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1. Research Objectives

The research work on this project has been concerned with

dynamic effects on fracture. Two main areas have been investigated:

"high-rate loads on bodies containing cracks," and "fast fracture

and crack arrest."

Dynamic effects become important if the external loads give rise

to propagating mechanical disturbances (as for impact loads and

explosive charges) which can strike a crack and cause crack propagation.

Spalling is an example of a fracture phenomenon caused by the rapid

application of loads. Dynamic effects become also important if a

crack propagates very rapidly, so that rapid motions are generated in

the solid. Even though in most cases fracture studies should focus on

the prevention of crack propagation, cracks sometimes become unstable

despite the best attempts for prevention. Both for brittle and , A

ductile materials, it is then important to know whether high speeds of

crack propagation can be expected, what the dynamic interaction with

the geometry of the body will be, and most importantly how a rapidly

propagating crack can be arrested.

A summary of the research objectivs of the completed project is

DYNAMIC EFFECTS ON FRACTURE

I. HIGH-RATE LOADS ON BODIES II. FAST FRACTURE AND CRACK ARREST.
CONTAINING CRACKS.

I-A: Computation of elastodynamic II-A:Computation of elastodynamic
stress intensity factors. stress intensity factors for

rapidly propagating cracks.

I-B: Influence of plastic yielding II-B:Analysis of plastic deforma-
on the dynamic stress field tions near a rapidly propagating
near a crack tip. crack tip.

I-C: Conditions for crack propaga- II-C:Application of fracture
tion under dynamic loading criteria to compute crack-tip
conditions. speeds.

II-D:Arrest of rapidly propagating
cracks.

II-E:Crack forking and kinking
of rapidly propagating cracks.



The work has evolved through four stages which were stated

in the original proposal. These stages are

Stage 1: Development of analytical and numerical methods to

analyze dynamic effects on crack-tip fields.

Stage 2: Comparison of crack-tip fields for linear elasticity

and various constitutive models of elasto-plastic and visco-plastic

material behavior.

Stage 3: Comparison of various fracture criteria.

Stage 4: Application of fracture criteria and the formulation of

conditions for initiation of crack propagation, continued crack

propagation and crack arrest, as well as for crack kinking and crack

forking under dynamic conditions.

From the point of view of the Air Force, the technological signi-

ficance and relevance of the completed research derives from the fact

that it is at the present time either technically or economically not

feasible to manufacture so that cracks never occur in factory-new

structures, or after a period of service. It is, therefore, necessary

to be able to estimate the stability of flaws, the propagating

characteristics for fast fracture and the arrest mechanisms for rapidly

propagating cracks, under a variety of loading conditions whicU should

include conditions generated by impact loads and explosive charges.

2. Summary of Completed Research

The research completed on this Project has beea reported in a

number of papers,which have been (or will be) puolished in Technical
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Journals and Proceedings of Conferences. A complete list of publications

is given in Appendix A. Lectures and presentations of material completed

on this Project are listed in Appendix B.

The research results are briefly summarized as follows.

2.1 Effects of Plasticity on Near-Tip Fields

Under rapid loading conditions the mass density of a material

affects the fields of stress and deformation near a crack tip. For such

dynamic problems plastic deformation in the immediate vicinity of a crack

tip was investigated in [1] for a stationary crack. Deformation theory

was employed for the first phase of the loading when the fields are

increasing monotonically with time. The general character of the near-tip

fields was analyzed both with respect to its variation with time and with

polar angle. The non-linear near-tip fields were related to the linearly

elastic far-field by means of a path-independent integral.

In [2], deformation theory was applied to a thin plate containing a

through-crack. The in-plane normal stresses were assumed to be tensile,

but with a non-uniform variation through the thickness of the plate, as

a result of bending and a dominant extension. The nonlinear near-tip

fields (which are singular) have been analyzed asymptotically on the basis

of plate theory. It was found that the angular variations of the near-tip

fields are just the same as for generalized plane strecs. Assuming small-

scale yielding a path-independent integral, which is valid in a region

close to the crack edge, was used to connect the nonlinear near-tip fields

with the corresponding singular parts of the linear fields. It was shown

that the mnlinear behavior near the crack edge significantly affects the

through-the-thickness variations of the near-tip fields. The singular

parts of the in-plane stresses tend to become more uniform through the

thickness of the plate with stronger strain hardening.

,
Numbers in brackets refer to the list of publications in Appendix A.
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For dynamic fracture problems plastic deformation in the immediate

vicinity of a crack-tip was investigated in [3]. Both stationary and

propagating crack tips were considered. For a stationary crack tip,

deformation theory was employed for the first phase of the loading when

the fields are increasing monotonically with time. The general character

of the near-tip fields was analyzed both with respect to its variation

with time and with polar angle. The non-linear near-tip fields were

related to the linearly elastic far-field by means of a path-independent

integral. In the second part of the paper we considered rapidly propa-

gating cracks. The near-tip fields for various models of material

behavior were discussed. In particular, some earlier work by Achenbach

and Kanninen for a rapidly propagating Mode-Ill crack, in a material which

displays strain hardening was reviewed. In the last part of the paper the

fields near a rapidly propagating crack-tip in an elastic perfectly-plastic

material was considered for the case that inertia terms are of importance.

The system of governing equations in the plastic region was presented and

shown to be hyperbolic in nature. As a first approximation the steady-

state case with respect to the moving crack-tip was considered and an

asymptotic analysis of the near-tip field was carried out.

A dynamic analysis of fast fracture and crack arrest based on the

Dugdale model was presented in [7]. Numerical approaches by the finite

difference method have been considered in [13] and [18].

2.2 Computation of Elastodvnamic Stress-Intensity Factors

The effect of proximity of a boundary on elastodynamic stress

intensity factors has been investigated in [4] for a surface-breaking

crack, and in [14] for a subsurface crack parallel to the surface of a

half-space. In recent work we have also considered a subsurface crack

which is oriented under an arbitrary angle with the surface of a half-

space, see [161.

4



The configurations that have been considered, are two dimensional

with deformations in plane strain. Systems of coupled singular integral

equations for the Mode-I and Mode-Il dislocation densities have been

derived. These equations have been solved numerically for the cases of

time-harmonic uniform tension and uniform shear applied at the surface

of the half-space. The ratios of elastodynamic to eleastostatic stress

intensity factors have been computed. The results display the dependence

on the frequency and on the ratio d/a, where d is the distance from the

upper crack tip to the free surface and a is the crack length. For

small angles of inclination with the free surface, and for small values

of d/a, time-harmonic excitations of the body may induce quite strong

resonance vibrations of the layer between the crack and the free surface.

Such resonance vibrations give rise to substantial increases in both the

Mode-I and Mode-I stress intensity factors. These resonance effects

were investigated in some detail for the parallel crack in [141.

A three-dimensional stress analysis problem for a surface-breaking

crack was considered in [17]. A half-space containing a surface-breaking

crack of uniform depth, oriented normal to the surface, was subjected to

three-dimensional dynamic loading. The elastodynamic stress analysis

problem was decomposed into two problems which are symmetric and

antisymmetric, respectively, relative to the plane of the crack. The

formulation of these problems was subsequently reduced to singular

integral equations for the corresponding dislocation densities, namely,

a single integral equation for the symmetric problem and a set of

coupled integral equations for the antisymmetric problem. The systems

of integral equations were solved numerically. The dislocation densities

directly yield the stress-intensity factors. As an example an applied

stress field with harmonic variation along the crack length and exponen-

tial decay with crack depth was considered. The dependence of the stress

intensity factors on the frequency and on the wavelength in the crack

direction has been displayed by numerical results.
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2.3 Fast Fracture and Crack Arrest in an Elastic-Viscoplastic Material.

In this work, we have investigated both the effects of plastic

deformation near a propagating crack tip and dynamic effects due to high

crack-tip speeds. The constitutive equations that have been employed

define an elastic viscoplastic material. The constitutive model, which

was proposed by Bodner and Partom does not require the statement of a

separate yield criterion, nor is it necessary to consider loading and

unloading separately. Plastic deformations always exist, but they are

negligibly small when the material behavior should be essentially elastic.

The geometry that has been considered is a two-dimensional one of a

thick strip which contains a rapidly propagating semi-infinite crack in

its center-plane. The faces of the strip were subjected to uniform in-

plane displacements, so that the crack propagates in Mode-I. A steady-

state situation relative to the moving crack tip has been assumed. The

plastic deformations near the crack tip, the residual plastic strains in

the wake of the crack tip and other field variables have been obtained

directly from the complete solution without the assumption of small scale

yielding.

Detailed results have been given in [51, [6] and [11]. The method of

solution is numerical and involves an iterative procedure which is

continued until a steady state solution is reached, in which the

equation of motion, the flow rules and the boundary conditions are

satisfied simultaneously. The method is based on a finite difference

procedure which is unconditionally stable and has a second order accuracy.

In the special case of a perfectly elastic strip the problem

possesses an analytical solution which has been employed to check the

accuracy of the numerical method, and excellent agreement has been

obtained.

Typical effects due to viscoplastic constitutive behavior have been

studied by comparisons with the corresponding elastic fields. The effects

of high crack-tip speeds, which are directly related to the strain-rate

6



dependence of the material, have been studied by comparisons of solutions

for three crack-tip velocities. The influence of the inertia term in the

governing equations has been studied by comparisons with the corresponding

quasi-static solutions. In particular, the dependence on the crack-tip

speed of the plastic zone in the vicinity of the crack tip, the level of

plastic straining, the amount of dissipative plastic work and the crack-

opening displacements have been examined.

In [9] and [12] the transient problem of deceleration and arrest of

a rapidly propagating crack tip has been investigated for a crack which

initially propagates in an elastic solid but then enters a region of

viscoplastic material properties. Of particular interest in the dynamic

arrest problem is the plastic strain just ahead of the arresting crack

tip. This strain has been computed as a function of time. Within the

context of a critical strain criterion it has been assumed that the

crack tip will arrest if this strain does not exceed a certain critical

value.

2.4 Crack-Kinking under Stress-Wave Loading

When a stress pulse strikes a crack, the crack may be induced to

propagate, but not necessarily in it's own plane. In earlier work,

it has been attempted to explain kinking of a crack at finite kinking

angles. In work completed on this project, (10] and [15], we have

reconsidered the two-dimensional configuration of an initially stationary

crack which kinks under an angle <7 with it's original plane. We have

discussed earlier results for Mode III, and we have proposed a way to

approximate the elastodynamic stress intensity factors for the Mixed

Mode I-II case.

The tip of the kinked crack is assumed to propagate at a constant

velocity cF9 and kinking is initiated at an angle <7 at the instant

that an incident disturbance first strikes the original crack tip.

These two assumptions render the solution self-similar. Three cases have

been considered corresponding to incidence of either an anti-plane

transverse wave, an in-plane transverse wave or a longitudinal wave.

7



The elastodynamic stress intensity factors have been computed as

functions of the crack tip speed, cF , the kinking angle, <7, and the

angle of wave incidence a7. For a given angle of incidence, the

elastodynamic stress intensity factors have been used to compute

the corresponding energy fluxes into the propagating crack tip.

Mode-Ill problems of the kind formulated in [101 can be solved

rigorously. Results for Mode-ill kinking under an arbitrary angle

were given earlier. The corresponding mixed Mode I-II problems have,

however, as yet eluded a rigorous analytical solution.

For the mixed Mode !-II problems we have proposed a simple

approximation to the solution of the superposition problem. The

approximation is based on an observation from the exact Mode-Ill

solution of the analogous superposition problem, that for an important

range of kinking angles the elastodynamic stress intensity factor of

the kinKed crack is affected more by the dependence on < of the loading

on the new crack faces than by the wedge geometry at the original crack

tip. This observation then suggests that in first approximation we may

ignore the wedge geometry altogether, and we may compute elastodynamic

stress intensity factors by considering a crack propagating in its own

plane but where the new crack faces are subjected to tractions corres-

ponding to the kinking crack.

For the Mode-Ill case the approximation of the elastodynamic

stress intensity factor for the kinked crack can be checked by

comparisons with exact results. The range of kinking angles K7 for

which the approximation gives good results turns out to be sur-

prisingly large. For the mixed Mode I-II case comparisons with the

numerical results have been carried out, and satisfactory agreement

has been obtained. No rigorous mathematical proof of the approxi-

mation's validity is given in this paper. It "as, however, been
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shown recently that the results correspond to the first order terms in

a perturbation procedure for small kinking angle [191.

The results of this work suggested that the approximation could be

used to analyze crack kinking at gradually increasing angles and at time-

varying crack tip speeds. The details of that analysis have been completed

[201. Publication [20] also includes a study of the actual conditions for

crack kinking by the use of the criterion of the balance of rates of energies.

2.5 Asvmptotic Form of Dynamic Crack-Tip Fields According to the

Bodner-Partom Constitutive Equations

Bodner and Partom have proposed a set of constitutive equations for

an elastic-viscoplastic work-hardening material. These equations have

the convenient property that no separate specification of a yield criterion

is required, nor is it necessary to consider loading and unloading separately.

Within the context o' the Bodner-Partom model both elastic and inelastic

deformations are present at all stages of loading and unloading, but the

plastic deformations are very small when the material behavior should be

essentially elastic.

In the final stages of this project we obtained tne order of the singu-

larities in stress and deformation near a rapidly propagating crack tip

in a Bodner-Partom material. The crack propagates under Mode-I conditions,

and the effects of material inertia are taken into account. The near-tip

fields are analyzed by the asymptotic method presented by Achenbach,

Kanninen and Popelar °.

The results, which are presented in Appendix C, show that the near-tip

plastic strain rates are bounded, while, just as for a linearly elastic

material, the total strains and the stresses display square-root singu-

larities.

4.

S.R. Aodner and Y. Partom, "Constitutive Equations for Elastic-Viscoplastic

Strain-Hardening Materials", J. Appl. Mech., 42, p. 385, 1975.
0

J. D. Achenbach, M. F. Kanninen and C. H. Popelar, "Crack-Tip Fields for

Fast Fracture of an Elastic-Plastic Material", J. Mech. Phys. Solids,

29, p. 211, 1981.
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Appendix C: Near-Tip Fields According to the 3odner-Partom Model

C.1 Governing Equations

In the usual manner the total rate of strain is expressed as the

superposition of elastic (reversible) and plastic (irreversible) components:

-e 1 + P , i,j - 1,2,3 (i)

The stress rates are related to the elastic strain rates by Hooke's law:

j= A(kk - ik)Cij +2'a(£ij - a2.) (2)

For plane strain and plane stress, substitution of i.. intoI-J

aii j , J u i  , (3)

where o is the mass density, yields

Ed - P~P = 0 . (4)

In (4) the elastic operator E is defined as

FV 2 2+ (2 +i)- 2  ) ( -i

2 3x 3x
I - - () x 12 ( 4 3l12

E (5)

2x
LI +X 1X ;xi 2 Ox

2

while the plastic operator P is

+x 3 2

(6)

( + 2 ,,1) 3 2

L_ '  x 2  x
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The vectors and P are

'u = np

\ 2 / 711 P2P p()and E :c2 (7a,b)

2 1M2/

Also,

plane strain a = ) =0 (8)

2'axo
plane stress k= = (9)

where v is Poisson's ratio.

It is assumed that the plastic deformations are incompressible -2p  0, k=l,2,3" ~kk -

and that the Prandtl-Reuss flow law holds. Thus

"p = J. = As.. (10)
ij ij i

where s.. and J. denote the deviators of the stress tensor and the plastic
iJ 3]

strain-rate tensor, respectively. Equation (10) can be squared to yield

.\ in the form

A2 = D /J (11)
22

Here

1 .p .p 1
D e ee.. 'andJ 2  s..s. (12a,b)

arr the second invariants of the plastic strain-rate deviator and the stress

deviator, respectively.
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Following Ref.[l] we take the following relation between D and J
2 2

D D2expfE(A2/J2)n , (13)
2 o 2

where D ,A and n are material constants.o

Now let us consider a crack tip moving with crack tip speed v(t),

and let the x 1 x 2x 3 system be a moving coordinate system centered at the

crack tip. The x 3-axis is parallel to the crack front, and x points in

the direction of crack growth. Relative to the moving coordinate system we

also define polar coordinates r,9 with a = 0 coinciding with the positive

x1 -direction. The geometry is shown in Fig. 1. Relative to the moving

coordinates we have

() = - v(t) (14)

- -v(t) 2v(t) j + Iv(t)] 2  11 (15)
3tx 1X 3t3Xl x 2

11

x2

r

xl

v(t)

Fig. 1: Propagating Crack Tip
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C.2 Dynamic Crack-Tip Fields

It follows from (10)-(13) that

c.= D exp[(-A"/J )n/21s /(J2) (16)
0 2 ij 2

Even if s.. is singular, the singularity of s.. as r - 0 will be cancelled
I I

by the singularity of (J2) in the term s ij/(J2) The term

exp[(-A2/J 2 )n/2] is bounded, whether J2 is singular or not, since n > 0

(in Ref.[l], n is taken as n = 1). Hence, Eq.(16) implies that the plastic

strain-rate is bounded as r - 0.

To investigate the nature of the singularity in the elastic strains

and stresses, we consider

i(r,9,t) r s 1  ) (8,t) + r u2 (2)( ,t) +--- , (17)

where- 1 I < S2 < --- , and

= (, T (18)

* (m) (m) (),
U = ( U ' m = 1,2 (19)

-1 2

The lower bound for sI follows from the boundedness of u at the tip.

Also

C (r,O,t) - rql (e,t) + r2(2)(6t) +--- , (20)

where q1 < q, < --- , and

p (= i ,p .p T (21)
il1l' 22"-12

1i 2 'i 3 M m T 1,2 (22)
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As noted above, 1p  is bounded, and hence

q, = 0 (23)

Substitution of (17) and (20) into Eq.(4) yields

rsl 2 E 1U( ) + rs22 E2 (
2 ) 4-.... r P E(1) - rq2 -l E(2) -- 0 (24)

In Eq.(24), the operators E1 and E2 are just the same as those for the

linearly elastic problem, which can be obtained by substituting (17) in

sl-2 s2 -2
EU, and collecting terms of orders r and r , respectively, while

P and P, follow by substituting (20) in P P, and collecting terms of
11-

orders r and r It is noted that we have used the result ql = 0

in identifying the term of order r -.

Now let us consider the stresses corresponding to the expansions given

by Eqs.(17) and (20). It follows from Eq.(2) that

* (e P ). . - a .. , (25)
-c..

where for i,j = 1,2:

-(e) (E +  22 ) ij + . (26)

(p) X(P + p

(() =  (P + 2)Wijp  + 2;iP .  (27)
ij 11 -22i ij

In (26) and (27), the constants X and w are defined by Eqs.(8) and (9)

for plane strain and plane stress, respectively. Substitution of (17)

and (20) into (26) and (27) yields

(e) Sl-i1
22 r { [Fl1(9,t ) + F 2(8,t)] + 2.F 2(0,0)1

s2-1

+ r (X[G (9,t) + G2 (8,t)] + 2uG2 (6,t)} + ... (28)
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2= 2,[1 )(e,t) +--] + 1[E (ec) + 1),t) + ---E2 (29)

.(e) = ',i r S1 S 5,t)+,r 2 -1 at + (30)

212

C2 1  r TI(S t) + ',.r T2 (9,t)+--30

;(P) I2[E ')(9,t) + --- (3)21 3(1

where

F (e,t) = s Cosa U1  (9,t) - sine 'u-I (e,t) (32a)

F2(9,t) = s1sine U(1)2 (5,t) + cosa 152 (-,t) (32b)

"(2) 3 z " (2)
GI (9,t) s2cose U1 (5,t) - sine (,,) (32c)

G2(),) = s sine U (e,t) + cos 3 (2 ,t) (32d)

Also

T (6,t) = s [sine U (6,t) + cos ) (6,t)]+ cosa )(9,t) - sine (9,t)
1 s[ 1  (6: 2  T6,)] 1 3602

(33a)

T2(at) = s [sine U (9,t) + cosa U 2)(6,t)]+ cosa 2 )(9,t) - sine T (O,t)
2 U1  ()2 3-61u '36U2

(33b)

For the propagating crack the conditions are

9=0 , r > 0: d2  20 a 0 (34,)

9 = i , r > 0: 22 = , 21 = 0 (35)
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Following the general method of Achenbach, Kanninen and Popelar [2],

we now construct eigenvalue problems for the determination of sI , U
(I

* (2) i(2)
2 and2' , by collecting the highest order singularities

in (24) and (34), (35). The four terms in Eq.(24) are of orders
Sl-2 s2-2 -I2 -

s 1 2,- -1 q 2-1
r , r , r and r , respectively. Since

s < s , the first term is more singular than the second, and since

1 < q,, the third is more singular than the fourth. At the outset it is,
Sl-2

however, not evident whether the term of order r is more singular than

-i
the term of order r

Suppose sl- 2 > - 1, then sI > 1. In this case we would, however, have

no singularity at all for the strain. Hence we must have s - 2 < - 1,

or s I < I. Then, Eq.(24) implies

r =E(1) = 0 (36)
1-

or

E I 0. (37)

The corresponding terms in (34) - (35) yield

u 2)(o't) = 0 , TI(0,t) = 0 (38a,b)

X[F 1 (7r,t) + F2 (7,,t)] + 21F 2(-r,t) = 0 (39)

T( ,t) = 0 (40)
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Equations (37) - (40) define an "eigenvalue" problem for U and sI. This

eigenvalue problem is, however, exactly the same as for dynamic crack

propagation in a linearly elastic material, which was considered in Refs.[3]

and [4]. We can immediately conclude that

s - (41)

It is of interest to consider the higher order terms in Eq.(24),

since it is conceivable that one of them may give rise to a singular

strain, or at least to a singular strain rate. After the term r ,
s2- -1

either r - or r may be the most singular term in Eq.(24). We must

consider the following three possibilities

s2- 2 < -, s2-2 > - 1, or s2-2 = - 1 (42)

Suppose s 2-2 < - 1, then Eq.(24) implies

2(2) = 0(3
E 2) 0 (43)

This equation must be supplemented by

*(2)U 2  (Ot) = 0 , T 2(Ot) = 0 (44a,b)

^XGl(7,t ) + G2 (-r,t)] + 2.G2 (7,t) = 0 (45)

T2 (7,t) = 0 (46)

Equations (43)-(46) a.e, however, completely equivalent to the equations

for the next term in the linearly elastic problems. Hence

s (47)
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which satisfies the condition s2-2 < - I.

Now if we assume s2-2 > - 1, then, it follows from Eq.(24) that

E 1 )(9,t) - 0 (48)

Since the plastic strain rates actually depend on the stresses, as follows

from Eq.(16), and since singular stresses do actually give rise to bounded

plastic strain rates, Eq.(48) can be discarded. Hence s 2-2 > - i is not

acceptable.

Finally we consider the case s2-2 - -1, or s2 - i. There is no reason

to ignore this case. Both the strain and the strain rate corresponding to

s2  1 1 will, however, be bounded.

In conclusion, for the dynamic problem the lowest order displacement

rate terms are

- r 12 7(9,t) + rl 2' (2)(9,t) + -- (49a,

or

u - r1/2( 1 )((,t) + r3 / 2fj(2 ) (O,t) + --- (49b)

Thus, we have shown that the two most dominant terms of the near-tip
particle velocity are of orders r "I/2 and r I . A more careful approach is

needed to determine the higher order terms. Fo the stationary crack the

procedure to determine the higher-order terms is discussed in the next

Section. Following the method of Section C.3 for the propagating crack we

find
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(2)*(3)
u - r -1/2 (6,1 )(t) + r1/ 2 U 2 (9,t) + rlogr U (O,r) + rU(A Y9t) +

(49.c)

or

u - r(9,t) + r3 2 2 (6t) + r2logr 3)(0,t) + r

(49d)

it should be noted that there is no essential difference between the

dynamic and the quasi-static result for the propagating crack. The quasi-

static formulation follows by removing the operator p() from E, Eq.(5).

This would, however not affect the result. There is, however, a sigificant

difference with the field near a stationary crack tip, as shown in the next

section.
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C.3 Field Near a Stationary Crack Tip

The formulation of Section C.2 reduces to the one for a stationary

crack tip by setting v(t) 0. The xIx 2x 3 -system then becomes a stationary

system, and the time derivatives given by Eqs.(i4) and (15) reduce to

U) - a- (50a,b)

';e first follow the same argument as in the previous section for the

dynamic propagating crack case, i.e. we assume that the asymptotic

expression in (17) holds for the stationary crack problem. Substitution of

Eqs.(17) and (20) into (4) now yields

S-2 . S222 ( )  rIP1() q"

r 2 -rP(l) - r P 2 (2 )_ 0 (51)

s1 2 s2"2 -I q2-1

The four terms in (51) are now of orders r , r , r and r

respectively.

Suppose s1 -2 > - 1, then s> 1. In this case we would not have a

singularity in the strain. Hence we must have s -2 < - 1, or s1 < 1 . This
sl-2

implies however that the terms multiplying r must vanish identically,

which leads to the formulation given by Eqs.(37)-(40), but where (") in

Eq.(5) is defined by Eq.(50b). It follows that

2 
(52)

With regard to the value of s2 we have the following alternatives:

s2-2 < - 1, s2-2 > - 1 , or s 2 - - 1 (53)
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If s2 -2 < - 1, the terms containing s2 must vanish, which leads to the

formulation given by Eqs.(43)-(46), and thus s2 - 3/2. This result

violates, however, the assumption s2 -2 < - 1, and it does, therefore, not

apply. If, on the other hand, s2 -2 > - 1, then ) - 0. As discussed

before this result is not consistent with a bounded plastic strain rate in

the presence of singular stresses. Hence we discard the possibility of

s 2-2 > - I. This leaves s2-2 - - 1, or s2 - 1. For this case Eq.(51)

yields

E 2 U(2) _ P 1 (l) - 0(54)

For the stationary crack one would conclude at this point,

u - r 1/2U (1) (6,t) + rU (2)(Ot) + --- (55)

A more careful study shows, however, that the corresponding homogeneous

equation of Eq.(54) has nontrivial solutions. In the Mode I case, for

example, the homogeneous equation

A*[r U (2 )(,t)] - 0 (56)

where A is defined as

- (A +u)7V. + ,V2  (57)

with boundary conditions
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4

0 - U: T'r 2 (9,t)] - 0 (58)

9 - 0: i 1 Tir U( 2)(9,t) - 0 (59a)

i2.[r U( 2 ) (9,t) - 0 (59b)

where i. are unit vectors, has a solution corresponding to a uniaxial~2

tensile field in the xI-direction. H, nce the asymptotic expression based on

(17) becomes ambiguous.

A modification of the asymptotic expression of (55) to include a term

of the form, rlogr U( 3)(O,t) resolves the problem. It is found that

L *[r U(2) (9,t)) - rlogr U 3 (,t)] + 74E~1 )(9,t)) (60)

with boundary conditions appropriate to Mode I does have a unique solution

within a term which would give rise to a uniform contribution to rll

In conclusion, for the stationary crack we have

u - r1/2U(1)(8,t) + rlogr U(3)(9,t) + r U(2)(9,t) + --- (61)

which shows a difference in the second term as compared to Eq.(a9).
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