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1. Research Objectives

> The research work on this project has been concerned with

dynamic effects on fracture. Two main areas have been investigated:

"high-rate loads on bodies containing cracks," and '"fast fracture
and crack arrest.'

Dynamic effects become important if the external loads give rise
to propagating mechanical disturbances (as for impact loads and
explosive charges) which can strike a crack and cause crack propagation.
Spalling is an example of a fracture phenomenon caused by the rapid
application of loads. Dynamic effects become also important if a
crack propagates very rapidly, so that rapid motions are generated in
the solid. Even though in most cases fracture studies should focus on
the prevention of crack propagation, cracks sometimes become unstable
despite the best attempts for prevention. @&fflAfor brittle and ~ ( } flvj
ductile materials, it is then important to know whether high speeds of
crack propagation can be expected, what the dynamic interaction with
the geometry of the body will be, and most importantly how a rapidly
propagating crack can be arrested.

A summary of the research objectivs of the completed project is

DYNAMIC EFFECTS ON FRACTURE

I. HIGH-RATE LOADS ON BODIES II. FAST FRACTURE AND CRACK ARREST.
CONTAINING CRACKS.

I-A: Computation of elastodynamic II-A:Computation of elastodynamic
stress intensity factors. stress intensity factors for
rapidly propagating cracks.

I-B: Influence of plastic yielding II-B:Analysis of plastic deforma-

on the dynamic stress field tions near a rapidly propagating
near a crack tip. crack tip.

I-C: Conditions for crack propaga- II-C:Application of fracture
tion under dymamic loading criteria to compute crack-tip
conditions. speeds.

II-D:Arrest of rapidly propagating
cracks.

II-E:Crack forking and kinking
of rapidly propagating cracks.




The work has evolved through four stages which were stated
in the original proposal. These stages are

Stage 1: Development of analytical and numerical methods to
analyze dynamic effects on crack-tip fields.

Stage 2: Comparison of crack-tip fields for linear elasticity
and various constitutive models of elasto-plastic and visco-plastic
material behavior.

Stage 3: Comparison of various fracture criteria.

Stage 4: Application of fracture criteria and the formulation of
conditions for initiation of crack propagation, continued crack
propagation and crack arrest, as well as for crack kinking and crack
forking under dynamic conditions.

From the point of view of the Air Force, the technological signi-
ficance and relevance of the completed research derives from the fact
that it 1s at the present time either technically or economically not
feasible to manufacture so that cracks never occur in factory-new
structures, or after a period of service. It is, therefore, necessary
to be able to estimate the stability of flaws, the propagating
characteristics for fast fracture and the arrest mechanisms for rzpidly
propagating cracks, under a variety of loading conditions whic!. should

include conditions generated by impact loads and explosive charges.

2. Summary of Completed Research

The research completed on this Project has beeu reported in a

number of papers, which have been (or will be) puolished in Technical




Journals and Proceedings of Conferences. A complete list of publications
is given in Appendix A. Lectures and presentations of material completed
on this Project are listed in Appendix B.

The research results are briefly summarized as follows.

2.1 Effects of Plasticitv on Near~Tip Fields

Under rapid loading conditions the mass density of a material
affects the fields of stress and deformation near a crack tip. For such
dynamic problems plastic deformation in the immediate vicinity of a crack
tip was investigated in [i]* for a stationary crack. Deformation theory
was employed for the first phase of the loading when the fields are
increasing monotonically with time. The general character of the near-tip
fields was analyzed both with respect to its variation with time and with
polar angle. The non-linear near-tip fields were related to the linearly
elastic far-field by means of a path-independent integral.

In [2], deformation theory was applied to a thin plate containing a
through-crack. The in-plane normal stresses were assumed to be temsile,
but with a non-uniform variation through the thickness of the plate, as
a result of bending and a dominant extension. The nonlinear near-tip
fields (which are singular) have been analyzed asymptotically on the basis
of plate theory. It was found that the angular variations of the near-tip
fields are just the same as for generalized plane strecs. Assuming small-
scale yielding a path-independent integral, which is valid in a region
close to the crack edge, was used to connect the nonlinear near-tip fields
with the corresponding singular parts of the linear fields. It was shown
that the mnlinear behavior near the crack edge significantly affects the
through-the-thickness variations of the near-tip fields. The singular
parts of the in-plane stresses tend to become more uniform through the

thickness of the plate with stronger strain hardening.

% - R . .
Numbers in brackets refer to the list of publications in Appendix A.




For dynamic fracture problems plastic deformation in the immediate
vicinity of a crack-tip was investigated in [3]). Both stationary and
propagating crack tips were considered. For a stationary crack tip,
deformation theory was employed for the first phase of the loading when
the fields are increasing monotonically with time. The general character
of the near-tip fields was analyzed both with respect to its variation
with time and with polar angle. The non-linear near-tip fields were
related to the linearly elastic far-field by means of a path-independent
integral. In the second part of the paper we considered rapidly propa-
gating cracks. The near-tip fields for various models of material
pehavior were discussed. In particular, some earlier work by Achenbach
and Xanninen for a rarcidly propagating Mode-III crack, in a material which
displays strain hardening was reviewed. In the last part of the paper the
fields near a rapidly propagating crack-tip in an elastic perfectly-plastic
material was considered for the case that inertia terms are of importance.
The system of governing equations in the plastic region was presented and
shown to be hyperbolic in nature. As a first approximation the steady-
state case with respect to the moving crack-tip was considered and an
asymptotic analysis of the near-tip field was carried out.

A dynamic analysis of fast fracture and crack arrest based on the
Dugdale model was presented in [7]. Numerical apprcaches by the finite

difference method have been considered in [13] and [18].

2.2 Computation of Elastodvnamic Stress-Intensity Factors

The effect of proximity of a boundary on elastodynamic stress
intensity factors has been investigated in [4] for a surface-breaking
crack, and in [1l4] for a subsurface crack parallel to the surface of a
half-space. In recent work we have also considered a subsurface crack
which is oriented under an arbitrary angle with the surface of a half-

space, see [16].




The configurations that have been considered, are two dimensional
with deformations in plane strain. Systems of coupled singular integral
equations for the Mode-1I and Mode-II dislocation densities have been
derived. These equations have been solved numerically for the cases of
time-harmonic uniform tension and uniform shear applied at the surface
of the half-space. The ratios of elastodynamic to eleastostatic stress
intensity factors have been computed. The results display the dependence
on the frequency and on the ratio d/a, where d is the distance from the
upper crack tip to the free surface and a is the crack length. For
small angles of inclination with the free surface, and for small values
of d/a, time-harmonic excitations of the body may induce quite strong
resonance vibrations of the layer between the crack and the free surface.
Such resonance vibrations give rise to substantial increases in both the
Mode-1I and Mode-II stress intensity factors. These resonance effects
were investigated in some detail for the parallel crack in [14].

A three-dimensional stress analysis problem for a surface-breaking
crack was considered in [17]. A half-space containing a surface-breaking
crack of uniform depth, oriented normal to the surface, was subjected to
three-dimensional dynamic loading. The elastodynamic stress analysis
problem was decomposed into two problems which are symmetric and
antisymmetric, respectively, relative to the plane of the crack. The
formulation of these problems was subsequently reduced to singular
integral equations for the corresponding dislocation densities, namely,

a single integral equation for the symmetric problem and a set of

coupled integral equations for the antisymmetric problem. The systems

of integral equations were solved numerically. The dislocation densities

directly yield the stress-intensity factors. As an example an applied
stress field with harmonic variation along the crack length and exponen-
ial decay with crack depth was considered. The dependence of the stress
intensity factors on the frequency and on the wavelength in the crack

direction has been displayed by numerical results.




2.3 Fast Fracture and Crack Arrest in an Elastic-Viscoplastic Material.

In this work, we have investigated both the effects of plastic
deformation near a propagating crack tip and dynamic effects due to high
crack-tip speeds. The constitutive equations that have been employed
define an elastic viscoplastic material. The constitutive model, which
was proposed by Bodner and Partom does not require the statement of a
separate yield criterion, nor is it necessary to consider loading and
unloading separately. Plastic deformations always exist, but they are
negligibly small when the material behavior should be essentially elastic.

The geometry that has been considered is a two-dimensional one of a
thick strip which contains a rapidly propagating semi-infinite crack in
its center~plane. The faces of the strip were subjected to uniform in-
plane displacements, so that the crack propagates in Mode~I. A steady-
state situation relative to the moving crack tip has been assumed. The
plastic deformations near the crack tip, the residual plastic strains in
the wake of the crack tip and other field variables have been obtained
directly from the complete solution without the assumption of small scale
yielding.

Detailed results have been given in [5], [6] and [11]. The wethod of
solution is numerical and involves an iterative procedure which is
continued until a steady state solution is reached, in which the
equation of motion, the flow rules and the boundary conditions are
satisfied simultaneously. The method is based on a finite difference
procedure which is unconditionally stable and has a second order accuracy.

In the special case of a perfectly elastic strip the problem
possesses an analytical solution which has been employed to check the
accuracy of the numerical method, and excellent agreement has been
obtained.

Typical effects due to viscoplastic constitutive behavior have been
studied by comparisons with the corresponding elastic fields. The effects

of high crack-tip speeds, which are directly related to the strain-rate




dependence of the material, have been studied by comparisons of solutions
for three crack-tip velocities. The influence of the inertia term in the
governing equations has been studied by comparisons with the corresponding
quasi-static solutions. In particular, the dependence on the crack-tip
speed of the plastic zone in the vicinity of the crack tip, the level of
plastic straining, the amount of dissipative plastic work and the crack-
opening displacements have been examined.

In (9] and [12] the transient problem of deceleration and arrest of
a rapidly propagating crack tip has been investigated for a crack which
initially propagates in an elastic solid but then enters a region of
viscoplastic material properties. Of particular interest in the dynamic
arrest problem is the plastic strain just ahead of the arresting crack
tip. This strain has been computed as a function of time. Within the
context of a critical strain criterion it has been assumed that the
crack tip will arrest if this strain does not exceed a certain critical

value.

2.4 Crack-Kinking under Stress-Wave Loading

When a stress pulse strikes a crack, the crack may be induced to
propagate, but not necessarily in it's own plane. In earlier work,
it has been attempted to explain kinking of a crack at finite kinking
angles. In work completed on this project, [10] and [15], we have
reconsidered the two-dimensional configuration of an initially staticmary
crack which kinks under an angle «m with it's original plane. We have
discussed earlier results for Mode III, and we have proposed a way to
approximate the elastodynamic stress intensity factors for the Mixed
Mode I-II case.

The tip of the kinked crack is assumed to propagate at a comnstant
velocity Cpo and kinking is initiated at an angle k7 at the instant
that an incident disturbance first strikes the original crack tip.
These two assumptions render the solution self-similar. Three cases have
been considered corresponding to incidence of either an anti-plane

transverse wave, an in-plane transverse wave or a longitudinal wave.




The elastodynamic stress intensity factors have been computed as
functions of the crack tip speed, Cpe the kinking angle, <7, and the
angle of wave incidence aw. For a given angle of incidence, the
elastodynamic stress intensity factors have been used to compute

the corresponding energy fluxes into the propagating crack tip.

Mode~I11 problems of the kind formulated in [10] can be solved
rigorously. Results for Mode-III kinking under an arbitrary angle
were given earlier. The corresponding mixed Mode I-II problems have,
however, as yet eluded a rigorous analytical solution.

For the mixed Mode I-~II problems we have proposed a simple
approximaticn to the solution of the superposition problem. The
approximation is based on an observation from the exact Mode~III
solution of the analogous superposition problem, that for an important
range of kinking angles the elastodynamic stress intensity factor of
the kinked crack is affected more by the dependence on « of the loading
on the new crack faces than by the wedge geometry at the original crack
tip. This observation then suggests that in first approximation we may
ignore the wedge geometry altogether, and we may compute elastodynamic
stress intensity factors by considering a crack propagating in its own
plane but where the new crack faces are subjected to tractions corres-
ponding to the kinking crack.

For the Mode-IT1 case the spproximation of the elastodynamic
stress intensity factor for the kinked crack can be checked by
comparisons with exact results. The range of kinking angles «7 for
which the approximation gives good results turns out to be sur-
prisingly large. For the mixed Mode I-II case comparisons with the
numerical results have been carried out, and satisfactory agreement
has been obtained. Yo rigorous mathematical proof of the approxi-

mation's validity is given in this paper. It has, howzver, been




shown recently that the results correspond to the first order terms in
a perturbation procedure for small kinking angle [19].

The results of this work suggested that the approximation could be
used to analyze crack kinking at gradually increasing angles and at time-
varying crack tip speeds. The details of that analysis have been completed
[20]. Publication [20] also includes a study of the actual conditions for

crack kinking by the use of the criterion of the balance of rates of energies.

2.5 Asvmptotic Form of Dynamic Crack-Tip Fields According to the

Bodner-Partom Constitutive Equations

Bodner and PartomT have proposed a set of constitutive equations for
an elastic-viscoplastic work-hardening material. These equations have
the convenient property that no separate specification of a vield criterion
is required, nor is it necessary to consider loading and unloading separately.
Within the context ol the Bodner-Partom model both elastic and inelastic
deformations are present at all stages of loading and unloading, but the
plastic deformations are very small when the material behavior should be
essentially elastic.

In the final stages of this project we obtained tine order of the singu-
larities in stress and deformation near a rapidly propagating crack tip
in a Bodner-Partom material. The crack propagates under Mode~I conditioms,
and the effects of material inertia are taken into account. The near-tip
fields are analyzed by the asymptotic method presented by Achenbach,
Kanninen and Popelar®.

The results, which are presented in Appendix C, show that the near-tip
plastic strain rates are bounded, while, just as for a linearly cslastic
material, the total strains and the stresses display square-~root singu-
larities.

—
S.R. "odner and Y. Partom, "Constitutive Equations for Elastic-Viscoplastic

Strain-Hardening Materials", J. Appl. Mech., 42, p. 385, 197s.

J. D. Achenbach, M. F. Kanninen and C. H. Popelar, "Crack-Tip Fields for

Fast Fracture of an Elastic-Plastic Material', J. Mech. Phvs. Solids,
29, p. 211, 1981.
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appendix C: YNear-Tip Fields According to the 3odner-Partom Model

C.1 Governing Equations

In the usual manner the total rate of strain is expressed as the

superposition of elastic (reversible) and plastic (irreversible) components:

& =¢'e = c“p i,3 =
*13 ©13 + i i,3 1,2,3 (1)

The stress rates are related to the elastic strain rates by Hooke's law:

P e+ iy - P ) (2)

J = A kk® i3 ij

1j “kk

For plane strain and plane stress, substitution of éij into

cij,j = ol (3)

where o is the mass density, yields

Eg - PP =0 . (4)

In (4) the elastic operator £ is defined as

. "2 . - ~2
1 2 L -3 ) .—J—
uve + (A +u) — 2() (A +u) 3% 3%
ax] 1772
Eo= } (5)
g )2 PN LI
L (A + u) TN B7T + (A ) -0o( ),
1772 5x2
2
while the plastic operator P is
T : s 3 3
[Ow + 2u) 2— Ao =—  2u o—
! axl axl QXZW
T | *
v E N 3 3 |
v — (Aw + 2u) < 2u —
L 3x2 3%, 3%y |
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The vectors U and ¢F are

. +P
Y1 /‘11
u = and P =f ¢P (7a,b)
< : z \\ 22 ’
: P
%2 12
Also,
lane strain : A = 2uY w =20 (8)
P : 1-2v > °
T 2uv
plane stress : VeI s sl (9)

where v is Poisson's ratio.

It is assumed that the plastic deformations are incompressible P20, k=1,2,3

kk
and that the Prandtl-Reuss flow law holds. Thus
P =8P = us, (10)
1] 1] 1]

where sij and éij denote the deviators of the stress tensor and the plastic
strain-rate tensor, respectively. Equation (10) can be squared to yield

A in the form

A2 = D‘;/J2 (11)
Here

p_1.p.pP 21

D2 5 eijeij , and J2 5 sijsij (12a,b)

are the second invariants of the plastic strain-~rate deviator and the stress

deviator, respectively.
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Following Ref.[l] we take the following relation between Dg and J2:

P . pn2 2 n
Dy DoexpE(A /JZ) 1,

where Do’A and n are material constants.
Now let us consider a crack tip mowving with crack tip speed v(t),

and let the xlxzx3 system be a moving coordinate system centered at the

crack tip. The x,-axis is parallel to the crack front, and x

3 peints in

1

the direction of crack growth. Relative to the moving coordinate system we

also define polar coordinates r,8 with 9 = 0 coinciding with the positive
xl-direction. The geometry is shown in Fig. 1. Relative to the moving

coordinates we have

. 3 3
(') = - ve) 5=
1
() = - vy 2 - 2vle) S v())?
el X1 *1 Bxi
)
4
r
—_ldas 9
r ar 4 ARARd xl
-
v(t)

Fig. 1l: Propagating Crack Tip
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C.2 Dynamic Crack-Tip Fields

It follows from (10)~(13) that
5p= a4 nz %
2 D exp (-4 /Jz) / ]sij/(Jz) (16)
Even if sij is singular, the singularity of sij as r -~ 0 will be cancelled
1 1
by the singularity of (Jz)ﬁ in the term sij/(Jq)ﬁ. The term

exp[(—Az/Jz)n/Z] is bounded, whether J_, is singular or not, since n > 0

2
(in Ref.[l], n is taken as n = 1l). Hence, Eq.(1l6) implies that the plastic
strain-rate is bounded as r ~ 0.

To investigate the nature of the singularity in the elastic strains

and stresses, we consider

s s, .

§o.e = LW e, v 2 0P 60 ¢ -, (17
where=1 < s < s, < ===, and

. . T

u = (ul,uq) (18)

&

. s , T

@ o @® mHT a a1 (19)

= 1 2
The lower bound for 1 follows from the boundedness of u at the tip.
Also

q,. q,.

:? o, =t 2P 0,0+ P60 4 m (20)
where q1 < q2 < ===, and

P _ (2P .p .p T

e = (Eqpeppfd) (21)

. . . . T .

g(m) = (E{m);Ef)(m)aEgm)) » m=1,2 (22)
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As noted above, ép is bounded, and hence

q =0 (23)

Substitution of (17) and (20) into Eq.(4) yields

s, =2 . s,~2 . : . q,-1 .
ebog W e e e LD L0 e @ iy

In Eq.(24), the operators El and EZ are just the same as those for the
linearly elastic problem, which can be obtained by substituting (17) in
Eé, and collecting terms of orders rs N and rs -2, respectively, while
Pl and Pz follow by substituting (20) in P ép, and collecting terms of
orders r_l and rqz—l . It is noted that we have used the result 4 = 0

- -1
in identifying the term of order r .

Now let us consider the stresses corresponding to the expansions given

by Eqs.(1l7) and (20). It follows from Eq.(2) that

5. =48 @ (25)
1] 1] 1]

where for 1i,j = 1,2:

(&) _ T, : .

Oij = X(ell + '22)6ij + 2ueij (26)

P - i(ép + P yws ., o+ 2ued (27)
ij 11 22 ij ij

In (26) and (27), the constants A and w are defined by Eqs.(8) and (9)
for plane strain and plane stress, respectively. Substitution of (17)

and (20) into (26) and (27) yields

6(e) = rsl-l {i[F (9,t) + F,(8,t)] + 2uF. (8,t)}
22 ‘ 1 [ 2 ’ Jz > J
52—1 ~
+r {X[Gl(a,t) + Gz(e,c)] + 2uG2(6.t)} + ... (28)

19




(D P e,y « -1+ iEP e + eV 6,0 + -l (29)
(e) sl-l s.-1
é21 = ur Tl(a,t) + ur Tz(a,t) + == (30)
G-I ¢ D) L
o1 2.1[E3 (3,t) + ] (31)
where
Fl(s,t) = slcose U( )(6 t) - sin® rgUil) 8,t) (32a)
Fz(a,t) = 5151n6 U( )(a,t) + cos® %gﬂél)(a,t) (32b)
) " (2) - eing L@
cl(a,:) szuose Ul (9,t) sing 99 l (2,t) (32¢)
6,(8,8) = s,s1n8 UL (3,8) + coss ERSUICNS (32d)
Also
Tl(e,t) = sl[sine ﬁil)(e,:) + cos8 ﬁél)(a,:)]+ cos8 rgﬁil)(e t) - sineg iguél)<a t)
(33a)
T,(3,t) = sz[sine Uiz)(e,t) + cosB Uéz)(e,t)]+ coso &—Uiz)(a,t) - sing :€U§ )(9 t)
(33b)
For the propagating crack the conditions are
3=0,r1r > 0: dz =0, 621 =0 (34)
9 =71 ,1r>0: 622 =0, 621 =0 (35)
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Following the general method of Achenbach, Kanninen and Popelar {2},

. . . (1
we now construct eigenvalue problems for the determination of s., Q( ),

@ 4D g g, £@

1

52, U

in (24) and (34), (35). The four terms in Eq.(24) are of orders
s, =2 $,-2 q.-1

1 - . : .
r y T , T and r , respectively. Since

, é » by collecting the highest order singularities

s, < s,, the first term is more singular than the second, and since

1

1 < q,, the third is more singular than the fourth. At the outset it is,
= s, =2
however, not evident whether the term of order r is more singular than

_ -1
the term of order r .

Suppose sl—2 > -1, then sl-i 1. In this case we would, however, have
no singularity at all for the strain. Hence we must have sy - 2 < -1,
or s, < 1. Then, Eq.(24) implies
s, -2
r l E U(l) = 0 >
l..
or
(1) _
Elg - 0 .
The corresponding terms in (34) - (35) yield
uél)m,c) =0, T1,0,0) =0

AF (7,8) + Fy(7,0)] + 2uF (7,£) = 0

Tl(n,c) =0

21

(36)

(37)

(38a,b)

(39

(40)




1 and s,. This

Equations (37) - (40) define an "eigenvalue" problem for U 1

eigenvalue problem is, however, exactly the same as for dynamic crack
propagation in a linearly elastic material, which was considered in Refs.[3]

and [4]. We can immediately conclude that

1
s, = - 5 (41)

It is of interest to consider the higher order terms in Eq.(24),

since it is conceivable that one of them may give rise to a singular

s,=2
strain, or at least to a singular strain rate. After the term r 1 s
s,~2 _
either r ~ orr may be the most singular term in Eq.(24). We must
consider the following three possibilities
32-2 < -1, 52-2 > -1, or 52—2 = -1 (42)
Suppose 52—2 < -1, then Eq.(24) implies
e,u'? =0 (43)
This equation must be supplemented by
1(2) =
U2 (0,t) =0, Tz(O,t) =0 (44a,b)
R[Gl(:,t) + Gz(w,t)] + 2uG2(T,t) =0 (45)
T,(m,t) =0 (46)

Equations (43)-(46) a.e, however, completely equivalent to the equations

for the next term in the linearly elastic problems. Hence

1
s =E’ 47




which satisfies the condition 52-2 < - 1.

Now if we assume 52-2 > - 1, then, it follows from Eq.(24) that

Do -0 (48)

Since the plastic strain rates actually depend on the strzsses, as follows
from Eq.(16), and since singular stresées do actually give rise to bounded
plastic strain rates, Eq.(48) can be discarded. Hence 52-2 > - 1 is not
acceptable.

Finally we consider the case 52-2 = -1, or Sy, = 1. There is no reason
to ignore this case. Both the strain and the strain rate corresponding to
52 = ] will, however, be bounded.

In conclusion, for the dynamic problem the lowest order displacement

rate terms are

(8,t) + r

- ¢ V2 (9,£) + --- (49a;

1/26(2)

e

or

u= 2 ey 4 5P 4,0 + - (49b)

Thus, we have shown that the two most dominant terms of the near-tip

1/2 and rl/z.

particle velocity are of orders r A more careful approach is
needed to determine the higher order terms. For the stationary crack the
procedure to determine the higher-order terms is discussed in the next
Section. Following the method of Section C.3 for the propagating crack we

find
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625G M2 5D G0 v rloge 8,0y + 0

(9,2) + ---
(49.¢)
or

2

u = rl/zg(l)(a,t) + r3/2§(2)(5,t) + r“logr 9(3)(9,t) + rzg(a)(i,c) o

(49d)

It should be noted that there is no essential difference between the
dvnamic and the quasi-static result for the propagating crack. The quasi-
static formulation follows by removing the operator p(") from E, £q.(3).
This would, however not affect the result. There is, however, a siznificant
difference with the field near a stationary crack tip, as shown in the next

section.




C.3 Field Near a Stationary Crack Tip

The formulation of Section C.2 reduces to the one for a stationary
crack tip by setting v(t) = 0. The X{XoXq-System then becomes a stationarv

system, and the time derivatives given by Egs.(l4) and (15) reduce to

at’ at '
We first follow the same argument as in the previous section for the
dynamic propagating crack cise, i.e. we assume that the asyvmptotic

expression in (17) holds for the stationary crack problem. Substitution of

Egs.(17) and (20) into (4) now yields

s,-2 . S,-2 . - q,-1 .
N AN (N A R A AL R I 38
s172 spr2 9.1
The four terms in (51) are now of orders r , T , T and r ,
respectively.

Suppose 51-2 > - 1, then 1 > 1l. In this case we would not have a

singularity in the strain. Hence we must have 51-2 < -1, or s

s,-2
implies however that the terms multiplying r must vanish identically,

1 <1l . This

which leads to the formulation given by Eqs.(37)-(40), but where () in

Eq.(5) is defined by Eq.(50b). It follows that

1
s =5 (52)

With regard to the value of s, we have the following alternatives:

52-2 < -1, 52-2 >-1, or S, 2= -1 (53)
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If 52-2 < - 1, the terms containing S5 must vanish, which leads to the
formulation given by Egs.(43)-(46), and thus Sy = 3/2. This resul:

violates, however, the assumption 52-2 < - 1, and it does, therefore, not

apply. If, on the other hand, 52-2 > - 1, then g(l)(ﬂ,t) = 0. As discussed
before this result is not consistent with a bounded plastic strain rate in
the presence of singular stresses. Hence we discard the possibility of
52-2 > - 1. This leaves 52-2 = - 1, or 52 = 1. For this case Eq.(31)
yields

- (2) (1)
E,0°7 - PiEYT =0 (54)

For the stationary crack one would conclude at this point,

u = rl/zg(l)(ﬂ,t) + rg(z)

(6,e) + --- (55)
A more careful study shows, however, that the corresponding homogeneous

equation of Eq.(54) has nontrivial solutions. In the Mode I case, for

example, the homogeneous equation

e 10,0 -0 (56)
*
where A is defined as
*
A = (X +p)VVe + uVZ (57)

with boundary conditions

26




9= n Tr ¥,y -0 (58)

(2)

§ =0: i,.T(r T (§,£)] =0 (39a)

1

e P00 -0 (59b)

where ij are unit vectors, has a solution corresponding to a uniaxial
tensile field in the xl-direction. Hs nce the asymptotic expression based on
(17) becomes ambiguous.

A modification of the asymptotic expression of (55) to include a term

of the form, rlogr g(3)(9,t) resolves the problem. It is found that

*

8 04,61 = 8% irlogr 05,0y + v EV 5.1y (60)

with boundary conditions appropriate to Mode I does have a unique solution

within a term which would give rise to a uniform contribution to ™11

In conclusion, for the stationary crack we have
- rl/zg(l)(e,t) + rlogr g(3)(9,t) +r g(z)(a,c) + --- (61)

which shows a difference in the second term as compared to Eq.(49).
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