N

v

-A224 577

<

' REPORT DOCUMENTATION PAGE Fom Ao

-‘-==nu for this enfisction of bulermasion b estimated 1 how tnin-h.' ===:‘==h-.f“-
e deln ang raviewing o w [of e
":Ehuuan -'Ehn-l»-1=ru.nnn-n e ond L Dave gy, 1:man'-uvﬂ==izigh?
1. Aeencvuusouva.-nm 2 REPORT DATE 8. REPORT TYPE AND DATES COVERED

Final 13 pec. 1989 to 13 Dec. 1990

4ATMEANDSBTME Ada Compiler Validaﬂ.on_gummary Report: alsys §. FUNDING NUMBERS
Limited, AlsyCOMP_037 V4.3, INMOS T800 transputer implemented
on a B405 TRAM (bare)(Host), INMOS T222 transputer implemented
on a B416 TRAM (bare) (Target), 891213N1.10201

& AUTHOR(S)]
National Computing Centre Limited
Manchester, UNITED KINGDOM

7. FERFORMING ORGANIZATION NAME’S) AND ADDRESS(ES) _ ' s gwl + .ommn“ TION
National Computing Centre Limitcd

Oxford Road AVF-VSP-90502/58
Manchester MI 7ED
UNITED KINGDOM

9. SPONSORING/AMONITORING AGENCY NAME(S) AND ADDRESS(ES)

Ada Joint Program Office
United States Department of Defense
Washington, D.C. 20301-3081

10. AGENCY
REPORT NUMBER

11. SUPPLE# £l TARY NOTES

12a. DISTRIBUTION.AVALABLLITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

1

'll ABSTRACT (Maximum 200 werds)

’Alsys Limited, AlsyCOMP 037 V4.3, Manchester, England, INMOS T800 transputer implemented
on a B405 TRAM (bare), with an INMOS BOO8 communications link implemented in an IBM
'PC/AT (under MS-DOS 3.1 and INMOS Iserver V1.41)(Host) to INMOS T222 transputer imple-
-mented on a B416 TRAM (bare), using an IBM PC/AT under MS-DOS 3.1 runndng INMOS Iserver

1

i

by iVI.&l for fike-server via an INMOS BOO8 board-link (Target), ACVC 1.10.
EL*] 4

el

b

-

4. SMECTTEMMS Ada programming language, Ada Compiler validation = 5. NUMBER OF PGES

Summary Report, Ada Compiler Validation Capability, Validation

Testin§. Ada Validation Office, Ada Validation Facility, ANSI/MIL- "% PRIGE OO0E |
5

STD-1815A, Ada Joint Program Office
. 1

0. LIATATION OF ABSTRACT |

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

NBN 7540-01-280-8800

o o P g

AVF Control Numbcr: AVF-VSR-90502/58

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificatc Number: #891213N1.10201

Alsys Limited
AlsyCOMP_037 V4.3

INMOS T800 transpuicr implcmented on a B405 TRAM (bare),
with an INMOS B008 communications link implemcated in an IBM PC/AT
(under MS-DOS 3.1 and INMOS Iserver V1.41)

INMOS T222 transputer implemented on a B416 TRAM (bare),

using an IBM PC/AT under MS-DOS 3.1 running INMOS
Iserver V1.41 for file-scrver via an INMOS B008 board link

Completion of On-Site Testing:
13 Dccember 1989

Prcparcd By:
Testing Scrvices
The National Computing Centre Limited
Oxford Road
Manchester M1 7ED
England

Preparcd For:
Ada Joint Program Officc
United States Department of Defensc
Washington DC 20301-3081

Accession For
NTIS GRA&I
DTIC TAB
Unannounced O
Justification ____ |

By
_Distribution/
L_A'vail ity Co‘de—s
Vvwotil and/or
Dist | Spaclal

‘,{)-/

Validation Summary Rcport

Alsys Limited AlsyCOMP_037 V43

AVF-VSR-90502/58

Page i of ii

et~ = ="

Ada Compiler Validation Summary Report:

Compiler Name: AlsyCOMP_037 V43

Certificate Number: #891213N1.10201

Host: INMOS T800 transputer implemented on a B405 TRAM (bare), with an INMOS

B008 communications link implemented in an IBM PC/AT (under MS-DOS 3.1 and
INMOS Iserver V1.41)

Target: INMOS T222 transputer implemented on a B416 TRAM (bare), using an IBM
PC/AT under MS-DOS 3.1 running INMOS Iserver V1.41 for file-server via an
INMOS B008 board link

Testing Completed 13 December 1989 Using ACVC 1.10

This report has been reviewed and is approved.

T' ?L’\\’Z

Jane Pink

Testing Services Manager

The National Computing Centre Limited
Oxford Road

Manchester M1 7ED

England

Institute for De Analyses
Alexandria VA 22311

b !

Ada Joint Program Office
Dr. John Solomond
Director AJPO
Department of Defense
Washington DC 20301

Validation Semmary Report AVF-VSR-90502/58
Alsys Limited AlsyCOMP_037 V43 Page ii of ii

TABLE OF CONTENTS

TABLE OF CONTENTS
CHAPTER 1
INTRODUCTION e e e e e e 1
1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT .. 1
1.2 USE OF THIS VALIDATION SUMMARY REPORT 2
13 REFERENCES ittt 2
14 DEFINITIONOF TERMS 3
1.5 ACVC TEST CLASSES ittt 4
CHAPTER 2
CONFIGURATION INFORMATION i 1
2.1 CONFIGURATION TESTEDcuuuiune.... 1
2.2 IMPLEMENTATION CHARACTERISTICS 1
CHAPTER 3
TEST INFORMATION e e e et 1
3.1 TEST RESULTS it 1
32 SUMMARY OF TEST RESUL’I’S BYCLASS 1
33 SUMMARY OF TEST RESULTS BY CHAPTER 1
34 WITHDRAWN TESTSttt et e e e e 1
35 INAPPLICABLE TESTS ittt i 2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS . . 6
37 ADDITIONAL TESTING INFORMATION 7
APPENDIX A
DECLARATION OF CONFORMANCE i, 1
APPENDIX B
APPENDIX F OF THE Ada STANDARD 0. 1
APPENDIX C
TEST PARAMETERS i i 1
APPENDIX D
WITHDRAWN TESTS .. 1
Validation Summary Report AVF-VSR-90502/58

Alsys Limited AlsyCOMP_037 V43

Table of Contents - Page i of i

N

-

INTRODUCTION

CHAPTER 1

INTRODUCTION

This Validation Summary Report—{W&RG- describes the extent to which a specific Ada compiler
conforms to the Ada Standard, ANSI/MIL-STD-1815A. This report explains all technical terms
uscd within it and thoroughly reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented according to the Ada
Standard, and any implementation-dependent features must conform to the requirements of the
Ada Standard. The Ada Standard must be implemented in its entirety, and nothing can be
implemented that is not in the Standard. .

Even though all validated Ada compilers conform to the Ada Standard, it must be understood that
some differences do exist between implementations. The Ada Standard permits some
implementation dependencies -- for example, the maximum length of identifiers or the maximum
values of integer types. Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All the dependencies
obscrved during the process of testing this compiler are given in this report.

The information in this report ic derived from the test results produced during validation testing.
The validation process includes submitting a suite of standardized tests, the ACVC, as inputs to an
Ada compiler and evaluating the results. The purpose of validating is to ensure conformity of the
compiler to the Ada Standard by testing that the compiler properly implements legal language
constructs and that it identifies and rejects illegal language constructs. - The testing also identifies
behavior that is implementation dependent, but is permitted by the /(da Standard. Six classes of
tests are used. These tests are designed to perform checks at cdmpile time, at link time, and
during execution. Kole - 4.
7 . . -

e . -
AT LR BT o N Sy, It

Ll PURPOSE OF THIS VALIDATION SUMMARY REPORT |

This VSR documents the results of the validation testing performed on an Ada compiler. Testing
was carried out for the following purposes:

o To attempt to identify any language constructs supported by the compiler that do
not conform to the Ada Standard

o To attempt to identify any language constructs not supported by the compiler but
required by the Ada Standard

o To determine that the implementation-dependeut behavior is allowed by the Ada

Standard

Testing of this compiler was conducted by The National Computer Centre Limited according to
procedures established by the Ada Joint Program Office and administered by the Ada Validation

Validation Summary Report AVT-VSR-90502/58

Alsys Limited AlsyCOMP_037 V43 Chaper] - Page 1 of 5

INTRODUCTION

Organization (AVO). On-sile tcsting was completed 13 December 1989 at Alsys Limited, Partridge
House, Newton Road, Henley-on-Thames, Oxon, RG9 1EN, UK.

12 USE OF THIS VALIDATION SUMMARY REPORT
Consistent with the national laws of the originating country, the AVO may make full and free
public disclosure of this report. In the United States, this is provided in accordance with the
"Frecedom of Information Act" (S U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not represent or warrant
that all statements set forth in this report are accurate and complete, or that the subject compiler
has no nonconformities to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clcaringhouse
Ada Joint Program Office
OUSDRE
The Pcntagon, Rm 3D-139 (Fern Streeet)
Washington DC 20301-3081

or from:

Testing Scrviccs
The National Computing Cenire Limited
Oxford Road
Manchester M1 7ED
England

Questions regarding this repbrt or the validation test results should be directed to the AVF listed
above or to:

Ada Validation Organization

Institute for Defensc Analyses

1801 North Bcauregard Strect
Alcxandria VA 22311

13 REFERENCES

1. Reference Manual for the Ada_Programming Language,
ANSIMIL-STD-1815A, February 1983 and 1SO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines,
Ada Joint Program Office, 1 January 1987.

Validation Summary Rcport AVF-VSR-90502/58

Alsys Limited AlsyCOMP_037 V43 Chapterl - Page 2 of 5

INTRODUCTION
3. Ada Compiler Validation Capability Implementers’ Guide,
SofTech, Inc., December 1986.
4. Ada Compiler Validation Capability User’s Guide,
December 1986.
14 DEFINITION OF TERMS
ACVC The Ada Compiler Validation Capability. The set of Ada programs

that tests the conformity of an Ada compiler to the Ada
programming language.

Ada Commentary An Ada Commentary contains all information relevant to the point
addressed by a comment on the Ada Standard. These comments
are given a unique identification number having the form Al-ddddd.

Ada Standard ANSIMIL-STD-1815A, February 1983 and ISO 8652-1987.
Applicant The agency requesting validation.
AVF The Ada Validation Facility. The AVF is responsible for

conducting compiler validations according to procedures contained
in the Ada Compiler Validation Procedures and Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of maintaining a
uniform process for validation of Ada compilers. The AVO
provides administrative and technical support for Ada validations to
ensure consistent practices.

Compiler A processor for the Ada language. In the context of this report,
a compiler is any language processor, including cross-compilers,
translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable test An ACVC test that uses features of the language that a compiler
is not required to support or may legitimately support in a way
other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected result.

Validation Summary Report AVF-VSR-90502/58

Alsys Limited AlsyCOMP_037 V43 Chapterl - Page 3of S

INTRODUCTION
Target The computer which executes the code generated by the compiler.
Test ' A program that checks a compiler’s conformity regarding a

particular feature or a combination of features to the Ada Standard.
In the context of this report, the term is used to designate a single
test, which may comprise one or more files.

Withdrawn test An ACVC test found to be incorrect and not used to check
k conformity to the Ada S:andard. A test may be incorrect because
it has an invalid test objective, fails to meet its test objective, or

contains illegal or erroneous use of the language.

LS ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC contains both legal and
illegal Ada programs structured into six test classes: A, B, C, D, E, and L. The first letter of a
test name identifies the class to which it belongs. Class A, C, D, and E tests are executable, and
special program units are used to report their results during execution. Class B tests are expected
to produce compilation errors. Class L tests are expected to produce errors because of the way
in which a program library is used at link time.

Class A tests ensure the successful compilation and execution of legal Ada programs with certain
language constructs which cannot be verified at run time. There are no explicit program
components in a Class A test to check semantics. For example, a Class A test checks that reserved
words of another language (other than those already reserved in the Ada language) are not treated
as reserved words by an Ada compiler. A Class A test is passed if no errors are detected at
compile time and the program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class B tests are not executable.
Each test in this class is compiled and the resulting compilation listing is examined to verify that
every syntax or semantic error in the test is detected. A Class B test is passed if every illegal
construct that it contains is detected by the compiler.

Class C tests check the run time system to ensure that legal Ada programs can be correctly
compiled and executed. Each Class C test is self-checking and produces a PASSED, FAILED, or
NOT APPLICABLE message indicating the result when it is executed.

Class D tests check the compilation and execution capacities of a compiler. Since there are no
capacity requirements placed on a compiler by the Ada Standard for some parameters -- for
example, the number of identifiers permitted in a compilation or the number of units in a library -
- a compiler may refuse to compile a Class D test and still be a conforming compiler. Therefore,
if a Class D test fails to compile because the capacity of the compiler is exceeded, the test is
classified as inapplicable. If a Class D test compiles successfully, it is self-checking and produces
a PASSED or FAILED message during execution.

Validatioa Summary Rcport . AVF-VSR-90502/58

Alsys Limited AlsyCOMP_037 V4.3 Chapterl - Page 4 of §

INTRODUCTION

Class E tests are expected to execute successfully and check implementation-dependent options and
resolutions of ambiguities in the Ada Standard. Each Class E test is self-checking and produces
a NOT APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs containing some features
addressed by Class E tests during compilation. Therefore, a Class E test is passed by a compiler
if it is compiled successfully and executes to produce a PASSED message, or if it is rejected by the
compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving multiple, separately compiled
units are detected and not allowed to execute. Class L tests are compiled separately and execution
is attempted. A Class L test passes if it is rejected at link time -- that is, an attempt to execute
the main program must generate an error message before any declarations in the main program
or any units referenced by the main program are elaborated. In some cases, an implementation
may legitimately detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECK_FILE, support the self-
checking features of the executable tests. The package REPORT provides the mechanism by which
executable tests report PASSED, FAILED, or NOT APPLICABLE results. It also provides a set
of identity functions used to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK_FILE is used to check the contents of
lext files written by some of the Class C tests for Chapter 14 of the Ada Standard. The operation
of REPORT and CHECK_FILE is checked by a set of executable tests. These tests produce
mcssages that are examined to verify that the units are operating correctly. If these units are not
operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to ensure that the tests
arc reasonably portable without modification. For example, the tests make use of only the basic
set of 55 characters, contain lines with a maximum length of 72 characters, use small numeric
values, and place features that may not be supported by all implementations in separate tests.
However, some tests contain values that require the test to be customized according to
implementation-specific values -- for example, an illegal file name. A list of the values used for
this validation is provided in Appendix C.

A compiler must correctly process each of the tests in the suite and demonstrate conformity to the
Ada Standard by either meeting the pass criteria given for the test or by showing that the test is
inapplicable to the implementation. The applicability of a test to an implementation is considered
each time the implementation is validated. A test that is inapplicable for one validation is not
necessarily inapplicable for a subsequent validation. Any test that was determined to contain an
illegal language construct or an erroneous language construct is withdrawn from the ACVC and,
therefore, is not used in testing a compiler. The tests withdrawn at the time of this validation
are given in Appendix D.

Validation Summary Report AVF-VSR-90502/58

Alsys Limited AlsyCOMP_037 V43 Chapterl - Page S of 5

CONFIGURATION INFORMATION

CHAPTER 2

CONFIGURATION INFORMATION

CONFIGURATION TESTED

=

The candidate compilation system for this validation was tested under the following configuration:

Compiler: AlsyCOMP_037 V4.3
ACVC Version: 1.10
Certificate Number: #891213N1.10201

Host Cownputer:

Machine: INMOS T800 transputer implemented on a B405 TRAM
(barc) with an INMOS BO008 communications link
implemented in an IBM PC/AT (under MS-DOS 3.1 and
INMOS Iserver V1.41)

Memory Size: 8 Mb

Target Computer:

Machine: INMOS T222 transputcr implemented on a B416 TRAM
(bare), using an IBM PC/AT under MS-DOS 3.1 running
INMOS Iserver V1.41 for file-server via an INMOS B008
board link.

Memory Size: 64 Kb

9
(38

IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of a compiler in those
areas of the Ada Standard that permit implementations to differ. Class D and E tests specifically
check for such implementation differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following charactecistics:

a. Capacities.

Validation Summary Report AVF-VSR-90502/58

Alsys Limited AlsyCOMP_037 V43 Chapter 2 - Page 1 of 6

CONFIGURATION INFORMATION

1) The compiler correctly processes a compilation containing 723 variables in the same
declarative part. (Sce test D29002K.)

) The compiler correctly processes tests containing loop statcments nested to 65
levels. (See tests D55A03A..H (8 tests).)

3) The compiler correctly processes tests containing block statements nested to 65
levels. (See test D56001B.)

4) The compiler correctly processes tests containing recursive procedures separately
compiled as subunits nested to six levels. (See tests D6400SE..G (3 tests).)

b. Predefined types.

(1) This implementation supports the additional predefined types SHORT_INTEGER,
LONG_INTEGER, and LONG_FLOAT, in the package STANDARD. (See tests
B86001T..Z (7 tests).)

c. Based literals.

(1) An implementation is allowed raise NUMERIC_ERROR or
CONSTRAINT_ERROR when a value exceeds SYSTEM.MAX_ INT. This
implementation raises NUMERIC_ERROR during execution. (See test E24201A.)

d. Expression evaluation.

The order in which expressions are evaluated and the time at which constraints are checked

are not defined by the language. While the ACVC tests do not specifically attempt to

determine the order of evaluation of expressions, test results indicate the following:

1) All of the default initialization expressions for record components are evaluated
before any value is checked for membership in a component’s subtype. (See test
C32117A)

2) Assignments for subtypes are performed with the same precision as than the base
type. (See test C35712B.)

3) This implementation uses no extra bits for extra precision and uses all extra bits
for extra range. (See test C35903A.)

(©))] NUMERIC_ERROR s raised when an integer literal operand in a comparison or
membership test is outside the range of the base type. (See test C45232A.)

5) NUMERIC_ERROR is raised when a literal operand in a fixed-point comparison
or membership test is outside the range of the base type. (See test C45252A.)

Validation Summary Report AVF-VSR-90502/58

Alsys Limited AlsyCOMP_037 V4.3 Chapter 2 - Page 2 of 6

CONFIGURATION INFORMATION

(6)

Underflow is gradual. (See tests C45524A..Z (26 tests).)

e Rounaing.

The method by which values are rounded in type conversions is not defined by the
language. While the ACVC tests do not specifically attempt to determine the method of
rounding, the test results indicate the following:

)] The method used for rounding to integer is round to even. (See tests C46012A..Z
(26 tests).)
) The method used for rounding to longest integer is round to even. (See tests
C46012A..Z (26 tests).)
3) The method used for rounding to integer in static universal real expressions is
round to even. (See test C4A014A.)
f. Array types.

An implementation is allowed to raise NUMERIC_ERROR or CONSTRAINT_ERROR
for an array having a 'LENGTH that exceeds STANDARD.INTEGER'LAST and/or
SYSTEM.MAX_INT. For this implementation:

(1) Declaration of an array type or subtype declaration with more than
SYSTEM.MAX_INT components raises NUMERIC_ERROR. (See test C36003A.)

(2) CONSTRAINT_ERROR is raised when 'LENGTH is applied to an array type with
INTEGER'LAST + 2 components. (See test C36202A.)

(3) CONSTRAINT_ERROR is raised when an array type with SYSTEM.MAX_INT
+ 2 components is declared. (See test C36202B.)

4) A packed BOOLEAN array having a 'LENGTH exceeding INTEGER’'LAST raises
CONSTRAINT_ERROR when the array type is declared. (See test C52103X.)

(5) A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components CONSTRAINT_ERROR when the array sub types are declared. (See
test C52104Y.)

6) In assigning one-dimensional array types, the expression is evaluated in its entirety
before CONSTRAINT_ERROR is raised when checking whether the expression's
subtype is compatible with the target’s subtype. (See test C52013A.)

Validstion Summary Report AVF-VSR-90502%/58

Alsys Limited AlsyCOMP_037 V4.3 Chapter 2 - Page 3 of 6

CONFIGURATION INFORMATION

=

J) In assigning two-dimensional array types, the expression is not evaluated in its
entirety before CONSTRAINT_ERROR is raised when checking whether the
expression’s subtype is compatible with the target’s subtype. (See test C52013A.)

A null array with one dimension of length greater than INTEGER’LAST may raise
NUMERIC_ERROR or CONSTRAINT_ERROR either when declared or assigned.
Alternatively, an implementation may accept the declaration. However, lengths must match
in array slice assignments. This implementation raises CONSTRAINT_ERROR when the
array type is declared. (See test ES2103Y.)

h. Discriminated types.

(1) In assigning record types with discriminants, the expression is evaluated in its
entirety before CONSTRAINT_ERROR is raised when checking whether the
expression’s subtype is compatible with the target’s subtype. (See test C52013A.)

I Aggregates.

(1) In the evaluation of a multi-dimensional aggregate, the test results indicate that all
choices are evaluated before checking against the index type. See test C43207A and
C43207B.)

(2) In the evaluation of an aggregate containing subaggregates, not all choices are
evaluated before being checked for identical bounds. (See test E43212B.)

3) CONSTRAINT_ERROR s raised after all choices are evaluated when a bound in
a non-null range of a non-null aggregate does not belong to an index subtype. (See
test E43211B.)

j Pragmas.

) The pragma INLINE is supported for functions and procedures, but not for
functions called inside a package specification. (See tests LA3004A..B (2 tests),
EA3004C..D (2 tests), and CA3004E..F (2 tests).)

k. Generics.

(¢9)] Generic specifications and bodies can be compiled in separate compilations. (See
tests CA1012A, CA2009C, CA2009F, BC3204C, and BC3205D.)

Validation Summary Repont AVF.VSR-90502/58
Alsys Limited AlsyCOMP_037 V43 Chapter 2 - Page 4 of 6

CONFIGURATION INFORMATION

2

(3)

4

&)

(6)

)

8

C))

Generic subprogram declarations and bodies can be compiled in separate
compilations. (See tests CA1012A and CA2009F.)

Generic library subprogram specifications and bodies can be compiled in separate
compilations. (See test CA1012A.)

Generic non-library package bodies as subunits can be compiled in separate
compilations. (See test CA2009C.)

Generic non-library subprogram bodies can be compiled in separate compilations
from their stubs. (See test CA2009F.)

Generic unit bodies and their subunits can be compiled in separate compilations.
(See test CA3011A))

Generic package declarations and bodies can be compiled in separate compilations,
(See tests CA2009C, BC3204C, and BC3205D.) .

Generic library package specifications and bodies can be compiled in separate
compilations. (See tests BC3204C and BC3205D.)

Generic unit bodies and their subunits can be compiled in separate compilations.
(See test CA3011A.)

L. Input and output.

1) The package SEQUENTIAL_IO can be instantiated with unconstrained array types
or record types with discriminants without defaults. (See tests AE2101C, EE2201D,
and EE2201E.)

2 The package DIRECT IO can be instantiated with unconstrained array types or
record types with discriminants without defaults. (See tests AE2101H, EE2401D,
and EE2401G.)

3) RESET and DELETE operations are supported for SEQUENTIAL_IO. (See tests
CE2102G and CE2102X.)

©)) RESET and DELETE operations are supported for DIRECT_IO. (See tests
CE2102K and CE2102Y.)

(5) RESET and DELETE operations are supported for text files. (See tests
CE3102F..G (2 tests), CE3104C, CE3110A, and CE3114A))

Validation Summary Report AVF-VSR-90502/58
Alys Limited AlsyCOMP_037 V43 Chapter 2 - Page S of 6

CONFIGURATION INFORMATION

(6) Overwriting (o a sequential file truncates to the last element written. (See test
CE2208B.)

) Temporary sequential files are given names and deleted when closed. (See test
CE2108A.)

8) Temporary direct files are given names and deleted when closed. (See test
CE2108C.)

) Temporary text files are given names and deleted when closed. (See test
CE3112A)

(10) Oaly one internal file can be associated with each external file for sequential files
when writing or reading. (See tests CE2107A..E (5 tests), CE2102L, CE2110B, and
CE2111D))

(11) Only one internal file can be associated with each external file for direct files when
writing or reading. (See tests CE2107F.H (3 tests), CE2110D and CE2111H.)

(12) Only one internal file can be associated with each external file for text files when
writing or reading. (See tests CE3111A..E (§ tests), CE3114B, and CE3115A.)

Validation Summary Report AVF-VSR-90502/58

Alsys Limited AisyCOMP_037 V43 Chapter 2 - Page 6 of 6

TEST INFORMATION

CHAPTER 3

TEST INFORMATION

31 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was tested, 44 tests had been
withdrawn because of test errors. The AVF determined that 429 tests were inapplicable to this
implementation. All inapplicable tests were processed during validation testing except for 201
cxccutable tests that use floating-point precision exceeding that supported by the implementation.
Modifications to the code, processing, or grading for 49 tests were required to successfully
dcmonstrate the test objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable conformity to the Ada Standard.

32 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL

A B Cc D E L
Passed 129 1134 1897 15 23 46 3244
Inapplicable 0 4 418 2 5 0 429
Withdrawn 1 2 35 0 6 0 44
TOTAL 130 1140 2350 17 34 46 3717

33 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 198 577 555 248 170 99 161 332 137 36 252 250 229 @ 3244

Inapp 4 72 125 o0 2 0 S5 o0 o0 o0 0 119 9 429

Withdawsn 1 1 0 0 o0 ©O0 o0 2 0 0 1 35 4 44

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

34 WITHDRAWN TESTS

Validation Summary Report AVF-VSR-90502/58

Alsys Limited AlsyCOMP_037 V43 Chapter 3 - Page 1 of 9

-~

e

TEST INFORMATION

The following 44 tests were withdrawn from ACVC Version 1.10 at the time of this validation:

E28005C A39005G B97102E C97116A
BC3009B CD2A62D CD2A63A..D (4 tests) CD2A66A.D (4 tests)
CD2A73A.D (4 tests) CD2A76A..D (4 tests) CD2A81G CD2A83G
CD2A84M..N (2 tests) CDS0110 CD2B15C CD7205C
CD2D11B CD5007B ED7004B ED7005C..D (2 tests)
ED7006C..D (2 tests) CD7105A CD7203B CD7204B
CD7205D CE21071 CE3111C CE3301A
CE3411B

Sec Appendix D for the reason that each of these tests was withdrawn.

s INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features that a compiler is not
rcquired by the Ada Standard to support. Others may depend on the result of another test that
is cither inapplicable or withdrawn. The applicability of a test to an implementation is considered
cach time a validation is attempted. A test that is inapplicable for one validation attempt is not
necessarily inapplicable for a subsequent attempt. For this validation attempt, 429 tests were
inapplicable for the reasons indicated:

a. The following 201 tests are not applicable because they have floating-point type declarations
requiring more digits than SYSTEM.MAX_DIGITS:

C24113L..Y (14 tests) C3570SL.Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

b. C35702A and B86001T are not applicable because this implementation supports no
predefined type SHORT_FLOAT.

c. C45531M..P (4 tests) and C45532M..P (4 tests) are inapplicable because the size of a
mantissa of a fixed point type is limited to 31 bits.

d. D64005SF..G (2 tests) are inapplicable because the recursive capacity within these tests
exceed the capacity for this implementation.

c. C86001F, is not applicable because, for this implementation, the package TEXT_IO is
dependent upon package SYSTEM. This test recompile package SYSTEM, making package
TEXT_IO, and hence package REPORT, obsolete.

Validatioa Summary Report AVF-VSR-90502/58
Alsys Limited AlsyCOMP_037 V4.3 Chapter 3 - Page 2 of 9

TEST INFORMATION

fz=

B86001X, C45231D, and CD7101G are not applicable because this implcmentation does
not support any predefined integer type with a name other than INTEGER.
LONG_INTEGER, or SHORT_INTEGER.

B86001Y is not applicable because this implementation supporis no predefined fixed-point
type other than DURATION.

h. B86001Z is not applicable because this implementation supports no predefined floating-
point type with a name other than FLOAT, LONG_FLOAT, or SHORT_FLOAT.

i. CD1009C, CD2A41A..E (S tests) and CD2A42A..J (10 tests) are not applicable because the
SIZE clause on type FLOAT is not supported by this implementation.

J The following 26 tests are inapplicable because for this implementation a length clause on
a type derived from a private type is not supported outside the defined package.
CD1CO04A CD2A21C..D (2 tests) CD2A22C..D (2 tests)
CD2A22G..H (2 tests) CD2A31C..D (2 tests) CD2A32C..D (2 tests)
CD2A32G..H (2 tests) CD2AS1C..D (2 tests) CD2AS52C..D (2 tests)
CD2AS52G..H (2 tests) CD2AS3D CD2AS4D
CD2AS4H CD2A72A.B (2 tests) CD2A75A..B (2 tests)

k. CD1C04B, CDICO4E, CD4051A..B (2 tests) and CD4051C..D (2 tests) are not applicable
because this implementation does not support representation clauses in derived records or
derived tasks.

1. The following 53 tests are inapplicable for this implementation because they exceeded the
capacity limit for the target configuration.

CD2AS3C CE2401A..C (3 tests) CE3305A

CE3402C CD3405A CE3405D

CE3409C CE3410C CE3602B
CE3605D..E (2 tests) CE3606A..B (2 tests) CE3704F

CE3706F CE3801A..B (2 tests) CE3804A..P (16 tests)
CE3805A..B (2 tests) CE3806A..H (8 tests) CE3809A..B (2 tests)
CE3906A CE3906E..F (2 tests) EE3203A

EE3301B EE3402B

m. The following 25 tests are inapplicable because a LENGTH clause on an array or record
would require a change to the representation of the componants or elements.
CD2A61A..D (4 tests) CD2A61F CD2AG61H..L (5 tests)
CD2AG62A..C (3 tests) CD2A71A..D (4 tests) CD2AT72C..D (2 tests)
CD2A74A..D (4 tests) CD2A75C..D (2 tests)

Validation Summary Rcport AVF-VSR-90502/58

Alsys Limited AlsyCOMP_037 V4.3

Chapter 3 - Page 3 of 9

TEST INFORMATION

CD2A84B..I (8 tests) and CD2A84K..L (2 tests) are not applicable because the "SIZE clause
applied to the access type is less than the minimum (32 bits) required.

The following 30 tests are inapplicable because an ADDRESS clause for a constant is not
supported.

CDS011B CDS011D CD5011F
CDS011H CD5011L CDS011N
CDS011R..S (2 tests) CD5012C..D (2 tests) CD5012G..H (2 tests)
CD5012L CD5013B CD5013D
CDS013F CDS013H CDS013L
CDS013N CD5013R CD5014B
CD5014D CD5014F CDS014H
CD5014] CDS014L CD5014N
CD5014R CDS014U CDS014W

CD5012J, CD5013S and CD5014S are not applicable because ADDRESS clauses for tasks
are not supported.

CE2102D is inapplicable because this implementation supports CREATE with IN_FILE
mode for SEQUENTIAL _IO.

CE2102E is inapplicable because this implementation supports CREATE with OUT_FILE
mode for SEQUENTIAL _IO.

CE2102F is inapplicable because this implementation supports CREATE with INOUT_FILE
mode for DIRECT_IO.

CE21021 is inapplicable because this implementation supports CREATE with IN_FILE
mode for DIRECT_IO.

CE2102J is inapplicable because this implementation supports CREATE with OUT_FILE
mode for DIRECT_IO.

CE2102N is inapplicable because this implementation supports OPEN with IN_FILE mode
for SEQUENTIAL_IO.

CE21020 is inapplicable because this implementation supports RESET with IN_FILE mode
for SEQUENTIAL_IO.

CE2102P is inapplicable because this implementation supports OPEN with OUT_FILE
mode for SEQUENTIAL_IO.

CE2102Q is inapplicable because this implementation supports RESET with OUT_FILE
mode for SEQUENTIAL _IO.

Validation Summary Report AVF-VSR-90502/58

Alsys Limited AlsyCOMP_037 V43 Chapier 3 - Page 4 of 9

TEST INFORMATION

aa

ab

ac

ad

ac

af.

ah

ai

aj

ak

al

am

an

CE2102R is inapplicable because this implementation supports OPEN with INOUT_FILE
mode for DIRECT _IO.

CE2102S is inapplicable because this implementation supports RESET with INOUT_FILE
mode for DIRECT_IO.

CE2102T is inapplicable because this implementation supports OPEN with IN_FILE mode
for DIRECT_IO.

CE2102U is inapplicable because this implementation supports RESET with IN_FILE mode
for DIRECT _IO.

CE2102V is inapplicable because this implementation supports OPEN with OUT_FILE
mode for DIRECT_IO.

CE2102W is inapplicable because this implementation supports RESET with OUT_FILE
mode for DIRECT_lIO.

EE2401D, EE2401G and CE2401H use instantiations of package DIRECT IO with
unconstrained array types and record types with discriminants with defaults. These
instantiations cause USE_ERROR to be raised without a FORM parameter.

CE2107B..E (4 tests), CE2107L, and CE2110B are not applicable because multiple internal
files cannot be associated with the same external file when one or more files is writing for
sequential files. The proper exception is raised when multiple access is attempted.

CE2107G..H (2 tests), CE2110D, and CE2111H are not applicable because multiple internal
files cannot be associated with the same external file when one or more files is writing for
direct files. The proper exception is raised when multiple access is attempted.

CE3102E is inapplicable because text file CREATE with IN_FILE mode is supported by
this implementation.

CE3102F is inapplicable because text file RESET is supported by this implementation.

CE3102G is inapplicable because text file deletion of an external file is supported by this

. implementation.

CE31021 is inapplicable because text file CREATE with OUT_FILE mode is supported by
this implementation.

CE3102] is inapplicable because text file OPEN with IN_FILE mode is supported by this
implementation.

CE3102K is inapplicable because text file OPEN with OUT_FILE mode is not supported
by this implementation.

Validation Summary Report AVF-VSR-90502/58

Alsys Limited AlsyCOMP_037 V43 Chapter 3 - Page S of 9

TEST INFORMATION

a0 CE3111B, CE3111D..E (2 tests), CE3114B, and CE3115A are not applicable because
multiple internal files cannot be associated with the same external file when one or more
files is writing for text files. The proper exception is raised when multiple access is
attempted.

ap CE3202A requires association of a name with the standard input/output files, but this is not
supported by this implementation which raises USE_ERROR. This behaviour is accepted
by the AVO pending a ruling by the language maintenance body.

aq CE3605A is inapplicable because this test attempts to output a string of 517 characters
which exceeds the maximum allowed for this implementation.

36 TEST, PROCESSING, AND EVALUATION MODIFICATIONS
It is expected that some tests will require modifications of code, processing, or evaluation in order
to compensate for legitimate implementation behavior. Modifications are made by the AVF in
cases where legitimate implementation behavior prevents the successful completion of an
(utherwise) applicable test. Examples of such modifications include: adding a length clause to alter
the default size of a collection; splitting a Class B test into subtests so that all errors are detected;
and confirming that messages produced by an executable test demonstrate conforming behavior that
wus not anticipated by the test (such as raising one exception instead of another).

Modifications were required for 49 tests.

The following tests were split because syntax errors at one point resulted in the compiler noi
dctecting other errors in the test:

B23004A B24007A B24009A B28003A B28003C
B32202A B32202B B32202C B3300tA B37004A
B45102A B61012A B62001B B62001C B62001D
B74304A B74401F B74401R B91004A B95S069A
B95069B B97103E BA1101B2 BA1101B4 BC2001D

BC3009C BDS005B

C35A060 and C35A06Q..R (2 tests) were split to allow the executable code, for these multiple
generic tests, generated by this compiler to remain within the bounds of the target memory
restrictions. .

The following tests were split to prove the not-applicability criteria:
CD2A62A CD2A62B CD2AT2A CD2A72B CD2A75A
CD2A75B CD2AS4B CD2AS84C CD2A84D CD2AB4E
CD2AS4F CD2A84G CD2AS84H CD2A841

EA3004D, when processed, produces only two of the expected three errors: the implementation
fuils to detect an error on line 27 of file EA3004D6M. This is because the pragma INLINE has

Validations Summary Report AVF-VSR-90502/58

Alsys Limited AlsyCOMP_037 V43 Chapter 3 - Page 6 of 9

TEST INFORMATION

no effect when its object is within a package specification. The task was reordered to compile
files D2 and D3 after file D5 (the re-compilation of the "with"ed package that makes the various
earlier units obsolete), the re-ordered test executed and produced the expected
NOT_APPLICABLE result (as though INLINE were not supported at all). The re-ordering of
EA3004D test files was: 0-1-4-5-2-3-6. The AVO ruled that the test should be counted as passed.

This implementation implements REPORT based on 1/O mechanisms other that TEXT_IO. For
this reason modifications were required for 4 tests as follows:

CE3201A required modification to the analysis of the output because the order that output
is passed for logging is not necessarily the order that the output is actually logged.

EE3405B required the addition of an additional TE'.XT_IO output to ensure that the new
page command does actually initiate a new page.

EE3401F and EE3412C require that the output to be logged in the correct order and hence

the AVO authorised that the calls for "SPECIAL_ACTION" were replaced with
"PUT_LINE".

37 ADDITIONAL TESTING INFORMATION

1

|:

7

—

Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced by the AlsyCOMP_037
V4.3 compiler was submitted to the AVF by the applicant for review. Analysis of these results
demonstrated that the compiler successfully passed all applicable tests, and the compiler exhibited
the expected behavior on all inapplicable tests.

)

7.2 Test Method

Testing of the AlsyCOMP_037 V4.3 compiler using ACVC Version 1.10 was conducted on-site by
a validation team from the AVF. The configuration in which the testing was performed is
described by the following designations of hardware and software components:

Host computer : INMOS T800 transputer implemented on a B405
TRAM (bare), with an INMOS B008 communications
link implemented in an IBM PC/AT (under MS-
DOS 3.1 and INMOS Iserver V1.41)

Target computer : INMOS T222 transputer implemented on a B416
TRAM (bare), using an IBM PC AT under MS-
DOS 3.1 running INMOS Iserver V1.41 for file-
server via an INMOS B008 board link

Compiler : AlsyCOMP_J)37 V43
Pre-linker : AlsyCOMP_037 V43
Linker : IMS D705B ILINK V2.1
Validation Summary Report AVF-VSR-90502/58

Alsys Limited AlsyCOMP_037 V4.3 Chapter 3 - Page 7 of 9

TEST INFORMATION

Loader/Downloader : IMS D705B IBOOT V1.1
Runtime System 1 AlsyCOMP_037 V4.3

A magnetic tape containing all tests was taken on-site by the validation team for processing. Tests
that make use of implementation-specific values were customized before being written to the
magnetic tape. Tests requiring modifications during the prevalidation testing were not included in
their modified form on the magnetic tape.

The contents of the magnetic tape were not loaded directly onto the host computer.

The contents of the magnetic tape were loaded onto a VAX 11/750 where the tests were modified
as agreed. The tests were then transferred to the host computer using FTP software.

Aller the test files were loaded to disk, the full set of tests was compiled and linked on the
INMOS T800 transputer, and all executable tests were run on the INMOS T222 transputer. The
results were transferred back to the VAX 11/750, via the FTP software, where they were printed.

The compiler was tested using command scripts provided by Alsys Limited and reviewed by the
validation team. The compiler was tested using all the following default option settings.

OPTION EFFECT
CALLS=INLINE Allows inline insertion of code for subprograms.
OBJECT=NONE No peephole optimisations are performed, this is done for

compilation speed improvements.
OUTPUT=<file> <file> specifies the name of compilation listing generated.
In addition the following options were used to produce full compiler listings:
TEXT Print a compilation listing including full source text.

SHOW=NONE Do not print a header and do not include an error summary
in the compilation listing.

ERROR=999 Set the maximum number of compilation errors permitted before
compilation is terminated to 999.

MONITOR_WIDTH=80 Set width for standard output to 80 columns.

FILE WIDTH=80 Set width for listing file to 80 columns.
FILE_LENGTH=9999 Disable insertion of form feeds in the output.
Validation Summary Report AVT-VSR-90502/58

Alsys Limited AlsyCOMP_037 V43 Chapter 3 - Page 8 of 9

— e e -

e e

TEST INFORMATION

Tests were compiled, linked, and executed (as appropriate) using two Host computers and two
Target computers. Test output, compilation listings, and job logs were captured on magnetic tape
and archived at the AVF. The listings examined on-site by the validation team were also archived.

3.7.3 Test Site

Testing was conducted at Alsys Limited, Partridge House, Newtown Road, Henley-on-Thames,
Oxfordshire, RG9 1EN, UNITED KINGDOM and was completed on 13 December 1989.

Validation Sumnmary Report AVF-VSR-90502/58

Alsys Limited AlsyCOMP_037 V4.3 Chapier 3 - Page 9 of 9

—— o — ——

DECLARATION OF CONFORMANCE

APPENDIX A

DECLARATION OF CONFORMANCE

Alsys Limitcd has submitted the following Declaration of Conformance
concerning the AlsyCOMP_037 V4.3 compiler.

Validation Summary Report AVF-VSR-90502/58

Alsys Limited AlsyCOMP_037 V43 Appendix A - Page 1 of 3

N

DECLARATION OF CONFORMANCE

DECLARATION OF CONFORMANCE

Compiler Implementor:

Ada Validation Facility:

Alsys Limited

The National Computing Centre Limited,
Oxford Road

Manchestcr

M1 7ED

UNITED KINGDOM

Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Compilcr Name:

Host Architecture:

Target Architecture:

Impicmentor’s Declaration

AlsyCOMP_037 V4.3

INMOS T800 transputcr implemented on a B40S TRAM
(barc), using an INMOS B008 commuanications link
implemented in an 1BM PC/AT (under MS-DOS 3.1 and
INMOS Iscrver V1.41)

INMQS T222 transputer implecmented on a B416 TRAM
(barc), using an IBM PC/AT under MS-DOS 3.1 running
INMOS Iscrver V1.41 for filc-scrver via an INMOS B00OS
board link

I, the undersigned. representing Alsys Limited, have implemented no deliberate extensions
to the Ada Lanzoage Standard ANSI/MIL-STD-1313A in the compiler(s) listed in this
declaration. 1 declare that Alsys Limited is the owner of record of the Ada language
compiler(s) listed above and, as such, s responsible far maintaining said compiler(s) in
conformance to ANSIMIL-STD-181SA. All certilicates and registrations for Ada language
compiler(s) lisjed in this declaration shall be made only in the owner’s corporate name.

Martyn Jordag
Markcting Dir\‘Q(

. L[L] &0

Validation Summary gt

Alsys Limited AlsyCOMYP_037 VA3

AVF-VSR-90502/58
Appendix A - Page 2 of 3

DECLARATION OF CONFORMANCE

Owncr’s Declaration

L, the undersigned, representing Alsys Limited, ke full responsibility for implementation
and maintcnance ol the Ada compiler(s) listed above, and agree o the public disclosure
of the final Validution Summary Report. [deciare that all of the Ada language compilers
listed, and their hostiarget performance, are in compliance with the Ada Language
Standard ANSIAIL-STD-1815A.

)}
le\Nf Datc : b !()1/4(’
Martyn Joxdan
Marketing Digedor

Validatioe Summary 18 AVT-VSR-90502/58

Alsys Limited AbyCOM? V28 Appendix A - Page 3 of 3

APPENDIX F

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-dependent pragmas,
to certain machine-dependent conventions as mentioned in chapter 13 of the Ada Standard, and
to certain allowed restrictions on representation clauses. The implementation-dependent
characteristics of the AlsyCOMP_037 V4.3 compiler, as described in this Appendix, are provided
by Alsys Limited. Unless specifically noted otherwise, references in this appendix are to compiler
documentation and not to this report. Implementation-specific portions of the package
STANDARD, which are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2**15 .. 2**15-1;
type SHORT_INTEGER is range -2**7 .. 2**7-1;
type LONG_INTEGER is range -2**31 .. 2**31-1;

type FLOAT is digits 6 range -(2.0-2.0°*(-23))*2.0**127 .. (2.0-2.0**(-23))*2.0**127;
type LONG_FLOAT is digits 15 range -(2.0-2.0**(-51))*2.0**1023 ..
(2.0-2.0°%(51))*2.0°*1023;

type DURATION is dclta 2.0**14 range -86400.0 .. 86400.0;

end STANDARD;

Validation Summary Report AVF-VSR-90502/58
Abxys Limited AlsyCOMP_037 V43 Appendix B

Alsys Ada Compilation System for the Transputer

APPENDIX F

Implementation - Dependent Characteristics

Version 4.3

Alsys S.A.
29, Avenue de Versailles
78170 La Celle St. Cloud. France

Alsys Inc.
67 South Bedford Street
Burlington. MA 01803-5152, U.S.A.

Alsys Ltd.
Partridge House. Newtown Road
Henley-on-Thames,
Oxfordshire RG9 1EN, UK.

Copyright 1989 by Alsys

All rights reserved. No part of this document may be reproduced in
any form or by any means without permission in writing from Alsys.

Printed: October 11, 1989

Alsys reserves the right to make changes in specifications and other information
contained in this publication without prior notice, and the reader should in all cases
consult Alsys to determine whether such changes have been made.

-

PREFACE

This Appendix F is for programmers, software engineers, project managers, educators
and students who want to develop an Ada program for the INMOS transputer.

This appendix is a required part of the Reference Manual for the Ada Programming
Language, ANSI/MIL-STD 1815A, January 1983 (throughout this appendix, citations in
square brackets refer to this manual).

This document assumes that the reader has some knowledge of the architecture of the
transputer. Access to the document Occam2 Toolset User Manual [Ref. 3] which
describes the program development environment for occam as supplied by INMOS would
also be advantageous.

Preface

]

Alsys Ada for the Transputer. Appendix F. v4.3

TABLE OF CONTENTS

APPENDIX F

1 Implementation-Dependent Pragmas

INLINE

INTERFACE

Calling Conventions

Parameter-Passing Conventions
Parameter Representations

Restrictions on Interfaced Subprograms
INTERFACE_NAME

Other Pragmas

—— e o —
S W N -

abibbpbbbn

2 Implementation-Dependent Attributes
3 Specification of the Package SYSTEM

4 Restrictions on Representation Clauses

4.1 Enumeration Types
4.2 Integer Types

4.3 Floating Point Types
4.4 Fixed Point Types
4.5 Access Types

4.6 Task Types

4.7 Array Types

4.8 Record Types

5 Conventions for Implementation-Generated Names

6 Address Clauses
6.1 Address Clauses for Objects
6.2 Address Clauses for Program Units
6.3 Address Clauses for Entries

7 Restrictions on Unchecked Conversions

Table of Contents

N

0 woocwwi®

10

11
13
15
17
20
21
22
26

35

36

36
36
36

37

ii

TABLE OF CONTENTS (CONTINUED)

! 8 Input-Output Packages 38
8.1 NAME Parameter 38

" 8.2 FORM Parameter 38
| 8.3 USE_ERROR 40
9 Characteristics of Numeric Types 42

9.1 Integer Types - T2 transputer targets 42

- 9.2 Integer Types - T4/T8 transputer targets 42
9.3 Other Integer Types 42

94 Floating Point Type Attributes 43

9.5 Attributes of Type DURATION 44

REFERENCES 45

INDEX 46

iv Alsvs Ada for the Transputer. Appendix F. v4.3

APPENDIX F

Implementation-Dependent Characteristics

This appendix summarizes the implementation-dependent characteristics of the Alsys
Ada Compilers for the INMOS transputer. This document should be considered as the
Appendix F to the Reference Manual for the Ada Programming Language ANSI/MIL-
STD 1815A, January 1983, as appropriate to the Alsys Ada implementation for the
transputer.

Sections 1 to 8 of this appendix correspond to the various items of information required
in Appendix F (F]*, section 9 provides other information relevant to the Alsys
implementation. The contents of all these sections is described below:

1. The form, allowed places, and effect of every implementation-dependent
pragma.

2. The name and type of every implementation-dependent attribute.
3. The specification of the package SYSTEM [13.7].
4. The list of all restrictions on representation clauses [13.1].

5. The conventions used for any implementation-generated names denoting
implementation-dependent components [13.4]).

6. The interpretation of expressions that appear in address clauses, including
those for interrupts [13.5].

7. Any restrictions on unchecked conversions [13.10.2].

8. Any implementation-dependent characteristics of the input-output packages
[14].

9. Characteristics of numeric types.
Throughout this appendix, the name Ada Run-Time Executive refers to the run-time

library routines provided for all Ada programs. These routines implement the Ada heap,
exceptions, tasking control, I/O and other utility functions.

* Throughout this manual, citations in square brackets refer to the Reference Manual
for the Ada Programming Language, ANSI/MIL-STD-1815A, January 1983,

Appendix F. Implementation-Dependent Characteristics

—_— - - -

——— .

—— i —

1 Implementation-Dependent Pragmas

1.1 INLINE

Pragma INLINE {6.3.2] is fully supported, except that it is not possible to inline a
function call in a declarative part.

1.2 INTERFACE

Ada programs can interface to subprograms written in occam through the use of the
predefined pragma INTERFACE [13.9] and the implementation-defined pragma
INTERFACE_NAME.

Pragma INTERFACE specifies the name of an interfaced subprogram and the name of
the programming language for which calling and parameter passing conventions will be
generated. Pragma INTERFACE takes the form specified in the Reference Manual:

pragma INTERFACE (/anguage_name, subprogram_name);,
where:

s language name is the name of the other language whose calling and
parameter passing conventions are to be used.

s subprogram_name is the name used within the Ada program to refer to the
interfaced subprogram.

The only language name currently accepted by pragma INTERFACE is occam.

The language name used in the pragma INTERFACE does not necessarily correspond to
the language used to write the interfaced subprogram. It is used only to tell the
Compiler how to generate subprogram calls, that is, which calling conventions and
parameter passing techniques to use.

The language name occam is used to refer to the standard occam calling and parameter
passing conventions for the transputer [Ref. 4, Section 5.10]. The programmer can use
the language name occam to interface Ada subprograms to subroutines written in any
language that follows the standard occam calling conventions.

1.2.1 Calling Conventions

The following calling conventions are required for code to be called from Ada by use of
the pragma interface to occam.

On entry to the subprogram, the registers A, B and C are undefined. For the T8 only,
the floating point registers FA, FB and FC are similarly undefined. The return address
and any parameters are accessed relative to the workspace pointer, W, by the
subprogram.

2 Alsys Ada for the Transputer, Appendix F. v4.3

There are no assumptions concerning the contents of the register stacks (A, B, C and
FA, FB, FC) upon return from the interfaced subprogram, other than for interfaced
subprograms which are functions (see below). However, the workspace pointer, W,
should contain the same - address upon return from the interfaced subprogram as it
contained before the call.

The error flag is expected to be clear on return.

1.2.2 Parameter-Passing Conventions

On entry to the subprogram, the first word above the transputer workspace pointer
contains the return address of the called subprogram. Subsequent workspace locations
(from W+1 to W+n, where n is the number of parameters) contain the subprogram
parameters, which are all one word in length.

There is always an implicit vector space parameter passed as the last parameter to all
interfaced subprograms. This points to an area of free memory which can be used by
the occam compiler to allocate arrays declared in the interfaced subprogram.

Actual parameters of mode in w™ich are access values or scalars of one machine word or
less in size are passed by cur,. If such a parameter is less that one machine word in
length it is sign extende: t~ a full word. For all other parameters the value passed is the
address of the actual parameter itself.

Since all large scalar, non-scalar and non-access parameters to interfaced subprograms
are passed by address, they cannot be protected from modification by the called
subprogram even though they may be formally declared to be of mode in. It is the
programmer’s responsibility to ensure that the semantics of the Ada parameter modes are
honored in these cases.

If the subprogram is a function whose result is at most one machine word in length,
register A is used to return the result. All other results are returned by address in an
implicit parameter allocated before the list of normal parameters (i.e. in the first word
after the return address, at W+1).

No consistency checking is performed between the subprogram parameters declared in
Ada and the corresponding parameters of the interfaced subprogram. It is the
programmer’s responsibility to ensure correct access to the parameters.

1.2.3 Parameter Representations

This section describes the representation of values of the types that can be passed as
parameters to an interfaced subprogram. The discussion assumes no representation

clauses have been used to alter the default representations of the types involved.
Chapter 4 describes the effect of representation clauses on the representation of values.

Integer Tvpes (3.5.4]

Ada integer types are represented in two's complement form and occupy a byte
(SHORT_INTEGER), a word (INTEGER) or a double word (LONG_INTEGER).

Appendix F, Implementation-Dependen' Characteristics

. -

Parameters to interfaced subprograms of type SHORT_INTEGER are passed by copy
with the value sign extended to a full machine word. Values of type INTEGER are
always passed by copy. The predefined type LONG_INTEGER is available for T2
transputer targets only; values of this type are stored least significant word first and
actual parameters are always passed by address.

Enumeration Types {3.5.1]

Values of an Ada enumeration type are represented internally as unsigned values
representing their position in the list of enumeration literals defining the type. The first
literal in the list corresponds to a value of zero.

Enumeration types with 256 elements or fewer are represented in 8 bits. For T2
transputer targets, those with between 257 and 65536 (2**16) elements are represented in
16 bits (i.e. a word). All other enumeration types are represented in 32 bits.

Consequently, the Ada predefined type CHARACTER [3.5.2] is represented in 8 bits,
using the standard ASCII codes [C] and the Ada predefined type BOOLEAN [3.5.3] is
represented in 8 bits, with FALSE represented by the value 0 and TRUE represented by
the value 1.

As the representation of enumeration types is basically the same as that of integers, the
same parameter passing conventions apply.

Floating Point Types [3.5.7, 3.5.8]

Ada floating-point values occupy 32 (FLOAT) or 64 (LONG_FLOAT) bits, and are held
in ANSI/IEEE 754 floating point format.

For T2 transputer targets, parameters to interfaced programs of type FLOAT and
LONG_FLOAT are always passed by address.

For T4 and T8 transputer targets, parameters to interfaced subprograms of type FLOAT
are always passed by copy. For these targets, parameters of type LONG_FLOAT are
passed by address.

Fixed Point Tvpes [3.5.9, 3.5.10]

Ada fixed-point types are managed by the Compiler as the product of a signed mantissa
and a constant small. The mantissa is implemented as an 8, 16 or 32 bit integer value
for T2 transputer targets and as an 8 or 32 bit integer value for T4 and T8 transputer
targets. Small is a compile-time quantity which is the power of two equal or
immediately inferior to the delta specified in the declaration of the type.

The representation of an actual parameter of a fixed point type is the value of its
mantissa. This is passed using the same rules as for integer types.

The attribute MANTISSA is defined as the smallest number such that;

2 ** MANTISSA >= max (abs (upper_bound), abs (lower__bound)) / small

Alsys Ada for the Transputer. Appendix F. v4.3

—_— -

For T2 transputer targets, the size of a fixed point type is:

MANTISSA Size

1.7 : 8 bits
8 .15 16 bits
16 .. 31 32 bits

For T4 and T8 transputer targets, the size of a fixed point type is:

MANTISSA Size
1.7 8 bits
8 .. 31 32 bits

Fixed point types requiring a MANTISSA greater than 31 are not supported.

Access Types [3.8]

Values of access types are represented internally by the address of the designated object
held in single word. The value MIN INT (the smallest integer that can be represented
in a machine word) is used to represent null.

Array Tvpes [3.6]

Ada arrays are passed by address; the value passed is the address of the first element of
the first dimension of the array. The elements of the array are allocated by row. When
an array is passed as a parameter to an interfaced subprogram, the usual consistency
checking between the array bounds declared in the calling and the called subprogram is
not enforced. It is the programmer’s responsibility to ensure that the subprogram does
not violate the bounds of the array. B

When passing arrays to occam, it may be the case that some of its bounds are undefined
in the source of the interfaced subprogram. If this is true, the missing bounds should be
passed as extra integer value parameters to the subprogram. These parameters should be
placed immediately following the array parameter itself and in the same order as the
missing strides appear in the occam source.

Values of the predefined type STRING [3.6.3] are arrays, and are passed in the same
way: the address of the first character in the string is passed. Elements of a string are
represented in 8 bits, using the standard ASCII codes. The elements are packed into one
or more words and occupy consecutive locations in memory.

Appendix F. Implementation-Dependent Characteristics

Record Types [3.7]

Ada records are passed by address; the value passed is the address of the first component
of the record. Components of a record are aligned on their natural boundaries (e.g.
INTEGER on a word boundary) and the components may be re-ordered by the Compiler
so as to minimize the total size of objects of the record type. If a record contains
discriminants or components having a dynamic size, implicit components may be added
to the record. Thus the default layout of the internal structure of the record may not
be inferred directly from its Ada declaration. The use of a representation clause to
control the layout of any record type whose values are to be passed to interfaced
subprograms is recommended.

1.2.4 Restrictions on Interfaced Subprograms

Interfaced occam subprograms must be compiled using the UNIVERSAL error mode
(X). In this mode, there is no error checking and any run-time errors in the occam code
are ignored. This ensures that processes do not execute a STOPP or STOPERR
instruction and avoids the unpredictable results which may occur if this is allowed to

happen.

Parameters which are of a task or private type, or are access values not of mode in,
should not be passed to interfaced subprograms.

It is not possible to interface to occam functions which return floating point values, nor
to those which have more that one return value. Unconstrained function results are also
prohibited.
1.3 INTERFACE_NAME
Pragma INTERFACE_NAME associates the name of an interfaced subprogram, as
declared in Ada, with its name in the language of origin. If pragma
INTERFACE_NAME is not used then the two names are assumed to be identical.
This pragma takes the form:

pragma INTERFACE__NAME (subprogram_name, string_literal);

where :

s subprogram_name is the name used within the Ada program to refer to the
interfaced subprogram.

» string_literal is the name by which the interfaced subprogram is referred to
at link-time.

6 Alsys Ada for the Transputer. Appendix F. v4.3

The use of INTERFACE_NAME is optional and is not needed if a subprogram has the
same name in Ada as in the language of origin. It is necessary, for example, if the
name of the subprogram in its original language contains characters that are not
permiited in Ada identifiers. Ada identifiers can contain only letters, digits and
underscores, whereas the INMOS linker allows external names to contain other
characters, for example full stops. These characters can be specified in the
string _literal argument of the pragma INTERFACE_NAME.

The pragma INTERFACE__NAME is allowed in the same positions in an Ada program
as the pragma INTERFACE [13.9]. However, the pragma INTERFACE_NAME must
always occur after the pragma INTERFACE declaration for the same interfaced
subprogram.

1.4 Other Pragmas

Pragmas IMPROVE and PACK are discussed in detail in the section on representation
clauses (Chapter 4).

Pragmas STORAGE_SIZE _RATIO and FAST_PRIMARY which are applicable only to
task types are discussed in detail in section 4.6.

Pragma PRIORITY is accepted with the range of priorities running from 1 to 10 (see the
definition of the predefined package SYSTEM in Chapter 3). The undefined priority
(no pragma PRIORITY) is treated as though it were less than any defined priority value.

In addition to pragma SUPPRESS, it is possible to suppress all checks in a given
compilation by the use of the Compiler option CHECKS.

The following language defined pragmas have no effect:

CONTROLLED
MEMORY_SIZE
OPTIMIZE
STORAGE_UNIT
SYSTEM_NAME

Note that all access types are implemented by default as controlled coilections as
described in [4.8].

Appendix F, Implementation-Dependent Characteristics

2 Implementation-Dependent Attributes

In addition to the Representation Attributes of [£3.7.2] and [13.7.3], the four attributes
listed in se~tion 5 (Conventions for Implementation-Generated Names) for use in record
representation clauses, and the attributes described below are provided:

T'DESCRIPTOR_SIZE For a prefix T that denotes a type or subtype, this
attribute yields the size (in bits) required to hold a
descriptor for an object of the type T, allocated on the
heap or written to a file. If T is constrained,
T'DESCRIPTOR_SIZE will yield the value 0.

TIS_ARRAY For a prefix T that denotes a type or subtype, this
attribute yields the value TRUE if T denotes an array
type or an array subtype; otherwise, it yields the value
FALSE.

Limitations on the use of the attribute ADDRESS
The attribute ADDRESS is implemented for all prefixes that have meaningful addresses.
The following entities do not have meaningful addresses and will therefore cause a
compilation error if used as a prefix to ADDRESS:

s A constant or named number that is implemented as an immediate value (i.e.
does not have any space allocated for it)..

s A package specification that is not a library unit.

= A package body that is not a library unit or subunit.

8 Alsys Ada for the Transputer, Appendix F, v4.3

3 Specification of the Package SYSTEM

package SYSTEM is

type NAME is (TRANSPUTER);

SYSTEM_NAME : constant NAME := NAME'FIRST;

MIN_INT : constant := -(2**31);

MAX_INT : constant := 2%*31-1;

MEMORY_SIZE : constant := 2%*16; -- for T2 transputer targets
MEMORY_SIZE : constant := 2%**31-1; -- for T4/T8 transputer targets

type ADDRESS is new INTEGER;

STORAGE_UNIT : constant := 8;

MAX_DIGITS : constant := 15;

MAX_MANTISSA : constant := 31;

FINE_DELTA : constant := 2#1.0#e-31;

TICK : constant := 1.0e-6;

NULL_ADDRESS : constant ADDRESS := ADDRESS'FIRST;

subtype PRIORITY is INTEGER range 1 .. 10;

end SYSTEM;

Appendix F, Implementation-Dependent Characteristics

4 Restrictions on Representation Clauses

This section explains how objects are represented and allocated by the Alsys Ada
Compiler for the Transputer and how it is possible to control this using representation
clauses.

The representation of an object is closely connected with its type. For this reason this
section addresses successively the representation of enumeration, integer, floating point,
fixed point, access, task, array and record types. For each class of type the
representation of the corresponding objects is described.

The transputer supports operations on the data types byte, word and double-word, so
these data types are used to form the basis of the representation of Ada types. The
word length for T4 and T8 transputer targets is 32 bits whereas T2 transputers have a
word length of 16 bits. Currently, the compiler does not support operations on double
32 bit word quantities. This affects the representation of integer, fixed point and
enumeration types.

Except in the case of array and record types, the description of each class of type is
independent of the others. To understand the representation of an array type it is
necessary to understand first the representation of its components. The same rule
applies to a record typy:

Apart from implementation defined pragmas, Ada provides three means to control the
size of objects:

e« a (predefined) pragma PACK, when the object is an array, an array
component, a record or a record component

s a record representation clause, when the object is a record or a record
component

a a size specification, for all classes of object.
For each class of types the effect of a size specification is described. Interaction
between size specifications, packing and record representation clauses is described under
array and record types.

Representation clauses on derived record types or derived task types are not supported.

Size representation clauses on types derived from private types are not supported when
the derived type is declared outside the private part of the defining package.

10 Alsys Ada for the Transputer, Appendix F, v4.3

4.1 Enumeration Types

Internal codes of enumeration literals

When no enumeration representation clause applies to an enumeration type, the internal
code associated with an enumeration literal is the position number of the enumeration
literal. Thus, for an enumeration type with n elements, the internal codes are the
integers 0, 1, 2, ..., n-1.

An enumeration representation clause can be provided to specify the value of each
internal code as described in [13.3]. The Alsys Compiler fully implements enumeration
representation clauses.

As internal codes must be machine integers, the internal codes provided by an
enumeration representation clause must be in the range -23! .. 2311,

Encoding of enumeration values

An enumeration value is always represented by its internal code in the program
generated by the Compiler.

Minimum size of an enumeration subtype

The minimum size of an enumeration subtype is the minimum number of bits that is
necessary for representing the internal codes of the subtype values in normal binary
form.

For a static subtype with a null range, its minimum size is 1 bit. Otherwise, if m and M
are the values of the internal codes associated with the first and last enumeration values
of the subtype, then its minimum size L is determined as follows. For m >= 0, L is the
smallest positive integer such that M <= 2L.1. For m < 0, L is the smallest positive
integer such that 221 <= m and M <= 2%"1-1. For example:

type COLOR is (GREEN, BLACK, WHITE, RED, BLUE, YELLOW);
-- The minimum size of COLOR is 3 bits.

subtype BLACK_AND_WHITE is COLOR range BLACK .. WHITE;
-- The minimum size of BLACK_AND_WHITE is 2 bits.

subtype BLACK _OR__WHITE is BLACK_AND_WHITE range X .. X;

-- Assuming that X is not static, the minimum size of BLACK _OR_WHITE is
-- 2 bits (the same as the minimum size of the static type mark

-- BLACK _AND_WHITE).

Appendix F, Implementation-Dependent Characteristics

11

Size of an enumeration subtype

When no size specification is applied to an enumeration type or first named subtype, the
objects of that type or first named subtype are represented as either unsigned bytes or
signed words. The Compiler selects automatically the smailest such object which can
hold each of the internal codes of the enumeration type (or subtype). The size of the
enumeration type and of any of its subtypes is thus 8 bits in the case of an unsigned
byte, or the machine word size (16 or 32 bits) in the case of a signed word.

When a size specification is applied to an enumeration type, this enumeration type and
each of its subtypes has the size specified by the length clause. The same rule applies to
a first named subtype. The size specification must of course specify a value greater than
or equal to the minimum size of the type or subtype to which it applies. For example:

type EXTENDED is
(

-- The usual American ASCII characters.
NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,
BS, HT, LF, VT, FF, CR, SO, SI,
DLE, DCl, DC2, DC3, DC4, NAK, SYN, ETB,
CAN, EM, SUB, ESC, FS, GS, RS, uUs,
1] 9, 9!9 'N!, '#" |$" 1%’, ’&1’ 9'!’
7(9’ ')', "9 Q+§’ L3N) 9_9 LI ‘/1’

v ‘Y A A

K L O T L A
O L O S
@, A, B, 'C, D, E, F, G,
W, v, r, K, 'L, M, N, O,
P, Q. R, S, T, U, VL, W,
R S AN (S S R
Y 'a’, 'b’, ¢’y d’, ‘e’, ', 'g’,
w,W, P k., m', om0
p', q’, r, 's’, v, v, V', 'w,
w, 'y, 'z, . T, ¥, '~ DEL

-- Extended characters
LEFT_ARROW,
RIGHT_ARROW,
UPPER_ARROW,
LOWER_ARROW,
UPPER_LEFT_CORNER,
UPPER_RIGHT_CORNER,
LOWER _RIGHT_CORNER,
LOWER__LEFT_CORNER,
)

for EXTENDED'SIZE use 8,
-- The size of type EXTENDED will be one byte. Its objects will be represented
-- as unsigned 8 bit values.

The Alsys Compiler fully implements size specifications. Nevertheless, as enumeration
values are coded using integers, the specified length canno¢ be greater than 32 bits.

12 Alsys Ada for the Transputer. Appendix F, v4.3

Size of the objects of an enumeration subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an
object of an enumeration subtype has the same size as its subtype.

Alignment of an enumeration subtype

An enumeration subtype is byte aligned if the size of the subtype is less than or equal to
8 bits, word aligned otherwise.

Address of an object of an enumeration subtype

Provided its alignment is not constrained by a record representation clause or a pragma

PACK, the address of an object of an enumeration subtype is a multiple of the
alignment of the corresponding subtype.

4.2 Integer Types

Predefined integer types
In the Alsys Ada implementation for the transputer the number of predefined integer
types available differs depending upon the transputer target. For T4 and T8 transputer
targets there are two predefined integer types:

type SHORT _INTEGER is range -2%*7 , 2%*7.[;

type INTEGER is range -2%*31 . 2%*3|-|;
For T2 transputer targets there are three predefined integer types:

type SHORT_INTEGER is range -2%%7 _ 2**7.];

type INTEGER is range -2%*15 ., 2**[5-1;
type LONG_INTEGER is range -2**3] ., 2**3]-1;

Selection of the parent of an integer type
An integer type declared by a declaration of the form:
type T is range L .. R;
is implicitly derived from one of the predefined integer types. The Compiler

automatically selects the predefined integer type whose range is the shortest that contains
the values L to R inclusive.

Appendix F, Implementation-Dependent Characteristics

Encoding of integer values

Binary code is used to represent integer values. Negative numbers are represented using
two's complement.

Minimum size of an integer subtype

The minimum size of an integer subtype is the minimum number of bits that is
necessary for representing the internal codes of the subtype values in normal binary
form (that is to say, in an unbiased form which includes a sign bit only if the range of
the subtype includes negative values).

For a static subtype with a null range, its minimum size is | bit. Otherwise, if m and M
are the lower and upper bounds of the subtype, then its minimum size L is determined
as follows. For m >= 0, L is the smallest positive integer such that M <= 2L_1. Form
< 0, L is the smallest positive integer such that 22T <= m and M <= 2¥ -1, For
example:

subtype S is INTEGER range 0 .. 7;
-- The minimum size of S is 3 bits.

subtype Dis Srange X .. Y;
-- Assuming that X and Y are not static, the minimum size of
-- D is 3 bits (the same as the minimum size of the static type mark S).

Size of an integer subtype

For T4 and T8 transputer targets, the sizes of the predefined integer types
SHORT_INTEGER and INTEGER are 8 and 32 bits respectively. For T2 transputer
targets, the sizes of the predefined integer types SHORT_INTEGER, INTEGER and
LONG_INTEGER are 8, 16 and 32 bits respectively.

When no size specification is applied to an integer type or to its first named subtype (if
any), its size and the size of any of its subtypes is the size of the predefined type from
which it derives, directly or indirectly. For example:

type S is range 80 .. 100;
~- S is derived from SHORT_INTEGER; its size is 8 bits.

type J is range 0 .. 65535;
~- J is derived from INTEGER for T4 and T8 targets and LONG__INTEGER
-- for T2 targets; its size is 32 bits.

type N is new J range 80 .. 100;
-- N is indirectly derived from INTEGER or LONG_INTEGER as above;
-- its size is 32 bits.

When a size specification is applied to an integer type, this integer type and each of its
subtypes has the size specified by the length clause. The same rule applies to a first
named subtype. The size specification must of course specify a value greater than or
equal to the minimum size of the type or subtype to which it applies, for example:

14 Alsys Ada for the Transputer, Appendix F. v4.3

type S is range 80 .. 100;
for S’SIZE use 32;
-- S is derived from. SHORT__INTEGER, but its size is 32 bits because

-- of the size specification.

type J is range O .. 255;

for J'SIZE use 8;

-- J is derived from INTEGER, but its size is 8 bits because of the
-- size specification.

type N is new J range 80 .. 100;
-- N is indirectly derived from INTEGER, but its size is 8 bits
-- because N inherits the size specification of J.

The Alsys Compiler implements size specifications. Nevertheless, as integers are
implemented using machine integers, the specified length cannot be greater than 32 bits.

Size of the objects of an integer subtype

%
Provided its size is not constrained by a record component clause or a pragma PACK, an
object of an integer subtype has the same size as its subtype.

Alignment of an integer subtype

An integer subtype is byte aligned if the size of the subtype is less than or equal to 8
bits, word aligned otherwise.

Address of an object of an integer subtype

Provided its alignment is not constrained by a record representation clause or a pragma
PACK, the address of an object of an integer subtype is a multiple of the alignment of
the corresponding subtype.

4.3 Floating Point Types

Predefined floating point types

In the Alsys Ada implementation for the transputer there are two predefined floating
point types.

type FLOAT is
digits 6 range -(2.0 - 2.0%%(-23))*2.0**127 .. (2.0 - 2.0**(-23))*2.0**127;

type LONG_FLOAT is
digits 15 range -(2.0 - 2.0%%(-51))*2.0**1023 .. (2.0 - 2.0**(-51))*2.0**1023;

Appendix F. Implementation-Dependent Characteristics

~—

Selection of the parent of a floating point type
A floating point type declared by a declaration of the form:

type T is digits D [range L R}
is implicitly derived from a predefined floating point type. The Compiler automatically
selects the smallest predefined floating point type whose number of digits is greater than
or equal to D and which contains the values L and R.

Encoding of floating point values

In the program generated by the Compiler, floating point values are represented using
the ANSI/IEEE 754 standard 32-bit and 64-bit floating point formats as appropriate.

Values of the predefined type FLOAT are represented using the 32-bit floating point
format and values of the predefined type LONG_FLOAT are represented using the 64-
bit floating point format as defined by the standard. The values of any other floating
point type are represented in the same way as the values of the predefined type from
which it derives, directly or indirectly.

Minimum sice of a floating point subtype

The minimum size of a floating point subtype is 32 bits if its base type is FLOAT or a
type derived from FLOAT and 64 bits if its base type is LONG_FLOAT or a type
derived from LONG_FLOAT.

Size of a floating point subtype

The sizes of the predefined floating point types FLOAT and LONG_FLOAT are 32 and
64 bits respectively,

The size of a floating point type and the size of any of its subtypes is the size of the
predefined type from which it derives directly or indirectly.

The only size that can be specified for a floating point type or first named subtype
using a size specification is its usual size (32 or 64 bits).
Size of the objects of a floating point subtype

An object of a floating point subtype has the same size as its subtype.

Alignment of a floating point subtype

A floating point subtype is always word aligned.

16 Alsys Ada for the Transputer. Appendix F. v4.3

Address of an object of a floating point subtype
Provided its alignment is not constrained by a record representation clause or a pragma

PACK, the address of an object of a floating point subtype is a multiple of the
alignment of the corresponding subtype.

4.4 Fixed Point Types

Small of a fixed point type

If no specification of small applies to a fixed point type, then the value of small is
determined by the value of delta as defined by [3.5.9].

A specification of small can be used to impose a value of small. The value of small is
required to be a power of two.
Predefined fixed point types

To implement fixed point types, the Alsys Compiler for the transputer uses a set of
anonymous predefined types dependent upon the target transputer type.

For T4 and T8 transputer targets these anonymous types are:

type SHORT _FIXED is delta D range -2**7*S .. (2**7-1)*S;
for SHORT_FIXED'SMALL use §;

type FIXED is delta D range -2**31*S ., (2**31-1)*S;
for FIXED’'SMALL use S;

For T2 transputer targets these anonymous types are:

type SHORT_FIXED is delta D range -2**7*S .. (2**7-1)*S;
for SHORT _FIXED'SMALL use §;

type FIXED is delta D range -2**15*S .. (2**15-1)*S;
for FIXED'SMALL use S;

type LONG_FIXED is delta D range -2**31*S .. (2**31-1)*S;
for LONG_FIXED'SMALL use S;

where D is any real value and S any power of two less than or equal to D.

Selection of the parent of a fixed point type
A fixed point type declared by a declaration of the form:
type T is delta D range L .. R;

possibly with a small specification:

Appendix F, Implementation-Dependent Characteristics

17

for T'SMALL use S;

is implicitly derived from a predefined fixed point type. The Compiler automatically
selects the predefined fixed point type whose small and delta are the same as the small
and delta of T and whose range is the shortest that inciudes the values L and R.

Encoding of fixed point values

In the program generated by the Compiler, a safe value V of a fixed point subtype F is
represented as the integer;

V / FBASE'SMALL

Minimum size of a fixed point subtype

The minimum size of a fixed point subtype is the minimum number of binary digits that
is necessary for representing the values of the range of the subtype using the small of
the base type (that is to say, in an unbiased form which includes a sign bit only if the
range of the subtype includes negative values).

For a static subtype with a null range, its minimum size is 1 bit. Otherwise, s and S
being the bounds of the subtype, if i and I are the integer representations of m and M,
the smallest and the greatest model numbers of the base type such that s < m and M < §,
then the minimum size L is determined as follows. For i >= 0, L is the smallest positive
integer such that I <= 2L_{. Fori <0, L is the smallest positive integer such that -t
<=iand I <= 2L'"1-1. For example:

type F is delta 2.0 range 0.0 .. 500.0;
-- The minimum size of F is 8 bits.

subtype S is F delta 16.0 range 0.0 .. 250.0;
-- The minimum size of S is 7 bits.

subtype D is S range X .. Y;
-- Assuming that X and Y are not static, the minimum size of D is 7 bits
-- (the same as the minimum size of its type mark S).

Size of a fixed point subtype
For T4 and T8 transputer targets, the sizes of the predefined fixed point types
SHORT_FIXED and FIXED are 8 and 32 bits respectively. For T2 transputer targets,

the sizes of the predefined fixed point types SHORT_FIXED, FIXED and
LONG_FIXED are 8, 16 and 32 bits respectively.

18 Alsys Ada for the Transputer. Appendix F, v4.3

When no size specification is applied to a fixed point type or to its first named subtype,
its size and the size of any of its subtypes is the size of the predefined type from which
it derives directly or indirectly. For example:

type F is delta 0.01 range 0.0 .. 1.0;
-- F is derived from a 8 bit predefined fixed type, its size is 8 bits.

type L is delta 0.01 range 0.0 .. 300.0;
-- L is derived from a 32 bit predefined fixed type, its size is 32 bits.

type N is new L range 0.0 .. 2.0;
-- N is indirectly derived from a 32 bit predefined fixed type, its size is 32 bits.

When a size specification is applied to a fixed point type, this fixed point type and each
of its subtypes has the size specified by the length clause. The same rule applies to a
first named subtype. The size specification must of course specify a value greater than
or equal to the minimum size of the type or subtype to which it applies, for example:

type F is delta 0.0l range 0.0 .. 2.0;

for F'SIZE use 32;

-- F is derived from an 8 bit predefined fixed type, but its size is 32 bits
-- because of the size specification.

type L is delta 0.01 range 0.0 .. 300.0;

for L'SIZE use 16;

-- L is derived from a 32 bit predefined fixed type, but its size is 16 bits
-- because of the size specification.

-~ The size specification is legal since the range contains no negative values
-- and therefore no sign bit is required.

type N is new F range 0.8 .. 1.0;

-- N is indirectly derived from a 16 bit predefined fixed type, but its size is

-- 32 bits because N inherits the size specification of F.
The Alsys Compiler implements size specifications. Nevertheless, as fixed point objects
are represented using machine integers, the specified length cannot be greater than 32
bits.
Size of the objects of a fixed point subtype
Provided its size is not constrained by a record component clause or a pragma PACK, an
object of a fixed point type has the same size as its subtype.

Alignment of a fixed point subtype

A fixed point subtype is byte aligned if its size is less than or equal to 8 bits, word
aligned otherwise.

Appendix F, Implementation-Dependent Characteristics

19

———

Address of an object of a fixed point subtype
Provided its alignment is not constrained by a record representation clause or a pragma

PACK, the address of an object of a fixed point subtype is a multiple of the alignment
of the corresponding subtype.

4.5 Access Types

Collection Size

When no specification of collection size applies to an access type, no storage space is
reserved for its collection, and the value of the attribute STORAGE_SIZE is then 0.

As described in [13.2], a specification of collection size can be provided in order to
reserve storage space for the collection of an access type. The Alsys Compiler fully
implements this kind of specification.

Encoding of access values

Access values are machine addresses represented as machine word-sized values (i.e. 16
bits for T2 targets and 32 bits for T4 and T8 targets).

Minimum size of an access subtyre

The minimum size of an access subtype is that of the word size of the target transputer.

Size of an access subtype

The size of an access subtype is the same as its minimum size.

The only size that can be specified for an access type using a size specification is its
usual size.

Size of an object of an access subtype

An object of an access subtype has the same size as its subtype, thus an object of an
access subtype is always one machine word long.

Alignment of an access subtype

An access subtype is always word aligned.

20 Alsys Ada for the Transputer. Appendix F. v4.3

Address of an object of an access sublype

Provided its alignment is not constrained by a record representation clause or a pragma
PACK, the address of an object of an access subtype is always on a word boundary,
since its subtype is word aligned.

4.6 Task Types

Storage for a task activation

When no length clause is used to specify the storage space to be reserved for a task
activation, the storage space indicated at bind time is used for this activation. As
described in [13.2], a length clause can be used to specify the storage space for the
activation of each of the tasks of a given type. In this case, the value indicated at bind
time is ignored for this task type and the length clause is obeyed.

The application of such a length clause to a derived type is not permitted. The same
storage space is reserved for the activation of a task of a derived type as for the
activation of a task of the parent type.

Both the length clause and the bind time parameter specify the combined size of the
task’s primary and auxiliary stacks. Further bind time parameters specify the percentage
of this storage size to be allocated to the primary stack and indicate whether or not to
attempt to allocate the primary stack in fast internal memory. These bind time
parameters indicate the default action and can be overridden using the implementation
defined pragmas STORAGE_SIZE_RATIO and FAST_PRIMARY.

pragma STORAGE_SIZE_RATIO (task_name , integer_literal),

pragma FAST_PRIMARY (task_name , YES | NO);
These pragmas apply to the task type task_name. For each pragma, the pragma and the
declaration of the task type to which it applies must both occur within the same
declarative part or package specification, although the declaration of the task type must
precede the pragma.
Pragma STORAGE_SIZE_RATIO specifies the percentage of the total storage size
reserved for the activation of the task to be used as the task’s primary stack. Any
remaining storage space will be used as the task’s auxiliary stack. In the absence of the
pragma the default ratio specified at bind time is used for the activation.
Pragma FAST_PRIMARY specifies whether or not an attempt should be made to
allocate the task’s primary stack in fast internal memory. In the absence of the pragma
the default indication specified at bind time is used for the activation.

Encoding of task values

Task values are represented as machine word sized values.

Appendix F. Implementation-Dependent Characteristics

Minimum size of a task subtype

The minimum size of a task subtype is that of the word length of the target transputer.

Size of a task subtype

The size of a task subtype is the same as its minimum size.

The only size that can be specified for a task type using a size specification is its usual
size.

Size of the objects of a task subtype

An object of a task subtype has the same size as its subtype. Thus an object of a task
subtype is always one machine word long,

Alignment of a task subtype

A task subtype is always word aligned.

Address of an object of a task subtype
Provided its alignment is not constrained by a record representation clause, the address

of an object of a task subtype is always on a word boundary since its subtype is word
aligned.

4.7 Array Types

Layout of an array
Each array is allocated in a contiguous area of storage units. All the components have

the same size. A gap may exist between two consecutive components (and after the last
one). All the gaps have the same size.

_

Component Gap Component Gap Component Gap

22 Alsys Ada for the Transputer. Appendix F. v4.3

Components

If the array is not packed, the size of the components is the size of the subtype of the
components, for example: -

type A is array (1 .. 8) of BOOLEAN;
-- The size of the components of A is the size of the type BOOLEAN: 8 bits.

type DECIMAL_DIGIT is range 0 .. 9;
for DECIMAL _DIGIT'SIZE use 4;
type BINARY_CODED_DECIMAL is
array (INTEGER range <>) of DECIMAL _DIGIT;
-- The size of the type DECIMAL_ DIGIT is 4 bits. Thus in an array of
-- type BINARY_CODED_DECIMAL each component will be represented in
-- 4 bits as in the usual BCD representation.

If the array is packed and its components are neither records nor arrays, the size of the
components is the minimum size of the subtype of the components, for example:

type A is array (1l .. 8) of BOOLEAN;

pragma PACK(A);

-- The size of the components of A is the minimum size of the type BOOLEAN:
-- 1 bit.

type DECIMAL_DIGIT is range 0 .. 9;
type BINARY_CODED_DECIMAL is
array (INTEGER range <>) of DECIMAL_DIGIT;
pragma PACK(BINARY_CODED_DECIMAL);
-- The size of the type DECIMAL__DIGIT is 8 bits, but, as
-- BINARY_CODED_DECIMAL is packed, each component of an array of this
-- type will be represented in 4 bits as in the usual BCD representation.

Packing the array has no effect on the size of the components when the components are
records or arrays.

Gaps

If the components are records or arrays, no size specification applies to the subtype of
the components and the array is not packed, then the Compiler may choose a
representation with a gap after each component; the aim of the insertion of such gaps is
to optimize access to the array components and to their subcomponents. The size of the
gap is chosen so that the relative displacement of consecutive components is a multiple
of the alignment of the subtype of the components. This strategy allows each
component and subcomponent to have an address consistent with the alignment of its
subtype, for example:

Appendix F, Implementation-Dependent Characteristics

type INT is range -2**31 .. 2**3] - I;

type R is
record '
K : INT; -- INT is word aligned.
B : BOOLEAN; -- BOOLEAN is byte aligned.

end record;
-- Record type R is word aligned; its size is 40 bits.

type A is array (1 .. 10) of R;
-- A gap is inserted.after each component in order to respect the
-- alignment of type R.

Component Gap Component Gap Component
Array of type A: each subcomponent K has a word offset.
If a size specification applies to the subtype of the components or if the array is packed,
no gaps are inserted, for example:

type tNT is range -2**31 .. 2**3] - |;

type R is
record
K : INT;
B : BOOLEAN;

end record;
type A is array (1 .. 10) of R;
pragma PACK(A);
-- There is no gap in an array of type A because A is packed.
-- The size of an object of type A will be 400 bits.

type NR is new R;

for NR'’SIZE use 40;

type B is array (1 .. 10) of NR;

-- There is no gap in an array of type B because NR has a size specification.
-- The size of an object of type B will be 400 bits.

Component Component Component

Array of type A or B: a subcomponent K can have any byte of fset.

24 Alsys Ada for the Transputer. Appendix F, v4.3

Size of an array subtype

The size of an array subtype is obtained by multiplying the number of its components
by the sum of the size of the components and the size of the gaps (if any). If the
subtype is unconstrained, the maximum number of components is considered.

The size of an array subtype cannot be computed at compile time

» if it has non-static constraints or is an unconstrained array type with non-
static index subtypes (because the number of components can then only be
determined at run time).

s if the components are records or arrays and their constraints or the
constraints of their subcomponents (if any) are not static (because the size of
the components and the size of the gaps can then only be determined at run
time).

As has been indicated above, the effect of a pragma PACK on an array type is to
suppress the gaps and to reduce the size of the components. The consequence of
packing an array type is thus to reduce its size.

If the components of an array are records or arrays and their constraints or the
constraints of their subcomponents (if any) are not static, the Compiler ignores any
pragma PACK applied to the array type but issues a warning message. Apart from this
limitation, array packing is fully implemented by the Alsys Compiler.

The only size that can be specified for an array type or first named subtype using a size
specification is its usual size. Nevertheless, such a length clause can be useful to verify
that the layout of an array is as expected by the application.

Size of the objects of an array subtype

The size of an object of an array subtype is always equal to the size of the subtype of
the object.

Alignment of an array subtype

If no pragma PACK applies to an array subtype and no size specification applies to its
components, the array subtype has the same alignment as the subtype of its components.

If a pragma PACK applies to an array subtype or if a size specification applies to its
components (so that .here are no gaps), the alignment of the array subtype is the lesser
of the alignment of the subtype of its components and the relative displacement of the
components.

Address of an object of an array subtype
Provided its alignment is not constrained by a record representation clause, the address

of an object of an array subtype is a multiple of the alignment of the corresponding
subtype.

Appendix F, Implementation-Dependent Characteristics

25

4.8 Record Types

Layout of a record

Each record is allocated in a contiguous area of storage units. The size of a record
component depends on its type. Gaps may exist between some components.

The positions and the sizes of the components of a record type object can be controlled
using a record representation clause as described in {13.4]. In the Alsys implementation
for transputer targets there is no restriction on the position that can be specified for a
component of a record. If a component is not a record or an array, its size can be any
size from the minimum size to the size of its subtype. If a component is a record or an
array, its size must be the size of its subtype.

In a record representation clause, the first storage unit (that is, a byte) and the first bit
position within a storage unit are numbered zero. Bits are ordered, and thus numbered,
least significant bit first within a storage unit. Storage units are numbered such that
lower numbers have the least significance in a machine word.

A component clause may be specified such that the component overlaps a storage unit
boundary. In this case, the bits are numbered in sequence from the least significant bit
of the first storage unit to the most significant bit of the last storage unit occupied by
the component. For example:

type BIT_3 is range 0 .. 7;
for BIT__3'SIZE use 3;

type BIT_S5 is range 0 .. 31;
for BIT_ 5'SIZE use §5;

type BIT_8 is range 0 .. 255;
for BIT_8'SIZE use 8;

type R is
record
FIRST : BIT_3;
SECOND : BIT_8;
THIRD : BIT_S;
end record;
for R use
record
FIRST at O range 0 .. 2;
SECOND at 0 range 3 .. 10;
-- Component SECOND overlaps a storage unit boundary.
THIRD at 1 range 3 .. 7;
end record;
for R'SIZE use 16;

26 Alsys Ada for the Transputer. Appendix F, v4.3

1 0 Storage unit number

Most Significant THIRD SECOND FIRST Least Significant
Bit (MsSB) . Bit (LSB)

7 3 2 07 3 2 0 Bit number within storage unit

Storage Representation of a Record of type R

A record representation clause need not specify the position and the size for every
component.

If no component clause applies to a component of a record, its size is the size of its
subtype. Its position is chosen by the Compiler so as to optimize access to the
components of the record: the offset of the component is chosen as a multiple of the
alignment of the component subtype. Moreover, the Compiler chooses the position of
the component so as to reduce the number of gaps and thus the size of the record
objects.

Because of these optimizations, there is no connection between the order of the
components in a record type declaration and the positions chosen by the Compiler for
the components in a record object.

Pragma PACK has no further effect on records. The Alsys Compiler always optimizes
the layout of records as described above.

In the current version, it is not possible to apply a record representation clause to a
derived type. The same storage representation is used for an object of a derived type as
for an object of the parent type.

Indirect components

If the offset of a component cannot be computed at compile time, this offset is stored in

the record objects at run time and used to access the component. Such a component is
said to be indirect while other components are said to be direct:

Appendix F, Implementation-Dependent Characteristics

27

Beginning of the record

Compile time offset
DIRECT

Compile time offset
OFFSET

Run time offset
INDIRECT

A direct and an indirect component

If a record component is a record or an array, the size of its subtype may be evaluated
at run time and may even depend on the discriminants of the record. We will call these
components dynamic components. For example:

type DEVICE is (SCREEN, PRINTER);

type COLOR is (GREEN, RED, BLUE);

type SERIES is array (POSITIVE range <>) of INTEGER;

type GRAPH (L : NATURAL) is

record
X : SERIES(1 .. L); -- The size of X depends on L
Y : SERIES(1 .. L); -- The size of Y depends on L

end record,
Q : POSITIVE;

type PICTURE (N : NATURAL; D : DEVICE) is
record
F : GRAPH(N); -- The size of F depends on N
S : GRAPH(Q); -- The size of S depends on Q
case D is
when SCREEN =>
C : COLOR;
when PRINTER =>
null;
end case;
end record;

28 Alsys Ada for the Transputer. Appendix F, v4.3

Any component placed after a dynamic component has an offset which cannot be
evaluated at compile time and is thus indirect. In order to minimize the number of
indirect components, the Compiler groups the dynamic components together and places
them at the end of the record:

D = SCREEN D = PRINTER
N=2 N=1
Beginning of the record
S OFFSET S OFFSET
Compile time offsets
F OFFSET F OFFSET
N N

Run time offsets —[- F
L

The record type PICTURE: F and S are placed at the end of the record

Thanks to this strategy, the only indirect components are dynamic components. But not
all dynamic components are necessarily indirect: if there are dynamic components in a
component list which is not followed by a variant part, then exactly one dynamic
component of this list is a direct component because its offset can be computed at
compilation time, for example :

Appendix F, Implementation-Dependent Characteristics

29

Beginning of the record

Y OFFSET

Compile time offset
L

Compile time offset

X Size dependent on discriminant L

Run time offset

Y Size dependent on discriminant L

The record type GRAPH: the dynamic component X is a direct component.

The offset of an indirect component is always expressed in storage units.

The space reserved for the offset of an indirect component must be large enough to
store the size of any value of the record type (the maximum potential offset). The
Compiler evaluates an upper bound, MS, of this size and treats an offset as a component
having an anonymous integer type whose range is 0 .. MS.

If C is the name of an indirect component, then the offset of this component can be
denoted in a component clause by the implementation generated name C’OFFSET.

Implicit components

In some circumstances, access to an object of a record type or to its components involves
computing information which only depends on the discriminant values. To avoid
recomputation the Compiler stores this information in the record objects, updates it
when the values of the discriminants are modified and uses it when the objects or their
components are accessed. This information is stored in special components called
implicit components.

An implicit component may contain information which is used when the record object
or several of its components are accessed. In this case the component will be included in
any record object (the implicit component is considered to be declared before any
variant part in the record type declaration). There can be two components of this kind;
one is called RECORD_SIZE and the other VARIANT__INDEX.

On the other hand an implicit component may be used to access a given record
component. In this case the implicit component exists whenever the record component
exisis (the implicit component is considered to be declared at the same place as the
record component). Components of this kind are called ARRAY_DESCRIPTORs or
RECORD_DESCRIPTOR:s.

30 Alsys Ada for the Transputer. Appendix F. v4.3

. RECORD_SIZE

This implicit component is created by the Compiler when the record type has a variant
part and its discriminants, are defaulted. It contains the size of the storage space
necessary to store the current value of the record object (note that the storage effectively
allocated for the record object may be more than this).

The value of 2 RECORD_SIZE component may denote a number of bits or a number of
storage units. In general it denotes a number of storage units, but if any component
clause specifies that a component of the record type has an offset or a size which cannot
be expressed using storage units, then the value designates a number of bits.

The implicit component RECORD_SIZE must be large enough to store the maximum
size of any value of the record type. The Compiler evaluates an upper bound, MS, of
this size and then considers the implicit component as having an anonymous integer type
whose range is 0 .. MS.

If R is the name of the record type, this implicit component can be denoted in a
component clause by the implementation generated name R’'RECORD_SIZE.

. VARIANT _INDEX

This implicit component is created by the Compiler when the record type has a variant
part. It indicates the set of components that are present in a record value. It is used
when a discriminant check is to be done.

Component lists that do not contain a variant part are numbered. These numbers are the
possible values of the implicit component VARIANT _INDEX. For example;

type VEHICLE is (AIRCRAFT, ROCKET, BOAT, CAR);

type DESCRIPTION (KIND : VEHICLE := CAR) is
record
SPEED : INTEGER;
case KIND is
when AIRCRAFT | CAR =>
WHEELS : INTEGER;
case KIND is

when AIRCRAFT => --1
WINGSPAN : INTEGER;
when others => --2
null;
end case;
when BOAT => --3
STEAM : BOOLEAN;
when ROCKET => --4

STAGES : INTEGER;
end case;
end record,

Appendix F, Implementation-Dependent Characteristics

31

) The value of the variant index indicates the set of components that are present in a
) record value:

, Variant Index ' Set
1 (KIND, SPEED, WHEELS, WINGSPAN}
2 {KIND, SPEED, WHEELS)
3 {KIND, SPEED, STEAM)
4 (KIND, SPEED, STAGES)

A comparison between the variant index of a record value and the bounds of an interval
is enough to check that a given component is present in the value:

Component Interval
KIND --

- SPEED --
WHEELS 1..2
WINGSPAN 1..1
STEAM 3..3
STAGES 4 .. 4

The implicit component VARIANT _INDEX must be large enough to store the number
V of component lists that don’t contain variant parts. The Compiler treats this implicit
component as having an anonymous integer type whose range is 1 .. V.

If R is the name of the record type, this implicit component can be denoted in a
component clause by the implementation generated name R’VARIANT _INDEX.

s ARRAY_DESCRIPTOR

An implicit component of this kind is associated by the Compiler with each record
component whose subtype is an anonymous array subtype that depends on a discriminant
of the record. It contains information about the component subtype.

The structure of an implicit component of kind ARRAY_DESCRIPTOR is not
described in this documentation. Nevertheless, if a programmer is interested in
specifying the location of a component of this kind using a component clause, he can
obtain the size of the component using the ASSEMBLY parameter in the COMPILE
command.

The Compiler treats an implicit component of the kind ARRAY_DESCRIPTOR as
having an anonymous record type. If C is the name of the record component whose
subtype is described by the array descriptor, then this implicit component can be
denoted in a component clause by the implementation generated name
C'ARRAY__DESCRIPTOR.

. RECORD_DESCRIPTOR
An implicit component of this kind is associated by the Compiler with each record

component whose subtype is an anonymous record subtype that depends on a
discriminant of the record. It contains information about the component subtype.

32 Alsys Ada for the Transputer, Appendix F, v4.3

The structure of an implicit component of kind RECORD_DESCRIPTOR is not
described in this documentation. Nevertheless, if a programmer is interested in
specifying the location of a component of this kind using a component clause, he can
obtain the size of the component using the ASSEMBLY parameter in the COMPILE
command.

The Compiler treats an implicit component of the kind RECORD_DESCRIPTOR as
having an anonymous record type. If C is the name of the record component whose
subtype is described by the record descriptor, then this implicit component can be
denoted in a component clause by the implementation generated name
C'RECORD_DESCRIPTOR.

Suppression of implicit components

The Alsys implementation provides the capability of suppressing the implicit components
RECORD_SIZE and/or VARIANT_INDEX from a record type. This can be done
using an implementation defined pragma called IMPROVE. The syntax of this pragma
is as follows:

pragma IMPROVE (TIME | SPACE , [ON =>] simple__name);

The first argument specifies whether TIME or SPACE is the primary criterion for the
choice of the representation of the record type that is denoted by the second argument.

If TIME is specified, the Compiler inserts implicit components as described above. If
on the other hand SPACE is specified, the Compiler only inserts a VARIANT _INDEX
or a RECORD_SIZE component if this component appears in a record representation
clause that applies to the record type. A record representation clause can thus be used
to keep one implicit component while suppressing the other.

A pragma IMPROVE that applies to a given record type can occur anywhere that a
representation clause is zllowed for this type.

Size of a record subtype

Unless 2 component clause specifies that a component of a record type has an offset or a
size which cannot be expressed using storage units, the size of a record subtype is

rounded up to a whole number of storage units.

The size of a constrained record subtype is obtained by adding the sizes of its
components and the sizes of its gaps (if any). This size is not computed at compile time:

s when the record subtype has non-static constraints,

s when a component is an array or a record and its size is not computed at
compile time.)

The size of an unconstrained record subtype is obtained by adding the sizes of the
components and the sizes of the gaps (if any) of its largest variant. If the size of a
component or of a gap cannot be evaluated exactly at compile time, an upper bound of
this size is used by the Compiler to compute the subtype size.

Appendix F. Impiementation-Dependent Characteristics

33

The only size that can be specified for a record type or first named subtype using a size
specification is its usual size. Nevertheless, such a length clause can be useful to verify
that the layout of a record is as expected by the application.

Size of an object of a record subtype

An object of a constrained record subtype has the same size as its subtype.

An object of an unconstrained record subtype has the same size as its subtype if this size
is less than or equal to 4 Kbytes. If the size of the subtype is greater than this, the
object has the size necessary to store its current value; storage space is allocated and
released as the discriminants of the record change.

Alignment of a record subtype

When no record representation clause applies to its base type, a record subtype has the
same alignment as the component with the highest alignment requirement.

When a record representation clause does not contain an alignment clause that applies to
its base type, a record subtype has the same alignment as the component with the highest
alignment requirement which has not been overridden by its component clause.

When a record representation clause contains an alignment clause that does apply to its
base type, a record subtype has an alignment that obeys the alignment clause.

Address of an object of a record subtype

Provided its alignment is not constrained by a representation clause, the address of an
object of a record subtype is a multiple of the alignment of the corresponding subtype.

34 Alsys Ada for the Transputer. Appendix F. v4.3

5 Conventions for Implementation-Generated Names

Special record components are introduced by the Compiler for certain record type
definitions. Such record components are implementation-dependent; they are used by
the Compiler to improve the quality of the generated code for certain operations on the
record types. The existence of these components is established by the Compiler
depending on implementation-dependent criteria. Attributes are defined for referring to
them in record representation clauses. An error message is issued by the Compiler if the
user refers to an implementation-dependent component that does not exist. If the
implementation-dependent component exists, the Compiler checks that the storage
location specified in the component clause is compatible with the treatment of this
component and the storage locations of other components. An error message is issued if
this check fails.

There are four such attributes:

T'RECORD_SIZE For a prefix T that denotes a record type. This attribute
refers to the record component introduced by the Compiler
in a record to store the size of the record object. This
component exists for objects of a record type with
defaulted discriminants when the sizes of the record
objects depend on the values of the discriminants.

T'VARIANT_INDEX For a prefix T that denotes a record type. This attribute
refers to the record component introduced by the Compiler
in a record to assist in the efficient implementation of
discriminant checks. This component exists for objects of
a record type with variant type.

C'ARRAY_DESCRIPTOR
For a prefix C that denotes a record component of an
array type whose component subtype definition depe~ds on
discriminants. This attribute refers to the =cord
component introduced by the Compiler in a record to store
information on subtypes of components that depend on
discriminants.

C'RECORD_DESCRIPTOR
For a prefix C that denotes a record component of a
record type whose component subtype definition depends
on discriminants. This attribute refers to the record
component introduced by the Compiler in a record to store
information on subtypes of components that depend on
discriminants.

Appendix F, Implementation-Dependent Characteristics

6 Address Clauses

6.1 Address Clauses for Objects

An address clause can be used to specify an address for an object as described in [13.5].
When such a clause applies to an object no storage is allocated for it in the program
generated by the Compiler. The program accesses the object using the address specified
in the clause.

An address clause is not allowed for task objects, nor for unconstrained records whose
size is greater than 4 Kbytes.

6.2 Address Clauses for Program Units

Address clauses for program units are not implemented in the current version of the
Compiler.

6.3 Address Clauses for Entries

Address clauses for entries are not implemented in the current version of the Compiler.

36 Alsys Ada for the Transputer. Appendix F. v4.3

——

7 Restrictions on Unchecked Conversions

Unconstrained arrays are not allowed as target types.

Unconstrained record types without defaulted discriminants are not allowed as target
types.

If the source and the target types are each scalar or access types, the sizes of the objects
of the source and target types must be equal. If a composite type is used either as the
source type or as the target type this restriction on the size does not apply.

If the source and the target types are each of scalar or access type or if they are both of
composite type, the effect of the function is to return the operand.

In other cases the effect of unchecked conversion can be considered as a copy:

s if an unchecked conversion of a scalar or access source type to a composite
target type is achieved, the result of the function is a copy of the source
operand: the result has the size of the source.

= if an unchecked conversion of a composite source type to a scalar or access

target type is achieved, the result of the function is a copy of the source
operand: the result has the size of the target.

Appendix F, Implementation-Dependent Characteristics

37

8 Input-Output Packages

The predefined input-output packages SEQUENTIAL_IO [14.2.3], DIRECT_IO [14.2.5},
and TEXT_IO (14.3.10] are implemented as described in the Language Reference
Manual, as is the package IO__EXCEPTIONS ([14.5], which specifies the exceptions that
can be raised by the predefined input-output packages.

The package LOW_LEVEL_IO [14.6]), which is concerned with low-level machine-
dependent input-output, has not been implemented.

All accesses to the services of the host system are provided through the INMOS supplied
iserver tool [Ref. 3], so much of Ada input-output is host independent.

8.1 NAME Parameter

No special treatment is applied to the NAME parameter supplied to the Ada procedures
CREATE or OPEN [14.2.1]. This parameter is passed immediately on to the INMOS
server and from there to the host operating system. The file name can thus be in any
format acceptable to the host system.

8.2 FORM Parameter

The FORM parameter comprises a set of attributes formulated according to the lexical
rules of [2], separated by commas. The FORM parameter may be given as a null string
except when DIRECT _IO is instantiated with an unconstrained type; in this case the
RECORD_SIZE attribute must be provided. Attributes are comma-separated; blanks
may be inserted between lexical elements as desired. In the descriptions below the
meanings of natural, positive, etc., are as in Ada; attribute keywords (represented in
upper case) are identifiers [2.3]) and as such may be specified without regard to case.

USE_ERROR is raised if the FORM parameter does not conform to these rules.

The attributes are as follows:

File sharing attribute

This attribute allows control over the sharing of one external file between several
internal files within a single program. In effect it establishes rules for subsequent OPEN
and CREATE calls which specify the same external file. If such rules are violated or if
a different file sharing attribute is specified in a later OPEN or CREATE «call,
USE_ERROR will be raised. The syntax is as follows:

NOT_SHARED |
SHARED => access__mode

where

access_mode 2= READERS | SINGLE_WRITER | ANY

38 Alsys Ada for the Transputer. Appendix F. v4.3

A file sharing attribute of’
NOT_SHARED
implies only one internal file may access the external file.
SHARED => READERS
imposes no restrictions on internal files of mode IN_FILE, but prevents any
internal files of mode OUT_FILE or INOUT_FILE being associated with
the external file.

SHARED => SINGLE_WRITER

is as SHARED => READERS, but in addition allows a single internal file of
mode OUT_FILE or INOUT_FILE.

SHARED => ANY
places no restrictions on external file sharing.
If a file of the same name has previously been opened or created, the default is taken
from that file's sharing attribute, otherwise the default depends on the mode of the file:

for mode IN_FILE the default is SHARED => READERS, for modes INOUT_FILE
and OUT_FILE the default is NOT_SHARED.

Record size and record unit attributes
These attributes control the structure of external binary files.

A binary file can be viewed as a sequence (sequential access) or a set (direct access) of
consecutive records, each of the following structure:

[HEADER | OBIJECT [UNUSED_PART]
where:

s OBIJECT is the exact binary representation of the Ada object in the
executable program (possibly including an implicit object descriptor).

« HEADER contains two word sized values, the length of the object and the
length of the descriptor.

s UNUSED_PART is a gap of variable size to permit full control of the
record’s size.

The HEADER is only implemented if the actual parameter of the instantiation of the IO
package is unconstrained.

The formats of the file structure attributes are as follows:

RECORD_SIZE => size__in__bytes

Appendix F. Implementation-Dependent Characteristics

RECORD__UNIT => size_in_bytes

In the case of DIRECT_1O for unconstrained types the user is required to specify the
RECORD_SIZE attribute. However, for SEQUENTIAL _IO for unconstrained types the
attribute is illegal. USE_ERROR will be raised by the OPEN or CREATE procedures
if either of these checks fail.

In all cases the value given must not be smaller than a mininum size. For constrained
types, this minimum size is ELEMENT_TYPE'SIZE / SYSTEM.STORAGE_UNIT;
USE_ERROR will be raised if this rule is violated. For unconstrained types, the
minimum size is ELEMENT _TYPE'DESCRIPTOR_SIZE / SYSTEM.STORAGE_ UNIT
plus the size of the largest record which is to be read or written. If a larger record is
processed, DATA_ERROR will be raised by the READ or WRITE.

If no RECORD_SIZE attribute is specified for constrained types, the default value of
the object’s size is assumed. In this case no UNUSED__PART will be implemented.

The RECORD_UNIT attribute is only applicable to SEQUENTIAL_IO for
unconstrained types; it has a default value of 1. If specified, the record size will be the

smallest multiple of this value that holds the object and its length. This is the only case
where a file may contain variable length records.

Buffer size attribute

This attribute controls the size of the buffer used as a cache for input-output operations:
BUFFER_SIZE => size_in_ bytes

The default value for BUFFER_SIZE is 0, which means no buffering.

Append

This attribute may only be used in the FORM parameter of the OPEN command. If
used in the FORM parameter of the CREATE command, USE_ERROR will be raised.

The affect of this attribute is to cause writing to commence at the end of the existing
file.

The syntax of the APPEND attribute is simply:
APPEND

The default is APPEND => FALSE, but this is overridden if this attribute is specified.

8.3 USE_ERROR
The following conditions will cause USE_ERROR to be raised:
s Specifying a FORM parameter whose syntax does not conform to the rules

given above.

40 Alsys Ada for the Transputer, Appendix F, v4.3

Specifying the RECORD_SIZE FORM parameter attribute to have a value
of zero, or failing to specify RECORD_SIZE for instantiations of
DIRECT_1O for unconstrained types.

Specifying a RECORD_SIZE FORM parameter attribute to have a value less
than that required to hold the element for instantiations of DIRECT IO and
SEQUENTIAL_IO for constrained types.

Violating the file sharing rules stated above.

Attempting to perform an input-output operation which is not supported by
the INMOS iserver due to restrictions of the host operating system.

Errors detected whilst reading or writing (e.g. writing to a file on a read-
only disk).

Appendix F. Implementation-Dependent Characteristics

41

9 Characteristics of Numeric Types

9.1 Integer Types - T2 transputer targets

The ranges of values for integer types for T2 transputer targets declared in package
STANDARD are as follows:

SHORT_INTEGER -128 .. 127 --2%7 -
INTEGER -32768 .. 32767 -~ 2%*]5 -]
LONG_INTEGER -2147483648 .. 2147483647 -- 2%*3] - |

9.2 Integer Types - T4/T8 transputer targets

The ranges of values for integer types for T4 and T8 transputer targets declared in
package STANDARD are as follows:

SHORT__INTEGER -128 .. 127 ~- 2%7 -]

INTEGER -2147483648 .. 2147483647 -~ 2%%3] - 1

9.3 Other Integer Types

For the packages DIRECT_IO and TEXT_IO, the ranges of values for types COUNT
and POSITIVE_COUNT are as follows:

COUNT 0 .. 2147483647 -- 2%%3]1 - |

POSITIVE_COUNT 1 .. 2147483647 -- 2%*31 1

For the package TEXT _IO, the range of values for the type FIELD is as follows:

FIELD 0. 255 -- 28 - |

42 Alsys Ada for the Transputer. Appendix F, v4.3

9.4 Floating Point Type Attributes

FLOAT

DIGITS

MANTISSA

EMAX

EPSILON

SMALL

LARGE
SAFE_EMAX
SAFE_SMALL
SAFE_LARGE
FIRST

LAST
MACHINE_RADIX
MACHINE_MANTISSA
MACHINE_EMAX
MACHINE_EMIN

.MACHINE_ROUNDS

MACHINE _OVERFLOWS
SIZE

LONG_FLOAT

DIGITS

MANTISSA

EMAX

EPSILON

SMALL

LARGE

SAFE_EMAX
SAFE_SMALL
SAFE_LARGE

FIRST

LAST
MACHINE_RADIX
MACHINE_MANTISSA
MACHINE_EMAX
MACHINE_EMIN
MACHINE_ROUNDS
MACHINE_OVERFLOWS
SIZE

Approximate

value
6
21
84
2.0 ** -20 9.54E-7
2.0 ** -85 2.58E-26
2.0 ** 84 % (1.0 - 2.0 ** -21) 1.93E+25
125
2.0 ** -126 1.18E-38
2.0 ** 125 * (1.0 - 2.0 ** -21) 4.25E+37

-2.0 ** 127 * (2.0 - 2.0 ** -23) -3.40E+38
2.0 ** 127 * (2.0 - 2.0 ** -23) 3.40E+38
2

24

128

-125

TRUE

TRUE

32

Approximate
value

15
51
204
2.0 ** .50 8.88E-16
2.0 ** -205 1.94E-62
2.0 ** 204 * (1.0 - 2.0 ** -51) 2.57TE+61
1021
2.0 ** -1022 2.22E-308
2.0 ** 1021 * (1.0 - 2.0 ** -51) 2.25E+307
-2.0 ** 1023 * (2.0 - 2.0 ** -51) -1.79E+308
2.0 ** 1023 * (2.0 - 2.0 ** -51) 1.79E+308
2
53
1024
-1021
TRUE
TRUE
64

Appendix F. Implementation-Dependent Characteristics

43

9.5 Attributes of Type DURATION

DURATION'DELTA
DURATION'SMALL
DURATION'LARGE
DURATION’FIRST
DURATION'LAST

44

20 % -14
2.0 % -14
1310720
-86400.0
86400.0

Alsys Ada for the Transputer. Appendix F. vd.3

_——

n

21

3]

(41

REFERENCES

Reference Manual for the Ada Programming Language
(ANSI/MIL-STD-1815A~1983).

Occam?2 Reference Manual.
INMOS Limited
Prentice Hall, 1988.

Occam?2 Toolset User Manual.
INMOS Limited, 1989.
INMOS document number 72 TDS 184 00.

Transputer Instruction Set - A Compiler Writer's Guide
INMOS Limited
Prentice Hall, 1988

References

45

ADDRESS attribute 8
restrictions §

Append attribute 40

ARRAY_DESCRIPTOR attribute 35

ASCII 4,5

Attributes 8
ARRAY_DESCRIPTOR 35
DESCRIPTOR_SIZE 8
IS_ARRAY 8
RECORD__DESCRIPTOR 35
RECORD_SIZE 35, 38
representation attributes 8
VARIANT_INDEX 35

BOOLEAN 4
Buffer_size attribute 40

CHARACTER 4
COUNT 42

DESCRIPTOR _SIZE attribute 8, 40
DIRECT_IO 38, 42
DURATION

attributes 44

Enumeration types 4
BOOLEAN 4
CHARACTER 4

FAST_PRIMARY 7, 21

FIELD 42

File sharing attribute 38

Fixed point types 4
DURATION 44

FLOAT 4, 43

Floating point types 4
FLOAT 4, 43
LONG_FLOAT 4, 43

FORM parameter 38

FORM parameter attributes
append 40
buffer_size attribute 40
file sharing attribute 38
record__size attribute 39, 41
record__unit attribute 39

Implementation-dependent attributes 8

Implementation-dependent pragma 2
Implementation-generated names 35

46

INDEX

IMPROVE 7

INLINE 2

Input-Qutput packages 38
DIRECT_10 38
I0_EXCEPTIONS 38
LOW_LEVEL_IO 38
SEQUENTIAL_IO 38
TEXT_IO 38

INTEGER 3, 42

Integer types 3, 42
COUNT 42
FIELD 42
INTEGER 3, 42
LONG_INTEGER 3, 42
POSITIVE_COUNT 42
SHORT_INTEGER 3, 42

INTERFACE 2

INTERFACE_NAME 2, 6

Interfaced subprograms
Restrictions 6

IO_EXCEPTIONS 38

IS_ARRAY attribute 8

Language_name 2
LONG_FLOAT 4, 43
LONG INTEGER 3, 42
LOW_LEVEL_1O 38

NAME parameter 38

NOT_SHARED 38

Numeric types
characteristics 42
Fixed point types 44
integer types 42

Occam 2

PACK 7
Parameter representations 3
Access types 5
Array types 5
Enumeration types 4
Fixed point types 4
Floating point types 4
Integer types 3
Record types 6
Parameter-passing conventions 3
POSITIVE_COUNT 42
Pragma INLINE 2

Alsys Ada for the Transputer, Appendix F. v4.3

INDEX (CONTINUED)

Pragma INTERFACE 2
language_name 2
occam 2
subprogram_name 2
Pragma INTERFACE_NAME 2
string_ literal 6
subprogram__name 6
Pragmas
FAST_PRIMARY 7, 21
IMPROVE 7
. INTERFACE 2
INTERFACE_NAME 6
PACK 7
PRIORITY 7
STORAGE_SIZE_RATIO 7, 21
SUPPRESS 7
PRIORITY 7

RECORD_DESCRIPTOR attribute 35
RECORD_SIZE attribute 35, 38, 39,
41
Record_unit attribute 39
Representation attributes 8
Representation clauses 10
restrictions 10

SEQUENTIAL_IO 38
SHARED 38
SHORT_INTEGER 3, 42
STORAGE_SIZE_RATIO 7, 21
STRING 5

String literal 6
Subprogram_name 2, 6
SUPPRESS 7

SYSTEM package 9

TEXT_IO 38, 42
Unchecked conversions 37
restrictions 37

USE_ERROR 38, 40

VARIANT_INDEX attribute 35

Index

47

TEST PARAMETERS

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such as the maximum
length of an input line and invalid file names. A test that makes use of such values is identified
by the extension .TST in its file name. Actual values to be substituted are represented by names
that begin with a dollar sign. A value must be substituted for each of these names before the test
is run. The values used for this validation are given below:

Name and Meaning Value

SACC_SIZE 16
An integer literal whose value is the
number of bits sufficient to hold any
value >f an access type.

$BIG_ID1 (1.254=>"A", 255=>1)
Identifier the size of the maximum
input line length with varying last
character.

$BIG_ID2 (1.254=>"A", 255=>2)
Identifier the size of the maximum
input line length with varying last
character.

$BIG_ID3 (1..127=>"A", 128=>3, 129..255=>"A")
Identifier the size of the maximum
input line length with varying middie
character.

$BIG_ID4 (1..127=>"A", 128=>4, 129..255=>"A")
Identifier the size of the maximum
input line length with varying middle
character.

$BIG_INT_LIT (1..252=>0, 253..255=>298)
An integer literal of value 298 with
enough leading zeroes so that it is
the size of the maximum line length

Valilation Summary Report AVF-VSR-90502/58

Alsys Limited AlsyCOMP_037 V43 Appcadix C - Page 1 of 6

TEST PARAMETERS

$BIG_REAL_LIT
A universal real literal of value
690.0 with enough leading zeroes to
be the size of the maximum line
length.

SBIG_STRING1
A string literal which when
catenated with BIG_STRING2 yiclds
the image of BIG_IDI.

SBIG_STRING2
A string literal which when
catenated to the end of
BIG_STRING] yields the image of
BIG_ID1.

SBLANKS
A sequence of blanks twenty
characters less than the size of the
maximum line length.

SCOUNT_LAST
A universal integer literal whosc
value is TEXT_IO.COUNT'LAST.

SDEFAULT_MEM_SIZE
An integer literal whose valuc is
SYSTEM.MEMORY _SIZE.

SDEFAULT_STOR_UNIT
An integer literal whose value is
SYSTEM.STORAGE_UNIT.

SDEFAULT_SYS_NAME
The wvalue of the constant
SYSTEM.SYSTEM_NAME.

SDELTA_DOC
A real literal whose value is
SYSTEM.FINE_DELTA.

SFIELD_LAST
A universal integer literal whose
value is TEXT_IO.FIELD'LAST.

(1..249=>0, 250..255=>69.0E1)

(1..127=>"A")

(1.127=>"A", 128=>1)

(1.235=>"")

2147483647

65536

TRANSPUTER

2#1.0#E-31

Validation Summary Rcport

Alsys Limited AlsyCOMP_037 V4.3

AVF-VSR-90502/58

Appendix C - Page 2 of 6

TEST PARAMETERS

SFIXED_NAME
The name of a predefined fixed-
point type other than DURATION.

SFLOAT_NAME
The name of a predefined floating-
point type other than FLOAT,
SHORT_FLOAT, or
LONG_FLOAT.

SGREATER_THAN_DURATION
A universal real literal that lies
between DURATION'BASE’LAST
and DURATION'LAST or any value
in the range of DURATION.

SGREATER_THAN_DURATION_BASE
_LAST
A universal real literal that is
greater-r t h an
DURATION'BASE'LAST.

SHIGH_PRIORITY
An integer literal whose value is the
upper bound of the range for
the subtype SYSTEM.PRIORITY.

SILLEGAL_EXTERNAL_FILE_NAMELIL
An external file name which
contains invalid characters.

SILLEGAL_EXTERNAL_FILE_NAME?2
An external file name which is too
long.

$INTEGER_FIRST
A universal integer literal whose
value is INTEGER'FIRST.

SINTEGER_LAST
A universal integer literal whose
value is INTEGER’LAST.

$INTEGER_LAST_PLUS_1
A universal integer literal whose
value is INTEGER'LAST +1.

NO_SUCH_TYPE

NO_SUCH_TYPE

100000.0

10000000.0

10

#~@[0]+=

[Ol+=#~@"

-32768

32767

32768

Validation Summary Report

Alsys Limited AlsyCOMP_037 V43

AVF-VSR-90502%/58

Appendix C - Page 3 of 6

TEST PARAMETERS

$LESS_THAN_DURATION
A universal real literal that lies
between DURATION'BASE'’FIRST
and DURATIONFIRST or any
value in the range of DURATION.

SLESS_THAN_DURATION_BASE_FIRST
A universal real literal that is less
than DURATION’BASE’FIRST.

SLOW_PRIORITY
An integer literal whose value is the
lower bound of the range for the
subtype SYSTEM.PRIORITY.

SMANTISSA_DOC
An integer literal whose value is
SYSTEM.MAX_MANTISSA.

$MAX_DIGITS
Maximum digits supported for
floating-point types.

SMAX_IN_LEN
Maximum input line length
permitted by the implementation.

SMAX_INT
A universal integer literal whose
value is SYSTEM.MAX_INT.

SMAX_INT_PLUS 1
A universal integer literal whose
value is SYSTEM.MAX_INT+1.

SMAX_LEN_INT_BASED_LITERAL
A universal integer based literal
whose value is 2#11# with enough
leading zeroes in the mantissa to be
MAX_IN_LEN long.

$MAX_LEN_REAL_BASED_LITERAL
A universal real based literal whose
value is 16:F.E: with enough leading
zeroes in the mantissa to be
MAX_IN_LEN long.

-100000.0

~10000000.0

31

15

255

2147483647

2147483648

(1.2=>"2, 3.252=>"0", 253..255=>"11.")

(1.3=>"167, 4.251=>"0", 252.255=>F.E:")

Validatios Summary Report
Alsys Limited AlsyCOMP_037 V43

AVF-VSR-90502/58

Appendix C - Page 4 of 6

TEST PARAMETERS

SMAX_STRING_LITERAL
A string literal of size
MAX_IN_LEN, including the quote
characters.

SMIN_INT
A universal integer literal whose
value is SYSTEM.MIN_INT.

$MIN_TASK_SIZE
An integer literal whose value is the
number of bits required to hold a
task object which has no entries, no
declarations, and "NULL;" as the
only statement in its body.

SNAME
A name of a predcfined numeric
type other than FLOAT, INTEGER,
SHORT_FLOAT,
SHORT_INTEGER,
LONG_FLOAT, or
LONG_INTEGER.

$NAME_LIST
A list of enumeration literals in the
type SYSTEM.NAME, separated by
commas.

SNEG_BASED_INT
A based integer literal whose highest
order nonzero bit falls in the sign
bit position of the representation
for SYSTEM.MAX_INT.

SNEW_MEM_SIZE
An integer literal whose value is a
permitted argument for pragma
memory_size, other than
$DEFAULT_MEM_SIZE. If there
is no other value, then use
$DEFAULT_MEM_SIZE.

(1=>", 2.254=>"A", 255=>"")

-2147483648

16

NO_SUCH_TYPE

TRANSPUTER

16#FFFFFFFF#

65536

Validation Summary Report
Alsys Limited AlsyCOMP_037 V4.3

AVF-VSR-90502/58

Appendix C - Page 5 of 6

- e ———

TEST PARAMETERS

SNEW_STOR_UNIT

An integer literal whose value is a
permitted argument for pragma
storage_unit, other than
$DEFAULT_STOR_UNIT. If there
is no other permitted value, then
us e value o f
SYSTEM.STORAGE_UNIT.

SNEW_SYS NAME
A value of the type
SYSTEM.NAME. other than
$DEFAULT_SYS_NAME. If there
is only one value of that type, then
use that value.

STASK_SIZE
An integer literal whose value is the
number of bits required to hold a
task object which has a single entry
with one inout parameter.

STICK
A real literal whose value s
SYSTEM.TICK.

TRANSPUTER

16

1.0E-6

Validation Summary Rcport

Alsys Limited AlsyCOMP_037 V43

AVT-VSR-920502%/58

Appendix C - Page 6 of 6

WITHDRAWN TESTS

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the Ada Standard.
The following <TOTAL_WITHDRAWN> tests had been withdrawn at the time of validation
testing for the reasons indicated. A reference of the form Al-ddddd is to an Ada Commentary.

E28005C This test expects that the string "-- TOP OF PAGE. --63" of line 204 will appear
at the top of the listing page due to a pragma PAGE in line 203; but line 203
contains text that follows the pragma, and it is this that must appear at the top of
the page.

A39005G This test unreasonably expects a component clause to pack an array component into
a minimum size (line 30).

BY97102E This test contains an unitended illegality: a select statement contains a null
statement at the place of a selective wait alternative (line 31).

C97116A This test contains race conditions, and it assumes that guards are evaluated
indivisibly. A conforming implementation may use interleaved execution in such
a way that the evaluation of the guards at lines 50 & 54 and the execution of task
CHANGING_OF_THE_GUARD results in a call to REPORT.FAILED at one of
lines 52 or 56.

BC3009B This test wrongly expects that circular instantiations will be detected in several
compilation units even though none of the units is illegal with respect to the units
it depends on; by AI-00256, the illegality nced not be detected until execution is
attempted (line 95).

CD2A62D This test wrongly requires that an array object’s size be no greater than 10 although
its subtype’s size was specified to be 40 (line 137).

CD2A63A..D, CD2A66A..D, CD2A73A..D, CD2A76A..D [16 tests]
These tests wrongly attempt to check the size of objects of a derived type (for
which a 'SIZE length clause is given) by passing them to a derived subprogram
(which implicitly converts them to the parent type (Ada standard 3.4:14)).
Additionally, they use the 'SIZE length clause and attribute, whose interpretation
is considered problematic by the WG9 ARG.

CD2AB1G, CD2A83G, CD2A84N & M, & CDS50110 [5 tests]
These tests assume that dependent tasks will terminate while the main program
executes a loop that simply tests for task termination: this is not the case, and the
main program may loop indefinitely (lines 74, 85, 86 & 96, 86 & 96, and 58, resp.).

Validation Summary Report AVF-VSR-90502/58

Alsys Limited AlsyCOMP_037 V43 Appendix D - Page 1 of 2

——

P —— - -~y — e

WITHDRAWN TESTS

CD2B15C & CD7205C

CD2D11B

CD5007B

These tests expect that a 'STORAGE_SIZE length clause provides precise control
over the number of decsignated objects in a collection; the Ada standard 13.2:15
allows that such control must not be expected.

This test gives a SMALL representation clause for a derived fixed-point type (at
line 30) that defines a set of model numbers that are not necessarily represented
in the parent type; by Commentary AI-00099, all model numbers of a derived
fixed-point type must be representable values of the parent type.

This test wrongly expects an implicitly declared subprogram to be at the the address
that is specified for an unrelated subprogram (line 303).

ED7004B, ED7005C & D, ED7006C & D [5 tests]

CD7105A

These tests check various aspects of the use of the three SYSTEM pragmas; the
AVO withdraws these tests as being inappropriate for validation.

This test requires that successive calls to CALENDAR.CLOCK change by at least
SYSTEM.TICK; however, by Commentary AI-00201, it is only the expected
frequency of change that must be at least SYSTEM.TICK--particular instances of
change may be less (line 29).

CD7203B, & CD7204B

CD7205D

CEZ1071

CE3111C

CE33C1A

CE3411B

These tests use the 'SIZE length clause and attribute, whose interpretation is
considered problematic by the WG9 ARG.

This test checks an invalid test objective: it treats the specification of storage to
be reserved for a task’s activation as though it were like the specification of storage
for a collection.

This test requires that objects of two similar scalar types be distinguished when read
from a file--DATA_ERROR is expected to be raised by an attempt to read one
object as of the other type. However, it is not clear exactly how the Ada standard
14.2.4:4 is to be interpreted; thus. this test objective is not considered valid. (line
90)

This test requires certain behavior, when two files are associated with the same
external file, that is not required by the Ada standard.

This test contains several calls to END_OF_LINE & END_OF_PAGE that have
no parameter: these calls were intended to specify a file, not to refer to
STANDARD_INPUT (lines 103, 107, 118, 132, & 136).

This test requires that a text file’s column number be set to COUNT'LAST in order
to check that LAYOUT_ERROR is raised by a subsequent PUT operation. But
the former operation will generally raise an exception due to a lack of available disk
space, and the test would thus encumber validation testing.

Validstion Summary Report AVF-VSR-90502/58

Alsys Limited AlsyCOMP_037 V43 Appendix D - Page 2 of 2

NCC VSR ADDENDUM

This Addendum to the ACVC 1.10 VSR clarifies some items which are contained within the

standard pro-forma Validation Summary Report as supplied by the Ada Maintenance Organisation
(AMO).

In line with AJPO regulations the contents of the VSR have not been altered in order to keep
consistency between the different AVF's.

The points raised in this addendum are being addressed by the AMO in future issued of the VSR.

1 The last paragraph of Chapter 1 contains the following statement 'Any test that was
determined to contain an illegal language constructed or an erroneous language construct
is withdrawn from the ACVC..

This is incorrect since illegal constructs are legitimately contained within Class B tests.

()

Both the terms ‘inapplicable’ and ’not applicable’ are used within the VSR. These terms
are identical.

3 Chapter 1 of the VSR does not indicate how 'inapplicable’ tests are to be analysed. The
analysis is undertaken as follows:

"Each inapplicable test is checked to ensure that this behaviour is consistent with the given
reasons for its inapplicability’.

