benefit from being placed into
preprocessor form. "Number" refers to the number of tests which could be collapsed to
either one or a small number of tests. "Full extent" means that the tests could be
collapsed into a single test, "Partial extent" means that some of the tests could be
collapsed, but probably into more than one test.

Table A-24. ACEC Tests

Test Name Description Number Extent

delay(n) Delay Statement 14 full
DES(n) DES 11 partial
dhry(n) Dhrystone 3 full
gamm, gamm2 Gamm 2 full
io(n) I/O/tests 24 partial
reclaim Reclaim 4 full
Task-num(n) Tasking 7 full
Task2..num(n) Tasking 7 full

36

A.4 ACEC Tests

The following table lists the types of tests found in the ACEC:

Table A-25. ACEC Tests

* Number of Tests Description

811 Language specific tests
12 Avionics application

2 Ackerman's function (classic)
6 Computer Family Architecture (classic)

* 10 Sort tests (classic)
14 Delay statement tests
11 Data Encryption Standard

3 Dhrystone
1 Electronic Warface application

* 6 Optimization tests
2 Radar application
2 Gamin (classic)

10 Interrupt handler
24 1/0

1 Kalman filter
• 25 "Kernal" Livermore loops (classic)

20 Knuth loops (classic)
2 puzzles
4 Reclaim
5 Reed Solomon
1 Runge-Kutta
1 Search
1 Sieve
8 Simulation application
2 Serial Search
1 Procedure call and parameter passing

• 80 Tasking
4 Whetstone

A.5 Other AES Tests

S 37

Table A-26. Other Tests in AES Test Suite

Group Description Number

CA TESTSUITE/CLI/PERFORMANCE 9
cc TESTSUITE/CLI/ERROR-REP 4
CD TESTSUITE/CLI/ERROR-RECO VERY 7
CG TESTSUITE/CLI/CAPACITY 19
CH TESTSUITE/CHECK-OUT 18
CR TESTSUITE/CLJ/IMPL-DEP 15
CS TESTSUITE/CLI/SCENARIOS 5
DF TESTSUITE/DEBUGGER 3
DG TESTSUITE/DEBUGGER 11
EG TESTSUITE/EDITOR/CAPACITY 7
ES TESTSUITE/EDITOR 1
LS ThSTSUITE/PLS/SCENARIO 19
NF TESTSUITE/NAME EXPANDER 3
NG TESTSUITE/NAME EXPANDER 5

- TESTSUITE/PRETI'Y PRINTER 2
PF TESTSUIE/PREYTY PRINTER 5
PG TESTSUIT/PRETrY PRINTER 7
RA TESTSUITE/RA/PERFORMANCE 4
RG TESTSUIT/RA/CAPACITY 8
SF TESTSUITE/SOURCE GENERATOR 2
SG TESTSULTE/SOURCE GENERATOR 8
TA TESTSUITE/TST 3
CHI TESTSUITE/CHECK-OUT 6
VG TESTSUITE/ VCC S/CAPACITY 5
VS TESTSUITE/VCCS/SCENARIO 26

- TESTSUITE/CROSS REFERENCE ANALYZER 2
XF TESTSUITE/CROSS REFERENCE ANALYZER 1
XG ThSTSUITE/CROSS REFERENCE ANALYZER 3
ZZ TESTSUITE/UTILITIES 2

Total21

38

Table A-27. TESTSUITE/CLIIPERFORMANCE

Name Description

TCA01A Performance tests for string concatenation operations
TCA01B Performance tests for string slicing operations
TCA01C Performance tests for conversion operations
TCA01D Performance tests for integer arithmetic operations
TCA02 Performance tests for deeply nested conditions
TCA03 Performance tests for FOR-loops
TCA04 Time to enter a command procedure (with and without parameters)
TCA05 Time to enter a command script (with and without parameters)

* TCA06 Time to invoke a user-defined tool (with and without parameters

Table A-28. TESTSUITE/CLI/ERROR-REP

* Name Description

TCC01 Error reporting for invoking a non-existent tool
TCC02A Error reporting for invoking a tool with too few parameters
TCC02B Error reporting for invoking a tool with the wrong type of parameters
TCC02C Error reporting for invoking a tool with unknown parameters

Table A-29. TESTSUITE/CLI/ERROR-RECOVERY

Name Description

TCDO1 Error test for using variables of wrong type expressions
TCD02 Error test for using strings in expressions
TCD03 Error test for use of erroneous dereferencing
TCDO4 Test for effect of using uninitialized command data
TCD05 Effect of command script termination on files within scripts

0 TCD06 Error test for specifying parameters more than once
TCD07 Error test for a tool containing an unhandled exception

0 39

Table A-30. TESTSUITE/CLI/CAPACITY

Name Description

TCGO1 Maximum number of continuation lines
TCG02A Maximum size of a command script
TCG02B Maximum size of a command procedure
TCG02C Maximum size of a macro declaration
TCG03 Maximum number of variables in a command script
TCG04 Maximum size of string which can be used in a command script
TCGO5 Maximum number of arms in a conditional statement in a command

script
TCG06A Maximum depth of nesting of a simple conditional statement in

a command script
TCG06B Maximum depth of nesting of a more general conditional statement

in a command script
TCG07 Maximum depth of loop nesting in a command script
TCG08 Maximum depth of command procedure nesting
TCG09 Maximum depth of command script nesting
TCG1O Maximum number of parameters to a command procedure
TCG11 Maximum number of parameters to a command script
TCG12A Maximum number of elements in a superstring
TCG12B Maximum level of explicit dereferencing
TCG12C Maximum number of slices in a string expression
TCG13 Maximum size of arithmetic expression allowed
TCG14 Maximum number of parameters to be passed to a user-defined tool

40

Table A-31. TESTSUITE/CHECK-OUT

Name Description

TCH06 Check-out BEGIN, ADA, LINK, EXECUTE and END .PRE
TCH07 Simple test of exception raising and handling

• TCH08 Simple test of allocation and deallocation
TCH09 Simple test of tasking features
TCH10 Simple test of passing unconstrained objects
TCH11 Simple test of CALENDAR.CLOCK
TCH01 Configuration and check-out of full RUN-TIME package
TCH02 Checks terminal input and output for executable tests in MANUAL mode

* TCH05 Checks support of SEQUENTIALJO and DIRECTIO
TCH12 Simple test of RUNTIME.STARTTEST and RUNTIME.ENDTEST
TCH13 Simple test of RUNTIME.TIMER
TCH14 Static checkout of the PRETIY JCL-file
TCH15 Static checkout of the XREF JCL-file
TCH16 Static checkout of the EXPAND JCL-file
TCH17 Static checkout of the SOURCEGEN JCL-file
TCH18 Generate RUNTIME without configuration of LABADR or timing
TCH19 Generate RUN-TIME with timing facilities, but no LABADR
TCH20 Static checkout of the EDITOR JCL-file

Table A-32. TESTSUITE/CLI/IMPL-DEP

Name Description

* TCR01 Examine the use of arithmetic operators + and -
TCR02 Examine the use of arithmetic operators * and /
TCR03 Examine the use of relational operators <, >, = and/--
TCR04 Examine the use of logical operators and / or on relational operators
TCR05A Examine the use of string concatenation
TCR05B Examine the use of string subtraction

• TCR06 Examine the use of string reduction (slicing)
TCR07 Examine the use of string dereferencing
TCRO8 Examine the use of superstrings
TCR09 Examine the use of logical names
TCR1O Examine the use of string to integer conversion

* TCR11 Examine the use of integer to string conversion
TCR12 Examine how to extract substrings from strings
TCR13 Examine the use of length operations on string-
TCR14 Examine how to find the offset of substrings in strings

* 41

Table A-33. TESTSUITE/CLI/SCENARIOS

Name Description

TCS05 Test of file searching
TCS06A Test to execute an Ada program in various types of process
TCS07A Test to install procedure with no parameters as an APSE tool
TCS07B Test to install procedure with parameters as an APSE tool
TCS07C Test to install a command script as an APSE tool

Table A-34. TESTSUITE/DEBUGGER

Name Description

TDF01 Examine most of the debugger features and behaviour
TDF02 Delay statement handling
TDF03 Examine task execution during debugger input requests

Table A-35. TESTSUITE/DEBUGGER

Name Description

TDG01 Determine maximum number of break-.& watchpoints
TDG02 Determine maximum number of Ada symbols
TDG03A Processing a file with 250 lines
TDG03B Processing a file with 500 lines
TDG03C Processing a file with 1000 lines
TDG03D Processing a file with 2500 lines
TDG03E Processing a file with 5000 lines
TDG03F Processing a file with 10000 lines
TDG03G Processing a file with 12500 lines
TDG04 Maximum number of tasks that can be monitored
TDG99 Preprocess debug command file

42

Table A-36. TESTSUITE/EDITOR/CAPACITY

Name Description
TEG01 Number of distinct identifiers

TEG02 Depth of static nesting of blocks
TEG03 Expression complexity

• TEG04 Depth of nesting of mixtures of subprograms, loops, blocks, packages,
subunits, accepts, case statements, generics and if statements

TEGO5 Number of subprograms allowed in a compilation unit
TEG06 Number of overloaded identifiers
TEG07 Number of compilation units allowed in a file

Table A-37. TESTSUITE/EDITOR

Name Description

* TES01 Generate TES01.TXT and TES02.ADA.. TES04.ADA

Table A-38. TESTSUITE/PLS/SCENARIO

Name Description

TLS01A Compile package TVS1 into library A
TLS01B Compile package TVS1 into sublibrary Al
TLS02A Compile the TVS2 subsystem into library A
TLS02B Compile the TVS2 subsystem into library B

* TLS02C Compile the TVS2 subsystem into sublibrary Al
TLS04A Compile the TVS4 subsystem into library B
TLS04B Make the TVS4 subsystem obsolete in library B
TLS06A Compile the TVS6 subsystem into library A
TLS06B Compile the TVS6 subsystem into library A and time this

* TLS06C Recompile the TVS6 subsystem into library A and time this
TLS1O Compile TLS01 into library A
TLS12A Obtain time to compile unit TLS03 into empty library A
TLS12B Obtain time to compile unit TLS03 into full library A
TLS13A Compile all units of the VCCS Live system into library A
TLS13B Compile all units of the VCCS Live system into library B

* TLS14 Compile TLS04, substitute for TVS1 into library A
TLS99 Preprocess all the sources of the VCCS Live system
TLGO1 Examine limits to the depth of dependency structure
TLG02 Examine limits to the number of units automatically recompiled

43

Table A-39. TESTSUITE/NAME EXPANDER

Name Description

TNF01 Test containing several types of objects
TNF02 Test containing long qualification names
TNF03 Compiling the output of test TNF01 and TNF02

Table A-40. TESTSUITE/NAME EXPANDER

Name Description

TNG01 Number of characters on an input line
TNG02 Number of identifiers
TNGO3 Number of USEd units
TNG04 Number of characters in a qualified name
TNG05 Number of identifiers in a qualified name

Table A-41. TESTSUITE/PRETTY PRINTER

Name Description

PAA Code-by-the-yard tests pretty printing in single-user mode
PAB Code-by-the-yard tests pretty printing in multi-user mode

Table A-42. TESTSUITE/PRETITY PRINTER

Name Description

TPF01 Testing the whole of the ADA syntax
TPF02 Difficult to format source
TPF03 Testing the compilability of pretty printer output
TPF04 Totally unformatted source
TPF99 Set up pretty printer parameters

44

Table A-43. TESTSUITE/PRETTY PRINTER

Name Description

TPGO1 Number of characters on an input line
TPG02 Depth of nesting of block-structures
TPG03 Depth of nesting of loop-structures

• TPG04 Depth of nesting of case-structures
TPGO5 Depth of nesting of if-structures
TPG06 Depth of bracketing expressions
TPG99 Set up pretty printer parameters

Table A-44. TESTSUITE/RA/PERFORMANCE

Name Description

TRA01 Time to enter and leave requirements analyzer with an empty
requirements database.

TRA02 Time to enter and leave requirements analyzer with a requirements
database holding ten requirements.

TRA03 Time to enter and leave requirements analyzer with a requirements
database holding one hundred requirements.

* TRA04 Time to enter and leave requirements analyzer with a requirements
database holding one thousand requirements.

Table A-45. TESTSUITE/RA/CAPACITY

Name Description

TRG01 Maximum number of function components in a functional decomposition
TRG02 Maximum number of dataflows in a functional decomposition
TRG03 Maximum number of dataflows that can be connected to a function

* TRG04 Maximum number of events definable in total
TRG05 Maximum number of events definable for a function
TRG06 Maximum number of lines of text permitted for the action statements

describing a function
TRG07 Maximum number of data type entries in the data dictionary
TRG08 Maximum number of components that may appear in a composite type

definition

0 45

Table A-46. TFSTSUITE/SOURCE GENERATOR

Name Description

TSF01 Test containing the whole of Ada syntax
TSF02 Test containing complex structures and statements

Fable A-47. TESTSUITE/SOURCE GENERATOR

Name Description

TSGO1A Code-by-the-yard test with 12500 lines
TSG01B Code-by-the-yard test with 10000 lines
TSG01C Code-by-the-yard test with 5000 lines
TSG01D Code-by-the-yard test with 2500 lines
TSG01E Code-by-the-yard test with 1000 lines
TSG01F Code-by-the-yard test with 500 lines
TSG01G Code-by-the-yard test with 250 lines
TSG01H Code-by-the-yard test with 100 lines

Table A-48. TESTSUITE/TST

Name Description

TAA Test Bed Generator Large Sizing Test
TAB Coverage Analyzer Large Sizing Test
TAC Timing Analyzer Large Sizing Test

Table A-49. TESTSUITE/CHECK-OUT

Name Description

TSETUP Choose timing method and way of obtaining code addresses
TBUILD (Re-)Build RUN-TIME package
TCH01A Check-out obtaining code addresses and variable addresses
TCH01B Check-out target CPU timer and RUNTIME.EAT
TCH01C Check-out and determine CPU time for a standard rendezvous
TFINAL Perform final build of RUN-TIME after all checks ok

46

Table A-50. TESTSUITE/CROSS REFERENCE ANALYZER

Name Description

TVG01 TFest to find the maximum number of versions of an item...
TVG02 Test to find the maximum number of distinct configurations

which may exist.
TVG03 Test to find the maximum number of entities permissible in

a configuration.
TVG04 Test to find the maximum depth of hierarchy of, " nfigurations

which may exist.
TVG05 Test to find the maximum number of configurations in which a

* component may appear.

• 47

Table A-51. TESTSUITE/VCCS/SCENARIO

Name Description

TVSO1A Preprocessing components so that they can be placed under version
control

TVS01B Placing components for both systems under version control
TVS02A Building the TVS2 subsystem for the live system
TVSO2B Building the TVS2 subsystem for the training system
TVSO2C Building the TVS3 subsystem for the training system
TVS02D Building the TVS4 subsystem for the live system
TVS02E Building the TVS4 subsystem for the training system
TVS02F Building the TVS5 subsystem for the live system
TVS02G Building the TVS5 subsystem for the training system
TVS02H Building the TVS6 subsystem for the live system
TVS02I Building the TVS6 subsystem for the training system
TVS02J Building the TVS7 subsystem for the training system
TVS02K Building the TVS8 subsystem for the live system
TVS02L Building the TVS8 subsystem for the training system
TVS02M Building the TVS9 subsystem for the live system
TVS02N Building the TVS9 subsystem for the training system
TVS03A Editing files in the TVS2 subsystem for release 2
TVS03B Editing files in the TVS5 subsystem for release 2
TVS03C Editing files in the TVS7 subsystem for release 2
TVS03D Editing files in the TVS9 systems for release 2
TVS03X This test should only be performed if automatic recompilation

is not supported. It recompiles the live system after the
amendments made to its components.

TVS03Y This test should only be performed if automatic recompilation
is not supported. It recompiles the training system after the
amendments made to its components.

TVS04A Editing files in the training version of the TVS4 subsystem
in release 3

TVS04B Editing files in the TVS7 subsystem for release 3
TVS04X This test should only be performed if automatic recompilation

is not supported. It recompiles the training system after the
amendments made to its components.

Table A-52. TESTSUITE/PRETTY PRINTER

Name Description

XAA Code-by-the-yard tests cross referencing in single-user mode
XAB Code-by-the-yard tests cross referencing in multi-user mode

48

Table A-53. TESTSUITE/CROSS REFERENCE ANALYZER

0

Name Description

TXF01 Several types of objects in several environments

Table.A-54. TESTSUITE/CROSS REFERENCE ANALYZER

Name Description

TXG01 Number of available identifiers
* TXG02 Number of references to a single identifier

TXG03 Overall number of references to identifiers

Table A-55. TESTSUITE/UTILITIES

Name Description

TZZ01 Generate 7 Ada files with 250, ... 12500 lines
TZZ02 Provides a simulated mix of jobs for the TA20 tests

* 49

APPENDIX B: Converting ACEC Tests to AES Format

Minimal interfacing to the AES Test Harness (to report success/failure) requires use
of the following template:

with RUNTIME;

procedure TA01 is
begin

RUNTIME.START_TEST("TA01");

-- body of test here
if <test performed ok> then

RUNTIME.ENDTEST (RUNTIME.SUCCESS);
else

RUNTIME.ENDTEST (RUNTIME.FAILURE);

end if;
exception

when <test specific exception> =>

RUNTIME.ENDTEST("!<test specific exception>");
(INCLUDE "EXCEPT")
end TA01;

Other results in an ACEC test that would be written to a file and interpreted by a user or
by a file formatting program ,1ch as ACEC MEDIAN or ACEC FORMAT would
instead go to the AES databas

The timing device found in the ACEC include files would have to be replaced also.

The following is one of the ACEC test files as found in the file acker2.a:

with textio ; use text_io;
with calendar;use calendar;
with global;use global;

procedure acker2 is

package int io is new integerio (int); use int_io;
package flt_io is new floatio (real); use fltio;

pragma suppress(accesscheck);
pragma suppress(discriminant check);
pragma suppress(indexcheck);
pragma suppress(lengthcheck);
pragma suppress(rangecheck);
pragma suppress(divisioncheck);

50

pragma suppress(overflowcheck);

• pragma suppress(elaborationcheck);
----------------------------- pragma suppress(storagecheck);

m,n,kk:int ;

function ackermann(m,n:in int) return int is

• begin
if m=O then return n+1;
elsif n=O then return ackermann(m-1,l);

else return ackermann(m-l,ackermann(m,n-1));
end if ;

* end ackermann;

begin

pragma include("inittime");
pragma include("startime");

• kk:=ackermann(3,6) ;
pragma include("stoptime0");

put("acker2 - ackerman(3,6) no pragma suppress ");

pragma include("stoptime2");

-- Test Name acker2

-- Prime Purpose Classical test, Ackermann's function, no suppression
intensive test of function calling

-- LRM Features 2.4 4.5.2 4.5.3 5.2 5.3 5.8 6.1 6.2 6.3 6.4

-- 6.5

-- LRM Version A

• -- Optimization

-- Related tests ackerl

-- Author Thomas C. Leavitt

-- Reviewer

-- Date

-- Source

-- Dependencies

-- Other Information

if kk /= 509 then

put("incorrect result ");

* put(kk);
newline;

end if;

put(" time per call is");
put(1000000.0*mintime/172233.0,8,1,0);
newline;

end acker2;

• 51

That file would be enveloped in the AES Test Hainess commands until it looked like:

with text io ; use textio;
with calendar;use calendar;
with global;use global;

with RUNTIME; -- added

procedure TA01 is --"acker2 is " changed to reflect AES test names
package int io is new integerio (int) use int_io;
package flt io is new floatio (real); use flt io;

pragma suppress(accesscheck);
pragma suppress(discriminant_check);
pragma suppress(indexcheck);
pragma suppress(length check);
pragma suppress(range check);
pragma suppress(divisioncheck);
pragma suppress(overflowcheck);
pragma suppress(elaboration check);

----------------- pragma suppress(storage check);

m,n,kk:int

TESTSUCCESS : BOOLEAN; -- a new boolean to track success/failure
-- The new boolean is not always needed. In

-- this case, the expression (kk /= 509)

-- already exists and could be used to signal

-- to the AES Test Harness whether the test

-- succeeded or failed.

function ackermann(m,n:in int) return int is
begin

if m=0 then return n+l;
elsif n=0 then return ackermann(m-l,l);
else return ackermann(m-l,ackermann(m,n-l));
end if ;

end ackermann;

begin
RUN TIME.STARTTEST("TA01"); -- added to signal start of test

pragma include("inittime");

pragma include("startime");
kk:=ackermann(3,6) ;

pragma include("stoptimeO");
put("acker2 - ackerman(3,6) no pragma suppress ");

pragma include("stoptime2");

-- Test Name acker2

-- Prime Purpose Classical test, Ackermann's function, no suppression
-- intensive test of function calling

52

-- LRM Features 2.4 4.5.2 4.5.3 5.2 5.3 5.8. 6.1 6.2 6.3 6.4

* -- 6.5

-- LRM Version A

-- Optimization

-- Related tests ackerl

-- Author Thomas C. Leavitt

-- Reviewer

* -- Date

-- Source

-- Dependencies

-- Other Information

* if kk /= 509 then

put("incorrect result ");

put(kk);

new line;

TEST SUCCESS := false; -- added

end if;

put(" time per call is");

put(1000000.0*mintime/172233.0,8,1,0);

new-line;

* if TESTSUCCESS then -- This block added to

RUNTIME.ENDTEST (RUNTIME.SUCCESS); record success or

else -- failure

RUNTIME.ENDTEST (RUNTIME.FAILURE);

end if;

exception

* -- " when <test specific exception> ->" not added as no test specific

-- "RUNTIME.ENDTEST("!<test specific exception>");" exceptions

-- occur

(INCLUDE "EXCEPT") -- added to include exception handlers, doesn't

-- have to be added.

end TA01; -- changed from "end acker2;"

0 53

Distribution List for IDA Paper P-2311

NAME AND ADDRESS NUMBER OF COPIES

Sponsor

* Dr. John P. Solomond 2
Director
Ada Joint Program Office
Room 3E114, The Pentagon
Washington, D.C. 20301-3081

* Other

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314

lT Research Institute
4600 Forbes Blvd., Suite 300Lanham, MD 20706

Attn. Anne Eustice

Mr. Karl H. Shingler
* Department of the Air Force

Software Engineering Institute
Joint Program Office (ESD)

Carnegie Mellon University
Pittsburgh, PA 15213-3890

CSED Review Panel

Dr. Dan Alpert, Director
Program in Science, Technology & Society

* University of Illinois
Room 201
912-1/2 West Illinois Street
Urbana, Illinois 61801

Dr. Thomas C. Brandt
10302 Bluet Terrace
Upper Marlboro, MD 20772

Dr. Ruth Davis
The Pynatuning Group, Inc.
2000 N. 15th Street, Suite 707

* Arlington, VA 22201

* Distribution List- I

NAME AND ADDRESS NUMBER OF COPIES

Dr. C.E. Hutchinson, Dean 1
Thayer School of Engineering
Dartmouth College
Hanover, NH 03755

Mr. A.J. Jordano
Manager, Systems & Software
Engineering Headquarters
Federal Systems Division
6600 Rockledge Dr.
Bethesda, MD 20817

Dr. Ernest W. Kent
Philips Laboratories
345 Scarborogh Road
Briarcliff Manor, NY 10510

Dr. John M. Palms, President 1
Georgia State University
University Plaza
Atlanta, GA 30303

Mr. Keith Uncapher 1
University of Southern California
Olin Hall
330A University Park
Los Angeles, CA 90089-1454

IDA

General W.Y. Smith, HQ 1
Ms. Ruth L. Greenstein, HQ 1
Mr. Philip L. Major, HQ 1
Dr. Robert E. Roberts, HQ 1
Ms. Anne Douville, CSED 1
Ms. Audrey A. Hook, CSED 2
Dr. Richaid L. Ivanetich, CSED 1
Mr. Terry Mayfield, CSED 1
Dr. Richard P. Morton, CSED 2
Ms. Katydean Price, CSED 1
Dr. Richard Wexelblat, CSED 1
Mr. Jonathan D. Wood, CSED 2
IDA Control & Distribution Vault 2

Distribution List-2

