1 14
('?

[ 6. NAME OF PERFORMING ORGANIZATION

Yilb TILE (o

MENTATION PAGE

(
‘ 1

Form Approved
OMB No. 07048148

w

d

(o]

an

AD-A224 504

T
1b. RESTRICTIVE MARKINGS : Z b
3. DISTRIBUTION/AVAILABIUTY OF REPORT

Uninimisad T 0ind Yo Pub)iC e /4.4:

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

q4g19¢42zz~, s 4#4/42ﬂ/75)1

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
AFOSR 88-0029B

Mass. Institute of Technology (f applicable)

A S——————
6b. OFFICE SYMBOL

S. MONITORING ORGANRATION REPORT NUMBER(S)
arofK038TBo209 0 08 3 7

T TN T Y T Y Y
7a. NAME OF MONITORING ORGANIZATION
AFOSR

6¢. ADDRESS (City, State, and ZIP Code)

7b. ADORESS (City, State, and ZIP Code)
Bolling Air Force Base
Washington, DC 20332-6443

77 Mass. Avenue

Cambridee, MA 02139

8a. NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL
ORGANIZATION (If applicable)
AFOSR

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

QYesC 2oy

8c. ADDRESS (City, State, and ZIP Code)

10. SOURCE OF FUNDING NUMBERS

i i PROGRAM PROJECT TASK WORK UNIT
Boll%ng Air Force Btase R MNO. oy e, ACCESSION NO.
Washington, DC 20332-6448 i

/0., |oioz L/
11. TITLE (Include Security Classification) _
Research into Traveling Wave Control in Flexible Structures (’ij
2. PERSONAL AUTHOR(S)
Andreas H. von Flotow
e #
13a. TYPE OF REPORT 13b. TIME COVERED 14, DATE OF REPORT éY“r,Monﬂ!,Day) 15. PAGE COUNT
final FROM 1/11/88 19 28/2/90)  June 15, 1990

16. SUPPLE™ENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Gehite conrm) Alinble &FoucFeres . Sraky

Sart /f°/‘a/¢ Zony -

in flexible structures. The report consists

appendix.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This renort summarizes 16 months of research into travelling wave control

of a brief executive summary

highlighting the main results of the research publications collected in the

DTIC_

ELECTE

JUL 27 1990 [

ch

20. DISTRIBUTION/AVAILABILITY O
&1 unCLASSIFIEDUNLIMITED

—

ﬂ/o*nc USERS

ABSTRACT
SAME AS RPT.

21. ABSTRACT SECURITY CLASSIFICATION

Unclassitied

22s. NAME OF RESPONSIBLE INDIVIDUAL

S ———
DD Form 1473, JUN 86

vk S Wy

22b. TELEPHONE (include Area Code)
Lot Bl B oS-

22¢. QFFICE SYMBOL

Previous editions are obsolete. "2 %</ 70 7 -S8€URITY CLASSIFICATION OF THIS PAGE

[




AFOSRTR- 00 0B 37

Final Report

on

Research into Traveling Wave Control in

Flexible Structures

performed at

Department of Aeronautics and Astronautics
Massachusetts Institute of Technology

for the

Air Force Office of Scientific Research
(Grant AFOSR-88-0029B)

Accesiun For

CNTIS  CE24&
OHIC TRy
Nov 1, 1988 — Feb 28, 1990 e T L
\ Juintihis e
By o
Dt oy
Ty o .
‘—.-——AE .A_n:- ”‘«: 1 -
Dist Soon i }
Al |
L 1 i S !




Summary

This report summarizes 16 months of research into active control of elastic wave prop-
agation in flexible structures.- The research was performed collaboratively between three
graduate student research ass{;tants; Simon Collins, Doug MacMartin, and Darryll Pines,
and two faculty supervisors; Professors Steve Hall and Andy von Flotow.

- The report format is that of a brief executive summary supported by an extensive ap-
pendix containint the research publications generated in the course of this research.

The research performed can be broken into two major fields;

1. Broadband damping by impedance matching the control system to the underlying wave

(or dereverberated) impedance of a flexible structure. 7Prof. Hall and Doug MacMartin

contributed most strongly to this research.

2. Sensor development for purposes of wave observation and control. Prof. von Flotow

and Simon Collins and Darryll Pines contributed most strongly to this research.

The executive summary of the next few pages consists of two separate sections corre-

sponding to these two thrusts of the research.




Sensors for Wave Observation and Control

The prior few years of research into active control of wave propagation have repeatedly
yielded the suggestion that a factor that strongly limited achievable performance was the
difficulty of sensing the quantities of interest; the amplitudes of the individual wave types
simultaneously present in any vibrating structure. With this research project we made the
development of such sensors a high priority for the first time.

The MS thesis of Simon Collins, due to be finished in July, 1990, was started under
this funding. Simon focuses upon spatial convolution of strain signals with continuous,
distributed piezo-film PVDF sensors. He is interested in performing, through spatial con-
volution, some of the acausal temporal filtering required of the wave control designs of the
past few years. The theory for this is developed in his first paper on this topic, [8] and ex-
perimental results are presented for sensors which can be interpreted as wave number filters.
The experiments are performed with bending waves on a one-dimensional beam.

Darryll Pines, for his PhD thesis research, is investigating arrays of point sensors, dis-
tributed PVDF sensors, and arrays of PVDF and point sensors. His goal is to deveolop
wave type/wave number sensors, and to employ them in a wave control demonstration. He
is building upon his own MS thesis research, [9], in which active control of wave propagation
was strongly limited by the use of a strain rather than wave sensor. Darryll’s first paper on
his PhD research [10] is essentially a catalog of examples of arrays of discrete point sensors
used to infer the wave-number/wave-type spectra of one-dimensional structural waveguides
(beams and rods). Any type of point sensors can be used; accelerometers and strain gages
are obvious choices. Pines develops criteria for spacing of these point sensors, and for the
temporal filtering that is applied to each sensor signal before they are combined into signals
representing individual wave types. Important drivers in this design are: 1. the assumed
dispersion characteristics of the waveguide, 2. the assumed spectrum of the signal to be

detected, and 3. the noise characteristics of the individual point sensors.




Dereverberated Mobility /H . Power Flow Approach

The goal of this research 1s broadband active control of structures with significant un-
certainty. If the uncertainty in modal frequencies is of the same order as the modal spacing,
then methods such as finite elements are not appropriate for modelling the structure [1,2].
The resulting large order model is extremely sensitive to small parameter changes, in the
prediction of natural frequencies, and especially in the prediction of mode shapes. As a
result, much of the information contained in such a model is meaningless.

An alternative approach is to use wave-based models of the structure. In Miller et al
[3], the structure is represented as being composed of one-dimensional waveguides. These
meet at junctions, and only the junction at which the control acts needs to be modelled.
The control law can be derived based only on a model of the local dynamics, and this
model is not dependent on uncertainty in the remainder of the structure. However, arbitrary
structures may be difficult to model using this approach because of the difficulty in obtaining
an accurate wave description.

For a general structure, a local model of' the dynamics near the actuator and sensor pair
is still desirable. MacMartin and Hall {4,5] have used a dereverberated mobility (6] model
instead of a wave model. The response at a point can be considered to be the sum of two
parts: a direct field, due to the local dynamics; and a reverberant field, which is caused by
energy reflected back from other parts of the structure. The term “dereverberated” implies
that the “reverberant” part of the response has been removed before computing the mobility.
The dereverberated mobility may be approximated through the use of the cepstrum [6] of
the impulse response, or by taking the average of the log magnitude of the transfer function.

The fundamental distinction between this and wave approaches is the ability to treat
generic structures. While the concept of direct and reverberant fields is based on wave ideas,
there is no requirement to actually identify a local wave model. All that is needed is the
input/output behavior at the driving point, which may be found from experimental data,
calculated from some nominal model, or found analytically, perhaps even from a wave model.
This indicates another important advantage of this modelling approach - the ability to use
experimental data to generate a measurement based model.

The control design approach for this model should guarantee stability and provide “good”
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performance. For a lightly damped system, the power dissipated by the control system is
a measure of the damping that is achieved, and guarantees stability if it is positive at
all frequencies. Ideally, a compensator that dissipates the most power possible at every
frequency is desired. This compensator is in general noncausal, and cannot be implemented.
Miller et al. {3] maximize the frequency weighted power dissipation associated with the
control, using Weiner-Hopf techniques to ensure causality. The drawback to this optimization
is that it will allow power to be generated at some frequencies in order to achieve greater
power dissipation at other frequencies. Since the driving point mobility of a structure is
positive real, stability can be guaranteed by requiring that the compensator be positive real.
Using this result, Miller et al. approximate their optimal compensator with a positive real
form. The final result is suboptimal because the positive real constraint is applied in a
somewhat ad hoc manner.

MacMartin and Hall [4] enforce the positive real constraint by minimizing the maximum
value over frequency of the power flow into the structure. This can be reformulated as an H,,
control problem, as opposed to the H, approach of Miller et al. This minimization results
in power being dissipated at all frequencies, so that closed loop stability is guaranteed. The
importance of a certain frequency range can be increased through the use of a weighting
function.

The dereverberated mobility/H,, power flow approach has been applied to several ex-
amples [4], and has also been demonstrated succesfully in an experiment {7]. This approach
to modelling and control design allows significant damping to be added to many modes
of a structure, without the large effort in system identification, off-line computation, and

compensator complexity that would be required of many control design techniques.
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Abstract

A technique is described for generating guaranteed stable control laws for uncer-
tain, modally dense structures with collocated sensors and actuators. By ignoring
the reverberant response created by reflections from other parts of the structure, a
dereverberated mobility model can be developed which accurately models the local
dynamics of the structure. This is similar in many respects to a wave based model,
but can treat more general structures, not only those that can be represented as a
collection of waveguides. This model can be determined directly from transfer func-
tion data using an analysis technique based on the complex cepstrum. In order to
minimize the effect of disturbances propagating through the structure, the power
dissipated by the controller is maximized in an ¥, sense. This guarantees that
the controller is positive real, and thus that the system will remain stable for any
structural uncertainty. The approach is demonstrated for several examples. Exper-
imental results on a beam in dending are presented. The controller based on this
approach s much more effective than simple collocated rate feedback. Significant
damping was added to many modes of the structure, without requiring a detailed
or high order model of the beam.
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Chapter 1

Introduction

1.1 Motivation and Background

Broadband active control of flexible structures is difficult for several reasons. Struc-
tures tend to be very lightly damped, modally rich, and difficult to model in detail,
due to their large sensitivity to parameter variations. It is well known {4] that for
many applications, there are likely to be many flexible modes within the desired
bandwidth of a structural control system. This is due in part to the light damping
that would be anticipated, for example in large space structures, which implies that
many modes can contribute to the performance. Also, performance requirements
may push the bandwidth higher directly, for example in noise control of machinery,
where the bandwidth must clearly include acoustic frequencies, and therefore many
flexible modes.

One of the problems associated with broadband control of structures is the
uncertainty in the plant model. A state space model of a structure must be at best
an approximation, since the true structure is infinite-dimensional. Finite element
methods are typically used to model a structure, and are sometimes capable of
modelling the lowest modes quite accurately. However, in the region of high modal
density, any model is likely to be highly inaccurate. Models of structures with
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closely spa.céd modes in particular tend to be extremely sensitive to small parameter
changes, in their prediction of natural frequencies, and especially in their prediction
of mode shapes. As a result, the actual structure to which the control will eventually
be applied may differ significantly from the model for which it was designed. Thus
some knowledge about the uncertainty must be taken into account when designing
the controllers.

A variety of approaches have been used to deal with uncertainty in the plant
model. One typical approach is to treat the uncertainty as a multiplicative er-
ror which is totally unstructured. Bounds are specified on the magnitude of the
perturbation, while the phase is assumed unknown. In this case, stability can be
guaranteed by requiring that the closed loop complementary sensitivity be bounded
above by the inverse of the maximum singular value of the uncertainty bound [11].

Thus for the nominal plant G(s), if the true plant is given by
Girue(s) = (I + L(s))G(s) (1.1)

then the system is stable with feedback matrix K(s) if

1
Lom(w)

where 3(-) is the maximum singular value, and L,, is a function which satisfies

2 (G(jw)K(jw)(I + G(jw)K (jw))™*) < Vw (1.2)

La(jw) 2 [3(L(jw))] VY w (1.3)

This approach is reasonable for truly unstructured uncertainty such as unmod-
elled high frequency dynamics, and also may not be overly conservative for some
parametric, or structured uncertainty. However, for lightly damped, modally dense
systems, this approach will be extremely conservative. If the poles and zeroes are
close together, a small parameter error may result in the true pole lying at the fre-
quency of the modelled zero. The model error required in this case is significantly
larger than the plant itself [7]. This would imply that almost no control can be

9
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Figure 1.1: No knowledge of uncertainty direction may result in
physically impossible pole locations

applied in this region, and thus that nothing can be done to damp this mode. The
problem lies in the assumption of no knowledge about the direction of uncertainty.
In fact, since the structure is known to be stable yet lightly damped, there can be
far more uncertainty in the imaginary part of the pole location, or frequency, than
in the real part (S|, as shown in Figure 1.1. Though the relative error in the real
part is large, the absolute error is small compared to the frequency, since right half
plane poles are not possible.

This conservative stability robustness test can be relaxed by taking advantage
of the positivity of structures. A transfer matrix G is positive real if

G(s) +GT(~s) >0 V Re(s)>0 (1.4)

and strictly positive real if the first inequality is strict [1). Any strictly positive
real compensator will be stabilizing for any positive real plant. If the perturbation
matrix L is defined as just the deviation of the plant from the positive real condition,
then stability can be guaranteed if the compensator is both strictly positive real and

10




satisfies the earlier singular value test (Equations (1.2) and (1.3)) for this smaller
perturbation [37).

Another approach for dealing with uncertainty in some parameters is the Maxi-
mum Entropy/Optimal Projection (MEOP) approach by Bernstein and Hyland [5].
The goal of MEOP is to force the LQG algorithm to provide a more robust con-
troller, by including information about parametric uncertainty into the plant model.
This is done by using a stochastic model of the plant uncertainty. This approach
yields compensators with good performance over the entire range of parameters, at
the expense of a cumbersome numerical algorithm. However, there is no guarantee
of stability using this method. The u-synthesis approach by Doyle [12] also allows
for some structure in the uncertainty, and allows the performance to be optimized
not just for the nominal model, but for any model within the specified uncertainty
bounds. Control architectures such as HAC/LAC (High-Authority Control/Low-
Authority Control) (2], hierarchic control [18,20], and many others such as (3], have
been designed to deal with the spillover problems associated with uncertainty in
modelling structures. Other approaches have also been developed to deal with con-
trol design for uncertain structures; a good review of many of these can be found
in [25].

Many of these approaches to control design for uncertain structures begin with
a large order, detailed nominal model of the structure, and deal with uncertainty by
attempting to model it, as well as the nominal plant, in some fashion. However, if the
nominal model contains significant error, then the detailed information it contains
is meaningless, and has no effect other than to increase the computational burden
associated with the control design. Indeed, for broadband control of a modally
rich structure, the dimension of the plant required to model each mode may be
prohibitive for many control design techniques. Instead, only the information that
can be accurately modelled should be included in the description of the plant [5].

With this philosophy, there has been r' ich research on the use of wave based
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models for use in structural control. Early work in this field includes that of Vaughan
(39|, who identified a matched termination as being an appropriate control law for
a beam, and gave suitable approximations for the implementation of the irrational
transfer functions required. More recently, a number of researchers have done both
theoretical {17,23,28,35,41) and experimental {29,32,33,40] work in wave-based con-
trol for structures. The assumption in all of this research is that the local dynamics
can be accurately modelled, and that an effective control system can be derived
based only on this information. The control derivations either attempt to elim-
inate reflection or transmission by controlling elements of the scattering matrix,
or are optimal approaches, based on maximizing some quantity such as the power
dissipation.

Mace (23| derives the control necessary to cancel the incoming disturbances by
creating waves of opposite sign. This methodology can only be effectively applied
to one-dimensional waveguides. For a Timoshenko beam, Hagedorn and Schmidt
[17] maximize the power flow out of the beam to obtain ‘energy valves’ that allow
energy to travel in one direction, but not the other. The modelling formalism
of Miller et al. (28], or that of von Flotow [41] allows the analysis of somewhat
more general structures, including any arbitrary network of waveguides. In this
framework, control laws can be developed to set certain elements of the scattering
matrix to zero, or to maximize the power flow out of the structure. The experimental
results cited earlier have all applied wave control to beams. Von Flotow and Shafer
{40| designed control laws to modify elements of the scattering matrix, and compared
their results with those for modal control. Optimal control techniques were tested
by Miller and Hall [29].

These wave control methods have demonstrated that good performance can be
achieved on a structure without requiring knowledge of uncertain information such
as the modal frequencies. One drawback to many of the wave-based approaches is
that they cannot always be applied to a general structure, at best being able to

12




treat networks of waveguides.

Of particular relevance to this thesis is the optimal control approach of Miller
et al. [28]. The structure is represented as being composed of one-dimensional
waveguides which meet at junctions, and only the junction at which the control
acts is modelled. Using Weiner-Hopf techniques to ensure causality, Miller et al.
maximize the frequency weighted power dissipation associated with the control.
The drawback to this approach is that it will allow power to be generated at some
frequencies in order to achieve greater power dissipation at other frequencies. If
there is a mode of the system at such a frequency, it may be destabilized by this
compensator. This problem is corrected by approximating the optimal compensator
with a positive real form, which is guaranteed to be stabilizing. The final result,
then, is suboptimal, because the positive real constraint is applied in a somewhat
ad hoe manner. Thus while this design procedure is attractive, an approach which

treats more general structures and provides a guarantee of stability is desired.

1.2 Approach

This thesis dacril;ea a new approach to the modelling and control of uncertain
structures that will guarantee both stability robustness and performance robustness.
Much of the material presented here has been summarized in a previous paper [24].

The goal is to obtain a compensator that will provide broadband damping to the
structure. This might be used in conjunction with a low order modal compensator
which could provide good performance on those modes that could be well modelled.
Thus this could be used as the low authority controller in a HAC/LAC architecture
(2], rather than the rate feedback typically used. Rate feedback is guaranteed to
be stable, but it is not necessarily optimal. In general it is possible to add more
damping to a structure than can be obtained through rate feedback [29].

The model used in this thesis is the dereverberated mobility at a collocated and
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dual actuatér/sensor pair (22|. Only that part of the response which is due to the
local dynamics is retained in the model. This can be shown to correspond in the
frequency domain to an averaging, or smoothing, of the transfer function. This
model bears some relationship to the wave approach of [28], but it is more general,
as it allows structures which are not networks of waveguides to be treated.

Since the driving point mobility of a structure is positive real, stability can be
guaranteed by requiring that the compensator be positive real. This is assured by
minimizing the maximum value over frequency of the power flow into the structure.
This minimax problem can be reformulated as an ¥, optimization problem, and
then solved using existing software. This results in a compensator which dissipates
power at all frequencies. Taking energy as the Lyapunov function shows that the
closed loop system must be stable for all plants, provided that the sensors and
actuators are not mismodelled. Extensions based on the results of Slater [37] to
allow for actuator and sensor dynamics, time delays, or actuators and sensors that

are not collocated, are possible but are not treated here.

1.3 Overview

The remainder of this thesis is divided into six chapters. Chapter 2 presents some of
the necessary mathematical background. This includes some theory on ¥, control,
and results on spectral factorization from [15] that will be needed in Chapter 4.
Some of the wave mode theory of {26] is also presented, this will be used in deriv-
ing transfer functions in later chapters. In Chapter 3, the approach to modelling
is presented, and parallels will be drawn with existing wave approaches. Both a
computational approach based on the caiculation of the complex cepstrum, and a
simpler approach based on smoothing the transfer function are presented. The for-
mulation of the control problem appears in Chapter 4. The unconstrained problem

is solved first, with no requirement that the solution be causal. The solution to the
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causal probfem is solved by representing it as an X control problem, and state-
space methods are given to obtain this representation. Chapter 5 demonstrates the
approach for several examples. Experimental results on a 24 foot brass beam are
presented in Chapter 6. These are compared with previous experimental results
using rate feedback and ¥; optimal wave control on the same structure in [29]. Fi-
nally, Chapter 7 presents the main conclusions and contributions of the thesis, and

discusses a number of possible extensions to this research.
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Chapter 2

Mathematical Preliminaries

In Chapter 4, the ¥ control design approach will be required, as will a number of
results on state space spectral factorizations. Some elements of wave mode theory
will also be useful in deriving open and closed loop transfer functions in the examples
in Chapter 5. In the interest of simplifying the later discussions, the necessary

mathematical background will be presented here.

2.1 X, Control

A good reference for ¥, theory is Francis’ book (15|, from which much of the
following material is drawn. Before discussing the X, control design method, a

number of definitions are required. First, define the Hardy space Xo:

Definition 1 X, 18 the space of all complez functions of a complez variable which
are analytie and bounded sn the open right half plane.

Thus, G(s) EX if G(s) is both stable and proper. (Though it need not be strictly
proper.)
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Definition 3 The norm Il On Xoo 18 given in the scalar case by
1G(s)ll = sup |G(s)] (2.1)
Re(e)>0

Thus, the infinity norm is the supremum of a function in the right half plane. In
the matrix function case, the infinity norm is the supremum of the largest singular
value of the matrix. From the maximum modulus theorem, it can be shown that
any function analytic and bounded in some region achieves its maximum over that

region on the boundary, thus
1G(8)llo = sup|G(jw)| (2.2)
wER

Furthermore, if we consider G to.be an operator acting on some (in general,

vector) variable z, then the norm of G can be written as an induced operator norm

as
Gzl|
G(s = su ”—3- 2.3
66l = sup L2 23)
= sup |Gz, (2.4)
s€ENew
ll=ll;=1

This defines the infinity norm in terms of a norm over X;, which we have yet to
define.

Deflnition 3 ¥; ss the space of all complez functions of a complez variable which

are analytic sn the open right half plane, and satisfy

&0

sup [51;- / Tr{lG(f +jw)|’} dw] < o0

The norm ||-||, on Xy is the square root of the left hand side of the above ezpression,

which can be shoun to be equivalent to

166l = [ [ {16t} as] (23)
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Figure 2.1: Four Block Problem

Further, define inner and outer functions, using the notation

G~(s) = GT(-s) (2.6)

Definition 4 A matriz G in X, 18 inner if G~G = I. G is outer if it has no zeroes

in Re(s) > 0.

Thus an inner function has unit magnitude, is stable, and purely nonminimum
phase. An outer function is minimum phase. Note that multiplication by an inner
function does not change either the ¥, or the ¥ norm of a matrix function.

Now consider the standard four-block control problem, as shown in Figure 2.1.
The goal is to find a stabilizing compensator K from the sensed output y to the
control input u which will minimize in an appropriate sense the closed loop transfer
function from the disturbance w to the conirolled variable z. This transfer function

is given by the lower linear fractional transformation
H(P,K) = P,, + Py ,K(I - P, K) 'P,, (2.7)

Note that w contains all disturbance sources, including both process and measure-
ment noise. Similarly, z contains all the quantities to be minimized, including both
state and control penalties. In general, the plant P includes the system, actuator

and sensor dynamics, and the dynamics of any weighting on w or z.
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This rep-resentation of the problem is standard in the ¥, control formulation.
The standard Iinear Quadratic Gaussian (or ¥;) problem can also be written as
the same four block problem, the only distinction being the norm used in the opti-
mization, and the implicii assumptions about the characteristics of the disturbance.
In the context of LQG, the disturbance is gaussian white noise, and the Xj-norm
of the controlled variable is minimized. If the disturbance can accurately be char-
acterized in this form, then LQG may be the appropriate technique to use. The
X., problem instead minimizes the ¥ -norm of the transfer function from w to z.
From the definition of the operator induced norm Equation (2.4), the appropriate
interpretation of the disturbance is the worst case disturbance, having u_.it power at
a single frequency (which corresponds to the maximum amplification of the transfer
function). Thus N, is suited to prob]éms in which the disturbances are likely to

have significant narrowband energy at a poorly characterized frequency [6].

Define the notation

AlB
G(s) = + =C(sI- A)'B+D (2.8)
clp

Hence G can be represented by the finite dimensional system of ordinary differential

equations
t = Az + Bu

y = Cz+ Du (2.9)

Then the four-block transfer function matrix in Figure 2.1 may be represented as

A| B, B,
P=|Cy|Du Dy (2.10)
C: | Dy D

The ¥ control problem formulated in this way can be solved using state space

methods via an iterative solution to two Riccati equations. These are presented in
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[13] with some slightly restrictive assumptions, and in [16] for the general case. The
iteration searches for the minimum value of the ¥, norm of H(P, K), denoted 4. It
is worth noting that at this optimal solution, H(P, K) = v everywhere; the closed
loop transfer function is a constant function of frequency.

In addition to the purely LQG solution and the ¥, solution to the four-block
problem, a combined problem can be studied with a constraint on the ¥, per-
formance in an X, optimization [6]. This allows a design trade-off between ¥
objectives and X, objectives, resulting in a compensator that combines the benefits
of each. This problem simplifies immensely if the same quantity is penalized in both
the X, and X; formulations. In this case, it is equivalent to a maximum entropy
problem [31], the solution to which is readily obtainable from the same two Riccati
equations as before [30]. In fact, this is equivalent to simply removing the iteration

in the X, solution procedure.

2.2 Spectral Factorization

As is the case for ¥, theory, a good reference on spectral factorization is Francis
(15], in which the details of the following results are given. The algorithms and
theorems will be presented here without proof.

Before proceeding with the definition of a spectral factor and the algorithm for
computing it, some additional results from Equation (2.8) are useful. From the
definition (2.6) and the expansion in Equation (2.8),

_AT _CT

G~(s) = (2.11)

BT | DT
The inverse of G can be expressed by writing G in differential equation form (Equa-
tion (2.9)), and manipulating to obtain the input as a function of the output,

A-BD-'c|BD"!

-1 —_
Sl s | D!

(2.12)
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Of course, this is valid provided D # O, so that G™! is proper. For notational
purposes, define
A*=A-BD"'C (2.13)

Finally, if T is a nonsingular transformation matrix, then

A|B
C

Now, define the spectral factorization of G(s).

T-'AT | T-'B
CT | D

(2.14)

Definition 5 Consider G(s) square with G~ = G, G and G~} proper with no poles
on the imaginary azis, and G(oo) > 0. Then G. is a spectral factor of G(s) if

G =G~G. (2.15)

and

G-,GZ! € Noo (2.16)
G_ 18 a co-spectral factor of G if, instead of the first condition,
G=G_.GZ (2.17)
with the second condition still holding.

Note that if G_ is a spectral factor of G, then GT is a co-spectral factor of G7.
- Thus the same algorithm may be used to compute either the spectral factor, or the
co-spectral factor.

From the definition, it is clear that the goal is to split G into two components, one
of which is stable and minimum phase, the other of which is anti-stable and purely
non-minimum phase. The approach is to find two subspaces, one corresponding to
the unstable part of G, and the other corresponding to the stable part of G-, or

the minimum phase part of G. Then if the two spaces are complementary, that is,
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they are independent and together span the entire space, then G can be factored

into the two desired components.

For G given as in Equation (2.8), the subspace corresponding to the stable part
of G is denoted X_(A), and that corresponding to the unstable part is X, (A).
The subspace corresponding to the minimum phase zeroes of G is the same as that
corresponding to the left half plane poles of G}, or X_(A4%).

A transfer matrix G(s) satisfying the coruitions in the definition of the spectral
factor can be written as

where G, is stable, minimum phase, and strictly proper. Find a minimal represen-

tation of G,:

A |B
G, = |1 (2.19)
Ci| O
Thus from Equations (2.11), (2.18) and (2.19),
Ay O B,
G=|0 -AT|-cT (2.20)
¢, Bf | D
Since A, is stable and — AT is anti-stable,
0
X, (4) = Im[ } (2.21)
I
where Im(-) denotes the image of (:).
At this point, some results about Hamiltonian matrices are required.
Deflnition 6
A -R
H= (2.22)
-Q -AT

is a Hamiltonian matriz sf Q and R are symmetric, and R is esther positive sem:-

definite or negative sems-definste.
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The followiﬁg results all require that H have no eigenvalues on the imaginary axis,
and that (A, R) be stabilizable.

If R in Equation (2.22) is zero, then there exists a unique matrix X satisfying
the Lyapunov equation

ATX+XA+Q=0 (2.23)

and the modal subspaces of H are given by

pO

X,(H) = Im 1} (2.24)
1

X_(H) = Im (2.25)
| x

Note that due to the assumption of (A, R) being stabilizable, this holds only for
stable A.

Now consider the case with general R. There exists a unique symmetric matrix
X denoted

X = Ric{H} (2.26)
which stabilizes A — RX, and satisfies the Riccati equation
ATX +XA+Q-XRX =0 (2.27)

Again,

X_(H) =Im (2.28)

X

0
Furthermore, X_(H) and Im [ ] are complementary.
I

Now, return to the spectral factorization problem. The modal subspace X, (A)
is given by Equation (2.21). It remains to find a representation for X_(A*), and
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show that the two are complementary. However,

A" Al 0 Bl D-l [ loi T } (2 29)
= - B .
|0 AT -cT P
[ 4,- B,D-'C,  -B,D-1BT
= . . (2.30)
| G DTG -(A - BD"'(,)
is a Hamiltonian matrix. Thus X_(A*) is given by Equation (2.28), with
X = Ric{a*} (2.31)
and this modal subspace is complementary to X, (A).
Defining the transformation matrix
| I o
T = (2.32)
X I
and applying (2.11), then
A, 0 B,
G=| -(C,+BTX)TD}(C, + BfX) -AT|-(CT +XB,) (2.33)
C, + BTX BT | D
From this, one can check that
Ay | B,
G_(.g) = (2.34)
D-Y*(C, + BT X) | D'/

satisfies both Equations (2.15) and (2.16).
For D # 0, the spectral factor of G can be found with this algorithm from the

solution to a single Riccati equation. Results also exist for D = 0, for example in

42).
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2.3 Wave Modelling

This section briefly summarizes a few of the results of Miller [26] that will be used

in subsequent chapters.

The partial differential equation (PDE) of a structural member can be trans-
formed into the frequency domain, and written in state space form as

Y = Ay (2.35)

where y is a vector of generalized displacements and internal forces at the cross-
section z. The eigenvalues of A correspond to wave modes that travel independently.
Thus there exists a transformation matrix Y relating the cross-sectional variables
y to the wave mode amplitudes w. Since these wave modes travel independently,
there exists a diagonal transmission matrix £ relating the wave mode amplitudes at

one position z; to those at another. Thus
w(z3,w) = §(z3, 21, w)w(zy, w) (2.36)

At a junction, such as a boundary where actuator forces act, the wave modes
can be split into incoming (w;) and outgoing (w,) elements. Partitioning y into

displacements u and forces f, then the transformation Y at a junction can be

HE

The boundary condition at the junction relates the displacements « and internal

forces f to externally applied forces Q. This can be written as

written as

Y Yy

w ] (2.37)

W,

| 5. 5| ';] =Q (2.38)

Using these two equations, the outgoing wave mode amplitudes w, can be expressed

in terms of the incoming wave mode amplitudes w,; and the forces Q:

w, = Sw; + ¥Q (2.39)
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Figure 2.2: One Dimensional Waveguide

S is the open-loop scattering matrix, relating the outgoing waves to the incoming
waves. W describes how applied forces Q create outgoing waves. In terms of the

previously defined matrices in Equations (2.37) and (2.38),

= ~[BuJYuw + ByYy,|"! [BJYuw + B, Y] (2.40)
v = [B.,Yw + B;Y/,]_l (2.41)
Now consider a closed-loop strucfure, with feedback from the cross-sectional
displacements u to the applied forces Q of the form
Q = Ku (2.42)
Then the closed-loop scattering matrix can be shown to be

Scr = [I - WKY,|™'[S + VKY.| (2.43)

The closed-loop transfer functions of a structural waveguide can also be calcu-
lated with this wave approach, using a phase closure algorithm. Consider a simple
one-dimensional structure as shown in Figure 2.2. To find the transfer function
between applied forces Q at one end (say, for example, the right end), and the

generalized displacements y at this end, one would proceed as follows:

w, = SLw; (2.44)
w,, = Srwiy + ¥rQr (2.45)
wi, = £w, (2.46)
wiy, = §{Wo (2.47)
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where £ is the transmission matrix from one ex. of this structure to the other.

Combining these equations yields

wip, = £Silw., (2.48)
wop = (I — Sré€SLE)™'VaQr (2.49)

So finally, the relationship between the displacements u and the forces ¢
u = (Yoo + YiéSLE)(I ~ Sré€SLE) ' VRQR (2.50)

A minor extension of this result that can be usef{ul but that does not appear in
[26] is to calculate the envelope of possible transfer functions in Equation (2.50) for
unknown lengths. This corresponds to maximizing or minimizing Equation (2.50)
with respect to the length parameter in £. For simple structures, such as a uniform

beam, this is not difficult, but in general the result is too complicated to be of much

value.
As an example of the th- - presented in this section, consider a uniform free-

free Bernoulli-Euler beam, wita bending stiffness EI, and mass per unit length pA.
The PDE for this structure is

ot ot
EI;F'FPAw =0 (251)
Define the wave number k by
pA
k= -E-,—I-vw = CQ\/; (252)

The transformation from cross-sectional to wave mode variables is given by

v ] [ 1 1 1 1
' ik k —jk -k
y= |— | = | ] w (253
—ElIv™ JEIK® —EIK®|-jEIK® EIk®
| En® | | -El® EIe | -EI® EIN |
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where the ﬁmitions indicated correspond to those of Equation (2.37). v and v’
are the deflection and slope of the beam at the boundary, respectively, and —E [v"
and EIv" are the internal shear force and moment, respectively. The wave modes
consist of a leftward and rightward travelling wave, and left and right evanescent

waves that do not oscillate spatially, but decay with distance. The transmission

e—ihl 0
£ = e (2.54)

The boundary condition of a free end is specified by

ool e -

where F and M are the externally applied moment and force. These are assumed

matrix £ is

F

(2.55)
M

to act in the same direction as the deflections v and v', so that a positive product
of F and v, and of M and v’, results in a positive power flow into the beam.
Equations (2.40) and (2.41) give the open loop scattering and wav: generation

matrices as

-7 143
S = 7o (2.56)
1-2
1+5 |1 &
L. (2.57)

Open and closed loop transfer functions for the beam can then be calculated from
Equations (2.43) and (2.50).
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Chapter 3

Modelling

The intent of this =napter is to develop a useful model for control design for uncertain
modally dense systems. It has been pointed out {19,41] that modes are not useful
in this case. The modal frequencies and mode shapes are extremely sensitive to
sraall parameter variations, and are particularly sensitive if the modes are closely
spaced. Therefore, much of the information contained in a modal model is often
incorrect. This then leads to a difficulty in modelling the uncertainty in a useful,
and not overly conservative manner. The modal model also leads to large dimension

systems, and an associated computational burden.

The detailed information in a modal model may also be unimportant. While
knowledge of the exact mode shapes and frequencies may not be available, this does
not imply that nothing is known about the structure, or that nothing can be done
to control it. A reasonable control system can be designed without relying on this
information. Recognizing this, and recognizing the difficulties associated with a
modal approach, a modelling technique is desired which uses a simplified model of

the structure, containing only the information that can be accurately determined.
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3.1 Dereverberated Mobility Model

The following discussion is restricted to the case where a sensor and actuator are
collocated. When this model is ultimately used for control design, this will of course
result in suboptimal compensators, since each actuator will only have feedback from
a collocated sensor. However, under the assumption of significant uncertainty, while
some information about the behavior of the structure can still be determined at the
driving point, there is very little information that can be relied upon about the
behavior between an actuator and sensor which are separated by many wavelengths
of the disturbance. This restriction is therefore reasonable for the control of higher
frequency modes, or low authority control. If desired, the low frequency modes
which can be well modelled could then be controlled with a high authority control
in a HAC/LAC architecture. In this approach, then, a multi-input multi-output
structure with actuator and sensor pairs at different locations would be modelled
as several separate, single-input single-output systems. Each of these would have
collocated actuators and sensors, and the modelling and control design for each of
them would be performed independently.

Several approaches other than modal analysis have been used in the past to
model structures with significant uncertainty. Statistical Energy Analysis, or SEA
[21), is a field which has seen much research, for example in the analysis of machinery
vibration. The response of individual modes to the driving noise is not calculated,
and only the average response is used. The structure is split into subsystems,
and the average energy in each of these subsystems is calculated from coupling
factors between them, loss factors within each of them, and the power flow into
each subsystem from the driving noise. The result is a description of the structure
that includes information about the average energy distribution, and where power
is being dissipated. As its name suggests, though, SEA is an analysis tool, and the
resulting model is not directly applicable for control design.
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Wi: Incoming Disturbances

Wo: Outgoing Disturbances

Actuator/Sensor Pair

Figure 3.1: Wave behavior in an arbitrary structure

Wave-based models have been used not just for the analysis of structures, but
as a basis for control design as well [17,23,28,29,32,33,35,39,40,41]. Here, a local
model based on the partial differential equation (PDE) that applies to the struc-
tural member at the point in question is developed. The wave model contains the
same information as the PDE, however, depending on the control design approach,
there may be other implicit assumptions that introduce problems, such as ignor-
ing the effect of boundary conditions at other points of the member on the local
response. In most studies, the structural members have been simple one dimen-
sional waveguides, and the structures analyzed have been restricted to those that
" could be well represented by networks of such waveguides. It may be difficult, how-
ever, to obtain a wave description for many complicated structures, because not all
structures can be well represented in this manner.

For some arbitrary structure, as shown in Figure 3.1, insight into the nature of
the problem can still be obtained from a wave approach. Various disturbances are

created at certain points in the structure and propagate through it. At any point in
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the structure, such as at an actuator, the disturbance will be scattered. In general,
each of the resulting outgoing disturbances will eventually affect any global cost
criterion. Thus without a detailed and accurate description of how each outgoing
wave propagates, the goal of the control system should be to minimize the energy
of each of these disturbances. Since the scattering behavior is a function of only the

local dynamics, this goal can be achieved with only a local model of the structure.

An alternative approach to waves for obtaining such a model is to represent
the structure by its dereverberated driving point mobility [22]. The mobility is
the ratio of a generalized velocity and a generalized force, or the inverse of the
mechanical impedance [14]. It is the transfer function between two variables whose
product is the power flow into the structure, thus the sensors and actuators must
be both collocated and dual. The response at a point can be considered to be the
sum of two parts: a direct field, due to the local dynamics; and a reverberant field,
which is caused by energy reflected back from other parts of the structure. The
term “dereverberated” implies that the “reverberant” part of the response has been
removed before computing the mobility. It should be possible to model the direct
field more easily and accurately than the reverberant field, as it depends only on
a few parameters, while the reverberent field depends on the entire structure. For
the same reason, it is the reverberant field that contains greater detail, and requires
more degrees of freedom to model. Thus by using the dereverberated mobility, a
lower order model can be used that is based only on the details of the structure

which can be accurately modelled.

3.2 Cepstral Analysis Approach

The dereverberated mobility may be calculated through the use of the cepstrum
(22] of the impulse response. The cepstrum is the inverse Fourier transform of the

log of the complex spectrum, and is a function of time. For the impulse response
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y(t), the cozhple.x spectrum is given by

Q
= /y(t)e"“’dt (3.1)
0
Since a structural system is causal, y(¢) should be 0 for ¢t < 0. Also,
logY =log|Y| + jé, (3.2)

where the log magnitude is an even function of frequency, and the phase ¢, is an

odd function. The complex cepstrum is given by

c,(t) = F'(log?) (3.3)
F(log|Y]) + F (o) (3.4)

and is purely real. The inverse Fourier transform is given by

o0

(Y (w) = / (w)e'*'dw (3.5)

-0

The low time portion of the cepstrum corresponds to the direct response, and
the high time portions correspond to the reverberant response, with spikes at times
corresponding to the return times of the impulse from the rest of the structure.
Windowing the cepstrum before the first of these yields the direct response, which
can then be transformed back to the frequency domain to yield the dereverberated
impulse response.

The truncation time to choose can be based on the level of confidence in the
impulse response data. This illustrates one of the differences between the dere-
verberated mobility and a local wave model, that being direct control over how
much of the structure is included in the model. By truncating the cepstrum at the
appropriate point, some information about the rest of the structure is maintained
while the details of it are ignored. Thus the control design is provided with more

information, allowing it to generate a better controller.
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The fun&a.menta.l distinction between this and wave approaches is the ability
to treat generic structures without having to represent them with a wave model.
While the concept of direct and reverberant fields is based on wave ideas, there is
no requirement to actually identify a local wave model. All that is needed is the
input/output behavior at the driving point, which may be found from experimental
data, calculated frc.n some nominal model, or found analytically, perhaps even from
a wave model. This approach is shown schematically in Figure 3.2 for the transfer
function from force to collocated velocity at one end of a free-free beam.

This structure provides an interesting example, since the dereverberated mo-
bility can also be found directly from the wave approach described in Section 2.3.
The reverberant field is created by reflections from the far end of the beam, so if
the scattering matrix for this end is set to zero, the dereverberated mobility can be

calculated from Equation (2.50). The result is

y V2 1

F =~ GAVMEDT V5 59)
This can be scaled so that the transfer function is just
y 1
L= 7
F~ 7 (3.7)
The cepstrum for hoth the true and dereverberated structures can also be calculated
from theory:
n (3 - Z.)
Cﬁru = 7-1 log ‘:1 (3.8)
I (s - p)
=1
_ [ HER ol ) - TR coslont)  £30
0 t<0
Cru = 71 { log —= (3.10)
Vdereo \/;“_J
L t>0
=( ¥ Z (3.11)
0 t<0
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Figure 3.2: Calculation of dereverberated mobility from complex
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free-free beam, dereverberated cepstrum (c) and dere-
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The sum in Equation (3.9) is over all poles p; = ¢, w,, + jw,, and zeroes z; =
CoiWs, + JWs,.

These are the functions plotted in Figure 3.2. It should be emphasized that
this theoretical approach would never be used in practice to compute the cepstrum.
It does, however, provide a validation of the approach. The correct dereverber-
ated mobility cannot be found exactly by simply truncating the cepstrum of the
reverberant structure in Figure 3.2(b) to obtain the dereverberated cepstrum in
Figure 3.2(c). If straight truncation were used, though, the resulting dereverber-
ated mobility would be the convolution of Figure 3.2(d) with a sine function, and
this would not differ significantly from the desired function in the region of interest.

Further details on the calculation of the cepstrum, and its use in removing
reverberation can be found in [9,38]. In general, however, it is not necessary to go
through the procedure of computing the cepstrum, truncating it, and transforming

back to the frequency domain.

3.3 Smoothing Approach

There is an alternative, less accurate, but much simpler way to calculate the dere-
verberated mobility. This is based on the observation that the effect of ignoring the
reverberant field is to smooth out the transfer function. If no energy returns from
beyond some closed surface surrounding the actuator, then this is equivalent to the
structure beyond this surface either being infinite in extent, or having perfectly
absorbing boundary conditions. This has also been shown [19,36] to be equivalent
to the logarithmic mean of the original transfer function.

Hodges and Woodhouse [19] demonstrate this by showing that the assumptions
that lead to using the smoothed transfer function in place of the original transfer
function also lead to using a dereverberated model in place of the original reverber-

ant system, and that these two new systems are equivalent. This is shown by consid-
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ering the mean power input to a system by an excitation source with a broadband

spectrum, and comparing the modal interpretation with the wave interpretation.

Skudrzyk (36| considers the transfer function of a reverberant system, and the
affect of damping. As damping is added, the maxima of the transfer function
decrease, and the minima increase. Eventually the transfer function is a smooth
curve at the average of these maxima and minima. This response curve is therefore
that that would be obtained if the system were sufficiently damped and sufficiently
large, so that the reflected waves do not contribute significantly to the response.
The dereverberated system is therefore obtained by increasing the damping and
size of the system, and has a transfer function which is the logarithmic mean of the
original transfer function. This response curve corresponds to the amplitude of the

direct field that is generated by the input.

Thus another way to compute the dereverberated mobility is simply to take a
logarithmic average of the magnitude of the transfer function. This is not surpris-
ing, considering that the cepstral analysis approach described earlier is essentially
the same as low-pass filtering the logarithmic frequency response. The phase can
be determined uniquely from Bode’s Gain-Phase Theorem (8], using the fact that
the dereverberated mobility is positive real. In practice, this method should be
adequate. Fitting the result with a rational polynomial gives a model that captures
the essential dynamics of the system over a wide frequency range that encompasses

many modes, with only a small number of poles and zeroes.

Figure 3.3(a) and (b) shows the transfer function of a free-free Bernoulli-Euler
beam. Rather than evaluating the system response only on the jw axis, however,
the transfer function is plotted for part of the right half complex plane; that is, as a
function of both the real and imaginary parts of the Laplace transform variable s.
The familiar sharp peaks and valleys associated with lightly damped structures only
appear near the imaginary axis. Farther away from the axis, the effect of individual

modes is smeared out, and the transfer function becomes smooth. Since the dere-
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verberated éyatem can be obtained from the original system by adding damping,
as noted earlier, it is the dereverberated mobility to which the transfer function
approaches as the real part of the Laplace variable increases. Therefore, if the goal
of the control system is to move the poles away from the axis, this smooth transfer
function should be a good approximation to the structure. The significance of this
figure for control design will be discussed further in Chapter 4. Figure 3.3(c) and
(d) shows the dereverberated transfer function for the same system. The derever-
berated mobility is a good approximation to the structure everywhere except near
the jw axis.

As an example of the dereverberated mobility approach on a modally dense
structure, consider the transfer functions plotted in Figure 3.4. The graph shows
an experimental transfer function measured from endpoint moment to endpoint
slope rate on a pinned-free brass beam suspended in the laboratory at M.I.T. (This
beam is discussed in more detail in Chapter 6.) Note the high modal density above
a few tens of hertz; it seems reasonable that a control design that relied upon
the exact location of each mode would be undesirable. The average amplitude,
however does not depend at all on the length of the beam or the nature of the
boundary condition at the far end. Also plotted in the figure is the theoretical
response of a semi-infinite Bernoulli-Euler beam (the straight line, calculated again
from the wave approach of Section 2.3), and the average response, which differs
from the Bernoulli-Euler prediction only at low and high frequencies. It is this
average response that would be the appropriate dereverberated admittance, though
the straight line approximation would probably be adequate if the central frequency
range is the range of interest.

The dereverberated mobility model is not intended to accurately represent the
structure; it clearly fails in this regard. However, it is hoped that this will be a
useful model for the design of control systems for the structure. While the resonant

and anti-resonant details of the full reverberant mobility are not explicitly modelled,
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the reverberant field is composed of waves whose behavior is governed by the local
dynamics of the controlled junction each time they pass through it. Thus if the local
dynamics can be appropriately modified based on a local model, then the complete

reverberant field can be controlled.
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Chapter 4

Control Design

The previous chapter described the modelling approach used, while this chapter
focuses on the design of the control system for this model. There are two main ob-
jectives to be satisfied by the control design. It must be guaranteed to be stabilizing
for all possible plants, and it must provide good performance, again for all possible
plants. In order to guarantee stability, positive real feedback from velocity to force
will be required. One could, for example, select rate feedback, which is guaranteed
to be stable, but this does not necessarily give the best performance that could be
achieved. Velocity feedback is only one possible choice of positive real feedback; the
object of this chapter is to derive the optimal positive real compensator.

The criterion to be used for optimality will be the minimum power flow into
the structure. That is, power extracted from the structure will be maximized.
Power flow is the appropriate quantity to minimize to provide active damping of
the structure, and allows a guarantee of stability by ensuring that the power flowing
into the structure due to the control is always negative.

Miller et al. 28| minimized the ¥; norm of the power flow. This required some
assumptions about the power spectral density of the disturbance entering the junc-
tion. In the actual structure, this is related to the control through the disturbance

that previously departed the junction. In the wave model, however, it was assumed
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+0.

Figure 4.1: System Block Diagram I

constant and independent of the control. As a result, in general the compensators
obtained allowed power to be added at some frequencies, since this behaviour could
not destabilize the design model. This problem can be avoided by minimizing the
power flow in an N, setting. For an oﬁen-loop system, the power removed by the
controller is zero. If the closed loop power flow is guaranteed to be no worse at
all frequencies, then the closed loop system is guaranteed to be stable. In fact, it
is sufficient to place a constraint on the maximum value of the power flow which
guarantees it to be negative at all frequeucies. An X; optimization (6] can then be
used, which may improve the overall performance.

Define G(s) to be the dereverberated driving point mobility, and assume some
disturbance input d to be additive at the output. Then the output y is related to

the input u and the disturbance via
y(s) = G(s)u(s) + d(s) (4.1)
as shown in Figure 4.1. As yet, no assumptions have been made about the nature

of the disturbance.

Recall that in Chapter 2 the noise assumptions made in ¥, and X, optimizations
were discussed. Now consider this in the context of the model defined in Chapter 3.
The disturbance d in Equation (4.1) can be thought of as originating from two
sources: the original disturbance input to the real structure, and the reverberant

field ignored in the modelling process. This second source will have significant
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power at the modal frequencies, and if the closed loop damping is still relatively
small, then in steady state this will be much larger than the physical disturbance.
Thus the disturbance spectrum in Equation (4.1) consists of significant power in
narrowband but unknown frequency ranges, which are exactly the assumptions

indicated in Chapter 2 as being appropriate for X, minimization.

4.1 Unconstrained Optimum

Before finding a compensator which minimizes the worst case power flow, consider
finding the compensator which minimizes the power flow at each value of the Laplace

transform variable s. The control law is of the form

u=-Ky (4.2)

where the explicit dependence on the Laplace transform variable has been dropped.

Solving for the control in terms of the disturbance from Equation (4.1) gives
u = —(I+KG)"'Kd (4.3)
= Hd (4.4)
Then the output can also be represented in terms of the disturbance as
y=(I+GH)d (4.5)

The instantaneous power flow into the structure is the product of the input u(t)
and the output y(t), since G(s) is an mobility. The average power flow can be

expressed as a time integral of the instantaneous power flow [27],

T
= 1 1 T
Paw = Jim 7 [ 47(0u(tae (46)

Making use of Parseval’s theorem, this can be transformed into the frequency do-
main: o
1 . : . .\ dw
Paw =3 [ (45 (w)y(iw) + ¥ (jw)u(iw) 5= (47)

-Q0
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The integrand of the right hand side of Equation (4.7) represents the steady state,
or average, power flow into the structure as a function of frequency [27]. For conve-

nience, the average power flow at each frequency can be defined without the factor

of 1, as

P(w) = ¥ (ju)y(jw) + v (jw)u(jw) (4.8)
where (-)¥ indicates Hermitian, or complex conjugate transpose. The Hermitian
operator is not analytic in the complex plane. Instead, the appropriate operator is

the analytic continuation of the conjugate from the Jw axis to the remainder of the

plane. This operator is denoted (-)~ and is defined as in Chapter 2 as
F~(s) = FT(-s) (4.9)
Substituting the earlier expressions for u and y into Equation (4.8) yields
P(w) = d~ {H~(I + GH) + (I + GH)~H}d (4.10)

This equation gives the power flow into the structure as a function of the compen-
sator. The optimal value of H is that which minimizes the expected value of this
expression at each point in the complex plane. Since the power flow is a scalar, it

is equal to its trace. So
Cost(s) = E|[Trace{dd™~ [H~(I+GH)+ (I + GH)~H|}| (4.11)
= Trace{®y4[H~(I+GH)+ (I + GH)~H|} (4.12)
where ®4 = ], = E [dd~| is the power spectral density of the disturbance d.
Making use of the symmetry in (4.12) gives that at the optimum,

A~ =H (4.13)

Using this result, then differentiation gives

0(Coest)

38 =221+ PuH(G+G)+(G+G~)HPyu =0 (4.14)
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From this eﬁuation, the optimal H is given by
Hyp=-(G+G™)! (4.15)

provided this inverse exists. If it does not exist, this implies that if ® 4 is full rank,
Equation (4.15) is valid, and an infinite amount of power can be extracted from
the structure. If @44 is singular, then Equation (4.15) is not valid, however in this
case, Equation (4.14) is not sufficient to uniquely determine H. Since in general
the approach of this thesis deals with SISO systems, this case is not too significant
a restriction on the applicability of this result. Non-scalar ®44 will only arise if
a structure has multiple actuator and sensor pairs of different types at the same
location, since if they were at different locations the structure would be modelled

and controlled as separate SISO systems.

If the inverse in Equation (4.15) éxists, then this compensator is independent
of the disturbance spectrum ®44. From Equations (4.3) and (4.4), the compensator
K is related to H by

K =-H(I+GH)™! (4.16)

so finally,
Kopt = (G™)7? (4.17)

This compensator extracts the maximum poesible power from the structure at every
frequency.

This result is not new; it corresponds to the impedance matching condition
found, for example, in (10]. The maximum energy dissipation is obtained if the
impedance of the compensator is the complex conjugate of the impedance of the

load, which in this case is the rest of the structure.

In general, however, the compensator in Equation (4.17) is noncausal, and can-
not be implemented in real time, since it requires knowledge of future information.

The dereverberated mobility G(s) must be both stable and causal, and is therefore
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right half piane analytic (RHPA). Since it is strictly positive real, it must also be
minimum phase, and thus the optimal compensator in Equation (4.17) will be left
half plane analytic (LHPA). So every pole of the compensator is in the right half
plane. This does not necessarily imply that the compensator is unstable. A right
half plane pole corresponds to a unique transfer function, but there are two time
domain systems with this transfer function. One is causal and unstable, so that the
impulse response is zero for negative time, and increases with increasing positive
time. The other is noncausal and stable, with its impulse response zero for positive

time, and decreasing to zero as time decreases to minus infinity.

One can determine which of these two systems applies in this case from a Nyquist
plot. Since both the compensator and the plant are strictly positive real, there are
no encirclements of the point —1, and thus K must be stable for the closed loop
system to be stable. This implies that in general, this compensator is noncausal.
K can be stable, causal, and LHPA only if it is a constant, and hence only if the
dereverberated mobility is a constant. One such case is that of a uniform rod in
compression, with a collocated force actuator and velocity sensor at one end. In
this case, Equation (4.17) corresponds exactly to the matched termination for the
rod.

Some understanding of why the optimal compensator is almost always noncausal
can be found from root locus arguments. For a point A to be on the root locus of

the plant P(s), the compensator K(s) must satisfy

1+ P(A)K(A) =0 (4.18)
In order to place the structural poles far into the left half plane, the relevant plant
P(s) is the structure as it appears from far into the left half plane.

For a lightly damped structure with a large number of closely spaced poles and
zeroes, one can divide the complex plane into three regions. Near the jw axis,
and close to the poles and zeroes, the transfer function varies significantly from its

maxima to its minima, and the phase varies between +90° and -90°. If one looks at
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the structur.e from farther into the right Falf plane, the effect of individual poles and
zeroes becomes smeared out, and the transfer function approaches the smoothed,
or dereverberated transfer function G(s). The phase of G in some frequency region
will be the average phase of the original transfer function near that region, and the
magnitude will be the logarithmic mean of the magnitude of the original transfer
function near that region. This behaviour is shown graphically in Figure 3.3.

In the left half plane, however, the structure’s transfer function is not G(s). To
determine the phase contribution of each pole and zero, the contour to consider must
now be to the left of every pole and zero, and so each phase change has opposite sign.
The result is that in the left half plane, the structural transfer function approaches
—G(—3s). Therefore, to move the poles far into the left half plane, K(s) must satisfy

1-G(~9)K(s) =0 (4.19)

or

K(s) =1/G(-s) (4.20)

as given in Equation (4.17).
If this compensator could be implemented, all of the structural poles could be
moved arbitrarily far into the left half plane. Instead, the best causal compensator

must be found.

4.2 Causal Optimum

The wave model of Miller et al. [28] can also be put in a form similar to that of
Equation (4.1), though only for structures composed of waveguides. As discussed
earlier, Miller et al. performed an ¥; optimization of the power flow, which did
not guarantee dissipation at all frequencies, and thus did not guarantee closed loop
stability. A more appropriate optimization to guarantee stability is to minimize the

worst case power dissipation, hence a minimax optimization of the power flow into
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the structure. As will be show shortly, this can be cast as an ¥, minimization
problem. In order for this to make sense, though, the disturbance input d should
be normalized to provide the same amount of power available to be dissipated at
each frequency. This provides the designer with complete control over the relative
importance of one frequency range to another, by removing any inherent frequency
weighting from the problem.

With the optimal noncausal compensator derived in the previous section, Equa-
tion (4.17), the closed loop power flow into the structure is given by Equations (4.10)
and (4.15) as

P=-d~(G+G~)"d (4.21)

Represent the disturbance d as _
d= Gow (4.22)

Then if the input w has unit magnitude at a certain frequency, the optimal noncausal
compensator will dissipate unit power at this frequency, provided that the transfer

function Gy is the co-spectral factor of G + G~, given by
GGy = G+ G~ (4.23)

The block diagram for this system is shown in Figure 4.2, and the system (Equa-

tion (4.1)) becomes

y(8) = G(s)u(s) + Go(s)w(s) (4.24)

Now, consider the problem of finding a causal compensator that will minimize
the worst case power flow in Equation (4.8). This quantity represents the power
flow into the structure, which will hopefully be negative. The goal is to find a
compensator K that results in

min max {47 (jw)y(jw) + y7 (jw)u(jw)} (4.25)

This minimax problem can be solved directly, using the approach of [34]. Alter-

natively, it can be reformulated as an X, problem, for which software to find K
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Figure 4.2: System Block Diagram II

exists. In order to cast this as an ¥, optimization, however, the performance in-
dex must be positive definite. Note, though, that the best causal compensator can
dissipate no more power than the uncbn.strained, noncausal optimum. Thus if the

disturbance power w™~w is added to the cost, positive definiteness will be assured.

The cost at each frequency is therefore

Cost(w) = ww+uv y+y u (4.26)
= ww+ 4~ (Gu + Gow) + (Gu + Gow)™~u (4.27)
“[e+6~ G| u
=" ° (4.28)
w Gy I w
= |Gsu +w| (4.29)

From this, the relevant output that should be minimized is
z2=Gju+w (4.30)

Combining this with the system equation (4.24), the result can be written as a four
block problem (compare with Figure 2.1):

HEMIN
y 0 u
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The compensator from y to u that minimizes the ¥», norm of the transfer function

from w to z will minimize the maximum power flow into the structure.

For computation, however, the unstable (1,2) block in Equation (4.31) is un-
acceptable. Any allowable compensator must stabilize this block, while the only
important stability constraint is on the output y. Recall from Chapter 2, however,
that the norm of z is unchanged by multiplication by an inner function. Define A(:)

to be the characteristic polynomial of the transfer function (), and define the inner

function
A(G3 (9))
G (s) = =22 4.32
1) = R Golo)) (4.32)
Then redefine z to be
2= GG u + Gw (4.33)

so that the four-block problem (4.31) becomes

R -

in general, it may be desirable to weight some frequency ranges more heavily

G\l G\Gy
Go G

which is stable.

than others, while still requiring that power be removed at all frequencies. This
could be because there is a known disturbance source in a certain range, because
structural modes are ' s well damped within this range, or because the performance
requirements put more emphasis on this range. Similarly, there will usually be some
frequency beyond which performance is not required, and the weighting can also be
chosen to reflect this.

The manner in which the weighting is introduced into the problem must be such
that if power is added to the structure somewhere, the resulting cost will be worse
than the open-loop cost. Hence, rather than weighting the sum of the disturbance

input power and the power input by the control, as in Equation (4.26), define the
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cost to be the sum of the disturbance power and some frequency weighted control
power, as

Cost(w) = w~w + W™ (v~y + y~u) W, (4.35)

which can be manipulated into the form

2
W;(Ga‘u + !U)

(4.36)
Wgw

Cost:l

where W, is the selected frequency weighting, and W, is defined by the relationship
LA ARES! (4.37)

The output z of the four block problem is then

z= { Wi(Gyu+w) } (4.38)

Wgw

Note that as desired, the open loop cost is unity everywhere, and the cost is greater
than unity at any frequency where power is added to the structure. Thus as before,
a closed loop cost of less than unity guarantees stability.

The only constraint on W, is that its magnitude be less than or equal to unity
at all frequencies. Without this constraint, there is no guarantee that the cost be
positive definite, and the minimization could fail. Where W; is small, a greater
amount of control effort is required to reduce the cost than before, and thus there
is more power removed. Hence, in order to emphasize some frequency range more
heavily, the weighting function W, should be chosen to be smaller within that region.

Recall from Chapter 2 that one of the properties of ¥, compensators is that
at the optimum, the closed loop transfer function being minimized is a constant
function of frequency, equal to some number v [15]. From this, and Equation (4.35),
the closed loop power absorbed by the compensator can be related to v and the
weighting function. This is expressed as a fraction of the power absorbed by the
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unconstrained optimal compensator:

plw) = ._Tllp;" (4.39)

This provides some insight into how to select W,.

The cost in Equation (4.26) or (4.35) can also be modified to include a penalty
on the control effort, pu~u. The four block problem (4.34) is modified to include
an additional output in the vector z, corresponding to \/pu. This allows a trade-
off between performance and control, and also guarantees a proper compensator.
Similarly, it is straightforward to modify the four block problem (4.34) to include
sensor noise. An additional disturbance input is included in the vector w which
affects only the sensor output y.

The final result of this approach is a positive real compensator, which is guar-
anteed to be stabilizing for any positive real plant. However, if there are any time
delays, actuator or sensor dynamics, or if the actuator and sensor are not truly
collocated and dual, then the structure will not be positive real at all frequencies.
Stability can still be guaranteed if the complementary sensitivity is bounded above
by the inverse of the difference of the true structure from positivity, as noted by
Slater [37].

This constraint can be represented as a constraint on the X, -norm of an ap-
propriate transfer function. If the error bound is given as in Equation (1.3) for the
difference from positivity, then stability can be guaranteed if the compensator is
positive real and, as in Equation (1.2),

|IGK(I+GK) " La|_<1 (4.40)
The compensator is positive real if power is dissipated at all frequencies, or
2l <1 (4.41)

with z being given by Equation (4.30) or (4.38). Thus this problem is one of min-
imizing the ¥, norm of one transfer function (Equation (4.41)), with a constraint

on the ¥ norm of another transfer function (Equation (4.40)).
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4.3 State Space Computation

The calculation of the optimal compensator for the four-block problem is most
easily performed in state space, since software exists to solve the state space ¥
four-block problem. The first step then is to obtain a state space representation for
the plant G(s) and the desired weighting function W;(s). From these, state space
representations for W3(s), Go(s), and G1(s) must be calculated. These problems
can be formulated as spectral factorization problems, and solved by methods similar

to those discussed in Section 2.2.

4.3.1 Calculation of G

G, is a co-spectral factor of M = G + G~, and thus can be calculated with the
standard algorithm. The algorithm is restricted to systems G with a non-zero
direct feedthrough term D. This is not a serious restriction, however. No finite-
dimensional model is valid at all frequencies, nor does it need to be. This merely

implies that rather than rolling off at high frequencies, G(o0) should be a constant.

First, define the state space representation of G as

A | B;
Cy | D3

G= = Cy (8] — A)™' By + D1 (4.42)

The reason for the selection of the subscripts on B, C, and D is that G is the (2,2)
block of the four block problem.

Go can be represented as

A|B
Go = : (4.43)
Ca:| Dny
where
D =Dy + D;; (4'44)
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= - 4.45
“ 1o -a| |-BF P )
X, = Rie{A%r} (4.46)

B, = (B:+X,C)D™'/? (4.47)

Dy, = D'Y? (4.48)

From Chapter 2, Definition 5, the conditions required for this spectral factor-

ization to be valid are:

(i) M=M"~,
(ii) M and M~! are proper,

(iii) M and M~! have no poles on the jw axis, (or alternatively, M have no

poles or zeroes on the jw axis),

(iv) M(o0) > 0.

The first condition is clearly satisfied, as is the second, since M and M ™! are proper
with non-zero D;;. If G is a dereverberated mobility, then it has no imaginary poles,
and thus neither does M. Furthermore, G is strictly positive real. This implies that
G(jw) + G~(jw) > 0, and thus that M has no zeroes on the jw axis. This also
implies that M(o0) > 0.

4.3.2 Calculation of G,

The (1,2) block of the four-block problem (4.34) is GG5 . This has the stable poles,
but the non-minimum phase zeroes of M = G + G~. The state space algorithm for
computing this is related to the spectral factorization algorithm found in [15], or
Section 2.2, and only the differences between the two will be indicated here.
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Given G as in Equation (4.42), then

A 0 B, B
A
M=G+G~=| 0 -AT| -cI |=|—H=F (4.49)
Cu| D
C, Bz | Dy, + D22
and
Y lo -at| | -cT P '

The spectral factorization algorithm in Section 2.2 relies on finding the modal spaces
X_-(A}¢) and X, (Aa) corresponding to the left half-plane zeroes of M and the right
half plane poles respectively. Instead, now find X, (Aj,) and X (Axs), correspond-
ing to right half plane zeroes and right half plane poles. If these two spaces are

complementary, then the required factprization exists.

Since the unstable poles of any matrix A are the stable poles of — A,

X (AR) = X-(-AR) (4.51)

Thus the desired factorization exists if X_(—Aj,) and X, (Ar) are complementary.

Since A}, is a Hamiltonian matrix, —Aj, is as well. Thus, there exists a matrix
Xz = Ric{- A%} (4.52)
such that

I
X_(-AY) =Im [ % ] (4.53)

and this is complementary to X, (Ax), given by Equation (2.21). Given this, the

remainder of the derivation follows Francis [15] or Section 2.2 exactly, so that

Gi(s)Go(s) = A I “ (4.54)
i D—1/2(C2 +B{X:) ‘Dlh
= i_l.B_’ (4.85)
| C1! Dy
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Thus,

C, = DV¥C,+ BT X,) (4.56)
Dlg = Dl/z (457)

Since the remaining (1,1) block GI of the four block problem is inner, it must

be true that

Du =1 (4.58)

Then the four block problem in Equation (4.34) is completely specified.

4.3.3 Calculation of W,

The computation of the weighting function W; in Equation (4.37) from W, can also

be represented in terms of a spectral factorization. First, represent W, in state

space as
AI’ Bﬂ
W‘ = (4.59)
Ce | Du
Then
-AT-cT
Wr = s 2 (460)
By | DY
Combining these gives
Ay 0 B,
w\Wr =| -cTc, -AT|-CID, (4.61)

-pIc. -BI|-DID.
The A matrix of this system is a Hamiltonian matrix, with the (1,2) block equal
to zero. Thus the modal spaces are given by Equations (2.24) and (2.25). Hence

define the similarity transformation

I o
Xo I

T = (4.62)
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where X satisfies the Lyapunov equation
ATX, + XA, +CIC, =0 (4.63)
and use this to transform the system, Equation (4.61). This gives

Ao 0 | B,
WWr=| o -4T| -cT (4.64)
¢, -BI|-DID,

where
c., =BTx,+DIc, (4.65)
Then W; is a spectral factor of
Ay 0 B,
I-wWwr=| o -aT| cT (4.66)
-c, -BT|1-DID,

This is now in the form of a standard spectral factorization. In order to apply the

algorithm, W, must satisfy

1-DID, >0 (4.67)
or Wi(o0) < 1. This is not a limitation at all, since multiplying the weighting
function everywhere by a constant will not change the resulting compensator. The
other conditions specified in the definition of the spectral factorization are also
satisfied. Note that if the magnitude of W, is less than one at all frequencies, then

1 — W,W," can have no imaginary zeroes, nor can it have any imaginary poles.

4.3.4 Four Block Problem

Having determined how to compute all of its elements, the complete four-block
problem can be written in state space form as
Al B B
Ci|Du Du (4.68)
Ca D Da
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where

A 0 O B, B,
A=| B,C, A, O 8, = | ByDy, 8: = | ByDy,
0 0 A, B., 0
A (4.69)
chl Cv 0 Dlel DUDIZ
€, = Du = Dlz =
] 0 0 C., D,, 0
Cz=[Cg 00] Du=[Du] D”:[Dzz}

The compensator is then found from the Riccati equations given in [16].
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Chapter 5

Examples

5.1 Example 1: Free-Free Bernoulli-Euler Beam

As an example of the approach developed in the previous chapters, consider a
free-free Bernoulli-Euler beam with a collocated force actuator and velocity sensor
at one end, as shown in Figure 5.1. The dereverberated mobility for this system
was calculated previously in Section 3.2. It is the transfer function of a semi-
infinite beam, which can be found, for example, from the wave approach discussed

in Section 2.3:

V2 1 .
) = GaprEnT 7 1)

Figure 5.1: Bernoulli-Euler Free-Free Beam




For simplicity, assume the mass per unit length p4 and the bending stiffness EJ

are such that

G(s) = —= (5.2)

This can be done without loss of generality, as it requires only a scaling of the plant.

First, consider the unconstrained optimal compensator that extracts the maxi-

mum possible energy. From Equation (4.17),

K(s)=+v-s (5.3)

This compensator has a slope of 10 db/decade, and a phase of —45° at all frequen-
cies. Note that this is the same compensator as that obtained by the unconstrained
optimization in Miller et al. [28], though the derivation differs, and in Flotow and
Schifer (40|, by setting the reflection coefficient corresponding to the creation of
outgoing travelling waves from incoming travelling waves to zero. As expected, the
unconstrained optimal compensator is noncausal and cannot be implemented. That
it is noncausal could be determined by finding a rational approximation to /~s,
which would have right half plane poles, or from the knowledge that /s is stable
and causal, since it is the transfer function of a stable structure (see Example 2 in
the next section.) Since /s is right half plane analytic, /—s must be left half plane
analytic, and therefore if it is stable, it must be noncausal.

Now, find the compensator that minimizes the maximum power flow into the
structure. An analytical solution to this is given in Appendix A. With equal weight-

ing at each frequency, (W, = 1) the optimal causal compensator is

K(s)= Vs (5.4)

Thi  similar to the noncausal solution, Equation (5.3), with the same magnitude
everywhere, but a phase of +45° instead. This is the “best” causal approximation to

Equation (5.3), and dissipates exactly half of the incoming power at all frequencies.
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Figure 5.2: Schematic root locus with N design (a) and with ve-
locity feedback (b).

Further insight into the nature of this control can be found from the root locus,
shown schematically in Figure 5.2. With velocity feedback, an appropriate choice
of gain will add significant damping to a given mode, and those nearby, but it is
not poesible to add significant damping to all of the modes at the same time. Thus
the gain in velocity feedback must be optimized to provide damping at a certain
frequency. Far enough away from this frequency, the gain is either too low to have
much affect, or too high so that the closed loop poles lie near the open loop zeroes,
which are undamped. With the optimal causal compensator /s, the locus is not as
far into the left half plane, but now every pole can be placed at the leftmost part of
its locus simultaneously. Ideally, one would like the root locus to be arbitrarily far
into the left half plane, and place each pole at the leftmoet part of its locus. This
is the behavior obtained by the unconstrained optimal compensator /s, which of
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course cannot be implemented.

Now consider including a weighting function to increase the importance of a
certain frequency range, say in a narrow band near 1 rad/sec. So select W, to
have unit magnitude far from 1, and less than unit magnitude near 1 rad/sec.
Recall that more importance is placed where the weighting function is smaller. An
analytic solution here would be difficult. However, the plant in Equation (5.2)
can be approximated adequately over a wide frequency range with a finite number
of alternating poles and zeroes on the real axis, with equal logarithmic spacing.
The state space methods described in Section 4.3 can then be used to obtain an
approximate compensator. The resulting compensator is plotted in Figure 5.3, along
with the optimal compensator with unity weighting from Equation (5.4), and the
unconstrained optimum from Equation (5.3). Note that the magnitudes of these
last two compensators are the same. Equation (5.2) in this case was approximated
by 9 poles and 9 zeroes with frequencies from 1074 to 10* rad/sec. The weighting
function W; had zeroes at ﬁ- and v/2, and poles at 7o and 24/2. Far from the region
that was selected as important, the compensator still has a /s behavior, though
with less magnitude than the unweighted optimum in Equation (5.4), resulting in
poorer performance. Near 1 rad/sec, though, the slope of the compensator is now
-10 db/decade, and the phase is closer to —45°. At 1 rad/sec, the compensator has
exactly the same magnitude, and almost the same phase as the noncausal optimum,
and thus it absorbs almost all of the incoming power possible. The net power flow
absorbed by this compensator is plotted in Figure 5.4, expressed as a fraction of the
disturbance input power. For comparison, the power absorbed by velocity feedback
and the unweighted optimum are also plotted in the same figure. The comparison
between the two No, designs illustrates the trade-off in the choice of the weighting
function. The power flow can be increased in one frequency region, but at the

expense of decreasing the power dissipation at all other frequencies.

If this control law is now applied to a finite beam, the closed loop performance

63




can be examined. The transfer function between force and velocity at the far
(uncontrolled) end of the beam can be calculated using the phase closure approach
of {27], discussed in Section 2.3. The beam length was chosen so that the fifth mode
of the beam was at the center frequency of the weighted region. The result is plotted
in Figure 5.5, and the envelope of the transfer function for any length beam is also
plotted. As expected, the modal peaks in the region where W, is smallest are more
heavily damped. Note that because the compensator in Figure 5.3 is positive real,
it will not destabilize the beam at any length. (Nor will it destabilize any positive
real structure.) Furthermore, for any length beam, there will be some damping
achieved everywhere, and greater damping in the region of interest, as indicated by

the envelope of possible transfer functions.

From Equation (4.39), the ~losed loop power flow can be related to the weighting
function W,. If the damping in a mode could be related to the power absorbed at
the frequency of that mode, then the achieved damping could be predicted from
knowledge of W, and the achievable o norm v. For a simple beam, an approxima-
tion to this is relatively straightforward; the procedure is presented in Appendix B.
With a unity weighting function W;, the result is

__ log(v)

' ko

This can be compared with actual eigenvalue calculations, and while the result is

(5.5)

not exact, the approximation is reasonable. Thus in this case, not only can the
closed loop power flow be predicted without actually designing the compensator,
the closed loop damping can also be predicted, provided one can give a reasonable
estimate of 4. This would be useful for determining how to modify the weighting

function to produce the desired behaviour.

It is worth comparing the results of this approach with those for other control
design techniques. Methods such as LQG are difficult to compare due to the lack
of a suitable basis for comparison. An LQG compensator will certainly give a

better ¥; norm of the quantity minimized than the ¥, design approach for the
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nominal movdel. For a sufficiently large perturbation in the plant, however, the
LQG design may destabilize the system, as it has poor robustness to parametric
model error. Another design technique which is more suitable for comparison is
collocated velocity feedback. Rate feedback is also positive real, and thus guaranteed
to be stabilizing, but the performance is expected to be worse, being suboptimal.
A comparison of the power dissipated by rate feedback and by two ¥, designs
has already been shown in Figure 5.4. For a given structure, velocity feedback
dissipates power with a specific frequency distribution, with the gain as the only
parameter to vary. The gain changes only the center frequency of the distribution,
and not its shape. The X, design, on the other hand, allows much more freedom
in the characteristics of the power dissipation with frequency. Greater dissipation
at a single frequency is possible than with rate feedback, and broader band power
dissipation is also achievable. The envelope of possible closed loop transfer functions
on the free-free beam is shown in Figure 5.6 for several different gains of rate
feedback, and for the unweighted ¥, compensator described earlier. Once again,
this illustrates the same point. Velocity feedback is stabilizing, but in general, it is

suboptimal.

5.2 Example 2: Pinned-Free Beam

As a slightly more complicated example, consider again a finite beam, but this time
with one end pinned, with a moment actuator and collocated angular rate sensor
at this end. Also include some finite rotational inertia J at this end, as indicated
in Figure 5.7. The theoretical dereverberated transfer function for this beam can
be found once again using the wave approach of Section 2.3. For this structure, the

boundary conditions at the pinned end are given by the matrices

(5.6)
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Figure 5.7: Bernoulli-Euler Pinned-Free Beam

00
B, = [0 ] (5.7)

The wave number k is defined from Equation (2.52). So from Equations (2.40),
(2.41), and (2.50),

- : (5.8)
M V2(pA)V(ETD) /5 + J s '
If there were no rotational inertia J, then the transfer function would be
N
G(s) = — 5.9
() = ZoapnEnT (5:9)
The unconstrained optimal compensator would therefore be
VZ(pA)VA(ED)M4
K(.s) = \/ﬁ (5.10)

This has a phase of 45°. If the weighting function W; was unity at all frequencies,

then the causal optimum found from the ¥, approach would be

1/4 s/4
K(s) = V2(pA) ﬁ(E o (5.11)

This has the same magnitude as the unconstrained optimum, but a phase of -45°.

The calculations required to obtain these compensators are essentially the same as

for the free-free beam in the previous example.

With J # 0, then at low frequencies, the behavior is similar to that of Equa-
tion (5.9). At high frequencies, the transfer function is dominated by the rotational
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inertia, and rolls off at 20 db/decade. From the far end of the beam, the con-
trolled end then behaves as if it were clamped, and regardless of the control, all
disturbances are reflected back. Thus, power flow beyond the rolloff frequency of
Equation (5.8) should be unimportant, and the weighting function here should be
much larger than elsewhere. Also, assume again that some specific frequency range
near 1 rad/sec is more important. Note that while in practice it would be difficult
to extract power at high frequencies, the theory still allows power to be dissipated,
due the presence of G,. At high frequencies, G ~ J‘—., and hence Gy — oo. Thus the
disturbance spectrum is increased indefinitely to allow the same amount of power

dissipation at all frequencies with the unconstrained compensator.

For computation, EI = 7‘-2- and pA = 7‘-2-, so that the low frequency behavior is
exactly /s. The rotational inertia J was selected to be 10~3, to place the rolloff
frequency at 100 rad/sec, at a slightly higher frequency than that considered to be
important. Again, the system was approximated with a rational transfer function
which is accurate over the frequency range of interest, from 10~* to 10* rad/sec.

The compensator for this case is shown in Figure 5.8. At low frequencies, the
compensator is similar to the 71.- that would be optimal with no rotary inertia and
no weighting. Where the weighting function decreases near 1 rad/sec, the phase
jumps towards the noncausal optimum phase of 45°, and thus absorbs close to the
maximum power possible. At high frequencies, as desired, the compensator gives
up and does not attempt to absorb incoming power, though it does remain positive
real. Thus again, the closed loop system is stable for any length beam, and for
~ any boundary co-.'ition at the far end. The open and closed loop transfer function
from moment to slope rate at the controlled end of the beam is given in Figure 5.9.
This transfer function shows the rolloff at 100 rad/sec, beyond which the poles and
zeroes are essentially undamped, but almost cancel each other. The poles are more
heavily damped near 1 rad/sec, but none of the zeroes are affected. Also plotted is
the dereverberated mobility (Equation (5.8)), and the upper bound of the envelope
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of possible tranafer functions for any length of beam.
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Chapter 6

Experimental Results

While theoretical results are valuable of themselves, they must ultimately be tested
in an experiment. This verifies the theoretical results, and indicates problems in
their application. In addition to demonstrating the usefulness of the work, the
experiment points out limitations, and appropriate directions for further research.

The approach described in Chapters 3 and 4 was tested on a brass beam sus-
pended in the Space Engineering Research Center laboratory at M.L.T. Previous
experiments with this beam [26,29] include collocated rate feedback and ¥; optimal

wave control, and these provide a basis for comparison with the X, compensator.

6.1 Experimental Setup

The setup is shown schematically in Figure 6.1. For complete details on the setup,
see reference [29]. The beam is suspended horizontally in the lab, with actuation and
sensing such that the bending vibration can be controlled. One end is effectively
pinned, while the other is free. The properties and dimensions of the beam are
summarized in Table 6.1. The open-loop dampirg of the first 17 modes (up to a
frequency of 27.7 Hz) averaged about 0.3%.

Control is applied through a torque motor at the pinned end, and sensing is
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Power Analog Signal
Amplifier Computer Amplifier
Torque
Motor | Accelerometer Shaker
Gllll 1 BEAM
% ; ; ? Accelerometer
L
Digital Signal
Oscilliscope Processor

Figur: 6.1: Schematic of Experimental Setup

Length
Width
Thickness
EI

pPA

0.102 m
3.175 mm
31.1 Nm?
2.85 kg/m

Table 6.1: Beam Dimensions and Properties
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provided by a linear accelerometer mounted a short distance from the end. The
member connecting the sensor to the tip is assumed to be rigid, such that the
sensor provides a rotational acceleration measurement collocated with the moment
actuator. In practice, this assumption is not quite valid, though it is reasonable in
the frequency range of interest.

In addition to the control actuator and sensor, a shaker and data acquisition
accelerometer were mounted at the free end of the beam. The shaker was mounted
to provide a force collocated with the acceleration measurement. The closed loop
transfer function between these two was used as an indication of the performance

achieved.

The signal from the accelerometer at the controlled end was fed through a signal
amplifier into an analog computer which contained the compensator program. The
output of this was fed through a power amplifier into the moment actuator. The
accelerometer signal from the uncontrolled end was fed into a Signology SP-20
Signal Processing Peripheral to record and analyze the respunse data, and obtain
frequency domain information. This signal was also fed into an oscilliscope so that

any instabilities could be quickly identified, and their frequencies determined.

6.2 Compensator Design

A detailed model of the beam is not necessary for the experiment; it is sufficient
to just take the transfer function from the control actuator to the control sensor.
This transfer function is shown in Figure 6.2. The dereverberated mobility is that
of Example 2, given in Equation (5.8) with the rotational inertia at the tip cor-
responding to the inertia of that part of the actuator armature and sensor that is
fixed to the beam. From the measured transfer function, the effect of this inertia
was at a frequency higher than the region of interest, so for the control design, the

tip rotational inertia was ass\med to be zero. The dereverberated mobility based
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on this assumption is also shown in Figure 6.2.

The optimal compensator with unity weighting is proportional to 71:, given
in Equation (5.11). This compensator can also be derived from previous wave
approaches, and had been implemented on this beam in [29]. In order to test the ¥
approach, a weighting function was selected to emphasize a narrow frequency band
near 35 rad/sec. This corresponds approximately to the frequency of the 7' mode
of the beam. The minimum value of W, in this region was approximately 0.65, and
the weighting increased to near unity a factor of v/2 above and below this frequency,
as shown in Figure 6.3. The optimal compensator from slope rate to moment for
this case was found to be well approximated by the product of the unweighted
optimum, 7‘7, and a two pole, two zero lag-lead network. This network provided
the phase lead that is required so that at the center of the weighted region, the
phase approaches the unconstrained 6ptima.l phase of 45° (from Equation (5.10)),
allowing the compensator to dissipate more power. The optimum poles and zeroes
of this network are symmetric about the center frequency of the weighting function
Wy, at 35 rad/sec. The two free parameters of this network were optimized to
minimize vhe X, norm of the cost. This results in the compensator from slope rate
to moment being

K(s) =63.4-

1 83 + 38.5s + 466
Vs \s? +100s + 3210

The available measurement, however, was proportional to angular acceleration,

(6.1)

and thus a further integration was necessary to obtain angular rate. This integrator
was rolled off at DC to prevent saturation and drift problems. The second order
dynamics were chosen to have a natural frequency of 0.5 Hz, and a damping ratio
of 0.5. Finally, an additional gain was necessary o obtain the compensator from
the sensor signal to the actuator input. The resulting compensator as implemented

was

1 s? + 38.5s + 466 ( s )
_ea10. L. . 6.2
K(s) = 8110- == (;3 1008 + 3210) 3+ 3.14s + 9.87 (82)
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The implementation of the half integrator 7‘7 is presented in [26]. The transfer
function of the circuit used to approximate this is shown in Figure 6.4. The approx-
imation is excellent in the region of interest, however at higher frequencies, it rolls
off too quickly, and there is an associated phase drop, as shown in Figure 6.4. The
measured compensator in the experiment is compared with the desired compensator
in Figure 6.5. Good agreement is obtained, except at low frequencies where the DC
rolloff of the integrator has a noticeable effect, and at frequencies higher than those
shown, where the approximation to 7‘7 is poor. The actual compensator has some
additional phase lead at 35 rad/sec, primarily due to the integrator dynamics, which
results in increased damping at this frequency at the expense of poorer performance

at low frequencies.

6.3 Results

Once the compensator was implemented, the gain was gradually turned from zero
towards the optimal value. Because the actuator and sensor were not truly collo-
cated, and had some dynamics, the plant was not actually positive real. Due to this,
and because of the additional phase lag of the half integrator at high frequencies,
the compensator could not be implemented at full gain without destabilizing high
frequency modes of the beam. At 65% of the full gain, there was an instability
at 775 Hz. (If a Bernoulli-Euler pinned free beam model were appropriate at this
frequency, this would correspond to approximately the 90'® mode of the beam.) At
60% of the optimal gain, a significant improvement in the response of the beam was
already apparent, as shown in Figure 6.6. This figure compares the open loop with
the closed loop transfer function from force at the free end to collocated velocity.
The corresponding open and closed loop transfer functions for velocity feedback
can be found in [29]. The results for the X technique presented here show some

improvement over rate feedback already, even though full gain was not used. As
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desired, the -moda in one particular frequency range are damped more heavily than
others. This range is slightly higher in frequency than that desired due to the im-
plementation at less than the optimal gain. Note that the spikes present in the data
at 16.4, 19.8, 24.3, and 24.5 Hz correspond to torsional modes of the beam, which

are excited by the shaker but are uncontrolled by the moment actuator.

The predicted response based on the implemented compensator is plotted in
Figure 6.7. This was calculated from the experimental compensator transfer func-
tion using the approach of Section 2.3. Reasonable agreement is obtained between
this prediction and the actual transfer function, although the achieved performance
is noticeably better than that predicted. A prediction based on the desired, opti-
mal compensator would be poorer due to the significant additional phase lead at

35 rad/sec in the actual compensator.

Further experimentation is still necessary. The implementation of the compen-
sator could be improved at both low and high frequencies, and this might allow
better performance to be achieved, at a higher gain. Ideally, the experiment should
be done on a structure with truly collocated sensors and actuators. This could be
done on this beam by mounting a tachometer on the torque motor. Ultimately,
however, in any experiment, the input to output transfer function will not remain
positive real for sufficiently high frequencies, and the compensator design should be
modified to recognize this fact. This could be done after the X approach developed
in this thesis has been applied, by including additional roll-off in an ad hoc manner.
This would reduce the complementary sensitivity at higher frequencies, so that the
singular value test of Slater [37] could be passed. Alternatively, and preferentially,

the singular value constraint could be embedded in the design process. Thus this
| experiment has indicated at least one direction that future research into this control

design approach should take.
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Chapter 7

Conclusions and

Recommendations

7.1 Summary

In this thesis an approach to broadband active damping of modally dense structures
with significant uncertainty has been presented. Both modelling and control design
issues for this class of problems were investigated. Instead of a wave-based or modal
model, the structure is modelled with its dereverberated mobility. The maximum
power flow into the structure is minimized by soiving an equivalent ¥, control

problem.

7.2 Contributions and Conclusions

1. A wave based model of the local dynamics of a structure near a collo-
cated and dual sensor and actuator pair is equivalent to a dereverberated
model of the structure. The dereverberated model is more general than
a local wave model, as it can be easily applied to any structure. This

model can be calculated directly from the driving point impedance, by
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taking its logarithmic average, and can therefore be applied even when
only experimental data are available. The dereverberated model retains
many of the advantages of wave models. The local information can be
determined with less uncertainty than the full structural model, while the
global dynamics of the structure can be modified by controlling the local

dynamics near an actuator, with a control law based only on this local

model.

. A causal, guaranteed stabilizing, optimal compensator can be obtained by
minimizing the maximum power flow into the structure. This results in
a positive real controller which dissipates power at all frequencies. This
can be compared with several other compensators that could be designed
based on the same model. The compensator that dissipates the most
power at every frequency is in general noncausal, and cannot be imple-
mented. ¥, optimal power dissipation {28] does not guarantee stability,
and simple rate feedback is stabilizing, but not necessarily optimal. The
desirable properties of the solution can be retained while increasing the
importance of a certain frequency range, through the use of a weighting

function.

. The technique was demonstrated for several simple examples. If a weight-
ing function is chosen to emphasize some frequency range, then at the
frequency deemed most important, the optimal compensator is close in
both magnitude and phase to the unconstrained optimum. Thus at this
frequency, it dissipates almost all of the incoming power possible. The
compensator still dissipates some power at all frequencies, and is there-
fore guaranteed to be stable. The unconstrained optimal compensator
thus provides some insight into how one could select the best compen-
sator without requiring the ¥, design approach. The transfer function

should be chosen to match the unconstrained transfer function as closely
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as possible in both magnitude and phase at the frequencies deemed im-

portant, while maintaining causality and positive realness.

4. Experimental results indicate that this approach to modelling and control
design performs satisfactorily. Significant damping was added to many
modes of a laboratory structure, without the large effort in system iden-
tification, off-line computation, and compensator complexity that would
be required of many control design techniques. Greater damping was
achieved than in velocity feedback experiments on the same structure
[29]. Difficulties arose, however, for two main reasons. First, the imple-
mentation of the compensator was not perfect, particularly at low and
high frequencies. Second, an& more important, the actuator and sensor
were not collocated, and may have had additional dynamics, so that the

plant transfer function was not positive real at all frequencies as assumed.

7.3 Recommendations

1. The approach presented in this thesis works for systems which have a
positive real transfer function between the sensor and actuator. In real
structures, this will never be the case, due to actuator and sensor dynam-
ics, time delays, and noncollocated actuators and sensors. Further work
should investigate ways to modify the control design technique to allow
for perturbations from the positive real condition, for example using the
results of Slater [37|. One approach to doing this was discussed briefly in
Chapter 4. Stability can be guaranteed by solving an X, minimization
problem, with a constraint on the ¥, norm of a second transfer function.

Whether this problem can be easily solved is an open question.

2. Further experimentation is necessary to obtain a better comparison be-

tween this technique and existing control design approaches. On the struc-
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ture used in the experiment in Chapter 6, this could include a better
implementation of the compensator, and either a hardware modification
to give a collocated sensor and actuator, or some allowance in the com-
pensator design procedure for non-collocation. Also, the experiment was
conducted on a structure which could be easily modelled with a wave ap-
proach. Experimental results on a more complex structure for which this
is not the case would be valuable in justifying the modelling approach

presented in this thesis.

3. There may be a relationship between the modelling and control design
approach presented here, and existing approaches, such as MEOP (5] and
other optimal wave control methods (28|. These connections should be
investigated. In particular, Miller et al. [28] solved an ¥; optimal control
problem, while this research solved a similar ¥, problem. A combination
of these two problems would be of interest. Closed loop stability can be
guaranteed -vith an X, constraint, and an X; optimization could then
guarantec erformance [6,31]. Depending on the value of the constraint,
this approach could yield solutions varying from the ¥, optimal solution

presented here, to the X; optimal solution of Miller et al. [28].

4. The approach presented in this thesis optimizes the power dissipation
associated with the control input, which results in active damping of the
structure. However, damping is not necessarily a suitable performance
criterion for all structural control problems. The algorithm should be
modified to allow for the evaluation and optimization of other performance

criteria, such as line-of-sight pointing error.

5. In general, the first few modes of a structure are relatively well known,
and the uncertainty increases with frequency. A compensator which dis-

cards this information is suboptimal. An additional modification to the
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approach should be to incorporate some knowledge of the lowest modes

of the structure.
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Appendix A

Beam ¥o Compensator

For a free-free beam with dereverberated mobility G(s) = 7‘-:, the compensator that
minimizes the maximum power flow into the structure can be found analytically.
From Equation (4.30) the problem is to find a stable, causal compensator that
minimizes the ¥, norm of the transfer function from w to Gyu + w. From the

definition of Gy (Equation (4.23)),

GoGy = ﬁ + \/-_-? (A.l)
V2
= v (A.2)
Or, 73
V2
Go(s) = 7 (A.3)
Since d = Gow, then from Equation (4.4),
u= HGQW (A.4)

The compensator K from y to u will be stable and causal provided H is also stable

and causal. Thus the problem is to find H to minimize

IG5 HGo + 1| (A.5)
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The solution to this, using the notation of Francis [15] is

N = u}l;n||GgHGo+1||°° (A.6)
V2 v=s

= mén —ﬁH+ —‘\/—;f . (A8)

Equation (A.8) is of the form
v =min | R - X]|, (A.9)

where
R = V¢ (A.10)
= 7 .
V2

X = —xH (A.11)

The problem now is to find X € Ny, to minimize ||R — X|| . From the maximum
modulus theorem, only the imaginary axis need be considered, so substitute s = jw

to give

—

R= %’ (A.12)

There are three possible options for the behavior of X(s) at the origin. Either X
has a pole at zero, in which case |R — X|, is infinite, X has a zero at the origin,
in which case |R - X||, 2 1, or X is a constant, with either 0° or 180° phase. In
the last case, the smallest value |R(0) ~ X(0)| can have is Js, for X(0) = J5. Thus
there cannot exist X(s) for which ||R — X||,, < J5. Since the solution X(s) = J;
resultsin ||R - X|| , = é,, this must be an optimal solution. From Equation (A.11),

1 Vs
H=-—2.% A.13
7 (A13)
and from Equation (4.16), the compensator from the output y to u is given by
K=s (A.14)
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Appendix B

Damping Prediction from Power

Flow

The Xo control design approach described in Chapter 4 yields information about the
closed loop power flow achieved, via Equation (4.39). It would be useful to relate
this to the closed loop modal damping achieved in the structure. For arbitrary
structures, this is extremely difficult. However, for a simple structure such as the
free-free beam of Example 1, in Section 5.1, a relationship between power flow and

damping can be derived.

To do this, consider a wave-packet travelling through the structure. The wave-
packet is a spatially localized disturbance, which is also narrowband in frequency,
and thus can be approximated as having a single frequency. Though a disturbance
that is simultaneously both spatially localized and of a single frequency is not pos-
sible, it is an approximation that can lead to reasonable results for sufficiently high
frequency. The wave-packet travels at the group velocity v, of the structure, which
is a function of frequency:

V= 4 = — (B.1)




where ¢g i8 defined in Equation (2.52). Therefore, for a beam of length ¢, in a time

2¢
ty = — (B.2)

Yy
the wave-packet has travelled through the beam and back to its original position,
with a decrease in amplitude associated with travelling once through the controlled
junction.
The compensator absorbs a fraction §(w) of the total power available. Thus in

one cycle, the energy of the wavepacket decreases to
E(t,) = (1-6)E(0) (B.3)

and the amplitude, which is proportional to the square root of the energy, decays

to

A(t)) = V1 -6A(0) (B.4)
The modal solution is of the form
u(t) =Y a;d;(z)eloitiwlt (B.5)

The wave-packet at time ¢; in Equation (B.2) has the same shape as at ¢t = 0, and
only the amplitude has changed. If the disturbance is approximated to consist of
only a single frequency, and if this frequency corresponds to that of mode n, then

the amplitude at ¢, is related to the initial amplitude by

ults) _ gouts (B.6)

u(0)
Comparing this with the wave solution in Equation (B.4), then one finds that the

real part of the eigenvalues is given by

_ log(1 — 6(wa))

On T (B.7)
Combining this with Equation (B.2), then
_ log(1 = 8{wn))y/wn :
Op = TP (B.8)
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where the b'ower absorbed, §(w), is given by Equation (4.39) as

A3
§(w) = 117’:_7’_ (B.9)

In particular, if the weighting function W, is unity, then

log(v) v@n
On = Tl (B.10)
Finally, the modal damping ratio ¢, is related to o, by
On

Thus with equal power absorbed at all frequencies, the time constant of the beam

modes increases with frequency, and the modal damping ratio decreases.
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ABSTRACT

This paper describes several techniques for deriving
opumal feedback compensators for structural waveguides at
juncnons. A frequency dependent cost functional, composed
of power flow and control effort, is minimized. Control of
power flow, by modifying junction reflection and ansmission
properties, enables selective absorption of incoming
vibrauonal power. Noncausal, causal fixed-form and Weiner-
Hopf feedback solutions are derived. These solutions,
including a positive real approximation to the Weiner-Hopf
solution, are 1illustrated through an extensive example for the
free end of a dispersive Bemoulli-Euler beam.

1. INTRODUCTION

For complex structures, modal models can become
cumbersome and 1nnaccurate for higher frequency modes. An
a'ternauve to 2 modal description is to retain only a small
subset of the modal model, one boundary O.D.E. and
descriptions of the members which intersect at that boundary,
to generate a wave de<cription of that boundary’s reflection
and transmission properties. The model is simpler, possibly
mathemauncally exact, and describes important properties of the
structure which exist at that boundary (wave junction).

The genenc representation of a junction, given in Fig.
1. applies to a number of structural locations. For example,
such a location may be a single member erd condition (pinned,
clamped, free, or attached to a complicated flexible body), an
mtersection of several members (e.g., the intersection of
several truss beams), or an arbitrary location on a uniform
member where control hardware is located. A junction
description may also include irtcainal dynamics, as long as a
consistent input/output relation can be derived.

The basic objective behind wave junction control is to
actively alter the wave scattering properties of a junction.
Junction control can be used to extract energy from the
structure or shunt energy 1o non-critical lecations and therefore
has obvious application where vibraticn suppression and
dynamic 1solation arc required.

Several researchers have approached the problem of
controlling elastic structural behavior through the use of wave
models [2. 3. 4, 5, 6, 8.9, 10 and 14]. The technique can
pinpoint important disturbance transmission paths and allow
analysis of the energetic interaction of disturbance sources
with control actuation. Pror work [1, 9, 10 and 14} has
shown that, in special cases, compensators designed for active
absorption of travelling waves can be very similar to direct
velocity feedback. This is due to the common practice of
having only one actuator and sensor at a given structural
location. As more distinct actuators and sensors are placed at a
junction, the compensators become quite different and provide
much better performance. Miller, von Flotow and Hall {2)
denved feedback compensators which alter reflection and
tansmission coefficients to minimize power flow. However,
the lack of a causality constraint in the formulation resulted in
some noncausai compensators. Redman-White [3] minimized
nartow band propagating disturbances by a convergent
algonithm which measures a quantity indicative of power flow.
However, the control is not broadband and an explicit
expression for power flow, which includes evanescent effects,
would have provided a tool for stability analysis and the

IResearch Associate
2 Assistant Professor

derivation of optimal broadband control. Scheuren [4}
recognized the ability to shunt or absorb propagating
disturbances. [n that work. however, evarescent waves were
deemed undesirable due to the lack of 0ols 1o characterize their
contribution to power flow. High performance is vredicted
but often associated with noncausal compensators. Hagsdom
[6] discussed the modelling insensitivity and ~obustness
advantages of local wave control. Temporal exp:=ssions for
power flow were derived yet did not include the contmiutions
of evanescent behavior. Other approaches (8, 9 and 10} are
solely based upon specifying the closed-loop r-flection and
transmission coefficients.

Figure [ Generic wave junction composed of
members and a body.

The motivation for this work lies in the apparent need
for a procedure for deriving broadband, optimal, causal wave
control compensators which minimize explicit expressions
describing the contributions of both propagating and
evanescent waves to power flow at structural discontinuities.

This paper discusses the derivation of optimal wave
control based upon the minimization of power flow out of a
structural junction. This is done by finding that compensator
which minimizes a frequsncy domain cost functional
composed of quadratic peralties on power flow and control
effort. Power flow was chosen because it provides both a
physical and a quadratic quantity for minimization, and yields
certain stability infonmation.

2. TRAVELLING WAVE DYNAMICS

This section presents the wave dynamics equations for
a structural junction of arbitrary complexity (Fig. [). The
frequency domain derivation of component (member and
Junction) dynamics was presented by von Flotow [9]. This
paper, using slightly different notation, makes extensive use of
two of these impornant velazions goveming junction dynamics.
The members are slender, one-dimensional structural
elements. Common spatially continuous examples are beams,
rods and cables, while spatially periodic examples include
slender trusswork beams [11]. These members are viewed as
waveguides along which a set of discrete, decoupled travelling
wave modes may propagate at cvery frequency, w. These
travelling wave modes are coupled to others of the same
frequency hy scattenng at structural junctions. The dynamics
of the juncuon are described by frequency dependent reflection
and transmission coefficients. This viewpoint is analogous to
that adopted in microwave network analysis.




It is appropriate at this point to clarify the convennons
used in this paper. Wave modes in the vicinity of a junction
are grouped based upon their outgoing or incoming nature.
Those evanescent modes which decay exponentially away
from the junction are grouped with the outgoing waves. In
general, wave modes are grouped based upon their causal
origin (i.e., outgoing waves are created at the junction and
incoming waves are created elsewhere).

Von Flotow [1] uses an assemblage of member
ransformation matrices to provide a junction transformation
matrix which relates complex wave mode amplitudes on all
members attached to that junction, at the member/junction
interface, to the member cross-sectional quantities. motion and
stress, at the same location. This relaton has the form

rul rY_ Y_,, WA
'v(w)=lfJ=LY v, }[ w ]= Y (ww(w) 0

fi
where w(w) is the vector of wave mode amplitudes at each
frequency, w. The partitioning of the wave mode vector is
based on propagation direction with respect to the junction:
incoming w; or outgoing w,. The vector y contains all
member motions, u, and stresses, f, at the junction.

Von Flotow (1] gives the junction boundary conditions
transformed into wave mode coordina‘es and arranged in
causal, input/output form. Outgoing waves, w, result from
the scattering of incoming waves, w;. and the generation by
external excitatons, Q;

w(w)= S(ow () + v(w)Q(w) 2)

In this junction description the matrices S and y represent
homogeneous and nonhomogeneous wave behavior and are
called the scattering and generation matrices, respectively.
Both may be complex and frequency dependent. This
description contains only focal junction dynamics and does not
contain information about other portions of the structure. This
Junction model is valid as long as the boundary condition is an
accurate description of the boundary phvsics and the attached
members, for some arbitrarily smali length, behave as
modelled. [n practice, member models can become inaccurate
at frequencies where the wavelength divided by the member
length becomes rather large or small.

3. JUNCTION POWER FLOW

Travelling waves move elastic and kinetic energy
through a structure resulting in a flow of power. The power
flow through junctions is a quantity of int:rest and can be used
for response analysis and control design. Power at an
arbitrary member cross-section is equal to the product of the
deflection velocities and collocated stresses of like type:
velocity and force; rotational rate and moment. The power
flow at a member cross-section can be expressed in terms of
the spectral components of the response variables through the
use of the Power Theorem [17], a variation of Parseval's
Theorem. Though power is a nonlinear quantity enabling
instantaneous interaction between response variables of
different frequencies, it is the interaction between identical
frequency components that results in steady-state power flow.

Miller and von Flotow [15] show that the power flow
through a junction is given by

" " wilw)
PAVG(a))=[w,(‘U) w,(@) ]P/(w{w,(w)} (3)

where P; is the junction power flow matrix, and is given by
vy 'y v'v v'y v'yv,
P = lw - I " fo _ /;, - f;,
i "
Y, Yﬂ Y., Yh Y v, Y Y,

7]

- ¢ ]

PP, (4)
The symbol H denotes the Hermitian or complex conjugate
transpose. The mamix P is a function only of the dynamics of
the members attached to the junction, specifically of the
transformation (Eq. 1) from physical coordinates to wave
mode coordinates. P,yg is real for any mux of wave modes,
since P;j is Hermitian.

In centain applications, such as control or damping
design, it is useful to determine how much power is outgoing
from a junction as a result of both incoming power and
external excitations. When the junction is non-reciprocal due
to the action of active control, the formal analysis developed
by Miller {15] becomes necessary.

4. JUNCTION CONTROL

The waves incoming to a junction can be thought of as
a disturbance to that junctuon. Conceptually, the disturbance 1s
measured and fed to the actuators at the juncuon in order to
reduce or eliminate *he power associated with the resulting
outgoing waves. Figure 2 illustrates this conuol architecture
with F as the feedforward compensator and the junction
matrices shown. This architecture assumes that measurements
of the incoming wave mode amplitudes at the junction interface
are available, and that S(w) and y(w) are known.

Since wave mode sensors are not available off the
shelf. it is desirable to use cross-sectional variables as
feedback measurements. The vector u contains measurable
cross-sectional quantites while f contains those cross-sectional
quantities that are commanded by the actuators. Equation 1
can be used to express the amgplitudes in u in terms of both
incoming and outgoing waves. The use of these quantities as
measurements results in the feedforward of incoming wave
mode amplitudes and the feedback of outgoing wave mode
amplitudes as shown in Fig. 3. In this figure, G is the control
compensator. If G is causal and physically realizable then the

w, b

Y(w)

~ tigure 2 Feedforward of_incominF wave modes
actuator commands, Q, are physically realizable because the
quantties in u are measurable.

Rearrangement of the block diagram in Fig. 3 yields a
structure identical to that in Fig. 2 (see Fig. 4) with a feedback
stage in the feedforward path. This illustrates that cross-
sectional variables can be used as feedback measurements to
mimic the feedforward rejection of incoming wave mode
amplitudes.

w.
! S

w
>

—p

uo
member actual member
dynamics mcasurements  dynamics

"~ Figure 3 Feedback of cross-sectional physical
measurements




Typically. optimal control is based upon the
minimization of some index descnbing a characteristic of the
system being controlled. For this discussion of optimal
junction control, a combination of power flow and control
effort will be the quantity minimized with incoming power
defined as negative power flow. If more power armrives at the
active junction than departs, the net power flow is negative.
Thus, minimization of junction power flow reduces the
amount of outgoing power resulting from incoming power. In
Section 3, power flow was shown to be a quadratic quantity in
terms of the amplitudes of the wave modes incoming to the
junction. Since power flow is expressed in terms of its

frequency components, a frequency domain formulation is
used.

Wi ' W

S "
actual
Yui+YudS /" measurements W
s
T G

z ' H

Y, ¥ —

causal_

Figure 4 LUse of physical measurement feedback to
mimic the feedforward of incoming wave
mode amplitudes

The control optimization problem becomes the
minimization of the expected steady-state power flow plus
contol effort. Summing over all frequencies yields the total
power flow when the structure is undergoing steady-state
motion. Adding a quadratic control effort penalty to the power
term in Eq. 3 and taking the expected value of the resulting
integral relation gives the cost functional as

=iE {j- (w'Pw + Q" RQ)dw}
= llj_- wace (E(Pww" + RQD") )dw

= §]_race (P, (@)9.(0) + R@)Pg(@)d0>

where

H
D (w) = Eww'), Pplw)= EQ@) 5y
The optimal control that minimizes this cost, subject to various
constraints, will consist of linear dynamic compensation. The
following discussion outlines several procedures for
minimizing this specific type of frequency-shaped cost
functonal.

The next step involves defining the appropriate
clements of the feedforward structure shown in Fig. 4. The
transfer function from incoming wave modes to cross-
sectional coordinates in the absence of junction control is

The matrix YoV in the feedback loop of the feedforward path
in Fig. 4 corresponds to the additional junction motions
generated by the control inputs.

The portion of the block diagram outlined by the
dashed line in Fig. 4 can be condensed into a single transfer
function matrix given by

H=G(l -Y_yG) ™

The transfer function relaton from incoming to outgoing wave
mode amplitudes is given by

W.=(S + WHK)W‘=SCLW‘ (8)

. With these definitions in place, the cost functional

given by Eq. S can be rewntten in terms of the incoming and

outgoing wave mode power spectral densides. Panitioning the
vector of junction wave mode amplitudes as

[”‘o] 9
w =
(C))

gives a cost which can be expressed in terms of the auto- and
cross-power spectral density functions for the incoming and
outgoing waves:

J l‘[- 0'4': ¢""] N1
=;_-traa P, . o. J+ RHK® . K H do

(10a)
where we have substituted into Eq. 8 the expression

P = E(QQ")= E(HKww! K"H") = HK®, _ K" H"

(10b)

These power spectral density (PSD) matrices can be

expressed in terms of the PSD matrix of the incoming waves
by substituting the transfer function relation given in Eq. 8

® &S + K"

J=-:I!rcce(P n
- LS +» lIK X0 (S + WK )(S + yHK)

+ RHKOK"H" do (n

where

®=2.. (12)

Optimization involves minimizing the trace of Eq. 11.
This is done, using the calculus of variations, by perturbing
the feedforward matrix, H, by a frequency dependent
perturbation matwix, 1, which is scaled by a small parameter, €

H{w)= H(w)+ en(w) (13)

The procedure involves showing that the optimal feedforward
compensator matrix, H, when subjected to small "allowable”
perturbations, yields a stationary cost. “Allowable”
perturbations depend on the constraints imposed upon the
optimization problem.

The condition that the optimal compensator matrix
must satisfy is found by minimizing the cost with respect to
the small parameter €. The relation governing the optimal
compensator matrix, H, is then found by allowing € to
approach zero. The first variation of the cost is

7 0 L 1
) = § | trace (P Wl('n v "
" ynK® wmK(S +» WK )Y + (S + w1k )OK"n "V

+ RuKOK* 1! + RIIKOK" ") da
(14)
The expression in Eq. 14 can be simplified by
evaluating the trace of the product of the power matrix (Pj) and
the matrix quantity shown in brackets. Partitioning the power

matrix as shown in Eq. 4 yields an equivalent expression for
the first vanaton of the cost as

a = '-,fzmce (PymKd + P_OK"n "t

+ PymK (S + WHK)Y + P (S + yHK K n"y"

+ RnKOK"H" + RHKOK'n ¥ \dw (15)




Using the fact that the race of the hermitian of a matrix equals
the hermitian of the trace of that mamix, Eq. 15 becomes

& = JRe(trace(n”(u/' (P, +P,S)

+ " Py + RHK YK " Ndo (16

where the real part of the trace is retained. )
At this point. the optimization problem can proceed in
several directions based upon the perturbations allowed.

5.1 Noncausal Solution For the feedforward gain
matrix H to be optimal, it must make the cost stationary for
allowable perturbations given by nH. At present, the optimal
noncausal solution is being sought and no constraint is being
placed upon H. Therefore, the optimal gain matrix H must
make Eq. 16 satsfy

a/ =0 (7

for any arbitrary perturbation given by nH. This indicates that
1. and therefore the feedforward compensator H, may contain
both right and left half complex plane dynamics. Right half
plane dynamics signify that the control must anticipate future
information. Of course, such compensators cannot be
implemented. » .y provide a baseline against which causal
compensators :.ay o€ compared.

Equation 17 is satisfied if

-1
HK == (y" Py + R) V'[P, + P.S]=F (g

This causes Eq. 16 to equal the trace of a zero martrix for
arbitrary nH.

Equation 18 gives the compensator (F in Fig. 2) that
relates the amplitudes of the control actuation as a linear
function of the incoming wave mode amplitudes at the junction
interface. The gain matrix G which feeds cross-sectional
junction motions to control inputs, and represents the
compensator that is actually implemented in practice, can be
found by solving Eq. 18 for H and substizu.ing H into

G=( +HY y)'H (19)

The frequency dependent compensator G is a function of the
Junction and attached member dynamics.

The second variation of Eq. 11 with respect to the
parameter €, after allowing € to approach zero. is given by

v*Pw + R (20)

Pog is hermitian and positive semidefinite, since outgoing
waves propagate energy away from this junction and the
resulting power flow has been det™ed in a positive sense. If
R is chosen to make Eq. 20 positive definite, then the control
in Eq. 18 satisfies not only the first order but also the second
order necessary conditions.

Several characteristics are readily visible from the
solution in Eq. 18. First, if the term wHPgoV is of full rank
(invertible) then it is possible to formulate control without a
penalty on control effort.  Such situations exist when no
mechanisms exist to draw power towards the active junction.
In other words, the controller must wait for the power 10 amve
at the junction in order to dissipate it. Since the amount of
effort expended is on the order of the incoming power and the
ammving power is assumed finite. the control effort is finite
even though R=0. Cheap controi (R=0} can also occur when
only a subset of cross-sectional coordinates are actuated. This
results in a reduced y matrix in Eq. 18 which might yield an
inveruble term when R=0.

Situations can arise where the control action can be
used to draw power towards the junction rather than waiting
for its arrival. As will be shown in Section S, near and far
field evanescent modes interact to propagate power. If

¢vanescent behavior exists, the conmroller can create a near
field, outgoing evanescent wave with the proper phase so as to
draw more power towards the junction. By enlarging the
amplitude of the near field, more power can be attracted.
Thus, cheap control is not an option in this case, since a zero
control effort penalty matrix would result in the controller
driving the near field mode to infinite amplitude in order to
atract maximum power.

Since there is no constraint on the contro}
compensator, this procedure minimizes power flow at every
frequency and provides no guarantee that the compensator will
be causal or implementable. Therefore, the next section
discusses a technique for finding causal solutions.

. Jsing Weiner- Techni

Much of the following discussion on Weiner-Hopf techniques
was extracted from Brown [13]. The cost defined in Eq. §
equals the integral, over all frequency, of the trace of the
expected power flow plus control effort. In the following
procedure, analytic continuation is employed to enable the
various frequency dependent relationships to be valid
throughout the complex Laplace plane. In this new domain,
the integral in Eq. 5 is evaluated along the infinite extent of the
imaginary axis.

The fundamental difference between the free-form
causal solution and the free-form noncausal soluton presented
in Section 5.1 is the definition of "allowable" perturbations.
In the noncausal solution, the perturbing matrix, n, was
permitted to be arbitrary. In the problem at hand, the optimal
feedforward compensator matrix, H, is constrained to be
causal and stable. Therefore, it must be analytic in the right
half of the complex Laplace plane: it must be right half plane
analytic (RHPA). Therefore, the matrix n which perturbs H
from its optimal form must itself be causal. In other words, in
the search for the optimal, causal compensator, only causal
perturbations are permitted. Since 1 is RHPA, nH is LHPA.
Along the iw axis,

1" iw)= 1" (- iw) (21a)
Therefore we define
T]"(S)= nr(-s) (21b)

Note that this definition does not equal the Hermitian when s is
not on the iw axis.

The optimal compensator. H, is that compensator
which, for arbitrary LHPA perturbations in nH, causes

(V' (P, + P.S)+(v" Py + R)HK )oK" 22)

1o be LHPA. If terms which are not analytic in the left half
plane do exist in this expression, then the integral in Eq. 16,
when the contour is closed about the left half plane, will be
nonzero for some RHPA N, and the stationary cost constraint
(Eq. 17) will not be satisfied. Therefore, the expression in
Eq. 22 must be equal to some LHPA function, sc that

V' (P, + P,S)oK"
"

! -
+ ("/ Poy + I )H RIIPAK(DK - ALIIPA (23)
Notice that Hrypa replaces H in the second term. The
compensator G being causal is a requirement for real time
implementation. From Eq. 7, if G is causal (RHPA) then H is
causal. Therefore, the causality constraint is reflected in H
being RHPA.
The Wiener-Hopf technique proceeds as follows.
First, it is observed that Eq. 23 has the form
H.v + Ho Huch = Aum\ (24)
Second, the quadratic terms on either side of HRHpA can be
spectrally factored into their RHPA and LHPA parts which are




hermitians of each other. Performing this factorization yields
HN + HD LHFAHD RHFAH H H

wralle auratle Lisa = Aviea 25)

In the third step, Eq. 25 is pre- and post-multiplied by
the inverses of Hp LipA and He LHPA, respectively, so that

-1 -1

HD LHPA HN HC LHPA + HD RHPA HRHPA HC RIIPA
-1 -1
= Ho LHPAALHPAHC LUPA (26)

Note that the center term is RHPA whereas the term on the
right is LHPA. Therefore, the term on the left must be the
sum of LHPA and RHPA parts:

-1 -1 -1 -1

H, el H = NTF (H . H, H ...)

C LHPA D LIPA "N ~C LIPA

-1
+ PTF (Ho LIIFAHN Hc u:m) 27)

-1

The LHPA and RHPA terms are transforms of negative (NTF)
and positive (PTF) time functions, respecuively. The positive
time part of a function (H(s)) is given by

1 -} -
PTF(H(s))=mf [H e ds e™at
0 = (28)

It can be seen in Eq. 26, when the first term is factored
as shown in Eq. 27, that two decoupled relations exi t: one
governing the RHPA functions and one governing the LHPA
functions. HrHpa only appears in the RHPA relation.
Solving this relation for Hrypa gives

-1 -1 -1 -1
Hyupa == H, mu( PTF ( Hy uipatly He u:u))Hc rira (29)

As desired, HrypA only contains RHPA functions.

The final step involves evaluating G using Hrypa in
Eq. 29 in place of H in Eq. 19.

Several issues should be kept in mind waen using
these techniques. First, notice that while the noncausal
solution was independent of the incoming wave mode statistics
@, the causal solution is not. Second. it was stated that the
term in Eq. 22 must be LHPA to ensure that a contour of
integration encircling the left half plane does not enclose any
singularities. In addition, the frequency dependence of this
term must decay faster than 1/w in order that the integral along
the enclosing contour of infinite radius is irro. Often this may
require frequency shaping of ®. From a physical perspective,
one would expect the amplitudes of the incoming waves to
have an inverse dependence on frequency to support the fact
that the total junction power flow is finite. Third, junction
matrices often contain irrational transfer functions. Fourth, the
junction model, and therefore the control formulation, contains
no information about the rest of the structure. In an attempt to
minimize power flow in a centain frequency range, the Wiener-
Hopf solution may result in amplification of power in another.
The formulation has no knowledge of this problem.
However, the finite extent of any structure makes the return of
the emanating power an eventuality and an instability can
occur. Therefore, an iterative design approach may be
required which first solves the Wiener-Hopf problem, then
checks junction power flow and repeats the cycle if the first
solution proves to be inadequate.

This outlines a2 Wiener-Hopf approach to the junction
wave control problem. Given that future information is not
available to the contoller, a reduction in performance over the
noncausal case might be expected.

5. EXAMPLE
This section presents examples which illustrate the
derivation of various junction controllers. The noncausal (part
), causal fixed-form (part 2), Weiner-Hopf (part 3) and
Weiner-Hopf positive real approximation (part 4) solutions are

applied to the left, free end of a dispersive, undamped,
Bemoulli-Euler beam (Fig. 5). The governing P.D.E. is

v, a3,
E’ax'+ma:* =0

(30)

where E, [, p and A are the modulus of elasticity, area moment
of inertia. volume density of mass and cross-sectional area,
respectively, and v(x,t) is the transverse displacement
coordinate. From Fig. 5, x=0 at the boundary.

From the dispersion relation, the wave number & will
be expressed in terms of the complex Laplace variable, s, as

k =/ pAIEl Vo = c N5 N/~5 (31a)
where

s=o0+iw (31b)
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Figure § Free-end of Bernoulli-Euler beam

Notice that the right side of Eq. 31a, k(s), is the analytic
continuation, throughout the complex plane, of the function on
the left side, k(w), which is valid on the imaginary axis. Also
notice that the substitution of s=iw for positive and negative
values of w yields the principle square root of w. All roots in
Eq. 31a are principle roots. The branch cuts corresponding to
the fourth roots in Eq. 31a cut the entire real axis in the
complex plane. The portion given by s!/4 has its branch cut
along the negative real axis and is therefore RHPA and (-s)!/4
has its branch cut along the positive real axis and is LHPA.

The motion, as composed of wave modes supported
by the partial differendal equation in Eq. 30, is given by

(-ikx )
vix b )=w e"™ " 4w _etT¥IN
ip e d

+ w"e -z wart + w’.eh “at
(32)

The +/- symbol preserves propagation direction when w is
positive or negative. For brevity, this notation will be
abbreviated to include only the upper sign. Except where
indicated in the following discussion, +/-i can be substituted
fori. Using Eq. 32, the junction transformation (Eq. 1) is

[ v ] co 1 1 U Yw,

v & k -k -k i
1 - Ev T ER’ - B - ER N w

Elv” - el EIR - Elkt ER | we (33)
where

wip  leftward propagaung wave modes
incoming waves
wle leftward emanating evanescent wave modes
Incoming waves
wrp  nghtward propagating wave modes
outgoing waves
wre  nghtward emanating evanescent wave modes
outgoing waves
and () denotes spatial derivative. The scatiering matrix [1] for
a free boundary condition is

S=[ —i. 1+.i}
1-1 i (34)




e

The wave generation matnx is
_I+:1-k] V__1+i{l]
VE2eelt -l T e L s

where Wy is the wave generation matrix with only moment
actuation (no force). The K matrix, given by Eq. 6, is

=i L+
K=2{—(1-;)k (1-1)/:} (36)

and the junction power matrnx is

-1 0 00

) 0 0 90 i

P =d4wk’Ell 4 | g
0 -i 00 37

The term @ arises from the velocity term in the expression for
power and is therefore strictly a positive time function (no +/-
). Notice that the incoming and outgoing propagating waves
propagate power independently and in the negative and
positive sense, respectively (entries (1,1) and (3.3) of Pj).
The evanescent waves do not propagate power independently
(entries (2.2) and (4,8) of P;) but do propagate power through
their interaction (entries (Z,i) and (4,2) of Pj).

Part 1. Optimal noncausal control can be derived for
the free end of a Bernoulli-Euler beam. If only moment
actuation is used, cheap control can be derived (R = 0). The
wave mode amplitude feedforward gain matrix (F) found
using WM from Eq. 35in Eq. 18 is

F=E'Q+il-1 1 (38)

The equivalent feedback matrix in terms of cross-sectional
measurements (Eq. 19) is

G=-tEk(-i)0 1==—=ck /=50 1]
: Ve (39

This only calls for rotation feedback and does so through a
frequency dependent compensator which is similar to a half
differentiator (2] but with a 90 degree phase shift. The half
differentiator exhibits a log/log magnituce slope of 1/2 and a
phase shift of 45 degrees: half that of a full differentiator.

The compensator in Eq. 38 results in a closed-loop
scattering matrix of

0 1
SCL:[—:’ 1+ ] (40)

As might be expected. this compensator sets the reflection
coefficient from incoming to outgoing propagating wave 10
zero. The resulting closed-loop junction power matrix is

1
-1 ]W. = w‘" Pcz.w. @)

This Sloscd-loop power matrix has eigznvalues equal to 0 and
-8wkJEIL. Therefore, the matrix is negative semidefinite and
incoming power is never amplified at the junction. The
compensator is optimized frequency by frequency and is
therefore independent of the incoming wave mode spectra
given by @ in Eq. 16.

The primary drawback to this solution is that the
compensator is noncausal. While a half differentiator can be
approximated with relative accuracy over a broad frequency
range [16], a ninety degree phase shifter cannot, given the
collocated feedback resmction. Therefore, a causal solution is
required.

-1
PAVG =4(Uk’El w‘”[ 1

Part 2. This second part illustrates the use of a causal
fixed-form parameter optimizadon technique. The form of the
noncausal compensator in Eq. 39 will be used with the
exception that the phase is row 45 degrees. A causal H can be
found, since Eq. 7 preservi s causality, giving the fixed-form
with vanable gain @ as

H = aElk(l+ )0 1] (42)
Notice that the compensator G in Eq. 39 with 45 degrees of
phase not only provides positive real feedback between
rotational velocity and moment, it also causes the closed-loop
junction power matrix eigenvalues, as illustrated by Eq. 41, to
have the same frequency dependence as those of the open-loop
power matrix. This results because the fixed-form
compensator was chosen to have the same frequency
dependence as the noncausal compensator, which was
optimized frequency by frequency, and therefore the
impedance of a semi-infinite beam.

Now that a formulation is being used that does not
allow optimization frequency by frequency, an appropriate
form for the incoming wave mode spectral density ® must be
chosen. It will also be assumed that the propagating and far
field evanescent waves exist in equal proportions and that the
incoming wave mode amplitudes diminish with frequency
above wy. As will be seen, the form

= at [l 0] a*
T w)l0 LG e,
2 - (43)

exhibits satisfactory behavior when using contour integration.
Using the compensator form in Eq. 42, ® from Eq. 43
and the juncton matrices gives the trace in Eq. 11 as

(-8a + 16d)a"

trace = 2
(s?- )
4
&g:zce=(—8+32a:a <0 a=l
(s*- o) 4

(44)

Substituting this minimizing value for a into Eq. 42 and
substituting this compensator into Eq. 19 gives

Elk,, . . 1
G===01+i)0 1=~ cEI /5[0 1
2 Nk (45)

which has the same gain as the noncausal compensator in Eq.
39. Notice that the optimai value for a is independent of wy
and therefore independent of the evaluation of the integral in
Eq. 1L

The closed-loop scattering matrix for this system is

- 1+
Se=31-i 1+i]

and the closed-loop juncton power matrix is

P=wk‘£/[" l]

@ ro-1

(46)

47

Notice that the causal solution does not zero the (1,1) entry of
the closed-loop scattering matrix. In addition, while the
closed-loop junction power matrix is still negative
semidefinite, the eigenvalues are now 0 and -2wk-’El
indicating that, for identical incoming wave mode sets (the
eigenvectors are unchanged), the causal control absorbs half as
much power as the noncausal conurol in part one.




Part 3, This third part illustrates the Wiener-Hopf
solution to the optimal junction control of the free end of the
B-E beam in Fig. 5. Extreme care must be exercised in the
solution procedure to ensure that the LHPA and RHPA
funcdons are properly handled.

Each oi the terms in Eq. 24 can be evaluated,
remembering that Apgypa and Hpypa are as yct unknown.
The other three terms are given by

Rea's /s ~/=35 o—
"=-L—T [l*i -’.Co\/S-V-S]
(51‘0-’-) (48)
g < NIV
>~ c.El
3 (49)
8q* [ 2

c=(5;_wi)l l_—‘\/ic,,‘\/s— 23V s V=5

Eqgs. 49 and 50 can be spectrally factored into their LHPA and
RHPA terms (Eq. 25) as

b H 2 NANVTT NIVE
D LMPA" " D RHPA \/Coﬂ \/EEI (51)

2v/2a* [ -1 1
V2e /s 0

o -\/Ecov-s ]
(50)

H

c muratlc Lupa = 2
(s + w,)

[- 1 V2ev/=5 | 2v2d
’ 2
1 0 (s —w) (52
The first term in Eq. 26 is given by
-1

-1
H) H.H

D LHPA c Lura =

2+/2¢ a? fe EI
2 : (-V2¥s +V=3)s(1 0]
(8 + w,.) (53)

Notice that the first term in this expression is RHPA and the
second term contains both RHPA and LHF'A pants. Using Eq.
28 with Eq. 53 substituted for H(§), the positive time part of
the expressior, in Eq. 53 is given by

i ) . 2‘\/—2_coaz,/coE1

C LUiP (3 + w.)l
.(\/ES\‘/S—-%(a),+55 )aYw,)(1 ol (54)
Evaluating Eq. 29 gives Hpypa as

PTF (H)' . H, H

D LHPA

; (w, + 55)/ o,
Hpupa = 36E1 (\/7‘\/? - %'_—)74'_— (o 1
s (55)
The expression for G is found using Eq. 19 to be

455"’ Vs 0 1
Yo, (55 + w) /2 (56)

Notice that if the compensator in Eq. 56 were altered to
represent the feedback of rotational velocity to external
moment (G/s), the new compensator would not be positive
real at all frequencies. At low frequencies, where the right
hand part of the term in parentheses dominates, the
compensator would be negative real and lead to the generation

G = coEI(

of power at the active junction. If modes of the structure
reside in the frequency range where power is generated,
instability could occur.

Part 4. The compensator in Eq. 56 can be
approximated with the new G/s being positive real for ail
s=iw. For brevity in the following discussion, a compensator
between rotation and moment with phase between 0 and 180
degrees will be referred to as positive real. Figure 6 compares
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Figure 6 Feedback compensators for noncausal (a),
. causal (ixed-form (b), Weiner-Hop( (¢)
and approximate (d) formulations.

the transfer functions of the noncausal (dashes and dots (a)),
causal fixed-form (widely spaced dashes (b)), Weiner-Hopf
(solid (c)) and positive real approximation solutions (closely
spaced dashes (d)). Notice that both the noncaysal (a) and
causal fixed-form (b) solutions have the same w!/2 magnitude
dependence but have phases which differ by 90 degrees:
which accounts for their noncausal and causal natures,
respectively. For the Weiner-Hopf and Weiner-Hopf
approximation solutions, the corner frequency of ® was
chosen as w,=100 rad/sec. Near this frequency, the Weiner-
Hopf solution (c) has half the magnitude and the same phase
as the noncausal solution. This indicates that the Weiner-Hopf
solution is better than the causal fixed-form solution at
mimicking the noncausal solution near the frequencies of
importance (around w=100 rad/sec). It does not match the
noncausal solution in magnitude, however, because incoming
waves at frequencies near w=100 rad/sec also deliver
significant incoming power to the active junction. [t seems
reasonable to suspect that as the @ matrix becomes more
banded around wn=100 rad/sec, the magnitude of the Weiner-
Hopf solution will approach that of the noncausal solution.

As shown by curves (c) and (d) in Fig. 6. a plausible
approximation could have the high frequency behavior of Eq.
56 since the Weiner-Hopf solution is positive real in this
regime. However, the approximation should provide phase
and gain comparable to the Weiner-Hopf. and therefore the
noncausal solution, near w=100 rad/sec while maintaining a
positive real form (i.e., maintain phase between 0 and 180
degrees). The approximation used in this paper, whose
transfer function is given by curve (d) in Fig. 6, is

st s
=4 —S {0 1
G =4cEl Syfwr s + 20 (o 1 .

Aslgw frequencies, the gain has a frequency dependence of
w’/* which has a phase of 157.5 degrees at low frequencies
(less than 180 degrees). The phase equals that of the
noncausal compensator (135 degrees) near w=100 rad/sec.




The junction power flow can be plotted as a function of
frequency for each of the compensators (Fig. 7). From Eq.
11, the trace of the integrand gives the power flow as a
function of frequency for the chosen incoming wave mode
spectrum (P). The plotting of Power, scaled by frequency
(Power ), versus the logarithm of frequency (d(log ®)) gives
the controller cost as the area contained within the curves in
Fig. 7. Notice that the noncausal solution (a) has, by
definition, minimum cost. The causal fixed-form solution (b)
has the worst performance and highest cost due to the low
performance near w=100 rad/sec. As exoected, the Weiner-
Hopf solution (c) and the noncausal solution have simnilar cost
associated near =100 rad/sec. As Jesired, the Weiner-Hopf
approximation (d) has only slightly higher cost. The Weiner-
Hopf solution has positive cost below 30 radssec, in Fig. 7,
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Figure 7 Closed-loop power flow for noncausal
(a), causal fixed-form (b), Weiner-Hopf
(c) and approximate (d) formulations.

due to its negative real nature at these frequencies. The
Weiner-Hopf formulation tolerates positive cost in this region
in order to achieve lower total cost. Despite this positive cost,
the cost associated with the Weiner-Hopf solution, given by
the integral over frequency, is the lowest for all causal
compensators.

Using the phase closure principle described by Miller
and von Flotow [15], a transfer fuaction was derived between
force and transverse displacement at the far end of the beam
with that end modelled as a free boundary. The beam
properties were EI = 31.1 NmZ, pA = 2.85 Kg/m and length =
7.32m. Figure 8 compares the open-loop magnitude and
phase characteristics (a) with that obtained using the causal
fixed-form compensator (b) and the noncausal compensator
(c). The noncausal compensator reflects no incoming
propagating waves as outgoing propagating waves. This
feature essentially eliminates resonant behavior and the beam
behaves as a semi-infinite beam.

Figure 9 compares the open-loop transfer function (a)
with that obtained using the Weiner-Hopf approximation (b)
and the noncausal compeasator (c). Notice that the
approximation causes significant increases in damping near @
= 100 rad/sec, as would be achieved using the Weiner-Hopf
solution, while maintaining stability in the low frequency
modes below 30 rad/sec, which would be destabilized by the
Weiner-Hopf compensator.
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Figure 8 Transfer function for open-loop (a),
causal fixed-form (b) and noncausal (c)
compensators.
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Figure 9 Transfer function for open-loop (a),
Weiner-Hopf positive real gpproximation
(b) and noncausal compensator (c).




6. SUMMARY

Several fundamental differences between modal and
wave model based control have been illusurated. Wave models
place attention on the conuol of all frequency waves which
traverse a structure as opposed to singling out those
frequencies which correspond to modes. Though this is a an
artifact of using local models incapable of capturing global
resonant behavior, it provides several unique insights. First,
wave models explicitly describe the finite speeds with which
energy propagates through a structure and illustrates the fact
that once a disturbance is imparted to a structure, it is not (0o
late to isolate performance critical locations. Second, modal
models tend to be large and lead to state cstimators which
domunate the real ime processing effort. This is due to the
number of mathematical degrees of frecdom required to
descnbe each mode. Wave models model the impedance
behavior of structural materials and boundury dynamics which
tend to be much more benign (smooth; functions of frequency.
As a result, fewer controller degrees of freedom are required to
implement the control. Third, while it is difficult to exactly
model a complex structure with ordinary and partial differential
equadons and extract optimal LQR or LQC control algonithms,
mathematically exact models can often be employed in the
derivation of wave control. Fourth, the wave formulation uses
all cross-sectional coordinates to perform control enabling
dramatic improvements in performance. Finally, the
techniques presented here are sinictly limited to the

achievement of performance objectives which can be posed in
terms of local behavior.

Two important performance objectives which can be
posed in terms of local behavior are vibration suppression and
dynamic isolation. For some structural geometries, wave
controllers can not only suppress but eliminate resonant
behavior. This is accomplished by absorbing all impinging
energy thus preventing waves from circumnavigating the
structure and constructively interfering (resonance). This also
implies, as recognized by Hagedorn [6], that energy is
extracted by the control in finite time: a result which is not
typical of the LQR formulaton.

Noncausal optimal control, though globally optimal,
does not guarantee causality. Therefore, two causal solutions
are presented. The manner in which the Weiner-Hopf
approach is constrained guarantees a causal solution but does
not guarantee that the junction behaves as a power sink at all
frequencies.
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EXPERIMENTAL RESULTS USING TRAVELLING WAVE POWER FLOW TECHNIQUES
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ABSTRACT

This paper describes a series of active stuctural control
experiments on a twenty-four foot pinned-free beam. The feedback
compensators are derived using a travelling wave approach. A
compensator is derived which absorbs all impinging power and
therefore eliminates resonant behavior. Since this compensator is

noncsusal, a causal solution is derived and experimentally -

implemented which mimics the noncausal compensator in a select
frequency range. Experimental damping results obtained using this
compensator far exceed that obtainable using rate feedback.

INTRODUCTION

A wave model can be used to describe local reflection and

transmission (scattering) properties at a structural cross-section

junction). This model is not a complete model of the structure and

ore does not capture resonant behavior. The model is equivalent

to the dereverberated i of the structure. "Derev ted”

refers to the impedance that would be revealed if the energy departing
the junction never returned.

Minimization of junction power flow corresponds to matchin
this impedance as closely as possible given the available con
degrees of freedom. Achievable performance increases as more
distinct actuators and sensors are used. [f the impedance is matched,
modes which depend endirely on energy traversing the controlled
junction will cease o exist.

This paper derives the compensator which maximizes energy
absorption when using a moment actuator at a pinned beam end. This

nsator is noncausal and therefore not implementable. The
analysis and experimental implementation of seversl causal
compensators is mnedmdmpcedwtheperfmmneeobuined
through rate feed

The following discussion uses experimental results to verify
wave control performance. Implementation issues which limit
performance are identified. Wave dynamics, power flow and the
control formulation are covered in more detail by Miller ex al (1].

TRAVELLING WAVE DYNAMICS

This section reviews the wave dynamic equations for a
structural junction of arbitrary complexity (Fig. 1). The frequency
domain derivation of component (member and junction) dynamics was
presented by von Flotow {2]. Von Flotow (3] uses an assemblage of
member transformation matrices to derive a junction ransformation

matrix which relates complex wave mode amplitudes on all members
antached to that junction to the member's cross-sectional quantities.
This relation has the form

(] Y Y- w.
y(@)= a[ - ][ ']sY(m)w(a:)
[/] Yo ¥, L (M

where w(w) is the vector of wave mode amplitudes. This vector is
partitioned into incoming, w;, and outgoing, w,, waves. The vectwor y
contains all member motons, ©, and stresses, f, at the junction.

Figure 1 Generic wave junction.

Junction boundary conditions can be transformed into wave
mode coordinates and tmngd in 3 causal, input/output form.
Outgoing waves, w,, result from the homogeneous scattering of
incoming waves, w;, and the nonhomogeneous generation by external
excitations, Q;

w,(@)= S(ow, (@) + yv(@)Q(2) (2)

This description contains only local junction dynamics and does not
contain information about other portions of the structure.

JUNCTION POWER FLOW

Travelling waves transport energy through a structure. This
results in a flow of power. Power at an arbitrary member cross-
section is equal to the product of the deflection velocities and
collocated stresses of like type (e.g., rotational rate and moment). The
steady-state power flow at 8 member cross-section can be expressed in
terms of the components of the response vaziables through the
use of the Power Theorem, a variation of Parseval's Theorem.




Miller and von Flotow [4] show that the power flow through a
junction has the form

" 4 wlw)
Pam(w)=[w‘(w) w,(w) ]Pl(w{w,(w)] (3

P [ Pl P'l }
where ! P, P, C)]

P; is the junction power flow matrix. Ppyg is real for any mix of
wave modes since P; is Hermitian.

JUNCTION CONTROL

The waves incoming to a junction can be thought of as a
disturbance to that junction. Conceptually, the disturbance is
measured and fed to the actuators in order to reduce the power
associated with the resulting outgoing waves (Fig. 2). This
architecture assumes that measurements of the incoming wave mode
amplinades are available.

4 s(w) i —»

F(w) Lq ¥ (o)

Figure 2 Feedforward of incoming wave modes

It is desirable to use cross-secticnal variables as feedback
measurements. The vector u contains measurable cross-sectional:
quantities while f contains those cross-sectional quantities that are
commanded by the actuators. Equation 1 can be used to express the
amplitudes in u in terms of both incoming and outgoing waves. This
results in the feedforward of incoming and the feedback of outgoing
wave mode amplitudes (Fig. 3). The control compensator, G, must
be causal for real time implementation,

Rearrangement of the block diagram in Fig. 3 yields a
structure identical to that in Fig. 2 (see Fig. 4). This illustrates thag

D

w
>y

"‘" Yu i
member
dynamics

‘YI
uoQ

actual member
measurements dynamics

Figure 3 Feedback of cross-sectional measurements

cross-sectional variables can be used as feedback measurements to
mimic the feedforward of incoming wave mode amplitudes.

For control purposes, a combination o power flow and
control effort will be minimized. Incoming power is defined as
negatively flowing. Since power flow is expressed in terms of its

components, a frequency domain formulation is used.

Figure 4 Measurement feedback to mimicking the
feedforward of incoming wave amplitudes

Adding a quadraric control effort penalty, R, o the power term

in Eq. 3 and taking the expected value of the resulting integral relation
gives the cost functional as

J=3E {j_'(w"P,w + Q"RQ)daJ}
=§I_:m(5(l’le”+ ROQ"))dw

= 3] _rwe (P, (@)0_(0) + R (@0 (@))do o
s a

where the assumed power spectral densities of the wave modes and
control effort are given by

P..(@) = E (wwH), @, (0) = E(QQ")

(Sb)
The trace of Eq. 5 can be minimized upon substitution of
K=Y,+Y,S 6)
Pp=EQQ")= EHKww"K"H") = HK®, . K" H" -
D= Q,
o (8)

This is done, using the calculus of variations, by perturbing the
feedforward matrix, H, by a perturbation matrix, 1N, scaled by a small
parameter, €

H(w)= H(w)+ en(w) )

The condition that the optimal compensator matrix must satisfy
is found by minimizing the cost with respect to the small parameter €.
The relation governing the optimal compensator matrix, H, is then
found by allowing e to approach zero. The first variation of the costis

a] = J'Re(trace(n"(v/"(l’d +P_ S)

+ " Py + RIHK oK ))do (10)

where the real part of the trace is retained. At this point, the
optimization problem can proceed in several directions based upon the
perturbations allowed.
Noncausal Solution

Since the optimal noncausal solution is sought, no constraint is

placed upon H. Therefore, the optimal gain matrix H must make Eq.
10 satisfy

al =0 (1)

for any arbitrary perturbation given by nH. This indicates that N, and
therefore the feedforward compensator H, may contain both right and
left half complex plane dynamics,




Equation 11 is satsfied if
-
HK =-(y"Py +R) y"(P +P.S|=F (12)

Equation 12 gives the compensator (F in Fig. 2) that feeds the
incoming wave mode amplitudes to the control actuators. The gain
matrix G in Fig. 4 which feeds cross-sectional junction motions to
control inputs, and represents the implemented compensator, can be
found by solving Eq. 12 for H and substituting into

G=(+HY y)'H (13)

This procedure minimizes power flow frequency by frequency
and provides no guarantee that the compensator will be causal or
implementable. Therefore, the next section discusses a technique for
finding a causal solution.

. ixed-Form P Optimizaii

The first step in the solution procedure is to select a causal
compensator form with variable gain

H(s)= a h(s) (14)

This form is then substituted into Eq. § and the trace is minimized
with respect to the variable gain, a. The compensator G(s) is found
using Eq. 13. The effectiveness of the resulting compensator is
;ntimly dependent upon the insight of the designer in the selection of
(s).

Causal Selusion Using Wiener-Hoof Techni

The following discussion on the Wiener-Hopf (W-H)
technique is summarized from Miller et al {1]. The fundamentat
difference between the free-form causal solution and the free-form
noncausal solution is the definition of "allowable” perturbations. In
the noncausal solution, the perturbing matrix, 1), was permitted to be
arbitrary. In the problem at hand, G must be causal. Equadon 13
guarantees this if the optimal feedforward compensator matrix, H, is
constrained to be causal and stable, analytic in the right half of the
complex Laplace plane (i.e., right half plane analytic (RHPA)),
Therefore, the matrix N which perturbs H from its optimal form must
itself be causal. In other words, in the search for the optimal, causal
compensator, only causal perturbations are permitted. Since 0 is
RHPA, nH is LHPA.

The optimal compensator (HRHPA), for arbitrary LHPA
perturbations in nH, must cause

(W (Pa + P.S) + (V" Puy + R)H ,, K )OK" o ‘

to be LHPA. If terms which are not analytic in the left half plane do
exist in this expression, then the integral in Eq. 10, when the contour
is closed about the left half plane, will be nonzero for some RHPA 7,
and the stationary cost constraint (Eq. 11) will not be satsfied.
Therefore, the expression in Eq. 15 must be equal to some LHPA
function, so that

V' (P, + P,S)OK"

H
+(V'Poy +RH KK =4, g
The W-H technique proceeds as follows. First, it is observed
that Eq. 16 has the form
Hy+ H Hy W Ho = AL, an

At T

Solving the RHPA part of this relation for Hrypa gives
- - - -1
Hyypa =~ Hn|nm( "F(Ho wraly Hc|um) )Hc wira (18)

RNP,
The final step involves evaluating G using Hrypa from Eq. 18 in
place of H in Eq, 13.

This outlines a8 W-H approach to the junction wave control
problem. Given that future information is not available to the
controller, a reduction in performance over the noncausal case might

be expected.

EXPERIMENT CONTROL FORMULATION

_ This section derives the various junction controllers used in the
experiments. The noncausal (part 1), causal fixed-form (part 2), W-H
(part 3), W-H positive real approximation (part 4) and rate feedback
(part 3) solutions are applied to the left, pinned end of a dispersive,
gngaénged. uniform, Bernoulli-Euler beam (Fig. 5). The governing

.D.E. is

v v
El=—+pA—=0
ox & (19)

where E, [, p and A are the modulus of elasticity, area moment of
inertia, volume density of mass and cross-sectional area, respectively,
and v(x.t) is the transverse displacement coordinate. In Fig. 5, x=0 at
the pinned end.

From the dispersion relation, the wave number & is expressed
in terms of the complex Laplace variable, s, as

k= pAlEl Vo= c VTV~ (70

Notice that the right side of Eq. 20, k(s), is the analytic continuation,
throughout the complex plane, of the function on the left side, k(w),
which is valid on the imaginary axis.
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FIGURE § Experiment schematic

The motion, as composed of wave modes supported by the
pardal differendal equation in Eq. 19, is given by

tikz i@t 2(~hx Jwmt

viz,t)=we + wye

Ax 1ot

-b.lo«‘.t+whe

+w.e
@n

The +/- symbol preserves propagation direction when @ is positive or
negative. For brevity, this notation will be runcated to include only
the upper sign. Using Eq. 21, the junction transformation (Eq. 1) is

] ik k -ik -k w

.
[—Elv"' iEIX -EI -iER' EIY || w,

1 v I 1 1 1 1 w,

Elv e Ew' -E B Jw.) (2
where

wip  leftward propagating, incoming wave

wle leftward emanatng evanescent, incoming wave

wrp  rightward propagating, outgoing wave

wre  rightward emanating evanescent, outgoing wave
The scarttering matrix for a pinned boundary condidon is

-1 0
s<[75 1]
0 -1 (23)
The wave generation matrix and assumed incoming wave mode
spectrum are




1+if1 -k] 1 {—1}
V: . 'w B —
ogmR’l 1 - ik Vo oogm*l 1

_ a2 1 0 ai
s - ) (s + o) 25)

where y\ is the wave generation matrix with only moment actuation
(no force). The junction power matrix is

(24)

-1 0 00

3 0O 0 0 i

P =4ak’El 0 0 10
Q -i 00

(26)
Ban 1l

If only moment actuation is used, cheap control can be derived
(R = (0). The noncausal feedback matrix in terms of cross-sectional
measurements (Eq. 12 and 13) is

M =~/2c,EI/~F1 ol{ _Ef’lv} an

This calls for rotation feedback and does so through a frequency
dependent compensator which is similar to a half differensiator, but
shifted 90 degrees. The compensator is optimized frequency by
frequency and is therefore independent of the incoming wave mode
spectrum.

The primary drawback to this solution is that the compensator
is noncausal While a half differentiator can be approximated (5], a
ninety degree phase shifter cannot. Therefore, a causal solution is
required.

Pan2.

This second part illustrates the use of a causal fixed-form
parameter optimization technique. The form of the suncausal
compensator in Eq. 27, shifted 90 degrees, will be used. Minimizing
the cost with respect to a variable gain yields

M =vzcErvsua{ 2 .}

Notice that the gain equals that in Eq. 27.
Pan 3,

(28)

This third part gives the W-H solutdon. The expression for G,
found using Eqs. 18 and 13, is

831/( U‘
M "C.H(‘/E‘/'—’W)lm{ Ew ) 29)

Notice that if the compensator in Eq. 29 were altered to
represent the feedback of rotational velocity td external moment (G/s),
the new compensator would not be positive real at all frequencies. At
low frequencies, where the left hand part of the term in parentheses
dominates, the compensator would be negative real and lead to the
generstion of power at the active junction. This could lead to
instability.

Figure 6 compares the transfer functions of the noncausal (a),
causal fixed-form (b) and W-H (c) solutions. For the W-H solution,
the corner frequency of ® was chosen as w,=6.4 Hz. Near this
frequency, the W-H solution has half the magnitude and the same
phase as the noncausal solution. The W-H solution is better than the
causal fixed-form solution at mimicking the noncausal solution near
the frequencies of importance, around w=6.4 Hz. It seems reasonable
to suspect that as the ® matrix becomes more banded around wy, the
magnitude of the W-H solution will approach that of the noncausal
solution.

Pan 4.

A positive real approximation to Eq. 29 is required to
guarantee stability. This W-H approximation should mimic the W-H
solution in the frequency range in which Eq. 29 is positive real (above
2 Hz.). Looking at the right hand term in Eq. 29, the high frequeacy
(s%4) behavior and gain (gcoEUSOh"‘) are used in the appmfrxei‘;mxiou
(Eq. 30). The first order pole in Eq. 30

8,EI o2

= [ v’
M'sn/a;‘ s+ \‘/s—klol{—Elu"'} (30)

maintains the phase between 67.5 and 157.5 degrees (positive real),
The corner frequency of 92 rad/sec provides the best maich with the
W-Hsphue. The transfer function of Eq. 30 is shown by curve (d) in
Fig. 6.
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Figure 6 Feedback compensators for noncausal (a),
causal fixed-form (b), W-H (c), W-H approximation (d)
and rate feedback (e).

This W-H approximation is used, in place of the W-H
compensator, for the duration of this paper.

Ban 3.

For comparison purposes, rate feedback is analyzed and
experimentally implemented. The gain that maximizes damping in a
mode at 10 Hz was used. The approximate gain, determined through

simulation, is
M =3s[101{ v’ }
- Elv 31)

The magnitude and phase are given by curve (¢) in Fig. 6.
Simulati

Using the phase closure principle described by Miller and von
Flotow (4], a transfer function was derived between force and
transverse displacement at the opposite, free end of the beam. The
beam properties are given in Table 1.

Figure 7 compares the open-loop magnitude characteristics (a)
with those obtained using rate feedback (b) and the noncausal
compensator (c). For rate feedback, notice that damping is a function
of frequency. Below 10 Hz., the gain is lower than optimal. Above
10 Hz., the gain is higher than optmal. The latter leads to clamping
of the pinned end. This simulation is provided as a comparison for
the performance of the wave control compensators.

The noncausal compensator reflects no incoming propagating
waves as outgoing propagating waves. This feature essentially
eliminates resonant behavior and the beam behaves as a semi-infinite
beam. The achievement of this type of performance is the objective of
this work and represents the upper performance bound in these
simuladons.




Figure 8 shows the magnitude characteristics obtained using
the causal fixed-form compensator (b). The selected form of the
compensator causes the damping to be independent of frequency.
Though the damping performance in the neighborhood of 10 Hz. is
less than that obtainable using rate feedback, the damping is more
broadband. ) )

Figure 9 shows the transfer functior obtained using the W-H
approximation (b). Notice the significant increases in damping near ®
= 10 Hz.

In general, as more narrowband damping performance is
achieved, broadband damping performance is sacrificed. Notice that
Fig. 6 shows that the magnitude of the W-H approximation (s3/4)
increases less rapidly with frequency than rate feedback g% but more
rapidly than the causal, fixed-form compensator (s'/¢); which
maximizes broadband damping. On the other hand, the phase of rate
feedback is slightly closer to that of the noncausal compensator at
higher frequencies. These observations, in conjunction with the

TABLE 1 Beam Properties

%&gh 732 m
10.20 cm

Thickness 03175 ¢

El 311N

pPA 2.85kg/m

Dﬂ'n‘ ratio averages 0.30% below 30 Hz.

simulations, give no indication that rate feedback provides more total
damping than the W-H approximation.

Of the three compensators simulated, the W-H approximation
provides the best narrowband performance since it provides a better
approximation of the noncausal compensator near 10 Hz.

EXPERIMENT SETUP

This section describes the various hardware components used
in the conduct of the experiments. These components are 1) the
structure, 2) the control hardware, 3) the control computer and 4) the
shaker and sensor used to measure the open and closed-loop wansfer
functions. Finally, the experiment protocol is briefly described.
Figure 5 displays the functional elements of the experiment.

S o -

The controlled structure is a 24 foot brass beam, sus
from six pairs of wire, with its longitudinal axis horizontal (Table 1).
The suspension wires attach to the beam at one seventh length
intervals with the rwo beam ends left free for the attachment of the
control and shaker hardware.

Conmol Hardware CI -

The control hardware consists of the control actuator and the
sensor used to obtain the feedback measurement. A PMI motor with a
low inertia, laser etched armature was chosen. The armature was
clamped to the beam with the permanent magnet clamped to the
laboratory frame. This replicates the pinned condition used in the
model. The specificadons for the actuator and sensor are listed in
Table 2 and a drawing of the hardware attached to the beam end is
shown in Figure 10.

The control computer is a PACE TR-48 analog computer. The
two rﬂ)es of fractional elements used in the experiment are a half
(1/s1/2) (5] and a quarter (1/s1/4) [6] integrator. The circuit
approximations exhibited good accuracy from 0.1 to 1000 Hz.

Shaker and Sensor Hardware

Shaker and sensor hardware are attached to the other end of
the beam for acquisition of transfer function data. The shaker is a
pivoting proof-mass actvator (7] and the sensor is a linear
accelerometer measuring transverse beam acceleration. The
specifications are given in Table 3.
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Figure 7 Transfer function for open-loop (a), rate
feedback (b) and noncaussl {c) compensators.
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Figure 8 Transfer function for open-loop (a), causal,
fixed-form (b) and noncausal (c¢) compensators.
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Figure 9 Transfer function for open-loop (a), W.-H
approximation (b) and noncausal (¢) compensators.
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FIGURE 10 Views of control hardware.

TABLE 2 Control hardware specifications
Torque Actuator

Manufacturer/model PMI U-9

Torque constant 0.0212N m/amg

Armature plus arm inertia 0.000146 Kg m

Motor diameter 0.1048 m

Motor thickness 0.0345 m

Current source EG&G PA-601
Gain -2.08 Amps/voit

Piezo Resistive Accelerometer

Manufacturer/model Endevco 2262-25

Excitation voltage 10.00 volts

Gain with amplifier 2.86 V/m/sec?

Comer frequency 1200 Hz

Damping light

Distance from motor pivot 0.0624\

TABLE 3 Shaker and sensor specifications.

Shaker's DC Servo Motor

Manufacturer/model Pittman 7214
Torque constant 0.0357 N m/amp
Current source EG&G PA-223
Gain -1.87 Amps/volt
Piezo Resistive Accelerometer
Manufacturer/model Endevco 2262-25
Gain 0.378 V/m/sec?

(see Table 2)

The open-loop transfer function is measured for a frequency
range of 0.5 to 50 Hz. Then, for each feedback compensator used,
the following iterative procedure is followed. First, a circuit gain,
variable between 0 and 1, is increased until the onset of instability or
the arrival at the optimal gain. In the event of instability, the cause is
identified. Once eliminated, the procedure is repeated. If the optimal
gain is reached, or an instability cannot be eliminated, the transfer
function of the beam is measured.

EXPERIMENTAL RESULTS

The results of five tests are summarized in this secton. The
first test consists of obtaining the transfer function of the beam in open
loop. The second test uses the causal, fixed-form compensator to
control the beam. The third test acquires the same information for the
beam controlled using rate feedback. The fourth test involves the

implementation of the W-H approximaton. The fifth test involves
implementing the highest stable gain using the W-H approximation.
In the following discussion, the results of these five tests are
compared using measured transfer functions. First, however, the
implemented compensators are discussed.

Eeedback Compensators

Three different feedback compensators are implemented. In
the derivation of the control compensators, feedback from rotadonal
acceleration to moment was assumed. Therefore, the implemented
compensators equal the analytical compensators scaled by the
frequency squared. Between 0.5 and 50 Hz., Egs. 32, 33 and 34
have the same gain as the analytical compensators.

The rate feedback compensator is given by

M(s) ~ 10s . — 628
s '(s) s°+0.8893 +0.34 S +6B 3
The middle portion is a stabilized integrator with a comer frequency of
0.1 Hz. and a damping ratio of 0.7071. This filters and integrates
frequencies below and above 0.1 Hz., respectively. The right portion
contains a first order filter to eliminate an instability, at 1180 Hz,
caused by the lightly damped feedback accelerometer.
The causal, fixed-form compensator is given by
M(s) - . - 10s «—2.58
sv(s)  s*+088s+0.39¢ VS (3

_0 L]

Again, the middle term is n stabilized integrator while the right term is
a ‘half integrator.’

The W-H approximation is given by
M(s) =-0039* -92 , ~-700 ,-3.348

s '(s) s+ s+70 Yy (34)

The left term is the first order pole shown in Eq. 30. The middle term
is a low pass filter and the right term is a 'quarter integrator.’

Random Excitazion T

Figure 11 shows the measured transfer functions for the five
different tests. Figure {2 shows the predicted transfer functions for
these same tests. The presentation of the data is ordered starting with
the compensator which provides the best broadband damping to the
one providing the best narrowband damping. Notice that the model,
based on measured values of EI, pA and length, predict open-loop
poles and zeroes within 4% of their measured frequencies.

Figure 11a compares the ansfer functions of the beam in
open-loop (a) and in closed-loop (b) using the causal, fixed-form
compensator at the optimal gain. While this solution exhibits a more
broadband affect than the rate feedback, this is achieved by sacrificing
narrowband damping performance. Notice that torsional modes
appear in the data above 10 Hz. Figure 12a compares the equivalent
simulation transfer functions over the same 3 to 30 Hz. frequency
range. While the experimental data indicates damping performance
that is independent of frequency, the level of damping appears to
exceed that predicted. This could result from lower open-loop
damping in the simulation model than in the actual beam.

Figure 11b shows the closed-loop transfer function (b) using
rate feedback. As supported by the simulation, rate feedback provides
better narrow band damping performance than the causal, fixed-form
compensator. [t is difficult, however, to judge the broadband
behavior using this narrow frequency range. Figure 12b shows the
simulated transfer function.

Figure 1lc shows the closed-loop transfer function using the
W-H approximation (b) given in Eq. 34 at the optimal gain. In the
frequency range of 10 to 20 Hz., the damping performance exceeds
that shown in Figs. 11a and b. Notice that the high frequency
decrease in damping is perceptible. Figure 12¢ displays the simulated
transfer function.

Good agreement exists between the experimental and
simulated data below 20 Hz. However, the damping in the
experimental data above 20 Hz. exceeds that predicted. This could be
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cansed by the noise floor, or resolution of the accelerometer, limiting
the gain at these frequencies. Given an excitation level, increases in
gain will eventually clamp the pinned beam at high frequency. This
results in lower amplitudes at these frequencies. Eventually, the
feedback signal will drop below a noise threshold, resulting in poof
signal-to-noise ratio, and limit both the further increase in gain and
associated reduction in damping. ) '
Figure 11d shows the closed-loop transfer function using the
W-H approximation with a gain that is 1.55 times larger than the
optimal gain. As shown in Fig 6, this causes the W-H compensator to
better replicate the noncausal compensator. If the optimal gain were
doubled, this compensator would have the same gain and phase as the
noncausal compensator and the mode near 6.4 Hz. would be
climinated. Between 8 and 10 Hz., the magnitude approaches a line
with a slope of -3/2. The simulation (Fig. 124) at this gain predicts 8
slightly different behavior. This could result from the small amount of
additional lag in the implemented compensator when compared with
. 34,
Fa Of the compensators implemented, the W-H approximation
provided the most damping in a single mode. This occurred because
the causal, fixed-form solution is broadband while rate feedback
transitions from damping to clamping with increasing gain, without
achieving a gain and phase which equal that of the noncausal
compensstor.

Pert Limims

The first encountered instability was caused by the lighdy
damped feedback accelerometer with a resonance at 1200 Hz. This
was suppressed with a first order, low pass filter.

The second encountered instability was due to the flexibility of
the angle iron frame to which the actuator’s permanent magnet was
attached. This flexibility caused the permanent magnet of the torque
actuator to undergo rotation. This allowed the feedback sensor to
measure acceleration in the absence of armature rotation with respect

to the permanent magnet. In other words, the accelerometer and.

motor were no longer a dual sensor/actuator pair. This instability was
suppressed by placing a layer of viscoelastic foam between the frame
and laboratory floor.

The third encountered instability was caused by the feedback
accelerometer measuring torsional acceleration. This was suppressed
by placing the accelerometer closer to the centerline of the beam.

Once these three instabilities were suppressed, the rate
feedback, causal fixed-form and W-H compensators were
implemented at their optimal gains.

The compensator used to generate curve (b) in Fig. 11d wasat

the highest stable gain achieved using the W-H approximation. Aa
instability at 773 Hz., believed to be caused by torsional modes, was
not suppressed.

CONCLUSIONS

. If the control objective is 10 extract energy from the stucture,
maximizing power absorption frequency by frequency provides the
best solution. As shown, however, there is no guarantee that this
compensator will be implementable, raising the need for causal
solutions.

Two alternative techniques were illustrated for finding causal
compensators under given hardware constraints. The W-H approach
was shown to provide better narrowband damping performance than
rate feedback without perceptible degradation in broadband damping
performance. This was achieved because the W-H technique more
closely mimics the magnitude and phase of the noncausal
compensator.

The limitation to the W-H procedure is that it does not
guarantee that the compensator has a positive real form. Therefore, a
positive real approximation to the W-H compensator was derived,
using cnﬂ'neeting insight. Further work is needed to constrain the W.

H formulation to yield a positive real compensator.
This W-H approximation was implemented experimentally and
achieved predicted levels of damping. These levels of damping were

shown to far exceed the levels of damping that could be achieved
through rate feedback. Limitations to performance included the
discovery of frequencies above which the sensor and actuator were no
longer dual and the inadvertent coupling of the control hardware to
unmodelled torsion modes in the structure. The unsuppressed
instability occurred ar a frequency near the 80 bending mode.
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Abstract

A technique is described for generating guaranteed stable control laws for uncertain,
modally dense structures with collocated sensors and actuators. By ignoring the rever-
berant response created by reflections from other parts of the structure, a dereverberated
mobility model can be developed which accurately models the local dynamics of the struc-
ture. This is similar in many respects to a wave based model, but can treat more general
structures, not only those that can be represented as a collection of waveguides. This
model can be determined directly from transfer function data using an analysis technique
based on the complex cepstrum. In order to minimize the effect of disturbances propa-
gating through the structure, the power dissipated by the controller is maximized in an
X« sense. This guarantees that the controller is positive real, and thus that the system
will remain stable for any uncertainty, provided that the power flow is correctly modelled.
The approach is demonstrated for two examples. The resulting controllers are much more

effective than simple collocated rate feedback.

Introduction

Broadband active control of flexible structures is difficult for several reasons. Struc-
tures tend to be very lightly damped, modally rich, and difficult to model in detail, due
to their large sensitivity to parameter variations. It is well known! that for many ap-
plications, there are likely to be many flexible modes within the desired bandwidth of a
structural control system. This is due in part to the anticipated light damping, which
implies that many modes can contribute to the performance, as in large space structures,
where many problems of interest demand extremely precise pointing. Also, performance
requirements may push the bandwidth higher directly, for example in noise control of
machinery, where the bandwidth must clearly include acoustic frequencies, and therefore
many flexible modes.

One of the problems associated with broadband control of structures is the uncertainty

in the plant model. A state space model of a structure must be at best an approximation,




since the true structure is infinite-dimensional. Finite element methods are typically used
to model a structure, and are sometimes capable of modelling the lowest modes quite ac-
curately. However, in the region of high modal density, any model is likely to be highly
inaccurate. Models of structures with closely spaced modes in particular tend to be ex-
tremely sensitive to small parameter changes, in their prediction of natural frequencies,
and especially in their prediction of mode shapes. As a result, the actual structure to
which the control wi'' eventually be applied may differ significantly from the model for
which it was designed. Thus some knowledge about the uncertainty must be taken into
account when designing the controllers.

Many approaches to control design for uncertain structures?3* begin with a large order,
detailed nominal model of the structure, and deal with uncertainty by attempting to
model it, as well as the nominal plant, in some fashion. However, if the nominal mode!
contains significant error, then the detailed information it contains is meaningless, and
has no effect other than to increase the computational burden associated with the control
design. Indeed, for broadband control of a modally rich structure, the dimension of the
plant required to model each mode may be prohibitive for many control design techniques.
Instead, only the information that can be accurately modelled should be included in the
description of the plant®. With this philosophy, there has been much recent research on
the use of wave based models for use in structural control, see for example Refer-nces 5-12.
Here the assumption is that the local dynamics can be accurately modelled, and that an
effective control system can be derived based only on this information.

Of particular relevance to this paper is the optimal control approach of Miller et al.5.
The structure is represented as being composed of one-dimensional waveguides, i.e. struc-
tures which support travelling waves along a single dimension, such as beams in bending,
or rods in compression. These meet at junctions, and only the junction at which the control
acts is modelled. Using Weiner-Hopf techniques to ensure causality, Miller et al. maximize
the frequency weighted power dissipation associated with the control. The drawback to
this optimization is that it will allow power to be generated at some frequencies in order to

achieve greater power dissipation at other frequencies. If there is a mode of the system at




such a frequency, it may be destabilized by this compensator. While power generation may
be acceptable in a frequency range where the modes are well known, it is not satisfactory
if the uncertainty in modal frequency is comparable to the modal spacing. T:..s problem
is corrected by approximating the optimal compensator with a positive real form, which
is guaranteed to be stabilizing. The final result, then, is suboptimal, because the positive
real constraint is applied in a somewhat ad hoc manner. Furthermore, arbitrary structures
may be difficult to model using this approach because of the difficulty in obtaining an
accurate wave description. Thus while this design procedure is attractive, an approach
which treats more general structures and provides a guarantee of stability is desired.
This paper describes a new approach to the modelling and control of uncertain struc-
tures that will guarantee both stability robustness and some amount of performance ro-
bustness. The goal is to provide broadband damping to the structure. This might be
used in conjunction with a low order modal-based compensator which could provide good
performance on those modes that could be well modelled. Thus this could be used as
the low authority controller in a HAC/LAC architecture!$, rather than the rate feedback
typically used. Rate feedback is guaranteed to be stable, but it is not necessarily optimal.
In general it is possible to add more damping to a structure than can be obtained through
rate feedback®. Further details on the approach of this paper can be found in Reference
14, and experimental results obtained using this approach are presented in Reference 15.
The model used in this paper is the dereverberated mobility!*!¢, which will be described
in more detail in the following section. This is calculated between a collocated and dual
actuator/sensor pair, which means that the product of the two variables is the power flow
into the structure. Only that part of the response which is due to the local dynamics of the
siructure near the actuator and sensor is retained in the dereverberated mobility model.
This can be shown to correspond in the frequency domain to an averaging, or smoothing,
of the transfer function. This model bears some relationship to the wave approach of
Reference 5, but it is more general, as it allows structures which are not networks of
waveguides to be treated. It also has the advantage that it can be derived either from

analytical, or from experimental data.




Since the driving point mobility of a structure is positive real, stability can be guaran-
teed by requiring that the compensator be positive real'’. This is assured by minimizing
the maximum value over frequency of the power flow into the structure, which results in
power being dissipated at all frequencieé. Taking energy as the Lyapunov function shows
that the closed loop system must be stable for all plants, provided that the sensors and ac-
tuators are not mismodelled. In the presence of actuator and sensor dynamics, time delays,
or actuators and sensors that are not quite collocated, stability can still be checked using
the results of Slater et al.'’. Extensions to the design procedure to guarantee stability in

these cases will be the subject of future work.

Modelling

The intent of this section is to develop a useful model for control design for uncertain
modally dense systems. It has been pointed out”!® that modes are not useful in this case.
The detailed information contained in a .modal model is often incorrect, and may also
be unimportant. While detailed knowledge of the exact mode shapes and frequencies is
unavailable, this does not imply that nothing is known about the structure, or that nothing
can be done to control it. In the presence of significant uncertainty, the local dynamics near
an actuator can still be well modelled. There is, however, very little information that can
be relied upon about the behavior of the structure between an actuator and sensor which
are separated by many wavelengths of the disturbance. Thus for broadband control, it is
reasonable to require that feedback only be used between collocated sensors and actuators.

For some arbitrary structure, as shown in Figure 1, insight into the nature of the prob-
lem can be obtained from a wave perspective. Various disturbances are created at certain
points in the structure and propagate through it. At any point in the structure, such as at
an actuator, the disturbance will be scattered. In general, each of the resulting outgoing
disturbances will eventually affect any global cost criterion. Thus from the perspective of
the actuator, without a detailed and accurate description of how each wave propagates, its
goal should be to minimize the energy of each of these disturbances. Since the scattering

behavior is a function of only the local dynamics, this goal can be achieved with only a
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local model of the structure. Thus for a sufficiently uncertain structure, a local model
contains all the information that can be accurately determined, and also contains enough
information for effective control design.

One approach to obtaining such a model is through the use of waves. However, it may
be difficult to obtain a useful wave description for many complicated structures, because
not all structures can be well represented as a collection of waveguides. An alternative to a
wave approach is to represent the structure by its dereverberated driving point mobility*®.
The mobility is the ratio of a generalized velocity and a generalized force, which is the
inverse of the mechanical impedance. The driving point mobility is then the transfer
function between two variables whose product is the power flow into the structure, thus
the sensors and actuators must be both collocated and dual. The response at a point
can be considered to be the sum of two parts: a direct field, due to the local dynamics;
and a reverberant field, which is caused by energy reflected back from other parts of the
structure. The term “dereverberated” implies that the “reverberant” part of the response
has been removed before computing the mobility. It should be possible to model the direct
field more easily and accurately than the reverberant field, as it depends only on a few
parameters, while the reverberent field depends on the entire structure. For the same
reason, it is the reverberant field that contains greater detail, and requires more degrees of
freedom to model. Thus by using the dereverberated mobility, a lower order model can be
used that is based only on the details of the structure which can be accurately modelled.

The dereverberated mobility may be calculated through the use of the cepstrum!® of
the impulse response. The cepstrum is the inverse Fourier transform of the log of the
complex spectrum, and is a function of time. The low time portion corresponds to the
direct response, and the high time portions correspond to the reverberant response, with
spikes at times corresponding to the return times of the impulse from the rest of the
structure. Windowing the cepstrum before the first of these yields the direct response,
which can then be transformed back to the frequency domain to yield the dereverberated
mobility. This approach is shown schematically in Figure 2 for the transfer function from

force to collocated velocity at one end of a free-free beam. The dereverberated mobility




and cepstrum in this figure were calculated directly from the exact local model of the
structure. The cepstrum of the dereverberated structure is only approximated by the
truncated cepstrum of the original reverberant system.

The truncation time to choose can be based on the level of confidence in the impulse
response data. This illustrates one of the differences between the dereverberated mobility
and a local wave model, that being direct control over how much of the structure is included
in the model. By truncating the cepstrum at the appropriate point, some information about
the rest of the structure is maintained while the details of it are ignored. Thus the control
design is provided with more information, allowing it to do a better job.

The fundamental distinction between this and the wave approach is the ability to treat
generic structures. While the concept of direct and reverberant fields is based on wave
ideas, there is no requirement to actually identify a local wave model. All that is needed
is the input/output behavior at the driving point, which may be found from experimental
data, calculated from some nominal model, or found analytically, perhaps even from a
wave model. This also indicates another important advantage of this modelling approach
- the ability to use experimental data to generate a measurement based model.

The effect of ignoring the reverberant field is to smooth out the transfer function. If
no energy returns from beyond some closed surface surrounding the actuator, then this is
equivalent to the structure beyond this surface either being infinite in extent, or having
perfectly absorbing boundary conditions. This has also been shown!®!® to be equivalent
to replacing the log magnitude of the original transfer function with its mean. This is not
surprising, considering that the cepstral analysis approach described earlier is essentially
the same as low-pass filtering the logarithmic frequency response. Thus another way to
compute the dereverberated mobility is simply to take the logarithmic average of the
magnitude of the transfer function, with the phase being determined uniquely from the
fact that the dereverberated mobility is positive real. In practice, this method should
be adequate. Fitting the result with a rational polynomial gives a model that captures
the essential dynamics of the system over a wide frequency range that encompasses many

modes, with only a small number of poles and zeroes.




The dereverberated mobility model is not intended to accurately represent the structure
- it clearly fails in this regard. However, it is shown in the examples that this can be
a useful model for the design of control systems for the structure. Although the local
dynamics of the controlled junction are accurately modelled by the dereverberated mobility,
the resonant and anti-resonant details of the full reverberant mobility are not _xplicitly
modelled. However, the reverberant field is composed of waves whose behavior is governed
by the local dynamics of the controlled junction each time they pass through it. Thus if the
local dynamics can be appropriately modified based on a local model, then the complete

reverberant field can be controlled.

Control Design

The previous section described the modelling approach used, while this section focuses
on the design of the control system for this model. There are two main objectives to be
satisfied by the control design. It must be guaranteed to be stabilizing for all possible
plants, and it must provide good performance, again for all possible plants. In order to
guarantee stability, positive real feedback from velocity to force will be required. One
could, for example, select rate feedback, which is guaranteed to be stable, but this does
not necessarily give the best performance that could be achieved. The object of this section
is to derive the optimal positive real compensator.

The criterion to be used for optimality will be the minimum power flow into the struc-
ture. That is, power extracted from the structure will be maximized. Power flow is the
appropriate quantity to minimize to provide active damping of the structure, and allows
a guarantee of stability by ensuring that the power flowing into the structure due to the
control is always negative.

Miller et al.® minimized the X; norm of the power flow. This required some assumptions
about the power spectral density of the disturbance entering the junction, which in the
actual structure is related to the control through the disturbance that previously departed

the junction. In the wave model, however, it was assumed constant and independent




of the control, and thus the resulting compensator allowed power to be added at some
frequencies. This problem can be avoided by minimizing the power flow in an ¥ setting.
For an open-loop system, the power removed by the controller is zero, and the closed loop
is guaranteed to be no worse. In fact, it is sufficient to place a constraint on the maximum
value of the power flow which guarantees it to be negative at all frequencies, and then to
use an ¥, optimization??, which may improve the overall performance.

Define G(s) to be the dereverberated driving point mobility, and assume some distur-
bance input d to be additive at the output. Then the output y is related to the input u
and the disturbance via

y(s) = G(s)u(s) +d(s) ' (1)
As yet, no assumptions have been made about the nature of the disturbance.

The disturbance d in Equation (1) can be thought of as originating from two sources:
the original disturbance input to the real structure, and the reverberant field ignored
in the modelling process. This second source will have significant power at the modal
frequencies, and if the closed loop damping is still relatively small, then in steady state
this will be much larger than the physical disturbance. Thus the disturbance spectrum in
Equation (1) consists of significant power in narrowband but unknown frequency ranges,
which are exactly the assumptions indicated in Reference 20 as being appropriate for ¥
minimization.

The instantaneous power flow into the structure is the product of the input u(t) and
the output y(t), since G(s) is a mobility. The average power flow can be expressed as a
time integral of the instantaneous power flow?!, and making use of Parseval’s theorem, this

can be transformed into the frequency domain:

Pow = Jim 515,- /_:y(t)fu(t)dt
= 27 (wtw) (i) + i) uliw)) o ()

The integrand of the right hand side of Equation (2) represents the steady state, or average,

power flow into the structure as a function of frequency?!. For convenience, the average




power flow at each frequency can be defined without the factor of % as

P(w) = u(jw)y(jw) + y(3w)" u(jw) (3)

where (-)¥ indicates Hermitian, or complex conjugate transpose.

The control law is assumed to be of the form

Solving for the control in terms of the disturbance from Equation (1) gives

v = —(I+KG)'Kd (5)
= Hd (6)

where the explicit dependence on the Laplace transform variable has been dropped. Then

the output can also be represented in terms of the disturbance as
y=(+GH)d (7)

Substituting these expressions for u and y irto Equation (3) yields that the average

power flow at each frequency is
P(w)=d" {H*(I+GH)+ (I +GH)"H} d (8)

Since the power flow is a scalar, it is equal to its trace. The expected value of the power

flow at each complex frequency can then be written in terms of the power spectral density

of the disturbance, 4 = E [dd¥], as
E(P(w)) = Trace {®u [H* (I + GH) + (I + GH)" H|} (9)
Unconstrained Optimum

Before finding a compensator which minimizes the worst case power flow, consider

finding the compensator which minimizes the power flow at each value of the Laplace

transform variable s. Equation (9) is only valid on the jw axis, and must first be extended




analytically to the remainder of the complex plane. The analytic continuation of the

Hermitian operator is the parahermitian conjugate??, denoted (-)~, and defined as
F~(s) = F(-s)" (10)

With this substitution for the Hermitian, then optimizing Equation (9) at each point in

the complex plane with respect to H yields
Hype = ~(G+G™)™! (11)

which is independent of the disturbance spectrum ®,;. This is the optimal disturbance
feedforward control law. The equivalent feedback from the velocity is related to this from
Equations (5) and (6), by
K=-H(I+GH)™! (12)
So finally,
Kopt = (G™)7" (13)

This compensator extracts the maximum possible power from the structure at every fre-
quency. This result is not new; it corresponds to the impedance matching condition found,
for example, in Reference 23. The maximum energy dissipation is obtained if the impedance
of the compensator is the complex conjugate of the impedance of the load, which in this
case is the rest of the structure. Also note that although Equation (13) was obtained using
the dereverberated mobility, it is also optimal for the actual structure. The dereverberated
mobility accurately models the local dynamics of the structure, and the power flow is a
function of only the local dynamics. Thus the compensator that dissipates the maximum
power from the dereverberated structure will also dissipate the maximum power from the
actual reverberant structure.

In general, however, the compensator in Equation (13) is noncausal, and cannot be
implemented. The dereverberated mobility G(s) must be both stable and causal, and is
therefore right half plane analytic (RHPA). Since it is strictly positive real, it must also be
minimum phase, and thus the optimal compensator in Equation (13) will be left half plane

analytic (LHPA). Because both the compensator and the plant are strictly positive real,

10




then in the Nyquist plot there are no encirclements of -1, and K must be stable for the
closed loop system to be stable. This implies that unless the dereverberated mobility is a
constant, this compensator is noncausal. One case for which the dereverberated mobility
is constant is that of a uniform rod in compression, for which Equation (13) corresponds
exactly to the matched termination.

Some understanding of why the optimal compensator is almost always noncausal can be
found from root locus arguments. For a point A to be on the root locus of the plant P(s),
the compensator K(s) must satisfy 1 + P(A)K(A) = 0. In order to place the structural
poles far into the left half plane, the relevant plant P(s) is the structural transfer function
evaluated for values of the Laplace variable s far into the left half plane.

For a lightly damped structure with a large number of closely spaced poles and zeroes,
one can divide the complex plane into three regions. Near the jw axis, and close to the poles
and zeroes, the transfer function varies significantly from its maxima to its minima, and the
phase varies between +90° and -90°. If one looks at the transfer function evaluated farther
into the right half plane, the effect of individual poles and zeroes becomes smeared out,
and the transfer function approaches the smoothed, or dereverberated transfer function
G(s). The phase of G in some frequency region will be the average phase of the original
transfer function near that region.

In the left half plane, however, the structure’s transfer function is not G(s). To deter-
mine the phase contribution of each pole and zero, the contour to consider must now be to
the left of every pole and zero, and so each phase change has opposite sign. The result is
that in the left half plane, the structural transfer function approaches —G(—s). Therefore,
to move the poles far into the left half plane, K(s) must satisfy 1 — G(—s)K(s) = 0, or
K(s) = 1/G(—3), as given in Equation (13).

If this compensator could be implemented, all the poles could be moved arbitrarily far

into the left half plane. Instead, the best causal compensator must be found.
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Causal Optimum

The wave model of Miller et al.® can also be put in a form similar to that of Equa-
tion (1), though only for structures composed of waveguides. As discussed earlier, Miller
et al. performed an X, optimization of the power flow, which did not guarantee dissipation
at all frequencies, and thus did not guarantee closed loop stability. A more appropriate
optimization to guarantee stability is to minimize the worst case power dissipation, hence
a minimax optimization of the power flow into the structure. As will be shown shortly,
this can be cast as an X,, minimization problem. In order for this to make sense, though,
the disturbance input d should be normalized to provide the same amount of power avail-
able to be dissipated at each frequency. This provides the designer with ¢.mplete control
over the relative importance of one frequency range to another, by removing any inherent
frequency weighting from the problem.

With the optimal noncausal compensator derived in the previous subsection, Equa-
tion (13), the closed loop power flow into the structure is given by Equations (8) and (11)
as

P=-d¥(G+GH)'d (14)

Introduce a scaled disturbance w related to the original disturbance d via
d= Gow (15)

Then if the input w has unit magnitude at a certain frequency, the optimal noncausal
compensator will dissipate unit power at this frequency, provided that the transfer function

G, is the co-spectral factor of G + G~, given by
GGy =G+ G~ (16)

The block diagram for this system is shown in Figure 3, and the system (Equation (1))

becomes
v(s) = G(s)u(s) + Go(s)w(s) (17)
Now, consider the problem of finding a causal compensator that will minimize the

worst case power flow in Equation (3). This quantity represents the power flow into the
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structure, which will hopefully be negative. In order to cast this as an ¥, optimization,
however, the performance index must be positive definite. This problem can be solved
by considering that the best causal compensator can dissipate no more power than the
noncausal optimum. Thus if the disturbance power w™~w is added to the cost, positive
definiteness will be assured.

Thus the cost at each frequency is

Cost(w) = ww+u"y+y u (18)
= w”w +u”(Gu + Gow) + (Gu + Gow)™~u (19)
_ u ) G+G~ Gp u (20)
w Gy I w
= |Gsu+uf* (21)

From this, we have that the relevant output that should be minimized is
2=Gju+w (22)

Combining this with the system equation (17), the result can be written as a four block

problem?*%%:

z | _ I Gy w (23)
y Go G u
The compensator from y to u that minimizes the ¥,, norm of the transfer function from
w to z will minimize the maximum power flow into the structure.

For computation, however, the unstable (1,2) block in Equation (23) is unacceptable.
Any allowable compensator must stabilize this block, while the only important stability
constraint is on the output y. Note, however, that the norm of z is unchanged by multipli-
cation by an inner function. An inner function is one which is stable, purely non-minimum
phase, and has unit magnitude at all frequencies?*. Define A(:) to be the characteristic
polynomial of the transfer function (:), and define the inner function
A(G5 (s))

U N AR)

(24)
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Then redefine z to be

z2 = G1Gyu + Gyw (25)
so that the four-block problem (23) becomes

z G\l G\Gy w
y Go G u
which is stable.

In general, it may be desirable to weight some frequency ranges more heavily than
others, while still requiring that power be removed at all frequencies. This could be
because there is a known disturbance source in a certain range, because structural modes
are less well damped within this range, or because the performance requirements put more
emphasis on this range. Similarly, there will usually be some frequency beyond which
performance is not required, and the weighting can also be chosen to reflect this.

The manner in which the weighting is introduced into the problem must be such that
if power is added to the structure somewhere, the resulting cost will be worse than the
open-loop cost. Hence, rather than weighting the sum of the disturbance input power and
the power input by the control, as in Equation (18), define the cost to be the sum of the

disturbance power and some frequency weighted control power, as
Cost(w) = w™w + W' (v~y + y~u)W, (27)

which can be manipulated into the form

2
Wi (G5u + w
Cost = (G ) (28)
Wgw

where W, is the selected frequency weighting, and W, is defined by the relationship
Wi [? + Waf? =1 (29)

Note that as desired, the open loop cost is unity everywhere, and the cost is greater than
unity at any frequency where power is added to the structure. Thus as before, a closed

loop cost of less than unity guarantees stability.
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The only constraint on W, is that its magnitude be less than or equal to unity at
all frequencies. Without this constraint, there is no guarantee that the cost be positive
definite, and the minimization could fail. Where W, is small, a greater amount of control
effort is required to reduce the cost than before, and thus there is more power removed.
Henece, in order to emphasize some frequency range more heavily, the weighting function
W, should be chosen to be smaller within that region.

One of the properties of ¥, compensators is that at the optimum, the closed loop
transfer function being minimized is a constant function of frequency, equal to some number
v (see Reference 24). From this, and Equation (27), the closed loop power absorbed by

the compensator can be related to 4 and the weighting function as
1-+2

W |*

This provides some insight into how to select W;.

Pw) = (30)

The cost in Equation (18) or (27) can also be modified to include a penalty on the
control effort, pu~u. The four block proi)lem (26) is modified to include an additional
output in the vector z, corresponding to \/pu. This allows a tradeoff between performance
and control, and also guarantees a proper compensator. Similarly, it is straightforward
to modify the four block problem (26) to include sensor noise. An additional disturbance
input is included in the vector w which affects only the sensor output y.

Because of the form of the cost in Equations (18) and (27), the final result of this
approach is a compensator which dissipates power at all frequencies, provided that the
optimal ¥, cost ~ is less than unity. From Equation (8), power is dissipated provided that
[H H(I+ GH) + (I + GH)® H] is negative definite. Using Equation (12), this is equivalent
to [H”’(K‘1 + K“")H] being positive definite, or K~'(jw) + K" (jw) > 0 for all w.
This is precisely the requirement that K~!, and therefore K be positive real'’. Hence the
approach generates a positive real compensator, which is guaranteed to be stabilizing for
any positive real plant. From a mathematical perspective, the approach has replaced a
phase constraint - that the compensator be positive real — with an equivalent magnitude
constraint on another transfer function. The X, approach guarantees satisfaction of the

latter magnitude constraint, and therefore of the original phase constraint.
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If there are any time delays, actuator or sensor dynamics, or if the actuator and sen-
sor are not truly collocated and dual, then the structure will not be positive real at all
frequencies. Stability can still be guaranteed if the complementary sensitivity is bounded
above by the inverse of the difference of the true structure from the positive real condition

as noted by Slater et al.'’.

State Space Computation

The calculation of the optimal compensator for the four-block problem is most easily
performed in state space, using the formulae given in Reference 25. The first step then
is to obtain a state space representation for the plant G(s) and the desired weighting
function Wj(s). In general, the dereverberated mobility G(s) will not be rational, and a
rational approximation that is valid in the frequency range of interest must be found. This
approximation can also be denoted G(s) without confusion since only the approximation
can be used in state space calculations.

From W,(s) and G(s), state space representations for Wx(s), Go(s), and G;(s) must
be calculated. These problems can be formulated as spectral factorization problems, and
solved by methods similar to those presented in Francis?** or in Fuhrmann?2.

Gy is a co-spectral factor of M = G+ G~, and thus can be calculated with the standard
algorithm in Reference 24. The algorithm is restricted to systems G with a non-zero direct
feedthrough term D. 'This is not a serious restriction, however. No finite-dimensional
model is valid at all frequencies, nor does it need to be. This merely implies that rather
than rolling off at high frequencies, G(oo) should be a constant.

First, define the state space representation of G as

A| B, »
G = = Cz (8[ - A) Bz + Dn (31)
C3 | Dy

The reason for the selection of the subscripts on B, C, and D is that G is the (2,2) block

of the four block problem.
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Go can be represented as

Al B
0= (32)

C; | Dy

where
D = Dy + Dg‘z (33)
5 AT o C; »

X, = - D [B, c{] (34)

0 —-A -BT
X1 = Ric{A¥r} (35)
B, = (By+ X,CT)D™'/? (36)
Dzl = Dl/2 (37)

The notation X = Ric { P} indicates that X is the solution of the Riccati equation corre-

sponding to the Hamiltonian matrix*¢ P. That is, if

A -R
P=1. (38)

-Q -—-AT

then X = Ric { P} is the positive definite solution to
ATX+XA+Q-XRX =0 (39)

The conditions required for this spectral factorization to be valid are that M = M~,
which is clearly satisfied, that M and M ™! are proper, which is satisfied with non-zero Dy,
that M have no poles or zeroes on the jw axis, and that M(oo0) > 0. If G is dereverberated,
then G has no imaginary poles, and thus M also has no imaginary poles. The remaining
conditions are satisfied if G is strictly positive real, as is the case for the dereverberated
driving point mobility of any structure.

The (1,2) block of the four-block problem (26) is G1Gg. This has the stable poles, but
the non-minimum phase zeroes of M = G + G™~. This is a factorization of M, but it is
not in the standard form. A modification to the standard algorithm is required, which is
given in Appendix A. The result is
A | B
Cy | D2

G1(s)Go(s) = (40)
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where
A 0 B, o
Ay = - pic B (41)
0 -AT -C7
X; = Ric{—A;“} (42)
C, = DV*C,+ BTX;) (43)
Dy, = D'Y? (44)

Since the remaining (1,1) block G,I of the four block problem is inner, it must be true

that
Dll =1 (45)
Then the four block problem (26) is completely specified.

The computation of the weighting function W, in Equation (29) from W, can also be

represented in terms of a spectral factorization. This derivation is presented in Appendix B.

Examples

Bernoulli-Euler Beam

As an example of this approach, consider a free-free Bernoulli-Euler beam with a collo-
cated force actuator and velocity sensor at one end. The dereverberated mobility for this
system is simply that of a semi-infinite beam, which can be found for example from the

wave approach of Reference 5:

V2 1

Gl) = GapnEnT= 78 (46)

For simplicity, assume the mass per unit length pA and the bending stiffness EI are such
that

G(s) = L (47)

Nz

This can be done without loss of generality, as it requires only a scaling of the plant.
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First, consider the unconstrained optimal compensator that extracts the maximum

possible energy. From Equation (13),
K(s) = v~-s (48)

This compensator has a slope of 10 db/decade, and a phase of —45° at all frequencies.
As expected, it is noncausal and cannot be implemented. Note that this is the same
compensator as that obtained by the unconstrained optimization in Reference 5, though
the derivation differs, and in Flotow and Schifer®, by setting the reflection coefficient to
zero. '

Now, find the compensator that minimizes the maximum power flow into the structure.
This can be done analytically, the solution is given in Reference 14. With equal weighting

at each frequency, (W; = 1) the optimal causal compensator is
K(s) = Vs (49)

This is similar to the noncausal solution, Equation (48), with the same magnitude every-
where, but a phase of +45° instead. This is the “best” causal approximation to Equa-
tion (48), and extracts exactly half the power at all frequencies.

With velocity feedback, an appropriate choice of gain will add significant damping to a
given mode, and those nearby, but it is not possible to add significant damping to all of the
modes at the same time. Thus the gain in velocity feedback must be optimized to provide
damping at a certain frequency. Far enough away from this frequency, the gain is either
too low to have much affect, or too high so that the closed loop poles lie near the open
loop zeroes, which are undamped. With the optimal causal compensator /s, although no
poles are damped as heavily as the best pole with velocity feedback, every pole is given
some damping.

Now consider including a weighting function to increase the importance of a certain
frequency range, say in a narrow band near 1 rad/sec. So select the weighting function
W, to have poles at # and 2v/2, zeroes at 7‘; and v/2, and unit magnitude far from 1

rad/sec, giving it less than unit magnitude near 1 rad/sec. Recall that more importance
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is placed where the weighting function is smaller. An analytic solution here would be
difficult. However, the plant in Equation (47) can be approximated adequately over a
wide frequency range with a finite number of alternating poles and zeroes on the real
axis, with equal logarithmic spacing. The state space methods described earlier can then
be used to obtain an approximate compensator. For this example, Equation (47) was
approximated by 9 poles and 9 zeroes on the negative real axis, between 10~* and 10*
rad/sec. The transfer function of this approximation matches the exact dereverberated
mobility to within 2 degrees of phase and 0.25 db magnitude for 3 decades above and
below the center frequency of the weighting function.

The resulting compensator is plotted in Figure 4, along with the optimal compensator
with W, = 1 from Equation (49), and the unconstrained optimum from Equation (48). Far
from the region that was selected as important, the compensator still has a /s behavior,
though with less magnitude than the unweighted optimum in Equation (49) resulting in
poorer performance. Near 1 rad/sec, though, the slope of the compensator is now -10
db/decade, and the phase is closer to —45°. At 1 rad/sec, the compensator has exactly the
same magnitude, and almost the same phase as the noncausal optimum, and thus it absorbs
almost all the incoming power possible. The power flow absorbed by this compensator
is plotted in Figure 5, expressed as a fraction of the available incoming power at each
frequency. For comparison, the power absorbed by velocity feedback and the unweighted
optimum are also plotted in the same figure.

If this control law is now applied to a finite beam, the closed loop performance can be
examined. The transfer function between force and velocity at the far (uncontrolled) end
of the beam can be calculated using the phase closure approach of Reference 21. The beam
length was chosen so that the fifth mode of the beam was at the center frequency of the
weighted region. The result is plotted in Figure 6, and the envelope of the transfer function
for any length beam is also plotted. As expected, the modal peaks in the region where
W, is smallest are more heavily damped. Note that because the compensator in Figure 4
is positive real, it will not destabilize the beam at any length. (Nor will it destabilize

any positive real structure.) Furthermore, the performance is insensitive to the length of
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the beam. For any length beam, there will be some damping achieved at all frequencies,
and greater damping in the region of interest, as indicated by the envelope of possible
transfer functions. Also note that although the modal information is not contained in the
dereverberated mobility model of the structure, significant damping can still be added to

the modes with a controller designed for this model.

Example 2: Pinned-Free Beam

As a slightly more complicated example, consider again a finite beam, but this time with
one end pinned, with a moment actuator and collocated angular rate sensor at this end.
Also include some finite rotational inertia J at this end. The theoretical dereverberated
transfer function for this beam can be found in a straightforward manner using the wave
approach of Reference 5 to be

)

y s
M V2(pA)A(EDA\/s + I8}

(50)

At low frequencies, the behavior is the /s behavior that would be the transfer function
if there were no lumped rotational inertia. At high frequencies, the transfer function is
dominated by the rotational inertia, and rolls off at 20 db/decade. From the far end of
the beam, the controlled end then behaves as if it were clamped, and regardless of the
control, all disturbances are reflected back. Thus, power flow beyond the rolloff frequency
of Equation (50) should be unimportant, and the weighting function here should be much
larger than elsewhere. Also, assume again that some specific frequency range near 1 rad/sec
is more important.

For computation, EI = ;}; and pA = 7‘5, so that the low frequency behavior is /s,
and J = 1073 to place the rolloff frequency at 100 rad/sec, at a slightly higher frequency
than that considered to be important. Again, the system is approximated with a rational
transfer function which is accurate over the frequency range of interest, from 1074 to 10*
rad/sec.

The X and unconstrained optimal compensators for this case are shown in Figure 7.

At low frequencies, the ¥, compensator is similar to the 7‘; that would be optimal with no
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rotary inertia and no weighting. Where the weighting function decreases near 1 rad/sec,
the phase jumps towards the unconstrained optimum phase of 45°, and thus absorbs close
to the maximum power possible. At high frequencies, as desired, the compensator gives
up and does not attempt to absorb incoming power, though it does remain positive real.
Thus again, the closed loop system is stable for any length beam, and for any boundary
condition at the far end. The open and closed loop transfer function from moment to slope
rate at the controlled end of the beam is given in Figure 8. This transfer function shows
the rolloff at 100 rad/sec, beyond which the poles and zeroes are essentially undamped, but
almost cancel each other. The poles are more heavily damped near 1 rad/sec, but none of
the zeroes are affected. Also plotted is the dereverberated mobility (Equation (50)), and

the upper bound of the envelope of possible transfer functions for any length of beam.

Conclusions

In this paper an approach to broadband active damping of modally dense structures
with significant uncertainty has been presented. A modal model for such a structure would
be both inaccurate and unnecessarily large. Instead, the structure is modelled with its
dereverberated mobility. For simple structures, this is equivalent to a local wave model, and
can be calculated from such a model. For general structures, the dereverberated mobility
can be calculated from an experimental or analytic transfer function using cepstral analysis,
or by taking the logarithmic average of the transfer function. Ideally, a compensator
that dissipates the most power possible at every frequency is desired. This compensator
is in general noncausal, and cannot be implemented. A causal, guaranteed stabilizing,
optimal compensator can be obtained by minimizing the maximum power flow into the
structure. This problem is solved by reformulating it as an equivalent ¥, control problem.
This results in a positive real controller which dissipates power at all frequencies. The
importance of a certain frequency range can be increased through use of a weighting
function. The technique was demonstrated for several simple examples. At the frequency
deemed most important, the compensator is close to the noncausal optimum, and dissipates

almost all incoming power. It is expected that this approach to modelling and control
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design will allow significant damping to be added to many modes of a structure, without
the large effort in system identification, off-line computation, and compensator complexity

that would be required of many control design techniques.

Appendix A: Modified Spectral Factorizations

A state space method is desired for calculating G; Gy, which has the stable poles, but
the non-minimum phase zeroes of M = G+G"~. This is related to the spectral factorization
algorithm found in Reference 24, and only the differences between the two will be indicated

here.

Given G as Equation (31), then

A O B, B
A
M=G+G =| 0 -AT| -cCT = == (51)
Cum| D
C, Bg Dsy + D{z

The spectral factorization algorithm in Reference 24 relies on finding the modal spaces
X_(Ajy) and X, (Am) corresponding to the left half-plane zeroes of M and the right half
plane poles respectively. Instead, now find X, (A,;) and X, (Aar), corresponding to right
half plane zeroes and right half plane poles. If these two spaces are complementary, then
the required factorization exists.

Since the unstable poles of any matrix A are the stable poles of — A,
X4 (A%) = X_ (- 43) (52)

Thus the desired factorization exists if X_(—Aj},) and X, (Apm) are complementary.

Since Ay, is a Hamiltonian matrix, — Ay, is as well. Thus, there exists a matrix

X; = Rie {—A;‘,} (53)
such that
I
X_(—A}) =Im (54)
X;
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and this is complementary to X (Aa). Given this, the remainder of the derivation follows

Francis exactly, so that
+ |
D3(Cy + BT Xz) | D2

G1(s)Go(s) =

Appendix B: Calculation of W,

As noted earlier, the computation of the weighting function W, in Equation (29) from

W, can also be represented in terms of a spectral factorization. First, represent W, in state

space as
A'J B‘J
1= (56)
Cu | Dy
Then
_AT _CT
L T (57)
Combining these gives
Av 0 B,
w\Wwr =| -cTc, -AT|-CID, (58)
-DIc, -BI|-DID,
Define the similarity transformation
I 0
= (59)
Xo 1
where X, satisfies the Lyapunov equation
ATX, + XA +CTC, =0 (60)
and use this to transform the system, Equation (58). This gives
A, 0 By
WaW;=| o -aT| -C. (61)

C., -BIL|-DID,
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where
c. =BIx,+DIc, (62)
Then W, is a spectral factor of

A, O B.
I-wwy=| o -4T cr (63)

w

_C., -BT|I-DID,

This is now in the form of a standard spectral factorization. In order to apply the algorithm,

W, must satisfy
1-DID, >0 (64)

or Wi(oco) < 1. This is not a limitation at all, since multiplying the weighting function
everywhere by a constant will not change the resulting compensator. The other conditions
specified in the definition of the spectral factorization are also satisfied, provided W, has
no imaginary poles. Note that if the magnitude of W) is less than one at all frequencies,

then 1 — W,W[~ can have no imaginary zeroes.
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Abstract

Experimental results are presented comparing veloc-
ity feedback with a new technique for designing guar-
anteed stable control laws for uncertain, modally dense
structures with collocated sensors and actuators. A
dereverberated mobility model is used, which is simi-
lar in many respects to a wave based model, but can
treat more general structures. The power dissipated
by the controller can be maximized in either an H; or
an H, sense. The H,, approach guarantees that the
controller is positive real, and thus that the system
will remain stable for any uncertainty, provided that
the power flow is correctly modelled. The experimen-
tal results indicate that the controllers designed with
this approach are much more effective than simple col-
located rate feedback.

Introduction

Broadband active control of flexible structures is dif-
ficult for several reasons. Structures tend to be very
lightly damped, modally rich, and difficult to model in
detail, due to their large sensitivity to parameter vari-
ations. For many applications, there are likely to be
many flexible modes within the desired bandwidth of a
structural control system,! and these modes are likely
to be poorly known. Models of structures with closely
spaced modes in particular tend to be extremely sensi-
tive to small parameter changes, in their prediction of
natural frequencies, and especially in their prediction
of mode shapes.

Typically, structural modelling is done with state
space based methods, which were originally applica-
ble only for structures with a few flexible modes in
the bandwidth. Various tools have been developed
in an attempt to increase both the number of modes
within the bandwidth, and the extent of uncertainty
that the control design techniques are capable of deal-
ing with. Alternatively, an acoustic approach, suitable
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for modally dense structures could be used. With this
philosophy, there has been much research on the use of
wave based models for use in structural control, see for
example References 2,3,4,5, and the references therein.
Here the assumption is that the local dynamics can be
accurately modelled, and that an effective control sys-
tem can be derived based only on this information. A
more general approach with similar philosophy is to
use the dereverberated driving point mobility of the
structure.57 Only that part of the response which is
due to the local dynamics is retained in the model.
This model will be discussed briefly in the next sec-
tion.

The control design approach must be suitable for
the local model being used. Of particular relevance
here are the optimal control approaches of Miller et
al,? and of MacMartin and Hall.%” Using Wiener-
Hopf techniques to ensure causality, Miller et al. max-
imize the frequency weighted power dissipation associ-
ated with the control. The drawback to this approach
is that it will allow power to be generated at some
frequencies in order to achieve greater power dissipa-
tion at other frequencies, potentially destabilizing the
structure. Since the driving point mobility of a struc-
ture is positive real, stability can be guaranteed by
requiring that the compensator be positive real. Ap-
proximating the optimal compensator with a positive
real form thus guarantees a stable closed loop, but is
suboptimal, because the positive real constraint is ap-
plied in a somewhat ad hoc manner. MacMartin and
Hall® minimise the maximum value over frequency of
the power flow into the structure, resulting in power
dissipation at all frequencies, and a positive real com-
pensator. This approach will be summarized in Sec-
tion 3, and parallels with the technique of Reference 2
will be iliustrated. Indeed, it is possible to solve the
frequency weighted power dissipation problem of Ref-
erence 2 in state space, using some of the results de-
veloped in Reference 6.

Experiments were performed on a pinned free beam
in bending, using a torque motor and collocated an-
gular rate sensor at the pinned end of the beam. The
experimental results verify the performance that can
be achieved by modelling the structure with its dere-
verberated mobility, and minimizing the worst case




power flow. Several compensators are designed with
this approach, and their performance is compared with
that of velocity feedback. Previous experiments on the
same structure have demonstrated the H; wave ap-
proach of Miller et al.3

Modelling

This section reviews the dereverberated mobility
model for control design for uncertain modally dense
systems.® A modal model may not be useful in this
case, since the detailed information it contains is often
incorrect, and may also be unimportant. In the pres-
ence of significant uncertainty, the modal information
may be uncertain, but the local dynamics near an ac-
tuator can still be well modelled. The dynamices of
the structure between an actuator and sensor which
are separated by many wavelengths of the disturbance
are, however, unknown due to the uncertain phase.
Thus for broadband control, it is reasonable to require
that feedback only be used between collocated sensors
and actuators.

For some arbitrary structure, as shown in Figure 1,
insight into the nature of the problem can be obtained
from a wave perspective. Various disturbances are cre-
ated at certain points in the structure and propagate
through it. At any point in the structure, such as at
an actuator, the disturbance will be scattered. In gen-
eral, each of the resulting outgoing disturbances will
eventually affect any global cost criterion. Thus from
the perspective of the actuator, without a detailed and
accurate description of how each wave propagates, its
goal should be to minimize the energy of each of these
outgoing disturbances. Since the scattering behavior
is a function of only the local dynamics, this goal can
be achieved with only a local model of the structure.

One approach to obtaining such a model is through
the use of waves. However, it may be difficult to ob-
tain a useful wave description for many complicated
structures. An alternative to the wave approach for
obtaining a local model is to represent the structure
by its dereverberated driving point mobility.® The
driving point mobility is the transfer function between
two variables whose product is the power flow into
the structure. The response at a point can be consid-
ered to be the sum of two parts: a direct field, due
to the local dynamics; and a reverberant field, which is
caused by energy reflected back from other parts of the
structure. The term “dereverberated” implies that the
“reverberant” part of the response has been removed
before computing the mobility.

One method by which the dereverberated mobility
may be approximated is through the use of the cep-
strum® of the impulse response. This procedure in-
volves taking the inverse Fourier transform of the log
of the complex spectrum, windowing this to remove
the reverberant part, and transforming back to the

Figure 1: Wave behavior in an arbitrary structure

frequency domain to yield the dereverberated impulse
response. A simpler approach is based on the observa-
tion that neglecting the reverberant field is equivalent
to replacing the log magnitude of the original transfer
function with its mean.%10 Thus another way to com-
pute the dereverberated mobility is simply to take a
logarithmic average of the transfer function, with the
phase being determined uniquely from the fact that the
dereverberated driving point mobility is positive real.
In practice, this method should be adequate. Fitting
the result with a rational polynomial gives a model
that captures the essential dynamics of the system over
a wide frequency range that encompasses many modes,
with only a small number of poles and zeroes.

This approach can be easily applied to arbitrarily
complex structures, since all that is needed is the
input/output behavior at the driving point, which
may be found from experimental data, calculated from
some nominal model, or found analytically, perhaps
even from a wave model. Indeed, for simple struc-
tures such as the beam in bending used in the exper-
iment, the resulting model is equivalent to the local
wave model of Reference 2.

Control Design

The previous section summarized the modelling ap-
proach used, while this section examines the design of
the control system for this model. All of the techniques
that will be examined rely on an optimization of the
power flow, maximizing in an appropriate sense the
dissipation associated with the control system. For a
lightly damped system, the power flow gives a measure
of both the performance achieved, and the degree of
stability.

Miller et al.? minimised the 3 norm of the power
flow, using a Wiener-Hopf procedure. The same prob-
lem can be solved in state space using a Linear-
Quadratic-Gaussian (LQG) algorithm. In either case,




some assumptions are required about the power spec-
tral density of the disturbance entering the junction.
In the actual structure, this is related to the control ac-
tion through the disturbance that previously departed
the junction. With only a local model, however, it
is assumed constant and independent of the control,
and thus the resulting compensator may allow power
to be added at some frequencies. This problem can be
avoided by minimizing the power flow in an H,, set-
ting. For the open-loop system, the power removed by
the controller at each frequency is zero, and the closed
loop is guaranteed to be no worse.

Define G(s) to be the dereverberated driving point
mobility, and assume some disturbance input d to be
additive at the output. Then the output y is related
to the input u and the disturbance via

y(s) = G(9)u(s) + d(s) (1)

The disturbance d in this equation can be thought of as
originating from two sources: the original disturbance
input to the real structure, and the reverberant field
ignored in the modelling process.

The instantaneous power flow into the structure is
the product of the input u(t) and the output y(t), since
G(s) is a mobility. The average power flow can be
expressed as a time integral of the instantaneous power
flow,!! and making use of Parseval’s theorem, this can
be transformed into the frequency domain:

1 T

Paoe = Tlem T ) . y()Tu(t)dt (2)
=3 W) se) + ) ) e (@)

The integrand in Equation (3) represents the steady
state, or average, power flow into the structure as a
function of frequency.!! For convenience, the average
power flow at each frequency can be defined without
the factor of ] as

P(w) = u(jw)" y(jw) + y(jw)" u(jw) (4)

The control law is assumed to be of the form

u(s) = - K(s)y(s) ()

Solving for the control in terms of the disturbance from
Equation (1) gives

u =

-(I+ KG)"'Kd (6)

= Hd )
where the explicit dependence on the Laplace trans-
form variable has been dropped. From these equations,

the equivalent feedback K is related to the disturbance
feedforward H via

K=-H(I+GH)! (8)

Using Equations (1), (6) and (7), then Equation (4)
yields that the average power flow at each frequency
is

Pw)=d? {H*(I+GH)+ (I +GH)"H}d (9)

Since the power flow is a scalar, it is equal to its trace.
The expected value of the power flow at each complex
frequency can then be written in terms of the power
spectral density of the disturbance, ®;4 = E [dd"l, as

E(IP(w)) = Tx {®44 [H(I+ GH) + (I + GH)" H|}
(10)

Unconstrained Optimum

The simplest optimization approach is to minimize the
power flow at each value of the Laplace transform vari-
able s. Equation (10) is only valid on the jw axis, and
must first be extended analytically to the remainder of
the complex plane. The analytic continuation of the
Hermitian operator is the pargkermitian conjugate, '?
denoted ()™, and defined as

F~(s) = F(-9)7 (11)

Since F~(jw) = FH(jw), this notation will be used in
place of the Hamiltonian operator throughout the rest
of the paper. Optimizing the expected power flow at
each point in the complex plane yields

Kope = (G™)7! (12)

which is independent of the disturbance spectrum $44.

This compensator extracts the maximum possible
power from the structure at every frequency. This
result is not new; it corresponds to the impedance
matching condition found, for example, in Refer-
ence 13. The maximum energy dissipation is obtained
if the impedance of the compensator is the complex
conjugate of the impedance of the load, which in this
case is the rest of the structure.

Unless the dereverberated mobility is a constant,
however, the compensator in Equation (12) is non-
causal, and cannot be implemented. If this compen-
sator could be implemented, all the poles could be
moved arbitrarily far into the left half plane. Instead,
the best causal compensator must be found.

Causal Optimum - X, Approach

To guarantee dissipation at all frequencies, the worst
case power dissipation will be minimized over the set
of causal compensators, hence a minimax optimization
of the power flow into the structure. This can be cast
as an M, minimisation problem. First, however, the
disturbance should be normalised to provide the same
amount of power available to be dissipated at each
frequency. This provides the designer with complete
control over the relative imporiance of one frequency




Figure 2: System block diagram

range to another, by removing any inherent frequency
weighting from the problem.

With the optimal noncausal compensator from
Equation (12), the closed loop power flow into the
structure is

P=-d~(G+G~)\d (13)

Introduce a scaled disturbance w related to the original
disturbance d via
d= Go'w (14)

Then if the input w has unit magnitude at a certain
frequency, the optimal noncausal compensator will dis-
sipate unit power at this frequency, provided that the
transfer function Gy is the co-spectral factor of G+G™,
given by

GoGy =G+ G~ (15)

The block diagram for the resulting system is shown
in Figure 2, and the system (Equation (1)) becomes

y(s) = G(s)u(s) + Go(s)w(s) (16)

Now, consider the problem of finding a causal com-
pensator that will minimize the worst case power flow
in Equation (4). This quantity represents the power
flow into the structure, which will be negative for any
stabilizing (energy absorbing) controller. In order to
cast this as an M optimization, however, the perfor-
mance index must be positive definite. Since the best
causal compensator can dissipate no more power than
the noncausal optimum, positive definiteness will be
assured if the disturbance power w™~w is added to the
cost. Thus the cost at each frequency is

Cost(w) = ww+uv y+y u (1m)
= |Gsu+wl
= |G\Gyu+ Guw| (18)
where AG3(9))
Gy(s) = 2\ \0)) 19
1(") A(Go(l)) ( )

and A(-) is the characteristic polynomial of the trans-
fer function (-). The inner function G does not change

the cost, and is included to give a representation of the
cost in terms of stable transfer functions.

From Equation (18), the relevant output that should
be minimised is

z=G,Gju+ Gw (20)

Combining this with the system equation (16), the re-
sult can be written as a standard M, problem:!*

z _ | GiI GGy w
{y}"[Go G J{u} (3)
The compensator from y to u that minimizes the H
notm of the transfer function from w to z will minimize
the maximum power flow into the structure.

In general, it may be desirable to weight some fre-
quency ranges more heavily than others, while still re-
quiring that power be removed at all frequencies. This
could be because there is a known disturbance source
in a certain range, because structural modes are less
well damped within this range, or because the perfor-
mance requirements put more emphasis on this range.
Similarly, there will usually be some frequency beyond
which performance is not required, and the weighting
can also be chosen to reflect this. Rather than weight-
ing the sum of the disturbance input power and the
power input by the control, as in Equation (17), the
cost is defined to be the sum of the disturbance power
and some frequency weighted control input power, as

Cost(w) = w™w + W[ (v~ y+ y " u)W, (22)

This can again be factored as Cost(w) = z)? and there-
fore written as a standard Mo problem.®

The calculation of the optimal compensator for the
Hoo problem is most easily performed in state space.!s
The algorithms for computing Go, G Gg, and W; are
given in References 6 and 7. Each of these problems
is related to a spectral factorization, the solution to
which can be found from a Riccati or Lyapunov equa-
tion.!4

Causal Optimum - H; Approach

For structures for which the local wave model of Miller

et al.? can be identified, this model can be represented

in the form of Equation (1). The H; power flow min-

imization in Reference 2 was constrained to be causal

using a Wiener-Hopf ' approach. A similar Wiener-

Hopf solution can be found in the current framework.
First, introduce the notation

¢ = dpdy (23)
¢ ¢, +d_ (24)

for the right half plane analytic and left half plane an-
alytic factors of ¢, and the positive and negative time




parts of & respectively. Both of these types of spec-
tral factorisations can be solved in state space with
the solution to a Riccati or Lyapunov equation.!*

With disturbance feedforward v = Hd, the fre-
quency weighted power flow being minimized is given
by Equation (10) as

J= /m {84 [H~(I + GH) + (I + GH)~H]} dw

-
(25)
The first order variation in J with respect to H is

= -]
87 = 2/ §H~ ((G+ G~)H +I) ®gqdw  (26)
—ao

This should be sero for all admissible variations § H™.
To insure causality, § H must be right half plane ana-
lytic (RHPA), and then Equation (26) is sero provided
that

(G+G™)H +1)®49 =0, (27

for some arbitrary left half plane analytic (LHPA)
function ay. Solving for the RHPA compensator that
satisfies Equation (27) yields the optimal disturbance
feedforward compensator as

H=-(G+G )i [(G+G™);" (®aa)r], (Paa)r'

(28)

from which the feedback law u = — Ky can be de-

termined via Equation (8). Note that the quantity

(G + G™ )R in this equation is precisely Go from Equa-
tion (15).

Miller et al.? specify the power spectral density of
the incoming wave modes, while this solution requires
the power spectral density of the disturbance d. The
disturbance d is the disturbance in the generalized ve-
locity caused by both the incoming and outgoing wave
modes. Thus

d = (jw)T(Yei + YeoS)wi (29)

Y. and Y,, are partitions of the transformation ma-
trix from wave mode variables to physical variables,
with Y, relating the displacement vector u to the in-
coming wave mode vector w;, and Y,, relating u to the
outgoing wave modes w,. S is the scattering matrix of
the junction relating outgoing wave modes to incom-
ing wave modes. The matrix T is present to select the
appropriate elements of the displacement vector u cor-
responding to each element of the disturbance d, and
the factor of jw is required since d is a velocity and u
is a displacement. The power spectral density of d can
be easily related to that of the incoming wave modes
w; from this equation.

The Wiener-Hopf optimization problem is also
equivalent to a standard LQG problem.!® Using the
results of the previous subsection, the H; problem can
be solved more easily using this approach. The cost J

is proportional to the ; norm of the power flow,

o0
J =/ (v“y+y u)dw (30)
-0

and as in Equation (17), the addition of the constant
w™w to the integrand does not change the problem,
s0

1= [ o = i (31)

oo

with z given by Equation (20). Hence, the ; optimal
compensator is that which minimizes the %, norm of
the transfer function from w to z in the standard prob-
lem (21). This is very similar to the X, approach; the
norm used in the optimization has changed, and the
deterministic (but unknown) finite power noise w has
been replaced by a stochastic process, but the setup is
otherwise identical.

The power spectral density of w = G7'd can be
related to that of d, and therefore to that of the in-
coming wave modes w,; by Equation (29). This PSD
can also be used to introduce frequency weighting into
the problem; more importance is attached to a certain
frequen-y range by increasing the power available to
be dissipated in that range.

As was noted in Reference 2, the X, approach suffers
from the fact that it does not guarantee a stabilising
compensator. That the state space LQG method pre-
sented here yields the san.e results as the Wiener-Hopf
approach in Reference 2 will be demonstrated in the
next section.

Example

The approach described in the previous sections can
be demonstrated in the design of compensators for a
pinned-free Bernoulli-Euler beam with a moment ac-
tuator at the pinned end. This structure is chosen to
represent that of the experiment described in the next
section; as a result the beam properties used in this ex-
ample will be those of the experiment, given in Table 1.
This example also allows a comparison to be made of
the H; and H, compensators, and demonstrates that
the LQG based H; method presented here is equiva-
lent to the Wiener-Hopf method of Reference 2.

The dereverberated mobility can be found analyt-
ically as the transfer function of the “infinitely ex-
tended” system. Using a wave approach, the trans-
fer function of a semi-infinite pinned Bernoulli-Euler
beam between collocated tip moment and slope rate is

- Ve
)= Zapayrnyr

With no causality constraint, the compensator that
dissipates the maximum possible power at all frequen-
cies is, from Equation (12),

_ V2(pA)\ {(EL)?/
- —

(32)

K(s)

(33)




This is the ideal compensator for the structure, but
cannot be implemented. Instead, a number of other
compensators can be designed.

Velocity feedback is the simplest of these, and was
chosen to compare the optimal designs with a similar
existing design approach. To achieve maximum power
dissipation at a frequency wy, the gain should be as
close as possible to the unconstrained compensator at
this frequency, so

1/4 3/4
Ko = LeALAED

The second compensator is the H,-optimal compen-
sator with unity weighting at all frequencies, given by

\/i(pA)‘“(EI)a“
Vs

The analytic derivation of this compensator is similar
to that for a free end of a beam, presented in Refer-
ences 6 and 7. The magnitude is the same as that of
the unconstrained optimal compensator, but the phase
is —45°, rather than +45°. This compensator was also
derived and implemented by Miller,? as the fixed form
optimal compensator,

In order to further test the X, approach, a weight-
ing function was selected to emphasise a narrow fre-
quency band near 35 rad/sec. This corresponds ap-
proximately to the frequency of the T** mode of this
beam. The minimum value of W in this region was
approximately 0.65, and the weighting increased to
near unity a factor of V2 above and below this fre-
quency. An analytic solution for the compensator ia
this case would be difficult. However, the plant in
Equation (32) can be approximated adequately over
a wide frequency range with a finite number of alter-
nating poles and seroes on the real axis, with equal
logarithmic spacing. State space methods can then
be used to obtain an approximate compensator. For
this example, Equation (32) was approximated by 9
poles and 9 seroes on the negative real axis, hetween
3.5 x 10~3 and 3.5 x 10% rad/sec. The transfer func-
tion of this approximation matches the assumed dere-
verberated mobility to within 2 degrees of phase and
0.25 db magnitude for 3 decades above and below the
center frequency of the weighting function.

The optimal compensator from slope rate to mo-
ment was found to be well approximated by the prod-
uct of the unweighted optimum in Equation (35), and
a two pole, two sero network. This network provided
the phase lead that is required so that at the center of
the weighted region, the phase approaches the uncon-
strained optimal phase of 45° (from Equation (33)), al-
lowing the compensator to dissipate more power. The
optimal poles and seroes of this network are symmetric
about the center frequency of the weighting function
Wi, at 35 rad/sec. The two free parameters of this

(34)

K3(s) = (35)

network were optimised to minimise the H, norm of
the cost. This results in the compensator from slope
rate to moment being

K3(s) = 2.62 ‘/E(PA)”:(EI)”‘ <a’ +38.55 + 466)

N7 &3 + 1005 + 3210
(36)
For comparison with these designs, an H; optimal
solution can also be computed using the same model,
as the solution of an LQG problem. For comparison
with the results of Miller et al.® the power spectral
density $4,,, is chosen to be the same as in Refer-
ence 3;

§w.-v. =

a? 1 0 a3
(s-wd)? [0 1] (s+wl)?
Using Equation (29) and the definitions for Y, Y,,,

and S for the pinned beam from Reference 3, the tip

slope rate can be related to the incoming wave modes
by

(37)

d = 2jw (’;—’})WIJ\/«‘» Ve Jwi  (38)

The normalized disturbance w is related to d by Equa-
tion (29). Using these equations, the power spectral
density of w is

b2U5/2

el PR 3T PR

(39)

for some constant b. This is proportional to w?3 at
low frequencies, and to w™ 13 at high frequencies, with
a maximum at wy,, selected to be 40 rad/sec. Thus one
would expect the most damping near this frequency,
and a much sharper drop in damping for lower fre-
quencies than for higher frequencies.

The H3, weighted o, unweighted #,, and uncon-
strained optimal compensators are plotted in Figure 3,
as is the velocity feedback compensator. Note that at
the frequency weighted most heavily, the 2, solution
achieves the magnitude of the unconstrained optimal
compensator, but not quite the phase, while the %,
optimal solution achieves the phase, but not the mag-
nitude. The H; compensator calculated by Miller et
al.in Reference 3 by a wave approach and Wiener-Hopf
methods is also plotted for comparison with the #;
compensator calculated here with the LQG method.
The agreement indicates that the two approaches are
equivalent; the discrepancy at high frequencies is due
to the inclusion of a small penalty on control effort in
the LQG solution.

The power input to the structure by these compen-
sators is plotted in Figure 4, expressed as a fraction
of the available incoming power at each frequency.
Thus a value of —1 indicates that the maximum pos-
sible power is being dissipated, a value of sero means
that the compensator does nothing at this frequency,
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timum (a8), velocity feedback (b), un-
we' hted Mo, design (c), weighted N, de-
sigu (d), and M3 design (e).

and values larger than sero indicate that power is be-
ing added to the structure, which could lead to in-
stabilities. Note that the H; solution adds power to
the structure at certain frequencies, while the M
solutions do not. Furthermore, as expected from
the weighting function chosen, the ; solution treats
higher frequencies with more importance than lower,
while the H solution treats both equally.

Both of the H,, compensators absorb some power,
and thus provide some damping at all frequencies,
whereas velocity feedback is ineffective at sufficiently

Power Analog Signal
Amplitier Computer Amplifier
Torque
Motor Accelerometer Shaker
111341111 BEAM
Accelerometer
Digital Signal
Oscilliscope Processor

Figure 5: Schematic of experimental setup

Length 7.32m
Width 0.102 m
Thickness 3.175 mm
EI 31.1 Nm?
PA 2.85 kg/m

Table 1: Beam dimensions and properties

high and low frequencies. The weighted M, design
will also provide better narrowband damping than ve-
locity feedback, and only slightly worse broadband
damping than the unweighted M, design.

Experiment

The Ho and velocity feedback compensators de-
signed in the previous section were implemented on
a brass beam suspended in the Space Engineering Re-
search Center laboratory at M.I.T. Previous experi-
ments with this beam include collocated rate feedback
and H; optimal wave control.®

Setup

The setup is shown schematically in Figure 5. The
beam is suspended horisontally in the lab, with ac-
tuation and sensing such that the bending vibration
can be controlled. One end is effectively pinned, while
the other is free. The properties and dimensions of
the beam are summarized in Table 1. The open-loop
damping of the first 17 modes, up to a frequency of
approximately 30 Hs, averaged about 0.3%.

Control is applied through a torque motor at the
pinned end, and sensing is provided by a linear ac-
celerometer mounted a short distance from this end.
The member connecting the sensor to the tip is as-
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Figure 8: Open loop transfer function at controlled
end of beam (solid), and dereverberated
mobility used for control design (dotted).

sumed to be rigid, so that the sensor provides a ro-
tational acceleration measurement collocated with the
moment actuator. In practice, this assumption is not
quite valid, although it is reasonable in the frequency
range of interest.

In addition to the control actuator and sensor,
a shaker and data acquisition accelerometer were
mounted at the free end of the beam. The shaker
was mounted to provide a force collocated with the
acceleration measurement. The closed loop transfer
function between these two was used as an indication
of the performance achieved.

The signal from the accelerometer at the controlled
end was fed through a signal amplifier into an analog
computer which contained the compensator program.
The output of this was fed through a power amplifier
into the moment actuator. The accelerometer signal
from the unzontrolled end was fed into a Signology
SP-20 Signal Processing Peripheral to record and an-
alyze the response data, and obtain frequency domain
information. An oscilliscope was used to monitor the
accelerometer signal so that any instabilities could be
quickly identified, and their frequencies determined.
Detailed information on the characteristics of the sen-
sors and actuators can be found in Reference 3.

Compensator Implementation

A detailed model of the beam is not necessary for
the experiment; it is sufficient to examine the trans-
fer function from the control actuator to the control
sensor. This transfer function is shown in Figure 6.
The dereverberated mobility could be calculated from
this transfer function through cepstral analysis, or by

averaging. Alternatively, it can be approximated by
the theoretical dereverberated mobility for a pinned
end of a beam, given by Equation (32). This transfer
function is also plotted in Figure 6, and closely ap-
proximates the logarithmic average of the measured
transfer function in the region of interest. The pres-
ence of a rotational inertia at the tip, corresponding to
the inertia of that part of the actuator armature and
sensor that is fixed to the beam, introduces a roll-off
into the transfer function at high frequencies. How-
ever, the effect of this inertia was at a sufficiently high
frequency so that for the control design, it was as-
sumed to be zero and not modelled. As a result, the
previously designed compensators can be used here.

The velocity feedback, unweighted ., and the
weighted o, compensator designs are all positive real,
and thus guaranteed to be stable for any positive real
structure. The transfer function from the actuator
to the sensor of this beam, however, was not posi-
tive real at high frequencies. This is due to the non-
collocatedness of the sensor and actuator, the addi-
tional dynamics of the sensor and actuator, and any
time delays in the system. The system can still be
guaranteed to be stable if the complementary sensitiv-
ity is bounded above by the inverse of this difference
from positivity.!” So, to be stable, the complemen-
tary sensitivity, and therefore the compensator, must
roll off at high frequency. Ideally, the compensator de-
sign procedure would result in this behavior automati-
cally. Since it does not, the additional roll off required
must be added in an ad hoc manner. Low-pass filters
were therefore added to all three designs, with poles
at 500 rad/sec.

The available measurement in the experiment was
proportional to angular acceleration, and thus a fur-
ther integration was necessary to obtain angular rate.
This integrator was rolled off at DC to prevent satu-
ration and drift problems. The second order dynamics
were chosen to have a natural frequency of 1 rad/sec,
and a damping ratio of 0.7071. Finally, a high-pass
filter was included to remove the DC offset of the ac-
celerometer.

With the two M, compensators at their optimal
gains, a small amount of passive damping was found
to be required in order to maintain closed loop stability
of modes of the system above 1000 Hs. A constrained
layer of foam rubber was added to a short section of
the beam, which did not appreciably increase the open
loop damping in any of the modes below about 300 He,
cociesponding to about the 55'" bending mode of the
beam. This, however, was not sufficient to imple-
ment the velocity feedback compensator at its optimal
gain without destabilising high frequency modes. In-
deed, a second lowpass filter was necessary to achieve
stability at even 40% of the optimal gain, at which
level data was taken. This implemented velocity feed-
back compensator provides its maximum damping at
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Figure 7: Transfer function of compensator imple-
mented in experiment (solid), and desired
compensator (dotted).

about 35 Hs.
The low-pass and high-pass filters and integrator dy-
namics are combined into the filter

Flo) = (32 + 1.:1:-1» 1) (aiosooo) (311) (403

The implemented compensators between moment and
angular acceleration are then

Ky (s) = 1.64 (’ iogoo) . F(s) (41)
Ka(s) = 24.2% . F(s) (42)
1 [ 3%+ 38.55+ 466
Ka(s) = 63472 (..2 + 1008 + 3210) (F(s) (43)

The circuit used to implement the half integrator
71-.- is based on that presented in Reference 5. The
approximation is excellent up to about 700 Hs, well
above the region of interest. The measured compen-
sator for the weighted M, design is compared with the
desired compensator in Figure 7. Good agreement is
obtained, =xcept at low frequencies where the dynam-
ics of the integrator and the high-pass filter have a
noticeable effect, and at frequencies higher than those
shown, where the low-pass filter was added. Similar
agreement exists between the measured and desired
compensators for the other two cases.

Results

The closed loop transfer functions from force at the
free end to collocated velocity with the three compen-
sators are compared with the open loop response in
Figure 8. Note that the spikes present in the data

at 16.4, 19.8, and 24.5 Hs correspond to torsional
modes of the beam, which are excited by the shaker
but are uncontrolled by the moment actuator. The
corresponding predicted responses appear in Figure 9.
These were calculated from the compensator transfer
function using the phase closure approach of Refer-
ence 11. Reasonable agreement is obtained between
this prediction and the actual transfer function, al-
though the achieved performance is noticeably better
than that predicted. Similar experimental and pre-
dicted transfer functions with M; optimal compen-
sators can be found in Reference 3.

These results confirm the expected advantages of
each technique. The unweighted M., design achieves
damping in a broadband region. This is obtained by
sacrificing some of the narrowband damping achieved
by velocity feedback. The lowest modes present in
the frequency range plotted are damped more heavily
by the unweighted M, than by velocity feedback, one
would expect that this would also be true of modes at
a sufficiently high frequency. The unweighted H, de-
sign achieves excellent narrowband damping in the de-
sired frequency-range, while maintaining some damp-
ing everywhere. This is a result of the exact match
in magnitude, and close match in phase, with the un-
constrained optimal compensator that absorbs all of
the incoming power at each frequency. In fact, the
modes near 6 Hs can be virtually eliminated if the
phase of the compensator is boosted still closer to the
unconstrained noncausal optimum, at the expense of
performance at other frequencies.

Conclusions

The dereverberated driving point mobility is a sim-
ple but useful model for control design of uncertain,
modally dense structures. For simple structures, such
as the beam used in this experiment, this is equivalent
to a local wave model, but the approach is capable
of modelling much more general structures, as it can
be determined directly from an experimental transfer
function.

The compensator that dissipates the most power
possible at every frequency is in general noncausal, and
cannot be implemented. Two approaches were exam-
ined for obtaining a causal compensator that dissipates
power. The H;-optimal solution can be found using ei-
ther Wiener-Zopf or LQG techniques. However, this
compensator may allow power to be generated at cer-
tain frequencies. Another approach is to find the H -
optimal solution which minimises the maximum power
flow into the structure. This compensator dissipates
power at all frequencies, and is therefore guaranteed
to be stabilising.

Experimental results demonstrate that the damping
that can be achieved with the %, approach is much
greater than that achievable with rate feedback. With
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Figure 8: Experimental open (dotted) and closed
loop (solid) transfer functions using
(a) velocity feedback, (b) unweighted H,
design, and (c) weighted Mo, design.

no frequency weighting, good broadband damping can
be obtained. With a frequency weighting, excellent
narrowband performance can be achieved while some
broadband damping is maintained. At the frequency
where the best performance is obtained, the compen-
sator closely matches the unconstrained (noncausal)
optimum in both magnitude and phase.

One difficulty with the approach is that it does not
enforce rolloff that is necessary to deal with high fre-
quency sensor and actuator dynamics, or noncollocat-
edness. The required roll-off must be added on an ad
hoc basis. Having done this, this approach to mod-
elling and control design successfully added significant
damping to many modes of a laboratory structure,
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Figure 9: Predicted open (dotted) and closed
loop (solid) transfer functions using
(a) velocity feedback, (b) unweighted M,
design, and (c) weighted H,, design.

without the large effort in system identification, off-
line computation, and compensator complexity that
would be required of many control design techniques.
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ABSTRACT
This work explores a class of structural
sensors which convolve measurements,

distributed along a structure, into a single
temporal signal. The manner in which this
information is convolved is determined by the
geometry of the sensor.

Particular types of geometries are
developed which make this class of sensors
attractive for structural control applications.
The objective is to develop a sensor, using
piezoelectric film, whose geometry filters the
spatial harmonics of the structure's shape to
achieve rolloff without exhibiting phase lag.
Such a sensor would facilitate gain stabilization
without the risk of sacrificing phase margin.

Various analytical examples are deriv-
ed, several of which are verified experiment-
ally. These sensors may be beneficial at
structural frequencies where the dynamics are
modally dense and poorly modelled.

INTRODUCTION

Motivation

There are many examples of structural
control applications where desired objectives
could be achieved if it were possible to implement
noncausal compensators in real time. For
example, Refs. [1-5] illustrate that resonances
in a beam could be eliminated using one
actuator and its dual sensor if it were possible to
implement (-s)1/2. Other applications involve
sensor dynamics where typical sensor rolloff
introduces phase lag. This phase lag reduces
phase margin, often to the point of creating an
unstable system [6]. Sensors which 'l off
without this phase lag would be extremely ‘iseful,
as they could be used it facilitate gain

* Research Associate, Member AIAA
** Research Assistant, Student Member AIAA
t Undergraduate Researcher

stabilization without concerns for loss of phase
margin.

The basic problem associated with
noncausal compensators is that some portion of
their singularities lies in the right half of the
Laplace plane. Singularities in the right half
plane indicate one of two situations, Either the
dynamics are affiliated with a system which is
stable in negative time and therefore anticipates
future information, or they are affiliated with a
system that is unstable in positive time. The
latter yields a sensor signal which is unstable
and therefore unusable.

The former situation is more relevant to
this discussion. Noncausal compensators
anticipate future information which is otherwise
unavailable. Viewed from a travell.:ng wave
perspective, however, it becomes clear that the
spatial Fourier components, which will sum to
create a future motion at a particular structural
cross-section, are presently propagating towards
that cross-section. Similarly, components
which created a cross-sectional motion in the
past are presently propagating away from that
cross-section. In other words, future and past
information about the response of a cross-section
can be obtained by sensing upstream and
downstream.

Upstream and downstream in a structure
are not distinguishable based upon location
because they can correspond to the same physical
region. Rather, they are distinguished by the
direction in which the energy is travelling with
respect to the original cross-section (Fig. 1).
Measurement of this upstream and downstream
information should enable the reconstruction of
both past and future cross-sectional motion.

The convolution of spatially distributed
measurements can be performed in two basic
ways. In the first, a finite array of discrete point
sensors can be distributed along the spatial
extent of the structure to measure the deflection
pattern at discrete locations. The products of
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Figure 1. Mustration of the concept of energy
upstream and downstream of a cross-section.

these measurements, with discrete values of the
weighting function, create the output signal.

In the second, a single distributed sensor
is used. The spatial weighting function is
achieved by creating the appropriate sensor
geometry. Rather than having numerous
discrete point sensors dispersed along the
structure, the single continuously distributed
sensor acquires measurements from the entire
domain over which it is attached.

In practice, the array has the advantage
of a wide range of available sensors (strain,
position, etc. and associated rates) whereas the
single distributed sensor may be restricted to
strain- (and strain-rate-) sensing piezoelectric
polymers. While distributed point sensors have
a higher per-unit sensor cost, application to
complex structural geometries may be easier.
The weighting function can also be easily
altered because it is implemented in software.

Use of a single, continuous sensor
reduces the computational burden, and
associated time delays, by ‘realizing’ the
convolution in the mechanical geometry of the
sensor. In addition, while both suffer from
truncation effects due to the restriction of a finite
sensor domain, the use of point sensors also
suffers from spatial aliasing associated with the
finite-length gaps between the individual point
sensors.

An example of this second type of
spatially convolving sensor is a modal sensor.
Realized by cutting piezoelectric polymer film
(6] in the shape of a particular modal strain
distribution, it is attached to the structure in the
appropriate orientation (7). The work in this
paper expands upon this concept by using the
same type of sensor to achieve other desirable
signal characteristics.

Prior Research

Spatially distributed sensors and
actuators were initially studied in order to apply
distributed-parameter control theory to distrib-

uted-parameter systems such as beams (8,9]. It
was found that these sensors could also perform
as point sensors, with the added advantage that,
because of the effective spatial integration, the
distributed sensors were not as sensitive to
placement errors [10].

The weighting on the contribution of
various modes can be adjusted through the use of
a spatially-varying sensor distribution. For
example, a modal sensor is shaped such that the
weighting is zero for all modes except one [10].
Several experimental investigations using piezo
film sensors, the width of which was pro-
portional to the modal strain distribution {7, 11,
12], have verified the behavior of modal sensors.
Lee et al. have noted that these sensors are a
realization of the modal-filtering concept [13],
but they can also be thought of as very narrow
bandpass filters centered on the frequency of the
mode to be sensed. In regions of travelling
waves, this corresponds to convolving the
measurements at a single wavenumber, namely
that of the mode of interest.

The following sections describe how a
spatially convolving sensor was developed and
experimentally implemented. The dispersion
equation relates the behavior of a structural
medium in time and space. It reveals how
spatial weighting functions can be used to
achieve desirable temporal behavior. This
concept is analytically demonstrated for several
types of spatially convolving sensors. The
structural medium and sensor are assumed to be
of infinite, one-dimensional extent. An infinite
domain, wave analyvsis is used to obtain these
solutions. Since actual structures and sensors
must be of finite length, a discussion of
truncation effects is given. Finite sensor length
requires that some of the spatial weighting
function be absent during actual
implementation. This loss of information
causes a deviation in performance from that
predicted by the infinite domain solution. The
manufacture of the sensors, experimental setup
and experimental results are described.

INFINITE DOMAIN ANALYSIS

An infinite domain analysis is used to
demonstrate the acquisition of desirable
temporal domain characteristics through the
implementation of an appropriate spatially
distributed sensor. A wave analysis is used to




analyze the rod and the Bernoulli-Euler beam
examples.

Rod Example

Exponential and sinc weighting
functions are analyzed for the rod. The objective
of the exponential weighting function is to create
a sensor which has a second order rolloff without
phase lag. The purpose of the sinc weighting
function is to achieve infinite order rolloff
without phase lag.

Substituting the wave solution

ulx ,t)= Ues rot (1)

into the governing partial differential equation
for a rod

2 2
J , )t
EA u(x t)_ d u(x )= 2)
axz &2
yields the rod dispersion relation as
2_ P 2 2_ P .2_ 2,2
k™= E—a) or p*= Fs =c,8 3)

The symbols 2 and w are the spatial and

temporal Fourier variables, respectively, and p

and s are the spatial and temporal Laplace
variables, respectively. The quantities E, A and
p are the modulus of elasticity, cross-sectional
area and mass per unit volume, respectively.
The roots of the dispersion relation indicate that
the rod supports two wave modes at each
frequency, leftward and rightward propagating,
given by

u(x ,@)=u (0)e™ +u (0™ (4

Exponential Sensor. As discussed in the
previous section, it is desirable to develop a
sensor which rolls off without the classic phase
lag which plagues control systems. Therefore,
the sought-after temporal transfer function is a
sensor with rolloff but no associated phase lag.
This sensor has the following form

Dy - @,

y(0,8)= 357w,

u(0,3) (5)

where y(0,3) is the temporal Laplace transform
of the desired sensor signal at the position x=0,
u(0,s) is the transform of a particular structural
degree of freedom at the same location and ay, is
the corner frequency of the sensor. Since the

sensor characteristics are dependent upon the
dispersion relation, the appropriate spatial
weighting function will be dependent upon the

structural medium on which the weighting
furiction is implemented.

Substituting the dispersion relation,
Eq. (3), for the Laplace variable in Eq. (5) yields

CoWa ~CoWn

y(0,8)= P+ ¢,a, p_cownu(p,O) (6)

The spatial weighting functions are
exponential, one decaying in the positive
x-direction and one decaying in the negative
x-direction, with a scale length equal to L/cywn.

The convolution of these spatial
weighting functions, with the wave solution (Eq.
4), is

0 -
y = %( Julx ,w)e%**dx + Ju(x ,w)e *dx)

-- 0

- a¥/c}
TG+ ale X8 - a/co)(u,(a)) +u (@) (7

This equals the motion at the location x = 0
uo,w)=u,(@)+ u, (@) (8)
with a second order rolloff but without phase lag.

Sinc Function Sensor. The sinc function

_ sin(4x)
W (x)= 2z (9)

was chosen as a plausible sensor geometry
because the transform of a spatial sinc function
is a step function in the wavenumber domain.
This indicates that an infinite order rolloff in
the sensor's response can occur at a particular
wavenumber (4), and corresponding frequency,
without associated phase lag.

Convolving the sinc function with the
wave solution, Eq. (4), gives

y=(u,(@)e* + u,(w)e""‘)%fi (10)
If the rightward and leftward travelling wave
mode amplitudes are equal, u} =ur =u(w), the

output of the sensor becomes

y = %u(w)(l- sign(k - 4)) (11)

This geometry of sensor results in a flat
response for wavenumbers below the
characteristic wavelength 4 of the sinc function
and no response above A. This sensor exhibits
no phase lag. Such a sensor characteristic would
be extremely valuable in a structural control




application. However, performance degrada-
tion due to sensor truncation must be considered.

Beam Example

One spatial geometry of strain sensor is
studied for the infinite extent Bernoulli-Euler
beam. This spatial weighting function is an
exponential function that will result in a first
order temporal rolloff.

The partial differential equation for a
Bernoulli-Euler besm

J‘U 3’y
EI 9x‘+pA32=0 (12)
has the dispersion r- ation
‘s_PA 5 a__PA
k Bl @ or pt= i 8* (13)

which supports four wave modes

ike Az ~hz &2
+w et +w e +w, e (14)

The quantity I is the area moment of inertia and
the wave mode amplitudes (w) are functions of
frequency.

The sensor that will be used in the beam:
experiments senses strain. This is proportional
to the curvature in the beam, given by

v =(wbe

320 2
=k (-w, e™™ +w, et
b ;"
ox*® (15)

~wpeh L, e

Exponential Sensor. The output of the
exponential sensor i3 found by convolving an
exponential weighting function with the
curvature in the beam, Eq. (15), to give the
convolution

M a’u "sz
- ax -ax
y =gl Sae Tt I—eaxz dx | (16)

-- 0
This yields
- o*R’[ . 2
y =Ta‘{(k —az)(w,p+w,,)

an

+ k% + a®)w, + w,.)]
Notice that at wavenumbers much larger than a
(i.e., high frequencies) the sensor magnitude

rolls off as 1/k2 with respect to the point
curvature measurement

3zvc
o 2
at the center of the exponential sensor (x=0).
Assuming that no evanescent waves
exist (wle = wpe = 0), substituting the dispersion
relation, Eq. (13), for k& in Eq. (17) gives the
transfer function from curvature at the center of
the exponential sensor to the output of the
exponential sensor as

2
=k (-wh+wh—wm+w") (18)

yc az/cg

= (19)
2% (\/?H'cilv——s -il)
3x; 0 o

The exponential weighting function
creates a second order rolloff for the rod because
the rod's dispersion relation linearly relates
frequency to wavenumber (Eq. 3). The
exponential weighting function for the
Bernoulli-Euler beam creates a first order
rolloff since the wavenumber is proportional,
through the dispersion relation (Eq. 13), to the
square root of the frequency.

While these examples indicate what is
theoretically possible using these spatial
weighting functicns, the truncation effects
associated with finite length sensors must be
considered.

TRUNCATION EFFECTS

Any realistic application of these types of
sensors will involve truncation in order to
confine the sensor to some finite region of the
structure. This will result in the loss of
measurement information and therefore a
deviation of performance from that predicted by
the infinite domain analysis.

Rod Example

The first step in quantifying the
truncation effect is to evaluate the point
measurement of the motion variable at the center
of the convolving sensor. This measurement
can then be compared to the measurement from
the convolving sensor to quantify its behavior.

Figure 2 shows a finite length, free-free
rod with a forcing excitation at the left end. The
length is [ = 1.0 m, the axial stiffness is EA = 1.0
N and the mass per unit length is pA = 1.0 kg/m
The point sensor and the center of the convolving
sensor will be located at the midpoint of the rod




(at x=0). Displacement is the measured variable
in all of the rod examples.

—tbr
| ¢—t—

- 7 T 72 ’

x=0

Figure 2. Free-free rod with forcing at left end.

The displacement at position ¢, x = 0, i8

1 ¢

U, = -0 F  where
(REA 1- 52

E=e'? (20

The poles of the system are given by the roots of
the denominator 1-§ 2 The displacement as a

function of position is given by

E ——§7( glehs 4 e ) (21)
§

wx)=2Fa T

The modal, exponential and sinc spatial -

weighting functions are analyzed for the rod.

Modal Sensor. A modal sensor is one
type of convolving sensor. It simply convolves
the distributed measurements with the mode
shape. The mode shapes for a free-free rod are

olx) = Acos(2';mx)
(2n + Drx
——l——x)

Selecting a cosine shape, the modal sensor is
evaluated by

(22)
¢(x ) = B sin(

12
| u(x)cos(k x)dx
<2
172 '] —A x
| ux )%(e e )dr (23)
<42
The transfer function from left end forcing to the
modal sensor signal is

y

F gﬂsin(huo)ﬂl

Yy ==

R+ k, _J
sin(k - k)6 )

+| ————— !} (24)
k _ko JJ

Choosing m = 4 in Eq. (22) gives
kg = 8n/l. The transfer function from the dis-
placement at the center to the output of the modal
sensor is

L. sin(i’-) 25)

¢ 2 8n
()
(5

The sine function is zero at all wave numbers
corresponding to a mode. However, the
denominator equals zero at the wavenumber
corresponding to the mode for which the sensor
was designed, such that the value of Eq. (25)
becomes 1/2 for that mode.

Figure 3 shows the magnitudes of the
transfer functions from force at the left end to
displacement at the center of the rod (dotted
curve), to the output of the modal sensor (dashed
curve) and from the displacement at the center to
the output of the modal sensor (solid curve
(dashed divided by dotted]). Notice that the solid
curve shows a zero at the same frequencies as the
resonances (dotted) with the exception of the
resonance for which the sensor was designed.
The net result is that the modal sensor only ‘sees’
one mode in the rod (dashed curve). As might be
expected from Fig. ? an imperfect modal senscr
will exhibit near pole-zero cancellation of the
other modes.
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Figure 3. Transfer functions from force to
displacement (dotted), to modal sensor (dashed)
and from displacement to modal sensor (solid).
EA=1.0 N, pA=1.0 kg/m, 1a1.0 m and ko=8x m'1




Exponential Sensor. The output of an
exponential sensor is evaluated in the following
manner

0
a l
y = fu(x Ye%*dx
2(1- e'“") -5

5
+ Ju(x )e'“‘dx} (26)
0
Notice that rather than evaluating the
convelution across an iufiniie extent, the
convolution is now evaluated across a firite
length 24 The purpose of the constant in front of
the integrals is to provide the same gain as the
point sensor at low frequencies. The transfer
function is given by

__1 § ( a
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F
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Figure 4 shows the magnitude and phase
of the transfer functions from the point
measurement at the center of the rod to the output
of the exponential sensor for three different
lengths. In all three cases, a was selected to give
a 10 Hz corner frequency (a = 62.83 Hz, cy=1).
The solid curve is for a sensor which covers the
entire length of the rod (6 = 0.5m), the dashed
curve is for a sensor which covers 10% of the rod
resulting in a sensor of three scale lengths in
extent (6= 0.05m) and the dotted curve is for a
sensor which covers 6% of the rod resulting in a
sensor of less than two scale lengths in extent (§
= 0."3m). Notice that the sensor which covers the
entire rod has a clearly visible second order
rolloff. This rolloff occurs without phase lag.
The other sensors exhibit significant truncation
effects between 10 and 100 Hz. The lower the
number of scale lengths used in the sensor, the
more significant the truncation effects at lower
frequencies.

For wavenumbers much larger than a
(high frequencies) Eq. (27) becomes

__F ¢ ae*sin(ké)

y= (28)
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Figure 4. Transfer functions from
displacement to exponential sensor output for
lengths of sensors of 5=0.5 m (solid), 5=0.05 m
(dashed), 5=0.03 m (dotted) and to the output of a
double, real pole temporal filter (dash-dot).
am62.83 m'l, EA=1.0 N, pA=1.0 kg/m and la1 m

Remembering that frequency and wavenumber
are linearly related in the dispersion relation
for the rod, Eq. (3), the truncation effects cause
the second order rolloff to degrade to a first order
temporal rolloff. The frequency at which this
transition occurs is determined by the
exponential term in Eq. (27). The larger the
product ad, the more scale lengths that are used
in the sensor and the higher the frequency at
which the truncation effects become important.
Also notice that the shortest sensor exhibits a
sign change, causing a 180 degree phase
reversal just below 100 Hz. This illustrates the
need for providing a reasonable length sensor.

The dash-dot curve in Fig. 4 shows the
magnitude and phase of a temporal sensor with
the same second order rolloff. Notice that this
sensor starts reducing phase margin at a much
lower frequency (above 1 Hz).
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Figure §. Transfer functions from end force to
displacement (dashed curve) and to the output of
the exponential sensor (solid, lower curve).
=0.06 m

Figure 5 shows the magnitude of the transfer
functions from end force to the displacement at
the center of the rod (dashed curve) and to the
output of the exponential sensor (solid, lower
curve) for § =0.05m. Notice that below 10 Hz the

outputs have the same gain. However, above 10.

Hz the exponential sensor exhibits a second
order rolloff without phase lag (Fig. 4). The
sensor truncation effects cause the waviness in
the transfer function of the exponential sensor
above 30 Hz.

Sinc Function. The transfer function
from end forcing to the output of a truncated sinc
function is found by evaluating

1 _af §
ikREA 2n| | . 5‘

R
F

s .

[ (EPerts 4 o )sinldz ), (o)
x Ax

Since the solution to this convolution is an
infinite series, the integral was evaluated
numerically,

Figure 6 shows the magnitude and phase
of the transfer functions from the center motion
to output of the truncated sinc¢ function sensor
(solid) and to the ideal, infinite extent sinec
function sensor (dashed).

-200
10-1 100

Frequency (Hz)

Figure 8. Transfer functions from center
motion to the sinc function sensor (solid), to the
infinite extent sinc function sensor (dashed)
and to a fifth order temporal filter (dash-dot).
EA=1.0 N, pA=1.0 kg/m, 1216z m, A=1.0 m'1,
Sm4n m

The dash-dot curves in Fig. 6 show the
transfer function of a temporal sensor which
achieves a fifth order rolloff, like the sinc
function between 0.8 and 1.2 Hz, using five
identical poles at s = -62.83rad/sec. Notice that
no phase shift occurs until the gain has
attenuated one decade. The rolloff becomes
sharper as more characteristic wavelengths 4
are included in the sensor.

Beam Example

This section studies the truncation
effects of various sensors on a Bernoulli-Euler
beam. The beam is pinned-pinned with a length
of l =7.32 m, a bending stiffness of EI = 31.1
Nm2 and a mass per unit length of pA = 2.85
kg/m (Figure 7). These values correspond to the
beam used in the experiment.
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Figure 7. Pinned-pinned Bernoulli-Euler beam
with a moment input at the left end.

The steady-state curvature at the center
of the beam (x=0) is given by

i, &0 &)+ (1+6)

=% EI (1+§ )(1+§‘) (30)
where

Ep=e™? and g =e™? @D

To perform the convolutions, the curvature as a
function of position (x ) is required. This is
given by

s 2 .
i) M Eyle — ghe™ )
ot | (1-g)
L Selete - glet)
(1 - ée
which was obtained using the phase closure
principle discussed in Ref. [3]. The one sensor

studied for the beam is an exponential sensor
used to create a first order temporal rolloff.

(32)

Exponential Sensor. The exponential
sensor spatially convolves with the distributed
curvature in the following manner

y =8 J ? dv (x)
l1-¢ o l_‘ &xz ”
2
REAACRE d,} (33)
o ox?

This gives tne steady-state sensor output as a
function of the applied moment (M) at the left end

of the beam as

M i X+ zz a
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and
2= &1+ & X +k7) (36)
[a-e*(acosh(k8) + k sinh(£5))]

Figure 8 shows the magnitude and phase
of the transfer function from the point curvature
sensor to the output of the exponential sensor for
three different sensor lengths (5). The value of

a=6.7 m'] places the temporal corner frequency
near 23.0 Hz. Notice that the magnitude starts to
roll off, with a corner frequency of 23 Hz, at a
logarithmic slope of negative one. However, the
phase does not exhibit the typical 90 degree phase
lag associated with a first order rolloff (dash-dot
curve in Fig. 8). This occurs because the first
order rolloff is obtained by using both right and
left half plane singularities whose logarithmic
magnitudes add and whose phase contributions
cancel. Notice in Fig. 8 that the temporal filter
exhibits 90 degrees of lag one and a half decades
before the 6 = 0.3556 m sensor exhibits its first
phase shift.

The growing sinusoid at higher
frequencies is an artifact of the truncation of the
exponential sensor. Notice in Eq. (35) that x1

has a term which becomes larger as a linear
function of wavenumber, 2. For 2 much larger
than ¢, this transfer function becomes

e-a4 &psin(kd)

y y e EI ( 1. 57 & 37

Due to the truncation of the exponential sensor,
the first order rolloff predicted by the infinite
domain analysis degrades to a half order
temporal rolloff (1/k) at higher frequencies.
The half order rolloff is determined by the
logarithmic slope of a line connecting the peaks
of the truncation induced sinusoid in the
magnitude plot. The effect of the truncation
manifests itself at a frequency which is
determined by the exponential in the second
term of Eq. (35). The product aé equals the
number of spatial scale lengths encompassed by
the sensor.
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Figure 8. The transfer function from the point
curvature sensor to the output of the exponential
sensor for § =0.71 m (dashed), 5=0.38 m (solid)
and § =0.18 m (dotted) and the transfer function
for a first order temporal filter (dash-dot).
El=31.1Nm2, pA=2.85kg/m, 1=7.3m & 0=6.7m"}

Notice in Eq. (37) that the sine term
eventually causes the transfer function to shift
180 degrees and to continue to do so periodically.
These sharp phase transitions can have
implications for control. The onset of these
transitions can be delayed in frequency, while
the magnitude drops, by increasing the length of
the sensor (26 ) to encompass more spatial scale
lengths. Hopefully, gain stabilization can be
achieved prior to the onset of these 180 degree
phase reversals.

Figure 9 shows the magnitudes of the
transfer functions from applied moment at the
left end of the beam to the point curvature sensor
(dashed) and to the output of the exponential
sensor (solid).

Qe X

Frequency (Hz)

Figure 8. Magnitudes of the transfer functions
from moment to the point curvature sensor
(dashed) and to the exponential sensor (solid).
5=0.3556 m

Notice both the rolloff, with a corner frequency at
23.0 Hz, associated with the exponential sensor
and the onset of the truncation effects near
100 Hz.

SENSOR FABRICATION

This section describes the methods used
to fabricate the exponential and sinc function
sensors for a beam. Sensor fabrication con-
sisted of creating Mylar templates in the shape of
the specific sensors, using these to mask the
piezo polymer film during etching, and then
attaching the piezo film to the beam. The final
product consisted of connected sensor segments
with an etched pattern on one side and a
completely intact electrode on the other, an
example of which is shown in Fig. 10.

Piezo Film

The Pennwalt Corporation's KYNAR
Piezo Film was used. KYNAR Piezo Film is
polyvinylidene flouride (PVDF) coated on both
sides with conductive metal electrodes. PVDF is
a long chain semi-crystalline polymer of the
repeat unit CHy-CFg. The film produces charge
per electrode area across the thickness of the
polymer, due to the stress applied along the
transverse axis.

The film is composed of three layers
(Fig. 11): a pair of electrodes surrounding the
PVDF. Vacuum deposition results in an
electrode thickness of less than 0.1 um. A
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Figure 12. Sensor mounting.

Strain Gage

A strain gage was used to provide a point
measurement for comparison with the piezo film
signal. It was attached to the opposite side of the
beam at the center point of the sensor. The gage
resistance was 120 Q and gage factor was 2.050.

Sensor Details

Two piezo film sensors were fabricated
with electrode widths proportional to an
exponential function and to a sinc function. All
patterns were symmetric with respect to both a
horizontal and a vertical centerline (Fig. 13).
The exponential and sinc sensors were both
mounted on the centerline of the beam. Further
details can be found in Table 2.

The segment length was constrained by
the size of the piezo film sheets (0.15 x 0.30 m).
The width of the exponential and the sinc
sensors was scaled to be half the width of a sheet.

Table 2. Sensor details.

Sensor Exponential Sinc function
Electrode el x<0 [sin(4x))/(Ax)

pattern e & x50

a=67ml 4=27.1ml

Corner freq. 23 Hz 386 Hz
Widthatx =0 0.075m 0.075m
Length 0.7l m 1.16 m
Segments 3 9
Distance from

freeendof 1.35m 2.46m

beam to x =0

BEAM EXPERIMENT

Set-Up

The sensors were mounted on a 7.32 m
brass beam, composed of four 1.8 m sections
bolted end to end and suspended by six pairs of
cables (Fig. 14). The beam was 0.10 m wide,
3.175 mm thick and had the following properties:

EI = 31.1 Nm2 and pA = 2.85 kg/m. It can be
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modelled as a pinned-free Bernoulli-Euler
beam up to approximately 1 kHz. A pseudo
random noise source from a Tektronix Fourier
Analyzer and a power amplifier were used-to
drive a PMI torque motor. This supplied a
moment excitation at the pinned end of the beam.

The strain gage signal was passed
through a strain gage conditioner to the Fourier
analyzer. A high-impedance amplifier based
on a 3140 FET op. amp. was used to lower the
corner frequency of the highpass filter intro-
duced by the film's capacitance. The input
resistance of the circuit (Rin = 66 MQ) was
chosen so as to ensure a uniform signal gain in
the frequency range of interest by placing the
1/RC pole at 0.06 Hz.

To help eliminate noise, the sensors were
grounded to the beam, as was the shielded cable
used for the strain gage.

Figure 13. Electrode patterns.

Procedure

Each sensor was tested by exciting the
beam with band-limited white noise. The noise
source voltage level was such that a root-mean-
square torque of 0.0794 Nm was applied to the
beam in each test. Three channels of data were
collected with the Fourier analyzer: the
excitation voltage, the strain gage signal and the
sensor signal. Transfer functions were then
calculated from moment to strain gage signal,
from moment to sensor signal and from strain
gage signal to sensor signal. The transfer
function data was taken from 1 Hz to 1 kHz.
This range was selected so as to show the sensor
behavior both before and after the corner
frequency.




Figure 14. Beam set-up.

Alternately, the two sensor gains may not be
linear with amplitude, or the assumption of a
Bernoulli-Euler beam may be inappropriate at
higher frequencies. Nonlinearity in amplitude

EXPERIMENTAL RESULTS

Exponential Sensor

Figure 15 shows the magnitude and
phase of the transfer function from the strain
gage signal to the exponential sensor signal.
Examination of the coherence function (a ratio
of cross-power spectra) indicated that the two

signals were poorly correlated at the sharp peaks °

in Fig. 15. These correspond to the low level
signals obtained at the zeros of the transfer
function from moment to either the exponential
sensor signal or strain gage signal shown in
Fig. 16. In order to highlight the general
behavior of the sensor, the experimental transfer
function was smoothed by taking a moving
average of the experimental data.

Note the overall agreement with theory
in Fig. 15. Below 100 Hz, the experimental data
exhibits a roughly first order rolloff with a
corner frequency of 23 Hz and no phase lag. As
predicted in Fig. 8 for §=0.36m, the truncation
effects become evident in the data above 100 Hz.
The first significant phase transition, around
250 Hz, occurs after the magnitude has been
attenuated by about one decade. Figure 16 shows
almost perfect overlay of the two transfer
functions below 23 Hz and attenuation of the
exponential sensor signal above 23 Hz.

'Deviations between the data and theory
are of two kinds. The first corresponds to the
rapid fluctuation, with frequency, of the
magnitude and phase. This could arise from
several sources. As stated previously, the
coherence was poor at these frequencies. This
implies that either the strain gage or exponential
sensor signals were below their noise floors.

could cause the two signals to differ
significantly near the poles or zeros where the
transfer functions are changing rapidly. The
introduction of torsion and plate modes in the
beam could also affect the two sensors
differently.

Two factors indicate that these spikes are
of little concern. Detailed inspection of the two
transfer functions in Fig. 16 show good
agreement between the frequencies of the poles
and zeros. In other words, the two sensors appear
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Figure 15. Transfer function between strain
gage and exponential sensor signals for three
cases: predicted (dashed); actual (dotted); and

smoothed (solid).




to be observing the same phenomenon. In
addition, Fig. 16 verifies that the magnitude of
he exponential sensor signal drops and stays
below that of the strain gage. Therefore, these
spikes most likely result from poor signal to
noise ratio near the zeros of the system.

The second kind of deviation
corresponds to the observation that the
magnitude of the experimental data is greater
than that predicted at higher frequencies. This
may be the result of a slower rolloff rate than
predicted by the dispersion relation. An
alternate explanation is that the actual and
predicted corner frequencies are different
causing the same rolloff as predicted but at
higher frequency.

lobes in the magnitude plot are barely visible
The two 180 degree phase reversals at 520 Hz and
710 Hz support this observation.

Figure 18 shows almost perfect overlay of
the two transfer functions below 300 Hz. Above
300 Hz, the sinc function sensor signal atten-
uates rapidly with frequency.
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Figure 17. Transfer function between strain
gage and sinc function sensor signals for two
cases: actual (dotted) and smoothed (solid).

Figure 16. Transfer function from moment to
strain gage signal (dotted) and to exponential
sensor signal (solid).

Sinc Function Sensor

The data for the sinc sensor is presented
in the same format in Figs. 17 and 18. However,
the theoretical prediction is not overlayed
because the sinc function analysis was
performed for the rod. Nonetheless,
performance similar to that shown in Fig. 6
would be expected.

Note in Fig. 17 that the magnitude
exhibits a roughly fifth order rolloff between 300
and 500 Hz. This is in good agreement with the
predicted rolloff near 386 Hz (Table 2). As would
be expected from the rod analysis, the first
significant phase shift occurs at 500 Hz, after
attenuation of one decade, at the first zero caused
by the sensor. A couple of the truncation induced
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Figure 18, Transfer function from moment to
strain gage signal (dotted) and to sinc function
sensor signal (solid).




Note, when comparing the exponential
and sinc function sensor data, that the latter
exhibits greater fluctuation in magnitude below
the corner frequency of the sensor. This may
result from the greater number of zeros in the
transfer function of the sinc function sensor
(compare Figs. 16 and 18). The two sensor
transfer functions have different zeros because
they are located at different positions on the
beam. This indicates that a sensor located at the
center would provide the best coherence because
it has no zeros in its transfer function.

SUMMARY

Measurement of a structure's spatial
deflection pattern can be used to generate sensor
signals which possess dynamic characteristics
that are beneficial to real-time structural control
applications. By convolving the sensor shape
with the distributed measurements, the sensor
filters the spatial harmonics of the deflection
pattern. Since these harmonics are uniquely
related to temporal frequencies, through that

structural medium’s dispersion relation, the

resulting sensor signal becomes dynamically
compensated. Since causality is not an issue in
the spatial domain, the resulting dynamically
compensated sensor signals can possess
particular characteristics which are
unobtainable through direct dynamic
compensation. In particular, it was shown that
magnitude rolloff could be achieved with no
phase lag.

Several spatially convolving sensors
were implemented on a beam. The output closely
matched that predicted by the analyses. Since
the structural length and amount of material
available to construct the sensor were both finite,
truncation of the convolved measurements was
an issue. These truncation effects were
quantified and their minimization, through
delaying their manifestation to higher
frequencies, was achieved by incorporating
more scale lengths into the sensor.

Future work will entail working on
several improvements to the sensors. In
particular, smoother truncation of the sensor
may help to delay, in frequency, the abrupt
truncation effects. The objective of this sensor
development is to reduce or eliminate the
sensitivity of structural control, using point
sensors, to short wavelength, high frequency
phenomena.
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ABSTRACT

This paper presents approaches for local observation of wave components which
propagate along one-dimensional structural components. In each case, the solution of the
partial differential equation which characterizes the dynamics of a one-dimensional structural
component is written in terms of travelling waves. This form of the solution is then
exploited in the first method to combine a sequence of spatially discrete measurements
through a frequency dependent decoupling matrix to yield magnitude and direction of
travelling wave components. In the second method a finite difference scheme is employed
to estimate local deflections and internal forces at a cross-section in a member. A frequency
domain ransformation is then applied ta this local state information to obtain the decoupled
wave components, Because both of these methods require local discretization of the spatial
domain, perfect resolution of decoupled wave components will suffcr from the effects of
spatial aliasing. Noisy measurements and approximate realization of the frequency
dependent decoupling matrices also limit the achievable sensor decoupling. This paper
addresses these issues and presents techniques for minimization of the effects of these
limitations. Experimental results are not presented.

LOINTRODUCTION

Active control of structures who-z dynamics can be modelled using partial differential equations has been
studied extensively in the last two decades. Two applications receiving much attention are Large Space
Structures-1.53-{1-3] and Structural Acoustics-[4-6). Several modelling techniques such as modai analysis,
finite element analysis-FEA, statistical energy analysis-SEA, and asymptotic modal analysis-AMA have been
used in attempting to predict and control such structural dynamics. More recently, travelling wave
descriptions-{4,5,7-11] , have become popular as an analysis tool for doing control design at discrete
locations in complex structural networks. Locally the response of the structure is interpreted in terms of the
propagation of travelling waves. This leads to local structural models which are exploited ot local control.

This approach views one-dimensional structural members essentially as elastic waveguides which
propagate signals from one point to the other-(See Figure 1). The response can be described by a
superposition of certain wave-modes-(types) which can propagate along a member in the positive or negative
direction. Depending upon the order of the mathematical model used to describe the dynamics of a member,
only a finite number of wave-modes-(types) can propagate along any member. Representing the dynamics
of a member in terms of wave-mode amplitudes is useful because these variables propagate aleng the
member without coupling, and because the houndary conditions, transformed to these variables take on a
clear, causal, input/output form. This causal form of the boundary conditions has, to date, formed the basis
of all wave control theory-(and practice).

In this paper we develop procedures for extracting wave-maode states from physical meac rer=nts along
structural members. The procedures utilize causal filtering of discrete sensor signals to ¢.tract e evolution
of wave-modes propagating along both a rod and a beam. Two approaches are developed, which under
appropriate approximation yield identical procedures.  Measurements corrupted by noise are also considered
from the point of view of optimal resolution of travelling wave components: Here we derive an expression
for the spacing which maximizes the rms-(root mean squared) vzlue of a travelling wave signal in the
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presence of noise. We also discuss issues associated with the transient performance of the observer
dynamics and with actual physical realizability.

J ) | EDFORWARD CONTROL
Following the frequency domain formatism developed in references 7] and [R], the dynamic behavior of
each structural member can be obtained by superposing independentty propagating travelling wave-modes at
every frequency. T'he wave nature of each member can be exposed by manipulating the governing partiai
differentiat equations into a state-space description of member dynamics of the form
dy(x. o)
T:A( w)y(x,m)
(1)
where y(x,w) represents member deflections and/or internal forces. A(w) is a frequency dependent matrix
which characterizes member dynamics.
Equation-(1) can be diagonalized to give the following decoupled dynamic description of the spatial
evolution of wave-mode variables, w(x,w)

dw( x,®) _
—dx——r( )w( x , @) (2)
where
-1
Meo)=Y(w) Ao)Y(w) and y(x,0)=Y(o)w(x, o) 3)

The invertible matrix Y(co) represents a frequency dependent set of complex eigenvectors which transforms
member deflections and internal forces into lefiward and rightward travelling wave-modes which propagate
along the structure. Each column of this matrix yields the relative magnitude and phase of the physical
variables, y(x,®), which are present in the corresponding wave type.

Travelling waves, propagating independently along each member, can be scattered or generated at
structural discontinuities or at locations where external excitations alter the homogencous evolution of the
member dynamics-(See Figure 2a). Locations at which the scattering or generation of travelling waves
occur are referred to as junctions. Junctions are important because they help to describe the dynamics locally
in terms of waves which are reflected, transmitted or generated as disturbances travel through a complex
structural networz. Transforming the junction governing equations(often refereed to as boundary
conditions) into wave-mode coordinates, leads to a causal open loop description for outgoing waves,
wo(x,w), which arise from the scattering of incoming waves, wi(x,®), and external excitations, Q(w),
which act at the junction

w(x, af S( m)wl(x.m)+‘P(m)Q( 3] (4)
The matrix S(w) and ‘¥(w) are termed the scattering and generation matrix respectively. Q(w) is a of vector
of external excitations. Equation (4) is used to describe the local open loop plant wave dynamics, and forms
the basis for most wave-control design methods.

As in the case of modal control raethods full-state information is also desired for wave control
implementation. Unfortunately, full knowledge of wave-mode states is complicated by the fact that they are
not sensed directly, but must be inferred from physical measurements. This lack of direct accessibility of
wave-mode states complicates control procedures based on this approach. Thus, instead ol being able to
directly cancel the propagation of outgoing waves from a junction by simply inverting the locai plant

dynamics S(w) in a feed-forward control loop, where typically the form of the compensation K(w) which
generates control forces Q(w) is given by(See upper loop in Figure 2b);
QA o) =K(w)w (o)

NI o)w (o) ()

we are forced to realize a more complicated form of the compensation to implement most wave control
designe(See lower loop in Figure 2c). This modified control loop structure generates the following form for
the closed loop compensation
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where uft) is a vector of local deflections and internal forces, Y(w) is a transformation matrix relating u{e)
to incoming-(w;) and outgoing waves-(w,) at the junction and G(w) is the compensation matrix multiplying
u(w).

Notice that in this equation the compensation generates control forces based on physical measurements

u(w). However, this form of the compensation leads to the superfluous feedback of outgoing waves-(wq)
back into the control, giving rise to the following loop transfer function

H{w)=1 -¥( o)G( m)Y.a( o) 7

where I is the identity matrix.

The problem with this additional 1nop in the contral structure is two-fold: (1) The presence of the loop
complicates the design and implementation of G(wm), and (2) The loop may lead to a local instability. Thus,
the difficulties associated with implementation of the form of the compensation given in equation (6)
motivates the need for sensors w hich can directly measure wave components. Knowledge of the magnitude
and direction of these wave components would permit implementation of the decoupled form of the
compensation given in equation (5).

3.0 WAVE-MODE OBSERVATION

Many sophisticated analytical procedures for control design are based on the assumption that the full-state
vector is available for measurement. Wave control is no exception; it would exploit full knowledge of a
“local state.” In addition wave control methods add more complexity since most wave control designs vield
compensators which are not static functions of the local state and are often difficult to realize [4.5.7-111. As
in mnost control design methods, performance is limited when the full state of the dynamic system is not
available. We are thus faced with the common dileinma of approximating state information from a few
measurements. In the work to follow we present two procedures for estimating wave-modes along one-
dimensional structures from a limited number of measurements. We label these wave-mode estimates w to
explicitly differentiate them from the unknown, actual wave-modes, w.

3.1 SPATIALLY QOLLOCATED MEASUREMENTS

The most direct approach 1o sensing wases propagating along one dimensional members is to infer this
information trom tull-knowledge ot the dynume state ol the system at i cross-section. bhis s done by
inverting the wave-mode transformation matrix-(eq'n 3) relating physical cross-sectional measurements to
wave-mode coordinates,

wox. ) -1
{ =[Y(m) ]y(x.a))
w'(l.m) (R)

where subscripts r and | denote the rightward and leftward wave companents respectively. Difficulties with




such an approach are specific to the case at hand. It may be physically impractical to measure all of y(x.om) at
a single point, (e.g. measurement of the internal shear force in a beam is difficut). Further, the frequency
dependence of this matrix is such that temporal filters cannot always be built to imptement equation (8); as
the theoretical matrix Y-}(w) may be non-causal.

Example L {-(Longitudinal Waves in a Rod)
In the case of a longitudinal rod the dynamics are described by the partial differential equation
2 H
EAa u(;.:} ___pAa u(;,l)
ox at 9)
which has steady-state harmonic solutions of the form
-skx Jkx  jax
ufx . t)=(w(0)e +w (0)e je

and the corresponding broadband solution of the form

(10a)

—-jkx Jkx
u(x ., w)=(w, (0, w)e +wl(0.w)e ) (10b)
where the subscripts r and | refer to rightward and leftward travelling components respectively. The
wavenumber k is given by

Transforming equation (9) into the frequency domain and obtaining a state-space representation of the
dynamics in the form of equation (1)-(y(x.m)=[u(x,®) w(x.0)]T) leads to the following relation between
wave-mode coordinates and physical states at a cross-section
L1 [EA
wlx.@) 112 2ju+ pA t(x.w) }
w,(x. o) 1 1 EA W' (x.0)
where steady-state behavior is not implied.
Estimates for the local right and left-going wave modes are thus available from a linear combination of
local deflection, u, and strain, u’. Temporally, only an integration of strain is required. This appearsto be a

viable technique for observerving wave components along a rod, although care would be required to avoid
integrating a strain gage bias.

Example B1-(Bending waves in a B-E Beam)
‘1he governing partial differential equation describing the dynamics of a Bernoulli-Euler beam is given by
¢ 2
d u(x.,t) ”Ma u(x.t) -0

] 7
dr ot (12)
where the Fourier transformed solution in terms of waves can be represented as

El

-t -
u(x. @) =w, (0.0)e w0, me™

P
w (0.0)e’ " +w (0.0)e""
ip le

(13)
where the subscripts p,e refer to whether a wave component is a propagating or an evanescent term, and r
and | refer to whether it is rightward or leftward going. Inverting the transformation relation between wave-
modes and physical member measurements at x we find that

L A / 1 ]
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« "4k 3 3
L 4k 4 Elk 4 Elk | (14)

In this expression the wavenumber k for transverse bending motion is given by
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7 A
Heotfg




Thus equation (14), if implemented as written, would require measurement of lateral deflection, u, slope, u',
bending moment M= Elu” and shear force, V=-Elu™, .Meamrcments of internal shear force V, with a
point sensor, may not be practical. These would be combined using tempcral filters with gain charactenstics

of 1, -1, @1, of-372), - 4 with various constant phases. Not ail are implementable in real time since they
are acausal. ‘ _

However, if we are only interested in observing the propagating components, then rows one and three
give

r X ul
X B3 ik
;e ! £l e’ e !
« T T4l ] P
o ,/ pA T T djw~/EipA |[ u
W, 1 jo) Ell pA) u’
= . Y 3 . R -~
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‘ — 4 pA 3 ' ElpA “
1w P T 3 4 jw-\/EIpA
| 4 jo) A EI( pA) ] (15)

where we have substituted for k and rearranged to illustrate elements having positive and negative phase
delays. Notice that elemens of the third column are anticipatory: requiring prior knowledge of the internal
shear at a point in the beam. This complicates direct observation of wy, and wyp from 4 collocated point
sensors. lHowever, several wavelengths removed from structural discontinuities near field terms contribute

negligibly to the response u(x.m) given in equation (13). Thus, at high frequencies we can interpret the

response of the beam in terms of propagating components only. This reduces the number of sensors
required for observation to two. One possible causal solution is given by

;X .S
A e ! El e ?
‘/_ -
w’p(x,m) 2;;/0} pA 2]0’\/5/})/‘ [u’(x,w) ]
A - 3 .4 Elu"(x ., o)
j j
W (%0 ‘ El e
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- _‘——“ —— —_—T

2+ je PA 2w -\/EIpA (16)
where measurement of only slope u’ and bending moment M=E{u" are required. This expression combines

phase delays with temporal filters having gain characteristics of (2 and w. Unfortunately, real time
implementation would require approximation of these phace delays which are only valid over some restricted
frequency range. Another possible causal choice of measurements might invoive the deflection-u and slope-
.

' These two examples have highlighted two difficulties with the simple concept of employing the

transformaition of y(x,w) between physical measurements at a point and the wave components at that point.
The first is simply the difficulty of measuring all the necessary variables at the cross-section in question.
The second difficulty is the impossibility of achieving the needed (acausal) temporal filtering in real time.
chis requrement for acausal filtering appears to be related to dispersive wave propagation.

J2 SPATIALLY SEQUENTIAL NON-COLIOCATED MEASUREMENT

in this cection we relax a requirement implicitly imposed in the previous section; that all measurements
be spatially collocated. Rather we suggest a spatial stencil of point sensors, (implicitly assurmed to be strain
gages) and discus; possible signal processing approaches to extract wave components from this sensor
array. Such techmques are widespread in ocean acoustics and geophysics, where the domain is three-
dimensional and the wave propagation is essentially non-dispersive. Real-time implementation is not an
issue in these fields, since active control is not contemplated. Acausal signal processing is thus not ruled out
in these fields.

3.2.1 Exploiting Phase Delays

One approach might involve a sequence of similar measurements at multiple locations along a
member(See Figure 3). This implics that waves propagating without attenuation along the member will only
have relative phase leads or lag between spatially discrete points and that a signal processing scheme might
exploit this known phase relation to identify the wave component of interest.

Example L2-(Longitudinal Waves in a Rod)
Consider again the longitudinal rod with successive axial strain measurements given by

A A

sk -1k

' ( -—;—.m)=jlz( -w,(0.)e P ew (0. @) )

an
and




A 2
W) =jk( -w, (0, a)e +w (0.o)e )

(2 ! ’ ! (18)
where A is the separation between the two strain gages and x=() is taken to identify a point midway between
them. Solving for the rightward and leftward wave-modes lcads to an expression (for this non-dispersive
example involving both positive and negative delays)

W’(O.(U) M'( -'ZA.G))
=F( 4, 0) s
wl( 0.0) u'( s o)
2
a a
[ s skl _ 4
) _ e 2 _ 2 flu'r z.m)
jree MMt ad A,
- ¢ 2 (19)

where F(A,w) is referred to as the observation matrix.

If one can assume kA<<1(the sensor spacing is much less than a wavelength) some straightforward
algebraic manipulation leads to the following first-order form of equation(17):

e S R EER T 1 .
w (0.0) ZIzzd djk Zkza 4k u’(-z—,w)
A F ! ! 1 1 |
w (0,w) —_— - - U — )
1 Zkzd 4k ZkZA 4k 2 20)

Evaluation of this expression requires up to two causal temporal integrations of each local strain
measurement. Sensor bias would need to be dealt with. Figure 4 compares the first-and the infinite-order
expressions of the (1,1) and (1,2) terms of this observation matrix. Here we define the non-dimensional
amplitude and frequency to be
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Notice that in this figure there is close agreement between the first-and infinite-order elements up to Wny=1.

However, as tpd>>1, the phenomenon of spatial aliasing appears in the form of resonance behavior in the
magnitude and phase of the infinite-order elements. These resonances arise because spatiaily discrete
measurements are incapable of resolving all possible wavelengths propagating along the member.
Therefore, whenever

Wnd > T or > (VANEA/pANI2)
there will be ambiguity in determining the true wavelength of a disturbance propagating along a rod.




Example B2-(Bending Waves in a B-E beam)
As in the case of the longitudinal rod, we can infer information about wave-modes from sequential

strain measurements at spatially discrete locations along a simple Bemoulli-Euler beam member. Applying

the same approach we can write local expressions for bending strains in terms of wave-mode amplitudes as

t 2 -k -
eb(x,a))s--z!k (-w,(0.a)e ! ll*wu(().m)e b

&
-w, (0, 0)¢ " aw (0.0)e'")
ip le

@n
where € refers to bending strain on the surface of a member of rectangular cross-section, ty denotes the
thickness of the beam, and x takes on four values. If the strain gage stencil is equally spaced about x=0,

these values are (£A/2), (£3A/2), where A is the gage spacing.
Solving for the frequency dependent wave-mode amplitudes at x=0 we arrive at the following matrix
expression

w(O.m)“ =F(A.m)“‘cb(d.w)“

! ! (22)

where each element in F(A,w) represents the contribution to the evolution of a particular wave-mode from a
discrete local measurement. For the sake of brevity the elements of this matrix are not given, however, the
non-dimensional magnitude-(wnq) and phase of elements of a typical row of this matrix are plotted versus

non-dimensional square root frequency-(wyg) in figure 5 where
1

wit H =5
[ o El
“ad = K and @ =% 4 PA
Unfortunately, attempts at linearizing the elements of F(A.w)(for kA<<1) causes the matrix to become
singular. This singularity occurs because we cannot infer four wave-modes from a strain field which is
approximated as locally linear in space. Only two sensors are actuatly needed to determine this strain field
approximation. Hence, the linearized version of matrix F(A,w) is no longer of full rank, and we would be

forced to higher order-(in kA) approximations.
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Several wavelengths removed from structural discontinuities and boundary effects, near field components
contribute negligibly to the response of the beam. A« a result we can interpret the response of the beam at
high frequencies in terms of travelling components only. With this assumption the rightward and leftward
travelling wave-mode can be found from an expression which only accounts for the coatributions of
travelling components;.
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Linearizing the elements of this matrix for small separation distance leads to the non-causal solution given by
1 I ! !
[ 4 T3 T2 3 T
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The (1.1) and (1.2) elements of equations (23) and(24) are plotted in figure 6. As in the case of the rod this
figure shows that there is close agreement between the nonlinear matrix elements and their linearized
approximations in both phase and magnitude over a broad frequency range. Note that in this case,
linearizing in kA leads to an approximation first-order in kA, but not linear in w. This is because of the form
of the dispersion relation. Unfortunately, this filter is not causal. Spatial aliasing is again apparent in the
form of resonance behavior in the observation matrix elements whenever

Wnd > M, (n=1,2,3,...) or > (M2ANPA/ELN2)
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.2.2 Finite Difference Approximation of Partiat Differential Equatign

Strain sensors are the most convenient types of instruments used to infer an element of the physical state
vector at spatially discrete points along one-dimensional members. The reason for this is that they are
lightweight, thin and inexpensive. More importantly, the sensor contribution to the overall impedance of the
structure is negligible. This implies that this type of measuring instrument has very little effect on the
propagation and scattering properties of waves as they traverse individual members in a network.

Pavic'-[13,14) also demonstrates that strain sensors can be used to estimate spatial derivatives at

locations along a member which are far removed from structural discontinuities. At such locations Pavic'
employs a finite difference scheme which he uses 1o approximate the first and second derivatives of strain
for both one and two-dimensional members. He uses this information to determine local inertial
acceleration, effectively using a portion of the structure as the accelerometer proof mass. This same
approach can be used as an effective way of determining the direction and amplitude of longitudinal and
transverse travelling waves.




Example L3-(Longitudinal Waves in a Rod)
Equation (9), presented earlier, describes the dynamics of a rod in compression or tension without
distributed loading. The longitudinal strain at any location in the member is given by
du( x ., o)

glx . 0) = — 25)
Using this relation in conjunction with the central difference method, the second spatial derivative can be
approximated as follows

4 _ -
e(x‘+2,m) eL{xI L)

N

efx .o
! ) = 4 (26)
where A is separation between the two strain sensors and the error is on the order of the square of the

separation distance (See Figure 7). Following the sign convention shown in this figure the direction and
amplitude of wave-modes can be approximated by the following relation

A 1 _ 1
w (0.0) 2jk “2 eL(O,m)
\3,(0.01) -2—1—.7 ——IT ‘3f0'“’)
/ 2k (27)

where x; = 0. This expression is equivalent to the sequential measurement scheme in the approximation
kA<<l(eq'n 20). The two methods are related by the following finite difference transformation

, 1 1 _A
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t’(O.w) ) 1 A
L “a A &f 2 ') (28)

This substitution leads directly to equation-(20).

Figure 7 llustration of the Spatial Dervative Method for
estimating deflections and internal forces to complete the
physical state vector at a cross-tecnon. Example of local
: Sirval
rod.
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Example B3-(Bending waves in a B-E beam)
Because the second spatial derivative of displacement is related to the curvature of the member, the
bending strain corresponding to transverse propagating waves is given by

', 3 u(x‘_,a:)

(X ,0) = - = ——a—
b i 2 'hz 29)
Again applying the first central difference scheme, the third spatial derivative can be approximated as
a a 3
) tb(x‘,*}—.m)-eb(xl_-z—.m) 2 '9““.--‘”’
£(x )2 3 s- & 4
b ax (3m

The second derivative of strain yields the fourth derivative of displacement which by equation (12) is related
to the local beam acceleration. Applying the central difference method for the second derivative of bending
strain, and exploiting equation (12) leads to the following expression for the transverse beam deflection
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where x;=0 and s is the Laplace variable. ) .

The only element of the physical cross-sectional state vector yet to be accounted for is the local slope.
Since the siope represents the rate of change of deflection with respect to position along the member. the
deflection at two neighboring points must be found using equation (31) before the slope can be estimated.
Applying this method the local slope can be approximated as
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The error in this expression is on the order of A, the separation between strain sensors. ‘ ‘
Equation (32) completes the estimation of elements of the physical state vector at a particular location

from only 4 local strain sensors. Combining equations (29-32) with equation (14) we can approximate the

evolution of rightward and leftward going wave-modes along a beam member in terms of local strain

measurement.
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As in the sequential sensor scheme, contributions due to the evanescent terms can be considered negligible
when measurements are taken more than a wavelength away from structural discontinuities. This implies that
the rightward and leftward propagating components can be found from extracting the 1st and 3rd rows of the
malrix given in equation (31). It was pointed out earlier, however, that this expression is not realizable in
real-time because the terms in the third column of the matrix in equation (33) are non-causai. However,
since the evanescent terms have been considered negligible it is possible to exploit the remaining causal

terms in equation (33) to derive an expression which uses only knowledge of local bending strain €y and

slope-u' to estimate the propagating wave cotiponents wrp and wip. Such an approximation would lead to
the following equation for the propagating wave components for a beam

3 9
1el’( -Z—A.m)
(2 J_ =1 |_p3p -3p p e( -4 0)
w (0.0 2k S T |°* 2
P 2EIk |47 4 A a4 4
w (0.0)] b 2L =1 |, -EI -El Sl
i Lo 2 2 3
eh(i—d.w)
L ()

Since the local deflection and slope represent a causal pair of physical measurements they can also be
used to estimate propagating wave components far away from structural discontinuities. However, such a
selection would introduce additicral resolution errors associated with inaccuracies in estimating local
deflection from four point strain measurements.  Other non-realizable pairs include (deflection & strain) and
those physical measurements which are combined with an estimate of the internal shear force at a cross-
section.

3.2.3 Optimal Sensor Spacing in the Presence of Noise
Up until this point we have ommitied any restrictions imposed by the possibility of noisy strain




measurements. Clearly we will not be able to choose the separation distance A arbitrarily small since the
difference butween strain signals will become very small, potentially smaller than the noise level in the
measurement. Further restrictions wiill be imposed by the occurence of spatial aliasing, limiting the smallest
resolvable wavelength that can be accurately detected by this measurement scheme. The optimal spacing
between succesive strain sensors will be based on our ability to achieve the maximum rms signal to notse
level for each wave component for a given noise spectrum and stencil configuration.

Assuming that the sensors are corrupted with stationary, uncorrelated white noise, the wave sensor
observation integral determines the estimated wave components from the following equation.
A !
w (t)=1f (ar-e)left) +n(1))

0 (35)
where f(A,t-1) is the convolution kernel associated with the observation matrix-F(A,w), n(T) is tne noise
vector and &(t) is vector of discrete strain measurements. This convolution expression permits the
covariance matrix-¢ww(t) for the estimated wave components to be computed from
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where ¢ge(T) and Onn(t) are the covariance matrices for the determiristic and stochastic part of the
measurement. The power spectral density matrix is found by taking the fourier transform of the covariance
matrix dww(t). This leads to
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Because each elastic waveguide couples the spatially non-colocated strain measurements, there will be

off-diagonal elements appearing in the @y (M) matrix. These cross-spectra terms are essential for
determining the optimal sensor spacing along a member. If no correlation exists between the spatially non-
collocated sensors then relative phase information between each sensor is lost and it is impossible to infer the
magnitude and directionality of each wave component.

Example L4-(Longitudinal Waves in a Rod)
The power spectral density matrix for wave propagation along a longitudinal rod is given by

F”(A,.\‘) F”( 4a.5) F”(A,-:) F (4,-5)

H
¢ ()= e M0+ (o)

F“(A.s) Fn(d.:) F,z( a.-5) Fu( 4.-5) (38)
where @g2¢1(W)=(De1e2(w)*)-(*-denotes complex conjugate). The estimated rms response of the rightward
and leftward wave components are available from the diagonal elements of this matrix.

(ow\v(m)) =(olvw(m))
rr [

rms rms

o‘ltl + Ot,t: -2 cos( kA)Re( o‘/‘z) -2 :in(kd}lm(@tlt))

2
4k sin(ka) (19)
where Re and Im denote the real and imaginary parts of the of the cross-spectra term ®p¢2(w) respectiveiy.
The points where this expression has an extrernum can be found by computing its derivative with respect
10 A and equating the result to zero. Hence, the necessary condition for the existence of a maximum is
oll*ol‘f‘onn Im(ott)

2 11 2°2 11 :
ka) - ka —_— ka ka) -1=0
cos ( ) Re(o,,) cos( )+ Re(o,, ) in }cos( }
12 1?2

am
Finding the exact solution of equation (4(}) is cumbersome since it requires solving a fourth order
polynomial. To gain insight into the optimal sensor spacing we can make some limiting approximations




which spectrally factor the solution into its low and high frequency parts. At low frequencies-(kA<<1) itis

reasonable 10 assume that the Im(®,¢2(w))<<Re(De1e2(w)). This implies that the non-dimensional optimal
spacing can be found from the following expression

2
® ®
LL] o + nA
kA = cos™ Lz——t PR LT . { Low Frequency)
e Ra o ) Rdot:)
12 LA 4 (41)

where D¢je1(@)=De2e2(w). The sign of the real part of (Deyerfw)) determines whether the positive or
negative sign of the radical should be used to compute the optimal sensor spacing. When the argument of
this expression is equal to +/-1 there is ambiguity in determining the optimal sensor spacing-

(cos(nr)=cos(kA)=+/-1 for n=0,1,2....). However, this expression is restricted to the low frequency part of

the spectrum where spatial aliasing does not occur for kA<<1. To first order the linear approximation to
equaton (40) gives
kA = w Im(® ) 20
Im(o,, ) €€,
2 (42)
as a rough estimate for the optimal sensor spacing.
At high frequencies or kA >>1 the full non-linear form of equation (40) is required to determine the

optimal spacing between point sensors, but the solution is of little practical importance.

3.2,4 Transient Behavior of the Spatially Sequential Approach

The preceding sections of this paper have developed all ideas in the frequency domain. Although general
transients are not excluded from this frequency domain discussion, it is often difficult to make the transition
to time response. This section presents a particular transient response of a particular wave sensing scheme.
‘The example is motivated by a desire 10 enhance intuitive understanding of the wave decoupling procedure.

Example L5-(Longitudinal Waves in a Rod)
This section calculates the transient response of a first order-(linear in kA) wave-mode filter using two

strain sensors spaced a distance A apart. We excite the sensor with a sinusoidal wave train arriving from the
left ac t=0). If we assume that the rod is semi-infinite and that only a rightward travelling longitudinal wave is
present in the member than we would hope that our approach would indicate the presence of only a
rightward going wave. Before we attempt to examine how well the first order approximation achieves
decoupling of wave components along a rod, it is convenient to express equation (20) in state-space form;

xt =Ax + Be

61 6]
w = v+ Jx + De
Cul  Ca (43)

where the linear ime invariant matrices are

o 1] 0] ~? 4]_ [c’ {]
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Assuming that we have perfect strain sensors, we can describe the evolution of rightward and leftward
components using the following convolution integrais

A
w (0,t) c .| C.k
’ H 12
A = IeA('d')Be(r)dr+[ llc”hﬂﬂe(r)dr
C 1 C 2
v, (0,1) 211 22},

49)
where € and €3 are the strain measurements taken at location 1-(x=-A/2) and 2-(x=4A/2). As mentioned
earlier suppose a cosine deflection u(x,1)=Mcos(m(t-ta)) wave is incident from the left arriving at sensor 1 at
t=0. Then sensors | and 2 would measure the following strains

md
g(t)=M —sinfao,t): t20
. mo R a
cz(t ) =M =sin o1 -t)). 1 2t,=+

(45)
where M is the strain amplitude and wy, is the frequency of the travelling wave. Substituting for ) and €3 in




equation (43) we find that

A
w (0.,t) [ C.
’ It o 12 A1 4 ) )
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»&l (0.1) 21 2

4
t20 t21, ==
(16)
Substituting for marrices A and B and integrating equation (45) with all initial conditions set to zero leads to
the following termporal evolution of the rightward and leftward travelling components

. —sin{»mat) Lt Ssin o (t -t,)) *l—-t—o
2 @, 2 [
v, (0.t) [CII v, ° @, {CZI o, ° @,
= —_ 4 —_
) € ¢
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! @, b) @,
[ - mo
(t20) (tzi =2
(47)

Notice in these expressions how the restriction on the initial condition feads to steady state sinusoidal
dynamics superposed upon a ramp. Fortunately, for t > t, the effect of the ramp cancels out and we are only
left with the dynamics of a sinusoid. This is apparent when we substitute for the C matrices, i.c.

A csin o) ct Costat)
= e &, - M (t20
W, (0.1) [ 2 4w, 247 4 4 v )
< -sinl wo('-la)) #(COS( ma("’o)))—L+c————(,—’a)}M(IZI =A)
24 @, 4 4 24 o T (48)
and
A csin o t) cos( o t)
I AR LA T S 4 [
w (0,1 { 7 da, > 7] +‘}M + (t20)
sinfo(t -t )) cos{ (1t -t )) c(t -t )
{_ < ° d -[ id 2 )+I_+———°—M(l2! =4
24 a, 4 4 24 e ¢ (49)

For t < 1, no decoupling is achieved and the both wave component estimates undergo a transient phase
which leads to a dc offset in the temporal evolution of their approximate decouvpled state. This offset can be
estimated for every frequency component in the spectrum of the measurement by considering only the
temporal history of equations (48) and (49) up until to. Thus, the dc offset in the rightward and leftward

wave components can be estimated at each frequency Wy from the following expressions:

A 0 ) [-5 mi AZ}“
w (0.t ) = —2—
’ ° 24?2 (50)

2 .2
A o 4
w o (0,1) -[ 3 }v
! 24c (51)

For t > t, decoupling is approximately achieved; the effect of the ramp cancels and we are only left with
the steady state dynamics about the dc offset for each wave component.
2 .2

V' (0.1) =M 1y-2"e%m
w (0,t) = cos{  (t) - -— (r2¢)
’ ( o 24C2 o (52)
A wzdz miAz
w (0,:)-—9—2—M cos( wot)+---~2~M (v 21)
! 24c 24¢ (53)

The above expressions are good to second order in the argument mato. Figure 8 shows the transient and
steady state dynamics for a generic wave travelling to the right along a rod.
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Figure 8 Temporal evolution of rightward and leftward
prnpagating comgponents alang 2 longuudinal rod.

u(x.t)=Msinwglt-vc)

3.2.5_The Wave Sensor Transfer Function

Because of the assumed form of the solution which is used to infer wave propagation along 1-
dimensional structures, an inherent difficulty associated with the decoupling of rightward and leftward wave
components is the realizability of elements of the observation matrix F(A.m). Since the elements of this
matrix are typcially infinite dimensional we must approximate them by low order elements-(e.g. linear in kA)
which are physically realizable. Unfortunately, this linearization limits our ability to achieve perfect
decoupling of rightward and leftward wave components from discrete measurements. However, if the

condition kA<<l1 is satisfied we expect that rightward and leftward components will be sufficiently
decoupled from one another.

The required transfer function from actual wave-modes present to wave-mode estimates delivered by the
sensor is given by :

A
w=H(A 0)w+F(Adm)n (54)

where H(A, ) is the wave sensor transfer funciion, nis the vector of uncorrelated noises, w is the vector of
actual wave-modes and w represents the vector of wave sensor estimates. In all of these approaches the

wave-modes which are present in a member are infered from physical variables y(x,w) using a frequency
dependent ransformation of the form:
-
y =[F { @) ]w (55)
Each approach works by attempting to invert F-1(m). This is done approximately for a variety of reasons:
1. Not always possible to implement F(m) with causal filters.

2. Prefer a first order approximation to F(wm) rather than an infinite-order solution.
3. The model is not accurate over all frequencies.

Further, the physical measurements y(x,w) are coréupted with noise. This leads to two kinds of

imperfections in the approaches outlined in this paper; F is not F and 9 is noty. The wave sensor output
for w is thus &.

A A4 A
w=F{(A4w)y
A
=F (A .a)(y +noise) (56)
But y=F-1(A,@)w. This implies that
A -] A
ulr‘--F( Aol F (A.ew)w +F ( A, w)( noise) (57

Example L6 (Longitudinal Waves in a Rod)

Considering examples L2 ard LS again we know from the exact model given in equations (17) and (18)
that

4 ;4
u'( 7“-.:») y _c"‘z . 1k3 w,(0.0)
4 =F ow=ik 4 4 0.0)
L“'( 2_’0” ity ey W,( .

- 3 (58)




Substituting equations (20) and (58) into equation (57) gives the corresponding wave sensor wransfer
function to first order for a rod.
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The first order approximation to F(A,w) leads to off-diagonal terms of second order which couple actual

rightward and leftward wave components to their estimates. However, for low frequencies-(kA<<1) these
off-diagonal contributions can be considered to be negligible. The estimated wave components are thus
decoupled except for the presence of measurement noise in the sensors.

‘The previous sections have outlined two similar approaches for chserving wave components from
spatiaily discrete local measurements along a compression rod and a Bernoulli-Euler beam. For the rod

analog circuitry will suffice to implement the elements of the observation matrix F(A.w). In the case of the

heam. altough methads have been developed which can simulate terms with (im)('/2) dependencie-{16]. all
the schemes developed in this paper required further acausal filtering. We have not vet discovered a causal
scheme, applicable to the B-E beam over an arbitrarily broad frequency range. However. the _ohscrvnlmn
methods discussed in this paper are only valid in the frequency range where the mathematical models
provide an accurate description of the system dynamics. Thus. the bandwidth of accuracy will not only be
limited by the model accuracy but also by spatial aliasing, instrumentation and the level of the signal to noise
ratio.

In addition to giving rise to the phenomennn of spatial aliasing, discretization also affects the resolution
of a measured distubance. Since a single sensor spacing stencil will only provide optimal resolution in a
narrowband about Aap(p)-(b denotes bandwidth of signal), broadband signals may suffer some loss in
resolution for frequencies w<<mp. To improve the resolution for these frequency components, it may be
advantageous to construct an additional wave-mnde observer which has higher sencitivity in a lower
frequency range(See Figure 9). This wili require that a second sensor stencil be estabilished to resolve the
lower frequency components. The two observers can be combined by passing the higher frequency
components through the first stencil and lower {requeacy components through the second and then summing
the resulting signals. This approach leads to higher resolution of 2 broadband measurement.
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Figure 9 Postuble «cheme for resolving broadhand signals.
Two sensor stencily are emploved to resoive the high and low
frequency ends of the spectrum.
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In this paper theoretical procedures have been developed for estimating wave components which
propagate along one-dimensional members from spatially colocated and non colocated measurements. In
each procedure we have derived temporal filters which decouple wave-made states from local physical
measurements in 2 member. The problem with these filters, however, is thar for dispersive mediums they
are not guaranteed to be causal. This acausal behavior makes it difficult to Hbserve all wave components
which may propagate along a dispersive member. For certain physical geometries, however, where the
response of the member is dominated by evanescent or propagating dvnamics, approximations can be made
o render a subset of the full wave-mode vector observable by exploiting only the causal entries of the
observation matrix, or by limiting interest to a relatively narrow frequency range.




Besides being limited by the dispersive nature ot the medium, the non-colacated approach 1s aleo
complicated by the phenomenon of <patial aliasing. This arises from the fact that this approach uses point
sensors which are postitioned symmetrically about the location where waves are to be inferred. For
wavelengths which are small compared to sensor spacing there will be amhiguity in determing the true
wavelength being resolved by this observation scheme. This restricts the non-colocated ~cheme to those
wavelengths which are large compared to sensor spacing. Thus, a first-order approximation 10 the entries of
the observation matrix is sufficient for practical implementation.

Sensor noise further restricts the bandwidth of the non-colocated observation scheme to those signals
which are large compared to the noise level  Optimal resolution is achieved when the sensor spacing is
chosen to maximize the signal-to-noise ratio of each wave component at each frequency. Of couse for
broadband signals multiple sensor stencils may be required to adequately resolve all frequencies which may
be present in the dynamics.

‘The next logical step in this work is 10 experimentally verify the procedures outlined in this paper and to
subsequently conthine them with previously developed active wave control methods.
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