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Chapter 1

Statement of the Problem

Two apertures in a circular waveguide feed two identical rectangular wave-
guides as shown in Fig. 1.1. The walls of each waveguide are perfectly con-
ducting. The interiors of the left-hand waveguide, the right-hand waveguide,
and the circular waveguide are called regions 1, 2, and 3, respectively. Ho-
mogeneous space of permeability 4 and permittivity e exists in regions 1, 2,
and 3. The excitation is a T Mp; wave of unit amplitude traveling in the z
direction in the circular waveguide. The circular waveguide is of radius a and
is terminated by a perfectly conducting wall at z = Lj. The radius a is such
that only the T Ey; and T Mg, modes can propagate in the circular waveguide.
A problem similar to the one being described was previously treated in [1].
Both rectangular waveguides run parallel to the z axis. Both have the
same cross section (—% <y< %, —% <z < %) where ¢ < b and b is such that
only the T Eyq dominant mode can propagate in each rectangular waveguide.
The aperture which feeds the left-hand rectangular waveguide in Fig. 1 1 is
called A,. This aperture is the surface for which (p = a, 7 — ¢, < ¢ <

T+ ¢o, —5 < 2 < ) where
p=\/$2+y2 (11)

b
o = sin”}(— 1.2
80 = sin} () (12)
The aperture which feeds the right-hand rectangule: waveguide in Fig. 1.1
is called A;. This aperture is the surface for which (p = a, —¢, < ¢ <

¢ov _g <z< %)
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Figure 1.1: Top and side views of the T My, to T E,o mode converter.
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The voltage to current ratio of the TE;; mode in region 1 is taken to
be Z, at £ = —L,. All other rectangular waveguide modes are evanescent.
The voltage to current ratios of the evanescent modes at z = — L, do not
come into play because L, is taken to be so large that any evanescent wave
emanating from the termination at z = —L; will have negligible amplitude
upon arrival at the apertur= A;. The voltage to current ratio of the TEjq
mode in region 2 is taken to be Z, at £ = L,. Here, L, is taken to be so
large that any evanescent wave emanating from the termination at z = L,
will have negligible amplitude upon arrival at the aperture A,.

As previously stated, the excitation is a z traveling (traveling in the z
direction) T My, wave of unit amplitude in the circular waveguide. By as-
sumption, this is the only z traveling wave at z = —£. This wave is produced
by an impressed source or sources located in the region for which 2z < z, < -
of the circular waveguide. Since neither of the rectangular waveguides nor
the region for which z > z, of the circular waveguide contains an indepen-
dent source, the electromagnetic field for z > z, in the circular waveguide
depends only on the amplitudes of the z traveling waves at z = z, and not
on the manner in which these amplitudes were produced. Therefore, we can,
without loss of generality, assume that the impressed source of the unit am-
plitude z traveling T Mo, wave in the circular waveguide is an electric current
source J'™P whose —z traveling (traveling in the —z direction) waves see a
matched load, that is, these waves are never reflected. As shown in Fig. 1.1,
J'™P is located at z < —Z£ in the circular waveguide. The objective is to find

the electromagnetic field in regions 1 and 2 of Fig. 1.1 and in the portion of
region 3 for which z > z, in Fig. 1.1.




Chapter 2

Formulation

Following the generalized network formulation for aperture problems (2], [3],
we close the apertures A; and A, with perfect electric conductors of infinites-
imal thickness. As shown in Fig. 2.1, we place the surface density of magnetic
current M™ on the region 1 side of the closed aperture A, ~M" on the
region 3 side of A;, M® on the region 2 side of the closed aperture A,, and
~M® on the region 3 side of A;. In Fig. 1.1, the tangential electric field
and the tangential magnetic field are continuous across A, and A,. The
arrangement of magnetic currents in Fig. 2.1 ensures continuity of the tan-
gential electric field across A; and A,;. Now, the fields in Fig. 2.1 will be the
same as those in Fig. 1.1 if M*) and M? are adjusted so that the tangential
magnetic field in Fig. 2.1 is continuous across A; and A.

Continuity of the tangential magnetic field across A; in Fig. 2.1 is ex-
pressed as

where H(" is the magnetic field in region 1 and H® is the magnetic field
in region 3. In (2.1), the subscript “tan” denotes the components tangent
to A;. Continuity of the tangential magnetic field across A, in Fig. 2.1 is
expressed as
2 3
HP =HS ~ on A, (2.2)

where H(? is the magnetic field in region 2. In (2.2), the subscript “tan”
denotes the components tangent to A,.
The electromagnetic field (E®), H") in region 1 of Fig. 2.1 is due to M "
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Figure 2.1: Top and side views of the situation equivalent to that of Fig. 1.1.
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placed on the region 1 side of the closed aperture A;:

EW = EM(Q, MY) (2.3)
HY = H(l)(Q, M(l)) (2.4)

The superscript “(1)” on E and H on the right-hand sides of (2.3) and (2.4)
denotes radiation in region 1 of Fig. 2.1. The “0Q” on the right-hand sides of
(2.3) and (2.4) indicates that there is no electric current source.

The field (E®, H®) in region 2 of Fig. 2.1 is due to M® placed on the
region 2 side of the closed aperture A;:

E® = E®(q, M®) (2.5)
H? = g0, M®) (2.6)

The superscript “(2)” on E and H on the right-hand sides of (2.5) and (2.6)
denotes radiation in region 2 of Fig. 2.1. The “0” on the right-hand sides of
(2.5) and (2.6) indicates that there is no electric current source.

The field (E®, H®) for z > 2, in region 3 of Fig. 2.1 is due to the current
sources J'™P _M®) and —M® radiating in the circular waveguide with
the apertures A, and A; closed by perfect conductors, with the perfectly
conducting wall at z = L3, and with a matched load at z = z; where z is

any value such that all of J'™P lies in the region for which z > z;:

E® = E(a)(limp’g) _ E(3)(Q, M(l)) — E(s)(Q, _M_(2)) (2.7
H® = HO(J™P,0) - HO(Q, MM) - HO(Q, MP)  (28)

The superscript “(3)” on the right-hand sides of (2.7) and (2.8) denotes
radiation in region 3 with the apertures closed, with the short at z = L3,
and with the matched load at the other end. The first argument of each field
on the right-hand sides of (2.7) and (2.8) is an electric current source; the
second argument is a magnetic current source.

Substitution of (2.4) and (2.8) into (2.1) gives

-2 (0,MV)-HD (0, MV)-HD (0, M®) = —H)_ ([P, ) o?)z‘;;
Substitution of (2.6) and (2.8) into (2.2) yields

—HY (0, MM -HD (0, MP)-HE (0. M) = —HD (J™P,0) on A,
(2.10)




Let

pTM ™ PTE QTE
MO =Y T YT+ Y T MG @)

p=1 g¢=1 p=0 ¢=0

p+q#0

PTM ™ PTE Q TE
MO =T T VMG 4 T X MG (212)

p=1 q¢=1 p=0 g¢=0

p+q#0

where the V’s are unknown coefficients to be determined and

sin @,
Mpq(¢? ) =Uu eipq(y1+’z+) +uz ezpq(yl+1z+)

Po
p=a
T - ¢OC§<¢ < + R _ (2.13)
35253
26 .6 (24 4y, Sing, &5 (42 2ty ! - '0<= a<
Mpq(¢az) - ucbezpq(y ’ 2 ) U, ! ypq(y » 2 )a < ¢ < P (214)
: ~§<<s

where u, and u, are the unit vectors in the ¢ and z directions, respectively
Furthermore, efm and ezpq are, respectively, the y and z components of € .
Now, § is either TM or TE, and eTM and eTF are given by (A.10) and (A.23),

€rq
respectively. In (2.13) and (2. 14)

Yyt =(r—¢)z, + ¢ (2.15)
vt = ¢z, + ¢ (2.16)
zt=z4¢ (2.17)
where i
asin
z, = 2 2.18)
b0 (

In Chapter 3, it is shown that (E(l)(Q,M;fM),ﬂ(l)(Q, M‘TM ) is approxi-
mately a TM,, field in region 1, that (Em(Q,MlTE) HO (_, M;,qTE)) is ap-
proximately a TE,, field in region 1, that (E®(Q, MZM) H(q, 2TM))
is approximately a T'M,, field in region 2, and that (E™)(0, ﬂquE) ﬁm(Q,

Mf,.,TE ) is approximately a T E,, field in region 2.
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Substituting (2.11) and (2.12) into (2.9) and (2.10), we obtain

PTM QTM
_ ; q; VlTM (1) Q MPTM +H§;33),n Q M;,qTM))
PTE QTE
- X T VAT, (0, METF) + 2, (0, M)
e
PTM QTM PTE Q
ST S v e - T S veag, o ue
p=1 g=1 p=0 gq=0
p+9#0
= —H® (I™P,0) on4, (219)
and
PTM Q ™™ PTE Q TE
- E E VITMH(3) (Q, TM z Z VITEH(3) Q,M;Z'E)
p=1 g¢g=1 p=0 g¢=0
PTM QTM Praze
- L X Ve (Hian 0 M) + Hi (0, M)
PTE QTE
— pz_% q;o V2TE H?a),n 0, 2qTE)+H(3) (QaMifE))
p+g#0

=-H® (J™P,0) onA, (220)

The symmetric product < A, B > between two vectors 4 and B is defined
to be the surface integral of their dot product over whichever aperture they

are defined:
<A B>= // oo A B (

Here, ds is the differential element of surface area. First taking the symmetric
product of (2.19) with each of the expansion functions M7 and M'TE that
appear in (2.11), and then taking the symmetric product of (2.20) with each

l\)

21)




of the expansion functions M?TM and M?TF that appear in (2.12), we obtain

V’xTM flTM

. 2 s f;u'E 1“1TE
Y +Y*+Y7) virM | = | farm (2.22)

"/‘2TE I"ZTE

where the Vs are column vectors of the unknown V’s in (2.11) and (2.12).
The I’s are also column vectors; the right-hand side of (2.22) is called the
excitation vector.

The elements of the V’s in (2.22) are given by

j= 1,2’...1\/5
¥=1,2 (2.23)

The subscript “;” on the left-hand side of (2.23) is a condensation of the
double subscript “pq” on the right-hand side of (2.23); a one to one corre-
spondence is established betweeen each pair of integers p and ¢ in use and
each of the positive integers 1,2,--- N°. The correspondence in the “TE”
expressions (§ = TE in (2.23)) may be different from that in the “TM”
expressions (§ = TM in (2.23)). The elements of the I'’s in (2.22) are given
by

. 1=1,2,---,N°
= _// M3L - HO(L™P,0) ds, a=1,2 (2.24)
Aa B:TM,TE

where i is related to mn in the same way as j is related to pq in (2.23). The
relationship in (2.23) was of the type “6”; that in (2.24) is of the type “3.
The subscript “tan” which was attached to H®(J'™P Q) in (2.19) is not
needed in (2.24) because M°2 is tangent to A,.

In (2.22), Y1, Y? and Y2 are the admittance matrices for regions 1, 2.
and 3, respectively. The matrix Y is given by

YIITMITM  y11TMATE 0 0
Y! = | Y1ITEATM  y11TEITE 0 0 } (2.25)
0 0 0 0




where each entry of the array on the right-hand side is a submatrix. Each
element of the “0” submatrices is zero. The elements of the non-zero subma-
trices are given by

i=1,2---,N"?
11816 _ _ 18 (1) 16 i=12--,N°.
KJ - -/-/-41 an ﬂ (QaMpq)d39 ﬂ=TM,TE (226)
6=TM,TE

where j is related to pq as in (2.23); ¢ is similarly related to mn. Nevertheless,
the relationship between i and mn may be different from that between j and
pq. The relationship between i and mn is of the type “8”. The relationship
between j and pq is of the type “6”. The matrix Y? is given by

Y= 0 0 y22TMITM  y22TM2TE (2.27)

0 0 Y2.2TE,2TM Y2.2TE.2TE

where the elements of the “0” submatrices are zero. The elements of the
non-zero submatrices are given by

i=1,2,---,N°
5
220,26 _ _ 28 17(2) 26 7=42,---,N o
Y;J ,/[42 -an ﬂ (Q? q) ds’ ﬂ — TM TE (2'“8)
6=TM,TE
where i is related to mn and j is related to pq as in (2.26). The matrix Y3
is given by
Y3ITMITM  y31TMITE y31TM2TM  y31TM2TE
s Y31TEATM  y3ITEATE y3.1TE2TM  y3.1TE2TE -
YP =1 ys2TMaTM yo2TMATE y32TM2TM  y32TM2TE (2.29)
Y32TENTM  y32TEATE  y32TE2TM  y3:2TE2TE
where
(1=1,2,---,NP
]=1,2,---,[V6 .
3,007 ab | 1(3) 6 a=12 o
e ff o wease, (5150, ew
7=1,2
6=TE,TM

10




In (2.30), 7 is related to mn and j is related to pq as in (2.26).

If the elements of the admittance matrices Y!, Y2, and Y3 and the column
vectors [\TM [ITE PITM and J*TE cap be evaluated, them (2.22) can be
solved for VITM VITE [2TM and V2TE These V's determine M) and
M® according to (2.11) and (2.12). Next, MY and M® can be substituted
into expressions (2.3)-(2.8) for the fields in the waveguide regions.

11




Chapter 3

The Admittance Matrices for
the Rectangular Waveguides

In this chapter, Y}'#¥ of (2.26) and Y2 2826 of (2.28) are evaluated. We

2

approximate Y,-} 1018 o (2.26) by Y1 1616 given by

i=1,2---,NP

01,1615 _ Wyn xrtt j=1,2,---,N°

P = — [ M- BO@ Mp)ds, § 57 20 7 (3.1)
6=TM,TE

We approximate Y2 28,28 of (2.28) by Y2 28.28 siven by
t=1,2,---,NF
220,26 _ @ pr® i=12,---,N¢ .

V5% = — [ M- HO@ M0ds, § 57 2 Tk (32)

6=TM,TFE

In (3.1) and (3.2), M;z and Mﬁ: are approximations to M._:,: of (2.13) and
M:: of (2.14). Furthermore, A and A; are, respectively, the surfaces on

which M;s and M26 are defined. In (3.1) and (3.2), j is related to pq as in
(2.23); 7 is sumlarly related to mn.

The Y’s of (3.1) and (3.2) will be evaluated by first defining the M’s that
appear in (3.1) and (3.2) and then by finding the H’s that appear in (3.1)

12




and (3.2). The electric fields associated with these H’s will also be found
because these electric fields are needed in order to evaluate, as indicated in
the last two sentences of Chapter 2, the field in the rectangular waveguides.
Finally, the M’s and the H’s will be substituted into (3.1) and (3.2) to obtain
appropriate expressions for the Y’s.

We define M:Z by

z=-1z,

~ 18 - 16

M, =M, (y,2) = -, (y*,z") xu,{ -5<y<3 (3.3)
-5%z253

where z* and z, are given by (2.17) and (2.18), respectively. Furthermore,
yr=y+¢ (3.4)

As defined by (3.3), M:,: exists on a portion of the z = —-1:;, plane. With
z, given by (2.18), —z, is the average value of z over the curved surface on

- which M,},g of (2.13) exists. M: is placed on the region 1 side of a perfect

conductor which covers the plane surface in (3.3). This surface is called A;.
We relate y of (3.4) to ¢ by

y=(r— ). (3.5)
Relationship (3.5) is reasonable because:

1) y=0wheno¢=mn

2) y=2wheng=7-¢,

3) y=—% when ¢ = 7 + ¢,

The above items 2) and 3) are obtained by using (2.18) and (1.2). Given
(3.5), the interval (y,y + dy) corresponds to the interval (¢, » + d¢) where o
is related to y by (3.5) and

dp = —— (3.6)

Here, dy and d¢ are the differentials of y and ¢, respectively. M of (3.3)isa

£pq
good approximation to M},g of (2.13) because the transverse and longitudinal

13




voltages produced by M,, on the portion of its surface for y in the interval
(y + dy) and z in the interval (z + dz) are the same as the transverse and
longitudinal voltages produced by M, on the corresponding portion of its
surface. The latter portion of surface is the surface for which p = a, ¢ is in
the interval (¢, ¢ + d¢), and z is in the interval (2, z + dz). Here, dz in the
differential of z. Moreover, ¢ and d¢ are related to y and dy by (3.5) and
(3.6), respectively.

To show equah-,y of the voltages mentioned in the previous paragraph
we note that M of (3.3) produces the tangential electric field é _pq given by

. 18 _

Epg = —lz X My = (3", %) (3.7)
on its surface and that Mpq of (2.13) produces the tangential electric field
gpq given by

=y, x MY = —u¢812¢° & W 2t) Fuel (.2 (38)

on its surface. Here, u,, u,, u,, u,, and u, are unit vectors in the directions

. . ~ 16,
indicated by the subscripts. The transverse voltage produced by _M_;q is the

voltage at y + dy with respect to that at y. This voltage is V, given, in view
of (3.7), by
= e (—uydy) = —¢), (v, z%)dy (3.9)

The transverse voltage produced by M. 5 is the voltage at ¢ +d¢ with respect
to that at ¢. This voltage is V; given by

Vi = gg0  (—usadg) = —e;,, - (3'*, 2%)dy (3.10)

Equations (2.18), (3.6) and (3.8) were used to obtain (3.10). The longitudinal
voltage produced by M: is V; given by

= g+ (~u,dz) = el (y*, 2¥)dz (3.11)
The longitudinal voltage produced by M:,g is V; given by

Ve =€l (—u,dz) = =€l (y'*,2")dz (3.12)

zpq

14




From (2.15), (3.4), and (3.5), we have y!* = y* so that it is now evident
from (3.9)-(3.12) that the transverse and longitudinal voltages produced by

M:,: are the are the same as those produced by M3’.
We define M:j by

8

(ST S "

0

Yy (3.13)
Z

INIA g

IAIA
[T Y1

MW M,,qy, y+az+)xu~c’{—
where z%, 2, and y* are given by (2.17), (2.18), and (3.4), respectively. M:j
of (3.13) is a good approximation to M:g of (2.14) because the transverse and

longitudinal voltages produced by M:s on a differential element of its surface
are the same as the transverse and longitudinal voltages produced by 22
on the corresponding differential element of its surface. Equality of these
voltages follows from an argument similar to that in the prev1ous paragraph.

The problem of firding the field (E™)(0, M:,: HYo,.M 8)) is a boundary
va.lue problem in which the transverse electrlc field at z = —z, in region 1 is
qu given by (3.7) as

épe =€, (y*,2%) (3.14)
Furthermore, region 1 is terminated, as in Fig. 2.1, at £ = —L; with the
impedance Z,. Therefore, as explained in the third paragraph of Chapter 1,
the only z traveling wave at £ = —z, is a TE,q wave.

We choose

~ 1TM lTM _ - -
(EVQ, M, ), HV(Q, M, ")) = CTM-(EIM- gTM-) (3.15)
TE TE
(EP(Q, Mg ) HV(Q, Mo )) oI (ETE- HTE)
TE+(ETE+’E_}'OE+) (3.16)

lTE

(EM(Q M, ), H(Q, M ))-C;E-< TE- HTE™), (p,q #1,0) (3.17)

where the C’s are unknown constants. The (E, H)’s on the right-hand sides of
(3.15)—(3.17) are miode fields given by (A.3), (A.14), and (A.15). Substituting
(A.3), (A.14), and (A.15) into (3.15)-(3.17), we obtain
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B0 57" = o[22 o
(3.18)
H“’(Q,M;,TM) — Cz*qM-hg'qM(y+’z+)ewnz (3.19)
EMQ, M) = (CEF*e™% + CTE-emoo)elF(y*, 2*) (3.20)
HOQ M) = (CEP*e™o" — CRE=emon)VIERTE (y*, )
TE+ ,~v0z TE- oz Ki0 {()E(y+,z+)
+u (Cio T e~ M% + Cip” ~e™M%) wn (3.21)
EVQ,M77) = CIEeTE(*,2)e™,  (p,q) #(1,0) (3:22)
ﬂ(l)(Q,M,l,fE) = CZ;E- -nfEhqu(y*',f) +uzk§q¢§i(f’/‘+j z*) £PeT
(3.23)
Setting, as required by (3.14), the transverse part of E(l)(Q,M:,:) equal
to gf,,,(y*, z*) when z = —z,, we obtain
CIM- = —% (3.24)
1= Cﬁ,;:em“ + ClFmemmo= (3.25)
Cot™ =™, (p,q) #(1,0) (3.26)
The presence of Z; requires that, at £ = —L,, the ratio of the coefficient of

eTE(y*, 2*) in (3.20) to the coeficient of ATY (y*,2*) in (3.21) be —Z;:

C%E+ enoli + CIT(')E-C—'noLl

_ TE _ .
ZlYlo - C%E*'e‘noh - C%E‘e—ﬂxolu (3.27)

The constants CTE+ and CIEF~ that satisfy (3.25) and (3.27) are

(Z1YTE — 1)emek

2 {sinh(y10(L1 = z,)) + Z: V5% cosh(mio( L1 — z,))}
(ZYE + et

2 {sinh(y10( Ly — z,)) + Z1Y/5F cosh(vi0( L1 — 2,))}

TE+ _
Cio " =

TE-
CIO
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In view of (A.13) and (A.25), substitution of (3.24), (3.26), (3.28), and
(3.29) into (3.18)-(3.23) gives

EOQ, 1) (Q;M<y+,z+) . g,kgq¢3°:(y+’z+)) RECREDIIe
rq

IT™ jwe Ypq(Z + Zo)
HOQ,M,, ") = 17— TM(y*,z%)e ™ (3.31)

Pq
1TE

ENQ My ) = el (", 2)
sinh (110(L1 + z)) + Z1Y5E cosh (m1o( L1 + 7))

"sinh (mo(Ly = z,)) + Z1Yi5E cosh (mo( L1 — 2,)) (3.32)
HOQ M) = B (v, 2%)
. Imo(cosh (mo(Ls + 2)) + 216" sinh (no(Ln + ) _
wp(sinh (vi0(L1 = 25)) + Z1Y1GE cosh (yio( Ly — 20)))
WTE(y*, o+ jKo(sinh (vio(L1 + 2)) + Z1Y5F cosh (mi0(L1 + 2))) (3.33)
wp(sinh (mo(Ly = z,)) + Z,Y75F cosh (v10(Ly — z0)))
EOQ, M) = 2B+, 2™ T ) (5.0) £ (1,0) (3:34)
HY( ITE J7m ( + o4y kqu)g;E(y*,z*))
Mpq ) = Fly*,z*) —u, oe
.J"(” T2 (pg) £ (1,0) (3.35)

The electromagnetic field in (3.30) and (3.31) is a —z traveling wave (A.3),
that in (3.32) and (3.33) is a combination of z traveling and —z traveling
waves (A.14) and (A.15), and that in (3.34) and (3.35) is a —z traveling
wave (A.15). When z = —z,, the transverse part of the electric field (3.30)
is gg' M the electric field (3.32) is ZF, and the transverse part of the electric
field (3 34) is Q_WE When z = —L,, the ratio of the TE,, voltage associated
with (3.32) to the TEyo current associated with (3.33) is —Z;.

In a development similar to that in the previous three paragraphs, we
obtain

2™

E®Q,M,, ") = ( (2 y) +u,

k;qd’;_‘qy(ytz*')) e"‘)’pq(I - Zo)

Yrq

(3.36)

17




HOQ, M, ") = J“"h,“( v gt)e ol 7 %) (3.37)

~ 2TE

E(a)(Q MIO ) = ﬁlo ( *,2%)
__sinh (710(L2 = z)) + Z3Y;5" cosh (mof L — ))-

Sinh (mo(Lz — 22)) + Z:Y&E cosh (mo(Lz = 25))  00)
HOQ, My ) = —BEE(y*, 2%)
. J0(cosh (mo(La — -’L')) + Z2Y1€E sinh (110(L2 — T))) _
wp(sinh (110(L2 — 7,)) + Z2Y5F cosh (110( L1 — 20)))
TE(y* %) jko(sinh (110(L2 — z)) + Z2YTE cosh (710(L2 — 7))) (3.39)
1035 0% Juu(sinh (110(L2 — o)) + Z;Y:IE cosh (v10(L2 — 2,)))
E®Q, H27F) = By, a)e T z°),(p, DALY (340)
H(z)(Q,M:ZE) -77Pq (_pq (v*,z%) +#¢k34¢;E(y+az+)> e—%q(’: - Io)’
P9

(p,q) #(1,0)  (3.41)

The electromagnetic field in (3.36) and (3.37) is an z traveling wave (A.2),
that in (3.38) and (3.39) is a combination of z traveling and —z traveling
waves (A.14) and (A.15), and that in (3.40) and (3.41) is an z traveling wave
(A.14). When z = z,, the transverse part of the electric field (3.36) is g;‘,r M
the electric field (3.38) is ¢JF, and the electric field (3.40) is eIk, When
z = Lj, the ratio of the T E)q voltage associated with (3.38) to the TE),
current associated with (3.39) is Z,.

Suitable expressions for the electric and magnetic fields due to the M’s
of (3.1) and (3.2) are given in the previous two paragraphs. We are nearly
ready to substitute these M’s and their magnetic fields into (3.1) and (3.2).
Letting 6 = TM in (3.3) and using (A.4) and (A.5), we obtain

Mo, = BT (5%, %) (3.42)

—mn

Letting 6 = TE in (3.3) and using (A.16) and (A.17), we obtain

Mo = hTE(y*, 2*) (3.43)

—mn
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Substitution of (3.42), (3.43), (3.31), (3.33), and (3.35), into (3.1) and sub-
sequent application of the orthogonality (A.26) give

- jweb,;

Y;},ITM,ITM - JC:;E j (3.44)
Pq

)“/i},lTM.lTE =0 (3.46)

1,1TEATE
Y;

_Jmo(cosh (110(Ly — 2,)) + Z, Y sinh (110( Ly — 2.)))6;;
wy(sinh (110(L1 — 7,)) + Z1Yyo " cosh (y10(L1 — %,)))

b

= s (P, q) = (11 0)
(3.47)
where §;; is the Kronecker delta function:
) L=y :
dsj —{ 0, ] (3.48)

In (3.44) and (3.47), the subscript j is related to pq as in (2.26). The subscript
7 is not to be confused with the other j in (3.44) and (3.47). This other j is
v-1

In a development similar to that in the previous paragraph, we obtain

y;;,er,zTM _ jwedi; (3.49)
Yra

Y;?,zTE.zTM -0 (3.50)

}‘,g,zTM.zTE =0 (3.51)

Y;?.ZTE 2TE

_j71o(C°3h (110(L2 — z,)) + Z'zYigE sinh (710(L2 — 2,)))6i;
; wp(sinh (y10( Lz — z,)) + Z;Yljt;pcosh (mo(Lz — z,)))
= _ (p,q) = (1,0)

~Dmbi (5, q) # (1,0)

ki
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Chapter 4

The Admittance Matrix for
the Circular Waveguide

In this chapter, Y3 of (2.30) is evaluated. The field (E®(0, M}%),
H®(0, M;: )) is radiated by the magnetic current Mzg in the circular wave-
guide with the apertures A, and A, closed by perfect conductors, with the
short at z = L3, and with the matched load at the other end. Otherwise
stated, (E(Q, ’g),[i(s)(Q, Mzg)) is the field that would exist in region 3
of Fig. 2.1 if J'™P, — MM and —M® were removed and if M;’g were put
where — M was. Qur first ob jective is to obtain expressions for £' (3)(0_, M ;g)
and H®)(g, M;f ). An expression for E®)(0, M;g ) is needed to evaluate, as
indicated in the last two sentences of Chapter 2, the field in the circular
waveguide.

The volume densxty of magnetic current corresponding to the surface

density ": b,2) is Mzs #, 2)6(p — a) where 8(p — a) is the one-dimensional
Dirac delta function. This volume density is expressed as
1(6,2)8(p — a) = u, M7 (p, 8, 2) + u, M2 (p, 6, 2) (4.1)
where
Mg (p$,2) = (g - MJe(6,2))6(p — a) (4.2)

M:,f,,( ,6,2) = (u, - MJ5(6,2))é(p — a)

Applying the Green’s function technique, we obtain
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E®(, / dz’ / 4 [ pdp (ME(0, 4,7

-E‘s’(u,m(c—:)nM:,f.,(p,¢ NEVQusc -1} (44)

§ 27 a
H(s)(Q’M;g) = /;sdz'/ d¢’/ pldp {M;:q(plv ¢,7 zl)
BQub( - ) + M, 6, A Q use - ) (45)

where the operator E(a) differs from the operator £ only in that the second
~(3) . N . .
argument of £ is a volume density instead of a surface density. Similarly,
o anm e 2B . . .
the superscript “A” in H ~ indicates that the second argument is a volume

density. In (4.4) and (4.5), é(r — r’) is the three-dimensional Dirac delta
function, r is the radius vector to the point (p, ¢, z) at which ﬁ(a)(Q, M_;’g) and

H®(q, M;g) are evaluated, and r’ is the radius vector to the point (o', ¢', 2').
The fields E(s)( 0,u4é(z — r')) and H(a)( 0,u4é(r — r')) are obtained by
adding to the electromagnetxc field of (D.19) and (D.20) the reflection due to

the short at z = L3. The electromagnetic field of (D.19) and (D.20) consists
of a sum of fields each of which is of the form (E, H) where

= (e(z,é')ﬂtan + u, E,)e =7 (4.6)

H = (Hyyp +u.6(2,2")H, )e=vlz=71 (4.7)
where Et,n and Hy,, have only p and ¢ components. Furthermore e(z,2")
is given by (D.4), and « is either 7TM of (B.24) or 7,,,, of (B.53). In this

paragraph and in the next three paragraphs, the index p that appears in
(D.19), (D.20), ‘an , an- 7 E is not to be confused with the index p that

appears in MZ" M6 and M‘*&. Similarly, the index n that appears in
(D.19), (D.20), +Z! a.nd vEE is not to be confused with the index n that

appears in M°2. The reﬁected field due to (E, H) is a field (E", H") which is
proportional to (£, H).<,. Here, the subscript z < 2z’ denotes evaluation at
z < 2'. Adjusting the amplitude of (E", H") so that the tangential component
of E + E™ vanishes when z = L3, we obtain

E" = (—Ejap + u, E, )z -2Ls) (4.8)
tan z
H = (ﬁtan - Hsz)e"(z“I-ZLS)
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The sum of (4.6) and (4.8) is

CE+E =270 By sinh (v(Ls - 2))
+u,E;cosh (v(Ls — 2))}, 2> 7 (4.10)
E+E = 9¢~1L3=2) o5k (v(L3 — z')){—-ﬁtan +QZE2}, z< 2 (4.11)

The sum of (4.7) and (4.9) is

H+H = 26‘7(1‘3"’){!1'5311 cosh (y(L3 — z))
+u,H,sinh (y(L3 — 2))}, z> 2 (4.12)
H+ H =2¢"5"%) cosh (y(La ~— 2')){Han —u.H.}, z2<2 (4.13)

In this paragraph, we have shown that the short at z = L3 changes the field
(E, H) that would exist in the circular waveguide matched at both ends to
the field (E+ £, H+ H").
Replacing each term of the form (4.6) in (D.19) by a term of the form
(4.10) or (4.11), we obtain
(3)
£ (0 uyb(z - 1))
N - "J"‘M La—2'
chﬂ (kTM 2J'(Ic,z,i",o) Yap (La=2)
n—O p=1 Ty Jn+l(x'ﬂP)

{—u,Jn (k" p) cos (n(¢ — ¢')) sinh (+v1 (L3 — 2))

nJa(kiy p)sin (n(¢ — ¢')) sinh (Y1 (L3 — 2))
+y4’ ICTM

kM T, (kTMp) cos (n(¢ — ¢')) cosk (v2M(Ls - 2))
u, ™ J

7np
P2 B e s (vff(Ls -2))
7rn=lp=l (.’B )(kTE /)JQ(
nJn kTE cos (n(¢ — ¢' , . /
o P AL O = 9) R a9 ),
np P

z>2 (4.14)
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E2(Q, uy6(z - 1))
-1 f $ enlkny kel )e “7" ) cosh (yaM(Ls - =)
T a=0p=1 1’ Jn+1(17np)

™ i Y
{up o (KT p) cos (6 ~ ) —u, "2 Ere AR (2 = 7)

kag Ja(kzp'p) cos (n(4 - ¢'))

" 2 )
2§ £ e i
Py EE VAN
1, 2 AR urEp sin i - ),
>’ z<z (4.15)

Replacing each term of the form (4.7) in (D.20) by a term of the form (4.12)
or (4.13), we obtain

AP(0,u,8(c - )

'jsz:f a(KIM)2 T (RTM gy e=wme" (2a=2) cosh (v IM (L — =)

T™M 2 72
Twy n=0 p=1 7np Inp Jn+1 (Iﬂp)

™ :
'{uann(k"p p)sin (n(¢ — ¢'))

KM, + ugJn (k3 p) cos (n(¢ — ¢')}
2 & vnE(k Sk p)e “r b
vrwun;; zpa = n?)(KEEP) T2 (2h)
Jo(kTEp 5 — ¢'))
-{(u,,J;(kapnin(nw—as'))+u¢" et el
np

- cosh ('y,w (L3 — 2))

kTEJ. (KT p) sin (n($ — ¢')) sinh (v2E(L3 - 2)) )
-U, TE boz>z
np

!

(4.16)
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A0, u6(c ~ 1))
_ —iR & & ek (kD p)e ™ (B0 cosh (v (L — 2))

Ey = TH 2

2
Ww,“ n=0p=1 7np znp Jn+l (I"P‘)

P DT OO 4 45 oot - 1)

YIE(KTE)?nJ, (k1! p)e ~1aw (1= cosh (17E(Ls — 2'))
xw”'glpgl (J: )(kTE I)J2( )
{u,J., (kTEp) sin (n(¢ — ¢'))
+u¢an(sz p)cos(n(é — ¢'))

kTE

TE TE /
u BEREED S0l 80,
np

!

(4.17)

The fields £7(0,u.5(z — ) and (0, u.6(c — ') are obtained by
adding to the electromagnetic field of (D.55) and (D.58) the reflection due
to the short at z = L3. Aside from the §(z — 2’) term in (D.58), the electro-

magnetic field of (D.55) and (D.58) consists of a sum of fields, each of which
is of the form (ETE JHTE )} where

ETE - E{E —'y"E|z—z’|
HTE = (e(z, 2"\ HFE + u, HTE )e "7 1+=7 (4.19)

where E aﬂ; and Hi o TE have only p and ¢ components. The reflected field

due to (ET5, HTE) is called (ETE7, HTE™) and is given by
ETEr = "‘ET e‘y"E(z-Q-z -2L3) (420)
HTEr — (Hta.n quZ'E)e‘anE(Z+z’_2L3) (421)

The sum of (4.18) and (4.20) is

ETE + ETE" = 2FTE e (Ba=) sinh (4TB(Ly — 2)),2 > = (4.22)
ET + B = 2E{zpe % B sinh (1 (Ls - #). s < 7 (4
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The sum of (4.19) and (4.21) is
HTE + HTEr = 2e-7,’,‘f(L3_z'){HTE cosh (7np (L ~ z))

+u HIEsinh (YIE(L3 - 2))}, z> 2 (4.24)
HTE + H™®" = 2% (L= sinh (y1E(L; - 7))
A-HTE +u.HTE}, z< 2 (4.25)

The short at z = L3 changes the field (ETZ, HTE) that would exist in the
circular waveguide matched at both ends to the field (ETE + ETEr gTE 4
HTET)-

Replacing each term of the form (4.18) in (D.55) by a term of the form
(4.22) or (4.23), we obtain :

E90Q, .6 - 1))
Sl en(KEE) T, (k“"p’)e'%r (E3=#) sinh (1ZE( Ly — 2))
T

n=0p=1 7np( np )J2(z )
J kTE :
{22 ):T";f,"(‘ﬁ DD 4 T (TE )y cos (n( - #),
np
z> 2 (4.26)
EP(Q bz~ 1))
_ L & & ek ) Tnlkay p)e % B~ sinh (175 (Ly — )
B ™ rg); an(xnp n )Jz(-’”;p)
Jﬂ krz;E i - ¢ ' ’
a2 DS O O] (KT ) cos (nl = 8}
np
z< 2 (4.27)

Replacing each term of the form (4.19) in (D.58) by a term of the form (4.24)
or (4.25) and retaining the §(z — 2’) term in (D.58), we obtain

n(kTE) Jn (kTE /)

1 ~ n?)J3(z!

fi(a)(Q, u,6(r -

= )

p= np
: Jn(kff )COS - 4) H+,:' >z

bz = 2) kTE Yy H <
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where

H = {(u,,J:.(kap) cos(n(6 — ¢)) — 1,

-cosh(73F (L3 - z))

KB Ju(KIE ) cos(n($ — &) sinh(xZE( L5 — )
+ZE

H = {-u,J:,(kap) cos(n(6 ~ ¢)) + s

kap Jn(kag p) cos(n(¢ — ¢'))
. TE
an

Before substituting (4.14)-(4.17) and (4.26)-(4.28) into (4.4) and (4.5),

we obtain expressions for M;'jq and MJ? . Substitution of (A.10) into (2.13)
and (2.14) gives ’

nJn(KZEp) sin(n( — ¢')))

kipp

—u, } e=ap (L3=2') (4.29)

nJa(kZEp) sin(n(4 — ¢))
kip P

} e~ (La=2) sinh(yTE(Ly — 2')) (4.30)

- 4 rzt

M (8,2) =~ e L P o )

: v+ rzt
w0 B T,

where v is either 1 or 2. Moreover, y"* and z* are given by (2.15)-(2.17).
Finally, from (A.8), k,, is given by

kpg = \/(%)2 + (fl-;i)2 (4.32)

Substitution of (A.23) into (2.13) and (2.14) yields

2 [ey€ . pry't 2t
M:ZE(¢,z)=—k—\/4L&1{u¢’—;sm(”Z ) cos( =)
Pq

Cc

: v+ xzt
Ful =1 oL ysin Ty} (13)

where ¢, is Neumann’s number given by (A.21). Substituting (4.31) into
(4.2) and (4.3), we obtain

T+
2\7;1)_(%) sin( pTr,Z ) cos(
c

qrz*t

M;Z;M(pv qﬁ,z) = —k

)8(p — a) (4.34)

rq
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grz*t

—)é(p —a) (4.395)

27(-1)" p, sin ¢, pry’t .
e (D) cos T sin

Substituting (4.33) into (4.2) and (4.3), we obtain

M3M(p, 6,2) =

zpq

v+ +
MEEE (0,6, = = [T E)sin(ZE) cos( )i - o) (4.36)
—-1) 0 v
M3TE(p, 6, 2) = w(kpq) e,eq( )(81::5) (ng )
.Sin(q”z+)5(p_a (4.37)

Substituting (4.34) and (4.35) into (4.4) and performing the integration
with respect to p’, we obtain

@), MITM) 2na
EVQ. 57 =~ [
+ 7r 3
(G inE ) oy 2 [ﬁ" (0,2,8(z ~ z))]p
~(- 1725 2) o P sin 2 )[E“”(Q wiz-o) b s

where v is either 1 or 2 and, recalling (2.15)-(2.17),
y't o= (r-¢z. + 4 (4.39)

y**r = ¢z 4+ (4.40)

' 745 (4.41)

o= 2-7)r—¢ (4.42)

¢2 = (2_7)7+¢o (44)

Similar substitution of (4.36) and (4.37) into (4.4) gives

E®)q, -yTE _ km\/ﬁ/

{Bysin ) cost T [E70 bl - z'))]

i

b

M+
) cos( pﬂé ) sin(

o'=a

} (4.44)

sin @, qmz't

%o

~(3)

) |&

+=17(d)( @8z - )]

p'=a
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Since (4.5) is (4.4) with E® and E(a) replaced by H® and fi(s), respectively,

the equations obtained by replacing E® and E(a) by H® and H(s) in (4.38)
and (4.44) are valid:

@) ™y _ 2ra 5 z, ¢2
HY0,M, ™) = P _gd A do
.{(%)sin(mi )cos(q7rz )[H(a) Q’u"é(z_z’))],,:_-_a
; 4+ 2
_(_1)1(5)(311’;350)(;03(”% )sin(q )[ﬂ(a)(Q, u, (Z'_ E))]p/m,} (4.45)

@)(g. MTE) = _TC [%& [f
270, M5.7) ky V b /_;-d

aas 7wzt [ ‘
.{(E)sin(m ) cos(152 )[ﬂ(s)@’%é(ﬂ'f)}]p/:a
pvry"'

qrzt

1 (D) co 2 @%b -]}

Replacing (n,p) in (4.14), (4.15), (4.26), and (4.27) by (r.s) and then
substituting the resulting expressions into (4.38), we obtain

(3) YTMy _ cr(kTM)2J'(kTM )E'TW
E (Q,Mpq )_ kpq\/—-{ ZZ :1:2 J3+1($r,)

r=0s=1
TE rJ (kTE )E‘YTEd’

k
+3 EZ a)(z'z )Tz,

c

) sin(——

p'=a

r=1 a=l

sin ¢o kTE 3J kTE E—vTEz _
B Z Z ) ( 2 )2 ; (4.47)

b r=0s=1 -r )J (LE )

where
£ q7rz’+ EqTM¢+’ 2> 2 , .
ET™e [-§ cos( . ){ ETMé= 1 dz (4.48)
5 grz't ETES* 15 ;
ETEé = /; OS( c ){ E’rTEé—,zl <z dz' (4 49)
i $ qrz't [ ETEH s , .

ETEz — s sin( ){ TE= <, dz (4.30)




In (4.48)-(4.50),

' ! i J kTM
42 1L.TM ™ -
. sinh(7£M(L3 -2z)) — U il p‘)Y COSh(7r, (L8 Z)) } (45

E'TM = cosh(yTM(Ls - 2'))e™ (L"’){u,,df’zJ’ kTM p)
¢ r J, (kTM p) 7 kIM J (KTM ) )}

kg;M u, 7£M (4.52)
ETEB- = _ 1B (Ls-2) sinh(yZE(Ls — z))
~2 TE
{ ¢ r;cl;sgk,, p) — u " (KTEp) (4.53)

ETES = cosh(yTE(Ls — 2'))e” e (L) )
~¥2 kTE
{ ¢ Tl.c];i: rs ) _ g¢¢~11JI kTE } (454)
E-yTEx— -— e-‘Yr\(Ls z )sxnh('y{E(L; - 4)( l)‘7 ¢ -
- $7r (k5 p)

kTE

+ q&”‘J kTE p) (4.55)

ETE* = sinh(+5E(Ly — 2))e= a0~

: {gpﬁfr(:—m—) + ug "L (kL p) (4.56)
where
5 = [T sin(EL ysin(r(6 - ) do (457)
57 = [ sin(EU ) costr(o ~ ) dof (4.58)
o= “ cos(® ”;M )sin(r(¢ — ') d¢’ (4.59)
o= [ con( " V™) cosr(s - ) do’ (4.60)

Replacing (n,p) in (4.14), (4.15), (4.26), and (4.27) by (r,s) and then sub-
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stituting the resulting expressions into (4.44), we obtain

(3 TEy _ ___ /e,,eq &, e kTM )2 Jl(kTM ) E-yTqu
E (QaM;q )— pq { ZZ 232 J+1(I,.,)

r=0s=1
) kTE 27‘] (kTE )ETEé
+r ;g kTEa zl?_.«,d)JZ( )
sm ¢o ) kTE)SJ (kTEa)E"TE‘
LSS ey ) oo

r=0 =1

Replacement of (n, p) in (4.16), (4.17), and (4.28) by (r, s) and subsequent
substitution of the resulting expressions into (4.45) lead to

Cr kTM)zjf(kTM )ﬁ'vTM't

3 4ja
H®(Q,MTM) = #kj\/—{ ZZ 94TM72_J2

r=0 s=1 Zr1(zrs)

o o TE kTE 2rJ (kTEa)H’YTEd’

Y
B DD DR .oy gy Ty

) kTE 3J (kTE )H_'vTEz

e 55
R A S DI Dy ey 2 }(4‘62)

r=0 s=1
where
™ £ qm 7+ { HWTM¢$+’ 7>z ,
yo i = /_scos( . ) \ ™=y < dz (4.63)
2 b
£ a2t ‘7TE¢+’ rs ,
HTE = /: cos(? ){ ﬁqrm- jl <§ }dz (4.64)
2 Y

s "+ TEz+ .
ﬂ‘yTEz - /2 Sin(q_g_) E-yTEz:t + HY &5 2 >z
< c H-yTEz—’ Z' <z

2

dz' (4.63)

In (4.63)-(4.65),
HYTMé= — o= (Ls=") oosh (yTM (L3 — 2))

1 J kTM ’ )
' {upLL,CT(T“I)—) + %¢”2J,(kf,‘”p)} (4.66)

ETM¢+ - Osh(‘)’TM(Lg ))e—‘v,.T,“(La-z)

11 J kra LY ' 1 o
{uu,;,—ﬁ,—”) + Uy ’J,(kf,"p)} (4.67)
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- —at ' .'21"],- kZ;E
HYTES = (=) {(u,w‘J,(k,T,Ep) +u Sl ) kr(s 2
¢71k3;EJ'(k3;E )sulh(’y" (L3 - Z))

71-:
H'TE = cosh(77F(La = ))e ™ (Ba=)
' ¢‘727'Jr k,I-;E ¢~’lkz;EJr kz;Ep
. {up¢7l~’r(krT.EP) + Uy kT(E p) + U, 73;5( ) (469)

4J, (k
H'yTEzi - y_,&(z )____.____¢ k;"E P) (470)

-cosh(vFE (L3 - 2)) -

} (4.68)

¢"%rJ, (kz;EP)

HTE= = ¢~ "iE(La=2) {(upcﬁ"‘J,'.(kf,EP) ) kTE )

“, ¢ kTEJ (KTEp )smh(‘y E(Ly - 2))
1E :
H‘vTEz+ - — sinh('yg;E(L;; - zr))e-—yz'.E(L;;—z)
¢v3rJ,. (kTEp 7 kTEJ.(KTEp
Awsrtazn - u G 4 TR B A o
Replacing (n,p) in (4.16), (4.17), and (4.28) by (r,s) and then substituting
the resulting expressions into (4.46), we obtain

3 TE 66 | Fop o= & (kTM)2J; (kTMa) YTV
H( ) Q M;q ) w”k p : { ;OZ 27TM$2 J3+l($rs)

£ R Pr L (HEE Q™

= (KfEa)(z} — )2z,

e kTE)*"J,(Ic,T,Ea)H"TE‘ -
L o )
Substitution of (4.51)-(4.56) into (4.48)—(4.50) gives

E7™M = {~2™1sinh(4TM(Ly - 2)) + 2R (1m0}

-cosh(vXE(L3 - z)) - } (4.71)

_P
b

22
- S

O

¢‘717.Jr kz;Mp
-{up¢”1$(k?,Mp)—u¢ kT,(wp )
-y2kTMJr LkTM
+ {0 cosh(4TM(Ls = 2)) + MR BN}y 8 "vrt( =) 41
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ETES — {_ZTEI sinh('yf;E( -2)+ zrme_.,,r,a(L,-z)}

~2 TE
{u‘b—%‘fr—(f—ﬁ ¢”‘J:(k£Ep)} (4.75)

E—yTEz = {ZTE3 smh(7 (LS z)) + TE4 =7 E(L;-z)}

3 . kTE
.(-—1)'7 {up?_r}c].i(z_l;_’_p_) + H¢¢“Ji(kz;sp)} (476)

where, for § equal to TM or TE,

261 = 0’ z < —-;- (477)
z , 1+
5 _ /; e—'rﬁ.(er)Cos(q’r: )dz', —£<z<E  (4.78)
~2
$ /4
1= [? emrhalls~s) cos(qrz )dz', 2> ¢ (4.79)
-3 c 2
s +
= [ cosh(af,(Ls - ) cos(Tom)de,  z< -5 (480)
]
£ z’+
2 = /: cosh(~%,(Ls — 2')) cos(q7r ydz!, -£<z<% (4.81)
262 = 0, zZ> % (482)
and
zTE3 =), AR —-‘2-:- (483)
: , f+
B o [ e Pl gn( T iy —e<z<E (4.84)
-5 c
< +
E3 _ /z P L= gin( T2y gt > ¢ (4.85)
-5 c

1+
)dz!,  z< -% (4.86)

(3
e
= / " sinh(yZE(Ly — ) sin( L=
2

-3
2

+

= [ " sinh(y%E(L; - z'))sin(q"r ydz', —
Br=0, :z>¢ (4.88)

Substitution of (4.66)-(4.72) into (4.63)-(4.65) gives

H'yTMé = {ZTMI COSh(‘)’;I_;M(L,?, _ Z)) + Z’I'Mz qn‘W(Lg-—z)}

IN
(3]
IA
0N
—
=S
l0.4]
-1
~—
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" J, (kTM ,
' {gpﬁ-T’pr—m + uy ¢ J (KLY P)} (4.89)

H—ﬂ'}w = {ZTEI cosh(‘yz;E(Ls ~-z))+ zTEze_a,}_"E(L;,-z)}

¢"%rJ.(kTE
. {up¢71J:(k£Ep) + u‘f’——];rT’(E'p—p)
' ' 1 LTE J (LTE
+ {_ZTEI smh(“/,T,E(La _ Z)) + ZTEZC—‘yz;E(L;—z)}uzqs kra {:’E(kra P)

(4.90)
H»,TE: — {ZTEa cosh(ﬁ,E(Ls - z)) _ 21‘548_‘,,7,3@3-:)}
, ¢"3rJ, IcZ;E
Ausrnwzo) - u Sl e
oo (KLEp)
v%E

Y4k
—2TBginh(yTE(L; — 2)) — ZT&e-wﬁs(La-z)} u, ¢ (4.91)

where

o

z = ( kTE)2 ’
s .
0, otherwise

TE ; grzt
Yrs SID(F)
—_ . C 7
TEs { ; —§Szs (4.92)

In (4.92), z* is given by (2.17).
So far in Chapter 4, we have found that ﬁm(Q, _M;’ZM), £(3)(Q VTEY

1 2%pq
H®Q, M;™), and H®(0, M)TE) are given by (4.47), (4.61), (4.62), and
(4.73), respectively. In (4.47) and (4.61), E'T™¢ E'TE® and E'TE* are
given by (4.74), (4.75), and (4.76), respectively. In (4.62) and (4.73), H*TM°,
H'TE?® and H'TE* are given by (4.89), (4.90), and (4.91), respectively.

The quantities ¢, ¢7%, ¢, and ¢”* which appear in (4.74)-(4.76) and
(4.89)-(4.91) are evaluated in Appendix E. These quantities are given by
(E.10)-(E.13) in which ¢{"), ¢{2), ¢{3) and ¢(* are given by (E.23)—(E.26).

The quantities zTM M2 ,TE1 ,TE2 ,TE3 and .TE4 which appear
in (4.74)-(4.76) and (4.89)—(4.91) are evaluated for (=5 < z < §) in Ap-
pendix F. As indicated in Table F.1, the quantities 27! and z7M? are suit-
ably given by (F.25) and (F.26) when vZM is purely imaginary and by (F.32)
and (F.33) when XM is purely real. In (F.25) and (F.26), 8%, is given by
(F.27), ¢°- is given by (F.23), and ¢’* by (F.24). The quantities zTE*, ;TE2
zTE3 and 274 are suitably given by (F.25), (F.26), (F.34), and (F.35) when
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~TE is purely imaginary and by (F.32), (F.33), (F.41), and (F.42) when 4Z%
is purely real.

If z < =&, then 2TM! = 2TEV = ;TE3 — () while 27M? ;TE2 and 2TE? are
given by their expressions in Appendix F with z* replaced by 0. If z > £,
then zTM2 = ;TE2 = ;TE4 = ( while z7M?, 2781, and 273 are given by their
expressions in Appendix F with 2+ replaced by c.

In view of (4.89)~(4.91), substitution of (4.31) and (4.62) into (2.30) gives

v {25, - )+ Tlsy - s, - TPsp (499)
where

T = E% (4.94)

R v vonu B

% = §§7T5(k ))(ﬂ(kw)(%) - (499)

R i ) (I;cTTZ)J(kTE));Ei) (497

o i S,

o sm¢o o N kTE “J2(kTE )z(8)gard
Ss = (=1)*Y( )222 99TE(z/2 — r2)J2(z") (4.99)

r=0 s=1

In (4.95)-(4.99),

b4 a+

oM = , " cos(mwg )d¢ (4.100)
b4 at

$°7? = / ¢ sin( Ty —) dg (4.101)
3

b
¢m3=/:‘¢ﬂsin( ry ) d (4.102)

mry°*t

¢ = /d: ¢ cos( )d¢ (4.103)

34




where

¢3=(2—a)r — ¢, (4.104)
¢4 = (2~ a)r + &, (4.105)

Still in (4.95-(4.99),

£
A = [* LM cosh(y (Lo — 7)) + TMIe7EH (Lm0}
—2

nrzt

- cos( )dz  (4.106)

£
2 = /2 {ZTEI cosh(v5E(Ls — 2)) + zTEze"“’rT'E(LS")}

£
2

nrzt

- cos( )dz  (4.107)

c
£
20 = [ {-TB sinh (4L — 7)) + TERe =)
T Y—32

nrzt

ydz  (4.108)

-sin
51(C

L
W = /: {ZTEs COSh(’YrT;E(La -z))— ZTE“e"’VZ"E(L”‘)}
]

+
ccos(Z2Vdz  (4.109)
§ ~
20 = [° {755~ sTE sinh(37E(Ly — 2)) — T Ele (=0}
2
nrzt

- sin( )dz  (4.110)

c
In view of (4.89)-(4.91), substitution of (4.33) and (4.62) into (2.30) gives
3,aTE~NTM _ €m€n T_q E _ EB E
Yoot =T 4 {bc (§1—52) - c253 o Sy + bcss} (4.111)
In view of (4.89)-(4.91), substitution of (4.31) and (4.73) into (2.30) gives

3.aTMATE _ 5 [€s€q [ TP _mp.  ng.  mq :
Y; TE=T 1 {bc(51—52)+ 7 53+C2S4+ bc55} (4.112)
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Similar substitution of (4.33) and (4.73) into (2.30) gives

o mEn€p€ n m n
Y3oTETE o 7 [RGG (Mg, 5) P4 P, - M.} (a.113)

i waTM~TM aTE~TM
In the previous paragraph, we found Y, oTMATM Y ™

YoTMATE | and Y3°TETE to be given by (4.93), (4.111), (4.112), and
(4.113), respectively. In these equations, T, S;, S, S3, Sy, and S5 are given
by (4.95)-(4.99). The quantities ¢, ¢*72, ¢ and ¢*"* that appear in
(4.95)-(4.99) are evaluated in Appendix E. These quantities are given by
(E.31)-(E.34) in which ¢{}), ¢{?, ¢{3), and ¢? are given by (E.23)-(E.26).
Also in (E.31)-(E.34), ¢°1, ¢°2v1 42172 and ¢°*? are given by (E.46)-
(E.49) and (E.53)-(E.56). The quantities z(!), 2, 2z, 2% and 2 that
appear in (4.95)-(4.99) are evaluated in Appendix F. These quantities are
given by equations whose numbers are listed in Table F.1.
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Chapter 5

The Excitation Vector

In this chapter, If? of (2.24) is evaluated. Approximate expressions for
H®(J'™P 0) and M>? have to he found before the integral in (2.24) can be
evaluated. . )

In (2.24), H3(J'™P, 0) is the magnetic field due to J'™P radiating in the
circular waveguide with the apertures A, and A, closed by perfect conductors,
with a perfectly conducting wall at z = L3, and with a matched load at
the other end. If the apertures were present, the only z traveling wave at
z = —£ contained in the field of i‘mp would be the unit amplitude z traveling
T My, wave. Since closing the apertures produces no z traveling waves in the
region for which z < —£, the only 2z traveling wave contained in the field
(E®(JTP 0), H®(J'™P 0)) at z = —£ is the unit amplitude = traveling
T My, wave. The field of this wave is (E5Mt, HIM*) given by (B.1):

(kTM)2 TMe(p ¢)e—jﬁg}”1z

—+aTM -
ﬁg‘lMe+ = TMco TMe(p, ¢) 1B 2 +u2 01 01 - ? (D.l)

Jwe
H(7)'1Mc+ - TIMC(P,(ﬁ)C-jﬁg;Mz (52)

Here, kZM and yZM°(p, ¢) are given by (B. 7), _gl""( ,9) by (B.22), RIM¢(p. 0)
by (B.23) and ZIMe by (B.25) in which 4JM is ][3”’ where

TM = [k — (kIM)? (5.3)

Now, AIM is purely real because it was assumed that the TV, mode prop-

agates in the circular waveguide.
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The field (E®/(JI™P, 0), HO(LIMP, 0)) is (ETM**, HIM**) of (5.1) and
(5.2) plus the reflection of (ELM*t, HIM**) from the conducting wall at
Ls. Taking the reflected field proportional to (ETMe- gTMe=y of (B.2) and

requiring the p component of E(s)(llmp,ﬂ) to vanish at z = L3, we obtain

2e'-’ l

EO(ZimP,g) = 2272 L1 o (GIM (L — 2))eTM(p, )
—w(lco’")z M°(p,¢>cos( (Ls—2)}  (5.4)
HOI™P,0) = 2¢™#5Es cos(FTM(Ls - 2))b5M*(p, 9) (5.5)

Equation (B.25) was used ip obtaining (5.4). From (B.7), we have

Jo(k3p)
TMe = Jolkop)
03 (p’ ¢) \/7?1?01J1($01)
where T

kIM = —;’l (5.7)
Applying [4, eq. (D-15)] to (B.22).a.nd (B.23), we obtain

J (kTM )

™ 1
g0 (p’ ¢) —p \/—aJl 201

J
B3 (p, ¢) = _¢——-——\/1iJ"l‘x2 (5.9)

Substitution of (5.6), (5.8), and (5.9) into (5.4) and (5.5) gives

\/—aweJl 23 1 {—"70 MJl(kTMp) sm(ﬂm (L3 = 2))

~u G Jo(k" p) cos(B5" (La ~ 2))} (5.10)
26—153'1 L,

m-)-ﬂx( i p)

EQ(JIMP 0 =

HO(J™P ) = cos(BTM(Ls — z)) (5.11)

Although not needed to evaluate /** , expression (5.10) is needed to evaluate.
as indicated in the last two sentences of Chapter 2, the field in the circular
waveguide.
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Replacing (v, p, q) by (e, r'n, n) in (4.31)-(4.33), we have

2r n mry®t nrzt
oTM _ _ n. y z
MEEH(8,5) = e B in TP

-1 cos i 2 | (5.12)

bo b
MTE(6,2) = — 2 [ B in( P con( P
+u,(-1)°(§)(8i2f°)cos(m";’°+)sin(”"02+)} (5.13)
where — —
kmn = \/(T)2 + (—c—)2 (5.14)

In (5.12) and (5.13), y°* and 2* are given by (2.15)-(2.17).
Substituting (5.11)-(5.13) into (2.24) and integrating with respect to y*+
and 2% rather-than ¢ and z, we arrive at

8don [alm AT M
oTM _ S%n [a’T ~i65M Ly _
L kmna Y be JomEen® " (5.15)
8d.m c. [a’mene AT M
oTE _ o et mn —3B5y" L3 1
L Fna B\ ahe Vet (5.16)
where
b a+
Yom = %/0 sin(m"z ) dy* (5.17)
¢ +
Zeen = %/ cos(BTM (L} - z+))cos(mrcz )ydz* (5.18)
0
In (5.18),
L =Lo+ (5.19)
In obtaining (5.15) and (5.16), we used (5.7) and
b
= 5.20
%o = 24 (5.20)
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Equation (5.20) was found by substituting (1.2) into (2.18).
Evaluating the integral in (5.17), we have

0, meven

mn?

Expression (5.18) is expanded as [5, formula 401.06]
1 < nw
Zeen = 5 {/o cos ((—C— — BIMY* 4 ﬂoTlML;') dz*
+ /0 cos ((% + BT+ ﬂg'lML;') dz+} (5.22)

Eva.lua.tin.g the integrals in (5.22), we obtain

1 {sin(mr — fTMc+ BTMLY) —sin(B3MLY)

Zeen = 2 nr — ﬂg'lMc
+sin(n1r + pIMc - ﬂ&“fg) + Sin(ﬂglMLg)} (5.23)
nr+ By €

If nx + BIMc = 0, then the right-hand side of (5.23) must be replaced by its
limit as nw 4 BLMc approaches zero. To render the value of this limit obvious
and to avoid roundoff error when |nr £ 8TMc| is small, we recast (5.23) as

. sin(nt — BIMc) cos(BIMLT) -2 sinz(%%) sin(BIM L)
en 2(nm — BiMc)
sin(nw + BTMc) cos(BTMLY) + 2 sinz(W) sin(BIMLY)
2(nm + B3Mc)

(5.24)

Now, I8TM and I?TE are given by (5.15) and (5.16) with y,m amd 2., given
by (5.21) and (5.24).
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Appendix A

Modes of the Rectangular
Waveguide

Consider the rectangular waveguide whose cross section is shown in Fig. A.1.
In Fig. A.1,

+ - ]
y "y+2} (A1)

+ — I
z -2:+2

where y and z are shown in Fig. 1.1. Four kinds of mode fields can ex-
ist in the waveguide of Fig. A.l. These mode fields are (ETM+ gTM+)
(Enm s Howl ™), (ERS* HEZY), and (ETE- HTE-). Here, E is the electric
field and H is the magnetic field. The superscript “TM™ denotes transverse
magnetic, “TE” denotes transverse electric, “+” indicates that the wave
travels in the +z direction, and “—" indicates that the wave travels in the
—z direction. Here, z is the rectangular coordinate measured in the u, x u,
direction where u, and u, are the unit vectors in the y and z directions,
respectively.

From the analysis in (4, sec. 8-1], we obtain

.-

k2 wTM( + z+)e—‘7mnr
™ -Ymn m n\Y >
L e e } (A

™ ™ Jwe ‘ 9)
e O
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Figure A.1: Cross section of the rectangular waveguide.

and

k2 hIM (gt 2t )ermn®

E};‘t"— = _Z,T’;Mgﬁﬁl(y‘l’,z*')e"!mnz + U, jwe

n

HO™ = byl (y*, 24)em™=

where u, is the unit vector in the z direction. Moreover,

M
an (y+,2+) = —2¢£?\"(y+12+)
LI (y*,2%) = —u, x ZpTM (4t o)

The wave function I (y+, z+) satisfies
Vi + kb =0
subject to the boundary condition

I =0
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on the walls of the waveguide. Solutions to (A.6) and (A.7) are

2 _(MTy2 (DT
kmn - ( b2) + ( cniwy+ n7r2+ m = 1’2, e (A.S)
Ymn (yF,2%) = km,,ﬁsm( p sin(——) | T L2,

The preceding %TM is normalized so that

/Db dy* /och‘“ (ot (y*, 24} - (M (yt,2*)} =1 (A.9)

Substituting ¥I¥ of (A.8) into (A.4) and (A.5) and taking ¥ with respect
to the cordinates y* and z*, we obtain

+ +
n . mry* nrzt
+, — sin(——) cos(— )} (A.10)
2n n ., mryt nrzt
TM(,+ ,+) = n . y
h’"" (y ' ) kmn\/ch {Z&yc sm( b )COS( c )
m mry* . nrzt
u; - cos( p ) sin( . )} (A.11)
Remaining quantities in (A.2) and (A.3) are
Tmn = Ve = K (A.12)
and
= (A.13)

Jwe

In (A.12), k = w,/pu€ is assumed to be a real wave number. Here, w is
the angular frequency and p and e are, respectively, the permeability and
permittivity of the homogeneous medium inside the waveguide. The radicand
in (A.12) is therefore purely real so that yms is either purely real or purely
imaginary. If 4, is purely real, we take ymn > 0. If v, is purely imaginary,
we take the imaginary part of v,,, to be non-negative.
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From [4, sec. 8-1}, we have

TE TE —Ymn

Emn+ = Qann(y+’ z+)e Tmn® \ B

H'{E+ = YTEhTE(y+ z+)e—‘7mnr + u:kmu“bmn (y+’ z+)e—‘y""'z (A14)
n mn n )

Jwp
and
Enn” =enay*, 2h)em
H-v’lr‘;E_ = —YTE TE(y+ z+)e‘7mn= + uzk,z,m‘lﬁif(y*',z"’)e”"": } (A15)
n mn n ’ jwl‘
where
era(ytr %) = ue X Y77 (v, 2) (A.16)
hoa(y*,2%) = —Yyri(y*, 2*) _ (A.17)
The wave function ¥IE(y*, z*) satisfies
VHIE + Kt = 0 (A.18)

subject to the boundary condition
Y- YPTE =0 (A.19)

on the walls of the waveguide. Here, u,, is the unit vector normal to the wall
of the waveguide. Solutions to (A.18) and (A.19) are

k?m.=(mT1r)2-+-(%)2 m=0,12---
1 [eqne,  mmyt nrzt n=0,1,2,--- (A.20)
1/’3:.5(31‘*, zt) = iV be cos( p ) cos( . ) m+n#0
where ¢, is Neumann’s number given by
1, n=0
=9 9 2
€n {2’ Tl=1,2,"' (A 1)

The preceding %TZ is normalized so that
b c
+ + TE; + _+ TE  + .+ _ .
[ avt [ det {ZulE Gt 2} {RuE Gt s ) =1 (A.22)
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Substituting ¥IE of (A.20) into (A.16) and (A.17) and taking ¥ with respect
to the coordinates y* and z*, we obtain

B = = e—';jl{uy%cos("‘ )sin( 222
-—g,%sm( cos(mrz } (A.23)

BoRh ) = 5 {y.y;sm(""’ ") cos( 22
+y,%cos(m7ry ) sin nrzt } (A.24)

Remaining quantities in (A.14) and (A.15) are ¥, given by (A.12) and

Y5 = Inn ' (A.25)
Jwp

Orthogonality relationships. are

b c
+ (B .ot = + +18
fo et do= [ar [a

= /: dy+ /ocdz+(§£m v hiq) ‘U, = { 1, (ﬂ’mvn) = (5ap’Q) (A26)

0, otherwise

where 3 is either TM or TE and § is either TM or TE. Equality of the
three integrals in (A.26) follows from (A.4), (A.5), (A.16), and (A.17). It is
evident from [4, eq. (8-37)], (A.4), and (A.9) that the integrals are equal to
the right-hand side of (A.26) when § = § = TM. It is evident from [4, eq.
(8-36)], (A.17), and (A.22) that the integrals are equal to the right-hand side
of (A.26) when 3 = § = TE. Because of [4, eq. (8-38)], the integrals vanish
when 3 # §. If there is a degeneracy, that is, if knn = kpq for (m,n) # (p.q),
then, as pointed out in (4, p. 390], we must have

/dy /dz {(Wouly*, 28 (%, 25} =0, B=TE,TM (A27)

in order for (A.26) to hold. It can be shown that %»I* of (A.8) and %IE of
(A.20) satisfy (A.27).
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In Appendix A, we found the four kinds of modes that can exist in the
rectangular waveguide. There are two kinds of TM modes and two kinds of
TE modes. The T M modes are (ETM+, T’,‘{*‘) of (A.2) and (EFM- gTM-)
of (A.3). In (A.2) and (A.3), wIM, eTM and 7™ are given by (A.8), (A.10),
and (A.11), respectively. The TE modes are (ETE+, HTE+) of (A.14) and
(ETE=, HTE=) of (A.15). In (A.14) and (A.15), $TE eTE ‘and hTZ are given

n

by (A.20), (A.23), and (A.24), respectively.
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Appendix B

Modes of the Circular
Waveguide

Eight kinds of modes can exist in the circular waveguide whose cross sec-
tion is shown in Fig. B.l. They are (ETMe* HIMet) (EIMe~ HIe"),

(E?f TMO+)’ ( TMo-, T:{o-), ( ;:Je+: TpEe-{-), ( %Ec- E"Ee-)
( E°+ TE""’) and ( TE°", Tf"'). Here, E is the electrlc field and H
is the ma.gnetlc field. The superscript “TM” denotes transverse magnetic,
“TE™ denotes transverse electric, “¢” means even in ¢, “o” means odd in ¢,
“4+” indicates that the wave travels in the +2 direction, and “—” indicates
that the wave travels in the —z direction. Here, ¢ is the angle measured
counterclockwise from the positive z axis and z is the cylindrical coordinate
measured in the u, x u, direction where u, and u, are the unit vectors in
the p and ¢ dlrectlons respectlvely By deﬁmtion, p=Vz?+y?
From the analysis in [4, sec. 8-1], we obtain

2, TMe —yIM,
TMet _ gTMeo TMe(, ¢)e ey (k)b (p, )

P Jwe (B.1)

et = B (o g

and

e— eo e ™, (kTM)ZwTMc( QS)C‘YZ;WZ I
T,),W = ZTM TM (P9 dle™r * + u, Jwe (B.2)

TMe~ _ 1 TM I
P - hﬂp c(p’ ‘b)e’ P
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Figure B.1: Cross section of the circular waveguide.

where u, is the unit vector in the z direction. Moreover,

ey (0, 8) = =Nyl M(p, ) (B.3)
hTMe(p, 8) = —u, x TPTM(p, ) (B.4)

The wave function tbﬂ”‘(p, P)is a 11)“ (p, #) which is even in ¢ and which
satisfies

Vs (0 8) + (ki) 247 (0, 4) = 0 (B.5)
subject to the boundary condition

YIM =0, p=a (B.6)

Even solutions to (B.5) and (B.6) are

kTM = Znp
g a n=201,2,
.wTMe( ¢) = \/E']ﬂ(kz‘;”p) COS(TI¢) p=1, 2,3, . (B7)
T zannH(-'rnp)
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where J, is the Bessel function of the first kind of order n and {0 < z,, <
ZTnz < Tn3 -} satisfies

Jﬂ(xﬂp) =0, p=123,--- (B8)
Furthermore, ¢, is Neumann’s number:
1, n=0
€"={2, n=1’2,-“ (Bg)

The preceding ¥7 ¢ is normalized so that

[ odp [ do {Z0T¥e(0,0)} - {ToTH“(,9)} = 1 (B.10)
To verify (B.10), we first use (B.7) to obtain
230, 8) = [2 () (a5 costns)
T™ ) o
—u an(kn;T;;) sin(ng) } (B.11)
np P

If the left-hand side of (B.10) is called I;, then substitution of (B.11) gives

I1=m§‘$::/l’dp/ dé

sz(ka) sin’(ng)
2(L.TM 2
Evaluation of the integral with respect to ¢ reduces (B.12) to
9 a anz(kTMp)
I, = d 1201, TM n\ ‘np 1:
' ‘12J3+1(3’np)'[’ P p{Jn Uknp" ) + (kTMp)? } (B.13)
Substituting
z=kIMp (B.14)
into (B.13), we obtain
I = _2h (B.15)

2 Jn+1(xnv)
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where
L= / {:J;j(z) + "—213,(3:)} dz (B.16)
) T
It is shown in Appendix C that
2
[ {2+ Saze | de = 5 - ni)2a
d?

Replacing d by z,, in (B.17) and using (B.8), we obtain
1:2 JI 2(Inp)

I = Zpn ) (B.18)
Now [6, formula 9.1.27],
Jo(z) = =Japa(z) + = J (z) (B.19)

Replacing z by z,, in (B.19) and using (B.8), we obtain

+ ST +dL@Ad) (BT

Jrlt(zﬂp) = _Jn+l(znp) (B?.O)

so that (B.18) becomes
z; Jn+1(xnp)
_ 2
Substitution of (B.21) into (B.15) gives I; = 1. Thus, (B.10) is verified.
Substitution of (B.11) into (B.3) and (B.4) gives

TMe /_6_71 1
ey (p29) = = T (aJnH(znP))
™™
.{gp.],"(kf:’p) cos(n¢g) — (K kriz sin(nd) } (B.22)

B0, ) = -2 (J—lr—))

nJa (kLM p) sin(ng)
Ly, i

L=

ud,J,',(kf;"p)cos(ndJ)} (B.23)
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Remaining quantities in (B.1) and (B.2) are

Yol = \/(KIM)? — k2 (B.24)
and
‘YTM
Ziye = (B.25)
Jwe-

In (B.24), k¥ = w./u€ is assumed to be a real wave number. Here, w is
the angular frequency and u and € are, respectively, the permeability and
the permittivity of the homogeneous medium inside the waveguide. The
radicand in (B.24) is therefore purely real so that 7 M is either purely real
or purely imaginary. If yT™ is purely real, we take yIM > 0. If 4IM is
purely unagma.ry, we take the imaginary part of 7nM to be non-negative.
The superscript “eo” was placed on the leit-hand side of (B.25) to avoid
confusion with the quantity ZZM which was defined in Appendlx A.
Similar to (B.1)-(B.4), we have

TMo+ - ZTMeo TMo(, ,¢)e"’-¥" . (kT ) ¢TM0( | $)e=EA:

Eap * Jwe (B.26)
TMo TMo - TMZ
P * = hnp (P,¢)8 Tnp
and
TMo—~ TMeo TMo ~TM, (kr{:!)2¢£:{o(p, qb)e"'z::y‘
r = (P §)e " 4 . Jwe (B.27)
TMo- TMo I M,
P = Ll-np (o, ¢)e~' P
where
eIMo(p, 6) = ~ZpTM(p, 9) (B.28)
h(pd) = —u. x ZpTM(p, 0) (B.29)

The wave function z[)f:“’(p, P) is a wﬁf(p{(ﬁ) which is odd in ¢ and which
satisfies (B.5) and (B.6). Odd solutions of (B.5) and (B.6) are

kIM = Ine
I 1 (KTM ) n=lrd (B.30)
$IM(p, ¢) = \/EJn(kn,, p)sin(ng) ( p=1,2,3, -
" T ZnpJns1(Tnp)
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The preceding 1/):{}“ is normalized so that

[ ode [ a8 {ZuTe(o, )} - {ZyE¥e(p, )} =1 (B:31)

To verify (B.31), we first use (B.30) to obtain

TMo 2 1
200 = |2 (7miem)
nJ, (kTMp) cos(ng)

: {u,,J,’,(k,T;" p) sin(nd) + uy o, } (B.32)
np

Substituting (B.32) for Y9 T¥°, we find that the left-hand side of (B.31) is
the right-hand side of (B. 12) with ¢, replaced by 2 and with sin(n¢) and
cos(ng) interchanged. Integrating this result with respect to ¢, we discover
that the left-hand side of (B.31) is I; of (B.13). Now, as stated in the sentence
following (B.21), I; = 1. Thus, (B.31) is verified.

Substitution of (B.32) into (B.28) and (B.29) gives

TMo 2 1
(p, ) - \/; (GJ,H.I(I"?))
nJ,(kIM p) cos(n¢)

-{upJ:.(kZ,f”’p)sin(n¢)+u¢ TP '}(8.33>
np

2 1
b (p,9) = \/;('JTG_))

nJ,.(kTM ) cos(ng)
") ¥ KIM)

~ w (K p)sin(ne) | (B34

The quantities 7TM and ZTM” in (B.26) and (B.27) are given by (B.24) and
(B.25), respectxvely
From [4, sec. (8-1)], we have
TpEe+ = TEc(p’ ) —vIE;
(ki) ey (p d)e™ " o (B.35)

ﬂz'pEe+ = YTEeohTEe( ,(}5)8-7'7“::2 +u,
jwp

=np
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and

=gy (p ) e
T = =Y IEChI (o, @)™ + z(k”)zwfj;ip, g s 1 (B.36)
where '
7 (0, 8) = u, x Y¥17(p, ) (B.37)
hir(p,¢) = —X¥IF(p, $) (B.38)

The wave function ¥2E¢(p,¢) is a $TE(p, $) which is even in ¢ and which
satisfies

VA (02 8) + (kg )47 (0, 6) = 0 (B.39)
subject to the boundary condition
61/1TE i
—21P = 4
| 3p , p=a (B.40)
Even solutions of (B.39) and (B.40) are
LTE = ﬁ’i 0.1.2
i a n=u1l,s-
ey gy = [ (kiFp)costnd) f p=12,3,.. B4
’ m(z,2 - n?) Jn(z,)
where {0 < z!, < z}, < z}5- -} satisfies
Jf,l(z:tp) = Oa p= 1, 2, 3y (B42)
The preceding 7€ is normalized so that
[ odo [ do (S5 (0. 0)} - {LUEE (o 0)) = 1 (B.43)
To verify (B.43), we first use (B.41) to obtain
TE €n kTE / TE
Y, © = @ = (J =) ){u J, (ky° p) cos(ng)
nJn(kIEp)sin(n¢)
—u, ( 2}{;3;; } (B.44)
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If the left-hand side of (B.43) is called I3, then substitution of (B.44) gives

€n kz'pE 2 2
L= w(zﬁ,’;’,—n’)( Ja(z! )) fpdp dé

np

, n2J%(kTE p) sin?(n¢)
{J *(kTE p) cos*(ng) + n{ (k{f) 2 } (B.45)
Evaluation of the integral with respect to ¢ reduces (B.45) to
9 kTE 2 TE sz(kTEp)
— ! n n
I z;,g—nz( ) fpdp{J (kTEp) + ——?’—(szpz } ~ (B.46)
Substituting
= Icffp (B.47)
into (B.46), we obtain
21,
I;= (@2 —n?) 73z (B.48)
where , 22
I, = / " {;-J,?(z) + ’-‘——"(f-)} dz (B.49)
0 T
Replacing d by z;, in (B.17) and using (B.42), we obtain
12 _ n2) J2
I, = (2 }n(Znp) (B.50)

2

Substitution of (B.50) into (B.48) gives I3 = 1. Thus, (B.43) is verified.
Substitution of (B.44) into (B.37) and (B.38) gives

. 6 kTE
—E:J (0, ) = \/71'(1:’2 —n?) ( )

TE
.{gan n(Kap )sm(n¢ +u J(k:fp)cos(nqb)} (B.51)

kTE

TEe = En sz
hﬂp (0:0) = - W(x'ng — n?) (Jn(x:up)>

, nJ.(kTEp)sin(no) '
'{up‘]n(kfpgp) cos(nd) — u, ( /2,7;;’7;) } (B.

54




Remaining quantities in (B.35) and (B.36) are

1TE = | [(RTE — k2 (B.53)
and
7TE
Y LB = | (B.54)
Jwp

The radicand in (B.53) is purely real so that '7,{:7 is either purely real or purely
imaginary. If 4TF is purely real, we take 775 > 0. If 4T is purely imaginary,
we take the imaginary part of 7,'{}? to be non-negative. The superscript “eo”
was placed on the left-hand side of (B.54) to avoid confusion with the quantity
YTE which was defined in Appendix A.

Similar to (B.35)—(B.38), we have

ot = € (p, g)e e .
TE)Z,‘/JTEo(p, ¢)e-'y,¥':z (B55)

k
TEo+ = YTEeohTEO ’¢ C_'Y'TPEZ +u‘( np ﬂP.
P np ~np (P ) jwp
and
T::o- = foo(p’ ple TE\2,,TE TE (B.56)
TEo- TEeo} TEo TE, (kTEV2yTEo(p e ® 5
e e ygonigs et AL
where
e (0, 8) = w. X X% (p, 9) (B.57)
hTE(p,8) = —V$T-(p, 0) (B.58)

The wave function w,{f"(p, P)is a zpff(p, ®) which is odd in ¢ and which
satisfies (B.39) and (B.40). Odd solutions of (B.39) and (B.40) are

kTE — ﬁ
np a n
2 JJ(kIEp)sin(ng) [ p=1,2.!

Tl2) Jﬂ(z,np)
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The preceding 1/)3;5" is normalized so that

a 2n
| pde [ de {Z6TE(p,0)} - {ZHEEo(p, 0)} = 1 (B.60)
To verify (B.60), we first use (B.59) to obtain
TEo - 2 k?"E
2¢np (P, ¢) - w(xﬁ,?, _ ng) (Jn(::-;p)
TE
{5 sin(ns) + g2 D) (g6
np

Substituting (B.61) for Y¢TF°, we find that the left-hand side of (B.60) is
the right-hand side of (B.45) with ¢, replaced by 2 and with sin(n¢) and
cos(n@) interchanged. Integrating this result with respect to ¢, we discover
that the left-hand side of (B.60) is I5 of (B.46). Now, as stated in the sentence
following (B.50), I3 = 1. Thus, (B.60) is verified.

Substitution of (B.61) into (B.57) and (B.58) gives

TE 2 kTE'
° ’¢ = - ’ ( ~P )
e (01 4) = =\ Tz =t \ To(z)

Jn(KIE , :
. {lpn ( Zig:os(mﬁ) _%Jn(kffp) sm(nqb)} (B.62)

hTEo( ¢ _ 2 kff
hap™(0:9) = =\ 2@z =) \ Tolen)

-{u,,J;(kap) sin(nd) + 1,

nJa(KZEp) cos(ng)
kipp

} (B.63)

The quantities 'yff and Y,?;E“’ in (B.55) and (B.56) are given by (B.33) and

(B.54), respectively.
Orthogonality relationships are

/oapdp /0” d(emg - €ap) = /oapdp /02, d¢(hmq - np)
=/0°pdp/o"d¢{(cf;q x h2) - u,) ={ Lo (trma) = (uwsnp) g gy

0, otherwise
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where

r=e,o0

s=e¢e,0 ;
t=TE,TM (B.65)
w=TE,TM

Equality of the three integrals in (B.64) follows from (B.3), (B.4), (B.28),
(B.29), (B.37), (B.38), (B.57), and (B.58). It is evident from [4, eq. (8-37)],
(B.3), (B.10), (B.28), and (B.31) that the integrals are equal to the right-
hand side of (B.64) when t = u = TM and r = 3. Whent =u =TM
and r # s, the integrals vanish because the integrands are odd in ¢. It is
evident from from [4, eq. (8-36)], (B.37), (B.43), (B.57), and (B.60) that
the integrals are equal to the right-hand side of (B.64) when t = u = TFE
and r = s. When t = u = TE and r # s, the integrands vanish because
the integrands are odd in ¢. Because of [4, eq. (8-38)], the integrals vanish
when t # u.

In Appendix B, we found the eight kinds of modes that can exist in the
circular waveguide. There are two kinds of even TM modes, two kinds of
odd TM modes, two kinds of even TE modes, and two kinds of odd TF

modes. The two kinds of even TM modes are (E2M*, HTM*) of (B.1) and

( T:’“' TMe=) of (B.2). In (B.1) and (B.2), pIMe, IMe, and hf{,we are

’ P

given by (B.7), (B.22), and (B.23), respectively. The two kinds of odd T\
modes are (E1M°%, HTMe+) of (B.26) and (EXM°~, HTM°) of (B.27). In
(B.26), and (B.27), pTM°, eTMe and hTM° are given by (B.30), (B.33), and

) =np

(B.34), respectively. The two kinds of even TE modes are (ELZt, HTZ*) of

(B.35) and (ETZe~, HTE*=) of (B.36). In (B.35) and (B.36), ¥wTEe eTE¢ and

p ibnp np 1 =np
hff‘ are given by (B.41), (B.51), and (B.52), respectively. The two kinds of
odd TE modes are (EXE°*, HTE*) of (B.55) and (EXE°", H1F°7) of (B.56).

In (B.55), and (B.56), ¥1E°, e¥°, and hff" are given by (B.59), (B.62), and
(B.63), respectively.
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Appendix C

Evaluation of an Integral of

Bessel Functions

In Appendix C, we evaluate the integral I defined by
I—/d zJ3( )+n—2J2(:c) dz
- o n \T T n

Proceeding as in (7, sec. 5.296], we recast (C.1) as

I= %/Od {(2.],"(;;))2 + (?;?J,,(J:))z} zdz

Substitution of [6, formula 9.1.27)

2

—:'-J,‘(I) = Jn-—l(x) + Jn+l (I)
and

2J4(z) = Jaoi(z) = Jnsa(2)
into (C.2) yields

I = (In—l + In+l)

where

d
- 2
I, /0 zJ%(z) dz
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To evaluate I, of (C.6), we will use Bessel’s equation [6, formula 9.i.1]:
23 J(z) + zJ.(z) + (2? = n?)J,(z) = 0 (C.7)
Multiplying (C.7) by J.(z), we obtain
22 J (2)J!(z) + zJ.%(z) + (22 — n?)J.(2)Jo(z) =0 - (C.8)

Expression (C.8) is recast as

% (123z)) + 22 (=) + % (J(z)) - % (J2(2)) =0 (C.9)

The integral of (C.9) from 0 to d with respect to z is

2/ J'2 :c) d:c+/ zJ.¥(z)dz + = / z))fd:z:
—7 (J,f(d) ~ Jn(O)) =0 (C.10)

Because {6, formula 9.1.7]

1, n=0 '
J,,(O)—{ 0 n=1,23, (C.11)
the J2(0) term drops out of (C.10). Integrating the first and third integrals

in (C.10) by parts, we obtain

2
g (J22(d) + J2(d)) - /o * 2 J3(z)dz — %Jj(d) =0 (C.12)

whence
I, == {d?J'2 +(d? = n?)J3(d)} (C.13)
Substitution of (C.13) into (C.5) gives

= i (d? = (n = 1)2J2_,(d) + (d — (n + 1)})J2,,(d)

+d?J'2,(d) + d’J;il(d)} (C.14)
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Adding (C.4) to (C.3), we obtain
Jn1(2) = ZJn(2) + 5 (2) (C.15)
Subtracting (C.4) from (C.3), we obtain
Jni(®) = ZJn(2) - Ji(2) (C.16)

From [6, formula 9.1.27], we have

-1
Jra(2) = =do(2) + == Jn-1(2) (C.17)
' +1
(@) = Ja(z) = = ——Jota(2) (C.18)
Substitution of (C.15) into (C.17) gives
' n(‘n - 1) n—-1,
Jn—l(z) = (—1 + 72 ) Jﬂ(m) + TJn(z) (C.19)
Substitution of (C.16) into (C.18) gives
1
Jipa(2) = (1 St @ e o)

Using (C.15), (C.16), (C.19), and (C.20) to convert the Bessel functions of
order n £ 1 in (C.14) to Bessel functions of order n, we arrive at

I= %(d’ — n?)J3(d) + gJ,’f(d) + dJo(d)J'(d) (C.21)

This result agrees with {7, eq. (12) on page 186].
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Appendix D

Radiation of a Magnetic

Current Element in a Circular
Waveguide Matched at Both
Ends |

In Appendix D, we determine the fields E(Q, u,6(r — '), H(Q, u3é(r — '),
E(Q,u,6(r—1")), and H(Q,u,6(r —r’)) in the circular waveguide whose cross
section is shown in Fig. B.1. For simplicity, we assume that the waveguide is
matched at both ends. Here, E(J", M") is the electric field due to the combi-
nation of the electric current source J¥ and the magnetic current source M"
where both J” and M" are volume densities of current. Similarly, H(J", M")
is the magnetic field due to (J", M"). The argument “Q” indicates that there
is no electric current source in the waveguide. Furthermore, §(r — ') is the
three dimensional Dirac delta function, u, is the unit vector in the ¢ direc-
tion, and u, is the unit vector in the z direction. Here, r is the radius vector
to the point whose cylindrical coordinates are (p, #,2), and r’ is the radius
vector to the point whose cylindrical coordinates are (p’, ¢, 2').

Consider E(Q,u46(r — r')) and H(Q,u,é(r — r')) evaluated at the point
whose cylindrical coordinates are (p, ¢,2). Since the only source is a trans-
verse magnetic current located at (p’, ¢, 2’) and since the waveguide is matched
at both ends, there will only be waves that travel outward from z’ and the
transverse component of the magnetic field will be continuous at z'. Hence,
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E(0,u,6(r — r')) and H(Q, u,8(r — r’)) may be expanded as

(BQ w8z — ), HQ.ub(z - ) = 323 2

n=0 p=1 s=e,0
TM . TE
{C’T.‘:h.Méeh.., “( TMa:t, H"Mai)icTEaMd’ ip TE:t’ T:J::L-)}(D.l)

where the upper sign is to be taken for z > 2’ and the lower one for z < 2.
In (D.1), (EIM**, gTM*%) and (ETE**, HT5*%) are given by (B 1), (B.2),
(B.26), (B. 27), (B. 35), (B.36), (B. 55), and (B 56). Moreover, 7np and yTF
are given by (B.24) and (B.53), respectively. The s = o term is to be omit-
ted from (D.1) when n, the index of the outer summation, is zero. In (D.1),
CTM=Mé and C,ff"M" are unknown constants. The superscript “M¢” indi-
cates that the source is the ¢ directed magnetic current u,6(r—r'). Substitut-
ing the expressions in Appendix B for (EIM ’*, TM’*) and ( TE’*, Tf’*)
into (D.1), we obtain

EQub(z~1)) = 35 3 CRMes

n=0 p=1 s=¢,0
(k )2¢TM8(p, ¢) } e""fﬂ‘lz-z'l

. n 7TMeo TMa
{e(z,z)z,., (6, 6) + u, o) Vee

+ Z E Z CTEa M¢ z’ z ) TEa(p’ QS)C-‘Y"" E |z 2’| (DQ)

n=0 p=1 s=¢,0

HOud(e—£) = 33 3 CEH I (o, 0!

3
1]
o

o
I
-
“

=np

+ io: i CTEa Me { YTEcohTEs )

( )(k” a0 )\ ot
‘Yn z=2' D3
i Jwp } ( )

where
N o_ 1, z> 2
C(Z,Z) - { _1, z < Z’ (D4)
Now,

§(—1) =8(p—~p)é(z - =) (D.5)




where p is the radius vector to the point in the zy plane whose cylindrical
coordinates are (p, ¢) and p’ is the radius vector to the point in the zy plane
whose cylindrical coordinates are (o', ¢'). Furthermore, §(p — p') is the two-
dimensional Dirac delta function, and é(z — 2’) is the one-dimensional Dirac
delta function. Thanks to (D.5), the fields on the left-hand sides of (D.2) and
(D.3) become E(Q,Mé(z — 2')) and H(Q,Mé(z — 2')) where M is a surface

density of magnetic current in the z = 2’ plane:

M = u,8(p - ¢) (D6)

The right-hand side of (D.2) is discontinuous at z = 2’. The discontinuity is
related to M by [4, eq.(3.14)]

M=(Et-E)xu, (D.7)
where
E* = lim E(Q, M5(z — ) (D3)
D>z’
E" = lim E(Q, M5(: ~ ) (D9)
2<2’

Taking u,x of both sides of (D.7), we obtain

wx M=y x (B - E)xu) (D.10)

or, more simply,
y.z XM=(E+ _E_)tan (Dll)

where the subscript “tan” denotes the transverse component. Applying
(D.11) to the discontinuous electric field of (D.2), we obtain

wilp-0) = 2530 T ORI 0

n=0 p=l =e,0

+23° 3" 3 CLPMPel? (p,9) (D.12)
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Scalar multiplication of (D.12) by ¢f (p, ¢) and integration over the cross
section of the waveguide give

_/apdp/%d(ﬁ{y_p. tr (p,¢)}5(2_
ii -z: CTMJM¢ZTMeo/ pdp/ d¢{g (P, Ty’(P,(b)}

1253 T M [*pdp [ ds {e5,(0,9) 5206, 8)} (D13

n=0 p=1 s=e,0

In (D.13), we choose

r=e,o0

t=TM,TE

m=0,1,2, - (D.-14)
q= 1a2’37"'

The definition of 6(p — p’) and the orthogonality relationships (B.64) are used
to evaluate the integrals in (D.13). Next, r, m, and ¢ are replaced by s, n,
and p, respectively. The result is

TMs( 7
. p¢')
CTMM9 2ZTM=° (D.15)
np
1 ! 7
CZ;E"Mé = —iup’ : Qz‘f'(/’ ) ¢) (D16)

where u, is the unit vector in the p" direction.
Substitution of (D.15) and (D.16) into (D.2) and (D.3) gives

pap o RERERY

N TMs (KIM)2pIM2(p, $) _ 1),
. {G(Z, z )QT;‘:! (pv ¢) z pjleZiMeo } ! |
> % (w5 (0. 9) ez, 2)eRE (p, ) == (D.17)

p=13=e,0
e 00 TMs( ¢l)
325 5 (sl o)

n=0 p=1 s=e¢,0

E(Q,usb(z - ) = -

I\DIP-‘

nM8

+
=

[
M8

[}
o

n

H(Q,ué(z - 1) = -

DD -
-
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M 1 SRS
.hz‘:'!"(p,¢)e""7"? ""'—EZOZ Z (L‘-p J}?Es(p (b))
ez,

p=1 3=e,0
k 2,,TEs
{YTECO_}LZPE’(/J, qs) +u, )( J“)J#l/) ( )} e"‘YnE|z z' (D18)

Substituting (B.22), (B.33), (B.51), (B.62), (B.7), (B.30), and (B.25) into
(D.17), we obtain

, 1] &> Cn kTM)2Jr ~;{M/’,
E(Q,ZL¢5(£—£)) - 5— Z=:p¥ 1'2 J3+1((3n:) { e (2 Z)

€(z, 2')ndn (k7 p) sin(n(o ~ o))

Jo(kIM p) cos(n(é — ¢')) + ug kIM,
np
kIM ] (kTM p) cos(n(¢ — ¢'))} A TM |z )
e e T

1 & & e(z,2)(kTE)nd, kTE' nJ, (kTE
L )

-cos(n(¢p — ¢')) + %J;(kffp) sin(n(¢ — ¢'))}e""np -2t (D.19)

Similarly, substitution of (B.22), (B.23), (B.33), (B.34), (B.51), (B.52), (B.62).
(B.63), (B.41), (B.59), and (B.54) into (D.18) gives
kTM)zJI (kTwp )

2
M2 Jn+1(xnp)

H(0ub-1)) = 27rwu _ e L,

n=0 p=1 71!.
nJn(kIMp) , , -
——,fm ) sin(n(6 — ) + 1y Jo (KM p) cos(n(s — 6)) }
R if RN
TWU v /2 2)(kTE /)Jz(xlnp) P

, : , 7n EnJn(kTEp) cos(n(o — o))
73,?'171(1‘755;0) sin(n(¢ — ¢')) + 2 kaE

—u,e(z, 2" )kLE T, (kIE p) sin(n(s — ¢'))} ~vap 1=l (D.20)

Consider E(Q,u,8(r ~ r’)) and H(0,u,8(r ~ r')) evaluated at the point
whose cylindrical coordinates are (p, ¢,z). To obtain expressions for these
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fields, we replace the longitudinal magnetic current

M =u,b(r-1) (D.21)

by an equivalent transverse electric current [8]. To see that such a “re-
placement” is possible, recall that (E(Q,M"), H(Q, M")) satisfies Maxwell’s

equations:

Y xEQ M) = —jupHd(0, M")M* (D.22)
¥ x H(0, M") = jweE(Q, M") -
If M
H=H@OQ,M)+: (D.23)
jwp
then (D.22) becomes
¥ x E(Q, M”.) = —jwpl } D.2
Y x A = jueE(Q M) + J" (D24
where v .
=2 M " (D.25)
jwp

If we can find the electromagnetic field (£(Q, M*), H) that appears in (D.24),
then we will, of course, have E(Q, M) and, from (D.23), H(0, M") will be
given by

Jwp
From (D.24), the electromagnetic field (£(Q, M"),_fi) is the field radiated

by the electric current source J" so that we may write

E(Q M) = E(",0) (D
H=Hd([0) (D.
Now, our objective is to find the electromagnetic field (E(J",0), H(.",0)).

Unfortunately, J* can not be obtained by substituting (D.21) into (D.25)
because §(r — ') is not differentiable. Substitution of (D.5) into (D.21) gives

HO,M")=H (D.26)

7)
8)

o o

M® = u,8(z — 2)6(p - p) (D.29)
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We attempt to define M"” by

M =u.8(z - 2') lim fn(p—p) (D.30)
where fy becomes more and more impulsive as N increases:
Am fn(p—g) =é8(p - p) (D.31)

Now, we can not define (E(0, M"), H(Q,M")) b
E(Q,M") = E(Q,u.8(z - 2) lim fn(p - p))
H(Q,M") = H(Q,u,8(z - 2') | hm 1 fn(p—¢))

because, since 6(p — p’) is not a legitimate function, the limits indicated in

(D.32) do not really exist. The proper definition of (£(0, M*), H(0, M")) is
E(Q,Mu) = AmE(Qyuz‘S(z - ZI)fN(e - &I))
H(Q,M") = lim H(Q,u.6(z - 2')fn(p — p))

Taking the approach outlined in the previous paragraph, we replace the
fields due to M" of (D.21) by the fields due to’

M _uz z_z 2‘:22 Z: CTEslpTEa ¢) (D34)

n=0 p=1 s=¢,0

(D.32)

(D.33)

where the s = 0 term is to be omitted when n, the index of the outer
summation, is zero. We will choose C,TPE’ such that M" of (D.34) approaches
M?" of (D.29) as both N; and N; increase. Finally, we will take limn, v, —co
of the fields due to M" of(D.34).

In order for M" of (D.34) to approach M" of (D.29), the triple summation
in (D.34) must approach §(p — p’). Hence, we write

N1 N

P ZZ Z CTanTEs (D) (D35)

n=0 p=1 s=e,0

Although it is not strictly true, (D.35) is a means of evaluating CT5°. Mul-
tiplying both sides of (D.35) by ¥TE7(p, ¢), integrating over the cross section
of the waveguide, using the orthogona.hty relationship (1, secs. 8-1 and 3-2]

1’ h b) = S’ *
K127 [ pdp [ dowZE (o, )w”%p,w-{& (rmd) = (s.mp)
(D.36)
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and finally replacing (r,m, q) by (s,n,p), we obtain
s __ Es¢ 1 s
CIFs = (kIEYorF (e, ¢") (D.37)
Substitution of (D.37) into (D.34) gives

N N

M = z -z ) Z Z Z kTE 21/)TE3 ¢l)¢pra(p’ ¢) (D.38)

n=0 p=1 s=e,0

Substituting (D.38) into (D.25) and using (B.38) and (B.58), we obtain
L' =16z~ 2") | (D.39)

where

M N

J=u, x —ZZ Y kDI (o, 6)RE (0 8) (D.40)

H n=o0 p=1s=¢0

Note that J is a surface density of electric current in the z = 2’ plane.

This paragraph and the next paragraph are devoted to finding the electro-
magnetic field (E(Q, M"), H) which satisfies (D.24) with J® given by (D.39).
Since the only source is a transverse electric current in the z = 2’ plane, and
since the waveguide is matched at both ends, there will only be waves that
travel outward from 2’ and the transverse component of the electric field will
be continuous at 2’. Hence, E(Q, M") and Ji4 may be expanded as

(E(Q Mv ‘ ZZ Z {iCTMaJ i‘yTM;

n=0 p=1 s=e¢,0

_(_E}":la:t,ﬂz';\h:!:) +CTE3J +v1Ez ’(ETEsi: HTEs:t }(D.-U)

yddnp

where the upper sign is to be taken for z > 2’ and the lower one for z < .
In (D.41), (EZV**, HIM*%) and (ETE**, HTZ**) are given by (B.1), (B.2),
(B.26), (B.27), (B.35), (B.36), (B.55), and (B.56). Moreover, /pr and 73;5
are given by (B.24) and (B.53), respectively. The s = 0 term is to be omitted
from (D.41) when n, the index of the outer summation, is zero. In (D.41),

CIM27 and CIPE""’ are unknown constants. The superscript J indicates that
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the source is J of (D.40). Substituting the expressions in Appendix B for
(ETMst gTMsy and (ETE**, HTE**) into (D.41), we obtain

E(Q)Mv) = E Z E CZ;M-’J{ZTMeo

n=0 p=1 s=e,0

2,, TMs

EM(p, 6) + 1, €(z, 2 ) (kng? ) %ag " (P, )}e_,gyh_zq
Jwe

+EZ E CTE"J TE’(p,(ﬁ)C 'y"p Elz-2/| (D42)

n=0 p=1 s=e,0

H=3% ¥ ChMds, 2050, 9)

n=0 p=1 #=e,0

Mlz-zl| + Z Z Z CTE.:J Z’)Y,?;Eeo

n=0 p=1 3=¢,0

hﬂE’(p’ ¢) + z( TE 2 TE'(p7 ¢) } e_.y'T"PE(z_zrl
jwp

(D.43)

where €(z2, 2’) is given by (D.4).
The right-hand side of (D.43) is discontinuous at z = 2. The disconti-
nuity is related to J of (D.40) by (4, eq. (3-14)]

J=ux(H -H) (D.44)
where
A = lim a (D.45)
P
H =lmA (D.46)
<z’

Taking —u,x of both sides of (D.44), we obtain

—ux L= —u x {u x (A" - )] (D.47)

or, more simply,

—u,xJ=(H -H tan (D.148)
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where the subscript “tan” denotes the transverse part of the vector. Applying
(D.48) to the discontinuous magnetic field of (D.43), we obtain

—u, x J=2) 3 3 CTMIpIMo(p, ¢)

n=0 p=1 s=eo
+2 E E Z CTE: JyTEeo TpEa(p’ ¢) (D49)
n=0p=1 9=e0
Substitution of (D.40) into (D.49) gives
Ny N;

_ZZE kTE2 TE: ¢) TEa(p,¢)=2

Jwp n=0 p=1 s=e¢,0
Z Z CTM:J TMs +2 Z Z Z CTE: JyTEeo TE:( )(D 00)
= a=e n=0 p—l s=e,0

Because of the orthogonality (B.64) of hTE’ and hTM’, it is evident from
(D.50) that, upon using (B.54) to dispose of YTE”

11M8

CiM» =0 (D.51)
(kTE)zd)TE"(p ,¢/) s =g¢,0
TEs,J _ n=0717"'vN1
Crp ™" = 2yIE p=1,2--.N, (D.52)
0, otherwise

In view of (B.54), substitution of (D.51) and (D.52) into (D.42) and (D.43)
gives

Ny N kTE TE: ! TEJ -‘y,{flz-z'l
n=0 p=1 s=e,0 7np
£=-2 25 S WG
n=0p=l s=e,0
TE 2,,TEs
. {E(Z,Z’) TEa(p, ¢) +y.z( ) f ( (P)} e—’vg‘pﬂz—z’l (DC—)4)
ﬂp

Substituting (B.41), (B.59), (B.51), and (B.62) into (D.53), taking
limp, ¥, o0, and then substituting (D 21) for M, we obtain

kTE 3Jﬂ kTE ! . ksE
EQub(c-r EZ P Jn(knp#') {20k R)

ﬂ=0p=l 7np I,% le)JZ(I;p) A'Zl‘pEp
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sin(n(® = ) + upJ1 (KT p) cos(n( — $)) fe= 5= (D.53)
Substituting (B.41), (B.59), (B.52), and (B.63) into (D.54), we obtain

N Ny n(k )3J (kTE /) ,
Z Z - ng)Jz(z, ) {6(2,2)

’ 2
n=0 p=1 (zn

'(w;(szp)cos(n(¢_¢r))_ () sn(n(s - ¢>>)

kTEp

21rwp

kTEJ (k )COS(TI(¢ ¢l)) } AT E 22
_uz 7 4
"P

(D.56)

We want to substitute A of (D.56) and M" of (D.38) into (D.26) before letting
N, and N, approach co. Substitution of (B.41) and (B.59) into (D.38) gives

M= uf #) $h 5 enlki?) alky o) ok p) cos(n(9 ~ 1)

97
n=0 p=1 (‘7'J2 - n2)J2( (D ° )

Zop)

Substituting (D.56) and (D.57) into the right-hand side of (D.26), taking

limn, Ny ~co, and then substituting (D.21) into the left-hand side of (D.26),
we obtain

: ) kTEB TE/
HQ 16z~ 1) = 52 22( Ll {{

2rwp (232 — n?)J3(zh,

nJ,‘(kZ'f )sm(n(cp— 3")) >
kiFp

(u Ji(kTEp) c08(n(¢ ¢)) -

kTET, (kTEp)COS( (¢—¢'))} CATE|ae ]
—u, 7 e "
np

.S TE -0
u, 2(5(‘ z )Jn(kn]:T/;) COS(n(¢ o )) } (D58)
np

There are two u, terms inside the double summation on the right-hand
side of (D.58). The second u, term came from the —M"/(jwu) term on the
right-hand side of (D.26). Therefore, if we deleted the second u, term from
the right- ha,nd side of (D.58), we would have ﬂ instead of H(0Q,u.é(r —1)).
Equation (8) in [9, sec. 22] correctly gives E(0Q,u,8(r — ') of (D.35) for the
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electric field of the magnetic current element u,8(r —r'). However, (8) in (9,
sec. 22| incorrectly gives the previously mentioned H for the magnetic field
of the magnetic current element y,6(r —r’). This error is pointed out in [10]
and [11].

In Appendix D, we found that E(Q,usé(r — '), H(Q,usé(r — 1)), E(Q,
u,6(r — '), and H(Q,u,6(r — ') are given by (D.19), (D.20), (D.55), and
(D.58), respectively. In these equations, k,{:" , 7,{:" , k,{f , and -yff are given
by (B.7), (B.24), (B.41), and (B.53), respectively.
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Appendix E

Evaluation of Integrals with
Respect to ¢’ and ¢

In Appendix E, the integrals (4
The integrals (4.57)—(4.60) are

57)~(4.60) and (4.100)~(4.103) are evaluated.

o = [" i nro- s (ED
67 = [ sin(FY) cos(r(6 ~ )i (E2)
6 = [ cos(EE ) sinr(s -~ ) (E3)
67 = [ cos T con(r(s ~ #))d8 (E4)

In the above equations, v is 1 or 2, y'** is given by (4.39), y"2* by (4.40). ¢,

by (4.42), and ¢, by (4.43).

Changing the variable of integration from ¢’ to y"'*, (E.1)-(E.4) become

-1 v b . h+ . ’ "~y =
" = —(——)-/o sm(mgj ) sin (;r—o(y ™ y'”')) dy"™* (E.5)

T,
2 b v+
= — sin
¢ z, Jo ( b
T (=1) b
¢‘73 _( ) / cos
xo 0

)eos (™ = y™*) ) dy™* (E6)

"+
(FEysin (= —y™)) &™* (ET)
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5 +
¢ = a:l A cos(m‘{’ ) cos (f—(y""’ - y"*)) dy"* (E-8)

where y7* is given by (2.15) and (2.16). From (1.2) and (2.18), z, is given
by

_ b

24, ,
Using [5, formulas 401.02 and 401.04] to expand the trigonometric functions

of the difference arguments in (E.5)-(E.8), we obtain

(E.9)

Zo

o =~ { e L) - s} (B0
57 = o9 cos(2L) + g9 sin(2L) (E11)
$ = —(-1) {¢§?’ cos("ﬂ’:) — 40 sin(""’i+ )}. (E.12)
$™ = g cos(’f’:) + 49 sin(’"’f') ~ (Ea3)
where .
o) = -1-1:/06 sin(?)sin(;—t—)dz (E.14)
¢£2) = zic/obsin(p%)cos(g)dz (E.15)
o) = i—/:cos(¥) sin(g)da: (E.16)
g = zlo obcos(p%)cos(%)div (E.17)

The integrals in (E.14)-(E.17) are evaluated by using the integration for-
mulas [5, formulas 435, 445, and 465]

/sin(aa:)sin(bz) dz = % {sin(ia_—bb)a:) - sin(ia++bb):r)} (E.18)
/cos(ax)cos(ba:)dx _ _;_{sin(fza——bb)m) + sin(fla:bb)z)} (E.19)
/sin(az)cos(br)da: _ _% {cos(ia_—bb)z) + cos(ia:bb)x)} (E.20)
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If |a|=]b|, then the right-hand sides of (E.18)~(E.20) are to be replaced
by their limits as |b| approaches |'a|. Unfortunately, (E.20) is subject to
excessive roundoff error when either (a — b) or (a + b) is small. To avoid this
error, we use the trigonometric identity [5, formula 403.22]

cosz =1-— 2sin2(§) (E.21)
to recast (E.20) as
. sin? {eple}  sin® {edple}
/sm(aa:) cos(bzr)dz = s 2T b (E.22)

The “b” which appears in (E.18)~(E.20) and (E.22) is not to be confused
with that in (E.14)-(E.17).

Using (E.18), (E.19), and (E.22) to evaluate the integrals in (E.14)-
(E.17), we obtain

b |sin (pvr - ;—f’,) sin (pvr + ;—i)
¢£1) = 2_20.{ o f - or + % } (E.23)
b 21 -1 in2 (1 +
¢£2) — ;; {Sln (;r(p—ri% :o)) + sin (;r(}_):;z zo))} (E.24)
o[l 2) WD) g,
b |[sin (pvr -~ ;—t) sin (p7r + i—f—’;) .
o) = T { p— t— 5 (E.26)

If (pr £ ;—i) is zero, then the right-Lar.d sides of (E.23)-(E.26) are to be
replaced by their limits as (pr + ;—2—) approaches zero.
The integrals (4.100)-(4.103) are

¢ at+

¢ = [ 47 cos(ZEE—yag (E.27)
3 b
@ a+

47 = / " 67 sin( 244 (E.28)
b3 b
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¢ = /: ‘ ¢"3sin(m1rza+ )do (E.29)
M = /: ¢ cos( mw;f"" )dé (E.30)

where v is 1 or 2, @ is 1 or 2, y'* is given by (2.15), y** by (2.16), ¢3 by
(4.104), and ¢4 by (4.105). In (2.15) and (2.16), z, is given by (2.18) where
¢, is given by (1.2). In (E.27)-(E.30), ¢, ¢"2, ¢, and ¢* are given by
(E.10)-(E.13), respectively. Substitution of (E.10)-(E.13) into (E.27)-(E.30)
gives

¢aql = _(_1)‘7 {¢’(’1)¢a2‘72 - ¢£2)¢02‘71} (E31)

9772 = gP 4 Vg1 (E32)

$7% = —(=1)7 {17 — g g1} (E.33)

¢ = ¢£4)¢a2‘72 + ¢£3)¢a2"!1 (E.34)

where

e a+ v+

po1 = /m sin( " )sin(rio )dg (E.35)
4 a+ T+

¢0271 — As COS( mW;/ )Sin(rio )d¢ (E36)
b4 a+ T+

g2 = /‘#3 sin(mwz )cos(rio )do (E.37)
b4 a+ v+

¢ = /¢3 Cos(mrl_:/ )cos(ryzo \do (E.38)

Seeking to change the variable of integration in (E.35)—(E.38) from ¢ to
y°*, we differentiate (2.15) and (2.16) to obtain

dya+ ozl
dé = drg+’ (E.39)
y , a=2
zO

Substituting (4.104) and (4.105) into (2.15) and (2.16) and using (E.9), we
obtain

a+ — il a=1
y ]¢=¢3 - { 0, a=2 (E.40)
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0, a=1
a4 - ]
y ]¢=¢. - { b, a=2 (E.41)

Applying (E.39)-(E.41) to (E.35)~(E.38), we find that

b mr a+ ,.y'7+

a 1 : : a
™M = A sin( > ) sin( ~ )dy* (E.42)
1 gt mry°t | ry't
M = —/ cos( ) sin( )dy** (E.43)
z, Jo b z,
1 b mry*t ry’t
¢*1? = — [ sin( ) cos( )dy** (E.44)
z, Jo b z,
‘ 1 rb mry*t ry7t
a2v2 _ a+
é =2 b cos( 5 ) cos( z, Ydy (E.45)
if ¥ = a, then (E.42)~(E.45) can be expressed as
"M = g1, 4=« (E.46)
¢02'11 = ¢(3) y=a (E 47)
57 = 4 y=a (E.48)
¢02‘7’2 - ¢(4) Y= E 49)

where the ¢’s on the right-hand sides of (E.46)-(E.49) are given by (E.14)-
(E.17) with p replaced by m. If y # a, we add (2.16) to (2.15) in order to

obtain

Yt =rz, +b—yot, « #a (E.50)

Substituting (E.50) into (E.42)-(E.45) and using

sin (r7r + " —(b-y° )) (=)

o
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we obtain

¢ = (-1) {¢$§’ sin(z) — o) COS(;%)}, v#a  (ES3)
¢ = (—1) {¢$:) Sm(;:') — ¢® cos(;_z)} , T#a (E.54)
$o1? = (— 1)'{ 42 cos(_) + ¢,(1)sm(1§)} ¥ # a (E.55)
$ = (1) { (9 cos(_) + g0 Sln(.’l:)} y#a  (E.56)

where the ¢’s on the right-hand sides of (E.53)-(E.56) are given by (E.14)-
(E.17) with p replaced by m. These ¢’s can be calculated from (E.23)-(E.26).

The results obtained in Appendix E are stated as follows. The quantities
¢, ¢72, ¢, and ¢™ are given by (E.10)-(E.13) in which ¢{V), ¢, 63, and
¢{Y) are given by (E.23)-(E.26). The quantities =7, ™, $*3, and ¢*™ are
given by (E.31)-(E.34) in which ¢{!), ¢{2), ¢(3), and ¢{* are given by (E.23)-
(E.26). Moreover, ¢!, g2, ¢"‘1‘72 and ¢°‘2"2 are given by (E.46)-(E.48)
for v = a and by (E.53)-(E.56) for v # a.
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Appendix F

Evaluation of Integrals with
Respect to 2/ and =

In Appendix F, the integrals (4.77)-(4.88) are evaluated for ('—g <z < %)
Afterwards, the integrals (4.106)-(4.110) are evaluated. For (-5 < z < £),
. the integrals (4.77)~(4.88) are
2 +
= / e ~ro(L )cos(qﬂ.z )dz’ (F.1)
s c
52 5 § ’ q;rz’+ !
2% = / cosh (7”(L3 -z ) cos( )ydz (F.2)
z TE / 2
78 = [ e (Ls = ') gin( T2 )q (F.3)
- ¢
2
TE 5. grz't
2 = sinh (7” (L3 ~ 2 )) sin( . )dz (F.4)
where z't is given by (4.41). In (F.1) and (F.2), 6 is either ' or TE.
Substituting
2, =8, §=TM,TE (F5)

n (F.1)-(F.4), using [5, formulas 654.6 and 654.7], changing the variable of
integration from z’ to z'*, and finally replacing z'* by z, we obtain

= / {cos (8%,(L3 = z)) — jsin (85,(LF - J:))}cos(qzz)d:r (F.6)
= /z+ cos ﬂf,(L;{ - I)) cos(g-%z)dr (F.7)
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2 TE3 / {cos BTE(LT - )) — jsin (ﬂTE(L+ ))}sm( - )dI (F.8)

_ ] TE( 1+ qnz
= / sin (87E(Lf — 2)) sin( = " )dz (F.9)
where
=z 4 g (F.10)
L; = L3+§ (F.11)
The sum of (F.6) and (F.7) is
c Tz
2 4 2% = A cos (Bf,(L;' - :z:)) cos(-q-c—)da:
AN Tz
—j /0 sin (ﬂf,(L;‘ - :v)) cos(-qT)dz: _ (F.12)
The difference between (F.8) and (F.9) is
ZTE T —/ cos ﬂ,_T,E(L+ z)) sm(———)
_ TE([+ _ qrz
,/ sin (87E (L3 — z)) sin(Z - Z\dz (F.13)

Since the right-hand side of (F.12) is simpler than that of (F.6), we will
~btain z%! by evaluating (2°! + z°?) and 2% and by setting

261 = (261 + 262) _ 262 (Fl-l)

Similarly, we will obtain z7E% by evaluating (2753 — z7%4) and z7£% and by
setting

2TE3 = (,TE3 _ ;TE4) 4 ,TE4 (F.13)

The integrals in (F.7), (F.12), (F.9), and (F.13) are of the forms {12,
formulas 2.532]

sin({@ —¢)z +b—~d)
2(a —c)
sin((a + ¢)z + b+ d)
- 2(a + ¢)

/sin(ax + b)sin(cz + d)dr =

(F.16)
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) cos{(a —c)z + b—d)
/sm(a:t + b) cos(cz + d)dz = — 2a—c)

cos((a + ¢)z + b+ d)
- 2(a +¢)

sin((a — ¢}z + b—d)
2(a —¢)

sin{(a + ¢)z + b + d)
2(a+¢)

In (F.16)-(F.18), a, b, and c are arbitrary constants not to be confused with

the specific dimensions a, b, and ¢ in Fig. 1.1. If a = %¢, then the right-hand

sides of (F.16)-(F.18) are to be replaced by their limits as a approaches *e.

Using (F.16)-(F.18) to evaluate the integrals in (F.7), (F.12), (F.9), and
(F.13), we obtain

o2 _ Sin(@"c+ B7,LY) ~ sin(¢""2* + B, LF)

(F.17)

/c_os(a:r + b)cos(cz + d)dz =

(F.18)

. 2¢%- )
Jsin(g®* e — B4 L3) - sin(q™* =+ — B 1Y) (F.19)
245+ '
A sin(¢®~c + B5,LT) — je 3B, L3 +jcos(¢’~z* + B, LY)
= =
+sm( ¢te—B5,LT) + je ~3B%,L3 _ jcos(g®tzt — 5f,L;),F 20)
2q6+ \ . -
res _ _Sin(q75 c+ BIFLY) —sin(¢TF 2t + BIFLY)
k4 = =) 9qTE-
sin(qTE*c — BTELY) —sin(qTE¥2* — BTELY) (F.21)
J 2¢TE+ -
TE3 _TE4 _ jsin(¢TE-c + ﬂTEL+) +e Jﬂ” 3 - cos(qT Bzt + 3TELT)
z -2 = 2qTE-
o TE r +
poasin(@ e = BEELY) & emIPm LS —cos(qTRt 2t - BIFLY) oy
2qTE+ (F.2
where
¢~ =L _p §=TMTE (F.23)
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+ B, 6=TM,TE (F.24)

Substituting (F.19) and (F 20) into (F.14) and using (E.21), we arrive at

2

26 -
51 e—38.. 13 {sin(q‘s'z’“) — 25 sin?(£=2)
21 ==

2 q*-
. . 54 5+
yoin(e") :fj sin’(5) } (F.25)

Using [5, formulas 401.01 and 401.02] to expand the trigonometric functions
in (F.19) and applying (E.21), we obtain
¢c
[{ {sm(q ~¢) — sin(¢’ z+)} cos(B%,LT) — 2{sin’(*— 5 )
5—

—sinf (o sin(,1) }/20)] + [{ {sintat*e) — sinieP*=)}
cos(B,L3) + 2(sin*(59) —sin¥( Co ) sin(@, L) } /20 (F.26)

If ¢* = 0, then the right-ha.nd sides of (F.25) and (F.26) are to be replaced by
their limits as ¢°* approaches zero. If 3%, is purely real, expressions (F.25)
and (F.26) are suitable for calculating (4.74), (4.75), (4.89), and (4.90) at
particular values of z because (F.25) and (F.26) are not subject to excessive
roundoff error when |¢°%| is small.

If B¢, is purely imaginary, we use (F.5) to obtain

= = (F.27)

Substituting (F.27) into (F.25) and using (E.21) to dispose of the sin® terms.
we arrive at

o je=1ml3 {e-jq5'2+ -1, 1= ejq“f} (F28)
2 ¢ ¢+ N
where
¢ =T+, (F.29)
=L, (F.30)




Expression (F.28) is recast as

o _f ALt amzt gr . grzt 5 _—__6-7"L; F.3

which becomes

§ 6 o+ 5
2% = {27f,e§7~2+ sinh(7"'22 ) + Trs?

] L+
ar . o gnzt. | o o, gmzt e Trsls 0
(—c sin( - ) = 24, sin?( o ))} (& T ) (F.32)

Substituting (F.27), (F.29), and (F.30) into (F.19) and using [5, formula
408.16), we find that

+ qm +
2 {7f, cos( 2 ) sinh (7f,(L+ +)) ~ T n( ) cosh

(7f:(L3+ )) - ( 1) 7" sinh (7ra(L+ - C) }/{ + (71-3)2} (F33)

If both 2= and «, are zero, then the right-hand sides of (F.32) and (F.33) are
to be replaced by their limits as 4§, approaches zero while g is held at zero.
If 42, is purely real, expressions (F.32) and (F.33) are suitable for calculating
(4.74), (4.75), (4.89), and (4.90) at particular values of z because (F.32) and
(F.33) are not subject to excessive roundoff error when ¢ is zero and +, is
small.

Substituting (F.21) and (F.22) into (F.15) and using (E.21), we arrive at

2TEr+ ¢ . o _
e—JB:y L3 sin(g7E-z%) — 25 sxnz(g——” z+)
TE3 _ J 2

2 qTE—
sin(q7E+2%) + 25 sin¥( 97—?’—+) _
- prox (F.34)

Using [5, formulas 401.01 and 401.02] to expand the trigonometric functions
in (F.21) and applying (E.21), we obtain

ZTE = [{ -7 {sin(qTE‘c) —sin(qTE~z )}cos(BTEL+)
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TE - -
q Z C)_SinZ(qTE }sm ,BTEL+ }/(QQTE ]

+[ {5 {sin(+e) - sin(a™5* %)} cos(a725)
qTE’+
)} sin(BZELY) }/(2qTE+)] (F.35)

If ¢E* = 0, then the right-hand sides of (F.34) and (F.35) are to be replaced
by their limits as ¢TE* approaches zero. If BT is purely real, expressions
(F.34) and (F.35) are suitable for calculating (4.74), (4.75), (4.89), and (4.90)
at particular values of z because (F.34) and F.o0) are not subject to excessive
roundoff error when |¢7 £%| is small.

If BTE is purely imaginary, we use (F.5) to obtain
BrE = —jofF (F.36)

Substituting (F.36) into (F.34) and using (E.21) to dispose of the sin? terms,
we arrive at

+2; {sin?(

TE+
+2j{sin2(q—2—c) — sin?

E . 7,EL+ 1_e~quE—z+ l—eJqTE+ +
2TE3 = + (F.37)
D) TE- JTE+
where _
- Ll .
5 = T jalE (F.38)
s
¢ = gc_ - jnE (F.39)
Expression (F.37) is recast as
TE ,+ nz*t T nzt
2= e (7,, n(T) = L cos(? ))
¢ ¢ ¢
TE[+
—RELY
q7r TS
+= — (F.40)
c }(9:) T+ (E)
which, in view of (E.21), becomes
TE ,+ xzt 2qr rz*t
Vrs 2 q T . 2.9
{e (7,, sin( . )+ . sin®( 5 ))
TE[+
TE + TE ,+ 7u L3
_2q_7re§'7ra slnh(‘yr" : )} f FES (F.41)
c 2 (L)% + ()7
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Substituting (F.36), (F.38), and (F.39) into (F.21) and using [5, formula

408.16), we find that

= {7 sin(

+1- cos(

Cosh(‘rr, (L3 - 2*))

~+)sinh(7,, (L - 2t))
-%( 1)? sinh(vZE(LE — ¢) }/{ 7y

(EER )} (Fa2)

If ¢ = 0, then, as evident from (F.3) and (F.4), the right-hand sides of (F.41)
and (F.42) are to be set equal to zero, regardless of the value of yZE. With
this reservation, expressions (F.41) and (F.42) are suitable for calculating

(4.74), (4.75), (4.89), and (4.90) when 1ZF
The integrals (4.106)-(4.110) are

Q) il
2V = /—§ {z cosh(yZM(Ls - z))

™
4o TM2,—~ 1 M(Ls - z)} cos(2Z

Cc

£
2(3) = /25 {zTE1 cosh(vFE(Ls - 2))
2

_TE(r  _ nw
+ZTE2€ 77‘8 (L3 Z) } COS( d
C

23 = /1 { - TE sinh( 7,, (L3 —-z2))
2

TE [ T
' 7522—77'3 ( 3—2)}Sin(n
C

29 = / {75 cosh(+7E(Ls - 2))

is purely real.

+

+

~+
TE“ —71‘3 (L3 - )}cos(nré )dz
C

(8) _/ { TES _ B ginh(7TE(Ls — 2))

-+
_21546—7,, E(Ly - z)} sin(nm
C

)dz
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where z*+ and 27F% are given by (F.10) and (4.92), respectively. The quanti-
ties zTM1 ;TM2 ,TE1 ,TE2 ,TE3 and zTE“ are given by (F. 1) (F.4). Chang-
mg the va.nable of 1ntegrat10n from z to z*, substituting j3%™ and jB%F for
vIM and ~4ZF in accordance with (F.5), and using [5, formulas 654.6 and
654.7], we recast (F.43)-(F.47) as

2 = /° {(ZTMI + 2TM2) cog BTM _ ,TM2 i ﬂTM} cos(mrz+
0

23 = /C{ LTE1 4 zrm) cos BTE — jTE2gin ﬂTE} cos(mrcz*'

23 = / { TE? og GTE _ j(;TE 4 ,TE?2) smﬂTE} sin(n22+)dz+ (F.50)

2 = /0 {(ZTE3 — zTE4) cos BTE 4 j,TE4 sinﬂTE} cos(nW:+ )dz* (F.51)

¢ : . . nmzt
S5 = / {ZTES — 2TBA cog GTE _ j(,TES _ ,TE4)gip BTE} sin dz*
0 C

(F.52)

)dz*(F.48)

)dzt  (F.49)

where
B =p(LF~2%), &é=TE,TM (F.53)
in which L¥ is given by (F.11).
Factors appearing in (F.48)-(F.52) are [5, formulas 401.05, 401.06, and
401.07)

+

sin 3 sin(mrcZ ) = 1{ cos(n®*zt — B8 LT) — cos(n®~ 2% + Jf,L*')} (F.54)
+

cos 3¢ sin(mrz ) = 11 sin(n®*z* — 85, L) + sin(n®" 2t + L*’)} (F.535)

o

c

+ ]
sin 3% cos(mrz ) = {sm (n®~z* + 3% LT — sin(n®tzt — JSSL;’)} (F.56)

cos 3° cos(nWCz+) = 19 cos(n®~zt + B LT) + cos(n®*:t Bf,Lg,”)} (F.57)
where
'~ = % -y (F.58)
nt*t =25 4 (F.59)




in which é is either TE or TM. Substituting (F.19), (F.20), (F.56), and
(F.57) into (F.48) and (F.49), we obtain

(V) = ,T™ (F.60)
2 = ;TE (F.61)

- 6
2 = [{(sin(efc + 95,09 - oIBR8 4 28,) = b - 25,)
sinqfe + BLE) + 5 + 2 ) =i = ) (45 )]
. 6 +
+[{(sintat*e - 1) + 5emIBRIENGE 4 28) - (e - 2£,)
* Sin(q6+c - :BSQL;’) + j(zf—,a+ - zg-,c+) - j(zf+,a+ + zg+,c+)}/_(4q6+ )] (F62)
in which
4 = / sin(n®z* — (al)82,L})dz* (F.63)
= / cos(n®®z* — (al)%,L¥)dz* (F.64)
2, = / sin(n®z* — (a1)5f,L+)sm(q6’ * _(y1)8%,LF)d=* (F.65)
_/ cos(n®@z* — (al)88, LT) cos(4%7 2+ — (v1)8%,L3)d=* (F.66)
Here, al = +1 when a = +, and al = —1 when a = —. The quantity «1

is similarly defined. Substitution of (F.19), (F.20), (F.54), and (F.53) inwo
(F.50) yields

23 = [{( 2T 4+ 2TE)sin(q"E e+ BTELY) - (5 sin(¢TE~c + 3IFLY)
_:aTEr+
e IO L) (TE _LTE) _(TE, —2TE )~ (2B, 475 ) FagTE ]

+[{(2,Tf + 2TE) sin(qTE%c — BTELY) + (—jsin(¢T5*+c — BTELY)

_igTE[+
+e ]’3" L3 )(ZZ;E - ZZ-E) - (z ana+ + ZZ+Ec+) ( <y, a+ Sem b+ }/ TE+ ]
(F.67)
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Evaluating the integrals in (F.63) and (F.64), we obtain

s _ cos(B7,L3) — cos(n®*c — (al)B7,LT)

‘= o (F.63)
fmindaa S5 1+ : s 1+
z:a =_51n(n ¢ (al)ﬂnfl?a) + (al) Sln( rsLS ) (FGg)

If n% is zero, then the right-hand sides of (F.68) and (F.69) are to be replaced
by their limits as n® approaches zero. Application of the integration formula
(F.16) to (F.65) gives

s sin(n® = ¢)c+ (71 ~ al)8%,LF) — sin((11 - al)B5, L)

Fram = 2(nf> — ¢%7)
_sin((n® + ¢*)c — (al +1)B8,L3) + sin((el ++1)57,LF) (F.70)
2(nfe + ¢%) '
Application of the integration formula (F.18) to (F.66) gives
5 - sn((n® = ¢)c+ (11 - al)B,L3) — sin((7] - @1)B,,L3)
e 2 — ¢)
sin((n®* + ¢*")c — (el +71)B, L) +sin((al +~1)57,L3)
+ (F.71)
2(nf + ¢7)

The sum of (F.70) and (F.71) is

_ sin((n®* = ¢)c + (y1 — al)B%,L3) — sin((y] - al)3%,L3)

2 + Zeaey = (n%a — ¢™)
(F.72)
The difference between (F.70) and (F.71) is
6 g o _sin((n™ +q7)e—(al +91)B;,L3) +sin((al +71)3;,L3)
e e (n +¢%)
(F.73)
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Substitution of (F.68), (F.69), (F.72), and (F.73) into (F.62) and (F.67)
gives

S = ._7_6 —j8 LT
4
.{(e‘J" ¢ = )sin(¢*~c + B5,L3) — sin(n®~c + B%,L}) + sin(B5,L3)
né-¢f-
.
L= eI™ ") sin(¢~c + §,L3) — sin(n®*c — B8, L}) — sin(8%, L)
né+ go-
(e‘-’" "€ _1)sin(¢ftc— B,L¥) + sin(n®~c + 88,LT) — sin(B8, L})
. §
La-en o) sin(qf*c — B8, L) + sin(nf*c — A5, L) + sin(, L+)}
o+ g+ _
43 {Sln (n°- - 95")0) sin((n™* + ¢*~)e)
(i o T )7
sin((n- + q“')c _sin((n®* — ¢*+)c) ' .
- (ns- +q6+) o+ (ns+ — ¢o+)gft } (F.74)

L = 1, —iB%FLE
4

« TE~
{(1 — e I% " )sin(qTE-c+ BTELY) + sin(nTB-c + BLELY) — sin(BIELY)
’ nTE- 4TE-

- TE.
(1-¢I7 +c) sin(¢?E~c + BTEL}) — sin(nTE+c — BTELY) - sin(BFELY)

nTE+qTE-
- TE-
+(1-—e‘3n %) sin(q78*c — BTELY) — sin(nTB-c 4+ BEELT) + sin(BTELY)
nTE-gTE+
. TE+
+(1 - ©sin(¢TEte — BTELY) + sin(nTE*c — BTELY) +sin(BLELY) }
nTE+qTE+
1{ sin(( ~q7B7)c) = sin((nTEt 4 ¢7E-)c)
- (nTE- - qTE—)qTE- (nTE+ 4 qTE-)qTE-

sin((n TE- qTE+) ) _ sm(( TE+ _ qTE"‘)c)}
(nTE- + qTE+)qTE+ (nTE+ - qTE+)qTE+

——~—~
"3
-1
[\5] )
=
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The term {sin((n®~ - ¢~)c)}/{(n%~ — 6')q5‘} in (F.74) becomes infinite
as ¢° a.pproaches zero. We subtract {sin(n®~c)}/(n®"¢*~) from this term to
render it finite as ¢°~ approaches zero. To maintain equality in (F.74), we add
an appropriate quantity to the term whose denominator is n~¢®~. Similarly
treating the ill-behaved terms whose denominators are (n* +¢°~)¢°~, (n® +
)¢+, and (n®* —¢#+)¢®* in (F.74), we arrive, with the help of [5, formulas
401.01 and 401.02], at

2 = i(D‘Gs + 2 F¥) (F.76)
where
. 6 . b+
—Jn C‘-l 1__]71 c _iaf T+
D= (e no- + :,6+ )e 16, Ls (F.77)
g _ Sinldmc + BLIT) — sin(4L3)
q6_
3 +a 6L+ 3 6L+
+31n(q6 c 6nq63+) + sxn(?n 3) (F78)
Ff = ~f(n’~¢,—¢*"c) + f(n’*c,¢’¢)
—f(n"c,q™*c) + f(n®*e, —¢*) (F.79)
in which
1 (sin(z+y) sinz
f(zay)=; T4y - T (FSO)

If we divided the right-hand side of (F.74) by j, changed the signs of the
terms whose decominators are n’~¢%~, (n~ — ¢*~)¢*~, n®=¢’*, and (n®~ +
¢*)¢’*, and then replaced § by TE, we would have the right-hand side of

(F.75). Therefore, we can, from inspection of (F.76)—(F.80), write

L@ = i( DAGE) 4 2FE) (F.81)
where
. TE- - TE+
1 - e—]‘n C 1 - e]n [ -ATE 1+
3 _ -6 L 3
b™ = ( TE- R )e 187k (F.82)
G® = GTE (F.83)
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F® = f(nTB=¢c,—qTE~¢) 4+ f(nTE*¢,¢"E~¢)
+f(nTE'c, qTE+c) + f(nTE+c, _qTE+c) (F84)

In (F.83), GTE is given by (F.78) with é replaced by TE.

In this paragraph and the next two paragraphs, we obtain formulas that
are, when [, is purely real, suitable for calculating D®, D®®), G¢, and the f’s
in (F.79) and (F.84). Concerned about roundoff error when |n®*| is small,
we use (E.21) to express D? of (F.77) and D® of (F.82) as

) n®=¢ n®tc
S —jsin(nb-¢) — 25in2(—2—) —jsin(n®*c) + 25in2(—2—) i Lt
D ={ no- + no+ }e e
(F.85)
e TE- .o, nTE=c .. TE ., nTE+c
Jsin(n®®~¢) + 2sin*( ) —jsin(n®®*c) + 2sin®(——)
nIE- nTE+
. aTE 1+
.e—J:Brs L3 (F86)

If n®% = 0, then the 1/n®* terms in (F.85) and (F.86) must be replaced by
their limits as n’* approaches zero. The right-hand sides of (F.85) and (F.86)
were purposely expressed so that the values of these limits are obvious.

Concerned about roundoff error when |¢°*| is small, we use [5, formulas
401.01 and 401.02] and (E.21) to express G° of (F.78) as

5 —
,  sin(g"¢) cos(B, LY) — 2sin? (1=) sin( 45, L3)

qs..
e
sin(g** ) cos(85, L) + 2sin? (L5 sin(8¢, L3)
2 -
+ pr (F.87)

If ¢°% = 0, then the right-hand side of (F.87) must be replaced by its limit
as ¢’* approaches zero.
Care must also be taken to avoid excessive roundoff error in the calcula-

tion of f(z,y) of (F.80). From (F.23), (F.24), (F.58), and (F.59), we have

(n*~ = ¢ )e=(n-g)r (F.88)
(n* + ¢ )e=(n+9g)r (F.89)
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so that, for every f that appears in (F.79) and (F.84),
z+y=(nxqg)r (F.92)
Equation (F.92) reduces (F.80) to

sinz

e =22 sty (F.93)
—sin

f(z,y) = y__y{__y_, t+y=0 (F.94)

Expression (F.94) was obtained by ta.king the limit of the right-hand side of
(F.80) as z +y approaches zero. If |y| < %, we use (F.92) to recast (F.93) as

flz,y) =

(—=1)"*9siny { T+y#0
=) smy - F.95
yz lyl < 3 (E.95)

If |y|] £ 0.1, we replace the right-hand side of (F.94) by the series approxi-
mation [5, formula 415.01]
3,5
y_ P ¥ [z+y=0
fay=g-5+7 { ly| <0.1 (F.96)

Collecting the results (F.93)-(F.96), we have

( _sm:z { z+y#0
yz ' lyl > %

(=1)"*siny "*"smy { T+y#0
lyl <2

flz,y) =3 2 (F.97)
y —siny T4y

y2 ’ { y|>01

z+y=0

ly| <0.1

where (n £ ¢) is the integer that satisfies (F.92).
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In this paragraph and the next paragraph, we obtain formulas that are,
when S¢, is purely imaginary, suitable for calculating D®, D® G%, F*, and
F®), We arrive at these formulas by substituting (F.27), (F.29), (F.30), and

nfs = = 4, (F.98)
nmw .
nt = — =, (F.99)

into (F.77), (F.82), (F.78), (F.79), and (F.84). Substitution of (F.27), (F.98),
and (F.99) into (F.77) gives

§
458, Pe"*uLE -§) sinh( 127y

5 _ 2
D =- (mm )2 £ (7.0 , Tneven (F.100)

. 5 s (L¥_s 7f,c
4545, e~ rrelLs - 5) cosh(-—z—-)

s )
D’ = ("7 + (o) , nodd (F.101)

If both n and 4%, are zero, then the right-hand side of (F.100) must be
replaced by its limit as 7%, approaches zero while n is held at zero. This limit
is —2jc. Substitution of (F.27), (F.98), and (F.99) into (F.82) gives
' TE
. dnwc e~ (LE-5) sinh(7'§ c)
D¥ = — F.102
(nn)? £ (71E0)? , neven (F.102)
TE(r+ ‘7TEC
dnmc e~ (L3-2) cosh( ”L )
)yt GEER

If both » and 7%F are zero, then the right-hand side of (F.102) must be
replaced by its limit as vZF approaches zero while n is held at zero. This
limit is zero. Substitution of (F.27), (F.29), and (F.30) into (F.78) and use
of [5, formula 408.16] lead to

2+8 2 {sinh(y4,L3) — (=1)sinh(44,(LT — ¢
oo 2o {sinh(17,23) - ( ) sinh(af, (L3 N} (F.100)
(gm)? + (77,¢)?
If both q and v, are zero, then the right-hand side of (F.104) must be replaced
by its limit as 4%, approaches zero while ¢ is held at zero. This limit is 2c.

DB —

nodd  (F.103)
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Substituting (F.80), (F.29), (F.30), (F.98), and (F.99) into (F.79), using
[5, formula 408.16], and assuming that n is precisely an integer, we obtain

5o e {Sin((n +g)r) _ sin((n — g)7)
()2 + (15,0 (n+g)m (n—g)r
_295,e(=1)" smh(*rn.C)
T TR } (F.105)

Similarly, (F.84) yields

F3

sin((n +¢)7)  sin((n — g)7)
(gm)? + (% 56)2{ ( (n+q)r (n—g)x )

2717 C( 1) Sinh(7rs C) \
R

If ¢ = £n, then the right-hand sides of (F.105) and (F.106) must be replaced
by their limits as q approaches n while n is held at its integer value. Thus,
assuming that both ¢ and n are non-negative integers, forms suitable for
calculation are:

P = s e T kT 1% 107

= (qu)zjr(’v,,c)z {27'222)128(2?5)75’ - 1}’ g=n#0  (F.108)
e LAt (F.109)
= {7:%'6 + (i O )5}’ { s (F.110)
PO = o T Coasy 1FT i
o= (gm)? ir(r;wc) {27 (ni)zi(s;r;};(c; 9 _ 1}, g=n#0 (F.112)
F& =0, g=n=0 ' (F.113)

If g=0o0rn=0andif v), = 0, then (F.107) and (F.111) must be replaced
by their limits as v, approaches zero. The series expansion [5, formula 657.1]
was used to obtain (F.110).
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Comparing (F.21) with (F.19), we note that
2TE4 = _43TE2 (F.114)

where 77E2 is the right-hand side of (F.21) with the sign of the 1/¢°* term
changed and with 6 replaced by TE. Comparing (F.22) with (F.20), we find
that

ZTE3 - ZTE4 = j(ETEI + ETE2) (F115)

where (375! 4 57B2) i5 the riéht-ha.nd side of (F.20) with the sign of the 1/¢%*+
term changed and with 6 replaced by TE. Substituting (F.114) and (F.115)
into (F.51) and (F.52) and comparing with (F.49) and (F.50), we obtain

) = j3? (F.116)

c +
2 = j30 + [7275 gin(PT )zt (F.117)
A .

where (2 is the right-hand side of (F.49) with the signs of the 1/qTE* terms
changed. Similarly, (3 is the right-hand side of (F.50) with the signs of the
1/¢T%* terms changed. According to (F.61), z{?) is given by the right-hand
side of (F.76) with § replaced by TE.

Substituting (F.76) into (F.116) and noting that the integrations that
were performed in obtaining (F.76) from (F.49) did not introduce any 1/¢°*
factors in addition to those in (F.19) and (F.20), we obtain

£ = —%(DTEG(‘) + 2 F@) (F.118)

where DTE is given by (F.77) with 6 replaced by TE, G*) is given by the
right-hand side of (F.78) with the sign of the 1/¢%* term changed and with §
replaced by TE, and F*) is given by the right-hand side of (F.79) with the
signs of the 1/¢’* terms changed and with & replaced by TE. Substituting
(4.92) and (F.81) into (F.117), noting that the integrations that were per-
formed in obtaining (F.81) from (F.50) did not introduce any 1/¢7E* factors
in addition to those in (F.19) and (F.20), and using (F.5), we obtain
gIEIE
2 = ]"(ﬂ@s?‘ + (DG 4 &) (F.119)
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where D®) is given by (F.82), G is the same as in (F.118), and F®) is given
by the right-hand side of (F.84) with the signs of the 1/¢7+ terms changed.
Moreover,

+
-—/ sm( \sm(mrz )dz* (F.120)

Assuming that both n and q are non-negatwe integers, we have

..T.E={ p n=q#0 (F.121)

z i
0, otherwise

If ATE is purely real, then DTZ and D® are suitably given by (F.85)
and (F.86). Assuming that STF is purely real, we proceed to obtain suitable
expressions for G@, F4) and F®). From (F.87), we have

E~
sin(gTE~¢) cos(BEELT) — 2sin?( ¢ c) sin(BLELY)
GHW =
qTE-
« (oTE+ TE [+ ‘IT & TEp+
sin(qTE+c) cos(BTELY) + 2sin?( )sm(ﬂ L) -
- g (F.122)
From (F.79) and (F.84), we have
F(Q) = _f(nTE_cv "'qTE_c) + f("'TE+Cs qTE-C)
+f(nTE=c, TE*¢) ~ f(nTB*c, —TE+c)  (F.123)
F® = f(nT ¢, —~q"57¢) + f(nT"*¢, ¢T57¢)
_f(nTE— c, qTE+C) — f(nTE+c, —qTE+c) (F.124)
where f(:z y) is given by (F.97).
If ATE is purely imaginary, we point out that DTE is suitably glven by

(F. 100) and (F.101) with § replaced by TE and that D® is suitably given
by (F.102) and (F.103). Assuming that 8%F is purely imaginary, we proceed
to obtain a suitable expression for G). From (F.78), we have
W — sin(¢TE-c + BTELY) —sin(BTELY)
qTE-
sin(¢TE*c — BTELY) +sin(BLFLY)
- qTE+

(F.125)
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Substitution of (F.27), (F.29), and (F.30) into (F.125) leads to

j2rqc {sinh(yZELT) — (=1)?sinh(vTE(LT - ¢))
G(4) = 3 3
(q7)* + (45,¢)?

If both ¢ and vZF are zero, then the right-hand side of (F.126) must be
replaced by its limit as v7Z approaches zero while g is held at zero. This
limit is zero.

In this paragraph, formulas are obtained for calculating F* and F(
when B7F is purely imaginary. Substituting (F.29), (F.30), (F.98), and (F.99)
into (F.123), using [5, formula 408.16), and assuming that n is precisely an
integer, we obtain

(F.126)

F) - 2rq {sin((n +q)r)  sin((n — q)7)
(qm)* + (7 Fe) b (n+g)m (n~gq)r
_297F¢(=1)"sinh(y{F¢) }
(nm)2 4 (yTEc)?

(F.127)

Similarly, (F.124) yields

2 _ e (sin((n+q)r) sin((n — q)7)
(qm)? + (v,T,Ec)z{ el (n+q)r (n-gr )
272ng(—1)" sinh(4ZF¢)
(nm)? + (vZEc)?

If ¢ = £n, then the right-hand sides of (F.127) and (F.128) must be replaced
by their limits as ¢ 2pproaches £n while n is held at its integer value. Thus,
assuming that both ¢ and n are non-negative integers, forms suitable for
calculation are:

FG® =

}(F.12)

4rqyTEc(-1)" sinh(y7Fc)

@ _ _ .
B0 = @ + GaEem) (e + GAF) 47" (F.129)
) = 27 29ZEc(~1)"sinh(vZc)]
i = (gm)? + (7,?;Ec)2{ - (n7)2 + (1ZEc)? }s q=n#0 (F.130)
a2 i\mo:i v TE
F® = 4j7°ng(—1)" sinh(~,, c), i4n 1)

(gm)? + (vFEc)?
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2 2(nm)*(—1)"sinh(y%Ec)

®) = TE rs _

F® = (qw)z + (73;56)2 {7r, c+ (n7r)2 n (73;5.6)2 }, g=n 76 0
(F.133)

Ifg=0o0rn =0 and if y7F = 0, then the right-hand side of (F.129) must
be replaced by its limit as 4ZF approaches zero. If n = 0 and 7%F = 0, then
the right-hand side of (F.132) must be replaced by zero.

The results obtained in Appendix F are cataloged in Table F.1. In Ta-
ble F.1, the quantity in the first column is given by the equation whose
number appears in the second column when the nature of either vyZ¥ or 47F
is indicated in the third column.
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Table F.1: Results in Appendix F

Quantity Equation Number Circumstance

M (F.25) I M purely imaginary

z;:;: (F.26) 7,;:: purely imaginary

z (F.32) v.," purely real

z' M2 (F.33) 2™ purely real

221 (F.25) L E purely imaginary

2152 (F.26) v1E purely imaginary

213 (F.34) ~LE purely imaginary

21EA (F.35) 712 purely iLiaginary

z121 (F.32) 72 F purely real

2722 (F.33) 71 E purely real

2753 (F.41) 412 purely real

Pak (F.42) ~L* purely real

2(1) (F.60),(F.76),(F.85),(F.87), |2V purely imaginary

(F.79),(F.97)

z0) (F.60),(F.76),(F.100),(F.101), |+ Mpurely real
(F.104),(F.107)-(F.110)

z(3) (F.GO),((F.TG)),(F.SS)),(F.ST), ~%% purely imaginary

F.79),(F.97
zG) (F.81),(F.86),(F.83), ~IZ purely imaginary
(F.87),(F.84),(F.97)
z4) (F.118),(F.85),(F.122), v}E purely imaginary
(F.123),(F.97)

25 (F.119),(F.121),(F.86), ~v!E purely imaginary
(F.122) (F.124) (F.97)

2(2) (F.60),(F.76),(F.100),(F.101), | ~:.”purely real
(F.104),(F.107)~(F.110)

z43) (F.81),(F.102),(F.103),(F.83) |+, purely real
(F.104),(F.111)~(F.113)

z(4 (F.118),(F.100),(F.101), 7XE purely real
(F.126) (F.129)-(F.131)

2(3) (F.119),(F.121),(F.102), vLF purely real

(F.103),(F.126),(F.132)~(F.134)
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