
Applied Research Laboratory

- DIIC
(0 Technical Report
In

NANALYSIS AND SYNTHESIS OF
NROBUST DATA STRUCTURES

by

A. Ravichandran
K. Kant

Ace,

DTIC
ELECTE-
JUL2Z619O1

lDIUTON SATEMENT A

Approved for public release;

PEN NSTATE DitutonUf t ed

90 7 95 100

The Pennsylvania State University
APPLIED RESEARCH LABORATORY

P.O. Box 30
State College, PA 16804

ANALYSIS AND SYNTHESIS OF

ROBUST DATA STRUCTURES

by

A. Ravichandran
K. Kant

Accession For

NTIS GRA&I
DTIC TAB
Unannounced 51
Justificatio

Technical Report No. TR 90-010 By
August 1990 Distribution/

Availability Codes

DT10 Avail and/or
roy, Dist Special

Supported by: L.R. Hettche, Director
Space and Naval Warfare Systems Command Applied Research Laboratory

DTIC
Alpr 9.6f1990;Approved for public release; distribution unlimited <

REPORT DOCUMENTATION PAGEFom*W'd
p~i~ ~~ 1 ~gq ~ wI iiib@ c ome" of "~t*A t #64if tWo vmwq f h ow a" fepwg ddi Obm frIS.w uc m.wds e g ,a J
os~w i MUUA9ow gaM~.-CWS~ ftWWM Wob =(OgS=Cfl @ of'm~o..s W 4w h-im t~bdge 4xoWr 06W m a *acoiecon@4m4rIWUiI IdunglU i~ fr odu 1 w sdof. to Watiwnqwsft "6 VowIII" ' W"'M amew WSt du~at

oft" m N-a. SiW 12i4. =bgA UM432. ..n d w ffceafsAm ft -"fa-,.'. W.*

1. AGENCY USE ONLY (LOaOV bWa) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
August 1990

4. TTl.E AND SUBTITLE S. FUNDING NUM1ERS

ANALYSIS AND SYNTHESIS OF ROBUST

DATA STRUCTURES

6. AUTHOR(S)

A. Ravichandran, K. Kant

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 3. PERFORMING ORGANIZATION
Applied Research Laboratory REPORT NUMBER

Penn State University

P. 0. Box 30 TR 90-010

State College, PA 16804

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADORESS(ES) 10. SPONSORING / MONITORING
-. .AGENCY REPORT NUMBER

Space and Naval Warfare Systems Command N-00039-88-C-0051

Department of the Navy

Washington, DC 20363-5100

11. SUPPIEMENTARY NOTES

12a. DISTRIBUTION/AVAILABIUTY STATEMENT 12b. DISTRIBUTION CODE

Unlimited

13. ABSTRACT (Maximum 200 worcs)

There is an increasing interest in applications in which the reliability of a

computing system is of,utmost importance. Also, it is likely that the

availability of reliable computing systems would promote their use in critical

application areas. One approach to increasing the reliability of computer

software is by increasing the robustness of data structures used.

in this thesis we provide a formal approach for the analysis and synthesis of

robust data structures. The entire data structure is viewed as a collection

of data elements related via some attributes. The relationships are specified

by a set of axioms in first order logic. Faults in attributes invalidate some

of the axioms. The invalidated axioms are used to detect and correct the

faulty attributes. We derive sufficient and in many cases necessary

conditions for achieving a given level of detectability and correctability.

We discuss the notion of compensations and extend our design to tolerate
compensating faults." , _ . L ,

1 S J TR-.-.- 15. NUMBER OF PAGES
1% - - --- ' 1 2 0

robust data structures, computer reliability, analysis, synthesis 120 PICECODE
detectability of errors, correctability of errors $ ") e _-"

17. SECURITY CLASSIFICATION 1U. SECURITY COASSIFICATION 19. SECJRITY CLASSFICATIO 20. UMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified SAR

NSN 7540-01-280-5500 Standard Form 298 (Rov. 2.89)

13. Abstract (continued)

We also show how detection and correction can be localized to small portions
of the data structure, thereby allowing concurrent repair in several disjoint
portions. This property makes local correction attractive for B-trees and
other structures used in data bases. We then show how the ideas developed for
attaining structural integrity can be applied to achieve data integrity as
well.

We then provide an optimal algorithm for the identification of faulty
attributes in a robust data structure designed using the method described in
the thesis. The algorithm does not use any fault syndrome table since the
size of such a table could be large, particularly when faults can compensate
one another arbitrarily. We show that the identification is possible in time
proportional to the number of axioms even when faults compensate one another
arbitrarily. This is optimal, since our method of axiom generation does not
yield any redundant axioms.

Abstract

There is an increasing interest in applications in which the reliability of a computing

system is of utmost importance. Also, it is likely that the availability of reliable computing

systems would promote their use in critical application areas. One approach to increasing

the reliability of computer software is by increasing the robustness of data structures used.

In this thesis we provide a formal approach for the analysis and synthesis of robust data

structures. The entire data structure is viewed as a collection of data elements related via

some attributes. The relationships are specified by a set of axioms in first order logic. Faults

in attributes invalidate some of the axioms. The invalidated axioms are used to detect and

correct the faulty attributes. We derive sufficient and in many cases necessary conditions

for achieving a given level of detectability and correctability. We discuss the notion of

compensations and extend our design to tolerate compensating faults.

We also show how detection and correction can be localized to small portions of the data

structure, thereby allowing concurrent repair in several disjoint portions. This property

makes local correction attractive for B-trees and other structures used in data bases. We

then show how the ideas developed for attaining structural integrity can be applied to

achieve data integrity as well. The design of a robust file system that uses the theory

described in the thesis is also discussed.

We then provide an optimal algorithm for the identification of faulty attributes in -a

robust data structure designed using the method described in the thesis. The algorithm does

not use any fault syndrome table since the size of such a table could be large, particularly

when faults can compensate one another arbitrarily. We show that the identification is

possible in time proportional to the number of axioms even when faults compensate one

another arbitrarily. This is optimal, since our method of axiom generation does not yield

any redundant axioms.

111

Table of Contents

List of Tables i

List of Figures viii

Acknowledgement s ix

1 Introduction 1

1.1 Terminology... 2

1.2 Forward Error Recovery 2

1.3 Backward Error Recovery. 3

1.3.1 Recovery Blocks 4

1.3.2 Multiversion Software. 5

1.3.3 Robust Data Structure 6

1.4 Literature Survey. 7

2 Model of Data Structure 10

2.1 Attributes. 11

2.2 Axiom Structure 4

2.3 Detectability and Correctability 16-

2.4 Interpretation of Values for Faulty Attributes. 19-

2.5 Hlypergraph Model. 20

3 Characterization of Detectability and Correctabiliiy 24

.3.1 Detetabiit~yCharacterization- ,. ~. I I *,.,,I.III,. 24

3.2 Synthesizing m~detoctable Data Structures. 25

3.2.1 Correctness of the Algorithm. 27

3.3 Correctability Characterization. 32

iv

3.3.1 Design of 1-Correctable Structures 33

3.3.1.1 Systematic Disambiguation 33

3.3.1.2 An Example of a Doubly Linked List 35

3.3.1.3 Characterization of 1-Correctability 37

3.3.2 Characterization of m-correctable Data Structures 41

3.3.2.1 Design using Minimum Number of Attributes 42

3.3.2.2 Design using Minimum Number of Axioms 45

3.3.3 Faults with Compensation 50

3.3.3.1 Internal Compensations 50

3.3.3.2 External Compensations 54

3.4 Data Structures with More than Two Attributes per Axiom 62

4 Identification of Faulty Attributes 69

4.1 Characteristics of Failure Function 69

4.2 Faults without Compensation 71

4.3 Faults with Compensation 72

4.3.1 Internal Compensation 72

4.3.2 External Compensation 73

4.3.3 Correctness of the Algorithm 83

4.4 Correcting Faulty Attributes 87

5 Applications 88

5.1 Global and Local Correction 88

5.1.1 Local Correction in Linear Data Structures 89

5.1.2 Local Correction in Nonlinear Data Structures 91

5.2 Data Integrity ... 94

5.3 Design of Robust File System97

5.3.1 Robustness of the File Directory 98

5.3.2 Robustness of-the Free Space Map 100

V

5.3.3 Robustness of the Linkage Information 101

6 Conclusions 106

6.1 Further Work 108

Bibliography 110

vi

List of Tables

5.1 Failure function for locally correctable doubly linked list 90

SVII

List of Figures

2.1 An example of a data structure 10

3.1 Graph model of data structure TC 43

3.2 A 4-correctable data structure with 7 attributes 47

3.3 A 3-correctable data structure with ten edges 48

3.4 A 3-correctable data structure with nine edges 48

3.5 Graph model of data structure TM 50

3.6 Distinguishability of compensating faults 56

3.7 Indistinguishability of compensating faults 57

3.8 Fault graph, GTc(f12), of compensating fault f12 58

3.9 Fault graph, GTC(f34), of compensating fault f34 58

3.10 A 4-ary fault on a data structure with 9 attributes and k = 3 64

3.11 A 4-ary fault on a data structure with 10 attributes and k = 3 65

4.1 The four possible forms of reduced graph GR 78

4.2 Fault graph of the example data structure ;81

4.3 The transformed graph of the given fault-graph 82

4.4 Reduced graph of the example 82

5.1 Data structure with one invalid pointer 88

5.2 Figure showing inaccessibility of b 89

5.3 Locally correctable tree 92

5.4 Directory for robust file system 99

5.5 File linkage information 103

viii

Chapter 1

Introduction

Reliability of a system is a statistical measure that expresses the probability tbat the

system will conform to its specifications [AL81]. We consider a system to be reliable if

it is highly probable that it will provide service to our satisfaction. The reliability- of a

computing system depends on the reliability of both the hardware and software. Hardware

reliability has been studied extensively [SS82] and will not be discussed here. We shall

confine our attention solely to software reliability.

Avizienis [Avi78] defines two complementary approaches to achieving software reliability:

fault intolerance and fault tolerance. Fault intolerance includes techniques applied during

system development to ensure that the running system satisfies all reliability criteria a

priori. Examples are correctness proofs, programming methodology, etc. As stated by

Parnas [Par77], this approach is based on the following two assumptions:

1. the machine which interprets the software will function properly, and

2. all data inputs to the system will be correct.

Thus this approach cannot cope with residual design flaws, hardware faults or user errors.

The fault tolerant approach attempts to increase the reliability by designing the system

to work even if the assumptions stated above do not hold (although the system may provide

a lesser level of service). Since design faults cannot be completely eliminated nor can

hardware error be ruled out, the fault tolerant approach is better suited for achieving

software reliability. Before discussing the fault tolerant approach we define-a few concepts

which shall form the basis for all further discussions.

2

1.1 Terminology

Any algorithmic or hardware malfunction is said to be a fault. State transitions of the

system performed by a faulty component lead to an incorrect state. Such an incorrect state

is known as an erroneous state. Continuation of the computation from an erroneous state

leads to a state which does not satisfy the specifications of the system. In such a case a

failure is said to have occurred. An error is that part of the erroneous state which causes

the failure.

From the definitions above, it is clear that a fault need not always lead to a failure.

Moreover, the occurrence of a fault is not observed unless it manifests itself as an error.

One approach used to obtain software reliability is to avoid failure states altogether. Such

a system should possess error detection capability, i.e., the ability to discern if the system

is in an erroneous state. Furthermore, once the system realizes that it is in an erroneous

state, it should take corrective action so that further computation does not result in a

failure state. The corrective action taken on detection of the erroneous state is known as

error recovery or error correction. Essentially, error recovery entails state restoration. Error

recovery can be classified as forward error recovery or backward error recovery depending

on the technique used for state restoration. Backward -error recovery involves restoring a

previous error free state of the system as the new state. In contrast forward error recovery

techniques manipulate some part of the state information to get a new state. We shall

discuss each of these techniques in some detail.

1.2 Forward Error Recovery

This technique involves manipulating the erroneous state in order to get a new consistent

error free state. Thus for every erroneous state we nced to know the manipulation required

to get the new state. Secondly, we should be able to predetermine the set of erroneous

states that can be reached during a computation. Cristian and Best [CB81] provide a

solution to the second problem. They define the exception occurrence as the event when

3

computation reaches a state which is inconsistent (erroneous state). They then provide a

.ystematic method for detecting exception occurrences. In order to facilitate this they define

exceptions in terms of the weakest preconditions for each operation. Using this method-of

exception detection Cristian [Cri80] provides a method for state restoration. Each erroneous

state is associated with a distinct exccption. The exception handling routine then modifies

the appropriate state variable to obtain the new state. This method has the advantage of

not requiring any additional system resources in order to perform recovery. This method

suffers from the drawback of being unable to handle unanticipated faults. Secondly, this

method is totally dependent oih the system being designed and hence cannot be provided

as a general mechanism.

1.3 Back,:ard Error Recovery

Backward error recovery techniques are the result of attempts made to carry many of

the hardware techniques to the software arena. Relevant examples in this context are

0 multiversion software, which is an adaptation oi N-modulo redundancy (NMR) tech-

nique.

* recovery blocks, which is an adaptation of standby redundancy technique.

* robust data structure, which is similar in spirit to error correction codes.

These techniques involve restoring a correct state as the new state. All that is necessary

for these techniques to work is the availability of a correct state. Restoration of the correct

state eliminates all the effects of the fault. These techniques are applicable to every system

since the notion of state is present in every system. The most attractive feature of these

techniques are that it makes no assumptions about the faults or the environment in which

the system operates. In fact this can be used as a general mechanism for any software

system.

These techniques, however, are not without drawbacks. The major problem with the

backward error recovery approach is the additional storage required for state restoration

4

and the cost associated with the restoration process itself. The other disadvantage con-

cerns those objects which cannot be restored. This is especially troublesome in a set of

communicating processes which may take action based on the inputs received from some

other process in the set. However, some techniques for implementing backward error recov-

ery mechanism incorporate features to overcome the abovementioned problems. Backward

error recovery has been studied extensively.

1.3.1 Recovery Blocks

Assume that a non-redundant software module has been prepared to perform a task

reliably. This module is called the primary module. The output of this module is checked

to see if the specifications are satisfied. These checks are called acceptance tests. If the

acceptance test is successful then it is assured that the system has executed correctly. In

case of failure of the acceptance test, a second module called the alternate, which is designed

to perform the same task, is executed. Before the execution of the alternate is started the

system state is restored to the prior state in which the primary module started execution.

The output of the alternate is then subjected to acceptance test and the above procedure is

repeated with the third alternate if necessary. If all the alternates fail the acceptance test

then a failure is reported and corrective action needs to be taken. Notice that this scheme

caters to any failure as long as the fault does not influence the results of the acceptance

test.

Horning [Hor74] was the first to describe the recovery block mechanism. He defined

the semantics of recovery blocks and presented an implementation of the recovery cache.

Randell [Ran77] presented a recovery block scheme in which he discusses solutions to the

problems of error recovery in the presence of interacting processes. He introduced the

notion of conversations which helped reduce the amount of recovery overheads. Kant and

Silberschatz [KS85] highlight some of the basic issues in performing backward error recovery

in concurrent systems. They present a set of necessary and sufficient conditions for ensuring

that the amount of computation lost by error recovery is bounded. Shrivastava [Shr78]

provided an implementation of recovery blocks in sequential Pascal and :lateron [Slhr79]

discussed extensions to the language Concurrent Pascal for implementing recovery blocks.

Numerous other authors have discussed other implementation details of recovery-blocks-and

provided performance characteristics of their implementation [And85].

Randell and Smith [MSR77] discuss a mechanism which uses concepts from both forward

and backward error recovery technique. They argue in favour of using exception handling

mechanism for anticipated fault situations and the recovery block scheme for unanticipated

situations. Cristian [Cri80] also arrives at the same conclusion. Kant [Kan87] discusses a

scheme that combines forward and backward error recovery techniques for achieving high

software reliability in real-time environments. The scheme allows a fairly flexible inter-

process communication mechanism. Several authors have suggested language extensions to

different languages and provided implementations using these features for such a hybrid

approach.

1.3.2 Multiversion Software

Avizienis [AC77] was the first to adapt NMR technique into software. He called this ap-

proach N-version programming. In this scheme, N (N > 1) versions of a program designed

independently to satisfy a common specification are executed and their results compared.

Based on majority voting the erroneous results can be eliminated and the correct results

passed on. The effectiveness of N-version programming approach depends on the extent

of diversity and independence among the different versions. Some studies -for exploring the

effectiveness of this approach are reported in [Sco84, And85, CLE88]. The issue of indepen-

dence between the different versions is examined in [EL85, KL86]. Various levels of diversity

between versions have also been suggested, for example, different algorithms [CA78], spec-

ification languages [KA83] and even programming languages. Other issues such as efficient

implementation, hardware support, recovery in concurrent processing environments have

also received wide attention.

6

Both recovery block and N-version programming approach are similar in that they em-

ploy redundancy to tolerate software errors. Recovery block approach employs redundancy

over time whereas N-version programming approach employs redundancy over space. A

comparative evaluation of the N-version programming and recovery blocks is presented by

Grnanov et al. [GAA80].

1.3.3 Robust Data Structure

Any software system executes by massaging the data. The data is maintained in some

logical organization called the data structure. The approaches discussed until now fail to

operate reliably when the data structure on which they operate is corrupted due to the

occurrence of a fault. Thus any good fault tolerant system requires the use of a reliable

data structure, also referred to as a robust data structure. Since data structures are also

stored in the same hardware as programs and operated on by software they are also subject

to faults. Hence we require some mechanism to ensure the reliability of data structures.

Both N-version programming and recovery block technique depend on design diversity

for effectiveness. The extent of diversity attainable depends on the dissimilarity of data

structures used by the different versions (or alternates). Usage of same or similar data

structures in the different versions (or alternates) gives very limited diversity. It would be

advantageous to structure the data so that different versions view the logical organization

differently. This entails use of redundant information in the data structure. This redundant

information can be used to increase the robustness of the data structure in addition to

providing independence amongst the different versions.

This thesis will deal with the design of robust data structures. We shall provide a

framework in which to study this design and then provide a methcd to synthesize a robust

data structure. Before we proceed to discuss the details, let us familiarize ourselves with

other work in the area of robust data structures.

.7

1.4 Literature Survey

Data structure reliability has not been the focus of much research. The first reported

work in the area was as late as in 1980. As in the case of fault tolerant software, redundancy

is the key to detection, diagnosis and recovery from faults which affect the integrity of the

data structure. Taylor et al. [TMB80] were the first to study where and how to apply

redundancy in order to obtain fault tolerant data structures. In view of the importance of

this work we shall discuss it in some detail.

They define a data structure as the logical organization of data. The storage structure is

a representation of the data structure. A data structure instance is defined as a particular

instance of a data structure. A change is defined as an elementary modification of the data

structure instance. They confine their attention to faults that result in changes to structural

information of the data structure, i.e. they confine their attention to structural integrity

and not semantic integrity. Structural integrity is concerned with the correctness of the

representation of the data. Semantic integrity deals with the meaning of the data.

Using this background they define N-detectability and N-correctability. N-detectability

refers to the situation when N or fewer changes in the data structure can be detected.

N-correctability refers to the situation when we can recreate the correct instance of data

structure modified by N or fewer changes.

They then define three properties of the storage structure representing the data struc-

ture. The properties are

ch-same the minimum number of changes that transform a correct instance of the data

structure into another correct instance and contains the same set of nodes.

ch-repl the minimum number of changes required to replace one or more nodes in the data

structure instance with the same number of nodes from outside the instance so that

the number of nodes remains the same.

ch-diff the minimum number of changes required to transform one correct instance to

8

another correct instance involving a different number of nodes.

Their methodology is quite simple. For any data structure they evaluate ch-sae, ch-

repl and ch-diff. The detectability is one less than the minimum of the three. They tben

add some additional structural entities so as to increase the minimum value. The procedure

is repeated till they achieve the desired level of detectability. Based on this scheme they

provide the values for ch-same, ch-diff and ch-repl for certain types of data structures. They

also provide a relation between the requirements of detectability and correctability.

We state their main result in the form of a lemma.

Lemma 1.4.1 If a storage structure employing identifier fields is 2r-detectable and there

are at least r + 1 edge disjoint paths to each node of the structure, then the storage structure

is r-correctable.

The drawback of the scheme is that they do not provide a method of adding redundant

information systematically. Secondly their model of the data structure and the manner in

which faults are considered are too restrictive. They do not provide a good error detection

and error correction procedure.

Seth and Muralidhar [SM85] use the same scheme as in Taylor [TMB80]. However,

they provide a systematic method for generating the error correction and error detection

algorithms.

After Taylor's work, many authors have provided mechanisms to improve the reliability

of some particular data structure. Sampiao and Sauve [SS85] provide a method to make the

tree data structure more robust. Davis [Dav87] provides a method for correcting an AVL

tree. His method, called local correction, does correction by checking a small subset of the

data structure in the vicinity of the faulty element, hence the name local checking. Recently

Taylor and Black [TB86] have provided an implementation of a locally correctable B-tree.

The drawback of each of these methods is that they are applicable only to the structure

defined by them. It is not at all clear how to extend this method to other structures;

Of late, there has been a growing interest in this area due to the requirement of efficient

9

concurrent operations in data base systems. There have been a number of papers that deal

with the efficient access of data stored in ,he database. These methods use some additional

structural entity on the basic data structure in order to speed up the operations. One

such mechanism is described by Lehman et al. [LY81]. They provide a method for efficient

concurrent operations on B-trees. Similarly Sagiv [Sag85] provides a method for performing

concurrent operations on B-trees where the operations may overtake one another. These

works are related to ours since they also deal with providing accessibility to data while

some portion of the structure is inconsistent. Here too the authors do not provide a general

method for adding structural redundancy.

We propose a general method that enables us to add structural redundancy. The struc-

tural redundancy will be used for fault tolerant purposes. The rest of the thesis is organized

as follows: A model of the data structure is presented in chapter 2. General results that

characterize the amount of redundancy required to achieve the desired level of fault tol-

erance is presented in chapter 3. A general algorithm for identifying faulty attributes in

a data structure designed using our method is the topic of discussion in chaptcr 4. Some

applications of the theory described in this thesis are discussed in chapter 5. Conclusions

and directions for future research are discussed in chapter 6.

Chapter 2

Model of Data Structure

We define a data structure D as the triple (EL, AT, AX) where

EL ={el,e2,...,eM} set of elements.
AT ={ai,a2, ...,aN} set of attributes.
AX ={S1,S 2,...,SL} set of axioms.

As an example, let us consider the definition of the data structure DLL. DLL is defined

as {ELDLL, ATDLL, AXDLL}, where ATDLL = {fp, bp, count, tag}. Attribute fp is used as

a forward pointer, attribute bp is used as a backward pointer, attribute count denotes the

number of elements in DLL and attribute tag is used as an identifier field. The axiom set

AXDLL is as follows:

AX 1 : VE E ELDLL[bp(fp(E))-- E A fp(bp(E)) E] (2.1)

AX 2 : VE E ELDLL {[fpCOut(E) = E] A [tag(E) < tag(fp(E))]} (2.2)

AX 3 : VE E ELDLL {[bpcount(E) = El A [tag(E) > tag(bp(E))]} (2.3)

Figure 2.1 shows a specific instance of data structure DLL, with three elements. In

axiom AX 2 , fpcount(E) - E is a short form of [fpn(E) = £ A n = count], where fpn(E)

tag tag

fptg p £

Ei E2 E3

count bp bp

bp

Figure 2.1: An example of a data structure

10

is fp(fp(... (fp(E))))). Axiom AX 3 is obtained in a similar fashion. In any data structure

n timea
D, the elements represent the collection of data items that D is supposed to store. One

of the elements in the set EL of any data structure D is considered to be a distinguished

element. The distinguished element is normally referred to as the header and we assume

that the header is always accessible. In figure 2.1, we assume element E1 to be the header.

2.1 Attributes

Attributes are entities that provide structure to the collection of elements. Attributes

are used to organize the collection of elements and to provide information about them. An

attribute could be either atomic or generic. We call an attribute atomic if it pertains

to a single element of D or D as a whole. We call it generic if it has an instance for

every element of D and given an instance of the attribute in D we can access all the other

instances of the same attribute in D. The definition of generic attribute should not be

construed as the ability to functionally determine the values of all the attribute instances

given the value of one instance of the attribute. We require the ability to access at least

one other attribute instance from a given attribute -instance, which in turn can be used to

access yet another instance of the same attribute and so on till all the attribute instances

are obtained. In the example data structure DLL, the count of the number of elements is

an atomic attribute whereas forward pointer is a generic attribute. A specific instance of a

generic attribute (e.g., forward pointer for a specific element) can be regarded as an atomic

attribute. An atomic attribute can be thought of as a function that takes a subset of EL as

argument and returns another element or a value. In some cases we require a weaker form of

the generic attribute which we call as weak generic attribute. A weak generic attribute has

an instance of the attribute in every element of the data structure, but given an instance

of such an attribute it is not possible to access another instance of the same attribute in

the data structure. The attribute tag in the example data structure DLL is an example of

a weak generic attribute.

12

We refer to the representation of the data structure in memory as a storage structure.

Every element of the data structure is mapped into a set of memory locations in the storage

structure. Similarly every attribute is mapped into one or more memory locations in the

storage structure. An atomic attribute is mapped to a single memory location whereas a

generic attribute is mapped to as many locations as the number of elements.

At this point, it is appropriate to say a few words about the implementation details.

The instances of all generic attributes for an element Ei are typically stored along with the

data item itself. The atomic attributes that apply to D as a whole are typically stored in

the header.

At all times the storage structure instance should be a correct representation of the data

structure. However, it is not possible to determine the correctness of the representation

just by observing the attribute values in the storage structure. We need to exploit the

relationships (if any) among the different attributes. These relationships are expressed in

the form of axioms.

Axioms are well-formed formulae in first order logic involving functions and predicates

over attributes. They implicitly define the set of all correct instances of the data structure.

We need to evaluate the axioms to determine the correctness of the representation of a

storage structure instance. Evaluation of an axiom consists of converting the axiom into a

logical formula and obtaining the truth value of the resultant logical formula. Conversion

to a logical formula is accomplished by replacing each attribute by its value in the storage

structure. Each function (predicate) over an attribute is replaced by a function (predicate)

over the value of this attribute in the storage structure. If the resultant logical formula is

true we say that the axiom evaluates to true or the axiom is valid. If the logical formula is

false we say that the axiom evaluates to false or the axiom is invalid or the axiom is violated.

A storage structure instance is a correct representation of the data structure if every

axiom is true, otherwise the data structure is said to be faulty. Consider a storage structure

instance SSDLL of data structure DLL, where elements El, £2 and E3 are stored at memory

locations 100, 200 and 300, respectively. The values of attribute fp in elements E I..., E3

13

are 300, 300 and 100, respectively. Similarly the values of attributebp in elements E 1,.. .,E3

are 300, 100 and 200, respectively. Attribute count has a value of 3 and the values of

attribute tag in elements E1 ,.. ., E 3 are 1, 2 and 3, respectively. Axioms AX 1 and AX2 -are

false for storage structure instance SSDLL and hence we say data structure DLL is faulty.

A faulty data structure consists of one or more attributes, whose values in the storage

structure instance invalidate the relationships expressed by the axioms containing these

attributes. Each such attribute is said to be faulty. As an example, the attribute fp of data

structure DLL is faulty in the storage structure instance SSDLL. The attribute values in

the storage structure could be incorrect due to a hardware fault or a software error. Also

an incorrect value of an attribute in the storage structure could be interpreted in different

ways (i.e. each incorrect value could be considered as a distinct fault). However, we ignore

these aspects and consider every incorrect value of an attribute in the storage structure

instance as the same fault. So, with every attribute ai, we associate a unique fault fi.

Thus, we have the base fault set BFS =ffl, f2,...,fN}. It is important to note here that

the altered value of an attribute in the storage structure is arbitrary and may not even

belong to the prescribed domain; therefore, the interpretation of faulty values needs some

care. This issue will be revisited later. For generic attributes, we could have two different

fault models: (a) Generic Fault Model (GFM), where the fault in an attribute may

alter values of an arbitrary number of instances of the attribute, and (b) Instance Fault

Model (IFM), where only one instance is affected. Consider a storage structure instance

of DLL with two erroneous attribute values, one in fp of element E 1 and the other in fp

of element E2 . Under GFM the two erroneous values are viewed as a single fault in fp,

whereas under IFM the same two erroneous values are considered as two distinct faults.

We shall mostly deal with GFM in this thesis, because IFM becomes a trivial special case

of GFM.

Let FS denote the set of all possible-simultaneous faults. Then,

N

FS = powerset(BFS) - 0= U F (2.4)
j-1

14

where Fi denotes the set of all possible i simultaneous faults. We use fi,12,... to refer to

faults in the base fault set and fx, fy,... to refer to multiple faults. in case of a specific

multiple fault, we replace the subscript x, y by a string of attribute names. We use fg to

refer to faults which belong to either of the two categories.

2.2 Axiom Structure

The effect of a fault on the attributes of D is captured by the violation of the axioms that

involve one or more of the faulty attributes. In other words, the identification of a faulty

attribute is done on the basis of axioms that are violated. To do the identification of faulty

attributes, the axioms must satisfy several restrictions. Also, in order to obtain results

concerning the number and type of axioms needed for a given level of fault tolerance, we

need to give the axioms some structure. To that end, we express all axioms in conjunctive

normal form with all quantifiers pushed to the outermost level. We then collect all conjuncts

that involve the same set of attributes, and call them a term. Thus an axiom will be a

conjunction of some terms, each one of which would involve a distinct set of attributes. For

example consider three attributes p, q and r and predicates A(p, q), B(p, q) and C(q, r). We

express these predicates in an axiom as follows:

A(p, q) A B(p, q) A C(q, r) (2.5)

Since the first two conjuncts involve the same set of attributes, namely p and q, we combine

them into a term and thus obtain the axiom as

A'(p,q)A C(q,r) (2.6)

where A'(p, q) = A(p, q) A B(p, q). We now introduce the following definitions:

Definition 2.2.1 Let A be the set of attributes comprising axiom S, F be the set of single

faults in the attributes of the set A and let exactly one attribute in the set A be faulty. Then

S is said to be proper if for every instance of D, the axiom S evaluates to false for all

f E F. (Notice that we do not say anything if more than one attribute in S is faulty).

15

Consider a modified version of data structure DLL with axiom AX 2 replaced by axiom

AXI where

AX': VE E ELDLL[fpcount(E) - E] (27)

In a correct instance of DLL, the values of attribute fp in elements Ej,..., E3 should be the

addresses of E2, E3 and El, respectively. Consider an instance of DLL, where as a result of

a fault in fp, the values of attribute fp in elements Ej,..., E3 are the address of E3, E2 and

El, respectively. Axiom AX' is true in this case also whereas axiom AX 1 is false. Axiom

AX' is unable to detect permutation of the values of the attribute fp and hence is not

proper. To make AXI proper we modify it to obtain AX 2.

Definition 2.2.2 The axioms are said to be in Attribute Normal Form (ANF) if every

term of every axiom involves the same number of attributes and a term does not appear in

more than one axiom.

Definition 2.2.3 An ariom S is said to be in (qk)-ANF if it is in ANF, each term of

S has exactly q attributes and S involves at most k attributes. If q = k, we call the form

simply k-ANF.

We now state the restrictions on the form of axioms.

1. Any axiom involving a generic attribute is universally quantified over all its in-

stances. Informally, this means that any property of a generic attribute involves every

instance in a uniform way (i.e. none of the instances is special).

2. Each axiom is proper. Furthermore, no subset of terms of an axiom is proper. This

is essential for fault identification based on violated axioms.

3. The set AX is (q, k)-ANF for some given q and k. The underlying motivation for this

is to ensure that the number of axioms and the number of attributes used in an axiom

become significant. The requirement of exactly q attributes per term is not restrictive,

since we can always add predicates to the terms to have the same number of attributes

16

in each of them. In this thesis we only consider terms having two attributes, i.e. we

consider axioms in (2,k)-ANF.

4. The axioms are sound and complete. Soundness means that any property derived

from them about D is true. Completeness means that they collectively admit only

the correct instances of D; that is, any true property of D is derivable from them. 1

It is important to note at this point that we do not require the axioms to be indepen-

dent; in fact, the redundancy introduced by the lack of independence is essential for the

identification of faulty attributes.

We associate with every axiom Si a set Ai which is the set of attributes contained in

that axiom. We denote the number of attributes in Si as IAiI.

2.3 Detectability and Correctability

We now define the failure function of a fault f, denoted h(f), as the set of axioms that

remain valid under f. Then we have the following sufficient (but not necessary) conditions

for detectability and correctability:

* A data structure D is rn-detectable if the failure function of any i-ary, fault, i < m,

is non empty and is different from the set AX, i. e.,

Vf E Fi,1 < i < m,[h(f) # AX,h(f)# 0] (2.8)

* A data structure D is m-correctable if

- At least m faults are detectable,

- The failure function for any two distinct faults are distinct, i. e. , V.¢i E Fi, ¢b. E

Fj,1 < i,j <_ m,h(01) :0 h(0 2), and

'In practice however, it may sometimes be simpler and more efficient to account for some properties
implicitly (and leave the axioms incomplete to that extent).

17

- The failure function of every fault of arity less than or equal to m contains an

axiom involving a generic attribute.

In characterizing m-detectability, we have included the condition h(f) 5 0 to enable

distinction between faults of arity _r m from those of arity > m. Iowever, m-detectability

does not require the ability to distinguish between two faults of arity less than or equal

to m. Also, note that the characterization of m-correctability only ensures that we can

uniquely identify the faulty attributes. In principle, this is adequate since we have assumed

that any values of the faulty attributes (along with the existing values of other non-faulty

attributes) that satisfy all axioms in AX, is a correct representation of the data structure.

Unfortunately, no general algorithm is possible for finding such a set of values for a1,...,ai;

thus the design of correction procedures would require some further information about

the specific data structure under consideration. We shall comment on this aspect in the

examples.

One issue not addressed above is the compensation among faults. Compensation

refers to the situation where two (or more) simultaneous faults are such that some axiom

involving them evaluates as true. These faults could well be internal to a generic attribute

(i.e., in different instances of the same generic attribute) or external to the attributes (i.e.

in instances of different attributes). Thus we need to consider both internal and external

compensations. We reserve discussion on both types of compensation for section 3.3.3.

Thus, for now, we assume that no compensations take place.

When a new attribute is to be added, we need some guidelines to help us in the choice.

One general criterion, obviously is to use an attribute that requires minimum storage.

Duplication of certain attributes (e.g., count of number of elements, etc.) is sometimes

useful. Having more than two copies of the same attribute is however not useful since

discrepancies amongst the copies makes it difficult to distinguish the correct copy from an

incorrect one. We also need to decide if the new attribute should be atomic or generic. This

is easy since m + 1 generic attributes are necessary and sufficient for m-correctability.

18

Our discussion until now places no restrictions on the value of either q, the number of

attributes in a term or k, the number of attributes in an axiom, except those resulting from

the requirement that the axioms be proper. In this thesis we shall restrict our attention to

the situation when each term is comprised of two attributes, i.e. q = 2. Such a restriction

helps simplify understanding of our approach. Moreover, q = 2 is sufficient to express

properties relating attributes for most of the data structures of interest. It is advantageous

to choose q as small as possible for several reasons:

1. Fewer attributes per term give better detectability and correctability since the term

(and hence the axiom containing it) will be violated in fewer cases.

2. With fewer attributes per term, there are fewer possibilities for external compensation.

Some of the terms in an axiom may initially consist of only one attribute. To satisfy the

(2, k)-ANF requirement, it would appear that we have to artificially convert these to two

attribute terms. However, terms with one attribute only specify range restrictions, which

must be enforced anyhow for proper interpretation of faulty values, as discussed in the next

section. Thus for our formal analysis, we can simply ignore such terms. We shall also fix k

in our analysis, and let N (the total number of attributes) be determined by the values of

q and k.

In view of the above, we shall impose the following discipline in our design of robust

data structures. We start by generating terms for an axiom. We keep adding terms to an

axiom until the axiom becomes proper. If necessary, we generate additional axioms using

the existing attributes without violating the ANF criterion (i.e. no term appears in more

than one axiom). If we have exhausted all possibilities of generating either more axioms

or more terms for an axiom with the existing set of attributes then we add an additional

attribute.

19

2.4 Interpretation of Values for Faulty Attributes

Until now, we have tacitly assumed that the value of a faulty attribute always lies within-

the prescribed domain. Unfortunately, this is not true in general, and may lead to both

theoretical and implementation problems. For example, in a circular linked-list, the domain

for the pointer attribute is the set of starting addresses of all the elements. If, however,

the pointer value changes to some other value, we face two difficulties with respect to the

axioms involving this pointer: (a) the axioms may become undefined, and (b) if the location

being pointed to is outside the accessible address space, the evaluation of the axioms will

cause exceptions. Similar problems could arise with non-pointer attributes; for example,

the count of the number of elements in the list could become negative and thereby make

certain operations (e.g., mod function, indexing into an array, etc.) undefined and exception

causing. In the following, we address these issues briefly.

One way to handle the theoretical problems is tu extend the framework with the un-

defined element I. One complication introduced by such an extension is that faults that

result in undefined values must be distinguished from those that don't. We avoid the added

complexity by simply mapping all undefined values to some special value(s) within the

domain. For example, any undefined pointer value could be considered to point to itself.

A side effect of such a convention is that valid pointers cannot point to themselves. This is

usually not difficult to arrange. For example, one could always retain at least one (dummy)

element in a circular-list so that the pointer from the header never has to point to itself.

Similarly, all negative values for the count attribute could be mapped to value 0.

This mapping must be supported by the implementation. That is, given a value, we

should be able to check if it lies in the desired domain, and if not, map it to the distinguished

value. This could either be done explicitly or by an exception handling mechanism. In either

case, if the domain consists of a set of noncontiguous values, the checking may be expensive.

For example, the domain of links in a linked data structure must explicitly specify the

starting addresses of all the allocated elements. Unfortunately, one cannot maintain such

20

information without using a linked data structure. A reasonable alternative, as suggested

in [TMB80], is to assume that every element can be tagged in some way by the identity of

the data structure (and user) it belongs to. However, if the pointers are simulated by array

indices (as would be done when implementing linked structures in, say, Fortran), domain

checking problem becomes much simpler. Finally, note that since m correctability requires

at least m + 1 generic attributes, the nonfaulty attribute can always be used to trace all the

elements that belong to the structure.

For purposes of analysis we require a convenient representation of the data structure

model. We now present such a representation.

2.5 Hypergraph Model

We represent the data structure D by means of a Term graph (TGD) and an Axiom

hypergraph (AGD). In both the graphs, the vertices represent the attributes and may be

labeled by attribute names. For axioms in (2, k)-ANF each pair of attributes (a,, aj) present

in a term is represented as an edge aiai in the term graph TGD. An axiom is represented as

a hyperedge in the axiom graph AGD. We can view the edges in TGD as giving the internal

structure of the hyperedges of AGD. We say that the axiom graph has a connectivity m if

every node participates in at least m distinct edges. 2

Let us discuss the structure of the hyperedges of an Axiom Graph. We impose certain

restrictions on the structure of hyperedges. The imposition of a structure on the hyperedges

is based on the information content of the three attribute types. Of the three attribute

types, a generic attribute has the maximum information content. This is because there is

an instance of the attribute in every element of the data structure and secondly, given an

instance of the attribute, it provides the ability to obtain another instance of the attribute.

An atomic attribute provides lesser information than a generic attribute since it pertains to

a single element or lumps the property of the entire data structure. Similarly a weak generic

2Note that the connectivity as defined here is different from the usual graph theoretic definition.

21

attribute provides lesser information than a generic attribute, since given an instance of the

attribute it is unable to obtain another instance of the attribute. Clearly, the information

content of the weak generic attribute and an atomic attribute are incomparable. Secondly,

an axiom consists of one or more terms and each term consists of exactly two attributes.

The structure of the hyperedge should represent this information adequately. Finally, it is

clear that one cannot add a term relating a weak generic attribute and an atomic attribute.

Such a term cannot be evaluated, since there is an instance of the weak generic attribute in

every element and it is not possible to traverse through every element of the data structure

without a generic attribute.

Thus we impose restrictions on the number and the type of the attributes that can

be present in the same hyperedge. These restrictions are best understood by viewing each

hyperedge as a hierarchical structure where the hierarchy among the attributes constituting

the hyperedge is determined by the information content of the different attribute types,

as discussed above. Since the terminology associated with trees is very convenient for

discussing hierarchical relationships we use this terminology in the rest of this section. We

require every hyperedge to be a tree of height 1, i.e., a tree with one root node and the rest

leaf nodes, connected to the root node. Since each term has two attributes, each branch of

the tree corresponds to a term.

If the axiom has only one term, then either both the root and the leaf could be atomic

or both could be generic. In all other cases the root should be a generic attribute and the

leaves could be either atomic or weak generic. Note that by imposing such a structural

requirement we consider only a subset of the allowed axioms. Although each term can

have only two attributes, terms of the form g(a1, a2, a3) (i.e., terms having three or more

attributes) can be used provided one of the attributes is genei ic and this term can be written

in the form of the axiom structure discussed above. This still does not take care of terms

with three or more attributes all of which are atomic.

Consider axioms AX 2 and AX 3 of data structure DLL. Each of these axioms consists of

three attributes and will be represented as a hyperedge in the hypergraph representing data

22

structure DLL. Each axiom has one generic attribute, one atomic attribute and- one weak

generic attribute. We impose the structural restrictions on the hyperedge corresponding to

each axiom. We thus require the generic attribute to be the root of the tree and the weak

generic and atomic attribute to be the leaves. Thus the generic attribute must be present

in both the terms of axioms AX 2 and AX 3 .

In the axiom graph a fault in an attribute is represented by the removal of all vertices

corresponding to the faulty attributes and all hyperedges incident on them. The resulting

graph is called the reduced axiom graph or Axiom fault graph. The Axiom fault graph

for any fault f, of arity up to m, is denoted as AGD(f). We also define the reduced term

graph or Term fault graph, denoted TGD(f), for each fault f. This is done by simply

removing all the faulty nodes and the corresponding edges from TGD. Because the axioms

are proper, at least one term of each axiom containing a faulty attribute must be violated.

Thus the conditions for detectability and correctability stated earlier can be expressed as

follows:

e D is m-detectable if and only if AGD(f) is nonnull and is a proper subgraph of AGD

for any i-ary fault f, i < m.

e D is m-correctable if for every distinct i-ary fault fi, i < m, either AGD(fi) is a

distinct, nonnull proper subgraph of AGD or for two distinct faults fi and fj with

with same subgraph of AGD, TGD(fi) and TGD(fj) are distinct nonnull subgraplis

of TGD.

It is important to note, however, that unlike AGD(f), TGD(f) is not unique for a given

fault f. This is because the individual terms of an axiom need not be proper and thus may

not always be violated. Thus we have a set of TGD(f)'s corresponding to the fault f. We

can characterize detectability and correctability solely with respect to term fault graphs.

Such a characterization is of little use since the number of term fault graphs is enormous.

We need some alternate characterization which is easy to compute. For the present, we

shall ignore term graphs altogether and work with axiom graphs only. We return to term

23

graphs later on in the section dealing with internal compensation.

If the number of attributes in an axiom is two (k = 2), then the hypergraph AGD

reduces to an ordinary graph. Moreover, AGD is identical to T GD and -we can use either

one of them.

We introduce the results by considering (2,2)-ANF axioms. The results extend trivially

to the case when the hyperedges have the tree structure discussed earlier. In this case, the

additional terms are added to make the axioms proper (as seen in the later chapters). The

addition does not change any of the results obtained for the (2,2)-ANF case. Henceforth,

whenever we use the word graph, we refer to the axiom graph, which is denoted as GD.

Chapter 3

Characterization of Detectability and Correctability

In this chapter we study the characterization of detectability and correctability. We also

provide a method to obtain a data structure possessing the desired level of detectability/

correctability. Throughout this chapter we assume that the data structure under study

is represented by the hypergraph discussed in the previous chapter. We first discuss de-

tectability, where we confine the discussion to the k = 2 case.

3.1 Detectability Characterization

The detectability of a data structure represented by the graph can be obtained by a

straight-forward application of the definition of detectability. The more interesting aspect

of study is the synthesis of a data structure for a given level of detectability. Before we

provide an algorithm to synthesize a data structure for a required level of detectability, we

make a few observations that characterize detectability of a data structure represented by

such a graph.

Observation 3.1.1 If the graph representing a data structure contains an isolated vertex

then the data structure has zero detectability.

Proof: Assume that the graph has an isolated vertex, say a. Let there be a single fault

in the system and further let the fault affect vertex a. Since a is isolated the fault in a does

not result in the removal of any edges and the fault graph is the same as the original graph.

Thus from the definition of detectability, the system is zero detectable. 0

Observation 3.1.2 The maximum detectability of a data structure represented by a graph

G= (V, E) is IvI- 2.

24

25

Proof. Each vertex has maximum connectivity when the graph is complete. Detectability

requires the presence of at least one edge in the fault graph. Since faults in attributes

correspond to removal of vertices and the edges incident on the vertices, the maximum

number of vertices that can be removed from a complete graph without making the graph

empty is IVI - 2, from which the result follows. 0

3.2 Synthesizing m-detectable Data Structures

The algorithm to synthesize a m detectable data structure is based on the concept

introduced in the next lemma.

Lemma 3.2.1 The detectability (detG) of a system represented by graph G having I con-
I

nected components is Z(deti + 1) - 1.
i=1

Proof: trivial. 0

We now provide an algorithm to synthesize a m-detectable data structure given N

attributes. The algorithm works as follows. Given a set of vertices the algorithm partitions

the vertices among a set of complete components. By putting the vertices in different

components, the effect of a fault in an attribute is confined to the component to which

the vertex belongs. Each component is made complete to enhance its detectability, thereby

enhancing the detectability of the graph. Also, by keeping each component small, fewer

edges are required to make the component complete.

The algorithm starts by constructing components containing two vertices each. It then

attempts to build the graph of the required detectability by forming bigger components by

reducing the number of components and rearranging the vertices among the reduced set of

components. The complete algorithm is described below.

Algorithm 1 Algorithm to synthesize a m-detectable data structure given N attributes.

Input:
Number of attributes N
Desired level of detectability m

Output:

26

A graph representation of m detectable data structure
begin

Construct a graph G with LE] components by having two vertices
per component and an edge joining the two vertices of a component;
ifNis odd then

begin
add the remaining vertex, say x, to a component, say C, containing vertices y and z;
add the edge zy (or xz) to graph G;
mark component C incomplete

end ;
/* let noofcomp denote the number of components in the graph */
/* let detG denote the detectability of graph G */
noofcomp 2- [NJ;
detG +- noofcomp -1;
if detG >_ m then return G;

/* G is a graph capable of detecting < m faults */
else
begin

if there is an incomplete component then
begin

add an edge to make component complete;
detG +- detG + 1;

end
/* at this juncture all components are complete (or cliques) */
if detG > m then return G

else
begin

while (noofcomp > 1) and (detG < m) do
begin

select a component, say C, of smallest size, say 1;
breakup C into I vertices by removing all edges of C;
noofcomp +- noofcomp -1;
detG 4-- detG - 1 + 1;
while 1 > noofcomp do

begin
add one vertex to each component;
add edges to make each component complete;
detG +- detG+ noofcomp;
1 +- l- noofcomp;

end ;
add one vertex to 1 smallest components;
add edges to make each component complete;
detG +- detG + I

end
if detG < m then write (not possible to obtain desired detectability)

else return G;

27

end
end

end

3.2.1 Correctness of the Algorithm

We now prove the correctness of the algorithm. The first order of business is to show

that the algorithm makes progress and eventually terminates. The following lemma states

a result in that direction.

Lemma 3.2.2 Every iteration of the while loop increases the detectability of the graph by

one.

Proof: In every iteration we break the smallest component and distribute its nodes among

other components. Let a component, say C, of size q be destroyed. The detectability of

C is q - 2. The reduction in detectability of the graph as a result of destruction of C is

q - 2 + 1 = q - 1 (the plus one factor arises due to the reduction in number of components).

Distribution of the q nodes among other nodes increases the detectability of the graph by

q. This is because the addition of a node to a component (and the concomitant edges)

enhances the detectability of that component by one. Thus the net change in detectability

of G is q - (q - 1) = 1, which proves the lemma. 0

It is easy to see that the algorithm obtains a graph possessing the desired level of

detectability, From lemma 3.2.2, it follows that every iteration of while loop increases the

detectability of the graph. It can also be seen that every iteration of while loop reduces

the number of components by one. Since the number of components is finite to begin with

and so is the desired level of detectability, the algorithm terminates in a finite number

of steps. If the detectability of the graph is less than the required detectability upon

termination of the algorithm, then the required detectability cannot be obtained, given

the input constraints. This is because, on termination the graph has one fully connected

component. From observation 3.1.2 it follows that the maximum detectability of a graph

28

with V vertices is VI -2. In all other cases, the resulting graph has the required detectability

at termination.

We now show that the graph generated uses the fewest number of edges. We need some

additional results which we prove in the next couple of lemmas. In the first lemma we

show that any rearrangement of the vertices amongst the components in the graph does not

enhance the detectability of the graph.

Lemma 3.2.3 Any transformation of a graph with I complete components to another graph

with the same number of complete components does not result in any increase in the de-

tectability of the graph.

Proof: Consider a graph G with 1 complete components. Graph G is transformed to

another graph G' by removing vertices from one or more components and adding them

to other components. For simplicity of proof we only consider the case when vertices are

removed from one component and distributed among others (the proof for the other case

is an easy extension of this proof). Let q vertices be removed from component C. Since C

was complete, removal of q vertices results in the reduction of component C's detectability

by q. Let p vertices, p < q, be added to a component, say C'. Since C' is complete before

and after the addition of p vertices, the detectability of component C' is enhanced by p. In

general, the detectability of a component, which is complete before and after the addition of

some vertices, is enhanced by an amount equal to the number of additional vertices. Since

at most q vertices have been added to the different components the increase in detectability

of G is q. Thus in graph G', the detectability of component C is reduced by q and the

detectability of a set of components is increased by q. Thus the net change in detectability

is zero which proves the lemma. 0

Corollary 3.2.1 Let G, consisting of complete components, be a graph with the fewest

edges for a certain level of detectability. The difference in the size of any two components

of G is at most one.

29

Proof: By contradiction: Assume that graph G contains two components, say C1 and C2,

whose sizes differ by more than one, say two. Let C1 have p vertices, C2 have p - 2 vertices

and all the other components have p - 1 vertices. Transform G into another graph G',

consisting of complete components, such that component C1 has p - 1 vertices, component

C2 has p - 1 vertices and all other components remain the same. From lemma 3.2.3 it

follows that G' has the same detectability as G. However, G' has fewer edges than G since

the transformation results in the removal of one vertex and p - 1 edges from component C,

and the addition of one vertex and p - 2 edges to component C2. But this contradicts the

statement of the corollary stating that G is the graph having the fewest edges for a given

level of detectability. Thus the difference in size of any two components cannot exceed one,

which proves the result. 0

Lemma 3.2.4 The merging of two complete components enhances the detectability of the

resulting graph by one if and only if the merged component is complete.

Proof: only if. Consider a graph G with two complete components C1 and C2 of sizes kl

and k2 respectively. Let C, and C2 be combined into a new component, say C. As a result

of combining C1 and C2 the number of components is reduced by one. The total amount

of detectability lost is ki - 2 + k2 - 2 + 1. Since after combination the detectability of G is

increased by one, we require component C to have a detectability of k, + k2 - 2. The size of

component C is k, + k2. Thus from observation 3.1.2 it follows that component C should

be complete, which proves the lemma.

if Let graph G with complete components C, and C2, of sizes k, and k2 respectively, be

transformed to graph G' with complete component C', where component C' is obtained by

merging components C1 and C2 . The other components of G and G' are identical. Tile

size of component C' is k, + k2 and detectability of component C' is k, + k2 - 2. Thus the

detectability of graph G' is detG+(kl+k2 -2)- (kl -2)- (k2--2)- 1, i. e. , detG, = detG + 1,

which proves the result. 0

30;

The lemma given above provides one method for enhancing the detectability. However,

our algorithm does not use this method since it results in more then the optimal number of

edges necessary for a given level of detectability. This leads us to the result stated in the

next lemma.

Lemma 3.2.5 The algorithm to obtain a graph for a given level of detectability uses the

fewest number of edges.

Proof: Given a system with N vertices and a detectability of less than N Ej, it follows that

the algorithm generates a graph that uses the fewest number of edges. This follows from

observation 3.1.1 and the fact that in the generated graph, each vertex has one incident

edge (if N is odd then only one vertex has two edges incident on it). If N is odd and the

required detectability is [NJ then the algorithm generates a graph with LNJ components

in which all but three vertices have one edge incident on them. All the three vertices with

more than one incident edge belong to the same component, say C. The detectability of

the graph excluding component C is .fJ - 2 (follows from lemma 3.2.1. Since component

C should have a detectability of one, it follows from observation 3.1.2 that component C be

complete. Since the algorithm generates such as graph, it uses the fewest number of edges

in this case also.

We now need to show that the algorithm uses fewest number of edges when the desired

detectability is more than LNJ. Since the algorithm increases the detectability of a graph,

composed of complete components and having the fewest number of edges, by one in every

iteration of the while loop we need to show that this increase is achieved by the minimum

number of additional edges. As outlined in lemma 3.2.3 no rearrangement of the vertices

amongst the components, without a change in the number of components itself, results in

a change in the detectability of the graph. As outlined in lemma 3.2.4, the detectability of

the graph can be increased by one by merging two complete components. Let the size of

the component formed by combining two components be 2V and the size of each merged

component be V. Since the new component needs to be complete (follows from lemma 3.2.4),

31

we need to retain all the edges in each of the two components and requiresome more edges.

The additional number of edges required, say e, is

e= 2V x (2V- 1) _ 2x V(V- 1) = 1,2 (3.1)
2 2

The method used in the algorithm results in breaking the clique of size V and increasing

the detectability of other components. We have two cases to consider

case i- the number of components is greater than V: In this case the algorithm distributes

the V vertices of the broken clique among V other components, increasing the detectabil-

ity of each by one. Now the sizes of any two components differ by at most one (follows

from corollary 3.2.1). Let there be at least one other clique of size V (this is to maintain

consistency, since in the previous paragraph we had assumed that two cliques of size V

are combined to form a clique of size 2V). The number of edges added to a component to

increase its detectability by one is equal to the size of the component before the addition of

the new vertex. Thus the number of edges added in this case is

V + (V- 1)(V + 1). (3.2)

This expression is obtained using the fact that we add V edges to a clique of size V, V + 1

edges to a clique of size V + 1 and the fact that the V vertices of the broken clique are

distributed among one component of size V and (V - 1) components of size V + 1. The

number of edges removed due to breakup of the clique of size V is V(V . Thus the number2

of edges required additionally is

V + (V- 1)(V + 1)- V(V- 1) (3.3)2

V 2 V V 2 3V
V +- V - 1 - - -2 = 2 - (3.4)

Since the size of a clique is at least two (i.e. V > 2) - + -1 < V 2 . Hence thealgorithm

uses the fewest number of edges in this case.

case ii- the number of components, say I is less than V: In this case the algorithm divides

the V vertices among 1 components. Let us assume that the detectability of each component

32

is increased by r (i.e. by adding r vertices to each component). Again, let us assume that

one component has V'vertices and the others V + 1 vertices. The number of edges added to

the component with V vertices to increase its detectability by r is V+(V+1)+(V+2)+. .- -

(V + r - 1) = rV + L L2"I" Similarly, the number of edges added to a component with V + 12

vertices to increase its detectability by r is (V + 1) + (V + 2) + ... + (V + r) = rV + r(r21)

The total number of edges added is

r(21) + [rV + r(r2+ 1) x (1- 1) (3.5)

r 2 2= rYV+----(2 1 + (I- 1)y+ (1- 1)r(r2+ 1) (3.6)

rV(I- 1 + 1)+ [r - 1 + 1r- r + -1 (3.7)

=rV1 + 2[Ir + I- 2] (3.8)
2

V2+ r V r(usingV = rt) (3.9)
2 2

The number of edges deleted due to breakup of clique of size V is L- - K. Thus the number2 2"

of additional edges is

Vr V V 2 V (3.10)
2 V2 V

V2 +-(r+ 1+ 1)-r
(3.11)

V 2 V

ST + -j(r + 2) - r (3.12)

it is easy to see that for 1 < r < V, this quantity is less than or equal to V 2 . Hence

the algorithm generates a graph which uses the fewest number of edges for a given level of

detectability. 0

3.3 Correctability Characterization

We begin by providing the general approach to designing correctable data stractures.

We start with an initial data structure specification via a sound, proper, and complete set

of ANF axioms. We then find the failure functions corresponding to all allowed faults.

33

Two faults are indistinguishable if their failure functions are identical. The set of all indis-

tinguishable faults form an equivalence class, henceforth called the disambiguation set.

Correctability requires that all disambiguation sets contain but one member; this is achieved

by using additional axioms, if necessary. We may have to add more attributes before these

axioms can be generated. We shall see requirements on the number of axioms and the

attributes they are composed of.

3.3.1 Design -of 1-Correctable Structures

In this s-action we discuss how to get a 1-correctable structure starting with some initial

specification of the data structure. General results that tell a priori the required number of

attributes and axioms are deferred until section 3.3.2.

3.3.1.1 'Systematic Disambiguation

Sup.pose that the initial specification has some disambiguation sets with cardinality

larger than 1. We start by characterizing these.

Observation 3.3.1 Let W be a subset of AT such that every axiom either involves all

attributes from W or none of them, i.e. Vi < i < L, (W C Ai or W n Ai = 0). Then all

faults in w(W) are indistinguishable.

Observation 3.3.2 Let Wmaz be a set as in Observation 3.3.1 but with maximum cardi-

nality. Then JWmoa l_ k (where k is the parameter in (q,k)-ANF requirement).

Let IFS = [fi,,...,f, 1 < i <,...,in < N denote some set of indistinguishable faults.

Let W = w- 1 (IFS). If n = N, i.e., if all faults are indistinguishable, by observation 3.3.2,

we must have N = k, which means that no disambiguation is possible without adding

another attribute. Otherwise, we can add an axiom SL+1 formed using 1 < n1 < IwI - 1

attributes from W and at least one from AT - W. An important property about axiom

SL+1 is stated in the form of a lemma.

Lemma 3.3.1 SL+I reduces the disambiguation set size.

34

Proof. Since SL+1 contains at least one but not all attributes from W, it will remain-valid

for some of the faults in fif,..., fJi,, but not all of them, thus reducing the disambiguation

set size. 0

Let X 1,X 2, ...,XP be all the disambiguation sets with cardinality larger than 1. Obvi-

ously, all Xi's must be disjoint. Without loss of generality, we can assume that IXI i _Xi+1I

for all i. Let AL+1 be the set of attributes in axiom SL+I. Let AL+1 - {=', ', ..., Yp} where
p

Yo C AT- Uw- (Xi) and Kj C w-l(Xi), 1 < i < p Then to achieve maximum reduction in
i=I1

disambiguation set size by adding SL+1. Yi's should be chosen such that as many of them

(for i > 0) have cardinality greater than zero as possible.

The results above can be used to add more axioms until either the data structure becomes

1-correctable or no further addition is possible. In the latter case, a new attribute must be

added. This attribute must be generic whenever a failure function lacks a generic attribute.

The next lemma shows how the axioms should be generated for the new attribute. For

notational simplicity, we assume that the faults in the disambiguation set in question can

be numbered consecutively.

Lemma 3.3.2 Let IFS = {fl, ...,fn,} for some n < N, be a disambiguation set. Then

the addition of the new attribute aN+1 will disambiguate these faults if there exist n axioms

such that the ith axiom contains the attributes ai, aN+i, and zero or more attributes from

the set an+l, ...,aN.

Proof: Let S denote the set of original axioms and f., fi be two distinct faults in

IFS. Clearly, h(fi) will include the axiom g(aN+l,aj,...) but not g(aN+,ai,...). Thus

fi and fj can be distinguished. Also if there are two faults fm and fi that were initially

distinguishable, the addition of new axioms cannot make them indistinguishable since all

axioms are distinct. Finally, the failure function for fN+ (the fault in the new attribute

aN+1) is simply S. Since the original set of faults are detectable, S must be different from

all other original failure functions and hence from the modified failure functions. 0

35

3.3.1.2 An Example of a Doubly Linked List

We now consider the example of a circular doubly-linked list (DL) to illustrate the ideas

developed above. We choose a circular list here so that the header can be treated like any

other element. The basic structure has AT = {fp, bp} where fp is the forward pointer and

bp is the backward pointer. Both attributes are generic. There is only one (2,2)-ANF axiom

satisfied by fp and bp

S1 : VE E ELDL[fp(bp(E)) = E A bp(fp(E)) = E] (3.13)

Axiom S1 states that for any two distinct elements E1 and E2 in data structure DL,

fp(EI) = E2 iff bp(E 2) = El. We know this is true for a circular doubly linked list. Hence

S is sound. By a similar argument, it follows that S, is complete. If fp (or correspondingly

bp) of an element E1 (E 2) points to E 3 instead of E2 (El), then axiom S is violated. Hence

the axiom set is sound, complete and proper.

The possible faults are fl, f2 where fi is improper forward pointer and f2 is improper

backward pointer. The corresponding failure functions are h(fl) = 0 and h(f 2) = 0. Since

the failure function is an empty set, from our definition of detectability, it follows that this

structure is not 1-detectable and hence not 1-correctable.

The only disambiguation set in the data structure DL is {f,, f2}. We cannot add any

more axioms since the disambiguation set includes all the attributes of the basic structure.

Thus we need to add a new attribute, say Q, for disambiguation. Two new axioms can

be generated using Q, one each with fp and bp. Q must be such that its value is affected

by changes in one or more instances of either fp or bp. The count of the number of

elements (including the header) in the list appears to be such an attribute (although the later

discussion on internal compensation will show that count remains unaffected by changes in

multiple instances of fp and bp). Now we obtain a new data structure CL with AT =

{fp, bp, count}, and AX ={S 1, S2, S3} where S1 is same as above and

36

S2: VE E ELCL [fpc°tn(E)= E] (3.14)

S3 : VE E ELCL [bpcount(E) = E] (3.15)

Axiom S2 (S3) states that, starting from any element we can traverse through the entire

data structure (including the header) if we follow the pointer fp (bp) count times. The

axiom set is sound, but not proper or complete. The problem is that both new axioms

continue to hold even if we multiply the value of count by an integer, which amounts to

saying that we return to the starting element if we traverse the entire data structure more

than once. Thus both S2 and S3 are improper. To see the incompleteness of AX, note that

the data structure D possesses the following properties:

C :VE Vn 1 < n < count [fp"(E) 0 E] (3.16)

C2 :VEVn 1 < n < count [bpn(E) 0 E] (3.17)

but these properties are not derivable from the three axioms. The obvious choice is to

strengthen the terms in S2 and 53 by the addition of C1 and C2 respectively. However,

from a practical viewpoint, it is probably easier to maintain C1 and C 2 implicitly; i.e.,

when checking the validity of S2 or S3, we make sure that no node is visited more than

once. We will therefore ignore C1 and C2 from further discussion. With this, and the

assumption of no internal compensations, all of our axioms become proper. Now, the base

fault set in our example is F ={fl, f2, f3} where f and f2 are as defined previously and

f3 is fault in count. The failure functions are:

h(f1) = {S3}
h(h) = {S2}
h(f 3) = {S}

Thus faults can be identified uniquely i. e. , if only S 3 remains valid, we recognize an

instance of data structure with faulty fp, etc. Since every failure function contains an axiom

37

that uses a generic attribute, we can correct the structure as well. For example suppose that

only S3 remains valid. We first identify the faulty attribute which in this case is fp. Axiom

S3 contains the generic attribute bp. Using this attribute bp and axiom S we correct the

data structure as follows. Starting from the header traverse the data structure via pointer

bp. At every step of the traversal if bp(EI) = E 2 then assign the address of E 2 to the pointer

fp in El.

3.3.1.3 Characterization of 1-Correctability

Although we have related 1-correctable structures to disambiguation sets we still have

no insight regarding the design requirements that result in a disambiguation set having

exactly one member. This will form the topic of discussion in the subsection. Suppose

that we have chosen an appropriate value for N, the number of attributes (the choice of an

appropriate value for N is discussed in the next section). We show that if the (q, k)-ANF

axioms are generated in a particular way, the data structure can be made 1-correctable. We

state the following lemma.

Lemma 3.3.3 To obtain 1-correctability, no attribute need be covered by more than two

axioms.

Proof: From the definitions of detectability and correctability, it is clear that every

attribute has to be covered by at least one axiom. Wlog let a1 , a2 ,...,ak be the set of

attributes covered by the same axiom. Now to distinguish between the faults in these

attributes, exactly k - 1 of them must be covered by at least one other axiom, such that

each attribute has a distinct covering. Let ai be one of these attributes that is covered by

more than two axioms. Let us assume that the attributes are covered by the minimum

numbuer of axioms required for 1-correctability and denote the number of axilumb wveilalg

attribute ai as bi. We show that by replacing one of the axioms containing ai, say Sq, by

another axiom Sq, we can reduce bi and yet maintain 1-correctability.

38

Obtain S. from Sq as follows: r(s,) = r(sq)-{ai}u jaj} where 6j = 1 and for all axioms

Sp E AX, p 0 q, r(Sp) 0 r(Sq), i. e. the new axiom should not be a replication of an exist-

ing axiom. We show that D is 1-correctable with the new set of axioms. Consider a fault

in ai. The new failure function h'(fi) will contain an additional axiom S'. Since the fault

fi was already distinguishable, the addition of SI will not affect its distinguishability. The

failure functions of faults in attributes common to axioms Sq and S. remain the same and

hence these faults are distinguishable. The new failure function h'(fj) no longer contains

Sq. Distinguishability between fault fj and fault, say f,, in an attribute not common to

axioms Sq and S. is maintained due to the addition of SI in the failure function h(fr). Dis-

tinguishability between fault fj and faults in attributes common to axioms Sq and S' is also

retained due to the second axiom covering these attributes. Since the structure was already

1-correctable the second axiom covering these attributes still provides distinguishability.

Repeated use of this construction results in every attribute being covered by at most two

axioms since in each step, some attribute, say ak, with 6 k > 2 will have its 6 k reduced by

1. To complete the proof, we need to show that the number of attributes with 6 > 2 is less

than or equal to the number of attributes with 6 = 1. This is indeed the case, else, repeated

application of the construction results in a situation in which every attribute has 6 > 2 and

the structure is i-correctable. The axioms covering attributes with 6 > 2 are superfluous,

which contradicts the assumption that the attributes are covered by the minimum number

of axioms required for 1-correctability. 0

Lemma 3.3.3 gives us the connectivity requirements of the attributes for achieving one

correctability. We translate this requirement into the number of axioms required and provide

a method of generating them.

Let the number of axioms required be p. So let p distinct attributes be covered by the p

axioms exactly once. The remaining N -p attributes must be covered by the same p axioms

such that no axiom covers more than k attributes. Each axiom covers k attributes and one

attribute in each axiom is covered by exactly one axiom, the k - 1 other attributes in an

39

axiom need to be covered by a second axiom. Since each axiom is to be covered by at most

two axioms and the second axiom should produce a distinct covering, the data structure D

is 1-correctable if
k-1

px- > N (3.18)

We can thus determine p, the minimum number of axioms, for a given N and k. We

now need to identify the attributes that constitute an axiom. This is accomplished by

considering the attribute identification as a graph theoretic problem. The nodes of the

graph GI correspond to axioms and edges correspond to attributes. An edge labeled x

joining nodes w and y signifies that the attribute x is covered by axioms w and y. We

obtain the attributes constituting an axiom by adopting the following procedure. Before

we describe the procedure we need one more definition which we give below.

Definition 3.3.1 We define the distance between vertices ai and aj of a graph as min[abs(i-

j), abs(N - abs(i - j))] where abs gives the absolute value. We denote this as dist(ai, aj).

Procedure 1:

1. Find the smallest value of p that satisfies eqn. 3.18. Draw a graph with p nodes.

2. Generate self loops (edge from a node to itself) at each node. These edges correspond

to attributes covered by one axiom only.

3. Generate edges between vertices distance j apart, where 1 < j < L[-J.

4. If k - 1 is odd, add edge between vertices distance LJ apart.

5. Label any N edges with distinct attribute names.

This method of edge generation satisfies the connectivity requirements given in lemma 3.3.3.

Each axiom comprises of attributes corresponding to the e-,'ges incident on the node corre-

sponding to the axiom. We can now state a property about our method of axiom generation.

40

Lemma 3.3.4 If the axioms are generated as in procedure 1, D is 1-correctable. Further,

no other method of axiom generation for a 1-correctable structure uses fewer axioms than

that used by procedure 1.

Proof: For the first part, assume that the axioms are generated as outlined in procedure

1. First consider those attributes that are covered by only one axiom. Each one of these

attributes belongs to a unique axiom. Hence these faults are mutually distinguishable.

Consider attributes covered by more than one axiom. For any two such attributes oc-

curring in the same axiom, distance 1 edges guarantee that the second axiom in which these

attributes occur, is distinct. Thus distinguishability among faults in attributes occurring in

two axioms is achieved.

Distinguishability among faults in attributes occurring in one axiom and two axioms is

assured since the number of axioms violated in the two cases is different. Thus the structure

is 1-correctable.

For the second part, assume that the data structure is 1-correctable. From lemma 3.3.3,

it follows that it is sufficient to cover an attribute by at most two axioms. We can thus

label the attribute by the axioms that cover it. Let the number of axioms required be p.

Since the structure is 1-correctable the attributes should have distinct labels. The number

of distinct labels that can be generated with p axioms such that each axiom contains exactly

k attributes is given by the equation
(k- 1) (3.19)

2

Since procedure 1 uses the smallest value of p satisfying p+p x (k-1) > N, no other method

that achieves 1-correctability can use fewer axioms. 0

We now provide an alternate characterization of 1-correctability in terms of the hyper-

graph representation when the axioms are in (2,2)-ANF. Such a characterization is useful

for purposes of analysis.

Lemma 3.3.5 If the axioms are in (2,2)-ANF, D is 1-correctable if and only if every

connected component of GD has at least 3 nodes and at least 2 nodes have degree > 2.

41

Proof: For the only if part, consider a connected component with only 2 nodes ai and aj.

Of course, this component has only one edge, the one connecting ai and aj. It is clear that

the fault in ai cannot be distinguished from that in aj. Also, if only one node has degree

> 2, the removal of this node will make G null. For the if part, let a i and aj be two nodes

in a connected component with n > 3 nodes. Let El be one of the edges connecting ai and

E2 an edge connecting ai. If E1 and E 2 are distinct, clearly, the removal of ai leaves only

E 2 and the removal of aj leaves only El. Thus the two faults are distinguishable. Now if

El = E 2, we must have at least one more edge, denoted E, connecting ai or aj. Without

loss of generality, we can assume that E connects ai. Then the removal of aj leaves behind

E but the removal of ai does not. So again, ai and aj are distinguishable. Furthermore,

since there is at least one more node (besides ai) with degree > 2, the removal of ai does

not make GD null. Thus D is 1-correctable. 0

Note: It is desirable to keep the connectivity as uniform as possible. For this reason,

we will henceforth assume that for achieving 1-correctability, the axioms are generated such

that no node of GD has degree larger than 2. It is easy to see that this restriction does not

require any more axioms than specified by lemma 3.3.5.

3.3.2 Characterization of m-correctable Data Structures

We now turn our attention to the general case of m-correctable data structures when

m > 2. We start by characterizing the minimum number of attributes required for achieving

desired level of correctability.

Lemma 3.3.6 m-correctability requires at least N = m + k attributes. Furthermore, if

N = m + k, all NCk hyperedges in AG (or (q, k)-ANF axioms) are necessary and sufficient

fur in correclability.

Proof: For the first part note that with m > N - k, removal of m nodes will make the

fault graph empty. For m = N - k, the removal leaves precisely one hyperedge, moreover,

this hyperedge is unique for every distinct m-ary fault. Thus all m-ary faults can be

42

distinguished. Now if we consider a subgraph of G by leaving out one of the N nodes (say

a,), the same argument can be applied again to conclude that all (m- 1)-ary faults in FS-fi

can be distinguished. Now since the node ai will contribute at least one new hyperedge

for (m - 1)-ary faults, all these faults must be distinguishable from all m-ary faults. By

induction, it follows that faults of any arity in the range 1..7n must be distinguishable. This

proves sufficiency. 0

Intuitively, a fault graph is empty if the number of vertices corresponding to non-faulty

attributes in the fault graph is less than k. This is due to the fact that every hyperedge

contains k attributes. If the number of vertices, corresponding to non-faulty attributes, is

exactly k then the fault graph will contain one edge if the hypergraph representing the data

structure was a complete hypergraph. Moreover, for every distinct m-ary fault, the fault

graph will contain a distinct hyperedge and hence the structure is correctable.

3.3.2.1 Design using Minimum Number of Attributes

Consider the design of a 2-correctable data structure TC starting with the 1-correctable

data structure CL designed in section 3.3.1.2. Let us call the attributes fp, bp and count as

a,, a2 and a3 respectively. Obviously, any double fault, f, makes GCL(f) null. Since we have

generated all possible ANF axioms using the attributes of CL, we must first add another

attribute, say a4. Attribute a4 must be generic since we need 3 generic attributes for 2-

correctability. Since any double fault in the data structure TC leaves 2 attributes non-faulty

and 2-detectability requires the existence of an edge connecting the vertices corresponding

to the non-faulty attributes, GTC should be a complete graph and is as shown in fig. 3.1.

Thus we need axioms (al, a4), (a 2, a4), and (a3, a4) in data structure TC. For the data

structure TC to be 2-correctable we require that every double fault produce a distinct fault

graph. Consider two distinct double faults fa and fb in TC. Since GTC is a complete graph,

GTc(fa) and GTC(fb) will be different and hence data structure TC is 2-correctable. The

fault graph of a single fault is distinct from the fault graph of a double fault since the

43

(12 a3

Figure 3.1: Graph model of data structure TC.

number of edges present in the fault graph of a single fault is more than the number of

edges present in the fault graph of a double fault. Viewed in terms of failure functions, the

failure functions for single faults are:

h(fl) = {(a3,a 4), (a 3,a2), (a4 ,a2)} h(f 2) = {(a 3 ,a4), (a 3,ar), (a4 ,am)}
h(f 3) = {(al,a 2), (al,a 4), (a2,a4)} h(f 4) = {(al,a2), (al,a3), (a2 ,a3)}

and those for double faults are:

h(f1 ,f 2) = {(a4,a3)} h(fl,f 3) = {(a2,a4)} h(fl,f 4)-" {(a2,a3)}
h(f 2,f 3) = {(al,a4)} h(f2 ,f4) = {(al,a3)} h(f 3,j 4) = {(al,a2)}

Note that all failure functions are distinct (as expected, since the fault graphs are dis-

tinct) and have an axiom involving a generic attribute. Thus the strut ture is 2-correctable.

One possible choice for attribute a4 is the alternate pointer (ap). An alternate pointer

is a generic attribute and points to the second successive element. We assume that the

data structure TC contains odd number of elements and two headers (the necessity of this

assumption is given below). With this choice of a4 the data structure TC has attributes

AT :- {fp, bp, count, ap} and axioms AX = {S 1,...,S 6} where S1, ... ,S3 are the same as

in CL and S4, ... , S6 are given below.

S4 : VE E ELTC [ap(E) - fp2(E)] (3.20)

S5 : VE E ELTC3E' E ELTO: [ap(E) = E'-* bp2(E') = E] (3.21)

44

,3: VE -. ELTO [apcoUni(E) = E] (3.22)

Axiom S4 states that if element E2 is pointed to by ap in element El, then there is

an element, say E 3, belonging to the data structure such fhat pointer fp in E 3 points to

E2 and fp in E1 points to E3 . S5 is similar to S 4 but relates 3 elements via attribute bp.

Axiom S6 is similar to axioms S 2 and 53. As such axiom S6 is improper and the axiom set

is incomplete since data structure possesses the property

C3 VEVn 2 < n < count [ap(E) 0 E] (3.23)

which is not derivable from AX. The axiom set can be made complete by strengthening the

term of S 6 by adding C3 to it. We ignore C3 with the understanding that it is maintained

implicitly. We make note of few implementation details that we need to contend with.

e Because ap points to the next successive element we need two headers. In the absence

of two headers the alternate pointer points to itself when the data structure has no

elements and when it has exactly one element. We refer to the two headers as the

primary and secondary headers with the primary header being the first element. It is

sufficient if only the primary header remains accessible externally.

e We require that there always be an odd number of elements in the data structure

(including the headers). This can be accomplished by adding a dummy element when

there are even number of elements. With an even number of elements we may be

able to recover only half the elements if both fp and bp are faulty. This is because

ap points only to alternate elements and hence connects the data structure via two

mutually distinct chains. We can avoid the additional dummy element if both the

headers are externally accessible but the axioms will be different in this case.

@ In case fp or bp are non-faulty then the correction mechanism is similar to that of data

structure CL. In case ap remains non-faulty then we first traverse through the entire

data structure obtaining all the elements. Since we know the relative positions of the

45

primary and secondary headers the position of the other elements can be ascertained.

We can now correct fp and bp by traversing the data structure starting at the primary

header.

3.3.2.2 Design using Minimum Number of Axioms

It may not be always possible to obtain attributes and axioms such that the graph rep-

resenting the data structure is complete. Thus, it is interesting to explore m-correctability

requirements when N > m + k.

Lemma 3.3.7 For axioms in (q, k)-ANF m-connectivity of A G is necessary for m-correctability.

Proof: By contradiction. Consider a node ai that occurs in p hyperedges. Let 77i =

{xi, ..., xp} where xj, j E [1..p] denotes an attribute contained in the jth hyperedge involving

ai but in no other. Suppose that p = m - 1. Now consider the (m - 1)-ary fault g defined

by w(mi). Since the removal of all nodes in 77i will also remove aj, g cannot be distinguished

from the m-ary fault g U fi, and we have the contradiction. 0

For k = 2, every edge has a unique distance associated with it. The edge distance is the

distance between the two vertices comprising the euge. We now show that if the axioms are

generated in a particular way, m-connectivity is also sufficient for m-correctability.

Lemma 3.3.8 If k = 2 and 2 < m < N - 3, m-connectivity is sufficient for distinguishing

between all m-ary faults provided that we have all edges of distance up to m, and if m is

odd, at least one additional edge of distance -41 per node.

Proof: First, we argue that if the lemma is true for m = N - 3, it must also be true for

m < N - 3. This follows from the simple observation that with fixed connectivity, more

nodes in G only result in additional (but noncompensating) arcs in the presence of any

fault. Thus more nodes cannot affect distinguishability.

We now assume that m = N - 3 and show that all m-ary faults can be detected and

are distinguishable. With m = N - 3, there are only three nonfaulty attributes, henceforth

46

denoted as a, b and c. Now to prove detectability, we must show that for any f E Fm, G(f)

must contain at least one of the three possible arcs between these nodes. Since G has all
arcs of distance up to M, and if m is odd, at least one arc of distance + , the only way to

ars2' 2 onywyt

avoid having arcs ab and ac is to have dist(a, b) _ - + 1 and dist(a, c) = 1+1 + 11. However,

this would imply that dist(b, c) < 1. Thus G(f) cannot be empty. Now to prove that G(f)

must be unique, let g, and g be two m-ary faults. Denote the non-faulty attributes of g,

and 92 as a, b, c and a', b, c' respectively. Since g, and 92 are distinct, a, b, c 0 a', b, c'. Thus

there are three cases to consider:

1. a 0 a', b b', c 0 c'. From the detectability proof, we know that G(g 1) must contain

at least one of the three arcs between a,b,c. Similarly, G(9 2) must contain at least

one of the three arcs between a', b', c'. Thus G(gl) and G(g2) must be distinct.

2. a = a', b 4 b, c 0 c'. Since every edge involves at least two nodes, by the same

argument as in case (1), edge(s) in G(g1) should still be different from G(g2).

3. a = a', b = b', c c'. Here the only troublesome situation is the one where both G(g1)

and G(92) include only the edge ab. Now for ac and bc to be absent from G(gj), the

distance between a and b cannot exceed 1 (as already shown above). Now, to avoid

arc ac' from G(g 2), c' must be located at a distance M+' + 1 from a (see fig 3.2). But

this implies that the distance between b and c' must be less than '1, and therefore,

bc' must belong to G(9 2).

Thus any two faults are distinguishable. 0

When m is odd, our method requires an additional edge of distance m+' per node. This

may, in some cases, necessitate more than the minimum number of edges, since it may not

be possible to generate edges that satisfy both the distance and connectivity requirements.

Figure 3.3 shows an example of a 3-correctable data structure requiring ten edges. However,

'Another possibility is to have dist(a,b) > -21 - 1 and dist(a., c) = -+ 1, but because of symmetry, it
can be ignored.

47

a bb

a+l 1+

C

Figure 3.2: A 4-correctable data structure with 7 attributes.

if we relax the distance requirement we can do better. The modification is as follows: the

additional edge should have distance greater than M. With this change, we obtain a 3-

correctable data structure with nine edges as shown in figure 3.4. Note that two of the

additional edges are of distance md- and one edge of distance 7-3. We do not use this

scheme in the rest of the thesis since a method to generate edges of varying distances is not

known.

Lemma 3.3.9 If k = 2, GD is m-connected (m > 2) and all m-ary faults are distinguish-

able, then D is m-correctable.

Proof: We need to show that all p-ary faults for 1 < p <r m are distinguishable. This

is done by induction on p. For the basis, we choose p = m, since by assumption all m-ary

faults are distinguishable. For the inductive step, suppose that all faults with arity in the

range p + 1..m are distinguishable. Since all edges of distance 1 are present, it is easy to

see that all single faults are distinguishable. Let g be a p-ary fault and f some single fault

such that w-1 (f) n w-1 (g) = 0. Let fg denote the (p + 1)-ary fault f U g. Obviously,

h(fg) = h(f) n h(g). We need to show the following:

48

Figure 3.3: A 3-correctable data structure with ten edges.

Figure 3.4: A 3-correctable data structure with nine edges.

49

1. All p-ary faults are distinguishable. For this, let g I be another p-ary fault and consider

two (p + 1)-ary faults fg and fg' where f is a single fault. By our assumption,

h(fg) 5 h(fg') that implies that h(f) n h(g) 0 h(f) n h(g'). Therefore, h(g) 0 h(g').

2. h(fg) 5 h(g), i.e., p-ary faults cannot be confused with p + 1-ary faults. We show

this by contradiction. That is, let h(fg) = h(g). This implies that h(g) C h(f). Thus

all the attributes that are neighbours of w-1(f) must be included in w-1(g). But

according to our assumption w-'(f) must have at least m neighbours, and we have a

contradiction.

3. p-ary faults are distinct from (p + i)-ary faults, for i > 1. This follows from induction

and the following fact: if f and f' are two distinct single faults and g some other fault

then from (2) we know that h(f'fg) C h(fg) C h(g).

Since all faults are detectable, the faulty attributes can be identified. Thus the entire data

structure can be corrected as there are at least m + 1 generic attributes. 0

Lemmas 3.3.8 and 3.3.9 together show the desired sufficiency condition for m-correctability.

Our results do not take into account the practical considerations of whether the required

axioms can indeed be generated. In this regard, ordering the attributes in a particular way

and/or increasing the number of attributes are the two options available to a designer.

Consider the design of a 2-correctable data structure TM. Let the attributes of TM

be al,...,as. Since TM has 5 vertices, any double fault leaves 3 non-faulty attributes.

Detectability of the fault requires the existence of an edge between any two of the three

non-faulty attributes. Correctability requires that every distinct fault (single or double)

results in a distinct fault graph.

To obtain the graph GTM, we use lemma 3.3.8 and generate all edges between vertices

that are distance 1 apart. The resulting graph GTM is shown in fig. 3.5. As desired, each

vertex in GTM has connectivity of 2. The data structure TM is given by AT = {al,..., a5 }

and AX = f[S,...,Ss} where Si = (ai,ai+i),I < i < 4 and S5 = (as,al).

50

63

a2 a4

al as

Figure 3.5: Graph model of data structure TM.

3.3.3 Faults with Compensation

As stated in the previous chapter, compensation refers to the situation where the effect

of one fault is nullified by another, thereby retaining the validity of some of the axioms

containing the faulty attributes. We also introduced the notions of external and internal

compensations. This distinction becomes necessary because of our use of generic fault

model, where one or more faults in the individual instances of a generic attribute (say, i-

faults) are treated as a single fault in the generic attribute (say, a-fault or just fault). Thus

external compensation refers to the compensation between distinct a-faults, and internal

compensation between different i-faults corresponding to the same a-fault.

3.3.3.1 Internal Compensations

Consider faults in multiple instances of the same generic attribute a. Let the faults

compensate and result in a faulty data structure instance that is a permutation of the

non-faulty data structure instance (i. e. the set of pointer values is the same but not the

ordering). Further, assume that an axiom, say S, involving a generic attribute a _and some

other non-faulty attribute, say b, remains valid. Then S is not proper and to avoid the

compensation, we need to make it proper. The evaluation of axiom S requires the traversal

of the entire faulty data structure with the aid of generic attribute a. If S is to be proper,

51

it must distinguish all the correct orderings from .'te incorrect ones. In particular, if any

of the generic attributes imposes a total ordering on the elements, there is only one correct

ordering. Therefore, the axiom must be able to capture this ordering. If in the axiom

S. attribute b is generic then it is easy to capture the element ordering since there is an

instance of b in every element. If b is atomic then S cannot capture this ordering by itself

and yet another attribute and term are needed.

A weak generic attribute can be used to enforce an ordering on the elements. But we still

need a generic attribute to access an element from another element. Thus we need to add

a term relating the generic attribute and the weak generic attribute. The ordering imposed

by the weak generic attribute should supplement the ordering (maybe partial) imposed by

the generic attribute. An axiom that is insensitive to changes in ordering as a result of a

fault in a generic attribute will now be invalidated due to the presence of the weak generic

attribute. This makes the axiom proper. However, a term involving a weak generic attribute

and generic attribute is not proper since a subset of elements which satisfy the ordering

also satisfy the term. Similarly, a term involving a weak generic attribute and an atomic

attribute cannot be evaluated since we need to traverse the entire data structure which is

not possible without the aid of a generic attribute. Thus every axiom which contains a

weak generic attribute should also contain an atomic attribute and a generic attribute. But

with this modification the axioms are in (2,3)-ANF and hence our previous design results

are no longer applicable. We overcome this drawback by adopting the following design

methodology.

We design the data structure using generic attributes and atomic attributes only and

assuming no compensations occur (as discussed until now). We then identify the set of

axioms that can be affected by internal compensation. As stated earlier these axioms relate

a generic attribute and an atomic attribute. For every atomic attribute, say a, present in

an axiom belonging to the set identified above, we do the following: Obtain the set, say Q,

of generic attributes that are related to attribute a. Add a term relating the weak generic

attribute and a generic attribute, say p E Q, to the axiom relating attributes a and p.

52

We clarify our design methodology by an example. Consider the example data structure

CL discussed earlier. Notice that axiom S2 remains valid as long as we can traverse the

entire data structure via fp, visiting each element exactly once. In other words axiom S2 is

insensitive to changes in the access order of elements accessed via fp. The same could be

said for axiom S3 with reference to bp. It is easy to see that the failure function for faults

that cause such order changes in fp (or bp) are different from the ones giver, earlier.

To make axioms S2 and S3 proper, we bring in a new generic attribute called tag which

explicitly defines the ordering, i.e., if element El precedes element E2, then tag(El) <

tag(E2). We could then strengthen axioms S2 and S3 to make them proper. For example,

in CL, we add a new term to each of the axioms 52 and 53.

C' VE E ELCL [tag(fp(E)) > tag(E)] (3.24)

C2 VE E ELCL [tag(E) > tag(bp(E))] (3.25)

This change introduces some new problems, namely that the axiom graph remains the

same for a fault in either the weak generic attribute or the atomic attribute belonging to

the same axiom. Same axiom fault graph implies a loss of distinguishability between two

faults. To maintain distinguishability we use the term graph.

Again, as stated in the previous chapter, the term fault graph for a fault is not unique.

For our purposes it is sufficient to consider term fault graphs under single edge removals

(or violation of single term). We state the following lemma:

Lemma 3.3.10 Two distinct faults that result in the same axiom fault graph have distinct

term fault graphs with respect to single edge removal requirement.

Proof: Consider two distinct single faults f, and f2 that result in the same axiom fault

graph. This can happen in the following way: f, is a fault in the weak generic attribute,

say a, and f2 is a fault in an atomic attribute, say b, and attributes a and b are present in

the same set of axioms. Because of the way we add weak generic attributes, this can occur

whenever all the m vertices adjacent to the atomic attribute represent generic attributes.

53

Thus faults f, and f2 result in the violation of the same set of axioms and hence the axiom

fault graph is same.

Consider the term fault graphs of faults f, and f2. Fault fi in the weak generic attribu'e

a affects the term relating the weak generic attribute and the generic attribute only. Sim-

ilarly fault f2 in the atomic attribute b affects the term relating the atomic attribute and

generic attribute only. Since the atomic attribute and the weak generic attribute appear

in the same set of axioms but in different terms the term fault graphs of the two faults

are distinct. Moreover, since both these attributes appear only in one term in an axiom,

distinguishability is maintained under the single edge removal requirement. Further, since

the weak generic attribute alvays appears along with an atomic attribute, the term graphs

are distinguishable even under multiple faults (i.e. if f, is a multiple fault that includes the

weak generic attribute and f2 is a multiple fault that includes the atomic attribute).

We now claim that this is the only case when the axiom graphs of two faults are identical.

We do this by transforming every hyperedge of the axiom graph into an edge of an equivalent

axiom graph. We know that every hyperedge has a tree structure. We merge the children

nodes into one and thus obtain an edge in the equivalent axiom graph joining the root vertex

(of the hyperedge) and a vertex corresponding to the children vertices (of the hyperedge).

Thus the axiom graph is transformed to an equivalent graph where each edge has cardinality

of 2 (i.e. k =2). This is possible since initial design of the data structure consists of atomic

and generic attributes only and contains two attributes per axiom. The additional terms

involving the weak generic attributes are added for the sole purpose of making the axiom

proper. Moreover, because of the design methodology adopted, the weak generic attribute

and the atomic attribute appear in the same set of axioms. Since, one of the children in

the hyperedge corresponds to an atomic attribute, the node corresponding to the children

vertices in the equivalent axiom graph should have a connectivity of m (using the results of

the previous subsection) and the edges in the equivalent graph satisfy the distance property.

Thus no two faults have identical axiom fault graphs which proves our claim and completes

the proof of the lemma. 0

54

Henceforth, we shall ignore internal compensations with the understanding that inter-

nal compensations arise due to the axiom not being proper. We also ignore weak generic

attributes from further discussion since they are introduced solely for the purposes of over-

coming internal compensations. Also all future references to the word compensation should

be read as external compensations.

3.3.3.2 External Compensations

If external compensations are allowed, an axiom containing more than one faulty at-

tribute may or may not hold. Consequently, the failure functions, as defined above will no

longer be unique. To preserve uniqueness, we need to extend the failure function definition.

Before we discuss the extension to the failure function we discuss compensation in greater

detail and introduce a few concepts.

Suppose that all axioms are in (2, k)-ANF. Let f be a p-ary fault and COMP(f) the

set of all possible compensations in f. Since only those faulty attributes that occur in an

axiom can compensate, we have:

min(k,p)

COMP(f) = U COMPi(f),COMPi(f) = {7iw- 1(Yi) w1 (f),Iw1QYi)I = i}
i=2

(3.26)

Since f is a p-ary fault and at least two faults are necessary for compensation to take place,

COMP(f) denotes the set of all possible combinations of min(k,p) faulty attributes from

fault f. Let c E COMPi(f),2 < i < min(k,p), be an instance of compensation. Then all

axioms that contain all the attributes in w-l(c) will remain true (in spite of the fact that

these attributes are faulty), i.e. i-ary compensation occurs. We denote the failure function

under c as hc(f). For clarity, we denote the h function under no compensation as ho(f).

Note that:

h,(f) = ho(f) U {S E AXlw-(c) C r(s)} (3.27)

Let C(f) denote the set of compensations allowed for a fault f. If C(f) = COMP(f)

for all f, we say that the compensations are unrestricted, otherwise, they are restricted.

55

One important class of restricted compensations is simple compensations defined as

compensations that can occur in the presence of two base faults. Note that a simple com-

pensation is different from a binary compensation. A binary compensation can occur for

faults of arity two or more, whereas a simple compensation can occur only for 2-ary faults.

Another important class is Total Compensations, defined by C(f) = COMPmin(k,p)(f),

i.e. faults of arity min(k,p). We illustrate these by an example.

Let k = 3 and consider an axiom S such that r(S) = {a1 ,a 2,a 3}. Clearly, the only

faults relevant for compensation are those with arity of 2 or 3. Let f(1) = {fl,f 2},f(2) =

{f,,f3) f (3) = {f 2, f 3},f(4) = {fl,f2,f3} Then simple compensation means that S can

become true only under the first three faults, but not the fourth one. Binary compensations

are possible under all four cases. Total compensation means that S can become true only

under f(4). The justification for considering only simple compensations may be construed

as follows: the probability that all three attributes simultaneously assume incorrect values

that still preserve S, is negligible. The justification for considering only total compensations

may be given as follows: If a, is nonfaulty but a2 and a3 are faulty, then the part of S that

relates a, to the other the other two attributes must be violated, hence S cannot remain

true. It is, of course, up to the designer to see if any of these arguments are tenable for the

problem at hand.

The extension to the failure function should now be clear: for every fault f, we need

to consider ho(f) and h,(f) for every c E C(f), i. e. a data structure is detectable (cor-

rectable) if the conditions stated in the definition of detectability (correctability) holds for

the failure functions in the set ho U U h. Unless stated otherwise, we allow unrestricted
cEC(f)

compensations to occur, i.e. C(f) = COMP(f).

Let D be a data-structure that is m-correctable without compensations. Let f be a

q-ary fault and g # f a p-ary fault for some q,p < m. Obviously, ho(f) $ ho(g). Let

INDIS(f,g) denote the assertion that faults f and g become indistinguishable due to

some compensation, i.e., there exists a c E COMP(f) and a c' E COMP(g) such that

56

x

Figure 3.6: Distinguishability of compensating faults

he(f) = h,(g). We now characterize the conditions necessary for INDIS(f,g) to hold by

a series of lemmas.

Lemma 3.3.11 Let A1 ' w-1 (f), Ag - w- 1 (g), and FG = (A 1 - Ag) U (Ag - Af). Then

INDIS(f,g), if there is no axiom xy such that x E AT - (A1 U Ag) and y E FG.

Proof. By contradiction. Let xy be such an axiom (see fig 3.6). Without loss of generality,

let y E A1 - Ag. Then xy is false for f and cannot be made true by compensation. It is

unconditionally true for g. Thus the failure function for fault g must contain xy, with or

without compensation. Hence f and g are distinguishable. 0

Lemma 3.3.11 states that in order to make two compensating faults indistinguishable

every axiom must consist of attributes which belong to either fault f or to fault g.

Lemma 3.3.12 Let IAf - Ag I = n1 , IAjf nAg! = n, and IAg - AfI = ng. If the axioms are

generated as in lemma 3.3.8, then INDIS(f,g) if and only if nj + n. + n. = N.

Proof: By contradiction. Let So denote the set AT - (A1 U Ag). Let no = ISoI, and

by assumption no > 0. By lemma 3.3.11, all attributes in So must be at a distance greater

than M from all attributes in FG. We now show that any numbering of attributes that

achieves this will require n, _ m, a contradiction to the fact that f and g are distinct.

Without loss of generality, we can number the attributes in So as 1..n 0 (see fig. 3.7). If

m is even, then the attributes with numbers no + 1,...,no + M and N - M" i,...,N can

57

Af A9

N At n A. l j./.

1 i son
6

Figure 3.7: Indistinguishability of compensating faults

only occur in Af n A.. If m is odd then the attributes with numbers no + +..., + 12

and N - - + 1, .. , N (or the other symmetric case) car only occur in A f n A9 . In either

case n, > m. Since at most m faults can occur, nf, ng is equal to 0, i.e. f is the same as

g, a contradiction. 03

For example, consider the data structure TC of section 3.3.1.2, and let f12 be a com-

pensating double fault in the attributes a,, a2 of data structure TC. The failure function of

f12 is h(fl, f 2) = {(a,, a2), (a3, a4)}. The fault graph GTC(fl2) is shown in fig. 3.8.

Consider another compensating double fault f34 in attributes a3, a4 of the same data

structure. The failure function of f34 is h(f 3,Jf) = {(al,a 2),(a 3,a 4)}. The fault graph

G7,c(f 34) is shown in fig. 3.9.

Notice that the two fault graphs are identical and thus the data structure TC is no

longer 2-correctable. In the earlier section we had shown that the data structure TC is

58

aa

Figure 3.8: Fault graph, GTc(1 2), of compensating fault f12.

a2 a3

Figure 3.9: Fault graph, GTC(f34), of compensating fault f34.

2-correctable if compensations do not occur.

For the data structure TC, assuming unrestricted compensations, the set C (which is the

same as COMP) is {f12,f13, f14, f23, f24, f34}. It is easy to see that h12 = h34, h13 = h24,

h14 = h23. Thus as stated earlier TC is not 2-correctable in the presence of compensating

faults.

Lemma 3.3.12 states that if the axioms are generated using the procedure outlined in

lemma 3.3.8 then the two faults become indistinguishable only if they collectively encompass

the whole set of attributes. Now we can show the following results:

Corollary 3.3.1 If IN DIS(f, g), both f and g must cover at least two distinct, non-shared

attributes, i.e., nf _ 2, ng > 2.

Proof: Follows from the fact that p= N-n 1 andifn! < 2,p_ N-1, that is impossible

since m < N - 2. Similarly it can be shown that ng 2. 0

59

Corollary 3.3.2 If N > 2m, all faults remain distinguishable under unrestricted compen-

sations.

Proof: Let f and g be two faults as in lemma 3.3.12 such that INDIS(fg) holds. Thus

nf + nc + ng = N by lemma 3.3.12. Thus q + p = N + n, > N, that further implies that

p > N - q _ N - m (since q < in). Since p < m, this implies in > p > N - r. Since

N > 2m, the last inequality becomes m > p > in + 1, which is impossible. Hence f and g

are distinguishable. 0

The data structure, TM, is 2-correctable even in the presence of compensating faults.

Assuming unrestricted compensations the set C = COMP for TM is {f12, f34, f4, f i.

The failure functions for double faults without compensation (ho) and with compensation

(hi)2 in the data structure TM awe shown below.

ho(ala 2) = { a3a4, a4as}
ho(ala 3) = { a4a5} ho(al) = { a2a3, a3a4, a4a5 }
ho(ala 4) = { a2a3} ho(a2) = { alas, a3 a4 , a4 a5 }
ho(ala 5) = { a2a3, a3a4}
ho(a2a3) = { a4a5, alas}
ho(a2a4) = { ala 5} ho(a3) = { ala 2, alas, a4a5 }
ho(a2as) = { a3a4} ho(a 4) = { ala2, ala3, ala, }
ho(a3a4) = { ala 2, alas}
ho(a3as) = { ala 2} ho(as) = { a2a3, a3a4, ala 2 }
ho(a4a5) = { ala 2, a2a3}
h1(ala 2) = { a3a4, a4as, ala 2}
hi(ala3) = { a4as }
hi(ala 4) = { a2a3}
hl(alas) = { a2a3, a3a 4, alas}
hi(a 2a3) = { a4a5, a2a 3, ala 5}
hi(a 2a4) = { alas }
h1(a2as) = { aa4 }
hl(a 3a4) = { ala 5, ala 2, a3a4}
hi(a 3as) = { ala 2 }

hi(a 4as) = { ala 2, a2a3, a4as}

It can be seen that distinguishability is maintained under unrestricted compensation.

2We use the subscript 1 for convenience. The subscript 1 should be replaced by the string corresponding
to the faulty attributes which compensate, i. e. I should be replaced by some c E COMP.

60

Corollary 3.3.3 Let N _ 2m and S = min({Ih(f),f E UFi}). Then the maximum
i=1

number of compensations allowed without losing distinguishability is S-1.

Proof: The size of a failure function is the least for a m-ary fault, so let f be a m-ary fault

such that Iho(f)l = S is minimum. Let g be a fault that compensates with f. Obviously,

Iho(g)l > S. We have w- 1(f) u w- 1 (g) = AT. Thus attributes corresponding to axioms in

ho (f) (denoted Aho(f)) should be in w-(g). Let he(f) be equal to h0(g). This requires that

the axioms for attributes belonging to Ah0 (f) be regenerated by compensation. If we restrict

the number of compensations to S-1 then all the required axioms will not be regenerated,

thus maintaining distinguishability. 0

The significance of corollary 3.3.3 is that if N < 2m, but the number of compensations

can be restricted to one less than the size of the smallest failure function, we can still

maintain distinguishability. We now provide a lower bound on the size of the smallest

failure function in terms of N and m. Such a bound is useful for quickly determining if the

allowed compensations can be tolerated.

m

Lemma 3.3.13 Let S = min({ tho(f)1, f E UFk}). Then S> -2. Moreover, the bound
k=1

is achievable for m < N - 4.

Proof: First consider the m = 1 case. From lemma 3.3.5, the total number of edges in

GD, denoted E, is 2N+2. A single fault will eliminate at most 2 edges (see note at the end

of lemma 3.3.5), thus S > 2 - 2. It is easy to show that this number is no less than3

N-. for N > 4. Thus we can assume that m > 2.

Next we show that the bound is achievable for m > N - 3. If m = N - 2 (the largest

possible value), we need a complete graph. Obviously, any m-ary fault will leave only 1

edge, and N is 1. If m = N - 3, we can choose the three non-faulty nodes, say a, b and

c such that dist(b,c) = 1, dist(a,b) = M -- 1 and dist(b,c) = m+1 + 1. The total number

of nodes accounted for by this arrangement is M + '+ + 3 m + 3 = N. Thus we can

assume that N - m > 4 for the rest of the proof.

61

First suppose that both m and N - m are even. The N - m nonfaulty nodes can

be arranged in -2 pairs such that the minimum distance between any two pairs is

maximized. Since N - in > 4, we must have at least two pairs. Also, since m > 2, G is

connected and has all arcs of distance 1. Consider two pairs containing nodes a, b and c, d

respectively. Let b denote the minimum distance between these two pairs. There are two

cases to look at:

1. 6 > M. Then dist(a, c) > a' and dist(b, c) > M., that means that dist(a, b) _< 2. Since

m > 2, it follows that the axiom ab must exist. Similarly, the axiom cd must exist.

2. 6 < 1"'. Using the same argument as in (1), it can be concluded that of the six

distances involved, namely ab, ac, ad, bc, bd, and cd, at least two (rather than just

one) must be < M. Thus if dist(a,b) > 6 and/or dist(c,d) > 6, we can swap the

attributes between pairs such that the members of both pairs have distance <

Thus axioms must exist within both pairs.

It thus follows that the number of surviving axioms must be at least N-M Now if

N - m is odd, we can simply leave one attribute aside and conclude that the number of

remaining axioms is N-M Similar arguments hold when m is odd. The proof shows that

the bound is achievable for m < N - 3. In the case of m = N - 4 the four nonfaulty nodes,

say a, b, c, and d can be chosen such that dist(a,b) = 1, dist(c,d) = 1, dist(a,c) - + 1,

and dist(b, d) = ..1. If m is much smaller than N then the bound given in the lemma is

a loose bound. 13

Although lemma 3.3.13 provides a bound on the minimum number of axioms in the

failure function of a compensation free fault, it is not adequate for our purposes. This is

because it fails to give information regarding the number of attributes that will be present

in the failure function. From lemma 3.3.12, it follows that compensations cause two distinct

faults to become indistinguishable only when they encompass the whole set of attributes. By

restricting the number of faulty attributes that can compensate to one less than the number

of attributes present in the failure function of least size, we overcome indistinguishability of

62

compensating faults. We will have more to say on this aspect in our discussion on algorithms

for identifying faulty attributes.

3.4 Data Structures with More than Two Attributes per Axiom

We now consider the situation when the number of attributes in an axiom is more than

two. We assume there is no structure imposed on the hyperedges (unlike the previous case

where we assumed a tree structure). We state the requirement on the minimum number

of attributes for a certain level of correctability and also provide a method to synthesize a

data structure that attains this level of correctability.

Although we had provided the requirement on the minimum number of attributes to

achieve m-correctability earlier, this result is not very useful since it necessitates the use of a

complete subhypergraphs. We are interested in knowing the number of attributes required

to achieve a given level of fault tolerance using the least possible number of hyperedges. We

begin our discussion by providing a few additional definitions.

The connectivity ri of a vertex, ai, is defined to be the number of hyperedges which

contain ai. The connectivity r of the hypergraph is min(rj). If the cardinality is the same

for every hyperedge of the hypergraph then the hypergraph is said to be uniform. A un.form

hypergraph of size k has k vertices in every hyperedge.

The definition of distance given earlier needs to be generalized to take into account the

fact that there are k attributes per axiom. Given N vertices a1 ,a 2, ... ,a v the distance

between two vertices ai and ai, i > j, is dist(ai, aj)= (-i+N)) where k > 1 is the

number of vertices in a hyperedge. Note that because of the truncation in the definition of

distance, for any given node ai and distance parameter d, up to 2(k - 1) nodes will be at

distance d from ai. Also when k = 2 we obtain the previous definition of distance.

Definition 3.4.1 A distance p hyperedge of cardinality k from a vertex ai contains ai and

k- I contiguous vertices aj,...,ajk_ such that dist(ai, aj,)= p, 1 < 1 < k- 1.

63

Observation 3.4.1 For any vertex aj, the distance of ai from a distinct vertex aj i. e.

dist(ai, aj), is unique.

We provide an algorithm to construct a hypergraph that is tolerant (correctable and

detectable) for a given number of faults. The algorithm given below constructs a hypergraph

of N vertices, with k vertices per hyperedge and tolerates up to m (for even m) faults.

Algorithm 2 Construction of an uniform hypergraph of size k.

begin
for n = 1 up to M do

for each vertex ai do
begin

choose k - 1 contiguous attributes a1j,..., aj._,
such that dist(ai, ajq)= n, 1 < q < k - 1;
add hyperedge (ai,aj,,...,ajk_1) ;

end
end

Assume that we have enough vertices so that all hyperedges generated by algorithm 1 are

distinct.

We shall now show the the hypergraph constructed by algorithm 1 has the desired level

of fault tolerance. In the proofs we use the term block to refer to a collection of vertices.

Since m-correctability requires m-detectability, we first satisfy this requirement.

Lemma 3.4.1 The hypergraph constructed by algorithm 1 is m-detectable iff N > m(k -

1)+3.

Proof: only if: Suppose that the hypergraph constructed by the algorithm is m-

detectable. This implies that there is at least 1 hyperedge in the fault graph of a fault

of arity up to m. We need to show that N > m(k - 1) + 3. Assume that N < m(k - 1) + 3.

For an hyperedge to be present in the fault graph we need one block of k - 1, contiguous

non-faulty vertices and another non-faulty vertex distant d apart from this block of con-

tiguous vertices, where 1 < d < M. Let N _ m(k - 1). The N attributes can be considered

to be made up of m non overlapping blocks of k - 1 contiguous attributes. Consider the

64

ai + 2(k - 1)

0 0

a; + (k- 1) 0 0 i+3(k-1)

0

U =a k - 1 non-faulty
vertices

Figure 3.10: A 4-ary fault on a data structure with 9 attributes and k = 3.

m-ary fault fm such that there is one faulty vertex in every block and at most k - 2 non-

faulty vertices between two consecutive faulty attributes. For such a fault the fault graph

is empty since we do not have a single block of k - 1 contiguous non-faulty vertices. Thus

N > m(k- 1).

With N = m(k- 1)+ 1 the vertices can be considered to be made up of m non overlapping

blocks of k - 1 contiguous vertices and 1 block containing a single vertex (say u). Thus any

m-ary fault leaves at least one block of k - 1 contiguous non-faulty vertices. Consider a

m-ary fault with faulty vertices u = ai,ai+(kl),ai+2(k..),... ,ai+(ml)(k-i) (all subscripts

evaluated modulo N). This m-ary fault leaves a block of k - 1 contiguous non-faulty vertices

adjacent to the vertex u. However, all the vertices which have an hyperedge with this block

of k - 1 contiguous non-faulty vertices are faulty (follows from the edge generation method

of algorithm 1). Hence the fault graph is empty, so N > m(k - 1) + 1. Fig. 3.10 shows an

example of such a m-ary fault for m = 4 when N = 9 and k = 3.

65

ai

k - 1 non-faulty 00
vertices

0 ai+(k-1)

aji + (k - o

k - 1 non-faulty vertices

aj

Figure 3.11: A 4-ary fault on a data structure with 10 attributes and k = 3.

Let N = m(k- 1)+2. The N vertices can be considered to be made up of m non overlap-

ping blocks of k-1 contiguous vertices and two other vertices, say a i and aj. Thus any m-ary

fault leaves at least 2 blocks of k - 1 contiguous non-faulty vertices. Let the blocks be ar-

ranged so that there are M blocks of k- 1 contiguous vertices between the vertices ai and a1 .

Consider a m-ary fault fm with the faulty vertices ai, ai+(k-.), ai+2(k-1),.. ai+(,_)(k-),

aj,aj+(k.l),aj+2(k-1),...,aj+(Ml1)(k}1) (all subscripts are evaluated modulo N). Thus fm

leaves exactly two blocks containing k - 1 contiguous non-faulty vertices. Due to the po-

sitioning of the two vertices ai and aj, faulty vertices which form a hyperedge of distance

i with one of the blocks containing k - 1 contiguous non-faulty vertices form a hyperedge

of distance m + 1 - i with the other block containing k - 1 non-faulty vertices. Since the

hyperedges of distance from 1 up to m for each of the blocks contains a faulty vertex, the

fault graph is empty. Fig. 3.11 shows an example of such an m-ary fault for m = 4 when

N = 10 and k = 3.

Thus if N < m(k - 1) + 3 we can find a m-ary fault so that the fault graph is empty.

66

But this contradicts the fact that the hypergraph is m-detectable. Thus N > m(k - 1) + 3

which completes the proof.

if: Let N > m(k - 1) + 3. We show that the hypergraph is m-detectable i. e. the fault

graph contains at least one hyperedge. With N > m(k - 1) + 3, any m-ary fault leaves at

least 3 blocks of k - 1 contiguous non-faulty attributes. Consider one such block, say B 1,

of k - 1 contiguous non-faulty attributes. The block B 1 forms a hyperedge with another

vertex located at a distance d, 1 < d < M. Since the block B1 is a member of 2 hyperedges

of each distance there are m vertices which are located at a distance of within M from B12

and which form a hyperedge with B 1. If any of these m vertices are non-faulty then the

fault graph will be non empty and the proof is complete.

Let all the vertices with which block B 1 forms an hyperedge be faulty. There are k - 2

non-faulty vertices between a faulty vertex that forms a distance i hyperedge with B1 and

a faulty vertex that forms a distance i + 1 hyperedge with B 1, 1 < i < -. Thus the two

other blocks of k - 1 contiguous non-faulty vertices do not lie within a distance of M from2

block B 1. The total number of vertices within a distance of -M from block B1 (including the2

block B1) is (m - 2)(k - 1) + (k - 1) + 2. The (m - 2)(k - 1) factor is obtained since we

can consider the faulty vertex along with the k - 2 non-faulty vertices between two faulty

vertices as one block of k - 1 contiguous vertices. There are m - 2 such blocks obtained

from m - 2 faulty vertices. The factor 2 is due to the two other faulty vertices. The factor

k - 1 arises since block B 1 has k - 1 vertices. Thus the two other k - 1 blocks must be

formed from the vertices that lie at a distance greater than I from block B 1. The number

of such vertices is m(k - 1) + 3 - [(m - 1)(k - 1) + 2] = k. Thus the two other blocks of k .- 1

contiguous non-faulty vertices are formed from this block of k vertices and hence must be

overlapping. But since we have a block of k contiguous non-faulty vertices the fault graph

will have a distance 1 edge and hence is non empty.

Thus if N > m(k - 1) + 3 any m-ary fault leaves a non empty fault graph and hence

the fault is detectable. 0

67

We now show that any two faults are distinguishable, provided there are N >_ m(k- 1)+3

attributes and the axioms are generated as per the algorithm.

Lemma 3.4.2 If the hypergraph generated consists of N _ m(k - 1) + 3 nodes, then any

two distinct p-ary faults, p :5 m, are distinguishable.

Proof: Any p-ary fault, p 5 m, results in the creation of blocks of non-faulty vertices. A

block can consist of k, k - 1 or less than k - 1 vertices. Two or more blocks containing k

vertices may overlap. Similarly a block containing k - 1 vertices may overlap with another

block containing k - 1 vertices or a block containing k vertices. Since a block containing at

least k - 1 contiguous vertices is necessary for an hyperedge to be present in the hypergraph,

we confine our attention to blocks containing k - 1 contiguous vertices or more.

If the two distinct faults, say q and r, result in different number of blocks containing

k contiguous vertices then distinguishability is immediate. This is because each block

containing k contiguous vertices corresponds to a distance 1 hyperedge. If the number of

blocks containing k contiguous vertices in the two faults q and r are same but the vertices

comprising the blocks are different then again distinguishability is obtained.

We are now left with the case when distinct faults q and r result in identical blocks

containing k contiguous vertices and identical blocks containing less than k - 1 contiguous

vertices (this is possible only if the faults are of same arity). Since the two faults are

different there must be at least one block, say Bq, containing k - 1 contiguous non-faulty

vertices in fault q which is not present in fault r and one block, say Br, containing k - 1

contiguous non-faulty vertices in fault r not present in fault q. Let the block Bq contain

vertices qx, q2, ... , qk-1 and the block Br contain vertices rl,... , rk-1. Further let each qj

be different from all ri and qk-l and rk-1 be consecutive attributes. Let fault q correspond

to rk-1 being faulty and r correspond to qk-I being faulty (the other m- 1 faulty attributes

are common to both the m-ary faults). Assume that the two faults are indistinguishable. Of

the two hyperedges of distance EL using the block Bq, the vertex, say u, closer to q, will not

have an hyperedge with the block Br. Similarly the vertex, say v, closer to rl will not have

68

an hyperedge with the block Bq. There are at most m - 2 vertices which have an hyperedge

with both the blocks Bq and B,. Each of these m - 2 vertices must be faulty otherwise

distinguishability is immediate since the hyperedge formed by any such vertex with Bq is

different from the hyperedge formed with B,. We now have two cases to consider:

e case i: u is faulty: In case of fault q all the hyperedges with the block Bq are destroyed.

In case of fault r the hyperedge r1 ,...,rk-1, v will be present in the fault graph.

e case ii: v is faulty: In case of fault q the hyperedge q1, ... , qk-1, u will not be destroyed

whereas in case of fault r all hyperedges with the block B, are destroyed.

Thus in either case the fault graph is different for the two faults q and r, a contradiction

to the assumption that the faults are indistinguishable. Thus any two faults are distin-

guishable, which proves the lemma. 0

These two lemmas put together lead us to the final result which is

Corollary 3.4.1 The hypergraph generated by algorithm 1 is m-correctable if and only if

N > m(k - 1) + 3.

It is interesting to note that these results are the generalizations of lemmas 3.3.8 and 3.3.9

for k > 2 when m is even. Another interesting observation concerns compensations. With

N > m(k - 1) + 3, for all values of k > 2 the total number of attributes is greater than

2m and from corollary 3.3.2 it follows that compensations do not affect distinguishability

of faults.

Chapter 4

Identification of Faulty Attributes

In this chapter we discuss algorithms for identifying faulty attributes in a data structure

designed according to the method discussed earlier. Again, we confine our discussion to

the situation where each axiom has two attributes. Our problem is as follows: Given an

instance of a faulty data structure and the data structure specification, i. e. , the set of

attributes and axioms, we need to obtain the set of faulty attributes. From the faulty

data structure instance and the data structure specifications we can obtain the failure

function. Alternatively, the failure function along with the data structure specification

could be provided as input. In this chapter we assume that the latter alternative is used.

We start by introducing a few definitions.

We define a mapping r : AX 4 AT, where F(S) gives the set of attributes present in

axiom S. We extend this mapping to a set of axioms, Z, as 1(Z) = U r(5). We also define
SEZ

a function y : AT '-* AX, where 7(a) is the set of axioms containing the attribute a. For

a set of axioms Z we define a subset of axioms restricted to a set P of attributes, denoted

Zp, as {SiISi E y(a),a E P) n Z, i. e. it is the set of those axioms of Z which involve at

least one attribute from the set P.

4.1 Characteristics of Failure Function

We study the properties of the failure function. The attributes and the axioms present

in the failure function display characteristics which are useful in identifying the faulty

attributes.

The failure function of any fault contains valid axioms. However, it is possible that cer-

tain non-faulty attributes are not constituents of any axiom present in the failure function.

The lemma given below provides a bound on the number of non-faulty attributes that are

69

70

not constituents of any axiom in the failure function.

Lemma 4.1.1 For any p-ary fault f, p < m, every non-faulty attribute is present in r(h(f))

and for p = m, at most one non-faulty attribute is absent from r(h(f)).

Proof. By lemma 3.3.8, every attribute a has m neighbours. Thus if p < m, and a is

non-faulty, it must have at least one non-faulty neighbour, which means that a must belong

to r(h(f)). Thus for p < m, no attribute can be absent from r(h(f)). Therefore we only

need to consider the case p = m.

Now for p = m, if a is non-faulty and absent from r(h(f)), all the neighbours of a must

be faulty. Let a', distinct from a, be another non-faulty attribute absent from r(h(f)).

Then, all the m neighbours of a' should be faulty. But since we have only m faults, a and a'

should have the same neighbours. But from the connectivity specifications of lemma 3.3.8,

this is impossible. Hence a and a' must be the same. Thus there can be at most one

non-faulty attribute absent from r(h(f)). 0

The next lemma provides a relationship between the non-faulty attributes present in

the failure function and the faulty attributes of the data structure.

Lemma 4.1.2 Every faulty attribute of a p-ary fault f, p :_ m, has as its neighbour a

non-faulty attribute which belongs to r(h(f)).

Proof: By lemma 3.3.8, every faulty attribute has a non-faulty neighbour. Now if p < m,

it follows from lemma 4.1.1 that every non-faulty attribute is present in r(h(f)) and we are

done. So let f be a m-ary fault. If N = m + 2, the graph must be fully connected, hence

every faulty attribute has a neighbour in r(h(f)). Let N > m + 3. From lemma 4.1.1,

at most one non-faulty attribute, say a, is absent from r(h(f)). From the connectivity

specifications of lemma 3.3.8, it follows that no two attributes can have the same set of

attributes as neighbours. Since a has all the faulty attributes as neighbours, every faulty

attribute must have a non-faulty attribute, other than a, as a neighbour. Also, since a is

absent from r(h(f)), all the neighbouring non-faulty attributes must be in r(h(f)). This

proves the lemma. 0

71

4.2 Faults without Compensation

The failure function of a compensation free fault contains axioms of non-faulty attributes

only. Lemma 4.1.2 immediately gives us the algorithm for identifying the faulty attributes.

The algorithm first computes the set X = r(h(f)). From lemma 4.1.2 it follows that every

faulty attribute has as its neighbour a non-faulty attribute belonging to r(h(f)). Hence the

faulty attributes can be obtained by scanning the axioms in AX - h(f) restricted to the

attributes in X. The complete algorithm is described below.

Algorithm 3 Identification of faulty attributes.

Input: a. Data structure specification.
b. An instance of the data structure under a fault f.

Output:
faulty: set of faulty attributes
nfaulty: set of non..faulty attributes.

begin
valid ,-- h(f);
violated + AX- h(f);
faulty +- {}; (* set of faulty attributes *)
nfaulty -- r(valid);
for each a in nfaulty do

faulty +- faulty u{blr(S) = (a,b),S E violated};
nfaulty +- AT- faulty;

end

Lemma 4.2.1 The algorithm to identify the faulty attributes executes in 0 (inN) steps.

Proof. We shall assume that the failure function is given. To obtain the faulty attributes,

each axiom in the set violated is scanned once. There are N axioms of each distance and

axioms of every distance from 1 up to M. In case m is odd there is an additional axiom

for each attribute. Thus the total number of axioms is at most Nlx" + N. Thus the total

number of steps is O(mN), which proves the lemma.

In case the failure function is not given we need an additional 0(mNM) steps since we

have O(mN) axioms, each of which involves examining all M elements of the data structure.

0]

72

4.3 Faults with Compensation

Compensation refers to the situation where the effect of one fault is nullified by another,

thereby retaining the validity of some of the axioms containing the faulty attributes.

4.3.1 Internal Compensation

As stated in the previous chapter, internal compensation is a non problem, since its

presence merely indicates that the axioms are improper. Internal compensations can be

overcome by adding a weak generic attribute to an axiom involving an atomic attribute

and a generic attribute. Weak generic attributes, like generic attributes have an instance

of the attribute in every element. However, given an element of the data structure they

cannot be used to access another element in the data structure. Weak generic attributes

are used to reinstate certain properties (like element ordering, membership) in an axiom

involving an atomic attribute and generic attribute.

With the addition of a weak generic attribute the axioms are no longer in 2-ANF form

but are in (2,3)-ANF form. However, since a weak generic attribute is always associated

with an atomic attribute, the (2,3)-ANF axioms can be converted into (2,2)-ANF axioms

by simply ignoring the weak generic attribute in our hypergraph model. In other words,

we coalesce the weak generic attribute into the atomic attribute associated with it. With

this transformation, we cannot distinguish between a fault in the weak generic attribu, a

and a fault in the atomic attribute associated with the weak generic attribute. Moreover,

the fault will always show up as a fault in the atomic attribute. This drawback can be

overcome in the correction procedures as discussed later. Thus, the problem of identify-

ing faulty attributes in the presence of internal compensation reduces to the problem of

idcnt ying fI attributes in a system without compcnsation, w'hich -was discussed in the

previous section. Hence, in all further discussions we restrict our attention to the problem

of identifying faulty attributes in the presence of external compensations. Also, all future

references to the term compensation pertains to external compensation.

73

4.3.2 External Compensation

If exteri.al compensations are allowed, an axiom witb both attributes faulty may or may

not be violated. Consequently the failure functions will no longer be unique.

Since external compensations cannot occur if only single faults are allowed, we hence-

forth assume that the data structure is designed for handling at least 2 faults, i. e. m > 2.

Let h(f) be the failure function as computed from the axioms that are found valid.

Then h(f) can be expressed as ho(f) U X, where ho(f) is the failure function without

compensations and X is some subset of axioms that result from compensation, i. e. X C

{siIr(si) C w-'(f)}. The fault identification is now more difficult because X is not known

a priori. Thus r(h(f)) consists of both faulty and non-faulty attributes. We denote the

number of faulty attributes in the failure function as P(m). From corollary 3.3.2, it follows

that if N > 2m, then P(m) :_ m. When N < 2m, P(m) _< N - m - 1. The reason for

P(m) < N - m - 1 is as follows. Corollary 3.3.3 states that distinguishability among faults

is maintained if the number of compensations is limited to one less than the size of the

smallest failure function. Since the number of non-faulty attributes is at least N - m, the

distinguishability will be maintained if we limit the number of faulty attributes regenerated

due to compensation to N - m - 1 and thus we obtain the value of P(m).

We make another observation which we use frequently in the rest of the thesis.

Lemma 4.3.1 The number of faulty attributes in the failure function of any fault is less

than or equal to the number of non-faulty attributes in that failure function.

Proof: There are at least N - m non-faulty attributes in a data structure in the presence

of ay fault of arity up to m. It follows from lemma 4.1.1 that at most one of these non-

faulty attributes is absent from the failure function of any m-ary fault. Thus the failure

function contains at least N - m - 1 non-faulty attributes. If N > 2m, then the number

of non-faulty attributes in the failure function is N - m - 1 which is > m > P(m). If

N < 2m then the number of non-faulty attributes is > N - m - 1 which is > P(m). Thus

the number of faulty attributes in the failure function is less than or equal to the number

74

of non-faulty attributes in the failure function. 0

An obvious approach to the problem of fin(,.ng the faulty and non-faulty attributes under

compensation would be as follows. We start by identifying a non-faulty attribute. Based

on this non-faulty attribute and the axioms in the failure function involving this non-faulty

attribute we obtain additional non-faulty attributes. We continue in this manner until no

more non-faulty attributes are obtained. Based on this set of non-faulty attributes and the

axioms absent from the failure function we find some faulty attributes. When no more faulty

attributes can be found we use this set of faulty attributes to obtain additional non-faulty

attributes. We keep switching between the two sets until all faulty attributes have been

obtained. Unfortunately, finding non-faulty attributes starting from faulty ones is difficult

here, and the mechanism needed depends on the nature of compensations allowed. This

gives rise to different algorithms for different types of compensations, which is a drawback.

We thus take a different epproach. We first partition the set of attributes in r(h(f))

into two subsets, say X and Y, such that all the faulty attributes go to one subset and all

the non-faulty ones to the other. Notice that during partitioning, we do not know whether

the subset X or the subset Y' contains faulty attributes. This classification is done in the

second step. The advantage of this approach is that every attribute in the failure function is

grouped with attributes possessing the same properties. This helps in the identification of

non-faulty attributes in case of both restricted and unrestricted compensations in a uniform

way.

Given an instance of a data structure D affected by fault f we first obtain the fault

graph GD(f). The edges present in the fault graph correspond to the axioms that are valid.

We then obtain all the connected components of GD(f) denoted Cl,...,C,. Notice that

each connected component contains nodes corresponding to only faulty attributes or only

non-faulty attributes. This is due to the fact that a valid axiom has either both attributes

faulty or both attributes non-faui-.y.

To describe the properties exhibited by the connected components, we need one more

75

definition.

Definition 4.3.1 Let S = xy be an axiom relating attributes x and y. Then S is called

a compensation detection (cdetection for short) axiom, with respect to a fault f, if x, y E

r(h(f)) but S itself is not present in h(f).

In the next two lemmas we provide a bound on the number of connected components

containing non-faulty attributes.

Lemma 4.3.2 Let C be a connected component containing vertices corresponding to non-

faulty attributes. If w is a vertex corresponding to some non-faulty attribute present in the

failure function and w 0 C, then for all vi E C dist(w, vi) > M + 1.

Proof: Let the vertices in C be ordered with respect to the vertex numbering and let

x, y denote vertices that are farthest apart (i.e. dist(x, y) is maximum of the distances

between all pairs of vertices present in C). If any vertex vi E C has dist(w, vi) < M then

either dist(w, x) < M or dist(w, y) < .. Thus it is sufficient to consider only dist(w, x)

and dist(w, y).

Now dist(w, x) > -M otherwise there would be an edge connecting vertices w and x (due

to lemma 3.3.8) and w E C a contradiction. By a similar argument dist(w, y) > M. Thus

for all vi E C, dist(w, vi) _ +1. 0

Lemma 4.3.3 There can be at most two connected components containing non-faulty at-

tributes in the failure function of any fault, compensated or otherwise.

Proof: By contradiction. Assume that there are more than two, say three, connected

components containing non-faulty attributes. It follows from lemma 4.3.2 that there is no

non-faulty attribute within a distance of m from any vertex of such a connected component.

Further, from lemma 3.3.8 each of the 2- faulty attributes can be within a distance of2 2

from at most two connected components containing non-faulty attributes. Thus there must

be at least M faulty attributes between any two such connected components. Thus the total

76

number of faulty attributes is at least 3 x M. But this contradicts the fact that there are

at most m faulty attributes. Thus there are at most two connected components containing

non-faulty attributes. 0

Corollary 4.3.1 In a compensation free system there are at most two connected compo-

nents.

Proof: In the absence of compensations, L(h(f)) contains only non-faulty attributes and

from lemma 4.3.3 there can be at most two connected components containing non-faulty

attributes. 0

We do not know the axioms that have been regenerated due to compensations. Thus

we neither know the number of faulty attributes present in the failure function nor the.

manner in which they are distributed among the connected components. We only know the

maximum number of faulty attributes (P(m)) that can be present in the failure function.

However, lemma 4.3.3 is useful in characterizing the way in which cdetection axioms inter-

connect the connected components. Such a characterization is very useful in identifying the

connected components containing faulty attributes.

It is clear that there can be more than one cdetection axiom involving attributes belong-

ing to two different connected components. Since we are only interested in the existence

of such a cdetection axiom rather than their actual number, the problem of identifying the

connected components containing non-faulty attributes is simplified by transforming it into

the following graph problem.

Let GC = (VC, EC) be a graph where a vertex vi denotes the connected component

Ci and an edge vivj is present in the graph if there exists a cdetection axiom S such that

1(S) = Ix,y},x E Ci, y E Cj. (We ignore those cdetection axioms that result in a self

loop.) Further, we label an edge vivj as

type 1 if Ci consists of faulty attributes and Cj consists of non-faulty attributes or vice

versa.

77

type 2 if both Ci and Ci contain faulty attributes.

Type 1 edges can be used to partition (as will be shown later) the set of connected

components into two distinct partition" such that one partition contains the connected

components containing non-faulty attributes and the other contains connected components

containing faulty attributes. To make this partitioning possible we eliminate all type 2

edges present in graph GC. This is accomplished by algorithm Reduce and is discussed

next. Algorithm Reduce identifies type 2 edges and merges nodes that are connected by a

type 2 edge. The algorithm works in two stages. In the first stage it identifies certain nodes

as candidates for merge. The identification is possible since we know the maximum number

of faulty attributes that can be present in the failure function. The actual node merging

and the construction of the reduced graph is done in the second stage.

Algorithm 4 Reduce;

Input: Graph GC.
Output: A reduced graph GR = (VR, ER)
begin

V1 - {}; (* Initialize sets V1 and V2 *)
V2 {};
(* set 142 contains nodes that are candidates for merge *)
for each vi E Vc do

begin
(* find the number of attributes in connected components corresponding to *)
(* nodes adjacent to the node under consideration *).

n-- E ICk1;
VkViEEc

(* if the number of attributes in neighbouring connected components is more*)
(* than P(m) this connected component contains faulty attributes *).

as proved later in lemma 4.3.4 *)
(* Mark this node as a candidate for merge *)
if n > P(m) then V2 - 1"2 U {vi}

else V, +- V1 U { vi}
end

ER *- V 1;ER Ec IV;
Er is the set of edges in E restricted to vertices in V *)

if V2 # then
(* check if there are any nodes to be merged *)
begin

u4- U Vi;
ViEV2

78

0

a b c d

Figure 4.1: The four possible forms of reduced graph GR

(* obtain a new node by merging nodes in set V2 . *)
VR -- VR U {U};
(* add type 1 edges between the new node and each existing node *)
(* of the reduced graph *)
for each vi E Vi do

add uvi to ER;
end

end

The only edges in the reduced graph are type 1 edges (proved later in lemma 4.3.4).

The graph GR has one of the four possible forms shown in the figure 4.1.

We now partition the vertices belonging to VR using type 1 edges so that one set contains

vertices corresponding to connected components containing non-faulty attributes and the

other contains vertices corresponding to connected components containing faulty attributes.

If the graph is disconnected we merge the vertices into one set. We obtain a disconnected

graph only when compensation does not take place. Thus the vertices correspond to non-

faulty attributes and no partitioning is required. Otherwise, we pick a vertex with the

maximum degree from the graph GR and assign it to one of the sets, say setl. All vertices

adjacent to this vertex are then put in the other set, say set2. We then obtain the attributes

from the connected components corresponding to these vertices. The partitioning algorithm

is given below.

Algorithm 5 Partition;

Input: Graph GR = (VR, ER).
Output: Two sets, one containing faulty attributes

and the other containing non-faulty attributes.

79

Only the attributes covered by h(f) are covered by these sets.
begin

ifER=0 then
begin

setl - vi;

set2 -- {0}
end
else
begin

pick a vertex vi such that vi has maximum degree;
(* assign the first vertex to one of the sets *)
setl +- vi};
(* Since reduced graph contains only type 1 edges, vertices connected *)
(* by an edge should belong to different sets *)
set2 ,- {vjlviv j E ER};

end

setx - Ci;
viEsetl

(* Ci is connected component corresponding to vertex vi *)

sety 4- Ci;
viEset2

end

Notice that even after partitioning, in some cases, we still do not know which one of

the two sets contains non-faulty attributes. We now present the complete algorithm for

identifying faulty attributes. The algorithm requires as input a faulty instance of a data

structure. It first obtains the connected components of the fault graph. It then constructs a

graph using these connected components and cdetection axioms. The graph is then reduced

and the vertices in the reduced graph partitioned into two sets. We then identify one of

the two sets as the set containing non-faulty attributes. Lemma 4.1.2 provides a method

of obtaining all the faulty attributes using the set of non-faulty attributes in the failure

function.

Algorithm 6 Identify;

Input: a. Data structure specification.
b. Instance of a data structure under fault f.

Output:
faulty: the set of faulty attributes.
nfaulty: the set of non-faulty attributes.

begin

80

ICI, C2,...} - connected components of GD(f);
construct graph Gc = (VC, Ec);
(VR, ER) +- reduce(VC, Ec);
{setx, sety } - partition(VR, ER);
(* Identify the set containing the non-faulty attributes present in the
failure function. *)
case

(* Since P(m) is less than or equal to the number of non-faulty attributes in the *)
(* failure function, a set containing more than P(m) attributes must contain *)
(* non-faulty attributes *)
Isetx > P(m) nfaulty <-- setx;

Isetyl > P(m) nfaulty 4- sety;
(* Since there are at most P(m) faulty attributes in h(f), it follows
from lemma 4.3.1 that a set having
P(m) attributes contains non-faulty attributes if the other set has less
than P(m) attributes. *)
Isetxl = P(m) and Isetyl _ P(m) - 1: nfaulty - setx;
Isetyl = P(m) and Isetx _ P(m) - 1 nfaulty - sety;
Isetxj = P(m) and Isetyl = P(m):

begin
(* find the non-faulty attribute xi absent in h(f) *)

xi must be non-faulty since all faulty attributes *)
are covered by either setx or sety *)

xi <- AT - (setx U sety);
(* find a neighbour of this attribute. *)
pick S E -,(xi);
xj 4- r(s) - xi;
(* neighbour belongs to set containing faulty attributes. *)
if xj E setx then nfaulty <- sety u{xi};

else nfaulty +- setx u{xi};
end,

end (* case*);
faulty +- };
(* identify faulty attributes based on non-faulty attributes extracted
from failure function. *)
for each a in nfaulty do

faulty <- faulty u~bIr(S) = (a,b),S E (AX - h(f))f;
end.

Before we provide the proof of correctness of the algorithm, let us first consider an

example. Let us assume that we have a data structure with 16 attributes (N = 16) that

is designed for 8-correctability (m = 8). Hence, the graph corresponding to the data

structure has edges of distance up to 4. Since the total number of attributes is not greater

than 2m, the number of compensations should be restricted in order to obtain the faulty

81

a4a,

a3

a, as

1l6 ag

aa,

Figure 4.2: Fault graph of the example data structure

attributes. For the example, P(m) - N - m - 1 is 7. Consider a 8-ary fault which results

in the fault graph shown in fig 4.2. We find the connected components of the fault graph.

The 5 connected components are A ={al,a 2,al 5,al6}, B = {a3,a 4}, C = {as,a6}, D =

{a7, as, a9, alo} and E = {al, a12, a1 3}. The transformed graph is shown in figure 4.3. The

vertices are labeled by component names. Applying the reduction algorithm to the graph

in figure 4.3 we obtain the reduced graph shown in fig 4.4. Notice that vertices a, b and

d in fig. 4.3 are candidates for merge since they are adjacent to vertices corresponding

to components which together contain more than P(m) attributes. The edge connecting

the two vertices a and b is a type 2 edge which is eliminated in the reduced graph. The

vertex a in the reduced graph is obtained by merging the vertices a, b and d of figure 4.3.

After partitioning, we obtain the two sets as setx = {aI, a2, a7 , as, a9, al 0, als, a16} and sety

- {a 3 , a 4 , a5, a6 , all, a12 , a1 3 }. Now we identify setx as the set containing the non-faulty

attributes since setx has 8 attributes and sety has 7 attributes. This corresponds to the

third clause in the case statement in algorithm Identify.

82

d

Figure 4.3: The transformed graph of the given fault graph

Figure 4.4: Reduced graph of the example

83

4.3.3 Correctness of the Algorithm

We now prove that the algorithm works correctly. We have to show that the attributes

identified as faulty are indeed faulty and those identified as non-faulty are indeed non-faulty.

Notice that we start with the attributes obtained from the failure function and extract the

non-faulty attributes from this set. Then based on the non-faulty attributes extracted, we

obtain the faulty attributes using lemma 4.1.2.

We start by obtaining the connected components from the fault graph. Since an axiom

consisting of a faulty and a non-faulty attribute cannot appear in h(f), the edge corre-

sponding to such an axiom cannot be present in the fault graph. Thus every connected

component must contain only faulty attributes or only non-faulty attributes. We need to

show that faulty and non-faulty attributes do not get mixed during graph reduction and

partitioning.

Lemma 4.3.4 Algorithm Reduce eliminates every type 2 edge.

Proof: From lemma 4.1.2 it follows, that there is an edge in graph G c between a vertex

corresponding to a connected component containing faulty attributes and a vertex cor-

responding to connected component containing non-faulty attributes. From lemma 4.3.3

there are at most two connected components containing non-faulty attributes. Let us con-

sider each of the two possibilities (i.e., 1 or 2 connected components containing non-faulty

attributes).

Case 1: Let a be the vertex corresponding to the only connected component containing

non-faulty attributes. Since there are at most P(m) faulty attributes in h(f), it follows

from lemma 4.3.1 that the number of attributes in this connected component is at least

P(m). The number of attributes in every other connected component is at least two since

connected components are obtained from fault graph. Let there be a type 2 edge e joining

two vertices representing connected components containing faulty attributes. Each vertex

of e is adjacent to a (follows from lemma 4.1.2). The number of attributes in connected

84

components corresponding to vertices adjacent to each vertex of edge e is greater than

P(m). This is because each vertex of e is adjacent to a, which has at east P(m) attributes,

and to the other vertex of e which has at least two vertices. Thus both the vertices of edge

e will be in set V2.

Case 2: Let there be two connected components containing non-faulty attributes. Any

attribute in one of these connected components is distance m + 1 away from any attribute

in the other connected component. Let the nodes corresponding to these connected zompo-

nents be a and b. Now all the faulty attributes lie within a distance of ,M from each of the

connected components containing non-faulty attributes. This is because there are at least m

faulty attributes neighbouring a connected component containing non-faulty attributes and

the total number of faulty attributes is m. Thus the vertex corresponding to a connected

component containing faulty attributes will be adjacent to' both a and b. Since there are

at most P(m) faulty attributes in h(f), it follows from lemma 4.3.1 that the number of

attributes in connected components corresponding to a and b is at least P(m). Let there

be an edge e connecting two vertices corresponding to connected components containing

faulty attributes. Each vertex uf e is adjacent to both a and b. The number of attributes in

connected components corresponding to vertices adjacent to each vertex of edge e is greater

than P(m). This is because each vertex of e is adjacent to both a and b, which have at

least P(m) attributes, and to the other vertex of e which has at least two vertices. Thus

both vertices of edge e are in V2.

Thus every vertex which has a type 2 edge incident on it will be in V2. Since the

reduction process merges two vertices connected by a type 2 edge the proof is complete. 0

Lemma 4.3.5 The reduced graph is a bipartite graph if the failure function contains faulty

attributes.

Proof: There is no edge between two vertices corresponding to connected components

containing non-faulty attributes. It follows from lemma 4.3.4 that the reduced graph con-

tains no edge between two vertices correspondiig to connected components containing faulty

85

attributes. Thus the only edges are between a vertex corresponding to a connected compo-

nent containing non-faulty attributes and a vertex corresponding to a connected component

containing faulty attributes. Hence the reduced graph is a bipartite graph. 0

Lemma 4.3.6 The partition algorithm divides the attributes intc two sets, one containing

only faulty attributes and the other containing non-faulty attributes.

Proof: Assume that the failure function does not contain any faulty attribute. In this

case the reduced graph is disconnected (follows from lemma 4.3.3 and corollary 4.3.1). The

partitioning algorithm merges all attributes present in the failure function in to one set and

leaves the other set empty, which proves the lemma.

Assume that the failure function contains faulty attributes. From lemma 4.3.5 the

reduced graph is a bipartite graph. From lemma 4.1.2 it follows, that the bipartite graph is

connected. From lemma 4.3.4 it follows that the reduced graph contains only type 1 edges.

Since partition algorithm puts vertices connected by an edge in GR into separate sets the

proof is complete. 0

Lemma 4.3.7 The algorithm identifies faulty attributes correctly.

Proof: From lemma 4.3.6 the attributes pre3sent in the failure function are partitioned

into two sets, one containing only faulty attributes and the other non-faulty attributes.

The failure function contains at least P(m) non-faulty attributes and at most P(m) faulty

attributes (follows from lemma 4.3.1). The attributes could be divided among the two sets

in one of the three possible ways

1. At least one set has more than P(m) attributes. If such a set exists then it is the set

containing non-faulty attributes present in the failure finction since there are at most

P(m) faulty attributes in the failure function.

2. At least one set has exactly P(m) attributes and the other has less than P(m) at-

tributes. The set containing P(m) attributes is the set of non-faulty attributes present

86

in the failure function. This is because the number of faulty attributes in the failure,

function is less than or equal to the number of non-faulty attributes in the failure

function (follows from lemma 4.3.1).

3. Both the sets contain exactly P(m) attributes. This can happen only if one non-

faulty attribute is absent in the failure function. In this case the non-faulty attribute

is adjacent to every faulty attribute.

Thus the algorithm extracts the set containing the non-faulty attributes present in the

failure function correctly. From lemma 4.1.2 it follows, that all the attributes identified as

faulty on the basis of set of non-faulty attributes present in the failure function are indeed

faulty and the others non-faulty. This proves the lemma. 0

Lemma 4.3.8 The algorithm is optimal with respect to the number of axioms and identifies

faulty attributes of a compensated fault in O(mN) steps.

Proof: The connected components can be found in time linearly proportional to the

number of edges in the graph. Since the number of edges in the fault graph is equal to the

number of axioms, we require O(mN) time to find the connected components. Constructing

the graph from the connected components requires scanning each axiom in the set AX-h(f)

once. This also can be done in O(mN) steps. The graph reduction works on graph Gc.

Since the edges of Ge are obtained from axioms in AX - h(f) and each edge is processed

at most twice the reduction also takes O(mN) steps. Algorithm Partition takes constant

time. The identification of a set as faulty or non-faulty takes constant time. Once the non-

faulty attributes have been extracted from the failure function the identification of faulty

attributes takes O(mN) steps (as proved earlier). Thus the entire algorithm executes in

O(mV) steps.

The algorithm requires a constant amount of time to process every axiom. Since the

data structure design does not use any redundant axiom, every axiom is significant. Thus

the algorithm is optimal with respect to the number of axioms in the data structure. 0

87

4.4 Correcting Faulty Attributes

In the above, we only coitsidered the problem of identifying the faulty attributes. The

next step is the correction, which is also based on the data structure axioms. Notice-that

since we have assumed that the axioms are complete, any correction that satisfies the axioms

must be acceptable. The correction requres an interpretation of the axioms, since it is easy

to see that with uninterpreted axioms, the problem of determining attribute values that

would satisfy the axioms is undecidable. The interpretation is usually easy to provide. For

example, consider an axiom in which at least one (of the two) attributes is generic. We

could then cast this axiom in form of a "correction procedure" that walks through the data

structure using the generic attribute and computes the value(s) of the other attribute. This

is possible because of the restrictions we imposed on the axioms. We now give the correction

details.

We start by identifying all the faulty attributes. From lemma 4.1.2 it follows that every

faulty attribute has a non-faulty attribute as a neighbour in its failure function. So let x

be the faulty attribute, and y one of its neighbouring nonfaulty attributes connected via

an axiom, say A(x, y). If we correct the faulty attributes sequentially, it is easy to show

that one can always choose an order such that the nonfaulty neighbour (which we denoted

as y) is a generic attribute. Thus we can use the interpretation of the axiom A(x, y) and

correct the attribute x. The type of the attribute x does not matter because of the required

restrictions on the axioms. If fact, even if x represents an atomic attribute that has been

collapsed with a weak generic attribute, both of them can be corrected independently using

the attribute y. Thus we need not distinguish between a fault in a weak generic attribute

and its associated atomic attribute, as claimed earlier.

Chapter 5

Applications

In this chapter we study three applications of the theory developed so far. In the first

application we apply our design methodology to local correction. In the second application

we extend our method to data integrity and in the third application we study the design of

a robust file system.

5.1 Global and Local Correction

In the example in section 3.3.1.2 we chose an atomic attribute (the count) that is global

in nature. To validate an axiom based on this attribute we have to go through the entire

instance of the data structure. The time taken is O(n) where n is the number of elements in

the list. Hence testing the integrity of the data structure for every operation is prohibitive

in time. Not testing the integrity of the structure every time an operation is performed,

may also lead to anomalous situations. Consider an instance of the linked list as shown in

figure 5.1.

In the structure shown in figure 5.1, a's forward pointer is incorrect and points to c.

Now if a new element a' is inserted after a but before c then the resulting structure would

be as shown in figure 5.2.

Notice how b has become inaccessible using either of the pointers, even though there

was only one error in the original structure. Assuming that 1.o more errors occur, this error

Figure 5.1: Data structure with one invalid pointer.

88

89

Figure 5.2: Figure showing inaccessibility of b.

would be detected in one of periodic checks of the integrity-of the structure, however, the

error would show up (improperly)-in the count field that would then be adjusted. But the

element b is lost forever.

This suggests that instead of periodic checking, the structure should be checked every

time an operation is performed. Since checking the entire structure takes too much time,

local checking should be employed. We define neighbourhood of an element in a data

structure as that subsection of the data structure whose attribute values have to be changed

to accommodate a new element or to delete an existing element. If the elements in -the

neighbourhood of the place of update are correct then an update (insert or delete), in this

neighbourhood would not affect the number of errors present (if any) in the structure. If

there is an error in the neighbourhood of update then the correction is applied before the

update. This way the structure's integrity is always maintained and at any time it is possible

to obtain the correct structure from an erroneous one. We explain this with an example on

doubly linked lists where attributes are introduced gradually as and when required.

5.1.1 Local Correction in Linear Data Structures

We start the design of a locally correctable list F with the initial structure of sec-

tion 3.3.1.2 consisting of AT = {fp,bp},S = { 1 } and F = {fl, f2}. However, we now

add an additional pointer to achieve 1-correctability. We shall refer to this pointer as an

alternate pointer (ap). The two additional axioms are

S2 : VEE ELp[ap(E)= fp 2 (E)] (5'.)

90

attribute 1 IS2 S3S4 SS 6

fp X X X

bp X XX
ap X X X
rp X X X

fp, ap X X X X X
fp, rp X X X X X
bp, ap X X X X X
bp, rp X X X X X
ap, rp X X X X

Table 5.1: Failure function for locally correctable doubly linked list

53 VE E ELp3E' E ELp: [ap(E) = E' * bp2(E') = El (5.2)

It is easily seen that these axioms distinguish all single faults. Also, since every failure

function has at least one axiom involving a generic attribute, correction is feasible. We can

make the above data structure 2-correctable by adding yet another pointer that we'shall

call the reverse pointer (rp). Then, AT = {fp, bp, ap, rp}, and AX = {S 1,.. . ,S 6}, as given

below:

S 1 : VE E ELp[fp(bp(E)) = E A bp(fp(E)) = E] (5.3)

2 : VE E ELp[ap(E) = fp 2(E)] (5.4)

S3: VE E ELp3E' E ELp : [ap(E)= E' * bp2(E') = E] (5.5)

54 : VE E ELp3E' E ELp,: [rp(E) = E" € fp2 (El) = E] (5.6)

Y5 : VE E ELp[rp(E) = bp2(E)] (5.7)

S6 : VE E ELp[rp(ap(E)) = E A ap(rp(E)) = E] (5.8)

Table 5.1 gives the failure function for the locally correctable doubly linked list (X

indicates that the axiom is violated).

The set of axioms is sound, complete and proper. However, since rp and ap have a

span of two, we need two headers. The example also highlights the advantages of local

91

correction. Local correction overcomes the problems of internal compensation. Notice that

we can tolerate up to two faults in the neighbourhood of a node. However, more than two

faults can also be corrected provided the number of faults in any neighbourhood does not

exceed two. Moreover, the corrections in the two neighbourhoods can be done concurrently.

The time taken to perform correction is constant. For the example given above the size

of the neighbourhood is 5. Thus correction involves updating the attributes in at most 5

elements. In the case of global correction we need to traverse the entire data structure to

perform correction.

5.1.2 Local Correction in Nonlinear Data Structures

Local correction can be applied to other structures like Trees. Taylor et al [TMB80]

have used chain and thread pointers in those nodes where the regular tree pointer is not

present. Their method is space efficient as they do not use any additional storage but

requires guessing to perform correction [TB85]. Davis [Dav87] provides a method for AVL

trees. They use local correction and their method does not degrade the perlbrmance of

other operations on AVL trees. Sampaio et. al. [SS85] suggest the use of a parent pointer

and a postorder pointer as the alternate 'ath to each node. In this method, correction takes

a iot of time and also uses additional storage space for pointers. We also adopt a method

that requires additional space for the pointers but correction becomes simple and localized.

We connect each parent to all its children by a pointer called the family pointer. This

forms a list with the parent as the header. A tree with family pointers is shown in figure 5.3.

(Neighbourhood of a node consists of the node along with its children).

We shall analyze the structure by our method. The attributes are AT = {tp[O..N

1], fp} where tp[O..N - 1] are the tree pointers to the N children. We assume that if ith

child does not exist, tp[i] simply points to itself. For notational convenience, we also assume

that tp[i] points to itself for i < 0 and i > N - 1. We also have a family pointer, denoted

fp that goes through the parent and all its children. The only axiom is:

K92,

Figure 5.3: Locally correctable tree.

S1 : VE,E 2Vi[tp[i](EI) = E2 * fp(tp[i- 1](El)) = E2] (5.9)

S1 relates the parent node to the nodes corresponding to the ith and -(i - 1)st child

as follows. If the ith child of element E, points to E 2 then the pointer -fp in the element

corresponding to the (i - 1)st child of E, points to E2. The-possible faults are F = {fl, f2}

and the failure function h(fl) = h(f 2) = 0 where

f, = One or more tree pointers-pointing, incorrectly.
f2 = family pointer pointing incorrectly.

Obviously, the two faults are not distinguishable. So we convert the chain of family

pointers into a circular one and add another attribute count at each node that denotes the

number of children this node has. We denote this attribute as count(E) for element E.

Thus AT = {tp, fp, count}

N-i

S 2 : VE[count(E) = Zord(tp[i](E).# E)] (5.10)
i=0

S3 : VE[fpk(E) = E,k =-count(E)] (5.11)

93

S2 states that the number of children for any node is equal -to the number of pointers

that do not point to itself. S3 states that starting from any element we can return to

it by following k instances of the attribute fp, where k is equal to count. In order to

make the axiom set complete, we need to add a conjunct similar to C1 of section 3.3.1.2

to the term relating fp and count. Again, since we relate an atomic attribute count with

generic attributes fp and tp we face the problem of internal compensation. To overcome

this problem we need an additional weak generic attribute and an additional term similar

to C' of section 3.3.1.2. We ignore these in the discussion below with the understanding

that C1 is maintained implicitly and C' is added explicitly. The set F is also augmented

with fault f3 denoting improper count field. The failure functions are given below.

h(fi) = {S3}
h(f 2) = {S2}
h(f 3) = {S1}

Consider a locally correctable B-tree as in [TB86]. We can generate axioms similar to the

previous example to obtain a robust B-tree structure for a desired level of correctability.

Let each node in the tree represent another data structure, say a list, with the node as

the header. We consider the list to be at the next level of nesting of the compound data

structure. We can now make the list robust to the desired level of correctability. The axioms

for the list are totally independent of the axioms generated for the B-tree structure. Notice

that the list and the B-tree are both locally correctable. Thus our method caters also to

hierarchical data structures. In fact we can generalize our method to a data structure

of any desired depth of nesting. Such a structure allows concurrent repairs for nodes at

level i provided the integrity of the structure at level i - 1 is established. It is necessary to

establish the integrity of the structure at level i - 1 since we do not have external pointers

to the distinguished elements (for e.g., headers for a list) of the data structure- at level i.

In other words level i elements can be accessed only by the access path provided at level

i - 1. We do not require the structure at any level to be homogeneous. Thus one node of a

B-tree could represent a tree, while another could represent a list and so on.

94

One problem not solved by the local correction scheme described above concerns the

search that typically precedes an insert or delete operation for locating the appropriate place

of insertion/deletion in the structure. In general, it is necessary to do local detection as the

search procedure walks through the structure. The complexity of detection in this phase is

governed by the number of elements examined by the search procedure (e.g., O(logn) for

a balanced tree). This also means that the neighbourhood at the beginning of the search

point (e.g. the root of the tree) will be checked most frequently and the frequency of checks

will decrease as we go further down. It is possible to take advantage of this observation to

reduce integrity checking overhead.

5.2 Data Integrity

We can view data integrity in the same manner as structural integrity. However, in case

of data, the semantics attached to the values is not known. Also, the data by itself may

not have any relationship with the data elements stored in other parts of the structure. We

can have redundant information by using additional attributes for generating relationships

among data elements. Note that even though data is organized on the basis of the structural

attribute the data axioms will not use this structural attribute.

Since we need to create attributes to relate groups of data items, the first problem is to

organize data such that we need minimum additional space for a given level of correctability.

We shall assume that the data is to be stored in a parallel piped like structure. We also

assume that the data elements could be related by some function. The function should be

such that any single change in one of the arguments changes the value of the function. One

example of such a function is the addition operator. We assume that the application of this

function does not result in arithmetic exceptions. Under these constraints, we can show

that the hypercube arrangement is optimum.

It should be noted that the underlying data structure that holds the data items of

interest could be arbitrary (e.g., a list, tree, etc.), and its integrity can be ensured by using

the techniques of previous sections. The parallel piped structure required for data integrity

95

could be implemented in two ways: (a) by using additional pointers, (b) storing elments in

a N-dimensional array. In case (a) we must ensure structural integrity of the parallel piped

structure as well. It is clearly possible to reduce the number of pointers used by merging

the underl:ing structure and the parallel piped structure; however, for simplicity, we will

not consider this refinement. In case (b), the underlying linked structure is constructed by

using addresses of the array elements (instead of real pointers). Even though (b) is less

flexible, it is much simpler, requires much less storage for pointers, and eliminates problems

of general linked structures.

The next two lemmas characterize the number of data errors that can be detected and

corrected if the data is arranged in a specific pattern, viz. as a hypercube.

Lemma 5.2.1 Arranging the elements in a N-dimensional hypercube gives N detectability

(but not N + 1-detectability) and requires no greater storage than any other storage pattern

that gives the same detectability.

Proof: For the first part, notice that every element is a member of at least N dimensions.

Hence every element is an argument to the function along each of the N dimensions. To

change from one correct instance to another requires a change in one of the elements along

with a change in each of the N functions that this element is an argument of, giving a total

of N + 1 changes and a detectability of N.

Now to see that it is not possible to obtain N + 1-detectability, consider an instance

with elements al,..., aN along the N dimensions and some other element a0 on one of the

N dimensions. Let the errors in elements a0 , al,..., aN be such that compensation takes

place. As a result of compensation the function (say f) computing the value along each of

the N dimensions is not affected. Also notice that no amount of duplication of attributes

would help. This is because the function is a many to one function. It is also not possible

to use a function (say f') that takes elements from different dimensions as arguments. This

is because this function (f') behaves just like a function (f) with arguments from one

dimension but with the axis rotated. Also it is not possible to relate the functions f and f'

96

for the same instance of data structure.

Next we show that no other structure can yield better detectability without using more

storage. For this, we only need to invoke the fact that for a given volume and number of

vertices, a regular structure has the least surface area. Let the total number of elements

be Q. The number of elements (k) in one dimension if stored as a cube is Q1/N. Let the

elements be stored as some other structure in that some dimension has less than k (say i)

elements. Thus to keep the the total number of elements constant the number of elements

in some other dimension has to change to say j'. Now we require i j = constant and

i' + j as small as possible (since this is the number of stored sums). Clearly the minimum

is attained when i' = j. Thus the cube structure requires no more space than some other

structure. This completes the proof of the lemma. 0

Lemma 5.2.2 The N-dimensional cubic struciure gives N- 1 correctability (but no more).

Proof: We shall prove the result by induction on N. For one correctability we require a

2-dimensional plane. We can store the sum of the elements along two dimensions (rows and

columns). With this arrangement any single fault can be uniquely detected and corrected.

This proves the basis step. Now assume the validity of the result for N - 1 and consider

a N-dimensional structure. We form a N-dimensional structure from N - 1-dimensional

structures so that every element is a member of at least N N - 1-dimensional structures.

Every element contributes to each of the N set of axioms, that are generated for every

N - 1-dimensional structure, of which it is a member. If there are at most N - 1 errors

(compensated or otherwise) then at least one of these substructures will not contain all the

faulty elements. In other words, such a substructure will have at most N - 2 errors. From

the induction hypothesis these can be corrected. This proves the lemma. 03

We shall give an example using a two dimensional structure. In the case of a 2-D

structure we store the sum along two planes. The attributes are AT = {rsuml, cSumj}

where rsumi denoter the sum of the elements in the i-th row and csumj denotes the sum

of the elements in the j-th column. The axioms are:

.97

S1 : Vi~dataij = rsumi (5,12)

S2 : Vjydatai6 = csumj (5.13),
i

S3: rsumi = Zcsumj (5.14)
i j

The failures are erroneous data/sum items. The failure functions are:

h(dataij) = {S 3}
h(rsumi) = {S2}
h(csumi) = {S 1}

Each element contributes to the csum of the column in which it lies. Similarly it

contributes to the rsum of the row in which it lies. If there are two faulty elements and

they do not lie in either the same column or same row then our axiom structure allows

correction to the two faulty elements to be done concurrently and independently. This is

similar to local correction discussed earlier.

5.3 Design of Robust File System

File system is the most vulnerable and critical component in any computer system.

File systems are vulnerable because they operate in a somewhat imperfect environment.

The immediate cause of failure, in file systems of contemporary design, is usually the loss

of mapping information responsible for the control of the file system. As discussed by

McGregor and Malone [MM81] the mapping information can be lost in one of the three

ways:

1. The File Directory is damaged and cannot be read.

2. The free space map is corrupted and duplicate allocationof-space occurs.

3. The file linkage information is lost.

Ihus, even if the data by itself is not damaged, it may become inaccessible. We study

the design of a file system that enhances the robustness of the mapping information. Any

corruption of a data block results in the loss that data (i. e. the data is not recoverable). We

assume that the file system is implemented on a disk based system and faults result in the

loss of one or more sectors of information. We assume the sector size to be the same as block

size (a block is the logical unit of information) and use these two terms interchangeably in

the rest of the discussion. A fault is detected whenever reading a block results in a disk

error. It is sufficient to consider only read operation for fault detection since the write

operation is normally implemented as write in to the disk followed by a read of the same

block. We assume that the detection is performed by the underlying hardware. We present

the organization of the physical layer of the file system that tolerates a maximum of one

fault in each of the three entities providing the mapping information.

5.3.1 Robustness of the File Directory

The File Directory is the single most important information in any file system. It usually

contains information pertaining to the files present in the system, volume information and

other accounting information. The simplest and the most efficient way to increase the

robustness of the file directory is to duplicate the file directory. We employ duplication in

a controlled fashion to be described shortly. We assume that the maximum number of files

that can be stored on one volume is predetermined (not an unreasonable assumption, in fact

most contemporary designs put such a limitation). We use a hash function to preallocate

a block for each file that can be present in the system. This association is performed

during volume initialization. The hash function uses the directory entry number as its

argument and provides an address (i. e. the block number), where the duplicate directory

associated with this file is to be stored. After volume initialization each such block contains

the directory entry number and an indication that it is unused. The advantage of using

the hash function is that the information regarding the location of the duplicates need not

be stored. If sequential access of the directory information via the duplicate directory is

99

dir. entry number-i directory

HASH FUN.
Sdup1

dupi dupn

Figure 5.4: Directory for robust file system

desired, the blocks containing the duplicate directories could be linked together. Further,

the linking of the duplicate directory blocks can be performed during volume initialization.

Every file irc.tion and deletion results in the update of both the directory and the duplicate

directory block associated with that particular file.

It is not necessary to copy all the information from the main directory -into the dupli-

cate. For reasons of efficiency, we feel that it is sufficient to maintain the file name, the

main directory entry number and linkage pointer information. With this arrangement, the

duplicate needs to be updated only at file creation and file deletion. During other times, it

is sufficient to update the linkage blocks and -the iniormation in the main directory.

If one of the duplicates is corrupted, t can be regenerated using-the information in the

main directory. Similarly, if the main directory is corrupted then by using the hash func-

tion to traverse through the duplicates, all the relevant information-in the main directory

can be recreated. The only information lost is the accounting information. The pictorial

representation of a robust directory is shown in figure 5.4.

.100

5.3.2 Robustness of the Free Space Map

The free space map is normally stored in the volume at a predetermined location and

in the discussion we shall assume the same. To improve the robustness-we do the following.

In each block of the volume, space is reserved for a preamble. During volume initialization,

all blocks are marked free. When a block is allocated the preamble is updated so that it

contains pointers to the block containing duplicate directory information associated with

the file to which this allocated block belongs and to the main directory. Every time a new

block is allocated on the basis of the information in the free space map, the block is read

and the preamble is checked to make sure the block is free. By our assumption, there can

be at most one fault in the free space mapping information and this fault is detected by a

read operation. If no error is encountered during a read of the newly allocated block we

have two options:

a We check to see if the information in the preamble is correct, i. e. whether the entry

number in the main directory and the block number of the duplicate match. If the

information is incorrect we assume that the block was free (since we assume single

fault in each of the three mapping information), i. e. the free space map information

is correct. Otherwise we do what is discussed in the next option.

* We err on the side of safety and assume that the free space map is incorrect and

update it accordingly. We also make note of the fact that the free space information

was corrected. When the number of corrections of the free space map reaches a

threshold we recreate the whole free space map and the block preamble on the basis

of the information available in the file directory and linkage information.

The method discussed is inefficient and should be used only when reliability is of utmost

importance.

101

5.3.3 Robustness of the Linkage Information

The file linkage information specifies the location of the data-in the file. Since the file

linkage itself is stored in the file system, it is also subject to the same faults as the data.

Since file linkage information is essentially a set of pointers to data, -loss of a block of file

information results in a substantial loss of data. To enhance the robustness we use another

set of pointers to data. We can view the file as a linked list with two pointers, where the data

part of the linked list corresponds to the data blocks of the file and the two pointers are the

two sets of linkage information. It follows from our knowledge of linked lists that robustness

is best achieved by using the two set of linkage information in a manner analogous to the

forward pointer and the backward pointer in a doubly linked list. Notice that the two sets

of linkage information are stored separately. Separation of linkage information provides

better robustness since a fault in one block can destroy only one piece of information (or

one attribute as viewed from our model). Our example of linked lists in 3.3.1.2 requires

that we have one additional attribute (or linkage information) to correct a corrupted block

containing linkage information. The additional information is stored along with the data

and contains the block number of the next data block. Let us call this as data linkage pointer

(dip for short). The data linkage pointer of the last block contains the entry number of the

file in the main directory. Let us call the two sets of linkage pointers as forward linkage

pointer (fip for short) and backward linkage pointer (bip for short). We now discuss the

fip and bip in some detail.

To locate a byte of data we first obtain the block position, b, in which the data resides.

We view both fip and bip to be an array. The jth entry of the fip array contains the

address (block number) of the jth block. The block number of the jth block in the bip

array can be found in the (j + !)st position. The last entry in the ftp and the first entry in

the bip points to the main directory. The axioms for the linkage information are as follows:

Vl < i < max.blk.no. [flp(i) = blp(i + 1)] (5.15)

V1 < i < max.blk.no. [dlp[flp(i)] = flp(i + 1)] (5.16)

102

VI < i < max.blk.no. [dip[blp(i)] = bip(i + 1)] (5.17)

If the files are large, the amount of linkage information is substantial and-may span sev-

eral blocks. The linkage blocks themselves can be viewed as another file, or data structure,

containing data block addresses. We view the linkage blocks themselves as a data structure

and assume it is organized as a tree. In such a case, the higher level of linkage pointer points

to a set of blocks each of which contains linkage information. In most cases, depending on

block size, a tree depth of 3 is adequate. Organizing the linkage blocks as a tree structure

results in faster access time for the data. However, a loss of one linkage block at a higher

level of the tree translates into a loss of a very large amount of data. Thus we need to

enhance the robustness of the tree organization. In a tree organization, the leaf level blocks

correspond to either the fip or bip array discussed earlier. For the blocks in the non-leaf

levels, the linkage information is data for that level and the dip in this case corresponds

to the family pointer of the example discussed in section 5.1.2 and the linkage information

corresponds to the tree pointer of the same example. We can enhance the robustness of

these non-leaf level linkage blocks by adding attribute count to each such block and making

the dip circular. We have one tree for fip and another for bip for each file.

Notice that this is a hierarchical data structure with robustness criterion and attributes

for the non-leaf nodes that is different form those of the leaf nodes. It is also clear that

both the data structures (at the leaf level and non-leaf level) are capable of local correction.

The file linkage information can be depicted pictorially as shown in figure 5.5.

Let us discuss the space and access time overheads associated with our design. We

confine our attention to access time only since computational overhead is negligible. Let us

consider the space overhead first.

For each file we require one additional block to store the duplicate directory. If we employ

redundancy for the free space map, v, require a few bytes (space to accommodate one disk

block number and directory entry number) to store the pointers. To enhance the robustness

of file linkage information, in each data block we require space for storing the dip (space to

103

dup. bik. num. dir. ent. num. dup. bik. num. dir. ent. num.

data blk. 1 dir. entry numn.

data blk. 2 data blk. 1

____ ___ ____ ___ ____ ___data bWk. 2

data bik. i data bik. i- I

data bik. i

data bik. n

dir. entry num data bik. n

fip array Uip array

dlp

data block

Figure 5.5: File linkage information

104

accommodate one disk block number). We also require space for the bip. We require enough

space to accommodate one disk block number for each entry of fip and bip and we have

one entry per data block. It is clear that the major factors contributing to space overheads

are the space used for the linkage pointers and free space mapping. The additional linkage

pointers require twice the space used by the linkage blocks in a non-redundant organization.

The additional pointers employed for redundancy of free space mapping also require twice

the space used by linkage blocks in a non-redundant organization. The linkage pointers are

a small fraction (logarithmic amount) of the total space used by the file, since every block

of data requires space for one entry of linkage information in a non-redundant organization.

In a file organization which employs redundancy of linkage information only, the space used

for linkage information per data block is three times the space used in a non-redundant

organization. In a file organization which employs redundancy of linkage information and

free space mapping, the space used for linkage information per data block is five times the

space used for linkage information in a non-redundant organization.

Let us consider access times. The duplicate directory block need be written once during

file creation and file deletion. Hence these operations require an additional write. An update

of either fip or bip would entail a change in the other and would require two additional

accesses (one for read and one for write). Use of dip may require two additional access (one

for read and one for write) if data movement in one block requires updating the dip stored

in another block. An assessment of access time overhead requires additional information

specifying file access modes and their frequencies. It is our view that writes due to change

in dip will be responsible for most of the additional accesses. One way to overcome this

drawback is to avoid using dip and instead replicate either fip or bip. This change requires

additional space (space required for non leaf nodes of the tree structure).

Use of dip also complicates crash recovery piocedures since it involves multiple writes.

Complications arise since we need to update two blocks of information and the information

content for the two blocks is different. One method of overcoming this difficulty is to use

the following method. We write one of the blocks (the new data) into a free area of the

105

disk. This block number is the new value of dip. We then write the new value of dip and

the modified linkage information that includes the new written block as part of the file in to

the stable storage. The linkage blocks and the other block (whose dip needs to be updated)

can be changed using the information in the stable storage. An atomic update of either,

fip or bp requires a two phase write, i. e., logging information on to a stable storage and

then updating from the stable storage. Similarly, atomic update of directory, resulting from

create and delete operations also requires a two phase write.

The time to identify the faulty attribute in the data structure (generated by the file

linkage information) is 0(1) if the failure functions are given. However, the time taken to

evaluate the failure function itself is different for the different axioms. This is due to the

fact that the data and the attributes are not stored together. Only dip is stored along with

the data. Thus evaluation of an axiom involving dip requires reading all the data blocks,

whereas evaluating an axiom involving fip and bip requires reading only the linkage blocks

(the number of linkage blocks required is logarithmic with respect to the number of data

blocks). The same is true for the correction algorithms also.

The fault model assumed in the design is simplistic. A better fault model would be one

that mirrors the characteristics of contemporary disks. Some of the parameters of such a

fault model include the failure rate of the sectors, probabilities of multiple sector failures in

the same track, probabilities of multiple sector failure in the same cylinder, disk performance

times etc. These characteristics should be used to design the placement of the redundant

information discussed in our design. The placement of the redundant information affects

the efficiencies of the different file operations. A more comprehensive design using these

issues is in progress.

Chapter 6

Conclusions

In this thesis we have developed a formal and unifying method for looking at data

and structural integrity. It was shown how 1-correctable structures can be synthesized

systematically, starting with an initial specification of the data structure. We have also

stated several results concerning the number of attributes and axioms needed and how the

axioms should be generated.

Our model is very similar to the fault model used in [TMB80]. One difference is that

we do not consider replacement faults as they have done. We require detectability of less

than 2m, to achieve m-correctability whereas their model requires- detectability to be twice

the desired amount of correctability. Both the methods require m + 1 generic attributes

for m-correctability (they refer to it as m + 1 edge distinct paths). However, the main

distinction between the two methods is in the manner that faults are considered. They

develop their results using an Instance Fault Model,, whereas we use the- Generic TFault

Model. As a result we are able to tolerate any number of'faulty instances of the same

attribute. This is particularly appealing when the software-routine that updates -a pointer

does not work as required. In such a situation it is highly probable that more than one
instance of an attribute is erroneous. This situation-is-very easily tolerated (and' corrected).

in our approach.

In the design approach discussed, axioms with more than two attributes are-handled by

imposing a structure-on the axioms. However, as-discussed in section 3.4-it is not necessary

to impose any such restriction. We obtained results that generalize lemmas 3.3.8 and 3.3.9

for a system where each axiom has exactly k attributes and the required-level of detectability

m is even. However, these results have very limited practical use because of the restriction

which requires-exactly * attributes per each axiom.

106

.107

We also presented an algorithm for identifying faulty attributes. The algorithm, can

be used on any data structure that is designed using the method given in lemma 3.3,.8.

The fault identification algorithm does not assume the existence of any precomputed fault

syndrome table. Any mechanism that uses a fault syndrome table suffers from the drawback

of requiring additional space to store this table. The size of the table is substantial. For

a compensation free system we need a table with NCm entries. The number of entries

increases rapidly for a system with compensations. Our mechanism does not require any

additional storage.

The number of computational steps required by our algorithm is proportional to the

number of axioms in the data structure specification. Our algorithm is optimal with respect

to the number of axioms in the data structure specification. This is because our algorithm

uses every axiom and there is no redundant axiom in the data structure specification. We

are unaware of any work which deals with compensated faults and are unable to provide

any comparison with our algorithm.

The local correction, introduced in chapter 5, not only speeds up correction but alsp

allows it to proceed concurrently in disjoint neighbourhoods. It is thus very useful in

database applications. Lehman and Yao [LY81] have used a structure called B*-link tree

to allow concurrent operatior-s on B-trees. This is achieved by using an additional pointer

called link pointer. Since a link pointer is compatible with the family pointerintroduced for

local correction, we can not only increase the concurrency but also allow repair concurrently

with normal operations.

As shown in chapter 5, the approach for ensuring structural integrity can also be applied

to achieve data integrity. Unfortunately, it is not possible to consider the latter completely

independent of the former since the specific arrangements of original and added data at-

tributes (e.g., in form of a parallel piped) introduce the problem of ensuring structural

integrity of the arrangement. For simplicity, we assumed that the integrity of this arrange-

ment and that of original structure are dealt with separately.

108

6.1 Further Work

The design we have presented is biased towards correctable data structures or detectable

data structures. It would be nice to explore designs which cater to both detectability and

correctability. Also interesting to look for are mechanisms to integrate data integrity and

structural integrity. It is not clear how to exploit the semantic information associated with

data for purposes of fault tolerance.

We have been able to generalize lemmas 3.3.8 and 3.3.9 to a data structure with more

than two attributes per axiom when the required level of correctability is even. It remains

to be seen whether these lemmas apply even when the desired level of detectability is odd.

We also need a method to synthesize a data structure with more than two attributes per

axiom when the required level of correctability is odd. Another aspect to explore is data

structures with axioms made of different number of attributes.

The ideas developed in this thesis could be used to enhance algorithmic robustness of

the software as well. The usual mechanism for achieving algorithmic robustness involves

multiversion software, [AC77] i.e., different program versions developed from the same spec-

ifications. The success of this approach rests on the degree of independence between the

various versions. If the given abstract structure is implemented as two or more concrete data

structures then it would be possible to write fairly different programs for the same underly-

ing task. Moreover, in case of a structural fault in one of the concrete data structures (either

caused by a bug in the software or by a transient hardware fault), the abstract structure

will still be accessible via the other(s) and could be used for error detection/correction.

As an example, consider an application program working on a list of numbers. The

abstract concept of list can be implemented either using an array or a linked list. The

two implementations lead to substantially different data manipulation' algorithms, thus

providing independence. Moreover, if the pointers in the list-structure get corrupted, the

array implementation could be used for detection and correction.

Some parts of the file design that was discussed is being implemented as a masters paper.

109

It would be interesting to look to the design of a file system kernel which allows users to

tailor the reliability of their files. Robust files are becoming increasingly important with.

the advent of object oriented data bases which need to store persistent data.

It would be interesting to see if the model developed here can be applied outside the

realm of data structures. Fault tolerant systolic arrays seems to hold some promise since

systolic arrays have a regular structure like data structures.

Bibliography

[AC77] A. Avizienis and L. Chen. On the implementation of N-version programming for
software fault tolerance during program execution. Proceedings COMPSAC 77,
pages 149-155, Nov. 1977.

[ALS1] T. Anderson and P. A. Lee. Fault Tolerance Principles and Practice. Prentice
Hall, 1981.

[And85] T. Anderson. An evaluation of software fault tolerance in a practical system. In

Digest of Papers, FTCS-15, pages 140-147, June 1985.

[Avi78] A. Avizienis. Fault tolerance: the survival attitude of digital systems. Proceedings
of IEEE, 66:1109-1125, Oct. 1978.

[CA78] L. Chen and A. Avizienis. N-version programming: A fault tolerant approach to
reliability of software operation. In Digest of Papers, FTCS-8, June 1978.

[CB81] F. Cristian and E. Best. Systematic detection of exception occurrences. Science
of Computer Programming, 1:115-144, October 1981.

[CLE88] A. K. Caglayn, P. R. Lorczak, and S. E. Eckhardt. An experimental investigation
of software diversity in a fault tolerant avionics application. In Proceedings of 7th
Symposium on Reliable Distributed Systems, pages 63-69, October 1988.

[Cri80] F. Cristian. Exception handling and software fault tolerance. In Digest of Papers,
FTCS-1O, pages 97-103, Kyoto, October 1980.

(Dav87] I. J. Davis. A locally correctable AVL tree. In Digest of Papers FTCS17, pages
85-88, July 1987.

[EL85] D. E. Eckhardt and L. D. Lee. A theoretical basis for the analysis of multiversion
software subject to coincident errors. IEEE trans. on Software Engineering, SE-
11, December 1985.

[GAA80] A. Grnarov, J. Arlatt, and A. Avizienis. On the performance of software fault tol-
erance strategies. In Digest of Papers, FTCS-1O, pages 251-253, Kyoto, October
1980.

[Hor74] J. J. Horning. A progiam structure for error detection and recovery, volume 16
of Lecture Notes in Computer Science, pages 171-187. Springer Verlag, 1974.

[KA83] J. P. J. Kelly and A. Avizienis. A specification oriented multiversion software
experiment. in Digest of Papers, FTCS-13, June 1983.

[Kan87] K. Kant. Software fault tolerance in real time systems. Information Sciences,
42:255-282, 1987.

[KL86] J. C. Knight and N. G. Leveson. An experimental evaluation of the assumption
of independence in multiversion software. IEEE trans. on Software Engineering,
SE-12, January 1986.

110

111

[KS85] K. Kant and A. Silberschatz. Error propagation and recovery in concurrent ei-
vironments. The Computer Journal, 28(5):466-473, November 1985.

[LY81] P. L. Lehman and S. B. Yao. Efficient locking for concurrent operations.on B-
Trees. ACM transactions on Database Systems, 4:650-670, 1981.

[MM81] D. R. McGregor and J. R. Malone. Design of a robust, simple and highly reliable
filestore. Software Practice and Experience, 11:943-947, 1981.

[MSR77] P. M. Melliar-Smith and B. Randell. Software reliability, the role of programmed
exception handling. Sigplan Notices, 12:95-100, March 1977.

[Par77] D. L. Parnas. The influence of software structure on reliability, volume 1 of
Current trends in Programming methodology, pages 111-119. Prentice Hall, 1977.

[Ran77] B. Randell. System Structure for Software Fault tolerance, volume 1 of Current
trends in programming methodology, pages 195-219. Prentice Hall, 1977.

[Sag85] Yehoshua Sagiv. Concurrent operations on B-Trees with overtaking. In Pro-
ceedings of 4th ACA! SIGACT-SIGMOD symposium on Principles of database
systems, pages 28-37, March 1985.

[Sco84] R. K. Scott. Experimantal validation of six fault tolerant software reliability
models. In Digest of Papers, FTCS-14, pages 102-107, June 1984.

[Shr78] S. K. Shrivastava. Sequential pascal with recovery bloc.cs. Software Practice and
Experience, 8:177 -185, March 1978.

[Shr79] S. K. Shrivastava. Concurrent pascal with backward error recovery- language
features and examples. Software Practice and Experience, 9:1001-1020, December
1979.

[SM85] S. C. Seth and R. Muralidhar. Analysis and design of robust data structures. In
Digest of Papers FTCS-15, pages 14-19, June 1985.

[SS82] D. P. Siweiorek and R. S. Swartz. The Theory and Practice of Reliable System
Design. Digital Press, 1982.

[SS85] M. C. Sampaio and J. P. Sauve. Robust trees. In Digest of Papers FTCS-15,
pages 23-28, June 1985.

[TB85] D. J. Taylor and J. P. Black. Guidelines for storage structure error correction.
In Digest of Papers, FTCS-15, pages 20-22, Ann Arbor, Michigan, June 19-21,
1985.

[TB861 D. J. Taylor and J. P. Black. A locally correctable B-Tree implementation. The
Computer Journal, 29:269-276, 1986.

[TMB80] D. J. Taylor, D. E. Morgan, and J. P. Black. Redundancy in data structures:
Improving software fault tolerance. IEEE trans. on Software Engineering., SE-
6:585-594, Nov. 1980.

