
r REPORT DOCUMENTATION PAGE

~~#Now &a VA amin rasm~ ui

1.AEC KW[Am m .FPR CAT APORrI AND DATE$ COED

II Final 13 Dec. 1989 to 13 Dec. 19990
4.IULENQSUTITI.E Ada Compiler Validation. Summary Report: Alsys 5RWSERS
Limited, AlsyCOMP_037 V4.3, INMOS T800 transputer implemented
on a B405 TRAM (bare)(Host), INMOS T222 transputer implemented
on a B416 TRAM (bare)(Target), 891213N1.10201

6 AUTHOR(S)If) National Computing Centre Limited

Manchester, UNITED KINGDOM

Nq 7* MMMMIOPAMMATION NA".SANDAflflg(ES) &. UIOM ORMANZATION
National Computing Centre Limited *POMT NUMER

Oxford Road AVF-VSP.-90502/58
Manchester MI 7ED
UNITED KINGDOM . ,v

Ada Joint Program Office - , .. A
United States Department of Defense . "
Washington, D.C. 20301-3081

11. SJPLEVrflMR NOTES

U L ,DI ,TR O ,M, A. A AL Im . V STAE M N T 12b .O T R l j n o N c o mE

Apprived for public release; distributiof unlimited.

'S . TSRACT (A ftz w%*)

:Alsys Limited, AlsyCOMP_037 V4.3, Manchester, England, INMOS T800 transputer implemented
on a B405 TRAM (bare), with an INMOS B008 communications link implemented in an IBM
PC/AT (under MS-DOS 3.1 and INMOS Iserver V1.41)(Host) to INYOS T222 transputer imple-
.mented on a B416 TRAM (bare), using an IBM PC/AT under MS-DOS 3.1 running IN NOS Iserver
~V1.41 for fiA4-server via an INMOS B008 board'link (Target), ACVC 1.10.

.*t5UECTIM4 Ada programming language, Ada Compiler Validation IL mSEROPMS
Summary Report, Ada Compiler Validation Capability, Validation
Testing, Ada Validation Office, Ada Validation Facility, ANSI/MIL- M OCEMc
STD-1815A, Ada Joint Program Office

17. 5 j1 1w14LWIIMTW 'S I*.~uur~ IS.

UNCLASSIFIED , UNCLASSIFIED UNCLASSIFIEDT
IM 7N-i

PmUWBa, rs

AVF Control Number: AVF-VSR-90502/58

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number. #891213N1.10201

Alsys Limited
AlsyCOMP_037 V4.3

INMOS T800 transputer implemented on a B405 TRAM (bare),
with an INMOS BOOS communications link implemented in an IBM PC/AT

(under MS-DOS 3.1 and INMOS [server V1.41)

INMOS T222 transputer implemented on a B416 TRAM (bare),
using an IBM PC/AT under MS-DOS 3.1 running INMOS

Iserver V1.41 for file-server via an INMOS B008 board link

Completion of On-Site Testing:
13 December 1989 Accession For

N TI S GRA&I

DTIC TAB
Unannomced E
Justification

Prepared By:
Testing Services

The National Computing Centre Limited By
Oxford Road

Manchester M1 7ED Avail ! " .ty Codes
England a' 'ind/or

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington DC 20301-3081

Validaton Summary Rcpoil AVF-VSR-90502/S8

Aya limited AIsyCOMP_037 V4.3 Page i of ii

Ada Compiler Validation Summary Report:

Compiler Name: AlsyCOMP 037 V43

Certificate Number: #891213N1.10201

Host: INMOS 7"O transputer implemented on a B405 TRAM (bare), with an INMOS
BOOS communications link implemented in an IBM PC/AT (under MS-DOS 3.1 and
INMOS Iserver V1.41)

Target: INMOS T222 transputer implemented on a B416 TRAM (bare), using an IBM
PC/AT under MS-DOS 3.1 running INMOS Iserver V1.41 for file-server via an
DNMOS BOOS board link

Testing Completed 13 December 1989 Using ACVC 1.10

This report has been reviewed and is approved.

Jane Pink
Testing Services Manager
The National Computing Centre Limited
Oxford Road
Manchester MI 7ED
England

Aa'ai~tio 6rga iaion

Institute for De Analyses
/ Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond
Director AJPO
Department of Defense
Washington DC 20301

vaIdatimid Suy RpoIt AVF-VSR-95O"B8

Akhw Launed Aby$DM07 V4-3 Page ft of ii

TABLE OF CONTENTS

TABLE OF CONTENTS

CHAPTER 1
INTRODUCTION ... 1

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1
1.2 USE OF THIS VALIDATION SUMMARY REPORT 2
1.3 REFERENCES 2
1.4 DEFINITION OF TERMS 3
1.5 ACVC TEST CLASSES 4

CHAPTER 2
CONFIGURATION INFORMATION 1

2.1 CONFIGURATION TESTED 1
2.2 IMPLEMENTATION CHARACTERISTICS 1

CHAPTER 3
TEST INFORMATION .. 1

3.1 TEST RESULTS 1
3.2 SUMMARY OF TEST RESULTS BY CLASS 1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 1
3.4 WITHDRAWN TESTS 1
3.5 INAPPLICABLE TESTS 2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS . . 6
3.7 ADDITIONAL TESTING INFORMATION 7

APPENDIX A
DECLARATION OF CONFORMANCE I

APPENDIX B
APPENDIX F OF THE Ada STANDARD 1

APPENDIX C
TEST PARAMETERS .. 1

APPENDIX D
WITHDRAWN TESTS .. 1

VadaWto Summay Repou AVF-VSR-90502/58

Asys Waited AIyCOMP _037 V4.3 Table of Contents - Page i of i

INTRODUCTION

CHAPTER 1

INTRODUCTION

This Validation Summary Report-(W&SRdescribes the extent to which a specific Ada compiler
conforms to the Ada Standard, ANSI/MIL-STD-1815A. This report explains all technical terms
used within it and thoroughly reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented according to the Ada
Standard, and any implementation-dependent features must conform to the requirements of the
Ada Standard. The Ada Standard must be implemented in its entirety, and nothing can be
implemented that is not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it must be understood that
some differences do exist between implementations. The Ada Standard permits some
implementation dependencies -- for example, the maximum length of identifiers or the maximum
values of integer types. Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All the dependencies
observed during the process of testing this compiler are given in this report.

-- ,The information in this report is derived from the test results produced during validation testing.
The validation process includes submitting a suite of standardized tests, the ACVC, as inputs to an
Ada compiler and evaluating the results. The purpose of validating is to ensure conformity of the
compiler to the Ada Standard by testing that the compiler properly implements legal language
constructs and that it identifies and rejects illegal language constructs., The testing also identifies
behavior that is implementation dependent, but is permitted by the ,,da Standard. Six classes of
tests are used. These tests are designed to perform checks at c6mpile time, at link time, and
during execution. -- ,"

1.1 PURPOSE OF THIS VALIDATION SOMMARY REPORT

This VSR documents the results of the validation testing performed on an Ada compiler. Testing
was carried out for the following purposes:

" To attempt to identify any language constructs supported by the compiler that do
not conform to the Ada Standard

o To attempt to identify any language constructs not supported by the compiler but
required by the Ada Standard

" To determine that the implementation-dependeit behavior is allowed by the Ada
Standard

Testing of this compiler was conducted by The National Computer Centre Limited according to
procedures established by the Ada Joint Program Office and administered by the Ada Validation

Validatio Sumnauy Rqxxt AVF-VSR-90502/58

AS L~iited AIbCOMP_037 V4.3 Chaptcrl - Page I of 5

L

INTRODUCTION

Organization (AVO). On-site testing was completed 13 December 1989 at Alsys Limited, Partridge
Ilouse, Newton Road, Henley-on-Thames, Oxon, RG9 1EN, UK

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may make full and free
public disclosure of this report. In the United States, this is provided in accordance with the
"Freedom of Information Act" (5 U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not represent or warrant
that all statements set forth in this report are accurate and complete, or that the subject compiler
has no nonconformities to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office

OUSDRE
The Pentagon, Rm 3D-139 (Fcrn Streeet)

Washington DC 20301-3081

or from:

Testing Services
The National Computing Centre Limited

Oxford Road
Manchester M1 7ED

England

Questions regarding this report or the validation test results should be directed to the AVF listed
above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street

Alcxandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Proramming Lancuace,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines,
Ada Joint Program Office, 1 January 1987.

VWididatoo Summay Repot AVF-VSR-90502158

Aisy Limited AisCOMP_037 V4.3 Chapterl - Page 2 of 5

INTRODUCTION

3. Ada Compiler Validation Capability Implementers' Guide,
SotTech, Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide,
December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada programs
that tests the conformity of an Ada compiler to the Ada
programming language.

Ada Commentary An Ada Commentary contains all information relevant to the point
addressed by a comment on the Ada Standard. These comments

are given a unique identification number having the form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to proeedures contained

in the Ada Compiler Validation Procedures and Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of maintaining a
uniform process for validation of Ada compilers. The AVO
provides administrative and technical support for Ada validations to
ensure consistent practices.

Compiler A processor for the Ada language. In the context of this report,
a compiler is any language processor, including cross-compilers,
translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable test An ACVC test that uses features of the language that a compiler

is not required to support or may legitimately support in a way
other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected result.

Validatiom Summ" Rqmot AVF-VSR-90502/58

Ahr Umitld AiyCOMP_037 V43 Chapterl - Page 3 of 5

INTRODUCTION

Target The computer which executes the code generated by the compiler.

Test A program that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada Standard.
In the context of this report, the term is used to designate a single
test, which may comprise one or more files.

Withdrawn test An ACVC test found to be incorrect and not used to check
conformity to the Ada fandard. A test may be incorrect because
it has an invalid test objective, fails to meet its test objective, or
contains illegal or erroneous use of the language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC contains both legal and
illegal Ada programs structured into six test classes: A, B, C, D, E, and L. The first letter of a
test name identifies the class to which it belongs. Class A, C, D, and E tests are executable, and
special program units are used to report their results during execution. Class B tests are expected
to produce compilation errors. Class L tests are expected to produce errors because of the way
in which a program library is used at link time.

Class A tests ensure the successful compilation and execution of legal Ada programs with certain
language constructs which cannot be verified at run time. There are no explicit program
components in a Class A test to check semantics. For example, a Class A test checks that reserved
words of another language (other than those already reserved in the Ada language) are not treated
as reserved words by an Ada compiler. A Class A test is passed if no errors are detected at
compile time and the program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class B tests are not executable.
Each test in this class is compiled and the resulting compilation listing is examined to verify that
every syntax or semantic error in the test is detected. A Class B test is passed if every illegal
construct that it contains is detected by the compiler.

Class C tests check the run time system to ensure that legal Ada programs can be correctly
compiled and executed. Each Class C test is self-checking and produces a PASSED, FAILED, or
NOT APPLICABLE message indicating the result when it is executed.

Class D tests check the compilation and execution capacities of a compiler. Since there are no
capacity requirements placed on a compiler by the Ada Standard for some parameters -- for
example, the number of identifiers permitted in a compilation or the number of units in a library -
- a compiler may refuse to compile a Class D test and still be a conforming compiler. Therefore,
if a Class D test fails to compile because the capacity of the compiler is exceeded, the test is
classified as inapplicable. If a Class D test compiles successfully, it is self-checking and produces
a PASSED or FAILED message during execution.

Vajlion Summary Rqxxl AVF-VSR-90502/58

Alys 1lmikcd AIsyCOMP 037 V4.3 Clapterl - Page 4 of 5

INTRODUCTION

Class E tests are expected to execute successfully and check implementation-dependent options and
resolutions of ambiguities in the Ada Standard. Each Class E test is self-checking and produces
a NOT APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs containing some features
addressed by Class E tests during compilation. Therefore, a Class E test is passed by a compiler
if it is compiled successfully and executes to produce a PASSED message, or if it is rejected by the
compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving multiple, separately compiled
units are detected and not allowed to execute. Class L tests are compiled separately and execution
is attempted. A Class L test passes if it is rejected at link time -- that is, an attempt to execute
the main program must generate an error message before any declarations in the main program
or any units referenced by the main program are elaborated. In some cases, an implementation
may legitimately detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECKFILE, support the self-
checking features of the executable tests. The package REPORT provides the mechanism by which
executable tests report PASSED, FAILED, or NOT APPLICABLE results. It also provides a set
of identity functions used to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECKFILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada Standard. The operation
of REPORT and CHECKFILE is checked by a set of executable tests. These tests produce
messages that are examined to verify that the units are operating correctly. If these units are not
operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to ensure that the tests
are reasonably portable without modification. For example, the tests make use of only the basic
set of 55 characters, contain lines with a maximum length of 72 characters, use small numeric
values, and place features that may not be supported by all implementations in separate tests.
However, some tests contain values that require the test to be customized according to
implementation-specific values -- for example, an illegal file name. A list of the values used for
this validation is provided in Appendix C.

A compiler must correctly process each of the tests in the suite and demonstrate conformity to the
Ada Standard by either meeting the pass criteria given for the test or by showing that the test is
inapplicable to the implementation. The applicability of a test to an implementation is considered
each time the implementation is validated. A test that is inapplicable for one validation is not
necessarily inapplicable for a subsequent validation. Any test that was determined to contain an
illegal language construct or an erroneous language construct is withdrawn from the ACVC and,
therefore, is not used in testing a compiler. The tests withdrawn at the time of this validation
are given in Appendix D.

Validaton Summaty Rqxt AVF-VSR-90502158

layalimited AlSyCOMP 037 V43 Chapteri - Page 5 of 5

CONFIGURATION INFORMATION

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the following configuration:

Compiler: AlsyCOMP_037 V4.3

ACVC Version: 1.10

Certificate Number: #891213N1.10201

Host Computer:

Machine: INMOS T800 transputer implemented on a B405 TRAM
(bare) with an INMOS B008 communications link
implemented in an IBM PC/AT (under MS-DOS 3.1 and
INMOS Iserver V1.41)

Memory Size: 8 Mb

Target Computer:

Machine: INMOS T22 transputer implemented on a B416 TRAM
(bare), using an IBM PC/AT under MS-DOS 3.1 running
INMOS Iserver V1.41 for file-server via an INMOS B08
board link.

Memory Size: 64 Kb

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of a compiler in those
areas of the Ada Standard that permit implementations to differ. Class D and E tests specifically
check for such implementation differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

a. Capacities.

Validation Summary Rempt AVF-VSR-90502/58

Abiys UmitaAed iyCOM_037 V4.3 Chapter 2 - Page 1 of 6

CONFIGURATION INFORMATION

(1) The compiler correctly processes a compilation containing 723 variables in the same
declarative part. (See test D29002K.)

(2) The compiler correctly processes tests containing loop statements nested to 65
levels. (See tests D55A03A..H (8 tests).)

(3) The compiler correctly processes tests containing block statements nested to 65
levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive procedures separately
compiled as subunits nested to six levels. (See tests D64005E..G (3 tests).)

b. Predefined types.

(1) This implementation supports the additional predefined types SHORTINTEGER,
LONGINTEGER, and LONGFLOAT, in the package STANDARD. (See tests
B86001T..Z (7 tests).)

c. Based literals.

(1) An implementation is allowed raise NUMERICERROR or
CONSTRAINT ERROR when a value exceeds SYSTEM.MAXINT. This
implementation raises NUMERICERROR during execution. (See test E24201A.)

d. Expression evaluation.

The order in which expressions are evaluated and the time at which constraints are checked
are not defined by the language. While the ACVC tests do not specifically attempt to
determine the order of evaluation of expressions, test results indicate the following:

(1) All of the default initialization expressions for record components are evaluated
before any value is checked for membership in a component's subtype. (See test
C32117A.)

(2) Assignments for subtypes are performed with the same precision as than the base
type. (See test C35712B.)

(3) This implementation uses no extra bits for extra precision and uses all extra bits
for extra range. (See test C35903A.)

(4) NUMERIC-ERROR is raised when an integer literal operand in a comparison or
membership test is outside the range of the base type. (See test C45232A.)

(5) NUMERIC ERROR is raised when a literal operand in a fixed-point comparison
or membership test is outside the range of the base type. (See test C45252A.)

Validation Summary Repor AVF-VSR-90502/58

Alsys Umited AIayCOMP 037 V4.3 Chapter 2 - Page 2 of 6

CONFIGURATION INFORMATION

(6) Underflow is gradual. (See tests C45524A..Z (26 tests).)

e. Rounaing.

The method by which values are rounded in type conversions is not defined by the
language. While the ACVC tests do not specifically attempt to determine the method of
rounding, the test results indicate the following:

(1) The method used for rounding to integer is round to even. (See tests C46012A..Z
(26 tests).)

(2) The method used for rounding to longest integer is round to even. (See tests
C46012A..Z (26 tests).)

(3) The method used for rounding to integer in static universal real expressions is
round to even. (See test C4AO14A.)

Array types.

An implementation is allowed to raise NUMERICERROR or CONSTRAINTERROR
for an array having a 'LENGTH that exceeds STANDARD.INTEGER'LAST and/or
SYSTEM.MAX INT. For this implementation:

(1) Declaration of an array type or subtype declaration with more than
SYSTEM.MAXINT components raises NUMERICERROR. (See test C36003A.)

(2) CONSTRAINTERROR is raised when 'LENGTH is applied to an array type with
INTEGER'LAST + 2 components. (See test C36202A.)

(3) CONSTRAINTERROR is raised when an array type with SYSTEM.MAXINT
+ 2 components is declared. (See test C36202B.)

(4) A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST raises
CONSTRAINTERROR when the array type is declared. (See test C52103X.)

(5) A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components CONSTRAINTERROR when the array sub types are declared. (See
test C52104Y.)

(6) In assigning one-dimensional array types, the expression is evaluated in its entirety
before CONSTRAINTERROR is raised when checking whether the expression's
subtype is compatible with the target's subtype. (See test C52013A.)

Valiatioa Summay Rcpant AVF-VSR-90502/58

Abrju Limited A1syCOMP_037 V43 Chapter 2 - Page 3 of 6

L ,

CONFIGURATION INFORMATION

17) In assigning two-dimensional array types, the expression is not evaluated in its
entirety before CONSTRAINTERROR is raised when checking whether the
expression's subtype is compatible with the target's subtype. (See test C52013A.)

g. A null array with one dimension of length greater than INTEGER'LAST may raise
NUMERIC ERROR or CONSTRAINTERROR either when declared or assigned.
Alternatively, an implementation may accept the declaration. However, lengths must match
in array slice assignments. This implementation raises CONSTRAINTERROR when the
array type is declared. (See test E52103Y.)

h. Discriminated types.

(1) In assigning record types with discriminants, the expression is evaluated in its
entirety before CONSTRAINTERROR is raised when checking whether the
expression's subtype is compatible with the target's subtype. (See test C52013A.)

Aggregates.

(1) In the evaluation of a multi-dimensional aggregate, the test results indicate that all
choices are evaluated before checking against the index type. See test C43207A and
C43207B.)

(2) In the evaluation of an aggregate containing subaggregates, not all choices are
evaluated before being checked for identical bounds. (See test E43212B.)

(3) CONSTRAINT ERROR is raised after all choices are evaluated when a bound in
a non-null range of a non-null aggregate does not belong to an index subtype. (See
test E43211B.)

j. Pragmas.

(1) The pragma INLINE is supported for functions and procedures, but not for
functions called inside a package specification. (See tests LA3004A..B (2 tests),
EA3004C..D (2 tests), and CA3004E..F (2 tests).)

k. Generics.

(1) Generic specifications and bodies can be compiled in separate compilations. (See
tests CA1012A, CA2009C, CA2009F, BC3204C, and BC3205D.)

Valikatioa Summary Report AVF-VSR-90502/58

AkxyV Limited AsyCOMP_037 V4.3 Chapter 2 - Page 4 of 6

CONFIGURATION INFORMATION

(2) Generic subprogram declarations and bodies can be compiled in separate
compilations. (See tests CA1012A and CA2009F.)

(3) Generic library subprogram specifications and bodies can be compiled in separate
compilations. (See test CA1012A.)

(4) Generic non-library package bodies as subunits can be compiled in separate
compilations. (See test CA2009C.)

(5) Generic non-library subprogram bodies can be compiled in separate compilations
from their stubs. (See test CA2009F.)

(6) Generic unit bodies and their subunits can be compiled in separate compilations.
(See test CA3011A.)

(7) Generic package declarations and bodies can be compiled in separate compilations.
(See tests CA2009C, BC3204C, and BC3205D.)

(8) Generic library package specifications and bodies can be compiled in separate
compilations. (See tests BC3204C and BC3205D.)

(9) Generic unit bodies and their subunits can be compiled in separate compilations.
(See test CA3011A.)

hput and output.

(1) The package SEQUENTIAL IO can be instantiated with unconstrained array types
or record types with discriminants without defaults. (See tests AE2101C, EE2201D,
and EE2201E.)

(2) The package DIRECT10 can be instantiated with unconstrained array types or
record types with discriminants without defaults. (See tests AE2101H, EE2401D,
and EE2401G.)

(3) RESET and DELETE operations are supported for SEQUENTIALIO. (See tests
CE2102G and CE2102X.)

(4) RESET and DELETE operations are supported for DIRECTIO. (See tests
CE2102K and CE2102Y.)

(5) RESET and DELETE operations are supported for text files. (See tests
CE3102F..G (2 tests), CE3104C, CE3110A, and CE3114A.)

Valkltioa Summmy RePoit AVF-VSR-90502/58

Alsys Limited AbyCOMP_037 V4.3 Chapter 2 - Page 5 of 6

CONFIGURATION INFORMATION

(6) Overwriting to a sequential file truncates to the last element written. (See test
CE2208B.)

(7) Temporary sequential files are given names and deleted when closed. (See test
CE2108A.)

(8) Temporary direct files are given names and deleted when closed. (See test
CE2108C.)

(9) Temporary text files are given names and deleted when closed. (See test
CE3112A.)

(10) Only one internal file can be associated with each external file for sequential files
when writing or reading. (See tests CE2107A..E (5 tests), CE2102L, CE2110B, and
CE21 I ID.)

(11) Only one internal file can be associated with each external file for direct files when
writing or reading. (See tests CE2107F..H (3 tests), CE2110D and CE2111H.)

(12) Only one internal file can be associated with each external file for text files when
writing or reading. (See tests CE3111A..E (5 tests), CE3114B, and CE3115A.)

Vlidatioo Summay Repon AVF-VSR-90502158

A(,ys .mited AbyCOW 037 V43 Chapter 2 - Page 6 of 6

TEST INFORMATION

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was tested, 44 tests had been

withdrawn because of test errors. The AVF determined that 429 tests were inapplicable to this

implementation. All inapplicable tests were processed during validation testing except for 201

executable tests that use floating-point precision exceeding that supported by the implementation.

Modifications to the code, processing, or grading for 49 tests were required to successfully

demonstrate the test objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 129 1134 1897 15 23 46 3244

Inapplicable 0 4 418 2 5 0 429

Withdrawn 1 2 35 0 6 0 44

TOTAL 130 1140 2350 17 34 46 3717

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 198 577 555 248 170 99 161 332 137 36 252 250 229 3244

Inapp 14 72 125 0 2 0 5 0 0 0 0 119 92 429

Withdrawn 1 1 0 0 0 0 0 2 0 0 1 35 4 44

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

Validation Summary Report AVF-VSR-90502/58

AllyI.Unied AMyCOMP..037 V43 Chapter 3 - P e I f 9

TEST INFORMATION

The following 44 tests were withdrawn from ACVC Version 1.10 at the time of this validation:

E28005C A39005G B97102E C97116A
BC3009B CD2A62D CD2A63A..D (4 tests) CD2A66A.,D (4 tests)
CD2A73A..D (4 tests) CD2A76A..D (4 tests) CD2AS1G CD2A83G
CD2A84M..N (2 tests) CD50110 CD2B15C CD7205C
CD2D11B CD5007B ED7004B ED7005C..D (2 tests)
ED7006C..D (2 tests) CD7105A CD7203B CD7204B
CD7205D CE21071 CE3111C CE3301A
CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features that a compiler is not
required by the Ada Standard to support. Others may depend on the result of another test that
is either inapplicable or withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one validation attempt is not
necessarily inapplicable for a subsequent attempt. For this validation attempt, 429 tests were
inapplicable for the reasons indicated:

a. The following 201 tests are not applicable because they have floating-point type declarations
requiring more digits than SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

b. C35702A and B86001T are not applicable because this implementation supports no
predefined type SHORTFLOAT.

c. C45531M..P (4 tests) and C45532M..P (4 tests) are inapplicable because the size of a
mantissa of a fixed point type is limited to 31 bits.

d. D64005F..G (2 tests) are inapplicable because the recursive capacity within these tests
exceed the capacity for this implementation.

C. C86001F, is not applicable because, for this implementation, the package TEXTIO is
dependent upon package SYSTEM. This test recompile package SYSTEM, making package
TEXT IO, and hence package REPORT, obsolete.

Vatidation Summa y Ripot AVF-VSR-90502/58

Akys Limited AI yCOMP 037 V4.3 Chapter 3. Page 2 of 9

TEST INFORMATION

B86001X, C45231D, and CD7101G are not applicable because this implementation does
not support any predefined integer type with a name other than INTEGER,
LONGINTEGER, or SHORT-INTEGER.

g. B86001Y is not applicable because this implementation supports no predefined fixed-point
type other than DURATION.

h. B86001Z is not applicable because this implementation supports no predefined floating-
point type with a name other than FLOAT, LONG_FLOAT, or SHORT FLOAT.

CD1009C, CD2A41A..E (5 tests) and CD2A42A.J (10 tests) are not applicable because the
SIZE clause on type FLOAT is not supported by this implementation.

j, The following 26 tests are inapplicable because for this implementation a length clause on
a type derived from a private type is not supported outside the defined package.

CD1C04A CD2A21C..D (2 tests) CD2A22C..D (2 tests)
CD2A22G..H (2 tests) CD2A31C..D (2 tests) CD2A32C..D (2 tests)
CD2A32G..H (2 tests) CD2AS1C..D (2 tests) CD2A52C..D (2 tests)
CD2A52G..H (2 tests) CD2A53D CD2A54D
CD2A54H CD2A72-k..B (2 tests) CD2A75A..B (2 tests)

k. CD1C04B, CD1C04E, CD4051A..B (2 tests) and CD4051C..D (2 tests) are not applicable
because this implementation does not support representation clauses in derived records or
derived tasks.

The following 53 tests are inapplicable for this implementation because they exceeded the
capacity limit for the target configuration.

CD2A53C CE2401A..C (3 tests) CE3305A
CE3402C CD3405A CE3405D
CE3409C CE3410C CE3602B
CE3605D..E (2 tests) CE3606A..B (2 tests) CE3704F
CE3706F CE3801A..B (2 tests) CE3804A..P (16 tests)
CE3805A..B (2 tests) CE3806A..H (8 tests) CE3809A..B (2 tests)
CE3906A CE3906E..F (2 tests) EE3203A
EE3301B EE3402B

m. The following 25 tests are inapplicable because a LENGTH clause on an array or record
would require a change to the representation of the componants or elements.

CD2A61A..D (4 tests) CD2A61F CD2A61H..L (5 tests)
CD2A62A..C (3 tests) CD2A71A..D (4 tests) CD2A72C..D (2 tests)
CD2A74A..D (4 tests) CD2A75C..D (2 tests)

Vlidad Sum.= Report AVF-VSR-050258

Alsys Umited AyCOMP_037 V4.3 Chper 3 - Page 3 o(9

TEST INFORMATION

n. CD2A84B..I (8 tests) and CD2A84K..L (2 tests) are not applicable because the 'SIZE clause
applied to the access type is less than the minimum (32 bits) required.

o. The following 30 tests are inapplicable because an ADDRESS clause for a constant is not
supported.

CD5011B CD5011D CD5011F
CD5011H CD5011L CD5011N
CDS011R..S (2 tests) CD5012C..D (2 tests) CD5012G..H (2 tests)
CD5012L CD5013B CDS013D
CD5013F CD5013H CD5013L
CD5013N CD5013R CD5014B
CD5014D CD5014F CD5014H
CD5014J CDS014L CD5014N
CD5014R CD5014U CD5014W

p. CD5012J, CD5013S and CD5014S are not applicable because ADDRESS clauses for tasks
are not supported.

q. CE2102D is inapplicable because this implementation supports CREATE with INFILE
mode for SEQUENTIAL_10.

r. CE2102E is inapplicable because this implementation supports CREATE with OUTFILE
mode for SEQUENTIAL_10.

s. CE2102F is inapplicable because this implementation supports CREATE with INOUTFILE
mode for DIRECT_10.

t. CE21021 is inapplicable because this implementation supports CREATE with IN-FILE
mode for DIRECT_10.

u. CE2102J is inapplicable because this implementation supports CREATE with OUT-FILE
mode for DIRECT_10.

v. CE2102N is inapplicable because this implementation supports OPEN with INFILE mode
for SEQUENTIAL 10.

w. CE21020 is inapplicable because this implementation supports RESET with INFILE mode
for SEQUENTIAL10.

x. CE2102P is inapplicable because this implementation supports OPEN with OUTFILE
mode for SEQUENTIAL_10.

y. CE2102Q is inapplicable because this implementation supports RESET with OUTFILE
mode for SEQUENTIAL_10.

Vdklatioa Summay Rept AVF-VSR-90502158

Abuy UmvAte AbyCOMP 037 V4.3 Capter 3.- Page 4 of 9

TEST INFORMATION

z. CE2102R is inapplicable because this implementation supports OPEN with INOUTFILE
mode for DIRECT_10.

aa CE2102S is inapplicable because this implementation supports RESET with INOUTFILE
mode for DIRECT_10.

ab CE2102T is inapplicable because this implementation supports OPEN with IN-FILE mode
for DIRECT_10.

ac CE2102U is inapplicable because this implementation supports RESET with INFILE mode
for DIRECT10.

ad CE2102V is inapplicable because this implementation supports OPEN with OUTFILE
mode for DIRECTIO.

ac CE2102W is inapplicable because this implementation supports RESET with OUTFILE
mode for DIRECTIO.

af. EE2401D, EE2401G and CE2401H use instantiations of package DIRECTIO with
unconstrained array types and record types with discriminants with defaults. These
instantiations cause USEERROR to be raised without a FORM parameter.

ag CE2107B..E (4 tests), CE2107L, and CE2110B are not applicable because multiple internal
files cannot be associated with the same external file when one or more files is writing for
sequential files. The proper exception is raised when multiple access is attempted.

ah CE2107G..H (2 tests), CE2110D, and CE2111H are not applicable because multiple internal
files cannot be associated with the same external file when one or more files is writing for
direct files. The proper exception is raised when multiple access is attempted.

ai CE3102E is inapplicable because text file CREATE with INFILE mode is supported by

this implementation.

aj CE3102F is inapplicable because text file RESET is supported by this implementation.

ak CE3102G is inapplicable because text file deletion of an external file is supported by this
implementation.

Al CE31021 is inapplicable because text file CREATE with OUT-FILE mode is supported by
this implementation.

am CE3102J is inapplicable because text file OPEN with IN-FILE mode is supported by this
implementation.

an CE3102K is inapplicable because text file OPEN with OUTFILE mode is not supported
by this implementation.

Validatioa Summary Report AVF-VSR-9050258

A" L imied AI*CO M_037 V4.3 Chapter 3 - Page 5 of 9

TEST INFORMATION

ao CE3111B, CE3111D..E (2 tests), CE3114B, and CE3115A are not applicable because
multiple internal files cannot be associated with the same external file when one or more
files is writing for text files. The proper exception is raised when multiple access is
attempted.

ap CE3202A requires association of a name with the standard input/output files, but this is not
supported by this implementation which raises USE ERROR. This behaviour is accepted
by the AVO pending a ruling by the language maintenance body.

aq CE3605A is inapplicable because this test attempts to output a string of 517 characters
which exceeds the maximum allowed for this implementation.

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code, processing, or evaluation in order
to compensate for legitimate implementation behavior. Modifications are made by the AVF in
cases where legitimate implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include: adding a length clause to alter
the default size of a collection; splitting a Class B test into subtests so that all errors are detected;
and confirming that messages produced by an executable test demonstrate conforming behavior that
was not anticipated by the test (such as raising one exception instead of another).

Modifications were required for 49 tests.

The following tests were split because syntax errors at one point resulted in the compiler noi
dctccting other errors in the test:

B23004A B24007A B24009A B28003A B28003C
B32202A B32202B B32202C B33001A B37004A
B45102A B61012A B62001B B62001C B62001D
B74304A B74401F B74401R B91004A B95069A
B95069B B97103E BAI101B2 BA1101B4 BC2001D
BC3009C BD5005B

C35A060 and C35AO6Q..R (2 tests) were split to allow the executable code, for these multiple
generic tests, generated by this compiler to remain within the bounds of the target memory
rcstrictions.

The following tests were split to prove the not-applicability criteria:

CD2A62A CD2A62B CD2A72A CD2A72B CD2A75A
CD2A75B CD2A84B CD2A84C CD2A84D CD2A84E
CD2A84F CD2A84G CD2A84H CD2A84I

EA3004D, when processed, produces only two of the expected three errors: the implementation
fails to detect an error on line 27 of file EA3004D6M. This is because the pragma INLINE has

Validatio Summay Report AVF-VSR-90502158

Al~ss Lnuilal A1yhCOM_037 V43 Chapter 3 - Page 6 of 9

TEST INFORMATION

no effect when its object is within a package specification. The task was reordered to compile
filcs D2 and D3 after file D5 (the re-compilation of the "with"ed package that makes the various
earlier units obsolete), the re-ordered test executed and produced the expected
NOT APPLICABLE result (as though INLINE were not supported at all). The re-ordering of
EA3004D test files was: 0-1-4-5-2-3-6. The AVO ruled that the test should be counted as passed.

This implementation implements REPORT based on I/O mechanisms other that TEXTIO. For
this reason modifications were required for 4 tests as follows:

CE3201A required modification to the analysis of the output because the order that output
is passed for logging is not necessarily the order that the output is actually logged.

EE3405B required the addition of an additional TEXT_10 output to ensure that the new
page command does actually initiate a new page.

EE3401F and EE3412C require that the output to be logged in the correct order and hence
the AVO authorised that the calls for "SPECIALACTION" were replaced with
"PUTLINE".

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced by the AlsyCOMP_037
V4.3 compiler was submitted to the AVF by the applicant for review. Analysis of these results
demonstrated that the compiler successfully passed all applicable tests, and the compiler exhibited
the expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the AlsyCOMP 037 V43 compiler using ACVC Version 1.10 was conducted on-site by
a validation team from the AVF. The configuration in which the testing was performed is
described by the following designations of hardware and software components:

Host computer : INMOS I800 transputer implemented on a B405
TRAM (bare), with an INMOS BOOS communications
link implemented in an IBM PCAT (under MS-
DOS 3.1 and INMOS Iserver V1.41)

Target computer : INMOS T222 transputer implemented on a B416
TRAM (bare), using an BM PC AT under MS-
DOS 3.1 running INMOS Ierver V1.41 for file-
serier via an INMOS B008 board link

Compiler AsyCOMP 3_37 V4.3
Pre-linker : AlsyCOMP_037 V4.3
Linker : IMS D705B ILINK V21

Validatio Summary Report AVF-VSR-90S02/58

A" imiled AkTyCOMP 037 V43 Chaptcr 3 - Page 7 of 9

TEST INFORMATION

Loader/Downloader :MS D705B IBOOT V1.1
Runtime System AJsyCOMP_037 V4.3

A magnetic tape containing all tests was taken on-site by the validation team for processing. Tests
that make use of implementation-specific values were customized before being written to the
magnetic tape. Tests requiring modifications during the prevalidation testing were not included in
their modified form on the magnetic tape.

The contents of the magnetic tape were not loaded directly onto the host computer.

The contents of the magnetic tape were loaded onto a VAX 11/750 where the tests were modified
as agreed. The tests were then transferred to the host computer using FTP software.

After the test files were loaded to disk, the full set of tests was compiled and linked on the
INMOS T800 transputer, and all executable tests were run on the INMOS T222 transputer. The
results were transferred back to the VAX 11/750, via the FTP software, where they were printed.

The compiler was tested using command scripts provided by Alsys Limited and reviewed by the

validation team. The compiler was tested using all the following default option settings.

OPTION EFFECT

CALLS=INLINE Allows inline insertion of code for subprograms.

OBJECT=NONE No peephole optimisations are performed, this is done for
compilation speed improvements.

OUTPUT=<file> <file> specifies the name of compilation listing generated.

In addition the following options were used to produce full compiler listings:

TEXT Print a compilation listing including full source text.

SHOW=NONE Do not print a header and do not include an error summary
in the compilation listing.

ERROR=999 Set the maximum number of compilation errors permitted before
compilation is terminated to 999.

MONITOR WIDTH=80 Set width for standard output to 80 columns.

FILEWlDTH=80 Set width for listing file to 80 columns.

FILELENGTH=9999 Disable insertion of form feeds in the output.

Validatios Summary Report AVF-VSR-9002d58

Ak Limited AkyCOMP_037 V4.3 Chapter 3 - Page 8 of 9

TEST INFORMATION

Tests were compiled, linked, and executed (as appropriate) using two Host computers and two
Target computers. Test output, compilation listings, and job logs were captured on magnetic tape
and archived at the AVF. The listings examined on-site by the validation team were also archived.

3.7.3 Test Site

Testing was conducted at Alsys Limited, Partridge House, Newtown Road, Henley-on-Thames,
Oxfordshire, RG9 IEN, UNITED KINGDOM and was completed on 13 December 1989.

VWidatiom Suum"y Report AVF-VSR-90502/58

Aixys Uniited AbyOMP 037 V4.3 Chapter 3 - Page 9 of 9

DECLARATION OF CONFORMANCE

APPENDIX A

DECLARATION OF CONFORMANCE

Alsys Limited has submitted the following Dccliration of Conformance
concerning the AlsyCOMP_037 V4.3 compiler.

valdabation Sumat RIpn AV-VSR-9O50215

Ap Liild AbyCOMPW037 V43 Appendix A - Page I f 3

D OFCONORMANC

DECLARATION OF CONFORMANCE

r
I)FCLARATION OF CONFORMANCE

Compiler lmplcmcntor: Alsys Limited

Ada Validation Facility: The National Computing Ce-ntre Limited,
Oxford Road
Manchcster

MI 7ED
UNITED KINGDOM

Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: AlsyCOMP.037 V4.3

Host Architecture: INMOS T00 transputer implemented on a B405 TRAM
(bare), using an INMOS B008 communications link
implemented in an IBM PC/AT (under MS-DOS 3.1 and
INMOS lscrver V1.41)

Target Architecture: INMOS '1222 transputer implemented on a B416 TRAM
(bare), using an IBM PC/AT under MS-DOS 3.1 running
INMOS Iserver V1.41 for file-server via an INMOS B008
board link

Implcmentor's Dclaraion

I. the undersigned, representing Alsys Limited, have implemented no deliberate extensions
to the Ada L.'i:,ac Standard ANSI/MIL-STD-1815A in the compiler(s) listed in this
declaration. I dkclarc that Alsys Limited is the owncr 0l record of the Ada language
compiler(s) listed a ove aind, as such, is rcsponsible [Or maintaining said compiler(s) in
conformance to ANSIiMIL-STD-1MISA. All certilic:tcs and registrations for Ada language
compilcr(s) lis cd in this declaration shall be made tnly in the owner's corporate name.

Marlyn Jorda"Marketing Dir p

Valdwatiam Summary KI'1 I AVF-VSR-90502/5

AiW lmitLed AkyCOMI'137 V 13 Appcndix A - Page 2 of 3

DECLARATION OF CONFORMANCE

Owner's Declaration

1. the underskigned.l rcprescning- Alsys Limited, .i IL ul responsibility for implementation
and mainicnanice of thc Adla compiler(s) listed ahIO\c, ;iiid aqrce to the public disclosure
of the final \'aliJltion Summary Rep~ort. I dcclarc that all1 of the Ada language compilers
listed, and thcir hout/uwrgc1 perlbrmancc, are in compliance with the Ada Language
Standard ANSP011L-STD-1815A.

Date 6 (

Validaboe Summary R4q 1 AW-VSR-905021S8

Aly Umital Abxy('1M" k Appendix A - Page 3 of3

APPENDIX F

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-dependent pragmas.
to certain machine-dependent conventions as mentioned in chapter 13 of the Ada Standard, and
to certain allowed restrictions on representation clauses. The implementation-dependent
characteristics of the AlsyCOMP 037 V4.3 compiler, as described in this Appendix, are provided
by Alsys Limited. Unless specifically noted otherwise, references in this appendix are to compiler
documentation and not to this report. Implementation-specific portions of the package
STANDARD, which are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2°*15 .. 2**15-1;
type SHORTINTEGER is range -2**7 .. 2*7-1;
type LONG-INTEGER is range -2**31 .. 2"31-1;

type FLOAT is digits 6 range -(20-2.0**(-23))*Z0**127 .. (20-2.0"*(-23))*2.0"*127
type LONG-FLOAT is digits 15 range -(2.0-2.0*(-51))*2.0"'1023 ..

(2.0-2.0"*(51))-2.0--*1023;

type DURATION is delta 2.0**14 range -86400.0 .. 86400.0;

end STANDARD;

Vaitiom SUMaMM Rpct AVF-VSR-"S8

Ab"y limied Ai.yCOM?037 V4.3 Appendbi 8

Alsys Ada Compilation System for the Transputer

APPENDIX F

Implementation - Dependent Characteristics

Version 4.3

Alsys S.A.
29, Avenue de 'ersaille-s

7,8170 La Celle St. Cloud, France

Alsys Inc.
67 South Bedford Street

Burlington, MA 01803-5152, U.S.A.

Alsys Ltd.
Partridge House. Newtown Road

Henle-on- Thames,
Oxfordshire RG9 IEN, U.K.

Copyright 1989 by Alsys

All rights reserved. No part of this document may be reproduced in
any form or by any means without permission in writing from Alsys.

Printed: October 11. 1989

Alsys reserves the right to make changes in specifications and other information
contained in this publication without prior notice, and the reader should in all cases
consult Alsys to determine whether such changes have been made.

PREFACE

This Appendix F is for programmers, software engineers, project managers, educators
and students who want to develop an Ada program for the INMOS transputer.

This appendix is a required part of the Reference Manual for the Ada Programming
Language, ANSI/MIL-STD 1815A, January 1983 (throughout this appendix, citations in
square brackets refer to this manual).

This document assumes that the reader has some knowledge of the architecture of the
transputer. Access to the document Occam2 Toolset User Manual [Ref. 3] which
describes the program development environment for occam as supplied by INMOS would
also be advantageous.

Preface

Alsys Ada for the Transputer, Appendix F. v4.3

TABLE OF CONTENTS

APPENDIX F 1

1 Implementation- Dependent Pragmas 2

1.1 INLINE 2
1.2 INTERFACE 2
1.2.1 Calling Conventions 2
1.2.2 Parameter-Passing Conventions 3
1.2.3 Parameter Representations 3
1.2.4 Restrictions on Interfaced Subprograms 6
1.3 INTERFACE NAME 6
1.4 Other Pragmas 7

2 Implementation-Dependent Attributes 8

3 Specification of the Package SYSTEM 9

4 Restrictions on Representation Clauses 10

4.1 Enumeration Types 11
4.2 Integer Types 13
4.3 Floating Point Types 15
4.4 Fixed Point Types 17
4.5 Access Types 20
4.6 Task Types 21
4.7 Array Types 2
4.8 Record Types 26

5 Conventions for Implementation-Generated Names 35

6 Address Clauses 36

6.1 Address Clauses for Objects 36
6.2 Address Clauses for Program Units 36
6.3 Address Clauses for Entries 36

7 Restrictions on Unchecked Conversions 37

Table of Contents iii

TABLE OF CONTENTS (CONTINUED)

8 Input-Output Packages 38

8.1 NAME Parameter 38
8.2 FORM Parameter 38
8.3 USE ERROR 40

9 Characteristics of Numeric Types 42

9.1 Integer Types - T2 transputer targets 42
9.2 Integer Types - T4/T8 transputer targets 42
9.3 Other Integer Types 42
9.4 Floating Point Type Attributes 43
9.5 Attributes of Type DURATION 44

REFERENCES 45

INDEX 46

iv Alsys Ada for the Transputer. Appendix F. v4.3

APPENDIX F

Implementation-Dependent Characteristics

This appendix summarizes the implementation-dependent characteristics of the Alsys
Ada Compilers for the INMOS transputer. This document should be considered as the
Appendix F to the Reference Manual for the Ada Programming Language ANSI/MIL-
STD 1815A, January 1983, as appropriate to the Alsys Ada implementation for the
transputer.

Sections I to 8 of this appendix correspond to the various items of information required
in Appendix F [F]*; section 9 provides other information relevant to the Alsys
implementation. The contents of all these sections is described below:

1. The form, allowed places, and effect of every implementation-dependent
pragma.

2. The name and type of every implementation-dependent attribute.

3. The specification of the package SYSTEM [13.7].

4. The list of all restrictions on representation clauses [13.1].

5. The conventions used for any implementation-generated names denoting
implementation-dependent components [13.4].

6. The interpretation of expressions that appear in address clauses, including
those for interrupts [13.5].

7. Any restrictions on unchecked conversions [13.10.2].

8. Any implementation-dependent characteristics of the input-output packages

[14].

9. Characteristics of numeric types.

Throughout this appendix, the name Ada Run-Time Executive refers to the run-time
library routines provided for all Ada programs. These routines implement the Ada heap,
exceptions, tasking control, 1/0 and other utility functions.

Throughout this manual, citations in square brackets refer to the Reference Manual
for the Ada Programming Language, ANSI/MIL-STD- 1815A, January 1983.

Appendix F. Implementation-Dependent Characteristics

I Implementation-Dependent Pragmas

1.1 INLINE

Pragma INLINE [6.3.2] is fully supported, except that it is not possible to inline a
function call in a declarative part.

1.2 INTERFACE

Ada programs can interface to subprograms written in occam through the use of the
predefined pragma INTERFACE [13.91 and the implementation-defined pragmaINTERFACENAME.

Pragma INTERFACE specifies the name of an interfaced subprogram and the name of
the programming language for which calling and parameter passing conventions will be
generated. Pragma INTERFACE takes the form specified in the Reference Manual:

pragma INTERFACE (ganguage name, subprogramname);

where:

8 language name is the name of the other language whose calling and
parameter passing conventions are to be used.

a subprogram name is the name used within the Ada program to refer to the
interfaced subprogram.

The only language name currently accepted by pragma INTERFACE is occam.

The language name used in the pragma INTERFACE does not necessarily correspond to
the language used to write the interfaced subprogram. It is used only to tell the
Compiler how to generate subprogram calls, that is, which calling conventions and
parameter passing techniques to use.

The language name occam is used to refer to the standard occam calling and parameter
passing conventions for the transputer [Ref. 4, Section 5.10]. The programmer can use
the language name occam to interface Ada subprograms to subroutines written in any
language that follows the standard occam calling conventions.

1.2.1 Calling Conventions

The following calling conventions are required for code to be called from Ada by use of
the pragma interface to occam.

On entry to the subprogram, the registers A, B and C are undefined. For the T8 only,
the floating point registers FA, FB and FC are similarly undefined. The return address
and any parameters are accessed relative to the workspace pointer, W, by the
subprogram.

2 Alsys Ada for the Transputer, Appendix F. v4.3

There are no assumptions concerning the contents of the register stacks (A, B, C and
FA, FB, FC) upon return from the interfaced subprogram, other than for interfaced
subprograms which are functions (see below). However, the workspace pointer, W,
should contain the same -address upon return from the interfaced subprogram as it
contained before the call.

The error flag is expected to be clear on return.

1.2.2 Parameter-Passing Conventions

On entry to the subprogram, the first word above the transputer workspace pointer
contains the return address of the called subprogram. Subsequent workspace locations
(from W+I to W+n, where n is the number of parameters) contain the subprogram
parameters, which are all one word in length.

There is always an implicit vector space parameter passed as the last parameter to all
interfaced subprograms. This points to an area of free memory which can be used by
the occam compiler to allocate arrays declared in the interfaced subprogram.

Actual parameters of mode in w'ich are access values or scalars of one machine word or
less in size are passed by ,c y. If such a parameter is less that one machine word in
length it is sign extende-l t- a full word. For all other parameters the value passed is the
address of the actual parameter itself.

Since all large scalar, non-scalar and non-access parameters to interfaced subprograms
are passed by address, they cannot be protected from modification by the called
subprogram even though they may be formally declared to be of mode in. It is the
programmer's responsibility to ensure that the semantics of the Ada parameter modes are
honored in these cases.

If the subprogram is a function whose result is at most one machine word in length,
register A is used to return the result. All other results are returned by address in an
implicit parameter allocated before the list of normal parameters (i.e. in the first word
after the return address, at W+i).

No consistency checking is performed between the subprogram parameters declared in
Ada and the corresponding parameters of the interfaced subprogram. It is the
programmer's responsibility to ensure correct access to the parameters.

1.2.3 Parameter Representations

This section describes the representation of values of the types that can be passed as
parameters to an interfaced subprogram. The discussion assumes no representation
clauses have been used to alter the default representations of the types involved.
Chapter 4 describes the effect of representation clauses on the representation of values.

Integer Types [3.5.4]

Ada integer types are represented in two's complement form and occupy a byte
(SHORTINTEGER), a word (INTEGER) or a double word (LONG_INTEGER).

Appendix F. Implementation- Dependen, Characteristics 3

Parameters to interfaced subprograms of type SHORT INTEGER are passed by copy
with the value sign extended to a full machine word. Values of type INTEGER are
always passed by copy. The predefined type LONGINTEGER is available for T2
transputer targets only; values of this type are stored least significant word first and
actual parameters are always passed by address.

Enumeration Tvyes [3.5.1]

Values of an Ada enumeration type are represented internally as unsigned values
representing their position in the list of enumeration literals defining the type. The first
literal in the list corresponds to a value of zero.

Enumeration types with 256 elements or fewer are represented in 8 bits. For T2
transputer targets, those with between 257 and 65536 (2**16) elements are represented in
16 bits (i.e. a word). All other enumeration types are represented in 32 bits.

Consequently, the Ada predefined type CHARACTER [3.5.2] is represented in 8 bits,
using the standard ASCII codes [C] and the Ada predefined type BOOLEAN [3.5.3] is
represented in 8 bits, with FALSE represented by the value 0 and TRUE represented by
the value 1.

As the representation of enumeration types is basically the same as that of integers, the
same parameter passing conventions apply.

Floating Point Types [3.5.7, 3.5.8]

Ada floating-point values occupy 32 (FLOAT) or 64 (LONGFLOAT) bits, and are held
in ANSI/IEEE 754 floating point format.

For T2 transputer targets, parameters to interfaced programs of type FLOAT and
LONGFLOAT are always passed by address.

For T4 and T8 transputer targets, parameters to interfaced subprograms of type FLOAT
are always passed by copy. For these targets, parameters of type LONGFLOAT are
passed by address.

Fixed Point Tves [3.5.9, 3.5.10]

Ada fixed-point types are managed by the Compiler as the product of a signed mantissa
and a constant small. The mantissa is implemented as an 8, 16 or 32 bit integer value
for T2 transputer targets and as an 8 or 32 bit integer value for T4 and T8 transputer
targets. Small is a compile-time quantity which is the power of two equal or
immediately inferior to the delta specified in the declaration of the type.

The representation of an actual parameter of a fixed point type is the value of its
mantissa. This is passed using the same rules as for integer types.

The attribute MANTISSA is defined as the smallest number such that:

2 ** MANTISSA >- max (abs (upperbound), abs (lowerbound)) / small

4 Alsys Ada for the Transputer. Appendix F. v4.3

For T2 transputer targets, the size of a fixed point type is:

MANTISSA Size
1 .. 7 8 bits
8.. 15 16 bits
16 .. 31 32 bits

For T4 and T8 transputer targets, the size of a fixed point type is:

MANTISSA Size
1 .. 7 8 bits
8 .. 31 32 bits

Fixed point types requiring a MANTISSA greater than 31 are not supported.

Access Types [3.8]

Values of access types are represented internally by the address of the designated object
held in single word. The value MIN INT (the smallest integer that can be represented
in a machine word) is used to represent null.

Array Types [3.61

Ada arrays are passed by address; the value passed is the address of the first element of
the first dimension of the array. The elements of the array are allocated by row. When
an array is passed as a parameter to an interfaced subprogram, the usual consistency
checking between the array bounds declared in the calling and the called subprogram is
not enforced. It is the programmer's responsibility to ensure that the subprogram does
not violate the bounds of the array.

When passing arrays to occam, it may be the case that some of its bounds are undefined
in the source of the interfaced subprogram. If this is true, the missing bounds should be
passed as extra integer value parameters to the subprogram. These parameters should be
placed immediately following the array parameter itself and in the same order as the
missing strides appear in the occam source.

Values of the predefined type STRING [3.6.3] are arrays, and are passed in the same
way: the address of the first character in the string is passed. Elements of a string are
represented in 8 bits, using the standard ASCII codes. The elements are packed into one
or more words and occupy consecutive locations in memory.

Appendix F. Implementation-Dependent Characteristics 5

Record Tves [3.7]

Ada records are passed by address; the value passed is the address of the first component
of the record. Components of a record are aligned on their natural boundaries (e.g.
INTEGER on a word boundary) and the components may be re-ordered by the Compiler
so as to minimize the total size of objects of the record type. If a record contains
discriminants or components having a dynamic size, implicit components may be added
to the record. Thus the default layout of the internal structure of the record may not
be inferred directly from its Ada declaration. The use of a representation clause to
control the layout of any record type whose values are to be passed to interfaced
subprograms is recommended.

1.2.4 Restrictions on Interfaced Subprograms

Interfaced occam subprograms must be compiled using the UNIVERSAL error mode
(X). In this mode, there is no error checking and any run-time errors in the occam code
are ignored. This ensures that processes do not execute a STOPP or STOPERR
instruction and avoids the unpredictable results which may occur if this is allowed to
happen.

Parameters which are of a task or private type, or are access values not of mode in,
should not be passed to interfaced subprograms.

It is not possible to interface to occam functions which return floating point values, nor
to those which have more that one return value. Unconstrained function results are also
prohibited.

1.3 INTERFACENAME

Pragma INTERFACE _NAME associates the name of an interfaced subprogram, as
declared in Ada, with its name in the language of origin. If pragma
INTERFACENAME is not used then the two names are assumed to be identical.

This pragma takes the form:

pragma INTERFACENAME (subprogram_name, stringliteral);

where:

" subprogram name is the name used within the Ada program to refer to the
interfaced subprogram.

" string literal is the name by which the interfaced subprogram is referred to
at link-time.

6 Als.'s Ada for the Transputer. Appendix F. v4.3

The use of INTERFACE NAME is optional and is not needed if a subprogram has the
same name in Ada as in the language of origin. It is necessary, for example, if the
name of the subprogram in its original language contains characters that are not
permitted in Ada identifiers. Ada identifiers can contain only letters, digits and
underscores, whereas the INMOS linker allows external names to contain other
characters, for example full stops. These characters can be specified in the
stringliteral argument of the pragma INTERFACENAME.

The pragma INTERFACE NAME is allowed in the same positions in an Ada program
as the pragma INTERFACE [13.9]. However, the pragma INTERFACE NAME must
always occur after the pragma INTERFACE declaration for the same interfaced
subprogram.

1.4 Other Pragmas

Pragmas IMPROVE and PACK are discussed in detail in the section on representation
clauses (Chapter 4).

Pragmas STORAGE SIZE RATIO and FAST PRIMARY which are applicable only to
task types are discussed in detail in section 4.6.

Pragma PRIORITY is accepted with the range of priorities running from 1 to 10 (see the
definition of the predefined package SYSTEM in Chapter 3). The undefined priority
(no pragma PRIORITY) is treated as though it were less than any defined priority value.

In addition to pragma SUPPRESS, it is possible to suppress all checks in a given
compilation by the use of the Compiler option CHECKS.

The following language defined pragmas have no effect:

CONTROLLED
MEMORY SIZE
OPTIMIZE
STORAGE UNIT
SYSTEMNAME

Note that all access types are implemented by default as controlled collections as
described in [4.8].

Appendix F, Implementation-Dependent Characteristics 7

2 Implementation-Dependent Attributes

In addition to the Representation Attributes of [13.7.2] and [13.7.3], the four attributes
listed in se-tion 5 (Conventions for Implementation-Generated Names) for use in record
representation clauses, and the attributes described below are provided:

T'DESCRIPTORSIZE For a prefix T that denotes a type or subtype, this
attribute yields the size (in bits) required to hold a
descriptor for an object of the type T, allocated on the
heap or written to a file. If T is constrained,
T'DESCRIPTORSIZE will yield the value 0.

T'ISARRAY For a prefix T that denotes a type or subtype, this
attribute yields the value TRUE if T denotes an array
type or an array subtype; otherwise, it yields the value
FALSE.

Limitations on the use of the attribute ADDRESS

The attribute ADDRESS is implemented for all prefixes that have meaningful addresses.
The following entities do not have meaningful addresses and will therefore cause a
compilation error if used as a prefix to ADDRESS:

" A constant or named number that is implemented as an immediate value (i.e.
does not have any space allocated for it).

" A package specification that is not a library unit.

" A package body that is not a library unit or subunit.

8 Alsys Ada for the Transputer, Appendix F, v4.3

3 Specification of the Package SYSTEM

package SYSTEM is

type NAME is (TRANSPUTER);

SYSTEM-NAME constant NAME := NAME'FIRST;

MIN_INT constant -(2"'31);

MAX INT constant 2**31-1;

MEMORYSIZE constant := 2**16; -- for T2 transputer targets

MEMORY-SIZE constant 2**31-1; -- for T4/T8 transputer targets

type ADDRESS is new INTEGER;

STORAGE UNIT constant 8;

MAX-DIGITS constant 15;

MAXMANTISSA constant = 31;

FINE-DELTA constant 2#1.0#e-31;

TICK constant 1.0e-6;

NULLADDRESS constant ADDRESS := ADDRESSIFIRST;

subtype PRIORITY is INTEGER range 1 .. 10;

end SYSTEM;

Appendix F, Implementation-Dependent Characteristics 9

4 Restrictions on Representation Clauses

This section explains how objects are represented and allocated by the Alsys Ada
Compiler for the Transputer and how it is possible to control this using representation
clauses.

The representation of an object is closely connected with its type. For this reason this
section addresses successively the representation of enumeration', integer, floating point,
fixed point, access, task, array and record types. For each class of type the
representation of the corresponding objects is described.

The transputer supports operations on the data types byte, word and double-word, so
these data types are used to form the basis of the representation of Ada types. The
word length for T4 and T8 transputer targets is 32 bits whereas T2 transputers have a
word length of 16 bits. Currently, the compiler does not support operations on double
32 bit word quantities. This affects the representation of integer, fixed point and
enumeration types.

Except in the case of array and record types, the description of each class of type is
independent of the others. To understand the representation of an array type it is
necessary to understand first the representation of its components. The same rule
applies to a record t 'k.

Apart from implementation defined pragmas, Ada provides three means to control the
size of objects:

" a (predefined) pragma PACK, when the object is an array, an array
component, a record or a record component

" a record representation clause, when the object is a record or a record

component

" a size specification, for all classes of object.

For each class of types the effect of a size specification is described. Interaction
between size specifications, packing and record representation clauses is described under
array and record types.

Representation clauses on derived record types or derived task types are not supported.

Size representation clauses on types derived from private types are not supported when
the derived type is declared outside the private part of the defining package.

10 Alsys Ada for the Transputer. Appendix F. v4.3

4.1 Enumeration Types

Internal codes of enumeration literals

When no enumeration representation clause applies to an enumeration type, the internal
code associated with an enumeration literal is the position number of the enumeration
literal. Thus, for an enumeration type with n elements, the internal codes are the
integers 0, 1, 2, ... , n-I.

An enumeration representation clause can be provided to specify the value of each
internal code as described in [13.31. The Alsys Compiler fully implements enumeration
representation clauses.

As internal codes must be machine integers, the internal codes provided by an
enumeration representation clause must be in the range -231 .. 231-1.

Encoding of enumeration values

An enumeration value is always represented by its internal code in the program
generated by the Compiler.

Minimum size of an enumeration subtype

The minimum size of an enumeration subtype is the minimum number of bits that is
necessary for representing the internal codes of the subtype values in normal binary
form.

For a static subtype with a null range, its minimum size is 1 bit. Otherwise, if m and M
are the values of the internal codes associated with the first and last enumeration values
of the subtype, then its minimum size L is determined as follows. For m >= 0, L is the
smallest positive integer such that M <= 2 L-I. For m < 0, L is the ;m2llest positive
integer such that - 2 L-1 <= m and M <= 2 L-1 1 . For example:

type COLOR is (GREEN, BLACK, WHITE, RED, BLUE, YELLOW);
-- The minimum size of COLOR is 3 bits.

subtype BLACKAND WHITE is COLOR range BLACK .. WHITE;
-- The minimum size of BLACKANDWHITE is 2 bits.

subtype BLACK OR WHITE is BLACKANDWHITE range X .. X;
-- Assuming that X is not static, the minimum size of BLACK OR WHITE is
-- 2 bits (the same as the minimum size of the static type mark
-- BLACKANDWHITE).

Appendix F, Implementation-Dependent Characteristics I1

Size of an enumeration subtype

When no size specification is applied to an enumeration type or first named subtype, the
objects of that type or first named subtype are represented as either unsigned bytes or
signed words. The Compiler selects automatically the smallest such object which can
hold each of the internal codes of the enumeration type (or subtype). The size of the
enumeration type and of any of its subtypes is thus 8 bits in the case of an unsigned
byte, or the machine word size (16 or 32 bits) in the case of a signed word.

When a size specification is applied to an enumeration type, this enumeration type and
each of its subtypes has the size specified by the length clause. The same rule applies to
a first named subtype. The size specification must of course specify a value greater than
or equal to the minimum size of the type or subtype to which it applies. For example:

type EXTENDED is
(

-- The usual American ASCII characters.
NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,
BS, HT, LF, VT, FF, CR, SO, SI,
DLE, DCI, DC2, DC3, DC4, NAK, SYN, ETB,
CAN, EM, SUB, ESC, FS, GS, RS, US,

0 , , , , , 15, IT,

8' 19, 1:1, 1 ; ,, I ,I> T

'@A', '13 ICI, 'D', 'E', IF', G',
11 , , , K, L, ,M9 ,N, 0,

HI IQ" 'R, Is, LT, lull IV% O,
IP', tQ', 'R', 1S', 1\1, TU, 'A', 1W',

I all b-, Ic, d-, e, If% 'i I
h, il, T, Y, T1, m, In', 1

I p" I q%, Ir', Is'1, It., lull IV,, IwI,
1x, z, Y"~ Z T DEL,

-- Extended characters
LEFTARROW,
RIGHTARROW,
UPPERARROW,
LOWERARROW,
UPPERLEFTCORNER,
UPPER RIGHT CORNER,
LOWER_RIGHT_CORNER,
LOWERLEFT_CORNER,

for EXTENDED'SIZE use 8;
-- The size of type EXTENDED will be one byte. Its objects will be represented
-- as unsigned 8 bit values.

The Alsys Compiler fully implements size specifications. Nevertheless, as enumeration
values are coded using integers, the specified length canno be greater than 32 bits.

12 Alsys Ada for the Transputer. Appendix F. v4.3

Size of the objects of an enumeration subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an
object of an enumeration subtype has the same size as its subtype.

Alignment of an enumeration subtype

An enumeration subtype is byte aligned if the size of the subtype is less than or equal to
8 bits, word aligned otherwise.

Address of an object of an enumeration subtype

Provided its alignment is not constrained by a record representation clause or a pragma
PACK, the address of an object of an enumeration subtype is a multiple of the
alignment of the corresponding subtype.

4.2 Integer Types

Predefined integer types

In the Alsys Ada implementation for the transputer the number of predefined integer
types available differs depending upon the transputer target. For T4 and T8 transputer
targets there are two predefined integer types:

type SHORT INTEGER is range -2**7 .. 2**7- 1;
type INTEGER is range -2**31 .. 2**31- 1;

For T2 transputer targets there are three predefined integer types:

type SHORT INTEGER is range -2**7 .. 2**7-1;
type INTEGER is range -2**15 .. 2**15- ;
type LONGINTEGER is range -2**31 .. 2**31-1;

Selection of the parent of an integer type

An integer type declared by a declaration of the form:

type T is range L .. R;

is implicitly derived from one of the predefined integer types. The Compiler
automatically selects the predefined integer type whose range is the shortest that contains
the values L to R inclusive.

Appendix F, Implementation- Dependent Characteristics 13

Encoding of integer values

Binary code is used to represent integer values. Negative numbers are represented using
two's complement.

Minimum size of an integer subtype

The minimum size of an integer subtype is the minimum number of bits that is
necessary for representing the internal codes of the subtype values in normal binary
form (that is to say, in an unbiased form which includes a sign bit only if the range of
the subtype includes negative values).

For a static subtype with a null range, its minimum size is 1 bit. Otherwise, if m and M
are the lower and upper bounds of the subtype, then its minimum size L is determined
as follows. For m >= 0, L is the smallest positive integer such that M <= 2L_1

. For m
< 0, L is the smallest positive integer such that -2 L - F <= m and M <= 2 L-1_1. For
example:

subtype S is INTEGER range 0 .. 7;
-- The minimum size of S is 3 bits.

subtype D is S range X .. Y;
-- Assuming that X and Y are not static, the minimum size of
-- D is 3 bits (the same as the minimum size of the static type mark S).

Size of an integer subtype

For T4 and T8 transputer targets, the sizes of the predefined integer types
SHORTINTEGER and INTEGER are 8 and 32 bits respectively. For T2 transputer
targets, the sizes of the predefined integer types SHORTINTEGER, INTEGER and
LONGINTEGER are 8, 16 and 32 bits respectively.

When no size specification is applied to an integer type or to its first named subtype (if
any), its size and the size of any of its subtypes is the size of the predefined type from
which it derives, directly or indirectly. For example:

type S is range 80 .. 100;
-- S is derived from SHORTINTEGER; its size is 8 bits.

type J is range 0 .. 65535;
- is derived from INTEGER for T4 and T8 targets and LONGINTEGER

-- for T2 targets; its size is 32 bits.

type N Is new J range 80 .. 100;
-- N is indirectly derived from INTEGER or LONGINTEGER as above;
-- its size is 32 bits.

When a size specification is applied to an integer type, this integer type and each of its
subtypes has the size specified by the length clause. The same rule applies to a first
named subtype. The size specification must of course specify a value greater than or
equal to the minimum size of the type or subtype to which it applies, for example:

14 Alsys Ada for the Transputer, Appendix F. v4.3

type S is range 80 .. 100;
for S'SIZE use 32;
-- S is derived from.SHORTINTEGER, but its size is 32 bits because
-- of the size specification.

type J is range 0 .. 255;
for J'SIZE use 8;
-- J is derived from INTEGER, but its size is 8 bits because of the
-- size specification.

type N is new J range 80 .. 100;
-- N is indirectly derived from INTEGER, but its size is 8 bits
-- because N inherits the size specification of J.

The Alsys Compiler implements size specifications. Nevertheless, as integers are
implemented using machine integers, the specified length cannot be greater than 32 bits.

Size of the objects of an integer subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an
object of an integer subtype has the same size as its subtype.

Alignment of an integer subtype

An integer subtype is byte aligned if the size of the subtype is less than or equal to 8
bits, word aligned otherwise.

Address of an object of an integer subtype

Provided its alignment is not constrained by a record representation clause or a pragma
PACK, the address of an object of an integer subtype is a multiple of the alignment of
the corresponding subtype.

4.3 Floating Point Types

Predefined floating point types

In the Alsys Ada implementation for the transputer there are two predefined floating
point types.

type FLOAT is
digits 6 range -(2.0 - 2.0**(-23))*2.0"* 127 .. (2.0 - 2.0**(-23))*2.0"* 127;

type LONGFLOAT Is
digits 15 range -(2.0 - 2.0"*(-51))*2.0"*1023 .. (2.0 - 2.0**(-51))*2.0**1023;

Appendix F. Implementation-Dependent Characteristics 15

Selection of the parent of a floating point type

A floating point type declared by a declaration of the form:

type T is digits D [range L .. R;

is implicitly derived from a predefined floating point type. The Compiler automatically
selects the smallest predefined floating point type whose number of digits is greater than
or equal to D and which contains the values L and R.

Encoding of floating point values

In the program generated by the Compiler, floating point values are represented using
the ANSI/IEEE 754 standard 32-bit and 64-bit floating point formats as appropriate.

Values of the predefined type FLOAT are represented using the 32-bit floating point
format and values of the predefined type LONG_FLOAT are represented using the 64-
bit floating point format as defined by the standard. The values of any other floating
point type are represented in the same way as the values of the predefined type from
which it derives, directly or indirectly.

Minimum size of a floating point subtype

The minimum size of a floating point subtype is 32 bits if its base type is FLOAT or a
type derived from FLOAT and 64 bits if its base type is LONGFLOAT or a type
derived from LONGFLOAT.

Size of a floating point subtype

The sizes of the predefined floating point types FLOAT and LONGFLOAT are 32 and
64 bits respectively.

The size of a floating point type and the size of any of its subtypes is the size of the
predefined type from which it derives directly or indirectly.

The only size that can be specified for a floating point type or first named subtype
using a size specification is its usual size (32 or 64 bits).

Size of the objects of a floating point subtype

An object of a floating point subtype has the same size as its subtype.

Alignment of a floating point subtype

A floating point subtype is always word aligned.

16 Alsys Ada for the Transputer, Appendix F, v4.3

Address of an object of a floating point subtype

Provided its alignment is not constrained by a record representation clause or a pragma
PACK, the address of an object of a floating point subtype is a multiple of the
alignment of the corresponding subtype.

4.4 Fixed Point Types

Small of a fixed point type

If no specification of small applies to a fixed point type, then the value of small is
determined by the value of delta as defined by [3.5.91.

A specification of small can be used to impose a value of small. The value of small is
required to be a power of two.

Predefined fixed point types

To implement fixed point types, the Alsys Compiler for the transputer uses a set of
anonymous predefined types dependent upon the target transputer type.

For T4 and T8 transputer targets these anonymous types are:

type SHORT _FIXED is delta D range -2**7*S .. (2"'7- 1)*S;
for SHORTFIXED'SMALL use S;

type FIXED is delta D range -2**31*S .. (2**31-1)*S;
for FIXED'SMALL use S;

For T2 transputer targets these anonymous types are:

type SHORT FIXED is delta D range -2**7*S .. (2**7-1)*S;
for SHORTFIXED'SMALL use S;

type FIXED is delta D range -2**15*S .. (2**15-I)*S;
for FIXED'SMALL use S;

type LONG FIXED is delta D range -2**31*S .. (2**31-1)*S;
for LONGFIXED'SMALL use S;

where D is any real value and S any power of two less than or equal to D.

Selection of the parent of a fixed point type

A fixed point type declared by a declaration of the form:

type T is delta D range L .. R;

possibly with a small specification:

Appendix F, Implementation-Dependent Characteristics 17

for T'SMALL use S;

is implicitly derived from a predefined fixed point type. The Compiler automatically
selects the predefined fixed point, type whose small and delta are the same as the small
and delta of T and whose range is the shortest that inciudes the values L and R.

Encoding of fixed point values

In the program generated by the Compiler, a safe value V of a fixed point subtype F is
represented as the integer

V / F'BASE'SMALL

Minimum size of a fixed point subtype

The minimum size of a fixed point subtype is the minimum number of binary digits that
is necessary for representing the values of the range of the subtype using the small of
the base type (that is to say, in an unbiased form which includes a sign bit only if the
range of the subtype includes negative values).

For a static subtype with a null range, its minimum size is I bit. Otherwise, s and S
being the bounds of the subtype, if i and I are the integer representations of m and M,
the smallest and the greatest model numbers of the base type such that s < m and M < S,
then the minimum size L is determined as follows. For i >= 0, L is the smallest positive
integer such that I <= 2L-I. For i < 0, L is the smallest positive integer such that - 2 L-1
<= i and I <= 2 L-1_1. For example:

type F is delta 2.0 range 0.0 .. 500.0;
-- The minimum size of F is 8 bits.

subtype S is F delta 16.0 range 0.0 .. 250.0;
-- The minimum size of S is 7 bits.

subtype D is S range X .. Y;
-- Assuming that X and Y are not static, the minimum size of D is 7 bits
-- (the same as the minimum size of its type mark S).

Size of a fixed point subtype

For T4 and T8 transputer targets, the sizes of the predefined fixed point types
SHORT _FIXED and FIXED are 8 and 32 bits respectively. For T2 transputer targets,
the sizes of the predefined fixed point types SHORTFIXED, FIXED and
LONGFIXED are 8, 16 and 32 bits respectively.

18 Alsys Ada for the Transputer. Appendix F. v4.3

When no size specification is applied to a fixed point type or to its first named subtype,
its size and the size of any of its subtypes is the size of the predefined type from which
it derives directly or indirectly. For example:

type F is delta 0.01 range 0.0 .. 1.0;
-- F is derived from a 8 bit predefined fixed type, its size is 8 bits.

type L is delta 0.01 range 0.0 .. 300.0;
-- L is derived from a 32 bit predefined fixed type, its size is 32 bits.

type N is new L range 0.0 .. 2.0;
-- N is indirectly derived from a 32 bit predefined fixed type, its size is 32 bits.

When a size specification is applied to a fixed point type, this fixed point type and each
of its subtypes has the size specified by the length clause. The same rule applies to a
first named subtype. The size specification must of course specify a value greater than
or equal to the minimum size of the type or subtype to which it applies, for example:

type F is delta 0.01 range 0.0 .. 2.0;
for F'SIZE use 32;
== F is derived from an 8 bit predefined fixed type, but its size is 32 bits

-- because of the size specification.

type L is delta 0.01 range 0.0 .. 300.0;
for LSIZE use 16;
-- L is derived from a 32 bit predefined fixed type, but its size is 16 bits

- because of the size specification.
-- The size specification is legal since the range contains no negative values
-- and therefore no sign bit is required.

type N is new F range 0.8 .. 1.0;
-- N is indirectly derived from a 16 bit predefined fixed type, but its size is
-- 32 bits because N inherits the size specification of F.

The Alsys Compiler implements size specifications. Nevertheless, as fixed point objects
are represented using machine integers, the spe, ified length cannot be greater than 32
bits.

Size of the objects of a fixed point subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an
object of a fixed point type has the same size as its subtype.

Alignment of a fixed point subtype

A fixed point subtype is byte aligned if its size is less than or equal to 8 bits, word
aligned otherwise.

Appendix F. Implementation-Dependent Characteristics 19

Address of an object of a fixed point suhtype

Provided its alignment is not constrained by a record representation clause or a pragma
PACK, the address of an object of a fixed point subtype is a multiple of the alignment
of the corresponding subtype.

4.5 Access Types

Collection Size

When no specification of collection size applies to an access type, no storage space is
reserved for its collection, and the value of the attribute STORAGESIZE is then 0.

As described in (13.2], a specification of collection size can be provided in order to
reserve storage space for the collection of an access type. The Alsys Compiler fully
implements this kind of specification.

Encoding of access values

Access values are machine addresses represented as machine word-sized values (i.e. 16
bits for T2 targets and 32 bits for T4 and T8 targets).

Minimum size of an access subtyre

The minimum size of an access subtype is that of the word size of the target transputer.

Size of an access subtype

The size of an access subtype is the same as its minimum size.

The only size that can be specified for an access type using a size specification is its
usual size.

Size of an object of an access subtype

An object of an access subtype has the same size as its subtype, thus an object of an
access subtype is always one machine word long.

Alignment of an access subtype

An access subtype is always word aligned.

20 Alsys Ada for the Transputer. Appendix F. v4.3

Address of an object of an access subtype

Provided its alignment is not constrained by a record representation clause or a pragma
PACK, the address of an. object of an access subtype is always on a word boundary,
since its subtype is word aligned.

4.6 Task Types

Storage for a task activation

When no length clause is used to specify the storage space to be reserved for a task
activation, the storage space indicated at bind time is used for this activation. As
described in [13.2], a length clause can be used to specify the storage space for the
activation of each of the tasks of a given type. In this case, the value indicated at bind
time is ignored for this task type and the length clause is obeyed.

The application of such a length clause to a derived type is not permitted. The same
storage space is reserved for the activation of a task of a derived type as for the
activation of a task of the parent type.

Both the length clause and the bind time parameter specify the combined size of the
task's primary and auxiliary stacks. Further bind time parameters specify the percentage
of this storage size to be allocated to the primary stack and indicate whether or not to
attempt to allocate the primary stack in fast internal memory. These bind time
parameters indicate the default action and can be overridden using the implementation
defined pragmas STORAGESIZERATIO and FASTPRIMARY.

pragma STORAGESIZERATIO(task name , integerliteral);

pragma FASTPRIMARY (task name , YES I NO);

These pragmas apply to the task type task name. For each pragma, the pragma and the
declaration of the task type to which it applies must both occur within the same
declarative part or package specification, although the declaration of the task type must
precede the pragma.

Pragma STORAGE SIZE_RATIO specifies the percentage of the total storage size
reserved for the activation of the task to be used as the task's primary stack. Any
remaining storage space will be used as the task's auxiliary stack. In the absence of the
pragma the default ratio specified at bind time is used for the activation.

Pragma FAST _PRIMARY specifies whether or not an attempt should be made to
allocate the task's primary stack in fast internal memory. In the absence of the pragma
the default indication specified at bind time is used for the activation.

Encoding of task values

Task values are represented as machine word sized values.

Appendix F. Implementation-Dependent Characteristics 21

Minimum size of a task subtype

The minimum size of a task subtype is that of the word length of the target transputer.

Size of a task subtype

The size of a task subtype is the same as its minimum size.

The only size that can be specified for a task type using a size specification is its usual
size.

Size of the objects of a task subtype

An object of a task subtype has the same size as its subtype. Thus an object of a task
subtype is always one machine word long.

Alignment of a task subtype

A task subtype is always word aligned.

Address of an object of a task subtype

Provided its alignment is not constrained by a record representation clause, the address
of an object of a task subtype is always on a word boundary since its subtype is word
aligned.

4.7 Array Types

Layout of an array

Each array is allocated in a contiguous area of storage units. All the components have
the same size. A gap may exist between two consecutive components (and after the last
one). All the gaps have the same size.

Component Gap Component Gap Component Gap

22 Alsys Ada for the Transputer. Appendix F. v4.3

Components

If the array is not packed, the size of the components is the size of the subtype of the
components, for example: •

type A is array (1 .. 8) of BOOLEAN;
-- The size of the components of A is the size of the type BOOLEAN: 8 bits.

type DECIMAL _DIGIT is range 0 .. 9;
for DECIMAL DIGIT'SIZE use 4;
type BINARY CODED DECIMAL is

array (INTEGER range <>) of DECIMALDIGIT;
-- The size of the type DECIMAL DIGIT is 4 bits. Thus in an array of
-- type BINARY CODED DECIMAL each component will be represented in
-- 4 bits as in the usual BCD representation.

If the array is packed and its components are neither records nor arrays, the size of the
components is the minimum size of the subtype of the components, for example:

type A is array (I .. 8) of BOOLEAN;
pragma PACK(A);
-- The size of the components of A is the minimum size of the type BOOLEAN:
-- 1 bit.

type DECIMAL DIGIT is range 0 .. 9;
type BINARY CODED DECIMAL is

array (INTEGER range <>) of DECIMALDIGIT;
pragma PACK(BINARYCODEDDECIMAL);
-- The size of the type DECIMAL _DIGIT is 8 bits, but, as
-- BINARY CODEDDECIMAL is packed, each component of an array of this
-- type will be represented in 4 bits as in the usual BCD representation.

Packing the array has no effect on the size of the components when the components are
records or arrays.

Gaps

If the components are records or arrays, no size specification applies to the subtype of
the components and the array is not packed, then the Compiler may choose a
representation with a gap after each component; the aim of the insertion of such gaps is
to optimize access to the array components and to their subcomponents. The size of the
gap is chosen so that the relative displacement of consecutive components is a multiple
of the alignment of the subtype of the components. This strategy allows each
component and subcomponent to have an address consistent with the alignment of its
subtype, for example:

Appendix F. Implementation-Dependent Characteristics 23

type INT is range -2**31 .. 2"'31 - 1;
type R is

record
K : INT; -- INT is word aligned.
B: BOOLEAN; -- BOOLEAN is byte aligned.

end record;
-- Record type R is word aligned; its size is 40 bits.

type A is array (I .. 10) of R;
-- A gap is inserted.after each component in order to respect the
-- alignment of type R.

Component Gap Component Gap Component Gap

Array of type A: each subcomponent K has a word offset.

If a size specification applies to the subtype of the components or if the array is packed,
no gaps are inserted, for example:

type iNT is range -2**31 .. 2"'31 - 1;
type R is

record
K : INT;
B: BOOLEAN;

end record;
type A is array (I .. 10) of R;
pragma PACK(A);
-- There is no gap in an array of type A because A is packed.
-- The size of an object of type A will be 400 bits.

type NR is new R;
for NR'SIZE use 40;
type B is array (1 .. 10) of NR;
-- There is no gap in an array of type B because NR has a size specification.
-- The size of an object of type B will be 400 bits.

Component Comoqnent Component

Array of type A or B: a subcomponent K can have any byte offset.

24 Alsys Ada for the Transputer. Appendix F, v4.3

Size of an array subtype

The size of an array subtype is obtained by multiplying the number of its components
by the sum of the size of. the components and the size of the gaps (if any). If the
subtype is unconstrained, the maximum number of components is considered.

The size of an array subtype cannot be computed at compile time

" if it has non-static constraints or is an unconstrained array type with non-
static index subtypes (because the number of components can then only be
determined at run time).

" if the components are records or arrays and their constraints or the
constraints of their subcomponents (if any) are not static (because the size of
the components and the size of the gaps can then only be determined at run
time).

As has been indicated above, the effect of a pragma PACK on an array type is to
suppress the gaps and to reduce the size of the components. The consequence of
packing an array type is thus to reduce its size.

If the components of an array are records or arrays and their constraints or the
constraints of their subcomponents (if any) are not static, the Compiler ignores any
pragma PACK applied to the array type but issues a warning message. Apart from this
limitation, array packing is fully implemented by the Alsys Compiler.

The only size that can be specified for an array type or first named subtype using a size
specification is its usual size. Nevertheless, such a length clause can be useful to verify
that the layout of an array is as expected by the application.

Size of the objects of an array subtype

The size of an object of an array subtype is always equal to the size of the subtype of
the object.

Alignment of an array subtype

If no pragma PACK applies to an array subtype and no size specification applies to its
components, the array subtype has the same alignment as the subtype of its components.

If a pragma PACK applies to an array subtype or if a size specification applies to its
components (so that :here are no gaps), the alignment of the array subtype is the lesser
of the alignment of the subtype of its components and the relative displacement of the
components.

Address of an object of an array subtype

Provided its alignment is not constrained by a record representation clause, the address
of an object of an array subtype is a multiple of the alignment of the corresponding
subtype.

Appendix F. Implementation-Dependent Characteristics 25

4.8 Record Types

Layout of a record

Each record is allocated in a contiguous area of storage units. The size of a record
component depends on its type. Gaps may exist between some components.

The positions and the sizes of the components of a record type object can be controlled
using a record representation clause as described in (13.41. In the Alsys implementation
for transputer targets there is no restriction on the position that can be specified for a
component of a record. If a component is not a record or an array, its size can be any
size from the minimum size to the size of its subtype. If a component is a record or an
array, its size must be the size of its subtype.

In a record representation clause, the first storage unit (that is, a byte) and the first bit
position within a storage unit are numbered zero. Bits are ordered, and thus numbered,
least significant bit first within a storage unit. Storage units are numbered such that
lower numbers have the least significance in a machine word.

A component clause may be specified such that the component overlaps a storage unit
boundary. In this case, the bits are numbered in sequence from the least significant bit
of the first storage unit to the most significant bit of the last storage unit occupied by
the component. For example:

type BIT 3 is range 0.. 7;
for BIT_3'SIZE use 3;

type BIT 5 is range 0.. 31;
for BIT_5'SIZE use 5;

type BIT 8 is range 0 .. 255;
for BIT_8'SIZE use 8;

type R is
record

FIRST: BIT_3;
SECOND: BIT 8;
THIRD: BIT_5

end record;
for R use

record
FIRST a 0 range 0 .. 2;
SECOND at0 range 3 .. 10;
-- Component SECOND overlaps a storage unit boundary.
THIRD at I range 3 .. 7;

end record;
for R'SIZE use 16;

26 Alsys Ada for the Transputer. Appendix F. v4.3

1 0 Storage unit number

Most Significant THR1SECOD F Least Significant
Bit (MSB) ffij I~ [jl Sit (LSB)

7 3 2 0 7 3 2 0 Bit number within storage unit

Storage Representation of a Record of type R

A record representation clause need not specify the position and the size for every
component.

If no component clause applies to a component of a record, its size is the size of its
subtype. Its position is chosen by the Compiler so as to optimize access to the
components of the record: the offset of the component is chosen as a multiple of the
alignment of the component subtype. Moreover, the Compiler chooses the position of
the component so as to reduce the number of gaps and thus the size of the record
objects.

Because of these optimizations, there is no connection between the order of the
components in a record type declaration and the positions chosen by the Compiler for
the components in a record object.

Pragma PACK has no further effect on records. The Alsys Compiler always optimizes
the layout of records as described above.

In the current version, it is not possible to apply a record representation clause to a
derived type. The same storage representation is used for an object of a derived type as
for an object of the parent type.

Indirect components

If the offset of a component cannot be computed at compile time, this offset is stored in
the record objects at run time and used to access the component. Such a component is
said to be indirect while other components are said to be direct:

Appendix F. Implementation-Dependent Characteristics 27

Beginning of the record

Compile time offset
DIRECT

Compile time offset

Run time offset

I NO RECT

A direct and an indirect component

If a record component is a record or an array, the size of its subtype may be evaluated
at run time and may even depend on the discriminants of the record. We will call these
components dynamic components. For example:

type DEVICE is (SCREEN, PRINTER);

type COLOR is (GREEN, RED, BLUE);

type SERIES is array (POSITIVE range <>) of INTEGER;

type GRAPH (L: NATURAL) is
record

X : SERIES(I .. L); -- The size of X depends on L
Y: SERIES(I .. L); -- The size of Y depends on L

end record;

Q: POSITIVE;

type PICTURE (N: NATURAL; D: DEVICE) is
record

F : GRAPH(N); -- The size of F depends on N
S: GRAPH(Q); -- The size of S depends on Q
case D Is

when SCREEN ->

C: COLOR;
when PRINTER >

null;
end case;

end record;

28 Alsys Ada for the Transputer. Appendix F, v4.3

Any component placed after a dynamic component has an offset which cannot be
evaluated at compile time and is thus indirect. In order to minimize the number of
indirect components, the Compiler groups the dynamic components together and places
them at the end of the record:

D = SCREEN D = PRINTER
N =2 N= 1

Beginning of the record
S OFFSET S OFFSET -

- -Coupite time offsets
-F OFFSET F OFFSET

N [

D0

C

Run time offsets- F

*F

- S

The record type PICTURE: F and S are placed at the end of the record

Thanks to this strategy, the only indirect components are dynamic components. But not
all dynamic components are necessarily indirect: if there are dynamic components in a
component list which is not followed by a variant part, then exactly one dynamic
component of this list is a direct component because its offset can be computed at
compilation time, for example:-

Appendix F, Implemeniation- Dependent Characteristics 29

Beginning of the record
Y OFFSET

Compite time offset
L

1Compile time offset

X Size dependent on discriminant L

Run time offset

Size dependent on discriminant L

The record type GRAPH. the dynamic component X is a direct component.

The offset of an indirect component is always expressed in storage units.

The space reserved for the offset of an indirect component must be large enough to
store the size of any value of the record type (the maximum potential offset). The
Compiler evaluates an upper bound, MS, of this size and treats an offset as a component
having an anonymous integer type whose range is 0 .. MS.

If C is the name of an indirect component, then the offset of this component can be
denoted in a component clause by the implementation generated name C'OFFSET.

Implicit components

In some circumstances, access to an object of a record type or to its components involves
computing information which only depends on the discriminant values. To avoid
recomputation the Compiler stores this information in the record objects, updates it
when the values of the discriminants are modified and uses it when the objects or their
components are accessed. This information is stored in special components called
implicit components.

An implicit component may contain information which is used when the record object
or several of its components are accessed. In this case the component will be included in
any record object (the implicit component is considered to be declared before any
variant part in the record type declaration). There can be two components of this kind;
one is called RECORDSIZE and the other VARIANTINDEX.

On the other hand an implicit component may be used to access a given record
component. In this case the implicit component exists whenever the record component
exists (the implicit component is considered to be declared at the same place as the
record component). Components of this kind are called ARRAYDESCRIPTORs or
RECORDDESCRIPTORs.

30 Alsys Ada for the Transputer. Appendix F. v4.3

RECORDSIZE

This implicit component is created by the Compiler when the record type has a variant
part and its discriminants, are defaulted. It contains the size of the storage space
necessary to store the current value of the record object (note that the storage effectively
allocated for the record object may be more than this).

The value of a RECORDSIZE component may denote a number of bits or a number of
storage units. In general it denotes a number of storage units, but if any component
clause specifies that a component of the record type has an offset or a size which cannot
be expressed using storage units, then the value designates a number of bits.

The implicit component RECORDSIZE must be large enough to store the maximum
size of any value of the record type. The Compiler evaluates an upper bound, MS, of
this size and then considers the implicit component as having an anonymous integer type
whose range is 0 .. MS.

If R is the name of the record type, this implicit component can be denoted in a

component clause by the implementation generated name R'RECORDSIZE.

VARIANTINDEX

This implicit component is created by the Compiler when the record type has a variant
part. It indicates the set of components that are present in a record value. It is used
when a discriminant check is to be done.

Component lists that do not contain a variant part are numbered. These numbers are the
possible values of the implicit component VARIANTINDEX. For example:

type VEHICLE is (AIRCRAFT, ROCKET, BOAT, CAR);

type DESCRIPTION (KIND: VEHICLE := CAR) is
record

SPEED: INTEGER;
case KIND is

when AIRCRAFT I CAR =>
WHEELS: INTEGER;
case KIND Is

when AIRCRAFT => --

WINGSPAN: INTEGER;
when others => -- 2

null;
end case;

when BOAT -> -- 3
STEAM : BOOLEAN;

when ROCKET -> -- 4
STAGES: INTEGER;

end case;
end record;

Appendix F, Implementation- Dependent Characteristics 31

The value of the variant index indicates the set of components that are present in a
record value:

Variant Index Set

1 (KIND, SPEED. WHEELS, WINGSPAN)
2 (KIND, SPEED, WHEELS)
3 (KIND. SPEED, STEAM)
4 (KIND, SPEED, STAGES)

A comparison between the variant index of a record value and the bounds of an interval
is enough to check that a given component is present in the value:

Ca.perit Interval

KIND ""
SPEED --

WHEELS 1 2
WINGSPAN 1 .. 1
STEAM 3 .. 3
STAGES 4 .. 4

The implicit component VARIANT INDEX must be large enough to store the number
V of component lists that don't contain variant parts. The Compiler treats this implicit
component as having an anonymous integer type whose range is I .. V.

If R is the name of the record type, this implicit component can be denoted in a
component clause by the implementation generated name R'VARIANTINDEX.

ARRAYDESCRIPTOR

An implicit component of this kind is associated by the Compiler with each record
component whose subtype is an anonymous array subtype that depends on a discriminant
of the record. It contains information about the component subtype.

The structure of an implicit component of kind ARRAYDESCRIPTOR is not
described in this documentation. Nevertheless, if a programmer is interested in
specifying the location of a component of this kind using a component clause, he can
obtain the size of the component using the ASSEMBLY parameter in the COMPILE
command.

The Compiler treats an implicit component of the kind ARRAY__DESCRIPTOR as
having an anonymous record type. If C is the name of the record component whose
subtype is described by the array descriptor, then this implicit component can be
denoted in a component clause by the implementation generated name
C'ARRAYDESCRIPTOR.

a RECORDDESCRIPTOR

An implicit component of this kind is associated by the Compiler with each record
component whose subtype is an anonymous record subtype that depends on a
discriminant of the record. It contains information about the component subtype.

32 Alsys Ada for the Transputer, Appendix F, v4.3

The structure of an implicit component of kind RECORDDESCRIPTOR is not
described in this documentation. Nevertheless, if a programmer is interested in
specifying the location of a component of this kind using a component clause, he can
obtain the size of the component using the ASSEMBLY parameter in the COMPILE
command.

The Compiler treats an implicit component of the kind RECORDDESCRIPTOR as
having an anonymous record type. If C is the name of the record component whose
subtype is described by the record descriptor, then this implicit component can be
denoted in a component clause by the implementation generated name
C'RECORDDESCRIPTOR.

Suppression of implicit components

The Alsys implementation provides the capability of suppressing the implicit components
RECORDSIZE and/or VARIANTINDEX from a record type. This can be done
using an implementation defined pragma called IMPROVE. The syntax of this pragma
is as follows:

pragma IMPROVE (TIME I SPACE , [ON =>] simple-name),

The first argument specifies whether TIME or SPACE is the primary criterion for the
choice of the representation of the record type that is denoted by the second argument.

If TIME is specified, the Compiler inserts implicit components as described above. If
on the other hand SPACE is specified, the Compiler only inserts a VARIANT INDEX
or a RECORD SIZE component if this component appears in a record representation
clause that applies to the record type. A record representation clause can thus be used
to keep one implicit component while suppressing the other.

A pragma IMPROVE that applies to a given record type can occur anywhere that a
representation clause is a!lowed for this type.

Size of a record subtype

Unless a component clause specifies that a component of a record type has an offset or a
size which cannot be expressed using storage units, the size of a record subtype is
rounded up to a whole number of storage units.

The size of a constrained record subtype is obtained by adding the sizes of its

components and the sizes of its gaps (if any). This size is not computed at compile time:

a when the record subtype has non-static constraints,

a when a component is an array or a record and its size is not computed at
compile time.

The size of an unconstrained record subtype is obtained by adding the sizes of the
components and the sizes of the gaps (if any) of its largest variant. If the size of a
component or of a gap cannot be evaluated exactly at compile time, an upper bound of
this size is used by the Compiler to compute the subtype size.

Appendix F, Implementation-Dependent Characteristics 33

The only size that can be specified for a record type or first named subtype using a size
specification is its usual size. Nevertheless, such a length clause can be useful to verify
that the layout of a record is as expected by the application.

Size of an object of a record subtype

An object of a constrained record subtype has the same size as its subtype.

An object of an unconstrained record subtype has the same size as its subtype if this size
is less than or equal to 4 Kbytes. If the size of the subtype is greater than this, the
object has the size necessary to store its current value; storage space is allocated and
released as the discriminants of the record change.

Alignment of a record subtype

When no record representation clause applies to its base type, a record subtype has the
same alignment as the component with the highest alignment requirement.

When a record representation clause does not contain an alignment clause that applies to
its base type, a record subtype has the same alignment as the component with the highest
alignment requirement which has not been overridden by its component clause.

When a record representation clause contains an alignment clause that does apply to its
base type, a record subtype has an alignment that obeys the alignment clause.

Address of an object of a record subtype

Provided its alignment is not constrained by a representation clause, the address of an
object of a record subtype is a multiple of the alignment of the corresponding subtype.

34 Alsys Ada for the Transputer. Appendix F. v4.3

5 Conventions for Implementation-Generated Names

Special record components are introduced by the Compiler for certain record type
definitions. Such record components are implementation-dependent; they are used by
the Compiler to improve the quality of the generated code for certain operations on the
record types. The existence of these components is established by the Compiler
depending on implementation-dependent criteria. Attributes are defined for referring to
them in record representation clauses. An error message is issued by the Compiler if the
user refers to an implementation-dependent component that does not exist. If the
implementation-dependent component exists, the Compiler checks that the storage
location specified in the component clause is compatible with the treatment of this
component and the storage locations of other components. An error message is issued if
this check fails.

There are four such attributes:

T'RECORDSIZE For a prefix T that denotes a record type. This attribute
refers to the record component introduced by the Compiler
in a record to store the size of the record object. This
component exists for objects of a record type with
defaulted discriminants when the sizes of the record
objects depend on the values of the discriminants.

T'VARIANTINDEX For a prefix T that denotes a record type. This attribute
refers to the record component introduced by the Compiler
in a record to assist in the efficient implementation of
discriminant checks. This component exists for objects of
a record type with variant type.

C'ARRAYDESCRIPTOR
For a prefix C that denotes a record component of an
array type whose component subtype definition depe'ds on
discriminants. This attribute refers to the icord
component introduced by the Compiler in a record to store
information on subtypes of components that depend on
discriminants.

C'RECORDDESCRIPTOR
For a prefix C that denotes a record component of a
record type whose component subtype definition depends
on discriminants. This attribute refers to the record
component introduced by the Compiler in a record to store
information on subtypes of components that depend on
discriminants.

Appendix F, Implementation-Dependent Characteristics 35

6 Address Clauses

6.1 Address Clauses for Objects

An address clause can be used to specify an address for an object as described in [13.5].
When such a clause applies to an object no storage is allocated for it in the program
generated by the Compiler. The program accesses the object using the address specified
in the clause.

An address clause is not allowed for task objects, nor for unconstrained records whose
size is greater than 4 Kbytes.

6.2 Address Clauses for Program Units

Address clauses for program units are not implemented in the current version of the
Compiler.

6.3 Address Clauses for Entries

Address clauses for entries are not implemented in the current version of the Compiler.

36 Alsys Ada for the Transputer. Appendix F, 14.3

7 Restrictions on Unchecked Conversions

Unconstrained arrays are not allowed as target types.

Unconstrained record types without defaulted discriminants are not allowed as target
types.

If the source and the target types are each scalar or access types, the sizes of the objects
of the source and target types must be equal. If a composite type is used either as the
source type or as the target type this restriction on the size does not apply.

If the source and the target types are each of scalar or access type or if they are both of

composite type, the effect of the function is to return the operand.

In other cases the effect of unchecked conversion can be considered as a copy:

" if an unchecked conversion of a scalar or access source type to a composite
target type is achieved, the result of the function is a copy of the source
operand: the result has the size of the source.

" if an unchecked conversion of a composite source type to a scalar or access
target type is achieved, the result of the function is a copy of the source
operand: the result has the size of the target.

Appendix F. Implementation-Dependent Characteristics 37

8 Input-Output Packages

The predefined input-output packages SEQUENTIAL_10 [14.2.3], DIRECT_10 [14.2.5],
and TEXT_10 (14.3.10] are implemented as described in the Language Reference
Manual, as is the package IO EXCEPTIONS [14.5], which specifies the exceptions that
can be raised by the predefined input-output packages.

The package LOW LEVEL_10 [14.6], which is concerned with low-level machine-
dependent input-output, has not been implemented.

All accesses to the services of the host system are provided through the INMOS supplied
iserver tool [Ref. 3], so much of Ada input-output is host independent.

8.1 NAME Parameter

No special treatment is applied to the NAME parameter supplied to the Ada procedures
CREATE or OPEN [14.2.1]. This parameter is passed immediately on to the INMOS
server and from there to the host operating system. The file name can thus be in any
format acceptable to the host system.

8.2 FORM Parameter

The FORM parameter comprises a set of attributes formulated according to the lexical
rules of [2], separated by commas. The FORM parameter may be given as a null string
except when DIRECT _10 is instantiated with an unconstrained type; in this case the
RECORD SIZE attribute must be provided. Attributes are comma-separated; blanks
may be inserted between lexical elements as desired. In the descriptions below the
meanings of natural, positive, etc., are as in Ada; attribute keywords (represented in
upper case) are identifiers [2.3] and as such may be specified without regard to case.

USEERROR is raised if the FORM parameter does not conform to these rules.

The attributes are as follows:

File sharing attribute

This attribute allows control over the sharing of one external file between several
internal files within a single program. In effect it establishes rules for subsequent OPEN
and CREATE calls which specify the same external file. If such rules are violated or if
a different file sharing attribute is specified in a later OPEN or CREATE call,
USEERROR will be raised. The syntax is as follows:

NOT SHARED I
SHARED -> access-mode

where

access mode ::= READERS I SINGLEWRITER I ANY

38 Alsys Ada for the Transputer, Appendix F, v4.3

A file sharing attribute of:

NOTSHARED

implies only one internal file may access the external file.

SHARED => READERS

imposes no restrictions on internal files of mode INFILE, but prevents any
internal files of mode OUTFILE or INOUTFILE being associated with
the external file.

SHARED => SINGLEWRITER

is as SHARED => READERS, but in addition allows a single internal file of
mode OUTFILE or INOUTFILE.

SHARED => ANY

places no restrictions on external file sharing.

If a file of the same name has previously been opened or created, the default is taken
from that file's sharing attribute, otherwise the default depends on the mode of the file:
for mode IN FILE the default is SHARED => READERS, for modes INOUTFILE
and OUTFILE the default is NOTSHARED.

Record size and record unit attributes

These attributes control the structure of external binary files.

A binary file can be viewed as a sequence (sequential access) or a set (direct access) of
consecutive records, each of the following structure:

[HEADER] OBJECT [UNUSEDPART]

where:

" OBJECT is the exact binary representation of the Ada object in the
executable program (possibly including an implicit object descriptor).

" HEADER contains two word sized values, the length of the object and the
length of the descriptor.

" UNUSED__PART is a gap of variable size to permit full control of the
record's size.

The HEADER is only implemented if the actual parameter of the instantiation of the 10
package is unconstrained.

The formats of the file structure attributes are as follows:

RECORDSIZE -> sizeinbytes

Appendix F. Implementation-Dependent Characteristics 39

RECORDUNIT => size in bytes

In the case of DIRECT O for unconstrained types the user is required to specify the
RECORDSIZE attribute. However, for SEQUENTIAL 10 for unconstrained types the
attribute is illegal. USE ERROR will be raised by the OPEN or CREATE procedures
if either of these checks fail.

In all cases the value given must not be smaller than a mininum size. For constrained
types, this minimum size is ELEMENT TYPE'SIZE / SYSTEM.STORAGEUNIT;
USEERROR will be raised if this rule is violated. For unconstrained types, the
minimum size is ELEMENT TYPE'DESCRIPTORSIZE / SYSTEM.STORAGEUNIT
plus the size of the largest record which is to be read or written. If a larger record is
processed, DATAERROR will be raised by the READ or WRITE.

If no RECORDSIZE attribute is specified for constrained types, the default value of
the object's size is assumed. In this case no UNUSEDPART will be implemented.

The RECORD UNIT attribute is only applicable to SEQUENTIAL 10 for
unconstrained types; it has a default value of I. If specified, the record size will be the
smallest multiple of this value that holds the object and its length, This is the only case
where a file may contain variable length records.

Buffer size attribute

This attribute controls the size of the buffer used as a cache for input-output operations:

BUFFERSIZE => size inbytes

The default value for BUFFERSIZE is 0, which means no buffering.

Apnend

This attribute may only bc used in the FORM parameter of the OPEN command. If
used in the FORM ,oarameter of the CREATE command, USEERROR will be raised.

The affect of this attribute is to cause writing to commence at the end of the existing
file.

The syntax of the APPEND attribute is simply:

APPEND

The default is APPEND -> FALSE, but this is overridden if this attribute is specified.

8.3 USEERROR

The following conditions will cause USEERROR to be raised:

* Specifying a FORM parameter whose syntax does not conform to the rules
given above.

40 Alsys Ada for the Transputer, Appendix F, v4.3

" Specifying the RECORD SIZE FORM parameter attribute to have a value
of zero, or failing to specify RECORDSIZE for instantiations of
DIRECT_10 for unconstrained types.

" Specifying a RECORD SIZE FORM parameter attribute to have a value less
than that required to hold the element for instantiations of DIRECT_10 and
SEQUENTIALIO for constrained types.

" Violating the file sharing rules stated above.

" Attempting to perform an input-output operation which is not supported by
the INMOS iserver due to restrictions of the host operating system.

" Errors detected whilst reading or writing (e.g. writing to a file on a read-
only disk).

Appendix F, Implementation- Dependent Characteristics 41

9 Characteristics of Numeric Types

9.1 Integer Types - T2 transputer targets
The ranges of values for integer types for T2 transputer targets declared in package

STANDARD are as follows:

SHORTINTEGER -128 .. 127 -- 2**7 - I

INTEGER -32768 .. 32767 -- 2**15 - I

LONGINTEGER -2147483648 .. 2147483647 -- 2**31 - 1

9.2 Integer Types - T4/T transputer targets

The ranges of values for integer types for T4 and T8 transputer targets declared in
package STANDARD are as follows:

SHORTINTEGER -128 .. 127 -- 2**7 -

INTEGER -2147483648 .. 2147483647 -- 2**31 -1

9.3 Other Integer Types

For the packages DIRECT 10 and TEXT_10, the ranges of values for types COUNT
and POSITIVECOUNT are as follows:

COUNT 0 .. 2147483647 -- 2**31 - I

POSITIVECOUNT 1 .. 2147483647 -- 2**31

For the package TEXT_10, the range of values for the type FIELD is as follows:

FIELD 0 .. 255 -- 2**8 - 1

42 Alsys Ada for the Transputer. Appendix F, v4.3

9.4 Floating Point Type Attributes

FLOAT

Approximate
value

DIGITS 6
MANTISSA 21
EMAX 84
EPSILON 2.0 **-20 9.54E-7

SMALL 2.0 -85 2.58E-26

LARGE 2.0 **84 * (1.0 - 2.0 **-21) 1.93E+25
SAFEEMAX 125
SAFESMALL 2.0 **-126 1.18E-38
SAFELARGE 2.0 125 * (1.0 - 2.0 ** -21) 4.25E+37
FIRST -2.0 ** 127 * (2.0 - 2.0 ** -23) -3.40E+38
LAST 2.0 ** 127 *(2.0 - 2.0 **-23) 3.40E+38
MACHINERADIX 2
MACHINEMANTISSA 24
MACHINEEMAX 128
MACHINEEMIN -125
MACHINEROUNDS TRUE
MACHINEOVERFLOWS TRUE
SIZE 32

LONGFLOAT

Approximate
value

DIGITS 15
MANTISSA 51
EMAX 204
EPSILON 2.0 **-50 8.88E-16

SMALL 2.0 -205 1.94E-62

LARGE 2.0 204 * (1.0 - 2.0 5* -1) 2.57E+61
SAFEEMAX 1021
SAFESMALL 2.0 -1022 2.22E-308

SAFELARGE 2.0 **1021 * (1.0 - 2.0 **-51) 2.25E+307
FIRST -2.0 ** 1023 *(2.0 - 2.0 ** -51) 1I.79E+308

LAST 2.0 ** 1023 *(2.0 - 2.0 **-51) 1.79E+308
MACHINERADIX 2
MACHINEMANTISSA 53
MACHINEEMAX 1024
MACHINEEMIN -1021
MACHINEROUNDS TRUE
MACHINEOVERFLOWS TRUE
SIZE 64

Appendix F, Implementation- Dependent Characteristics 43

9.5 Attributes of Type DURATION

DURATION'DELTA 2.0 1 4

DURATION'SMALL 2.3 107.

DURATION'LARGE -86002.0

DURATION'FIRST -86400.0

DURATION'LAST860.

44
AlsyS Ada for the Trans puler. Appendix F. v4.3

REFERENCES

[] Reference Manual for the Ada Programming Language
(ANSI/MIL-STD- 1815A- 1983).

[2] Occam2 Reference Manual.
INMOS Limited
Prentice Hall, 1988.

[31 Occam2 Toolset User Manual.
INMOS Limited, 1989.
INMOS document number 72 TDS 184 00.

[4] Transputer Instruction Set - A Compiler Writer's Guide
INMOS Limited
Prentice Hall, 1988

References 45

INDEX

ADDRESS attribute 8 IMPROVE 7
restrictions 8 INLINE 2

Append attribute 40 Input-Output packages 38
ARRAY DESCRIPTOR attribute 35 DIRECT 10 38
ASCII 4, 5 10 EXCEPTIONS 38
Attributes 8 LOW_ LEVEL 10 38

ARRAYDESCRIPTOR 35 SEQUENTIAL_10 38
DESCRIPTOR SIZE 8 TEXT 10 38
IS ARRAY 8 INTEGER 3, 42
RECORDDESCRIPTOR 35 Integer types 3, 42
RECORDSIZE 35, 38 COUNT 42
representation attributes 8 FIELD 42
VARIANTINDEX 35 INTEGER 3, 42

LONG INTEGER 3, 42
BOOLEAN 4 POSITIVE COUNT 42
Buffersize attribute 40 SHORT_INTEGER 3, 42

INTERFACE 2
CHARACTER 4 INTERFACENAME 2, 6
COUNT 42 Interfaced subprograms

Restrictions 6
DESCRIPTORSIZE attribute 8, 40 10_EXCEPTIONS 38
DIRECTIO 38, 42 ISARRAY attribute 8
DURATION

attributes 44 Languagename 2
LONG FLOAT 4, 43

Enumeration types 4 LONG INTEGER 3, 42
BOOLEAN 4 LOWLEVEL_10 38
CHARACTER 4

NAME parameter 38
FAST PRIMARY 7, 21 NOT SHARED 38
FIELD" 42 Numeric types
File sharing attribute 38 characteristics 42
Fixed point types 4 Fixed point types 44

DURATION 44 integer types 42
FLOAT 4, 43
Floating point types 4 Occam 2

FLOAT 4, 43
LONGFLOAT 4, 43 PACK 7

FORM parameter 38 Parameter representations 3
FORM parameter attributes Access types 5

append 40 Array types 5
buffer_size attribute 40 Enumeration types 4
file sharing attribute 38 Fixed point types 4
recordsize attribute 39, 41 Floating point types 4
recordunit attribute 39 Integer types 3

Record types 6
Implementation-dependent attributes 8 Parameter-passing conventions 3
Implementation-dependent pragrn.a 2 POSITIVECOUNT 42
Implementation-generated names 35 Pragma INLINE 2

46 Alsys Ada for the Transputer. Appendix F. v4.3

INDEX (CONTINUED)

Pragma INTERFACE 2

languagejname 2
occam 2
subprogram name 2

Pragma INTERFACENAME 2

string literal 6
subprogramname 6

Pragmas
FAST PRIMARY 7, 21

IMPROVE 7
INTERFACE 2

INTERFACE NAME 6

PACK 7
PRIORITY 7
STORAGESIZERATIO 7, 21

SUPPRESS 7

PRIORITY 7

RECORD DESCRIPTOR attribute 35

RECORD_SIZE attribute 35, 38, 39,

41
Recordunit attribute 39

Representation attributes 8

Representation clauses 10

restrictions 10

SEQUENTIAL 10 38

SHARED 38
SHORTINTEGER 3, 42

STORAGESIZERATIO 7, 21

STRING 5
String literal 6
Subprogram-name 2, 6

SUPPRESS 7
SYSTEM package 9

TEXT_10 38, 42

Unchecked conversions 37

restrictions 37
USEERROR 38, 40

VARIANT INDEX attribute 35

47

Index

TEST PARAMETERS

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such as the maximum
length of an input line and invalid file names. A test that makes use of such values is identified
by the extension .TST in its file name. Actual values to be substituted are represented by names
that begin with a dollar sign. A value must be substituted for each of these names before the test
is run. The values used for this validation are given below:

Name and Meaning Value

SACCSIZE 16
An integer literal whose value is the
number of bits sufficient to hold any
value -f an access type.

$BIGIDl (1..254=>'A', 255=>1)
Identifier the size of the maximum
input line length with varying last
character.

$BIGID2 (I..254=>'A', 255=>2)
Identifier the size of the maximum
input line length with varying last
character.

$BIGID3 (1..127=>'A', 128=>3, 129..255=>'A')
Identifier the size of the maximum
input line length with varying middle
character.

$BIGID4 (1.127=>'A', 128=>4, 129..255=>'A')
Identifier the size of the maximum
input line length with varying middle
character.

$BIGINTLIT (1..252=>O, 253..255=>298)
An integer literal of value 298 with
enough leading zeroes so that it is
the size of the maximum line length

Vaidation Sumay Report AVF-VSR-90502158

AIy Limited AisyCOMP_037 V4.3 Appendix C - Page I of 6

TEST PARAMETERS

$I3IGREAL_-LIT (1..249=>0. 250..255=>69.OEI)
A universal real literal of value
690.0 with enough leading zeroes to
be the size of the maximum line
length.

SBIGSTRING1 (L..127 =>'A')
A string literal which when
catenated with BIG_-STRING2 yields
the image of BIGIDI.

$BIGSTRING2 (1-.127=>AW, 128=>1)
A string literal which when
catenated to the end of
BIG_-STRINGi yields the image of
BIG_IDi.

A sequence of blanks twenty
characters less than the size of the
maximum line length.

SCOUNT LAST 2147483647
A universal integer literal whose
value is TEXTIO.COUNT'LAST.

SDEFAULTMEMSIZE 65536
An integer literal whose value is
SYSTEM.MEMORYSIZE.

SDEFAULT STOR UNIT 8
An integer literal whose value is
SYSTEM.STORAGEUNIT.

SDEFAULT SYS NAME TRANSPUTER
The value of the constant
FYSTEM.SYSTEMNAME.

$DELTADOC 2# 1 .0#E-31
A real literal whose value is
SYSTEM.FINE DELTA.

$FIELD-LAST 255
A universal integer literal whose
value is TEXTIO.FIELD'LAST.

Validation Summnary Report AVIF-VSR.90502/58

AIbys Lit'd AlsyCOMP 037 V4.3 Appendix C.- Page 2 of 6

TEST PARAMETERS

$FIXED NAME NO SUCH TYPE
The name of a predefined fixed-
point type other than DURATION.

$FLOATNAME NOSUCHTYPE
The name of a predefined floating-
point type other than FLOAT,
SHORT FLOAT, or
LONGFLOAT.

SG REATER THAN-DURATION 100000.0
A universal real literal that lies
between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

$GREATER THANDURATIONBASE 10000000.0
LAST

A universal real literal that is
g r e a t e r t h a n

DURATION'BASE'LAST.

SHIGHPRIORITY 10
An integer literal whose value is the
upper bound of the range for
the subtype SYSTEM.PRIORITY.

SILLEGALEXTERNALFILENAME1
An external file name which
contains invalid characters.

$ ILLEGAL EXTERNAL_FILENAME2 [0] + =?#-@'

An external file name which is too
long.

$ INTEGERFIRST -32768
A universal integer literal whose
value is INTEGER'FIRST.

$INTEGER LAST 32767
A universal integer literal whose
value is INTEGER'LAST.

$INTEGER LASTPLUS I 32768
A universal integer literal whose
value is INTEGER'LAST+I.

Validatioa Summary Report AVF-VSR-90502158

Alayimitad AlsyCOMP037 V4.3 Appendix C - Page 3 of 6

TEST PARAMETERS

$LESS THAN DURATION -100000.0
A universal real literal that lies
between DURATION'BASE'FIRST
and DURATION'FIRST or any
value in the range of DURATION.

$LESSTHAN DURATION BASEFIRST -10000000.0
A universal real literal that is less
than DURATION'BASE'FIRST.

SLOW-PRIORITY I
An integer literal whose value is the
lower bound of the range for the
subtype SYSTEM.PRIORITY.

SMANTISSA DOC 31
An integer literal whose value is
SYSTEM.MAXMANTISSA.

SNIAX_DIGITS 15
Maximum digits supported for
floating-point types.

SMAX INLEN 255
Maximum input line length
permitted by the implementation.

$MAXINT 2147483647
A universal integer literal whose
value is SYSTEM.MAX INT.

SMAX INT PLUS 1 2147483648
A universal integer literal whose
value is SYSTEM.MAXINT+1.

$MAX-LEN INTBASED LITERAL (1..2=>'2:', 3..252=>'0', 253..255=>'11:')
A universal integer based literal
whose value is 2#11# with enough
leading zeroes in the mantissa to be
MAXINLEN long.

$MAX LEN REAL BASEDLITERAL (1..3 >'16:', 4..251= >'0', 252..255= >'F.E:')
A universal real based literal whose
value is 16:F.E: with enough leading
zeroes in the mantissa to be
MAXINLEN long.

Validatioa Summaz Rep"r AVF-VSR-90502158

Ahp UAmiltd AI)/COMP 037 V4.3 Appendix C - Page 4 of 6

TEST PARAMETERS

$MAXSTRING_LITERAL (1 >'"', 2..254=>'A', 255= >"")
A string literal of size
MAXINLEN. including the quote
characters.

SMININT -2147483648
A universal integer literal whose
value is SYSTEM.MININT.

$MINTASK SIZE 16
An integer literal whose value is the
number of bits required to hold a
task object which has no entries, no
declarations, and "NULL;" as the
only statement in its body.

$NAME NOSUCHTYPE
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT FLO AT,
S H O R T INTEGER,

LONG _ FLOAT, or
LONG INTEGER.

$NAMELIST TRANSPUTER
A list of enumeration literals in the
type SYSTEM.NAME, separated by
commas.

SNEGBASED INT 16#FFFFFFFF#

A based integer literal whose highest
order nonzero bit falls in the sign
bit position of the representation
for SYSTEM.MAXINT.

SNEWMEMSIZE 65536
An integer literal whose value is a
permitted argument for pragma
memorysize, other than
$DEFAULT MEM SIZE. If there
is no other value, then use
$DEFAULT MEMSIZE.

Validation Summazy Repont AVF-VSR.90502/58 -

Alsy Limited AtwyCOMP037 V4.3 Appezdix C - Page 5 of 6

TEST PARAMETERS

SNEWSTORUNIT 8
An integer literal whose value is a
permitted argument for pragma
storage_unit, other than
$DEFAULT STORUNIT. If there
is no other permitted value, then
use value of
SYSTEM.STORAGE UNIT.

$NEWSYSNAME TRANSPUTER
A value of the type
SYSTEM.NAME, other than
$DEFAULTSYSNAME. If there
is only one value of that type, then
use that value.

STASKSIZE 16
An integer literal whose value is the
number of bits required to hold a
task object which has a single entry
with one inout parameter.

STICK 1.OE-6
A real literal whose value is
SYSTEM.TICK.

V4Udatikm Summary Rcporl AV1'-VSR-9050258

Atsp limited AhsyCOMP 037 V4.3 Appcndix C - Page 6 of 6

WITHDRAWN TESTS

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the Ada Standard.
The following <TOTALWITHDRAWN> tests had been withdrawn at the time of validation
testing for the reasons indicated. A reference of the form AI-ddddd is to an Ada Commentary.

E28005C This test expects that the string "-- TOP OF PAGE. --63" of line 204 will appear
at the top of the listing page due to a pragma PAGE in line 203; but line 203
contains text that follows the pragma, and it is this that must appear at the top of
the page.

A39005G This test unreasonably expects a component clause to pack an array component into
a minimum size (line 30).

B97102E This test contains an unitended illegality: a select statement contains a null
statement at the place of a selective wait alternative (line 31).

C97116A This test contains race conditions, and it assumes that guards are evaluated
indivisibly. A conforming implementation may use interleaved execution in such
a way that the evaluation of the guards at lines 50 & 54 and the execution of task
CHANGING OF THEGUARD results in a call to REPORT.FAILED at one of
lines 52 or 56.

BC3009B This test wrongly expects that circular instantiations will be detected in several
compilation units even though none of the units is illegal with respect to the units
it depends on; by AI-00256, the illegality need not be detected until execution is
attempted (line 95).

CD2A62D This test wrongly requires that an array object's size be no greater than 10 although
its subtype's size was specified to be 40 (line 137).

CD2A63A..D, CD2A66A..D, CD2A73A..D, CD2A76A..D [16 tests]
These tests wrongly attempt to check the size of objects of a derived type (for
which a 'SIZE length clause is given) by passing them to a derived subprogram
(which implicitly converts them to the parent type (Ada standard 3.4:14)).
Additionally, they use the 'SIZE length clause and attribute, whose interpretation
is considered problematic by the WG9 ARG.

CD2A81G, CD2A83G, CD2AS4N & M, & CD50110 [5 tests]
These tests assume that dependent tasks will terminate while the main program
executes a loop that simply tests for task termination; this is not the case, and the
main program may loop indefinitely (lines 74, 85, 86 & 96, 86 & 96, and 58, resp.).

Validatioa Sunmmfry Rqport AVF-VSR-90502/58

Alsya Limiled AlsyCOMP_037 V4.3 Appendix D - Page 1 of 2

WITHDRAWN TESTS

CD2B15C & CD7205C
These tests expect that a 'STORAGE SIZE length clause provides precise control
over the number of designated objects in a collection; the Ada standard 13.2:15
allows that such control must not be expected.

CD2DIIB This test gives a SMALL representation clause for a derived fixed-point type (at
line 30) that defines a set of model numbers that are not necessarily represented
in the parent type; by Commentary AI-00099, all model numbers of a derived
fixed-point type must be representable values of the parent type.

CD5007B This test wrongly expects an implicitly declared subprogram to be at the the address
that is specified for an unrelated subprogram (line 303).

ED7004B, ED7005C & D, ED7006C & D [5 tests]
These tests check various aspects of the use of the three SYSTEM pragmas; the
AVO withdraws these tests as being inappropriate for validation.

CD7105A This test requires that successive calls to CALENDAR.CLOCK change by at least
SYSTEM.TICK; however, by Commentary AI-00201, it is only the expected
frequency of change that must be at least SYSTEM.TICK--particular instances of
change may be less (line 29).

CD7203B, & CD7204B
These tests use the 'SIZE length clause and attribute, whose interpretation is
considered problematic by the WG9 ARG.

CD7205D This test checks an invalid test objective: it treats the specification of storage to
be reserved for a task's activation as though it were like the specification of storage
for a collection.

CE21071 This test requires that objects of two similar scalar types be distinguished when read
from a file--DATA ERROR is expected to be raised by an attempt to read one
object as of the other type. However, it is not clear exactly how the Ada standard
14.2.4:4 is to be interpreted; thus, this test objective is not considered valid. (line
90)

CE3111C This test requires certain behavior, when two files are associated with the same
external file, that is not required by the Ada standard.

CE3301A This test contains several calls to END OF LINE & ENDOFPAGE that have
no parameter: these calls were intended to specify a file, not to refer to
STANDARD INPUT (lines 103, 107, 118, 132, & 136).

CE3411B This test requires that a text file's column number be set to COUNT'LAST in order
to check that LAYOUT ERROR is raised by a subsequent PUT operation. But
the former operation will generally raise an exception due to a lack of available disk
space, and the test would thus encumber validation testing.

Vadidation Summ Rqeol AVF-VSR-9050258

AIM Uited AbyCOMP 037 V43 Appendix D - Page 2 of 2

NCC VSR ADDENDUM

This Addendum to the ACVC 1.10 VSR clarifies some items which are contained within the
standard pro-forma Validation Summary Report as supplied by the Ada Maintenance Organisation
(AMO).

In line with AJPO regulations the contents of the VSR have not been altered in order to keep
consistency between the different AVF's.

The points raised in this addendum are being addressed by the AMO in future issued of the VSR.

1 The last paragraph of Chapter 1 contains the following statement 'Any test that was
determined to contain an illegal language constructed or an erroneous language construct
is withdrawn from the ACVC...'

This is incorrect since illegal constructs are legitimately contained within Class B tests.

2 Both the terms 'inapplicable' and 'not applicable' are used within the VSR. These terms
are identical.

3 Chapter 1 of the VSR does not indicate how 'inapplicable' tests are to be analysed. The
analysis is undertaken as follows:

'Each inapplicable test is checked to ensure that this behaviour is consistent with the given
reasons for its inapplicability'.

