
' LK COP"

AD-A224 533
BASIC PROPERTIES AND LIMITS OF
INTEGRATED ARRAYS OF
DISSIPATIVE CIRCUIT AND LOGIC'
ELEMENTS

Final Technical Report for Contract N00014-85-K-0387

Reported to the Office of Naval Research DTIC
JUL Z6'I.0

Reported by Robert 0. Grondin LIT,
Department of Electrical Engineering
College of Engineering & Applied Sciences
Arizona State University
Tempe, Arizona 85287-5706

CRR-90030 , ..

(. .' -_. . - -. "

2

I. Introduction

This is the final technical report of the progress made on award No.

N00014-85-K-0387, a program of research entitled "Basic Properties and

Limits of Integrated Arrays of Dissipative Circuit and Logic Elements". The

principal investigator was Dr. Robert 0. Grondin, an Associate Professor of

Electrical and Computer Engineering at Arizona State University.,

For reporting purposes we will divid;the efforts on this program<Pnto

the following categories:

(a) the effect of scaling on the performance of integrated device

arrays;

(b) the development of a pipelined content addressable memory;

(c) the development of integratable fuzzy neurons;

(d) the mapping of graph searches into systolic arrays;

and

(e) the study of ferroelectric capacitors for application in novel

integrated circuits. 1 X " 1 -

Each major section of this report discusses one of these categories.

II. The effect of scaling on the performance of integrated device arrays

The goal was an extension of earlier studies of the fundamental limits

of integrated circuits and computational systems [1,21. A wide variety of

possible limiting factors including heat dissipation, signal propagation,

energy dissipation in switching operations, clock skew and data stability

3

have been considered. Our work has attempted to clearly reflect the

interaction between these limits in a monolithic integrated circuit. We

chose the functional throughput rate (FTR) of a chip to be our performance

measure. The FTR is defined as the number of logical operations performed

by the chip per unit time and as such includes both technological factors

and architectural concerns. This avoids some of the difficulties

encountered in measures such as clock speed and also helps us avoid the trap

of pursuing schemes for performing dissipationless logic by taking an

infinitely long time to perform our elementary functions 13).

We divided the parameters of interest into three classes: (1)

fundamental and technological requirements; (2) architectural requirements;

and (3) constraints.

Fundamental and technological requirements include minimum power

dissipation, maximum speed and minimum dimension or area needed for the

elementary processes such as switching, data transfer in space

(interconnection) and data transfer in time (storage). Architectural

requirements are the number of elementary operations performed by a given

computation and architecture. When the fundamental and computing

requirements are combined we obtain the total requirements for power

dissipation, delay and chip area. Constraints include the heat removal

capacity, maximum chip size, maximum I/O bandwidth and clock skew. When

the requirements exceed the constraints, limited performance in terms of FTR

must result.

We focused on systolic architectures as it is in these architectures

that one encounters the worst case heat dissipation condition of having all

4

the elements in the array performing their function every clock cycle. The

usual argument is that the performance of a systolic architecture increases

linearly with an increase in the number of processing elements. Arguments

for an optimum architecture then are developed by examining a space-time

cost function, the total number of processing elements and the number of

clock cycles. Such arguments however assume that the maximum clock

frequency is independent of the processing element count. Our research

effort is directed largely to exploring the conditions under which this last

assumption breaks down as a result of interplays between heat dissipation,

signal and information propagation and chip area.

We tested some of these ideas by examining a 4-stage, systolic one

dir.nsional convolution architecture implemented using 3 micron CMOS design

rules. The analysis of both the 3 micron layout and projected scaled

layouts showed that interconnection occupies most of the chip area, even

though only connections to nearest neighbors are required for the

architectural algorithm. Gate delays, interconnection delays, clock skew

power dissipation and I/O bandwidth interact together to prevent the FTR

from scaling in the simple fashion predicted by examination of the

architecture and algorithm alone. Furthermore, the factor which limits the

performance changes as the system is scaled. For the three micron

technology the primary limiting factor is the interconnection delay, while

for the scaled technology the primary limiting factor was clock skew.

We then generalized this procedure to a wider range of architectures.

Ve began this task with a study of the class of systolic architectures which

perform matrix multiplication. It is known that if one retains the idea of

5

nearest neighbor interconnects, there are only 27 regular arrays which

operate in a systolic fashion while performing matrix multiplication [4].

We therefore chose to examine these 27 systolic architectures from this

perspective and to ascertain which, if any, performed matrix multiplication

at an enhanced functional throughput level.

An early discovery was that these 27 systolic arrays actually fall into

only 4 classes of interconnect patterns. The members of each of these

classes differ from other members of the same class of interconnect pattern

only in the direction of information flow along the defined paths. To date

we have found no physical reason why the direction of information transfer

in an architecture should change the fundamental limits on clock frequency.

Therefore we need consider only one member of each class to obtain the

physical limits on all members of that class. We indeed found that one

class appears to be an optimal class of systolic architecture for matrix

multiplication.

In this survey we found an interplay between several distinct levels of

limiting factors. At the most abstract level one encounters purely problem

dependent limits associated with the inherent complexity of a given 'C

computational task. At a somewhat less abstract level, there are 4c <

architectural features associated with the control of data flcw in space and

time. An architecture however is still an abstract entity which must be

physically implemented. When this is done, technological constraints enter

in the form of delay and energy dissipation requirements associated with the

basic operations. On an integrated circuit all of these are united.

STATRilrT "A" Per Dr. Kenneth Davis | iltliY Codes
OR/Code 1114 AvaI ardtor
TECON 7/24/90 VG Special

6

We have since generalized this argument to a far wider class of

problems, those which can be performed by regular iterative algorithms. The

central point of this work is that a VLSI chip is a vertically integrated

information processing system. At the highest level there is a problem

statement, something like "multiply two matrices", which is the reason for

the chip's existence. The next highest level in the hierarchy is an

algorithm, implemented by a hardware structure which in turn is implemented

by circuits which in turn are implemented by some defined IC technology e.g.

1 micron CMOS. Our goal is to learn how one can predict whether an

improvement in one level of this hierarchy necessarily leads to improved

problem solving capability.

The importance of a regular iterative algorithm is that there exists a

systematic procedure for describing n-dimensional processor arrays that

implement the algorithm. We have developed procedures for directly drawing

from the regular iterative algorithm itself the number of time-steps,

processor count and I/O pin count. These are the crucial factors in

applying technological limits as we did for matrix multiplication. This

gives us the ability to derie the overall problem solving capability for

any VLSI chip which uses a known technology to implement a regular iterative

algorithm for the specified problem. We also have re-examined some of the

scaling arguments which have been used to predict ultimate limits to

standard VLSI. The limitation of these arguments is that they assume that

when a device is scaled we will not make any changes at any other levels of

the hierarchy. In our scaling theory all levels of the hierarchy are

7

changed with device size in order to always provide the optimal problem

solving performance for a given device size.

The parameters used in this scaling approach are definite at three

levels. The first level are parameters which are specified when the array

itself is specified. These parameters include the number of processing

elements, the number of I/0 words, the processor utilization efficiency (the

average number of computations taking place in a PE during a time step), the

number of time-steps requires for the computation and the difference in path

length along which clocking signals must flow to reach different PE's. The

second level is the parameters used to describe the PE itself. These

include the number of logic gates, the fraction of these gates that are

active in a typical clock cycle, the chip area, the interconnection lengths,

worst case paths and fanouts. The last set of parameters needed for our

scaling approach is a set of scaling parameters, generally specific to the

IC technology being used e.g. CMOS.

In our scaling approach we calculate the FTR by minimizing the product

of the timestep itself and the number of timesteps needed for the

computation. The number of timesteps required is set by the array design.

The timestep length is limited by one of the following four factors:

circuit delay, power dissipation, I/O bandwidth and clock synchronization.

We compared one and two dimensional arrays for identical problems. We

discovered that generally 2-D arrays should be used when circuit delay or

power dissipation are limiting factors and that l-D arrays scale better when

performance is being limited by clock synchronization or I/O bandwidth. A

detailed discussion of these points can be found in the thesis of Lee [5].

III. The development of a pipelined content addressable memory

In the second major thrust of the program, we were concerned in part

with synthetic neural systems, or SNS. This concern however was only in

relation to the overall questions concerning integrated circuits,

particularly those in the ULSI and WSI regimes. SNS chips are direct

attacks on the basic problem of ULSI, which simply put is what do you do

with a billion devices anyway? There are three key features that underlie

much of the potential success of SNS. These keys are the use of large

numbers of PE's, some form of concurrent processing and some form of

adaptation. It is important to remember though that neural networks are not

the only systems possible that implement these three key features. For

example reconfigurable systolic arrays generally have these same features.

Other possible architectures can be envisioned as well. We next will review

one such architecture, a pipelined content addressable memory, and will use

a comparison between it and neural networks as a guide in answering the

following question. What are the advantages and disadvantages of SNS when

compared with alternative architectures?

The basic structure of this architecture a pipeline, each stage of

which contains a word of memory and some comparison logic. Data flows into

the top of the pipeline and at the bottom we recover this data along with

the address of the pipeline stage which contained in its memory the closest

match to the input and a measure of the closeness of this match. Obviously

the comparison logic of each stage compares the input data with the stored

data, determines the closeness of this match and compares this closeness

9

with that of the previous best match. The address and closeness of the best

of these two is then fed along with the input data to the next stage of the

pipeline. A single pipeline has been fabricated and has passed some crude

functional testing 161.

At this point we can already begin to compare this scheme with an SNS.

First, an SNS usually destroys any input data unless special care is taken

whereas here this data is naturally recovered. Secondly, in an SNS

functioning as an associative memory no measure of the closeness or goodness

of the match between the input "key" and the remembered data is provided

whereas here this closeness is supplied. In an SNS interference can occur

between two memories and it is often true that when the system learns

something new that previous knowledge is degraded somewhat. No such

interference or degradation occurs in the pipelined CAM. This interference

between individual memories makes it difficult to predict the actual

capacity of an SNS while for the pipelined CAM the capacity is easily

determined from knowledge of the number of pipelines, the length of these

pipelines and the wordlength. While the SNS is resistant to noise

degradation of the input data so is the CAM and for largely the same reason.

Since the output is chosen by a "best-match" strategy noise degradation of

the input introduces errors in the CAM only when it has the effect of

corrupting the input in a fashion which causes it to falsely appear to be a

different portion of the learned corpus. Such effectively false inputs

would fool the SNS as well. For that matter it is difficult to envision any

memory which is insensitive to having the input effectively constitute a

lie. While an SNS is insensitive to various "soft" errors in the storage

li nnilIII i lmitn~llilllililii i I I I I I , i NW

10

process the error-resistance of the CAM in this regard could be improved

quite easily by utilizing the error correcting codes commonly seen in modern

memory systems [7]. At this point it would appear that the SNS is an

inferior technology but we will now consider an example that shows that

while an SNS may in fact be an inferior associative memory that there are

other applications in which they should out perform systems built around

these pipelined CAMs.

The applications which have been investigated to-date are character

recognition and phonetic transcription. The character recognition tests

demonstrated that the system is capable of recognizing typewritten

characters with accuracy rates and noise tolerance that rival that of

existing artificial neural networks. Th3 phonetic transcription problem is

of more interest and also is one of the most commonly cited neural network

success stories. Sejnowski [8] developed a demonstration program called

NET-talk which was taught, using many hours of dedicated VAX time, to

"accurately" transcribe English text strings into a recognizable phonetic

output. The accuracy of the transcription itself is about 95% and, is often

the case with such systems, stress and rhythm are poorly produced as English

text contains little information concerning stress and rhythm. We have used

a behavioral simulation of 4 parallel pipes in this application and have

compared the results with those of NET-talk. We achieved higher accuracies

of transcription and recognizable phonetic output (and difficulties with

stress and rhythm) after less than an hour of non-dedicated computer time.

Less than a minute would be required to teach a real chip the performance of

Ii

this task. We have laid out one such pipeline in 3 micron CMOS and it is

presently being fabricated by the NSF MOSIS foundry service.

Sejnowski's NETtalk is often viewed as one of the more notable

successes of neural networks. It is a software simulation in which a neural

net was taught to phonetically transcribe English text. The same task can

also be performed by a pipelined CAM [6]. Indeed a pipelined CAM should be

quite effective in this task and can rapidly learn to reproduce a large

corpus with 100% accuracy. Here however we encounter a feature of an SNS

that is very difficult to achieve in another fashion. The tradeoff in

performance between the two roughly can be described as giving the learning

speed advantage to the pipelined CAM while giving an advantage to the neural

net in terms of its ability to respond to novel input, that is words that

were not included in the learning corpus. The neural net learns slowly

because of the above mentioned interference between individual pieces of

knowledge. However, this interference can be constructive and allow the net

to identify common features found in the input without having their

existence be explicitly described by an external mentor. Therefore it tends

to form a more generalized response that allows it to properly respond to

input that is novel. For example, after a large number of words have been

taught to the neural net, it will tend to properly transcribe the word

"hurling" even if it has never seen this word and was taught very similarly

spelled words such as 'hurting" as part of the learning corpus. The

pipelined CAM however under the same circumstances would transcribe the word

"hurling" as "hurting" (assuming that this is the closest match from the

learning corpus) and therefore make an error. This ability of an SNS to

12

handle novel inputs in an appropriate fashion is not to be under-rated and

in fact may be their most important attribute as it is the most difficult

one to emulate with other approaches. The central issue is whether or not

it is a direct result of the interference between the various items learned

and if so can we alleviate the difficulties posed by this interference

without throwing away this advantage as well.

IV. The development of integratable fuzzy neurons

There is another approach which has received some interest which also

has many of the srme virtues as an SNS. This is to utilize fuzzy logic. A

structured approach to the design of learning automatas which use a fuzzy

"neuron" as the PE. It appears that these can be implemented by VLSI

circuits in a regular PLA like fashion. One goal is to use such elements

in the construction of a small chunked neural-net in which the

interconnection problem is attacked by decomposing a large neural net into

several small modules, each of which has a limited interconnection space.

The problem of constructing an acceptor in particular has been addressed but

the techniques can be applied to a far wider range of automata 19]. These

networks are powerful in computing the acceptance of fuzzy automatas, and

thus well suited to tasks like pattern or language recognition.

An acceptor is an automaton which decides whether an input string of

symbols belongs to a given language [101. One limitation of the

conventional acceptor is that its output is limited to "accept" or "don't

accept". By applying fuzzy theory, a fuzzy automaton [11l which determines

13

tile degree of acceptance for the symbolic inputs can be constructed. These

automata are not based on traditional two-valued logic but insteao on a

logic with fuzzy truth, fuzzy connectives and fuzzy rules of inference [12].

Instead of utilizing a conventional formal language a fuzzy language will be

used [13). A fuzzy language L is a set of ordered pairs, L= (x,u(x)) , where

x is a symbolic string and u(x) is the membership grade of x in L. A fuzzy

language can be formed in accordance with a set of production rules, in

which each production rule is associated with a weight in the closed

interval (0,1). As is tile case for formal language theory, for any regular

fuzzy language there is a corresponding fuzzy finite automaton which can be

used to determine the fuzzy acceptance u(x). A fuzzy finite automata, FFA,

is a six-tuple FFA = (I,Z,S,M,S ° ,T) in which I is a finite input alphabet;

Z is an output alphabet; S is a finite set of states; M : * I * (0,1) -> S

is a fuzzy state transition map; S which is in S is a vector of initial0

states; and T, a subset of S, is a vector of final states. The definition is

essentially that of non-fuzzy automata with the addition of the fuzzy

transition and distributions for the initial and final state vectors.

The fuzzy acceptance can be defined in the following fashion. Let the

input string be x = aI a2 .. a n. We say that the fuzzy automata M acceptsn

x with the fuzzy acceptance d(x), where

d(x) I o T(x) o Ft

I o T(a() . . . (a n) o F

14

The symbol 'o' denotes the max-min operation; T(ai) are the fuzzy state

transition matrices; and I and F are the vectors of ihitial and final states

respectively. The sequential computation of d(x) is time-consuming. The

complexity of computation is further aggravated in the case where a large

number of different inputs is involved. However, these difficulties can be

eased by exploiting a parallel automata developed using the following

mapping procedure.

First, consider the right-hand side of the production rules. If state X

is associated with n input alphabets, then X is represented by a set (Xi)

of n new states. Second, for each production rule, if state X has been

expressed by n states then the production rule X - pY is expanded to XI* pY,

.. X n pY. This procedure produces a matrix M(x) which describes then

interconnection of n neurons where each neuron represents a state X.i . A

fuzzy neural acceptor can thus be constructed in accordance with such a

matrix. Let x be a .. a n The fuzzy acceptance, d(x), can then be

expressed as:

d(x) = I' o M(x) * At (a1) o o M(x) * At (an) o F' t (2).

:here 1' and F' are new vectors of initial and final states respectively; A

(a.) are activation vectors in which the elements are either C) or 1 and1

15

ai is an element of the input alphabet. The symbol '*' denotes an "element-

to-element" multiply operation. Note that this multiply operation is not

needed in the hardware implementation. The values of expanded states in I'

and F, are simply duplicates of the corresponding original states in I and F

respectively.

The following simple example will help illustrate the basic concepts of

this mapping procedure. Consider the following set of production rules. A

0 1 0.4 0 3 0060.54 bB, A 04 aC, B 0 aA, B 042 bB, B 046 aC and C 0+ bA. The rule

A 0- bB means that if the system is in state A and it is presented with input

character b, then it with possibility 0.1 will change to state B. We

therefore have two transition matrices in this example, one for input a and

the other for input b. These two fuzzy state transition matrices T(a) and

T(b) are

A B C

A 0 0 0.4

T(a) = B 0.3 0 0.6 (3)

C 0 0 0

and

A B C

0 0.1 0

16

T(b) = B 0 0.2 0 (4)

C 0.5 0 0

Here the difficulty is that we have two possible interconnection patterns.

The procedure described above however produces the following single

interconnection matrix M(x) is

Aa Ab BbI Bb2 Cal Ca2

A 0 0 0.1 0 0.4 0a

Ab 0 0 0.1 0 0.4 0

Bbl 0.3 0 0 0.2 0 0.6

B b2 0.3 0 0 0.2 0 0.6

Cal 0 0.5 0 0 0 0

Ca2 0 0.5 0 0 0 0

Note that the zero elements in T(a) and T(b) denote the "non-membership" of

the state transitions, a concept which has no direct hardware interpretation

while the zero elements in the matrix M(x) denote the lack of a hardware

interconnection between the elements which represent each of the two

possible expanded states. This will be a fuzzy neuron whose output is equal

to a number r if it is firing and s if it is not firing, where 0 < r , s <

1, and is computed using the above max-min operations. This PE will consist

of two parts, a performance branch and a learning or adaptation branch. A

17

performance branch contains a minimum unit which performs the fuzzy

intersection operation; a maximum unit which performs the fuzzy union

operation; registers RI, W, and R2 which hold an internal state value, a

weight value (the non-zero value in the associated column of the M(x)

represents the weight), and an intermediate result respectively; and a

control block which determines the firing status. The learning branch is

capable of updating the values in registers V and R1.

It is the performance element of this fuzzy neuron (FN) that

corresponds to the McCulloch-Pitts neuron (MPN). The FN intersection -

minimum operation corresponds to the MPN weighted multiplication, the FN

union-maximum operation to the MPN summation and the FN trigger-activation

to the MPN thresholding. The conventional MPN contains no learning or

adaptation behaviors of its own and instead is totally reliant on external

processors for the performance of this function.

The system functions in the following fashion. To begin, the initial

state and weight value of each neuron are loaded in registers RI and W

respectively. Then all the neurons execute concurrently the same sequence of

instructions in the following time steps. The neurons will be fired if the

corresponding type of input is received. The operation I' o M(x) * At (ai

) is performed by having the neurons (in parallel fashion) first load

register R2 with the min of rl (the initial contents of register R1) and w

(the weight stored in register W). Then the maximum of the various inputs

I. is found. If the neuron is firing, that is if the appropriate input (a

or b in our particular example above) has been presented to the overall

18

network, then this maximum Is stored in register R! and constitutes the new

state for the neuron. If the neuron is not firing then 0 is stored in RI.

Simple and regular data flows are the primary concern of VLSI system

design. However, the interconnection in itself here will not be regular if

a straight forward variation on the processing element is utilized. One

approach to overcome these interconnection difficulties is to decompose the

fuzzy neurons into basic functional blocks. By this functional

decomposition aporoach, all of the minimum and maximum units of a fuzzy

acceptor are combined into a MIN plane and a MAX plane respectively. All the

weight and state registers are accordingly combined into two register files.

Note that if the weights in the productions are either 1 or 0 then the

minimum and maximum operations can simply be realized by AND and OR gates

respectively. Therefore, the structure of a fuzzy acceptor is reduced to a

PLA form.

V. The mapping of graph searches into systolic arrays

A variety of models useful in artificial intelligence utilize labeled

or unlabeled directed graphs. By extending the concepts discussed in the

previous section we developed procedures by which basic graph search

operations could be directly mapped into an integrated circuit. This id

done by first replacing the graph by a Boolean matri;.:-vector product.

The vector has a length equal to the number of vertices in the graph.

Each element of the vector is a simple Boolean variable iehich denotes

whether or not this particular verte.: is activated or reached in the search.

19

The matrix is a square matrix of identical side length. Its elements are

simple Boolean variables which denote whether or not an edge of the graph

extends from vertex i to vertex j. It is a Boolean form of the adjacency

matrix of the graph. For labeled graphs, it is necessary to keep track of

the labeling of these edges. Techniques for doing this were developed.

The graph search then can be performed by repeated application of the

product

R =M **R n
(5)

where R is the vector at the kth iteration, M is the adjacency matrix and

** denotes a Boolean inner product in which we form the jth element of Rn+ 1

by ORing a set of terms in which the ith term is formed by ANDing the ith

element of R and the matrix element M...
n 31

The complicating feature of course is the labeling of the edges. The

most direct process for handling labeled graphs is to use a set of matrices,

each of which is applied for a given label. The labels are then viewed as

externally supplied control information. We first describe this particular

approach. We will then describe a second technique.

A rich literature exists for systolic algorithms for arithmetic matrix

operations [141. The above rule is identical to the arithmetic matrix-

vector product in terms of data and control flow and therefore we could

apply such standard systolic techniques to this problem. However, a common

feature of the matrix M is that it will be sparse. We have developed a

20

systolic array, similar to others intended for sparse matrices [151, which

handles both the sparcity and the existence of labels as well. This array

is shown in figure 1. Each array element consists of a very simple logic

unit and an associated column of content addressable memory. There is a

one-to-one mapping of vertices onto these array elements. The operations of

the array are described in figure 1 as well. Note that it handles labels by

storing the edges and their labels in the content addressable memory

columns. The addressing of this column therefore essentially picks out the

appropriate M matrix.

A second procedure was developed for handling labeled graphs. It

proceeds by realizing that we can divide labeled directed graphs into two

general categories. One of these categories can be treated by applying a

systolic array similar to that of figure 1 except for the fashion in which

labels are used.. Any directed graph that is not a member of this category

can be expanded into a larger equivalent graph which is a member of this

category.

The two categories are uniformly and non-uniformly labeled directed

graphs. In a uniformly labeled graph, each and every vertex is reached only

by edges with identical labels. In a non-uniformly labeled graph, there is

at least one vertex which is reached by edges with different labels. For a

uniformly labeled directed graph, each row of the adjacency matrix is

associated with only one label. Such graphs can be searched by the systolic

array shown in figure 2. This array is similar to that of figure 1. Again.

each vertex: is represented by a single array element and each array element

consists of a very simple logic unit and a column of content addressable

bb

end i

end

a- ii v (index(bin) 0 row _indcx(wij)) A (index(si11) ® iridex(syrnbol))

(a) Processing element arnd its column of associative memory

d s in

enIi

(b) Systolic array

Figure I. Systolic Array for Labeled Directional Graph Searches.

out i

bb

fli 4- v indx() i owjnex~wj)J

(a) Processing element and its column of associative miemory

S

PEA4 PE_3 P2-2 PEJ 'In
end

14 12 W21

'24 W 22

W 32

(b) Systolic array

Figure 2. Systolic Array for UniformD Labeled Directional Graph Seareflest

21

memory. The difference is in how labels are handled. Since each node is

uniformly labeled, we no longer need to store labels in the content

addressable memory column. However, in the logic unit the label sin is

compared with a stored label si . If these two do not match, the vertex is

not reached. Nonuniformly labeled graphs can be transformed into a larger.

uniformly labeled graph by a technique of vertex splitting. Any vertex

which is reached by edges with more than one label is split into a set of

vertices, each of which is reached uniformly labeled edges. In this

splitting procedure, any edge which was directed away from the original

vertex is simply reproduced for each of the new vertices.

An unsupported graduate student is presently laying out a test chip

containing such a systolic array. We believe that these arrays will be well

suited for problems in which we need to repeatedly and rapidly search the

same sparsely connected graph, as we have essentially replaced a software

search by a direct hardware implementation.

VI. The study of ferroelectric capacitors for application in novel

integrated circuits.

A primary target of an integrated circuit implementation of the more

"traditional" analog forms of a SNS is a good "synapse". The "synapse' is a

weighted connection between two neurons. A good one has a continuous range

of analog weight values available. These values must be easily changes by

electronic signals available in the basic IC technology and yet must also be

i7

22

relatively stable. We want its value only to change when we want it to

change. Additionally, we also desire that the synapse have the normal

virtues of small chip area and low power consumption. We have investigated

the potential of ferroelectric elements for such a synapse. This effort is

certainly not restricted to SNS applications however. In the process of

considering various circuits, we have encountered an important practical

problem: the lack of a good circuit model in the standard public domain

integrated circuit simulation packages makes it difficult to simulate

circuit concepts. As a part of our effort we have begun the development of

such a model, an effort which should be useful in the study of other

applications of such ferroelectric elements on ICs.

Two different synaptic connection circuits have been studied. The

first uses a straight-forward extension of techniques used in ferroelectric

RAM's [16] to provide a binary connection weight. In the second, a novel

analog memory element is used to provide a continuous valued, analog weight.

Unlike the existing ferroelectric RAM, this novel element uses a

nondestructive read-out.

The binary circuit is shown in figure 3. The neuron consists of a

sense amplifier, whose positive and negative inputs are connected to

ferroelectric capacitors which represent exhitory and inhibitory synapses.

The operation starts with the application of a pulse signal. Capacitors

whose polarization is aligned with the pulse field are off connections while

those whose polarizations oppose the pulse electric field are "on"

connections. When the axon lines are pulses, differing amounts of

displacement current are injected by capacitors in these two different

23

polarization states. In this process, synapse capacitors which were

initially "on" are switched into the other polarization state hence the

phrase "destructive read out". This circuit is susceptible to an associated

material fatigue limit on the number of occasions in which the film can be

switched.

The continuously valued weight circuit is shown in fig. 3. It uses a

Sawyer-Tower circuit to bias a subthreshold transistor, which acts as a

voltage controlled current source. In this system we use the ferrolectric

capacitor to supply this controlling voltage. This is done by adjusting the

voltage V . Various modes of operation are possible which use either
x

partial polarization switching or minor hysterisis loops [17].

In order to simulatp such circuits we have developed a model for a

ferroelectric capacitor which is implemented in SPICE. (This particular

project was started late in the program reported here and was finished as

part of a second DoD supported activity in neural networks.) In SPICE,

modified nodal analysis is used to represent all circuit bran es in terms

of elements which are voltage defined and current controlled e.g.

conductances and current sources. Such models are essentially DC only but

SPICE performs time varying problems by concatenating a series of such

solutions at each time step. Nonlinear elements are linearized in a Newton-

Raphson-like procedure and energy storage elements, such as capacitors, are

described using a trapezoidal integration procedure. In these last two

case, those of nonlinear elements and energy storage elcments, the

inhibitory sense excitatory
connections amp connections

YN YI R Y

p

Figure- 3 Ier a iC~ suprtn binar weiht

Prgrmmn7vltg

Isltintrniso C

i

Figure 4 Analo syNua circuit h synapsein bnasito maybe epacetb

any transcnducPan ramlineg. foragetmuipcaonlerty

24

analytical techniques described are implemented in the circuit analysis by

an equivalent circuit formed from conductances and current sources.

The ferroelectric elements of concern to us are nonlinear capacitances.

Simply adjusting the capacitance of the basic SPICE linear capacitor model

does not include the nonlinearity. The simplest form of a nonlinear model

is to use a hysterisis curve. However, the hysterisis curve is merely the

dc steady-state solution to the polarization transient problem and we are

interested in these transients. Ve therefore have chosen to use a set of

rate equations [18] whose solution describes the number of dipoles oriented

vith the field as a function of time. The resulting model includes a basic

linear capacitor, a nonlinear ferroelectric switching current modeled by

application of the Newton-Raphson technique to the rate equations, and a

parallel conductance which represents any leakage current through the film.

The model gives rise to proper I-V, hysterisis loop and current vs. time

characteristics.

£

25

VII. References

1. W. Porod, R.O. Grondin, D.K. Ferry and G. Porod, Physical Review
Letters, 52, 232 (1984)

2. R.O. Grondin, W. Porod and D.K. Ferry, IEEE J. Solid-State

Circuits, SC-19, 262 (1984)

3. R. Landauer, IBM J. Res. Dev. 5, 183 (1961)

4. S.K. Rao, Regular Iterative Algorithms and Their Implementations
on Processor Arrays, Ph.D. dissertation, Stanford University,
October 1985

5. Hoon Bock Lee, Performance of VLSI Processor Arrays for Regular
Iterative Algorithms, Ph.D. dissertation, Arizona State
University, 1988

6. L.T. Clark and R.O. Grondin, Proc. First IEEE Neural Nets Conf.,
San Diego, pp. 111-411, 1987

7. C.L. Chen and M.Y. Hsiao, IBM. J. Res. Dev., 28, 124 (1984).

8. T.J. Sejnowski and C.R. Rosenberg, NETtalk: A Paallel Network
that Learns to Read Aloud, tech. report JHU/EECS-86-0, the Johns
Hopkins University, EE and CS tech reports, (1986)

9. L.C. Shiue and R.O. Grondin, Proc. First IEEE Neural Nets Conf.,
San Diego, pp. 11-299, 1987

10. D. Hopkin and B. Moss, Automata, North-Holland, New York, 1976.

11. W.G. Wee and K.S. Fu, IEEE J. Solid State Circuits, SSC-5, no. 3,
(1969).

12. L.A. Zadeh, Journal of Cybernetics, 2, 4 (1972).

13. E.T. Lee and L.A. Zadeh, Information Sciences 1 421 (1969).

i. S.Y'. 1ung, VLSI Array Processors. Prentice Hall. Englewood Cliffs.
1988

12. (. V ing, J. Parallel Distributed Computing. 2. 170 (1985)

16. S. Eaton, D. Butler. M. Parris. D. Wilson and H. McNeillie, IEEE
Solid State Circuits COnf. Digest of Technical Papers, p. 130.
1988

26

17. Lawrence T. Clark, Robert 0. Grondin and Sandwip K. Dey, First lEE
Conf. on Artificial Neural Networks, London, England, pp. 47-51,
IEE Conference Publication No.313, October 1989

18. M. Cabezuelo, J. Lorenzo and J. Gonzalo, Ferroelectrics, 87, 353
(1988)

27

OFFICE OF NAVAL RESEARCH

PUBLICATIONS / PATENTS /PRESENTATIONS/ HONORS REPORT

for

1 October 1985 through 30 September 1989

for

Contract N00014-85-K-0387

Basic Properties and Limits of Integrated Arrays
of Dissipative Circuit and Logic Elements

Robert 0. Grondin

Arizona State University

Tempe, AZ 85287

* ... '

28

Book Chapters

1. W. Porod, R.O. Grondin and D.K. Ferry, "Interconnection,
Dissipation and Computation," in VLSI Electronics, Vol. 15, Ed. N.
Einspruch, S.S. Cohen and G. Gildenblat, Academic Press, Orlando,
Fl, 1987.

2. D.K. Ferry, R.O. Grondin and L.A. Akers, "Two Dimensional Automata
in VLSI," in Submicron Integrated Circuits, R.K. Watts, Ed., John
Wiley, New York, 1989.

3. L.A. Akers, R.O. Grondin and D.K. Ferry, "Synthetic Neural
Systems," for An Introduction to Neural and Electronic Networks,
Ed. by S.F. Zornetzer, J.L. Davis and C. Lau, Academic Press, in
press

4. D.K. Ferry, L.C. Shiue, R.O. Grondin and L.A. Akers, in Frontiers
in Computing Systems Research, Ed. S.K. Tewksbury, Plenum Annual
Book Review Series

Doctoral Dissertations

1. Hoon Bock Lee, Performance of VLSI Processor Arrays for
Regular Iterative Algorithms, Ph.D. Electrical
Engineering, June 7, 1988

2. Liang Chyi Shiue SCALX: A VLSI Architecture for Concurrent
Symbolic ProcessingPh.D. Electrical
Engineering, December 1989

3. Lawrence T. Clark work in progress, Ph.D. Electrical
Engineering, expected completion date 1991

Masters Theses:

1. L. T. Clark, "A Novel VLSI Architecture for Cognitive
Applications,", masters thesis, Department of Electrical &
Computer Engineering, Arizona State University, January 1987

Refereed Journal publications:

1. H.B. Lee and R.O. Grondin,"A Comparison of Systolic Architectures
for Matrix Multiplication," IEEE J. Solid State Circuits, Vol. Sc-
23, No. 1, pp. 285-289, 1988

2. L.T. Clark and R.O. Grondin, "A Pipelined Associative Memory
implemented in VLSI," IEEE J. Solid State Circuits. Vol. 24, No. 1,
pp. 28-34, February 1989

Papers Submitted to Refereed Journals, in review:

29

1. L.T. Clark, S.K. Dey and R.O. Grondin, "Ferroelectric Thin-Film

Memory for Electrically Programmable IC Neural Networks," submitted

to Ferroelectrics

Conference Papers:

1. D.K. Ferry, J.M. Golio and R.O. Grondin, "Interconnections and

Limitations in VLSI," 1985 Proc. Second Inter. IEEE VLSI
Multilevel Interconnection Conf., Santa Clara, CA, pp. 408-415

2. L.T. Clark and R.O. Grondin, "Comparison of a Pipelined 'Best
Match' Content Addressable Memory with Neural Networks," IEEE

First International Conference on Neural Networks, San Diego, CA.

pp. 111-411-418, proceedings published by the IEEE, 1987

3. L.C. Shiue and R.O. Grondin, "On Designing Fuzzy Learning Neural-

Automata," IEEE First International Conference on Neural Networks,

San Diego, CA. pp. 11-299-307, proceedings published by the IEEE

1987

4. L.C. Shiue and R.O. Grondin, "An Automata Approach to

Reconfigurable Learning-Network Design," in Neural Networks from

Models to Applications, pp. 380-388, Ed. by L. Personnaz and G.

Dreyfus, I.D.S.E.T., Paris, 1989

5. L.C. Shiue and R.O. Grondin, "Neural Processing of Semantic

Networks," presented at the Inter. Joint Conf. on Neural Networks,
Washington DC, abstract published on pg. 11-598 of proceedings,

June 1989.

6. Lawrence T. Clark, Robert 0. Grondin and Sandwip K. Dey, "IC Neural

Networks with Ferroelectric Capacitor Connections", First IEE Conf.

on Artificial Neural Networks, London, England, pp. 47-51, IEE

Conference Publication No.313, October 1989

Abstracts submitted to conferences, in review:

I. L. T. Clark, R.O. Grondin and S.K. Dey, "Electrically Programmable

Analog Synapses Using Ferroelectric Thin-Film Memory," submitted to

NIPS 1990

Patents

Pipelined Best Match Content Addressable memory, Lawrence T. Clark

Graduate Students Supported

Hoon Bock Lee (Ph.D)
Liang Chyi Shiue (Ph.D)
Lawrence T. Clark (MS and Ph.D)

Undergraduate Students Supported

Kevin Connolly, summer 1989

