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Chapter 1

Statement of the Problem

Two apertures in a circular waveguide feed two identical rectangular wave-
guides as shown in Fig. 1.1. The walls of each waveguide are perfectly con-
ducting. The interiors of the left-hand waveguide, the right-hand waveguide,
and the circular waveguide are called regions 1, 2, and 3, respectively. Ho-
mogeneous space of permeability y and permiftivity 6 exists in regions 1, 2,
and 3. The excitation is a TMo2 wave of unit amplitude traveling in the z
direction in the circular waveguide. The circular waveguide is of radius a and
is terminated by a perfectly conducting wall at z = L 3. The radius a is such
that only the TE, and TMo1 modes can propagate in the circular waveguide.
A problem similar to the one being described was previously treated in [1].

Both rectangular waveguides run parallel to the x axis. Both have the
same cross section (-k < y < , -s < z < ) where c < b and b is such that

2 - 2' 2 - - 2)
only the TEo dominant mode can propagate in each rectangular waveguide.
The aperture which feeds the left-hand rectangular waveguide in Fig. I is
called A 1 . This aperture is the surface for which (p = a, 7r - o _
r+ to, - <Z< z ) where

p = y + y2  (1.1)

00 sin-l(b) (1.2)

The aperture which feeds the right-hand rectangul,-. waveguide in Fig. 1.1
is called A 2 . This aperture is the surface for which (p = a, -po <
00, -S < z < S).
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Figure 1.1: Top and side views of the TMo1 to TE10 mode converter.
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The voltage to current ratio of the TEo mode in region 1 is taken to
be Z1 at x = -L 1 . All other rectangular waveguide modes are evanescent.
The voltage to current ratios of the evanescent modes at x = -L 1 do not
come into play because L1 is taken to be so large that any evanescent wave
emanating from the termination at x = -L 1 will have negligible amplitude
upon arrival at the apertur , A1. The voltage to current ratio of the TEo
mode in region 2 is taken to be Z2 at x = L 2. Here, L 2 is taken to be so
large that any evanescent wave emanating from the termination at x = L2
will have negligible amplitude upon arrival at the aperture A2.

As previously stated, the excitation is a z traveling (traveling in the z
direction) TMo1 wave of unit amplitude in the circular waveguide. By as-
sumption, this is the only z traveling wave at z = -&. This wave is produced2
by an impressed source or sources located in the region for which z < z, < -

of the circular waveguide. Since neither of the rectangular waveguides nor
the region for which z > z' of the circular waveguide contains an indepen-
dent source, the electromagnetic field for z > z, in the circular waveguide
depends only on the amplitudes of the z traveling waves at z = z, and not
on the manner in which these amplitudes were produced. Therefore, we can,
without loss of generality, assume that the impressed source of the unit am-
plitude z traveling TMo0 wave in the circular waveguide is an electric current
source jImp whose -z traveling (traveling in the -z direction) waves see a
matched load, that is, these waves are never reflected. As shown in Fig. 1.1,
jimp is located at z < - in the circular waveguide. The objective is to find
the electromagnetic field in regions 1 and 2 of Fig. 1.1 and in the portion of
region 3 for which z > z, in Fig. 1.1.
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Chapter 2

Formulation

Following the generalized network formulation for aperture problems [2], [31,
we close the apertures A1 and A 2 with perfect electric conductors of infinites-
imal thickness. As shown in Fig. 2.1, we place the surface density of magnetic
current M(1 on the region 1 side of the closed aperture A1, -M (' on the
region 3 side of A1, M (2 ) on the region 2 side of the closed aperture A 2, and
-ML(2 ) on the region 3 side of A2 . In Fig. 1.1, the tangential electric field
and the tangential magnetic field are continuous across A, and A2 . The
arrangement of magnetic currents in Fig. 2.1 ensures continuity of the tan-
gential electric field across A, and A2 . Now, the fields in Fig. 2.1 will be the
same as those in Fig. 1.1 if M (1) and M (2 ) are adjusted so that the tangential
magnetic field in Fig. 2.1 is continuous across A, and A2.

Continuity of the tangential magnetic field across A, in Fig. 2.1 is ex-
pressed as

HL() = IL(3) onA(21
tan tan onA 1  (2.1)

where H (1) is the magnetic field in region 1 and H(3) is the magnetic field
in region 3. In (2.1), the subscript "tan" denotes the components tangent
to A1. Continuity of the tangential magnetic field across A 2 in Fig. 2.1 is
expressed as H(1) = on(A2  (2.2)

tan -tan onA

where f.( 2) is the magnetic field in region 2. In (2.2), the subscript "tan"
denotes the components tangent to A2.

The electromagnetic field (E,(1), H ( 1)) in region 1 of Fig. 2.1 is due to M (1)

4
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Figure 2.1: Top and side views of the situation equivalent to that of Fig. 1.1.
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placed on the region 1 side of the closed aperture A,:
(1) = E (2.3)

/-/(I) = 10(a, M(X)) (2.4)

The superscript "(1)" on Z and U on the right-hand sides of (2.3) and (2.4)
denotes radiation in region 1 of Fig. 2.1. The "0" on the right-hand sides of
(2.3) and (2.4) indicates that there is no electric current source.

The field (E(2), H( 2)) in region 2 of Fig. 2.1 is due to M (2) placed on the
region 2 side of the closed aperture A 2:

Z (2) = E(2)(0, (2))  (2.5)

// l!/ 2)(0,M(i2)) (2.6)

The superscript "(2)" on E and H on the right-hand sides of (2.5) and (2.6)
denotes radiation in region 2 of Fig. 2.1. The "T" on the right-hand sides of
(2.5) and (2.6) indicates that there is no electric current source.

The field (L(3), I( 3 )) for z > z, in region 3 of Fig. 2.1 is due to the current

sources timp, -M(l), and -M (2 ) radiating in the circular waveguide with
the apertures A1 and A2 closed by perfect conductors, with the perfectly
conducting wall at z = L3, and with a matched load at z = ZL where ZL is
any value such that all of limp lies in the region for which z > ZL:

(3) = E( 3 )(Limp, g) - E(3 )(gi M (1)) - E(3)(0, M(2)) (2.7)

.H( 3) = Hf( 3 )(LimpQ ) - -(3)(a, M(I)) - -(3)(0,M(2)) (2.8)

The superscript "(3)" on the right-hand sides of (2.7) and (2.8) denotes
radiation in region 3 with the apertures closed, with the short at z = L3,
and with the matched load at the other end. The first argument of each field
on the right-hand sides of (2.7) and (2.8) is an electric current source; the
second argument is a magnetic current source.

Substitution of (2.4) and (2.8) into (2.1) gives
_H(I) tq M(j)) _H(3) (afM(j))_/(ta (2)) = -a)(ip0 onA

ntan an t- tan (ImP, U) onA,
(2.9)

Substitution of (2.6) and (2.8) into (2.2) yields

_H( _a(2) n(q'M(2 ))() a ( 2 ) t(imp 0) on A2- )tan "'n M )) )--t an ta'M 2) -H n( ' M )) -- t an U -'

(2.10)
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Let
pTM QTM pTE QTE

-I Z E VITMMITM(, ,z)+ E E V lTE E(bz) (2.11)

p=1 q=l p-O q=O
p+q*O

pTM QTM pTS QTE
-(2 Z Z V 2 TMM2TM() Z Z E v 2 T EM4" T E( Z) (2.12)m")vT T pq .A..q (0,"pq 184-q (01Z

p=1 q=l p=O q=O
p+q$O

where the V's are unknown coefficients to be determined and

(ylz+ ,)+ Usi pq(Yl+Z Z +),
( = Z),( ,1+ +zp Y -- -q

- € < + o (2.13)

2- - 2
sin Ooe6 ,2+ , 1 :5 ! 0 2a4( ,eZ) = _e ' (y2+,z+) - si '-- o q Y z <. < (214)

z~ 0 1 2 - - 2

where 14 and u. are the unit vectors in the 0 and z directions, respectively.
Furthermore, eq and e6q are, respectively, the y and z components of _.
Now, 8 is either TM or TE, and eTM and eTE are given by (A.10) and (A.23),
respectively. In (2.13) and (2.14),

y 1+ = (r-¢)xo+ (2.15)
2+ = OXo + & (2.16)

z+ = z+ (2.17)

where
x 0 - (2.18)

€o

In Chapter 3, it is shown that (E(1)(qM I 'M) ()(Q, 'M'isppr-), IE), LEO) q, g is apx-
mately a TMq field in region 1, that (E)(0,MiTE),H()(0 -iTE)) is ap-

proximately a TEq field in region 1, that (E(2)(,.' TM),1(2)(0,-L.TM))

is approximately a TMVf;q field in region 2, and that (E(2)(q, M2TE),H 2)(O,

M 2TE)) is approximately a TEpq field in region 2.
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Substituting (2.11) and (2.12) into (2.9) ard (2.10), we obtain

pTM QTM

-_ ZIZ"T M  ( -(Q TM) + (3) 1(, TM)
p=l q=1

pTE QTE

E vI TE() f(a, TE) +H( 3) T EPq (--- a ( , r E  -.. a , , q T )1

;=0 
q Ot

p+q#O

pTM QTM pTE QTE

- ZV2T MH(QMTV2TE() (q M2TE)v'TM'3pqztan ,, .qa M2~ q tan ",pq,

p=1 q=1 p=O q=O

p+q#O

= -Hlta)(jimP,0) on A, (2.19)

and

pTM QTM pTE QTE

S 1TMff( 3 ) N T, -VTE() /TM _1TE)Z pq tan, ' M ,q ,- V Pq tan p
p=l q1-l p=O q=O

p+q#O
pTM QTM

-z z v
2 T M {LE( 2 )  M M  an(3)L-, q ' tan 'pq ' "tan' " pq J

p=1 q=1

pTE QTB

- Z S v2
T E(ff( 2

)( 2TE +f.(3) ,M/2E)p _ttan(a2, A q )+ tan , _ pq j

p=O q=0

p+q*O

= -IL(j imnP,) on A2  (2.20)

The symmetric product < A, B > between two vectors A and B is defined
to be the surface integral of their dot product over whichever aperture they
are defined:

< A,B >= J A. Bds (2.21)
JAi or A2

Here, ds is the differential element of surface area. First taking the symmetric
product of (2.19) with each of the expansion functions M.T and 1iTE that
appear in (2.11), and then taking the symmetric product of (2.20) with each

8



of the expansion functions n!'M and M2,TE that appear in (2.12), we obtain

ITM f1TM

[ ITE fTE
[y+y+Y1 ~E,2TM = TM (2.22)

V2TE P2TE]

where the 1 's are column vectors of the unknown V's in (2.11) and (2.12).
The 's are also column vectors; the right-hand side of (2.22) is called the
excitation vector.

The elements of the V's in (2.22) are given by

j = 1,2,'.N'
V-V 6 , =1,2 (2.23){ =TM,TE

The subscript "j" on the left-hand side of (2.23) is a condensation of the
double subscript "pq" on the right-hand side of (2.23); a one to one corre-
spondence is established betweeen each pair of integers p and q in use and
each of the positive integers 1,2,. -N 6 . The correspondence in the "TE"
expressions (6 = TE in (2.23)) may be different from that in the "TM"
expressions (6 = TM in (2.23)). The elements of the I's in (2.22) are given
by

R aa, .fH( 3 ) (jimpQ { =1,2..N
-J Ma) ds, a = 1, 2 (2.24)

where i is related to mn in the same way as j is related to pq in (2.23). The
relationship in (2.23) was of the type "6"; that in (2.24) is of the type ".3".

The subscript "tan" which was attached to H( 3)(jlimp, ) in (2.19) is not
needed in (2.24) because M is tangent to A,

In (2.22), Y 1, Y 2 , and y 3 are the admittance matrices for regions 1, 2,
and 3, respectively. The matrix Y' is given by

y1,ITM,1TM yI,1TM,1TE 0 01

Y1 -yITEITM y1TE,1TE 0 0] (2.25)
0 0 0 0

9



where each entry of the array on the right-hand side is a submatrix. Each
element of the "0" submatrices is zero. The elements of the non-zero subma-
trices are given by

{ =1, 2,...NO

1 ,10,1s -[JJ jM " .)0 '' s 1, 2, ' s
hA, d 13=(2.26)

6 = TM, TE

where j is related to pq as in (2.23); i is similarly related to inn. Nevertheless,
the relationship between i and mn may be different from that between j and
pq. The relationship between i and mn is of the type "/3". The relationship
between j and pq is of the type "6". The matrix Y2 is given by

0 0 0 0

y2 0 0 0 0
0 0 y2,2TM,2TM y2,2TM,2TE (2.27)
0 0 y2,2TE,2TM y2,2TE,2TE

where the elements of the "0" submatrices are zero. The elements of the
non-zero submatrices are given by

i=1,2,.NOY 2,20,26 m[ 20 26 ,2, . ,N
-" = . A 2= ~q s T M , T E (2.28)

A2

TM, TE

where i is related to mn and j is related to pq as in (2.26). The matrix Y3

is given by
y3,1TM,1TM y3,1TM,1TE y3,1TM,2TM y3,1TM,2TE 1

y3 y3,1TE,1TM y3,1TEITE y3,1TE,2TM y3,1TE,2TE (
y3,2TM,ITM y3,2TMITE y3,2TM,2TM y3,2TM,2TE (2.29)

Sy3,2TE,1TM y3,2TE,1TE y3,2TE,2TM y3,2TE,2TE

where

i= 1,2,..N
j =1,2,...N'

'.7 aa H (3 ) (a, a6) ds,1, (2.30)
A ds, 13 = TE, TM

Q 7 =1,2

6= TE, TM

10



In (2.30), i is related to mn and j is related to pq as in (2.26).
If the elements of the admittance matrices Y', Y 2, and Y3 and the column

vectors fITM, rITE pTM, and PTE can be evaluated, then (2.22) can be
solved for V ITM 1ITE, V I2TM and V2TE. These V's determine M(1) and
M(2) according to (2.11) and (2.12). Next, M 1 ) and M (2) can be substituted
into expressions (2.3)-(2.8) for the fields in the waveguide regions.

11



Chapter 3

The Admittance Matrices for
the Rectangular Waveguides

In this chapter, I.'.,13,16 of (2.26) and 'j of (2.28) are evaluated. We
approximate y.,"' 6 of (2.26) by kl"'O,6 given by

=1, 2,---N6

~ MmH~ 1)QA ) ds, /3T ,E(3.1)

I = TM,TE
We approximate y 2 ,2'2 of (2.28) by Yij given by

i=1,2,..,NO

/22J -25 j = 1,2,.,N 6  (
A2 Mm "( 2)( Mpq)ds, TM,TE (3.-2)

15 = TM, TE

6 26 ^ 16In (3.1) and (3.2), qM and 2kP are approximations to Mpq of (2.13) and
-26

A.q of (2.14). Furthermore, A, and A 2 are, respectively, the surfaces on

which M and '2 are defined. In (3.1) and (3.2), j is related to pq as in
(2.23); i is similarly related to inn.

The Y's of (3.1) and (3.2) will be evaluated by first defining the k's that
appear in (3.1) and (3.2) and then by finding the If's that appear in (3.1)

12



and (3.2). The electric fields associated with these H's will also be found
because these electric fields are needed in order to evaluate, as indicated in
the last two sentences of Chapter 2, the field in the rectangular waveguides.
Finally, the M's and the H's will be substituted into (3.1) and (3.2) to obtain
appropriate expressions for the Y's.

We define M; by

16 16X =- -. ,

[.'z k1 . < <b (3.3)

-- - - 2

where z + and xo, are given by (2.17) and (2.18), respectively. Furthermore,

y+ = y + k (3.4)

As defined by (3.3), Mqexists on a portion of the x = -x,, plane. With

Xo given by (2.18), -xo is the average value of x over the curved surface on

which 14,6 of (2.13) exists. A.q is placed on the region 1 side of a perfect

conductor which covers the plane surface in (3.3). This surface is called Al.
We relate y of (3.4) to 0 by

y (=r - O)xo (3.5)

Relationship (3.5) is reasonable because:

1) y=OwhenO=ir

2) y= wheno=r- o

3) y=-wheno=r+o

The above items 2) and 3) are obtained by using (2.18) and (1.2). Given
(3.5), the interval (y, y + dy) corresponds to the interval ((p, p + do) where 0

is related to y by (3.5) and

de=_ dy (3.6)xgo
S16

Here, dy and do are the differentials of y and 0, respectively. Mpq of (3.3) is a

good approximation to M16 of (2.13) because the transverse and longitudinal

13



^16
voltages produced by M.q on the portion of its surface for y in the interval
(y + dy) and z in the interval (z + dz) are the same as the transverse and
longitudinal voltages produced by M on the corresponding portion of its
surface. The latter portion of surface is the surface for which p = a, 0 is in
the interval (0, 0 + do), and z is in the interval (z, z + dz). Here, dz in the
differential of z. Moreover, 0 and do are related to y and dy by (3.5) and
(3.6), respectively.

To show equality of the voltages mentioned in the previous paragraph,
we note that MP9 of (3.3) produces the tangential electric field -. given by

× = 4 (y , z+) (3.7)

on its surface and that A4 of (2.13) produces the tangential electric field
given by

sin 00 6 -+ 6 +
u ×i = = -X-9 U e.q(yl ,z+) + u&ez(y 1 ,z + ) (3.8)

on its surface. Here, u., .uy, , ,., and uO are unit vectors in the directions
-16

indicated by the subscripts. The transverse voltage produced by Mq is the
voltage at y + dy with respect to that at y. This voltage is V given, in view
of (3.7), by

= , (-i_,edy) = (y, z+ )dy (3.9)"-- "~p * --edY ypq

The transverse voltage produced by M is the voltage at 0 +do with respect
to that at 0. This voltage is V given by

Vt =.(--?4a de) = - q.(y'+,z+)dy (3.10)

Equations (2.18), (3.6) and (3.8) were used to obtain (3.10). The longitudinal
voltage produced by Mpq is given by

(-u dz) = -e6pq(y+, z)dz (3.11)

The longitudinal voltage produced by M' is V given by

V1 = .(-udz) = _e,,,y'S , ,z ')dz (3.12)

14



From (2.15), (3.4), and (3.5), we have yl+ = y+ so that it is now evident
from (3.9)-(3.12) that the transverse and longitudinal voltages produced by

Is 
16M_ are the are the same as those produced by M q.

28
We define M by

(Y' ) (Yz X k < :5(3.13)=-C Z <S
2 - -2

+ 28
where z +, zo, and y+ are given by (2.17), (2.18), and (3.4), respectively. Mpq

of (3.13) is a good approximation to A. q of (2.14) because the transverse and
longitudinal voltages produced by Mq on a differential element of its surface

are the same as the transverse and longitudinal voltages produced by .Mq
on the corresponding differential element of its surface. Equality of these
voltages follows from an argument similar to that in the previous paragraph.

, -16 18
The problem of finding the field (EL((, M.q), H(fMpq)) is a boundary

value problem in which the transverse electric field at x = -x, in region 1 is
16 given by (3.7) as

: 4q,(y+,z+) (3.14)

Furthermore, region 1 is terminated, as in Fig. 2.1, at x = -L 1 with the
impedance Z1 . Therefore, as explained in the third paragraph of Chapter 1,
the only x traveling wave at x = -x, is a TE10 wave.

We choose
1TM (1 - TM = fCTM-[TM- [.TM-(E(1)(o, E M), f(0, A )) =G M ( M ,4M)(3.15)

Spq - pEq I 14~q (315
(1) = 1TE 1 1T(E (OQMro),H )~1 ( ,~ AE)) = CrE, o('-(E f-,gr.)

+1 TE IE E1 0 + , Hr + )  (3.16)
(E(O,.Qp~4 ),H((QMl,)) = CE E, ,-I), (p, q $ 1, 0) (3.17)

where the C's are unknown constants. The (E, H)'s on the right-hand sides of
(3.15)-(3.17) are niode fields given by (A.3), (A.14), and (A.15). Substituting
(A.3), (A.14), and (A.15) into (3.15)-(3.17), we obtain
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1TMq rpq Y Y

ITM (3.18)

ILM (.,MN ) = Cp'A,(3.19)

10 10 10 10 ) +) (3.20)
I TE

~1(M 10 )=(CTE+e-,Yox TE eyo., zy

E ~ ) (~ k+E C T E&Tl o 1 0o 
~ , 1 0 j ( 3 .2 1 )

qT TE- T(Y+,z+)egYPqz, (p,q) 0 (1,0) (3.22)

LL~)(,MiE)- TE- [y hTE(Y+ Z+) + k pqg( 'YpqX
- q N Tq' \YZ

(3.23)

toSetting, as required by (3.14), the transverse part of E(1)(Q,!1pLq) equal
t 4 q(y+, z+) when x = -x., we obtain

N TZTMq~ (3.24)pqM Zp~q
1=cTE+enoxo + GTE - e-1Oo (325

-pq~ (p, q) 6(1, 0) (3.26)

The presence of Z, requires that, at x = -Li, the ratio of the coefficient of

JTcoE(y+, z+) in (3.20) to the coefficient of kTOE(y+, z+) in (3.21) be -ZI:

- Z1~E -CTE+eyoL1 + Coe-oL1 3.7
Z, 10 CiIE+&oLl _ CTEe,-roLj 3.7

The constants CTE+ and CE- that satisfy (3.25) and (3.27) are

CE -(ZYT10 X 2 sn(y"( 1 -x)) + ZI yTE coh-ylo(LI - z 0-M (3 .28)
[E 2 f{sinh(-fl 0(L1 - ZYT 10 Lcsh

10X")) + Z1 yTE coh-yl 0(LI - X0))
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In view of (A.13) and (A.25), substitution of (3.24), (3.26), (3.28), and
(3.29) into (3.18)-(3.23) gives

(________,__ ppq(x + xo)
(),(Y+Z Z+) -- _ - gX epq  (3.30)

HL(Q4TM W= ( +)eP q (x + x0 ) (3.31)

-- "Ypq A q

_1TE.

E(Li-1( o ) = JE (Y+,z+)
sinh (7 1o(L1 + X)) + ZYTE cosh (1io(LI + x))sinh (7 1o(L1 - xo)) + Z1Y0E cosh (710(L1 - xo)) (3.32)-* X1TE.ZIy

IL(1)(0,Mlo ) = hgE(y+,z+)

jyito(cosh (7 I(L 1 + x))+ Z1 YY sinh ( o(L1 + x))) _

w/p(sinh (-y1o(L1 - x0)) + Z1Y1TE cosh (-ylo(LI - o)))

--rT, + jkIo(sinh (y10 (LI + z)) + Z 1Y0E cosh( yo(L 1 + )))
*,04E(Y+,z )WA(sinh tlo(Ll - X.)) + Z, y1 E c y1 o(L1 - xo))) (3.33)

E)(QA E) = f4 ,E(y+,z+)ePq(z+zo) (p,q) # (1,0) (3.34)

(, ) = L~i E(Y' Z+) kp +,z+)\

ypq(X + X.)
•e , (p,q) # (1,0) (3.35)

The electromagnetic field in (3.30) and (3.31) is a -x traveling wave (A.3),
that in (3.32) and (3.33) is a combination of x traveling and -x traveling
waves (A.14) and (A.15), and that in (3.34) and (3.35) is a -x traveling
wave (A.15). When x = -xo, the transverse part of the electric field (3.30)
is 4 M, the electric field (3.32) is tT0E, and the transverse part of the electric
field (3.34) is 4T. When x = -L 1 , the ratio of the TEjo voltage associated
with (3.32) to the TEIo current associated with (3.33) is -Z.

In a development similar to that in the previous three paragraphs, we
obtain

(2 ) 2TM (TM(z+t+) +U. kTM(y,z+) -pq(X-Xo)
M  ) + + u k'  y+,z) e (3.36)
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L.(2)(aj TM) = e*-M(. p+ )-P( - 2o) (3.37)
-=pq , , ,

Z(2) (a i2TE

sinh (iy1o(L2 - z)) + Z2 YT cosh (-71o(L2 - X)).

sinh (-t1o(L2 - x.)) + Z 2 YToE cosh (-y1o(L2 - x,)) (3.38)

I L ( o(. , i o ) -2oT(E,
=0 _.&E(Y+, Z+)

j-tO(cosh (7 1 o(L2 - x)) + Z2 YIToE sinh (71 o(L2 - x)))
WIL(sinh (yio(L 2 - c)) + Z2 Y T E cosh (-y1o(LI - x0))) U

--rE, + z jk 2(sinh (7 1o(L2 - x)) + Z2Y'oE cosh (-flo(L 2 - X)))

~~wi.~sinh ("yjO(L 2 - Xo)) + Z2Y1 o-E cosh (yjjo(L 2 - X,(3.39

E (,++)= T ,)(pq) # (1,0) (3.40)

2TE 'TE+ ,,Tk(y+, z+) -- pq(X -Xo)2P h ,) +
p(pq

(p,q) # (1,0) (3.41)

The electromagnetic field in (3.36) and (3.37) is an x traveling wave (A.2),
that in (3.38) and (3.39) is a combination of x traveling and -x traveling
waves (A.14) and (A.15), and that in (3.40) and (3.41) is an x traveling wave
(A.14). When x = x, the transverse part of the electric field (3.36) is
the electric field (3.38) is eIOE, and the electric field (3.40) is gE. When
X = L 2, the ratio of the TErn voltage associated with (3.38) to the TEjo
current associated with (3.39) is Z 2.

Suitable expressions for the electric and magnetic fields due to the Ml's
of (3.1) and (3.2) are given in the previous two paragraphs. We are nearly
ready to substitute these M's and their magnetic fields into (3.1) and (3.2).
Letting 6 = TM in (3.3) and using (A.4) and (A.5), we obtain

-ITM -M (+ =+ )  (3.42)
M .,n n , (3.42

Letting 6 = TE in (3.3) and using (A.16) and (A.17), we obtain
ITE = hTEy+1 Z+ )  (3.43)

18



Substitution of (3.42), (3.43), (3.31), (3.33), and (3.35), into (3.1) and sub-
sequent application of the orthogonality (A.26) give

il,ITM,1TM --jw bij (3.44)
'3 7Ypq

ViJ"TE'1TM - 0 (3.45)
'3

Yi I TM1I TE 0 0 (3.46)
13

lITE,1TE

j _j/yo(cosh (-y1o(L1 - xo)) + Z1 YlE sinh (7,o(L1 -o

wy(sinh(7 1 o(Li - x,)) + Z, oj ' cosh (7 io(Li - x,,)))
= (p,q) = (1,0)

I- (pI q) 4 (1i,0)

(3.47)

where bij is the Kronecker delta function:

1, {' i=j (3.48)
6ij 0,i # j

In (3.44) and (3.47), the subscript j is related to pq as in (2.26). The subscript
j is not to be confused with the other j in (3.44) and (3.47). This other j is
VT.

In a development similar to that in the previous paragraph, we obtain

2,2TM,2TM jw bii (349)
i ^fpq

12,2TE,2TM =0 (3.50)
2,2TM,2TE(3.)

,T2,2TE,2TE
+},M.T =~T 0yOL -35 ),))

j-io(cosh (-ylo(L 2 - xo)) + Z2 YEsinh(yio(n2

wIA(sinh (-ylo(L 2 - X.)) + Z 2YT0E cosh (y1o( L 2 - x,)))1 (p,q) = (1,0)- ,q ij(p, q) 0 (1, 0)

(3.52)
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Chapter 4

The Admittance Matrix for
the Circular Waveguide

In this chapter, Yi'' of (2.30) is evaluated. The field ((3)(0, M),

L[(3) (a, Mg)) is radiated by the magnetic current M. in the circular wave-
guide with the apertures A 1 and A 2 closed by perfect conductors, with the
short at z = L3 , and with the matched load at the other end. Otherwise
stated, (E(3 )(0, ,,A),H(3)(0, M.)) is the field that would exist in region 3

of Fig. 2.1 if jimp, _M(Z), and -M (2) were removed and if M' 6 were put-pq

where -k ( ) was. Our first objective is to obtain expressions for E(3)(0, M )

and HI(3)(0, M ). An expression for (3 )(0, Mq 6) is needed to evaluate, as
indicated in the last two sentences of Chapter 2, the field in the circular
waveguide.

The volume density of magnetic current corresponding to the surface
density M q6(0,z) is 9;q6(0, z),(p - a) where 6 (p - a) is the one-dimensional
Dirac delta function. This volume density is expressed as

a'(0, z) 5(p - a) = .uMq(p, 0, z) + u.M,Iq(p, ¢,z) (4.1)

where

A (p, , z) - (u_.M.6(¢,z))6(p-a) (4.2)
M ,'p,¢,z) = (u.M p(,z))6(p-a) (4.3)

Applying the Green's function technique, we obtain
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f dz' j d'j pdp/{M;,q(p',O'', z')

(3)P
•~ £ (o~u,(,--r')) + M.q(p', j, £ , -ri))} (4.4)

"L(3 dQ, 21rd¢ a•  ,

q 3 1(2.) = dzj do' j P dP{M;q(. 'z')

•t( 3)(., '06(r- )) + M7 q(P', &,z')f 13 (0, i 5 (r- z))} (4.5)

where the operator t(3) differs from the operator E(3) only in that the second

argument of &(3) is a volume density instead of a surface density. Similarly,

the superscript "A" in I (3) indicates that the second argument is a volume
density. In (4.4) and (4.5), 6(r - r') is the three-dimensional Dirac delta
function, r is the radius vector to the point (p, 0, z) at which E)(0, M.) and

L 3)( Q, A sL) are evaluated, and r' is the radius vector to the point (p', 0', z').

The fields k(3)(Q, u 5(r - r')) and f!(3)(Q,_&6(r. -e)) are obtained by
adding to the electromagnetic field of (D.19) and (D.20) the reflection due to
the short at z = L. The electromagnetic field of (D.19) and (D.20) consists
of a sum of fields each of which is of the form (E, LE) where

E = (C(z, z')Etan + uE)e - " 1"- ' 1  (4.6)

H = (Htan + ue(z, z')H,)e - -Iz-z' 1  (4.7)

where Etan and Htan have only p and 0 components. Furthermore, e(z, z')
is given by (D.4), and -f is either -,TM of (B.24) or -,TE of (B.53). In this
paragraph and in the next three paragraphs, the index p that appears in
(D.19), (D.20), -ypmT , apI yTE is not to be confused with the index p that
appears in M q, Mpq and M"5. Similarly, the index n that appears in
(D.19), (D.20), -7 4M and -,, is not to be confused with the index n that
appears in M.,. The reflected field due to (E,if) is a field (F, , LE) which is
proportional to (Eif)< 2 . Here, the subscript z < z' denotes evaluation at
z < z'. Adjusting the amplitude of (E', if) so that the tangential component
of 'E + Er vanishes when z = L 3, we obtain

Z' = (-Etan + ujEz)e (z+z'- 2L3) (4.8)

LEr = (Htan - u_.H.)e "(z"+ - 2L,3) (4.9)
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The sum of (4.6) and (4.8) is

E + E - 2e-,y(L3-') {Etan sinh ('y(L 3 - z))

+uE. cosh (-I(L 3 - z))}, Z > z' (4.10)

E+ = 2e - ,(L 3 - Z) cosh (7 (L3 - ')){-Etan + uE-} Z < Z' (4.11)

The sum of (4.7) and (4.9) is

H +/-/" = 2e-"(L3-Z') {Htan cosh (-y(L 3 - z))

+uHz sinh (-(L3 -z), z > Z' (4.12)

Hi-+/H7 = 2e - (L3 - ) cosh (-y(L 3 - z')){Hftan - uH=}, z < z' (4.13)

In this paragraph, we have shown that the short at z = L 3 changes the field

(E, LE) that would exist in the circular waveguide matched at both ends to
the field (L + E7,/-/ + X).

Replacing each term of the form (4.6) in (D.19) by a term of the form

(4.10) or (4.11), we obtain

(3) (- r'))
1 Z Z ( n' (TM2T' kTM nTM(L 3 -zt)

7r E EX 2 j2+ (Xn"

n=O p=1 np n+l (xip

{-upJn(k,,P pcos (n(O - 0')) sinh (TM(L 3  Z))

nJ,,(kMp sin (n(O - 0')) sinh (-,TM(L 3 - z))
-I - n TM n

k,,p p

k T Jn(k'pp) cos (n(O - 0')) cosh (rTM (L3  Z))
TM }

^fnp
2 (kTE 2 TE p, - YE(L 3-z') sinh ( (L-))

Z. ,p) n(,p - )s n( E  - )
ni=1 p=l X '(kE'j2X

nJ(kT~p) cos (n(O - 0')) Ep)• {np r + JU, X'(k~pp sin (n(O - 0')) },
k,,p P

z > z' (4.14)
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t(3)

(0k0 ,< )2J(k p)e -~(L3) cosh (TE( L3 - z)
n=i p1 (x p -

TMz n z' (4.15)((O- '

- -(k ELMX2 TE 1,,T ( )

2J k~P sn (knp-b) +np( ~cos(n(L Z)

_: tx~ 2 - ~ 2 (xPIjn(

nnk p s (n(O - 0 J'kp)cs(n)) i)

TEz < , Z' z (4.16)
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- (3)
HI(W, -(r-'))
= jk 2  -y"0 n'"""( " - zecosh(,,M(L - z'))

TM, 2 Z
J1 rn=O p=l I ^np n Jn.l j rip)

. nJn(kTp) Sin (n(O - 0')) TMp) cos (n -np T + .UJ n,(k,,,p ) o ,,€ ')
kp P

0 0 TE(kTE 2nJ (kTE , ,eo-fJ (L3-Z) cosh (TTE(L3 - z'))32  00 00 ^tp xnp, n ' n pn,/1-
,-=p , (X, - ,)(kp P)J(,,,)

.jjL,,J-'(kTp) sin (n(- 0))
nJ,(k. p) cos (n(O - 0'))

+ TE nJn(knp TE •knp
(kp) sn(n(-0'))+IL,': kn },yEIz < Z' (4.17)

The fields Z )((,ub(r - r')) and i(3)(.Q, ub(r - ')) are obtained by
adding to the electromagnetic field of (D.55) and (D.58) the reflection due
to the short at z = L 3. Aside from the S(z - z') term in (D.58), the electro-
magnetic field of (D.55) and (D.58) consists of a sum of fields, each of which
is of the form (ETE, HTE) where

E E -- ~tE e - ' _;l I np (4.18)
T = (e(z, z')H2tan + u HTE)e-,n Ilz-' (4.19)

where and H E have only p and 0 components. The reflected fieldw h r t a n n ta n

due to (E ,H TE) is called (ETE, ITEt) and is given by
ETEr._ - -TE -fTE(z+z'-2L3) (4.20)

HTEr = (tTE _HTE)e-Yr (z+z'-2L3) (4.21)

The sum of (4.18) and (4.20) is

ETE + zTEr = 2E e- npE(L3 -') sinh ( T(L 3 - Z)), Z> z' (4.22)

ETE + ETEr = 2ETE ne-"rE(L3-z) sinh (TE(L 3 - z')),Z < Z' (4.23)
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The sum of (4.19) and (4.21) is

HTE + TEr . 2e_--(L3-Z')H TE (..TET ~~ =gptan cosh (np (L3 - Z))

-HTE s (nh , (yE(L 3 - z))}, z > Z' (4.24)HC E . H T E r 2e yr ( - )sihT
+ E = ( (L3Z) sinl (.f TE( - z'))

E+ z < z' (4.25)

The short at z = L 3 changes the field (ETE, HTE) that would exist in the
circular waveguide matched at both ends to the field (ET E + E TE?, gjTE +
fEr).

Replacing each term of the form (4.18) in (D.55) by a term of the form
(4.22) or (4.23), we obtain

(c3)( .j _ )

S1 E,(k, Jkp)e , sinh (TE (L3- z))E -_ , - nn TE (X 2 2 ,"

-p np n np)
. nJ,,(kTp) sin (n(O - 0')) ,T

UPn p + _uJ ,(k,, p) COS (n(¢-€)}
k p p

z > z' (4.26)

000 TE 3j TE r -"vy ¢L3-Z) (,TE

1n(k p )3 J(k np Ip') e p sinh (-y (L3z))
E T E(Xr 2 f 2 )j 2 (XI

"- op=, "p ,p n ) p)

nJn(kTEp) sin (n( - 0')) ,( c n• {up T + 7. J'(k,, p) COS (n( -€')}
{1UP k TEpknpp

z < Z' (4.27)

Replacing each term of the form (4.19) in (D.58) by a term of the form (4.24)
or (4.25) and retaining the 6(z - z') term in (D.58), we obtain

(3 ) _ 0 T E_3 _ _ ( k _TE_

- E 12 np nrp)- E
7W1n=Op=i (zX - n 2 )j2(X,~,.(k ~))CSnO-0)

((z - Z') (p c - +' { H-' < z (4.2s)

np
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6I

where
H- , rE nJ (k~, p) sin(n(€ -')

H = UJ '(k ,Ep) cos(n(O - 0')) inh - 0) ()

TEE -

~ynp

TE rE sinh(hTYTE(L -- z)z)) (s_,

- k,, TJn,(kTp p)cos(n(O - 0')) sih rf~'g 3s )

_YZ -iPE - nP (4.29)

up = ( TE nJ,(kTEp) sin(n(€ - 0'))
k+  = j -u J(kT fp) cos(n( ¢ - ')) +p T P

knp kJ(kp pYcos(n(4- ')) e_.4r"(L3z) sinh(-ypE(L3 - z')) (4.30)

Before substituting (4.14)-(4.17) and (4.26)-(4.28) into (4.4) and (4.5),
we obtain expressions for MV6 and Mz.'I6  Substitution of (A.10) into (2.13)
and (2.14) gives

27r q p7ry-f+ qrz+M¢Z)-- kpqb l/ {uo q sin(--" Cs()

, ,-,P,,Csin s( sin(+
S -- - )sin(-) (4.31)

where -y is either 1 or 2. Moreover, y-+ and z + are given by (2.15)-(2.17).
Finally, from (A.8), kpq is given by

kpq (E)2 + (1)2 (4.32)

Substitution of (A.23) into (2.13) and (2.14) yields

M--TE(Oz) 2r EA Psin(py cos(qrz+
_Pq 4bctb sin( b C

u() (- cos(--- ) srs(-), (4.33)

where c, is Neumann's number given by (A.21). Substituting (4.31) into
(4.2) and (4.3), we obtain

MTM(Pz) 2,r__( q7rz+

q)sin( )cos( )6(p-a) (4.34)
kpq" C b c
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M~ (,,z-27(-1)'Y P sin¢°' 'Pz'Y'Y+" r

M. P, ,, z = -kv ( - cos( bp )sin( --- )6(p - a) (4.35)

Substituting (4.33) into (4.2) and (4.3), we obtain
T E ~r /"q p , p]r y~t+ q ,'r z+

M T E (p, 0, z) = - 7 V -- )sin(--b cos(---)S(p -a) (4.36)
M.,T,~ kpqV b'c c b q

•sin(-)6(p - a) (4.37)
c

Substituting (4.34) and (4.35) into (4.4) and performing the integration
with respect to p', we obtain

E'(,2ira ~ ~2
= - _IS dz' 4d'

si c p q =a

)cos(-b ) sin(qrz-+) (3) M, uZ( - Z))] (4.38)

where -f is either 1 or 2 and, recalling (2.15)-(2.17),

y11+ =_ (Or- 0')x + k2 (4.39)
y12+ = 0'x . + (4.40)

z '+  -- z/ + r (4.41)

0 -- (2 - ))r-€o (4.42)
0€2 = (2 - -t)ir + (4.43)

Similar substitution of (4.36) and (4.37) into (4.4) gives

kr,(3 w-TE) = ra E~ ~ 0
E 3(OMpf = kI dz' / do'

{ b sin() -c__s))

1  b b c P'=a

n o +  sin( ) r(4.44)
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Since (4.5) is (4.4) with E and (3) replaced by (3) and respectively,

the equations obtained by replacing E(3) and k(3) by/L( 3) and &13) in (4.38)
and (4.44) are valid:

IL( 3 )( , AgTM) 2ira #
,C vb f_ dz' fd '

)cos(in ir Id (, y(

-(-)'()(in ¢ ) cos(----p y'+ )sin( " [/ /(3)(0 8=(z: - r'))]=a (4.45)vbln b 1 -[

k3)(jgqE) ra f-Pfq J2 dz' d4/
•~~ ~ ~~ PP 'iq -)o=

ipq bf 2

+i(-1pir'Y C (q7rz'+ [ (0,u r')] , (4.46)
b b C, 1 Q~ 2 (

C bC -.

Replacing (n,p) in (4.14), (4.15), (4.26), and (4.27) by (rs) and then
substituting the resulting expressions into (4.38), we obtain

EM( a _=TM ) 40 _f__(_____

=o.= 2x. 5J +i(x7.)c co TE 2 TE y TE

(k ) rJr(kT a)E

c r1 (kT a)(X, - r2)jr2(X,.)rs r l r---

p si f(kr E)3Jr(kE a)F2TEz (4.47
T=ol 2- r)Jr2(xl,) f

where

EcT M O = f Cos( qw){ E " TM -, Z> Z dz' (4.48)

12 C j , < z
, TE4 _ CO(£) ETEz ° - , < Z

EiTEz = q sin( qrz'+) { TE , Z dz' (4.50)
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In (4.48)-(4.50),

=nMO -eve 1 L4ITMP) - lrJkTM P)

sinh~y~M(L (L3) - Z)k(,(PJ(krsp TM- ))} 4.1

KYTM+0,kTJkTp = cosh(TM(L 3 - ZI)MLz{~2~kw))
sinhrfZrLk Z) p) TkM( Mp -1 (4.51)

,&fTO k(, 'p rTM

CosE~ (L ZI) Pinh( YT(L 3 - Z))fU ~2jr kTP
r { J, r(kTE P) + k,1JP(k p) (453)

*ETO = e-YT(L3 -z') ih 7 EL 4 (1'

~yT~z -e sih .yEL - z/))yEZ(L3z)( Z)

* { ~rJ(kT p) + (4.56)

,E7E v, = jh-T (L3(- 1  ) 45S

Replacing2 (nr in(.1) (1) (42) and (427 by(T)ad hnsb

kT melrlks 294.4



stituting the resulting expressions into (4.44), we obtain

E(3)(a, TE 4a CA (00 0 kM'r(Ta,'M
-~ - E

000(kTE)2rJ7.(kTEa),ETE'
L-,.- (kT'a)(x" - r 2 )Jr2(X 8 )

sine 1* f(kE)3jT(kE)E-YTEz 1(.1

Replacement of (n, p) in (4.16), (4.17), and (4.28) by (r, s) and subsequent
substitution of the resulting expressions into (4.45) lead to

L[(3)n TM) 4ja Jk 2q f 0 2"(k~)7M

q1 0000TE (kTE)2rJ(kTEa)XTE46

c ~(kL1,a)(X42 - r2)J,2(X4)

e7 (kTE)3J 7 (kE )IIEz

E :2(x" - r2 )J,2(x,) j(.2
where

JJ7 TEb+, Z >zf~~~ 1 < 5dZ
iPTEMk = 2o(qrz'+ ) , dz' (4.64)

2,z

_rEO= 2o(qirz+ JTO- Ij Z ZI d z d (4.64)
11 si()c y~~+ fY z ' < z J

21.

In (4.63)-(4.65),

L[7TMO- = .~~(L3 - ZI) cosh(7f M (L 3 -Z))

e~l rJr (kTMp) + 4 2 J,(k TMP} (4.66)

IpTMO+ =cosh('YT
M (L 3 - zI))e--,7"j(L3-z)

VlJkTM ) + . JkP} (4.67)
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HpTEA-- e- E.(L3-Z') {(pVJ(-P ~ rsE)

cosh(ytLE(L 3 - Z)) - U1. E 7 k~p rs nh(E(L ) (4.68)

-cosh( 7yTE(L 3 - Z'))e4E(LYz)

f~1P~kE~~V~J~TIp) O1 IkTEJ,4 TE)
TITE) +144'J(ksJr(,P (4.69)

7rs J7

jpT~* -144(z - z') e,4JkE)(4.70)

H7TEz- = e-,yE(L3zI') {,, r~ - v(kTEp)

cosh(7~~~E(L 3  0 z) 4 jkEJ(k EP) sih 7 7 ( 3 - )
TE kT(471

ff0TE4 - - sinh(7 pE(Linh(zI))eL3 (LZ))

Jc$I(TE -PT 7 (Tp Z))J(kEp -jU s(.1

kp~+TE(+14 E (472

Replacing (n,p) in (4.16), (4.17), and (4.28) by (r,s) and then substituting
the resulting expressions into (4.46), we obtain

H()(Qa~-E 4ja [p-q { k2p TM2r(~m)iM
wi~pq bc b Z

000 7 TE kTE)2rJ TE)fYTE

Z a r 2 ) (

si k.~~(kTE )3Jr( kTEa )ITEz

c ~~~~2 2 - r2)j,2 4 )j 4J

Substitution of (4.51)-(4.56) into (4.48)-(4.50) gives

E7M _{ZTM1 sinlh(7 TM (L 3 - Z)) +s zT~ (L3-z)}

J '-~J(kTM r3 brJ MP))
POtJLvraP kTWp f

+zMcosh( M(L 3 -Z)) + ZTM2 e -yTM( 3 ) kJk 7 P) (4. 74)
WY3.
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E7TEO - ~TE1 sihyEL Sz)+zEeE(L3-Z)}

{- rJ? k P) - u.00-J(k TEP)} (475)

'E7TExz {TE3 sinh(-/LO(L3 _ Z)) + ZTE4e_-yE(L3z)

*(~i+ {. 0,,4~k~p ± j4J(kEP)} (4.76)

where, for 6equal to TM orT,

z= fZ y6(z-, cos( qrz'+ )dz', - c- <z< (4.78)

z= f- A c4r(L3zCos( ~..) dzI, z > c- (4.79)
2 c

z ]2f cosh(yfr*(L 3 -z')) cos(-z+) dz', z < -- s (4.80)

22 
+

Z 2 cosh(-f6(L 3 - z1)) cos( rl) dz', -~ c z (481

22 (4.82)

and

z TE3 = 0, Z <- (4.83)

TE3 = sin( (3 /

z e- si(L~zI) ) dz', c~ < z < (4.84)
TE3 .= 22 2i

2C

zTE 12~sn(y~( 3 -z) sin( qz') dz', z > ~ (.6
2 c2

z T4f2 sinh(yTE(L3 - z')) sin(r- ) dz, z~ < (4.86)

zTE4 2 TI4.7

z zM csih(Yr.(L 3 - z)) +i~lz )d' zTM<e(4.87)
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a k M  + u2J(k,, p)} (4.89)

XTEO = {zTE1 cosh(-YT (L 3 - z)) + zT E e- T(L 3 Z)}

T,1IP)E + . O~2r J,(kTEp)
T E "" 

kTEJ 

kTE 
)

+zTE1 sinh(TE(L3 - z)) + ZTE2 e(L3Z) S JTE (4.90)

HiTEz = {TE3 cosh(irZE(L3 Z))._.ZTE4 e--Y(L3z}

jg- 7 O' 3 rJ,(kTEp)} +-pra J'(k, p)

TE3 • rE z zT~e- YT(L 3-)} koJ,(kop) (4.91)-Z sinh(%IL(L3- Z))- r3

where

7;,E sin( 2 )-"<z<
TE5 (kTE)2 ' 2 - - 2 (4.92)

0, otherwise

In (4.92), z + is given by (2.17).
So far in Chapter 4, we have found that E( 3)(Q, M T M ), E(3 )(0, f T E,T M )_ q _ - , p q /

(,and H( 3 )(0,M ) are given by (4.47), (4.61), (4.62), and
(4.73), respectively. In (4.47) and (4.61), C2 TMO, EiTEO , and E7 TE' are
given by (4.74), (4.75), and (4.76), respectively. In (4.62) and (4.73) H7TMO
HxTEO , and HTEz are given by (4.89), (4.90), and (4.91), respectively.

The quantities 011, 0,,2, y3 , and €Y4 which appear in (4.74)-(4.76) and
(4.89)-(4.91) are evaluated in Appendix E. These quantities are given by
(E.10)-(E.13) in which OM1) 0(2) 0(3) and (4) are given by (E.23)-(E.26).

The quantities z , , I TE2, z TE3, and z TE4 which appear
in (4.74)-(4.76) and (4.89)-(4.91) are evaluated for (-< _ z < 2) in Ap-
pendix F. As indicated in Table F.1, the quantities z T M 1 and zT,1 2 are suit-
ably given by (F.25) and (F.26) when -TM is purely imaginary and by (F.32)
and (F.33) when 7M is purely real. In (F.25) and (F.26), 0' is given by
(F.27), q6- is given by (F.23), and qs+ by (F.24). The quantities zTE l , _TE2

zTE3, and zTE4 are suitably given by (F.25), (F.26), (F.34), and (F.35) when
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WST is purely imaginary and by (P.32), (F.33), (F.41), and (F.42) when ,

is purely real.
If z <-, then zTMl zT -zTE 3 = 0 while zTM2 , zTE2 , and zTE4 are

given by, their expressions in Appendix F with z + replaced by 0. If z > £2

then zTM2 = ZTE2 = ZTFA = 0 while zTM1, ZTE1, and zTE3 are given by their
expressions in Appendix F with z + replaced by c.

In view of (4.89)-(4.91), substitution of (4.31) and (4.62) into (2.30) gives

Y3,aTM,-vTM -T!-(S 1 -S 2) +-TqS3 -PcS4- i-- (4.93)
IC2  

- + bc -b2
5J (93

where

T = 8irja 2  (4.94)
kmn,,kpqwisbc00 00 [TM)2T 2( TM 1)O t-2

S = k ZI _Z ,, " (4.95)r0 s=1 2,TMx2 12 +,(Xr)r=O °---1 rs rs r-1k' )

00 7 TEkTE) 2 2r 2 T E  )z( 2 )Oa/y 2

S2 = ""8 (k" r"(k\ - 7" J -'-) (4.96)
,=1 (k a) (,2- r k)J2(Xk.)

I z((ksin)k 0 TE 3 rJ~TEa )z(3)Oa-t

S8 = (-0s1 (kE)(4 r2 )J(x) (4.981)
r--l 3=1 r '1 k~)(I2-r)J1(Is

sin o ° { T'3 T )Zn (4) ha-f3

si E 2 __ _ __ __ _ __ __ _

S4 = (1 )( -J " -a (4.98).-1,", = 2(kT ,a)(x, - r2)J.(xI.)

r=O s (4.99)
a a  o oo,: {TE(X412{- ,,TE(,,,(),

00 ~T r= 2=I2- r2

In (4.95)-(4.99),

= ] 04 0cos(mrba+ de (4.100)

in3 boa-2 f 0 ' p2 sin(mY at+ )dO (4.101)

3 mryo+

=7 €-p3 sin( b )de (4.102)

Y4= 0 0 4 cos( mry"+ )d (4.103)
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where

03 = (2 - c)7r - 0. (4.104)

04 = (2 - a)r + 0 . (4.105)

Still in (4.95-(4.99),

2 z ~ ~ ~ ~ ~ ~ ~ 77Z 2 oh .(3-Z)+Z e

*Cos( -r ) dz (4.106)
c

t2 12 {JI osyE( 3 -Z)) + ZTE2 TE(L3z)}3

nirz+ d

•cos( --- )dz (4.107)
C

Z (3) 2 L {ZTE, sinh(-yT,(L 3 -Z)) + ZTE2 e _,T(L3Z)}
2

•sin( --T) dz (4.108)
c

- {T cosh( ..E(L 3 - Z)) -zE4eE(z}

.COS( n+) dz (4.109)
C

(5 j~{TEs ~TE3 sh(EL 3  Z)zTE4e--YE(L3z)}

2

•sin( nrz+)dz (4.110)
c

In view of (4.89)-(4.91), substitution of (4.33) and (4.62) into (2.30) gives

Y3,oTETM - T e {c(S 1 - S2) S- -- 4 + bc } (4.111)

In view of (4.89)-(4.91), substitution of (4.31) and (4.73) into (2.30) gives
3tTM, -Epq Inp mp nq mqS

y.3. iT E T 7L- S -- S 2) + -PS 3 ±+ + S (412)
4,bc b bc J (
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Similar substitution of (4.33) and (4.73) into (2.30) gives
y3C-TE--(TE T -5 f)- f--$3 + --. - "-} (4.113)

16 V 1cbc C
y3,,TM,-,TM 3,c, TE,'TM

In the previous paragraph, we found y3.ci, yijT ,
Y3,aTM,-YTE .3,a3TE,rTE
,iM , and _Ti to be given by (4.93), (4.111), (4.112), and

(4.113), respectively. In these equations, T, S1, S2, S3, S4, and S5 are given
by (4.95)-(4.99). The quantities €c-f, oo 2, -3 , and '"' that appear in
(4.95)-(4.99) are evaluated in Appendix E. These quantities are given by
(E.31)-(E.34) in which 4P), 0(2), (3), and 04) are given by (E.23)-(E.26).
Also in (E.31)-(E.34), oal1 ,, e2 , OC1- 2, and €2i 2 are given by (E.46)-
(E.49) and (E.53)-(E.56). The quantities z(1), Z(2), Z(3), Z(4), and z(5) that
appear in (4.95)-(4.99) are evaluated in Appendix F. These quantities are
given by equations whose numbers are listed in Table F. 1.
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Chapter 5

The Excitation Vector

In this chapter, Ii"3 of (2.24) is evaluated. Approximate expressions for
HL( 3)(Jimp Q) and M/ have to he found before the integral in (2.24) can be

evaluated.
In (2.24), H 3(jimP, Q) is the magnetic field due to jimP radiating in the

circular waveguide with the apertures A1 and A 2 closed by perfect conductors,
with a perfectly conducting wall at z = L3, and with a matched load at
the other end. If the apertures were present, the only z traveling wave at

z = - contained in the field of JimP would be the unit amplitude z traveling
TMo1 wave. Since closing the apertures produces no z traveling waves in the
region for which z < -, the only z traveling wave contained in the field

2'
(E( 3)(jimP, Q),H(3)(1 lmP, Q)) at z = - is the unit amplitude z traveling

TMo, wave. The field of this wave is (EM+, H M+ )given by (B.1):

S)TM
2 TMe(p, )e-j M z (5.1

,Me+ = ZO1Moerj° e "p, O)e-j)3Tm + R.o 01 P 51

41Mfe+ = 9*me,(p, )e-j T M  (5.2)

Here, koTM and OTMe(p, 0) are given by (B.7), geoTiltf(p, ) by (B.22), hA"'t(p. o)
by (B.23), and Z T M eO by (B.25) in which JM is j3 T" where

T M = Ik 2 - (kOT' (5.3)

Now, 130M is purely real because t was assumed that the TM 1o mode prop-
agates in the circular waveguidp.
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The field (E(3)(ljimp, f),H(3)(jimP, )) is (ZTe+,HTjMe+) of (5.1) and
(5.2) plus the reflection of ( E +, 4M+) from the conducting wall at
L3 . Taking the reflected field proportional to (EMe-,_ffM'-) of (B.2) and

requiring the p component of E(a)(LimP,Q) to vanish at z = L3 , we obtain

E(3)(jimp,a) = 2e-joTM L3 f {TTM sin(/T3M(L 3 - Z))eT, (P, )

-. j(kTM )2?PTM'(p, 0) cos(/3TM (L3 - z))} (5.4)

!L()(,.imp,Q) - 2e-jO 'L3 cos(ITM(La - Z))alMe(p, 0) (5.5)

Equation (B.25) was used iD obtaining (5.4). From (B.7), we have

O'oJ(kx oP) (5.6)¢0T1e (0' ) =Vf7-FX01 J1 (X01)

where
kTM = xOI (5.7)

a

Applying [4, eq. (D-15)] to (B.22) and (B.23), we obtain

fTM C(P 1L Ji(kM p) (5.8).M,(p,6- ) =J, j( xo,)

91,(, Y J kT~)(5.9)
hV,.aJ,(xol)

Substitution of (5.6), (5.8), and (5.9) into (5.4) and (5.5) gives

2)(-JQ=°ML3 {u j MJj(kOjM sin(03TM(L 3 - Z))E(3(jiP, ) =vf-rawej(xoj) -tpo (01P -)

- T jkM oi M  cos(0IT M (L 3 - z))} (5.10)
LE(3) ~2e-jOO, U L3 TT(-1

Hl1( 3)(jim P, 7) 2/eaj(xo1 ) m J(kTMp) cos(/3 M (L 3 - z)) (5.11)

Although not needed to evaluate I3, expression (5.10) is needed to evaluate.
as indicated in the last two sentences of Chapter 2, the field in the circular
waveguide.
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Replacing (/,p,q) by (a,m,n) in (4.31)-(4.33), we have
ru(07,Z) = 2v { n . miry o+  nz+

k.V _ 6 ,n ) cos(--)

( 1 ,(m)(sin O, "m7ry+) nrz+
-L-k) ---Jcos. b ) (5.12)

ZE 27r fdF 4, m . rm ry +  nlrz+E(¢ z)= 2- , - - juT sin( 6 ) cos(--7-
,, V 4bcIT C

. n) si Cos (etry sin. nrz+  513

Sb s

where
kmnn = ~ (.)2 + (n,)2 (5.14)

In (5.12) and (5.13), yO+ and z+ are given by (2.15)-(2.17).
Substituting (5.11)-(5.13) into (2.24) and integrating with respect to y'+

and z+ rather-than 0 and z, we arrive at

IczTM = 8 0 n a27r (5.TL5
Z _ 6CYsm Zcc , e (5.15)

-aTE = 8 V0 m c) .-a2 rm4 yzeTML 3  (5.16)
kmna b~ 4& ysmcc

where

YM= b jb sin( b ) dy' (5.17)

ire c  (n~z+Zcn= -] cos(WM(L+ -++))cos( )dz (51)

C C

In (5.18),
CL+ = L3 + (5.19)

3 2
In obtaining (5.15) and (5.16), we used (5.7) and

0 = b (5.20)
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Equation (5.20) was found by substituting (1.2) into (2.18).
Evaluating the integral in (5.17), we have

0, m even
Yo ~~ = r_ odd (.1

Expression (5.18) is expanded as [5, formula 401.06]

Z , fc os ( - O3TM)z + + dz+

+jC Cos((r + OOM)z+ - O3TMLt) dz+} (5.22)

Evaluating the integrals in (5.22), we obtain

1 sin(nr - # T M c + 'oTM L+) - sin(O3TM L+)
zcc1 ~nir - Oc

sin(n7r + R3TMc - O3rML) + sin(IOTML+)+ 3 + (5.23)n~r +q OTM I

If nr ± O3TMc = 0, then the right-hand side of (5.23) must be replaced by its
limit as nir ± /T9Mc approaches zero. To render the value of this limit obvious
and to avoid roundoff error when In7r ± TMc is small, we recast (5.23) as

sin(n7r - #TMc) cos(OOTgML + ) - 2 sin 2(n,-,IT c ) sin( M L )
= 2(nr - I3TMc)

sin(nir + 0TIMc) cos(O/3 ML ) + 2 sin25(.n2+ c) i(ITML+)
+ 2(nr + #TMc)

Now, IJTM and I*TE are given by (5.15) and (5.16) with y,, amd zcn given
by (5.21) and (5.24).
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Appendix A

Modes of the Rectangular
Waveguide

Consider the rectangular waveguide whose cross section is shown in Fig. A. 1.
In Fig. A.1,

S+ }+ 1(A.1)

where y and z are shown in Fig. 1.1. Four kinds of mode fields can ex-
ist in the waveguide of Fig. A.1. These mode fields are ( , )
(EL-,l -), ( +, and -, H-). Here, E is the electric
field and LE is the magnetic field. The superscript "TM" denotes transverse
magnetic, "TE" denotes transverse electric, "+" indicates that the wave
travels in the +x direction, and "-" indicates that the wave travels in the
-x direction. Here, x is the rectangular coordinate measured in the ay x U,
direction where _4Y and u are the unit vectors in the y and z directions.
respectively.

From the analysis in [4, sec. 8-1], we obtain

k 2 Z+)e--mnxETM+ = 'TM(y+, Z+)e- mn- (AMnmn.(Y I

= n ,e41
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z.

C

x b y

Figure A.1: Cross section of the rectangular waveguide.

and

k 2 (yI TMz + ++ (mn (-Zzmi~z Y+' +)efrnn + .,. Tn. ( , z)

LT e-m jw6 (A. 3)
= h. (y Z+),-z

where t is the unit vector in the x direction. Moreover,

-= _2V,,M(y , (A.4)TM,, (Y+ ,Z+) = -_U. X 21,T,r,(Y+, Z+)  (n
AI[(t ,zs = -i (A.5)

The wave function (M . smn (y+, z+) satisfies
v2 TM 2 OTM=(A6

,, + k%,,i,,, = 0 (A.6)

subject to the boundary condition

mrn= (A.7)
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on the walls of the waveguide. Solutions to (A.6) and (A.7) are

Mn - + cb 2 cmiy+ nirz m =1,2,..- (A.8)¢' ( n + - sin(v T sin( )  n=1,.-

km jA b

The preceding O, is normalized so that

Ib dy+ c dz+{, ITM) = 1 (A.9)

Substituting ?, of (A.8) into (A.4) and (A.5) and taking _ with respect
to the cordinates y+ and z+ , we obtain

(+z 27r M C os( mry+ sin rz+
+ - k,,n {_ I--- )sin(

+un sin( M + )'os(nIrz+ (A 0

c )o(-) (A.O)

Z - 2r v n sin( ry+ )Cos( n7rz +

m m7ry+ . nlrz+ "1

Remaining quantities in (A.2) and (A.3) are

Imn = - k2  (A.12)

and
zTM _ ,mn (A.13)

jWC

In (A.12), k = wV/"f is assumed to be a real wave number. Here, W is
the angular frequency and pi and f are, respectively, the permeability and
permittivity of the homogeneous medium inside the waveguide. The radicand
in (A.12) is therefore purely real so that -,n is either purely real or purely
imaginary. If -,m, is purely real, we take ",m, > 0. If 7m, is purely imaginary,
we take the imaginary part of m to be non-negative.
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From [4, sec. 8-1], we have

+= (y+ , z )e---- )
kz k /T~r(y+ z+)e-m"zi (A.14)(Y+, __e-% +r~tE U. M."mn( + Z

and

Ek2 ,/,TI(y + z+)e"""X (A.15)

where
-(y+,Z

+ ) = U. X (y ,z) (A.16)

n.TE, + = ITEY +)

, -V_ i(y, z+) (A.17)

The wave function ,pTEy+ z+ ) satisfies

V' T + k %, I 0 (A.18)

subject to the boundary condition

Un, -Dk = 0 (A.19)

on the walls of the waveguide. Here, un is the unit vector normal to the wall
of the waveguide. Solutions to (A.18) and (A.19) are

= -- )2 + (n)2 lm -0,=1,2,.rE. 1 b comry + rz+  n=0,1,2,... (A.20)
?PEb,+ csy) cos(n z n$m,,,,(Y, ,Z) =m b osTc-- m +,- n 0

where E,, is Neumann's number given by

En 1, n=0 A.1
e"= 2, n =1,2,..( 2 )

The preceding OTE is normalized so that

dy+jId,+ (Y+, Z+)}. = 14 (A.22)
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Substituting O, of (A.20) into (A.16) and (A.17) and taking V with respect
to the coordinates y+ and z+, we obtain

r, (Y+,z,, Z bcos( m  y + ) sin( , Z+
bC~l! C b

m .my +  nrz+

-%T sin( b ) cos( c (A.23)

-,h , +z+) T f .y Msin(m rY+ Cos(nrz+

kn b V I oT b c

+ n % Cos( T ) sin( r (A.24)

Remaining quantities in (A.14) and (A.15) are -,n given by (A.12) and

yTE_ = 'Yrnm jWu (A.25)

Orthogonality relationships, are

fody f dz+(en. -4q) 0 jdy+ j0dz +Q (4 n-q)

=jdY+jdz+(., xAh)-1x={ 0, otherwise

where 0 is either TM or TE and b is either TM or TE. Equality of the
three integrals in (A.26) follows from (A.4), (A.5), (A.16), and (A.17). It is
evident from [4, eq. (8-37)], (A.4), and (A.9) that the integrals are equal to
the right-hand side of (A.26) when 1 = 6 = TM. It is evident from [4, eq.
(8-36)], (A.17), and (A.22) that the integrals are equal to the right-hand side
of (A.26) when 3 = 6 = TE. Because of [4, eq. (8-38)1, the integrals vanish
when 01 # 6. If there is a degeneracy, that is, if kmn = kq for (m, n) # (p. q),
then, as pointed out in [4, p. 3901, we must have

I' - , 1= TE, TM (A.27)

in order for (A.26) to hold. It can be shown that TMmr of (A.S) and E of

(A.20) satisfy (A.27).
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In Appendix A, we found the four kinds -)f modes that can exist in the
rectangular waveguide. There are two kinds of TM modes and two kinds ofT+ TM+ TM- aTM-)

TE modes. The TM modes are (EZ, , L[,, ) of (A.2) and (F4,, ,H,)
of (A.3). In (A.2) and (A.3), OTM, c.,nM, and ITM are given by (A.8), (A.10),
and (A.11), respectively. The TE modes are (F! +,H n') of (A.14) and
(E6,, nE-) of (A.15). In (A.14) and (A.15), OTE, jTE, and hTE are givenhmn r

by (A.20), (A.23), and (A.24), respectively.
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Appendix B

Modes of the Circular
Waveguide

Eight kinds of modes can exist in the circular waveguide whose cross sec-
tion is shown in Fig. B.1. They are (4'Me+,' ,TMe+), (aMe-, 4ffe-)

( FTM*+, 4. Mo+) TMo [.TMo-) (fp ('.Ee...E-)

[pT JL EO+ ) T+and (PEo-, LfEo-). Here, E is the electric field and H

is the magnetic field. The superscript "TM" denotes transverse magnetic,
"TE" denotes transverse electric, "e" means even in 0, "o" means odd in 0,
"+" indicates that the wave travels in the +z direction, and "-" indicates
that the wave travels in the -z direction. Here, 0 is the angle measured
counterclockwise from the positive x axis and z is the cylindrical coordinate
measured in the uP x 1;4 direction where u and y4 are the unit vectors in
the p and € directions, respectively. By definition, p = Vf + yI.

From the analysis in [4, sec. 8-1], we obtain
/TM)20TMe T,%

= Z4,eP e vp, )e - Inp +Uz jWE (B.1)

and
,TM),p-TM (, ¢),-yTM -

= Zp p (B.2)

e- hTe(p, €)ef42z J
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Y
a

Figure B.I: Cross section of the circular waveguide.

where u. is the unit vector in the z direction. Moreover,TM(p _) TMe.,0
-;,(P, 04) ,.(p, =) (B.3)

hTMer =_ XVTM (.4
,."p (,p, 0) = Z -u~_ "P _ e,(p, € 84

The wave function OTMe(p, 0) is a OTM(p, 0)
np (P )i an, p,) which is even in € and which

satisfies
V 20T,(p, 4) +(k )2,TM (p,¢) = 0 (B.5)

subject to the boundary condition

np p=a (B.6)

Even solutions to (B.5) and (B.6) are

kTM~ Xnn a T n = 0,1,2,... (B.7)

g, TM(p, 4€) = xpJ,,1  J p = 1,2,3,...
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where J,, is the Bessel function of the first kind of order n and {0 < x,, <
X,,2 < .} satisfies

J.,(z,,p) = 0, p = 1, 2,3,-. (B.8)

Furthermore, fn is Neumann's number:

n 1, n =0 (B.9)--- 2, n -- 1, 2,-..B 9

The preceding ?kT Ie is normalized so that

2f
T21 e r TMe-

To verify (B.10), we first use (B.7) to obtain

p.)= v aJ.+(Xn) {p) cos(n€)

-~nJn(kTp) sin(nO) -L B.1npk$, (B.11)
kTp

If the left-hand side of (B.10) is called I,, then substitution of (B.11) gives

En a f 2w

/1- 7ra 2 J+ 1 (Xp) Jo d4
jn/2 TP) COS nJn( kTM p ) sin 2(no)

{Ji2(kMp) cos2 (no)+ (k TMp) 2  } (B.12)

Evaluation of the integral with respect to 0 reduces (B.12) to

2 ,a,+ n 2 J (kTp)
I~ a2j,2(x,,) jpdp {J2(kTMP) +2 (B.13)

Substituting

x = kp p (B.14)

into (B.13), we obtain

, = 2 (B.15)
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where
e2 = Xj'12(x) + n7J2(x)} dx (B.16)

It is shown in Appendix C that
jd 2(X) + n'J2 (x)} dx 2 2

+d-2 j:2(d) + dJ(d)J ,.(d) (B.17)
2

Replacing d by x,,p in (B.17) and using (B.8), we obtain
2 Jn2

I, = n 2,p (Xp) (B. 18)
2

Now [6, formula 9.1.27],

Jn(x) = -J,+I(x) + n J. (x) (B.19)

X

Replacing x by xnp in (B.19) and using (B.8), we obtain
J',,(xp) = -J,+ 1 (x, ) (B.20)

so that (B.18) becomes
X22

12 = xpJn2+1(Xp) (B.21)
2

Substitution of (B.21) into (B.15) gives I, = 1. Thus, (B.10) is verified.
Substitution of (B.11) into (B.3) and (B.4) gives

Te_, (p,¢0)= F!In (,,
7r (aJn+,Xnp)) nJn(k TMp) sin(nO

-4, JI( kTMp) cos(n¢) - y4_ k snp (B.22)

7rJ aJn+,Xmp))(.)

{ nJn(k Tp)sin(nO) JkrM n}• u p n p M ' ¢ ,(k , T , p ) cos(n 6 ) ( .3

pO
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Remaining quantities in (B.1) and (B.2) are

- (kTM) 2 - k2  (.4
np(B24

and
TM

= iL (B.25)--rpM jWC •

In (B.24), k = wVl-TE is assumed to be a real wave number. Here, w is
the angular frequency and y and c are, respectively, the permeability and
the permittivity of the homogeneous medium inside the waveguide. The
radicand in (B.24) is therefore purely real so that _,,p is either purely real
or purely imaginary. If yTM is purely real, we take > 0. If is
purely imaginary, we take the imaginary part of ,tn to be non-negative.
The superscript "eo" was placed on the left-hand side of (B.25) to avoid
confusion with the quantity Zzn which was defined in Appendix A.

Similar to (B.1)-(B.4), we have

_ o+ _zTMeorMo , O ,TM (k ,-0(p, 0)e -ip
E4 , Z e (p q)e-vrP + u jTMn (B.26)
fj

T M o+ = T M o( T)e'
"- _np (p, O~ p)

and

TTM,bTMoTz ¢)eT

= Zp (p JeIE (B.27)
,4o - hTM o (p, yTM

where

TMo T %M B.28), , ) = -(PL, x(p, p) (B.9)
hp r PIo, _ X TOTMp P() (B.29)

The wave function i/TM°(p, 0) is a V)TM(p,€) which is odd in o and which
satisfies (B.5) and (B.6). Odd solutions of (B.5) and (B.6) are

k TM -_n a IT n = 1,2,3,... (B.30)
, 2 J,(kp) sin(nO) p= 1,2,3,

d/,TMo("" p' ) - ir x ~ 1,2,3,,.,
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The preceding 0"' ° is normalized so that

apd 2rd { ivkMopq)} {iokT M o(p, o)} I (B.31)
0 p O n p ) n

To verify (B.31), we first use (B.30) to obtainiO,+ (p, )}

+ ,nJn(kmp) cos(n)•uJn'(kn Tp) sin(nO) +p P) cosMp (B.32)
Susttuin ( .32) for k7,,T

Substituting (B.32) for kTMo, we find that the left-hand side of (B.31) is
the right-hand side of (B.12) with en replaced by 2 and with sin(nO) and
cos(nO) interchanged. Integrating this result with respect to 0, we discover
that the left-hand side of (B.31) is I, of (B.13). Now, as stated in the sentence
following (B.21), I, = 1. Thus, (B.31) is verified.

Substitution of (B.32) into (B.28) and (B.29) gives

2 
(B.33)

4jP MO (p,) = J aJ+(Xnp)* {~ ~ nJ,,(k Tp) cos(nO) k M~d(.4•u J k TMp -i~O nc,(,p psnn)(B.33)

k~~~~'p~n U~~ PPJll~l

The quantities 7 M and ZM'O in (B.26) and (B.27) are given by (B.24) and
(B.25), respectively.

From [4, sec. (8-1)], we have
E = eT(,P, )e - jT4Z

e-TE)2 --Te, k)e- tr z (.5

-TEe+ = TEeO h T ' P_ 
_ )

e -T ' _ " E,+ U (_np 
} np. 0 e___(13.35
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and

4Ee- = 4Ee, P)gY1P
tlTE\20TEeTE

4EC- =-TE,, (k4)e 2 t I(p, O)e)rnp (B.36)
= _yTo (p + ulz

where
IZ~e(P,0) UZX ITI P,0

.er'(,€)- u=x np (p )(B.37)
=T~ _2 TEe( )/_.Pj (p, ) n) (B.38)

The wave function pTCe(p, 0) is a pTE(p, 0) which is even in ¢ and which
satisfies

V 20TE(p, 0) + (kIp) 2 ?kTE(p, 0) = 0 (B.39)

subject to the boundary condition

0=0, p=a (B.40)

op

Even solutions of (B.39) and (B.40) are

k TE~ Xna/ n=0,1,2,. (B.41),I, T, r- / ,, J,,(kT pcos(nO) p =1,3,.

. , , o ) 6n _(x .)

np 2 2)

where {0 < x, < X' 2 < .} satisfies

Jn(xkp) = 0, p = 1,2,3,.." (B.42)

The preceding ?pTE, is normalized so that

a 21 . T E e )

0 p 1p0do n (B.43)

To verify (B.43), we first use (B.41) to obtain

.Vre . ( n )  g", {u J'(km Tp)cos(nO)

nJ,.(k Tfp) sin(nO)}
-kp (B.44)
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If the left-hand side of (B.43) is called 13, then substitution of (B.44) gives

13 =7T(XI 2- n2) (XIE )2 pdpj4
2 n 2 (kTEp) sin 2(n¢)

{J2 (kTP) cos2(nO) + (kp)2  (B.45)

Evaluation of the integral with respect to 4 reduces (B.45) to

13 2 p nJk(kEp) (B.46)

I x -, 2 pup nJ2(kp) + (kp f
Substituting

TE kp P (B.47)

into (B.46), we obtain

13 =214 (B.48)
(X/2 - n2)jJ2(x,

where

14 = XJ'P 2G) + - dx (B.49)

Replacing d by X4p in (B.17) and using (B.42), we obtain

14= 2)J(x) (B.50)2

Substitution of (B.50) into (B.48) gives 13 = 1. Thus, (B.43) is verified.
Substitution of (B.44) into (B.37) and (B.38) gives

-np(p' €) ( r(' - n2) k )
{nJ(knp)sin(n¢) ,(TE} .kP) cos(n)(kp ) (B.5)

p 

f

A (p, 0) = .542rz - n 2) (Jn(X'p,)
n(kTp) sin(no)}

Jn (k. TP) cos(nO) - u n rp (B.52)
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Remaining quantities in (B.35) and (B.36) are

T = /(kTE) 2 - k2  (B.53)

and
yTE

yTEeo - (B.54)
"np 

(B.54

The radicand in (B.53) is purely real so that 7 ET is either purely real or purely
imaginary. If T is purely real, we take "E > 0. If _yTE is purely imaginary,

we take the imaginary part of ' to be non-negative. The superscript "eo"
was placed on the left-hand side of (B.54) to avoid confusion with the quantity
Y$n which was defined in Appendix A.

Similar to (B.35)-(B.38), we have

=To E (, T)Y4Z1

Eo+ . yTEeo TEo ( .) .- E2 (]TE)2gTEo(p ¢)e -YEZ (B.55)
A". np -lnp , +3 WI

and

4 Eo- - EO~, 7T~Z

TE - (kTE 2 -TEo(p, O)&'4n J (B.56), 0o -- -I p TEeo TA3° (,p, )e'y :p zr ,/np } npw,,¢eYrg

fP np -p + _U

where
TEa TEo
4 E(p, 4,) = _V x _-..P '!(p,) (B.57)

Tp) -V)TL_(p,.) (B.58)

The wave function ;TE,(p 4,) is a ,TE(p ,) which is odd in p and which
satisfies (B.39) and (B.40). Odd solutions of (B.39) and (B.40) are

kTE -XP TE 
(B.59)

,,TEo( ) 2 J,(k p)sin(nO) p = 1, 2,3.
- n2) J (X/)
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The preceding kTE ° is normalized so that
jfd 2{ JyTEW.(p, )}1 {yjk T E.(p, 0)} 1(.

To verify (B.60), we first use (B.59) to obtain

TE*o(P, 2 _kTI

- ~ ~ Tp \Jo(x~n)

• {u,Jn,(kEp) sin(n) + Y_4 kp } (B.61)
npP

Substituting (B.61) for 2 ,O, we find that the left-hand side of (B.60) is
the right-hand side of (B.45) with en replaced by 2 and with sin(nO) and
cos(no) interchanged. Integrating this result with respect to 0, we discover
that the left-hand side of (B.60) is 13 of (B.46). Now, as stated in the sentence
following (B.50), 13 = 1. Thus, (B.60) is verified.

Substitution of (B.61) into (B.57) and (B.58) gives

4EO(p,) = (X 2 2 - (n2)

fnJn(k ,Ep) cos(nO J(k€ ) sin(nO) (-2- ~2)(B.62)

o to(p, C)-2 k E
hn (rXI2 - n2) 'J(Xos)

{J,(kTIP) sin(no) + nJn(kp )cos(n } (B.63)
np

The quantities YTE and TE'_, in (B.55) and (B.56) are given by (B.53) and
(B.54), respectively.

Orthogonality relationships are

jdp d¢(4,") = pdp d¢(4,q"Ap)

j fo2d{ 1, (t,r,m,q)=(u,s,n ) (B.64)S pdp f(,, x h,)- = 0, otherwise (.4
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where

r= e, 01

s = eo (B.65)
t = TETM
u = TE,TM

Equality of the three integrals in (B.64) follows from (B.3), (B.4), (B.28),
(B.29), (B.37), (B.38), (B.57), and (B.58). It is evident from [4, eq. (8-37)],
(B.3), (B.10), (B.28), and (B.31) that the integrals are equal to the right-
hand side of (B.64) when t = u = TM and r = s. When t = u =TM
and r -4 s, the integrals vanish because the integrands are odd in €. It is
evident from from [4, eq. (8-36)], (B.37), (B.43), (B.57), and (B.60) that
the integrals are equal to the right-hand side of (B.64) when t = u = TE
and r = a. When t = u = TE and r 0 s, the integrands vanish because
the integrands are odd in €. Because of [4, eq. (8-38)], the integrals vanish
when t # u.

In Appendix B, we found the eight kinds of modes that can exist in the
circular waveguide. There are two kinds of even TM modes, two kinds of
odd TM modes, two kinds of even TE modes, and two kinds of odd TE
modes. The two kinds of even TM modes are (EM+,e f.M e+) of (B.1) and
( -. of (B.2). In (B.1) and (B.2), , , and h are
given by (B.7), (B.22), and (B.23), respectively. The two kinds of odd TM

md ( O+, + )of (B.26) and (Ero- ,_.TMo-) of (B.27). Inmodes ae Lnp ,X-p np - np

(B.26), and (B.27), ,7,TMo, jMo, and hTMo are given by (B.30), (B.33), and
(B.34), respectively. The two kinds of even TE modes are (E, j+ , nT ) of
(B.35) and (Ef '-,HLe - ) of (B.36). In (B.35) and (B.36), npi, E TEeI and
hT are given by (B.41), (B.51), and (B.52), respectively. The two kinds of
odd TE modes are (p.I+, f. E+) of (B.55) and (E4. °I ) of (B.56).
In (B.55), and (B.56), 1jTEo ,TEO and h TEO are given by (B.59), (B.62), and
(B.63), respectively.

57



Appendix C

Evaluation of an Integral of
Bessel Functions

In Appendix C, we evaluate the integral I defined by

1 = jd {zJ'2(x) + 2 j,2(x) dx (C.1)

Proceeding as in [7, sec. 5.2961, we recast (C.1) as

I 1 r ((X)) 2 + (2J,,(X)) x dx (C.2)

Substitution of [6, formula 9.1.27

2nJn(X) = Jn_,(X) + Jn+1 (X) (C.3)

and
2Jn(x) = J,(x) - J,+,(x) (C.4)

into (C.2) yields

I = I(I_- + In+,) (C.5)

where

In = xJn(x)dx (C.6)
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To evaluate I, of (C.6), we will use Bessel's equation [6, formula 9.1.1]:

x2J."(x) + xJX(x) + (x2 - n2 )J,,(x) = 0 (C.7)

Multiplying (C.7) by J',(x), we obtain

x2J'(x)J'(x) + xJQ'(x) + (x2 - n2)J,(x)Jn(x) = 0 (C.8)

Expression (C.8) is recast as
X 22 n 2 2o))

(-n(2(X))' + XJ, 2 (x) + -I (Jn(X))'- - (Jn(x))'= 0 (C.9)
222

The integral of (C.9) from 0 to d with respect to x is
1 2j 12(X))' d j 1 + fd X2 +2 'J

-n (Jn(d) - J =(0)) 0 (C.10)2

Because (6, formula 9.1.7]

J() 1, n=O (C. 11)
J () =0, n = 1),2,3,.- -

the Jn(0) term drops out of (C.10). Integrating the first and third integrals
in (C.10) by parts, we obtain

2  (-J, + Jn(d)) - x J(d) =0 (C.12)

whence

In {d 2j12 (d) + (d 2 - n2)J2(d)} (C.13)

Substitution of (C.13) into (C.5) gives

I = 1{(d2 - (n - 1)2J_ .(d) + (d2 - (n + 1) 2)Jn+1 (d)
'2 ,2l 2 j1 2

+d J-l(d) +d J+,(d)} (C.14)
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Adding (C.4) to (C.3), we obtain

J,,_(x) = WJ(x) + J.(x) (C.15)
x

Subtracting (C.4) from (C.3), we obtain

J.+i(x) = n-J-(x) - J:(x) (C.16)

x

From [6, formula 9.1.27], we have

J"_1(2) = -J,(2) + n-1J,_,() (C.17)x

,+1 (.T) = J,(x) _n + 1j.J+,(x) (C.18)

Substitution of (C.15) into (C.17) gives

, ( 1 + n(n- 1)) J,(x)+ n -1J,(x) (C.19)

Substitution of (C.16) into (C.18) gives

( + ) n +1 ., X.Jn(=( n J,(z) + -1J (xx ) (C.20)

Using (C.15), (C.16), (C.19), and (C.20) to convert the Bessel functions of
order n ± 1 in (C.14) to Bessel functions of order n, we arrive at

I= 2 - n2)(d) + + dJ.(d)J,(d) (C.21)

This result agrees with [7, eq. (12) on page 186].

60



Appendix D

Radiation of a Magnetic
Current Element in a Circular
Waveguide Matched at Both
Ends

In Appendix D, we determine the fields E(0, 6(r - r')), H(Q, 4(r - z:')),

E(0, u 6(r - r')), and L(Q, u.A6(r - r')) in the circular waveguide whose cross
section is shown in Fig. B.1. For simplicity, we assume that the waveguide is
matched at both ends. Here, E(Jr, M7) is the electric field due to the combi-
nation of the electric current source J and the magnetic current source M
where both ZL" and MW are volume densities of current. Similarly, Hf(JV, M)
is the magnetic field due to (,U, Ml'). The argument "0" indicates that there
is no electric current source in the waveguide. Furthermore, 6 (r - !_') is the
three dimensional Dirac delta function, __ is the unit vector in the 6 direc-
tion, and u, is the unit vector in the z direction. Here, r is the radius vector
to the point whose cylindrical coordinates are (p, 0, z), and r' is the radius
vector to the point whose cylindrical coordinates are (p', 0', z').

Consider E,(Q, uz:(r - r')) and H(Q, u6(r - ')) evaluated at the point
whose cylindrical coordinates are (p, €, z). Since the only source is a trans-
verse magnetic current located at (p', €', z') and since the waveguide is matched
at both ends, there will only be waves that travel outward from z' and the
transverse component of the magnetic field will be continuous at :'. Hence.
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u.(z_ - r')) and o(,.6(z_ - ')) may be expanded as

00 00

= E E
n=O p=1 S=eo

C P Cp p '.p /"- np (D 1) n n

where the upper sign is to be taken for z > z' and the lower one for z < z'.
In (D.1), (nTM* ,4PM8±) and (4TE'±,a4Ea±) are given by (B.1), (B.2),
(B.26), (B.27), (B.35), (B.36), (B.55), and (B.56). Moreover, -iM and -nE

are given by (B.24) and (B.53), respectively. The s = o term is to be omit-
ted from (D.1) when n, the index of the outer summation, is zero. In (D.1),
CiMamo and CEpMo are unknown constants. The superscript "MO" indi-
cates that the source is the 0 directed magnetic current u.6(r-r'). Substitut-
ing the expressions in Appendix B for (E4M°*, ff.Ma±) and (EE'+, ff[.Es±)

into (D.1), we obtain

E(Qu.6(r- E E E CnM,.Mp
n=O p=1 *e,o

S )TM') 2V'/TM(p 0) T} Mf (Z, Z-t'rTMe.-TM°¢J n npk,€ =t-p np jI" " e-rpl-

E 8M E1Z-Z"-
+ (C(Z, z')4?f"(p, €)e-"EIz -I '  (D.2)

n=-O p=1 S e,o

00 
00H _ .' -: cTMs hTM^ (pT)e M - 'I

n=O p=1 se,o

p Y. np -.np xP

n=O p=1 -se,oIE(Z, Z' TE 2jpTEo~'0
+1p np _E

z)(k~~~~p) 1Z,(P ¢ } - Z'l, j, (D.3)

where

1, z > z' (D.4)(zz' = -1, z <z' D4

Now,
=- ') ( - ')b(Z - Z') (D.5)
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where p is the radius vector to the point in the xy plane whose cylindrical
coordinates are (p, 0) and ' is the radius vector to the point in the xy plane
whose cylindrical coordinates are (p', 0'). Furthermore, 6(p - ') is the two-
dimensional Dirac delta function, and 6(z - z') is the one-dimensional Dirac
delta function. Thanks to (D.5), the fields on the left-hand sides of (D.2) and
(D.3) become E(0,M6(z - z')) and H(Q,M6(z - z')) where M is a surface
density of magnetic current in the z = z' plane:

M = _4(p - ') (D.6)

The right-hand side of (D.2) is discontinuous at z = z'. The discontinuity is
related to M by [4, eq.(3.14)]

x (D.7)

where

E + =lim E(,M6(z - z')) (D.8)

Z>z,

= lim (QM6(z - z')) (D.9)
2-2,

Taking ux of both sides of (D.7), we obtain

SM = × (E+ - E(D. 10)

or, more simply,
. x M =( + -E-)tan (D. 11)

where the subscript "tan" denotes the transverse component. Applying
(D.11) to the discontinuous electric field of (D.2), we obtain

- = cTMsMzTMeo (p)
n0O p=1 s e.o

+P(p2ZZE np CT pM~j:4(, (D.12

n=O p=l S=e,o
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Scalar multiplication of (D.12) by !eq(p, €) and integration o.'er the cross
section of the waveguide give

=~~~~~ 22 1r,.Mz ojOp dp10doi .4q(pI 0)}6(e-p'

-2 00 s C M,M1ZTMeo If a 21 {tr( , ) J a_.,P _p . p .dp do M 0) , 4) ., °(p, 0)
n---O p1 =e,o

+2E pdp do { (p, Z) Y, Z s(p, )(D.M13)
n=O p=1 S=e,o fo d1j d${qP0~k}(.3

In (D.13), we choose
r eO 1
t=TM, TE (D.14)
M= 0, 1,2,..
q-= 1, 2,3,...

The definition of 8(p- ') and the orthogonality relationships (B.64) are used
to evaluate the integrals in (D.13). Next, r, m, and q are replaced by s, n,
and p, respectively. The result is

1c M,,MO -4'" 4P'(P', o')(D15
r = 2ZT(Meo

*,MOO 1 U TEs) (
TE, = u . p ,')

where up, is the unit vector in the p; direction.
Substitution of (D.15) and (D.16) into (D.2) and (D.3) gives

1 00 00

EM A.r (- r-'))= -: E E E (. .4m.,(p,.
2 n=O p=1 Se,o

.4  gLPz ' (p, ) + 2 (kM)2lV)T(p, 0) e_ TM

4 i, o o Ze f
~ L L Z~ ~ ck) E(z, z')4PE(p,O) e -YTIz-' (D.17)

-n-O p I -s=eo

I , -6 TMeo
2n0O p=1 3e,o n
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*TM~( ~, TMiz-z'j 1 00 00 1 ,01)
•n "( p, O -- P TP 2 " 7(P,€

n=Op=1 =e,o

E(z, z')(k T) 2 V, ¢s(p, 0) - -yvTEe ITEs(, nhp n(Z t TY2Tp

* np np, 0)'+ e U (D.18).wl -n ]W

Substituting (B.22), (B.33), (B.51), (B.62), (B.7), (B.30), and (B.25) into
(D.17), we obtain

o0 1 , (kTM) 2 J TM l)

En I~ z Z')n__ p=1 ,X ) P J -,2 )

E (z, z')n (kTM p) sin(n(p - 6'))
Jn'(k, Tp )cos(n(O - 0')) + n p
J n(kk'p) p

kTMJ (k, Tp) cos(n(O - 0')) } T-

1 0 0 (z0 Z' )(k, T ) ng (k, T p f ~ ~ kT P
1/== - n 2 )(k, Tp')J2(, kL

• cos(n(€-€')) + J,(k Tp) sin(n(4-0'))e-'[¢I '  (D.19)

Similarly, substitution of (B.22), (B.23), (B.33), (B.34), (B.51), (B.52), (B.62).
(B.63), (B.41), (B.59), and (B.54) into (D.18) gives

- , (ki, ) Jk(k,2
12 t e- n ( T M ) n (- k 'T-

IL ~~.o= (.,ubz.-z'),p n Ua+z ,

nJn(kMp) oT
kp sin(n(O - 0')) +z.J'(( TM

TETM0 20 TEk ) n&n(k, T,)"e-n p IP-z'I+ n n ,

/2 nl(EpI)J2 (X
7rL4 n=lp=1 (X - n )(kTI p)

'i(k T EP sin(n(O - (b+)) T E ( T EP)
TE TEt TE

-u, Z')kP J,(k, p) sin(n(O - 0')) e-"p Iz -z' (D.20)

Consider (Q, 4,6(L_- L')) and H(0,i2 6(r__- :')) evaluated at the point
whose cylindrical coordinates are (p, o, z). To obtain expressions for these
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fields, we replace the longitudinal magnetic current

M = uz(r - r') (D.21)

by an equivalent transverse electric current [8]. To see that such a "re-
placement" is possible, recall that ((0, Mv), (0, M")) satisfies Maxwell's
equations:

V x E(l, M ') = -jw Hll(,Mv)Mv D.2
x(Q,Mv) =j E(Q,M) }(D.22)

If MVIL: = RL(Q,MV) + .-- (D.23)

then (D.22) becomes

x( M =jw) +(D.24)
YZ x A jwfE(0,M ) +j IV

where
J" . M(D.25)

If we can find the electromagnetic field (E(f, Mv), /A) that appears in (D.24),
then we will, of course, have E(Q,WM) and, from (D.23), H(wM) will be
given by MV

(, ) = /A- -- (D.26)
'WI'

From (D.24), the electromagnetic field (E(0, M7), A) is the field radiated
by the electric current source L" so that we may write

E(Q1 M") = E(J",) (D.27)
Af=f(V,) (D.28)

Now, our objective is to find the electromagnetic field (,E(Jv, a) H(JT, 0)).
Unfortunately, ZL" can not be obtained by substituting (D.21) into (D.25)

because (r-r .') is not differentiable. Substitution of (D.5) into (D.21) gives

M" = u_,S(z - z')b(p -p') (D.29)
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We attempt to define MV by

M" = uM6(z - z') liM fN(P - P') (D.30)
N-co

where fN becomes more and more impulsive as N increases:
lim fN(£- O)---Pe- (D.31)

Now, we can not define (E(.Q,M),IH(Q,MU)) by

0 )= E(,u6(z - z') lim fV(P- ')) (N-o o -I (D .32)
I-I(Q,M) = H(O - z') limfN (p-)) f-- N-_ - -

because, since 6(p - Z) is not a legitimate function, the limits indicated in
(D.32) do not really exist. The proper definition of (E(0, M), H(0, M)) is

E(Ol,MV) = lim E(O,.u,(z - z')fN(p - eD) (D.33)
N-ac
lim L(Q, U. 6(Z - z')fN(p - (D33

ll1QM) =N-co

Taking the approach outlined in the previous paragraph, we replace the
fields due to M of (D.21) by the fields due to

N1 N2MV=1/z(z Z 1) C G sP T'(P,4 ) (D.34)
n=O p=l s=e,o

where the s = 0 term is to be omitted when n, the index of the outer
summation, is zero. We will choose (0 TEs such that M of (D.34) approaches
M of (D.29) as both N1 and N2 increase. Finally, we will take limNr,.v 2 .-
of the fields due to M' of(D.34).

In order for M' of (D.34) to approach M' of (D.29), the triple summation
in (D.34) must approach 6(p - p). Hence, we write

N, N2
- % ,C a "p,, p ) (D.35)

n=O p=1 s=e,o

Although it is not strictly true, (D.35) is a means of evaluating C TE. Mul-
tiplying both sides of (D.35) by T E r p, 0), integrating over the cross section
of the waveguide, using the orthogonality relationship [1, secs. 8-1 and 8-2
(k, T p dp d' TEr (, 0)ppTE, ( ) 1, (r,m,q) = (s,n,p)

np) P, mq ' np P 0, otherwise

(D.36)
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and finally replacing (r, m, q) by (s, n, p), we obtain
CTEs =,TE,,--T s(, , -, D.7

p = ,kp; 2 ,)p ,(D37)

Substitution of (D.37) into (D.34) gives

N N2
W=u - z') (k pT E2pI(P, Ie) T E(p, 0) (D.38)

n=O p=1 a=e,o

Substituting (D.38) into (D.25) and using (B.38) and (B.58), we obtain

JV = L6(z - z') (D.39)

where
1 N2 TE2Tsv/ t&PE('

-- ~ 1 1: .1: (k ,, ~p hp(, (D.40)
,/A n=Op=1 ae,o

Note that J is a surface density of electric current in the z = z' plane.
This paragraph and the next paragraph are devoted to finding the electro-

magnetic field (E(fMV),//) which satisfies (D.24) with ZL given by (D.39).
Since the only source is a transverse electric current in the z = z' plane, and
since the waveguide is matched at both ends, there will only be waves that
travel outward from z' and the transverse component of the electric field will
be continuous at z'. Hence, E(Q, M') and ft may be expanded as

(E( A),L) = np pj n

n=O p=1 -=e,o

•(ETms± + )+.E"Je±pz' (ETE+ H3± ) D.41)

where the upper sign is to be taken for z > z' and the lower one for z < z'.
k( 41), (M TMs± (E T Es± jTEs±

n(D.41), , ,, ---)and , p, are given by (B.1), (B.2),
(B.26), (B.27), (B.35), (B.36), (B.55), and (B.56). Moreover, -"Y T-" and .y TE

are given by (B.24) and (B.53), respectively. The s = 0 term is to be omitted
from (D.41) when n, the index of the outer summation, is zero. In (D.41),cTMs,J anC'TE,

,J and Cp j are unknown constants. The superscript J indicates that
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the source is J of (D.40). Substituting the expressions in Appendix B for
(ETMs±, HTM8s) and (ETEs", HTEs") into (D.41), we obtain

E(°,Mv) = Z F_ Y_ C MsJ {Z ,eo

00 00

e + YTs, f T~e I, ez Z)

vnp l -rp

n=O p=1 8ee,o

T& ~ (ZP zk) TM+ (j)~ s~pp ) TM(• d '(p, 0) + np-elnpI-'
jWC

where cT(z, z')s is, gie b D.)

n, ( , e-f - (D.42)
n-O p=1 (=e,o

A= E E E Cnp,j.,:,, Y) m,
n=0 p=1 8-=e,O

n---- p=1 s= e,O
-kTE\2--TEe,( 0)

7'z--'

+ , ) , p , eI n_, (D.43)

where E(z,z') is given by (D.4).
The a ight-hand side of (D.43) is discontinuous at z Y. The disconti-

nuity is related to J of (D.40) by !4, eq. (3-14)]

.J= uz x (A+ -Al/- ) (D.44)

where

S+ = sim (D.45)
Zz'

/ /-= im - (D.46)

Taking - of both sides of (D.44), we obtain

-Rz j= U .X IU X A +(D.47)

or, more simply,
- Z u, xJ =( + - ?-tn(D.48)

69



where the subscript "tan" denotes the transverse part of the vector. Applying
(D.48) to the discontinuous magnetic field of (D.43), we obtain

n=O p=1 s=e,o

Substitution of (D.40) into (D.49) gives

N( N2 kT) 2
,pTj (,

n--O p=1 s=e,o
00 00 00 00

: ZT J TM  0)+21(pE 1 CT ESj o
T EOIE(p) (D.50)

n=0 p=1 oe,o n=O p=1 =e,o

Because of the orthogonality (B.64) of h and h.M °, it is evident from
(D.50) that, upon using (B.54) to dispose of yTEo,

cT M & ] = 0 (D.51)

f (kTE 2 TE(p,, ,) ( s = eO
TEJ p n = 0, 1,..,N 1  (D.52)
npS°'J- = 21' p = 1, 2,- -•, N 2

0, otherwise

In view of (B.54), substitution of (D.51) and (D.52) into (D.42) and (D.43)
gives

1 N1 N2 (kT)"nkTE(',p cl' )-E(p, )e--,rpz,-'(
E(,- = : E ,...:. k np p 7 - (D.53)

n=O p=1 I=e,o p

N 1 N2
2a= ),

2yn=0 p--1- 3=e,o (kTE)2ohTEs ( Po
)T e- "P" (D.54)

Substituting (B.41), (B.59), (B.51), and (B.62) into (D.53), taking
limN1,N2-.0 0 , and then substituting (D.21) for M', we obtain

o ' TE (k n
3
J TE-P') { TEp)n.kp ) p Jk( nJ P

n=op=,-yEx -2- n2)J2(XI.)
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sin(n(O - 0')) + yJ (k,,p p) cos(n(€ - ¢'))}e-4EIZ -"'  (D.55)

Substituting (B.41), (B.59), (B.52), and (B.63) into (D.54), we obtain
TkE 3j TEpI

NI N2  P {E(z z')

H irw (x1 1 1 - n2)Jnl(XI E()
27wjn=O p=-( l p( COS(n(- nJ,(kTfp) sin(n( -'))

k)'(k  - n }4I D
TE TE_ n.,p J,(,p P) cos(n(O - 0')) } _Yr,,i ( .6

-.rnpnp(D 56

We want to substitute / of (D.56) and M" of (D.38) into (D.26) before letting
N1 and N 2 approach oo. Substitution of (B.41) and (B.59) into (D.38) gives

,5(z - z') N, N2 f,,(k, )2 J,(kp')J,(kp) cos(n( - (D.57)

12~ - n J2 (X')T n=O p=n

Substituting (D.56) and (D.57) into the right-hand side of (D.26), taking
UmN,N 2 .o., and then substituting (D.21) into the left-hand side of (D.26),
we obtain

0 __ TE) 3jn(k p') ( rg~o~u,6(,.- n') = Z')_,E , , -
2  ,rwA n=o ,=1 (n, - n )J,() )

, T o5(nE -nJn(k, p) sin(n( -k J ((k p oos(n( -( ')) - u_4 Tp

TE kTE
'ynpP

TE TE pe Tf]z ,np , (k p) cos(n(O - (0')) nPI

26(z - z')J,(kTEp) cos(n(- )} -D.58)

There are two Y terms inside the double summation on the right-hand
side of (D.58). The second u, term came from the -Mt/(jw~s) term on the
right-hand side of (D.26). Therefore, if we deleted the second it., term from
the right-hand side of (D.58), we would have /: instead of H(0, L:6(L - r')).
Equation (8) in [9, sec. 22] correctly gives Z(9, _._,6(_ - r')) of (D.55) for the
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electric field of the magnetic current element u.&6(r - r'). However, (8) in [9,
sec. 22] incorrectly gives the previously mentioned A for the magnetic field
of the magnetic current element u..6(r - z!). This error is pointed out in [10]
and [11].

In Appendix D, we found that E(0,&46(r - e)), U(Q, 1.46(r - z')), E(0,
u9(r- r')), and H(0,u6(% - r')) are given by (D.19), (D.20), (D.55), and
(D.58), respectively. In these equations, kP , -yTPM, k, and 7,E are given
by (B.7), (B.24), (B.41), and (B.53), respectively.
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Appendix E

Evaluation of Integrals with
Respect to 0' and (p

In Appendix E, the integrals (4.57)-(4.60) and (4.100)-(4.103) are evaluated.
The integrals (4.57)-(4.60) are

l = sin( ) sin(r(€- 0'))dO' (E.1)
'01 b

]3 sin( Pbr+) cos(r(O - €'))dO' (E.2)

= cos( - +)sin(r(O - 0'))dO' (E.3)

O-y piry /
+

f42 Cos( yb cos(r(O - q'))dq' (E 4)

In the above equations, y is 1 or 2, y"+ is given by (4.39), y,2+ by (4.40). 61
by (4.42), and 02 by (4.43).

Changing the variable of integration from 0' to y' +, (E.1)-(E.4) become

- - sin( M sin ( (y"' - v+ ) )" dy' - (E.5)

X J0 b YE 0

= b sin( -f )Cos r(y+ dy'+

b -(y-by(dy
sin ) o -S Y +) (E.6)

= (-1)3 = cos(PY )'+  (L(Y"+ )"dy'Y+  (E.7)
X'- o b Yr0
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44 b I") Cos - ) dy' (E.8)

where y"+ is given by (2.15) and (2.16). From (1.2) and (2.18), x. is given
by

b 
(E.9)

Using [5, formulas 401.02 and 401.04] to expand the trigonometric functions
of the difference arguments in (E.5)-(E.8), we obtain

--(--- CO~ ) _ 0(2) sin(rlf+) }(E. 10)

p2 = 02)COS( )+ l) sin(ry + ) (E.11)f 1 =€ )o ( 3-)(r n-

--3 = 3) ) - 0(4) sin(rY+) (E.12)

4p4 = 0(4) Co.(rYf + ) + 0(3)sin(r- ) (E.13)P 0o X0

where

- . sin(p'x) sin(rx)dx (E. 14)

0(2) = 1 sin(--)cos(r)dx (E.15)

0(3) = b cos(X ) sin(-o )dx (E.16)

0()= 1 bCos ~, )cos~rj )x (E. 17)P X, 0  ob X ,

The integrals in (E.14)-(E.17) are evaluated by using the integration for-
mulas [5, formulas 435, 445, and 465]

=1 fsin((a - b)x) sin((a + b)x) (E.18)

sin(ax)sin(b)d = 1 a - b a + b/!lfsin((a-b)x) sin((a +b)x)}

cos(ax)cos(b) dx = 2 a b + a+b (E.19)2 a- ba+b -

sinax co~b) d =-~ Ifcos((a -b)x) +cos((a + b)x' (.20
2 a-b + b (E.20)
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If I a 1=1 b 1, then the right-hand sides of (E.18)-(E.20) are to be replaced
by their limits as I b I approaches la 1. Unfortunately, (E.20) is subject to
excessive roundoff error when either (a - b) or (a + b) is small. To avoid this
error, we use the trigonometric identity [5, formula 403.22]

cosx = 1 - 2sin2(2) (E.21)(E22

to recast (E.20) as

sin 2 { = -  sin 2 f (a - }

f sin(ax) cos(bx) dx - + sin2 (E.22)
a-b + a + b (.

The "b" which appears in (E.18)-(E.20) and (E.22) is not to be confused
with that in (E.14)-(E.17).

Using (E.18), (E.19), and (E.22) to evaluate the integrals in (E.14)-
(E.17), we obtain

b I sin (p " - sin (p7r

(0) __ sn
= Lb0  + 16 _(E.23)

= -:b sin 2 (r (p r - )) sin 2 (I (pr + Zb))
0(2) 2 0_ (E.24)

Prb +

b3)=6 f sin 2 (1 (pr - - )) + sin 2 (1 (P7r + )) -
= X, T r 0  + fb

b _ sin p-) sin (p7 +b)

OP'4 2xr L7 b 20+ (P (E.26)

If (p7 ) is zero, then the right-l-t,, sides of (E.23)-(E.26) are to be
replaced by their limits as (pir ± z) approaches zero.

ZO
The integrals (4.100)-(4.103) are

= J -4 4cos( --- -)dO (E.27)
103

= 4 ( 2sin( b )d (E.28)
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e3 sinf' ( )d (E.29)
b

W0'3 C rya+ (E.30), 4= , cos b

where -y is 1 or 2, a is 1 or 2, y'+ is given by (2.15), y2 + by (2.16), 03 by
(4.104), and 04 by (4.105). In (2.15) and (2.16), x,, is given by (2.18) where
0o is given by (1.2). In (E.27)-(E.30), Oy', oy2, o-,3, and 04 are given by
(E.10)-(E.13), respectively. Substitution of (E.10)-(E.13) into (E.27)-(E.30)
gives

aryl = (-1V{o1)Goa2-2 _ }(2)o2.y} (E.31)

a-2 =P(2)o"l-t2 + ,(1),a1-1 (E.32)

O,.,a = -(-1)lf {,(3)a1.j2 _ 0(4)001-cy,} (E.33)

=(4) - 2 + (3)oa2y1 (E.34)

where
al 4 4 miry +  ry+

,Q1( -=/- sin( (E.35)

(04 mnry* + s -Y+

=2V cos( b sin( y)do (E.36)

-04 miry a +  ryv+
a1,2 _= f sin( b )cos(- )dO (E.37)xo

,a2-f2 = 4 cos( mry'+ ) cos( r y + )de (E.38)

Seeking to change the variable of integration in (E.35)-(E.38) from k to

y +, we differentiate (2.15) and (2.16) to obtain

dy a+
do X, (E.39)
dy, a =2

Substituting (4.104) and (4.105) into (2.15) and (2.16) and using (E.9), we
obtain f b a=1

y + b, (E.40)
0=03 0,
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a+ 0, a=1 (E.41)Y = 14 b, a = 2

Applying (E.39)-(E.41) to (E.35)-(E.38), we find that
1" . mlrycx sn 2 ~dQ

sin(= si Y sin(---y- )dyo+ (E.42)

Oa 2 - 1 b cos(mryO+ sin(" "o )dY°+ (E.43)
Xa,2 fo b , Xy+ ,y

= 1 6 sin(m7ry+ Cos(- + )dy,,+ (E.44)
s, 1 b )co( y +

- 1o b Cos(mb )cos(-'y-+ )dya+ (E.45)

if -y = a, then (E.42)-(E.45) can be expressed as

O,,-n = 0), 7"a (E.46)
Oa2y1 - 0), a (E.47)

0(2) a (E.48)

,2- 04), C " (E.49)

where the O's on the right-hand sides of (E.46)-(E.49) are given by (E.14)-
(E.17) with p replaced by m. If -y $ a, we add (2.16) to (2.15) in order to
obtain

y Y+ = rxo + b- y+, f 3 a (E.50)

Substituting (E.50) into (E.42)-(E.45) and using

sin (rr + r(b - y'+)) (1)

•- cos( ) _ cos(-) sin(L ) (E.51)
X0 -o X Xo

Cos (rir + L(b - y'+))r

( Zo-cos(- - ) + sin(-) sin(--) (E.52)
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we obtain

al-YI = 2) sin( ) -0tj) Cos( - a (E.53)

( i-b i-b
- - ) ( )- -_- 0()in3$) o) . y " a (E.54)

oa-y2 =(1l)r (2) CO( b )+ 00V-) si , -y a (E.55)

Oy2= (_~ ()o(r)+03 i(r - 4 a (E-56)

where the O's on the right-hand sides of (E.53)-(E.56) are given by (E.14)-
(E.17) with p replaced by m. These O's can be calculated from (E.23)-(E.26).

The results obtained in Appendix E are stated as follows. The quantities
0,,, 0y2, 0,3, and 0,4 are given by (E.10)-(E.13) in which 0(1);0(2), 043), and
P4) are given by (E.23)-(E.26). The quantities ¢az, -, ¢, and 00-f4 are

given by (E.31)-(E.34) in which 1, 0(2), 03), and 0(4) are given by (E.23)-

(E.26). Moreover, ¢al-fl, €,,2-t, Ol-Y 2, and 0, 2- 2 are given by (E.46)-(E.48)
for -t = a and by (E.53)-(E.56) for -f 34 a.
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Appendix F

Evaluation of Integrals with
Respect to zi and z

In Appendix F, the integrals (4.77)-(4.88) are evaluated for (-- < z <
Afterwards, the integrals (4.106)-(4.110) are evaluated. For (- < z <

the integrals (4.77)-(4.88) are

z, = L -^-fs(L3 - z') cos( )dz' (.1)
2 C

z62 = cos (L3 - Z' z(P2
cosh~(L z cos(!! )dz'(F2

z TE3 = fe-y,?E(L3 - z') si(q E)dz' (F.3)
2 C

TE4 2 sihZE-, qrz'+z = sinh ((L3 ) s')in( c'+) dz' (F.4)

where z'+ is given by (4.41). In (F.1) and (F.2), 5 is either TM or TE.
Substituting

76s I r3 $ = TM,TE (F.5)

in (F.1)-(F.4), using [5, formulas 654.6 and 654.7], changing the variable of
integration from z' to z'+, and finally replacing z1+ by x, we obtain

z6' = Jf {cos (0,.,(L+ - x)) - jsin ( 6,(L + - x))}cos(c)dx (F.6)

z26 = Jcos (3(L+ - x)) cos(L-)dx (F.7)
+3 C
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zTE3 = J+ {cos (#L(L4 - x)) - jsin ( ,T (L+ -x))}sin(!r-x)dx (F.8)

z TE = C sin ( ,E(L+ - x)) sin(i--X)dx (F.9)

where

Z+ = Z + c (F. 10)
2

L L (F.11)

The sum of (F.6) and (F.7) is

61+os - cos()dx

- sin (0'( x)) cos(q , )dx (F.12)

The difference between (F.8) and (F.9) is

TE3 - zTTE4 = Z+ Cos T - )) sin(-x)dx

-J sin (O (L + - x)) sin(q-")dx (F.13)

Since the right-hand side of (F.12) is simpler than that of (F.6), we will

"1btain z61 by evaluating (z61 + z812 ) and z12 and by setting

z 1 = (z 61 + z 62) - z 62  (F.14)

Similarly, we will obtain zTE3 by evaluating (zTE3 - zTE4) and zTE4 and by
setting

z T E 3 = (ZTE3 _ zTE4) + zTE4 (F.15)

The integrals in (F.7), (F.12), (F.9), and (F.13) are of the forms [12,
formulas 2.532]

sin((a - c)x + b - d)
sin(ax + b) sin(cx + d) dx 2(a - c)

sin((a + c)x + b + d)

2(a + c)
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jsin(ax + b) cos(cx + d)d = - cos((a - c+b-d)
2'(a - c)

cos((a + c)x + b + d) (F.17)
2(a + c)

[cos(ax + b) cos(cx + d)dx = sin((a - c)x + b- d)
2(a - c)

sin((a + c)x + b + d)+ 2(~)(F.18)
2(a + c)

In (F.16)-(F.18), a, b, and c are arbitrary constants not to be confused with
the specific dimensions a, b, and c in Fig. 1.1. If a = ±c, then the right-,and
sides of (F.16)-(F.18) are to be replaced by their limits as a approaches ±c.

Using (F.16)-(F.18) to evaluate the integrals in (F.7), (F.12), (F.9), and
(F.13), we obtain

2 sin(q-c + 0,,L+) - sin(q'-z + + 0,',L+)
2q6 -

s- )- sin(q6+z+- ) (F.19)
2qs+

6 +. .,,L +

z61 +62 sin(q-c + 0'$ L+) - je-I3isL3 + j cos(q6-z+ + 0' L+)
2qb-

sin(q 6+c - 35 L+) + je-IrsL+ _ j cos(q5+z+ - ,L+ r3 3 j 2q-+ 3)L3(F.20)

TE4 sin(qTE - c + 3TEL ) - sin(qTE-z+ + / L3 )

z -j -- 2qTE _

jsin(qTE+c foTEL+) - sin(qTE+z+ -!3TEL+(+j _r3 -3 2q)E (F.21)
2qTE+

fTT- r+ e--JTELs z ~ T E - 
_+ "+ ,-s 3T

,TE3 zTE4 J sin(qTEc + /TEL+) + 3 3- cos(q TE
S3 2qTE-

_jsin(qTE+c _ ITEL+ ejIOTEL+ COS(qTE+Z+ - OTEL+)
srs " "4-L+ e - r3 3 -- LsqE z -- s4~3)

+ 2qTE+ (F.22)

where

q 6 -= -r _ = TM, TE (F.23)
c81
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q6+ =qT + 3s, 6 = TM,TE (F.24)

C

Substitutiag (F.19) and (F 20) into (F.14) and using (E.21), we arrive at
• O' L+ j i: t

e e-3,. 3 sin(q-z +) - 2jsin'( +
- e 2 q6-

sin(q6+z+ ) + 2j sin'( 6 + +)
+ q+ (F25)

Using [5, formulas 401.01 and 401.02] to expand the trigonometric functions
in (F.19) and applying (E.21), we obtain

2 [{ {sin(q6-c) - sin(q'5-z+)} cos(#383L+) - 2{sin2( qj - c )

-sin(-!qz )} sin(OjSL+ )}/(2q6-)] + [I{ sin(q6+c) - sin(q6+z+)}
q6+ 

1

*cos(L + ) + 2sin2(--) -sin (e-2)}sin(/ 5L+))l(2q6 +)J (F.26)

If q* = 0, then the right-hand sides of (F.25) and (F.26) are to be replaced by
their limits as q6± approaches zero. If 0' is purely real, expressions (F.25)
and (F.26) are suitable for calculating (4.74), (4.75), (4.89), and (4.90) at
particular values of z because (F.25) and (F.26) are not subject to excessive
roundoff error when I q6 I is small.

If 0,6, is purely imaginary, we use (F.5) to obtain

=6, = 3r (F.27)

Substituting (F.27) into (F.25) and using (E.21) to dispose of the sin2 terms.
we arrive at

z/1 =je-!sL ( e-jq 6 -z + - 1 1 - e.iq6+ z+2 L e- + j (F-28)

where

q6-_ qr + Y (F.29)q -- %
C r

6+ r *6

q I r (F.30)
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Expression (F.28) is recast as

r6+z '1+5 L+
z61 = Jel(Z cos(L )+--sin( - ) (Z)2 + (9Y,)2 (F.31)

which becomes
61 6 5fs + _t. + Z

z= 2-f.,e 2 sinh(z- - L) + eOrTsz +

q~r q~r+ -* -qrzrbejsL
L sin( -y6 sin (F.32)k c' '2 ))J1r)2 +2c ~ ~ )

Substituting (F.27), (F.29), and (F.30) into (F.19) and using [5, formula
408.16], we find that

2 r 6 + _ q7rz+
z 2  1 ".cos( )sinh (y6 (L - z+)) - -sin(=)coshc c c

~~~~ (L - (+) (1~y i L + - c)) I/ {(17)2 + (y6 )21 (F.33)

If both = and -s are zero, then the right-hand sides of (F.32) and (F.33) are
to be replaced by their limits as -yo approaches zero while q is held at zero.
If -t' is purely real, expressions (F.32) and (F.33) are suitable for calculating
(4.74), (4.75), (4.89), and (4.90) at particular values of z because (F.32) and
(F.33) are not subject to excessive roundoff error when q is zero and Y5 is
small.

Substituting (F.21) and (F.22) into (F.15) and using (E.21), we arrive at

"E - . TLEL+ si-(qTEZ+) - 2j sin ( -TE- Z+)

z -TE3 e 2 3 qiTE -2 _-

sin(qTE+z+) + 2 sin 2 ( rT - ) )
qE+ (F.34)

Using [5, formulas 401.01 and 401.02] to expand the trigonometric functions
in (F.21) and applying (E.21), we obtain

zTE4 -J {sin(qTEc) - sin(qTE-z+) }CoS(3E L+)
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. sin (qTEZ+ )}(f ET+) /(2q TE-

[{j {sin(qTE+ c) - sin(qTE+z+)} CoS(/3EL, )
I =~TE+,. qTE+z,+ CSB,"

+2j sin 2( - sin 2(  )} sin(#TL+)}/(2qTE+) (F.35)
2 ~ 23

If JrE: = 0, then the right-hand sides of (F.34) and (F.35) are to be replaced
by their limits as qTE approaches zero. If /3rE is purely real, expressions
(F.34) and (F.35) are suitable for calculating (4.74), (4.75), (4.89), and (4.90)
at particular values of z because (F.34) and F.Jo) are not subject to excessive
roundoff error when I qTE I is small.

If OLE is purely imaginary, we use (F.5) to obtain

= • TE (F.36)=-n', 1

Substituting (F.36) into (F.34) and using (E.21) to dispose of the sin 2 terms,
we arrive at

TTr+ { "qTE- + jqTE+z }z E - -"r 3 1 - e- j q z1 -

ZTE3 { qTE.. + TE+ +F37

where
TE- rq • TE (F.38)

q - + JfrC

cTE+ _qir TE (.9
q (F- 9

Expression (F.37) is recast as

T =JTE 
rz+ q qrz+

ZTE sin(---) - 1-- cos(-)
C C C]

+ (2 )2  (F-40))2 o + (7TrE)2

which, in view of (E.21), becomes

TE3 _eJ/TEz+ (TE sin( qz+ ) 2q" sin2qz+
TEr+,TEZ+ TEz+ e-'Yrs -3(

-- i r sinh - 1 .41
ce,4 z sinh(,2M ) 2 + ( ) (F41)
C rs
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Substituting (F.36), (F.38), and (F.39) into (F.21) and using [5, formula
408.16], we find that

ZTE4 -= -fZE sin(q-z-)cosh(TEf(L+ -z+))
C3

+E cos( r ) sinh(/ T E (L + - z + ))
C c

r( _ I)q s in h (_fTE (L + - ,b)1 1 1 + (.yTE)2} (F.42)

If q = 0, then, as evident from (F.3) and (F.4), the right-hand sides of (F.41)
and (F.42) are to be set equal to zero, regardless of the value of _y E . With
this reservation, expressions (F.41) and (F.42) are suitable for calculating
(4.74), (4.75), (4.89), and (4.90) when .rfT is purely real.

The integrals (4.106)-(4.110) are

Z()-L {1 cosh(-trM(L 3 - Z))
2

TM2e-M(L3 )_z (F.43)
+ZTe-- (3 Cos(nz+)dz (F.43)

Ic

z (2 ) 
- L_ {zTEI cosh(_YTE(L 3 - z))

2

TE2 _ztTE (L3 - Z) ncrzos( (F.44)+Z e r 3  'Cos( )d

C

Z - j, {r.I - z sinh(3 (L3 - z))
2

Te TE(L - Z) n(rz+F5+Z ers -3  } sin( )dz (F.-5)

() J2 {ZTE3 cosh(YE(L 3 - Z))
2

FAZ -7 eYE (L 3 - Z)} cos( )dz (F.46)

-( L) {ZTE5 _ Z TE3 sinh(_YTE (L3 - Z))
2

zTE4 -eTE (L 3 - Z)} sin( T11Tz. )dz (F.47)
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where z + and zTE5 are given by (F.10) and (4.92), respectively. The quanti-
ties zTM 1 , zTM2, zTE l , zTE2, zTE3, and zTE4 are given by (F.1)-(F.4). Chang-
ing the variable of integration from z to z +, substituting jOTM and j1 3

TE for
yTM and 7tT E in accordance with (F.5), and using [5, formulas 654.6 and
654.7], we recast (F.43)-(F.47) as

Pz = fc 1 (zTM + z TM2) Cos 3TM - jz T2sin /3 TM 5 cos( )dz+(F.48)

Z (2) = Io (z T E I + zTE2) cOs 3TE - jzTE2sin)3T cos(- - )dz+ (F.49)
._ ~~os c crZ

Z( 3 ) = 1f tzTE 2 Cos3TE - j(ZTEI + zT 2 ) si T sin( nz)dz+ (F.50)
C

z ( )  (z 3  zT )cos3rE jzVsi 3Ecos(---- z) (F.51)

)= [C fZE T54 O T 3ZE i T n( fll* (F.51)
= c zT OS c T T- COST-TE- ( _zTE4) sin + TE}

(F.52)

where
=0,.(L3 - z+), 6 = TE,TM (F.53)

in which L+ is given by (F.11).
Factors appearing in (F.48)-(F.52) are [5, formulas 401.05, 401.06, and

401.071

sin 26 sin( 2= cos(n6 z+ - O=,L) - cos(n6-z. + X )} (F.54)
n27rz +  6

cos0 6 sin( 2 ]{sin(n +z+ - + + sin(n-z+ + L+

c = - ,,L 3 ) +3,L) )3 F.55)

sin6Cos(n+) sin(n z+ + 0 6 L  - sin(n+z - 3r 3L+)} (F.56)

os ( LZ +{ +z+Cos 06 Cos(-) = c(n-z +,,L a ) + cos(n 6+ -Z 3'L +) (F.57)

where

n6+ n -+F.5)

+ s (F.59)
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in which 6 is either TE or TM. Substituting (F.19), (F.20), (F.56), and
(F.57) into (F.48) and (F.49), we obtain

Z(1) - ZTM (F.60)

z(2) = zT E  (F.61)

where

r6  6-C+j-g'L
z5  (sin(q- + -je- 1 P,.' 3 + j(z4 -ZI 6

=sn(q6 c+ 0L+) +j + z (z+-z6+)- +a 3C,_ - ) 1(4q6
sin~~q6-c +/3r, L3 ) +~ -jz_, L+ _,)-(z,+,, z, +c_

[(sin(q'+c - OroL3) + je- ' 3)(z _ + z _) -j(z.,_ - z,+6)

*sin(q
5+c - 03'sL+) + -z 6 •-j(Z''S+ + z'+,+)}/(4qs+)] (F.62)sin~q6+  S°+ +1 -, - C,+) S(°,+ C+6

in which

Zaa = sin(naz + - (al)#3,,L+)dz+  (F.63)0 3°
5 C

z= cos(n6z + - (al)03,L )dz+ (F.64)

S 03 s sin(nbaz + -(o,1)06 L+) sin(q6'z " l6L)z+ (F.65z,,,.nrn = - \ , , 3 s n q - )/ L3 )dz (F. 65)

z 3cos(n6az+ (a 6 L+)cos( z+ - (71) L+)dz+ (F.66)

Here, al = +1 when a = +, and al = -1 when a = -. The quantity 71
is similarly defined. Substitution of (F.19), (F.20), (F.54), and (F.55) inio
(F.50) yields

( 3 )= (zrT + zTE)sin(qTE-C+, TEL) - (jsin(qTE-C+ 3 TE L)

+ej 3 ) (Zz- - (zs- _ - (z. + z )}/(4qE - ]

+[{ (ZT + ZTE)sin(qTE+c _ TT+3+,. sin3 O L + (Jsin( qr L-.nEr+)

Lr+ ( TE .rE) ]E T E3 T E+e-l/3,,L 3 )(zT+E ZTE) -r (z:r+zT+)-(,E3-(c+ _- - (Z 3+.,+ + z C+.C+ )  (-- _+ -- -'.+ )1/(4qT +

(F.67)
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Evaluating the integrals in (F.63) and (F.64), we obtain

= cos(O,3,L') - cos(nc'c - (a1)I3L3) (F.68)
Zs5 = -3 n6 a  + sn3 (F68

sin(,nac - (al)L') + (al) sinL(F.69)
Z -- '.n6 a

If n6* is zero, then the right-hand sides of (F.68) and (F.69) are to be replaced
by their limits as n60 approaches zero. Application of the integration formula
(F.16) to (F.65) gives

sin((n' - q")c+ (-yl 6 - sin((1 - al)3,,L3)
z~a, . =2(n~c' - ql )

sin((nsa + q6)c - (al + y1)/$,oL+) + sin((al + -y1)$,L3) (F.70)

2(n8 , + qS)

Application of the integration formula (F.18) to (F.66) gives

= sin((n" -q ")c + (fl - ca)#3rL+) - sin((-yl - al)06 L + )
Cr 2(nscr - qs-)

sin((n6s + q )c- (al + 7 l)06,L ) +sin((al + y1)O3$L+)
+ 2(n +q (F.71)

The sum of (F.70) and (F.71) is
-C - )5-,L ,

6 + sin((n 5  
- q 5 )c + ( yl - a)L 3 () 3

(n~c~~

(F.72)

The difference between (F.70) and (F.71) is

sin((n 6o + q6")c - (al + -yl),3' L+) + sin((al + -,1)35 L + )

z.10 Sly - zC,,Y =(nSf + q61)

(F.73)
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Substitution of (F.68), (F.69), (F.72), and (F.73) into (F.62) and (F.67)
gives

z6 j -= , L
4

6-q6{( 1  Cns- ) sin(qc + 3L) - sin(nc + 0,6,L) + sin(3L)

+ nl6+qs6

6--q6

C1 ejs) sin(q 6 c - Or$L) + sin(n+c + 0,6,L) - sin(O' LL+)
+ 3ns+q6 + 3

(1 -I 3  ~i~ 8 c. 3 1 ~ sin(n 8'- -qg-Lc) + sin((n+L~ +}6-c

jsin((n - q)c) sin((n+ q)c) (.4

(n8 - + ql+)q6+ (n6+ - q6+)q6 +

f 1- jn TE-c) sin(q TE-C + /3LEL+) + sin(n TE-C + ,3TEL+-) - sin( OTE L+)

flTE-qTE-
On fTE+ C~i~TEC+ OTE L) - sin(n TE+C -TE L+)sin(EL+-)

+ nTE+ qTE-

+ ( - jn TE-C) sin(q TE+C -OE+ - sin(n T-IC + OTEL+) + sin(/3TE L+)

nEqTE+

(1 -yTE+ C) sin(q TE+c - ,3TEL + i~TE+C I3E) + si( +Ei)}

+ nTE+ qTE+

+ - sin((n T E- q T E-)C) +sin((n E+ + q T Ej)
4 (TE-- qE- qTE- (nTE+ + qTE- qTE-

+sin((n TE- + q TE+)C) sin((n TE+ - q TE+)C) (F.75
(TTE- + qTE+)qTE+ -(nTE+ -qTE+ )qTE+J
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The term {sin((n- - q-)c)}/{(nS - q-)q-} in (F.74) becomes infinite
as q6- approaches zero. We subtract {sin(n 6 c)}/(n 6-q - ) from this term to
render it finite as q6- approaches zero. To maintain equality in (F.74), we add
an appropriate quantity to the term whose denominator is n6- q6-. Similarly
treating the ill-behaved terms whose denominators are (nS+ +q6-)q6-, (n6 +
ql+)q+, and (n"+ -q)q+ in (F.74), we arrive, with the help of [5, formulas
401.01 and 401.021, at

- S(D6G6 + c2F6 ) (F.76)
4

where

D (e-Jn -6- l - d n 6+ e  .j +

D6 = ( n6-- n6+ C) e 3 (F.77)

+

FP b- c, -q,5c) + f(ns+c, q6Thz)

f(n'-c, q6+c) + f (n6 +c, -q 6 +c) (F.79)
inwhsinch-c1 (sin (x + )sin x)in /

-f (xLa ) = (F.80)+si(?+ x + sin x L )

If we divided the right-hand side of (F.74) by j, changed the signs of the
terms whose denominators are n-q -, (n - - q-)q-, n -q6+, and (n - +
q+)qs+, and then replaced 6 by TE, we would have the right-hand side of
(F.75). Therefore, we can, from inspection of (F.76)-(F.80), write

-3)- 1(D(3)G(3) + c2F (3 )) (F.S1)

4

where

(3) I - e- n  C e- eJ + c) OEr+
= TB_ + TE+ ) e-s3,3L (F.S2)

G (3) = GTE (F.S3)
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F (3 ) = f(nTE-c, -qTE-c) + f (n T E + c, qTE-c)
+f(nTE-c, qTE+c) + f(nTE+c -qTE+ c) (F.84)

In (F.83), GTE is given by (F.78) with 5 replaced by TE.

In this paragraph and the next two paragraphs, we obtain formulas that
are, when 0,', is purely real, suitable for calculating D6, D (3) , G6 , and the f's
in (F.79) and (F.84). Concerned about roundoff error when I n6' is small,
we use (E.21) to express D6 of (F.77) and D(3) of (F.82) as

2 n6-c-n 6+ C
j sin(n- C)n- 2sin 2(---s +- sin(n6+c) + 2 sin' (-c)

D6{ si~ 6 -2 2-- + 6+ 2 e- 6L
nDn

(F.85)
sin(n Tc) + 2 sin-2 (____ flTE+ C

(3)) -j sin(nT+ c) + 2sin 2(
= {iTE_ 2 riTE+

" ,TELr+• ri 3TE (F.86).

If ns 
- 0, then the I/n 5 + terms in (F.85) and (F.86) must be replaced by

their limits as n 6± approaches zero. The right-hand sides of (F.85) and (F.86)
were purposely expressed so that the values of these limits are obvious.

Concerned about roundoff error when I is small, we use [5, formulas
401.01 and 401.02] and (E.21) to express G6 of (F.78) as

q-.Cqs 5) 
$L

c ,

sin(qsc)cos(O,3$L ) - 2 sin 2  sin(' L +)G 6 2

q6+c
sin(q6+ c) cos(/6 L + ) + 2 s ( -- ) sin(O, L + )

+ q + 2 (F.S7)

If q6+ = 0, then the right-hand side of (F.87) must be replaced by its limit
as q5+ approaches zero.

Care must also be taken to avoid excessive roundoff error in the calcula-
tion of f(x,y) of (F.80). From (F.23), (F.24), (F.58), and (F.59), we have

(n' - - q'-)c = (n - q)7r (F.88)

(n' + + q6-)c = (n + q)7r (F.89)
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(n'- + q8+)c = (n + q)r (F.90)

(n"+ - q =)c = (n - q)r (F.91)

so that, for every f that appears in (F.79) and (F.84),

x + y = (n q)ir (F.92)

Equation (F.92) reduces (F.80) to

sin a:
f(X,y) = -s , x + y 0 (F.93)

y - sin y 0 (F.94)

Expression (F.94) was obtained by taking the limit of the right-hand side of
(F.80) as x + y approaches zero. If hy < 1, we use (F.92) to recast (F.93) as

f(Xy) (-1),±'siny { X+Y # 0 (F.95)

If jyj < 0.1, we replace the right-hand side of (F.94) by the series approxi-
mation [5, formula 415.01]

y 3 y3 { ~ =

fAX'y) = 3! - +  X + lY =- 0. (F.96)

Collecting the results (F.93)-(F.96), we have

sinx { +yaO
yx ' Y1 > 2"

(-1)n""siny { +Y#0

f(X,y) y -n J' S2 (F.97)y - sing X + y= 0

y2  ' Iy > 0.1

y y3  y5 x-ry-O3! 5! + 7![' 1y1 < 0.1

where (n - q) is the integer that satisfies (F.92).
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In this paragraph and the next paragraph, we obtain formulas that are,
when is purely imaginary, suitable for calculating D6 , D(3), G6 , F 6, and
F (3) We arrive at these formulas by substituting (F.27), (F.29), (F.30), and

nr •s (F.98)

6+ = nr j77r (F.99)C

into (F.77), (F.82), (F.78), (F.79), and (F.84). Substitution of (F.27), (F.98),
and (F.99) into (F.77) gives

c
4j/'Ce4(+_ C r

4j'yoc2 e-",(3 -2-) sinh(2It)
D6 = - 2 n even (F.100)(nr 2 + (y ,c)2

6

4j - sC2& e (L3+2') cosh( lrs)
D6 = (nnr)2 +(-tc) odd (F.101)( n )..C) 2 '

If both n and -fro are zero, then the right-hand side of (F.100) must be
replaced by its limit as 7y, approaches zero while n is held at zero. This limit
is -2jc. Substitution of (F.27), (F.98), and (F.99) into (F.82) gives

TE

4nrc e--, ) sinh
D (3)  

3 -+ )2 , n2even (F.102)
TE

4n~rc e-' ,-E(- 1 cosh(~'c
D (3) = (nrc)e 3(2) c)h 2 n odd (F.103)(nr)2 + (E 2)

If both n and 7Tr are zero, then the right-hand side of (F.102) must be
replaced by its limit as -fE approaches zero while n is held at zero. This
limit is zero. Substitution of (F.27), (F.29), and (F.30) into (F.78) and use
of [5, formula 408.16] lead to

2y-y~c {sinh(5C -'L + ) - (-1)q sinh(-y' (L' - c))}
(qir)2 + (-yc)2

If both q and -1. are zero, then the right-hand side of (F.104) must be replaced
by its limit as -yrs approaches zero while q is held at zero. This limit is 2c.
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Substituting (F.80), (F.29), (F.30), (F.98), and (F.99) into (F.79), using
[5, formula 408.16], and assuming that n is precisely an integer, we obtain

F6 = 2j-f,c { sin((n + q)r) + sin((n - q)r)
(q7r) 2 + (_''c) 2  (n + q)ir (n - q)7r

2-t,'c(- 1)n sinh(yoc) } (F.105)

(nT)2 + (78 .C)2

Similarly, (F.84) yields

F(3) -( 2r fqsin((n + q)r) sin((n - q)r))

(qr2+ (-/LEC) 2 L~(n + q)~r (n - q)7r+ 7 + (-T )

+ 2njt!c(-1 )n sinh(-yEc) } (F.106)S(n )2 + (_1EC)2

If q = ±n, then the right-hand sides of (F.105) and (F.106) must be replaced
by their limits as q approaches ±n while n is held at its integer value. Thus,
assuming that both q and n are non-negative integers, forms suitable for
calculation are:

F 6 = 4j(7y,6c)(-1)nsinh(7rc){(q7r)2 + (.4 8c)'} {(nr)2 + (-flc)2}' q # n (F.107)

F6 = 2jy$SC f 2t,,c(- 1)n sinh(7r,c) 1 q n $0 (F-108)(qr)2 + (7t 8C)2 t (nr)2 + (0 (0C)2  )

FS = 4j {41c - sinh(478,c)} q= n =0F6
-(6 ,)2 , , (F.109)

(,Yrs) ^fsc > 0.1

FS = 4i +  + , q==0 (F.110)
3! {! 7c < 0.1

(3)  4rnTE, _c(-1)n sinh(^Ec)
{(q7r) 2 + (yTTEc)} {(n7r)2 + ('yEC) 2 }'

(3)=  2rn 2-,c() sinh(-yEc) } q n # 0 (F.112)
(q7r) 2 + (-yTEC) L ( ) + ( r Ec)2

F(3) =0, q=n=0 (F.113)

If q = 0 or n = 0 and if-y,, = 0, then (F.107) and (F.111) must be replaced
by their limits as %f, approaches zero. The series expansion [5, formula 657.11
was used to obtain (F.110).
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Comparing (F.21) with (F.19), we note that

zTE4 = _j3 TE2 (F. 114)

where .TE2 is the right-hand side of (F.21) with the sign of the 1/q 6+ term
changed and with 6 replaced by TE. Comparing (F.22) with (F.20), we find
that

zTE3 zTE4 = j(TE1 + iTE2) (F.115)

where (iTEI +iTE2) is the right-hand side of (F.20) with the sign of the 1/q 6+

term changed and with b replaced by TE. Substituting (F.114) and (F.115)
into (F.51) and (F.52) and comparing with (F.49) and (F.50), we obtain

Z(4) = j 2 (F.116)

Z(5) = ji( 3 ) + zTES sin( nrz+ )dz+ (F.117)

where j(2) is the right-hand side of (F.49) with the signs of the 1/qTE+ terms
changed. Similarly, i( 3 ) is the right-hand side of (F.50) with the signs of the
1/qTE+ terms changed. According to (F.61), Z(2) is given by the right-hand
side of (F.76) with 6 replaced by TE.

Substituting (F.76) into (F.116) and noting that the integrations that
were performed in obtaining (F.76) from (F.49) did not introduce any 11q 6+

factors in addition to those in (F.19) and (F.20), we obtain

= _-(DTEG(4) + c2F (4)) (F.118)
(4

where DTE is given by (F.77) with 6 replaced by TE, G( 4) is given by the
right-hand side of (F.78) with the sign of the 1/q6+ term changed and with 6
replaced by TE, and F (4) is given by the right-hand side of (F.79) with the
signs of the 1/q 6+ terms changed and with 6 replaced by TE. Substituting
(4.92) and (F.81) into (F.117), noting that the integrations that were per-
formed in obtaining (F.81) from (F.50) did not introduce any 1/qTE+ factors
in addition to those in (F.19) and (F.20), and using (F.5), we obtain

Z(5) i (3r (4)+ C-3 +zTE + (3)(4) + c2 F( 5 )) (F.119)

(kE)2  4(D
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where D(3 ) is given by (F.82), G 4) is the same as in (F.118), and F (5 ) is given
by the right-hand side of (F.84) with the signs of the 1/qTE+ terms changed.
Moreover,

E + n rz+ +
z sin( ) sin(- )dz" (F.120)

0O C

Assuming that both n and q are non-negative integers, we have

ris 2,n~ (F. 121)
Zoo~ ={0, otherwise

If #ZTE is purely real, then DTE and D (3) are suitably given by (F.85)
and (F.86). Assuming that #LE is purely real, we proceed to obtain suitable
expressions for G( , F(4), and F(5). From (F.87), we have

sin(qT-- c) cos(I3EL+ ) - 2 sin'( qr_) sin(/TEL )
G = qTE-

qTE+c¢

sin(qE-+c) cos(I3 z L+ ) + 2 sin2 (--2C) sin( T E 4L+ ) -

qTE+ (F. 122)

From (F.79) and (F.84), we have

F( 4) = -f(nT E- c, -qTE- c) + f(TE+ C, qTE- c)

+f(nTE-c, qTE+c) - f(nTE+ c, -qTE+c) (F.123)

F (s) = f(nTE-c, -qTE-c) + f(TE+c, TE- c)
-f(nTE-c, qTE+c) - f(nTE+ c, -qTE+c) (F.124)

where f(x, y) is given by (F.97).
If /TE is purely imaginary, we point out that DTE is suitably given by

(F.100) and (F.101) with 6 replaced by TE and that D(3) is suitably given
by (F.102) and (F.103). Assuming that OTE is purely imaginary, we proceed
to obtain a suitable expression for GO). From (F.78), we have

TE-

sin(qTE+C +TEL+) - sin(OTEL+)

ssq -,3L) + 3) (F.125)
qTE+
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Substitution of (F.27), (F.29), and (F.30) into (F.125) leads to

- j2rqc {sinh(-tTEL+) _ (_l)q sinh( TE(L+ - c))} I(qG) 2 + ( sc)2 (F.126)

If both q and 7 TE are zero, then the right-hand side of (F.126) must be
replaced by its limit as 7fE approaches zero while q is held at zero. This
limit is zero.

In this paragraph, formulas are obtained for calculating F. ) and F (' )

when #LE is purely imaginary. Substituting (F.29), (F.30), (F.98), and (F.99)
into (F.123), using [5, formula 408.16], and assuming that n is precisely an
integer, we obtain

F( 2rq f sin((n + q)ir) + sin((n - q)7r)
(q7r) 2 + (-yLEC) 2  (n + q)7r (n - q)7r

2y-fc(-1)nsinh(TTEc) } (F.127)

(nir)2 + (-yLEC)2

Similarly, (F.124) yields

Fs 2" _ 7TE2(sin((n + q)7r) sin((n - q)lr)(q r)2 + (_zy), C ' -7 - - q: l
(q~r 2 +(~Tc)2L (n n+q)7r (n-q7

+ 2r nq(-1) sinh(E) }(F.128)S (n )2 + (_yTE )' (.1

If q = ±n, then the right-hand sides of (F.127) and (F.128) must be replaced
by their limits as q approaches ±n while n is held at its integer value. Thus,
assuming that both q and n are non-negative integers, forms suitable for
calculation are:

F(4) = 4rq Tfc(-1)n sinh(Trsc) q # n (F.129)
{(q7r)2 + (T~Ec)2} {(nr)2 + (yTLEc)2}

4) = 2rq 1- 27r&c(-1 )"sinh(iTEc)) q = n - 0 (F.130)(q7r) 2 + (.yT )2 (n7r)2 + (.TEc)

F (4) =0, q=n=0 (F.131)

F(5)  4jlr 2nq(-l)n sinh(TEc) q $ n (F.132)
(q7r)2 + (TrEc)2 q
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F~5s) 2j E 2(n7r)(-1Y sinh(c }..
F (S () 2 + (7TEc) 2 {Ec + (nir) 2 + (7 Ec)2

(F.133)
F()- 0, q = n = 0 (F.134)

If q = 0 or n = 0 and if 7TE = 0, then the right-hand side of (F.129) must
be replaced by its limit as -ZE approaches zero. If n = 0 and 7YE = 0, then
the right-hand side of (F.132) must be replaced by zero.

The results obtained in Appendix F are cataloged in Table F.1. In Ta-
ble F.1, the quantity in the first column is given by the equatiou whose
number appears in the second column when the nature of either 7ZM or -7TE
is indicated in the third column.
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Table F.1: Results in Appendix F

Quantity Equation Number Circumstance
ZT M 1  (F.25) -,TM purely imaginary
z r 2  (F.26) yZM purely imaginary
ZT M 1  (F.32) -,T9 m purely real
zT M 2 (F.33) 7TM purely real
z 1 (F.25) -y7, purely imaginary
z T 2  (F.26) yT,. purely imaginary

- (F.34) T  purely imaginary
zT E 4  (F.35) 7TL purely iwLaginary

zj E (F.32) - TE purely real
z(T 2  F.33) - T  purely real
zT E 3 (F.41) yT  purely real
z T E (F.42) y5T, purely real
z(T) (F.60),(F.76),(F.85),(F.87), ,T1M purely imaginary

(F.79),(F.97)
z1W (F.60),(F.76),(F.lOO),(F.10l), yTMpurely real

(F.104),(F.107)-(F.110)
Z(2) (F.60),(F.76),(F.85),(F.87), -tTE purely imaginary

(F.79),(F.97)
z(31  (F.81),(F.86),(F.83), . purely imaginary

(F.87),(F.84),(F.97)
Z( 4)  (F.118),(F.85),(F.122), -,', purely imaginary

(F.123),(F.97)
z( T)  (F.119),(F.121),(F.86), yTE purely imaginary

(F.122),(F. 124),(F.97)
Z(2 )  (F.60),(F.76),(F.100),(F. 101), yTE purely real

(F. 104),(F. 107)-(F. 110)
z(3T (F.81),(F.102),(F.103),(F.83) -yT purely real

(F. 104),(F. 111)-(F.113)
(F.118),(F.100),(F.101), ^yE purely real
(F. 126),(F. 129)-(F. 131)

ZT5)  (F.119),(F.121),(F.102), IN, purely real

(F.103),(F. 126),(F. 132)-(F. 134)
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