
REPORT DOCUMENTTION PAGE
%0 at =tt wwa 1 = WW I bMW PW MOM Mbq gg em m y*"- ~btta'3 u.s~ni *a ~ Rev NW Iw' m t4m.121 fm 0m ZU.

I
OW

iAyn #A Oft d M ~~ i umd h .~ y~ c

M1W FILE COP'Y J Final 09 Jan 1990 to 09 Jan 1991
4.TITLEANDM.TITL.E Ada Compiter Validation Summary Report: STERIA, LFUDN ISR

Ent Alsy 01, Version 4.2, CETIA UNIGRAPH 6000 (Host) to Motorola

n C618020 In PMF (Target), 900109A1.10239

q*AFNOR, Paris, FRANCE OTIC
N in____ ___ ___ ___ ___ ___

N -. EWOSN4GORGAAMATIN E(M~AMQAORE5S(ES) JUL 2 5 1990 &. PIERFVMW OAQAMTMO

Tour Europe, Cedex 7 fl AVF-VSR-AFNOR-89 -16

SFRANCE E
0. SPONSOR.. -NIOR AGENCY NAME(S) ANDADORESS(S) 10t. 3pa"NSO G&ONTrOhI AGENCY

Ada Joint Program Office REPORT NMBER
United States-Department of Defense
Washington, D.C. 20301-3081

11. SUPPLEMENTARY NOTES

12L DISTRJOmtAvALABLi~Y sTnaTwE 12b. OSTRIWTON COCE

Approved for public release; distribution unlimited.

13. ABSTRACT (Muw.m2O w*)

STERIA, Ent Alsy_01, Version 4.2, Paris, France, CETIA tNIGRAPH 6000 under Unigraph/X,

release 3.074 (Host) to Motorola MC68020 in PMF with ARTK, Version 4.2 (bare machine),
(Target), ACVC 1.10.

14.8UILIECTIEWMS Ada programming language, Ada Compiler Validation 5M EaGS
Summary Report, Ada Compiler Validation Capability, Validation
Testing, Ada Validation Office, Ada Validation Facility, ANSI/MIL- is.PPJCEooOE
STD-1R1M,1 Ada Joint Program Office

17. 3RCURr1Y GLASSFEATQN 16. SECURITY C1 AS OATN 9. REURITY O.AS5FEATO 20. LIMITATON OPAISSRACT
OF RPORT ITMEOASRC
UNCLASSIFIED IUNCLAS~tfED IUNCLSSIFIED

NSN 7IdO.I..O.0 Pmsuuisrm: , v.2-

AVF Control Number: AVF-VSR-AFNOR-89-16

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 900l09A1.10239
STERIA

Ent -Alsy_01, Version 4.2
CETIA UNIGRAPH 6000 Host and Motorola MC68020 in PMF Target

Completion of On-Site Testing:
9 January 1990

Prepared By:
AFNOR

Tour Europe Ac~~
Cedex 7

F-92049 Paris la Defense j NTS CRAf
DVLC TA

Prepared For: B
Ada Joint Program Office -1L:

United States Department of Defense Ltbt~n

Washington DC 20301-3081 viji"yCoe
Av3I~i- ---------

Aj '~

Ada Compiler Validation Summary Report:

Compiler Name: EntAlsy_01, Version 4.2

Certificate Number: 900109A1.10239

Host: CETIA UNIGRAPH 6000 under Unigraph/X release 3.0.4

Target: Motorola MC68020 in PMF with ARTK, Version 4.2 (bare machine)

Testing Completed 9 January 1990 Using ACVC 1.10

This report has been reviewed and is approved.

AFNOR
Fabrice Garnier de Labareyre
Tour Europe
Cedex 7
F-92049 Paris la DMfense

Ada Validation/Organization

Director, Computer & Software Engineering Division
Institute for Defense Analyses
Alexandria VA 22311

I aJointFPr grm Office
Dr. John Solomond
Director
Department of Defense
Washington DC 20301

2 AVF-VSR-AFNOR-89-16

TA-.E OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 4
1.2 USE OF THIS VALIDATION SUMMARY REPORT 5
1.3 REFERENCES ... 6
1.4 DEFINITION OF TERMS 6
1.5 ACVC TEST CLASSES 7

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED. 9
2.2 IMPLEMENTATION CHARACTERISTICS 9

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS14
3.2 SUMMARY OF TEST RESULTS BY CLASS 14
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 14
3.4 WITHDRAWN TESTS 15
3.5 INAPPLICABLE TESTS 15
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS 18
3.7 ADDITIONAL TESTING INFORMATION 19
3.7.1 Prevalidation 19
3.7.2 Test Method 19
3.7.3 Test Site20

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B TEST PARAMETERS

APPEIDIX C WITHDRAWN TESTS

APPENDIX D APPENDIX F OF THE Ada STANDARD

3 AVF-VSR-AFNOR-89-16

INTRODUCTION

CHAPTER 1

INTRODUCTION

This Validation Summary Report -(#SR) describes the extent to which a specific
Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A. This report
explains all technical terms used within it and thoroughly reports the results
of testing this compiler using the Ada Compiler Validation Capability,(ACVC). An
Ada compiler must be implemented according to the Ada Standard, and any
implementation-dependent features must conform to the requirements of the Ada
Standard. The Ada Standard must be implemented in its entirety, and nothing can
be implemented that is not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it must be
understood that some differences do exist between implementations. The Ada
Standard permits some implementation dependencies--for example, the maximum
length of ideDtifiers or the maximum values of integer types. Other differences
between compilers result from the characteristics of particular operating
systems, hardware, or implementation strategies. All the dependencies observed
during the process of testing this compiler are given in this report.

The information in this report is derived from the test results produced during
validation testing. The validation process includes submitting a suite of
standardized tests, the ACVC, as inputs to an Ada compiler and evaluating the
results. The purpose of validating is to ensure conformity of the compiler to
the Ada Standard by testing that the compiler properly implements legal language
constructs and that it identifies and rejects illegal language constructs. The
testing also identifies behavior that is implementation dependent, but is
permitted by the Ada Standard. Six classes of tests are used. These tests are
designed to perform checks at compile time, at link time, and during execution.

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an Ada
compiler. Testing was carried out for the following purposes:

4 AVF-VSR-AFNOR-89-16

INTRODUCTION

• To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

• To attempt to identify any language constructs not supported by the
compiler but required by the Ada Standard

* To determine that the implementation-dependent behavior is allowed by
the Ada Standard

Testing of this compiler was conducted by STERIA under the direction of the AVF
according to procedures established by the Ada Joint Program Office and
administered by the Ada Validation Organization (AVO). On-site testing was
completed 9 January 1990 at STERIA, 26, Avenue de l'Europe, Velizy-Villacoublay
FRANCE.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may make
full and free public disclosure of this report. In the United States, this is
provided in accordance with the "Freedom of Information Act" (5 U.S.C. #552).
The results of this validation apply only to the computers, operating systems,
and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are accurate
and complete, or that the subject compiler has no nonconformities to the Ada
Standard other than those presented. Copies of this report are available to the
public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

AFNOR
Tour Europe
cedex 7
F-92049 Paris la Defense

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

5 AVF-VSR-AFNOR-89-16

INTRODUCTION

1.3 REFERENCES

i. Reference Manual for the Ada Programming Languaae, ANSI/MIL-STD-1815A,

February 1983, and ISO 8652-1987.

2. Ada Compiler Validation Procedures, Ada Joint Program Office, May 1989

3. Ada Compiler Validation Capability Implementers' Guide, SofTech, Inc.,

December 1986.

4. Ada Compiler Validation Capability User's Guide, January 1989

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada programs
that tests the conformity of an Ada compiler to the Ada
programming language.

Ada Commentary An Ada Commentary contains all info:mation relevant to the
point addressed by a comment on the Ada Standard. These comments
are given a unique identification number having the form
AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures.

AVO The Ada Validation Organization. The AVO has oversight authority
over all AVF practices for the purpose of maintaining a uniform
process for validation of Ada compilers. The AVO provides
administrative and technical support for Ada validations to
ensure consistent practices.

Compiler A processor for the Ada language. In the context of this report,
a compiler is any language processor, including cross-compilers,
translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable test An ACVC test that uses features of the language that a
compiler is not required to support or may legitimately support
in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected result.

Target The computer which executes the code generated by the compiler.

6 AVF-VSR-AFNOR-89-16

INTRODUCTION

Test A program that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more files.

Withdrawn An ACVC test found to be incorrect and not used to check test
conformity to the Ada Standard. A test may be incorrect because
it has an invalid test objective, fails to meet its test
objective, or contains illegal or erroneous use of the language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC contains
both legal and illegal Ada programs structured into s* " r: A, B, C,
D, E, and L. The first letter of a test name identifies the class to which it
belongs. Class A, C, D, and E tests are executable, and special program units
are used to report their results during execution. Class B tests are expected to
produce compilation errors. Class L tests are expected to produce errors because
of the way in which a program library is used at link time.

Class A tests ensure the successful compilation and execution of legal Ada
programs with certain language constructs which cannot be verified at run time.
There are no explicit program components in a Class A test to check semantics.
For example, a Class A test checks that reserved words of another language
(other than those already reserved in the Ada language) are not treated as
reserved words by an Ada compiler. A Class A test is passed if no errors are
detected at compile time and the program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class B
tests are not executable. Each test in this class is compiled and the resulting
compilation listing is examined to verify that every syntax or semantic error in
the test is detected. A Class B test is passed if every illegal construct that
it contains is detected by the compiler.

Class C tests check the run time system to ensure that legal Ada programs can be
correctly compiled and executed. Each Class C test is self-checking and produces
a PASSED, FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers permitted
in a compilation or the number of units in a library--a compiler may refuse to
compile a Class D test and still be a conforming compiler. Therefore, if a Class
D test fails to compile because the capacity of the compiler is exceeded, the
test is classified as inapplicable. If a Class D test compiles successfully, it
is self-checking and produces a PASSED or FAILED message during execution.

7 AVF-VSR-AFNOR-89-16

INTRODUCTION

Class E tests are expected to execute successfully and check implementation-
dependent options and resolutions of ambiguities in the Ada Standard. Each Class
E test is self-checking and produces a NOT APPLICABLE, PASSED, or FAILED message
when it is compiled and executed. However, the Ada Standard permits an
implementation to reject programs containing some features addressed by Class E
tests during compilation. Therefore, a Class E test is passed by a compiler if
it is compiled successfully and executes to produce a PASSED message, or if it
is rejected by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving multiple,
separately compiled units are detected and not allowed to execute. Class L tests
are compiled separately and execution is attempted. A Class L test passes if it
is rejected at link time--that is, an attempt to execute the main program must
generate an error message before any declarations in the main program or any
units referenced by the main program are elaborated. In some cases, an
implementation may legitimately detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECKFILE, support the
self-checking features of the executable tests. The package REPORT provides the
mechanism by which executable tests report PASSED, FAILED, or NOT APPLICABLE
results. It also provides a set of identity functions used to defeat some
compiler optimizations allowed by the Ada Standard that would circumvent a test
objective. The procedure CHECKFILE is used to check the contents of text files
written by some of the Class C tests for Chapter 14 of the Ada Standard. The
operation of REPORT and CHECKFILE is checked by, a set of executable tests.
These tests produce messages that are examined to verify that the units are
operating correctly. If these units are not operating correctly, then the
validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For example,
the tests make use of only the basic set of 55 characters, contain lines with a
maximum length of 72 characters, use small numeric values, and place features
that may not be supported by all implementations in separate tests. However,
some tests contain values that require the test to be customized according to
implementation-specific values--for example, an illegal file name. A list of the
values used for this validation is provided in Appendix C.

A compiler must correctly process each of the tests in the suite and demonstrate
conformity to the Ada Standard by either meeting the pass criteria given for the
test or by showing that the test is inapplicable to the implementation. The
applicability of a test to an implementation is considered each time the
implementation is validated. A test that is inapplicable for one validation is
not necessarily inapplicable for a subsequent validation. Any test that was
determined to contain an illegal language construct or an erroneous language
construct is withdrawn from the ACVC and, therefore, is not used in testing a
compiler. The tests withdrawn at the time of this validation are given in
Appendix D.

8 AVF-VSR-AFNOR-89-16

CONFIGURATION INFORMATION

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: EntAlsy_01, Version 4.2

ACVC Version: 1.10

Certificate Number: 900109AI.10239

Host Computer:

Machine: CETIA UNIGRAPH 6000

Operating System: Unigraph/X release 3.0.4

Memory Size: 8 Mb

Target Computer:

Machine: Motorola MC68020 in PMF

CPU: Motorola MC68020
Bus: VME
I/O: Intel 8251A
Timer: Intel 8254
Coprocessor: Motorola MC68881

Run-Time System: ARTK, Version 4.2

Memory Size: I Mb

Communications Network: RS 232 serial conaection

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of a
compiler in those areas of the Ada Standard that permit implementations to
differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

9 AVF-VSR-AFNOR-89-16

CONFIGURATION INFORMATION

a. Capacities.

(I) The compiler correctly processes a compilation containing 723
variables in the same declarative part. (See test D29002K.)

(2) The compiler correctly processes tests containing loop statements
nested to 65 levels. (See tests D55AO3A..H (8 tests).)

(3) The compiler correctly processes a test containing block statements
nested to 65 levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to 10 levels. (See
tests D64005E..G (3 tests).)

b. Predefined types.

(1) This implementation supports the additional predefined types,
SHORTINTEGER, LONG_INTEGER, LONGFLOAT in the package STANDARD. (See
tests B86001T..Z (7 tests).)

c. Based literals.

(1) An implementation is allowed to raise NUMERICERROR or
CONSTRAINTERROR when a value exceeds SYSTEM.MAXINT . This implemen-
tation raises NUMERICERROR during execution. (See test E24201A.)

d. Expression evaluation.

The order in which expressions are evaluated and the time at which
constraints are checked are not defined by the language. While the ACVC
tests do not specifically attempt to determine the order of evaluation of
expressions, test results indicate the following:

(1) None of the default initialization expressions for record components
are evaluated before any value is checked for membership in a
component's subtype. (See test C32117A.)

(2) Assignments for subtypes are performed with the same precision as the
base type. (See test C35712B.)

(3) This implementation uses no extra bits for extra precision. This
implementation uses all extra bits for extra range. (See test
C35903A.)

(4) NUMERICERROR is raised when an integer literal operand in a
comparison or membership test is outside the range of the base type.
(See test C45232A.)

(5) NUMERICERROR is raised when a literal operand in a fixed-point
comparison or membership test is outside the range of the base type.
(See test C45252A.)

10 AVF-VSR-AFNOR-89-16

CONFIGURATION INFORMATION

(6) Underflow is gradual. (See tests C45524A..Z.) (26 tests)

e. Rounding.

The method by which values are rounded in type conversions is not defined by
the language. While the ACVC tests do not specifically attempt to determine
the method of rounding, the test results indicate the following:

(1) The method used for rounding to integer is round to even. (See tests
C46012A..Z.) (26 tests)

(2) The method used for rounding to longest integer is round to even.
(See tests C46012A..Z.) (26 tests)

(3) The method used for rounding to integer in static universal real
expressions is round to even. (See test C4AO14A.)

f. Array types.

An implementation is alloweu to raise NUMERICERROR or CONSTRAINTERROR for
an array having a 'LENGTH that exceeds STANDARD.INTEGER'LAST and/or
SYSTEM.MAXINT. For this implementation:

(1) Declaration of an array type or subtype declaration with more than
SYSTEM.MAXINT components raises NUMERICERROR . (See tert C36003A.)

(2) NUMERICERROR is raised when 'LENGTH is applied to an array type with
INTEGER'LAST + 2 components. (See test C36202A.)

(3) NUMERICERROR is raised when an array type with SYSTEM.MAXINT + 2
components is declared. (See test C36202B.)

(4) A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST raises
no exception. (See test C52103X.)

(5) A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises CONSTRAINTERROR when the length of a dimension is
calculated and exceeds INTEGER'LAST. (See test C52104Y.)

(6) In assigning one-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINTERROR is raised when
che-king whether the expression's subtype is compatible with the
target's subtype. (See test C52013A.)

(7) In assigning two-dimensional array types, the expression is not
evaluated in its entirety before CONSTRAINT ERROR is raised when
checking whether the expression's subtype is compatible with the
target's subtype. (See test C52013A.)

g. A null array with one dimension of length greater than INTEGER'LAST may
raise NUMERICERROR or CONSTRAINTERROR either when declared or assigned.
Alternatively, an implementation may accept the declaration. However,
lengths must match in array slice assignments. This implementation raises no
exception. (See test E52103Y.)

11 AVF-VSR-AFNOR-89-16

CONPIGURATION INFORMATION

h. Discriminated types.

(i) in assigning record types with discriminants, the expression is
evaluated in its entirety before CONSTRAINTERROR is raised when
checking whether the expression's subtype is compatible with the
targt's subtype. (See test C52013A.)

i. Aggregates.

(i) In the evaluation of a multi-dimensional aggregate, the test results
indicate that all choices are evaluated before checking against the
index type. (See tests C43207A and C43207B.)

(2) In the evaluation of an aggregate containing subaggregates, not all
choices are evaluated before being checked for identical bounds. (See
test E43212B.)

(3) CONSTRAINTERROR is raised after all choices are evaluated when a
bound in a non-null range of a non-null aggregate does not belong to
an index subtype. (See test E43211B.)

3. Pragmas.

(1) The pragma INLINE is supported for functions or procedures, but not
functions cdlled inside a package specification. (See tests
LA3004A..B, EA3004C..D, and CA3004E..F.)

k. Generics.

(1) Generic specifications and bodies can be compiled in separate
compilations. (See tests CAl012A, CA2009C, CA2009F, BC3204C, and
BC3205D.)

(2) Generic subprogram declarations and bodies can be compiled in
separate compilations. (See tests CA1Ol2A and CA2009F.)

(3) Generic library subprogram specifications and bodies can be compiled
in separate compilations. (See test CAlOl2A.)

(4) Generic non-library package bodies as subunits can be compiled in
separate compilations. (See test CA2009C.)

(5) Generic non-library subprogram bodies can be compiled in separate
compilations from their stubs. (See test CA2009F.)

(6) Generic unit bodies and their subunits can be compiled in separate
compilations. (See test CA30lA.)

(7) Generic package declarations and bodies can be compiled in separate
compilations. (See tests CA2009C, BC3204C, and BC3205D.)

(8) Generic library package specifications and bodies can be compiled in
separate compilations. (See tests BC3204C and BC3205D.)

12 AVF-VSR-AFNOR-89-16

CONFIGURATION INFORMATION

(9) Generic unit bodies and their subunits can be compiled in separate
compilations. (See test CA3OllA.)

1. Input and output.

(3) The director, AJPO, has determined (AI-00332) that every call to OPEN
and CREATE must raise USEERROR or NAMEERROR if file input/output is
not supported. This implementation exhibits this behavior for
SEQUENTIAL_IO, DIRECT_IO, and TEXTIO.

13 AVF-VSR-AFNOR-89-16

TEST INFORMATION

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was tested, 44
tests had been withdrawn because of test errors. The AVF determined that 572
tests were inapplicable to this implementation. All inapplicable tests were
processed during validation testing except for 201 executable tests that use
floating-point precision exceeding that supported by the implementation.
Modifications to the code, processing, or grading for 53 tests were required.
(See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable conformity to
the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL

_ _A B C D E L___

Passed 129 1133 1761 16 16 46 3101

Inapplicable 0 5 554 1 12 0 572

Withdrawn 1 2 35 0 6 0 44

TOTAL 130 1140 2350 17 34 46 3717

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 198 577 555 248 171 99 161 332 137 36 252 259 76 3101

Inappl 14 72 125 0 1 0 5 0 0 0 0 110 245 572

Wdrn 1 1 0 0 0 0 0 2 0 0 1 35 4 44

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

:4 AVF-VSR-AFNOR-89-16

TEST INFORMATION

3.4 WITHDRAWN TESTS

The following 44 tests were withdrawn from ACVC Version 1.10 at the time of this
validation:

A39005G B97102E BC3009B C97116A CD2A62D CD2A63A CD2A63B CD2A63C CD2A63D
CD2A66A CD2A66B CD2A66C CD2A66D CD2A73A CD2A73B CD2A73C CD2A73D CD2A76A
CD2A76B CD2A76C CD2A76D CD2A81G CD2A83G CD2A84M CD2A84N CD2DllB CD2B15C
CD5007B CD50110 CD7105A CD7203B CD7204B CD7205C CD7205D CE2107I CE3111C
CE3301A CE3411B E28005C ED7004B ED7005C ED7005D ED7006C ED7006D

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICA.1 ESTS

Some tests do not apply to all compilers because they make use of features that
a compiler is not required by the Ada Standard to support. Others may depend on
the r sult of another test that is either inapplicable or withdrawn. The
applicability of a test to an implementation is considered each time a
validation is attempted. A test that is inapplicable for one validation attempt
is not necessarily inapplicable for a subsequent attempt. For this validation
attempt, 572 tests were inapplicable for the reasons indicated:

The following 201 tests are not applicable because they have floating-point
type declarations requiring more digits than System.MaxDigits:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

C35702A and B86001T are not applicable because this implementation supports
no predefined type Short-Float.

C45531M..P (4 tests) and C45532M..P (4 tests) are not applicable because
the value of System.MaxMantissa is less than 32.

D64005G is not applicable because this implementation does not support
nesting 17 levels of recursive procedure calls.

C86001F, is not applicable because recompilation of Package SYSTEM is not
allowed.

B86001X, C45231D, and CD710IG are not applicable because this
implementation does not support any predefined integer type with a name
other than Integer, LongInteger, or Short-Integer.

B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than Duration.

15 AVF-VSR-AFNOR-89-16

TEST INFORMATION

B86001Z is not applicable because this implementation supports no
predefined floating-point type with a name other than Float, Long_Float, or
ShortFloat.

BD5006D is not applicable because address clause for packages is not
supported by this implementation.

The following 10 tests are not applicable because size clause on float is
not supported by this implementation:

CD1009C CD2A41A..B (2 tests)
CD2A41E CD2A42A..B (2 tests)
CD2A42E..F (2 tests) CD2A42I..J (2 tests)

CD1CO4B, CDIC04E, CD4051A..D (4 tests) are not applicable because
representation clause on derived records or derived tasks is not supported
by this implementation.

CD2A84B..I (8 tests), CD2A84K..L (2 tests) are not applicable because size
clause on access type is not supportee by this implementation.

The following 28 tests are not applicable because size clause for derived
private type is not supported by this implementation:

CDlCO4A CD2A21C..D (2 tests)
CD2A22C..D (2 tests) CD2A22G..H (2 tests)
CD2A31C..D (2 tests) CD2A32C..D (2 tests)
CD2A32G..H (2 tests) CD2A41C..D (2 tests)
CD2A42C..D (2 tests) CD2A42G..H (2 tests)
CD2A51C..D (2 tests) CD2A52C..D (2 tests)
CD2A52G..H (2 tests) CD2A53D
CD2A54D CD2A54H

The following 29 tests are not applicable because of the way this
implementation allocates storage space for one component, size
specification clause for an array type or for a record type requires
compression of the storage space needed for all the components (without
gaps).

CD2A61A..D (4 tests) CD2A61F
CD2A61H..L (5 tests) CD2A62A..C (3 tests)
CD2A71A..D (4 tests) CD2A72A..D (4 tests)
CD2A74A..D (4 tests) CD2A75A..D (4 tests)

CD4041A is not applicable because alignment "at mod 8" is not supported by
this implementation.

The following 21 tests are not applicable because address clause for a
constant is not supported by this implementation:

CD5011BD,F,H,L,N,R (7 tests) CD5012C,D,G,HL (5 tests)
CD5013B,DF,H,L,N,R (7 tests) CD5Ol4U,W (2 tests)

CD5Ol2J, CD5013S, CD5014S are not applicable because address clause for a
task is not supported by this implementation.

CE2103A is not applicable because USEERROR is raised on a CREATE of an
instantiation of SEQUENTIAL_10 with an ILLEGAL EXTERNAL FILE NAME.

CE2103B is not applicable because USEERROR is raised on a CREATE of an
instantiation of DIRECTIO with an ILLEGAL EXTERNAL FILE NAME.

16 AVF-VSR-AFNOR-89-16

TEST INFORMATION

CE3107A is not applicable because USEERROR is raised on a CREATE of a file
of type TEXTIO.FILETYPE with an ILLEGAL EXTERNAL FILE NAME.

The following 242 tests are inapplicable because sequential, text, and
direct access files are not supported:

CE2102A..C (3 tests) CE2102G..H (2 tests)
CE2102K CE2102N..Y (12 tests)
CE2103C..D (2 tests) CE2104A..D (4 tests)
CE2105A..B (2 tests) CE2106A..B (2 tests)
CE2107A..H (8 tests) CE2107L
CE2108A..H (8 tests) CE2109A..C (3 tests)
CE2110A..D (4 tests) CE2111A..I (9 tests)
CE2115A..B (2 tests) CE2201A..C (3 tests)
EE2201D..E (2 tests) CE2201F..N (9 tests)
CE2204A..D (4 tests) CE2205A
CE2208B CE2401A..C (3 tests)
EE2401D EE2401G
CE2401E..F (2 tests) CE2401H..L (5 tests)
CE2404A..B (2 tests) CE2405B
CE2406A CE2407A..B (2 tests)
CE2408A..B (2 tests) CE2409A..B (2 tests)
CE2410A..B (2 tests) CE2411A
CE3102A..B (2 tests) EE3102C
CE3102F..H (3 tests) CE3102J..K (2 tests)
CE3103A CE3104A..C (3 tests)
CE3107B CE3108A..B (2 tests)
CE3109A CE3110A
CE3111A..B (2 tests) CE3111D..E (2 tests)
CE3112A..D (4 tests) CE3114A..B (2 tests)
CE3115A EE3203A
CE3208A EE3301B
CE3302A CE3305A
CE3402A EE3402B
CE3402C..D (2 tests) CE3403A..C (3 tests)
"CE3403E..F (2 tests) CE3404B..D (3 tests)
CE3405A EE3405B
CE3405C..D (2 tests) CE3406A..D (4 tests)
CE3407A..C (3 tests) CE3408A..C (3 tests)
CE3409A CE3409C..E (3 tests)
EE3409F CE3410A
CE3410C..E (3 tests) EE341OF
CE3411A CE3411C
CE3412A
EE3412C CE3413A
CE3413C CE3602A..D (4 tests)
CE3603A CE3604A..B (2 tests)
CE3605A..E (5 tests) CE3606A..B (2 tests)
CE3704A..F (6 tests) CE3704M..O (3 tests)
CE3706D CE3706F..G (2 tests)
CE3804A..P (16 tests) CE3805A..B (2 tests)
CE3806A..B (2 tests) CE3806D..E (2 tests)
CE3806G..H (2 tests) CE3905A..C (3 tests)
CE3905L CE3906A..C (3 tests)
CE3906E..F (2 tests)

17 AVF-VSR-AFNOR-89-16

TEST INFORMATION

PROCESSING, !.*D EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code, processing,
or evaluation in order to compensate for legitimate implementation behavior.
Modifications are made by the AVF in cases where legitimate implementation
behavior prevents the successful completion of an (otherwise) applicable test.
Examples of such modifications include: adding a length clause to alter the
default size of a collection; splitting a Class B test into subtests so that all
errors are detected; and confirming that messages produced by an executable test
demonstrate conforming behavior that wasn't anticipated by the test (such as
raising one exception instead of another).

Modifications were required for 53 tests.

The following 27 tests were split because syntax errors at one point resulted in
the compiler not detecting other errors in the test:
B23004A B24007A B24009A B28003A B32202A B32202B B32202C B33001A B36307A B37004A
B49003A B49005A B61012A B62001B B74304B B74304C B74401F B74401R B91004A B95032A
B95069A B95069B BA11OB BC2001D BC3009A BC3009C BD5005B

The following 21 tests were split in order to show that the compiler was able to
find the representation clause indicated by the comment
--N/A =>ERROR :

CD2A61A CD2A61B CD2A61F CD2A6lI CD2A61J CD2A62A CD2A62B CD2A71A CD2A71B CD2A72A
CD2A72B CD2A75A CD2A75B CD2A84B CD2A84C CD2A84D CD2A84E CD2A4F CD2A84G CD2A84H
CD2A84I

The test EA3004D when run as it is, the implementation fails to detect an error
on line 27 of test file EA3004D6M (line 115 of "cat -n ea3004d*"). This is
because the pragma INLINE has no effect when its object is within a package
specification. However, the results of running the test as it is does not
confirm that the pragma had no effect, only that the package was not made
obsolete. By re-ordering the compilations so that the two subprograms are
compiled after file D5 (the re-compilation of the "with"ed package that makes
the various earlier units obsolete), we create a test that shows that indeed
pragma INLINE has no effect when applied to a subprogram that is called within a
package specification: the test then executes and produces the expected
NOTAPPLICABLE result (as though INLINE were not supported at all). The
re-ordering of EA3004D test files is 0-1-4-5-2-3-6.

BA2001E requires that duplicate names of subunits with a common ancestor be
detected and rejected at compile time. This implementation detects the error at
link time, and the AVO ruled that this behavior is acceptable.

Modified vwsion was produced for C87B62B, in order to have the test run to
completion and fully exhibit the test behavior:
An explicit STORAGESIZE clause was added for the access type declared at line
68. This allows the test to execute without raising STORAGEERROR and to meet
its objective (test overloading resolution in expression within length clause).
The teqt then produces the expected PASSED result.

18 AVF-VSR-AFNOR-89-16

TEST INFORMATION

Modified versions were produced for CD2C.1A and CD2C1lB, in order to have the
test run to completion and fully exhibit the test behavior:
Because the given STORAGESIZE is too small for the implementation, the length
clause was changed from 1024 to 4096 at line 43 and 46, respectively, . The same
change was made also at line 95 and 98 on the identity function IDENTINT. This
allows the test to execute without raising STORAGE ERROR and to meet its
objective (test if a task storage size specification can be given for a task
type). The test then produces the expected PASSED result.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced by the
Ent Alsy_01, Version 4.2 compiler was submitted to the AVF by the applicant for
review. Analysis of these results demonstrated that the compiler successfully
passed all applicable tests, and the compiler exhibited the expected behavior on
all inapplicable tests.

3.7.2 Test Method

Testing of the Ent _Alsy_01, Version 4.2 compiler using ACVC Version 1.10 was
conducted on-site by a validation team from the AVF. The configuration in which
the testing was performed is described by the following designations of hardware
and software components:

Host computer: CETIA UNIGRAPH 6000
Host operating system: Unigraph/X release 3.0.4
Target computer: Motorola MC68020 in PMF
Compiler: Ent _Alsy 01, Version 4.2
Pre-linker: built-in and Alsys proprietary
Linker: Editeur de lien 68020-PMF, Version 2.0
Loader/Downloader: built-in and Alsys proprietary
Target Run-Time system: ARTK, Version 4.2 (bare machine)

A data cartridge containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of implementation-specific
values were customized before being written to the data cartridge. Tests
requiring modifications during the prevalidation testing were included in their
modified form on the data cartridge.

The contents of the data cartridge were loaded directly onto the host computer.

After the test files were loaded to disk, the full set of tests was compiled
and linked on the CETIA UNIGRAPH 6000. Then all executable images were
transferred to a CETIA UNIGRAPH 3000 via Ethernet. Then all executable images
were transferred from CETIA UNIGRAPH 3000 to the Motorola MC68020 in PMF via RS
232 serial conncction and run. Results were printed from the host computer.

19 AVF-VSR-AFNOR-89-16

TEST INFORMATION

The compiler was tested using command scripts provided by STERIA and reviewed by
the validation team. The compiler was tested using all default option settings
except for the following:

OPTION EFFECT

CALLS=INLINED Allow inline insertion of code for subprograms and take
pragma INLINE are taken into account

EXPRESSION=EXTENSIVE Optimization are achieved on common subexpression and
register allocation

REDUCTION=PARTIAL Perform some high level optimizations on checks and loops

OBJECT=PEEPHOLE Local optimization during code generation is made

GENERIC=INLINED Generics are inlined

FLOAT=MC68881 Floating point operations use the MC68881 arithmetic
coprocessor

Tests were compiled, linked, and executed (as appropriate) using a single host
and target computer. Test output, compilation listings, and job logs were
captured on data cartridge and archived at the AVF. The listings examined on-
site by the validation team were also archived.

3.7.3 Test Site

Testing was conducted at STERIA 26, Avenue de l'Europe, Velizy-Villacoublay
FRANCE, and was completed on 9 January 1990.

20 AVF-VSR-AFNOR-89-16

DECLARATION OF CONFORMANCE

APPENDIX A

DECLARATION OF CONFORMANCE

STERIA and ALSYS have submitted the following Declaration of
Conformance concerning the EntAlsy_01, Version 4.2
compiler.

21 AVF-VSR-AFNOR-89-16

DECLARATION OF CONFORMANCE

DECLARATION OF CONFORMANCE

Customer: STERIA

Licensor: ALSYS

Ada Validation Facility: AFNOR, Tour Europe, Cedex 7
F-92049 PARIS LA DEFENSE

ACVC Version: 1.10

Ada Implementation:

Compiler Name and Version: EntAlsy_01, Version 4.2

Host Computer System: CETIA UNIGRAPH 6000 under
Unigraph/X release 3.0.4

Target Computer Syste..: Motorola M-C68020 in ?PF under
ARTK, Version 4.2 (bare machine)

Customer's Declaration

I, the undersigned, representing STERIA, declare that STERIA has no knowledge of
deliberate deviations from the Ada Language Standard ANSI/MIL-STD-1815A in the
implementation listed in this declaration.

Date: S .'1tkrz
Luc Seco , Project Manager
STERIA
Velizy-Villacoublay, France

Licensor's Declaration

I, the undersigned, representing ALSYS, declare that STERIA is the licensee of
the above implementation and the certificate shall be awarded in the name of
STERIA.

Date: -"I

Etienne Morel, Managing Director
ALSYS
La Celle Saint-Cloud, France

22 AVF-VSR-AFNOR-89-16

TEST PARAMETERS

APPENDIX B

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such as
the maximum length of an input line and invalid file names. A test that makes
use of such values is identified by the extension .TST in its file name. Actual
values to be substituted are represented by names that begin with a dollar sign.
A value must be substituted for each of these names before the test is run. The
values used for this validation are given below.

Name and Meaning Value

SACCSIZE 32
An integer literal whose value
is the number of bits sufficient
to hold any value of an access
type.

$BIG_IDI (254 * 'A') & '1'
Identifier the size of the
maximum input line length
with varying last character.

SBIG_ID2 (254 * 'A) & '2'
Identifier the size of the
maximum input line length
with varying last character.

$BIG_ID3 (126 * 'A') & '3' & (128 * 'A')
Identifier the size of the
maximum input line length
with varying middle character.

$BIGID4 (126 * 'A') & '4' & (128 * 'A')
identifier the size of the
maximum input line length
with varying middle character.

15 3uln 1990 23 AVF-VSR-AFNOR-89-16

TEST PARAMETERS

Name and Meaning Value

SBIG_INT_LIT (252 * '0') & '298'
An integer literal of value
298 with enough leading zeroes
so that it is the size of the
maximum line length.

$BIG_REAL_LIT (250 * '0') & '690.0'
A universal real literal of
value 690.0 with enough
leading zeroes to be the size
of the maximum line length.

$BIG_STRINGI "' & (127 * 'A') &
A string literal which when
catenated with BIGSTRING2
yields the image of BIG_IDl.

$BIG_STRING2 ... & (127 * 'A') & 'I"'

A string literal which when
catenated to the end of
BIG_STRING1 yields the image
of BIGIDI.

$BLANKS (235 * '

A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNT_LAST 2147483647
A universal integer literal whose
value is TEXTIO.COUNTiLAST.

$DEFAULT_MEM_SIZE 2**32
An integer literal whose value
is SYSTEM.MEMORYSIZE.

$DEFAULT_STORUNIT 8
An integer literal whose value
is SYSTEM.STORAGEUNIT.

SDEFAULT_SYS_NAME ARTK
The value of the constant
sYSTEM.SYSTEMNAME.

$DELTA_DOC 2#1.0#E-31
A real literal w'K alue is
SYSTEM.FINE_DELTA.

i5 juin 1990 24 AVF-VSR-AFNOR-89-16

7EST PARAMETERS

Name and Meaning Value

$FIELD_LAST 255
A universal integer li-eral whose
value is TEXT IO.FIELD'LAST.

$FIXED_NAME NOSUCHTYPE
The name of a predefined
fixed-point type other than
DURATION.

SFLOATNAME NOSUCHTYPE
The name of a predefined
floating-point type other than
FLOAT, SHORT_FLOAT, or
LONGFLOAT.

$GREATER_THANDURATION -100_000_000.0
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

SGREATER_THANDURATIONBASELAST 100000_000.0
A universal real literal that is
greater than DURATION'BASE'LAST.

SHIGH_PRIORITY 24
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

$ILLEGALEXTERNALFILENAMEl /-/*/fl
An external file name specifying
a non existent directory

$ILLEGAL_EXTERNALFILENAME2 /-/*/f2
An external file name different
from $ILLEGALEXTERNALFILENAMEl

$INTEGERJIRST -32768
A universal integer literal
whose value is INTEGER'FIRST.

$INTEGER_LAST 32767
A universal integer literal
whose value is INTEGER'LAST.

$INTEGER_LASTPLUS_1 32768
A universal integer literal
whose value is INTEGER'LAST + 1.

15 3uin 1990 25 AVF-VSR-AFNOR-89-16

TEST PARAMETERS

Name and Meaning Value

SLESSTHAN_DURATION -100_00.0
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

SLESSTHAN_DURATION_BASEFIRST -3_000_000.0
A universal real literal that is
less than DURATION'BASE'FIRST.

SLOW_PRIORITY 1
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

SMANTISSA_DOC 31
An integer literal whose value
is SYSTEM.MAXMANTISSA.

$MAX_DIGITS 15
Maximum digits supported for
floating-point types.

$MAXINLEN 255
Maximum input line length
permitted by the implementation.

$MAX_INT 2147483647
A universal integer literal
whose value is SYSTEM.MAXINT.

SMAX_INT_PLUS_1 2_147_483_648
A universal integer literal
whose value is SYSTEM.MAX_INT+l.

SMAX_LEN_INT_BASED_LITERAL '2:' & (250 * '0') & '11:'
A universal integer based
litEral whose value is 2:11:
with enough leading zeroes in
the mantissa to be MAXINLEN
long.

$MAX_LEN_REALBASED_LITERAL '16:' & (248 * '0') & 'F.E:'
A universal real based literal
whose value is 16: F.E: with
enough leading zeroes in the
mantissa to be MAXINLEN long.

i5 juin 1990 26 AVF-VSR-AFNOR-89-16

TEST PARAMETERS

Name and Meaning Value

SMAXSTRINGLITERAL .. & (253 * 'A') &
A string literal of size
MAXINLEN, including the quote
characters.

SMININT -2147483648
A universal integer literal
whose value is SYSTEM.MININT.

$MINTASKSIZE 32
An integer literal whose value
is the number of bits required
to nold a task object which has
no entries, no declarations, and
NULL;" as the only statement in
its body.

SNAME NOSUCHTYPE
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORTFLOAT, SHORTINTEGER,
LONGFLOAT, or LONGINTEGER.

SNAME_LIST ARTK
A list of enumeration literals
in the type SYSTEM.NAME,
separated by commas.

SNEG_BASED INT 16#FFFFFFFE#
A based integer literal whose
highest order nonzero bit falls
in the sign bit position of the
representation for SYSTEM.MAX INT.

SNEW_MEM_SIZE 2**32
An integer literal whose value
is a permitted argument for
pragma memorysize, other than
DEFAULTMEMSIZE. If there is
no other value, then use
DEFAULTMEMSIZE.

SNEW_STORUNIT
An integer literal whose value
is a permitted argument for
pragma storageunit, other than
DEFAULTSTORUNIT. If there is
no other permitted value, then
use value of SYSTEM.STORAGEUNIT.

15 juin 1990 27 AVF-VSR-AFNOR-89-16

TEST PARAMETERS

Name and Meaning Value
- --------------------------- -------------------------------------

$NEWSYS_NAME ARTK

A value of the type SYSTEM.NAME,
other than $DEFAULT SYSNAME. If
there is only one value of that
type, then use that value.

$TASKSIZE 32

An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one inout
parameter.

STICK 1.0

A real literal whose value is
SYSTEX.TICK.

15 Juin 1990 28 AVF-VSR-AFNOR-89-16

WITHDRAWN TESTS

APPENDIX C

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the Ada
Standard. The following 44 tests had been withdrawn at the time of validation
testing for the reasons indicated. A reference of the form AI-ddddd is to an Ada
Commentary.

E28005C
This test expects that the string "-- TOP OF PAGE. --63" of line 204 will
appear at the top of the listing page due to a pragma PAGE in line 203; but
line 203 contains text that follows the pragma, and it is this that must
appear at the top of the page.

A39005G
This test unreasonably expects a component clause to pack an array component
into a minimum size (line 30).

B97102E
This test contains an unitended illegality: a select statement contains a
null statement at the place of a selective wait alternative (line 31).

C97116A
This test contains race conditions, and it assumes that guards are evaluated
indivisibly. A conforming implementation may use interleaved execution in
such a way that the evaluation of the guards at lines 50 & 54 and the execu-
tion of task CHANGINGOFTHEGUARD results in a call to REPORT.FAILED at one
of lines 52 or 56.

BC3009B
This test wrongly expects that circular instantiations will be detected in
several compilation units even though none of the units is illegal with re-
spect to the units it depends on; by AI-00256, the illegality need not be
detected until execution is attempted (line 95).

CD2A62D
This test wrongly requires that an array object's size be no greater than 10
although its subtype's size was specified to be 40 (line 137).

CD2A63A..D, CD2A66A..D, CD2A73A..D, CD2A76A..D [16 tests]
These tests wrongly attempt to check the size of objects of a derived type
(for which a 'SIZE length clause is given) by passing them to a derived sub-
program (which implicitly converts them to the parent type (Ada standard
3.4:14)). Additionally, they use the 'SIZE length clause and attribute, whose
interpretation is considered problematic by the WG9 ARG.

CD2A8IG, CD2A83G, CD2A84N & M, & CD50110 [5 tests]
These tests assume that dependent tasks will terminate while the main pro-
gram executes a loop that simply tests for task termination; this is not the
case, and the main program may loop indefinitely (lines 74, 85, 86 & 96, 86 &
96, and 58, resp.).

15 juin 1990 29 AVF-VSR-AFNOR-89-16

WITHDRAWN TESTS

CD2Bl5C & CD7205C
These tests expect that a 'STORAGE-SIZE length clause provides precise con-
trol over the number of designated objects in a collection; the Ada standard
13.2:15 allows that such control must not be expected.

CD2DllB
This test gives a SMALL representation clause for a derived fixed-point type
(at line 30) that defines a set of model numbers that are not necessarily
represented in the parent type; by Commentary AI-00099, all model numbers of
a derived fixed-point type must be representable values of the parent type.

CD5007B
This test wrongly expects an implicitly declared subprogram to be at the the
address that is specified for an unrelated subprogram (line 303).

ED7004B, ED7005C & D, ED7006C & D [5 tests)
These tests check various aspects of the use of the three SYSTEM pragmas;

the AVO withdraws, these tests as being inappropriate for validation.

CD7105A
This test requires that successive calls to CALENDAR.CLOCK change by at least
SYSTEM.TICK; however, by Commentary AI-00201, it is only the expected
frequency of change that must be at least SYSTEM.TICK--particular instances
of change may be less (line 29).

CD7203B, & CD7204B
These tests use the 'SIZE length clause and attribute, whose interpretation
is considered problematic by the WG9 ARG.

CD7205D
This test checks an invalid test objective: it treats the specification of
storage to be reserved for a task's activation as though it were like the
specification of storage for a collection.

CE2107I
This test requires that objects of two similar scalar types be distinguished
when read from a file--DATAERROR is expected to be raised by an attempt to
read one object as of the other type. However, it is not clear exactly how
the Ada standard 14.2.4:4 is to be interpreted; thus, this test objective is
not considered valid. (line 90)

CE3111C
This test requires certain behavior, when two files are associated with the
same external file, that is not required by the Ada standard.

CE330iA
This test contains several calls to END OF LINE & ENDOFPAGE that have no
parameter: these calls were intended to specify a file, not to refer to
STANDARDINPUT (lines 103, 107, 118, 132, & 136).

CE3411B
This test requires that a text file's column number be set to COUNT'LAST in
order to check that LAYOUT ERROR is raised by a subsequent PUT operation. But
the former operation will generally raise an exception due to a lack of
available disk space, and the test would thus encumber validation testing.

15 juin 1990 30 AVF-VSR-AFNOR-89-16

APPENDIX F OF THE Ada STANDARD

APPENDIX D

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of the Ada Standard, and to certain allowed restrictions on
representation clauses. The implementation-dependent characteristics of the
Ent_Alsy_01, Version 4.2 compiler, as described in this Appendix, are provided
by STERIA and ALSYS. Unless specifically noted otherwise, references in this
appendix are to compiler documentation and not to this report. Implementation-
specific portions of the package STANDARD, which are not a part of Appen'x F,
are:

package STANDARD is

type SHORTINTEGER is range -128 .. 127;

type INTEGER is range -32_768 .. 32_767;

type LONGINTEGER is range -2147_483_648 .. 2_147_483_647;

type FLOAT is digits 6 range
-2#1.I 1111111111111111 1111#E+127

2#1.1i 11111111 11111111 1111#E+127;

type LONG FLOAT is digits 15 range
-2#l.!Ii11111111!1111i11111111111111111111111111111111_l1ll#EI023

2#i.11111111_1111_1111-1111 1111111111111111111111111111 lllI#EI023;

type DURATION is delta 2.0**(-14) range -86400.0 ..86_400.0;

end STANDARD;

15 juin 1990 31 AVF-VSR-AFNOR-89-16

steria +

Alsys Ada

ADA Cross Compiler for PMF

APPENDIX F

Version 4.2

Alsys S.A.
29, Avenue de Versailles

78170 La Celle St. Cloud, France

Alsys Inc.
1432 Main Street

Waltham, MA 02154, U.S.A.

Alsys Ltd
Partridge House, Newtown Road

Henley-on-Thames,
Oxfordshire RG9 IEN, U.K.

steria +

Copyright 1989 by Alsys

All ights reserved. No part of this document may be reproduced in
any form or by any means without permission in writing from Alsys.

Printed: November 1989

Alsys reserves the right to make changes in specifications and other information contained in this
publication without prior notice. Consult Alsys to determine whether such changes have been made.

steia+

TABLE OF CONTENTS

1 INTERFACING THE LANGUAGE ADA WITH OTHER
LANGUAGES

1.1 Calling External Subprograms, General Aspects 3
1.2 Calling Assembler Language Subprograms 3
1.3 Calling C Language Subprograms 3

2 IMPLEMENTATION-DEPENDENT PRAGMAS 3

3 IMPLEMENTATION-DEPENDENT ATTRIBUTES 3

4 PACKAGES SYSTEM AND STANDARD 3

5 TYPE REPRESENTATION CLAUSES 6
5.1 Enumeration Types 6
5.2 Integer Types 6
5.3 Floating Point Types 6
5.4 Fixed Point Types 6
5.5 Access Types 6
5.6 Task Types 7
5.7 Array Types 7
5.8 Record Types 7

6 ADDRESS CLAUSES 8
6.1 Address Clauses for Objects 8
6.2 Address Clauses for Program Units 8
6.3 Address Clauses for Entries 8

7 UNCHECKED CONVERSIONS 8

8 INPUT-OUTPUT CHARACTERISTICS 8
8. 1 Introduction 8
8.2 The FORM Parameter 9

Ent_AlsyOl Appendix F Version 4.2 iii

steria+

APPENDIX F

1 INTERFACING THE LANGUAGE ADA WITH OTHER LANGUAGES

Programs written in Ada can interface with external subprograms written in another language, by use of the
INTERFACE pragma. The format of the pragma is:

pragma INTERFACE (language name , Adasubprogram_name);

where the languagename can be any of

ASSEMBLER

C

The convention used for C parameter passing should be compatible with most C standard compilers.

The Adasubprogramname is the name by which the subprogram is known in Ada. For example, to call a
subprogram known as FASTFOURIER in Ada, written in C, the INTERFACE pragma is:

pragma INTERFACE (C, FASTFOURIER);

To relate the name used in Ada with the name used in the original language, the Alsys Ada compiler
converts this name to lower case and truncates it to 32 significant characters.

To avoid naming conflict with routines of the Alsys Ada Executive, external routine names should not
begin with the letters alsy (whether in lower or upper case or a combination of both).

To allow the use of non-Ada naming conventions, such as special characters, or case sensitivity, an
implementation-dependent pragma INTERFACE_NAME has been introduced:

pragma INTERFACE-NAME (Adasubprogram_nare, namestring);

so that, for example,

pragma INTERFACE-NAME (FASTFOURIER, "fft");

will associate the FASTFOURIER subprogram in Ada with the C subprogram fft.

The pragma INTERFACE-NAME may be used anywhere in an Ada program where INTERFACE is
allowed (see 113.9]). INTERFACENAME must occur after the corresponding pragma INTERFACE and
within the same declarative part.

Ent_Alsy_01 Appendix F Version 4.2

steria

For example:

package SAMPLE_LIB is
function SAMPLEDEVICE (X : INTEGER) return INTEGER;
function PROCESSSAMPLE (X : INTEGER) return INTEGER;

private
pragma INTERFACE (ASSEMBLER, SAMPLEDEVICE);
pragma INTERFACE (C, PROCESSSAMPLE);
pragma INTERFACE_NAME (SAMPLEDEVICE, "dev 10");
pragma INTERFACENAME (PROCESSSAMPLE, "sample");

end SAMPLELIB;

1.1 Calling External Subprograms, General Aspects

Subprogram parameters of external subprograms, in the Alsys implementation, are passed on the stack in
the reverse order of their declaration, that is, the first parameter is at the top of the stack. This is the
ordering of parameters for C.

If a subprogram is written in assembler it is the programmer's responsibility to follow this convention.

There are no checks for consistency between the subprogram parameters (as declared in Ada) and the
corresponding external subprogram parameters. As external subprograms have no notion of parameter
modes, parameters passed by reference are not protected from modification by the external subprogram. That
is, even if a parameter is declared to be only of mode in (and not in out) the value of the Ada actual
parameter can still be modified.

In the Alsys implementation of external subprogram interfaces, scalar and access parameters of mode in are
passed by value. All other parameters of mode in are passed by reference. Parameters of mode out or in
out are always passed by reference.

Values of the following types cannot be passed as parameters to an external subprogram:

Task types [9.1 9.21

Only scalar types are allowed for the result returned by an external subprogram.

The user should be very careful to establish the exact nature of the types of parameters to be passed. The bit
representations of these types can be different in crucial respects between the Alsys implementation and
other languages, or between different implementations of the same language. Stacked values must occupy
equal space in the two languages.

A discussion of data types in general terms is given below, before dealing with each of the languages
mentioned above.

Ent_Alsy 01 Appendix F Version 4.2 2

sterTa+

Integer Types

In the Alsys implementation, all integers are represented in two's complement form. Short integers are
stored as 8-bit numbers, integers as 16-bit numbers, and long integers as 32-bit numbers,

When an integer is passed by value, a copy of the integer value is pushed on the stack, with the sign
extended to satisfy the requirements of the external subprogram.

Boolean Types

Booleans are represented in the Alsys implementation as 8-bit values. FALSE is represented by all 8 bits
being set to 0, and TRUE is represented by all 8 bits being set to 1.

When a Boolean is passed by value, a copy is pushed on the stack. The Ada Boolean value occupies one
byte, and it is up to the user to make sure that the Boolean is in a suitable format for the external
subprogram.

Enumeration Types

Values of an enumeration type [3.5.1] without enumeration representation clause [13.3] are represented
internally as nonnegative integers representing the value's position in the list of enumeration literals
defining the type. The first literal in the list corresponds to an integer value of 0. There can be no more than
32767 elements in an enumeration type and, as the program representation of the position number of an
element starts at 0, the maximum value has to be 32766.

Values of enumeration types with less than 128 elements are represented as short (8 bit) integers, whereas
values of other enumeration types are represented as normal (16 bit) integers. When passed by value, the
copy of the integer is treated as if it were an unsigned integer, with any necessary extension to 64 bits to
satisfy the requirements of the external subprogram.

Consequently, the values of the predefined type CHARACTER are represented as 8-bit values in the range
0..127.

Real Types

Ada fixed point types [3.5.9, 3.5.10] are not supported as parameters or results of external subprograms.

Floating point values [3.5.7, 3.5.8], in the Alsys implementation, are stored on 32 bits (FLOAT) or stored
on 64 bits (LONGFLOAT). These two types conform to the conventions defined in the document A
Proposed Standard for Binary Floating-Point Arithmetic, IEEE P754, draft 10.0.

When passed by value, a copy is pushed on the stack, possibly extended to 64 bits according to the external
subprogram conventions.

Ent_AlsyOl Appendix F Version 4.2 3

ster~a +

Access Types

A value of an access type [3.81 has an internal representation as the 32-bit address of the underlying
designated object (an accessaddress, say, stored in an accessaddresslocation). When passed by value,
therefore, a copy of this 32-bit access address is pushed on the stack. If the type is passed by reference,
however, a 32-bit address pointer to the access-addresslocation is pushed on the stack (a double-indirect
address).

Array Types

In the Alsys implementation, arrays [3.6] are always passed by reference. The value pushed on the stack is
the address of the first element of the array. Multidimensional arrays are stored so that successive values of
the last index correspond to successive elements in store.

When an array is passed as a parameter to an external subprogram, the usual checks on the consistency of
array bounds between calling program and called subprogram are not enforced. This means that the
programmer must be responsible for ensuring that the subprogram keeps within the proper array bounds.

Values of the predefined type STRING [3.6.3] are a special case of arrays, and are passed in the same way.
The address of the first character in the string is pushed on the stack.

Record Types

Records [3.7] are always passed by reference in the Alsys implementation, pushing the address of the record
on the stack. Unlike arrays, however, the individual components of a record may be reordered internally by
the Alsys Ada Compiler. In addition, if a record contains discriminants or composite components of
dynamic size, the compiler may add implicit components to the record.

The exact internal structure of a record in memory cannot be known directly at the time of coding.

As direct assignment to a discriminant of a record is not allowed [3.7.11, a discriminant cannot be passed as
an actual parameter of mode out or in out. This restriction applies equally to Ada subprograms and to
external subprograms.

1.2 CallinO Assembler Language Subprograms

Scalar and access parameters of mode in are passed by value: the value of the parameter object is copied
and pushed on the stack. All other types of in parameters (arrays, records), and parameters of mode out
or in out are passed by reference: the address of the parameter object is pushed on the stack.

The results returned by functions are expected in the register DO if the result is a scalar, or in AO if the
result is an access value.

EntAlsy Ol Appendix F Version 4.2 4

steia +
LONGFLOAT values that are represented as 64 bits are returned in two registers: DO contains the low-
level word and DI contains the high-level word.

Integer Types

When passed by value to an assembler subprogram, values of type LONGINTEGER and INTEGER are
copied, and pushed on the stack without alteration. Values of type SHORTINTEGER are copied and
pushed on the stack as the most significant (leftmost) 8 bits of a 16-bit field; the low-order 8 bits may have
any values.

When passed by reference, in each case the value is not altered and a 32-bit address pointer is pushed on the
stack.

Boolean Types

Boolean values are represented as 8 bits in Ada (FALSE cCrresponds to 2#00000000#, and TRUE to
2#1111 111#). When passed by value to an assembler subprogram, values of type BOOLEAN arc copied,
and pushed on the stack as the most significant (leftmost) 8 bits of a 16-bit field; the low-order 8 bits may
have any values.
When passed by reference, in each case the value is not altered and a 32-bit address pointer is pushed on the
stack.

Enumeration Types

When passed by value to an assembler subprogram, values of enumeration types represented by 16 bits are
copied, and pushed on the stack without alteration. Values of types represented by 8 bits are copied and
pushed on the stack as the most significant (leftmost) 8 bits of a 16-bit field; the low-order 8 bits may have
any values.
When passed by reference, in each case the value is not altered and a 32-bit address pointer is pushed on the
stack.

Real Types

When passed by value to an assembler subprogram, values of types FLOAT and LONGFLOAT are copied,
and pushed on the stack without alteration. When passed by reference, in each case the value is not altered
and a 32-bit address pointer is pushed on the stack.

Access, Array, and Record Types

See Calling External Subprograms, General Aspects, above

Ent_AlsyOl Appendix F Version 4.2 5

steria +
1.3 Calling C Language Subprograms

For an C external subprogram, scalar and access parameters of mode in are passed by value: the value of
the parameter object is copied and pushed on the stack. All other types of in parameters (arrays, records)
and parameters of mode out or in out are passed by reference: the address of the parameter object is
pushed on the stack.

Integer Types

When passed by value to a C external subprogram, all integer values (3.5.4] are extended to 32 bits to
conform to C parameter passing conventions. Alsys Ada LONGINTEGER (32 bit) values are pushed on
the stack unchanged: INTEGER (16 bit) and SHORTINTEGER (8 bit) values are sign extended to 32 bits.

Integers passed by reference, however, are not changed: the values are not sign-extended to 32 bits. The
value pushed on the stack is the 32 bit address of the appropriate integer.

In passing integers by reference, therefore, it should be recognized that an Ada SHORTINTEGER has no
representation in C, while Ada INTEGER corresponds to C short integer, and Ada LONGINTEGER
corresponds to C integer.

If a SHORTINTEGER is passed by reference from an Alsys Ada program then the C external subprogram
must treat the reference as being a pointer to a type char, and not as a pointer to short.

Ada SHORTINTEGER has no representation in C, while Ada INTEGER corresponds to C short integer,
and Ada LONGINTEGER corresponds to C integer.

Boolean Types

There are no Boolean types in C, and the Ada representation does not correspond to anything in C. The
?OS attribute can be used to convert the boolean to an integer.

Enumeration Types

W..en an enumeration value is passed by an Alsys Ada program to a C external subprogram, the underlying
integer value is passed according to the convention given above for integer values. When passed by value, a
copy is pushed on the stack, automatically extended to 32 bits, and when passed by reference, a 32 bit
address pointer is pushed on the stack.

Enumeration values in C are represented in the same general way as in Ada, in that the values are always
expressed as 16 bit integers (no matter how many elements). When pushed on the stack as parameters, the
values are extended to 32 bits, with the high order 16 bits disregarded. The automatic extension to 32 bits
means that enumeration values, whether stored in 8 bits or in 16 bits in Ada, are in the correct form for C.

When passed by reference, however, the original values are not extended, therefore 8 bit enumeration objects
have no representation in C.

However, the Ada predefined type CHARACTER corresponds directly to the type char in C, whether
passed by value or by reference.

Ent AlsyOl Appendix F Version 4.2 0

steria +

Real Types

C uses the IEEE P754 floating-point conventions for both 32 bit and 64 bit floating point numbers. All 32
bit values are automatically extended to 64 bit values when passed as parameters.

Floating point parameters can be passed either by value or by reference, with the automatic extension of 32
bit numbers with passing by value.

Access Types

Ada access types have no meaning in C. An object of the
designated type can, however, be passed to a C external
subprogram, subject to the rules for that type.

Array Types

See Calling External Subprograms. General Aspects, above.

Alsys Ada strings do not end with an ,ASCII null character (M), as required in C. The programmer must
therefore append a null character to the end of a string, if the string is to be passed to a C external
subprogram. It might also be necessary to remove the excess character on returning from the subprogram.

Record Types

See Calling External Subprograms, General Aspects, above.

EntAlsyOl Appendix F Version 4.2 7

steria

2 IMPLEMENTATION-DEPENDENT PRAGMAS

Pragma INTERFACE

This pragma has been described in detail in the previous section.

Pragma IMPROVE and Pragma PACK

These pragmas are discussed in detail in sections 5.7 and 5.8 on representation clauses for arrays and records.

Note that packing of record types is done systematically by the compiler. The pragma pack will affect the
mapping of each component onto storage. Each component will be allocated on the logical size of the
subtype.

Example:

type R is
record

C1 : BOOLEAN; C2: INTEGER range I .. 10;
end record;

pragma PACK(R);
-- the attribute R'SIZE returns 5

Pragma INDENT

This pragma is only used with the Alsys Reformatter; this tool offers the functionalities of a pretty-printer
in an Ada environment.

The pragma is placed in the source file and interpreted by the Reformatter.

pragma INDENT(OFF)

causes the Reformatter not to modify the source lines after this pragma.

pragma INDENT(ON)

causes the Reformatter to resume its action after this pragma.

Pragmas not implemented

The following pragmas are not implemented:

CONTROLLED
MEMORY SIZE
OPTIMIZE
STORAGEUNIT
SYSTEMNAME

EntAlsy_01 Appendix F Version 4.2 3

steria +

3 IMPLEMENTATION-DEPENDENT ATTRIBUTES

In addition to the Representation Attributes of [13.7.21 and (13.7.3], there are four attributes which are
listed under F.5 below, for use in record representation clauses.

Limitations on the use of the attribute ADDRESS

The attribute ADDRESS is implemented for all prefixes that have meaningful addresses. The following
entities do not have meaningful addresses and will therefore cause a compilation error if used as prefix to
ADDRESS:

A constant that is implemented as an immediate value i.e., does not have any space allocated

for it.

A package specification that is not a library unit.

A package body that is not a library unit or a subunit.

Ent_AlsyOl Appendix F Version 4.2 9

steria +
4 PACKAGES SYSTEM AND STANDARD

This section contains information on two predefined library packages:

a complete listing of the specification of the package SYSTEM

a list of the implementation-dependent declarations in the package STANDARD.

The package SYSTEM

The specification of the predefined library package SYSTEM is as follows:

package SYSTEM is

-- Standard Ada defutitions

type NAME is (MC680XO);
SYSTEMNAME : constant NAME := MC680XO;
STORAGEUNIT : constant := 8 ;
MEMORY_SIZE : constant := 2**32
MIN_INT : constant :=-(2**31);
MAXINT : constant := 2**31-1
MAX_DIGITS : constant 15;
MAXMANTISSA : constant := 31;
FINEDELTA : constant := 2#1.0#e-31
TICK : constant := 1.0 ; -- unused

-- The real basic clock cycle depends on the current hardware
-- and corresponding board support package.

type ADDRESS is private ;

NULLADDRESS : constant ADDRESS;

subtype PRIORITY is INTEGER range 1..24; -- 1..248 for VRTX

- Address arithmetic

function TOLONGINTEGER (LEFT: ADDRESS)
return LONG INTEGER;

function TOADDRESS (LEFT : LONGINTEGER)
return ADDRESS ;

function "+" (LEFT: LONGINTEGER; RIGHT: ADDRESS)
return ADDRESS ;

function "+" (LEFT : ADDRESS ; RIGHT : LONG_INTEGER)
return ADDRESS ;

function "-" (LEFT: ADDRESS ; RIGHT: ADDRESS)
return LONG INTEGER

function "-" (LEFT: ADDRESS ; RIGHT: LONGINTEGER)
return ADDRESS ;

EntAlsyOl Appendix F Version 4.2 10

sterTa +

function "mod" (LEFT: ADDRESS ; RIGHT: POSITIVE)
return NATURAL;

function "<" (LEFT: ADDRESS ; RIGHT: ADDRESS)
return BOOLEAN;

function "<=" (LEFT: ADDRESS ; RIGHT: ADDRESS)
return BOOLEAN;

function ">" (LEFT: ADDRESS ; RIGHT: ADDRESS)
return BOOLEAN;

function ">=" (LEFT: ADDRESS ; RIGHT: ADDRESS)
return BOOLEAN;

function ISNULL (LEFT: ADDRESS)
return BOOLEAN;

function WORDALIGNED (LEFT: ADDRESS)
return BOOLEAN;

function ROUND (LEFT: ADDRESS)
return ADDRESS ;

-- Returns the given address rounded to the next lower even value

procedure COPY (FROM: ADDRESS ;TO: ADDRESS ;SIZE: NATURAL);
-- Copies SIZE storage units. The result is undefined if the two areas
-- overlap.

-- Direct memory access

generic
type ELEMENTTYPE is private;

function FETCH (FROM : ADDRESS) return ELEMENT_TYPE;
-- Returns the bit pattern stored at address FROM, as a value of the
-- specified ELEMENTTYPE. This function is not implemented
-- for unconstrained array types.

generic
type ELEMENTTYPE is private;

procedure STORE (INTO: ADDRESS ; OBJECT : ELEMENTTYPE);
-- Stores the bit pattern representing the value of OBJECT, at
-- address INTO. This function is not implemented for
-- unconstrained array types.

end SYSTEM;

Ent_Alsy_Ol Appendix F Version 4.2 11

steria

The package STANDARD

The following are the implementation-dependent aspects of the package STANDARD:

type SHORT INTEGER is range -(2**7).. (2**7 -1);
type INTEGER is range -(2**15) .. (2**15 -1);
type LONG-INTEGER is range -(2**31) .. (2"*31 -1);

type FLOAT is digits 6 range
-(2.0 - 2.0**(-23)) * 2.0"*127..
+(2.0 - 2.0**(-23)) * 2.0** 127 ;

type LONGFLOAT is digits 15 range
-(2.0 - 2.0**(-51)) * 2.0**1023..
+(2.0- 2.0**(-51)) * 2.0** 1023;

type DURATION is delta 2.0**(-14) range -86_400.0 .. 86_400.0;

EntAlsyOl Appendix F Version 4.2 12

steria +
5 TYPE REPRESENTATION CLAUSES

The aim of this section is to explain how objects are represented and allocated by the Alsys Ada compiler
for MC68OX0 machines and how it is possible to control this using representation clauses.

The representation of an object is closely connected with its type. For this reason this section addresses
successively the representation of enumeratiti, integer, floating point, fixed point, access, task, array and
record types. For each class of type the representation of the corresponding objects is descii w.

Except in the case of array and record types, the description for each class of type is independent of the
others. To understand the representation of an array type it is necessary to understand first the representation
of its components. The same rule applies to record types.

Apart from implementation defined pragmas, Ada provides three means to control the size of objects:

a (predefined) pragma PACK, when the object is an array, an array component, a record or a
record component

a record representation clause, when the object is a record or a record component

a size specification, in any case.

For each class of types the effect of a size specification alone is described. Interference between size
specifications, packing and record representation clauses is described under array and record types.

5.1 Enumeration Types

Internal codes of enumeration literals

When no enumeration representation clause applies to an enumeration type, the internal code associated
with an enumeration literal is the position number of the enumeration literal. Then, for an enumeration
type with n elements, the internal codes are the integers 0, 1, 2, .. , n-i.

An enumeration representation clause can be provided to specify the value of each internal code as described
in RM 13.3. The Alsys compiler fully implements enumeration representation clauses.

As internal codes must be machine integers the internal codes provided by an enumeration representation

clause must be in the range -2 .. 2 3- 1.

Encoding of enumeration values

An enumeration value is always represented by its internal code in the program generated by the compiler.

When an enumeration type is not a boolean type or is a boolean type with an enumeration representation
clause, binary code is used to represent internal codes. Negative codes are then represented using two's
complement.

When a boolean type has no enumeration representation clause, the internal code 0 is represented by a
succession of Os and the internal code I is represented by a succession of Is. The length of this pattern of Os
or of Is is the size of the boolean value.

Ent_AlsyOl Appendix F Version 4.2 13

steria +

Minimum size of an enumeration subtype

The minimum size of an enumeration subtype is the minimum number of bits that is necessary for
representing the internal codes of the subtype values in normal binary form.

For a static subtype, if it has a null range its minimum size is 1. Otherwise, if m and M are the values of
the internal codes associated with the first and last enumeration values of the subtype, then its minimum
size L is determined as follows. For m >= 0, L is the smallest positive integer such that M <= 2 -1. For m

L-1 L-i
< 0, L is the smallest positive integer such that -2 <= m and M <= 2 -1.

type COLOR is (GREEN, BLACK, WHITE, RED, BLUE, YELLOW);
-- The minimum size of COLOR is 3 bits.

subtype BLACKANDWHITE is COLOR range BLACK .. WHITE;
-- The minimum size of BLACKANDWHITE is 2 bits.

subtype BLACK ORWHITE is BLACKANDWHITE range X .. X;
-- Assuming that X is not static, the minimum size of BLACKORWHITE is
-- 2 bits (the same as the minimum size of its type mark BLACKANDWHITE).

Size of an enumeration subtype

When no size specification is applied to an enumeration type or first named subtype, the objects of that
type or first named subtype are represented as signed machine integers. The machine provides 8, 16 and 32
bit integers, and the compiler selects automatically the smallest signed machine integer which can hold each
of the internal codes of the enumeration type (or subtype). The size of the enumeration type and of any of
its subtypes is thus 8, 16 or 32 bits.

When a size specification is applied to an enumeration type, this enumeration type and each of its subtypes
has the size specified by the length clause. The same rule applies to a first named subtype. The size
specification must of course specify a value greater than or equal to the minimum size of the type or
subtype to which it applies:

Eni_Alsy_01 Appendix F Version 4.2 14

sterTa
type EXTENDED is

(-- The usual American ASCII characters.
NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,
BS, HT, LF, VT, FF, CR, SO, SI,
DLE, DC1, DC2, DC3, DC4, NAK, SYN, ETB,
CAN, EM, SUB, ESC, FS, GS, RS, US,
'(')', 9'* f *

'02, I '5 '6', 7,

98', '9-1 ; < ' 11' 1 T

'A', 'B', 'C', 'D'. 'E', 'F', 'G',
'Hr, , ,Ir, 'Kr, ILI, 'M ', rN', 'O',

'PI', ' , 'R', IS', 7, ' , 'V', rW ',
rx', 'Y', IZ, IV' %, 11^' 1

'I a', 'b', rc', 'd', 'e', If, 'g',
'h', 'i', Wj, ' , , m , 'n', 0o',
'p , 'q', r', 's', t', 'u', 'v , 'w ,
'x', 'Y'. 'z, '{, 1'' , DEL,

-- Extended characters
LEFTARROW,
RIGHTARROW,
UPPERARROW,
LOWERARROW,
UPPERLEFT_CORNER,
UPPERRIGHTCORNER,
LOWERRIGHTCORNER,
LOWERLEFTCORNER

for EXTENDED'SIZE use 8;
-- The size of type EXTENDED will be one byte. Its objects will be represented
-- as unsigned 8 bit integers.

The Alsys compiler fully implements size specifications. Nevertheless, as enumeration values are coded
using integers, the specified length cannot be greater than 32 bits.

Size of the objects of an enumeration subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an object of an
enumeration subtype has the same size as its subtype.

Alignment of an enumeration subtype

An enumeration subtype is byte aligned if the size of the subtype is less than or equal to 8 bits, it is
otherwise even byte aligned.

Address of an object of an enumeration subtype

Provided its alignment is not constrained by a record representation clause or a pragma PACK, the address
of an object of an enumeration subtype is even when its subtype is even byte aligned.

EntAlsy Ol Appendix F Version 4.2 15

steria +
5.2 Integer Types

Predefined integer types

There are three predefined integer types in the Alsys implementation for MC68OX0 machines:

type SHORTINTEGER is range -2**07 .. 2**07-1;
type INTEGER is range -2**15 .. 2**15-1;
type LONGINTEGER is range -2**31 .. 2**3- 1;

Selection of the parent of an integer type

An integer type declared by a declaration of the form:

type T is range L .. R;

is implicitly derived from a predefined integer type. The compiler automatically selects the predefined
integer type whose range is the shortest that contains the values L to R inclusive.

Encoding of integer values

Binary code is used to represent integer values. Negative numbers are represented using two's complement.

Minimum size of an integer subtype

The minimum size of an integer subtype is the minimum number of bits that is necessary for representing
the internal codes of the subtype values in normal binary form.

For a static subtype, if it has a null range its minimum size is 1. Otherwise, if m and M are the lower and
upper bounds of the subtype, then its minimum size L is determined as follows. For m >= 0, L is the
smallest positive integer such that M <= 2L1. For m < 0, L is the smallest positive integer that -2 L-I <=

m and M <= 2L _1.

subtype S is INTEGER range 0.. 7;
-- The minimum size of S is 3 bits.

subtype D is S range X .. Y;
-- Assuming that X and Y are not static, the minimum size of
-- D is 3 bits (the same as the minimum size of its type mark S).

Size of an integer subtype

The sizes of the predefined integer types SHORTINTEGER, INTEGER and LONGINTEGER are
respectively 8, 16 and 32 bits.

Ent Alsy_Ol Appendix F Version 4.2 16

steria+

When no size specification is applied to an integer type or to its first named subtype (if any), its size and
the size of any of its subtypes is the size of the predefined type from which it derives, directly or indirectly.
For example:

type S is range 80 .. 100;
-- S is derived from SHORT_INTEGER, its size is 8 bits.

type I is range 0 .. 255;
-- J is derived from INTEGER, its size is 16 bits.

type N is new J range 80 .. 100;
-- N is indirectly derived from INTEGER, its size is 16 bits.

When a size specification is applied to an integer type, this integer type and each of its subtypes has the
size specified by the length clause. The same rule applies to a first named subtype. The size specification
must of course specify a value greater than or equal to the minimum size of the type or subtype to which it
applies:

type S is range 80 .. 100;
for S'SIZE use 32;
-- S is derived from SHORTINTEGER, but its size is 32 bits
-- because of the size specification.

type J is range 0 .. 255;
for J'SIZE use 8;
-- J is derived from INTEGER, but its size is 8 bits because
-- of the size specification.

type N is new J range 80 .. 100;
-- N is indirectly derived from INTEGER, but its size is 8 bits
-- because N inherits the size specification of J.

The Alsys compiler fully implements size specifications. Nevertheless, as integers are implemented using
machine integers, the specified length cannot be greater than 32 bits.

Size of the objects of an integer subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an object of an
integer subtype has the same size as its subtype.

Alignment or an integer subtype

An integer subtype is byte aligned if the size of the subtype is less than or equal to 8 bits, it is otherwise
even byte aligned.

Address of an object of an integer subtype

Provided its alignment is not constrained by a record representation clause or a pragma PACK, the address
of an object of an integer subtype is even when its subtype is even byte aligned.

Em_AlsyOl Appendix F Version 4.2 17

steria +
5.3 Floating Point Types

Predefined floating point types

There are two predefined floating point types in the Alsys implementation for MC680X0 machines:

type FLOAT is
digits 6 range -(2.0 - 2.0**(-23))*2.0** 127 .. (2.0 - 2.0**(-23))*2.0* 127;

type LONGFLOAT is
digits 15 range -(2.0 - 2.0**(-5 1))*2.0"* 1023 .. (2.0 - 2.0**(-51))*2.0"* 1023;

Selection of the parent of a floating point type

A floating point type declared by a declaration of the form:

type T is digits D [range L .. R];

is implicitly derived from a predefined floating point type. The compiler automatically selects the smallest
predefined floating point type whose number of digits is greater than or equal to D and which contains the
values L to R inclusive.

Encoding of floating point values

In the program generated by the compiler, floating point values are represented using the IEEE standard
formats for single and double floats.

The values of the predefined type FLOAT are represented using the single float format. The values of the
predefined type LONGFLOAT are represented using the double float format. The values of any other
floating point type are represented in the same way as the values of the predefined type from which it
derives, directly or indirectly.

Minimum size of a floating point subtype

The minimum size of a floating point subtype is 32 bits if its base type is FLOAT or a type derived from
FLOAT; it is 64 bits if its base type is LONGFLOAT or a type derived from LONGFLOAT.

Size of a floating point subtype

The sizes of the predefined floating point types FLOAT and LONGFLOAT are respectively 32 and 64 bits.

The size of a floating point type and the size of any of its subtypes is the size of the predefined type from
which it derives directly or indirectly.

The only size that can be specified for a floating point type or first named subtype using a size specification
is its usual size (32 or 64 bits).

EntAlsyOl Appendix F Version 4.2 18

steria

Size of the objects of a floating point subtype

An object of a floating point subtype has the same size as its subtype.

Alignment of a floating poat subtype

A floating point subtype is always even byte aligned.

Address of an object of a floating point subtype

Provided its alignment is not constrained by a record representation clause or a pragma PACK, the address
of an object of a floating point subtype is always even, since its subtype is even byte aligned.

5.4 Fixed Point Types

Small of a fixed point type

If no specification of small applies to a fixed point type, then the value of small is determined by the value
of delta as defined by RM 3.5.9.

A specificaion of small can be used to impose a value of small. The value of small is required to be a
power of two.

Predefined fixed point types

To implement fixed point types, the Alsys compiler for MC68OX0 machines uses a set of anonymous
predefined types of the form:

type SHORT FIXED is delta D range (-2**07-1)*S .. 2"*07S;
for SHORTFIXED'SMALL use S;

type FIXED is delta D range (-2**15-1)*S 2"*15"S;
for FIXED'SMALL use S;

type LONG FIXED is delta D range (-2**31-1)*S .. 2"'31S;
for LONG -FIXED'SMALL use S;

where D is any real value and S any power of two less than or equal to D.

EntAlsy_Ol Appendix F Version 4.2 19

sterTa +

Selection of the parent of a fixed point type

A fixed point type declared by a declaration of the form:

type T is delta D range L .. R;

possibly with a small specification:

for TSMALL use S;

is implicitly derived from a predefined fixed point type. The compiler automatically selects the predefined
fixed point type whose small and delta are the same as the small and delta of T and whose range is the
shortest that includes the values L to R inclusive.

Encoding of fixed point values

In the program generated by the compiler, a safe value V of a fixed point subtype F is represented as the
integer

V / FBASE'SMALL

Minimum size of a fixed point subtype

The minimum size of a fixed point subtype is the minimum number of binary digits that is necessary for
representing the values of the range of the subtype using the small of the base type.

For a static subtype, if it has a null range its minimum size is 1. Otherwise, s and S being the bounds of
the subtype, if i and I are the integer representations of m and M, the smallest and the greatest model
numbers of the base type such that s < m and M < S, then the minimum size L is determined as follows.

LFor i >= 0, L is the smallest positive integer such that I <= 2 -1. For i < 0, L is the smallest positive

integer such that -2L i <= i and I <= 2L 1.

type F is delta 2.0 range 0.0 .. 500.0;
-- The minimum size of F is 8 bits.

subtype S is F delta 16.0 range 0.0 .. 250.0;
-- The minimum size of S is 7 bits.

subtype D is S range X .. Y;
-- Assuming that X and Y are not static, the minimum size of D is 7 bits
-- (the same as the minimum size of its type mark S).

Size of a fixed point subtype

The sizes of the predefined fixed point types SHORTFIXED, FIXED and LONGFIXED are respectively
8, 16 and 32 bits.

Ent_AlsyOl Appendix F Version 4.2 20

steria

When no size specification is applied to a fixed point type or to its first named subtype, its size and the size
of any of its subtypes is the size of the predefined type from which it derives directly or indirectly. For
example:

type S is delta 0.01 range 0.8 .. 1.0;
-- S is derived from an 8 bit predefined fixed type, its size is 8 bits.

type F is delta 0.01 range 0.0 .. 2.0;
-- F is derived from a 16 bit predefined fixed type, its size is 16 bits.

type N is new F range 0.8 .. 1.0;
-- N is indirectly derived from a 16 bit predefined fixed type, its size is 16 bits.

When a size specification is applied to a fixed point type, this fixed point type and each of its subtypes has
the size specified by the length clause. The same rule applies to a first named subtype. The size
specification must of course specify a value greater than or equal to the minimum size of the type or
subtype to which it applies:

type S is delta 0.01 range 0.8 .. 1.0;
for S'SIZE use 32;

S is derived from an 8 bit predefined fixed type, but its size is 32 bits
-- because of the size specification.

type F is delta 0.01 range 0.0 .. 2.0;
for FSIZE use 8;
-- F is derived from a 16 bit predefined fixed type, but its size is 8 bits
-- because of the size specification.

type N is new F range 0.8 .. 1.0;
-- N is indirectly derived from a 16 bit predefined fixed type, but its size is

8 bits because N inherits the size specification of F.

The Alsys compiler fully implements size specifications. Nevertheless, as fixed point objects are
represented using machine integers, the specified length cannot be greater than 32 bits.

Size of the objects of a fixed point subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an object of a fixed
point type has the same size as its subtype.

Alignment of a fixed point subtype

A fixed point subtype is byte aligned if its size is less than or equal to 8 bits, and is otherwise even byte
aligned.

Address of an object of a fixed point subtype

Provided its alignment is not constrained by a record representation clause or a pragma PACK, the address
of an object of a fixed point subtype is even when its subtype is even byte aligned.

Ent_AlsyOl Appendix F Version 4.2 21

steria+
5.5 Access Types

Collection Size

When no specification of collection size applies to an access type, no storage space is reserved for its
collection, and the value of the attribute STORAGE-SIZE is then 0.

As described in RM 13.2, a specification of collection size can be provided in order to reserve storage space
for the collection of an access type. The Aisys compiler fully implements this kind of specification.

Encoding of access values.

Access values are machine addresses.

Minimum size of an access subtype

The minimum size of an access subtype is 32 bits.

Size of an access subtype

The size of an access subtype is 32 bits, the same as its minimum size.

The only size that can be specified for an access type using a size specification is its usual size (32 bits).

Size of an object of an access subtype

An object of an access subtype has the same size as its subtype, thus an object of an access subtype is
always 32 bits long.

Alignment of an access subtype.

An access subtype is always even byte aligned.

Address of an object of an access subtype

Provided its alignment is not constrained by a record representation clause or a pragma PACK, the address
of an object of an access subtype is always even, since its subtype is even byte aligned.

Ent_Alsy_Ol Appendix F Version 4.2 22

steria
5.6 Task Types

Storage for a task activation

A stack is allocated to each Ada task for the duration of its lifetime. Stacks are allocated on the heap.

A length clause STORAGE_SIZE may be given for a task. It defines the stack size for execution of the
task. If the specified size is too small, an exception STORAGEERROR will be raised at runtime.

Encoding of task values.

Encoding of a task value is not described here.

Minimum size of a task subtype

The minimum size of a task subtype is 32 bits.

Size of a task subtype

The size of a task subtype is 32 bits, the same as its minimum size.

A size specification has no effect on a task type. The only size that can be specified using such a length
clause is its minimum size.

Size of the objects of a task subtype

An object of a task subtype has the same size as its subtype. Thus an object of a task subtype is always 32
bits long.

Alignment of a task subtype

A task subtype is always even byte aligned.

Address of an object of a task subtype

Provided its alignment is not constrained by a record representation clause, the address of an object of a task
subtype is always even, since its subtype is even byte aligned.

Ent_Alsy_Ol Appendix F Version 4.2 23

sterTa
5.7 Array Types

Layout of an array

Each array is allocated in a contiguous area of storage units. All the components have the same size. A gap
may exist between two consecutive components (and after the last one). All the gaps have the same size.

Component Gap Component Gap Component Gap

COMPONENTS

If the array is not packed, the size of the components is the size of the subtype of the components:

type A is array (I .. 8) of BOOLEAN;
-- The size of the components of A is the size of the type BOOLEAN: 8 bits.

type DECIMALDIGIT is range 0.. 9;
for DECIMALDIGIT'SIZE use 4;
type BINARYCODEDDECIMAL is

array (INTEGER range <>) of DECIMAL_DIGIT;
-- The size of the type DECIMALDIGIT is 4 bits. Thus in an array of
-- type BINARYCODEDDECIMAL each component will be represented on
-- 4 bits as in the usual BCD representation.

If the array is packed and its components are neither records nor arrays, the size of the components is the
minimum size of the subtype of the components:

type A is array (I .. 8) of BOOLEAN;
pragma PACK(A);
-- The size of the components of A is the minimum size of the type BOOLEAN:
-I 1 bit.

type DECIMALDIGIT is range 0.. 9;
for DECIMALDIGITSIZE use 32;
type BINARYCODEDDECIMAL is

array (INTEGER range <>) of DECIMAL_E -T;
pragma PACK(BINARYCODEDDECIMAL);
-- The size of the type DECIMALDIGIT is 32 bits, but, as
-- BINARYCODEDDECIMAL is packed, each component of an array of this
-- type will be represented on 4 bits as in the usual BCD representation.

Packing the array has no effect on the size of the components when the components are records or arrays.

Ent_AlsyOl Appendix F Version 4.2 24

stera4

GAPS

If the components are records or arrays, no size specification applies to the subtype of the components and
the array is not packed, then the compiler may choose a representation with a gap afvcr each component; the
aim of the insertion of such.gaps is to optimize access to the array components and to their
subcomponents. The size of the gap is chosen so that the relative displacement of consecutive components
is a multiple of the alignment of the subtype of the components. This strategy allows each component and
subcomponent to have an address consistent with the alignment of its subtype:

type R is
record

K : INTEGER; -- INTEGER is even byte aligned.
B : BOOLEAN; -- BOOLEAN is byte aligned.

end record;
-- Record type R is even byte aligned. Its size is 24 bits.

type A is array (1 .. 10) of R;
-- A gap of one byte is inserted after each romponent in order to respect the
-- alignment of type R. The size of an array of type A will be 320 bits.

S...................

Component Gap Component Gap Component Gap

Array of type A. each subcomponent K has an even offset.

If a size specification applies to the subtype of the components or if the array is packed, no gaps are
inserted:

type R is
record

K : INTEGER;
B: BOOLEAN;

end record;

type A is array (1 .. 10) of R;
pragma PACK(A);
-- There is no gap in an array of type A because
-- A is packed.
-- The size of an object of type A will be 240 bits.

type NR is new R;
for NR'SIZE use 24;

Ent_AlsyOl Appendix F Version 4.2 25

steria
type B is array (1 .. 10) of NR;
-- There is no gap in an array of type B because
-- NR has a size specification.
-- The size of an object of type B will be 240 bits.

Component Component Component

Array of type A or B: a subcomponent K can have an odd offset,

Size of an array subtype

The size of an array subtype is obtained by multiplying the number of its components by the sum of the
size of the components and the size of the gaps (if any). If the subtype is unconstrained, the maximum
number of components is considered.

The size of an array subtype cannot be computed at compile time

if it has non-static constraints or is an unconstrained array type with non-static index subtypes

(because the number of components can then only be determined at run time).

if the components are records or arrays and their constraints or the constraints of their
subcomponents (if any) are not static (because the size of the components and the size of the
gaps can then only be determined at run time).

As has been indicated above, the effect of a pragma PACK on an array type is to suppress the gaps and to
reduce the size of the components. The cons-,quence of packing an array type is thus to reduce its size.

If the components of an array are records or arrays and their constraints or the constraints of their
subcomponents (if any) are not static, the compiler ignores any pragma PACK applied to the array type but
issues a warning message. Apart from this limitation, array packing is fully implemented by the Alsys
compiler,

A size specification applied to an array type or first named subtype has no effect. The only size that can be
specified using such a length clause is its usual size. Nevertheless, such a length clause can be useful to
verify that the layout of an array is as expected by the application.

Size of the objects of an array subtype

The size of an object of an array subtype is always equal to the size of the subtype of the object.

Ent_Alsy_Ol Appendix F Version 4.2 26

stera +

Alignment of an array subtype

If no pragma PACK applies to an array subtype and no size specification applies to its components, the
array subtype is even byte aligned if the subtype of its components is even byte aligned. Otherwise it is
byte aligned.

If a pragma PACK applies to an array subtype or if a size specification applies to its components (so that
there are no gaps), the alignment of the array subtype is as given in the following table:

relative displacement of components

even number odd number not a whole

of bytes of bytes number of bytes

even byte even byte byte bit

Component
subtype

as ubtyme byte byte byte bitaiignmenit

bit bit bit bit

Address of an object of an array subtype

Provided its alignment is not constrained by a record representation clause, the address of an object of an
array subtype is even when its subtype is even byte aligned.

5.8 Record Types

Layout of a record

Each record is allocated in a contiguous area of storage units. The size of a record component depends on its
type. Gaps may exist between some components.

The positions and the sizes of the components of a record type object can be controlled using a record
representation clause as described in RM 13.4. In the Alsys implementation for MC680X0 machines there
is no restriction on the position that can be specified for a component of a record. If a component is not a
record or an array, its size can be any size from the minimum size to the size of its subtype. If a component
is a record or an array, its size must be the size of its subtype:

type INTERRUPTMASK is array (0 .. 2) of BOOLEAN;
pragma PACK(INTERRUPTMASK);
-- The size of INTERRUPT-MASK is 3 bits.

type CONDITIONCODE is 0.. 1;
-- The size of CONDITIONCODE is 8 bits, its minimum size is 1 bit.

Ent Alsy_Ol Appendix F Version 4.2 27

steria +
type STATUSBIT is new BOOLEAN;
for STATUSBITSIZE use 1;
-- The size and the minimum size of STATUSBIT are 1 bit.

SYSTEM constant 0;
USER : constant := 1;

type STATUSREGISTER is
record

T: STATUS-BIT; - Trace
S: STATUS-BIT; - Supervisor
I: INTERRUPTMASK; - Interrupt mask
X: CONDITIONCODE; - Extend
N : CONDITIONCODE; - Negative
Z: CONDITIONCODE; - Zero
V : CONDITIONCODE; - Overflow
C: CONDITIONCODE; - Carry

end record;
-- This type can be used to map the status register of a MC68000 processor:

for STATUSREGISTER use
record at mod 2;

T at SYSTEM range 0.. 0;
S at SYSTEM range 2.. 2;
I at SYSTEM range 5 .. 7;
X atUSER range 3 .. 3;
N at USER range 4 .. 4;
Z atUSER range 5 .. 5;
V at USER range 6 .. 6;
C at USER range 7 .. 7;

end record;

A record representation clause need not specify the position and the size for every component.

If no component clause applies to a component of a record, its size is the size of its subtype. Its position is
chosen by the compiler so as to optimize access to the components of the record: the offset of the
component is chosen as a multiple of 8 bits if the objects of the component subtype are usually byte
aligned, but a multiple of 16 bits if these objects are usually even byte aligned. Moreover, the compiler
chooses the position of the component so as to reduce the number of gaps and thus the size of the record
objec Ls.

Because of these optimizations, there is no connection between the order of the components in a record type
declaration and the positions chosen by the compiler for the components in a record object.

In the current version, it is not possible to apply a record representation clause to a derived type. The same
storage representation is used for an object of a derived type as for an object of the parent type.

Indirect components

If the offset of a component cannot be computed at compile time, this offset is stored in the record objects
at run time and used to access the component. Such a component is said to be indirect while other
components are said to be direct:

EntAlsyOl Appendix F Version 4.2 28

sterTa
Beginning of the record

DIRECT Compile time offset

Compile time offset
OFFSET

Run time offset

INDIRECT

A direct and an indirect component

If a record component is a record or an array, the size of its subtype may be evaluated at run time and may

even depend on the discriminants of the record. We will call these components dynamic components:

type DEVICE is (SCREEN, PRINTER);

type COLOR is (GREEN, RED, BLUE);

type SERIE is array (POSITIVE range <>) of INTEGER;

type GRAPH (L: NATURAL) is
record

X : SERIE(I L); -- The size of X depends on L
Y SERIE(I L); - The size of Y depends on L

end record;

Q : POSITIVE;

type PICTURE (N : NATURAL; D : DEVICE) is
record

F: GRAPH(N); -- The size of F depends on N
S : GRAPH(Q); -- The size of S depends on Q
case D is

when SCREEN =>
C : COLOUR;

when PRINTER =>
null;

end case;
end record;

EntAlsy_01 Appendix F Version 4.2 29

steria +
Any component placed after a dynamic component has an offset which cannot be evaluated at compile time
and is thus indirect. In order to minimize the number of indirect components, the compiler groups the
dynamic components together and places them at the end of the record:

D = SCREEN D = PRINTER

N = 2 N = 1

Beginning of the record
S OFFSET Compile time offsets S OFFSET

F OFFSET F OFFSET

N T
D D

C Run time offsets

F I {F

SS

The record type PICTURE: F and S are placed at the end of the record

Thanks to this strategy, the only indirect components are dynamic components. But not all dynamic
components are necessarily indirect: if there are dynamic components in a component list which is not
followed by a variant part, then exactly one dynamic component of this list is a direct component because
its offset can be computed at compilation time (the only dynamic components that are direct components
are in this situation):

EntAlsy_01 Appendix F Version 4.2 30

steria

Beginning of the record
Y OFFSET

L Compile time offset

. -""1Compile time offset

X Size dependent on discriminant L

Run time offset

y ISize dependent on discriminant L

The record tye GRAPH: the dynamic component X is a direct component.

The offset of an indirect component is always expressed in storage units.

The space reserved for the offset of an indirect component must be large enough to store the size of any
value of the record type (the maximum potential offset). The compiler evaluates an upper bound MS of this
size and treats an offset as a component having an anonymous integer type whose range is 0 .. MS.

If C is the name of an indirect component, then the offset of this component can be denoted in a component
clause by the implementation generated name C'OFFSET.

Implicit components

In some circumstances, access to an object of a record type or to its components involves computing
information which only depends on the discriminant values. To avoid useless recomputation the compiler
stores this information in the record objects, updates it when the values of the discriminants are modified
and uses it when the objects or its components are accessed. This information is stored in special
components called implicit components.

An implicit component may contain information which is used when the record object or several of its
components are accessed. In this case the component will be included in any record object (the implicit
component is considered to be declared before any variant part in the record type declaration). There can be
two components of this kind; one is called RECORDSIZE and the other VARIANT-INDEX.

On the other hand an implicit component may be used to access a given record component. In that case the
implicit component exists whenever the record component exists (the implicit component is considered to
be declared at the same place as the record component). Components of this kind are called
ARRAYDESCRIPTORs or RECORD DESCRIPTORs.

EntAIsy Ol Appendix F Version 4.2 31

steria +
RECORD SIZE

This implicit component is created by the compiler when the record type has a variant part and its
discnminants are defaulted. It contains the size of the storage space necessary to store the current value of
the record object (note that the storage effectively allocated for the record object may be more than this).

The value of a RECORDSIZE component may denote a number of bits or a nL.nber of storage units. In
general it denotes a number of storage units, but if any component clause specifies that a component of the
record type has an offset or a size which cannot be expressed using storage units, then the value designates a
number of bits.

The implicit component RECORDSIZE must be large enough to store the maximum size of any value of
the record type. The compiler evaluates an upper bound MS of this size and then considers the implicit
component as having an anonymous integer type whose range is 0 .. MS.

If R is the name of the record type, this implicit component can be denoted in a component clause by the
implementation generated name R'RECORDSIZE.

VARIANTINDEX

This implicit component is created by the compiler when the record type has a variant part. It indicates the
set of components that are present in a record value. It is used when a discriminant check is to be done.

Component lists that do not contain a variant part are numbered. These numbers are the possible values of

the implicit component VARIANTINDEX.

type VEHICLE is (AIRCRAFT, ROCKET, BOAT, CAR);

type DESCRIPTION 'KIND : VEHICLE := CAR) is
record

SPEED: INTEGER;
case KIND is

when AIRCRAFT I CAR =>
WHEELS : INTEGER;
case KIND is

when AIRCRAFT => -- 1
WINGSPAN : INTEGER;

when others => -- 2
null;

end case;
when BOAT => -- 3

STEAM : BOOLEAN;
when ROCKET => -- 4

STAGES : INTEGER;
end case;

end record;

Ent Alsy_Ol Appendix F Version 4.2 32

steria +

The value of the variant index indicates the set of components that are present in a record value:

Variant Index Set

I (KIND, SPEED, WHEELS, WINGSPAN)
2 (KIND, SPEED, WHEELS)
3 fKIND, SPEED, STEAM)
4 (KIND, SPEED, STAGES)

A comparison between the variant index of a record value and the bounds of an interval is enough to check
that a given component is present in the value:

Component Interval

KIND --

SPEED - -

WHEELS 1..2
WINGSPAN 1 I
STEAM 3 .. 3
STAGES 4 4

The implicit component VARIANTINDEX must be large enough to store the number V of component
lists that don't contain variant parts. The compiler treats this implicit component as having an anonymous
integer type whose range is 1 .. V.

If R is the name of the record type, this implicit component can be denoted in a component clause by the
implementation generated name R'VARIANTINDEX.

ARRAY DESCRIPTOR

An implicit component of this kind is associated by the compiler with each record component whose
subtype is an anonymous array subtype that depends on a discriminant of the record. It contains information
about the component subtype.

The structure of an implicit component of kind ARRAY-DESCRIPTOR is Pot described in this
documentation. Nevertheless, if a programmer is interested in specifying the location of a component of
this kind using a component clause, he can obtain the size of the component using the ASSEMBLY
parameter in the COMPILE command.

The compiler treats an implicit component of the kind ARRAYDESCRIPTOR as having an anonymous
array type. If C is the name of the record component whose subtype is described by the array descriptor,
then this implicit component can be denoted in a component clause by the implementation generated name
C'ARRAYDESCRIPTOR.

Ent_Alsy Ol Appendix F Version 4.2 33

sateria+
RECORDDESCRIPTOR

An implicit component of tUis kind is associated by the compiler with each record component whose
subtype is an anonymous rcord subtype that depends on a discriminant of the record. It contains
information about the component subtype.

The struLture of an implicit component of kind RECORDDESCRIPTOR is not described in this
documentation. Nevertheless, if a programmer is interested in specifying the location of a component of
this kind using a component clause, he can obtain the size of the component using the ASSEMBLY
parameter in the COMPILE command.

The compiler treats an implicit component of the kind RECORDDESCRIPTOR as having an anonymous
array type. if C is the name of the record component whose subtype is described by the record descriptor,
then this implicit component can be denoted in a component clause by the implementation generated name
C'RECORDDESCRIPTOR.

Suppression of implicit components

The Alsys implementation provides the capability of suppressing the implicit components RECORDSIZE
and/or VARIANTJINDEX from a record type. This can be done using an implementation defined pragma
called IMPROVE. The syntax of this pragma is as follows:

pragma IMPROVE (TIME I SPACE, [ON =>] simple-name);

The first argument specifies whether TIME or SPACE is the primary criterion for the choice of the
representation of the record type that is denoted by the second argument.

If TIME is specified, the compiler inserts implicit components as described above. If on the other hand
SPACE is specified, the compiler only inserts a VARIANTINDEX or a RECORDSIZE component if
this component appears in a record representation clause that applies to the record type. A record
representation clause can thus be used to keep one implicit component while suppressing the other.

A pragma IMPROVE that applies to a givei. record type can occur anywhere that a representation clause is
allowed for this type.

Size of a record subtype

Unless a component clause specifies that a component of a record type has an offset or a size which cannot
be expressed using storage units, the size of a record subtype is rounded up to the a whole number of
storage units.

The size of a constrained record subtype is obtained by adding the sizes of its components and the sizes of
its gaps (if any). This size is not computed at compile time

when the record subtype has non-static constraints,

when a component is an array or a record and its size is not computed at compile time.

Ent_AlsyOl Appendix F Version 4.2 34

steria +

The size of an unconstrained record subtype is obtained by adding the sizes of the components and the sizes
of the gaps (if any) of its largest variant. If the size of a component or of a gap cannot be evaluated exactly
at compile time an upper bound of this size is used by the compiler to compute the subtype size

A size specification applied to a record type or first named subtype has no effect. The only size that can be
specified using such a length clause is its usual size. Nevertheless, such a length clause can be useful to
verify that the layout of a record is as expected by the application.

Size of an object of a record subtype

An object of a constrained record subtype has the same size as its subtype.

An object of an unconstrained record subtype has the same size as its subtype if this size is less than or
equal to 8 kb. If the size of the subtype is greater than this, the object has the size necessary to store its
current value; storage space is allocated and released as the discriminants of the record change.

Alignment of a record subtype

When no record representation clause applies to its base type, a record subtype is even byte aligned if it
contains a component whose subtype is even byte aligned. Otherwise the record subtype is byte aligned.

When a record representation clause that does not contain an alignment clause applies to its base type, a
record subtype is even byte aligned if it contains a component whose subtype is even byte aligned and
whose offset is a multiple of 16 bits. Otherwise the record subtype is byte aligned.

When a record representation clause that contains an alignment clause applies to its base type, a record
subtype has an alignment that obeys the alignment clause An alignment clause can specify that a record
type is byte aligned or even byte aligned.

Address of an object of a record subtype

Provided its alignment is not constrained by a representation clause, the address of an object of a record
subtype is even when its subtype is even byte aligned.

EntAlsyOl Appendix F Version 4.2 35

steria +
6 ADDRESS CLAUSES

6.1 Address Clauses for Objects

An address clause can be used to specify an address for an object as described in RM 13.5. When such a
clause applies to an object no storage is allocated for it in the program generated by the compiler. The
program accesses the object using the address specified in the clause.

An address clause is not allowed for task objects, nor for unconstrained records whose size is greater than 8
kb.

6.2 Address Clauses for Program Units

Address clauses for program units are not implemented in the current version of the compiler.

6.3 Address Clauses for Entries

An interrupt can be associated with an Ada task entry so that generation of the interrupt causes a call of the
corresponding entry (see RM section 13.5.1).

Interrupt Entries

Several interrupt entries may be declared in the specification of a task. Furthermore:

An interrupt entry may have several in parameters.

Interrupt entries are software callable.

Interrupts can be persistent or volatile (conditional or normal entry calls).

Prioritized interrupts are supported.

Execution of the accept body of an interrupt entry.is performed at priority level 24 + hardware priority level.

EntAlsy_Ol Appendix F Version 4.2 36

steria +

An Interrupt Handling Example

To illustrate interrupt handling, consider the following example of a basic handler.

with SYSTEM;
procedure MAIN is

task HANDLER is
pragma PRIORITY(10);
-- assume that the following entry is
-- called by an interrupt with hardware level 3
entry INTERRUPT (STATUS :BOOLEAN;

DATA : INTEGER);
for INTERRUPT use at SYSTEM.TOADDRESS(16#160#);

end HANDLER;

task body HANDLER is
begin

loop

-- this code executes at priority 10
accept INTERRUPT (STATUS: BOOLEAN;

DATA : INTEGER) do

-- this code executes at priority
-- level 24+3 = 27

end INTERRUPT;

-- this code executes at priority 10
end loop;

end HANDLER;
end MAIN;

EntAlsyOl Appendix F Version 4.2 37

+stera +
7 UNCHECKED CONVERSIONS

Unconstrained arrays are not allowed as target types. Unconstrained record types without defaulted
discriminants are not allowed as target types. Access to unconstrained arrays are not allowed as target or
source types.

If the source and the target types are each scalar or access types, the sizes of the objects of the source and

target types must be equal.

If a composite type is used either as source type or as target type this restriction on the size does not apply.

If the source and the target types are each of scalar or access type or if they are both of composite type, the
effect of the function is to return the operand.

In other cases the effect of unchecked conversion can be considered as a copy:

if an unchecked conversion is achieved of a scalar or access source type to a composite target
type, the result of the function is a copy of the source operand: the result has the size of the
source.

if an unchecked conversion is achieved of a composite source type to a scalar or access target
type, the result of the function is a copy of the source operand: the result has the size of the
target-

EntAlsy_01 Appendix F Version 4.2 38

sterTa +
8 INPUT-OUTPUT CHARACTERISTICS

In this part of the Appendix the implementation-specific aspects of the input-output system are described.

8.1 Introduction

In Ada, input-output operations (10) are considered to be performed on objects of a certain file type rather
than being performed directly on external files. An external file is anything external to the program that can
produce a value to be read or receive a value to be written. Values transferred for a given file must be all of
one type.

Generally, in Ada documentation, the term file refers to an object of a certain file type, whereas a physical
manifestation is known as an externalfile. An external file is characterized by

Its NAME, which is a string defining a legal path name under the current version of the
operating system.

Its FORM, which gives implementation-dependent information on file characteristics.

Both the NAME and FORM appear explicitly in the Ada CREATE and OPEN procedures. Though a file is
an object of a certain file type, ultimately the object has to correspond to an external file. Both CREATE
and OPEN associate a NAME of an external file (of a certain FORM) with a program file object.

Ada 10 operations are provided by means of standard packages [14].

SEQUENTIAL JO A generic package for sequential files of a single element type.

DIRECTJO A generic package for direct (random) access files.

TEXT JO A generic package for human-readable (text, ASCII) files.

I0_EXCEPTIONS A package which defines the exceptions needed by the above three
packages.

The generic package LOWLEVEL_10 is not implemented in this version. The generic packages
SEQUENTIAL_10 and DIRECTJO are implemented, but the ALSYS RUNTIME KERNEL does not offer
file management. However, the user can adapt the board support package to offer a full implementation of
input-output features.

The upper n -nd for index values in DIRECT IO and for line, column and page numbers in TEXT_10 is
given by

COUNT'LAST = 2**31 -1

The upper bound for fields widths in TEXTIt is given by

FIELDLAST = 255

EntAlsy_Ol Appendix F Version 4.2 39

stea +
8.2 The FORM Parameter

The FORM parameter to both the CREATE and OPEN procedures in Ada specifies the characteristics of the
external file involved. A complete description is given here, but as indicated above, the kernel must be
adapted to offer a full implementation. With the basic kernel, the FORM parameter is decoded, but not used.

The CREATE procedure establishes a new external file, of a given NAME and FORM, and associates it
with a specified program FILE object The external file is created (and the FILE object set) with a certain
file MODE. If the external file already exists, the file will be erased. The exception USEERROR is raised
if the file mode is INFILE.

The OPEN procedure associates an existing external file, of a given NAME and FORM, with a specified
program FILE object The procedure also sets the current FILE mode. If there is an inadmissible change of
MODE, then an Ada USEERROR is raised.

The FORM parameter is a string, formed from a list of attributes, with attributes separated by commas (,).
The string is not case sensitive (so that, for example, HERE and here are treated alike). The attributes
specify:

File sharing

File structuring

Appending

The general form of any attribute is a keyword followed by => and then a qualifier. The qualifier may
sometimes be omitted. The format for an attribute specifier is thus either of

KEYWORD

KEYWORD => QUALIFIER

We will discuss each attribute in order.

File Sharing

An external file can be shared, that means associated simultaneously with several logical file objects created
by the OPEN and CREATE procedures.

EntAlsy_01 Appendix F Version 4.2 40

steria +
The file-sharing attribute may restrict or suppress this capability by specifying one of the following access
modes:

NOTSHARED
exclusive access - no other logical file may be associated with the
external file

SHARED => READERS
only logical files opened with IN mode are allowed

SHARED => SINGLE WRITER
only logical files opened with IN mode and at most one with INOUT or
OUT mode are allowed

SHARED => ANY
no restriction

The default value for the file-sharing attribute is SHARED => ANY.

File Structuring

Text Files

There is no FORM parameters to define the structure of text fles.

A text file consists in a sequence of bytes holding the ASCII code of characters.

The representation of Ada-terminators depends on the fie's mode (IN or OUT) and whether it is associated
with a terminal device or a mass-storage file:

Mass-storage files

end of line: ASCII.CR
end of page: ASCII.CR ASCII.FF
end of file: ASCII.CR ASCII.FF ASCII.EOT

Terminal device / IN mode

end of line: ASCII.CR
end of page: ASCII.FF
end of file: ASCII.EOT

Terminal device / OUT mode

end of line: ASCILCR
end of page: ASCII.CR ASCILFF
end of file: ASCII.CR ASCII.FF ASCII.EOT

EntAlsyOl Appendix F Version 4.2 41

steria +

Binary files

Two FORM attributes, RECORDSIZE and RECORD-UNIT, control the structure of binary files.

Such a file can be viewed as a sequence (sequential access) or a set (direct access) of consecutive
RECORDS.

The structure of a record is

[HEADER] OBJECT [UNUSED-PART]

formed from up to three items:

an OBJECT with the exact binary representation of the ADA object in the executable
program, possibly including an object descriptor

a HEADER consisting of two fields (each of 32 bits)
the length of the object in bytes
the length of the descriptor in bytes

an UNUSEDPART of variable size to permit full control of r'ie record's size

The HEADER is implemented only if the actual parameter of the instantiation of the 1O package is
unconstrained

The file structure attributes take the form:

RECORD-SIZE => size in bytes

RECORDUNIT => size inbytes

Their meaning depends on the object's type (constrained or not) and the file access mode (sequential or direct
access):

If the object's type is constrained

the RECORDUNIT attribute is illegal

if the RECORD SIZE attribute is omitted, no UNUSED-PART will be
implemented: the default RECORD-SIZE is the object's size

if present, the RECORDSIZE attribute must specify a record size greater than or
equal to the object's size, otherwise the exception USEERROR will be raised

Ent_Alsy_Ol Appendix F Version 4.2 42

steria +

If the object's type is unconstrained and the file access mode is direct i/o

the RECORDUNIT attribute is illegal

the RECORDSIZE attribute has no default value, and if not specified, a
USE-ERROR will be raised

An attempt to input or output an object larger than the given RECORD-SIZE will
raise a DATAERROR exception

If the object's type is unconstrained and the file access mode is sequential i/o

the RECORDSIZE attribute is illegal

the default value of the RECORDUNIT attribute is I (byte)

the record size will be the smallest multiple of the specified (or default)
RECORDUNIT that holds the object and its length. This is the only case where
records of a file may have different sizes.

Appending

Only to be used with the procedure OPEN, the format of this attribute is simply

APPEND

and any output will be placed at the end of the named external fie.

In normal circumstances, when an external file is opened, an index is set which points to the beginning of
the file. If the APPEND attribute is present for a sequential or for a text file, then data transfer will
commence at the end of the file. For a direct access file, the value of the index is set to one more than the
number of records in the external file.

This attribute is not applicable to terminal devices.

Ent_Alsy_Ol Appendix F Version 4.2 43

