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< Abstract

The main goal of this project is to estimate theoretically the overall or effective constitutive
properties of nonlinear composite materials undergoing large deformations. Two types of
large deformations are of interest: large elastic deformations, and large viscous
deformations. The proposed method is to apply variational principles that are under
development to characterize the range of the effective properties given partial statistical
information about the microstructure (such as the volume fractions of the phases). For
some particular microstructures of interest exact estimates may be given. Significant
progress was made over the first year with the development of a new variational principle
allowing the estimation of the effective properties of a given nonlinear composite in terms
of the effective properties of linear composites (which are assumed to be known). The
potential significance of this work derives from its simplicity allowing the application of a
large body of prior research on linear composites to nonlinear composites. This method has
been applied to the case of large viscous deformations, and some results for particular
materials systems have already been reported in the pertinent literature.

Research goals

The main goal of this project is to estimate the overall or effective constitutive properties
of nonlinear composite materials undergoing large deformations. Two types of large
deformations are of particular interest: large elastic deformations, corresponding to
materials such as polymeric composites, rubber foams and solid rocket fuel composites;
and large viscous deformations, corresponding to the high-temperature creeping, or to the
dynamic plastic deformation of metals.

Background

The first and only available rigorous procedure thus far for estimating the overall
constitutive properties of nonlinear random composites was given by Talbot & Willis
(1985). This procedure is based on an extension of the well-known Hashin-Shtrikman P
(HS) variational principles to a class of nonlinear materials. Ponte Castafieda & Willis I 4
(1988) applied this procedure to nonlinearly viscous materials, and gave the first rigorous ,4 8
bounds and self-consistent (SC) estimates for the effective properties of composites in o0 ___J
power-law creep. Ponte Castaiieda (1989) extended the work of Talbot & Willis to finite
elasticity, and used the resulting theory to provide the first bounds and estimates for aa/
nonlinearly elastic composites.

< ARSI o 3 -
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- Progress in first year
Introduction

The research carried out under the sponsorship of AFOSR in the past year has brought
about an important development, reported in Ponte Castafieda (1990a & b). In these works,
a new variational structure is introduced that yields the following important result for the
effective properties of isotropic nonlinear composites: given the overall properties of a
"comparison” linear composite with the same microstructural distribution of phases as
the nonlinear composite, it is possible to give an estimate (in the form of a bound) for
the overall properties of the nonlinear isotropic composite. Thus, available bounds and
estimates for linear composites can be "translated” into corresponding bounds and estimates
for nonlinear composites. The new structure has the following advantages: it is more
general than the corresponding structure of Talbot & Willis, because it not only yields HS
bounds and SC estimates, but it generalizes to the nonlinear case any other type of bound
or estimate that may be available for the linear composite; it is easier to implement, because
it only requires the calculation of the extreme values of two appropriately defined functions;
and, finally, it gives in some cases stronger (in other, identical) results than the method of
Talbot & Willis.

The method has been applied to three different material systems. Porous and rigidly
reinforced materials with pure-power law and Ramberg-Osgood matrix behaviors,
respectively, are considered in Ponte Castafieda (1990a) and Ponte Castafieda and de
Botton (1990). Alternatively, Ponte Castafieda (1990b) considered a family of brittle/ductile
composites containing a linear and a nonlinear phase. In addition to low-temperature
plasticity (in its deformation theory form), these results can also be re-interpreted in the
context of high-temperature creep and high strain-rate viscoplasticity.

The method

Consider an n-phase composite occupying a domain £2 (normalized to have unit volume),
with each phase occupying a sub-domain Q) (r = 1, 2,..., n), and let the stress potential,
U(0,x), be expressed in terms of the n homogeneous phase potentials, U"(s), via

U =3 290Ue), )

r=l



+ where

1 ifx e Q"
x"’(X)={ nX @)

0 otherwise
is the indicator function of phase r. The phases are assumed to be isotropic, so that the
potentials U (o) depend on the stress © only through its three principal invariants. Here,
we will further assume that the dependence is only through two of the invariants, namely,

the mean stress, ouzétro, and the effective stress, 6‘=‘E'S'S‘ where S is the

deviator of G.
The effective behavior of the composite material is defined in terms of the effective energy,

U(G), that arises due to the uniform traction boundary condition

x € dQ, 3)
where @Q denotes the boundary of the composite, n is its unit outward normal, and G is a
given constant symmetric tensor. The average stress in the composite is then precisely G
and it follows from the principle of minimum compiementary energy that

O;h; =0y,

U(8)= min U(o), @
o&S(G)

where

J(o)= [ Uo,x)av
is the complementary energy functional of the problem, and

S(@) ={olo,;,;=0in Q, and o;n; = G;n; on 92}

is the set of statically admissible stresses. Thus, if € denotes the average strain over the
composite, it can be readily shown that

1]

. _0

sij=

(@), )

|

&

]

which yields an effective constitutive relation for the composite in terms of the average
variables @ and €. Given this connection between the effective potential for the composite
U(®) and the effective stress/strain relation, it makes sense to seek information on U(G).
Next we make use of a linear heterogeneous "comparison” material, with effective
properties that can be characterized in terms of bounds and estimates, to obtain
corresponding bounds and estimates for the effective properties of a nonlinear composite.
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- To this end, we introduce the quadratic potential

5 =N DTN ) = — L g2 L g2
U(o,x) 2:,1 (x)U"(5) 6ﬁ(x)a,+2,,c(x)o,,, (6)

such that fi(x) = Z x(x)A >0, and K(x) = z 2(x) K" >0, with the 4 and K
r=]

r=l
constant, corresponding to a linear isotropic composite with the same phase distribution
(the same indicator functions) as the nonlinear composite.
Then, if the nonlinearity in the potential of the original composite is stronger than quadratic
as the norm of the stress becomes large, it makes sense to define the set of functions

VO@E?, k) = max({0(6) -U"(0)}. @
It follows that,
U(o)2 ﬁ"r)r.lg>o{U (o) -V, K)}. 8
where
U@©G)= cg}l(g)U (6) ¢)]

is the effective potential of the linear composite, and

V(ﬁ, ;‘x) = Z c(’)V")(ﬂ (r)’ 12‘(’)), (10)

r=l
is expressed in terms of the volume fractions of each phase,
c(') = IQZ(')(x)dV~

The details of the derivation of this result are given in Appendix A (Ponte Castafieda 1990a)
in pages 6 through 9. We note however that expression (8) allows the estimation of the
effective properties of the nonlinear composite in terms of the effective properties of a
family of linear composites with elastic moduli 2’ and .

Usually, however, it is not possible to find (}(6) explicitly, but instead bounds and
estimates may be available for l}(ﬁ). If we have a lower bound (such as a Hashin-
Shtrikman lower bound) U_(G) for U(8), such that

0(5)20.(), (11)
then, replacing /() by U_(5) in equation (8) for U.(G) yields a lower bound for U(G).
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" On the other hand, if we only have an estimate (such as a self-consistent estimate) 0,(6)

for t;}('a'), then

U.@)= max {U)- V(&) (12)
would provide only an estimate for U(G).
We note that the prescriptions (8) and (12) lead to convex expressions for the bounds and
estimates of the effective potential of the nonlinear composite, provided that the
corresponding bounds and estimates for the linear composite are convex, which is in tum
guaranteed 2ssuming that j and K > 0. This is a desirable feature, because the effective
potential of the composite is known to be convex.
An alternative derivation, and a stronger version, of this variational procedure is given in
Appendix C (Ponte Castaiieda 1990b) in pages 4 to 6. The advantage of the alternative
derivation is that it allows the characterization of the circumstances under which the
inequality in equation (8) turns into equality. This idea is important in the context of
assessing the strength of the bounds.

Results

The general procedure was applied in Ponte Castaiieda (1990a) to an isotropic porous
material with incompressible behavior for the matrix with potential described by

U%o) = f(c,). (13)
The result of this calculation are a Hashin-Shtrikman (H-S) lower bound for U(G), given
by

U_(8)=c"f(s), (14a)
with
s=%\ﬂ +%c)F2+ %P 52, (14b)

and a self-consistent (S-C) estimate given by
7,©) =c"f(s), (150)




with

1{1-c¢®3Y_,. 9¢?_,
’=\/—(rsr SO (150)

The details of the derivation of these results is given in pages 9 to 12 of Appendix A.
Results are also given in this reference for a rigidly reinforced material with matrix behavior
characterized by relation (13), and for a general two-phase incompressible composite. The
above results are also specialized in Ponte Castaiieda (1990a) to pure power-law behavior
for f. Results for appropriately defined low-triaxiality "shear” and high-triaxiality "bulk"
moduli for the porous material are given in Figures 2 and 3 of Appendix A for
representative values of the hardening parameter n as functions of the porosity. Analogous
results are given in Figures 3 and 4 for the effective "shear” modulus of the two-phase
incompressible composite and the rigidly reinforced material, respectively. The new results
are compared with previously available results such as dilute and self-consistent estimates.
For the porous material, the bounds are found to be the best bounds available (better than
the corresponding bounds of Ponte Castafieda and Willis, 1988 obtained using the
nonlinear extension of the Hashin-Shtrikman variational principle of Talbot and Willis,
1984). In addition to their intrinsic value, these bounds are also essential in characterizing
the range of validity of numerical calculations based on the dilute approximation. Thus, it is
found (see Figures 2) that the dilute calculations of Duva and Hutchinson (1984) for the
low-triaxiality modulus are reasonably good for porosities up to 40%. On the other hand,
their corresponding calculations for the high-triaxiality bulk modulus (Figures 3) have a
very small range of validity (less than 1% for practically important values of the hardening
parameter). In Figure 4, the new self-consistent estimates for the rigidly reinforced material
compare favorably with the corresponding differential self-consistent estimates of Duva
(1984).

In Ponte Castaiieda and de Botton (1990), the above procedure is specialized to a porous
material with "linear plus power hardening" (Ramberg-Osgood) behavior for the nonlinear
phase. Results are given for the effective potential of the composite as a function of the
average stress and for representative stress/strain relations for the porous material in
Figures 1 and 2 of Appendix B for different values of the hardening parameter and the
porosity. The results are compared with results by Willis (1990), and the new results are
found to be superior. In particular, the physically unrealistic discontinuous behavior of
Willis' model between the linear and nonlinear domains at the larger values of the triaxiality




* (see the continuous lines in Figure 1d) is not observed in the new results (there is a smooth
transition between the linear and plastic domains for the dashed lines).

Finally, in Ponte Castafieda (1990b) results in the form of Hashin-Shtrikman bounds are
given for composites containing linear and nonlinear (c.f. equation (13)) phases. As it tums
out, some of these bounds can be shown to be optimal (best possible bounds given the
volume fractions of each phase) in some cases. This is accomplished by identifying special
microstructures (called sequentially laminated composites) attaining the bounds. Results
specialized to pure power-law behavior for the nonlinear material are given in Figures 2 and
3 of Appendix C. Figures 2 give bounds for an appropriately normalized form of the
effective energy of the composite versus an appropriately normalized measure of the
average stress for representative values of the hardening parameter » at small enough stress
levels. Figures 3 give the corresponding results for larger values of the average stress. In
Figures 4, some results are given for a linear plus power (Ramberg-Osgood) behavior for
the nonlinear phase. These results for the bounds are the first of its kind, and thus we have
not been able to compare them with other results.

Research plans for next year

Encouraged by the above results, we plan to generalize the work in two ways. First, we
would like to address anisotropic composites, and then later nonlinearly elastic (with
finite deformations) composites. The extension to anisotropic composites is already in
progress, with the assistance of one of my graduate students, Mr. Gal de Botton. This
work is expected to yield important new results without too much difficulty, and it will
serve to introduce Mr. de Botton to this area of research. Additionally, another graduate
student, Mr. F.-Y. Huang (to be replaced by Mr. G. Li), will attempt to compare the
results predicted by the new procedure with those predicted by the mathematical theory of
homogenization for the special case of periodic composites, where exact results can be
obtained by numerical computation. These latter results would serve to further characterize
the strength of the proposed variational structure. Finally, the non-trivial extension to
nonlinearly elastic composites is expected to occupy our efforts for the most part of the next
two years (04/01/90 to 03/31/92). The complications in this last problem are related to the
strong nonlinearities that arise due to the large deformation kinematics, but it is expected
that the ideas developed in Ponte Castafieda (1989) will also be useful in this work, leading
to improved results for the effective properties of such composites.
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ABSTRACT

A NEW vanational structure is proposed that yields a prescription for the effective energy potentials of
nounlinear composites in terms of the corresponding energy potentials for linear composites with the same
microstructural distributions. The prescription can be used to obtain bounds and estimates for the effective
mechanical properties of nonlinear composites (rom any bounds and estimates that may be available for
the effective properties of linear composites. The main advantages of the procedure are the simplicity of
its implementation, the generality of its applications and the strength of its results. The general prescription
is applied to three special nonlinear composites: a porous material, a two-phase incompressible composite
and a rigidly reinforced material. The results are compared with previously available results {or the special
case of power-law constitutive behavior.

1. INTRODUCTION

THE PREDICTION of the effective, or overall, constitutive behavior of composite solid
materials is both a practically and theoretically important problem, which draws input
from many different disciplines, including material} science, mechanics and
mathematics. This paper deals with the theoretical prediction of the effective mechan-
ical properties of heterogenecous materials with nonlinear phases that are perfectly
bonded to each other, and isotropic. To make sense of the notion of effective properties
for the composite, the size of the typical heterogeneity is generally assumed to be
small compared to the size of the specimen and the scale of variation of the applied
loads. It is further assumed that the effect of the interfaces is negligible, so that the
effective properties of the composite are essentially derived from the bulk behavior of
the constituent phases.

The corresponding theory for linear composites is fairly well developed, including
different approaches to the problem with varying degrees of mathematical sophis-
tication and physical relevance. Thus, exact estimates have been determined for the
effective properties of ad hoc models of composites ; rigorous variational bounds have
been given for the properties of random composites; and precise definitions and
explicit “homogenization” formulae have been proposed for the properties of periodic
composites. Appropriate, but by no means exhaustive, references dealing with the
linear theories are provided by the review articles of WiLLis (1982, 1983) and Koun
(1989), and by the monographs of CHRISTENSEN (1979) and SANCHEZ-PALENCIA
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(1980). By contrast, in the context of nonlinear composites, most of the results are
based on ad hoc models, such as ditute and self-consistent models. For instance, Duva
and HUTCRINSON (1984) (referred to as DH %ﬁ_ﬂ gave dilute estimates for
the effective properties of a nonlinear porous material, and Duva (1984) proposed
self-consistent estimates of the differential type for a rigidly reinforced, nonlinear
material, To the knowledge of the author, the first and only contribution so far dealing
with the calculation of rigorous bounds for the effective properties of nonlinear
composites is provided by the work of TALBOT and WILLIS (1985) (referred to as TW),
which was introduced in WiLLis (1983). These authors extended the well-known
Hashin~Shtrikman variational principles to include nonlinear constitutive behavior,
and their methods have been applied to a number of examples in different physical
contexts. For example, PONTE CASTANEDA and WicLss (1988) (referred to as PCW),
and more recently WirLis (1989), have determined bounds and estimates for the
effective properties of nonlinearly viscous (or infinitesimally elastic) materials. Also,
PONTE CaASTAREDA (1989) ke provided extensions of the minimum complementary
energy and the Talbot-Willis variational principles to finite elasticity, that allowed
the calculation of bounds and estimates for the effective properties of a broad class of
nonlinearly elastic composites. Additional developments are provided by appropriate
extensions of the periodic homogenization formuia by MarceLLmt (1978) for prob-
lems with convex energy densities, and by MULLER (1987) for finite elasticity (with a
non-convex energy density).

In this work, we propose an alternative variational structure that allows the esti-
mation of the effective energy densities of nonlinear composites in terms of the
corresponding information for linear composites with the same microstructural dis-
tribution. Although the procedure has application to problems in other physical
contexts that have a variational characterization (see PONTE CASTANEDA, 1990, for an
application in conductivity), here we will study the specific application of the theory
to composite materials with constitutive behavior characterized by nonlinear viscosity,
or by the mathematically analogous theory of nonlinear infinitesimal elasticity. Effec-
tive properties are defined in Section 2 by means of the principle of minimum potential
energy, and its dual counterpart, the principle of minimum complementary energy.
The new structure is developed in Section 3, where it is shown that a general bound
(or, alternatively, an estimate) for the linear composite can be translated into a bound
(or estimate) for the nonlinear composite. In Section 4, the general procedure is
applied to three particular cases of general interest: a porous material, a two-phase
incompressible composite and a material reinforced by rigid inclusions. For each of
these composites, we give bounds and estimates for their effective properties. In
Section 5, the results are specialized further to phases with a power-law type of
constitutive behavior, and the results are discussed and compared with previously
available results. Finally, in Section 6 some general conclusions are drawn.

2. EFfFECTIVE PROPERTIES

We are interested in estimating the effective, or overall, properties of composites
with nonlinear material behavior. By a “‘composite” we mean an idealized material




'\

Effective properties of nonlinear composites 3

that corresponds to the limit of a sequence of heterogeneous materials with two
distinct length scales : one microscopic / corresponding to the size of the heterogeneity,
and one macroscopic L corresponding to the size of the specimen of interest and the
scale of variation of the boundary conditions. The effective behavior of the composite
is then obtained by considering the limit of the behavior of the sequence of materials
as the ratio of scales ¢ = J/L tends to zero. The study of the definition and existence
of such limit properties is called homogenization theory, and it is an area of current
interest in the general mathematics community (Kouy, 1989). However, for the
purposes of this work, it will not be necessary to introduce this formalism; we can
always rely on our physical intuition to understand the concept of effective properties,
and in the analysis that follows, it will suffice to take our composite to be a het-’
erogeneous material with very small, but finite microscale. The effective properties
are then understood in an approximate sense.

Consider an p-phase composite occupying a domain Q, with each phase occupying
a sub-domain Q' (r = 1,2,...,n), and let the stress potential, U(s, x), be expressed
in terms of the n homogeneous phase potentials, U(a), via

Ule,x) = ¥ () U (o), @.1)
r= | .
where
; 1 ifxeQ”
3 = 22
x"(x) 0 otherwise (2.2)

is the characteristic function of phase r. The phases are assumed to be isotropic, so
that the potentials U*)(s) depend on the stress ¢ only through its three principal
invariants. Here, we will further assume that the dependence is only through two of
the invariants, namely, the mean stress

Om =13tra,
and the effective stress
1
g, = /35S,

where S is the deviator of a.

Then, the strain tensor (or the strain-rate tensor, depending on whether we are
dealing with nonlinear infinitesimal elasticity or viscosity) s, which is required to
satisfy the compatibility relations

&y = $(u+uy,) ’ . (2.3)

in terms of the displacement (or velocity field) u, is related to the stress o, satisfying
the equilibrium equations

Ty = 0, (2.4)

via the constitutive relation
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5:] = 'a—q' (d, x)- (2.5)
doy,

The commas in (2.3) and (2.4) denote differentiation, and the summation convention
has also been used in (2.4). We assume that the phases are perfectly bonded, so
that the displacement (or velocity) is continuous across the interphase boundaries.
However, the strains and, therefore, the stresses may be discontinuous across such
boundaries, and hence (2.4) must be interpreted in a weak sense, requiring continuity
of the traction components of the stress across the interphase boundaries. Also, at
least one of the phase potentials is assumed to be non-quadratic in the stress, so that
the constitutive response of the material as given by (2.5) is genuinely nonlinear.

The statement of the problem is completed by the selection of an appropriate
boundary condition:

gy = &,,nl-, xEﬂ-Q. (2.6)

where dQ denotes the boundary of the composite, n is its unit outward normal, and
¢ is a given constant symmetric tensor. This uniform constraint condition has some
useful properties, discovered by HiLL (1963). Let

d= f a(x)dV, 2.7
Q

and

£= J g(x)dV (2.8)
n -

denote the respective averages of the acrual stress and strain fields in the composite.
Here, the scale of Q has been normalized to have unit voiume. Then, we have that

G =ad, 2.9

and

e=lf (u@n+n@u)dS. 2.10)
2)n

This means that the average stress ¢ in the composite is precisely ¢, and that the
average strain £ can be “‘measured” in terms of the boundary displacements.

The third property makes use of the principle of minimum complementary energy,
which is a variational characterization of the above problem, described by (2.3) to
(2.5), and was first introduced by HirL (1956), under the assumption of strict convexity
of the nonlinear potential U(a, x). Thus, we define the effective encrgy for the com-
posite via the relation

U@6) = inf U(o), : Q.10

eeS(d)
H

where

I
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O) = j U(e.x)dV
0

is thé complementary energy functional of the problem at hand, and
S(d) = {aloy; =0inQ, and oyn, = G,;n, on éQ}

is the set of statically admissible stresses. Then, if U (d) is assumed to be differentiable,
it can be readily shown that

& = E-g(i). (2.12) - ovBMA-
50’,/

which yields an effective constitutive relation for the composite in terms of the average
variables ¢ and &. Given this connection between the effective potential for the
composite J(¢) and the effective stress/strain reiation, it makes sense to seck infor-
mation on (). Notice that, under the above assumptions, J(&)-is convex (refer to,
for instance, Appendix A of PCW).

A dual formulation can be given by means of the principle of minimum potential
energy in terms of the strain potential W(e, x), which is obtained from the stress
potential U(e, x) via the Legendre (Fenchel) transformation

W (e, x) =sgp{a-z—U(a,x)}. (2.13) PIrASANS
Thus, if we define the effective strain potential of the composite via
W(E) = inf W(s), (2.14)
sk forr

where W(z) is the pertinent potential energy functional, and

K(&) = {eley; = 1/2(u;+u;,) in Q, and u; = §,;x; on Q}
is the set of kinematically admissible strains satisfying a uniform strain boundary
condition, we have an effective stress/strain relation for the composite, expressed by

. AW,
Gy = —=(£), (2.15) oy~ BM\
dgy;

where now §, representing the average strain in the composite, is equal to the prescribed
uniform strain on the boundary, and 4, representing the average stress, can be
“measured” in terms of the traction on the boundary. Notice that W (£) is also convex.
The above development suggests that }¥(£) and U(¢) ceetd also be related through MIGKT
the Legendre transformation:

W(&) = sup {¢-&- 0(5)}. ‘ (2.16) AR

However, this is certainly not true for a general heterogeneous material, since the
boundary conditions associated with the two formulations are different (uniform
traction versus uniform strain), and hence U(¢) and W(&) would correspond to the
solutions of different problems. In fact, WiLLis (1990) has shown that replacing the
uniform traction boundary condition in S(&) by the condition that the stresses have
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mean value ¢ gives exact duality. This implies that, in general, the equality (=)
in (2.16) must be replaced by an inequality (). On the other hand, it seems reasonable
thatin the limit of the microscale tending to zero (the homogenized limit), the response
of the composite would be the same for both types of boundary conditions, and thus
0(é) and IW(£) are expected to be Legendre duals in that limit. A rigorous proof of
this fact, however, would involve a more rigorous definition of the homogenized limit
than we have utilized, and is beyond the scope of this work.

At this point, a few remarks are in order. First of all, it should be noted that the
three properties (2.9), (2.10) and (2.12) (or the corresponding ones in the dual
formulation) hold true for any heterogeneous material, whether it is a “composite”
in the sense described above, or not. However, U(4) is expected to represent the
effective properties of some idealized homogeneous material, obtained as an appro-
priately defined mathematical limit of a sequence of heterogeneous materials with
vanishingly small microscale. Now, if the microstructure of the composite is deter-
ministic as in a periodic composite, U(&) can (in principle) be determined uniquely
in terms of the solution of a nonlinear boundary problem on a unit cell with periodic
boundary conditions (MARCELLINI, 1978). On the other hand, if the microstructure
of the composite is random, usually only partial statistical information is available in
the form of the volume fractions of the phases, or, less frequently, some higher-order
information such as overall isotropy for the composite. It is then not possible to
determine the effective properties of any given composite precisely, and it is essential to
refinterpret () as the set of effective energies of a family of composites with some
prescribed statistics of the microstructure. In any event, whether the composite is
periodic and its effective properties are difficult to find, or random so that its properties
are not deterministic, it makes sense to attempt to delimit the effective behavior of
composites by specifying bounds for U(d) in terms of some prescribed microstructural
information. In some cases, as when the bounds are too far apart to be useful, it may
be possible to identify a special solution, called an estimate, that in some sense best
characterizes the properties of a certain family of composites. In this work, we will
only be interested in the case of composites for which the volume fractions of the
constituent phases are specified, and that are, in addition, isotropic in an overall sense.

. we will attempt to specify bounds and estimates for the effectiv
properties of this class of nonlinear composites.

3. THE NEW VARIATIONAL STRUCTURE

In this section, we make use of a linear heterogeneous “‘comparison’ material, with
effective properties that can be characterized in terms of bounds and estimates, to
obtain corresponding bounds and estimates for the effective properties of a nonlinear
composite. To this end, we introduce the following quadratic potential

1, 1

U(e,x) = ,;l LX) 0" (o) = .6_“:(;.).0', + E:'TX—)G;’ 3.1)

where
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e e

) = ¥ (A" >0, and K(x) = T y?(x)& >0,
rem )

r= |

with the ;i and & constant, corresponding to a linear isotropic composite with the
sime phase distribution (the same characteristic functions) as the nonlinear compaosite.

Then, if the nonlinearity in the potential of the original composite is stronger than
quadratic as the norm of the stress becomes large, it makes sense to define the set of
functions

Y, ) = sup { U (0) - U (0)}, (3.2)
such that '

V(iR = 5 VIR, ) = sup (U@ -V}, (3)

r= |
It follows that, for all 3, 8" > 0(r=1,...,n) and o, at each xeQ
' Ula,x) = Ula,x)— V(i %),

and hence that for all 4, %" > 0(r = 1,...,n), and for every &

J(&) 2 U()— P4 R), (3.4)
where '
U() = inf U(o) (3.5)
clS(‘Q

is the effective potential of the linear composite, and

()= T CIVIE, R,

r= |

expressed in terms of the volume fractions of each phase,

S ) )
. ) = (
= J;x (x)dv.
¢ . > . .. ;
8“'\ Thus, if we could compute U(4) for the linear composite in terms of A and £,

expression (3.4) yields a family of bounds for the effective potential of the nonlinear
composite, U(d), for every choice of the set of parameters 37, &2 > 0. This family
of bounds can be optimized by considering

7.(6) = s (O(6) - P R} (3.6)
Then, evidently, '
0() = 0_(@4). (3.7

Usually, however, it is not possible to find 17(&) explicitly, but instead bounds and "
estimates may be available for U(d)._If we have a lower bound (such as a Hashin~
Shtrikman lower bound) U _ () for U(¢), such that
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0(s) 2 U- (), (3.3)

then, replacing U(d) by (}_ (éiin (3_.,6) for U (d), still yields a lower bound for 0(6);
alternatively, an upper bound for U(d) is not useful in terms of obtaining an upper
bound for U(d). On_the othes_hand, if we only have an estimate (such as a self-
consistent estimate) U, (d) for U(s), then

~ kA -

Ud) = sup | {U.6) = V(i %)} (3.9)
would provide only an estimate for ().

We note that the prescriptions (3.6) and (3.9) lead to convex expressions for the
bounds and estimates of the effective potential of the nonlinear composite, provided
that the corresponding bounds and estimates for the linear composite are convex,
which is in turn guaranteed assuming that g and & > 0. This is a desirable feature,
because the effective potential gf the composite is known 1o be convex, and it follows
directly from the convexity of U(G) in & (the supremum of a family of convex functions
is convex).

Although this will not apply to the present work, it is possible that, in other physical
contexts, the nonlinearity of the potential for the composite will be weaker than
quadratic. In this case, upper bounds T, (&) of the form (3.6) and estimates U, (G)
of the form (3.9) would be obtained for U(d), if we replaced the suprema by infima
in the definitions (3.2), and the expressions (3.6) for the bound, and (3.9) for the
estimate, respectively, In either case, it is important to note that the given prescriptions
for the bounds and estimates involve only the evaluation of the extreme values of
some multidimensional functions, assuming that the corresponding information is
available for the linear comparison material.

Before we apply the general procedure developed in this section to some special
cases, we show that there is no duality gap in our procedure. This is unlike the
procedure of TW, which sometimes leads to different bounds and estimates for the
effective energy of the nonlinear composite, depending on whether a formulation
based on the principle of minimum complementary energy, or on the prnciple of
minimum potential energy is selected.

Using a procedure completely analogous to the above procedure, but starting with
the minimum potential energy formulation, instead of the minimum complementary
energy formulation, we are led to the following upper bound for the effective potential
W(E):

Wo@ = inf (#@)+750), (3.10)
where
W& = inf W), 3.11)
'uK(B
and
V(i #) = sup (W (s,x) — Wi(e,x)}. (3.12)

Notice that the use of the same notation for the difference function ¥ (4, &) is justified,

el ol 4L T W RS )
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because, as the following development shows, this present definition of V(4i,X) is in
exact agreement with the prior definition (3.3) of V'{j, #). Thus,

Vi, &) = sllxp{st'xp{c-z—, Ulo, x)} — (e, x)}

= sgp{sqp{a't- W(e,x)} - Ula, x)}

= sep {U(d, X) - U(d' X)}.

o~ .
where we have used the fact that the order of suprema may be interchanged.
To demonstrate that there is no duality gap in the above procedure, we start with
the upper bound for the effective strain potential of the composite

W(E) < W, (6). : (3.13)

Then, applying the Legendre transformation to both sides of this inequality, we get
(see VAN TIEL, 1984, Section 6.33)

0(6) > sup {¢-é-W. (&)},

where we have made use of (2.16), and the fact that both W(&) and U (4) are convex.
Next note, from (3.6), that

U.(6) = sup {sgp {-2— ff’(a’)} - 7(;2,;&)}
=sup{d-é— inf {W(E)+ V(i 8)}}

L 5”‘{1«‘ "> 5‘

=sup {¢-E-W. ()},

where we have made use of some of the properties of infima and suprema, and
assumed that duality in the form of (2.16) also applies for the linear composite. Thus,
we conclude that the two bounds obtained above for the effective energy of the
nonlinear composite (one arising from the potential energy principle, and the other
from the complementary energy principle) are equivalent, and hence there is no duality
gap. More generally, we can apply the same ideas to the specialized versions of the
bounds, and again we would obtain exact duality of the bounds, even for a general
(not necessarily a “‘cornposite™) heterogencous material. For instance, if we replace
U(é) by its linear HS lower bound, and W(s) by its linear HS upper bound, then the
exact duality of the linear HS bounds traaslates into exact duality for the nonlinear
bounds. A more formal development of these ideas, with some additional results, is
given in PONTE CASTANEDA (1990).

4. APPLICATIONS

4.1. The porous composite

In this sub-section, we apply the general procedure of Section 3 to a two-phase
isotropic composite with one vacuous phase. We take the other phase to be incom-
pressible, with potential
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U (o) = f(a.), @.1)

where f is a strictly convex function of its argument with stronger than quadratic
growth as the argument becomes large. Then, the stress/strain relation for this phase

is given by .
3/ (a)
i) = 5 7 Su: i 4.2

s0 the the effective strain, ¢, = /{e- ¢ (e is the deviator of ¢), is refated to the effective
stress via

Ef = gf’ (cf)'

On the other hand, the potential of the vacuous phase is given by

deiet® cnmd € imedT UD(9) = bo(0.), + da(05n) 4.3)
cre INRL S o

0 ifx=0
@ othenwise.

So(x) = {

Now, if we let

U (a) = gﬁlmcf (4.4)
and
[ 4 MRS U®(0) = 8a(0,)y + &y (Tm) @.5)
) peeE Q we have that ’ VT:;’F‘

VD) = lof (@) —f(o), (4.6)
where & is some function of 4" determined by the optimization problem (3.2), and
also that

V“’(ﬁm) = 0. (47)
It follows from (3.6) that
0.@) = swp (U@~ vdamy, (48)

provides a general lower bound for (o) given 7 (s). As discussed previously, in
general, we do not know U(g) precisely. Here, we will make use of the Voigt and
lower Hashin—Shtrikman (HS) bounds for U (o) to obtain corresponding bounds for
U(s). Additionally, we will provide 2 self-consistent (SC) estimate for 0 (o) in terms
of the well-known SC estimate for U(o).

4.1.1. Voigt bound. For the linear composite with one vacuous phase, it is known
that
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0@) > o3
g -—0aJ,,
~ 6y °
where ji, = ¢"at". Therefore, from relation (4.8), we have that

- .
U(a-.) > cth sup {ms-_ V(l)(“(l))}

>0
- c“‘f(s)‘ 4.9

where .
s=d,/c™, (4.10)

and where we have made use of the result of the Appendix, and hence we must further
assume that F(x) = f(s) is a convex function of x = s* > 0. The result expressed by
(4.9) and (4.10) is precisely the nonlinear Voigt bound, which could alternatively be
obtained from the principle of minimum potential energy by assuming a uniform
strain field throughout the composite, and dualizing the result. Thus, at least in this
simple case, the new procedure reproduces the “right” result, exactly.

4.1.2. Hashin-Shtrikman bound. For linear isotropic composites, HASHIN and
SHTRIKMAN (1962) found upper and lower bounds that are tighter than the Voigt/
Reuss bounds. The lower bound for our particular example specializes to

—
I

L

-

where

c(l)ﬁ(l) . 4 C(“
Fus = T7100 and Nﬂs—gic—(z_).“

Then, a bound of the f'orm (4.9) applies, where now

|
s =75/ (1 +3e?)dl +3cPd7, @.11)

and again we have made use of the result of the Appendix. Because this bound was
derived from the linear HS bound, we refer to it as the nonlinear HS bound. Note
that, unlike the Voigt bound, it predicts overall compressibility for the composite, as
expected physically.

4.1.3. Self-consistent estimate. For linear isotropic composites, BUDIANSKY (1965)
and HiLL (1965) provided the so-called SC estimates for the effective moduli. In this
particular case, these estimates specialize to

1
F(6) % o G2 4 sl
6llsc

where

pecere 3
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Ksc (T=c )/3) , and  Kge = 3c Uy} (1= )/3) ;¢

Then
0(3) = ¢V f(s),

l—c‘ )/3 e 9 ¢
$= C‘“ -,c(’) .+ -c_ﬂ-,'dm ’ (4.12)

and once again we have made use of the Appendix. We refer to this result as the
nonlinear SC estimate.

where now

&

4.2, The two-phase incompressible composite

In this sub-section, we consider a general two-phase composite with isotropic,
incompressible and nonlinear phases such that

U e) = f(0.), (r=12), (4.13)

where the f satisfy the same convexity conditions of the previous section. Then if
we let

l

U (o) = & —=q?, (4.14)

we have that

V() = e R 1), (419)
where the o' are some functions of the 4 that are determined by the solution of the
optimizaticn problem (3.2). It follows that

U () = sup {U(c’) —h V(n(#m) ol V‘“(pm)} ) (4.16)

'ﬂl #3 >
is a general lower bound for U(o), given 0 (o). As in the previous sub-section, we use
this resuit to obtain the Voigt bound, a HS bound and a SC estimate for the effective

potential of the nonlinear composite in terms of the corresponding results for the
linear composite.

4.2.1. Voigt bound. In this case, it is more convenient to consider the dual formu-
lation. For the linear composite, we have that

W(E) < Y82 +80 (), @.17)
where g, = """+ 212, Then, it can ca'sily be shown that
W(E) <P W“)(e')-l-cm W"’(;‘), (4.18)

where we have made use of the appropriate specialization of (3.10), and a dual version

o]
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' oMhe result of the Appendix. As in the previous example, this result agrees exactly

with the nonlinear Voigt bound.

1

U(d) > —
@) 6fns

G2, (4.19)

where

C“‘ﬁ("(éﬁ( M} +9ﬂ) +c“‘ﬁ“‘(6ﬂ”‘ +9ﬂ)
(647 +9) + (64" +94)

and j = max {@'", i¥} = g'" (by assumption). Then, it follows that

Hus =

U(@) > sup {

n-m_;‘l:l >0

G2 (O Py = D V(:)(ﬁm)} (4.20)
6fins

but, unfortunately, no further simplification is possible in general, due to the coupling
of 4! and 4'® in the term involving ji,s. Later we will apply this result to a special
case where /1, /¥ have a simple power-law form.

4,2.3. Self-consistent estimates. The results for the SC estimates have the same
forms (4.19) and (4.20) as the HS bounds, but with f, replaced by fisc, given by the
positive root of the expression

3l +{(2=SAM AN + (2= 5!} jige — 25 VAP = 0. (4.21)

As was the case for the HS bound, these results cannot be simplified further without
specifying in more detail the constitutive behavior of the phase materials.

4.3, The composite reinforced by rigid inclusions

This is a special case of the previous material with f*"(c,) = 0, corresponding to
the case where phase # | is rigid. Then, the choice U"(¢) = 0 leads to ¥1"(4i'") = 0,
and we have the following general lower bound for the effective energy of the com-
posite:

7)) = sup {0(F)~c@ VO (u)}. (4.22)
#A3>0
In this case, however, it is clear that the lower bounds are trivial, and we will only
be able to give estimates for the effective energy of the composite. We will consider
the standard SC estimate, as well as a differential self-consistent (DSC) estimate.
4.3.1. Self-consistent estimate. For the linear composite, it is known that

U@G) =~ 1 é?, (4.23)

where
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Using this result in the general expression (4.22) induces a nonlinear SC estimate for
the effective energy

0(3) = 2 f13(s), (4.24)
i where -
(1 _gcm>|/: }
s=\—F—] do 2 s
(l\e\"f \ ) (4.25)
A b and once again we have made use of the result in the Appendix. ¢
4.3.2. Differential self-consistent estimate, The DSC estimates of BoucHer (1974), . -~
and McLAUGHLIN (1978 for linear elastic composites specialize in this case to : ﬁ
expression (4.23), with figc replaced by
A ' (
Hpsc = —(-c(T)iI_Z . - (426) -_—
. Thisinduces a nonlinear DSC estimate via (4.22) that reduces to an expression similar (t
to (4.24), where now ' _
5= (!P)¥44,. 4.27)
S
S. RESULTS FOR POWER-LAW MATERIALS
(C
In this section, we specialize further the calculations of the previous section by -
taking the constitutive behavior of the phases to be governed by a power law relation
fp)(o.)_l(z 1 a""' 5.1 T
“CT3\n+ ) 2u0) G-h ?‘:
This class of functions clearly satisfies all the assumptions invoked in Sections 3 and
4, including the convexity assumption of the Appendix. Additionally, we compare the frc
new results for the bounds and estimates with previously available results. H!
dii
res
5.1. The porous material fur
In this case, our results for the Voigt bound, the HS bound and the SC estimate all sim
take the simple form of expression (4.9), with s given by (4.10), (4.11) and (4.12), an<
respectively. We compare these results with the results of PCW for the same material. apr
We note, however, that WiLLs (1989) has given a HS bound and several SC estimates Co
for the general case considered in Section 4.1, but the form of his results is more res’
complicated than our new results. For this reason, and because we expect the com- the

parison of the power-law results to be fairly representative, we do not make a more ran
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general comparison between our new results and those of WiLLis (1989). There
are two domains of particular interest: the low-triaxiality range corresponding to
® = |6,./d.| « 1, and the high-triaxiality range corresponding to @ » 1.

For low-traxiality, all the results for the bounds and estimates take the form

EfTective propertics of nonlinear composites 15

U(&)z%( 2 ) T ),n+b(cm nyw?)@*?, (5.2)

and it suffices to compare all the corresponding values of the low-triaxiality modulus
4, as functions of u'", ¢*® and n. We give the results below, where we identify the
source of the results in parentheses:

Voigt i cth,
‘(_101‘8) lrt" _’ l

U
LH\LS) #Hs c?

I‘IU— (l+‘c‘ r)xn+l),-N'
{n+ 1}/ In

(S;) : ‘fﬁ_{( U)Ln-l)/-n( 73.:)\;/—

(@S :PCW) (U\\S c
(SC:PCW) s o (1=2\ [ (=1 e (14 4

— W ey vy =\ 1—4c?/ )
(D) ﬁo n+1 2

— PR L ™+ hx*1)ct. (5.3)

The last expression corresponds to a dilute concentration of voids, and was carried
out by DH, who made use of the results of BUDIANSKY er al. (1982). The values of
f*, k and x* as functions of n are taken from that reference.

In the linear limit (n = 1), all the above results agree with the well-known results
from the linear theory. For small volume fractions of the vacuous phase (¢'*), the
HS, SC and dilute results agree to first order, and for larger volume fractions the
dilute result lies between the HS upper bound and the SC estimate. Figure | gives the
results for the bounds and estimates of the effective low-triaxiality moduli i as
functions of ¢'¥, for two distinct nonlinear cases (n = 3 and 10). These results are
similar to the linear results, with the HS upper bounds lying below the Voigt bound,
and the SC estimates close to the dilute results for moderate volume fractions, but
approaching the same percolation limit (¢!? = 1/2) as the corresponding linear results.
Comparing the new bound and estimate with those of PCW, we observe that the new
results lie slightly below the old results. For the bound, this has the implication that
the new bound is an improvement on the old bound, at least in the low-triaxiality
range.
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F1G. 1. Bounds and estimates for the low-triaxiality modulus of the porous material as functions of the

volume fraction of voids. The short-dash line corresponds to the Voigt bound; the continuous lines

correspond to the new HS upper bound and SC estimate ; the long-dash lines correspond to the HS upper

bound and SC estimate of PCW ; and the long/short-dash line corresponds to the dilute caiculation of DH.
Case (a) is for n = 3, and (b) for n = 10,
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For high triaxiality, all the results for the bounds and estimates take the form

ae |

, (5.4)

2 1 3.
00~ 3 () @ik

and thus we express all the results in terms of the high-triaxiality moduli §, so that

v 5 . &)

(HS) Tus ¢

”m bl (cl:))(nol).ln ’
SC)W fsc __ b <|_vcw>'~m

7L T-(cn:))(non':n |_1‘£)’/] P“*“‘L“'I‘T"

(HS:PCW) &—'—1- an [( )(1 n+l o )](n-—l)
ut? lgc(’))(u¢l)iln o + Q’Z\ﬂ

(SC:PCW) Tsc = c‘” — 2D\
#u) = (c"’)""“ o c(_)
x ( 2n )C“‘ l_(“—l)s‘_:’_(l-f-%cm (n=1)f2n
n—1 3n )T \1=1aD ,
D) 7 n
;‘(_Dl) = (cll))l_n’ (n < d)) )

In the linear limit (n = 1), the expressions for the HS bounds and SC estimates reduce
to the linear resuits, and, additionally, they agree in the dilute limit (7 ~ (¢®)~").
Figure 2 depicts plots of the HS bounds and SC and dilute estimates of the high-
triaxiality modulus appropriately normalized ((¢!*)™*+ '"*'5) versus the volume frac-
tion of the void phase (¢!®) for two values of the nonlinearity parameter (n = 3 and
10). By comparison with the results of PCW, we find that the new results provide a
significant improvement over the old results, since the new bounds lie significantly
below the old bounds, and are hence tighter. Similarly, the old SC estimate violates
the new bound, and must be discarded in favor of the new SC estimate. The dilute
result of DH lies below the HS bound for small volume fractions of the void phase
(o ~ (¢!?)~"", whereas Fys ~ (c*')~®* V2", but it is clear from the plots that the
range of validity of the dilute result is severely limited for larger-values of n. On the
other hand, we should emphasize that the new expressions for ¥ are not valid for small
values of ¢®, This is because the original expression for J(¢), from which they derive,
is indeterminate in the limit as @ — co0 and ¢'® — 0. A better comparison of the new
results with the dilute results is accomplished by making use of the original expression
for () in the form

ML N
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U(@d) = l( 2 ) l Al (5.6)
n+1/Q2a%)y ’
where now ji* is a function of ¢!, n and w. Thus, we have that
ze D)
L‘(_Né = YA 9 \jine i) iar (57)
w1+ G+ dw)) =
and
. . I .
”—" (5.8)

@ = [T+ P+ ) fla,m)

where f(w, n) is taken from the work DH.

Written in this form, it is clear that both expressions for the effective energy of the
composite are indeterminate in the limit as w — 0 and ¢** — 0. The first expression,
however, is general, whereas the second assumes that ¢!® « 1, and its range of validity
is not known. Figure 3 shows a comparison of these two results as functions of w for
two values of n (3 and 10) and three values of ¢!® (0.1, 0.01 and 0.001). It is apparent
that the dilute approximation of DH is acceptable (although this is not a proof that
it is correct) for very small values of ¢!¥ in the sense that it does not violate the new
bound, but unacceptable for values of ¢ in the order of I to 10%, or larger, depending
on the specific value of n. On the other hand, it appears that the new bound could
conceivably be subject to improvement for very small values of ¢,

. 5.2. The nwo-phase incompressible composite

In the case when 1 and f*? have the same form of (5.1), but with different moduli
4" and u'?, respectively, all the results of Section 4.2 take the form

(j(o-) = l (_2_)__1__,?-*' (5.9)
S\n+1/020)" ¢ )

and it suffices to compare the bounds and estimates for the effective modulus . The
Voigt bound is obtained from (4.18), and is given by
i u?
l‘(—‘,')=c“’+c“"7-,—,. (5.10)

The new HS bound is obtained by solving the optimization problem given in (4.20);

the result is )
i ~(tm)
T’ - [c‘"d*r—lﬂ- o (ﬂ())’s],},_r] (5.11)

where S, and S|, satisfy the relations
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(S—(Q2+3')S, :,lgzﬁ-ﬂ; 3c“’<:::—::)~51{ nae SUPeasCriPTS
and
15¢"S, = 6¢MS s+ =53 o [3+c“’(" =55 )52 +3c¢MS,),  (5.12)
subject to the restriction that

() ("
S(l)

The SC estimate dsc is obtained from (4.20), and the result has the same form as
(5.11), but now S“,"cmd Sy satisfy

I

(1)

2 H
.C“)S“)'f'c‘ ,ﬁ(s, S(s) = ;—:

and

() .

a 2 B )
[3"— +<2—5c"’)]% = [ 6o+ =5+ (2= 5 o ] = S
f J 7
(5.13)

where

ﬁ(\) #(l) ] S(’, -1

= () (32)
and jigc is the positive root of (4.21). Additionaily, for this problem we have a non-
trivial Reuss lower bound (if 4'¥ > 0) given by

P (N ]=im °
L5 [C(n + c(z)C‘_‘m)] _ (5.14)

In the linear limit (n = 1), the above results reduce to the well-known results from
the linear theory and additionally there is a HS lower bound for . The HS bounds
are nested within the Reuss/Voigt bounds, and the SC estimate lies within the HS
bounds, agreeing with the HS upper bound for small volume fractions of phase
#2 (c'¥), and with the HS lower bound for small volume fractions of phase #1
(" = 1 —¢tP). As the ratio u'®/u!" becomes smaller, the bounds spread out until
eventually (when u?/u(" = 0) the lower bounds become trivial and the SC estimate
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reaches a percolation limit at ¢!® = 3/5. Figure 4 depicts the corresponding results ;-.'
(except the HS lower bound) for the two usual values of 7 (3 and 10). By companson

with the linear results (not shown), they roughly show the same trends. However, the * e
followmg comparisons can be established : the Voigt bound is unaffected; the SC.:,
estimate is shifted up for low values of ¢**, and down slightly for low values of ¢f¥;
with larger values of n; and the Reuss bound is shifted down significantly” w1th Rk
larger values of n to the point of being nearly without practical value for large n.~"
Extrapolating from the linear theory, and according to the new results, we expect the **
SC estimates to be good at predicting the effective moduli of the composite, if p"’/p“’

is not too small. %

5 3. The compo.me remforced by rxgtd mch:swn: L s IR

“In thxs case, as in the prevxous one, all the results take lhe form of relatxon (5 l),v )

" where now we no longer have bounds for f, but only esumates. mcludmg aSCas

well as a DSC estimate. Nt
The SC esumate is obtained from cxpresslons (4.24) and (4 25) and is given by v

(D)= iz
Asc ()
2B = ([ Ay o (5.18)

The corresponding result from PCW is given by

(1 - 2_—31"”)
Asc - . 4n
I‘m-v _§c‘-”)(c‘5’)—”"-'

Our DSC estimate is obtained from the correspondmg linear estimate via expressxon )
(4.24), together with (4.27) and is glven by R N ST

(5.16)

fosc 1
#(z) =(c(v))un+7)/4. o (5.17) .

Duva (1984) has also provided a DSC estimate, based on computations for an
isolated rigid inclusion in an infinite power-law viscous matrix. The result of his
calculation can also be represented in the form of (5.1), with

1 -

‘:‘Dtjf =@ | (5.18)

where g(n) is given in the above reference From the plot of this funcnon we obtain e e

that g(1) = 5/2, g(3) = 3.3 and ¢g(10) = - . . . Fa.
" As before our new results reduce to the 'lmear results in the hmu asn approaches : .rl‘.:':

unity. Figure 5 gives results for the above estimates of the effective modulus for the .

two usual values of n (3 and 10). Note that the plot is given in terms of p®/ji as a

function of ¢!?, so that u'®/; tends to zero as ¢t tends to unity. Our SC estimate is

slightly lower than the prior result of PCW ; this is probably due to the fact that if we

had an upper bound, it would also appear lower in our plot. On the other hand, our

K R
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DSC estimate lies somewhat above the DSC of Duva (1984). This is not too surprising
since we expect our procedure in general to mmierestimeto the energy of the composite
W (£). For the linear case, it has been shown (MILTON, 1985; AVELLANEDA, 1987)
that the DSC estimates can be attained by particular microstructures. Then, we could
expect our procedure to give an upper bound for the actual W (£) of the corresponding
nonlinear material. Thus, the present example could be used to assess the efficiency
of our method irfestimating the exact effective properties of nonlinear composites with
deterministic pucrostructure, such as periodic composites. This idea will be tested
elsewhere, but if the indications of the present example are upheld, we would conclude
that our prescription performs rather well given its simplicity.

6. CONCLUDING REMARKS

The main contribution of this work is the establishment of a new variational
structure that allows the estimation of the effective properties of nonlinear composites

" .in terms of the corresponding properties for linear composites with the same micro-
- structural distribution of phases. Assuming that the exact effective energy density is
available for the linear composite, and depending on the growth conditions of the

phase potentials, the new estimate will either be an upper bound, or a lower bound
for the actual effective energy density of the nonlinear composite. Alternatively, if
only an estimate or a bound of the right type (an upper bound if the estimate is an
upper bound, or vice versa) is available for the linear composite, the new estimate for
the nonlinear composite will also be either only an estimate, or a bound (of the same
type). In this respect, the present variational structure has the same limitatiox as the
structure proposed by TW in that only one-sided bounds will result in general.

In the context of specific results, we note that the nonlinear bounds, corresponding
to the linear Voigt bounds, proposed by the new prescription turn out to be precisely
the nonlinear Voigt bounds obtained directly from the principle of minimum potential
energy. Qua the other hand, the nonlinear bounds corresponding to the Hashin—
Shtrikman bounds for the linear isotropic composite turn out to be superior in some
cases to the Talbot—Willis bounds for the same material, and identical in other cases
(see PONTE CAsTAREDA, 1990, for an example). Finally, whereas the Talbot-Willis
structure leads to some ambiguity in the prescription of self-consistent estimates, the
new structure leads to a unique prescription for a self-consistent estimate, as well as
to a straightforward generalization of other types of estimates, including differential
and dilute estimates. The main advantages of the new structure are the simplicity of
its implementation and the generality of its potential applications. Clearly, these are
features that could make the proposed structure of great practical, as well as theoretical
value. -A=—mmore=xbxteast derivation of this structure is given in PONTE CASTAREDA
(1990), and some of the potential applications to other types of composxtcs will be
addressed elscwhere.
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AppenDIX: ExacT DuALITY BETWEEN [ AND V'V

Here we demonstrate that

l * -

flo= “s,UP {WS'-V‘"(M")}. (Al)
uh>0

given that
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(U L
VI (AD) = sup S8 =/ (9) 1. (A2)
s>0 (G4

Proof: Let x = 5*, and assume that F{x) = f(s) is a convex function of its argument. Then, if
we define G(y) via the Legendre transform

G(y) = su% {x»=F(x)}, (A3)
we have by Fenchel duality (VaN Tiet, 1984, Corollary to Section 6.11a) that
Flx) = sup {x>r—=G (). (Ad)
>

Now, il we let y = 1/6;i'", (A2) and (A3) imply that
Gﬂ)’) = VI, (A9)

and therefore it follows from (A4) that (1) holds.
@ This result is a special case of a more general result derived in PONTE CasTAREDA (1990).
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VARIATIONAL ESTIMATES FOR THE EFFECTIVE PROPERTIES
OF A POROUS RAMBERG-0OSGOOD MATERIAL

Pedro Ponte Castafieda
and
Gal de Botton

Department of Mechanical Engineering
The Johns Hopkins University
Baltimore, Maryland 21218

Abstract

A new variational procedure recently developed by Ponte Castaiieda [1] for estimating and
bounding the effective properties of nonlinear composite materials is applied to an incompressible
isotropic matrix containing an isotropic distribution of voids. The uniaxial stress-strain behavior of
the matrix is linear up to the yield stress, and "linear plus power-hardening" for stresses exceeding
the yield level. The solution procedure exploits a useful "comparison” between the effective
potential of the nonlinear porous material and that of an appropriately chosen inhomogeneous,
linear material. It is important to note that the proposed procedure is different from the procedure
advocated by Talbot & Willis [2], which makes use of a linear, but homogeneous comparison
material to accomplish the same goal. Results are given in the form of a rigorous lower bound and
a self-consistent estimate for the effective potential of the porous material. The results are compared
with the results of Willis [3] for the same problem.

Introduction

The theory of linear composites is fairly well developed, including different approaches to
the problem. Thus, exact estimates have been determined for the effective properties of ad hoc
models for composites; rigorous variational bounds have been given for the properties of random
composites; and explicit formulae have been given for the properties of periodic composites.
Appropriate, but by no means exhaustive, references dealing with the linear theories are provided
by [4-6]. By contrast, the theory of nonlinear composites is not very well developed, and most of
the results are based on ad hoc models, such as dilute and self-consistent models. For instance,
dilute estimates are given in (7] for the effective properties of a nonlinear porous material. The first
contribution dealing with the calculation of rigorous bounds for the effective properties of
nonlinear composites is provided by the work of Talbot and Willis [2]. These authors extended the
well-known Hashin-Shurikman (8] variational principles to include nonlinear constitutive behavior,
and their methods have been applied to a number of examples in different physical contexts. For
example, bounds and estimates for the effective properties of nonlinearly viscous (or deformation-
theory plastic) materials are determined in [3] and [9). A new variational procedure for estimating
the effective properties of nonlinear composite materials was developed recently by Popte
Castafieda [1]. This procedure can be used directly to obtain bounds and estimates for the effective
properties of nonlinear composites from any corresponding bounds and estimates that may be
available for the effective properties of linear composites with the same distribution of phases. The
main advantages of the new procedure over the procedure given by (2] are the simplicity of its
implementation, the generality of its potential applications and the strength of the results. In
reference [1], the general procedure is also applied to an incompressible isotropic matrix containing
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an isotropic distribution of voids, and specific results in the form of a Hashin-Shtrikman bound
and a self-consistent estimate are provided for pure-power law behavior for the matrix material.
The results for the bounds are found to be stronger than the corresponding bounds given in [9]. In
this work, we consider the application of the general result for a porous material for the special
case of stress-strain behavior for the matrix which is linear up to the yield stress and linear plus
power-hardening for stresses exceeding the yield level. The new results are discussed and
compared with the corresponding results of Willis [3].

New Noli Hashin-Sheril Bounds and Self-Consi Esti

We are interested in estimating the effective properties of composites with nonlinear
material behavior. By a "composite” we mean an idealized material that corresponds to the limit of
a sequence of heterogeneous materials with two distinct length scales: one microscopic /
corresponding to the size of the heterogeneity, and one macroscopic L corresponding to the size of
the specimen of interest and the scale of variation of the boundary conditions. The effective
behavior of the composite is then obtained by considering the limiting behavior of the sequence of
materials as the ratio of scales £ = I/L tends to zero.

Consider an n-phase composite occupying a domain £2 (normalized to have unit volume),
with each phase occupying a sub-domain Q(7) (r = 1, 2,..., n), and let the stress potential,

U(o,X), be expressed in terms of the n homogeneous phase potentials, U"(c), via

U(o,x)= 3 (U (o), 0))
where !
) = 1 ifx e Q® @
Z 0 otherwise

is the indicator function of phase r. The phases are assumed to be isowopic, so that the potentials

U(c) depend on the stress & only through its three principal invariants. Here, we will further
assume that the dependence is only through two of the invariants, namely, the mean stress,

g,.= %trc, and the effective stress, o, = \/%S—S » where S is the deviator of ©.
The effective behavior of the composite material is defined, following [10], in terms of the
effective energy, U(G), that arises due to the uniform traction boundary condition
o;n;=3T;n, x€0Q, 3)

where J£2 denotes the boundary of the composite, n is its unit outward normal, and & is a given

constant symmetric tensor. The average stress in the composite is then precisely @ and it follows
from the prirciple of minimum complementary energy that

U(S)= min U(o), @
where

(o) = ja U(o,x)dV
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\ ,

is the complementary energy functional of the problem, and
S(G)={olo;;=0in 2, and g;n, = G;n; on 82}

§"i
is the set of statically admissible stresses. Thus, if € denotes the average strain over the composite,
it can be readily shown that

&= (@), ®)

ij
which yields an effective constitutive relation for the composite in terms of the average variables &

and €. Given this connection between the effective potential for the composite U(G) and the

effective stress/strain relation, it makes sense to seek information on U(G). Notice that U(G) is
convex.
Next, following [1], we make use of a linear heterogeneous "comparison" material, with
effective properties that can be characterized in terms of bounds and estimates, to obtain
corresponding bounds and estimates for the effective properties of a nonlinear composite. To this
end, we introduce the quadratic potential

1
Uo,x)=Y x"(x)U(c) = ol+——02, (6)
’Zﬂx u(x) 2700
such that (x) = z 2Px)a"”>0, and K(x)= 2 x"(x)k7 >0, with the g and £

constant, correspondmg to a linear isotropic. composxte with the same phase distribution (the same

indicator functions) as the nonlinear composite.
Then, if the nonlinearity in the potential of the original composite is stronger than quadratic

as the norm of the stress becomes large, it makes sense to define the set of functions
vO@E”,£°) = max(U(0) - U(0)), ¥
such that
V(. &)=Y 2 x)VO3?, &) = max(U(o,x) - U(o,x)}. (8)
rai o

It follows that, forall 2, £ >0 (r=1,..,n) and ©, ateach x € Q
U(o,x) 2 U(o,x) - V(i, §),
and hence that for all 1, € > 0 (r = 1,..., n), and for every G

0(@)20@) -V, 0, ©)
where
U(o) =£}i(ral)U(0') (10)

is the effective potential of the linear composite, and

V "&) Z c(’) V(’)(ﬂ (r) K'(r))




expressed in terms of the volume fractions of each phase,
o L0
¢'= j,, x(x)dV.

Thus, if we could compute U(G) for the linear composite in terms of 4 and &”, expression (9)
yields a family of bounds for the effective potential of the nonlinear composite, U(G), for every

choice of the set of parameters 2?, £ > 0. This family of bounds can be optimized by
considering

U.@)=_max (U@)-V(LR). (an
Then, evidently, o
U©)2U_(o). (12)

Usually, however, it is not possible to find U (T) explicitly, but instead bounds and estimates may

be available for 5 (G). If we have a lower bound (such as a Hashin-Shtrikman lower bound)

U._(S) for U(8), such that

U(@®20.(3), (13)
then, replacing l;} (o) by (5_(6‘) in equation (11) for U_(3), still yields a lower bound for U(o);
alternatively, an upper bound for & (G) is not useful in terms of obtaining an upper bound for

U(G). On the other hand, if we only have an estimate (such as a self-consistent estimate) ﬁ,(ﬁ)
for U(5), then

7,6)= max (U,8)- V(&) (14)

ﬁ(’)'k(')>°

would provide only an estimate for U(G).

We note that the prescriptions (11) and (14) lead to convex expressions for the bounds and
estimates of the effective potential of the nonlinear composite, provided that the corresponding
bounds and estimates for the linear composite are convex, which is in turn guaranteed assuming

that /I and & > 0. This is a desirable feature, because the effective potential of the composite is

known to be convex. ; . .
In reference [1], this general procedure was applied to an isotropic porous material with

incompressible behavior for the matrix with potential

Uo)= f(0,), (15)
where f is assumed to satisfy the condition that F(x) = f(s) be a convex function of x = §2>0.
The result of this calculation are a Hashin-Shtrikman (H-S) lower bound for U(G), given by

0.8 = cf (s), (16a)




with
1 = p
5= F‘T‘/(l +%#cMG + %P2, (16b)
and a self-consistent (S-C) estimate given by
F E) = o
it U,(G)=c"f(s), (17a)
1
1 (1-¢®/3Y 22, 9¢®
5= \/C_“T(I_—W G+ im G2 |. (17b)

New Resuits for the Porous Ramberg-Osgood Material
In this section, we specialize further the results of the previous section by taking the
constitutive behavior of the matrix, as given by equation (15), to be described by the relation

f&)=[ f(s)ds

f'(s)=e,{aif[(aij-[-z—f)a}y(s-a,)}. (18)

Here, H is the unit step function, n > 1, 0, is the yield stress, and o, and &, are used to

where

normalize the stresses and strains, respectively, such that the ratio ,/¢, corresponds to the
Young's modulus of the material. Then, the uniaxial stress/strain relation for the matrix material is
linear up to the yield level, and linear plus power-hardening for stress levels in excess of the yield

value. Note that this function satisfies the convexity assumption invoked above.
Thus, the H-S bound and S-C estimate for the effective energy of the porous material are

given by expressions (16) and (17), respectively, where f is specified by equation (18). From
these expressions, we can also determine, via equation (5), effective stress/strain relations for the

porous material of the form

s =3 0p B 19
€,=3¢ f(s)aa" 19

where s is given by either (16b) for the H-S boum:l, or by (17b) for the S-C estimate.
We compare the new results with the results of reference (3] for the same material in

Figures 1. All the results correspond to ,/d,=0.2, n = 10 and porosity, ¢ =0.3. Figure 1a

shows normalized plots of the H-S lower bounds and the S-C estimates for the effective energy U
as functions of the average effective stress, @,, for a fixed value of the average hydrostatic stress,
G./0,=0.25. The dashed lines correspond to the new results given by equations (16) and (17),
and the continuous lines correspond to the "best" results® of [3]. The H-S lower bounds lic below

* The raw data of [3] was not available, and the plots of these results in Figure 1 was accomplished by graphical
methods. Thus, there may be some small error in the representation of the results of [3] in Figures 1.




T .

the S-C estimates, as they should. It is seen that, for this case, corresponding to relatively low
triaxialities, the new results are not very different from the results of [3], but the new bound lies
slightly above the bound of [3], and hence it is better. Figure 1b shows similar normalized plots

for the case where &@,/0,=10. In this case, corresponding to higher triaxialities, the
improvement in the H-S lower bound is more dramatic, with the new bound lying well above the
bound of [3]. The new S-C estimate also lies well above the bounds and S-C estimate of reference
[3] (outside the range depicted in the graph). This is not surprising, however, because for such
large values of n the differences in results are being exaggerated by the stress energies (which are

proportional to the stress to the n+1 power!). Figures 1c and 1d show plots of &, versus £,,
according to equation (19), corresponding to the bounds and estimates given in Figures 1a and 1b,
respectively. The S-C estimates, being less stiff, lic below the H-S bounds. It is interesting to note
that the new results do not show the complicated structure of the results of [3] for the larger value
of the average hydrostatic stress. This is because for the new results, a large enough average
bydrostatic stress will saturate the linear response of the material, in such a way that additional
average shear stress leads to a less stiff power-type response. By contrast, the stress/strain relation
predicted by [3] does not seem to be influenced significantly in its initial stages by the level of
applied average hydrostatic stress, showing an unrealistically stff initial behavior.

Figures 2a and 2b show normalized plots of the H-S bounds for the effective energy U as
functions of the average effective stress, G,, in the low-triaxiality range corresponding to

=

a%? l << 1, for values of n = 3 and 10, respectively. The three curves correspond to values

of ¢® = 0.25, 0.1 and 0.01, and a value of &,/c, =0.2. Higher porosity naturally leads to less
stiff behavior. Figures 2c and 2d show normalized plots of the H-S bounds for the effective energy

U as functions of the average hydrostatic stress, 0., in the high-triaxiality range corresponding to
@ >>1, for values of n = 3 and 10, respectively. The two curves correspond to values of

c¢® =0.25, and 0.1.
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F‘ ig. 1 Normalized plots of (a) & (b) H-S bounds and S-C estimates for U against &,, and of (c)

& (d) G, against £, computed from the H-S bounds and S-C estimates, for the two values of

&./o, =

0.25 and 1.0, respectively. The dashed lines correspond to the new results, and the
continuous lines correspond to the results of [3).
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Fig. 2 Normalized plots of (a) and (b) H-S bounds for U against &, in the low-triaxiality range,

and of (c) & (d) H-S bounds for U against &, in the high-triaxiality range, for the two values of
n = 3, 10, respectively. The different curves correspond to three different values of the porosity

¢*® =0.25, 0.1 and 0.01, with the higher porosities lying lower in the graph.
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Abstract

A new variational method for estimating the effective properties of nonlinear
composites in terms of the corresponding properties of linear composites with
the same microstructural distributions of phases is applied to an isotropic,
incompressible composite material containing a brittle (linear) and a ductile
(nonlinear) phase. More specifically, in this particular work the prescription is
used to obtain bounds of the Hashin-Shtrikman type for the effective properties
of the nonlinear composite in terms of the well-known linear bounds. It can be
shown that in some cases the method leads to optimal bounds.

Introduction

PONTE CASTANEDA (1990a) has proposed a new procedure for estimating the
effective properties of composite materials with phases exhibiting nonlinear
constitutive behavior. The procedure, which is straightforward to implement,
expresses the effective properties of the nonlinear composite in terms of the
effective properties of a family of linear composites with the same distribution




: of phascs as the nonlincar composite. Appropriate references for the lincar theory
of composites arc given by the review article of WILLIS (1982) and by the
monograph of CHRISTENSEN (1979). The new procedure was applied in the
above reference to matcrials containing a nonlincar matrix cither weakened by
"voids or reinforced by rigid particles. Estimates and rigorous bounds were
obtained for the effective properties of such matcrials. The Hashin-Shtrikman
bounds (obtained via the new method from the linear Hashin-Shtrikman bounds)
were found 1o be an improvement over the corresponding bounds obtained by
PONTE CASTANEDA and WILLIS (1988) for the same class of materials using an
extension of the Hashin-Shtrikman variational principle 1o nonlinear problems
proposcd by TALBOT and WILLIS (1985). Recendy, WILLIS (1990) has shown
that the Hashin-Shtrikman bounds obtained via the new method can aiso be
obtained by the method of TALBOT and WILLIS (1985) with an optimal choice of
the comparison material. More generally, however, the new procedure can make
use of linear higher-order bounds and estimates o yield corresponding bounds and
estimates for nonlinear materials. In fact, the new procedure can be shown to
yield exact results for a certain class of nonlinear composites. This is discussed
in detail by PONTE CASTANEDA (1990b).

In this paper we apply the general procedure (o a composite containing a
brittle (linear) and a ductile (nonlinear) phase. We assume that the phases are
perfectly bonded to each other, incompressible and isotropic. Additionally, the
size of the typical heterogeneity is assumed to be small compared to the size of
the specimen and the scale of variation of the applied loads. It is further assumed
that the effect of the interfaces is negligible, so that the effective properties of
the composite are essentially derived from the bulk behavior of the constituent
phases. Both upper and lower bounds of the Hashin-Shtrikman type are given for
the isotropic composite as functions of the properties and volume fractions of
the phases. Specific results are given when the behavior of the nonlinear phase is
linear plus power-law, including the pure power-law case. Some of the bounds
are shown to be optimal (i.e., microstructures can be given attaining these

bounds).

Effective Properties

Consider a two-phase composite occupying a region of unit volume (2, with
each phase occupying a subregion (X7 (r = 1, 2), and let the stress potential,

U(o,x), be expressed in terms of the homogeneous phase potentials, U(o),
via

2
U(a.x)= Y 2" (x)U" (o), M
r=]




/1

where

1 if xe Q"
(Nx) = ’ (2)
X7 {0 otherwise
is the characteristic function of phasc r. The phases are assumed lo be

incompressible and isotropic, so that the potentials U(6) can be assumed to
depend on the stress © only through the effective stress

= [2 :
g,= 2S S.

where S is the deviator of o. Thus, we assume that there exist scalar-valued
functions ' such that
(@)= f"(a,).
Then, the stress field o, satisfying the equilibrium equations
3, =0, ©)
is related to the strain field €, related to the displacement field u via

1
&= 5(“u +u;), C))

through the constitutive relation

U

£ 30, (G,%). ®)
The commas in equations (3) and (4) denote differentiation, and the summation
convention has also been used in equation (3). We assume that the phases are
perfectly bonded, so that the displacement is continuous across the interphase
boundaries. However, the strains and, therefore, the stresses may be
discontinuous across such boundaries, and hence equation (3) must be interpreted
in a weak sense, requiring continuity of the traction components of the stress
across the interphase boundaries.

We note that if we let € represent the rate-of-deformation tensor and u the
velocity field, the above equations can be used to model high-temperature creep,
as well as high-rate viscoplastic deformations. Here we will present our work in
the context of time-independent plasticity (deformation theory), but in view of
the above comment the results could be given appropriate interpretations in
nonlinear creep and viscoplasticity.

To define the effective properties of the heterogeneous material we introduce,
following HILL (1963), the uniform constraint boundary condition

oyn,=0,n, XX )
where 02 denotes the boundary of the composite, n is its unit outward normal,

and © is a given constant symmetric tensor. Then, the average stress is precisely
o, ie.

DR



G= jo o(x)dV @)
and we define the average strain in a similar manner by

£= jﬂ g(x)dV. ®)

The effective behavior of the composite, or the relation between the average
stress and the average strain then follows from the principle of minimum
complementary energy, which can be stated in the form

U@) = min U(a), &)
where

(o) = [ Ute,x)av
is the complementary energy functional of the problem,
$(@) ={olo,;=0in £2, and o;n, = G,n, on IQ}
is the set of statically admissible stresses, and where we have assumed convexity
of the nonlinear potential U(o,x). Thus, we have that

5, =L@ (10
do,

y

Our task will be to determine bounds and estimates for U(G), which, under the
above assumptions, is known to be convex.

Bounds and Estimates

A new variational principle for determining bounds and estimates for the
effective properties of nonlinear composites in terms of the effective properties
of linear composiies was proposed by PONTE CASTANEDA (1990a,b). In this
section, we specialize the derivation given in PONTE CASTANEDA (1990b) for
the case where both phases are incompressible, and phase #2 is linear so that

1
U(o)= 6 u® o;.

The new variational principle is based on a representation of the potential of
the nonlinear material in terms of the potentials of a family of linear
comparison materials. Thus, for a homogeneous nonlinear material with

"stronger than quadratic” growth in its potential, U(c), we have that




U(a)2 Tg(U.(c)- Vi), (Im
where
V() =max({U,(0) - U(a)) (12)
and
U,(o) =$oﬁ‘ (13)

is the the potential of the comparison lincar material.
To demonstrate this result, let

U(a) = ¢(s), (14)
where s=o?. Then, the Legendre-Fenchel wransform of the scalar-valued
function ¢ is given by

¢ (a) = max(as - ¢(s)}, (15)
where a is assumed to be positive. A well-known result in convex analysis
(VAN TIEL 1984, §6.3) is that

o(s) 2 rgixox{sa -9" (@), (16)
with equality if ¢ is a convex function of its argument. With the identifications

s=o7 and a=(6u)", we can see that (11) and (12) are but simple re-
statements of (16) and (15), respectively. In particular,

V)= ¢(ﬁ] (17)

To derive the new variational principle, we apply (11) to the nonlinear phase
#1, and make use of the result in the complementary energy principle (9). Thus,
after some manipulations, we find that

U(3) 2 max {ﬁ,(a)- J’V‘”(,u‘”)dv}, 18)
»7(x) o*
where
U,@:qm)ﬁ,(c). (19)
1
U,(0.x)=Y 2" (x)U" (o),
rul
and

, 1
U£ )(0') = 61 G'Z

——— ——— -




Note that the comparison lincar material agrees with the actual material in phasce
# 2 (which is lincar). In the above derivation, we note that the comparison

moduli 4 are functions of x, since the stress ficld ¢ will also in general be a

function of x within phasc #1. If we assume that U (o) is "strongly convex”
(i.c. if ¢ is convex), then we have cquality in (11), and hence, usually, equality
in (18). However, if the conditions for equality arc not met, relation (18) still
provides a useful lower bound for Z7(6"). An detiled derivation of this result,
discussing the precise conditions for equality, is given in PONTE CASTANEDA
(1990b).

The variational principle described by (18) roughly corresponds to solving a
completely linear problem for a heterogeneous material with arbitrary moduli
varigtion within the nonlinear phase, and then optimizing with respect to the
variations in moduli within the nonlinear phase. Thus, one can think of the
nonlinear material as a "linear" material with variable moduli that are determined
by prescription (18) in such a way that its properties agree with those of the
nonlinear material,

This suggests that if the fields happen to be constant gver the nonlinear
phase, then the variable moduli z**(x) can be replaced by constant moduli £®.

More generally, however, we have the following lower bound for Ueo)

U.(®) = max(U,(8) - V™)), 20)
50

where ¢ is the volume fraction of phase #1. The result in this form is a special
case of a more general result first derived by PONTE CASTANEDA (1990a), when
only one of the phases is nonlinear, and the other one is linear.

We note that the prescriptions (18) and (20) lead to convex expressions for
the bounds and estimates of the effective potential of the nonlinear composite,
provided that the corresponding bounds and estimates for the linear composite are
convex. This is a desirable feature, because the effective potential of the
composite is known to be convex.

Application to Hashin-Shtrikman Bounds

HASHIN and SHTRIKMAN (1962) prescribed bounds for the effective moduli of
linear-elastic, isotropic composites, depending only on the volume fractions of
the phases. When there are only two phases, these bounds have been shown to
be optimal (i.e., microstructures can be given that simultaneously attain the
bounds for the shear and bulk modulus) by FRANCFORT and MURAT (1987).
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Figure 1. Rank-2 laminate.

Their construction made use of iterated laminates for which the effective
properties can be computed exactly. Such materials are obtained by layering the
two constituent phases to obtain a rank-1 laminate; the resulting material is once
again layered (in an arbitrary direction) with one of the original phases in a
smaller lengthscale. This procedure can obviously be iterated » times to obtain a
rank-n laminate. In general such materials will be anisotropic, but by choosing
appropriately the layer orientations at the different layering operations, it is
possible to obtain an isotropic composite, and its properties coincide with one of
the Hashin-Shtrikman (H-S) bounds depending on which constituent phase is
selected to play the role of the matrix material. Figure 1 depicts a rank-2
laminate (not to scale) with phase #2 as the matrix phase.

For the special case of incompressible materials, when there is only one
modulus for the composite, the H-S upper bound for the effective shear modulus
can be expressed in the form

m
H if u®>u®

; a(u® 1@
H.= w (z;u ) . (1)

u .
B(u® Py if p®spu®

where

2cu® +(3+2cM)u®
(243 )@ +3c¢Mu®

a( 1o, um) = lv2))




\m‘

2™ 4 (3+ ZC(U)#m
ﬂ(“m’“m) = (2 . 3c"’)ll‘” +3cu®

23)

The corresponding H-S lower bound is obtained by interchanging the expressions
in (21) for the upper bound (and keeping the conditions on the shear moduli 4"

and u fixed).
The above H-S upper bound for the effective shear modulus yields a lower

bound for the potential of the linear matcrial J,. This information can be used in
combination with prescription (20) to yield a H-S lower bound for the potential
of the nonlinear material /. On the other hand, upper bounds for U, do not
necessarily generate upper bounds for .

The result for the lower bound on I/ depends on which of the two branches
of (21) is used in conjunction with (20). If 4™ > u™, then the average effective
stress G, must be such that the condition

u¥f@,)<3,, (24)
is satisfied (usually when the average shear stress is small enough). Here, for
simplicity, we have made the identification /" = f. The corresponding form of

the bound is then
0.@=5@), @
where
i 2+3¢®) 5\
. fl(a'-.) = c(l)f(-'i) + #(2)[£:2L-). - (%) J(f'("))z (26)
and s solves the equation
, @Yoz P2
4 (2 +3C(,,)f§:) - _;_[(2 +3¢ 3)c(;<0'.) 2] ) @n

On the other hand, if 4 < u®, then the average effective stress &, must be
such that the condition
uPf(@,)>3, (28)
is satsfied (i.e., when the average shear stress is large enough), and
0.@®)=£(@). 9)




s

\

where

(3+2cM)57 +¢(2+3c™)s* - 10c™s7,
lsc(l)“(l)

A@Y=cVf(s)+ , (30)

and s solves the equation

9cPU® f(s) = 58, - (2 +3cM)s. 31
The corresponding stress/strain relations have the form

=%f'(a.>s. 32)
where

2 (3 +2c‘”)<'f, — 500
'5' 660D

but f13.) does nat have a simple expression.

I general, we do not expect the above lower bounds for & to be optimal. In
fact, expression (25) does not yield an optimal bound if condition (24) is
satisfied. However, it is shown in PONTE CASTANEDA (1990b) that if condition
(28) is satisfied, then the bound (29) is optimal. This is because the same
microstructure attaining the linear bounds can be also shown to attain the
nonlinear bound; the reason being that the fields are constant in the (nonlinear)
inclusion phase, and hence expressions (20) and (18) are identical. Similar
observations have been made by KOHN (1990) in a similar context (starting from
the Tatbot-Willis nonlinear variational principle) and, independently, by PONTE
CASTANEDA (1990c) in the context of conductivity.

Conversely, in general, we do not expect that interchanging conditions (24)
and (28) would turn expression (25) and (29) into upper bounds for the nonlinear
potential . This is contrary to the corresponding operation for the linear
composite. All that can be said, however, is that expression (29) is an estimate
for the upper bound for U if condition (24) is satisfied and that expression (25)
is an estimate for the upper bound for U if condition (28) is satisfied. Both of
these estimates are expected (o get progressively better with weaker
nonlinearities.

@)= (33)

Application to Power-Law Behavior

In this section, we specialize further the calculations of the previous section by
taking the constitutive behavior of the nonlinear phase to be governed by a linear
plus power relation

et rereeeem et




20 \n+l/n
Note that the casc u — oo corrcsponds to pure power-law behavior, and the
limits n— 1 (in addition to & — e0) or 11 — o= correspond (o lincar behavior.
The conditions (24) and (28) dctermining the appropriate branch of the
bound specialize to

fla)= %[L{—‘—)io:"]o:‘- (34)

@ ,m
%—- + “7- gl <l 39

and the opposite inequality, respectively. The first condition guarantceing that
(25) is a lower bound (and correspondingly that (29) is an estimate for the upper
bound) corresponds to small enough average stress on the composite.
Alternatively, the second condition (with > instead of <) corresponds to
sufficiently large average stress. Note that, if 4 /i >1, condition (35) can
never be satisfied and, conversely, the alternative condition is always satisfied.
This condition ensures that the difference between the potential of phase #1 and
that of phase #2 is convex. Here, we will consider two cases: one case, meeting
this condition, with 4® /i =2, and the other with £ /u =0, corresponding to
the pure power-law case.

The results for the bounds (25) and (29) specialized to the case when (34)
holds can be expressed in the form:

7 2 2

_lj_(z)_zF{u_(_)(_f:'l;#_(_).’c(n'n}’ (36)
U(Z) (a—) n U

where the precise form of F depends on whether (25) or (29) applies, and

(1 /)& plays the role of the independent variable, with #®/u, ¢® and n,

serving as parameters.

Results for the upper and lower bounds for U are given in Figures 2 and 3
for the case where 4 /u =0, and in Figure 4 for the case where 4 /u=2. In
the first case, condition (35) determining whether (29) is an estimate for the
upper bound or an optimal lower bound, and whether (25) is an estimate for the
upper bound, or a non-optimal lower bound, simply reduces to the condition of

whether the independent variable (1™ /n)3;™ is less or greater than unity. For
that reason, we give results emphasizing the small stress and large stress
domains, separately, in Figures 2 and 3, respectively.

In each plot we have three sets of curves corresponding to three values of

¢® (0.1, 0.5 and 0.9). Additionally, we show the limiting cases corresponding
to ¢®= 0 and ¢®= 1. These limiting curves appear as straight lines, one with
with variable slope depending on the value of # and 4™ /i, and the other with
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Figure 2(a). Plots of the bounds for the effective energy of the
composite as functions of the average stress (appropriately normalized)

for u™[jt = 0 and n = 3 (small swess).

zero slope (value equal to unity), respectively. The intermediate sets of curves
correspond to the upper and lower bounds.

In Figure 2, depicting results for two values of the nonlinearity parameter
(n = 3 and 10), the continuous line corresponds to the estimate for the upper
bound (for {7), and the dashed line corresponds to the rigorous lower bound. In
Figure 3, showing also results for the same two vaiues of the nonlinearity
parameter, the continuous line corresponds o the optimal lower bound, and the
dashed line is an estimate for the upper bound. For this value of 4™ /u, the
upper and lower bound coalesce when the value of the independent variable
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Figure 2(b). Plots of the bounds for the effective energy of the
composite as functions of the average stress (appropriately normalized)

for p"’/n = 0 and n = 10 (small stress).

(4™ /n)3;" approaches unity. In the linear case, this behavior corresponds to
the limit of the moduli of the phases approaching each other. More generally,
assuming that 4®/u is less than unity, there is a value of the independent
variable (i.e., an average stress level) at which the bounds are equal, and hence
the effective energy of the composite is known exactly. This phenomenon is
related to the lack of convexity of the difference between the potentials of the
nonlinear and linear phases.

In Figure 4, depicting results for the same two values of the nonlinearity
parameter, the continuous line corresponds to the optimal lower bound (for I/),
and the dashed line corresponds to the estimate for the upper bound. In this case,
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Figure 3(a). Plots of the bounds for the effective energy of the
composite as functions of the average stress (appropriately

normalized) for u* / 4= 0and n =3 (large stress)

with a convex difference between the nonlinear and linear potentials, there is no
value of the independent variable for which the upper and lower bound are equal.

Both in Figures 3 and 4, we observe that the lower bound approaches a
straight line with zero slope and the upper bound approaches a straight line with
slope depending on the value of n (smaller for larger a). This is consistent with
the following asymptotic behaviors for the lower and upper bounds
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Figure 3(b). Plots of the bounds for the effective energy of the
composite as functions of the average stress (appropriately

normalized) for u® / 1= 0and n = 10 (large stress)
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Figure 4(a). Plots of the bounds for the effective energy of the
composite as functions of the average stress (appropriately

normalized) for u™ /i = 2 and n = 3.

respectively. These two behaviors correspond physically to the cases of a linear
matrix with voids and a power-law matrix with rigid inclusions (studied by
PONTE CASTANEDA, 1990a), respectively. The reason for these behaviors is that
the lower bound (for I) corresponds to putting the stiffer material in the matrix
phase and the less stiff material in the inclusion phase (and viceversa for the
upper bound). Clearly, for large enough stresses, the linear phase is stiffer than
the nonlinear phase.

‘We note that accurate numerical calculations of the potential of a power-law
matrix with spherical rigid inclusion have yielded results of the form (38) with

=1+ (g_f_"'_))cm as ¢¥ 50, 40)
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Figure 4(b). Plots of the bounds for the effective energy of the
composite as functions of the average stress (appropriately

normalized) for 4™ /it = 2 and n = 10.

where g(n) is such that g(1) = 5/2, g(3) ~ 3.21 and g(10) = 6.09 (LEE and MEAR,
1990), and g(n) — 0.38n as n — «» (HUTCHINSON, 1990). These results do not
compare very favorably with the comresponding results from (39): 5/2, 4.00, 9.25
and 0.75n, but it should be recalled that these results correspond to the case for
which we da not have a rigorous bound (it is simply an estimate of the bound).
None the less, the results of (38) with (39) may provide reasonable estimates for
larger values of the volume fraction of the linear phase,
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