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Abstract

Several topics associated with the influence and control of the statistical

properties of light are investigated. One topic lhat-iS considered is the modification of

the observed spectrum by the correlation properties of a partially coherent secondary

source. It is demonstrated experifent-% that source correlations that violate a certain

scaling condition give rise to a normalized spectrum in the far zone that is different from

the normalized spectrum of the light at the source.

Statistical correlations can also give rise to frequency shifts in the spectrum

observed in the far field if the correlation function of the emitted radiation does not

satisfy the scaling condition. A Fourier achromat is used to generate a secondary

source in which the degree of spatial coherence is independent of wavelength; i.e., it

violates the scaling condition. The spectrum detected in the far zone of the secondary

source is found to be displaceC in frequency and distorted relative to the spectrum

measured at the secondary source. The displacement is found to be toward the higher

frequencies or the lower frequencies dependin on the direction of observation.

J-etme- a new method te generate partially coherent sources with controllable

correlation is also investigated. Experiments a described in-" the feasibility of

synthesizing source correlations for use in spectral modulation applications is tested.

The secondary source with controlled correlation is generated using an interferometric

optical system that is designed and constructed around a general spectral filter. The

degree of spectral coherence is shown to be directly related to the passband of the filter.

The final topic that is considered is the calculation of the correlation properties

of synchrotron radiation. The second-order statistical properties of synchrotron
/

radiation resulting from a three-dimensional relativistic electron bunch in a storage ring

-iv-



are calculated. The theory is extended, using a formalism in the space-frequency

domain, to allow for electrons in a 3-D bunch to have a distribution of velocities.

_V_



Table of Contents

Curriculum Vitae .................................................................................. ii

Acknowledgements ............................................................................... iii

A bstract ............................................................................................. iv

List of Figures ..................................................................................... ix

1. Introduction ........................................................................... 1

1. 1 Effects of Optical Coherence ..........................................

1.2 Concept of a Quasi-homogeneous Planar Source ...................... 5

1.3 A Generalized Form of the Van Cittert-Zemike Theorem ............. 7

1.4 Overview of Thesis ...................................................... 11

1.5 References: Chapter 1 .................................................. 14

2. Effects of Source Correlations on the Spectrum of Light .................... 16

2.1 Introduction ............................................................. 16

2.2 Spectral Modification due to Source Correlations .................. 19

2.2.1 Introduction ..................................................... 19

2.2.2 Coherence in Linear Optical Systems ...................... 20

2.2.3 Control of Spatial Coherence .............................. 23

2.2.4 Spectrum of Light in the Far Zone ........................ 28

2.2.5 Experimental Results ....................................... 29

2.2.6 Discussion .................................................... 33

-vi-



2.3 Spectral Shifts Produced by Source Correlations ................... 35

2.3.1 Synthesis of the Secondary Source .......................... 35

2.3.2 Spectrum in the Far Zone ................................... 39

2.3.3 Experimental Results ........................................ 41

2.4 Summary of Chapter 2 .................................................... 45

2.5 References: Chapter2 ................................................. 47

3. Synthesis of a Source with Controlled Coherence ............................. 51

3.1 Introduction .............................................................. 51

3.2 Theoretical Treatment of Source Synthesis ............................. 54

3.3 Spectral Filter Design .................................................. 58

3.4 Experimental Demonstrations ......................................... 62

3.4.1 Source Characteristics ..................................... 62

3.4.2 Coherence Measurements .................................. 66

3.5 Summary of Chapter 3 .................................................... 68

3.6 References: Chapter 3 ................................................. 69

4. Coherence Properties of Synchrotron Radiation ............................. 72

4.1 Introduction: Synchrotron Radiation and its Applications ..... 72

4.2 Spectral Amplitude Generated by N Electrons in a Storage

Ring ...................................................................... 79

4.2.1 Classical Treatment for the Field of a Single

Relativistic Electron ............................................ 79

4.2.2 Generalization to N Electrons ................................. 90

-vu-



4.3 Statistics of the N-Electron Field ..................................... 92

4.3.1 Density Function for Electron Distances ................. 93

4.3.2 Mean Value of the Field ....................................... 103

4.3.3 Correlations in the Space-Frequency Domain ............... 104

4.4 Suggestions for Experimental Verification .............................. 113

4.5 Summary of Chapter 4 .................................................... 115

4.6 References: Chapter 4 .................................................... 116

5. Concluding Remarks ................................................................. 120

Appendix A: Calculation of the Spectrum for the Direct-vision

Spectroscope ............................................................. 123

Appendix B: Evaluation of Eq. (4.3.19) Leading to Eq. (4.3.20) ................. 125

-yin-



List of Figures

Fig. 2.2.1 Linear system with frequency-dependent impulse response 21

hi(x,y; ,TI;co).

Fig. 2.2.2 Experimental configurations for realization of secondary 24

sources with controlled spatial coherence that (a) satisfy the scaling law,

and (b) violate the scaling law. An aperture function in plane I is

illuminated using a broadband, spatially incoherent source. A secondary

source with a specified complex degree of spectral cohere..c is formed in

plane II through application of the Van Cittert-Zernike theorem.

Measurements of the spectral intensity are made in the secondary source

plane II and in the far field of the secondary source, plane Il.

Fig. 2.2.3 Airy-disk diffraction pattern recorded in the back focal plane, 26

plane II of (a) an achromaic telescope objective lens, and (b) an

achromatic-Fourier-transform lens. These photographs were produced by

illuminating a circular aperture located in plane I with broadband, spatially

coherent light. In (a) the diffraction pattern scales linearly with

wavelength, and in (b) the size of the diffraction pattern is independent of

the wavelength.

-ix-



Fig. 2.2.4 Normalized spectral intensity at the secondary source plane II 31

and in the far field of the secondary source, plane m, for (a) a source that

obeys the scaling law, and (b) a source in which the complex degree of

spectral coherence is independent of the illumination frequency (i.e.,

violates the scaling law). In (a) the spectral intensity is normalized to the

peak value of the spectral intensity in the respective planes. In (b) the

spectr ,;, intensity in planes II and El are scaled such that

S 1Ir(CO)=SmAFT(0;CO0)=1.

Fig. 2.2.5 Measured values of the normalized spectral intensity in the far 32

field, plane Ill, for case (b) (i.e., when the source does not obey the

scaling law). The spectral intensity is measured at off-axis angle 0 =

00,100,150,200. Note that the spectral intensity vs. frequency narrows as

the off-axis angle 0 increases. The intensity data are normalized with

respect to Sm(0;co1), where w, = 3.2 x 1015 sec-1 .

Fig. 2.3.1 Experimental configuration for realization of a secondary 37

source with controlled degree of spatial coherence. An object located in

plane I is illuminated using a broadband, partially-coherent source that

obeys the scaling law. A secondary source with wavelength-independent

spatial coherence is formed in plane H through application of the

generalized Van Cittert-Zemike theorem. The spectral intensity is

measured at the secondary source, plane II, and in the far field of the

secondary source, plane m.

_X-



Fig. 2.3.2 Spectral shifts produced by a Gaussian-correlated planar 43

source. The spectral intensity is measured at (a) the secondary source;

and in the far field of the secondary source (b) on-axis and (c) u=20 mm

off-axis. The peak spectral intensity measured at the off-axis point

exhibits a redshift while that measured on axis exhibits a blueshift. The

peak of each curve has been normalized to unity.

Fig. 3.3.1 Schematic of the spectral filter design. 59

Fig. 3.3.2 Dispersion characteristics of the direct-vision spectroscope. 61

The three-element prisms used in the experiments were Spindler & Hoyer

33 1120. The component glasses were BK7 (elements 1 and 3) and SF14

(element 2).

Fig. 3.4.1 Interferometric system to generate sources with controlled correlation. 64

Fig. 3.4.2 Transmission characteristics for calibration of the spectral filter. 65

The data presented here represents the basis for the theoretical model.

Fig. 3.5.1 mustrating the comparison between theory and experiment 67

for source synthesis. To test the theory, the source was produced and the

visibility of interference fringes was measured as a function of the

wavelength and plotted against the theoretical predictions.

-xi-



Fig. 4.1.1 The general shape of the radiation spectrum of an electron moving 74

in a curved trajectory. Xc represents the critical wavelength. The

critical wavelength is defined such that half of the power is radiated

at wavelengths above A and half below Ac.

Fig. 4.2.1 Illustrating the notation. The element of volume within the 80

source domain, d3r', is located a distance r' from the origin and

a distance r-r' from the observation point, P.

Fig. 4.2.2 Illustrating the electron motion. The electron is located at a 83

distance re(t') from the origin and a distance r-re(t') from the

observation point, P.

Fig. 4.2.3 Radiation patterns associated with an accelerated electron: 87

colinear acceleration and velocity. For relatively low velocities,

a) illustrates the validity of the Larmor formula. In b) and c),

as the velocity increases, most of the energy is radiated in the

forward direction.

Fig. 4.2.4 Radiation patterns associated with an accelerated electron: 88

uniform circular motion. Note in b) and c) that the radiation

is again concentrated in the forward direction as the velocity increases.

Fig. 4.3.1 An illustration of the notation and geometry for the computation 94

of the electron distances.

-Xii-



Fig. 4.3.2 The density function for electron distances given by Eq. 101

(4.3.20). The axial distance is taken to be one meter and a=lmm.

The magnitude of the parameter, a, is a measure of the distance from

the origin in the observation plane. This figure shows how the profile

remains constant as the observation point is moved out into the field.

Fig. 4.3.3 Numerical verification of Eq. (4.3.20). Results of numerical 102

integration of Eq. (4.3.10) for an off-axis point are illustrated in

a) with the curve generated using Eq. (4.3.20) shown in b).

The difference between the two curves is illustrated in c).

Fig. 4.3.4 mustrating the magnitude of the degree of spatial coherence given 112

by Eq. (4.3.43). The parameters used are a--1 mm, s=1 m and

=0.5 i. The coherence interval at this wavelength is approximately

120 pim. An important note is that the field correlation obeys a

scaling condition.

-xo-



Chapter 1

1. Introduction

1.1 Effects of Optical Coherence

Experimental evidence strongly suggests that the physical processes of light

emission and the interaction of light and matter are fundamentally random. Optical

coherence theory provides a framework in which statistical methods are used to

describe these phenomena. The effects of optical coherence are generally regarded to

be manifestations of the underlying statistical correlations. Interference is the basic

example of a phenomenon that reveals correlations in optical fields. The historical

evolution of the concepts of modern coherence theory can be traced with the aid of two

volumes of reprinted works and an extensive bibliography edited by Mandel and

Wolf. 1 There is also a number of excellent general references available for complete

descriptions of the theory.2 7

In this Thesis, we restrict our attention to the discussion of the statistical

properties of sources and fields. The effects of correlations that result from

propagation through random media and the statistical description of light detection are

not treated. Although, a general statistical description of the field which is based on the

concepts of the theory of stochastic processes exists,8 we are primarily concerned with

the theory of second-order coherence. 4

In the classical formulation of the theory of second-order coherence, the

correlation in the optical field generated by a stationary source (at least in the wide

sense) is described by the mutual coherence function, which is defined by

-1-
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r(rl,r 2 ; T) = < u*(r;t) u(r 2 ;t+)> (1.1.1)

In Eq. (1.1.1), the random field at the space-time point (r;t) is represented by its

complex analytic signal, u(r;t), and the angled brackets denote an average over an

ensemble. Traditionally, these correlations are characterized by the normalized value of

the mutual coherence function which is called the complex degree of coherence and is

defined by

=F r(r,r 2;t)
y(r1,r2 ;) = [F(r,r;)F(r2,r 2 ;0)]1/ 2  (1.1.2)

Equation (1.1.2) describes the correlations in the space-time domain.

Many problems in statistical optics are most naturally described in the space-

frequency domain. These problems include scattering from random media and

propagation through general optical systems. The space-frequency description

provides information about the process at each frequency of interest.

The mutual coherence function is related by a linear transform to the cross-

spectral density function which describes the correlations in the space-frequency

domain. The cross-spectral density of the process (defined in Eq. 2.2.3) is related to

the mutual coherence by the Wiener-Khintchine theorem

I cc

W(r1 ,r 2;m) = - r(r 1 ,r2 ;t) exp[iw'r] d , (1.1.3)

where co represents the temporal frequency. It is also possible to define a normalized

quantity, pi, which is called the degree of spatial (or spectral) coherence; this is given by
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(F1,F2 ;c0) W(rlr 2 ;0)) 1..
[W(r1 ,r;w)W(r,r 2 ;w)]/ 2

where the spectral intensity of the light at the point r is expressed as

S(r;co) = W(r,r;c) (1.1.5)

It is important to understand that the frequency description is introduced here with the

(un-normalized) cross-spectral density as the Fourier transform of the mutual coherence

function [see Eq. (1.1.3)]. The frequency characteristics are not introduced by a

simple Fourier transformation of the space-time field representation. This is a direct

result of the fact that a stationary random process does not possess a Fourier transform

in the context of ordinary functions. Another important note here is that although there

exists a simple relationship between the mutual coherence function and the cross-

spectral density function, the complex degree of coherence, y, and the complex degree

of spatial coherence, gt, are related in a more complicated fashion. The formal

relationship can be calculated using Eqs. (1.1.2)-(1.1.4). 9

Wolf has shown I0 -14 that under very general conditions the cross-spectral

density of a statistically stationary source of any state of coherence can be represented

directly as a correlation function in the space-frequency domain. The theory deals with

ensembles of frequency-dependent realizations rather than time-dependent ones within

the context of ordinary function theory. These ensembles are not connected with any

(problematic) Fourier components of the random variable but rather with the

eigenfunctions and the eigenvalues of an integral operator whose kernal is the cross-

spectral density. This representation has found useful applications in studies of the
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coherence properties of laser modes, investigations of radiometry, and some inverse

problems involving partially coherent sources.

It is well known that both the cross-spectral density and the mutual coherence

obey certain propagation laws. In regions of space where there are no primary sources,

the propagation relation for the cross-spectral density can be written (using Maxwell's

equations) as 15

(V +k 2 )W(rl,r 2 ;0) = 0 (i = 1,2) (1.1.6)

in which k=--0c where c is the speed of light in free space and the Laplacian operator is

governed by ri. The existence of the relation in Eq. (1.1.6) indicates that the cross-

spectral density (and similarly, the mutual coherence) is modified on propagation an

amount that depends on the location of the observation region. The effect of coherence

on the output intensity of linear optical systems is well known however the effect of

coherence on the spectrum of light is a relatively new area of study.

Many of the fundamental properties of the theory of second-order coherence are

used repeatedly in the following chapters. For this reason, an introduction to

quasihomogeneous sources and the Van Cittert-Zernike theorem is given in the

following sections of this chapter. Other discussions of this theory can be found in

Refs. 2-7 and 16.
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1.2 Concept of a Quasi-homogeneous Planar Source

A statistically stationary, homogeneous, planar, secondary source can be

characterized by a cross-spectral density function given by16

W(r,r 2 ;o) = G(r1 - r2 ;o) , (1.2.1)

where the source is located in the plane defined by z=O. In Eq. (1.2.1), rl and r2 are

vectors in the source plane, G(r 2-rl:wo) is a non-negative definite function, and co is the

spectral frequency. The spectral intensity is represented by the diagonal components of

the cross-spectral density, i.e. G(O;wo). It is evident from Eq. (1.2.1) that the spectral

intensity is independent of position in the source plane. The degree of spatial coherence

in the source plane is simply the normalized cross-spectral density and is given by

(r1 ,r2 ;w) = W(r1 ,r2 ;w) (1.2.2)
[W(r 1,r;ci)W(r,r 2 ;O)]1/ 2

and substituting Eq. (1.2.1) into Eq. (1.2.2) gives

(rl -r2 ; o) = G(rl'r 2;w) (1.2.3)
G(0;oa)

Using Eqs. (1.2.1) and (1.2.3), the cross-spectral density of our source can now be

written as
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W(r,r 2 ;o) = G(0;(o) t(r -r 2 ;co) (1.2.4)

Note that because this form of the cross-spectral density must hold for all source

points, the statistically homogeneous source must exist over an infinite domain.

In order to model sources of finite extent, we can place some restrictions on the

behavior of the source intensity and the degree of spatial coherence of the statistically

homogeneous source. We again assume that the degree of spatial coherence depends

only on the difference of the position vectors in the source plane. An additional

assumption requires that the spectral intensity of the source is a slowly varying function

of the source coordinate and that the degree of spatial coherence is a fast function of the

difference coordinate. Specifically, the intensity must remain sensibly constant over

distances of the order of the correlation interval. Of course, the source domain must

also be large compared with the effective correlation length (at each frequency) across

the source. As a matter of terminology, sources of this type are said to be spatially

incoherent in the global sense. When the coherence interval is of the order of a

wavelength of light, the source is said to be locally incoherent. When the conerence

interval is much greater than the wavelength, the source is said to be locally coherent.

From these assumptions, the cross-spectral density of a quasi-homogeneous source can

be approximated by the formula 16 -17

W(r1 ,r2 ;ca) = G[(r + r2 ) / 2;c)] t.(r 1 - r2 ;ci) (1.2.5)

The experiments in Chapter 2 make use of the concept of a quasi-homogeneous

source. Specific propagation properties of quasi-homogeneous sources are described

in the following section.



-7-

1.3 A Generalized Form of the Van Cittert-Zemike Theorem

In Section 1.1, the existence of precise propagation laws for the mutual

coherence function and the cross-spectral density was discussed. These propagation

formulas illustrate how the functions that describe the correlations will, in general,

change on propagation. These changes can include modifications of the spectral

intensity observed at points distant from the source region. 18

For the experiments presented in Chapter 2, a generalized form of the Van

Cittert-Zemike theorem is used to propagate the cross-spectral density. For this reason

the theory is developed to illustrate the relationship between the correlations at the

source and the cross-spectral density in a plane distant from the source. For a complete

description of the theory the reader is referred to the paper by Wolf and Carter. 16

Consider a stationary, quasi-homogeneous, planar, secondary source

characterized by the cross-spectral density function given in Eq. (1.2.5). For sources

of this type and near-axis observation points, the general propagation formula can be

written as 19

W(XlX 2 ;X) = (.'z)2 W(k 1 ,t 2 ;X) exp[iklr 1 - r21] d 2 
1d 2 

2  (1.3.1)

where X represents the wavelength, k=2A, and the distance to the observation plane,

z, is assumed to be larger than the maximum extent of the source. The vectors rl and

r2 couple the source and observation regions and i = ( 1,ThI,O) and 2 = ( 2,712,O)

represent the source plane. The vectors xi = (xl,yl,z) and x2 = (x2,Y2,z) denote the

observation plane. In order to simplify Eq. (1.3.1), the magnitude rj-r2 is written as
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ri-r 2 = z[l+ ( x 1 1) + 2 ] + 2 . (1.3.2)

Making use of the binomial expansion theorem and assuming that the phase is

accurately described by the first two terms, the difference can be written as

rT" r-- T2 { ( x l - x 2 ) ( x 1 + x 2 ) + (YI -"Y2)(Yl + Y2) + (41" - 241 + 42)

2z

+ (TII - T12)(111 + 712)- 2x1j 1 + 2x 2A2 -2ylill + 2Y2TI21 (1.3.3)

We now find it convenient to define a change of notation to the average and difference

variables given by

P +P2 , Ap = P-P2 ; P = (x,y, ,T) (1.3.4)
2

Equation (1.3.3) can now be simplified to give

z2 2 2 2

+ (- + Ag+L4+(yAy)(j+ j))(1.3.5)
2 2 2 2

Regrouping terms in Eq. (1.3.5) gives

r-r 2 =-(3x +yAy).+ ( A + AT)+ ( +ijAy)+ (-A4+yAT1) (1.3.6)
z z z z
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Equation (1.3.6) contains four distinct terms. The first term on the right-hand side

represents the familiar term that is proportional to the square of the output plane

coordinates. The third and fourth terms give rise to information regarding the degree of

spatial coherence and the spectral intensity, respectively in the plane z. The second

term holds information about the square of the source coordinates. It is instructive to

point out the circumstances when the second term can be neglected. As a sufficient

condition for accuracy, we might require that the maximum phase change contributed

by the second term be less than ic. This condition will be met if the distance z satisfies

4- 4-z > -,A& and z > -IJAII (1.3.7)

If we assume that the magnitude of the degree of spatial coherence across the source

plane is negligible for source points separated by more than the coherence interval, 1c,

and we assume that the spectral intensity of the source drops to zero for source points

outside the source region of diameter D, Eq. (1.3.7) simplifies to

2
z > 2Dl 1 (1.3.8)

In order to neglect the second term on the right-hand side of Eq. (1.3.6), we now

assume that Eq. (1.3.8) holds. Note that when the correlations extend over just a few

wavelengths, the distance z must only be greater than the maximum dimension of the

source. Note also that in the far field of the source or in the rear focal plane of a

positive lens that is appropriately placed between the source and the observation region

that the term can always be neglected.
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Using Eqs. (1.2.5), (1.3.1), (1.3.6), and (1.3.8), the cross-spectral density in

the plane z can be written as

W(xl,x 2 ;X%)= exp[ik-, Ax] d2  (1.3.9)
(Xz) 2

where

K( x) = ff g.(A ;X) exp[i * A ] d2 A , (1.3.10)
z

and k =  i *Ax) (1.3.11)
z

In Eq. (1.3.9), S represents the spectral intensity in the source plane and in Eq.

(1.3.10), g represents the complex degree of spatial coherence across the source plane.

Equation (1.3.9) represents a generalized form of the Van Cittert-Zemike theorem in

terms of the cross-spectral density function. Equation (1.3.9) illustrates the Fourier-

transform relationship between the intensity across the source and the field correlations

in the observation region. While in the classic formulation the source is assumed to be

spatially incoherent, it has been shown7,16 that the theorem holds much more generally,

namely for radiation from any quasihomogeneous source. Note that in general, the

cross-spectral density will also be a function of the average variables in the observation

plane. As a consequence, the complex degree of spatial coherence no longer is a

function of the difference variables only. Note also that as for the case of a spatially

incoherent source, it is the source size that determines the coherence area of the

observed field, and in addition the source coherence area influences the distribution of

spectral intensity across the observation plane.
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1.4 Overview of Thesis

Each chapter of this Thesis contains an investigation of a topic associated with

the influence and control of optical coherence in the space-frequency domain. In

Chapter 2, the first experiments that illustrate the effects of source correlations on the

spectrum of light are described. Sources with invariant spectra and sources with

spectra that change on propagation are generated and compared with theory. In

agreement with Wolf s theoretical predictions, the spectrum observed in the far field of

the secondary source was found to depend on the spectrum at the source, the degree of

spatial coherence of the source, and the location of the observation point.

In Section 2.3, the first experiments in which frequency shifts of the optical

spectrum detected in the far zone of a partially coherent, planar secondary source are

reported. Through application of the generalized Van Cittert-Zernike theorem, a

Fourier achromat is used to generate a secondary source with a Gaussian correlation

that is independent of wavelength. Fluorescence from a laser-illuminated dye jet is

used as the primary source. In general, the spectrum detected in the far zone of the

secondary source is found to be displaced in frequency and distorted relative to the

spectrum measured at the secondary son'rce. The displacement of the spectral peak is

toward both the higher frequencies and the lower frequencies depending on the

direction of the observation.

The generation of sources with controlled degree of coherence is important for

the verification of new concepts in optical coherence theory. In Chapter 3, experiments

are described in which a new method is employed to generate an optical secondary

source with a controlled degree of spatial coherence. The technique consists of mixing

controllable amounts of two uncorrelated sources in an interferometer. A spectral filter
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is used to produce the desired source correlations. The spectral filter employs

dispersive optics that are used to spatially separate (and recombine) the wavelength

components of a broadband primary source, and an amplitude mask that is used to filter

the dispersed light. The degree of coherence is shown to be related to the passband of

the filter. A desirable feature of this new method of source synthesis is that the spectral

filter is designed to be programmable and easily modified.

As explained earlier, the cross-spectral density function obeys a specific

propagation formula [e.g., see Eq. 1.1.6]. In general, the correlations across the

source will have a profound influence on the measured spectral intensity. With the

increased use of unconventional light sources (i.e., non-thermal and non-laser) for a

variety of applications in spectroscopy and imaging, models describing their source

correlations should be investigated so that experiments that utilize these sources can be

correctly explained.

The so-called unconventional sources include, among others, synchrotron

radiation, undulator radiation, and Cerenkov radiation. The correlation properties of

these sources do not appear to have been studied in detail either theoretically or

experimentally. Because of the present importance of synchrotron radiation in

industry, medicine, and research and its potential applications in astrophysics, Chapter

4 contains an investigation into the statistical properties of synchrotron radiation

produced by a bunch of circulating charges.

The basic properties of synchrotron radiation such as source intensity, spectrum

and polarization have been studied extensively. However, there have been very few

investigations into the understanding of the statistical properties of the synchrotron

source and the emitted radiation. Since the effects of coherence are very important in

many synchrotron applications (e.g., propagation through optical systems and X-ray
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holography), the correlation properties of the field should be studied. In Chapter 4, the

second-order statistical properties of synchrotron radiation resulting from a three-

dimensional relativistic electron bunch (N-electrons) in a storage ring are calculated.

The new theory in the space frequency domain extends previous work to allow the

electrons in a 3-D bunch to have an appropriate distribution of velocities (e.g., variance

in the energy of the charges).

In Section 4.3, a model for the statistical behavior of the N-electron bunch and

its associated classical field is investigated. Using a Gaussian distribution for the

spatial characteristics of the bunch and a Gaussian velocity distribution, the mean value

of the field and the second-order coherence are calculated. The present research will

generate a framework that will permit future work on systems that utilize wigglers and

undulators (e.g., the free-electron laser).

Much of the original work presented in this Thesis has been published or

submitted for publication. The work in Chapter 2 concerning the effects of source

correlations on the spectrum of light also appears in Refs. 20 and 21. The research

described in Chapter 3 on source synthesis has been presented and submitted for

publication [Refs. 22 and 23]. The work in Chapter 4 on the statistical properties of

synchrotron radiation is currently being prepared for publication.
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Chapter 2

2. Effects of Source Correlations on the Spectrum of Light

2.1 Introduction

It has been shown in recent years that the statistical properties of a source can

influence the spectrum of the emitted radiation. 1-2 3 It is well known that both the

mutual coherence function and the cross-spectral density function obey precise

propagation laws. Consequently, both the mutual coherence and the cross-spectral

density will, in general, change on propagation. The Van Cittert-Zernike theorem

illustrates an interesting example of how the statistical properties of the light change on

propagation. By the same mechanisms, the spectrum of the light will also, in general,

be modified on propagation.

Wolf I reported the first work that questioned under what conditions the

normalized spectrum of light actually remains unchanged on propagation through free

space. Shortly thereafter, the first experiments that illustrated the influence of source

correlations on the spectrum of light were reported by Morris and Faklis.2 In their

experiments, they applied the generalized Van Cittert-Zernike theorem to generate a

secondary source with specified degree of spatial coherence. In agreement with Wolf's

theoretical predictions, the spectrum observed in the far field of the secondary source

was found to depend on the spectrum at the source, the degree of spatial coherence of

the source, and the location of the observation point.

It was later reported by Wolf 34 that the spectrum of the emitted light from a

three-dimensional, quasi-homogeneous source with an appropriately chosen source

-16-
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spectrum and degree of spatial coherence will be displaced relative to the source

spectrum. It was shown that, independent of any source motion, the displacement

could be either toward the lower or toward the higher frequencies.

A simple system was proposed5 to facilitate the experimental verification of the

frequency shifts. The first experiments illustrating the effect were reported by Bocko,

Douglass, and Knox6 on the observation of frequency shifts of spectral lines due to

source correlations with acoustical sources. Faklis and Morris7 described experiments

in which frequency shifts of the optical spectrum were observed. Investigations by

Knox and Knox8 and Gori et. al. 9 presented results describing frequency shifts with

optical sources using white-light interferometry. In all cases, there was excellent

agreement with the theoretical predictions.

It has also been shown that scattering of polychromatic radiation by fluctuating

media can affect the spectrum of the scattered radiation. Wolf, Foley, and Gori 18 have

investigated the effect of random media whose physical properties do not change in

time on the spectrum of the light scattered by it. They reported a spatial redistribution

of the spectral components due to the correlation properties of the scatterer. Foley and

Wolf 20 have shown theoretically some frequency shifts resulting from scattering from a

model media whose dielectric susceptibility fluctuates both in space and in time.

Wolf 22-23 presented results that reveal that scattering from some media whose

macroscopic properties fluctuate randomly both in space and in time may generate

frequency shifts of spectral lines which closely resemble Doppler shifts in the absence

of any motion. Interestingly, his results predict relative frequency shifts that are

essentially the same for all the lines in the source spectrum.

In this Section 2.2, the first experiments illustrating the effects of source

correlations on the spectrum of light are described. Sources with invariant spectra and
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sources with spectra that change on propagation are generated and compared with the

theoretical predictions. The specific techniques that are used to generate these

appropriately correlated secondary sources are described. In Section 2.3, we report the

first experiments in which frequency shifts of the optical spectrum detected in the far

field of a planar secondary source are observed. In these experiments we use a Fourier

achromat to generate a secondary source with a degree of spatial coherence that is

independent of wavelength. The spectral peak was found to be displaced in frequency

in the absense of any motion of the source. The spectrum detected in the far field of the

source depends on the spectrum at the source, the degree of spectral coherence at the

source, and the location of the observation point.

Much of the analysis presented in this Chapter has been published previously

(Faklis and Morris2,7). References 2 and 7 are expanded in Sections 2.2 and 2.3 of

this Chapter, respectively.
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2.2 Spectral Modification due to Source Correlations

2.2.1 Introduction

In a recent letter by Wolf1 , it was shown that the normalized spectrum of light is

the same throughout the far zone and is equal to the normalized spectrum of light at the

source provided that the complex degree of spectral coherence is a function of the

variable k(p2 - P1) only, where (P2 - P1) denotes the (vectorial) distance between two

points on the source, k = Wa/c, c represents the angular frequency and c is the speed of

the light. If the complex degree of spectral coherence depends on frequency only

through the variable k(p2 - Pl), the source is said to satisfy the scaling law.

It is well known that the correlation properties of light can be controlled by

application of the Van Cittert-Zernike theorem.2 4-28 To date, using conventional

sources and optical systems, the secondary sources with controlled correlation that have

been produced all satisfy the scaling law.

In this Section, an experimental arrangement that provides a secondary source

with a complex degree of coherence that is independent of the wavenumber k (i.e.

violates the scaling law) is described. In accord with theoretical predictions, when the

scaling law is violated the spectrum in the far zone is not equal to the spectrum of light

at the secondary source and it also depends on the observation point. The experimental

measurements of the spectrum in the far zone are found to be in good agreement with

theory.
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2.2.2 Coherence in Linear Optical Systems

Consider a general linear system with an impulse-response function given by

h(x,y;4,j;co), as illustrated in Fig. 2.2.1. With a given transverse component of the

electric field, we associate a complex analytic signal u(4,i1;t) and define the spectral

amplitude U(tj;co) to be the time-truncated Fourier transform of u(tT1;t) [see Born

and Wolf, Ref. 29, Chap. 10.],

U( ,T1;o) = j.u(4,i;t) exp(icot) dt (2.2.1)

Using this definition one can express the spectral amplitude of the system output

U1i(x,y;co) in terms of the input spectral amplitude U, (gT;o) as follows:

U1i(x,y;w) = fJU(4,T1;o) h(x,y;,tl;wo) d dri (2.2.2)

In Eq. (2.2.2) the spatial coordinates in the input and output planes are denoted by

(4,TI) and (x,y), respectively, and c = 2xc/, where X is the wavelength.

When one considers the operation of an optical system with broadband

illumination, by far the most convenient quantity to calculate is the cross-spectral

density function defined29 as

W(xlYl;x2xY2;,O) -lim < U(xl'Yl;=)U*(x2,Y2;w)>S (2.2.3)
T+o2T, (22)
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in which <...>s denotes an average over an ensemble of sources. Note that d - time-

truncated field is used since, in general, the noiselike field u(x,y;t) is not mean-square

integrable.

A quantity of particular interest here is the spectral intensity

S(x,y;o)) a W(x,y;x,y;co) , (2.2.4)

which represents the intensity at point (x,y) and frequency a). Note that the total

intensity at point (x,y) is obtained simply by integrating S(x,y;0o) over all temporal

frequencies.

If an input object tI(4,Ti;co) is inserted at plane I and illuminated by a field with

spectral amplitude Uin(4,TI;oi), then the spectral amplitude UI(4,TI;o) leaving plane I is

given approximately by

Ui(4,?I;D) ) = Uin(4,T];Gw) ti(,1;co) . (2.2.5)

Using Eqs. (2.2.2), (2.2.3) and (2.2.5), the cross-spectral density function

WII(x 1,Yl;x 2 ,Y2;co) in plane I1 is written

Wui(xl,Yl;x 2 ,Y2 ;w) = Jfti(, T1;) ti (4 ,1 ; o) Win( ,T;{ J, ;O)

X h(xl,yl; ,Tl;co) h * (x2 ,Y2 ;4 ,TI ;co) d~dTd drI . (2.2.6)
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Equation (2.2.6) is a general expression relating the cross-spectral densities in planes I

and II.

It is useful to define a normalized form of the cross-spectral density function

given as follows:

W12 (¢.0) = W(xl,Yl;x 2 ,Y2 ;w°)
[S(xl,Yl;cO) S(x 2 ,y2 ;)] 1 /2  (2.2. 7)

in which I112 () can assume values in the range 0 1.L12 () < 1. .12(a)) is known as

the complex degree of spectral coherence.30

2.2.3 Control of Spatial Coherence

Diagrams of the optical systems used in the experiments are shown in Fig.

2.2.2. In both system configurations, a primary source illuminates a circular aperture

of radius a1 in plane I. It is assumed that illumination is provided by a quasi-

homogeneous thermal source28 located directly behind the aperture in plane I. The

impulse-response function connecting planes I and II is used to produce a secondary

source with controlled spatial coherence at plane II. The spectrum of light is measured

at the secondary source, plane I, and in the far field of the secondary source, plane m.

A theoretical expression for the complex degree of spectral coherence in the

secondary source plane II can be calculated using Eqs. (2.2.6) and (2.2.7). For the

system shown in Fig. 2.2.2(a), plane I is located in the front focal plane of an

achromatic telescope objective of focal length F. Plane II is located in the back focal

plane of the objective. For this case the impulse-response function connecting planes I

and II is given by
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Fig. 2.2.2 Experimental configurations for realization of secondary

sources with controlled spatial coherence that (a) satisfy the scaling law,

and (b) violate the scaling law. An aperture function in plane I is

illuminated using a broadband, spatially incoherent source. A secondary

source with a specified complex degree of spectral coherence is formed in

plane II through application of the Van Cittert-Zernike theorem.

Measurements of the spectral intensity are made in the secondary source

plane II and in the far field of the secondary source, plane Ill.
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hcnv (xy;, )= ('1-'; ) exp [(2 ) (x4 +yrl)] • (2.2.8)
2nrcF cF

this is the conventional impulse response for a F-to-F Fourier-transform system.3 1

In the system arrangement shown in Fig. 2.2.2(b), an achromatic-Fourier-

transform lens32-34 is inserted between planes I and I. With spatially coherent light the

effect of this Fourier achromat is to produce an optical Fourier transform in plane II in

which the transform size is independent of wavelength. The impulse response of the

Fourier achromat is given by

haft (,y g;m r)
he(xp Y;[(0) (x + yri)] , (2.2.9)

2nrcF cF

in which Ci0 is a constant and corresponds to a particular design frequency.

The effect of the impulse-response functions given by Eqs. (2.2.8) and (2.2.9)

is illustrated in Fig. 2.2.3; these photographs are optical transform patterns recorded in

plane II of the systems in Figs. 2.2.2(a) and 2.2.2(b), respectively. In each case, a

400-gm-diameter, circular aperture is inserted in plane I and illuminated with spatially

coherent, broadband light. The spectral bandwidth of the light is 200 nm. In Fig.

2.2.3(a) one notes that the size of the transform pattern scales linearly with the

wavelength of illumir ation. The scaling of the pattern with wavelength can be traced

directly to the frequency dependence of hCONV(x,y;tT;o) in Eq. (2.2.8). The system

in Fig. 2.2.2(a) produces a secondary source in plane Hl that obeys the scaling law. In

Fig. 2.2.3(b) it is seen that the scale size of the optical transform pattern produced by

the Fourier achromat is independent of the illumination wavelength. The Fourier

achromat of Fig. 2.2.2(b) produces a secondary source in plane I such that the



Fig. 2.2.3 Airy-disk diffraction pattern rmorded in the back focal plane,
plane 11 of (a) an achromatic telescope objective lens, and (b) an
achrornatic-Fourier-transform lens. These photographs were produced by
illumiinating a circular apermre located in plane I with broadband, spatially
coherent light. In (a) do: (iffraction pattern scales linearly with
wavelength, and in (b) the size of the diffraction pattern i independent of
the wavelength.
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complex degree of spectral coherence is independent of the illumination wavelength,

and therefore, does not satisfy the scaling law.

Using Eqs. (2.2.6) - (2.2.8) gives the following expressions for the spectral

intensity and complex degree of spectral coherence in plane 11 for the system in Fig.

2.2.2(a):

sc°nv() fCOS( 0)(ci) , (2.2.10)

912V(o)- 2 J(() , 2.2.11)

where S(0)(.o) denotes the spectrum at the primary source, Jl(X) is the Bessel function

of order one, X = [coal /(cF)] [(x2 - xl)2 + (Y2 - yl)2]1 /2, and r 0 is a constant. We will

refer to sources that have a complex degree of spectral coherence withA the functional

form of Eq. (2.2.11) as Bessel-correlated sources.

By using Eqs. (2.2.6), (2.2.7) and (2.2.9) one can calculate expressions for

spectral intensity and complex degree of spectral coherence in plane II of Fig. 2.2.2(b)

as follows:

CO

.12 2Jl(X) (2.2.13)
X

where T(w) is introduced to account for transmission losses through the Fourier

achromat, X'= [0o)aj/(cF)][(x 2 - xl) 2 + (Y2 - yj)2] 1/'2, and Kc1 is a constant. Note that
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the only difference in the expressions for the complex degree of spectral coherence in

Eqs. (2.2.11) and (2.2.13) is that co in Eq. (2.2.11) has been replaced by co0 in Eq.

(2.2.13). A detailed calculation for the spectral intensity shows that SIIAFT(r,c0) is

independent of the spatial location r only in a region whose size depends on the spectral

bandwidth. In the experiments reported below, a circular aperture is inserted in plane I

to ensure that SIgAFT(r,0o) = SIIAFr(€0) for all points within the aperture.

2.2.4 Spectrum of Light in the Far Zone

The spectrum of light in the far field of the secondary source located in plane II

can be calculated using the above linear system formalism to describe the propagation

between planes II and III of Fig. 2.2.2. The spectral intensity in plane Ill is readily

found to be given by the following formula:

SI(u,v;€o) = JJJftl(xl,yl;co) t1 (x 2 ,Y2 ;0o) WII(xl,Yl;x 2 ,Y2 ;0o)

X h(co)(u,v;xl,yl;co) h()* (u,v;x 2 ,Y2 ;w) dxldyldx2 dy2  , (2.2.14)

where tll(x,y;wo) represents a transmission function in plane UI, and

h(°)(uv;xy;c) = (2zi) exp[( c2z)(U2 + v2 )] exp[(- )(ux + vy)]. (2.2.15)

2=~z 2cz cz

Taking tii(x,y;co)=l and using Eqs. (2.2.7), (2.2.10), (2.2.11) and (2.2.14),

one finds that

S con(r;w) = C2 Sc°nv(cO) ,r_<alZ/F

=0 ,r>alz/F , (2.2.16)
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where r = [u2 + v2]1/2 and iK2 is a constant. The circular aperture of radius a2 is used to

ensure that the observation plane, plane III, is in the far field of the secondary source.

Using Eqs. (2.2.7) and (2.2.12) - (2.2.14) one obtains the following

expression for the specmm of the field in the far zone of the achromatized secondary

source of Fig. 2.2.2(b):

SM(r;o) = IC3 (0) S( ,r5alzct 0 /wF

= 0 , r > alzoo / c.oF , (2.2.17)

where K3 is a constant.

2.2.5 Experimental Results

In the experiments a 100-watt tungsten-halogen lamp is used as the primary

source and is located in close proximity behind a circular aperture of radius a1 = 2.5

mm in plane I [see Fig. 2.2.2]. The focal length F is 180 mm. Using these values the

coherence interval at the secondary source plane H is 24 Pm at X, = X0 = 550 nm.

A circular aperture of radius a2 = 0.5 mm is located in plane H. The far-field

condition is satisfied when z>> a2
2/X = 0.5 m at X = 500 nm. To obtain an acceptable

SNR in our detection system, the distance z is taken to be one meter. The aperture in

plane II is also used to ensure that the spectrum of the secondary source in the

experimental arrangement of Fig. 2.2.2(b) is independent of the spatial location within

the aperture [see Eq. (2.2.12)].



-30-

The spectral intensity of the light at the various observations points is measured

using a grating monochromator.

Figure 2.2.4(a) shows curves for the spectral intensity measured at the source

plane II and at various locations in the far field, plane III, for the system configuration

of Fig. 2.2.2(a). As expected, since this source obeys the scaling law, the normalized

spectrum is invariant on propagation.

In the experiments involving the system configuration of Fig. 2.2.2(b), an all-

glass Fourier achromat 3 3 is used. The lens consists of three widely spaced lens

groups. The lens is capable of forming 250 adjacent, achromatized Airy disks across a

7-mm diameter in the optical transform plane. The system is well corrected for

wavelengths ranging from approximately 470 nm to 590 nm [4.0 x 1015 > c0 > 3.2 x

1015 sec-1].

The spectral intensity measured on-axis at planes II and I for the Fourier-

achromat-system configuration is shown in Fig. 2.2.4(b) -- the solid curves are plotted

from laboratory measurements and the dashed curve is the theoretical prediction for the

spectral intensity as given in Eq. (2.2.17).

In Fig. 2.2.5, measurements of the spectral intensity at various off-axis points

in plane III of Fig. 2.2.2(b) are given. Note that the width of the spectral intensity vs.

co narrows as the angle of observation increases. For the off-axis points, the measured

values of the spectral intensity are somewhat lower than that predicted by Eq. (2.2.17).

This can be explained by the fact that the far-field condition is only approximately

satisfied. For the calculation of the spectral intensity at off-axis points in plane 1M, one

should actually use the impulse response that corresponds to a Fresnel-diffraction

geometry. However, for the sake of brevity, this calculation is omitted in the present

treatment. 10
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Fig. 2.2.4 Normalized spectral intensity at the secondary source plane Ul
and in the far field of the secondary source, plane HIL for (a) a source that
obeys the scaling law, and (b) a source in which the complex degree of
spectral coherence is independent of the illumination frequency (i.e.,
violates the scaling law). In (a) the spectral intensity is normalized to the
peak value of the spectral intensity in the respective planes. In (b) the
spectral intensity in planes II and MI are scaled such that
SnAFr(0)o)=SmArr(o;o)--1.
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Fig. 2.2.5 Measured values of the normalized spectral intensity in the far

field, plane III, for case (b) (i.e., when the source does not obey the

scaling law). The spectral intensity is measured at off-axis angle 0=

00,100,15 0 ,200. Note that the spectral intensity vs. frequency narrows as

the off-axis angle 0 increases. The intensity data are normalized with

respect to Sm(O;ow), where col = 3.2 x 1015 Sec1.
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2.2.6 Discussion

We have experimentally demonstrated that the statistical properties of the light

emitted by a partially coherent source can affect the spectrum detected at a distant point.

In our experiments a circular aperture is inserted in plane I of Fig. 2.2.2 to produce a

secondary source at plane II that is Bessel-correlated [see Eqs. (2.2.11) and (2.2.13)].

A Fourier achromat [see Fig. 2.2.2(b)] is used to produce a field correlation in plane II

that is independent of the illumination frequency (a departure from the scaling law). In

this case the spectrum in the far field is different from the spectrum measured at the

source and changes for different obs-rvation points in the far field [see Eq. (2.2.17)

and Figs. 2.2.4 and 2.2.5]. While a Bessel-correlated source was used in these

experiments, it is noted that virtually any allowed functional form for the complex

degree of spectral coherence can be produced through application of the Van Cittert-

Zernike theorem. For example, a Gaussian-correlated source can be produced by

inserting a Gaussian transmission function in plane I. A Fourier achromat inserted

between planes I and fl eliminates the wavelength dependence in the complex degree of

spectral coherence in plane II. A different frequency dependence for the complex

degree of spectral coherence could be produced by a modification of the design rules

used for the Fourier achromat.

The effects of source correlation on the spectrum is to be distinguished from

changes in the spectrum due to diffraction of fully or partially coherent light by an

aperture function located in the source plane. Although both effects can modify the

spectrum of light on propagation, their physical origin is different. For example,

suppose that one placed a diffraction grating in the secondary-source plane I. Using
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Eq. (2.2.14) and the appropriate expression for the transmission function t]x,y;ci) of a

diffraction grating, one can write an expression for the spectrum SM(u,v;co) in the far

field. The transmission function t1 (x,y;o) will affect Sm(u,v;o) only if the coherence

interval, associated with the cross-spectral density Wuj(x,y;x2 ,y 2;co), is on the order

of or greater than the grating period, i.e. the light is spatially coherent over at least a

portion of the grating structure. Similar reasoning can be used for the case in which a

refractive element, such as a prism, is placed in the secondary-source plane.

In our experiments, a 1-mm-diameter circular aperture is inserted in plane I.

The purpose of this aperture is to ensure that the far-field condition is satisfied

(approximately) in the measurements of Siii(u,v;co). As stated above, the coherence

interval at plane II is 24 gm. Since the coherence interval is much less than the object

structure (aperture diameter), the illumination in plane II is essentially incoherent and

the aperture does not modify the spectrum of light in the far field. In our experiments

changes in the spectrum on propagation are due to the correlation properties of the

secondary source.
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2.3 Spectral Shifts Produced by Source Correlations

Wolf 3-5 has shown that under certain conditions, source correlations can

produce frequency shifts in the observed spectrum. Recently Bocko et. al. 6 have

observed frequency shifts of the field spectrum generated by two appropriately

correlated acoustical sources.

In this Section, we describe experiments in which frequency shifts of the optical

spectrum detected in the far field of a planar secondary source are observed. In the

experiments we use a Fourier achromat to generate a secondary source with a degree of

spectral coherence that is independent of wavelength, and therefore, does not satisfy the

scaling law. The spectrum detected in the far field of the source depends on the

spectrum at the source, the degree of spectral coherence at the source, and the location

of the observation point.

2.3.1 Synthesis of the Secondary Source

Consider a general linear optical system with an impulse-response function

given by h(x,t,'v) in which the vectors 4 and x represent points in the input and output

planes, respectively, and v denotes the illumination frequency, v=c/., where X is the

wavelength. The spectral amplitude of the system output Un(x;v) may be expressed as

a superposition of the input spectral amplitude Ui(4,'v) and the system impulse response

as follows:

U (X; V) f JUl( ;v) h(x, ;v) d 4 (2.3.1)
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The cross-spectral density function may be shown to be expressible in the form 29

W(xl,x 2 ;v) = < U(x;v) U * (x2 ;v) > , (2.3.2)

in which <..->s denotes an average over an ensemble of sources. The spectral intensity

is given by

S(x;v) = W(x,x;v) (2.3.3)

and the normalized cross-spectral density function (the complex degree of spectral

coherence) is written as

pt(xI,x 2;v) W(xl,x 2 ;v) (2.3.4)
[S(x 1;v) S(x2 ;v)]112

A diagram of the optical system used in the experiments is shown in Fig. 2.3.1.

The illumination is provided by a quasi-homogeneous thermal source 35 that is imaged

onto plane I. The two-lens imaging system between the primary source and plane I is

characterized by a pupil function P(r) and a magnification M=F2 /F1 , where F 1 and F2

are the focal lengths of the two lenses. The primary source is located at a distance F1 in

front of the first lens with the pupil P(r) located at a distance F1 behind the first lens

and at a distance F2 in front of the second lens. The image of the primary source is

located at a distance F2 behind the second lens in plane I.

The impulse-response function relating the field in planes I and II is used to

produce a secondary source with specified spatial coherence at plane II. The spectrum
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Fig. 2.3.1 Experimental cmfiguration for realization of a secondary

source with controlled degree of spatial coherence. An object located in

plane I is illuminated using a broadband, partially-coherent source that

obeys the scaling law. A secondary source with wavelength-independent

spatial coherence is formed in plane 11 through application of the

generalized Van Cittert-Zemike theorem. The spectral intensity is

measured at the secondary source, plane HI, and in the far field of the

secondary source, plane I.
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of the light is measured at the secondary source, plane 11, and in the far field of the

secondary source, plane III.

The impulse response of the achromatic Fourier transform system 32-34 is given

by

= -i r -i27x

h AFrT(x,t;v) - exp [ -x ] , (2.3.5)
X0F0  X0F0

where F0 is the focal length of the lens system when X=X 0O and A0 is a constant that

corresponds to a particular design wavelength. The cross-spectral density function in

plane II of Fig. 2.3.1 is then given by

W1 (xl,x 2 ;v) = Jf(';V)g*(t V) Wi(tt";V)

X hAFr(Xl, ';v)hAFr * (x2 ,";v) d2 t d2 ' , (2.3.6)

where g( ;v) is the amplitude transmittance of the aperture in plane I and Wjn( ',t";v)

is the cross-spectral density of the incident illumination. The illumination incident on

plane I is assumed to satisfy the scaling law and to have a spectrum S(O)(v), which is

the same at all spatial locations. The amplitude transmittance of the aperture in plane I

is assumed to be independent of the illumination frequency, i.e. g(4,v)=g(t). With

these assumptions, Eqs. (2.3.3) - (2.3.6) lead to the following expressions for the

spectral intensity and complex degree of spectral coherence in plane II for the system

shown in Fig. 2.3.1:



-39-

S(0)(v)T(v) (v0)2 IP( x)I2
I, (X;V)F V vF0

X fjf(- -)12 jg( )12 d24 (2.3.7)

fI f(--4)12 1 g(4)p explr i2' Ax 4] ]d24

ji±t(Ax;v) = pn1 (A;V0)= ( , (2.3.8)
If(--)12 Ig()1 2 d24

where T(v) is introduced to account for transmission losses through the Fourier

achromat, If(t)12 represents the intensity of the primary source, and Ax=x 2-xl. Note

that the degree of spectral coherence in plane II is independent of wavelength so the

secondary source indeed violates the scaling law. Consequently, the spectrum

observed at different field points away from the source will, in general, be different

from that measured in plane I. The spectrum throughout the near zone of plane II can

be determined using the impulse-response function corresponding to Fresnel

propagation between planes II and Ill. However, in the present work it is assumed that

plane III is located in the far field of plane II.

2.3.2 Spectrum in the Far Zone

The impulse-response function that represents propagation to the far zone is

given by

h(ux;v)=- exp[ i U 0o U] exp[2 22 x] , (2.3.9)
Xz Xz )z
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in which the vector u denotes a point in plane m and z is the distance between planes II

and III. The spectral intensity in the far field plane IlI is

SI1 (u;v) = ffQ(xi)Q*(x 2 )W(X 1,X2 ;V)

X h(u,xj;v)h * (u,x 2 ;v) d2xld2 X2  (2.3.10)

where Q(x) represents the amplitude transmission function of an aperture located in

plane I. Using Eqs. (2.3.6), (2.3.9), and (2.3.10), one finds that

Sm(u;V) = S(o)(v)T(v) If( vFQ u) 12 Ig(VFO u)12
tz 2  MV0Z V0Z

X f lr(-V-- X)121Q(x)P2 d2x (2.3.11)
vF0

In the experiments, P(r) and Q(x) represent circular apertures where the diameter of the

image of P(r) in plane II is chosen to be larger than the aperture Q(x) over the entire

source bandwidth. Under these circumstances, IP[-v 0 F2x/(vF0 )]12 = 1 in Eq. (2.3.11)

and the integral is evaluated to give

Sm(u;v) = AS(°)(v)T(v) If( v u ) 12 I('VFvz u )
12  , (2.3.12)

7CZ 2NV V0 Z

where A is the area of the aperture Q(x). Comparison of Eqs. (2.3.7) and (2.3.12)

indicates that the spectrum measured in the far zone will be different than the spectrum

measured at the secondary source. From Eqs. (2.3.7) and (2.3.12) we readily find that

Sii(u;v) = KSII(V) (----)2 If( .- u)12 g( "VF° u)12 , (2.3.13)
v0 MVoZ VoZ
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where K is a constant. In our experiments we choose g(4) to be a circular-Gaussian

function with a 1/e2 half-width 2aI and we assume that the primary source has a

Gaussian shape with a 1/e2 half-width 202. Under these conditions, it follows that

Sm(u;v) = KSII(v) ( v_) 2 exp [(V z)2(1 + __1 )u Pu] . (2.3.14)
V0  V0 Z 1I+M

Notice that the spatial extent of the Gaussian term in Eq. (2.3.14) increases with

decreasing frequency so that at a given off-axis point in plane II the contribution to the

spectrum by the Gaussian term is greater for lower frequencies. However, the

contribution of the v2 term in Eq. (2.3.14) is weighted toward the higher frequencies.

Consequently, the peak of the spectrum measured far enough off axis in plane Ill is

expected to shift towards the red relative to the spectrum in plane II while the spectrum

measured near the axis will be shifted toward the blue relative to S1i(v).

2.3.3 Experimental Results

In the experiments fluorescence from a Rhodamine-6G dye jet is used as the

primary source; this source is produced by focusing four watts of 514.5-nm radiation

from an argon ion laser into the 100 g.m-thick jet. The focal lengths F1 and F2 of the

two-lens imaging system between the primary source and plane I are 4 mm and 80 mm

respectively. The spectrum of the incident illumination measured in plane I is found to

be the same at all points within the aperture of the Fourier achromat. The computer-

generated transmission mask, g(4), is circular-Gaussian with aY1=1.2 mm: it was

recorded on Kodak Linagraph Shellburst film using an Optronics P-1700 Photomation
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read/write microdensitometer. A calibration procedure was implemented to determine

the relation between gray-level values (integers 0 to 255) input to the plotting system of

the Optronics scanning/plotting unit, and the transmittance (or the density) of the

resulting developed film. The film was written with a 12.5 .m pixel size and negative

polarity, and was developed in freshly mixed Kodak D-19 for five minutes at 20

degrees C.

The spectral coherence interval at wavelength X of light at plane I is given by

tl=1.22XF 2/d, where d is the diameter of the pupil P(r). For these experiments t, is

equal to 10 .m at X = 550 nm. Since g(4) is slowly varying over a coherence interval

the illumination is essentially incoherent at plane I.

The all-glass Fourier achromat 3 3 used in the experiments consists of three

widely spaced lens groups. The lens is capable of forming 250 adjacent, achromatized

Airy disks across a 7-mm diameter in the optical transform plane. Achromatization is

achieved for wavelengths ranging between 450 rm and 620 nm [6.7x1014 > V >

4.8x1014 (sec-1 )] for the aperture diameter used in these experiments. The focal length

F0 of the Fourier achromat is 180 mr and the design wavelength X = 550 nm.

A circular aperture Q(x) of radius a = 0.5 mm is placed in plane II so that the

far-field condition can be approximately satisfied with the distance z equal to one meter.

The coherence interval in plane II is given by t2 =- XF(/nto 1 = 26 g.m, which is small

compared to the aperture radius a. Since the coherence interval is much smaller than the

aperture radius, the illumination in plane II is essentially incoherent and aperture

diffraction effects do not modify the spectrum.

The spectral intensity of the light is measured using a grating monochromator

with 0.1-nm resolution and photomultiplier detection system. Measurements of the

spectral intensity in planes II and III are given in Fig. 2.3.2. The peak of the spectral
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Fig. 2.3.2 Spectral shifts produced by a Gaussian-correlated planar

source. The spectral intensity is measured at (a) the secondary source;

and in the far field of the secondary source (b) on-axis and (c) u=20 mm

off-axis. The peak spectral intensity measured at the off-axis point

exhibits a redshift while that measured on axis exhibits a blueshift. The

peak of each curve has been normalized to unity.
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intensity measured 20 mm off-axis is found to be redshifted with respect to the peak of

the spectrum measured at the secondary source. The peak of the spectrum measured

on-axis is found to be blueshifted; this effect occurs because of the domination of the v2

term in Eq. (2.3.14), as was explained earlier.

In summary, frequency shifts of the spectrum of light detected in the far zone of

a planar, secondary source that violates the scaling law are observed. A Fourier

achromat [see Fig. 2.3.1] is used to produce a secondary source with a Gaussian field

correlation that is independent of wavelength. Correlations having different wavelength

dependence can be produced by an appropriate choice of the impulse-response function

relating planes I and f. In fact, any dispersive medium placed between planes I and II

will give rise to a secondary source in plane H that violates the scaling law.
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2.4 Summary of Chapter 2

As observed in the experiments and consistent with Wolf s theoretical

predictions, the spectrum of light in the far field is dependent on the correlation

properties of the light at the source. If the optical field at the source obeys the scaling

law, the spectrum of light on propagation is invariant. Departures from the scaling law

produce changes in the spectrum that depend on the spectrum at the source, the degree

of spectral coherence at the source, and the location of the observation point.

In our first set of experiments a circular aperture was inserted in plane I of Fig.

2.2.2 to produce a secondary source at plane 11 that was Bessel-correlated [see Eqs.

(2.2.11) and (2.2.13)]. A Fourier achromat [see Fig. 2.2.2(b)] was used to produce a

field correlation in plane H that is independent of the illumination frequency (a departure

from the scaling law). In this case, the spectrum in the far field is different from the

spectrum measured at the source and changes for different observation points in the far

field [see Eq. (2.2.17) and Figs. 2.2.4 and 2.2.5].

We have also demonstrated experimentally that source correlations can produce

frequency shifts in the spectrum observed in the far field of an optical source if the

correlation function of the emitted radiation does not obey Wolf's scaling condition. A

Fourier achromat [see Fig. 2.3.1] was again used to generate the non-scaling-law

secondary source. The spectrum detected in the far zone of the secondary source was

found to be displaced in frequency and distorted relative to the spectrum measured at

the secondary source [see Fig. 2.3.2]. The displacement was toward both the higher

frequencies and the lower frequencies depending on the direction of observation [see

Eq. (2.3.14)]. For planar secondary sources that violate the scaling law, source
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correlations have the effect of spatially redistributing the spectral components of the

light in the far zone; this effect is to be distinguished from changes in the spectrum due

to diffraction of fully or partially coherent light by an aperture.
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Chapter 3

3. Synthesis of a Source with Controlled Coherence

3.1 Introduction

As we have seen in the previous chapter, the coherence properties of the light

emanating from the source have a profound influence on the outcome of optical

experiments that make use of the source. The statistical properties of the light emitted

by a partially coherent source can affect the spectrum detected at a distant point. Also,

the statistical fluctuations of the light at the source play a central role in determining the

character of the light distribution in the image plane of the optical system. It is therefore

essential to understand the coherence properties of the source in addition to those

describing propagation and detection.

Most experiments on coherence theory involve the production of optical fields

with prescribed coherence properties. Several methods exist for controlling the

correlation properties of a secondary light source by means of modifying the coherence

properties of the light emitted by some primary source.1-13 The techniques include the

application of the Van Cittert-Zernike theorem,1 -2 scattering by moving diffusers 3-5 and

liquid crystals, 6 acoustooptic interactions, 7-11 optical feedback devices, 12 and

holographic optics. 13

An interesting example underlining the importance of the need to generate

sources with controlled coherence is the recent research by WoLf2l [also see Chapter 2

of this thesis]. He proved that an appropriately correlated source can give rise to

redshifts or blueshifts of the emitted light with respect to an uncorrelated source. In

-51-
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order to facilitate experiments on these effects, Wolf offered a simple model of a source

exhibiting redshifts and blueshifts due to source correlations. His model consists of

two small correlated sources with identical spectra consisting of a single line of

Gaussian profile. Wolf showed that with an appropriate choice of the correlation, the

spectrum of the emitted radiation also consisted of a single line with a Gaussian profile;

however, the measured spectrum was shifted in frequency with respect to the spectrum

that would be produced if the sources were uncorrelated. The nature of the shift was

shown to depend on the choice of one of the parameters that specifies the exact form of

the correlation. Bocko, Douglass, and Knox22 succeeded in synthesizing an acoustic

source of this type and found a complete agreement with the theoretical predictions.

Knox and Knox2 3 performed experiments based on Wolf's model in the optical region

and also showed excellent agreement with the theory. Gori et. al.24 provided additional

experimental verification of Wolf's model in the optical region.

In this Chapter, experiments are described in which a new method is employed

to generate an optical secondary source with a controlled degree of spectral coherence.

Our intention is to generalize the synthesis process regarding the two-source model to

further facilitate experiments on the effects of source correlations. Gamliel and Wolf 25

have examined the possibility of using source correlations to modulate spectra in a

controllable manner for possible application in secure communications systems. The

experiments described in this Chapter illustrate the feasibility of synthesizing source

correlations for use in spectral modulation applications.

The technique consists of mixing controllable amounts of two uncorrelated

sources in an interferometer. In the experiments, a spectral filtering device is used to

produce the desired source correlations. The spectral filter consists of dispersive optics

that are used to spatially separate (and recombine) the wavelength components of a
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broadband primary source, and an amplitude mask that is used to filter the dispersed

light. The complex degree of spectral coherence is shown to be directly related to the

passband of the filter.

The secondary source with controlled correlation is generated using an

interferometric optical system that was designed and constructed around the spectral

filter. The degree of coherence is measured using an additional interferometric system

in which the secondary source is allowed to form fringes. To demonstrate the system

performance, the degree of spectral coherence of a specific source generated using this

scheme was measured as a function of the wavelength and was compared to the

theoretical predictions. The experimental measurements of the degree of coherence are

found to be in good agreement with theory.

In Section 3.2, a theoretical analysis is presented that describes the synthesis of

source correlations for a source consisting of two radiators. In Section 3.3, the design

of a spectral filtering system to facilitate the source synthesis is reported. The results of

experimental measurements and a comparison with the theory are given in Section 3.4.

Much of the analysis presented in this Chapter has been previously presented

and submitted for publication (Faklis and Morris29 -30 ).
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3.2 Theoretical Treatment of Source Synthesis

Using this method of source generation, two mutually incoherent primary

sources are mixed in proportionate amounts to result in a partially coherent secondary

source. Consider the bivariate linear process given by,

Ul(v) = Hll(v) A' (v) + H 12 (v) V2 (v) (3.2.1)

U2 (v) = H2 1(v)Vl(V) + H22(v) V2 (v) , (3.2.2)

where Vl(v) and V2 (v) are the uncorrelated primary sources and the functions Hij(v)

(ij = 1,2) represent arbitrary deterministic functions of the spectral frequency, v. The

cross-spectral density of the secondary source is given by

W(v) = < U(V) U2 * v ) > , (3.2.3)

in which <...> denotes an average over an ensemble of sources. Two other quantities

of interest here in the theoretical treatment are the spectral intensity (of each of the

primary sources)

S(v) = <IV(v)12 > , (3.2.4)

and the normalized cross-spectral density function
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w(v)
V) [S(V) S2 (V)]1 /2  (3.2.5)

known as the complex degree of spectral coherence.

In order to visualize the effects of the mixing process we can calculate the cross-

spectral density function. The cross-spectral density of the secondary source defined

by Eqs. (3.2.1) and (3.2.2) is given by

W(v) = HlI(v) H21 *(v) S1(V) + H12(v) H22 *(v) S2 (v) , (3.2.6)

where for these experiments, the spectrum of each of the uncorrelated sources Vl(v)

and V2(v) is assumed to be the same at all spatial locations. The complex degree of

spectral coherence is given by

At(V) = - Hll(V) H2 1 *(v) S1 (V) + H12 (v) H2 2 *(v) S2 (v) (3.2.7)
{[ Hli12 Sl(v)+IHl2 2 S2 (V)IH 2 1 Sl(V)+H 2 212 S2 (v)]}1 1 (/ 2

Equation (3.2.7) represents a general method to control the frequency

dependence of the degree of spatial coherence. Note that using Eqs. (3.2.1) and

(3.2.2), the degree of spatial coherence is represented by a complex function of the

frequency variable. The denominator of Eq. (3.2.7) is, by definition, a real function of

the frequency. The numerator is, in general, complex-valued and can be designed to

synthesize complex correlation functions. The spectra, SI(v) and S2(v), and the filter

functions [Hij(v) (ij = 1,2)] are used as parameters for the source synthesis. It is

evident from Eq. (3.2.7) that at least one complex-valued filter is needed to realize a

complex degree of coherence.
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As an important special case of the general result, we allow the spectrum of

both sources to be the same in Eq. (3.2.7), i.e., S1(v) = S2(v),

V) = H, Il(v) H2 1 *(v) + H12 (v) H2 2 *(v) . (3.2.8)
) [I Hll (V)I2 +H 1 2 (v)I2 IiH 2 1 (v)12 +1H2 2 (v)12 ]J/2

Equation (3.2.8) can also be used to control the degree of spectral coherence by

appropriately controlling the mixing of the two uncorrelated sources through the

functions, Hij(v). To illustrate our technique for source synthesis and to obtain a

particularly simple result for the degree of coherence, we next assume the following:

HlI(v) = H22 (v) = 1 , H12 (v) = H2 1(v) = G(v) (3.2.9)

The function G(v) represents a general spectral filter. Note that since we chose the

spectra of the two sources to be the same and that we use Eq. (3.2.9) as a constraint,

the degree of coherence is a real function. For the experiments we will assume Eq.

(3.2.9) holds and that the spectral filter is a real function of frequency. Using the

assumption of a real-valued spectral filter along with Eq. (3.2.9) in Eq. (3.2.8), the

degree of coherence is then given by

WV) 2 G(v) (3.2.10)
1 + G (v)

Equation (3.2.10) illustrates the special case where the degree of coherence is

controlled using a single spectral filter. Given a desired degree of coherence. Eq.

(3.2.10) can be solved for the spectral filter needed for the synthesis problem The
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uncorrelated primary sources (with the same arbitrary spectra) are mixed [see Eqs.

(3.2.1) and (3.2.2)] using the spectral filter to give rise to a controllable partially

coherent source. Note that Eq. (3.2.10) has two possible solutions. The choice of a

particular solution may depend on the actual fabrication constraints.
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3.3 Spectral Filter Design

The role of the real spectral filter in the experiments is to selectively attenuate

certain wavelength components relative to some specified component [see Eq.

(3.2.10)]. The filter used in the experiments was designed with the intent that it be

programmable and easily modified. In fact, some applications may require a real-time

filter so that the degree of correlation can be modified continuously by a computer

program. For these applications, the synthesis procedure would be to specify a degree

of coherence; calculate the required spectral filter, and display the filter function on a

spatial light modulator that is appropriately placed in the image plane of a spectrometer.

For the synthesis of complex source correlations, it may be possible to modulate the

phase of each wavelength component using another electrically-addressable spatial light

modulator. Complex synthesis may be accomplished using two light modulators and

non-equal source spectra [see Eq. (3.2.7)].

A schematic of the optical system used in the experiments to realize the spectral

filter is shown in Fig. 3.3.1. The optical system needed to generate the filter was

designed to be symmetric and on-axis so that it could be easily aligned and maintained.

The spectral filter was designed around a direct-vision spectroscope, commonly known

as an Amici prism. The Amici prism disperses the broadband, collimated input light

leaving the central component undeviated. A unit magnification (mag = -1) imaging

system is used to focus the wavelength components on a filter plane and to recollimate

the light. The spectral components are located at well defined locations on the filter

plane so that selective filtering is possible using a programmable amplitude mask. The

back half of the imaging system sends the light through another Amici prism to spatially
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Fig. 3.3.1 Schematic of the spectral filter design.
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recombine the spectral components. The filtered image has a magnification of minus

one; this fact makes the design of the mixing interferometer less complex.

In order to generate the appropriate amplitude mask in the filter plane, the

dispersion of the Amici prism must be known. The three-element direct-vision

spectroscopes that were used in the experiments were Spindler & Hoyer 33 1120. The

component glasses were BK7 (elements 1 and 3) and SF14 (element 2). The

manufacturer quoted the dispersion for the cemented prism (between F and C' light) to

be approximately 4.5 degrees.

The relationship between the output angle of refraction and the wavelength is

certainly not linear. The output angle as a function of the wavelength was calculated

using ray-tracing techniques. The derivation was completed by keeping track of the

angle of refraction at each interface starting with a collimated input. A plot of the

dispersion is shown in Fig. 3.3.2. Although this result must be used to predict the

location of the wavelength components in the rear focal plane of the first lens, the actual

dispersion must be measured experimentally. In practice, a photographic recording is

used to calibrate the spectrometer. In the experiments, the achromatic doublets have a

focal length of F = 140 mm and they operate at approximately f/40.
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Fig. 3.3.2 Dispersion characterics of the direct-vision spectroscope. The three-element

prisms used in the experiments were Spindler & Hoyer 33 1120. The component

glasses were BK7 (elements 1 and 3) and SF14 (element 2).
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3.4 Experimental Demonstrations

3.4.1 Source Characteristics

In the experiments, illumination from a Rhodamine-6G dye jet was used as the

primary source; this source is produced by focussing seven watts from a Coherent 1-90

argon-ion laser operating on all lines into a 100 pm-thick dye jet. To facilitate the

coherence measurements, the dye spectrum was scanned using a laser cavity and

wavelength tuning element. In fact, a Coherent 699-01 dye laser (without the Faraday

roptor and etalon assembly) was used to scan the dye spectrum with a relatively broad

linewidth of approximately 2.5 GHz at a maximum power of 800 mW. The

wavelength tuning element consists of an stack of birefringent plates that narrows the

linewidth from about 350 GHz to 2.5 GHz.

Two virtually uncorrelated sources were derived from the single multi-

longitudinal-mode laser source subject to the following considerations. A value for the

coherence length of the primary source can be calculated using a model for the laser's

longitudinal mode structure. An idealized model of the (normalized) power spectral

density of the laser oscillating in N equal-intensity axial modes is written as a sum of

equally spaced Dirac delta functions. Based on such a model , it is well-known that

the degree of coherence of the source has a periodic component that depends on the

number of modes. However, as the number of modes, N, gets large, only the principal

maxima of the periodic term contribute significantly. It is therefore possible to generate

two nearly uncorrelated sources with the same spectrum from a single primary source.

The primary source (laser beam) was divided into two equally-intense beams and one

of the beams was allowed to propagate through an optical delay line. The length of the
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delay line was set so that the degree of coherence is not at one of the principal maxima.

The two derived sources were then mixed together. The optical delay line was adjusted

for an absense of interference fringes. The optical delay used in the experiments

consisted of about 75 cm of airspace.

It is very important to mention that in the experiments all measurements were

performed on a time scale of the order of seconds. The presence of any transient

correlation effects (such as the Alford-Gold effect 26-28 ) is completely masked out on

this time scale.

The region of the dye spectrum under investigation extended from 570 nm to

610 nm. The actual spectral profile is known however it is unimportant here since it

conveniently cancels out in the calculation of the degree of coherence (both sources

were generated from the same primary) [see Eq. (3.2.10)]. The illumination

wavelength was continuously monitored using an Oriel 0.25-meter grating spectrometer

and detection system. The resolution of the grating spectrometer is approximately 0.1

rim. The power fluctuations in the dye laser output are of the order of 5% of the total

light power (at that frequency). Because of the symmetric design of the optical system,

power fluctuations do not significantly effect the visibility measurements.

A schematic of the optical system used in the experiments is shown in Fig.

3.4.1. The dye laser beam is used to generate two uncorrelated beams. The two beams

enter the interferometer where the are mixed through the use of the spectral filter. The

spectral filter system utilized a variable optical density mask in the back focal plane of

the first lens [see Fig. 3.3.1]. Specifically, the mask was a Newport variable attenuator

that was calibrated for each wavelength. A plot of the transmission calibration curie

for the variable mask is shown in Fig. 3.4.2. This curve represents the function G(v).

The appropriately correlated source is then available at the output of the interferometer.
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3.4.2 Coherence Measurements

In order to verify the synthesis procedure, the secondary source, Ul(v) and

U2(v), was allowed to interfere with itself and the resultant interference fringes were

projected onto a linear detector array. The visibility of the fringes was measured for

each wavelength component of a discrete sample set (i.e., from the tunable dye laser).

Approximately thirty sample points were investigated over the wavelength range 570

nm to 610 nm. It is important to note that both arms of the source-synthesis

interferometer were balanced.

For the visibility measurements, a Fairchild ISCAN linear CCD array

containing 256 detector elements was utilized. The output of the detector array was

input to a Tektronix 2445 oscilloscope for display of the interference fringes. The

fringe visibility was computed from the oscilloscope trace. The experimental results

along with the theoretical predictions [see Eq. (3.2.10)] are shown in Fig. 3.5.1. The

experimental measurements of the visibility are in good agreement with theory.

In order to facilitate the coherence measurements, the spectrum of the primary

source was sampled frequency-by-frequency using the laser cavity and frequency

tuning element. However, the interferometric system was designed specifically to

operate on a broadband input spectrum with all of the frequency components present all

at once. In true operation, a source with controlled correlation is synthesized with a

broadband input to the system. The partially-coherent broadband output is available at

the output of the source interferometer.
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Fig. 3.5.1 Illustrating the comparison between theory and experiment for source

synthesis. To test the theory, the source was produced and the visibility of interference

fringes was measured as a function of the wavelength and plotted against the theoretical

predictions.
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3.5 Summary of Chapter 3

Experiments were described in which a new method is employed to generate an

optical secondary source with a controlled degree of spectral coherence. The technique

consists of mixing controllable amounts of two uncorrelated sources [see Eqs. (3.2.1)

and (3.2.2)]. For a special case of the general formalism, the complex degree of

coherence was shown to be directly related to the passband of a spectral filter [see Eq.

(3.2.10)].

In the experiments, a novel spectral filtering device was employed to produce

the desired source correlations. The spectral filter consists of dispersive optics that

were used to spatially separate (and recombine) the broadband primary source, and an

amplitude mask that is used to filter the dispersed light. The filter was designed so that

a real-time amplitude mask could be implemented for those applications that may

require a rapid modulation of the coherence properties.

In order to verify the theoretical predictions, the fringe visibility resulting from

the interference of the partially coherent source was measured over the wavelength band

of interest. To facilitate the coherence measurements, a Coherent 699-01 dye laser

(without the Faraday rotator and etalon assembly) was used to scan the dye spectrum.

The results of experimental measurements along with the theoretical predictions [see

Eq. (3.2.10)] are shown in Fig. 3.5.1.
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Chapter 4

4. Coherence Properties of Synchrotron Radiation

4.1 Introduction: Synchrotron Radiation and its Applications

It is well known that accelerated charges emit electromagnetic radiation. The

theoretical investigation into the radiation by charges in circular motion dates back to the

work of Lienard1 in 1898. Subsequent theoretical research was performed by Schott2 ,

Kerst 3, and Ivanenko and Pomeranchuk. 4 In the 1940's, Sokolov and colleagues5 and

Schwinger6 -7 reported analytical treatments of the phenomenon, known as synchrotron

radiation, including a description of the intensity, spectral and angular distributions,

and polarization properties. A review of the fundamental theory describing synchrotron

radiation is given by Jackson. 8

Blewett9 was one of the first to be concerned with the effects of synchrotron

radiation on the operation of electron accelerators and observed its effects on the

electron orbit experimentally in 1945-46 at the General Electric Research Laboratories.

A detailed history of these developments is given by Lea. 10 Elder and his colleagues,"

also at General Electric, observed the radiation visually in 1946. During 1947, Elder

et. al.12-13 were able to verify Schwinger's predictions of the spectrum and polarization

characteristics of the radiation. There are now many excellent reviews of synchrotron

radiation and its applications. 14-23

Synchrotron radiation emitted from electrons in a storage ring has a number of

useful properties. The radiation is intense over a broad spectrum and highly polarized

in the plane of the electron orbit. The continuous spectrum of the radiation reaches

-72-
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from the infrared to the gamma-ray region. The general shape of the radiation spectrum

of an electron moving in a curved trajectory is shown in Fig. 4.1.1. The radiation can

be tuned in frequency and is typically emitted in pulses of duration ranging from 10-

11 - 10-9 seconds; the pulsewidth is a function of the specific accelerator design. The

pulse repetition rate ranges from 100 KHz to 500 MHz containing approximately 106 -

109 photons per pulse. The radiation has a high degree of collimation due to the

relatively small effective source area which is of the order of 1 mm2 .

For the case of circularly accelerated electrons, the radiation is confined to a

narrow cone tangent to the curved electron orbit (approximately 0.1 mrad). The storage

ring as a source of synchrotron radiation also offers a high-vacuum environment

necessary for surface physics experiments. Because of the long time constant

associated with the decay of the electron beam in the ring, the spectral intensity and

many other source properties are quite stable over time periods of several hours. The

fact that all these properties are found in radiation from one source makes synchrotron

radiation a versatile analytical tool for basic and applied research in a multitude of

scientific fields.

Synchrotrons and storage rings usually consist of an evacuated ring-shaped

chamber around which two basic types of magnets have been arranged: focussing and

bending magnets. The focussing magnet's multiple poles set up a nonuniform

magnetic field that acts as a lens, confining the electrons in a tight beam as they travel

around the chamber. A bending magnet establishes a uniform magnetic field that is at

right angles to the direction in which the electrons are moving. Such a field bends the

path of the electrons.

The ring-shaped chamber contains one or more cavities in which

electromagnetic fields that oscillate at radio frequencies are present. These fields
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Fig. 4. 1.1 The general shape of the radiation spectrum of an electron moving in a

curved trajectory. Ac represents the critical wavelength. The critical

wavelength is defined such that half of the power is radiated at

wavelengths above X.c and half below kc.
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replenish the energy lost by the electrons as they radiate and can even raise the energy

of the beam if desired. The rf energy divides the circulating beam into electron

"bunches" (this gives rise to the pulsed behavior discussed earlier) which are typically a

few centimeters in length. Because storage rings provide a much stabler electron beam

as well as a more constant radiation intensity and spectrum than synchrotrons, storage

rings have become the predominant source of synchrotron radiation.

The flux and brightness of synchrotron radiation can be increased even more if

the charges are made to interact with a periodic magnetic field in the cavity. The

magnets that produce these alternating field are commonly called wigglers and

undulators. As the electrons progress (accelerate) through the periodic field they emit

radiation that is more intense and spectrally bright than a conventional storage ring or

synchrotron. Wigglers and undulators are implemented in most synchrotron sources

today.

There has been a recent surge of interest in applications of synchrotron

radiation. Synchrotron radiation has been mainly used to study electronic excitations

by absorption and reflection spectroscopy or by following excited systems via

fluorescence, photoelectrons or photons.17 The intense x-rays produced can be applied

to etch integrated-circuit elements that are smaller than the wavelength of visible or

ultraviolet light. 17 .23 Synchrotron-generated x-rays are currently finding applications

in medicine. The tunability of the radiation source makes it possible to image coronary

arteries in less time and with a much smaller iodine concentration than is needed with

conventional angiography.23 There is also significant interest in using the synchrotron

source to generate holographic medical images in the x-ray region.

The basic properties of synchrotron radiation such as source intensity, spectrum

and polarization have been studied extensively. However, there have been very few
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investigations into the understanding of the statistical properties of the synchrotron

source and the emitted radiation. It is clear that since the effects of coherence can be

very important in many synchrotron applications (e.g., propagation through optical

systems and x-ray holography), the correlation properties of the source must be

known.

Mazmanishvili and Uvarov,24 in 1971, investigated the spatial coherence of the

field of synchrotron radiation resulting from a relativistic electron in circular motion.

Their analysis was performed in the space-time domain and it considered only a single

relativistic electron emitting randomly at two different times. They determined

theoretically, that one should be able to observe coherence phenomena, both spatial and

temporal, from synchrotron radiation produced by the single electron. Since it is

practically impossible to observe the radiation from a single electron, their analysis is of

limited utility. ja fact, measurable synchrotron radiation results from many accelerated

electrons and the energy distribution and the correlations of these electrons are of

crucial importance in understanding the coherence of the emitted field.

Benard and Rousseau 25 in 1974 reported an investigation into the statistical

properties of synchrotron radiation. They restricted their study to a classical procedure

and introduced quantum fluctuations (in the emission of light and in the movement of

the electrons) as stochastic quantities. They assumed that the electrons in a given bunch

were independent of one another and they neglected the radial and vertical spread of the

electron bunch distribution. More importantly, the model neglected the inherent

random velocity distribution within the electron bunch.

In their paper, Benard and Rousseau attempted to calculate the second-order

spatial coherence of the synchrotron field as a function of frequency. However, they

incorrectly computed the spectral amplitude of the field. Their expression for the
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spectrum (in the frequency domain) is a function of time and it illustrates how they

neglected to integrate fully over the time variable. Relying on their Eq. (44) which is

the expression for the spatial coherence as a function of frequency (and time), they

concluded that correlations in the field cannot be seen with synchrotron radiation

resulting from a bunch of uncorrelated electrons for visible or shorter wavelengths.

Experiments were not performed to verify this result.

Korkhmazyan26 et. al. investigated the effects of the electron distribution on the

radiation from an electron bunch. Their analysis was performed at the same level of

approximation as Mazmanishvili and Uvarov although they allowed for an extended N-

electron bunch. They do not derive any statistical properties of the emitted radiation

rather they consider the influence on the intensity from electron distributions of

different profiles. The main feature of their investigation is that it allows for the

calculation of some intensity distributions resulting from electron propagation in certain

media.

Akmanov27 et. al. furthered the research of Benard and Rousseau and allowed

for a radial spread in the relativistic electron bunch. In their scalar approach, the radial

spread had the effect of including an additional random phase term in the radiation field.

They did not, however, include any insight or detail as to the statistics describing this

new phase term. A statistical model for the electron bunch is needed in order to

correctly evaluate the spectrum. Their result is left in the form of an integral over time

since their main result lacks the necessary statistical model for the bunch dynamics.

Unfortunately, additional assumptions must be utilized to obtain a viable result.

In this Chapter, the second-order statistical properties of synchrotron radiation

resulting from a three-dimensional relativistic electron bunch (N-electrons) in a storage

ring are calculated for the first time. The theory extends previous work to allow the
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electrons in a 3-D bunch to have an appropriate distribution of velocities (e.g., variance

in the energy of the charges). The new formalism is generated in the space-frequency

domain to facilitate experimental demonstrations. In accord with previous attempts, a

classical approach is used. For the range of electron energies that are present in storage

rings and synchrotrons, this approximation has been justified by many authors.5.6,3 1

In Section 4.2, the spectral amplitude produced by an N-electron bunch in a

storage ring is reviewed. This calculation, along with all others in this Chapter, will be

valid on a time scale much smaller than the rotation period of the electrons in the ring.

The reason for this is that we are interested in the field correlations that are present for

one electron bunch and a given observation location.

In Section 4.3, a model for the statistical behavior of the N-electron bunch and

its associated classical field will be investigated. Using a Gaussian distribution for the

spatial characteristics of the bunch and a Gaussian velocity distribution, the mean value

of the field and the second-order coherence are calculated.

For this analysis, it is assumed that the electrons in the ring are independent of

one another. Although this assumption has been justified in the literature for the case of

synchrotrons and storage rings, electron correlations are present and will play an

important role in understanding the field correlations in systems that use wigglers and

undulators. The present research will generate a framework that will permit future

work on systems that utilize wigglers and undulators (e.g., the free-electron laser).
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4.2 Spectral Amplitude Generated by N Electrons in a Storage Ring

In this Section, the electrodynamics of a group of single point charges subject to

relativistic uniform circular motion is reported. The derivation begins with the

calculation of the radiated field for a single relativistic electron. The result for the field

of a single electron is well known [see Jackson, Ref. 8] and is presented here to

introduce the formalism. The framework for all of the calculations is this Chapter is

given in the space-frequency domain. It is important to remember that the frequencies

that are of interest to us are those appropriately transformed to the observers frame.

4.2.1 Classical Treatment for the Field of a Single Relativistic Electron

The electromagnetic field generated by a circulating, relativistic electron is

calculated using the Lienard-Wiechert potentials. To obtain these potentials and to

illustrate the notation, consider Fig. 4.2.1. An element of charge is located at a distance

r' from the origin and at a distance r-r' from an observation point, P. In the Lorentz

gauge and using Gaussian units throughout, the wave equations describing the scalar

and vector potentials are given by

(D - c2 = -4itp , (4.2.1)

1. -4 j

V2 A- = - (4.2.2)c" c



0

Fig. 4.2.1 Illustrating the notation. Te element Of volume Within the source

domain, d~r', is located a distance r' from the origin and a distance r-r' from the

observation point. P.
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where p=p(r,t) and J=J(r,t) represent the free charge density and current density

respectively, and for this calculation, c is the speed of light in vacuo. These wave

equations [Eqs. (4.2.1) and (4.2.2)] are solved using the retarded Green's function for

outgoing waves to give

O(r,t) = jp(r't') 8(t'-t+ Ir -'0) d3r'dt' (4.2.3)I Ir- 0' c

A (r, t) =IfJ(r',t') 8(t'-t + ) dr'dt' (4.2.4)
c Ir-r'I c

At this point, it is convenient to introduce a notation using square brackets.

Functions enclosed by square brackets are to be evaluated at the retarded time, t', given

by

t'= t - , (4.2.5)
c

where

IRI = Ir - r'l (4.2.6)

Using the square bracket notation, Eqs (4.2.3) and (4.2.4) simplify to

4 (r,t) = j[ p~r. d3r '  (4.2.7)

A(r,t) = IfJ(r') d3r' (4.2.8)
c Ir-r'I

At this point in the calculation, no assumptions have been made regarding the

form of the source distribution. Since our goal is to understand the radiation from a
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bunch of independent electrons, we now consider a free charge, e (a point particle), in

motion in free space with velocity, u. Figure 4.2.2 illustrates the geometry of the

charge's motion. The charge density for this case is given by

p(r') = e 8 3(r' - r.) , (4.2.9)

where 83 is the three-dimensional Dirac delta function and re locates the charge at the

retarded time. Also, note that the current density in this case is given by J = up.

Substitution of Eq. (4.2.9) into Eq. (4.2.7) gives, after some manipulation,

O(r,t) - , (4.2.10)[IRI - 3.•R]

where O=u/c represents the normalized velocity vector and the brackets again imply

evaluation at the retarded time. Similarly, the expression for the current density

becomes

A(r,t) e[P] (4.2.11)
[IRI - P* R]

Equations (4.2.10) and (4.2.11) are written in a more compact form as follows:

0(r,t) = , (4.2.12)
[K]

A(r, t) =e [kp] ,(4.2.13)

K
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electron path

d~e P

r r - r,(t)

0

Fig. 4.2.2 Illustrating the electron motion. The electron is located at a distance re(t')

from the origin and a distance r-re(t') from the obsorvation point, P.
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where

K = IRI - 3.R (4.2.14)

Equations (4.2.12) and (4.2.13) are known as the Lienard-Wiechert potentials. Again,

most importantly, the brackets indicate that the functions are to be evaluated at the

retarded time, t'. The fields, E(r,t) and B(r,t), associated with the motion of the

charged particle are now calculated using the following (Lorentz gauge):

E = (V + -A) (4.2.15)
C

B =V @A (4.2.16)

The calculation of the fields E and B from Eqs. (4.2.12)-(4.2.16) is somewhat

lengthy and is very well known so only the results will be stated. The electromagnetic

field for a charged (point) particle in motion is given by

E(r,t) = [ -(R-IRIP)(1 -P2)+ -e(R. 1)(R-IRI3)- - IRIO3] , (4.2.17)
KT cKTc

B(rt) = [-(P 9 R)(I _ p2) + -e-(R e 0)(0 9 R) + K ®R ]  (4.2.18)
K c K cK

Since all quantities are to be evaluated at the retarded time, the square brackets will now

be suppressed. The fields each consist of two distinct components. One component is

due to the velocity of the particle and the other is due to its acceleration. It is easily
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shown that the velocity components cause no net radiated energy. Therefore, in the

following, only the contributions that result because of the acceleration will be

considered. The electromagnetic field can be rewritten as

E(r,t) = Ea(r,t) , (4.2.19)

B(r,t) = Ba(r,t) (4.2.20)

where

Ea(r,t) = [-.(R*)(RIRI)+ IRIO] (4.2.21)

B. (r, t) = [- e(R @R)+-+ e O R] (4.2.22)
cKT cKl

An interesting property of the acceleration fields is that Ea(r,t) and Ba(r,t) are

orthogonal, i.e.,

Ea(r,t) * Ba(r,t) = 0 (4.2.23)

Poynting's vector, which represents an energy flow per unit area per unit time is

defined, for the present discussion, as

Sa = C En @ Ba  (4.2.24)
4n~
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Using Eqs. (4.2.21) and (4.2.22), Poynting's vector is computed to give

Sa =( 4r-K6)[R[IRI,012 K2 + 21RI(- & )(0 * R)K-IRI(I-Ip 2 ) (O*R)2]] . (4.2.25)

Equation (4.2.25) is a quite general representation of the radiated energy for an

accelerated electron. It is interesting to examine the radiation pattern of the accelerated

electron under certain different conditions.

It is easily determined from Eq. (4.2.25) that if the charge is in uniform motion

(i.e., the acceleration is zero and obviously the velocity is constant) that no net energy

is radiated. For the case when the charge is accelerated at low velocities, the classic

Larmor formula for the radiated power results. Figure 4.2.3 illustrates the case of

colinear acceleration and velocity for three different velocities. For the case of low

velocities [Fig. 4.2.3a, P3=3.33x10- 5], the Larmor formula holds and the familiar dipole

pattern results in the far zone. As the velocity of the particle increases [Figs. 4.2.3b

and 4.2.3c, 3=0.66 and =0.934], the radiation pattern becomes modified with most of

the energy radiated in the direction of motion. Figure 4.2.4 illustrates the case of

uniform circular motion for three different velocities. Again, as the velocity increases,

the radiation pattern becomes concentrated in the forward direction. Synchrotron

radiation results from electrons accelerated to extremely relativistic velocities in uniform

circular motion. The radiation pattern illustrated in Fig. 4.2.4c is characteristic of

synchrotron radiation produced by synchrotrons and storage rings.

Using Eqs. (4.2.21)-(4.2.24), Eq. (4.2.25) can be written as
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0 =3.33 x 10

'Ws

Igo 0. -0 -. p0.66

270

so

Ig 0. -0 -o0 0 =0.934

Fig. 4.2.3 Radiation patterns associated with an accelerated electron: colinear

acceleration and velocity. For relatively low velocities, a) illustrates the

validity of the Lannor formula. In b) and c), as the velocity increases,

most of the energy is radiated in the forward direction.
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Igo 0. - 0---- -0. a 3.33 x10-5

210 =0

2W

Igo 0. -0 -0 -0 -a. 0 06

2170

Igo a. -0 a -0 -0. a 0.934

Fig. 4.2.4 Radiation patterns associated with an aclerated electrn: uniform cicuLar

motion. Note in b) :ind c) that the radiation is again concentrated in the

forward direction as the velocity increases.
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Sa = I IEaI2
n  , (4.2.26)47c

where n=RARI, is the unit vector pointing in the direction of the observation point.

Now, using the energy radiated per unit solid angle and Parseval's theorem,

f IEaeIRI2 )dt f IU(v)P dv (4.2.27)

-00 4n-00O

the spectral amplitude of the radiated field is given by

00

U(v) = ( c)112 f[IRI E,] exp(i2n-vt) dt (4.2.28)

where v denotes the spectral frequency. Note that the Fourier transformation exists

since the acceleration occurs effectively for a finite time which gives rise to fimite

radiated energy.

Substitution of Eq. (4.2.21) into Eq. (4.2.28) gives

U(v) 2 /2 =En L 1(n - )3 exp(i27cvt) dt (4.2.29)
whr(th-fncio n)i

where the function in square brackets is evaluated at the retarded time to give
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2 0
U) _ S)1/2 j n®[(n-3)®13) exp[i2xv(t+IRI/c)] dt . (4.2.30)47rc (1 -13n) 2

Equation (4.2.30) represents the spectral amplitude in the observers frequencies for a

single deterministic electron undergoing uniform circular motion at relativistic

velocities.

4.2.2 Generalization to N Electrons

Given the results of the previous calculation, it is now possible to describe the

spectral amplitude produced by a bunch of N circulating electrons. The field at the

observation point can be written as a sum of the fields contributed by each electron and

is given by

NU(v) I 'JUmv (4.2.31)

j=1

Substituting Eq. (4.2.30) into Eq. (4.2.31) gives

( 2  N a

U(v) .(_.)1/2 , jf(t)exp[i2nv(t+JR/c)] dt , (4.2.32)
j=1

where
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Jf(t) - .'n ®f (Jn -~ ) @J3
(iin . in)2  (4.2.33)

The superscript, j, identifies one particular electron in the total population, N. It is now

assumed that the observation point is far away from the region of space where the

acceleration takes place; the unit vector n, is sensibly constant in time. Also, it is

assumed that over the short time r, the form factor given by Eq. (4.2.33) is slowly

varying and the approximation

Jf(t) = f(t) , (4.2.34)

is justified.2 5 For this calculation, the effects resulting from fluctuations of the slowly

varying form factor are not investigated. The fluctuations in the phase term will have

the larger effect and the consequences of these fluctuations will be studied. The factor

exp[i2xvRI/c] oscillates rapidly over the domain of integration while the form factor is

slowly varying. Exchanging the orders of summation and integration in Eq. (4.2.32)

gives

2 012 N
U(v) = ( )1/2 f 'f(t) exp[i2Kvt] Y exp[i2n-v IJRI/c] dt (4.2.35)

4c -00 j=1

Equation (4.2.35) represents, to within the present level of approximation, the spectral

amplitude generated by an N-electron bunch.
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4.3 Statistics of the N-Electron Field

The central orbit of a storage ring is that orbit which will be repetitively traced

by a particle of design energy launched precisely on that orbit. In order to ensure that

particles will remain indefinitely in the neighborhood of the central orbit when subjected

to disturbances and imperfections, strong restoring forces are applied. The circulating

beam in the storage ring is preserved by continuously restoring energy lost to

synchrotron radiation with radio frequency power. The if field focuses the beam and

thus causes the electrons to travel in bunches. A storage ring can contain any number

of electron bunches from one to a maximum n .-nber defined by the ratio of ring

circulation period to the period of the accelerating rf field. The bunch length is set

primarily by the frequency of the accelerating field.

In any real storage ring there will be imperfections (small perturbations from

photon emission and nonuniformities in the confinement fields) and the electrons will

oscillate about the central orbit. These oscillations cause a statistical spread in the

position and velocity of the electrons in the bunch. The effects of randomness in the

electron dynamics on the emitted field are investigated in this Section using an

appropriate model for the bunch profile and velocity distribution. The mean value and

second-order correlation function of the field are calculated and analyzed in the space-

frequency domain.
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4.3.1 Density Function for Electron Distances

As explained above, the electrons travel around the ring in bunches as a

consequence of the radio frequency amplifier in the chamber. A typical bunch consists

of 108 to 1012 electrons and is 0.1-10 cm in length. The distribution of the electrons in

the bunch is a function of the storage ring design and the intensity of the rf field and, in

the case of synchrotrons, the circumferential position. The electron distribution also

depends on the effects due to photon emission. Experiment shows that the density

distribution of the electrons in bunches produced by ordinary methods can be

approximated by a Gaussian distribution at moderate bunch currents.2 5 For these

studies, a Gaussian electron-bunch distribution will be assumed. It is important to note

that other distributions are possible and can give rise to modifications in the far zone
intensity. 26

An illustration of the storage ring geometry32 and the notation is shown in Fig.

4.3.1. The probability density function of the electron bunch is represented by

p(x,y,z;t) =2 I3/xpy-[2x 1E 2 (y 2- (z - )2  (4.3.1)

where the barred quantities locate, at the time t, the mean electron position and

yx,cyy,cz represent the variance in the electron position. The mean- and variances are

definite functions of time; they evolve in a deterministic manner. For the present

calculation, a term describing electron correlations has been purposely omitted in Eq.
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Ax ku

Z V Plane y-s

Fig. 4.3.1 An ilustration of the notation and geometry for the computation of the

electron distances.
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(4.3.1). It is assumed that the electrons are independent of one another. This

assumption has been justified in the literature for electron densities and energies found

in typical storage rings and synchrotrons.5

It is clear that from Eq. (4.2.35) that to investigate the fluctuations in the

spectral amplitude, the statistics of IR(t)l are needed. This implies that the electron

statistics must be appropriately transformed to obtain the statistics in IR(t). It is

important to note that the distribution of IR(41 is strictly not Gaussian. The functional

form of the distribution is certainly dependent on the vectorial distance to the

ubsc.'vation region. So that the calculation remains general, no assumption is made

about the observation point and the density function of IR(t)l is computed from the

density of electrons in the bunch.

The distance from any given electron in the bunch to the observation point is

given by

IR(t)l = [(u- x) 2 + (s- y) 2 + (v- z)2 ]1/ 2  (4.3.2)

Now we let cx=(u-x), 8,=(s-y), y=(v-z). Substituting these new variables in Eq. (4.3.1)

gives

1 exp[.a(- 3 2- ) +(s--y)2 + (v ) 2  (4.3.3)
((2n)3/2OxCy z 2a2 2or2  2a 2

where the Jacobian for this change of variables is unity. Using spherical coordinates,

a=IR(t)Isin~cosO, 8=IR(t)lsinqsinO, y=IR(t)lcos and IR(t)I=[a 2+82 +y2 ]1/2 . The

Jacobian, for this change of variables, is well known and is given by
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IJII = IRI2 sin , 0 R (4.3.4)

Substitution of Eq. (4.3.4) in Eq. (4.3.3) gives the following:

IRI2 sins .[(a-I RIsncose)2 (b-IRIsin~sine) 2

p(IRI,0,0) = (27C) 3/2 xGyz C 2_ + 22

+(c-IRIcos4) 2  (4.3.5)

in which

a = (u-x) , (4.3.6)

b = (s-Y) , (4.3.7)

C = (v-1) (4.3.8)

The probability density function of the electron distances is obtained by

integrating Eq. (4.3.5) over all of the possible combinations of the variables 0 and 0.

This marginal density function is needed in order to compute the mean and higher-order

moments of the spectral amplitude [see Eq. (4.2.35)]. Unfortunately, a general analytic

solution for the marginal density (integrating the variables 0 and 0) of Eq. (4.3.5) does

not exist.

It is possible, however, to calculate in closed form, the density function for a

special case and to compute the integral numerically for other cases to investigate the

mathematical form of the density function for the electron distances. The following is a

calculation of the electron-distance density function for a specific electron bunch

distribution and specific observation region. The result will then be verified and
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extended numerically in order to quantitatively describe the density function for other

cases.

A particularly interesting special case is chosen at this point so that a closed

form solution for the electron-distance density function is possible. First, assume that

the variances of the bunch (ax,ay,uz) in all three dimensions are the same (note that

experiments have shown that this is strictly not true in practice; ax > az and ax - ay,)

and equal to a. Substituting this assumption into Eq. (4.3.5) gives

IRI2 sino r [IR 2 +a2 + b2 + c2 IRI sino (a cosO + b sine)

(2n) 3/2; 3  2; 2a 02

IRIcyos} (4.3.9)

Recall that the integral that we are trying to compute is given by

x2n

p(IRI) = J f (p(IRl,0,0) dOd . (4.3.10)
00

Using Eq. (4.3.9) and Eq. (4.3.10), we can now perform the integration over the

variable, 0. The two-dimensional marginal density is now given by

2x IRI
p(IRI,O) = Jm sino exp[ o- {sin (a cosO + b sinO) + c coso)] dO , (4.3.11)

0

in which
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M IR2  ro (Re +a2 + b2 +c 2  (4.3.12)
(2n)3 /2033 x 202

Further simplification of Eq. (4.3.11) gives

2x

pORI, ) = m' f exp[4(a cosO + b sinO)] dO (4.3.13)

0

where

2RI sn (4.3.14)

and

m' = m sino exp[ Is c coo (4.3.15)
a
2

The integral in Eq. (4.3.13) can be computed using the similar integral 3.937.2 in

Reference 33. Performing the integration over 0, Eq. (4.3.13) reduces to

p(IRI) = 2Irm f sinn exp[ Il  cs sin 0a + b2 # (4.3.16)

0 J

where 10 is the modified Bessel function of the first kind and of order zero. The

following relationship exists between the ordinary Bessel function and the modified

Bessel function:
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In(x) - (-1)nJn(ix) (4.3.17)

Substituting Eq. (4.3.17) into Eq. (4.3.16) gives

pRI) = 2mm f sin exp[R ccos4] J0{f sin a2 b2 dO . (4.3.18)o 0
0

Unfortunately, the integral in Eq. (4.3.18) has no closed form solution.

However, an attempt was made to approximate the integral in Eq. (4.3.18) using the

series expansion for exp[ coso] and integrating term by term. After a lengthy

calculation, it was shown that the integrand vanishes exactly for odd terms in coso. In

fact, for the case of storage ring-generated synchrotron radiation, the range of values of

0 that contribute to the density function is extremely narrow and centered around 7r/2.

It was also shown that the contribution to the integral by the first term in the series was

by far the largest. We next assume for the present case that c is small; the result will be

strictly valid for near axis points. For the special case at hand and with reference to Eq.

(4.3.18), we assume that the density can be approximated by

p(IRI)= 27im i sino Jo{ sino a2+b 2 I do (4.3.19)

0 c

The resulting integral in Eq. (4.3.19) has the form of integral 6.681.8 in Reference 33.

After a lengthy mathematical manipulation [see Appendix B], the density function for

electron distances within our level of approximation becomes
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p(IRI) IRI exp [- (I-'a 2 + b 2 )2](.20
p(IRI) = *(2n)(a2 + b2)0 202 . (4.3.20)

Note that (a2+b2 )1/2 is proportional to the mean value of the electron distance, 11R1.

Using typical parameters, curves of the density function represented by Eq.

(4.3.20) are shown in Fig. 4.3.2. The axial distance to the observation plane is taken

to be one meter and a is chosen to be 1 mm. Fig. 4.3.2 shows how the profile remains

constant as the observation point is moved out into the field.

In order to confirm the steps used in simplifying the calculation to arrive at Eq.

(4.3.20), the integral in Eq. (4.3.10) was computed numerically using a customized

Gaussian quadrature method. The parameter set used in the numerical calculations

were the same as that used in the calculation leading to Eq. (4.3.20). Figure 4.3.3

illustrates the error associated with using the simplified form given by Eq. (4.3.20).

Figure 4.3.3a illustrates the actual density function resulting from direct numerical

integration of Eq. (4.3.10) for an off-axis point. Figure 4.3.3b shows the probability

density function that results from application of Eq. (4.3.20) for the same off-axis

point. Figure 4.3.3c shows simply the difference of the curves in Fig. 4.3.3a and Fig.

4.3.3b. Note that although there is evidence of a slight shift of the peak the error is

quite small. For typical observation distances used in synchrotron radiation

experiments, the density function for electron distances is approximately, but strictly

not, Gaussian.

It is important to recall that in this special case, that the variances in all three

dimensions were set equal in computing Eq. (4.3.20). The integral in Eq. (4.3.10)

was studied numerically for cases when the variances were not equal. For the

parameters present in typical synchrotrons and storage rings and at typical observation
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Fig. 4.3.2 The density function for electron distances given by Eq. (4.3.20). The

axial distance is taken to be one meter and o=Imm. The magnitude of the parameter, a,

is a measure of the distance from the origin in the observation plane. This figure shows

how the profile remains constant as the observation point is moved out into the field.
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Fig. 4.3.3 Numerical verification of Eq. (4.3.20). Results of numerical integration

of Eq. (4.3.10) for an off-axis point are illustrated in a) with the curve generated using

Eq. (4.3.20) shown in b). The difference between the two curves is illustrated in c).
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distances, the density function for electron distances remained approximately Gaussian.

The result of this rather lengthy calculation provides confidence to know under what

circumstances when to assume that the density function for electron distances

approaches a Gaussian function. Cases of practical interest may exist where full

integration of Eq. (4.3.10) is required.

Using the results of the previous calculation, we will assume that the conditions

are satisfied to allow us to represent the density function for electron distances by

p(IRI)= 1 exp[" (IRI - I1RI) 2  (4.3.21)

Equation (4.3.21) will be used in the computation of the mean and second-order

coherence of the synchrotron field.

4.3.2 Mean Value of the Field

Since only the fluctuations in the electror-distance parameter are of interest here

[see Eq. (4.2.35)], finding the mean value of the synchrotron field includes calculating

the characteristic function of the electron distance random process. Using Eq.

(4.2.35), the mean value of the N-electron field is given by

2 00 N
<= (_> . )1/2 J'f(t) exp[i27wvt] < 1exp[i27rv I'RI/c] > dt (4.3.22)

4 -00 j=1

In order to determine the mean, the characteristic function of the process R must

be evaluated. Recall that the electrons are assumed to be uncorrelated with respect to
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one another. Exchanging the order of summation and the averaging procedure and

using the results of the previous discussion in Section 4.3.1, the characteristic function

of the electron distances is given by34

< exp[iklRI] > = exp[ik IRI -2] .(4.3.23)

Using Eq. (4.3.23), the mean value of the field given by Eq. (4.3.22), can be

simplified to give

< UM) > = N U(v) exp[- -2 ] , (4.3.24)

2

where, as before, N is the total number of electrons in the bunch and IU(v) is the

spectral amplitude produced by the nominal electron. Note that for infrared and higher

frequencies (large k) the mean value tends towards zero very rapidly.

4.3.3 Correlations in the Space-Frequency Domain

In this section, the second-order correlation in the field is calculated based on a

statistical model for the electron dynamics. The calculation is performed in terms of the

observer's frequencies. Recall that the relationship for the spectral amplitude of the

synchrotron field is given by

= ( e2 )112"0 N
U(v) = (" nc J'f(t) exp[i2nvt] F exp[i27rv IJRI/c] dt (4.3.25)

4 -0* j=1
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The object of the present calculation is to compute the second-order coherence function

given by

2
<UI(V) U(V)> = (S.Lc) T J'f,(t)If2(t')exp[i.)(t-t')]

N N< I" exp[ik IjRl(t)l] I exp[-ik I R2(t')I] > dt dt'  (4.3.26)

j=1 1=1

Equation (4.3.26) is meneral in that it is not based on any particular model for electron

statistics or electron-bunch profile. Since we have already assumed that the electrons in

the bunch are independent, Eq. (4.3.26) can be simplified to give

<Ul(V) U*(v)> = ( 2T) fl (t) f2(t') exp[ico(t - t')]
4icc __0 __0

x {N <exp[ik(IPRj(t)- PR 2(t')I)]> +

(N 2 - N) <exp[ik 1Rl(t)l] >< exp[-ik IR2(t')l] >}dtdt' (4.3.27)

Using the results of the previous section, we will now restrict our attention to infrared

and optical frequencies and assume that the mean value of the field is approximately

zero. Note however that for longer wavelengths the mean value must be included in the

analysis. Using these approximations, Eq. (4.3.27) can be rewritten as

2
<U,(v) U2(v)> = ( T.-) TIfr(t) 1f2 (t')exp[ico(t-t')]

x N < exp[ik(liRl(t)l- JR2(t')I)] > dtdt' (4.3.28)
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The next step in the calculation is to evaluate the characteristic function of the electron

distance difference parameter. The electron bunch profile and a statistical model

describing the electron dynamics are now required. We will assume as before that the

electron bunch is described by a Gaussian profie [see Eq. (4.3.1)].

The proposed statistical model can be understood using the following

assumptions. Let (JRj(t),t) locate a given charge with respect to a particular

observation point at time, t. Let (1R2'(t')lt') locate the same charge with respect to a

second observation point at time, t'. We assume that the observer performs his

measurements in a plane located at some fixed distance from the storage ring. Since we

are only concerned with a single individual electron bunch, assume that t=t'-t is small,

i.e., i/t is large compared to the cavity frequency, and that the form factor represented

by Eq. (4.2.33) is slowly varying and obeys the condition in Eq. (4.2.34) for small x

(for a given observation point). It is known experimentally that during the emission

time interval, (e.g., At=10 - 11 s at X = 0.5 gim) the mean number of emitted photons is

of the order of 0.01; it can be assumed that the electron is unperturbed during the

emission time interval. The assumption is equivalent to stating that the electron's

velocity is unchanged during times of the order of an emission time. During the short

time interval, r it is also assumed that the electron motion is nearly rectilinear.

It is clear from Eq. (4.3.28) that the relationship between the distances, IR1(t)

and IR2 '(t')l, for the same electron is required. This relationship is calculated using

geometrical considerations that relate the source volume coordinates and the observation

plane coordinates. Since the observation region is typically in the far zone of the source

bunch, the first term in the power series (for all variables including r) is assumed to

correctly describe the electron distance. Using these assumptions along with Fig.

4.3.1, the motion of a given electron can be described by the following model:
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IPRl(t)l - IJR2 (t')l - V[ + -[Au( - Jx)+Av(V - Jz)] . (4.3.29)

The random variable that describes the electron population's velocity is denoted by V.

It is assumed that the distribution of velocities is represented by a Gaussian function

with a mean value of IV and a variance equal to Ov2 . As stated before, during a timer,

the velocity is assumed to be constant for each electron. Also note that for short times,

Jx and Jz are independent of time. In Equation (4.3.29),

Au = u1 - u2  , Av =v I - v 2  , (4.3.30)

and

- u= u 1 +u 2  , vI + v2  (4.3.31)
2 2

The first term on the right hand side of Eq. (4.3.29) represents the difference in the

electron distance due to motion during a time -. The second term represents a

geometric factor that depends primarily on the observation location.

Equation (4.3.29) is used to characterize the position of a particular electron at a

time, t' resulting from a random starting position at time t and undergoing motion with

a randomly chosen velocity for a time T=t'-t. Again, it is assumed that the distribution

of the electron velocities does not change (uniform circular motion) during the time

interval, T. It is also assumed that the random variables describing the initial position

and velocity are independent.
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The characteristic function in Eq. (4.3.28) can now be evaluated. For the

Gaussian processes, 34 the following terms result:

< exp[ik{IJRl(t)l- IJR 2 (t')I}] > = exp[ikl'VIr - ]
2

x expik [Au(u-lx) + Av(V-lz)] _k2Y2 [(Au)2 + (Av) 2]} (4.3.32)

Substitution of Eqs. (4.3.32) into Eq. (4.3.28) gives

<1U(V) U2(v), = N ( J 1f(t) 1f2 (t') exp[io(t - t')]

x exp[ikl1 Vlr - kV~~2
2

,2-7 A) 1 tt
{expik[Au(-lx)+Av(Vz)] - 2-- -- (Au)'x ~z) - ~-I(A)~+ (Av)2]} dtdt' .(4.3.33)

s 27s

At this point it is useful to introduce the ,.X, wing change of variables in the time

domain:

T t t (4.3.34)

t 2 (4.3.35)
2

Using Eq. (4.3.34) - (4.3.35), Eq. (4.3.33) can be rewritten as
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< UI(v) U;-(v) > =N expftik[Au(,ix) + Av(v-'z)I _ k2 &[(Au)2 + (AV) 2 ]
2 2

4s 2 2 2

@00 -@0

x exp[ikl1Vlc - k.I ~d (4.3.36)
2

Simplification of Eq. (4.3.36) using the fact that the form factor is slowly varying gives

<U1 (v) U*(v) > =N expf.?![Au(i-1x) +Av(-v~lz)] - k0 2 [(u2 +(v

4i2s 2
2-00

where

= O, (1--)- .1V (4.3.38)

Equation (4.3.37) can be evaluated to give

U1(v) Uf) =?ii xp [Au(,i_'x)+Av(V~lz)] k k2 Cy2 [(Au)2 + (Av) 2 ]}

s 2sy

C 2  V '2
expI-- -y~(-) I

x 2 0V v4.3.39)
V

where
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F12= J f1(t)'f2(t) di (4.3.40)
-@0

K= ( e2  (4.3.41)
7/32C3 v

and

EDv =- (4.3.42)

Equation (4.3.39) represents the second-order coherence of the synchrotron field.

Using Eq. (4.3.39), the complex degree of spatial coherence is given by

ikk22 [(2 +(v)2]
Fi 2 exp{.k[Au( -x) + Av(V-1 z)] - ka[(A)2 + (Av

912 Mvs IF 2s (4.3.43)
[F1 F221/2

The intent of the derivation presented in this section was to predict the degree of

partial coherence in the synchrotron field due to the random motion of a three-

dimensional electron bunch in a storage ring. Notice that, within our level of

approximation, Eq. (4.3.43) has the form similar to that resulting from application of

the generalized Van Cittert-Zemike theorem. Recall that during the calculation we

evaluated the characteristic function of the electron source distribution. Experiments

suggest that the electron-position probability density can be approximated by a

Gaussian function. Fourier transformation of this distribution gives a Gaussian

function of the difference variables in the observation plane [see Eq. (4.3.43)]. A
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three-dimensional plot of the magnitude of Eq. (4.3.43) is shown in Fig. 4.3.4. The

parameters used for Fig. 4.3.4 are o=l mm, s=l m and X=0.5 gtm. The coherence

interval (to the l/e point) at this wavelength is approximately 120 gim. An important

note here is that the field correlation obeys a scaling condition. That is to say, the

correlation function is proportional to k(pl-p 2). Note that for the case considered here

of independent electrons in the bunch, the spectrum detected at a distant point will not

be modified as a result of any source correlations.
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300.

300.0..

Av (gm) -300. -300. Au (jm)

Fig. 4.3.4 Illustrating the magnitude of the degree of spatial coherence given by Eq.

(4.3.43). The parameters used are o=1 mm, s=l m and X=0.5 wm The

coherence interval at this wavelength is approximately 120 Wm. An

important note is that the field correlation obeys a scaling condition.
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4.4 Suggestions for Experimental Verification

Reports of careful measurements of the magnitude of the degree of spatial

coherence of synchrotron radiation do not appear to have been presented. However,

due to recent developments in synchrotron source technology, there have been many

investigations into holography and interferometry using synchrotron radiation. Bonse

and Hart35 and Kikuta et. a136 reported some of the first experiments on x-ray

holography using C Ka (4.48 rin) radiation from a conventional x-ray source. The

recording of Kikuta et. al took approximately one hour using Fuji Softex x-ray film

FG. Aoki and Kikuta37 later performed interference experiments using the synchrotron

source at the University of Tsukuba in Japan. They produced Young's interference

fringes using undulator radiation and small slits cut in carbon foil. The illumination

wavelength was 2 nm at 5% bandwidth. The recording material was AGFA 10E56

film. The required dose was approximately 1014 photons in the bandwidth of interest

giving an exposure time of less than one second.

Given these previous experimental results concerning interferometry using

synchrotron radiation, it appears promising that similar techniques based on Young's

experiment might be used to measure the magnitude of the degree of spatial coherence.

Of course, for our present case of synchrotron radiation that is not influenced by

wigglers and undulators, an intermediate step to spectrally filter the otherwise

broadband illumination must be taken. Grazing-incidence optics and monochromators

are currently used to narrow the radiation spectrum and to provide a mechanism to scan

the wavelength range of interest.
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Several pairs of apertures (with varying separation) fo? use in the measurement

of the visibility function can be fabricated out of sheets of nickel or carbon foil. Kikuta

et. al.36 used an electroforming method with nickel to fabricate their diffracting

apertures. The visibility of fringes could therefore be sampled as a function of the

wavelength and slit separation in a Young's interferometer. Within the limits of current

technology, exposure times are typically of the order of seconds per interferogram.

The processed recording material (typically a light-sensitive film) could be scanned in a

calibrated microdensitometer to obtain the visibility. The measurements could extend

from the infrared 38 to the soft x-ray region given the available photosensitive materials.
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4.5 Summary of Chapter 4

In this Chapter, the second-order correlation properties of synchrotron radiation

resulting from a three-dimensional relativistic electron bunch in a storage ring were

calculated. The theory extended previous research to allow a three-dimensional electron

bunch with a distribution of electron velocities (e.g., variance in the energy of the

charges). The new formalism was generated in the space-frequency domain and

suggestions for experimental investigations were discussed.

In Section 4.2, the spectral amplitude produced by an N-electron bunch in a

storage ring was calculated [see Eq. (4.2.35)]. In Section 4.3, a model for the

statistical behavior of the N-electron bunch and its associated classical field was

investigated. Using a Gaussian distribution for the spatial characteristics of the bunch

and a Gaussian velocity distribution, the mean value of the field and the second-order

coherence were calculated [see Eqs. (4.3.24) and (4.3.43) and Fig. 4.3.4].

For this analysis, it was assumed that the electrons in the ring were statistically

independent of one another. Although this assumption has been justified in the

literature for the case of synchrotrons and storage rings, electron correlations will play

an important role in understanding the field correlations in systems that use wigglers

and undulators. This research has generated a framework in the space-frequency

domain that will support future investigations on systems that utilize wigglers and

undulators (e.g., the free-electron laser).
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Chapter 5

5. Concluding Remarks

In each chapter of this Thesis, an investigation of a topic concerning the

influence and control of optical coherence in the space-frequency domain is reported.

In Chapter 2, the first experiments that illustrate the effects of source correlations on the

spectrum of light are described. As observed in the experiments and consistent with

Wolf s theoretical predictions, the spectrum of light in the far field is dependent on the

correlation properties of the light at the source. If the optical field at the source obeys

the scaling law, the spectrum of light on propagation is invariant. Departures from the

scaling law produce changes in the spectrum that depend on the spectrum at the source,

the degree of spatial coherence at the source, and the location of the observation point.

It is also demonstrated experimentally that source correlations can produce

frequency shifts in the spectrum observed in the far field of an optical source if the

correlation function of the emitted radiation does not obey Wolf's scaling condition. A

Fourier achromat is used to generate the non-scaling-law secondary source. The

spectrum detected in the far zone of the secondary source was found to be displaced in

frequency and distorted relative to the spectrum measured at the secondary source. The

displacement was toward both the higher frequencies and the lower frequencies

depending on the direction of observation.

Since Wolf s original paper in 1986, the subject of correlation-induced changes

in the spectrum of light has received great attention both theoretically and

experimentally. There are already some twenty five manuscripts published in the

literature along with an equal number of papers given at technical meetings. A

-120-
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mathematical framework now exists to describe the influence of source correlations on

the optical spectrum for both static sources and dynamic scatterers. Exciting new

developments in the theory have predicted frequency shifts of spectral lines that actually

imitate the Doppler effect. Wolf is investigating the relevance of these new correlation

effects to the origin of discrepancies observed in some quasar spectra. In future

research it would be useful to verify experimentally the theory describing changes in the

spectrum resulting from interactions with random scatterers. These experiments might

make use of electronically-addressable liquid-crystal spatial light modulators to generate

the prescribed correlations. It is likely that the importance of all of these investigations

to new applications will be clearly understood as more information is made available

concerning the correlation properties of certain plasmas and other random media.

The generation of sources with controlled coherence is important for the

verification of new concepts in optical coherence theory. In Chapter 3, experiments are

described in which a new method is employed to generate an optical secondary source

with a controlled degree of spatial coherence. The technique consists of mixing

controllable amounts of two uncorrelated sources in an interferometer. The correlations

are produced using a general spectral filter. The spectral filter employs dispersive

optics that are used to spatially separate (and recombine) the wavelength components of

a broadband primary source, and an amplitude mask that is used to filter the dispersed

light. The degree of coherence is shown to be related to the passband of the filter. This

new method of source synthesis should provide researchers with a valuable tool for

analysis of spectral modulation experiments.

With the increased use of unconventional light sources for a variety of

innovative applications in spectroscopy and imaging, models describing their source

correlations should be investigated so that experiments that utilize these sources can be
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correctly explained. Because of the importance of synchrotron radiation in industry,

medicine, and research and its potential applications in astrophysics, Chapter 4 contains

an investigation into the statistical properties of synchrotron radiation produced by

bunch of circulating charges.

In Chapter 4, the second-order statistical properties of synchrotron radiation

resulting from a three-dimensional relativistic electron bunch (N-electrons) in a storage

ring are calculated. The new theory in the space frequency domain extends previous

research to allow the electrons in a 3-D bunch to have an appropriate distribution of

velocities (e.g., variance in the energy of the charges).

In Section 4.3, a model for the statistical behavior of the N-electron bunch and

its associated classical field is investigated. Using a Gaussian distribution for the

spatial characteristics of the bunch and a Gaussian velocity distribution, the mean value

of the field and the second-order coherence are calculated. Experiments based on

Young's experiment are suggested for future research to verify the theory. The

analysis presented generates a framework that will permit future work on systems that

utilize wigglers and undulators.

The applications of synchrotron radiation are expanding very rapidly and it

appears in the literature that the coherence properties of the radiation are the least

understood. Many researchers in the field simply assume that the radiation from

storage rings is completely spatially incoherent. In many applications, the radiation is

propagated through optical systems where the coherence properties will definitly play a

role. The opportunity for future theoretical and experimental work on the statistical

properties of synchrotron radiation is great and the benefits to medicine and the

commercial sector should be significant.



Appendix A

Appendix A: Calculation of the Spectrum for the Direct-vision
Spectroscope.

C Author- Dean Faklis
C The Institute of Optics
C University of Rochester
C Rochester, New York 14627
C
C
C Date: 10/12/88

C Theoretical spectrum of output angles for the Spindler & Hoyer Amici
C prism triplet used in the experiments [Chapter 3]. Three prisms; two
C crowns sandwiching a flint. The glasses are user selectable for other
C configurations. The coefficients are stored in an input file. These
C coefficients are available in the Schott glass catalog. These coefficients
C define the index polynomial. Theta8 is the output angle as a function of
C wavelength.

PROGRAM AMICI
IMPLICIT NONE
CHARACTER*30 FNAME(2)
INTEGER I,NPTS,P
REAL N(2,512),INCREMENT,L(2,512),MIN,MAX,DELT
REAL AO(2),A 1 (2),A2(2),A3 (2),A4(2),A5(2),THETA8(1,512)
REAL PIH,STHETA 1 ,THETA4,LAM(1,512)

WRITE(6,'CEnter the CROWN.COEF filename: ")')
READ(5,'(A)') FNAME(1)

WRITE(6,'("Enter the FLINT.COEF filename: 9)')
READ(5,'(A)') FNAME(2)

MAX=.64
MIN=.52

DELT=MAX-MIN

OPEN(10,FILE=FNAME(1 ),STATUS='OLD')
READ(10,'(E14.8)') AO(l),A1 (l),A2(1),A3(1),A4(1),A5(l)

CLOSE(10)
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OPEN( 10,FILE--FNAME(2),STATUS='OLD')
READ(10,'(E14.8)') AO(2),A1(2),A2(2),A3(2),A4(2),A5(2)

CLOSE( 10)

NPTS=5 12
INCREMENT=DELTINPTS

C Index Polynomial

DO P= 1,2
DO I=1,NPTS

L(PI)=I*INCREMENT+MJN
LAM(1,I)=L(1,I)

N(P,I)=AO(P)+A I(P)*L(P,I)**2+A2(P) *L(P,D **(2
>+A3(P)*L(P,I)* *(..4)+A4(P)*L(P,I)* *(..6)+A5(P)*L(P,I)**(.8)

N(P,I)=SQRT(N(P,I))
END DO
END DO

C The Amici apex angle is 51.83 degrees.

PIH~=2.*ATAN(I.)
STHETAI1=SIN((90.-5 1.83)157.29)
DO I=1IN11S

THETA4=ASIN(SQRT(N( 1 ,)**2-STHETAI1**2)IN(2,I))
THETA4=THETA4- 103.66/57.29
THETA8( 1 ,)=ASIN(SQRT(N(1 ,I)**2-N(2,I)**2*SIN(THETA4)**2))

END DO

OPEN( 10,FILE="DISPERSION.DAT')
DO I=1I,NPTS

WRITE(1O,*) LAM(1jI),THET-A8(1,I)
END DO
CLOSE( 10)
STOP
END
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Appendix B

Appendix B: Evaluation of Eq. (4.3.19) Leading to Eq. (4.3.20)

This appendix contains the derivation of Eq. (4.3.20) by integration of Eq. (4.3.19).

Recall from Chapter 4 that Eq. (4.3.19) is written as

p(IRI) = 27cm f sin JO {L 2 sin 1a+ b2 }I do . (B. 1)

The integral in Eq. (B. 1) has the form of integral 6.681.8 in Reference 33 of Chapter 4

which is given by

'P f sin(2pgx) J2 v (2a' sin(x)1 dx.
0

=7t sin("J3) Jv-tLJ(a')Jv (a'); Re v > -1 .(B.2)

For the present calculation [compare Eq. (B.1) and (B.2)], gi=1/2, v=0,

a'--iIRI(a2+b2)1/2/(2c; 2). Substitution of these parameters into Eq. (B.2) gives

Equation (B. 3) can be simplified using the following definition:1I
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Jn(z) = iz Jn+l/ 2 (z) (B.4)

The lowercase functions in are the spherical Bessel functions. Using Eq. (B.4) along

with the fact that jo(z)=sin(z)/z and j.(z)=cos(z)/z, Eq. (B.3) can be written as

'2 2 2 1 r jIRI fa + 1 ~2 i
2= 2 (B.5)iIRI ]a 2 + b 2

Using hyperbolic functions, Eq. (B.5) can be simplified to give

4a 2  . rIRI ---'_/' b2cs . a-2--_+21
tn = + a2 ] coa- 2 r 2] (B.6)

Comparison of Eq. (B.6) and Eq. (B.1) gives

p(IRI) = 41RI exp[- (IR1
2 +a2 + b2 ) (202)]

p(IRI)~ = 
2 + b2

X sn - a+b cs - +~ (B. 7
2a 20Y

Equation (B.7) can be simplified to give

p(I) - -21R exp[- (R12 +a2 +b2 )/ (2a 2 )] sih[R r 2  . (B.8)

Using the exponential form for sinh gives the following:
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RI exp[- (IR 2 +a 2 +b 2 )/(2a 2 )]
p(IRI) =

X {exp[! a2+2] _ exp[4a 2 + b2/] (B. 9)OT j

Simplification of Eq. (B.9) by completing the square in the distance parameter gives

p(IRI)IRI ex[_[I RI-4a2 + 0b2 1e [ IRl+- a2 + b2 )2 (.0

p(II) = + b2exp[ 202 ]-e2. (B.l0)

Note that for the case of interest, the magnitude of the second exponential term on the

right hand side is negligable compared to the first exponential term since it is

proportional to the sum instead of the difference from the mean value. Equation (B.1O)

can now be written as

p(IRI) IRI iRI.4a 2 + b2 ) 2(B1)

p (2)(2a + b2)F exp 202

which is the density function for electron distances represented by Eq. (4.3.20).
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