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Summary

This report summarizes 16 months of research into active control of elastic wave prop-

agation in flexible structures. The research was performed collaboratively between three

graduate student research assistants; Simon Collins, Doug MacMartin, and Darryll Pines,

and two faculty supervisors; Professors Steve Hall and Andy von Flotow.

. The report format is that of a brief executive summary supported by an extensive ap-

pendix containint the research publications generated in the course of this research.

The research performed can be broken into two major fields;

1. Broadband damping by impedance matching the control system to the underlying wave

(or dereverberated) impedance of a flexible structure. )rof. Hall and Doug MacMartin

contributed most strongly to this research.

2. Sensor development for purposes of wave observation and control. Prof. von Flotow

and Simon Collins and Darryll Pines contributed most strongly to this research.

The executive summary of the next few pages consists of two separate sections corre-

sponding to these two thrusts of the research.
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Sensors for Wave Observation and Control

The prior few years of research into active control of wave propagation have repeatedly

yielded the suggestion that a factor that strongly limited achievable performance was the

difficulty of sensing the quantities of interest; the amplitudes of the individual wave types

simultaneously present in any vibrating structure. With this research project we made the

development of such sensors a high priority for the first time.

The MS thesis of Simon Collins, due to be finished in July, 1990, was started under

this funding. Simon focuses upon spatial convolution of strain signals with continuous,

distributed piezo-film PVDF sensors. He is interested in performing, through spatial con-

volution, some of the acausal temporal filtering required of the wave control designs of the

past few years. The theory for this is developed in his first paper on this topic, [8] and ex-

perimental results are presented for sensors which can be interpreted as wave number filters.

The experiments are performed with bending waves on a one-dimensional beam.

Darryll Pines, for his PhD thesis research, is investigating arrays of point sensors, dis-

tributed PVDF sensors, and arrays of PVDF and point sensors. His goal is to deveolop

wave type/wave number sensors, and to employ them in a wave control demonstration. He

is building upon his own MS thesis research, [9], in which active control of wave propagation

was strongly limited by the use of a strain rather than wave sensor. Darryll's first paper on

his PhD research [10] is essentially a catalog of examples of arrays of discrete point sensors

used to infer the wave-number/wave-type spectra of one-dimensional structural waveguides

(beams and rods). Any type of point sensors can be used; accelerometers and strain gages

are obvious choices. Pines develops criteria for spacing of these point sensors, and for the

temporal filtering that is applied to each sensor signal before they are combined into signals

representing individual wave types. Important drivers in this design are: 1. the assumed

dispersion characteristics of the waveguide, 2. the assumed spectrum of the signal to be

detected, and 3. the noise characteristics of the individual point sensors.
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Dereverberated Mobility/H-(. Power Flow Approach

The goal of this research is broadband active control of structures with significant un-

certainty. If the uncertainty in modal frequencies is of the same order as the modal spacing,

then methods such as finite elements are not appropriate for modelling the structure [1,2].

The resulting large order model is extremely sensitive to small parameter changes, in the

prediction of natural frequencies, and especially in the prediction of mode shapes. As a

result, much of the information contained in such a model is meaningless.

An alternative approach is to use wave-based models of the structure. In Miller et al.

[3], the structure is represented as being composed of one-dimensional waveguides. These

meet at junctions, and only the junction at which the control acts needs to be modelled.

The control law can be derived based only on a model of the local dynamics, and this

model is not dependent on uncertainty in the remainder of the structure. However, arbitrary

structures may be difficult to model using this approach because of the difficulty in obtaining

an accurate wave description.

For a general structure, a local model of the dynamics near the actuator and sensor pair

is still desirable. MacMartin and Hall [4,5] have used a dereverberated mobility [6] model

instead of a wave model. The response at a point can be considered to be the sum of two

parts: a direct field, due to the local dynamics; and a reverberant field, which is caused by

energy reflected back from other parts of the structure. The term "dereverberated" implies

that the "reverberant" part of the response has been removed before computing the mobility.

The dereverberated mobility may be approximated through thtL use of the cepstrum [6] of

the impulse response, or by taking the average of the log magnitude of the transfer function.

The fundamental distinction between this and wave approaches is the ability to treat

generic structures. While the concept of direct and reverberant fields is based on wave ideas,

there is no requirement to actually identify a local wave model. All that is needed is the

input/output behavior at the driving point, which may be found from experimental data,

calculated from some nominal model, or found analytically, perhaps even from a wave model.

This indicates another important advantage of this modelling approach - the ability to use

experimental data to generate a measurement based model.

The control design approach for this model should guarantee stability and provide "good"

3



performance. For a lightly damped system, the power dissipated by the control system is

a measure of the damping that is achieved, and guarantees stability if it is positive at

all frequencies. Ideally, a compensator that dissipates the most power possible at every

frequency is desired. This compensator is in general noncausal, and cannot be implemented.

Miller et al. [3] maximize the frequency weighted power dissipation associated with the

control, using Weiner-Hopf techniques to ensure causality. The drawback to this optimization

is that it will allow power to be generated at some frequencies in order to achieve greater

power dissipation at other frequencies. Since the driving point mobility of a structure is

positive real, stability can be guaranteed by requiring that the compensator be positive real.

Using this result, Miller et al. approximate their optimal compensator with a positive real

form. The final result is suboptimal because the positive real constraint is applied in a

somewhat ad hoc manner.

MacMartin and Hall [4] enforce the positive real constraint by minimizing the maximum

value over frequency of the power flow into the structure. This can be reformulated as an 'H,,.

control problem, as opposed to the Rf2 approach of Miller et al. This minimization results

in power being dissipated at all frequencies, so that closed loop stability is guaranteed. The

importance of a certain frequency range can be increased through the use of a weighting

function.

The dereverberated mobility/H,, power flow approach has been applied to several ex-

amples [4], and has also been demonstrated succesfully in an experiment [7]. This approach

to modelling and control design allows significant damping to be added to many modes

of a structure, without the large effort in system identification, off-line computation, and

compensator complexity that would be required of many control design techniques.
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Chapter 1

Introduction

1.1 Motivation and Background

Broadband active control of flexible structures is difficult for several reasons. Struc-

tures tend to be very lightly damped, modally rich, and difficult to model in detail,

due to their large sensitivity to parameter variations. It is well known [41 that for

many applications, there are likely to be many flexible modes within the desired

bandwidth of a structural control system. This is due in part to the light damping

that would be anticipated, for example in large space structures, which implies that

many modes can contribute to the performance. Also, performance requirements

may push the bandwidth higher directly, for example in noise control of machinery,

where the bandwidth must clearly include acoustic frequencies, and therefore many

flexible modes.

One of the problems associated with broadband control of structures is the

uncertainty in the plant model. A state space model of a structure must be at best

an approximation, since the true structure is infinite-dimensional. Finite element

methods are typically used to model a structure, and are sometimes capable of

modelling the lowest modes quite accurately. However, in the region of high modal

density, any model is likely to be highly inaccurate. Models of structures with
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closely spaced modes in particular tend to be extremely sensitive to small parameter

changes, in their prediction of natural frequencies, and especially in their prediction

of mode shapes. As a result, the actual structure to which the control will eventually

be applied may differ significantly from the model for which it was designed. Thus

some knowledge about the uncertainty must be taken into account when designing

the controllers.

A variety of approaches have been used to deal with uncertainty in the plant

model. One typical approach is to treat the uncertainty as a multiplicative er-

ror which is totally unstructured. Bounds are specified on the magnitude of the

perturbation, while the phase is assumed unknown. In this case, stability can be

guaranteed by requiring that the closed loop complementary sensitivity be bounded

above by the inverse of the maximum singular value of the uncertainty bound [11].

Thus for the nominal plant G(s), if the true plant is given by

Gtr.(,) = (I + L(s))G(9) (1.1)

then the system is stable with feedback matrix K(9) if

a (G(jw)K(jw)(I + G(jw)K(jw))-) < Lw( )

where a(.) is the maximum singular value, and LL is a function which satisfies

L. (jw) Ia(L(iw))I V w (1.3)

This approach is reasonable for truly unstructured uncertainty such as unmod-

elled high frequency dynamics, and also may not be overly conservative for some

parametric, or structured uncertainty. However, for lightly damped, modally dense

systems, this approach will be extremely conservative. If the poles and zeroes are

close together, a small parameter error may result in the true pole lying at the fre-

quency of the modelled zero. The model error required in this case is significantly

larger than the plant itself [7]. This would imply that almost no control can be

9
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Figure 1.1: No knowledge of uncertainty direction may result in
physically impossible pole locations

applied in this region, and thus that nothing can be done to damp this mode. The

problem lies in the assumption of no knowledge about the direction of uncertainty.

In fact, since the structure is known to be stable yet lightly damped, there can be

far more uncertainty in the imaginary part of the pole location, or frequency, than

in the real part [5], as shown in Figure 1.1. Though the relative error in the real

part is large, the absolute error is small compared to the frequency, since right half

plane poles are not possible.

This conservative stability robustness test can be relaxed by taking advantage

of the positivity of structures. A transfer matrix G is positive real if

G(s) + GT_(-) > 0 V Re(s) > 0 (1.4)

and strictly positive real if the first inequality is strict [1). Any strictly positive

real compensator will be stabilizing for any positive real plant. If the perturbation

matrix L is defined as just the deviation of the plant from the positive real condition,

then stability can be guaranteed if the compensator is both strictly positive real and

10



satisfies the earlier singular value test (Equations (1.2) and (1.3)) for this smaller

perturbation [37].

Another approach for dealing with uncertainty in some parameters is the Maxi-

mum Entropy/Optimal Projection (MEOP) approach by Bernstein and Hyland [5].

The goal of MEOP is to force the LQG algorithm to provide a more robust con-

troller, by including information about parametric uncertainty into the plant model.

This is done by using a stochastic model of the plant uncertainty. This approach

yields compensators with good performance over the entire range of parameters, at

the expense of a cumbersome numerical algorithm. However, there is no guarantee

of stability using this method. The j,-synthesis approach by Doyle [12] also allows

for some structure in the uncertainty, and allows the performance to be optimized

not just for the nominal model, but for any model within the specified uncertainty

bounds. Control architectures such as HAC/LAC (High-Authority Control/Low-

Authority Control) [2], hierarchic control [18,20], and many others such as [31, have

been designed to deal with the spillover problems associated with uncertainty in

modelling structures. Other approaches have also been developed to deal with con-

trol design for uncertain structures; a good review of many of these can be found

in [25].

Many of these approaches to control design for uncertain structures begin with

a large order, detailed nominal model of the structure, and deal with uncertainty by

attempting to model it, as well as the nominal plant, in some fashion. However, if the

nominal model contains significant error, then the detailed information it contains

is meaningless, and has no effect other than to increase the computational burden

associated with the control design. Indeed, for broadband control of a modally

rich structure, the dimension of the plant required to model each mode may be

prohibitive for many control design techniques. Instead, only the information that

can be accurately modelled should be included in the description of the plant [5].

With this philosophy, there has been r, ach research on the use of wave based

11



models for use in structural control. Early work in this field includes that of Vaughan

[391, who identified a matched termination as being an appropriate control law for

a beam, and gave suitable approximations for the implementation of the irrational

transfer functions required. More recently, a number of researchers have done both

theoretical [17,23,28,35,411 and experimental [29,32,33,401 work in wave-based con-

trol for structures. The assumption in all of this research is that the local dynamics

can be accurately modelled, and that an effective control system can be derived

based only on this information. The control derivations either attempt to elim-

inate reflection or transmission by controlling elements of the scattering matrix,

or are optimal approaches, based on maximizing some quantity such as the power

dissipation.

Mace [231 derives the control necessary to cancel the incoming disturbances by

creating waves of opposite sign. This methodology can only be effectively applied

to one-dimensional waveguides. For a Timoshenko beam, Hagedorn and Schmidt

[17] maximize the power flow out of the beam to obtain 'energy valves' that allow

energy to travel in one direction, but not the other. The modelling formalism

of Miller et al. [281, or that of von Flotow [411 allows the analysis of somewhat

more general structures, including any arbitrary network of waveguides. In this

framework, control laws can be developed to set certain elements of the scattering

matrix to zero, or to maximize the power flow out of the structure. The experimental

results cited earlier have all applied wave control to beams. Von Flotow and Shfer

[401 designed control laws to modify elements of the scattering matrix, and compared

their results with those for modal control. Optimal control techniques were tested

by Miller and Hall [29J.

These wave control methods have demonstrated that good performance can be

achieved on a structure without requiring knowledge of uncertain information such

as the modal frequencies. One drawback to many of the wave-based approaches is

that they cannot always be applied to a general structure, at best being able to
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treat networks of waveguides.

Of particular relevance to this thesis is the optimal control approach of Miller

et al. [28). The structure is represented as being composed of one-dimensional

waveguides which meet at junctions, and only the junction at which the control

acts is modelled. Using Weiner-Hopf techniques to ensure causality, Miller et al.

maximize the frequency weighted power dissipation associated with the control.

The drawback to this approach is that it will allow power to be generated at some

frequencies in order to achieve greater power dissipation at other frequencies. If

there is a mode of the system at such a frequency, it may be destabilized by this

compensator. This problem is corrected by approximating the optimal compensator

with a positive real form, which is guaranteed to be stabilizing. The final result,

then, is suboptimal, because the positive real constraint is applied in a somewhat

ad hoe manner. Thus while this design procedure is attractive, an approach which

treats more general structures and provides a guarantee of stability is desired.

1.2 Approach

This thesis describes a new approach to the modelling and control of uncertain

structures that will guarantee both stability robustness and performance robustness.

Much of the material presented here has been summarized in a previous paper [24].

The goal is to obtain a compensator that will provide broadband damping to the

structure. This might be used in conjunction with a low order modal compensator

which could provide good performance on those modes that could be well modelled.

Thus this could be used as the low authority controller in a HAC/LAC architecture

[21, rather than the rate feedback typically used. Rate feedback is guaranteed to

be stable, but it is not necessarily optimal. In general it is possible to add more

damping to a structure than can be obtained through rate feedback [29].

The model used in this thesis is the dereverberated mobility at a collocated and
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dual actuator/sensor pair [221. Only that part of the response which is due to the

local dynamics is retained in the model. This can be shown to correspond in the

frequency domain to an averaging, or smoothing, of the transfer function. This

model bears some relationship to the wave approach of [28], but it is more general,

as it allows structures which are not networks of waveguides to be treated.

Since the driving point mobility of a structure is positive real, stability can be

guaranteed by requiring that the compensator be positive real. This is assured by

minimizing the maximum value over frequency of the power flow into the structure.

This minimax problem can be reformulated as an W.,, optimization problem, and

then solved using existing software. This results in a compensator which dissipates

power at all frequencies. Taking energy as the Lyapunov function shows that the

closed loop system must be stable for all plants, provided that the sensors and

actuators are not mismodeled. Extensions based on the results of Slater [371 to

allow for actuator and sensor dynamics, time delays, or actuators and sensors that

are not collocated, are possible but are not treated here.

1.3 Overview

The remainder of ihis thesis is divided into six chapters. Chapter 2 presents some of

the necessary mathematical background. This includes some theory on M,,, control,

and results on spectral factorization from [151 that will be needed in Chapter 4.

Some of the wave mode theory of [26] is also presented, this will be used in deriv-

ing transfer functions in later chapters. In Chapter 3, the approach to modelling

is presented, and parallels will be drawn with existing wave approaches. Both a

computational approach based on the calculation of the complex cepstrum, and a

simpler approach based on smoothing the transfer function are presented. The for-

mulation of the control problem appears in Chapter 4. The unconstrained problem

is solved first, with no requirement that the solution be causal. The solution to the
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causal problem is solved by representing it as an 4, control problem, and state-

space methods are given to obtain this representation. Chapter 5 demonstrates the

approach for several examples. Experimental results on a 24 foot brass beam are

presented in Chapter 6. These are compared with previous experimental results

using rate feedback and M2 optimal wave control on the same structure in [29]. Fi-

nally, Chapter 7 presents the main conclusions and contributions of the thesis, and

discusses a number of possible extensions to this research.
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Chapter 2

Mathematical Preliminaries

In Chapter 4, the M control design approach will be required, as will a number of

results on state space spectral factorizations. Some elements of wave mode theory

will also be useful in deriving open and closed loop transfer functions in the examples

in Chapter 5. In the interest of simplifying the later discussions, the necessary

mathematical background will be presented here.

2.1 )oo Control

A good reference for M., theory is Francis' book [15], from which much of the

following material is drawn. Before discussing the M4, control design method, a

number of definitions are required. First, define the Hardy space )1o:

Definition I M. is the space of all complex functions of a complex variable which

are analytie and bounded in the open right half plane.

Thus, G(s) E), if G(.) is both stable and proper. (Though it need not be strictly

proper.)
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Definition 2 The norm ' on )oo is given in the scalar case by

IG(s)1l 0 = sup IG()I (2.1)
R*(S)>o

Thus, the infinity norm is the supremum of a function in the right half plane. In

the matrix function case, the infinity norm is the supremum of the largest singular

value of the matrix. From the maximum modulus theorem, it can be shown that

any function analytic and bounded in some region achieves its maximum over that

region on the boundary, thus

IlU(,,)l -= sup IG(jw) (2.2)

Furthermore, if we consider G to. be an operator acting on some (in general,

vector) v3m-iable z, then the norm of G can be written as an induced operator norm

as

itGsII -- sup 110 (2.3)
ZEN* 11x112

= sup 11Gx1j (2.4)
1I,,,2=1

This defines the infinity norm in terms of a norm over M2, which we have yet to

define.

Definition 3 M12 ij the apace of all complex functions of a complex variable which

are analytic in the open right half plane, and satisfy

su [If Tr{IG(C+jW)I'2}&J] 0

The norm I11, on M2 is the aquare root of the left hand side of the above expresaion,

which can be shown to be equivalent to

IG(s)II,, = [ -' Tr{IG(iw)} dw] (2.5)
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Figure 2.1: Four Block Problem

Further, define inner and outer functions, using the notation

G- s) = GT (-s) (2.6)

Definition 4 A matriz G in 1.,, is inner if G~G = I. G is outer if it has no zeroes

in Re(s) > 0.

Thus an inner function has unit magnitude, is stable, and purely nonminimum

phase. An outer function is minimum phase. Note that multiplication by an inner

function does not change either the M,, or the M2 norm of a matrix function.

Now consider the standard four-block control problem, as shown in Figure 2.1.

The goal is to find a stabilizing compensator K from the sensed output y to the

control input u which will minimize in an appropriate sense the closed loop transfer

function from the disturbance w to the controlled variable z. This transfer function

is given by the lower linear fractional transformation

H(P,K) = P.. + P,.yK(I - P.,K)-P. (2.7)

Note that w contains all disturbance sources, including both process and measure-

ment noise. Similarly, z contains all the quantities to be minimized, including both

state and control penalties. In general, the plant P includes the system, actuator

and sensor dynamics, and the dynamics of any weighting on w or z.
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This representation of the problem is standard in the ,'o control formulation.

The standard Linear Quadratic Gaussian (or W42) problem can also be written as

the same four block problem, the only distinction being the norm used in the opti-

mization, and the implicit assumptions about the characteristics of the disturbance.

In the context of LQG, the disturbance is gaussian white noise, and the M2-norm

of the controlled variable is minimized. If the disturbance can accurately be char-

acterized in this form, then LQG may be the appropriate technique to use. The

), problem instead minimizes the M)1.-norm of the transfer function from w to z.

From the definition of the operator induced norm Equation (2.4), the appropriate

interpretation of the disturbance is the worst case disturbance, having ul.it power at

a single frequency (which corresponds to the maximum amplification of the transfer

function). Thus )1, is suited to problems in which the disturbances are likely to

have significant narrowband energy at a poorly characterized frequency 16].

Define the notation

G~o B C(,sI- A)-'B + D) (2.8)
C Dj

Hence G can be represented by the finite dimensional system of ordinary differential

equations

1: = Az + Bu

Y = Cz+Du (2.9)

Then the four-block transfer function matrix in Figure 2.1 may be represented as

A B, B2

P= C, D11 D12  (2.10)

C, D 21 D 22

The M,. control problem formulated in this way can be solved using state space

methods via an iterative solution to two Riccati equations. These are presented in
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[13] with some slightly restrictive assumptions, and in [161 for the general case. The

iteration searches for the minimum value of the M.o norm of H(P, K), denoted -y. It

is worth noting that at this optimal solution, H(P, K) = -Y everywhere; the closed

loop transfer function is a constant function of frequency.

In addition to the purely LQG solution and the Mo solution to the four-block

problem, a combined problem can be studied with a constraint on the M. per-

formance in an M2 optimization [6]. This allows a design trade-off between J.

objectives and Y2 objectives, resulting in a compensator that combines the benefits

of each. This problem simplifies immensely if the same quantity is penalized in both

the M. and M2 formulations. In this case, it is equivalent to a maximum entropy

problem [31], the solution to which is readily obtainable from the same two Riccati

equations as before [30]. In fact, this is equivalent to simply removing the iteration

in the JVo, solution procedure.

2.2 Spectral Factorization

As is the case for M,,. theory, a good reference on spectral factorization is Francis

[15], in which the details of the following results are given. The algorithms and

theorems will be presented here without proof.

Befort proceeding with the definition of a spectral factor and the algorithm for

computing it, some additional results from Equation (2.8) are useful. From the

definition (2.6) and the expansion in Equation (2.8),

G-~s) = B (2.11)

The inverse of G can be expressed by writing G in differential equation form (Equa-

tion (2.9)), and manipulating to obtain the input as a function of the output,

G-(s) =[A - BD-'C BD-' (2.12)

[ -D'C D ]2
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Of course, this is valid provided D # 0, so that G- 1 is proper. For notational

purposes, define

Ax = A - BD-C (2.13)

Finally, if T is a nonsingular transformation matrix, then

A ] [ --1AT T1B (2.14)

Now, define the spectral factorization of G(a).

Definition 5 Consider G(s) square with G- = G, G and G- 1 proper with no poles

on the imaginary axis, and G(oo) > 0. Then G is a spectral factor of G(s) if

G GJG_ (2.15)

and
G-, G-1 E V, (2.16)

G is a co-spectral factor of G if, instead o the first condition,

G = G_ G _  (2.17)

with the second condition still holding.

Note that if G is a spectral factor of G, then G_- is a co-spectral factor of GT.

Thus the sam algorithm may be used to compute either the spectral factor, or the

co-spectral factor.

From the definition, it is clear that the goal is to split G into two components, one

of which is stable and minimum phase, the other of which is anti-stable and purely

non-minimum phase. The approach is to find two subspaces, one corresponding to

the unstable part of G, and the other corresponding to the stable part of G', or

the minimum phase part of G. Then if the two spaces are complementary, that is,
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they are independent and together span the entire space, then G can be factored

into the two desired components.

For G given as in Equation (2.8), the subspace corresponding to the stable part

of G is denoted X_(A), and that corresponding to the unstable part is X+(A).

The subspace corresponding to the minimum phase zeroes of G is the same as that

corresponding to the left half plane poles of G - , or X_(Am).

A transfer matrix G(s) satisfying the coi.,itions in the definition of the spectral

factor can be written as

G = D + G, + G" (2.18)

where G, is stable, minimum phase, and strictly proper. Find a minimal represen-

tation of GI:

G1 =[ (2.19)

Thus from Equations (2.11), (2.18) and (2.19),

Ai 01 B,
G - 0 -AT C-C (2.20)

C, BT D

Since A, is stable and -AT is anti-stable,

X+(A)=m[ (2.21)

where Im(.) denotes the image of (.).

At this point, some results about Hamiltonian matrices are required.

Definition 6 1
S -- (2.22)

[ Q -A T

is a Hamiltonian matrix if Q and R are symmetric, and R is either positive semi-

definite or negative semi-definite.
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The following results all require that H have no eigenvalues on the imaginary axis,

and that (A, R) be stabilizable.

If R in Equation (2.22) is zero, then there exists a unique matrix X satisfying

the Lyapunov equation

A TX+ X + Q =o (2.23)

and the modal subspaces of H are given by

X+(H) = (2.24)

X-_(H) = Im (2.25)
X

Note that due to the assumption of (A, R) being stabilizable, this holds only for

stable A.

Now consider the case with general R. There exists a unique symmetric matrix

X denoted

X = Ric {H} (2.26)

which stabilizes A - RX, and satisfies the Riccati equation

AX + XA + Q - XRX = 0 (2.27)

Again,

X(H) = Im (2.28)

Furthermore, X_(H) and Im are complementary.

Now, return to the spectral factorization problem. The modal subspace X+ (A)

is given by Equation (2.21). It remains to find a representation for X_(AX), and
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show that the two are complementary. However,

Ax= Al 0 [ B, D-' [C BT 1 (2.29)0 -AT -C T

A, - B1D-IC -BID-IBT 1= (2.30)
CTD-ICI -(A 1 - BD-C)

is a Hamiltonian matrix. Thus X_ (Ax) is given by Equation (2.28), with

X = Ric{A } (2.31)

and this modal subspace is complementary to X+ (A).

Defining the transformation matrix

T 1 0(2.32)
X I

and applying (2.11), then

A1  0 B,

G= -(C,+B TX)TD-l(CI + B TX) -AT -(C + XB) (2.33)

C, + BTX BTj D

From this, one can check that

[ A, B, 1 (2.34)
G D-1/(C, + BTX) D1/2

satisfies both Equations (2.15) and (2.16).

For D # 0, the spectral factor of G can be found with this algorithm from the

solution to a single Riccati equation. Results also exist for D = 0, for example in

[421.
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2.3 Wave Modelling

This section briefly summarizes a few of the results of Miller [26] that will be used

in subsequent chapters.

The partial differential equation (PDE) of a structural member can be trans-

formed into the frequency domain, and written in state space form as

=yA~~ (2.35)
dx

where y is a vector of generalized displacements and internal forces at the cross-

section x. The eigenvalues of A correspond to wave modes that travel independently.

Thus there exists a transformation matrix Y relating the cross-sectional variables

y to the wave mode amplitudes w. Since these wave modes travel independently,

there exists a diagonal transmission matrix relating the wave mode amplitudes at

one position z, to those at another. Thus

w(Z:, W) = (Z:',w)w(zi, W) (2.36)

At a junction, such as a boundary where actuator forces act, the wave modes

can be split into incoming (w,) and outgoing (w.) elements. Partitioning y into

displacements u and forces f, then the transformation Y at a junction can be

written as

(2.37)

The boundary condition at the junction relates the displacements u and internal

forces f to externally applied forces Q. This can be written as

[B, B ] Q (2.38)

Using these two equations, the outgoing wave mode amplitudes w. can be expressed

in terms of the incoming wave mode amplitudes wi and the forces Q:

w. = Swi + TQ (2.39)
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Figure 2.2: One Dimensional Waveguide

S is the open-loop scattering matrix, relating the outgoing waves to the incoming

waves. T describes how applied forces Q create outgoing waves. In terms of the

previously defined matrices in Equations (2.37) and (2.38),

S = -[B,,YU. + B,Yo]- [B,,Yw + BYf,] (2.40)

* = [B,,Y.+BfY.]-' (2.41)

Now consider a closed-loop structure, with feedback from the cross-sectional

displacements u to the applied forces Q of the form

Q = Ku (2.42)

Then the closed-loop scattering matrix can be shown to be

SCL = [I - qfKY.]-' [S + *KY.] (2.43)

The closed-loop transfer functions of a structural waveguide can also be calcu-

lated with this wave approach, using a phase closure algorithm. Consider a simple

one-dimensional structure as shown in Figure 2.2. To find the transfer function

between applied forces Q at one end (say, for example, the right end), and the

generalized displacements y at this end, one would proceed as follows:

Web = SLWi, (2.44)

WoA = SRtWi + 'PRQR (2.45)

= N.L (2.46)

W, = W (2.47)
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where e is the transmission matrix from one , of this structure to the other.

Combining these equations yields

Win = SLeWo, (2.48)

WoR = (- SReSLC)-"PRQR (2.49)

So finally, the relationship between the displacements u and the forces Q

= (Y.. + Y4esL )(I - SRtSLe)-1 ' QR (2.50)

A minor extension of this result that can be useful but that does not appear in

[26] is to calculate the envelope of possible transfer functions in Equation (2.50) for

unknown lengths. This corresponds to maximizing or minimizing Equation (2.50)

with respect to the length parameter in C. For simple structures, such as a uniform

beam, this is not difficult, but in general the result is too complicated to be of much

value.

As an example of the th, 'presented in this section, consider a uniform free-

free Bernoulli-Euler beam, wita bending stiffness El, and mass per unit length pA.

The PDE for this structure is

EIl- + pA9- = 0 (2.51)

Define the wave number k by

k = V = C0 (2.52)

The transformation from cross-sectional to wave mode variables is given by

1 1 1 1 1
VI jk k -jk -k

= =w (2.53)
-EIvm  jEIk3  -Elk3 -jEIk3 Elk3

Elv" -Elk 2  Elk2  -Elk2  Elk2
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where the partitions indicated correspond to those of Equation (2.37). v and v'

are the deflection and slope of the beam at the boundary, respectively, and -Ely"'

and El" are the internal shear force and moment, respectively. The wave modes

consist of a leftward and rightward travelling wave, and left and right evanescent

waves that do not oscillate spatially, but decay with distance. The transmission

matrix C is
= [ (2.54)

0 e- ki

The boundary condition of a free end is specified by

[ 0 1 ] [ = [ (2.55)
0 0 0 -1 f M

where F and M are the externally applied moment and force. These are assumed

to act in the same direction as the deflections v and v', so that a positive product

of F and v, and of M and V, results in a positive power flow into the beam.

Equations (2.40) and (2.41) give the open loop scattering and wa generation

matrices as

+= [ -  +"] (2.56)
S, =- 1 + j j

T 1, +i j I k ](2.57)
2EIk3  I -jkJ

Open and closed loop transfer functions for the beam can then be calculated from

Equations (2.43) and (2.50).
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Chapter 3

Modelling

The intent of tnm :napter is to develop a useful model for control design for uncertain

modally dense systems. It has been pointed out [19,411 that modes are not useful

in th. case. The modal frequencies and mode shapes are extremely sensitive to

sr,all parameter variations, and are particularly sensitive if the modes are closely

spaced. Therefore, much of the information contained in a modal model is often

incorrect. This then leads to a difficulty in modelling the uncertainty in a useful,

and not overly conservative manner. The modal model also leads to large dimension

systems, and an associated computational burden.

The detailed information in a modal model may also be unimportant. While

knowledge of the exact mode shapes and frequencies may not be available, this does

not imply that nothing is known about the structure, or that nothing can be done

to control it. A reasonable control system can be designed without relying on this

information. Recognizing this, and recognizing the difficulties associated with a

modal approach, a modelling technique is desired which uses a simplified model of

the structure, containing only the information that can be accurately determined.
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3.1 Dereverberated Mobility Model

The following discussion is restricted to the case where a sensor and actuator are

collocated. When this model is ultimately used for control design, this will of course

result in suboptimal compensators, since each actuator will only have feedback from

a collocated sensor. However, under the assumption of significant uncertainty, while

some information about the behavior of the structure can still be determined at the

driving point, there is very little information that can be relied upon about the

behavior between an actuator and sensor which are separated by many wavelengths

of the disturbance. This restriction is therefore reasonable for the control of higher

frequency modes, or low authority control. If desired, the low frequency modes

which can be well modelled could then be controlled with a high authority control

in a HAC/LAC architecture. In this approach, then, a multi-input multi-output

structure with actuator and sensor pairs at different locations would be modelled

as several separate, single-input single-output systems. Each of these would have

collocated actuators and sensors, and the modelling and control design for each of

them would be performed independently.

Several approaches other than modal analysis have been used in the past to

model structures with significant uncertainty. Statistical Energy Analysis, or SEA

[21], is a field which has seen much research, for example in the analysis of machinery

vibration. The response of individual modes to the driving noise is not calculated,

and only the average response is used. The structure is split into subsystems,

and the average energy in each of these subsystems is calculated from coupling

factors between them, loss factors within each of them, and the power flow into

each subsystem from the driving noise. The result is a description of the structure

that includes information about the average energy distribution, and where power

is being dissipated. As its name suggests, though, SEA is an mnalysis tool, and the

resulting model is not directly applicable for control design.
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Figure 3.1: Wave behavior in an arbitrary structure

Wave-based models have been used not just for the analysis of structures, but

as a basis for control design as well [17,23,28,29,32,33,35,39,40,41]. Here, a local

model based on the partial differential equation (PDE) that applies to the struc-

tural member at the point in question is developed. The wave model contains the

same information as the PDE, however, depending on the control design approach,

there may be other implicit assumptions that introduce problems, such as ignor-

ing the effect of boundary conditions at other points of the member on the local

response. In most studies, the structural members have been simple one dimen-

sional waveudes, and the structures analyzed have been restricted to those that

could be well represented by networks of such waveguides. It may be difficult, how-

ever, to obtain a wave description for many complicated structures, because not all

structures can be well represented in this manner.

For some arbitrary structure, as shown in Figure 3.1, insight into the nature of

the problem can still be obtained from a wave approach. Various disturbances are

created at certain points in the structure and propagate through it. At any point in
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the structure, such as at an actuator, the disturbance will be scattered. In general,

each of the resulting outgoing disturbances will eventually affect any global cost

criterion. Thus without a detailed and accurate description of how each outgoing

wave propagates, the goal of the control system should be to minimize the energy

of each of these disturbances. Since the scattering behavior is a function of only the

local dynamics, this goal can be achieved with only a local model of the structure.

An alternative approach to waves for obtaining such a model is to represent

the structure by its dereverberated driving point mobility [22]. The mobility is

the ratio of a generalized velocity and a generalized force, or the inverse of the

mechanical impedance [14]. It is the transfer function between two variables whose

product is the power flow into the structure, thus the sensors and actuators must

be both collocated and dual. The response at a point can be considered to be the

sum of two parts: a direct field, due to the local dynamics; and a reverberant field,

which is caused by energy reflected back from other parts of the structure. The

term "dereverberated" implies that the "reverberant" part of the response has been

removed before computing the mobility. It should be possible to model the direct

field more easily and accurately than the reverberant field, as it depends only on

a few parameters, while the reverberent field depends on the entire structure. For

the same reason, it is the reverberant field that contains greater detail, and requires

more degrees of freedom to model. Thus by using the dereverberated mobility, a

lower order model can be used that is based only on the details of the structure

which can be accurately modelled.

3.2 Cepstral Analysis Approach

The dereverberated mobility may be calculated through the use of the cepetrum

[22] of the impulse response. The cepstrum is the inverse Fourier transform of the

log of the complex spectrum, and is a function of time. For the impulse response
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y(t), the complex spectrum is given by

00

Y(w) = fy(t)e- wdt (3.1)
0

Since a structural system is causal, y(t) should be 0 for t < 0. Also,

log Y = log JYJ +joy (3.2)

where the log magnitude is an even function of frequency, and the phase ov is an

odd function. The complex cepstrum is given by

C"(t) = 7 -(logY) (3.3)

= T1.(logJYj) + 7-(jo,) (3.4)

and is purely real. The inverse Fourier transform is given by

Y M) f Y(w) ei'dw (3.5)
-CO

The low time portion of the cepstrum corresponds to the direct response, and

the high time portions correspond to the reverberant response, with spikes at times

corresponding to the return times of the impulse from the rest of the structure.

Windowing the cepstrum before the first of these yields the direct response, which

can then be transformed back to the frequency domain to yield the dereverberated

impulse response.

The truncation time to choose can be based on the level of confidence in the

impulse response data. This illustrates one of the differences between the dere-

verberated mobility and a local wave model, that being direct control over how

much of the structure is included in the model. By truncating the cepetrum at the

appropriate point, some information about the rest of the structure is maintained

while the details of it are ignored. Thus the control design is provided with more

information, allowing it to generate a better controller.
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The fundamental distinction between this and wave approaches is the ability

to treat generic structures without having to represent them with a wave model.

While the concept of direct and reverberant fields is based on wave ideas, there is

no requirement to actually identify a local wave model. All that is needed is the

input/output behavior at the driving point, which may be found from experimental

data, calculated fr(..n some nominal model, or found analytically, perhaps even from

a wave model. This approach is shown schematically in Figure 3.2 for the transfer

function from force to collocated velocity at one end of a free-free beam.

This structure provides an interesting example, since the dereverberated mo-

bility can also be found directly from the wave approach described in Section 2.3.

The reverberant field is created by reflections from the far end of the beam, so if

the scattering matrix for this end is set to zero, the dereverberated mobility can be

calculated from Equation (2.50). The result is

V_ 2 _ 1(36
F (pA) 3/ 4(EI)'/, (3.6)

This can be scaled so that the transfer function is just

i = 1 (3.7)

The cepstrum for both the true and dereverberated structures can also be calculated

from theory:
rI (O - =)

C1,,,, = , (3.8)

J "- (I= e-,"ri c(,,,t) - ZT_- C-'""' cos(wit)) t > 0
cos~wpi(3.9)

0 t<0

=vre log- (3.10)

I ' t > 0
(3.11)t<

0 t <
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Figure 3.2: Calculation of dereverberated mobility from complex
cepstrum. Transfer function (a) and cepstrum (b) of a
free-free beam, dereverberated cepetrum (c) and dere.
verberated transfer function (d).
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The sum in Equation (3.9) is over all poles pi = up, + jw,, and zeroes z2 =

These are the functions plotted in Figure 3.2. It should be emphasized that

this theoretical approach would never be used in practice to compute the cepetrum.

It does, however, provide a validation of the approach. The correct dereverber-

ated mobility cannot be found exactly by simply truncating the cepstrum of the

reverberant structure in Figure 3.2(b) to obtain the dereverberated cepstrum in

Figure 3.2(c). If straight truncation were used, though, the resulting dereverber-

ated mobility would be the convolution of Figure 3.2(d) with a asinc function, and

this would not differ significantly from the desired function in the region of interest.

Further details on the calculation of the cepstrum, and its use in removing

reverberation can be found in [9,38]. In general, however, it is not necessary to go

through the procedure of computing the cepstrum, truncating it, and transforming

back to the frequency domain.

3.3 Smoothing Approach

There is an alternative, less accurate, but much simpler way to calculate the dere-

verberated mobility. This is based on the observation that the effect of ignoring the

reverberant field is to smooth out the transfer function. If no energy returns from

beyond some closed surface surrounding the actuator, then this is equivalent to the

structure beyond this surface either being infinite in extent, or having perfectly

absorbing boundary conditions. This has also been shown [19,361 to be equivalent

to the logarithmic mean of the original transfer function.

Hodges and Woodhouse [191 demonstrate this by showing that the assumptions

that lead to using the smoothed transfer function in place of the original transfer

function also lead to using a dereverberated model in place of the original reverber-

ant system, and that these two new systems are equivalent. This is shown by consid-
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ering the mean power input to a system by an excitation source with a broadband

spectrum, and comparing the modal interpretation with the wave interpretation.

Skudrzyk [36] considers the transfer function of a reverberant system, and the

affect of damping. As damping is added, the maxima of the transfer function

decrease, and the minima increase. Eventually the transfer function is a smooth

curve at the average of these maxima and minima. This response curve is therefore

that that would be obtained if the system were sufficiently damped and sufficiently

large, so that the reflected waves do not contribute significantly to the response.

The dereverberated system is therefore obtained by increasing the damping and

size of the system, and has a transfer function which is the logarithmic mean of the

original transfer function. This response curve corresponds to the amplitude of the

direct field that is generated by the input.

Thus another way to compute the dereverberated mobility is simply to take a

logarithmic average of the magnitude of the transfer function. This is not surpris-

ing, considering that the cepstral analysis approach described earlier is essentially

the same as low-pass filtering the logarithmic frequency response. The phase can

be determined uniquely from Bode's Gain-Phase Theorem [8], using the fact that

the dereverberated mobility is positive real. In practice, this method should be

adequate. Fitting the result with a rational polynomial gives a model that captures

the essential dynamics of the system over a wide frequency range that encompasses

many modes, with only a small number of poles and zeroes.

Figure 3.3(a) and (b) shows the transfer function of a free-free Bernoulli-Euler

beam. Rather than evaluating the system response only on the jw axis, however,

the transfer function is plotted for part of the right half complex plane; that is, as a

function of both the real and imaginary parts of the Laplace transform variable s.

The familiar sharp peaks and valleys associated with lightly damped structures only

appear near the imaginary axis. Farther away from the axis, the effect of individual

modes is smeared out, and the transfer function becomes smooth. Since the dere-
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Figure 3.3: Transfer function of a beam evaluated as a function

of both the real and imaginary parts of the complex
Laplace variable: magnitude (a) and phase (b) of a fi-
nite beam, and magnitude (c) and phase (d) of the dere-
verberated beam.
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verberated system can be obtained from the original system by adding damping,

as noted earlier, it is the dereverberated mobility to which the transfer function

approaches as the real part of the Laplace variable increases. Therefore, if the goal

of the control system is to move the poles away from the axis, this smooth transfer

function should be a good approximation to the structure. The significance of this

figure for control design will be discussed further in Chapter 4. Figure 3.3(c) and

(d) shows the dereverberated transfer function for the same system. The derever-

berated mobility is a good approximation to the structure everywhere except near

the jw axis.

As an example of the dereverberated mobility approach on a modally dense

structure, consider the transfer functions plotted in Figure 3.4. The graph shows

an experimental transfer function measured from endpoint moment to endpoint

slope rate on a pinned-free brass beam suspended in the laboratory at M.I.T. (This

beam is discussed in more detail in Chapter 6.) Note the high modal density above

a few tens of hertz; it seems reasonable that a control design that relied upon

the exact location of each mode would be undesirable. The average amplitude,

however does not depend at all on the length of the beam or the nature of the

boundary condition at the far end. Also plotted in the figure is the theoretical

response of a semi-infinite Bernoulli-Euler beam (the straight line, calculated again

from the wave approach of Section 2.3), and the average response, which differs

from the Bernoulli-Euler prediction only at low and high frequencies. It is this

average response that would be the appropriate dereverberated admittance, though

the straight line approximation would probably be adequate if the central frequency

range is the range of interest.

The dereverberated mobility model is not intended to accurately represent the

structure; it clearly fails in this regard. However, it is hoped that this will be a

useful model for the design of control systems for the structure. While the resonant

and anti-resonant details of the full reverberant mobility are not explicitly modelled,
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tion (dashed) and dereverberated mobility (dotted).
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the reverberant field is composed of waves whose behavior is governed by the local

dynamics of the controlled junction each time they pass through it. Thus if the local

dynamics can be appropriately modified based on a local model, then the complete

reverberant field can be controlled.
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Chapter 4

Control Design

The previous chapter described the modelling approach used, while this chapter

focuses on the design of the control system for this model. There are two main ob-

jectives to be satisfied by the control design. It must be guaranteed to be stabilizing

for all possible plants, and it must provide good performance, again for all possible

plants. In order to guarantee stability, positive real feedback from velocity to force

will be required. One could, for example, select rate feedback, which is guaranteed

to be stable, but this does not necessarily give the best performance that could be

achieved. Velocity feedback is only one possible choice of positive real feedback; the

object of this chapter is to derive the optimal positive real compensator.

The criterion to be used for optimality will be the minimum power flow into

the structure. That is, power extracted from the structure will be maximized.

Power flow is the appropriate quantity to minimize to provide active damping of

the structure, and allows a guarantee of stability by ensuring that the power flowing

into the structure due to the control is always negative.

Miller et at. [281 minimized the R2 norm of the power flow. This required some

assumptions about the power spectral density of the disturbance entering the junc-

tion. In the actual structure, this is related to the control through the disturbance

that previously departed the junction. In the wave model, however, it was assumed
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Figure 4.1: System Block Diagram I

constant and independent of the control. As a result, in general the compensators

obtained allowed power to be added at some frequencies, since this behaviour could

not destabilize the design model. This problem can be avoided by minimizing the

power flow in an M,,. setting. For an open-loop system, the power removed by the

controller is zero. If the closed loop power flow is guaranteed to be no worse at

all frequencies, then the closed loop system is guaranteed to be stable. In fact, it

is sufficient to place a constraint on the maximum value of the power flow which

guarantees it to be negative at all frequeucies. An M2 optimization [61 can then be

used, which may improve the overall performance.

Define G(s) to 6e the dereverberated driving point mobility, and assume some

disturbance input d to be additive at the output. Then the output y is related to

the input u and the disturbance via

y(s) = G(s)u(,) + d(j) (4.1)

as shown in Figure 4.1. As yet, no assumptions have been made about the nature

of the disturbance.

Recall that in Chapter 2 the noiP assumptions made in M. and M2 optimizations

were discussed. Now consider this in the context of the model defined in Chapter 3.

The disturbance d in Equation (4.1) can be thought of as originating from two

sources: the original disturbance input to the real structure, and the reverberant

field ignored in the modelling process. This second source will have significant
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power at the modal frequencies, and if the closed loop damping is still relatively

small, then in steady state this will be much larger than the physical disturbance.

Thus the disturbance spectrum in Equation (4.1) consists of significant power in

narrowband but unknown frequency ranges, which are exactly the assumptions

indicated in Chapter 2 as being appropriate for )1, minimization.

4.1 Unconstrained Optimum

Before finding a compensator which minimizes the worst case power flow, consider

finding the compensator which minimizes the power flow at each value of the Laplace

transform variable .9. The control law is of the form

S-Ky4.2)

where the explicit dependence on the Laplace transform variable has been dropped.

Solving for the control in terms of the disturbance from Equation (4.1) gives

u = -(I + KG)-Kd (4.3)

= Hd (4. 4)

Then the output can also be represented in terms of the disturbance as

y = (I + GH)d (4.5)

The instantaneous power flow into the structure is the product of the input u(t)

and the output y(t), since G(s) is an mobility. The average power flow can be

expressed u a time integral of the instantaneous power flow [271,

T

pag. = lim F- f yT(t)u(t)dt (4.6)
-T

Making use of Parseval's theorem, this can be transformed into the frequency do-

main:

PO 00 7 (jw)yi(iw) + Y'(jw)t~iw)) dw (4.7)
4-00
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The integrand of the right hand side of Equation (4.7) represents the steady state,
or average, power flow into the structure as a function of frequency L27]. For conve-
nience, the average power flow at each frequency can be defined without the factor

of 1, as

P(w) = uH(jw)y(jw) + YH( w)u(jw) (4.8)

where (.)H indicates Hermitian, or complex conjugate transpose. The Hermitian

operator is not analytic in the complex plane. Instead, the appropriate operator is
the analytic continuation of the conjugate from the jw axis to the remainder of the

plane. This operator is denoted (.)~ and is defined as in Chapter 2 as

F~(s) = F T (-) (4.9)

Substituting the earlier expressions for u and y into Equation (4.8) yields

P(w) = d- {H~(I + GH) + (I + GH)~H} d (4.10)

This equation gives the power flow into the structure as a function of the compen-
sator. The optimal value of H is that which minimizes the expected value of this
expression at each point in the complex plane. Since the power flow is a scalar, it

is equal to its trace. So

Cost(s) = E[Trace{dd- [H~(I + GH) + (I + GH)~Hi}I (4.11)

= Tmce{fw[H~(I + GH) + (I + GH)~H} (4.12)

where Ow = #r = E [ddr] is the power spectral density of the disturbance d.

Making use of the symmetry in (4.12) gives that at the optimum,

H- = H (4.13)

Using this result, then differentiation gives

oH = 20 + $MH(G + G-) + (G + G~)Htm = 0 (4.14)
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From this equation, the optimal H is given by

H t = -(G + G-) - 1 (4.15)

provided this inverse exists. If it does not exist, this implies that if I is full rank,

Equation (4.15) is valid, and an infinite amount of power can be extracted from

the structure. If Odd is singular, then Equation (4.15) is not valid, however in this

case, Equation (4.14) is not sufficient to uniquely determine H. Since in gener;l

the approach of this thesis deals with SISO systems, this case is not too significant

a restriction on the applicability of this result. Non-scalar Odd will only arise if

a structure has multiple actuator and sensor pairs of different types at the same

location, since if they were at different locations the structure would be modelled

and controlled as separate SISO systems.

If the inverse in Equation (4.15) exists, then this compensator is independent

of the disturbance spectrum Od. From Equations (4.3) and (4.4), the compensator

K is related to H by

K = -H(I + GH) -  (4.16)

so finally,

K., = (G-) -  (4.17)

This compensator extracts the maximum possible power from the structure at every

frequency.

This result is not new; it corresponds to the impedance matching condition

found, for example, in [101. The maximum energy dissipation is obtained if the

impedance of the compensator is the complex conjugate of the impedance of the

load, which in this case is the rest of the structure.

In general, however, the compensator in Equation (4.17) is noncausal, and can-

not be implemented in real time, since it requires knowledge of future information.

The dereverberated mobility G(a) must be both stable and causal, and is therefore
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right half plane analytic (RHPA). Since it is strictly positive real, it must also be

minimum phase, and thus the optimal compensator in Equation (4.17) will be left

half plane analytic (LHPA). So every pole of the compensator is in the right half

plane. This does not necessarily imply that the compensator is unstable. A right

half plane pole corresponds to a unique transfer function, but there are two time

domain systems with this transfer function. One is causal and unstable, so that the

impulse response is zero for negative time, and increases with increasing positive

time. The other is noncausal and stable, with its impulse response zero for positive

time, and decreasing to zero as time decreases to minus infinity.

One can determine which of these two systems applies in this case from a Nyquist

plot. Since both the compensator and the plant are strictly positive real, there are

no encirclements of the point -1, and thus K mu t be stable for the closed loop

system to be stable. This implies that in general, this compensator is noncausal.

K can be stable, causal, and LHPA only if it is a constant, and hence only if the

dereverberated mobility is a constant. One such case is that of a uniform rod in

compression, with a collocated force actuator and velocity sensor at one end. In

this case, Equation (4.17) corresponds exactly to the matched termination for the

rod.

Some understanding of why the optimal compensator is almost always noncausal

can be found from root locus arguments. For a point A to be on the root locus of

the plant P(s), the compensator K(s) must satisfy

1 + P(A)K(A) = 0 (4.18)

In order to place the structural poles far into the left half plane, the relevant plant

P(s) is the structure as it appears from far into the left half plane.

For a lightly damped structure with a large number of closely spaced poles and

zeroes, one can divide the complex plane into three regions. Near the jw axis,

and close to the poles and zeroes, the transfer function varies significantly from its

maxima to its minima, and the phase varies between +90* and -90. If one looks at
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the structure from farther into the right )-.If plane, the effect of individual poles and

zeroes becomes smeared out, and the transfer function approaches the smoothed,

or dereverberated transfer function G(s). The phase of G in some frequency region

will be the average phase of the original transfer function near that region, and the

magnitude will be the logarithmic mean of the magnitude of the original transfer

function near that region. This behaviour is shown graphically in Figure 3.3.

In the left half plane, however, the structure's transfer function is not G(s). To

determine the phase contribution of each pole and zero, the contour to consider must

now be to the left of every pole and zero, and so each phase change has opposite sign.

The result is that in the left half plane, the structural transfer function approaches

-G(-s). Therefore, to move the poles far into the left half plane, K(S) must satisfy

1 - GL-s)K(s) = 0 (4.19)

or

K(s) = I1C(-.) (4.20)

as given in Equation (4.17).

If this compensator could be implemented, all of the structural poles could be

moved arbitrarily far into the left half plane. Instead, the best causal compensator

must be found.

4.2 Causal Optimum

The wave model of Miller et at. [28] can also be put in a form similar to that of

Equation (4.1), though only for structures composed of waveguides. As discussed

earlier, Miller et al. performed an M2 optimization of the power flow, which did

not guarantee dissipation at all frequencies, and thus did not guarantee closed loop

stability. A more appropriate optimization to guarantee stability is to minimize the

worst case power dissipation, hence a minimax optimization of the power flow into
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the structure. As will be show - shortly, this can be cast as an M". minimization

problem. In order for this to make sense, though, the disturbance input d should

be normalized to provide the same amount of power available to be dissipated at

each frequency. This provides the designer with complete control over the relative

importance of one frequency range to another, by removing any inherent frequency

weighting from the problem.

With the optimal noncausal compensator derived in the previous section, Equa-

tion (4.17), the closed loop power flow into the structure is given by Equations (4.10)
and (4.15) as

P = -d~(G + G~)-Id 
(4.21)

Represent the disturbance d as

d =Gow (4.22)

Then if the input w has unit magnitude at a certain frequency, the optimal noncausal

compensator will dissipate unit power at this frequency, provided that the transfer

function Go is the co-spectral factor of G + G-, given by

GoG- = G + G- (4.23)

The block diagram for this system is shown in Figure 4.2, and the system (Equa-

tion (4.1)) becomes

y(s) = G(a)u(s) + Go(s)w(a) (4.24)

Now, consider the problem of finding a causal compensator that will minimize

the worst case power flow in Equation (4.8). This quantity represents the power

flow into the structure, which will hopefully be negative. The goal is to find a

compensator K that results in

minimax (U'(w~r(jw) + y'ff(w)u(jw)} (4.25)

This mrnimax problem can be solved directly, using the approach of [341. Alter-

natively, it can be reformulated as an 4. problem, for which software to find K
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Figure 4.2: System Block Diagram H

exists. In order to cast this as an )1 optimization, however, the performance in-

dex must be positive definite. Note, though, that the best causal compensator can

dissipate no more power than the unconstrained, noncausal optimum. Thus if the

disturbance power w-w is added to the cost, positive definiteness will be assured.

The cost at each frequency is therefore

Cost(w) = Ww + u-Y + y-u (4.26)

= w-w + U~(Gu + Cow) + (Gu + Gow) ~u  (4.27)

= {u} G+G ~ Go]{u (4.28)

toG- I Wo

= lGo u + w' (4.29)

From this, the relevant output that should be minimized is

z = Gou + w (4.30)

Combining this with the system equation (4.24), the result can be written as a four

block problem (compare with Figure 2.1):

z _- I G w (4.31)
y Go G u
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The compensator from y to u that minimizes the M.= norm of the transfer function

from w to z will minimize the maximum power flow into the structure.

For computation, however, the unstable (1,2) block in Equation (4.31) is un-

acceptable. Any allowable compensator must stabilize this block, while the only

important stability constraint is on the output y. Recall from Chapter 2, however,

that the norm of z is unchanged by multiplication by an inner function. Define A(.)

to be the characteristic polynomial of the transfer function (.), and define the inner

function

G1 (s) = A(G()) (4.32)
A(Go(s))

Then redefine z to be

z = GIG u + Gjw (4.33)

so that the four-block problem (4.31) becomes

IZI=GOI GI
which is stable.

In general, it may be desirable to weight some frequency ranges more heavily

than others, while still requiring that power be removed at all frequencies. This

could be because there is a known disturbance source in a certain range, because

structural modes are' 1s well damped within this range, or because the performance

requirements put more emphasis on this range. Similarly, there will usually be some

frequency beyond which performance is not required, and the weighting can also be

chosen to reflect this.

The manner in which the weighting is introduced into the problem must be such

that if power is added to the structure somewhere, the resulting cost will be worse

than the open-loop cost. Hence, rather than weighting the sum of the disturbance

input power and the power input by the control, as in Equation (4.26), define the
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cost to be the sum of the disturbance power and some frequency weighted control

power, as

Cost(w) = ww + Wj(U + y' + u)W1  (4.35)

which can be manipulated into the form

2

Cost = Wi(G~u + W) (4.36)
W2w

where W, is the selected frequency weighting, and W2 is defined by the relationship

1W1
2 + ]W212 = 1 (4.37)

The output z of the four block problem is then

Z W(Go-u + W) (4.38)

Note that as desired, the open loop cost is unity everywhere, and the cost is greater

than unity at any frequency where power is added to the structure. Thus as before,

a closed loop cost of less than unity guarantees stability.

The only constraint on W, is that its magnitude be less than or equal to unity

at all frequencies. Without this constraint, there is no guarantee that the cost be

positive definite, and the minimization could fail. Where W, is small, a greater

amount of control effort is required to reduce the cost than before, and thus there

is more power removed. Hence, in order to emphasize some frequency range more

heavily, the weighting function W, should be chosen to be smaller within that region.

Recall from Chapter 2 that one of the properties of M,,. compensators is that

at the optimum, the closed loop transfer function being minimized is a constant

function of frequency, equal to some number -y 151. From this, and Equation (4.35),

the closed loop power absorbed by the compensator can be related to -f and the

weighting function. This is expressed as a fraction of the power absorbed by the
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unconstrained optimal compensator:

1-
1- 

This provides some insight into how to select W1.

The cost in Equation (4.26) or (4.35) can also be modified to include a penalty

on the control effort, pu-u. The four block problem (4.34) is modified to include

an additional output in the vector z, corresponding to V'/u. This allows a trade-

off between performance and control, and also guarantees a proper compensator.

Similarly, it is straightforward to modify the four block problem (4.34) to include

sensor noise. An additional disturbance input is included in the vector w which

affects only the sensor output y.

The final result of this approach is a positive real compensator, which is guar-

anteed to be stabilizing for any positive real plant. However, if there are any time

delays, actuator or sensor dynamics, or if the actuator and sensor are not truly

collocated and dual, then the structure will not be positive real at all frequencies.

Stability can still be guaranteed if the complementary sensitivity is bounded above

by the inverse of the difference of the true structure from positivity, as noted by

Slater 1371.

This constraint can be represented as a constraint on the )1=-norm of an ap-

propriate transfer function. If the error bound is given as in Equation (1.3) for the

difference from positivity, then stability can be guaranteed if the compensator is

positive real and, as in Equation (1.2),

IGK(I + GK)-LII s 1 (4.40)

The compemator is positive real if power is dissipated at all frequencies, or

{IIll :5 1 (4.41)

with z being given by Equation (4.30) or (4.38). Thus this problem is one of min-

imizing the M,. norm of one transfer function (Equation (4.41)), with a constraint

on the M)4 norm of another transfer function (Equation (4.40)).
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4.3 State Space Computation

The calculation of the optimal compensator for the four-block problem is most

easily performed in state space, since software exists to solve the state space M.

four-block problem. The first step then is to obtain a state space representation for

the plant G(s) and the desired weighting function Wj(s). From these, state space

representations for W 2(s), Go(s), and GI(s) must be calculated. These problems

can be formulated as spectral factorization problems, and solved by methods similar

to those discussed in Section 2.2.

4.3.1 Calculation of Go

Go is a co-spectral factor of M = G + G-, and thus can be calculated with the

standard algorithm. The algorithm is restricted to systems G with a non-zero

direct feedthrough term D. This is not a serious restriction, however. No finite-

dimensional model is valid at all frequencies, nor does it need to be. This merely

implies that rather than rolling off at high frequencies, G(oo) should be a constant.

First, define the state space representation of G as

G -" +A C, (I - A) - B, + D22 (4.42)

The reason for the selection of the subscripts on B, C, and D is that G is the (2,2)

block of the four block problem.

Go can be represented as

Go =](4.43)

where

D 2 3 + DT (4.44)
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AT 0BT
0 -A][ 2  ][ cj(.)

x,= RicAx (4.46)

B, = (B2 + XIc2)D - 112 (4.47)

D21 = D1/2  (4.48)

From Chapter 2, Definition 5, the conditions required for this spectral factor-

ization to be valid are:

(i) M = M ~,

(ii) M and M -1 are proper,

(iii) M and M -1 have no poles on the jw axis, (or alternatively, M have no

poles or zeroes on the 5w axis),

(iv) M(00) > 0.

The first condition is clearly satisfied, as is the second, since M and M are proper

with non-zero D22 . If G is a dereverberated mobility, then it has no imaginary poles,

and thus neither does M. Furthermore, G is strictly positive real. This implies that

G(jw) + G~(jw) > 0, and thus that M has no zeroes on the jw axis. This also

implies that M(oo) > 0.

4.3.2 Calculation of GI

The (1,2) block of the four-block problem (4.34) is GIG'. This has the stable poles,

but the non-minimum phase zeroes of M = G + GC. The state space algorithm for

computing this is related to the spectral factorization algorithm found in [15], or

Section 2.2, and only the differences between the two will be indicated here.
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Given Gas in Equation (4.42), then

A 0 B2  1

M-G +G ~-  0 -AT -CT -" A DI (4.49)
C2 BT D22 +D COD

and
[' A o][ B2]D- [ T] (4.50)m 0o- AT  - -,

The spectral factorization algorithm in Section 2.2 relies on finding the modal spaces

X_ (A' ) and X+ (AM) corresponding to the left half-plane zeroes of M and the right

half plane poles respectively. Instead, now find X+ (A' ) and X+ (AM), correspond-

ing to right half plane zeroes and right half plane poles. If these two spaces are

complementary, then the required factorization exists.

Since the unstable poles of any matrix A are the stable poles of -A,

X+(A') = X-(-A') (4.51)

Thus the desired factorization exists if X_ (-A') and X+ (AM) are complementary.

Since A' is a Hamiltonian matrix, -A' is as well. Thus, there exists a matrix

X2 = Ric{- A,} (4.52)

such that 1

(4.53)

and this is complementary to X+(AM), given by Equation (2.21). Given this, the

remainder of the derivation follows Francis [15] or Section 2.2 exactly, so that

G1 (a)Go(.S) = D- A(c + BBX) ] (4.54)

A K 6 (4.55)
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Thus,

C, = D- 1 2 (C2 + B4X 2 ) (4.56)

D12 = D112  (4.57)

Since the remaining (1,1) block GII of the four block problem is inner, it must

be true that

DI =1(4.58)

Then the four block problem in Equation (4.34) is completely specified.

4.3.3 Calculation of W2

The computation of the weighting function W 2 in Equation (4.37) from W can also

be represented in terms of a spectral factorization. First, represent W in state

space as

_, B= 1 (4.59)
C. D.

Then

W - r D~ Tc (4.60)
B DW

Combining these gives

Aw 0 B,

WW" CC, -A -CTDC (4.61)

-D TCw -BT -DTD,

The A matrix of this system is a Hamiltonian matrix, with the (1,2) block equal

to zero. Thus the modal spaces are given by Equations (2.24) and (2.25). Hence

define the similarity transformation

T= 0 (4.62)
X. I
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where X. satisfies the Lyapunov equation

A.X. + XA, + CTC, = 0 (4.63)

and use this to transform the system, Equation (4.61). This gives

Aw 0 B 1
WW"= 0 -A] -cw (4.64)

C' - BW -DwD,]

where
= B"X, + DTC. (4.65)

Then W2 is a spectral factor of

A, 0 B.

I- WiWY> 0 -AT C (4.66)-C' -BT II - DD

This is now in the form of a standard spectral factorization. In order to apply the

algorithm, W, must satisfy

-DTD. > 0 (4.67)

or W1 (oo) < 1. This is not a limitation at all, since multiplying the weighting

function everywhere by a constant will not change the resulting compensator. The

other conditions specified in the definition of the spectral factorization are also

satisfied. Note that if the magnitude of W, is less than one at all frequencies, then

1 - WIW;" can have no imaginary zeroes, nor can it have any imaginary poles.

4.3.4 Four Block Problem

Having determined how to compute all of its elements, the complete four-block

problem can be written in state space form as

SA B1  B2 1
C, P11 P12  (4.68)

C, P,1 P2
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where

A 0 0 [, B:
= C, A. 0 B= 1 BD1 BwD 12

0 0 A . B2 0

[ 1 C . 0 ] D U ID l ] D .D i2 .] (4 .69)

0 0 o] D:i[D,, 022[D:2 ]

The compensator is then found from the Riccati equations given in [16].
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Chapter 5

Examples

5.1 Example 1: Free-Free Bernoulli-Euler Beam

As an example of the approach developed in the previous chapters, consider a

free-free Bernoulli-Euler beam with a collocated force actuator and velocity sensor

at one end, as shown in Figure 5.1. The dereverberated mobility for this system

was calculated previously in Section 3.2. It is the transfer function of a semi-

infinite beam, which can be found, for example, from the wave approach discussed

in Section 2.3:

F

Figure 5.1: Bernoulli-Euler Free-Free Beam

60



For simplicity, assume the mass per unit length pA and the bending stiffness El

are such that

1 (5.2)

This can be done without loss of generality, as it requires only a scaling of the plant.

First, consider the unconstrained optimal compensator that extracts the maxi-

mum possible energy. From Equation (4.17),

K(s) = v/ (5.3)

This compensator has a slope of 10 db/decade, and a phase of -45 ° at all frequen-

cies. Note that this is the same compensator as that obtained by the unconstrained

optimization in Miller et al. [28], though the derivation differs, and in Flotow and

Schifer [40], by setting the reflection coefficient corresponding to the creation of

outgoing travelling waves from incoming travelling waves to zero. As expected, the

unconstrained optimal compensator is noncausal and cannot be implemented. That

it is noncausal could be determined by finding a rational approximation to Vr-7-,

which would have right half plane poles, or from the knowledge that Vs is stable

and causal, since it is the transfer function of a stable structure (see Example 2 in

the next section.) Since V' is right half plane analytic, V/-i must be left half plane

analytic, and therefore if it is stable, it must be noncausal.

Now, find the compensator that minimizes the maximum power flow into the

structure. An analytical solution to this is given in Appendix A. With equal weight-

ing at each frequency, (W = 1) the optimal causal compensator is

K(s) = vi (5.4)

Thi similar to the noncausal solution, Equation (5.3), with the same magnitude

everywhere, but a phase of +45 ° instead. This is the "best" causal approximation to

Equation (5.3), and dissipates exactly half of the incoming power at all frequencies.

61



(a) (b)

Figure 5.2: Schematic root locus with M. design (a) and with ve-
locity feedback (b).

Further insight into the nature of this control can be found from the root locus,

shown schematically in Figure 5.2. With velocity feedback, an appropriate choice

of gain will add significant damping to a given mode, and those nearby, but it is

not posible to add significant damping to all of the modes at the same time. Thus

the gain in velocity feedback must be optimized to provide damping at a certain

frequency. Far enough away from this frequency, the gain is either too low to have

much affect, or too high so that the closed loop poles lie near the open loop zeroes,

which are undamped. With the optimal causal compensator Vs , the locus is not as

far into the left half plane, but now every pole can be placed at the leftmost part of

its locus simultaneously. Ideally, one would like the root locus to be arbitrarily far

into the left half plane, and place each pole at the leftmost part of its locus. This

is the behavior obtained by the unconstrained optimal compensator /, which of
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course cannot be implemented.

Now consider including a weighting function to increase the importance of a

certain frequency range, say in a narrow band near 1 rad/sec. So select W, to

have unit magnitude far from 1, and less than unit magnitude near 1 rad/sec.

Recall that more importance is placed where the weighting function is smaller. An

analytic solution here would be difficult. However, the plant in Equation (5.2)

can be approximated adequately over a wide frequency range with a finite number

of alternating poles and zeroes on the real axis, with equal logarithmic spacing.

The state space methods described in Section 4.3 can then be used to obtain an

approximate compensator. The resulting compensator is plotted in Figure 5.3, along

with the optimal compensator with unity weighting from Equation (5.4), and the

unconstrained optimum from Equation (5.3). Note that the magnitudes of these

last two compensators are the same. Equation (5.2) in this case was approximated

by 9 poles and 9 zeroes with frequencies from 10 - 4 to 10' rad/sec. The weighting

function W, had zeroes at ' and v/2, and poles at ' and 2v.2 Far from the region

that was selected as important, the compensator still has a Vi behavior, though

with less magnitude than the unweighted optimum in Equation (5.4), resulting in

poorer performance. Near 1 rad/sec, though, the slope of the compensator is now

-10 db/decade, and the phase is closer to -45 ° . At 1 rad/sec, the compensator has

exactly the same magnitude, and almost the same phase as the noncausal optimum,

and thus it absorbs almost all of the incoming power possible. The net power flow

absorbed by this compensator is plotted in Figure 5.4, expressed as a fraction of the

disturbance input power. For comparison, the power absorbed by velocity feedback

and the unweighted optimum are also plotted in the same figure. The comparison

between the two M deigns illustrates the trade-off in the choice of the weighting

function. The power flow can be increased in one frequency region, but at the

expense of decreasing the power dissipation at all other frequencies.

If this control law is now applied to a finite beam, the closed loop performance

63



can be examined. The transfer function between force and velocity at the far

(uncontrolled) end of the beam can be calculated using the phase closure approach

of 1271, discussed in Section 2.3. The beam length was chosen so that the fifth mode

of the beam was at the center frequency of the weighted region. The result is plotted

in Figure 5.5, and the envelope of the transfer function for any length beam is also

plotted. As expected, the modal peaks in the region where W, is smallest are more

heavily damped. Note that because the compensator in Figure 5.3 is positive real,

it will not destabilize the beam at any length. (Nor will it destabilize any positive

real structure.) Furthermore, for any length beam, there will be some damping

achieved everywhere, and greater damping in the region of interest, as indicated by

the envelope of possible transfer functions.

From Equation (4.39), the closed loop power flow can be related to the weighting

function W1. If the damping in a mode could be related to the power absorbed at

the frequency of that mode, then the achieved damping could be predicted from

knowledge of W, and the achievable M, norm -. For a simple beam, an approxima-

tion to this is relatively straightforward; the procedure is presented in Appendix B.

With a unity weighting function W1 , the result is

log(-,) (55)

This can be compared with actual eigenvalue calculations, and while the result is

not exact, the approximation is reasonable. Thus in this case, not only can the

closed loop power flow be predicted without actually designing the compensator,

the closed loop damping can also be predicted, provided one can give a reasonable

estimate of "y. This would be useful for determining how to modify the weighting

function to produce the desired behaviour.

It is worth comparing the results of this approach with those for other control

design techniques. Methods such as LQG are difficult to compare due to the lack

of a suitable basis for comparison. An LQG compensator will certainly give a

better Y2 norm of the quantity minimized than the )1. design approach for the
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nominal model. For a sufficiently large perturbation in the plant, however, the

LQG design may destabilize the system, as it has poor robustness to parametric

model error. Another design technique which is more suitable for comparison is

collocated velocity feedback. Rate feedback is also positive real, and thus guaranteed

to be stabilizing, but the performance is expected to be worse, being suboptimal.

A comparison of the power dissipated by rate feedback and by two M,. designs

has already been shown in Figure 5.4. For a given structure, velocity feedback

dissipates power with a specific frequency distribution, with the gain as the only

parameter to vary. The gain changes only the center frequency of the distribution,

and not its shape. The M.,, design, on the other hand, allows much more freedom

in the characteristics of the power dissipation with frequency. Greater dissipation

at a single frequency is possible than with rate feedback, and broader band power

dissipation is also achievable. The envelope of possible closed loop transfer functions

on the free-free beam is shown in Figure 5.6 for several different gains of rate

feedback, and for the unweighted )1, compensator described earlier. Once again,

this illustrates the same point. Velocity feedback is stabilizing, but in general, it is

suboptimal.

5.2 Example 2: Pinned-Free Beam

As a slightly more complicated example, consider again a finite beam, but this time

with one end pinned, with a moment actuator and collocated angular rate sensor

at this end. Also include some finite rotational inertia J at this end, as indicated

in Figure 5.7. The theoretical dereverberated transfer function for this beam can

be found once again using the wave approach of Section 2.3. For this structure, the

boundary conditions at the pinned end are given by the matrices

U= [ ] (5.6)
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Figure 5.7: Bernoulli-Euler Pinned-Free Beam

Fool
B1 = L(5.7)

0 1

The wave number k is defined from Equation (2.52). So from Equations (2.40),

(2.41), and (2.50), V (5.8)
M = vl(pA) /C(EI)/4i + J,

If there were no rotational inertia J, then the transfer function would be

) "-/(pA)1/4(EI)3/4 (5.9)

The unconstrained optimal compensator would therefore be

K(s) = v((pA) 1 /4 (EI)3 /4  (5.10)

This has a phase of 45 °. If the weighting function W, was unity at all frequencies,

then the causal optimum found from the M.. approach would be

K(s) = V

This has the same magnitude as the unconstrained optimum, but a phase of -45 .

The calculations required to obtain these compensators are essentially the same as

for the free-free beam in the previous example.

With J 34 0, then at low frequencies, the behavior is similar to that of Equa-

tion (5.9). At high frequencies, the transfer function is dominated by the rotational
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inertia, and rolls off at 20 db/decade. From the far end of the beam, the con-

trolled end then behaves as if it were clamped, and regardless of the control, all

disturbances are reflected back. Thus, power flow beyond the rolloff frequency of

Equation (5.8) should be unimportant, and the weighting function here should be

much larger than elsewhere. Also, assume again that some specific frequency range

near 1 rad/sec is more important. Note that while in practice it would be difficult

to extract power at high frequencies, the theory still allows power to be dissipated,

due the presence of G0 . At high frequencies, G - ' , and hence Go --+ oo. Thus the

disturbance spectrum is increased indefinitely to allow the same amount of power

dissipation at all frequencies with the unconstrained compensator.

For computation, El = ' and pA = 1 , so that the low frequency behavior is

exactly Vs. The rotational inertia J was selected to be 10 - 3, to place the rolloff

frequency at 100 rad/sec, at a slightly higher frequency than that considered to be

important. Again, the system was approximated with a rational transfer function

which is accurate over the frequency range of interest, from 10- 1 to 10' rad/sec.

The compensator for this case is shown in Figure 5.8. At low frequencies, the

compensator is similar to the ' that would be optimal with no rotary inertia and

no weighting. Where the weighting function decreases near 1 rad/sec, the phase

jumps towards the noncausal optimum phase of 45° , and thus absorbs close to the

maximum power possible. At high frequencies, as desired, the compensator gives

up and does not attempt to absorb incoming power, though it does remain positive

real. Thus again, the closed loop system is stable for any length beam, and for

any boundary co Qition at the far end. The open and closed loop transfer function

from moment to slope rate at the controlled end of the beam is given in Figure 5.9.

This transfer function shows the rolloff at 100 rad/sec, beyond which the poles and

zeroes are essentially undamped, but almost cancel each other. The poles are more

heavily damped near 1 rad/sec, but none of the zeroes are affected. Also plotted is

the dereverberated mobility (Equation (5.8)), and the upper bound of the envelope

71



of posible transfer functions for any length of beam.
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Chapter 6

Experimental Results

While theoretical results are valuable of themselves, they must ultimately be tested

in an experiment. This verifies the theoretical results, and indicates problems in

their application. In addition to demonstrating the usefulness of the work, the

experiment points out limitations, and appropriate directions for further research.

The approach described in Chapters 3 and 4 was tested on a brass beam sus-

pended in the Space Engineering Research Center laboratory at M.I.T. Previous

experiments with this beam [26,291 include collocated rate feedback and M2 optimal

wave control, and these provide a basis for comparison with the M4. compensator.

6.1 Experimental Setup

The setup is shown schematically in Figure 6.1. For complete details on the setup,

see reference [291. The beam is suspended horizontally in the lab, with actuation and

sensing such that the bending vibration can be controlled. One end is effectively

pinned, while the other is free. The properties and dimensions of the beam are

summarized in Table 6.1. The open-loop damping of the first 17 modes (up to a

frequency of 27.7 Hz) averaged about 0.3%.

Control is applied through a torque motor at the pinned end, and sensing is
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Power Analog Signal
Amplifier Computer Amplifier

Torque
Motor Accelerometer Shaker

111 RZ~AM

4 ITTAccelerometer

Digital Signal
Oscilliscope Processor

Figur! 6.1: Schematic of Experimental Setup

Length 7.32 m

Width 0.102 m

Thickness 3.175 mm

EI 31.1 Nm 2

pA 2.85 kg/m

Table 6.1: Beam Dimensions and Properties

76



provided by a linear accelerometer mounted a short distance from the end. The

member connect.ng the sensor to the tip is assumed to be rigid, such that the

sensor provides a rotational acceleration measurement collocated with the moment

actuator. In practice, this assumption is not quite valid, though it is reasonable in

the frequency range of interest.

In addition to the control actuator and sensor, a shaker and data acquisition

accelerometer were mounted at the free end of the beam. The shaker was mounted

to provide a force collocated with the acceleration measurement. The closed loop

transfer function between these two was used as an indication of the performance

achieved.

The signal from the accelerometer at the controlled end was fed through a signal

amplifier into an analog computer which contained the compensator program. The

output of this was fed through a power amplifier into the moment actuator. The

accelerometer signal from the uncontrolled end was fed into a Signology SP-20

Signal Processing Peripheral to record and analyze the respunse data, and obtain

frequency domain information. This signal was also fed into an oscilliscope so that

any instabilities could be quickly identified, and their frequencies determined.

6.2 Compensator Design

A detailed model of the beam is not necessary for the experiment; it is sufficient

to just take the transfer function from the control actuator to the control sensor.

This transfer function is shown in Figure 6.2. The dereverberated mobility is that

of Example 2, given in Equation (5.8) with the rotational inertia at the tip cor-

responding to the inertia of that part of the actuator armature and sensor that is

fixed to the beam. From the measured transfer function, the effect of this inertia

was at a frequency higher than the region of interest, so for the control design, the

tip rotational inertia was aseimed to be zero. The dereverberated mobility based
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on this assumption is also shown in Figure 6.2.

The optimal compensator with unity weighting is proportional to 1,, given

in Equation (5.11). This compensator can also be derived from previous wave

approaches, and had been implemented on this beam in [29]. In order to test the M"

approach, a weighting function was selected to emphasize a narrow frequency band

near 35 rad/sec. This corresponds approximately to the frequency of the 7 th mode

of the beam. The minimum value of W, in this region was approximately 0.65, and

the weighting increased to near unity a factor of v/ above and below this frequency,

as shown in Figure 6.3. The optimal compensator from slope rate to moment for

this case was found to be well approximated by the product of the unweighted

optimum, , and a two pole, two zero lag-lead network. This network provided

the phase lead that is required so that at the center of the weighted region, the

phase approaches the unconstrained optimal phase of 458 (from Equation (5.10)),

allowing the compensator to dissipate more power. The optimum poles and zeroes

of this network are symmetric about the center frequency of the weighting function

W 1, at 35 rad/sec. The two free parameters of this network were optimized to

minimize the M(, norm of the cost. This results in the compensator from slope rate

to moment being

K (a) = 63.4.- S += ( 385j+ 46) (6.1)V /3 32 + 10s +320

The available measurement, however, was proportional to angular acceleration,

and thus a further integration was necessary to obtain angular rate. This integrator

was rolled off at DC to prevent saturation and drift problems. The second order

dynamics were chosen to have a natural frequency of 0.5 Hz, and a damping ratio

of 0.5. Finally, an additional gain was necessary to obtain the compensator from

the sensor signal to the actuator input. The resulting compensator as implemented

was

K(s) = 8110. 1. (92 + .- +46) (2 + 3.14 + 9.87 (6.2)
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The implementation of the half integrator is presented in [261. The transfer

function of the circuit used to approximate this is shown in Figure 6.4. The approx-

imation is excellent in the region of interest, however at higher frequencies, it rolls

off too quickly, and there is an associated phase drop, as shown in Figure 6.4. The

measured compensator in the experiment is compared with the desired compensator

in Figure 6.5. Good agreement is obtained, except at low frequencies where the DC

rolloff of the integrator has a noticeable effect, and at frequencies higher than those

shown, where the approximation to 1. is poor. The actual compensator has some

additional phase lead at 35 rad/sec, primarily due to the integrator dynamics, which

results in increased damping at this frequency at the expense of poorer performance

at low frequencies.

6.3 Results

Once the compensator was implemented, the gain was gradually turned from zero

towards the optimal value. Because the actuator and sensor were not truly collo-

cated, and had some dynamics, the plant was not actually positive real. Due to this,

and because of the additional phase lag of the half integrator at high frequencies,

the compensator could not be implemented at full gain without destabilizing high

frequency modes of the beam. At 65% of the full gain, there was an instability

at 775 Hz. (If a Bernoulli-Euler pinned free beam model were appropriate at this

frequency, this would correspond to approximately the 9 0 th mode of the beam.) At

60% of the optimal gain, a significant improvement in the response of the beam was

already apparent, as shown in Figure 6.6. This figure compares the open loop with

the closed loop transfer function from force at the free end to collocated velocity.

The corresponding open and closed loop transfer functions for velocity feedback

can be found in [29J. The results for the M.. technique presented here show some

improvement over rate feedback already, even though full gain was not used. As
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desired, the modes in one particular frequency range are damped more heavily than

others. This range is slightly higher in frequency than that desired due to the im-

plementation at less than the optimal gain. Note that the spikes present in the data

at 16.4, 19.8, 24.3, and 24.5 Hz correspond to torsional modes of the beam, which

are excited by the shaker but are uncontrolled by the moment actuator.

The predicted response based on the implemented compensator is plotted in

Figure 6.7. This was calculated from the experimental compensator transfer func-

tion using the approach of Section 2.3. Reasonable agreement is obtained between

this prediction and the actual transfer function, although the achieved performance

is noticeably better than that predicted. A prediction based on the desired, opti-

mal compensator would be poorer due to the significant additional phase lead at

35 rad/sec in the actual compensator.

Further experimentation is still necessary. The implementation of the compen-

sator could be improved at both low and high frequencies, and this might allow

better performance to be achieved, at a higher gain. Ideally, the experiment should

be done on a structure with truly collocated sensors and actuators. This could be

done on this beam by mounting a tachometer on the torque motor. Ultimately,

however, in any experiment, the input to output transfer function will not remain

positive real for sufficiently high frequencies, and the compensator design should be

modified to recognize this fact. This could be done after the M,. approach developed

in this thesis has been applied, by including additional roll-off in an ad hoe manner.

This would reduce the complementary sensitivity at higher frequencies, so that the

singular value test of Slater [37] could be passed. Alternatively, and preferentially,

the singular value constraint could be embedded in the design process. Thus this

experiment has indicated at least one direction that future research into this control

design approach should take.
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Chapter 7

Conclusions and

Recommendations

7.1 Summary

In this thesis an approach to broadband active damping of modally dense structures

with significant uncertainty has been presented. Both modelling and control design

issues for this class of problems were investigated. Instead of a wave-based or modal

model, the structure is modelled with its dereverberated mobility. The maximum

power flow into the structure is minimized by solving an equivalent M,, control

problem.

7.2 Contributions and Conclusions

1. A wave based model of the local dynamics of a structure near a collo-

cated and dual sensor and actuator pair is equivalent to a dereverberated

model of the structure. The dereverberated model is more general than

a local wave model, as it can be easily applied to any structure. This

model can be calculated directly from the driving point impedance, by
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taking its logarithmic average, and can therefore be applied even when

only experimental data are ava2able. The dereverberated model retains

many of the advantages of wave models. The local information can be

determined with less uncertainty than the full structural model, while the

global dynamics of the structure can be modified by controlling the local

dynamics near an actuator, with a control law based only on this local

model.

2. A causal, guaranteed stabilizing, optimal compensator can be obtained by

minimizing the maximum power flow into the structure. This results in

a positive real controller which dissipates power at all frequencies. This

can be compared with several other compensators that could be designed

based on the same model. The compensator that dissipates the most

power at every frequency is in general noncausal, and cannot be imple-

mented. M. optimal power dissipation [281 does not guarantee stability,

and simple rate feedback is stabilizing, but not necessarily optimal. The

desirable properties of the solution can be retained while increasing the

importance of a certain frequency range, through the use of a weighting

function.

3. The technique was demonstrated for several simple examples. If a weight-

ing function is chosen to emphasize some frequency range, then at the

frequency deemed most important, the optimal compensator is close in

both magnitude and phase to the unconstrained optimum. Thus at this

frequency, it dissipates almost all of the incoming power possible. The

compensator still dissipates some power at all frequencies, and is there-

fore guaranteed to b. stable. The unconstrained optimal compensator

thus provides some insight into how one could select the best compen-

sator without requiring the Mo design approach. The transfer function

should be chosen to match the unconstrained transfer function as closely
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as possible in both magnitude and phase at the frequencies deemed im-

portant, while maintaining causality and positive realness.

4. Experimental results indicate that this approach to modelling and control

design performs satisfactorily. Significant damping was added to many

modes of a laboratory structure, without the large effort in system iden-

tification, off-line computation, and compensator complexity that would

be required of many control design techniques. Greater damping was

achieved than in velocity feedback experiments on the same structure

[291. Difficulties arose, however, for two main reasons. First, the imple-

mentation of the compensator was not perfect, particularly at low and

high frequencies. Second, and more important, the actuator and sensor

were not collocated, and may have had additional dynamics, so that the

plant transfer function was not positive real at all frequencies as assumed.

7.3 Recommendations

1. The approach presented in this thesis works for systems which have a

positive real transfer function between the sensor and actuator. In real

structures, this will never be the case, due to actuator and sensor dynam-

ics, time delays, and noncollocated actuators and sensors. Further work

should investigate ways to modify the control design technique to allow

for perturbations from the positive real condition, for example using the

re@lts of Slater [371. One approach to doing this was discussed briefly in

Chapter 4. Stability can be guaranteed by solving an M'. minimization

problem, with a constraint on the M,, norm of a second transfer function.

Whether this problem can be easily solved is an open question.

2. Further experimentation is necessary to obtain a better comparison be-

tween this technique and existing control design approaches. On the struc-
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ture used in the experiment in Chapter 6, this could include a better

implementation of the compensator, and either a hardware modification

to give a collocated sensor and actuator, or some allowance in the com-

pensator design procedure for non-collocation. Also, the experiment was

conducted on a structure which could be easily modelled with a wave ap-

proach. Experimental results on a more complex structure for which this

is not the case would be valuable in justifying the modelling approach

presented in this thesis.

3. There may be a relationship between the modelling and control design

approach presented here, and existing approaches, such as MEOP [5] and

other optimal wave control methods [28]. These connections should be

investigated. In particular, Miller et al. [28] solved an M3 optimal control

problem, while this research solved a similar M,. problem. A combination

of these two problems would be of interest. Closed loop stability can be

guarantee, with an M. constraint, and an M2 optimization could then

guarantet ,erformance [6,31]. Depending on the value of the constraint,

this approach could yield solutions varying from the M.. optimal solution

presented here, to the M2 optimal solution of Miller et al. [28].

4. The approach presented in this thesis optimizes the power dissipation

associated with the control input, which results in active damping of the

structure. However, damping is not necessarily a suitable performance

criterion for all structural control problems. The algorithm should be

modified to allow for the evaluation and optimization of other performance

criteria, such as line-of-sight pointing error.

5. In general, the first few modes of a structure are relatively well known,

and the uncertainty increases with frequency. A compensator which dis-

cards this information is suboptimal. An additional modification to the
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approach should be to incorporate some knowledge of the lowest modes

of the structure.
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Appendix A

Beam ), Compensator

For a free-free beam with dereverberated mobility G(s) = ;' the compensator that

minimizes the maximum power flow into the structure can be found analytically.

From Equation (4.30) the problem is to find a stable, causal compensator that

minimizes the M. norm of the transfer function from w to G>u + w. From the

definition of Go (Equation (4.23)),
1 1

GoG' = + (A.1)

(A.2)

Or,
Go f2 (A.3)

Since d = Gow, then from Equation (4.4),

u = HGow (A.4)

The compensator K from y to u will be stable and causal provided H is also stable

and causal. Thus the problem is to find H to minimize

IIG-HGo + 11100 (A.5)
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The solution to this, using the notation of Francis [15] is

S= min GHGo+111 (A.6)
H

min -H - + 1 (A.7)

=min -H+ - (A.8)

Equation (A.8) is of the form

-= min lR - X11. (A.9)
H

where

R =(A.10)

-Xl (A.11)

The problem now is to find X E )4 to minimize hJR - XII.. From the maximum

modulus theorem, only the imaginary axis need be considered, so substitute s = jw

to give
1-i

R- j (A.12)

There are three possible options for the behavior of X(s) at the origin. Either X

has a pole at zero, in which case FIR - X1I. is infinite, X has a zero at the origin,

in which case hJR - X11, > 1, or X is a constant, with either 0° or 180* phase. In

the last case, the smallest value JR(0) - X(O) I can have is 1, for X(O) = '. Thus

there cannot exist X(s) for which FIR - X11. < '. Since the solution X(s) = 1

results in hJR - X11. = , this must be an optimal solution. From Equation (A.11),

1 V/ (A.13)

and from Equation (4.16), the compensator from the output y to u is given by

K=V9 (A.14)
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Appendix B

Damping Prediction from Power

Flow

The M, control design approach described in Chapter 4 yields information about the

closed loop power flow achieved, via Equation (4.39). It would be useful to relate

this to the closed loop modal damping achieved in the structure. For arbitrary

structures, this is extremely difficult. However, for a simple structure such as the

free-free beam of Example 1, in Section 5.1, a relationship between power flow and

damping can be derived.

To do this, consider a wave-packet travelling through the structure. The wave-

packet is a spatially localized disturbance, which is also narrowband in frequency,

and thus can be approximated as having a single frequency. Though a disturbance

that is simultaneously both spatially localized and of a single frequency is not pos-

sible, it is an approximation that can lead to reasonable results for sufficiently high

frequency. The wave-packet travels at the group velocity v. of the structure, which

is a function of frequency:
a 2 Vr (B.1)

CO
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where co is defined in Equation (2.52). Therefore, for a beam of length t, in a time

2e
, = - (B.2)

Vg

the wave-packet has travelled through the beam and back to its original position,

with a decrease in amplitude associated with travelling once through the controlled

junction.

The compensator absorbs a fraction 6 (w) of the total power available. Thus in

one cycle, the energy of the wavepacket decreases to

E(t) = (1 - 6)E(O) (B.3)

and the amplitude, which is proportional to the square root of the energy, decays

to

A(tl) = V--A(O) (B.4)

The modal solution is of the form

u(t) = aO,(z)e € i+jw)t (B.5)

The wave-packet at time t, in Equation (B.2) has the same shape as at t = 0, and

only the amplitude has changed. If the disturbance is approximated to consist of

only a single frequency, and if this frequency corresponds to that of mode n, then

the amplitude at t, is related to the initial amplitude by
Ut (B.6)
u (0)

Comparing this with the wave solution in Equation (B.4), then one finds that the

real part of the eigenvalues is given by
log(1 - Ow")) (B.7)

2t,

Combining this with Equation (B.2), then

= log(' - 6Uw,))V" (B.8)

99



where the power absorbed, 6(w), is given by Equation (4.39) as

1- - "7
6(w) = Y (B.9)

In particular, if the weighting function W, is unity, then

a = log(l)/W (B.1O)

Finally, the modal damping ratio ,, is related to o,, by

" = - (B.i)

Thus with equal power absorbed at all frequencies, the time constant of the beam

modes increases with frequency, and the modal damping ratio decreases.
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ABSTRACT

This paper describes several techniques for deriving derivation of optimal broadband control. Scheuren [4)
optimal feedback compensators for structural waveguides at recognized the ability to shunt or absorb propAgat~ng
junctions. A frequency dependent cost functional, composed disturbances. In that work, however, evanescent waves were
of power flow and control effort, is minimized. Control of deemed undesirable due to the lack of ools to characterize rheir
power flow. by modifying junction reflection and transmission contribution to power flow. High performance is oredicted
properties, enables se!ective absorption of incoming but often associated with noncausal compensators. Ha6edorn

ibrational power. Noncausal, causal fixed-form and Weiner- [6] discussed the modelling insensitivity and 'obustness
Hopf feedback solutions are derived. These solutions, advantages of local wave control. Temporal exp:t-ssions for
including a positive real approximation to the Weiner-Hopf power flow were derived yet did not include the contnutions
solution, are illustrated through an extensive example for the of evanescent behavior. Other approaches [8, 9 and 101 are
free end of a dispersive Bemoulli-Euler beam. solely based upon specifying the closed-loop r-flection and

transmission coefficients.
1. INTRODUCTION

For complex structures, modal models can become
cumbersome and innaccurate for higher frequency modes. An ni
a'ternative to a modal description is to retain only a small w t
subset of the modal model, one boundary OD.E. and
descriptions of the members which intersect at that boundary,
to generate a wave decription of that boundary's reflection
and transmission properties. The model is simpler, possibly W10
mathematically exact, and describes important properties of the
structure which exist at that boundary (wave junction).

The generic representation of a junction, given in Fig.
I. applies to a number of structural locations. For example,
such a location may be a single member erd condition (pinned, I I
clamped, free. or attached to a complicated flexible body), an
intersection of several members (e.g., the intersection of Figure 1 Generic wave junction composed of
several tnss beams), or an arlbitrary location on a uniform members and a body.
member where control hard%,arc is located. A junction
description may also include iricinal dynamics, as long as a The motivation for this work lies in the apparent need
consistent input/output relation can be derived, for a procedure for deriving broadband, optimal, causal wave

The basic objective behind wave junction control is to control compensators which minimize explicit expressions
activelv alter the wave scattering properties of a junction, describing the contributions of both propagating and
Junction control can be used to extract energy from the evanescent waves to power flow at structural discontinuities.
structure or shunt energy to non-critical locations and therefore This paper discusses the derivation of optimal wave
has obvious application where vibratic.n suppression and control based upon the minimization of power flow out of a
dynamic isolation arc required. structural junction. This is done by finding that compensator

Several researchers have approached the problem of which minimizes a freqit.ency domain cost functional
controlling elastic structural behavior through the use of wave composed of quadratic penalties on power flow and control
models [2. 3. 4, 5, 6, 8. 9, 10 and 141. The technique can effort. Power flow was chosen because it provides both a
pinpoint important disturbance transmission paths and allow physical and a quadratic quantity for minimization, and yields
analysis of the energetic interaction of disturbance sources certain stability infonnation.
with control actuation. Prior work [1. 9, 10 and 141 has
shown that, in special cases, compensators designed for active 2. TRAVELLING WAVE DYNAMICS
absorption of travelling waves can be very similar to direct This section presents the wave dynamics equations for
velocity feedback. This is due to the common practice of a structural junction of arbitrary complexity (Fig. I). The
having only one actuator and sensor at a given structural frequency domain derivation of component (member and
location. As more distinct actuators and sensors are placed at a junction) dynamics was presented by von Flotow [91. This
junction, the compensators become quite different and provide paper, using slightly different notation, makes extensive use of
much better performance. Miller, von Flotow and Hall [21 two of these important ,ela.ions governing junction dynamics.
derived feedback compensators which alter reflection and The members are slender, one-dimensional structural
transmission coefficients to minimize power flow. However, elements. Common spatially continuous examples are beams,
the lack of a causality constraint in the formulation resulted in rods and cables, while ;patially periodic examples include
some noncausal compensators. Redman-White [31 minimized slender trusswork beams (I 11]. These members are viewed as
narrow band propagating disturbances by a convergent waveguides along which a set of discrete, decoupled travelling
algorithm which measures a quantity indicative of power flow. wave modes may propagate at every frequency. wo. These
However, the control is not broadband and an explicit travelling wave modes are coupled to others of the same
expression for power flow, which includes evanescent effects, frequency by scattenng at structural junctions. The dynamics
would have provided a tool for stability analysis and the of the junction are described by frequency dependent reflection
lResearch Associate and transmission coefficients. This viewpoint is analogous to
2 Assistant Professor that adopted in microwave network analysis.



It is appropriate at this point to clarify the conventons [P" P-.

used in this paper. Wave modes in the '.icinity of a junction P P. (4)
are grouped based upon their outgoinp or incoming nature.

Those evanescent modes which decay exponentially a-,ay The symbol H denotes the Hermitian or complex conjugate
from the junction are grouped with the outgoing waves. In transpose. The matrix P is a function only of the dynamics of
general, wave modes are grouped based upon their causal the members attached to the junction. specifically of the
origin (i.e., outgoing waves are created at the junction and transformation (Eq. 1) from physical coordinates to wave
incoming waves are created elsewhere), mode coordinates. PAVG is real for any mix of wave modes.

Von Flotow [I] uses an assemblage of member since Pj is Hermitian.
transformation matrices to provide a junction transformation In certain applications, such as control or damping
matrix which relates complex wave mode amplitudes on all design, it is useful to determine how much power is outgoing
members attached to that junction, at the member/junction from a junction as a result of both incoming power and
interface, to the member cross-sectional quantities, motion and external excitations. When the junction is non-reciprocal due
stress, at the same location. This relation has the form to the action of active control, the formal analysis developed

[ yy [W by Miller [15] becomes necessary.

Y())= FY Y, )o (1) 4. JUNCTION CONTROL
The waves incoming to a junction can be thought of as

where w(w) is the vector of wave mode amplitudes at each a disturbance to that junction. Conceptually, the disturbance is
frequency, w. The partitioning of the wave mode vector is measured and fed to the actuators at the junction in order to
based on propagation direction with respect to the jun,:ion: reduce or eliminate 'he power associated with the resulting
incoming wi or outgoing w,. The vector y contains all outgoing waves. Figure 2 illustrates this control architecture
member motions, u, and stresses, f, at the junction. with F as the feedforward compensator and the junction

Von Flotow [I] gives the junction boundary conditions matrices shown. This architecture assumes that measurements
transformed into wave mode coordina es and arranged in of the incoming wave mode amplitudes at the junction interface
causal. input/output form. Outgoing waves, wo, result from are available, and that S(w) and y/(c) are known.
the scattering of incoming waves, w,. and the generation by Since wave mode sensors are not available off the
external excitations, Q; shelf, it is desirable to use cross-sectional variables as

feedback measurements. The vector u contains measurable(0) = S (ao))1-, (0)) + Vl (0)Q (a)) (2) cross-sectional quantities whilefcontains those cross-sectional

In this junction description the matrices S and y/ represent quantities that are commanded by the actuators. Equation 1

homogeneous and nonhomogeneous wave behavior and are can be used to express the amplitudes in u in terms of both

called the scattering and generation matrices, respectively, incoming and outgoing waves. The use of these quantities as

Both may be complex and frequency dependent. This measurements results in the feedforward of incoming wave

description contains only local junction dynamics and does not mode amplitudes and the feedback of outgoing wave mode

contain information about other portions of the structure. This amplitudes as shown in Fig. 3. In this figure, G is the control

junction model is valid as long as the boundary condition is an compensator. If G is causal and physically realizable then the

accurate description of the boundary physics and the attached
members, for some arbitrarily smah length, behave as S(0 )  0
modelled. In practice, member models cact become inaccurate
at frequencies where the wavelength divided by the member
length becomes rather large or small.

3. JUNCTION POWER FLOW Z 2 Q T (c)
Travelling waves move elastic and kinetic energy -i_ _ _ _ _ _ _

through a structure resulting in a flow ol power. The power Figure 2 Feedforward of incomin wave modes
flow through junctions is a quantity of int:rest and can be used actuator commands, Q. are physically realizable because the
for response analysis and control design. Power at an quantities in u are measurable.
arbitrary member cross-section is equal to the product of the Rearrangement of the block diagram in Fig. 3 yields a
deflection velocities and collocated stresses of like type: structure identical to that in Fig. 2 (see Fig. 4) with a feedback
velocity and force; rotational rate and moment. The power stage in the feedforward path. This illustrates that cross-
flow at a member cross-section can be expressed in terms of sectional variables can be used as feedback measurements to
the spectral components of the response variables through the mimic the feedforward rejection of incoming wave mode
use of the Power Theorem [17], a variation of Parseval's amplitudes.
Theorem. Though power is a nonlinear quantity enabling
instantaneous interaction between response variables of w S , 0
different frequencies, it is the interaction between identical
frequency components that results in steady-state power flow.

Miller and von Flotow [15] show that the power flow
through a junction is given by T

VG .W,. (o ( 1  (3)o
where Pj is the junction power flow matrix, and is given by u

IIY Y Yi I YY YY H
r' -(, r . (./1 - . . 1If It yy ty member acul mcmber

r Y Y. fo jJYY dynamics measurements dynamics
Figure 3 Feedback of cross-sectional physical

measurements



Typically, optimal control is based upon the The transfer function relation from incoming to outgoing wave
minimizanon of some index describing a characteristic of the mode amplitudes is given by
system being controlled. For this discussion of optimal
junction control, a combination of power flow and control , = (S - 'HK)w, = SCL.W'  (8)
effort will be the quantity minimized with incoming power With these definitions in place, the cost functional
defined as negative power flow. If more power arrives at the given by Eq. 5 can be rewritten in terms of the incoming and
active junction than departs, the net power flow is negative.
Thus, minimization of junction power flow reduces the vector of junction wave mode amplitudes as
amount of outgoing power resulting from incoming power. In
Section 3. power flow was shown to be a quadratic quantity in ,,
terms of the amplitudes of the wave modes incoming to the w (9)
junction. Since power flow is expressed in terms of its
frequency components, a frequency domain formulation is gives a cost which can be expressed in terms of the auto- and
used. cross-power spectral density functions for the incoming and

outgoing waves:

If tace 1 , RHKA. K' H" (

actual -" I (10a)

S Yu ~os ] mcasurements where we have substituted into Eq. 8 the expression

, = E (Q)= E (HKwK" KH )HKO.... H Hi b.L K.. (10b)

These power spectral density (PSD) matrices can be
H expressed in terms of the PSD matrix of the incoming waves

by substituting the transfer function relation given in Eq. 8

----------___ ______ ___Sa __---------- _ J - traee(PF 0 (S+ - WK)'

Figure 4 Use of physical measurement feedback to - (S + 11/K 0 (S + K )(S + OfK)
mimic the feedforward of incoming wave

mode amplitudes + RHKOK"H" oi (11)

The control optimization problem becomes the where
minimization of the expected steady-state power flow plus
control effort. Summing over all frequencies yields the total (12= ),2
power flow when the structure is undergoing steady-state
motion. Adding a quadratic control effort penalty to the power Optimization involves minimizing the trace of Eq. 11.
term in Eq. 3 and taking the expected value of the resulting This is done, using the calculus of variations, by perturbing
integral relation gives the cost functional as the feedforward matrix. H. by a frequency dependent

2 -wP w-Q"RQ d °o perturbation matrix, 1r, which is scaled by a small parameter, C
J L E V.J- ( J I () H( H) ,(w)+Er/(a) (13)

= If trace (E ( PwwH + RQ9") )dw The procedure involves showing that the optimal feedforwardIf "- compensator matrix, H, when subjected to small "allowable"

perturbations, yields a stationary cost. "Allowable"
= a-ace (P (ao)0(.) + R (0),cQ(-o))d(o perturbations depend on the constraints imposed upon the

optimization problem.

The condition that the optimal compensator matrix
where must satisfy is found by minimizing the cost with respect to

the small parameter c. The relation governing the optimal
=P-(co E (-ww" (co) E Q2~) (5b) compensator matrix, H. is then found by allowing c to

approach zero. The first variation of the cost is
The optimal control that minimizes this cost, subject to various 0 W'n ",
constraints, will consist of linear dynamic compensation. The d.= 1AV (P,
following discussion outlines several procedures for f q KO+ W+K )m (S +fK)'n
minimizing this specific type of frequency-shaped cost
functional.

The next step involves defining the appropriate ( R14K)' ir" R
elements of the feedforward structure shown in Fig. 4. The (14)
transfer function from incoming wave modes to cross- The expression in Eq. 14 can be simplified by
sectional coordinates in the absence of junction control is evaluating the trace of the product of the power matrix tPj) and

K = Y + Y 6the matrix quantity shown in brackets. Partitioning the power_S (6) matrix as shown in Eq. 4 yields an equivalent expression for
The matrix YuoW in the feedback loop of the feedforward path the first variation of the cost as
in Fig. 4 corresponds to the additional junction motions
generated by the control inputs, i = trace (P.VY7 K 0 + P (0KM "#WM

The portion of the block diagrim outlined by the -

dashed line in Fig. 4 can be condensed into a single transfer
function matrix given by + PnMKO(S + WHK )m + P(S + WHK } 

7
)q f"vH

H = G(I - YVG) (7) + RY7K0K m H" + RHKOK"q mldw (15)



Using the fact that the trace of the hermitian of a matrix equals evanescent behavior exists, the controller can create a near
the hermitian of the trace of that matrix, Eq. 15 becomes field, outgoing evanescent wave with the proper phase so as to

draw more power towards the junction. By enlarging the
amplitude of the near field, more power can be attracted.

dJ = Retrace (7"/' (y (P. + P. S ) Thus, cheap control is not an option in this case, since a zero
control effort penalty matrix would result in the controller

+ (VH P.v + R )HK )OK" ))dwo (16) driving the near field mode to infinite amplitude in order to
attraet maximum power.

where the real part of the trace is retained. Since there is no constraint on the control
At this point, the optimization problem can proceed in compensator, this procedure minimizes power flow at every

several directions based upon the perturbations allowed, frequency and provides no guarantee that the compensator will
be causal or implementable. Therefore, the next section

5.1 Noncausal Solution For the feedforward gain discusses a technique for finding causal solutions.
matrix H to be optimal. it must make the cost stationary for
allowable perturbations given by T1H. At present, the optimal 5.2 Causal Solution Using Weiner-Hoof Techniques
noncausal solution is being sought and no constraint is being Much of the following discussion on Weiner-Hopf techniques
placed upon H. Therefore, the optimal gain matrix H must was extracted from Brown [131. The cost defined in Eq. 5
make Eq. 16 satisfy equals the integral, over all frequency, of the trace of the

expected power flow plus control effort. In the followingdJ = 0 (17) procedure, analytic continuation is employed to enable the

for any arbitrary perturbation given by T11 This indicates that various frequency dependent relationships to be valid
Tl. and therefore the feedforward compensator H, may contain throughout the complex Laplace plane. In this new domain,
both right and left half complex plane dynamics. Right half the integral in Eq. 5 is evaluated along the infinite extent of the
plane dynamics signify that the control must anticipate future imaginary axis.
information. Of course, such compensators cannot be The fundamental difference between the free-form
implemented. " :y provide a baseline against which causal causal solution and the free-form noncausal solution presented
compensators .. ,., oe compared. in Section 5.1 is the definition of "allowable" perturbations.

Equation 17 is satisfied if In the noncausal solution, the perturbing matrix. TI, was
permitted to be arbitrary. In the problem at hand, the optimal
feedforward compensator matrix, H, is constrained to beHK (vH P_, + R)v'[ P. + PoS F (18) causal and stable. Therefore, it must be analytic in the right

This causes Eq. 16 to equal the trace of a zero matrix for half of the complex Laplace plane: it must be right half plane
arbirau EqH. analytic (RHPA). Therefore, the matrix r1 which perturbs H

Equation 18 gives the compensator (F in Fig. 2) that from its optimal form must itself be causal. In other words, inr e aes tin 1ies ofthe comntor F tin F. 2) that the search for the optimal, causal compensator, only causal
relates the amplitudes of the control actuation as a linear perturbations are permitted. Since TI is R.HPA, 11H is HA
function of the incoming wave mode amplitudes at the junction p eru a axis. s LHPA.
interface. The gain matrix G which feeds cross-sectional Along the iw axis.
junction motions to control inputs, and represents the 1 ) ,r( 60
compensator that is actually implemented in practice, can be (21a)
found by solving Eq. 18 for H and substi:v.ing H into Therefore we define

G = (1 + HY.,,t)-H (19) r" (s ) = r/"( - s ) 21b)

The frequency dependent compensator G is a function of the Note that this definition does not equal the Hermitian when s is
junction and attached member dynamics. not on the iow axis.

The second variation of Eq. I I with respect to the The optimal compensator. H. is that compensator
parameter E. after allowing e to approach zero. is given by which, for arbitrary LHPA perturbations in rl H, causes

vH P,V + R (20) (V11,(p, + P,,,S) +(vP,'1.p + R)HK)OK" (22)

Poo is hermitian and positive semidefinite, since outgoing to be LHPA. If terms which are not analytic in the left half
waves propagate energy away frnm this junction and the plane do exist in this expression, then the integral in Eq. 16.
resulting power flow has been det-ed in a positive sense. If when the contour is closed about the left half plane, will be
R is chosen to make Eq. 20 positive definite, then the control nonzero for some RHPA T1, and the stationary cost constraint
in Eq. 18 satisfies not only the first order but also the second (Eq. 17) will not be satisfied. Therefore, the expression in
order necessary conditions. Eq. 22 must be equal to some LHPA function, sc that

Several characteristics are readily visible from the
solution in Eq. 19. First, if the term xyHPooy is of full rank VH (P. + P., S )OK'
(invertible) then it is possible to formulate control without a
penalty on control effort. Such situations exist when no + (V' PV + R )H R,,PA KK = A L1/PA (23)
mechanisms exist to draw power towards the active junction.
In other words, the controller must wait for the power to arrive Notice that HRHPA replaces H in the second term. The
at the junction in order to dissipate it. Since the amount of compensator G being causal is a requirement for real time
effort expended is on the order of the incoming power and the implementation. From Eq. 7, if G is causal (RHPA) then H is
arriving power is assumed finite, the control effort is finite causal. Therefore, the causality constraint is reflected in H
even though R--O. Cheap control (R--O) can also occur when being RHPA.
only a subset of cross-sectional coordinates are actuated. This The Wiener-Hopf technique proceeds as follows.
results in a reduced W matrix in Eq. 18 which might yield an First, it is observed that Eq. 23 has the form
inveruble term when R=O.

Situations can arise where the control action can be H., + H0 HR,IPAHc = A UPA (24)
used to draw power towards the junction rather than waiting
for its arrival. As will be shown in Section 5, near and far Second, the quadratic terms on either side of HRHPA can be
field evanescent modes interact to propagate power. If spectrally factored into their RHPA and LHPA parts which are



herrntians of each other. Performing this factorization yields applied to the left, free end of a dispersive. undamped,
H, + HD LPAH H A H H H = A (25)Bernoulli-Euler beam (Fig. 5). The governing P.D.E. isH0 + HA RI(.PH u.H,4C AI.IPA C LfA = AufPA (25)

In the third step, Eq. 25 is pre- and post-multiplied by El A + v
the inverses of HD LHPA and HC LHPA, respectively, so that dX + 4 = 0 (30)

H 1 - where E, 1, p and A are the modulus of elasticity, area momentH D LIMA, HN HC tLHPA + Ha RHPA H&HA HC RPA of inertia, volume density of mass and cross-sectional area,
-t  H.-1 respectively, and v(x,t) is the transverse displacement

HD LJP A 
LRPHC L11PA (26) coordinate. From Fig. 5, x=O at the boundary.

From the dispersion relation, the wave number k will
Note that the center term is RHPA whereas the term on the be expressed in terms of the complex Laplace variable, s. as
right is LHPA. Therefore, the term on the left must be the
sum of LHPA and RHPA parts: k= .-pA /1E1 V = CoT' /s" " (31a)

H" 'LPAHHc LIPA = NTF ( HD LI/PA H N "C LI/PA) where

+ PTF (H-L tpaHV Hc ,,PA) (2) S + ia (31b)

The LHPA and RHPA terms are transforms of negative/NTF) I'
and positive ¢PTF) time functions, respectively. The positive
time part of a function (H(s)) is given by MI-j,

PTF(Hy(S ))=j!.- fJII(.-)ed e-dt F )
0 - (28) Figure 5 Free-end of Bernoulli-Euler beam

It can be seen in Eq. 26. when the first term is factored
as shown in Eq. 27, that two decoupled relations ex;,t: one
governing the RHPA functions and one governing the LHPA Notice that the right side of Eq. 31a. k(s), is the analytic
functions. HRHPA only appears in the RHPA relation. continuation, throughout the complex plane, of the function on
Solving this relation for HRHPA gives the left side, k(w), which is valid on the imaginary axis. Also

-I( (- - -notice that the substitution of s=ico for positive and negative
HR.PA = - HD DreA( PTF ( H u,.IPAHN HCu.IPA) )HC R./PA (29) values of w yields the principle square root of w. All roots in

Eq. 31a are principle roots. The branch cuts corresponding toAs desired, HRHPA only contains RHPA functions. the fourth roots in Eq. 31a cut the entire real axis in the
The final step involves evaluating G using HRHPA in complex plane. The portion given by s1/4 has its branch cut

Eq. 29 in place of H in Eq. 19. along the negative real axis and is therefore RHPA and (-s) 114

Several issues should be kept in mind when using has its branch cut along the positive real axis and is LHPA.
these techniques. First, notice that while the noncausal The motion, as composed of wave modes supported
solution was independent of the incoming wave mode statistics by the partial differential equation in Eq. 30. is given by
0, the causal solution is not. Second. it was stated that the
term in Eq. 22 must be LHPA to ensure that a contour of w e(x t "w e + w, e t

integration encircling the left half plane does not enclose any ( , =P
singularities. In addition, the frequency dependence of this + w ,,e + ,, e
term must decay faster than 1/o in order that the integral along (3 2
the enclosing contour of infinite radius is ;:'ro. Often this may (32)
require frequency shaping of D. From a physical perspective. The +/- symbol preserves propagation direction when o is
one would expect the amplitudes of the incoming waves to positive or negative. For brevity, this notation will be
have an inverse dependence on frequency to support the fact abbreviated to include only the upper sign. Except where
that the total junction power flow is finite. Third, junction indicated in the following discussion, +1-i can be substituted
matrices often contain irrational transfer functions. Fourth. the for i. Using Eq. 32, the junction transformation (Eq. 1) is
junction model, and therefore the control formulation, contains
minimize power flow in a certain frequency range, the Wiener- 'k k -k kno information about the rest of the structure. In an attempt to 

wkk -i

Hopf solution may result in amplification of power in another. 1 - Ely = iElk - Elk' - iElk' Elk'The formulation has no knowledge of this problem. Ely" Elk' wHowever, the finite extent of any structure makes the return of - Elk' Elk E Elk' (33)

the emanating power an eventuality and an instability can where
occur. Therefore, an iterative design approach may be wlp leftward propagating wave modes
required which first solves the Wiener-Hopf problem, then incoming waveschecks junction power flow and repeats the cycle if the first Wle leftward emanating evanescent wave modes

solution proves to be inadequate. incoming waves
This outlines a Wiener-Hopf approach to the junction Wrp rightward propagating wave modes

wave control problem. Given that future information is not outgoing wavesavailable to the controller, a reduction in performance over the wre rightward emanating evanescent wave modes

noncausal case aught be expected. outgoing waves
and C) denotes spatial derivative. The scattering matrix [I] for

5. EXAMPLE a free boundary condition is
This section presents examples which illustrate the

derivation of various junction controllers. The noncausal (part S + i
I) causal fixed-form (part 2). Weiner-Hopf (part 3) and S[=. 1 - i (34)
Weiner-Hopf positive real approximation (part 4) solutions are



The wave generation matrix is Eaa2. This second part illustrates the use of a causal

k I + i I fixed-form parameter optirruzation technique. The form of theILL.... noncausal compensator in Eq. 39 will be used with the

-2E1 L =  2Eik i A35) exception that the phase is row 45 degrees. A causal H can be
found, since Eq. 7 preserv, s causality, giving the fixed-form

where 'UM is the wave generation matrix with only moment with variable gain ci as

actuation (no force). The K matrix, given by Eq. 6, is H = Elk (1 + i )[0 1 (42)

- i  H 1+ i
- )k (I- i )k (36) Notice that the compensator G in Eq. 39 with 45 degrees of

phase not only provides positive real feedback between
and the junction power matrix is rotational velocity and moment. it also causes the closed-loop

junction power matrix eigenvalues, as illustrated by Eq. 41, to
-1 0 0 0 "have the same frequency dependence as those of the open-loop
0 0 0 ipower matrix. This results because the fixed-form

Po = 4cok"EI 0 0 1 0 compensator was chosen to have the same frequency
dependence as the noncausal compensator. which was

0 -i 0 0 (37) optimized frequency by frequency, and therefore the

The term w arises from the velocity term in the expression for impedance of a semi-infinite beam.
power and is therefore smictly a positive time function (no /-Now that a formulation is being used that does not
pNotice that the incoming and outgoing propagating waves allow optimization frequency by frequency, an appropriate
propagate power independently and in the negative and form for the incoming wave mode spectral density D must be

positive sense, respectively (entries (1.1) and (3.3) of Pi)" chosen. It will also be assumed that the propagating and far

The evanescent waves do not propagate power independenly field evanescent waves exist in equal proportions and that the

(entries (2,2) and (4 4) of Pi) but do propagate power through incoming wave mode amplitudes diminish with frequency
their interaction (entries (2,A) and (4,2) of Pj). above con. As will be seen, the form

Pani1. Optimal noncausal control can be derived for a a 2  [1 01 a 2

the free end of a Bernoulli-Euler beam. If only moment (S - CO.)z L 0 (S + 0.) (43)
actuation is used, cheap control can be derived (R = 0). The
wave mode amplitude feedforward gain matrix (F) found exhibits satisfactory behavior when using cootour integration.
using 4tM from Eq. 35 in Eq. 18 is Using the compensator form in Eq. 42, 0 from Eq. 43

E. = Eq. 2and the junction matrices gives the trace in Eq. 11 as
F = Elkkl+ i)[-1 11I (38) (8+6 2 a

The equivalent feedback matrix in terms of cross-sectional trace =2

measurements (Eq. 19) is 
(s 2 -4)

2

G =-EIk (- i)[O 11 2c4,0 E V"T[0 11 race = (-8+32a)a'=o a(39) da ( 2 2) (44)
This only calls for rotation feedback and does so through a
frequency dependent compensator which is similar to a half Substituting this minimizing value for a into Eq. 42 and
differentiaror (21 but with a 90 degree phase shift. The half substituting this compensator into Eq. 19 gives
differentiator exhibits a log/log magnitude slope of 1/2 and a Elk
phase shift of 45 degrees: half that of a full differentiator. G ( + i )[0 11 =- coEI V's-[0 11

The compensator in Eq. 38 results in a closed-loop 2 2 (45)
scattering matrix of

f 0 1 which has the same gain as the noncausal compensator in Eq.
- 1 (40) 39. Notice that the optimal value for a is independent of 'n

and therefore independent of the evaluation of the integral in

As might be expected, this compensator sets the reflection Eq. 11.
coefficient from incoming to outgoing propagating wave to The closed-loop scattering matrix for this system is
zero. The resulting closed-loop junction power matrix is 1 r 1-i 1 + i

4[ I ](41 SC= 2 1 - i +iJ (46)
S"w. = , (41) and the closed-loop junction power matrix is

This Slosed-loop power matrix has eigenvalues equal to 0 and I
-8k El. Therefore, the matrix is negative semidefinite and PCL = kE (47)
incoming power is never amplified at the junction. The
compensator is optimized frequency by frequency and is Notice that the causal solution does not zero the (1,1) entry of
therefore independent of the incoming wave mode spectra the closed-loop scattering matrix. In addition, while the
given by P in Eq. 16. closed-loop junction power matrix is still negative

The primary drawback to this solution is that the semidefinite, the eigenvalues are now 0 and -2wk EI
compensator is noncausal. While a half differentiator can be indicating that, for identical incoming wave mode sets (the
approximated with relative accuracy over a broad frequency eigenvectors are unchanged). the causal control absorbs half as
range [161, a ninety degree phase shifter cannot, given the much power as the noncausa control in part one.
collocated feedback restriction. Therefore, a causal solution is
required.



Pat 3. This third pan illustrates the Wiener-Hopf of power at the active junction. If modes of the structure
solution to the optimal junction control of the free end of the reside in the frequency range where power is generated,
B-E beam in Fig. 5. Extreme care must be exercised in the instability could occur.
solution procedure to ensure that the LHPA and RHPA
functions are prrperly handled. P.ar... The compensator in Eq. 56 can be

Each ot the terms in Eq. 24 can be evaluated, approximated with the new Gis being positive real for all
remembering that ALHPA and HRHPA are as yet unknown. s=tcz. For brevity in the following discussion, a compensator
The other three terms are given by between rotation and moment with phase between 0 and 180

9da's 41-,"- -Zdegrees will be referred to as positive real. Figure 6 compares
H, 1' [+ , - "-,

(S' - - -

H"
c El (49) E

8H F 2 - 2c- V- ...
H = (e .)'L -- 2co-V_" ,2c -VT _"= (50) +.

Eqs. 49 and 50 can be spectrally factored into their LI-PA and ze- da
RHPA terms (Eq. 25) as W a

H ° J" H ° ' ---- - --- -- - -- . .. ... . . .. . . ....... . ... . .. "

bWPA D RHPA olcra (1),

to too tee, lee.

2 faa2 - 1 1] Frequency (radians/sec)
C RHPAHC LPA S + W9,) 2C oJ,'- 0 Figure 6 Feedback compensators for noncausal (a),

causal fixed-form (b), Weiner.Hopf (c)
and approximate (d) formulations.

J(S _ 2 the transfer functions of the noncausal (dashes and dots (a)),
1 0 (52) causal fixed-form (widely spaced dashes (b)), Weiner-Hopf

The first term in Eq. 26 is given by (solid (c)) and positive real approximation solutions (closely
spaced dashes (d)). Notice that both the noncajsal (a) and

H- Hi Hc causal fixed-form (b) solutions have the same 0 1 /2 magnitude
o L1IPA N cLI'A dependence but have phases which differ by 90 degrees;

which accounts for their noncausal and causal natures,
2,v/" ,, c o  " a'.\.respectively. For the Weiner-Hopf and Weiner-Hopf

2V~ a 2 (-E~ 2 s" + "'"-)s [1 01 approximation solutions, the comer frequency of 0 was
chosen as won=I00 rad/sec. Near this frequency, the Weiner-

(s + (a,) (53) Hopf solution (c) has half the magnitude and the same phase

Notice that the first term in this expression is RHPA and the as the noncausal solution. This indicates that the Weiner-Hopf

second term contains both RIPA and LHI'A parts. Using Eq. solution is better than the causal fixed-form solution at

28 with Eq. 53 substituted for H( ), the positive time part of mimicking the noncausal solution near the frequencies of

the expression in Eq. 53 is given by importance (around w=100 rad/sec). It does not match the
noncausal solution in magnitude. however, because incoming

-' 2,c a' c.oEI waves at frequencies near w=l00 rad/sec also deliver

PTF H , significant incoming power to the active junction. It seems
S + O9) reasonable to suspect that as the D matrix becomes more

banded around On=100 rad/sec, the magnitude of the Weiner-
(V2 s . /7 - (,+ 5 -I.)I10 Hopf solution will approach that of the noncausal solution.

4/s 5s (54) As shown by curves (c) and (d) in Fig. 6. a plausible
Evaluating Eq. 29 gives HRHPA as approximation could have the high frequency behavior of Eq.

/ 5s). , "56 since the Weiner-Hopf solution is positive real in this
regime. However. the approximation should provide phase

PA 0 2 0 13 (55) and gain comparable to the Weiner-Hopf. and therefore tie
noncausal solution, near w=l00 rad/sec whi!e maintaining a

The expression forG is found using Eq. 19 to be positive real form (i.e.. maintain phase between 0 and 180

4ss 3 /4 / degrees). The approximation used in this paper, whose
G = cE -4 s+ --- 0 11 transfer function is given by curve (d) in Fig. 6, is

_ nIf )(5s + C v (56)
sV s56) [0 1

Notice that if the compensator in Eq. 56 were altered to G=t4cEl s s +200 (57)
represent the feedback of rotational velocity to external
moment (G/s), the new compensator would not be positive At lyw frequencies, the gain has a frequency dependence of
real at all frequencies. At low frequencies, where the right w / which has a phase of 157.5 degrees at low frequencies
hand part of the term in parentheses dominates, the (less than 180 degrees). The phase equals that of the
compensator would be negative real and lead to the generation noncausal compensator (135 degrees) near w-=100 rad/sec.



The junction power flow can be plotted as a function of
frequency for each of the compensators (Fig. 7). From Eq.
11. the trace of the integrand gives the power flow as a

function of frequency for the chosen incoming wave mode b
spectrum ('p). The plotting of Power, scaled by frequency
(Power a)), versus the logarithm of frequency (d(log o)) gives , A
the controller cost as the area contained within the curves in Z _
Fig. 7. Notice that the noncausal solution (a) has, by \- "
definition, minimum cost. The causal fixed-form solution (b) ,
has the worst performance and highest cost due to the low E -
performance near (o=100 rad/sec. As expected, the Weiner- ' ,a
Hopf solution (c) and the noncausal solution have similar cost 10 I ,
associated near ol00 rad/sec. As desired, the Weiner-Hopf Deal
approximation (d) has only slightly higher cost. The Weiner-
Hopf solution has positive cost below 30 radisec, in Fig. 7. fill

L -so"

-., - F- 0 -O

. .. . . .. . . .. . . . . .

- z ,/ ,, to o

Frequency (radians/sec)

"""5 7Figure 8 Transfer function for open-loop (a),
causal fixed-form (b) and noncausal (c)

a compensators.

" t '20 Gas ,,

Frequency (radians/sec)

Figure 7 Closed-loop power flow for noncausal
(a), causal fixed-form (b), Weiner.Hopf
(c) and approximate (d) formulations.

due to its negative real nature at these frequencies. The a
Weiner-Hopf formulation tolerates positive cost in this region 5 b
in order to achieve lower total cost. Despite this positive cost.
the cost associated with the Weiner-Hopf solution, given by Z '-\
the integral over frequency, is the lowest for all causal '6'
compensators. 2 t

Using the phase closure principle described by MillerE

and von Flotow [151, a transfer function was derived between
force and transverse displacement at the far end of the beam
with that end modelled as a free bocndary. incoming _a _ _-_._ _
properties were El = 31.1 Nm 2. pA = 2.85 Kg/m and lengththte mdldsar body Te a
7.32m. Figure 8 compares the open-loop magnitude and
phase characteristics (a) with that obtained using the causal
fixed-form compensator (b) and the noncausal compensator(c). The noncausal compensator reflects no incoming +,,''
propagating waves as outgoing propagating waves. This I • •

feature essentially eliminates resonant behavior and the beam so
behaves as a semi-infinite beam. ._

Figure 9 compares the open-loop transfer function (a) _.
with that obtained using the Weiner-Hopf approximation (b) bi
and the noncausal compensator (c). Notice that the .
approximation causes significant increases in damping near w
= 100 rad/sec, as would be achieved using the Weiner-Hopf L -:LZ4 4
solution, while maintaining stability in the low frequency VS-
modes below 30 rad/sec, which would be destabilized by the a. -Z.
Weiner-Hopf compensator.

Frequency (radians/sec)
Figure 9 Transfer function for open-loop (a),

Weiner-Hopf positive real approximation
(b) and noncausal compensator (c).

I I Imo
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ABSTRACT matrix which relates complex wave mode amplitudes on all members
attached to that junction to the member's cross-sectional quantities.

This paper describes a series of active sm-ucnal control This relation has the form
experiments on a twenty-four foot pinned-free beam. The feedback r
compensators are derived using a travellin, wave approach. A y (Y-))i =Wi
compensator is derived which absorbs all impinging power and y(1) n= rJ.w.i" Y()w(0) (1)
thedam, eliminates resonant behavior. Since this compensator is
noncausal, a causal solution is derived and experimentally where w(m)is the vectorof wave mode amplitdes This vecom is
implemented which mimics the noncausal compensator in a select pamoned into incomin*, wi. and outgoing, wo. waves. The vec y
frequency rang Experimental dampin# results obtained using this contauis all member mosons, u. and e f. at the junction.
cmpensaor far exceed that obtainable using rate feedback.

INTRODUCTION 2 %VoW1

A wave model can be used to describe local reflection and
transmission (scattering) properties at a structural cross-section
(junco). This model is not a complete model of the structure and o
therefore does not capture resonant behavior. The model is equivalent
to the dereverberaed impedance of the structure. "Dereverberated"
refers to the impedance that would be revealed if the energy departing
the juncion never returned.

Minimization ofjuncton power flow corresponds to mahin
this impedance as closely as possible given the available control
degrees of freedom. Achievable performance increases as more
distinct actuators and sensors are used. If the impedance is matched, Figu I Generic wave junction.
mode which depend entirely on energy traversing the controled i aro neiic w e trnto n
jn wi cease exist. mo d bouary ondiionss ca be trans ormed into wave

This paper derives the compensator which maximizes energy mode coordinates and arrnged in a causal, input/output formf
absorption when using a moment actator at a pinned beam end. Outgoing waves, wo, result from the homogeneous scattering of
compensator is noncausal ad therefore not implementable. The incoting waves, wi, and the nonhomogeneous generaton by external
analysis and experimental implementation of several, causal excitations Q;
co e-ao rsisied an hcopa to- ctheperfoma= obained w.(o)= S())w, (a)+ V (-)Q (0) (2)
through race feedck

The following discussion uses experimental results to verify This description contains only local junction dynamics and does not
wave control performance. Implementation issues which limit contain information about other portions of the structue.
performance am identified. Wave dynamics, power flow and the
contrl formulaio arm covered in more detail by Miller et al (l]. JUNCTION POWER FLOW

TRAVELLING WAVE DYNAMICS Travelling waves transport energy through a strcture. This
results in a flow of power. Power at an arbitrary member cross-

This section reviews the wave dynamic equations for a section is equal to the product of the deflection velocities and
structural junction of arbitry complexity (Fig. I). The frequency collocated stresses of like type (e.g., rotational rate and moment). The
dornsidivati of o po m t (membe and junction) dynamics wu steady-state powa flow at a memb ctss-section can be expressed in
presented by von Flomw (21. Von Flotow (31 uses an assemblage of ters of the spectral components of the response variables droug the
member tansformadoa malon to derive a junction nsfotaion use of the Power Theorem. a variation of Parsevars Theorem.



Miller and von Flotow (41 show that the power flow through a
junction has the form wi

AVow 
matrix 

(3)G 

1~ra 

o ay m x

where P .P ..P (4) ,,

wave modes since Pj is Hermitian. uo
JUNCTION CONTROL ---------- ju ......... $

The waves incoming to a junction can be thought of as a Figure 4 Measurement feedback to mimicking thedisturbance to that junction. Conceptually, the disturbance is feedtforward of incoming wave amplitudesmeasured and fed to the actuators in order to reduce the power Addinga quadratic control effort penalty, R. to the power termassociated with the resulting outgoing waves (Fig. 2). This 3 ad ing thed expic tedn al f the wer tionarchitecture assumes that measurements of the incoming wave mode .3 and taking the expected value of the resultig inteal relaasoamplitudes are available,

I y IE { (wPw + Q RQ)d }

2fi~(EPw + RQQHY))doj

2JfrK~(P~aI),,.oi+ R (co)0.(ca))dD
"Q (Sa)

where the assumed power spectral densities of the wave modes and
:control effort are given by

Figure 2 Feedforward of incoming wave modes

It is desirable to use cross-sectional variables as feedback 0-(0) E (w E ( Y H)measurements. The vector u contains measurable cross-sectional. The trace of Eq. 5 can be minimized upon substitution ofquantities while f contains those cross-sectional quantities that arecommanded by the actuators. Equation 1 can be used to express the K = + Y.. Samplitudes in u in terms of both incoming and outgoing waves. This (6)results in the feedforward of incoming and the feedback of outgoing Hd)HH HHwave mode amplitudes (Fig. 3). The control compensator, G, must = E (E ) = E (HKww7 K H ) = HK. . K H  (7be causal for real time implementation.
Rearrangement of the block diagram in Fig. 3 yields a =structure identical to that in Fig. 2 (see Fig. 4). This illustrates that (8)

This is done, using the calculus of variations, by perturbing thefeedforward matrix, H, by a perturbation matrix, I, scaled by a small
W w parameter, E

The condition that the optimal compensator matrix must satisfyis found by minimizing the cost with respect to the small parameter .
The relation governing the optimal compensator matrix, H, is then

0 found by allowing e to approach zero. The first variation of the cost is

G= fRe(trace(oH(W (Pa + P.S)

Y + V' P. v + R )HK0K ))dOK (10)
member where the real part of the trace is retained. At this point, thedynamics meanuments dynamics optmization problem can proceed in several directions based upon the' ' perturbations allowed.

Figure 3 Feedback of crosssectional measurements
Noncausal Solution

Since the optimal noncausal solution is sought, no constraint is
placed upon F. Therefore, the optimal gain matrix H must make Eq.cross-sectional variables can be used as feedback measurements to 10 satisfymtimic the feedforward of incoming wave mode amplitudes.For control purposes, a combination of power flow and = 0 (II)control effort will be minimized. Incoming power is defined as for any arbitrary perturbation given by 11H. This indicates that ii, andnegatively flowing. Since power flow is expressed in terms of its therefore the feedforward compensator H. may contain both right andfrequency components, a frequency domain formulation is used. left half complex plane dynamics.



Equaton 11 is satisfied if EXPERIMENT CONTROL FORMULATION

HK =-(~VNP..V + R) + P..S JF (12) This section derives the various junction controllers used in the
experiments. The noncausal (part 1). causal fixed-form (part 2), W.H

Equation 12 gives the compensator (F in Fig. 2) that feeds the (part 3), W-H positive real approximation (part 4) and rate feedback
incoming wave mode amplitudes to the control actuators. The gain (part 5) solutions are applied to the left, pinned end of a dispersive,
matrix G in Fig. 4 which feeds cross-sectional junction motions to undamped, uniform, Bemoulli-Euler beam (Fig. 5). The governing
control inputs, and represents the implemented compensator, can be P.D.E. is
found by solving Eq. 12 for H and substituting into

G = (I + HYV)'H (13) & 
4  =O (19)

This procedure minimizes power flow frequency by frequency where E, 1, p and A are the modulus of elasticity, area moment of
and provides no guarantee that the compensator will be causal or inertia, volume density of mass and cross-sectional area, respectively,
implementable. Therefore, the next section discusses a technique for and v(x,t) is the transverse displacement coordinate. In Fig. 5, x=0 at
finding a causal solution. the pinned end.

From the dispersion relation, the wave number k is expressed
Causal. Fixed-Form Parameter Optimization in terms of the complex Laplace variable, s, as

The first step in the solution procedure is to select a causal k = 4.V;R" VOT"= yv "s " cmn
compensator form with variable gain

Notice that the right side of Eq. 20, k(s), is the analytic continuation,
H (s) = a h (s) (14) throughout the complex plane, of the function on the left side, k(w),

This form is then substituted into Eq. 5 and the trace is minimized which is valid on the imaginary axis.
with respect to the variable gain, t. The compensator G(s) is found
using Eq. 13. The effectiveness of the resulting compensator is
entirely dependent upon the insight of the designer in the selection of Power Amplifier 4- Analog Compter 4+ Signal Amplifier
h(s). (Current Source)

Causal Solution Using Wiener-Hopf Techniques EA

The following discussion on the Wiener-Hopf (W-H) Shaker
technique is summarized from Miller et al [1]. The fundamental Acceleration
difference between the free-form causal solution and the free-form
noncausal solution is the definition of "allowable" perturbations. In
the noncausal solution, the perturbing matrix, 71, was permitted to be Beam
arbitrary. In the problem at hand, must be causal. Equation 13 Acuator
guarantees this if the optimal feedforward compensator matrix, H. is Moment
constrained to be causal and stable, analytic in the right half of the
complex Laplace plane (i.e., right half plane analytic (RHPA)). Nicle 1 SignalogY
Therefore, the matrix Tl which perturbs H from its optimal form must igota Signal
itself be causal. In other words, in the search for the optimal, causal O rocesing
compensator, only causal perturbations are permitted. Since 71 is Ocloscpe Peripheral
RHPA, fiH is LHPA. L

The optimal compensator (HRHPA), for arbitrary LHPA FIGURE S Experiment schematic
perturbations in TH, must cause The motion, as composed of wave modes supported by the

+ P. S) + ( V' v. R)HwpAK)OK (15) partial differential equation in Eq. 19, is given by

to be LHPA. If terms which are not analytic in the left half plane do V (x t )= wie"' 04+ w,,e1 <'u"

exist in this expression, then the integral in Eq. 10, when the contour + we -4Z .0t + w e A' o
is closed about the left half plane, will be nonzero for some RHPA T1, (21)
and the stationary cost constraint (Eq. 11) will not be satisfied.
Therefore, the expression in Eq. 15 must be equal to some LHPA The +/- symbol preserves propagation direction when ca is positive or
function, so that negative. For brevity, this notation will be truncated to include only

P, +P S H)K the upper sign. Using Eq. 21, the junction transformation (Eq. 1) is
K Oi k -ik -A I .

-+ALHPA (16) Ely'" iElk' -ElkW -i Elk' Elk w,

The W-H technique proceeds as follows. First, it is observed Elu" L-Em' lk 2 -_El,' ElliWJ (22)

that Eq. 16 has the form

HN + HoH HcA A (17) where
=(17) Wlp leftward propagating, incoming wave

Solving the RHPA part of this relation for HR~qpA gives Wle leftward emanating evanescent, incoming wave
w~p rightward propagating, outgoing wave

H- F -, HH -8 Tew rightward emanating evanescent, outgoing wave
HP a (= - PAPTF(Ho pHHcip)Hc mm (18) Thescattering matrix for a pinned boundary condition is

The final step involves evaluating G using HRHPA from Eq. 18 in 0
place of H in Eq. 13. S 1 (23)

This outlines a W-H approach to the junction wave control
problem. Given that future information is not available to the The wave generation matrix and assumed incoming wave mode
controller, a reduction in performance over the noncausal case might spectrum are
be expected.



EmA,

1 W k 1 r -1~A positive real approximation to Eq. 29 is required to
k = 2 guarantee stability. This W-H approximation should murmc the W-H

2EIk 3L 1 ik , (24) solution in the frequency range in which Eq. 29 is positive real (above
2 Hz). Looking at the right hand term in Eq. 29, the high frequency

a' r 1 01 a2 (S3/4) behavior and gain (8coEI/50n14 ) are used in the approximation

22Lo 1 J2 (Eq. 30). The first order pole in Eq. 30
(25) 8cEI 2 r

where W/M is the wave generation matrix with only moment actuation s + 92 ./" - EIU' (30)
(no forci). The junction power matrix is maintains the phase between 67.5 and 157.5 degrees (positive real).

-1 0 0 0 1The corner frequency of 92 rad/sec provides the best match with ther0 0 0 W-H phase. The transfer function of Eq. 30 is shown by curve (d) n
P El 0 0 1 0 Fig. 6.

0o - i 0 0 (26)

If only moment actuation is used, cheap control can be derived ......
(R = 0). The noncausal feedback matrix in terms of cross-sectional , ; "
measurements (Eq. 12 and 13) is .

d

- EIU (27) *Ge

This calls for rotation feedback and does so through a frequency C "
dependent compensator which is similar to a half differentator, but
shifted 90 degrees. The compensator is optimized frequency by W d....... a
frequency and is therefore independent of the incoming wave mode V
spectruum
is noncausal While a half differentiator can be approximated (5], a
ninety degree phase shifter cannot. Therefore, a causal solution is that.the.compensatorninety dege phsesifercnnt.Terfre acusl outoni 6m

required. Frequency (Hz)

P= l2 Figure 6 Feedback compensators for noncausal (a),
This second part illustrates the use of a causal fixed-form causal fixed-form (b), W.H (c), W-H approximation (d)

parameter optimization technique. The form of the -, ncausal and rate feedback (e).
compensator in Eq. 27, shifted 90 degrees, will be used. Minimizing This W-H approximation is used, in place of the W-H
the cost with respect to a variable gain yields compensator, for the duration of this paper.

-E Eu' .(28) For comparison purposes, rate feedback is analyzed and

Notice that the gain equals that in Eq. 27. experimentally implemented. The gain that maximizes damping in a
mode at 10 Hz was used. The approximate gain, determined through

Pan 3- simulation, is

This third part gives the W-H solution. The expression for G, M =3s[101 V"'
found using Eqs. 18 and 13, is - EIu " (31)

=- c E7 - - (o ' ,.).! 1 ( The magnitude and phase are given by curve (e) in Fig. 6.
J L 3 . - - Ef (29) Sim ulains

Notice that if the compensator in Eq. 29 were altered to
represent the feedback of rotational veloilv td external moment (G/s), Using the phase closure principle described by Mer and von
the new compensator would not be positive real at all frequencies. At Flotow (4], a transfer function was derived between force and
low frequencies, where the left hand part of the term in paientheses transverse displacement at the opposite, free end of the beam. The
dominates, the compensator would be negative real and lead to the beam properties are given in Table 1.
generation of power at the active junction. This could lead to Figure 7 compares the open-loop magnitude characteristics (a)
inst with those obtained using rate feedback (b) and the noncausal

Figure 6 compares the transfer functions of the noncausal (a), compensator (c). For rate feedback, notice that damping is a function
causal fixed-form (b) and W-H (c) solutions. For the W-H solution, of frequency. Below 10 Hz., the gain is lower than optimal. Above
the corner frequency of D was chosen as tOn= 6 .4 Hz. Near this 10 Hz., the gain is higher than optimal. The latter leads to clamping
frequency, the W-H solution has half the magnitude and the same of the pinned end. This simulation is provided as a comparison for
phase as the noncausal solution. The W-H solution is better than the the performance of the wave control compensators.
causal fixed-form solution at mimicking the noncausal solution near The noncausal compensator reflects no incoming propagating
the frequencies of importance, around w=6.4 Hz. It seems reasonable waves as outgoing propagating waves. This feature essentially
to suspect that as the 0 matrix becomes more banded around con, the eliminates resonant behavior and the beam behaves as a semi-infinite
magnitude of the W-H solution will approach that of the noncausal beam. The achievement of this type of performance is the objective of
solution. this work and represents the upper performance bound in these

simulations.



Figure 8 shows the magnitude characteristics obtained using
the causal fixed-form compensator (b). The selected form of the
compensator causes the damping to be independent of frequency.
Though the damping performance in the neighborhood of 10 Hz. is
less than that obtainable using rate feedback, the damping is more b

broadband.
Figure 9 shows the transfer functior obtained using the W-H ., -

approximation (b). Notice the significant increases in damping near (a -
U10 Hz. .

In general, as more narrowband damping performance is .
achieved, broadband damping performance is sacrificed. Notcethat
Fig. 6 shows that the magnitude of the W-H approximation (s3/4) C
increases less rapidly with frequency than rate feedback (sl but more
rapidly than the causal, fixed-form compensator (sl/2); which
maximizes broadband damping. On the other hand, the phase of rate
feedback is slightly closer to that of the noncausal compensator at
higher frequencies. These observations, in conjunction with the

I I liii II I I 

TABLE I Beam Properties ., 1 ,6 1

Lengh 7.32 m Frequency (Hz)
Width 10.20 cm
Thickness 0.3175 c Figure 7 Transfer function for open.loop (a), rate
El 31.1 N naS feedback (b) and noncausal (c) compensators.
pA 2.85 kg/rm

Damping ratio averages 0.30% below 30 Hz.

simulations, give no indication that rate feedback provides mome total b
damping than the W-H approximation. 1

Of the three compensators simulated, the W-H approximation
provides the best narrowband performance since it provides a better .
approximation of the noncausal compensator near 10 Hz. .a

EXPERIMENT SETUP

This section describes the various hardware components used
in the conduct of the experiments. These components are 1) the
structure, 2) the control hardware, 3) the control computer and 4) the
shaker and sensor used to measure the open and closed-loop transfer
functions. Finally, the experiment protocol is briefly described.
Figure 5 displays the functional elements of the experiment.
Stuc Chrcics

.1 a a. 166

T",e controlled structure is a 24 foot brass beam, suspended Frequency (Hz)

from six pairs of wire, with its longitudinal axis horizontal (Table 1).
The suspension wires attach to the beam at one seventh length Figure 8 Transfer function for open-loop (a), causal,
intervals with the two beam ends left free for the attachment of the fixed-form (b) and noncausal (c) compensators.
control and shaker hardware.

Control Har-dware (Tharacteiics

The control hardware consists of the control actuator and the
sensor used to obtain the feedback measurement. A PMI motor with a b
low inertia, laser etched armature was chosen. The armature was " .

clamped to the beam with the permanent magnet clamped to the
laboratory frame. This replicates the pinned condition used in the " i *.

model. The specifications for the actuator and sensor are listed in a -

Table 2 and a drawing of the hardware attached to the beam end is . |
shown in Figure 10. 10., f

The control computer is a PACE TR-48 analog computer. The -,
two types of fractional elements used in the experiment are a half
(l/s 1

/
2 ) (51 and a quarter (l/s1 / 4 ) (61 integrator. The circuit - I,

approximations exhibited good accuracy from 0. 1 to 1000 Hz.

Shaker and Sensor Hardware . _

Shaker and sensor hardware are attached to the other end of I U am
the beam for acquisition of transfer function data. The shaker is a Frequency (Hz)
pivoting proof-mass actuator [71 and the sensor is a linear
accelerometer measuring transverse beam acceleration. The Figure 9 Transfer function for open-loop (a), W.H
specifications are given in Table 3. approximation (b) and noncausal (c) compensators.



implementation of the W-H approximation. The fifth test involves
TOP VIEW implementing the highest stable gain using the W-H approximation.

In the following discussion, the results of these live tests are
compared using measured transfer functions. First, however, the

AccIlrometer implemented compensators are discussed.

Feedback Comoensators

Three different feedback compensators are implemented. In
the derivation of the control compensators, feedback from rotational
acceleration to moment was assumed. Therefore, the implemented
compensators equal the analytical compensators scaled by the
frequency squared. Between 0.5 and 50 Hz.. Eqs. 32, 33 and 34
have the same gain as the analytical compensators.

The rate feedback compensator is given by

SIDE VIEW M(s) =031 -10 -628
Smaft . Szu '(S S2+ 0.889 3 +0.394 S +628 (32)

.The middle portion is a stabilized integrator with a corner frequency of
A aam 0.1 Hz. and a damping ratio of 0.7071. This filters and integrates

frequencies below and above 0.1 Hz., respectively. The right portion
contains a first order filter to eliminate an instability, at I 180 Hz.,
caused by the lightly damped feedback accelerometer.

The causal, fixed-form compensator is given byFIGURE 10 Views of control hardware.
M(s) -108 0-2.58

TABLE 2 Control hardware speciflcations 'u(8 0.9s0 ) + 0. 88 s + 0. 394 -;r" (3:.,
Torque Actuator

Manufacurer/model PMI U-9 Again, the middle tm is a stabilized integrator while the right term is
Torque constant 0.0212 N m/ain a 'half integrator.'
Armature plus arm inertia 0.000146 Kg ml The W-H approximation is given by
Motordiameter 0.1048m M(s) -92 .- 700 3.348
Motor thickness 0.0345 m =-0.039 -+2 -s700 -
Current source EG&G PA-601 s2 '(s) $ + 9 +700 / (34)

Gain -2.08 Amps/volt
Plezo Resistive Accelerometer The left term is the first order pole shown in Eq. 30. The middle t'm

Manufacturer/model Endevco 2262-25 is a low pass filter and the right term is a 'quarter integrator.'
Excitation voltage 10.00 volts
Gain with amplifier 2.86 V/Wsec2  Random Excitation Tests
Corner frequency 1200 Hz Figure II shows the measured transfer functions for the five
Damping light different tests. Figure 12 shows the predicted transfer functions for
Distance from motor pivot 0.062 m these same tests. The presentation of the data is ordered starting with

the compensator which provides the best broadband damping to the
TABLE 3 Shaker and sensor specifications, one providing the best narrowband damping. Notice that the model,

Shaker's DC Servo Motor based on measured values of El, pA and length, predict open-loop
Manufacturer/model Pittman 7214 poles and zeroes within 4% of their measured frequencies.
Torque constant 0.0357 N m/amp Figure 1 la compares the transfer functions of the beam in
Current source EG&G PA-223 open-loop (a) and in closed-loop (b) using the causal, fixed-form

Gain -1.87 Amps/volt compensator at the optimal gain. While this solution exhibits a more
Piezo Resistive Accelerometer broadband affect than the rate feedback, this is achieved by sacrificing

narrowband damping performance. Notice that torsional modes
Manufact07er/model End8vco 2262-25 appear in the data above 10 Hz. Figure 12a compares the equivalent

(see Table 2) 0simulation transfer functions over the same 3 to 30 Hz. frequency
range. While the experimenta data indicates damping performance
that is independent of frequency, the level of damping appears to

Ea~mme Protocl exceed that predicted. This could result from lower open-loop
The open-loop transfer function is measured for a frequency damping in the simulation model than in the actual beam.

range of 0.5 to 50 Hz. Then, for each feedback compensator used, Figure 1 lb shows the closed-loop transfer function (b) using
the following iterative procedure is followed. First, a circuit gain, rate feedback. As supported by the simulation, rate feedback provides
variable between 0 and 1. is increased until the onset of instability or better narrow band damping performance than the causal, fixed-form
the arrival at the optimal gain. In the event of instability, the cause is compensator. It is difficult, however, to judge the broadband
identified. Once eliminated, the procedure is repeated. If the optimal behavior using this narrow frequency range. Figure 12b shows the
gain is reached, or an instability cannot be eliminated, the transfer simulated transfer function.
function of the beam is measured. Figure 1 Ic shows the closed-loop transfer function using the

W-H approximation (b) given in Eq. 34 at the optimal gain. In the
EXPERIMENTAL RESULTS frequency range of 10 to 20 Hz., the damping performance exceeds

that shown in Figs. I la and b. Notice that the high frequency
The results of five tests are summarized in this section. The decrease in damping is perceptible. Figure 12c displays the simulated

first test consists of obtaining the transfer function of the beam in open transfer function.
loop. The second test uses the causal, fixed-form compensator to Good agreement exists between the experimental and
control the beam. The third test acquires the same information for the simulated data below 20 Hz. However, the damping in the
beam controlled using rate feedback. The fourth test involves the experimental data above 20 Hz. exceeds that predicted. This could be
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caned by the noise floor, or resolution of the accelerometer. limiting CONCLUSIONS
the gain at these frequencies. Given an excitation level, increases in
gain will eventually clamp the pinned beam at high frequency. This If the control objective is to extract energy from the structure,
results in lower amplitudes at these frequencies. Eventually, the maximizing power absorption frequency by frequency provides the
feedback signal will drop below a noise threshold, resulting in poor best solution. As shown, however, there is no guarantee that this
signal-to-noise ratio, and limit both the further increase in gain and compensator will be implementable, raising the need for causal
associated reduction in damping, solutions.

Figure I d shows the closed-loop transfer function using the Two alternative techniques were illustrated for finding causal
W-H approximation with a gain that is 1.55 times larger than the compensators under given hardware constraints. The W-H approach
optimal gain. As shown in Fig 6, this causes the W-H compensator to was shown to provide better narrowband damping performance than
better replicate the noncausal compensator. If the optimal gain wen rate feedback without perceptible degradation in broadband damping

doubled, this compensator would have the same gain and phase as the performance. This was achieved because the W-H technique more

noncausal compensator and the mode near 6.4 Hz. would be closely mimics the magnitude and phase of the noncausal
eliminated. Between 8 and 10 Hz., the magnitude approaches a line compensator.

with a slope of -3/2. The simulation (Fig. 12d) at this gain predicts a The limitation to the W-H procedure is that it does not

slightly different behavior. This could result from the small amount of guarantee that the compensator has a positive real form. Therefore, a

additional lag in the implemented compensator when compared with positive real approximation to the W-H compensator was derived,
Eq 34. using enginng insight. Further work is needed to consmin the W.

Of the compensators implemented, the W-H approximation H formulation to yield a positive real compensator.
provided the most damping in a single mode. This occurred because This W-H approximation was ilesnented experimentally and
the causal, fixed-form solution is broadband while rate feedback achieved predicted levels of damping. These levels of damping were
transitions from damping to clamping with increasing gain, without shown to far exceed the levels of damping that could be achieved
achieving a gain and phase which equal that of the noncausal through rate feedback. Limitations to performance included the
compensato, discovery of frequencies above which the sensor and actuator were no

longer dual and the inadvertent coupling of the control hardware to
unmodelled torsion modes in the structure. The unsuppressed
instability occurred at a frequency near the 80h bending mode.The fiurst encountered instability was caused by the lightly

damped feedback accelerometer with a resonance at 1200 Hz. This ACKNOWLEDGEMENTS
was suppressed with a first order, low pass filter.

The second encountered instability was due to the flexibility o This research effort was supported by the National
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Abstract

A technique is described for generating guaranteed stable control laws for uncertain,

modally dense structures with collocated sensors and actuators. By ignoring the rever-

berant response created by reflections from other parts of the structure, a dereverberated

mobility model can be developed which accurately models the local dynamics of the struc-

ture. This is similar in many respects to a wave based model, but can treat more general

structures, not only those that can be represented as a collection of waveguides. This

model can be determined directly from transfer function data using an analysis technique

based on the complex cepstrum. In order to minimize the effect of disturbances propa-

gating through the structure, the power dissipated by the controller is maximized in an

M,, sense. This guarantees that the controller is positive real, and thus that the system

will remain stable for any uncertainty, provided that the power flow is correctly modelled.

The approach is demonstrated for two examples. The resulting controllers are much more

effective than simple collocated rate feedback.

Introduction

Broadband active control of flexible structures is difficult for several reasons. Struc-

tures tend to be very lightly damped, modally rich, and difficult to model in detail, due

to their large sensitivity to parameter variations. It is well known' that for many ap-

plications, there are likely to be many flexible modes within the desired bandwidth of a

structural control system. This is due in part to the anticipated light damping, which

implies that many modes can contribute to the performance, as in large space structures,

where many problems of interest demand extremely precise pointing. Also, performance

requirements may push the bandwidth higher directly, for example in noise control of

machinery, where the bandwidth must clearly include acoustic frequencies, and therefore

many flexible modes.

One of the problems associated with broadband control of structures is the uncertainty

in the plant model. A state space model of a structure must be at best an approximation,
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since the true structure is infinite-dimensional. Finite element methods are typically used

to model a structure, and are sometimes capable of modelling the lowest modes quite ac-

curately. However, in the region of high modal density, any model is likely to be highly

inaccurate. Models of structures with closely spaced modes in particular tend to be ex-

tremely sensitive to small parameter changes, in their prediction of natural frequencies,

and especially in their prediction of mode shapes. As a result, the actual structure to

which the control wil 1 eventually be applied may differ significantly from the model for

which it was designed. Thus some knowledge about the uncertainty must be taken into

account when designing the controllers.

Many approaches to control design for uncertain structures2' ,3 begin with a large order,

detailed nominal model of the structure, and deal with uncertainty by attempting to

model it, as well as the nominal plant, in some fashion. However, if the nominal model

contains significant error, then the detailed information it contains is meaningless, and

has no effect other than to increase the computational burden associated with the control

design. Indeed, for broadband control of a modally rich structure, the dimension of the

plant required to model each mode may be prohibitive for many control design techniques.

Instead, only the information that can be accurately modelled should be included in the

description of the plant". With this philosophy, there has been much recent research on

the use of wave based models for use in structural control, see for example Refer-,ces 5-12.

Here the assumption is that the local dynamics can be accurately modelled, and that an

effective control system can be derived based only on this information.

Of particular relevance to this paper is the optimal control approach of Miller et al.'.

The structure is represented as being composed of one-dimensional waveguides, i.e. struc-

tures which support travelling waves along a single dimension, such as beams in bending,

or rods in compression. These meet at junctions, and only the junction at which the control

acts is modelled. Using Weiner-Hopf techniques to ensure causality, Miller et al. maximize

the frequency weighted power dissipation associated with the control. The drawback to

this optimization is that it will allow power to be generated at some frequencies in order to

achieve greater power dissipation at other frequencies. If there is a mode of the system at
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such a frequency, it may be destabilized by this compensator. While power generation may

be acceptable in a frequency range where the modes are well known, it is not satisfactory

if the uncertainty in modal frequency is comparable to the modal spacing. Tx.s problem

is corrected by approximating the optimal compensator with a positive real form, which

is guaranteed to be stabilizing. The final result, then, is suboptimal, because the positive

real constraint is applied in a somewhat ad hoc manner. Furthermore, arbitrary structures

may be difficult to model using this approach because of the difficulty in obtaining an

accurate wave description. Thus while this design procedure is attractive, an approach

which treats more general structures and provides a guarantee of stability is desired.

This paper describes a new approach to the modelling and control of uncertain struc-

tures that will guarantee both stability robustness and some amount of performance ro-

bustness. The goal is to provide broadband damping to the structure. This might be

used in conjunction with a low order modal-based compensator which could provide good

performance on those modes that could be well modelled. Thus this could be used as

the low authority controller in a HAC/LAC architecture 3 , rather than the rate feedback

typically used. Rate feedback is guaranteed to be stable, but it is not necessarily optimal.

In general it is possible to add more damping to a structure than can be obtained through

rate feedback6 . Further details on the approach of this paper can be found in Reference

14, and experimental results obtained using this approach are presented in Reference 15.

The model used in this paper is the dereverberated mobility 4' 16 , which will be described

in more detail in the following section. This is calculated between a collocated and dual

actuator/sensor pair, which means that the product of the two variables is the power flow

into the structure. Only that part of the response which is due to the local dynamics of the

sLructure near the actuator and sensor is retained in the dereverberated mobility model.

This can be shown to correspond in the frequency domain to an averaging, or smoothing,

of the transfer function. This model bears some relationship to the wave approach of

Reference 5, but it is more general, as it allows structures which are not networks of

waveguides to be treated. It also has the advantage that it can be derived either from

analytical, or from experimental data.
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Since the driving point mobility of a structure is positive real, stability can be guaran-

teed by requiring that the compensator be positive real17 . This is assured by minimizing

the maximum value over frequency of the power flow into the structure, which results in

power being dissipated at all frequencies. Taking energy as the Lyapunov function shows

that the closed loop system must be stable for all plants, provided that the sensors and ac-

tuators are not mismodelled. In the presence of actuator and sensor dynamics, time delays,

or actuators and sensors that are not quite collocated, stability can still be checked using

the results of Slater et al.17 . Extensions to the design procedure to guarantee stability in

these cases will be the subject of future work.

Modelling

The intent of this section is to develop a useful model for control design for uncertain

modally dense systems. It has been pointed out7' 18 that modes are not useful in this case.

The detailed information contained in a modal model is often incorrect, and may also

be unimportant. While detailed knowledge of the exact mode shapes and frequencies is

unavailable, this does not imply that nothing is known about the structure, or that nothing

can be done to control it. In the presence of significant uncertainty, the local dynamics near

an actuator can still be well modelled. There is, however, very little information that can

be relied upon about the behavior of the structure between an actuator and sensor which

are separated by many wavelengths of the disturbance. Thus for broadband control, it is

reasonable to require that feedback only be used between collocated sensors and actuators.

For some arbitrary structure, as shown in Figure 1, insight into the nature of the prob-

lem can be obtained from a wave perspective. Various disturbances are created at certain

points in the structure and propagate through it. At any point in the structure, such as at

an actuator, the disturbance will be scattered. In general, each of the resulting outgoing

disturbances will eventually affect any global cost criterion. Thus from the perspective of

the actuator, without a detailed and accurate description of how each wave propagates, its

goal should be to minimize the energy of each of these disturbances. Since the scattering

behavior is a function of only the local dynamics, this goal can be achieved with only a
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local model of the structure. Thus for a sufficiently uncertain structure, a local model

contains all the information that can be accurately determined, and also contains enough

information for effective control design.

One approach to obtaining such a model is through the use of waves. However, it may

be difficult to obtain a useful wave description for many complicated structures, because

not all structures can be well represented as a collection of waveguides. An alternative to a

wave approach is to represent the structure by its dereverberated driving point mobility16 .

The mobility is the ratio of a generalized velocity and a generalized force, which is the

inverse of the mechanical impedance. The driving point mobility is then the transfer

function between two variables whose product is the power flow into the structure, thus

the sensors and actuators must be both collocated and dual. The response at a point

can be considered to be the sum of two parts: a direct field, due to the local dynamics;

and a reverberant field, which is caused by energy reflected back from other parts of the

structure. The term "dereverberated" implies that the "reverberant" part of the response

has been removed before computing the mobility. It should be possible to model the direct

field more easily and accurately than the reverberant field, as it depends only on a few

parameters, while the reverberent field depends on the entire structure. For the same

reason, it is the reverberant field that contains greater detail, and requires more degrees of

freedom to model. Thus by using the dereverberated mobility, a lower order model can be

used that is based only on the details of the structure which can be accurately modelled.

The dereverberated mobility may be calculated through the use of the cepstrum 6 of

the impulse response. The cepstrum is the inverse Fourier transform of the log of the

complex spectrum, and is a function of time. The low time portion corresponds to the

direct response, and the high time portions correspond to the reverberant response, with

spikes at times corresponding to the return times of the impulse from the rest of the

structure. Windowing the cepstrum before the first of these yields the direct response,

which can then be transformed back to the frequency domain to yield the dereverberated

mobility. This approach is shown schematically in Figure 2 for the transfer function from

force to collocated velocity at one end of a free-free beam. The dereverberated mobility
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and cepstrum in this figure were calculated directly from the exact local model of the

structure. The cepstrum of the dereverberated structure is only approximated by the

truncated cepstrum of the original reverberant system.

The truncation time to choose can be based on the level of confidence in the impulse

response data. This illustrates one of the differences between the dereverberated mobility

and a local wave model, that being direct control over how much of the structure is included

in the model. By truncating the cepstrum at the appropriate point, some information about

the rest of the structure is maintained while the details of it are ignored. Thus the control

design is provided with more information, allowing it to do a better job.

The fundamental distinction between this and the wave approach is the ability to treat

generic structures. While the concept of direct and reverberant fields is based on wave

ideas, there is no requirement to actually identify a local wave model. All that is needed

is the input/output behavior at the driving point, which may be found from experimental

data, calculated from some nominal model, or found analytically, perhaps even from a

wave model. This also indicates another important advantage of this modelling approach

- the ability to use experimental data to generate a measurement based model.

The effect of ignoring the reverberant field is to smooth out the transfer function. If

no energy returns from beyond some closed surface surrounding the actuator, then this is

equivalent to the structure beyond this surface either being infinite in extent, or having

perfectly absorbing boundary conditions. This has also been shown' 9 to be equivalent

to replacing the log magnitude of the original transfer function with its mean. This is not

surprising, considering that the cepstral analysis approach described earlier is essentially

the same as low-pass filtering the logarithmic frequency response. Thus another way to

compute the dereverberated mobility is simply to take the logarithmic average of the

magnitude of the transfer function, with the phase being determined uniquely from the

fact that the dereverberated mobility is positive real. In practice, this method should

be adequate. Fitting the result with a rational polynomial gives a model that captures

the essential dynamics of the system over a wide frequency range that encompasses many

modes, with only a small number of poles and zeroes.
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The dereverberated mobility model is not intended to accurately represent the structure

- it clearly fails in this regard. However, it is shown in the examples that this can be

a useful model for the design of control systems for the structure. Although the local

dynamics of the controlled junction are accurately modelled by the dereverberated mobility,

the resonant and anti-resonant details of the full reverberant mobility are not _xplicitly

modelled. However, the reverberant field is composed of waves whose behavior is governed

by the local dynamics of the controlled junction each time they pass through it. Thus if the

local dynamics can be appropriately modified based on a local model, then the complete

reverberant field can be controlled.

Control Design

The previous section described the modelling approach used, while this section focuses

on the design of the control system for this model. There are two main objectives to be

satisfied by the control design. It must be guaranteed to be stabilizing for all possible

plants, and it must provide good performance, again for all possible plants. In order to

guarantee stability, positive real feedback from velocity to force will be required. One

could, for example, select rate feedback, which is guaranteed to be stable, but this does

not necessarily give the best performance that could be achieved. The object of this section

is to derive the optimal positive real compensator.

The criterion to be used for optimality will be the minimum power flow into the struc-

ture. That is, power extracted from the structure will be maximized. Power flow is the

appropriate quantity to minimize to provide active damping of the structure, and allows

a guarantee of stability by ensuring that the power flowing into the structure due to the

control is always negative.

Miller et al.' minimized the N2 norm of the power flow. This required some assumptions

about the power spectral density of the disturbance entering the junction, which in the

actual structure is related to the control through the disturbance that previously departed

the junction. In the wave model, however, it was assumed constant and independent
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of the control, and thus the resulting compensator allowed power to be added at some

frequencies. This problem can be avoided by minimizing the power flow in an Mo setting.

For an open-loop system, the power removed by the controller is zero, and the closed loop

is guaranteed to be no worse. In fact, it is sufficient to place a constraint on the maximum

value of the power flow which guarantees it to be negative at all frequencies, and then to

use an N2 optimization2 ° , which may improve the overall performance.

Define G(s) to be the dereverberated driving point mobility, and assume some distur-

bance input d to be additive at the output. Then the output y is related to the input u

and the disturbance via

y (s) = G (s) u(a) + d (a)()

As yet, no assumptions have been made about the nature of the disturbance.

The disturbance d in Equation (1) can be thought of as originating from two sources:

the original disturbance input to the real structure, and the reverberant field ignored

in the modelling process. This second source will have significant power at the modal

frequencies, and if the closed loop damping is still relatively small, then in steady state

this will be much larger than the physical disturbance. Thus the disturbance spectrum in

Equation (1) consists of significant power in narrowband but unknown frequency ranges,

which are exactly the assumptions indicated in Reference 20 as being appropriate for k"o

minimization.

The instantaneous power flow into the structure is the product of the input u(t) and

the output y(t), since G(s) is a mobility. The average power flow can be expressed as a

time integral of the instantaneous power flow2 1, and making use of Parseval's theorem, this

can be transformed into the frequency domain:

Pave = lim 1 T Y(t)Tu(t)dtT--o 2T

- f. (u(jWl)"y~jw) + y(jW)Hu(jw)) (2)

The integrand of the right hand side of Equation (2) represents the steady state, or average,

power flow into the structure as a function of frequency21 . For convenience, the average
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power flow at each frequency can be defined without the factor of 1 as

P(W) = u(.j)HY(iw) + Y(jw)Hu(Jw) (3)

where (.)H indicates Hermitian, or complex conjugate transpose.

The control law is assumed to be of the form

u(s) = -K(s)y(s) (4)

Solving for the control in terms of the disturbance from Equation (1) gives

u = -(I+ KG)-'Kd (5)

= Hd (6)

where the explicit dependence on the Laplace transform variable has been dropped. Then

the output can also be represented in terms of the disturbance as

y = (I + GH)d (7)

Substituting these expressions for u and y irto Equation (3) yields that the average

power flow at each frequency is

P(w) = dH {HH (I + GH) + (I + GH)H H} d (8)

Since the power flow is a scalar, it is equal to its trace. The expected value of the power

flow at each complex frequency can then be written in terms of the power spectral density

of the disturbance, Odd = E [ddH], as

E(P(w)) = Trace { - [HH(I + GH) + (I + GH)HH]} (9)

Unconstrained Optimum

Before finding a compensator which minimizes the worst case power flow, consider

finding the compensator which minimizes the power flow at each value of the Laplace

transform variable a. Equation (9) is only valid on the jw axis, and must first be extended
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analytically to the remainder of the complex plane. The analytic continuation of the

Hermitian operator is the parahermitian conjugate22 , denoted (.)~, and defined as

F~(s) = F(-s)T (10)

With this substitution for the Hermitian, then optimizing Equation (9) at each point in

the complex plane with respect to H yields

Hop, = -(G + C) -  (11)

which is independent of the disturbance spectrum 'd. This is the optimal disturbance

feedforward control law. The equivalent feedback from the velocity is related to this from

Equations (5) and (6), by

K = -II(I+GH)- (12)

So finally,

go, '= (G-) - '  (13)

This compensator extracts the maximum possible power from the structure at every fre-

quency. This result is not new; it corresponds to the impedance matching condition found,

for example, in Reference 23. The maximum energy dissipation is obtained if the impedance

of the compensator is the complex conjugate of the impedance of the load, which in this

case is the rest of the structure. Also note that although Equation (13) was obtained using

the dereverberated mobility, it is also optimal for the actual structure. The dereverberated

mobility accurately models the local dynamics of the structure, and the power flow is a

function of only the local dynamics. Thus the compensator that dissipates the maximum

power from the dereverberated structure will also dissipate the maximum power from the

actual reverberant structure.

In general, however, the compensator in Equation (13) is noncausal, and cannot be

implemented. The dereverberated mobility G(s) must be both stable and causal, and is

therefore right half plane analytic (RHPA). Since it is strictly positive real, it must also be

minimum phase, and thus the optimal compensator in Equation (13) will be left half plane

analytic (LHPA). Because both the compensator and the plant are strictly positive real,
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then in the Nyquist plot there are no encirclements of -1, and K must be stable for the

closed loop system to be stable. This implies that unless the dereverberated mobility is a

constant, this compensator is noncausal. One case for which the dereverberated mobility

is constant is that of a uniform rod in compression, for which Equation (13) corresponds

exactly to the matched termination.

Some understanding of why the optimal compensator is almost always noncausal can be

found from root locus arguments. For a point A to be on the root locus of the plant P(s),

the compensator K(s) must satisfy 1 + P(A)K(A) = 0. In order to place the structural

poles far into the left half plane, the relevant plant P(s) is the structural transfer function

evaluated for values of the Laplace variable s far into the left half plane.

For a lightly damped structure with a large number of closely spaced poles and zeroes,

one can divide the complex plane into three regions. Near the jw axis, and close to the poles

and zeroes, the transfer function varies significantly from its maxima to its minima, and the

phase varies between +90' and -90o. If one looks at the transfer function evaluated farther

into the right half plane, the effect of individual poles and zeroes becomes smeared out,

and the transfer function approaches the smoothed, or dereverberated transfer function

G(s). The phase of G in some frequency region will be the average phase of the original

transfer function near that region.

In the left half plane, however, the structure's transfer function is not G(s). To deter-

mine the phase contribution of each pole and zero, the contour to consider must now be to

the left of every pole and zero, and so each phase change has opposite sign. The result is

that in the left half plane, the structural transfer function approaches -G(-s). Therefore,

to move the poles far into the left half plane, K(s) must satisfy 1 - G(-s)K(s) = 0, or

K(s) = 1/G(-s), as given in Equation (13).

If this compensator could be implemented, all the poles could be moved arbitrarily far

into the left half plane. Instead, the best causal compensator must be found.

11



Causal Optimum

The wave model of Miller et al.5 can also be put in a form similar to that of Equa-

tion (1), though only for structures composed of waveguides. As discussed earlier, Miller

et al. performed an Y2 optimization of the power flow, which did not guarantee dissipation

at all frequencies, and thus did not guarantee closed loop stability. A more appropriate

optimization to guarantee stability is to minimize the worst case power dissipation, hence

a minimax optimization of the power flow into the structure. As will be shown shortly,

this can be cast as an No, minimization problem. In order for this to make sense, though,

the disturbance input d should be normalized to provide the same amount of power avail-

able to be dissipated at each frequency. This provides the designer with tLnyilete control

over the relative importance of one frequency range to another, by removing any inherent

frequency weighting from the problem.

With the optimal noncausal compensator derived in the previous subsection, Equa-

tion (13), the closed loop power flow into the structure is given by Equations (8) and (11)

as

P = -dH(G + GH)-d (14)

Introduce a scaled disturbance w related to the original disturbance d via

d = Gow (15)

Then if the input w has unit magnitude at a certain frequency, the optimal noncausal

compensator will dissipate unit power at this frequency, provided that the transfer function

Go is the co-spectral factor of G + G-, given by

GoGo = G + G- (16)

The block diagram for this system is shown in Figure 3, and the system (Equation (1))

becomes

y(s) = G(s)u(s) + Go(s)w(s) (17)

Now, consider the problem of finding a causal compensator that will minimize the

worst case power flow in Equation (3). This quantity represents the power flow into the
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structure, which will hopefully be negative. In order to cast this as an M. optimization,

however, the performance index must be positive definite. This problem can be solved

by considering that the best causal compensator can dissipate no more power than the

noncausal optimum. Thus if the disturbance power w-w is added to the cost, positive

definiteness will be assured.

Thus the cost at each frequency is

Cost(w) = w-w + u-y + y-u (18)

= w-w + u~(Gu + Cow) + (Cu + Gow)-u (19){} [C+ C]{u}
-G(20)

W G

SIG u + w1 2  (21)

From this, we have that the relevant output that should be minimized is

z =Gu + w (22)

Combining this with the system equation (17), the result can be written as a four block

problem
24 25 : {~}= G o] (23)

The compensator from y to u that minimizes the Mo, norm of the transfer function from

w to z will minimize the maximum power flow into the structure.

For computation, however, the unstable (1,2) block in Equation (23) is unacceptable.

Any allowable compensator must stabilize this block, while the only important stability

constraint is on the output y. Note, however, that the norm of z is unchanged by multipli-

cation by an inner function. An inner function is one which is stable, purely non-minimum

phase, and has unit magnitude at all frequencies24 . Define A(.) to be the characteristic

polynomial of the transfer function (.), and define the inner function

G1 (a) = A(G(s)) (24)
A(Co())
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Then redefine z to be

z = G1Gou + Gjw (25)

so that the four-block problem (23) becomes

z [- I Gcj } (26)
yGo G

which is stable.

In general, it may be desirable to weight some frequency ranges more heavily than

others, while still requiring that power be removed at all frequencies. This could be

because there is a known disturbance source in a certain range, because structural modes

are less well damped within this range, or because the performance requirements put more

emphasis on this range. Similarly, there will usually be some frequency beyond which

performance is not required, and the weighting can also be chosen to reflect this.

The manner in which the weighting is introduced into the problem must be such that

if power is added to the structure somewhere, the resulting cost will be worse than the

open-loop cost. Hence, rather than weighting the sum of the disturbance input power and

the power input by the control, as in Equation (18), define the cost to be the sum of the

disturbance power and some frequency weighted control power, as

Cost(w) = w-w + W;-(u-y + y-u)W, (27)

which can be manipulated into the form

Cost = W(G'u + w) (28)
W2W(2

where W, is the selected frequency weighting, and W2 is defined by the relationship

1W 12 + IW21l = 1 (29)

Note that as desired, the open loop cost is unity everywhere, and the cost is greater than

unity at any frequency where power is added to the structure. Thus as before, a closed

loop cost of less than unity guarantees stability.
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The only constraint on W, is that its magnitude be less than or equal to unity at

all frequencies. Without this constraint, there is no guarantee that the cost be positive

definite, and the minimization could fail. Where W1 is small, a greater amount of control

effort is required to reduce the cost than before, and thus there is more power removed.

Henee, in order to emphasize some frequency range more heavily, the weighting function

W, should be chosen to be smaller within that region.

One of the properties of Moo compensators is that at the optimum, the closed loop

transfer function being minimized is a constant function of frequency, equal to some number

-1 (see Reference 24). From this, and Equation (27), the closed loop power absorbed by

the compensator can be related to -1 and the weighting function as

I12
?(,,) - i ll= (30)

This provides some insight into how to select W1 .

The cost in Equation (18) or (27) can also be modified to include a penalty on the

control effort, pu-u. The four block problem (26) is modified to include an additional

output in the vector z, corresponding to ,/-u. This allows a tradeoff between performance

and control, and also guarantees a proper compensator. Similarly, it is straightforward

to modify the four block problem (26) to include sensor noise. An additional disturbance

input is included in the vector w which affects only the sensor output y.

Because of the form of the cost in Equations (18) and (27), the final result of this

approach is a compensator which dissipates power at all frequencies, provided that the

optimal o, cost -1 is less than unity. From Equation (8), power is dissipated provided that

[HH (I + GH) + (I + GH)Hf H] is negative definite. Using Equation (12), this is equivalent

to [HH(K -1 + K-H)HI being positive definite, or K-'(jw) + K - l (jw) > 0 for all w.

This is precisely the requirement that K - 1, and therefore K be positive real17 . Hence the

approach generates a positive real compensator, which is guaranteed to be stabilizing for

any positive real plant. From a mathematical perspective, the approach has replaced a

phase constraint - that the compensator be positive real - with an equivalent magnitude

constraint on another transfer function. The M,. approach guarantees satisfaction of the

latter magnitude constraint, and therefore of the original phase constraint.
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If there are any time delays, actuator or sensor dynamics, or if the actuator and sen-

sor are not truly collocated and dual, then the structure will not be positive real at all

frequencies. Stability can still be guaranteed if the complementary sensitivity is bounded

above by the inverse of the difference of the true structure from the positive real condition

as noted by Slater et al. 7.

State Space Computation

The calculation of the optimal compensator for the four-block problem is most easily

performed in state space, using the formulae given in Reference 25. The first step then

is to obtain a state space representation for the plant G(s) and the desired weighting

function W,(s). In general, the dereverberated mobility G(s) will not be rational, and a

rational approximation that is valid in the frequency range of interest must be found. This

approximation can also be denoted G(s) without confusion since only the approximation

can be used in state space calculations.

From W,(s) and G(s), state space representations for W2 (s), Go(s), and G,(s) must

be calculated. These problems can be formulated as spectral factorization problems, and

solved by methods similar to those presented in Francis2 ' or in Fuhrmann .

Go is a co-spectral factor of M = G + G-, and thus can be calculated with the standard

algorithm in Reference 24. The algorithm is restricted to systems G with a non-zero direct

feedthrough term D. 'This is not a serious restriction, however. No finite-dimensional

model is valid at all frequencies, nor does it need to be. This merely implies that rather

than rolling off at high frequencies, G(oo) should be a constant.

First, define the state space representation of G as

G = = C2 (SI - A)-' B2 + D2  (31)
C2 D 22]

The reason for the selection of the subscripts on B, C, and D is that G is the (2,2) block

of the four block problem.
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Go can be represented as

Go= (32)

where

D= D22 + D 2  (33)

(34)

Xi= Ric{IAxT (35)

B, = (B2 + XICr)D-1 /2  (36)

D21 = D1 /2  (37)

The notation X = Ric {P} indicates that X is the solution of the Riccati equation corre-

sponding to the Hamiltonian matrix24 P. That is, if

P = . AT](38)_Q -A T

then X = Rie {P} is the positive definite solution to

ATX+XA+Q-XRX=O (39)

The conditions required for this spectral factorization to be valid are that M = M- ,

which is clearly satisfied, that M and M -1 are proper, which is satisfied with non-zero D22 ,

that M have no poles or zeroes on the jw axis, and that M(oo) > 0. If G is dereverberated,

then G has no imaginary poles, and thus M also has no imaginary poles. The remaining

conditions are satisfied if G is strictly positive real, as is the case for the dereverberated

driving point mobility of any structure.

The (1,2) block of the four-block problem (26) is GG . This has the stable poles, but

the non-minimum phase zeroes of M = G + G-. This is a factorization of M, but it is

not in the standard form. A modification to the standard algorithm is required, which is

given in Appendix A. The result is

G-(s)Go(9) = (40)
CI D12
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where

AA0 B2 I D-1[ C B2 (41)
0 -Ar  -C2

X2 = Ric {-Aj (42)
C1 = D- 1 /2 (C2 + BTX 2 ) (43)

D 1 2 = D 1 2  (44)

Since the remaining (1,1) block GII of the four block problem is inner, it must be true

that

Dil = 1 (45)

Then the four block problem (26) is completely specified.

The computation of the weighting function W2 in Equation (29) from W, can also be

represented in terms of a spectral factorization. This derivation is presented in Appendix B.

Examples

Bernoulli-Euler Beam

As an example of this approach, consider a free-free Bernoulli-Euler beam with a collo-

cated force actuator and velocity sensor at one end. The dereverberated mobility for this

system is simply that of a semi-infinite beam, which can be found for example from the

wave approach of Reference 5:

G(s) = (1)/ / .(46)

For simplicity, assume the mass per unit length pA and the bending stiffness El are such

that

G (47)

This ran be done without loss of generality, as it requires only a scaling of the plant.
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First, consider the unconstrained optimal compensator that extracts the maximum

possible energy. From Equation (13),

K =(48)

This compensator has a slope of 10 db/decade, and a phase of -450 at all frequencies.

As expected, it is noncausal and cannot be implemented. Note that this is the same

compensator as that obtained by the unconstrained optimization in Reference 5, though

the derivation differs, and in Flotow and Schi.fer 8 , by setting the reflection coefficient to

zero.

Now, find the compensator that minimizes the maximum power flow into the structure.

This can be done analytically, the solution is given in Reference 14. With equal weighting

at each frequency, (WI = 1) the optimal causal compensator is

K = (49)

This is similar to the noncausal solution, Equation (48), with the same magnitude every-

where, but a phase of +450 instead. This is the "best" causal approximation to Equa-

tion (48), and extracts exactly half the power at all frequencies.

With velocity feedback, an appropriate choice of gain will add significant damping to a

given mode, and those nearby, but it is not possible to add significant damping to all of the

modes at the same time. Thus the gain in velocity feedback must be optimized to provide

damping at a certain frequency. Far enough away from this frequency, the gain is either

too low to have much affect, or too high so that the closed loop poles lie near the open

loop zeroes, which are undamped. With the optimal causal compensator %jS, although no

poles are damped as heavily as the best pole with velocity feedback, every pole is given

some damping.

Now consider including a weighting function to increase the importance of a certain

frequency range, say in a narrow band near 1 rad/sec. So select the weighting function

W, to have poles at 1 and 2v2, zeroes at ' and V/2, and unit magnitude far from 1

rad/sec, giving it less than unit magnitude near 1 rad/sec. Recall that more importance
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is placed where the weighting function is smaller. An analytic solution here would be

difficult. However, the plant in Equation (47) can be approximated adequately over a

wide frequency range with a finite number of alternating poles and zeroes on the real

axis, with equal logarithmic spacing. The state space methods described earlier can then

be used to obtain an approximate compensator. For this example, Equation (47) was

approximated by 9 poles and 9 zeroes on the negative real axis, between 10' and 10

rad/sec. The transfer function of this approximation matches the exact dereverberated

mobility to within 2 degrees of phase and 0.25 db magnitude for 3 decades above and

below the center frequency of the weighting function.

The resulting compensator is plotted in Figure 4, along with the optimal compensator

with W, = 1 from Equation (49), and the unconstrained optimum from Equation (48). Far

from the region that was selected as important, the compensator still has a V/j behavior,

though with less magnitude than the unweighted optimum in Equation (49) resulting in

poorer performance. Near 1 rad/sec, though, the slope of the compensator is now -10

db/decade, and the phase is closer to -45 ° . At 1 rad/sec, the compensator has exactly the

same magnitude, and almost the same phase as the noncausal optimum, and thus it absorbs

almost all the incoming power possible. The power flow absorbed by this compensator

is plotted in Figure 5, expressed as a fraction of the available incoming power at each

frequency. For comparison, the power absorbed by velocity feedback and the unweighted

optimum are also plotted in the same figure.

If this control law is now applied to a finite beam, the closed loop performance can be

examined. The transfer function between force and velocity at the far (uncontrolled) end

of the beam can be calculated using the phase closure approach of Reference 21. The beam

length was chosen so that the fifth mode of the beam was at the center frequency of the

weighted region. The result is plotted in Figure 6, and the envelope of the transfer function

for any length beam is also plotted. As expected, the modal peaks in the region where

W, is smallest are more heavily damped. Note that because the compensator in Figure 4

is positive real, it will not destabilize the beam at any length. (Nor will it destabilize

any positive real structure.) Furthermore, the performance is insensitive to the length of
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the beam. For any length beam, there will be some damping achieved at all frequencies,

and greater damping in the region of interest, as indicated by the envelope of possible

transfer functions. Also note that although the modal information is not contained in the

dereverberated mobility model of the structure, significant damping can still be added to

the modes with a controller designed for this model.

Example 2: Pinned-Free Beam

As a slightly more complicated example, consider again a finite beam, but this time with

one end pinned, with a moment actuator and collocated angular rate sensor at this end.

Also include some finite rotational inertia J at this end. The theoretical dereverberated

transfer function for this beam can be found in a straightforward manner using the wave

approach of Reference 5 to be

- = 3 (50)

M = V_(pA)4/4(EI)/4,/FS + J2(

At low frequencies, the behavior is the %s behavior that would be the transfer function

if there were no lumped rotational inertia. At high frequencies, the transfer function is

dominated by the rotational inertia, and rolls off at 20 db/decade. From the far end of

the beam, the controlled end then behaves as if it were clamped, and regardless of the

control, all disturbances are reflected back. Thus, power flow beyond the rolloff frequency

of Equation (50) should be unimportant, and the weighting function here should be much

larger than elsewhere. Also, assume again that some specific frequency range near 1 rad/sec

is more important.

For computation, El = and pA = 7, so that the low frequency behavior is Qi,

and J = 10 - 3 to place the rolloff frequency at 100 rad/sec, at a slightly higher frequency

than that considered to be important. Again, the system is approximated with a rational

transfer function which is accurate over the frequency range of interest, from 10 - 4 to 104

rad/sec.

The Mo and unconstrained optimal compensators for this case are shown in Figure 7.

At low frequencies, the )1, compensator is similar to the 7 that would be optimal with no
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rotary inertia and no weighting. Where the weighting function decreases near 1 rad/sec,

the phase jumps towards the unconstrained optimum phase of 450, and thus absorbs close

to the maximum power possible. At high frequencies, as desired, the compensator gives

up and does not attempt to absorb incoming power, though it does remain positive real.

Thus again, the closed loop system is stable for any length beam, and for any boundary

condition at the far end. The open and closed loop transfer function from moment to slope

rate at the controlled end of the beam is given in Figure 8. This transfer function shows

the rolloff at 100 rad/sec, beyond which the poles and zeroes are essentially undamped, but

almost cancel each other. The poles are more heavily damped near 1 rad/sec, but none of

the zeroes are affected. Also plotted is the dereverberated mobility (Equation (50)), and

the upper bound of the envelope of possible transfer functions for any length of beam.

Conclusions

In this paper an approach to broadband active damping of modally dense structures

with significant uncertainty has been presented. A modal model for such a structure would

be both inaccurate and unnecessarily large. Instead, the structure is modelled with its

dereverberated mobility. For simple structures, this is equivalent to a local wave model, and

can be calculated from such a model. For general structures, the dereverberated mobility

can be calculated from an experimental or analytic transfer function using cepstral analysis,

or by taking the logarithmic average of the transfer function. Ideally, a compensator

that dissipates the most power possible at every frequency is desired. This compensator

is in general noncausal, and cannot be implemented. A causal, guaranteed stabilizing,

optimal compensator can be obtained by minimizing the maximum power flow into the

structure. This problem is solved by reformulating it as an equivalent Mco control problem.

This results in a positive real controller which dissipates power at all frequencies. The

importance of a certain frequency range can be increased through use of a weighting

function. The technique was demonstrated for several simple examples. At the frequency

deemed most important, the compensator is close to the noncausal optimum, and dissipates

almost all incoming power. It is expected that this approach to modelling and control
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design will allow significant damping to be added to many modes of a structure, without

the large effort in system identification, off-line computation, and compensator complexity

that would be required of many control design techniques.

Appendix A: Modified Spectral Factorizations

A state space method is desired for calculating GG , which has the stable poles, but

the non-minimum phase zeroes of M = G+G-. This is related to the spectral factorization

algorithm found in Reference 24, and only the differences between the two will be indicated

here.

Given G as Equation (31), then

A 0 B 2

T I Cm (51)

C2 B2 D22+ D22

The spectral factorization algorithm in Reference 24 relies on finding the modal spaces

X_ (A') and X+ (AM) corresponding to the left half-plane zeroes of M and the right half

plane poles respectively. Instead, now find X+ (A' ) and X+ (AM), corresponding to right

half plane zeroes and right half plane poles. If these two spaces are complementary, then

the required factorization exists.

Since the unstable poles of any matrix A are the stable poles of -A,

X+(A') = X_(-A' ) (52)

Thus the desired factorization exists if X_ (-A') and X+ (AM) are complementary.

Since A' is a Hamiltonian matrix, -A' is as well. Thus, there exists a matrix

X2 = Ric{-A (53)

such that

X_(-A =2 (54)
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and this is complementary to X+ (AM). Given this, the remainder of the derivation follows

Francis exactly, so that

G1 (s)Go (s) = B2 (55)
D-/ 2 (C 2 + B TX 2 ) D" /2

Appendix B: Calculation of W2

As noted earlier, the computation of the weighting function W2 in Equation (29) from

W, can also be represented in terms of a spectral factorization. First, represent W, in state

space as

w, 3(56)

I w C (57)

C,0 Do
Then W B [-T[ - r-r D (T7

Combining these gives

Aw, 0 B, ]
WiW- -CT, -Ao T -CT D, (58)

T AT ~T

LWD. C- - B -D,D,(

Define the similarity transformation

T = (59)
X"' I

where X,, satisfies the Lyapunov equation

A X, + X.Aw, + C, CW = 0 (60)

and use this to transform the system, Equation (58). This gives

A, 0 Bw
ww = 0 -A _-T (61)

2 4 D.
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where

BT Xw + D C (62)

Then W 2 is a spectral factor of

A,, 0 BW

I- WW"= 0 -AW _ ,_,, (63)
-C BTI- D-B D,

This is now in the form of a standard spectral factorization. In order to apply the algorithm.,

W1 must satisfy
1- DD, > 0 (64)

or WI(oo) < 1. This is not a limitation at all, since multiplying the weighting function

everywhere by a constant will not change the resulting compensator. The other conditions

specified in the definition of the spectral factorization are also satisfied, provided W1 has

no imaginary poles. Note that if the magnitude of W, is less than one at all frequencies,

then 1 - W1W " can have no imaginary zeroes.
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Figure 1: Arbitrary structure

Figure 2: Calculation of dereverberated admittance from complex cepstrum.

Figure 3: System block diagram.

Figure 4: Optimal compensator for Example 1 with weighting at 1 rad/sec (a),

with no weighting (b), and unconstrained (c).

Figure 5: Power absorption for unconstrained optimum (a), velocity feed-

back (b), unweighted No, design (c), and weighted 1oo design (d).

Figure 6: Closed loop transfer function at far end of free-free beam.

Figure 7: Optimal compensator for Example 2 with No,, design (a) and uncon-

strained (b).

Figure 8: Closed loop transfer function at controlled end of pinned-free

beam (a), dereverberated admittance (b), and envelope of possible

transfer functions (c).
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Structural Control Experiments Using An 7,, Power Flow Approach

Douglas G. MacMartin, Steven R. Hall t

Space Engineering Research Center
Department of Aeronautics and Astronautics

Massachusetts Institute of Technology

Abstract for modally dense structures could be used. With this
Experimental results are presented comparing veloc- philosophy, there has been much research on the use of
Etermeback reuth ae enued fopr ing vel- wave based models for use in structural control, see fority feedback with a new technique for designing guar- example References 2,3,4,5, and the references therein.

anteed stable control laws for uncertain, modally dense ere h e ns tha the oclrdncs crnb
struturs wth clloate senorsandactutor. A Here the assumption is that the local dynamics can be

structures with collocated sensors and actuators. A

dereverberated mobility model is used, which is simi- accurately modelled, and that an effective control sys-
tem can be derived based only on this information. A

lar in many respects to a wave based model, but can
treat more general structures. The power dissipated more general approach with similar philosophy is to
btre monreogera srtes. Thximize power dissipate use the dereverberated driving point mobility of the
by the controller can be maximiged in either an 7C2 or structure.6', Only that part of the response which is
an lsense. The r approach guarantees that the due to the local dynamics is retained in the model.
controller is positive real, and thus that the system This model will be discussed briefly in the next sec-

will remain stable for any uncertainty, provided that

the power flow is correctly modelled. The experimen- tion.

tal results indicate that the controllers designed with The control design approach must be suitable for
this approach are much more effective than simple col- the local model being used. Of particular relevance
located rate feedback, here are the optimal control approaches of Miller et

al., 2 and of MacMartin and Hall.6 '7 Using Wiener-
Introduction Hopf techniques to ensure causality, Miller et al. max-

imize the frequency weighted power dissipation associ-

Broadband active control of flexible structures is dif- ated with the control. The drawback to this approach
ficult for several reasons. Structures tend to be very is that it will allow power to be generated at some
lightly damped, modally rich, and difficult to model in frequencies in order to achieve greater power dissipa-
detail, due to their large sensitivity to parameter vari- tion at other frequencies, potentially destabilizing the
ations. For many applications, there are likely to be structure. Since the driving point mobility of a struc-
many flexible modes within the desired bandwidth of a ture is positive real, stability can be guaranteed by
structural control system,' and these modes are likely requiring that the compensator be positive real. Ap-
to be poorly known. Models of structures with closely proximating the optimal compensator with a positive
spaced modes in particular tend to be extremely sensi- real foirn thus guarantees a stable closed loop, but is
tive to small parameter changes, in their prediction of suboptimal, because the positive real constraint is ap-
natural frequencies, and especially in their prediction plied in a somewhat ad hoc manner. MacMartin and
of mode shapes. Hall6 minimise the maximum value over frequency of

Typically, structural modelling is done with state the power flow into the structure, resulting in power
space based methods, which were originally applica- dissipation at all frequencies, and a positive real com-
ble only for structures with a few flexible modes in pensator. This approach will be summarized in Sec-
the bandwidth. Various tools have been developed tion 3, and parallels with the technique of Reference 2
in an attempt to increase both the number of modes will be illustrated. Indeed, it is possible to solve the
within the bandwidth, and the extent of uncertainty frequency weighted power dissipation problem of Ref-
that the control design techniques are capable of deal- erence 2 in state space, using some of the results de-
ing with. Alternatively, an acoustic approach, suitable veloped in Reference 6.

*Research Assistant. Room 37-367, MIT, Cambridge, MA 02139. Experiments were performed on a pinned free beam
Student Member AIAA. in bending, using a torque motor and collocated an-

t Boeing Assistant Professor of Aeronautics and Astronautics. gular rate sensor at the pinned end of the beam. The
Room 33-103, MIT, Cambridge. MA 02139. Member AIAA. experimental results verify the performance that can

Presented at the 1990 AIAA Guidance, Navigation, and Control be achieved by modelling the structure with its dere-
Conference, Portland OR, Aug 20-22, 1990. verberated mobility, and minimizing the worst case



power flow. Several compensators are designed with
this approach, and their performance is compared with .. rz. :e
that of velocity feedback. Previous experiments on the
same structure have demonstrated the N(2 wave ap-
proach of Miller et al.3

Modelling S r -:-. _z

This section reviews the dereverberated mobility S r Zji n . 3
model for control design for uncertain modally dense
systems.6 A modal model may not be useful in this
case, since the detailed information it contains is often
incorrect, and may also be unimportant. In the pres-
ence of significant uncertainty, the modal information a:
may be uncertain, but the local dynamics near an ac-
tuator can still be well modelled. The dynamics of Figure 1: Wave behavior in an arbitrary structure
the structure between an actuator and sensor which
are separated by many wavelengths of the disturbance
are, however, unknown due to the uncertain phase. frequency domain to yield the dereverberated impulse
Thus for broadband control, it is reasonable to require response. A simpler approach is based on the observa-
that feedback only be used between collocated sensors tion that neglecting the reverberant field is equivalent
and actuators. to replacing the log magnitude of the original transfer

For some arbitrary structure, as shown in Figure 1, function with its mean. 9 ,10 Thus another way to com-

insight into the nature of the problem can be obtained pute the dereverberated mobility is simply to take a

from a wave perspective. Various disturbances are cre- logarithmic average of the transfer function, with the

ated at certain points in the structure and propagate phase being determined uniquely from the fact that the

through it. At any point in the structure, such as at dereverberated driving point mobility is positive real.

an actuator, the disturbance will be scattered. In gen- In practice, this method should be adequate. Fitting

eral, each of the resulting outgoing disturbances will the result with a rational polynomial gives a model

eventually affect any global cost criterion. Thus from that captures the essential dynamics of the system over

the perspective of the actuator, without a detailed and a wide frequency range that encompasses many modes,

accurate description of how each wave propagates, its with only a small number of poles and zeroes.

goal should be to minimize the energy of each of these This approach can be easily applied to arbitrarily

outgoing disturbances. Since the scattering behavior complex structures, since all that is needed is the

is a function of only the local dynamics, this goal can input/output behavior at the driving point, which

be achieved with only a local model of the structure. may be found from experimental data, calculated from

One approach to obtaining such a model is through some nominal model, or found analytically, perhaps

the use of waves. However, it may be difficult to ob- even from a wave model. Indeed, for simple struc-

tain a useful wave description for many complicated tures such as the beam in bending used in the exper-

structures. An alternative to the wave approach for iment, the resulting model is equivalent to the local

obtaining a local model is to represent the structure wave model of Reference 2.

by its dereverberated driving point mobility 8 The
driving point mobility is the transfer function between Control Design
two variables whose product is the power flow into
the structure. The response at a point can be consid- The previous section summarized the modelling ap-
ered to be the sum of two parts: a direct field, due proach used, while this section examines the design of
to the local dynamics; and a reverberant field, which is the control system for this model. All of the techniques
caused by energy reflected back from other parts of the that will be examined rely on an optimization of the
structure. The term "dereverberated" implies that the power flow, maximizing in an appropriate sense the
"reverberant" part of the response has been removed dissipation associated with the control systpm. For a
before computing the mobility, lightly damped system, the power flow gives a measure

One method by which the dereverberated mobility of both the performance achieved, and the degree of

may be approximated is through the use of the cep- stability.
strums -)f the impulse response. This procedure in- Miller et al. 2 minimized the 71 norm of the power

volves taking the inverse Fourier transform of the log flow, using a Wiener-Hopf procedure. The same prob-

of the complex spectrum, windowing this to remove lem can be solved in state space using a Linear-

the reverberant part, and transforming back to the Quadratic-Gaussian (LQG) algorithm. In either case,



some assumptions are required about the power spec- Using Equations (1), (6) and (7), then Equation (4)
tral density of the disturbance entering the junction. yields that the average power flow at each frequency
In the actual structure, this is related to the control ac- is
tion through the disturbance that previously departed
the junction. With only a local model, however, it IP(w) = dH {HH(I + GH) + (I + GH)M H} d (9)
is assumed constant and independent of the control,
and thus the resulting compensator may allow power Since the power flow is a scalar, it is equal to its trace.
to be added at some frequencies. This problem can be The expected value of the power flow at each complex
avoided by minimizing the power flow in an Nt.. set- frequency can then be written in terms of the power
ting. For the open-loop system, the power removed by spectral density of the disturbance, ,dd = E [dH], as
the controller at each frequency is zero, and the closed
loop is guaranteed to be no worse. E(IP(w)) = Tr {$4dd [HH(I + GH) + (I + GH)HH] }

Define G(s) to be the dereverberated driving point (10)

mobility, and assume some disturbance input d to be Unconstrained Optimum

additive at the output. Then the output y is related The simplest optimization approach is to minimize the
to the input u and the disturbance via power flow at each value of the Laplace transform vari-

able s. Equation (10) is only valid on the jw axis, and
= G(s)u(s) + d(s) (1) must first be extended analytically to the remainder of

The disturbance d in this equation can be thought of as the complex plane. The analytic continuation of the
originating from two sources: the original disturbance Hermitian operator is the parahermitian conjugate, 12
input to the real structure, and the reverberant field denoted (.)~, and defined as

ignored in the modelling process. F~(s) = F(-s)T

The instantaneous power flow into the structure is
the product of the input u(t) and the output y(t), since Since F-(jw) = F(jw), this notation will be used in
G(s) is a mobility. The average power flow can be place of the Hamiltonian operator throughout the rest
expressed as a time integral of the instantaneous power of the paper. Optimizing the expected power flow at
flow, I' and making use of Parseval's theorem, this can each point in the complex plane yields
be transformed into the frequency domain:

1- fT (2) K = (G~-)--' (12)
Pc= lira _ fTY(t)T u(t) dt (2) .p=(G)112

T- .2T which is independent of the disturbance spectrum 4'dd.

0d This compensator extracts the maximum possible
= ((jw)H yC,) + Y(jW)H ujw)) - (3) power from the structure at every frequency. This

-. 21 result is not new; it corresponds to the impedance
The integrand in Equation (3) represents the steady matching condition found, for example, in Refer-
state, or average, power flow into the structure as a ence 13. The maximum energy dissipation is obtained
function of frequency." For convenience, the average if the impedance of the compensator is the complex
power flow at each frequency can be defined without conjugate of the impedance of the load, which in this
the factor of as case is the rest of the structure.

Unless the dereverberated mobility is a constant,
IP(W) = U(jW)"y(j,) + y(jW)HU(jw) (4) however, the compensator in Equation (12) is non-

causal, and cannot be implemented. If this compen-
The control law is assumed to be of the form sator could be implemented, all the poles could be

moved arbitrarily far into the left half plane. Instead,
u(s) = -K(s)y(s) (5) the best causal compensator must be found.

Solving for the control in terms of the disturbance from
Equation (1) gives Causal Optimum - 7i Approach

u = -(I + KG)-'Kd (6) To guarantee dissipation at all frequencies, the worst
case power dissipation will be minimized over the set

d of causal compensators, hence a minimax optimization
where the explicit dependence on the Laplace trans- of the power flow into the structure. This can be cast
form variable has been dropped. From these equations, as an N, minimization problem. First, however, the
the equivalent feedback K is related to the disturbance disturbance should be normalized to provide the same
feedforward H via amount of power available to be dissipated at each

frequency. This provides the designer with complete
K = -H(I + GH)-' (8) control over the relative importance of one frequency



w the cost, and is included to give a representation of the
cost in terms of stable transfer functions.

From Equation (18), the relevant output that should
GO($ be minimized is

+ z = GIG'u + Gjw (20)

7 Combining this with the system equation (16), the re-

K(s) sult can be written as a standard N,,o problem: 14

Figure 2: System block diagram z I=[ G (21)

The compensator from V to u that minimizes the ",,,

range to another, by removing any inherent frequency norm of the transfer function from w to z will minimize

weighting from the problem. the maximum power flow into the structure.

With the optimal noncausal compensator from In general, it may be desirable to weight some fre-

Equation (12), the closed loop power flow into the quency ranges more heavily than others, while still re-

structure is quiring that power be removed at all frequencies. This
could be because there is a known disturbance source

IP = -d~(G + G-)-'d (13) in a certain range, because structural modes are less
well damped within this range, or because the perfor-

Introduce a scaled disturbance w related to the original mance requirements put more emphasis on this range.
disturbance d via Similarly, there -will usually be some frequency beyond

d = Gow (14) which performance is not required, and the weighting

Then if the input w has unit magnitude at a certain can also be chosen to reflect this. Rather than weight-

frequency, the optimal noncausal compensator will dis- ing the sum of the disturbance input power and the

sipate unit power at this frequency, provided that the power input by the control, as in Equation (17), the
transfer function Go is the co-spectral factor of G+G ~, cost is defined to be the sum of the disturbance powergiven by and some frequency weighted control input power, asGoG = G + G- (15) Cost(w) = WtW + W(uy + y-U)W, (22)

The block diagram for the resulting system is shown
in Figure 2, and the system (Equation (1)) becomes This can again be factored as Cost(w) = jz1

2 and there-
fore written as a standard ?t, problem. 6

y(s) = G(s)u(s) + Go(s)t(s) (16) The calculation of the optimal compensator for the

Now, consider the problem of finding a causal com- 'H, problem is most easily performed in state space.15

pensator that will minimize the worst case power flow The algorithms for computing Go, GIG , and W 2 are

in Equation (4). This quantity represents the power given in References 6 and 7. Each of these problems
floin ton (4). structuhich till erente foer is related to a spectral factorization, the solution to
flow into the structure, which will be negative for any which can be found from a Riccati or Lyapunov equa-
stabilizing (energy absorbing) controller. In order to
cast this as an 71,, optimization, however, the perfor-
mance index must be positive definite. Since the best
causal compensator can dissipate no more power than Causal Optimum - 712 Approach

the noncausal optimum, positive definiteness will be For structures for which the local wave model of Miller
assured if the disturbance power w-w is added to the et al.2 can be identified, this model can be represented
cost. Thus the cost at each frequency is in the form of Equation (1). The 712 power flow min-

Cost(w) = w + uy + yu (17) imization in Reference 2 was constrained to be causal
using a Wiener-Hopf 6 approach. A similar Wiener-

= iG u+tJ2 Hopf solution can be found in the current framework.

= JIGG'u + GiW12  (18) First, introduce the notation

where A = 
4,R 4 L (23)

Gi(s) - A(Go(s)) (19) 4, = 4+ + 4_ (24)zm) A(Go(sa))

and A(.) is the characteristic polynomial of the trans- for the right half plane analytic and left half plane an-
fer function (.). The inner function G, does not change al) tic factors of 4, and the positive and negative time



parts of 4' respectively. Both of these types of spec- is proportional to the 112 norm of the power flow,
tral factorizations can be solved in state space with 00
the solution to a Riccati or Lyapunov equation.1 4  J = -(t y+ys)d (30)

With disturbance feedforward u = Hd, the fre-

quency weighted power flow being minimized is given and as in Equation (17), the addition of the constant
by Equation (10) a w-w to the integrand does not change the problem,

so

J = f {$d [H(I + GH) + (I + GH) H]} dw J = (z z)dw = Iiz12I (31)

(25) with z given by Equation (20). Hence, the % 2 optimal
The first order variation in J with respect to H is compensator is that which minimizes the 7 2 norm of

the transfer function from w to z in the standard prob-

6J = 2/- 6H- ((G + G~)H + I) I'dd dw (26) lem (21). This is very similar to the 7, approach; the
f-o0 norm used in the optimization has changed, and the

deterministic (but unknown) finite power noise w has
This should be sero for all admissible variations 6H .  been replaced by a stochastic process, but the setup is
To insure causality, 6H must be right half plane ana- otherwise identical.
lytic (RHPA), and then Equation (26) is sero provided The power spectral density of w = Go'd can be
that related to that of d, and therefore to that of the in-

((G + G~)H + I) $4dd = aL (27) coming wave modes wi by Equation (29). This PSD

for some arbitrary left half plane analytic (LHPA) can also be used to introduce frequency weighting into

function aL. Solving for the RHPA compensator that the problem; more importance is attached to a certain

satisfies Equation (27) yields the optimal disturbance frequen-v range by increasing the power available to

feedforward compensator as be dissipated in that range.
As was noted in Reference 2, the If2 approach suffers

H = -(G + G~)R' [(G + G~)ZL ($dd)R] + ( dd)Rl from the fact that it does not guarantee a stabilizing

(28) compensator. That the state space LQG method pre-

from which the feedback law u = -Ky can be de- sented here yields the san.e results as the Wiener-Hopf

termined via Equation (8). Note that the quantity approach in Reference 2 will be demonstrated in the

(G + G)R in this equation is precisely Go from Equa- next section.

tion (15).
Miller et al.2 specify the power spectral density of Example

the incoming wave modes, while this solution requires The approach described in the previous sections can
the power spectral density of the disturbance d. The be demonstrated in the design of compensators for a
disturbance d is the disturbance in the generalized ye- pinned-free Bernoulli-Euler beam with a moment ac-
locity caused by both the incoming and outgoing wave tuator at the pinned end. This structure is chosen to
modes. Thus represent that of the experiment described in the next

d = (jw)T(Y~, + Y., 0S)wi (29) section; as a result the beam properties used in this ex-
ample will be those of the experiment, given in Table 1.
This example also allows a comparison to be made ofY~. and Y,,o are partitions of the transformation ma- the ?f2 and 7t* compensators, and demonstrates that

trix from wave mode variables to physical variables, the LQG based 2 meto presented here is equiva-

with Y, relating the displacement vector u to the in- le to th e W 2 method of erenseq2.

coming wave mode vector to,, and Y,, relating u to the lent to the Wiener-Hopf method of Reference 2.

outgoing wave modes to. S is the scattering matrix of The dereverberated mobility can be found analyt-
thejunctionrelatgoutgoing wave modes S s te s e in om -o ically as the transfer function of the "infinitely ex-the junction relating outgoing wave modes to incom- tended" system. Using a wave approach, the trans-

ing wave modes. The matrix T is present to select the fenctio osem i-ninite p roulli-uer

appropriate elements of the displacement vector u cor-

responding to each element of the disturbance d, and beam between collocated tip moment and slope rate is

the factor of jw is required since d is a velocity and u G(s) = /
is a displacement. The power spectral density of d can v/ (pA)1/4(Ei)3/4 (32)
be easily related to that of the incoming wave modes With no causality constraint, the compensator thatWit nocfromiy cthisit, equation.or ha
w, from this equation. dissipates the maximum possible power at all frequen-

The Wiener-Hopf optimization problem is also cies is, from Equation (12),
equivalent to a standard LQG problem. 6 Using the
results of the previous subsection, the 112 problem can K /() = v(pA)1/4(E)3/4 (33)
be solved more easily using this approach. The cost J K =(



This is the ideal compensator for the structure, but network were optimized to minimi e the 7t norm of
cannot be implemented. Instead, a number of other the cost. This results in the compensator from slope
compensators can be designed. rate to moment being

Velocity feedback is the simplest of these, and was
4 (2+ 38.5 + 466

chosen to compare the optimal designs with a similar K 3 (s) = 2.62 V2(pA) (E + 38.s 321

existing design approach. To achieve maximum power /' +
dissipation at a frequency wo, the gain should be as (36)
close as possible to the unconstrained compensator at For comparison with these designs, an W/2 optimal
this frequency, so solution can also be computed using the same model,

as the solution of an LQG problem. For comparison

Ki(s)-- v/(pA)/4(EI)3/4 (34) with the results of Miller et al.,3 the power spectral
vwdensity @,, is chosen to be the same as in Refer-

ence 3;

The second compensator is the W".-optimal compen-

sator with unity weighting at all frequencies, given by a, = - 2  [ 1 0 1 a 2  (37)
(a -W.)2 [0 1 (sw)2

K2()=v2(PA)1/ 4( EI)3/4 (35) aii.
V'(()- 11 Using Equation (29) and the definitions for Yj, Y.,,

and S for the pinned beam from Reference 3, the tip
The analytic derivation of this compensator is similar slope rate can be related to the incoming wave modes

to that for a free end of a beam, presented in Refer- by
ences 6 and T. The magnitude is the same as that of A)1/4
the unconstrained optimal compensator, but the phase d = 2jw (-) [ jv/w VC ] w, (38)
is -450, rather than +450. This compensator was also EI

derived and implemented by Miller, 3 as the fixed form The normalized disturbance w is related to d by Equa-
optimal compensator. tion (29). Using these equations, the power spectral

In order to further test the N,, approach, a weight- density of w is
ing function was selected to emphasize a narrow fre-
quency band near 35 rad/sec. This corresponds ap>- b,2,p = (39)proximately to the frequency of the 7Vh mode of this 2W)2(& +(39

beam. The minimum value of W, in this region was
approximately 0.65, and the weighting increased to for some constant b. This is proportional to w 2.5 at
near unity a factor of v2 above and below this fre- low frequencies, and to w - 1. at high frequencies, with

quency. An analytic solution for the compensator Ia a maximum at w,, selected to be 40 rad/sec. Thus one

this case would be difficult. However, the plant in would expect the most damping near this frequency,

Equation (32) can be approximated adequately over and a much sharper drop in damping for lower fre-

a wide frequency range with a finite number of alter- quencies than for higher frequencies.

nating poles and seroes on the real axis, with equal The 72, weighted 7 , unweighted 7 , and uncon-

logarithmic spacing. State *pace methods can then strained optimal compensators are plotted in Figure 3,
be used to obtain an approximate compensator. For as is the velocity feedback compensator. Note that at
this example, Equation (32) was approximated by 9 the frequency weighted most heavily, the 7,, solution

poles and 9 seroes on the negative real axis, between achieves the magnitude of the unconstrained optimal
3.5 x 10- 3 and 3.5 x 10' rad/sec. The transfer func- compensator, but not quite the phase, while the W2

tion of this approximation matches the assumed dere- optimal solution achieves the phase, but not the mag-
verberated mobility to within 2 degrees of phase and nitude. The %t2 compensator calculated by Miller et
0.25 db magnitude for 3 decades above and below the al. in Reference 3 by a wave approach and Wiener-Hopf
center frequency of the weighting function. methods is also plotted for comparison with the 7 2

The optimal compensator from slope rate to mo- compensator calculated here with the LQG method.

ment was found to be well approximated by the prod- The agreement indicates that the two approaches are
uct of the unweighted optimum in Equation (35), and equivalent; the discrepancy at high frequencies is due
a two pole, two zero network. This network provided to the inclusion of a small penalty on control effort in

the phase lead that is required so that at the center of the LQG solution.
the weighted region, the phase approaches the uncon- The power input to the structure by these compen-

strained optimal phase of 450 (from Equation (33)), al- sators is plotted in Figure 4, expressed as a fraction
lowing the compensator to dissipate more power. The of the available incoming power at each frequency.
optimal poles and zeroes of this network are symmetric Thus a value of -1 indicates that the maximum pos-
about the center frequency of the weighting function sible power is being dissipated, a value of sero means
W1 , at 35 rad/sec. The two free parameters of this that the compensator does nothing at this frequency,
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-. a Experiment

1.2 10 jO 000 The 1/o and velocity feedback compensators de-
.1II0 00 io

Frequency (Hz signed in the previous section were implemented on
a brass beam suspended in the Space Engineering Re-
search Center laboratory at M.I.T. Previous experi-

Figure 4: Power absorption for unconstrained op- ments with this beam include collocated rate feedback
timum (a), velocity feedback (b), un- and 7/ optimal wave control.3

w-" hted 7/o design (c), weighted 7too de-
sign (d), and 7/2 design (e). Setup

The setup is shown schematically in Figure 5. The
and values larger than zero indicate that power is be -beam is suspended horizontally in the lab, with ac-
ing added to the structure, which could lead to in- tuation and sensing such that the bending vibration
stabilities. Note that the 72 solution adds power to can be controlled. One end is effectively pinned, while
the structure at certain frequencies, while the 7 0 the other is free. The properties and dimensions of
solutions do not. Furthermore, as expected from the beam are summarised in Table 1. The open-loop
the weighting function chosen, the 7 2 solution treats damping of the first 17 modes, up to a frequency of
higher frequencies with more importance than lower, approximately 30 Hz, averaged about 0.3%.
while the 1/0 solution treats both equally. Control is applied through a torque motor at the

Both of the IQoo compensators absorb some power, pinned end, and sensing is provided by a linear ac-
and thus provide some damping at all frequencies, celerometer mounted a short distance from this end.
whereas velocity feedback is ineffective at sufficiently The member connecting the sensor to the tip is as-



averaging. Alternatively, it can be approximated by

.0i the theoretical dereverberated mobility for a pinned
end of a beam, given by Equation (32). This transfer
function is also plotted in Figure 6, and closely ap-

- proximates the logarithmic average of the measured
0 transfer function in the region of interest. The pres-

-I ence of a rotational inertia at the tip, corresponding to
the inertia of that part of the actuator armature and

- • -sensor that is fixed to the beam, introduces a roll-off
into the transfer function at high frequencies. How-
ever, the effect of this inertia was at a sufficiently high

7 , frequency so that for the control design, it was as-
sumed to be zero and not modelled. As a result, the
previously designed compensators can be used here.

The velocity feedback, unweighted Nt,, and the
weighted It. compensator designs are all positive real,

10 100 and thus guaranteed to be stable for any positive real
Frequency (Hz) structure. The transfer function from the actuator

to the sensor of this beam, however, was not posi-
Figure 6: Open loop transfer function at controlled tive eso of t his ue was no -

end of beam (solid), and dereverberated tive real at high frequencies. This is due to the non-
mobility used for control design (dotted). collocatedness of the sensor and actuator, the addi-

tional dynamics of the sensor and actuator, and any

time delays in the system. The system can still be

sumed to be rigid, so that the sensor provides a ro- guaranteed to be stable if the complementary sensitiv-

tational acceleration measurement collocated with the ity is bounded above by the inverse of this difference

moment actuator. In practice, this assumption is not from positivity.17 So, to be stable, the complemen-

quite valid, although it is reasonable in the frequency tary sensitivity, and therefore the compensator, must

range of interest, roll off at high frequency. Ideally, the compensator de-

In addition to the control actuator and sensor, sign procedure would result in this behavior automati-

a shaker and data acquisition accelerometer were cally. Since it does not, the additional roll off required

mounted at the free end of the beam. The shaker must be added in an ad hoc manner. Low-pass filters

was mounted to provide a force collocated with the were therefore added to all three designs, with poles

acceleration measurement. The closed loop transfer at 500 rad/sec.

function between these two was used as an indication The available measurement in the experiment was

of the performance achieved, proportional to angular acceleration, and thus a fur-

The signal from the accelerometer at the controlled ther integration was necessary to obtain angular rate.

end was fed through a signal amplifier into an analog This integrator was rolled off at DC to prevent satu-

computer which contained the compensator program. ration and drift problems. The second order dynamics

The output of this was fed through a power amplifier were chosen to have a natural frequency of I rad/sec,
into the moment actuator. The accelerometer signal and a damping ratio of 0.7071. Finally, a high-pass

from the un:ontrolled end was fed into a Signology filter was included to remove the DC offset of the ac-

SP-20 Signal Processing Peripheral to record and an- celerometer.

alyze the response data, and obtain frequency domain With the two N. compensators at their optimal
information. An oscilliscope was used to monitor the gains, a small amount of passive damping was found
accelerometer signal so that any instabilities could be to be required in order to maintain closed loop stability
quickly identified, and their frequencies determined, of modes of the system above 1000 Hs. A constrained
Detailed information on the characteristics of the sen- layer of foam rubber was added to a short section of
sors and actuators can be found in Reference 3. the beam, which did not appreciably increase the open

loop damping in any of the modes below about 300 Hz,

Compensator Implementation coLesponding to about the 5 5th bending mode of the
beam. This, however, was not sufficient to imple-

A detailed model of the beam is not necessary for ment the velocity feedback compensator at its optimal
the experiment; it is sufficient to examine the trans- gain without destabilizing high frequency modes. In-
fer function from the control actuator to the control deed, a second lowpass filter was necessary to achieve
sensor. This transfer function is shown in Figure 6. stability at even 40% of the optimal gain, at which
The dereverberated mobility could be calculated from level data was taken. This implemented velocity feed-
this transfer function through cepstral analysis, or by back compensator provides its maximum damping at



at 16.4, 19.8, and 24.5 Hs correspond to torsional

10001 umodes of the beam, which are excited by the shaker

but are uncontrolled by the moment actuator. The
i00e corresponding predicted responses appear in Figure 9.

These were calculated from the compensator transfer
function using the phase closure approach of Refer-

101 10 100 ence 11. Reasonable agreement is obtained between
this prediction and the actual transfer function, al-
though the achieved performance is noticeably better

80i- than that predicted. Similar experimental and pre-
-00 - dicted transfer functions with I 2 optimal compen-

- -120 sators can be found in Reference 3.
-120 I These results confirm the expected advantages of

-140; each technique. The unweighted 7t, design achieves
1 10 100 damping in a broadband region. This is obtained by

Frequency (Hz) sacrificing some of the narrowband damping achieved

by velocity feedback. The lowest modes present in
Figure 7: Transfer function of compensator imple- the frequency range plotted are damped more heavily

mented in experiment (solid), and desired by the unweighted 71,, than by velocity feedback, one
compensator (dotted). would expect that this would also be true of modes at

a sufficiently high frequency. The unweighted 71. de-
sign achieves excellent narrowband damping in the de-

about 35 Hz. sired frequency-range, while maintaining some damp-
The low-pass and high-pass filters and integrator dy- ing everywhere. This is a result of the exact match

namics are combined into the filter in magnitude, and close match in phase, with the un-
( )( / a constrained optimal compensator that absorbs all of

F(s) = s 50 (40) the incoming power at each frequency. In fact, the
2 + 1modes near 6 Hz can be virtually eliminated if the

The implemented compensators between moment and phase of the compensator is boosted still closer to the
angular acceleration are then unconstrained noncausal optimum, at the expense of

performance at other frequencies.
K1 (s) =01.6 I.F(s) (41)

(8+ 500 Conclusions

IK 2 (s) = 24.2- . F(s) (42) The dereverberated driving point mobility is a sim-
ple but useful model for control design of uncertain,

K 3 (s) = 63.4 1 (S2 + 38.5s + 466 F(s) (43) modally dense structures. For simple structures, sucha2~ + 100s + 3210! as the beam used in this experiment, this is equivalent

The circuit used to implement the half integrator to a local wave model, but the approach is capable
is based on that presented in Reference 5. The of modelling much more general structures, as it can

approximation is excellent up to about 700 Hz, well be determined directly from an experimental transfer

above the region of interest. The measured compen- function.
sator for the weighted 7,o design is compared with the The compensator that dissipates the most power
desired compensator in Figure 7. Good agreement is possible at every frequency is in general noncausal, and
obtained, xcept at low frequencies where the dynam- cannot be implemented. Two approaches were exam-
ics of the integrator and the high-pass filter have a ined for obtaining a causal compensator that dissipates
noticeable effect, and at frequencies higher than those power. The ;Y2-optimal solution can be found using ei-
shown, where the low-pass filter was added. Similar ther Wiener-Iopf or LQG techniques. However, this
agreement exists between the measured and desired compensator may allow power to be generated at cer-
compensators for the other two cases. tain frequencies. Another approach is to find the T(y-

optimal solution which minimizes the maximum power

Results flow into the structure. This compensator dissipates
power at all frequencies, and is therefore guaranteed

The closed loop transfer functions from force at the to be stabilizing.
free end to collocated velocity with the three compen- Experimental results demonstrate that the damping
sators are compared with the open loop response in that can be achieved with the I(,.t approach is much
Figure 8. Note that the spikes present in the data greater than that achievable with rate feedback. With
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Figure 8: Experimental open (dotted) and closed Figure 9: Predicted open (dotted) and closed
loop (solid) transfer functions using loop (solid) transfer functions using
(a) velocity feedback, (b) unweighted ?/oo (a) velocity feedback, (b) unweighted N.,
design, and (c) weighted N. design. design, and (c) weighted 7. design.

no frequency weighting, good broadband damping can without the large effort in system identification, off-
be obtained. With a frequency weighting, excellent line computation, and compensator complexity that
narrowband performance can be achieved while some would be required of many control design techniques.
broadband damping is maintained. At the frequency
where the best performance is obtained, the compen-
sator closely matches the unconstrained (noncausal) Acknowledgements
optimum in both magnitude and phase.
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DEVELOPMENT OF SPATIALLY CONVOLVING SENSORS FOR STRUCTURAL
CONTROL APPuCATIONS
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Cambridge, Massachusetts

ABSTRACT stabilization without concerns for loss of phase
This work explores a class of structural margin.

sensors which convolve measurements, The basic problem associated with
distributed along a structure, into a single noncausal compensators is that some portion of
temporal signal. The manner in which this their singularities lies in the right half of the
information is convolved is determined by the Laplace plane. Singularities in the right half
geometry of the sensor. plane indicate one of two situations. Either the

Particular types of geometries are dynamics are affiliated with a system which is
developed which make this class of sensors stable in negitive time and therefore anticipates
attractive for structural control applications, future information, or they are affiliated with a
The objective is to develop a sensor, using system that is unstable in positive time. The
piezoelectric film, whose geometry filters the latter yields a sensor signal which is unstable
spatial harmonics of the structure's shape to and therefore unusable.
achieve rolloff without exhibiting phase lag. The former situation is more relevant to
Such a sensor would facilitate gain stabilization this discussion. Noncausal compensators
without the risk of sacrificing phase margin. anticipate future information which is otherwise

Various analytical examples are deriv- unavailable. Viewed from a travellng wave
ed, several of which are verified experiment- perspective, however, it becomes clear that the
ally. These sensors may be beneficial at spatial Fourier components, which will sum to
structural frequencies where the dynamics are create a future motion at a particular structural
modally dense and poorly modelled. cross-section, are presently propagating towards

that cross-section. Similarly, components
INTRODUCTION which created a cross-sectional motion in the

past are presently propagating away from that
Motivation cross-section. In other words, future and past

There are many examples of structural information about the response of a cross-section
control applications where desired objectives can be obtained by sensing upstream and
could be achieved if it were possible to implement downstream.
noncausal compensators in real time. For Upstream and downstream in a structure
example, Refs. [1-5] illustrate that resonances are not distinguishable based upon location
in a beam could be eliminated using one because they can correspond to the same physical
actuator and its dual sensor if it were possible to region. Rather, they are distinguished by the
implement (.s)1I 2 . Other applications involve direction in which the energy is travelling with
sensor dynamics where typical sensor rolloff respect to the original cross-section (Fig. 1).
introduces phase lag. This phase lag reduces Measurement of this upstream and downstream
phase margin, often to the point of creating an information should enable the reconstruction of
unstable system [6]. Sensors which l off both past and future cross-sectional motion.
without this phase lag would be extreme!, -.iseful, The convolution of spatially distributed
as they could be used it facilitate gain measurements can be performed in two basic

Research Associate, Member AIAA ways. In the first, a finite array of discrete point
** Research Assistant, Student Member AIAA sensors can be distributed along the spatial
t Undergraduate Researcher extent of the structure to measure the deflection

pattern at discrete locations. The products of



uted-parameter systems such as beams [8,9]. It
upstream upstream was found that these sensors could also perform

a I as point sensors, with the added advantage that,
downstream I downstream because of the effective spatial integration, the

cross-section distributed sensors were not as sensitive to
placement errors (10].

The weighting on the contribution of
Figure 1. Illustration otihe oncept of energy various modes can be adjusted through the use of
upstream and downstream f a cross-section. a spatially-varying sensor distribution. For

example, a modal sensor is shaped such that the
these measurements, with discrete values of the weighting is zero for all modes except one [10].
weighting function, creat te output d signal. Several experimental investigations using piezo

In the second, a single distributed sensor film sensors, the width of which was pro-
is used. The spatial weighting function is portional to the modal strain distribution [7, 11,
achieved by creating the appropriate sensor 12], have verified the behavior of modal sensors.
geometry. Rather than having numerous Lee et al. have noted that these sensors are a
discrete point sensors dispersed along the realization of the modal-filtering concept [13],
structure, the single continuously distributed but they can also be thought of as very narrow
sensor acquires measurements from the entire bandpass filters centered on the frequency of the
domain over which it is attached. mode to be sensed. In regions of travelling

In practice, the array has the advantage waves, this corresponds to convolving the
of a wide range of available sensors (strain, measurements at a single wavenumber, namely
position, etc. and associated rates) whereas the that of the mode of interest.
single distributed sensor may be restricted to
strain- (and strain-rate-) sensing piezoelectric The following sections describe how a
polymers. While distributed point sensors have spatially convolving sensor was developed and
a higher per-unit sensor cost, application to experimentally implemented. The dispersion
complex structural geometries may be easier. equation relates the behavior of a structural
The weighting function can also be easily medium in time and space. It reveals how
altered because it is implemented in software. spatial weighting functions can be used to

Use of a single, continuous sensor achieve desirable temporal behavior. This
reduces the computational burden, and concept is analytically demonstrated for several
associated time delays, by 'realizing' the types of spatially convolving sensors. The
convolution in the mechanical geometry of the structural medium and sensor are assumed to be
sensor. In addition, while both suffer from of infinite, one-dimensional extent. An infinite
truncation effects due to the restriction of a finite domain, wave analysis is used to obtain these
sensor domain, the use of point sensors also solutions. Since atual structures and sensors
suffers from spatial aliasing associated with the must be of finite length, a discussion offinite-length gaps between the individual point truncation effects is given. Finite sensor length
sensors. requires that some of the spatial weighting

An example of this second type of function be absent during actual
spatially convolving sensor is a modal sensor. implementation. This loss of information
Realized by cutting piezoelectric polymer film causes a deviation in performance from that
[61 in the shape of a particular modal strain predicted by the infinite domain solution. The
distribution, it is atta hed to the structure in the manufacture of the sensors, experimental setup
appropriate orientation [7]. The work in this and experimental results are described.
paper expands upon this concept by using the
same type of sensor to achieve other desirable INFINITE DOMAIN ANALYSIS
signal characteristics.

An infinite domain analysis is used to
Prior Rdemonstrate the acquisition of desirable

Spatially distributed sensors and temporal domain characteristics through the
actuators were initially studied in order to apply implementation of an appropriate spatially
distributed-parameter control theory to distrib- distributed sensor. A wave analysis is used to

2



analyze the rod and the Bernoulli-Euler beam structural medium on which the weighting
examples. function is implemented.

Substituting the dispersion relation,
Rod Einiple Eq. (3), for the Laplace variable in Eq. (5) yields

Exponential and sinc weighting -
functions are analyzed for the rod. The objective y(0,s)= P+ Co P _COU-u(p,O) (6)
of the exponential weighting function is to create (
a sensor which has a second order rolloff without The spatial weighting functions are
phase lag. The purpose of the sinc weighting exponential, one decaying in the positive
function is to achieve infinite order rolloff x-direction and one decaying in the negative
without phase lag. x-direction, with a scale length equal to 1/coaw.

Substituting the wave solution The convolution of these spatial

ux ,t)= Ue' (1) +idIweighting functions, with the wave solution (Eq.u~x t ) Uei  t (I) 4), is

into the governing partial differential equation 0
for a rod .- c fu U , co)eazdx + fu U , (o)e -°dx

d~u(x ,t) 2u(x ,t )o

EA 2 -pA d 2 = 0 (2) a 2/c

(a 2 0/ )(UL(w ) + u (wj) (7)
yields the rod dispersion relation as (a + a/c0)(s - a/co)

2 2 22 This equals the motion at the location x = 0k= E-a or p=-a" =c (3)TE 0U(o, 0))= Ut (WJ) + U, ((0) (8)
The symbols k and o are the spatial and with a second order rolloff but without phase lag.
temporal Fourier variables, respectively, and p
and s are the spatial and temporal Laplace Sinc FunctionSensr. The sinefunction
variables, respectively. The quantities E, A and
p are the modulus of elasticity, cross-sectional W ( sin(dx (9)
area and mass per unit volume, respectively. AX
The roots of the dispersion relation indicate that was chosen as a plausible sensor geometry
the rod supports two wave modes at each because the transform of a spatial sinc function
frequency, leftward and rightward propagating, is a step function in the wavenumber domain.
given by This indicates that an infinite order rolloff in

u(x , 0)) = u (o)e'a + ur (O)e" (4) the sensor's response can occur at a particular
wavenumber (A), and corresponding frequency,

Exponential Sensor. As discussed in the without associated phase lag.
previous section, it is desirable to develop a Convolving the sinc function with the
sensor which rolls off without the classic phase wave solution, Eq. (4), gives
lag which plagues control systems. Therefore, + ((0(,) sin(Ax (10)
the sought-after temporal transfer function is a Y = _ )e + u,. T
sensor with rolloff but no associated phase lag. If the rightward and leftward travelling wave
This sensor has the following form mode amplitudes are equal, u1 =Ur =u()), the

y Ms (0s) (5) output of the sensor becomes
y(,) =-aa a u 0 s  1(5)1- ink-A) U1

where y(O,s) is the temporal Laplace transform = -u(a )(1- sign(k - 4)) (11)
of the desired sensor signal at the position x=0, This geometry of sensor results in a flat
u(0,s) is the transform of a particular structural response for wavenumbers below the
degree of freedom at the same location and wn is characteristic wavelength A of the sinc function
the corner frequency of the sensor. Since the and no response above A. This sensor exhibits
sensor characteristics are dependent upon the no phase lag. Such a sensor characteristic would
dispersion relation, the appropriate spatial be extremely valuable in a structural control
weighting function will be dependent upon the

3



application. However, performance degrada- 2
tion due to sensor truncation must be considered. dC 2 w ----- = k ( -w oj+Wt - W rp+ w ,)(8

Beam Example at the center of the exponential sensor (x=0).
One spatial geometry of strain sensor is

studied for the infinite extent Bernoulli-Euler exist (Wle = Wre = 0), substituting the dispersionbeam. This spatial weighting function is an(we=w =0)sutitnghedprio
exponential function that will result in a first relat'on, Eq. (13), for k in Eq. (17) gives the
order temporal rolloff. transfer function from curvature at the center of

The partial differential equation for a the exponential sensor to the output of the
Bernoulli-Euler beam

u  a~ v Y =a 2/C 2o

dv -A- + A 0012 (19)
&I+ A = (12 2 2  + i-E

has the dispersion r, ation

4 pA PA 2The exponential weighting function

k pA a2  or p = 8 (13) creates a second order rolloff for the rod because
wi E the rod's dispersion relation linearly relates

which supports fourwavemodes frequency to wavenumber (Eq. 3). The

v = (w ,e i + whe In + wMe 4k + w,,e -" (14) exponential weighting function for the
Bernoulli-Euler beam creates a first order

The quantity I is the area moment of inertia and rolloff since the wavenumber is proportional,
the wave mode amplitudes (w) are functions of through the dispersion relation (Eq. 13), to the
frequency. square root of the frequency.

The sensor that will be used in the beam. While these examples indicate what is
experiments senses strain. This is proportional theoretically possible using these spatial
to the curvature in the beam, given by weighting functions, the truncation effects

2 associated with finite length sensors must be

dx 2 k 2 ( e i considered.

_ w,.e-k + w,,e-" ) TRUNCATION EFFECTS

Any realistic application of these types of
Exponential Sensor. The output of the sensors will involve truncation in order to

exponential sensor is found by convolving an confine the sensor to some finite region of the
exponential weighting function with the structure. This will result in the loss of
curvature in the beam, Eq. (15), to give the measurement information and therefore a
convolution deviation of performance from that predicted by

_E . .d 2--2 v the infinite domain analysis.
= 2' -- edx +1 --- dx (16)2_ 2 ok 2  Rod Example

This yields The first step in quantifying the

Za2L 2  2 truncation effect is to evaluate the point
y =. ... 4(k 2 _a2)(w + w,,) measurement of the motion variable at the center

k - a 4  (17) of the convolving sensor. This measurement
2 2can then be compared to the measurement from

+ (k + a2 )(wk + W,) the convolving sensor to quantify its behavior.
Notice that at wavenumbers much larger than a Figure 2 shows a finite length, free-free
(i.e., high frequencies) the sensor magnitude rod with a forcing excitation at the left end. The

rolls off as Uk2 with respect to the point length is I = 1.0 m, the axial stiffness is EA = 1.0

curvature measurement N and the mass per unit length is pA = 1.0 kg/m
The point sensor and the center of the convolving
sensor will be located at the midpoint of the rod

4



(at x=O). Displacement is the measured variable
in all of the rod examples. Y = F I s i n(k + k 0)

_______________ 

ikEA 21- k

[ (24)- -- .r k k 0

F - Choosing m = 4 in Eq. (22) gives

1/2 1/2 kO = 8/l. The transfer function from the dis-

placement at the center to the output of the modal
x=0 sensor is

Figure 2. Free-free rod with forcing at left end. Y 2k sin('-) (25)
LUc 2 k2

2 7r&
The displacement at position c, x = 0, is k)

1 2 F where 4 = -W /2 (20) The sine function is zero at all wave numbers
u k=-- -- '- corresponding to a mode. However, the

1-k A denominator equals zero at the wavenumber

The poles of the system are given by the roots of corresponding to the mode for which the sensor

the denominator 1-4 2. The displacement as a was designed, such that the value of Eq. (25)

function of position is given by becomes U2 for that mode.

U(X)= F 4 ( 2 e + e (21) Figure 3 shows the magnitudes of the

ikEA transfer functions from force at the left end to
1- 4 displacement at the center of the rod (dotted

The modal, exponential and sinc spatial curve), to the output of the modal sensor (dashed

weighting functions are analyzed for the rod. curve) and from the displacement at the center to
the output of the modal sensor (solid curve

Modal Sensor. A modal sensor is one (dashed divided by dotted]). Notice that the solid

type of convolving sensor. It simply convolves curve shows a zero at the same frequencies as the

the distributed measurements with the mode resonances (dotted) with the exception of the

shape. The mode shapes for a free-free rod are resonance for which the sensor was designed.
The net result is that the modal sensor only 'sees'

O(x ) = A cos(- I-x) one mode in the rod (dashed curve). As might be
(22) expected from Fig. . an imperfect modal sensrr

(2n + 1)ir will exhibit near pole-zero cancellation of the

) other modes.

Selecting a cosine shape, the modal sensor is
evaluated by M

1/2 
a

y = I u(x)cos(k ox)dx
-4 /2 

n

1/2 1 o x :

f fu(x )1e iz+ e kO)dx (23) -

-4 1/2 d

The transfer function from left end forcing to the e 10 -5

modal sensor signal is 103 iQJ

Ftquenz (Hz)

Figure & Transfer functions from form to
displacement (dotted), to modal sensor (dashed)
and from displacement to modal sensor (solid).
EA1.0 N, pAwl.0 kg/m, I11.0 m and kon8n m"1
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Exponential Sensor. The output of an
exponential sensor is evaluated in the following M
manner a

a fu(x )eazdx i

= 2(1- e - t
8 U

+ Ju(x )e-"dx (26) d

o e 10-21

Notice that rather than evaluating the 10 10- 102

convolution across an ii>iiiiLe extent, the Fr8egiecy (Hz)
convolution is now evaluated across a firite
length 2& The purpose of the constant in front of j 2W
the integrals is to provide the same gain as the
point sensor at low frequencies. The transfer P 100
function is given by i h

a 0
Y 1 2 a 'S - -

e + 2 12110e _F kA (2 a)27)

a- e -'6{ acosW)+ k sin(k8 )}1 -200  ,
I- e-{S 10 101 102

Figure 4 shows the magnitude and phase Fre.uncy (Hz)
of the transfer functions from the point
measurement at the center of the rod to the output
of the exponential sensor for three different Figure 4. Transfer functions from
lengths. In all three cases, a was selected to give displacmnt to exponential sensor output fr
a 10 Hz corner frequency (a= 62.83 Hz, co=1). lengthsofsensorsof8=0.5m(solid),.OM m
The solid curve is for a sensor which covers the (dashed), 8.OJ m (dotted) and to the output oa
entire length of the rod (3 = 0.5m), the dashed double, real pole tenporal filter (dash-dot).
curve is for a sensor which covers 10% of the rod aa62.83 in, EA=1.0 N, pA=l.0 kg/m and 11 m
resulting in a sensor of three scale lengths in
extent (8 = 0.05m) and the dotted curve is for a Remembering that frequency and wavenumber
sensor which covers 6% of the rod resulting in a are linearly related in the dispersion relation
sensor of less than two scale lengths in extent (8 for the rod, Eq. (3), the truncation effects cause
= 0.'13m). Notice that the sensor which covers the the second order rolloff to degrade to a first order
entire rod has a clearly visible second order temporal rolloff. The frequency at which this
rolloff. This rolloff occurs without phase lag. transition occurs is determined by the
The other sensors exhibit significant truncation exponential term in Eq. (27). The larger the
effects between 10 and 100 Hz. The lower the product aS, the more scale lengths that are used
number of scale lengths used in the sensor, the in the sensor and the higher the frequency at
more significant the truncation effects at lower which the truncation effects become important.
frequencies. Also notice that the shortest sensor exhibits a

For wavenumbers much larger than a sign change, causing a 180 degree phase
(high frequencies) Eq. (27) becomes reversal just below 100 Hz. This illustrates the

a -Go sneed for providing a reasonable length sensor.
___ sin(k_ The dash-dot curve in Fig. 4 shows the

ikEA 1- _ 2 1- e-as  (28) magnitude and phase of a temporal sensor withthe same second order rolloff. Notice that this

sensor starts reducing phase margin at a much
lower frequency (above 1 Hz).

6
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Figure 5. Transfer functions from end force to X f

displacement (dashed curve) and to the output of P IO
the exponential sensor (solid, lower curve). h

,00.05 M a 0

Figure 5 shows the magnitude of the transfer e-i I
functions from end force to the displacement at
the center of the rod (dashed curve) and to the -200
output of the exponential sensor (solid, lower 10-1 100 101

curve) for 8=0.05m. Notice that below 10 Hz the FreqLicy (Hz)
outputs have the same gain. However, above 10
Hz the exponential sensor exhibits a second
order rolloff without phase lag (Fig. 4). The Figure& Tranerfunctonsfromcenter
sensor truncation effects cause the waviness in motio to the sinc function sensor (solid), to the
the transfer function of the exponential sensor infinite extent sincfun cion sensor (dashed)
above 30 Hz. and to a fifth order tenporl filter (dash-dot).

EA=1.0 N, pA=1.0 kg/m, 1=16n m, A=1.0 m l ,

Sinc Function. The transfer function B4g m
from end forcing to the output of a truncated sinc
function is found by evaluating The dash-dot curves in Fig. 6 show the
Y 1 __d transfer function of a temporal sensor which
F ikEA 2jr 1_ 44 achieves a fifth order rolloff, like the sinc

function between 0.8 and 1.2 Hz, using five
(42 sin(Ax )d (29) identical poles at s = -62.83rad/sec. Notice thatA )no phase shift occurs until the gain has

-A attenuated one decade. The rolloff becomes
Since the solution to this convolution is an sharper as more characteristic wavelengths A
infinite series, the integral was evaluated are included in the sensor.
numerically.

Figure 6 shows the magnitude and phase Beam Example
of the transfer functions from the center motion This section studies the truncation
to output of the truncated sine function sensor effects of various sensors on a Bernoulli-Euler
(solid) and to the ideal, infinite extent sinc beam. The beam is pinned-pinned with a length
function sensor (dashed). of I = 7.32 m, a bending stiffness of El = 31.1

Nm 2 and a mass per unit length of pA = 2.85
kg/m (Figure 7). These values correspond to the
beam used in the experiment.
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where

r [a - e- (acos(kS) - k sin(k3))](35)

and

112 7= 1/2 Z2_P(6[a- e-'(acosh(k8) + k sinh(k3))] (36)
Figure 8 shows the magnitude and phase

Figure 7. Pinned-pinned Bernoulli-Euler beam of the transfer function from the point curvature
with a nwmmnt input at the left end. sensor to the output of the exponential sensor for

three diffeient sensor lengths (8). The value of
The steady-state curvature at the center a = 6.7 m- 1 places the temporal corner frequency

of the beam (x=O) is given by near 23.0 Hz. Notice that the magnitude starts to
82 + . ( 2 roll off, with a corner frequency of 23 Hz, at a

= P ' P (30) logarithmic slope of negative one. However, the
(I+ e2(1 + 42 phase does not exhibit the typical 90 degree phase

w r lag associated with a first order rolloff (dash-dot
where curve in Fig. 8). This occurs because the first

4p = e-W /2 and 4, = e - /2 (31) order rolloff is obtained by using both right and
left half plane singularities whose logarithmic

To perform the convolutions, the curvature as a magnitudes add and whose phase contributions
function of position (x ) is required. This is cancel. Notice in Fig. 8 that the temporal filter
given by exhibits 90 degrees of lag one and a half decades

2 (X M (e 2 before the 8 = 0.3556 m sensor exhibits its first
_ _) M - e  phase shift.

ax 2 F 44)The growing sinusoid at higher
LxP frequencies is an artifact of the truncation of the

X 2 I ) exponential sensor. Notice in Eq. (35) that ZI
+ ( - e (32) has a term which becomes larger as a linear

1 - c4) Jfunction of wavenumber, k. For k much larger
which was obtained using the phase closure than a, this transfer function becomes
principle discussed in Ref. [3]. The one sensor
studied for the beam is an exponential sensor Y M 2) (37)
used to create a first order temporal rolloff. -a" 4i k

Exponential Sensor. The exponential Due to the truncation of the exponential sensor,

sensor spatially convolves with the distributed the first order rolloff predicted by the infinite

curvature in the following manner domain analysis degrades to a half order
temporal rolloff (1/k) at higher frequencies.

a 0 d 2u(x The half order rolloff is determined by the
Y = - I e - dx logarithmic slope of a line connecting the peaks

e~ d of the truncation induced sinusoid in the

a d2V (X) 1 magnitude plot. The effect of the truncation
+ _J _ dxj (33) manifests itself at a frequency which is

o dj 2  
1 determined by the exponential in the second

This gives the steady-state sensor output as a term of Eq. (35). The product aS equals the
function of the applied moment (M) at the left end number of spatial scale lengths encompassed by
of the beam as the sensor.

M i Xi + Z 2  a
S= El (1+ )(1+ ) a 4 -k' 1- a  (34)

8
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SENSOR FABRICATION

Figure 8the transfer function from the point This section describes the methods used
ct atue sens or to teouput ofthe expo tial to fabricate the exponential and sinc function
sensor for 8.l0.71 m (dased), 8=0a m (solid) sensors for a beam. Sensor fabrication con-
and 8.-0.18 m (dotted) and the these function sisted of creating Mylar templates in the shape of

for a first order temporal filter (dash-dot). the specific sensors, using these to mask the
EIu31.lNm 2 , pA-2.rskglm, 1=7.3m & cu6m"I piezo polymer film during etching, and then

attaching the piezo film to the beam. The final
Notice in Eq. (37) that the sine term product consisted of connected sensor segments

eventually causes the transfer function to shift with an etched pattern on one side and a
180 degrees and to continue to do so periodically, completely intact electrode on the other, an
These sharp phase transitions can have example of which is shown in Fig. 10.
implications for control. The onset of these
transitions can be delayed in frequency, while Piezo Fim
the magnitude drops, by increasing the length of The Pennwalt Corporation's KYNAR
the sensor (28) to encompass more spatial scale Piezo Film was used. KYNAR Piezo Film is
lengths. Hopefully, gain stabilization can be polyvinylidene flouride (PVDF) coated on both
achieved prior to the onset of these 180 degree sides with conductive metal electrodes. PVDF is
phase reversals. a long chain semi-crystalline polymer of the

Figure 9 shows the magnitudes of the repeat unit CH 2-CF 2 . The film produces charge
transfer functions from applied moment at the per electrode area across the thickness of the
left end of the beam to the point curvature sensor polymer, due to the stress applied along the
(dashed) and to the output of the exponential transverse axis.
sensor (solid). The film is composed of three layers

(Fig. 11): a pair of electrodes surrounding the
PVDF. Vacuum deposition results in an
electrode thickness of less than 0.1 g±m. A

9
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modelled as a pinned-free Bernoulli-Euler
S.,beam up to approximately kHz. A pseudo

Mylo, 8.,, random noise source from a Tektronix Fourier
IAnalyzer and a power amplifier were used-to

drive a PMI torque motor. This supplied a
moment excitation at the pinned end of the beam.

The strain gage signal was passed

Figure 12. Sensor mounting. through a strain gage conditioner to the Fourier
analyzer. A high-impedance amplifier based
on a 3140 FET op. amp. was used to lower the

Strain Gage corner frequency of the highpass filter intro-
A strain gage was used to provide a point duced by the film's capacitance. The input

measurement for comparison with the piezo film resistance of the circuit (Rin = 66 MO) was
signal. It was attached to the opposite side of the chosen so as to ensure a uniform signal gain in
beam at the center point of the sensor. The gage the frequency range of interest by placing the
resistance was 120 Q and gage factor was 2.050. I/RC pole at 0.06 Hz.

To help eliminate noise, the sensors were
Sensor Details grounded to the beam, as was the shielded cable

Two piezo film sensors were fabricated used for the strain gage.
with electrode widths proportional to an
exponential function and to a sinc function. All
patterns were symmetric with respect to both a
horizontal and a vertical centerline (Fig. 13).
The exponential and sinc sensors were both -- -

mounted on the centerline of the beam. Further
details can be found in Table 2.

The segment length was constrained by .
the size of the piezo film sheets (0.15 x 0.30 n).
The width of the exponential and the sinc
sensors was scaled to be half the width of a sheet.

Table 2. Sensor details.
Sensor Exponential Sinc function
Electrode ec , x<0 [sin(,lx)]/(Adx)
pattern e" a , x>0

a= 6.7 m"1  A = 27.1m- 1  Figure 13. Electrode patterna.
Corner freq. 23 Hz; 386 Hz
Width at x =0 0.075 m 0.075 m PFotedmre
Length 0.71 m 1.16 m Each sensor was tested by exciting the
Segments 3 9 beam with band-limited white noise. The noise
Distance from source voltage level was such that a root-mean-
free end of 1.35 in 2.46 m square torque of 0.0794 Nm was applied to the
beam to x =0 beam in each test. Three channels of data were

collected with the Fourier analyzer: the
BEAM EXPERIMENT excitation voltage, the strain gage signal and the

sensor signal. Transfer functions were then
Set-Up calculated from moment to strain gage signal,

The sensors were mounted on a 7.32 m from moment to sensor signal and from strain
brass beam, composed of four 1.8 M sections gage signal to sensor signal. The transfer
bolted end to end and suspended by six pairs of function data was taken from 1 Hz to 1 kHz.
cables (Fig. 14). The beam was 0.10 m wide, This range was selected so as to show the sensor
3.175 mm thick and had the following properties: behavior both before and after the corner
El = 31.1 Nm 2 and pA = 2.85 kg/m. It can be frequency.

11



shake suspensior /

strain gagc

P11

beam exponential
paatern

7.3 m

Figure 14. Beam set-up.
Alternately, the two sensor gains may not be

EXPERIMENTAL RESULTS linear with amplitude, or the assumption of a
Bernoulli-Euler beam may be inappropriate at

Exponential Sensor higher frequencies. Nonlinearity in amplitude
Figure 15 shows the magnitude and could cause the two signals to differ

phase of the transfer function from the strain significantly near the poles or zeros where the
gage signal to the exponential sensor signal. transfer functions are changing rapidly. The
Examination of the coherence function (a ratio introduction of torsion and plate modes in the
of cross-power spectra) indicated that the two beam could also affect the two sensors
signals were poorly correlated at the sharp peaks differently.
in Fig. 15. These correspond to the low level Two factors indicate that these spikes are
signals obtained at the zeros of the transfer of little concern. Detailed inspection of the two
function from moment to either the exponential transfer functions in Fig. 16 show good
sensor signal or strain gage signal shown in agreement between the frequencies of the poles
Fig. 16. In order to highlight the general and zeros. In other words, the two sensors appear
behavior of the sensor, the experimental transfer
function was smoothed by taking a moving
average of the experimental data.

Note the overall agreement with theory
in Fig. 15. Below 100 Hz, the experimental data
exhibits a roughly first order rolloff with a
corner frequency of 23 Hz and no phase lag. As -

predicted in Fig. 8 for 8=0.36m, the truncation
effects become evident in the data above 100 Hz. ooc
The first significant phase transition, around
250 Hz, occurs after the magnitude has been
attenuated by about one decade. Figure 16 shows ____.__________

almost perfect overlay of the two transfer -Ir
functions below 23 Hz and attenuation of the
exponential sensor signal above 23 Hz. -

Deviations between the data and theory I -
are of two kinds. The first corresponds to the
rapid fluctuation, with frequency, of the
magnitude and phase. This could arise from Figure 1 Transfer unction between strain
several sources. As stated previously, the gage and exponential sensor signals for three
coherence was poor at these frequencies. This cases predicted (dashed); actual (dotted); and
implies that either the strain gage or exponential smoothed (solid).
sensor signals were below their noise floors.

12



to be observing the same phenomenon. In lobes in the magnitude plot are barely visiblP
addition, Fig. 16 verifies that the magnitude of The two 180 degree phase reversals at 520 Hz and
he exponential sensor signal drops and stays 710 Hz support this observation.
below that of the strain gage. Therefore, these Figure 18 shows almost perfect overlay of
spikes most likely result from poor signal to the two transfer functions below 300 Hz. Above
noise ratio near the zeros of the system. 300 Hz, the sine function sensor signal atten-

The second kind of deviation uates rapidly with frequency.
corresponds to the observation that the
magnitude of the experimental data is greater
than that predicted at higher frequencies. This
may be the result of a slower rolloff rate than ---- AAL

predicted by the dispersion relation. An
alternate explanation is that the actual and -
predicted corner frequencies are different
causing the same rolloff as predicted but at
higher frequency. -

i .. M..

Figure 17. Transfer function between strain
gage and inc function sensor signals for two
cases actual (dotted) and smoothed (solid).

F-rqu.ecy 1H.)

Figure 16 Transfer function from moment to
strain gage signal (dotted) and to exponential -

sensor signal (sqlid).

Sinc Function Sensor - <i P v
The data for the sine sensor is presented ,

in the same format in Figs. 17 and 18. However, - I i
the theoretical prediction is not overlayed
because the sine function analysis was
performed for the rod. Nonetheless,
performance similar to that shown in Fig. 6
would be expected.

Note in Fig. 17 that the magnitude -____

exhibits a roughly fifth order rolloff between 300 " .
and 500 Hz. This is in good agreement with the
predicted rolloff near 386 Hz (Table 2). As would Figure M Transer function tvm moment to
be expected from the rod analysis, the first strain gage signal(dotted) andtosinfunction
significant phase shift occurs at 500 Hz, after sensor signal (solid).
attenuation of one decade, at the first zero caused
by the sensor. A couple of the truncation induced

13



Note, when comparing the exponential
and sinc function sensor data, that the latter REFERENCES
exhibits greater fluctuation in magnitude below Ill Miller, D.W. Hall, S.R., "Experimental
the corner frequency of the sensor. This may Results Using Active Control of Travelling
result from the greater number of zeros in the Wave Power Flow," presented at the 1989 ASME
transfer function of the sinc function sensor Winter Meeting, San Francisco, CA, Dec. 11-15,
(compare Figs. 16 and 18). The two sensor 1989, submitted to J. Guidance, Control, and
transfer functions have different zeros because Dynamics.
they are located at different positions on the
beam. This indicates that a sensor located at the [2] Miller, D.W., Hall, S.R. and von
center would provide the best coherence because Structural Junctions," Proc. of the American
it has no zeros in its transfer function. Control Conference, Pittsburgh, PA, June 21-23,

SUMMARY 1989, pp. 212-220, .ubmitted to J. Sound and
Vibration.

Measurement of a structure's spatial [31 Miller, D. W. and von Flotow, A.H., "A
deflection pattern can be used to generate sensor Travelling Wave Approach to Power Flow in
signals which possess dynamic characteristics Structural Networks," J. Sound and Vibration,
that are beneficial to real-time structural control 128(1), 1989, pp. 145-162.
applications. By convolving the sensor shape [4] MacMartin, D.G. and Hall, S.R.,
with the distributed measurements, the sensor "Structural Control Experiments Using an H.,
filters the spatial harmonics of the deflection Power Flow Approach, submitted to the 1990
pattern. Since these harmonics are uniquely AIAA Guidance, Navigation and Control
related to temporal frequencies, through that Conference, San Diego, CA, May, 1990 and to
structural medium's dispersion relation, the appear in J. Guidance, Control, and Dynamics..
resulting sensor signal becomes dynamically
compensated. Since causality is not an issue in 5] MacMartin, D.G. and Hall, S.R., "An
the spatial domain, the resulting dynamically H Power Flow Approach to Control of
compensated sensor signals can possess Uncertain Structures," to be presented at the
particular characteristics which are American Control Conference,
unobtainable through direct dynamic [61 KYNAR Piezo Film Technical Manual,
compensation. In particular, it was shown that Pennwalt Corp., Valley Forge, PA, 1987.
magnitude rolloff could be achieved with no M Lee, C.-K., "Piezoelectric Laminates for
phase lag. Torsional and Bending Modal Control: Theory

Several spatially convolving sensors and Experiment," PhD Dissertation, Cornell
were implemented on a beam. The output closely University, Ithaca, NY, 1987.
matched that predicted by' the analyses. Since
the structural length and amount of material [8] de Luis, J., Crawley, E.F. and Hall,
available to construct the sensor were both finite, S.R., "Design and Implementation of Optimal
truncation of the convolved measurements was Controllers for Intelligent Structures Using
an issue. These truncation effects were Infinite Order Structural Models," Space
quantified and their minimization, through Systems Laboratory Report No. 3-89, M.I.T.,
delaying their manifestation to higher Cambridge, MA, 1989.
frequencies, was achieved by incorporating [91 Bailey, T. and Hubbard, Jr., J.E.,
more scale lengths into the sensor. "Distributed Piezoelectric-Polymer Active

Future work will entail working on Vibration Control of a Cantilever Beam," J.
several improvements to the sensors. In Guidance, Control, and Dynamics, 8(5), Sept.-
particular, smoother truncation of the sensor Oct. 1985, pp. 605-611.
may help to delay, in frequency, the abrupt [10] Miller, S.E., Hubbard, J., "Theoretical
truncation effects. The objective of this sensor and Experimental Analysis of Spatially
development is to reduce or eliminate the Distributed Sensors on a Bernoulli-Euler
sensitivity of structural control, using point Beam," Charles Stark Draper Laboratory Report
sensors, to short wavelength, high frequency C-5953, Cambridge, MA, 1987.
phenomena.
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Development of Wave-mode Observers for Active Wave Control
of One-Dimensional Structures

By

Darryll J. Pines and Andreas If. von Flotow
Department of Aeronautics and Astronautics

Massachusetts Institute of Technology, Cambridge. Mass. 02139

AR.STRAC
This paper presents approaches for local observation of wave components which

propagate along one-dimensional structural components. In each cae, the solution of the
partial differential equation which characteries the dynamics of a one-dimensional structural
component is written in terms of travelling waves. This form of the solution is then
exploited in the first method to comhine a sequence of spatially discrete measurements
through a frequency dependent decoupling matrix to yield magnitude and direction of
travelling wave components. In the second method a finite difference scheme is employed
to estimate local deflections and internal forces at a cross-section in a member. A frequency
domain transformation is then a!plied to this local state information to obtain the decoupled
wave components. Because both of these methods require local discretization of the spatial
domain, perfect resolution of decoupled wave components will suffcr from the effects of
spatial aliasing, Noisy measurements and approximate realization of the frequency
dependent decotipling matrices also limit the achievable sensor decoupling. This paper
addresses these issues and presents techniques for minimization of the effects of these
limitations. Experimental results are not presented.

L0INTRODUCTION
Active control of structures who-, dynamics can be modelled using partial differential equations has been

studied extensively in the last two decades. Two applications receiving much attention are Large Space
Structures-LSS-1 1-3J and Structural Acoustics-14-61. Several modelling techniqties such as modal analysis,
finite element analysis-FEA, statistical energy analysis-SEA, and asymptotic modal analysis-AMA have been
used in attempting to predict and control such structural dynamics. More recently, travelling wave
descriptions-[4,5,7- 11 , have become popular as an analysis tool for doing control design at discrete
locations in complex structural networks. Locally the response of the structure is interpreted in terms of the
propagation of travelling waves. This leads to local structural models which are exploited foi local control.

Ihis approach views one-dimensional structural members essentially as elastic waveguides which
propagate signals from one point to the other-iSee Figure 1). The response can be described by a
superposition of certain wave-modes-(types) which can propagate along a member in the positive or negative
direction. Depending upon the order of the mathematical modtel used to describe the dynamics of a member.
only a finite number of wave-modes-(types) can propagate along any member. Representing the dynamics
of a member in terms of wave-mode amplitudes is useful because these variables propagate aieng the
member without coupling, and because the houndary conditions. transformed to these variables take on a
clear, causal, input/otitput form. his causal form of the boundary conditions has, to date, formed the basis
of all wave control theory-(and practice).

In this paper we develop procedures for extracting wave-mode states from physical menrr,--nts alone
structtral member-s. T'he procedures titiliie causal filtering of discrete sensor signals to e.,ract tie evolution
of wave-modes propagating along both a rod and a beam. Two approaches are developed, which under
appropriate approximation yield identical procedires. Measurements corrupted by noise ae also considered
from the point of view of optimal resolution of travelling wave components: here we derive an expression
for the spacing which maximizes the rms-(root mean squared) vplue of a travelling wave signal in the
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presence of noise. We also discuss issues associated with the transient performance of the observer
dynamics and with actual physical realizability.

2.0 1RAVELLING WAVE DYNAMICS AND EFEf)"QRWARDCONTQL
Following the frequency domain fomialism developed in references [71 and 1I1, the dynamic behavior of

each structural member can be obtained by superposing independently propagating travelling wave-modes at
every frequenty. " he wave nature of each member can be exposed" by manipulating the governing partiai
differential equations into a state-space description of member dynamics of the form

dy( x ,i)
dx =A(l)y(x xe) ll)

where y(x,w) represents member deflections and/or internal forces. A(w) is a frequency dependent matrix
which characterizes member dynamics.

Equation-(I) can be diagonalized to give the following decoupled dynamic description of the spatial
e% olution of wave-mode variables, w(xo)

dw(xw) F()w(xe)
dx (2)

where
-I

F( e) =Y( a)) A( c)Y( w) and y(x,(v) = Y( is)w(x.,) (3)
The invertible matrix Y(o0) represents a frequency dependent set of complex eigenvectors which transforms
member deflections and internal forces into leftward and rightward travelling wave-modes which propagate
alone the structure. Each column of this matrix yields the relative magnitude and phase of the physical
variables. y(x,(o). which are present in the corresponding wave type.

Travelling waves, propagating indepertdently along each member, can be scattered or generated at
structural discontinuities or at locations where external excitations alter the homogeneous evolution of the
member dynamics-(See Figure 2a). Locations at which the scattering or generation of travelling waves
occur art referred to as junctions. Junctions are important because they help to describe the dynamics locally
in terms of waves which are reflected, transmitted or generated as disturbances travel through a complex
structural network. Transforming the junction governing equations(often refereed to as boundary
conditions) into wave-mode coordinate, leadds to a causal open loop description for outgoing waves.
wo(x.Co), which arise from the scattering of incoming waves, wi(x,wo), and external excitations, Q(o),
which act at the junction

Wo( X , l = S ( W) I x .o) + V( ) Q( a) (4)

The matrix S(w) and '(o) are termed the scattering and generation matrix respectively. Q(w) is a of vector
of external excitations. Equation (4) is used to describe the local open loop plant wave dynamics, and forms
the basis for most wave-control design methods.

As in the case of modal control roethods full-state information is also desired for wave control
implementation. Unfortunately, full knowledge of wave-m(,de stales is complicated by the fact that they are
not sensed directly, but must be inferred from physical measurements. This lack of direct accessibility of
wave-mode states complicates control procedures based on this approach. "lhs. instead oC being able to
directly cancel the propagation of outgoing waves from a junction by simply inverting the local plant
dynamics S(w) in a feed-forward control loop, where typically the form of the compensation K(W) which
generates control forces Q(w) is given by(See tipper loop in Figure 2b);

Q( a) = K( a,)w ( a,)

=- ,P-t( 0))S( 0))w( a,) (5)
we are forced to realize a more complicated form of the compensation to implement most wave control
designs(See lower loop in Figure 2c). This modified control loop structure generates the following form for
the closed loop compensation



W N

(2b) Peedonvrd of imceg

ww

(2c)

Qreedbuck or .a-Culnl

Q pryIKOJ flrnerrflO

G

Figure (2s) G~eneric Scattering Junction for cal 

, r d lc fC I

inputoutput dynarnvci. (2b) l-1pper Lo'r) Meal active U
control loop is poiiihie only %hen decoupled wave Y u
comrponents cam be fed directly to the cnntrol vcctor. u

(204)-lower LA-op) Actual cloqcd loop realhnutioo, where
lack of decoupling of wave comnponents leids to -e

feedback of outgoing waves to the control Q. dynamites d. d'n

Q( wt) G G( w,)tu a)

[w))t ] f)wG ))Y a ))1
-G( itY Wt 0G( W)[Y (a)

hlere tt(r,) is A vector of local deflections And internal forces, Y(M) is a transformation matrx relatitrg Lt)

to incoming-(wi) and outgoing waves-(wo) at the junction and ((t) is the compensation matrix multiplying
UO(()).

Notice that in this equation tite comipensation generates control forces based on physical measurements

ut(m). However, this form of the compensation leads to the sutperfltuous feedback of outgoing waves-(w0 )

back into the control, giving rise to the following loop transfer function
u ( 03) 41 - ( 0))G( a))Y of 0) (7)

where I is the identity matrix.
The problem w ithk th is additionalI loop in the corttrol strntctttre is two- fold, ( I) The presence of the loop

complicates the design and implementation of G(o)), and (2) The loop may lead to A local instability. Thus.

thie diffictulties associated with implementation of the form of the cnmpensation given in equlation (6)
motivates the need for sensors A hich can directly mecasttre wave components. Knowledge of the magnitude

atnd direction of these wave components would permit implemenrtation of the decollpled form of the
compensation given in equation (5).

3.0~ WAVE-MODUE OSERV-ATIO9N
Mlany sopitisticated analytical procedures for control design are based on the assutnplion tat the full-staite

vector is available for meatstitrment. Wave control is no exception; it woutld exploit fuill knowledge of a
local state" In addition wave control mietitos add more complexity since most wave control designs vteld

cotupensators which are not statnic futnctions of the local state and are often diffictt to rrali17e-14.5. 7-1 I f. As
in mtost control design methods, rerforrmance is lirmited when tire full site of the dynamic svsteni is not
available. We are thus faced with the comnmon dilemma of approximating state information from a few
measutremnents, In the work to follow we presenit two procedutres for estimating wave-modes along one-

dimensional structures from a limited numbier of rneasttrements. We label these wave-mode estimates w to

explicitly differentiate them from the unknown, actual wave-modes. w.

3_1 S PATIA LLY COLLOAE -1A EP MNTS
1 he most direct aprpronch ito Retrin wA1eN le''lln one t ti lei 'r otic tt onal menlber, i, to intfer this

informa~tiont frorm till-knowledge itt lthe dL tnttic stlate ol1 thle vs-lr MI A cOSS-SCcLton. I tits is done by
inverting the wave-mode transformation matrix-(eq'n 3) relating physical cross-sectional measurements to
w4ave-moude coordinates.

FLW 01 a)lY( X. 0))
where subscripts r and I denote the rightward and leftward wave comp-ments respectively. Difficulties with



sutch an approach are specific to the case at hand. It may he physically impractical to meaiire all of yr.c) at
a single point, (e.g. measurement of the internal shear force in a beam is difficuhlt. Further, the frequency
dependence of this matrix is such that temporal filters cannot always be built to implement equation (); as
the theoretical matrix Y-l(w) may be non-causal.

Exam e LI-(Longittidinal Waves in a Rod)
In the case of a longitudinal rod the dynamics are described by the partial differential equation

2 2
a u x .t) d u(x t)

EA dX2  
pA 2Ox: Ot(9)

which has steady-state harmonic solutions of the form
-jz jhz jas

u(x ) =(w,(0)e +w (Oie )e (10a

and the corresponding broadband solution of the form
-jkz jkx

u( x ,W) = (w,( 0 .)e + w 0.a)e (10b)
where the subscripts r and I refer to rightward and leftward travelling components respectively. The
wavenumber k is given by

Transforming equation (9) into the frequency domain and obtaining a state-space representation of the
dynamics in the form of equation (l)-(y(x.o))=lu(xo)) u'(x.W)JT) leads to the following relation between
wave-mode coordinates and physical states at a cross-section

X.W) 2 2jw pA(11)

where steady-state behavior is not implied.
Estimates for the local right and left-going wave modes are thus available from a linear combination of

local deflection, u. and strain, u'. Temporally, only an integration of strain is required. This appears to be a
viable technique for observerving wave components along a rod, although care would be required to avoid
integrating a strain gage bias.

Example B I -(Bending waves in a B-E Beam)
'I he governing partial differential equation describing the dynamics of a Bernoulli-Euler beam is given by

4 2
d u(x,t) d u(x t)

El +pA 2 = 00di r~ (12)

where the Fourier transformed solution in terms of waves can be represented as
u( x~a)=w~p(Owo)e -I  

4WeOiE-kx
U )= WP0 w)e-1 + 0 e(,ow) e - z+

w P( 0, w ) e w e (O. )e (13)

where the subscripts p,e refer to whether a wave component is a propagating or an evanescent term, and r
and I refer to whether it is rightward or leftward going. Inverting the transformation relation between wave-
modes and physical member measurements at x we find that

I J I I

WT4 k 4 Elk 4 Elk2
'P I 1 1 u(x ,)

- 3 2
wre( z ,ei) 4 k 4 Elk 4 Elk u"( x ,)

wI( X , 0)) jElu'( X , 1)

w ( . M) 4 Elk 4 Elk Elu( x , 0)
1 I 1 I

4 Elk 4 Elk (14)
In this expression the wavenumber k for transverse bending motion is given by

LI

k 4p



Thus equation (14). if implemented as wTitten. would require measurement of lateral deflection. i, slope, u',
bending moment M= Elu" and shear force, V=-Elu". Measurements of internal shear force V, with a
point sensor, may not be practical. These would be combined using tempc, ral filters with gain charactenstics
of I, o-). , (.3I), - I with various constant phases. Not all are implementable in real dime since they
are acausal.

However, if we are only interested in observing the propagating components, then rows one and three
give

e El e e
SpA 4jEPA

4( jw) EI(pA) u

I _ __ -e 4 EI -eI ' -

- -7 Eu

' Vfa w PA 4 jo)-\1E~pA
4 (jo)) EI( pA) (15)

where we have substituted for k and rearranged to illustrate elements having positive and negative phase
delays. Notice that elemens of the third column are anticipatory; requiring prior knowledge of the internal
shear at a point in the beam. This complicates direct observation of Wrp and wtp from 4 collocated point
sensors. I lowever, several wavelengths removed from structural discontinuities near field terms contribute
negligibly to the response u(x.ro) given in eqtiation (13). Thus, at high frequencies we can interpret the
response of the beam in terms of propagating components only. ! his reduces the number of sensors
required for observation to two. One possible causal solution is given by

(x.o) 2. / V T' 2 j.IEpA u1(x )1 El e " LEu'( x , )

Ip X ,W) e 
4  

e e

- ( pA 2 o V'EIpA (16)
where measurement of only slope u' and bending moment M=Elu" are reqttired. This expression combines

phase delays with temporal filters having gain characteristics of ( 1/2) and t0. Unfortunately, real time
implementation would require approximation of these phase delays which are only valid over some restricted
frequency range. Another possible causal choice of measurements might involve the deflection-u and slope-
U'.

These two examples have highlighted two difficulties with the simple concept of employing the
transformaition of y(xmo) between physical measurements at a point and the wave components at that point.
The first is simply the difficulty of measuring all the necessary variables at the cross-section in question.
The second difficulty is the impossibility of achieving the needed (acausal) temporal filtering in real time.
.his requrement for acausal filtering appears to be related to dispersive wave propagation.

3.2 SPATIALLY SEOUENIIAL NON-CoLI OCATIED MEA SLLREMENT
It this secton we relax a requirement implicitly imposed in the previous section; that all measurements

be spatially collocated. Rather we suggest a spatial stencil of point sensors. (implicitly assumed to be strain
gages) and discus * possible signal processing approaches to extract wave components from this sensor
array. Stich techniques are widespread in ocean acoustics and geophysics, where the domain is three-
dimensional and the wave propagation is essentially non-dispersive. Real-time implementation is not an
issue in these fields, since active control is not contemplated. Acausal signal processing is thus not ruled out
in these fields.

3.2.1 Exploiting Phase Delays
One approach might involve a sequence of similar measurements at multiple locations along a

member(See Figure 3). This imptics that waves piopagaling without attenuation along the member will only
have relative phase leads or lag between spatially discrete points and that a signal processing scheme might
exploit this known phase relation to identify the wave component of interest.

Example L2-(Longitudinal Waves in a Rod)
Consider again the longitudinal rod with successive axial strain measurements given by

u' A-. w) = j k( ,Oii) e 2+ W 0. w) e 2
S(17)

and



U, 0)J k( - W,( 0,o~ 20 )2W(~~ (18)

where A is the separation between the two strain gages and x=() is taken to identify a point midway between
them. Solving for the rightward Find leftward wave-modes leads to an expression (for this non-dispersive
example involving both positive and negative delays)

0w(.0)) 1 A
(C), a) =F(2

jk( e '~ ek) U: W):fLI !:'1(
where F(A~co) is referred to as the observation matrix.

If one can assutme kA<<lthe sensor spacing is much less than a wavelength) some straightforward
algebraic manipulation leads to the following first-order form of equationl 17):

-I I I I 1I -2k T i 4jk 2k Li 4jk u

- 2 k 4 jk 2k 2L 2J (20)
Evaluation of this expression requires up to two cautsal temporal integrations of each local strain
measurement. Sensor bias would need to be dealt with. Figure 4 compares the first-and the infinite-order
expressions of the (I.1I) and (1,2) terms of this observation matrix. Here we define the non-dimensional
amplitude and frequency to be
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Notice that in this figure there ts Close agreement between the first-and infinite-order elements up to Owm=lI.
However, as (Ond>l, the phenomenon of spatial aliasing appears in the Form of resonance behavior in the
magnituide and phase of the infinite-order elements. 1 hese resonances arise because spatially discrete
measurements are incapable of resolving all possible wavelengths propagating along the member.
Therefore, whenever

Ond > M or w > (nt/A)(EA/pA)(" 2)
there will be ambiguity in determrining the mwe wavelength of a disturbance propagating along a rod.



Exnmle B(ending Waves in a B-E beam)
As in the case of the longitudinal rod, we can infer information about wave-modes from iequential

strain measurements at spatially discrete location% along a s;imple Bernoulli-Euler beam member. Applying
the same approach we can write local expressions for bending strains in terms of wave-mode amnplitudes as

'a 2 - Rix k
C ~-- ( -w ) ! W,,0O. 0))e -W"(, w) e

IN ( a))e) +w e( 0 . ) e (

where Eb refers to bending strain on the surface of a member of rectangular cross-section, th denotes the
thickness of the beam, and x takes on four values. If tile strain gage stencil is equally spaced about x=-O,
these values are (±A/2), (±3A/12), where A is the ga1ge spacing.

Solving for the frequency dependent wave-mode amplitudes at x=O we arrive at the following matrix
expression

W (0 , ) 4X =F( J. o))4 x 4 C b( d. )) 4x (22)
where each element in F(4.wo) represents the contribution to the evoluation of a particular wave-mode from a
discrete local measurement. For the sake of brevity the elements of this matrix are not given, however, tile
non-dimensional magnitude-(wnd) and phase of elements of a typical row of this matrix are plotted versus
non-dimensional square root frequency-(cond) in figure 5 where

Wt 2 -

W, and W, 4 E
d 2 d 5 A JpA

Unfortunately, attemlpts at linearizing the elements of F(A.ot)(for kA<<l) causes the matrix to become
singular. ihis singuilarity occurs becauise wve cannot infer four wave-tm~es from a strain field which is
approximated as locally linear in space. Only two sensors are actually needed to determine this strain field
approximation. H-ence, the linearized version of matrix r(A,wi) is no longer of full rank, and we would be
fo.-ced to higher order-(in kA) approximations.
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Linearizing the elements of this matrix for small seaaindistance leads to the non-causal solution given by

1P 2 3 2 b
JkIb 3 

2 k h jk I A 2k t 2(4

ilie (1I.1) and (1,2) elements of equations (23) and(24) are plotted in figuire 6. As in the case of the rod this
figuire shows that there is close agreement hetween the nonlinear mantrix elements and their lineari7ed
approximations in both phase and magnitude over a broad frequency range. Note that in this case,
linearizing in kA leads to an approximation first-order in kA, but not linear in (t. This is because of the form
of the dispersion relation. Unforturntely, this filter is not causal. Spatial aliasing is again apparent in the
form of resonance behavior in the observation matrix elements whenever

nd > It, (n=l.,3,..) or CO> (,t)2A2(pA/EI)(tt 2)
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Figure 6 Approximate linearized elemoenti-Ineired
components ha.ve been assumed to neghittibe) of the
obiervauion mimex F',(,A.w) 'which decotiples proragiting
wave components traveoting a 8BE beam from loc~li tr~in
meaeurmennt. Non-dimensionat maeittude (%vi) and Phse-
(deg) are plotted neriui non-dimeniionat frequency.
(WPtf)&(EtpA t/4)) tor each elemeint.

3.2.;2 Finite Difference Avmoximation of Partia.l 2frelm !ial Egy~fig
Strain sensors ar-e the most convenient types of instruments tused to infer an element of the physical state

vector at spatially discrete points aloing onie-dimensional ierherl. 'I lie reason for this is that they are
lightweight, thin and inexpensive. More importaintly. the sensor contribtiion to the overall impedance of rthe
stUCtUre is negligible, ibis implies that this type of measuring instrumient has very little effect on the
propagation and scattering properties of waves as they traverse individual membhers in a network.

Pavic.-[13,14J also dlemonstates that strain sensors can be used to estimate spatial derivatives at
locations along a member which are far renmoved from structural discontinnirieq. At such locations, Pavic'
employs a finite difference scheme which hie uses to approximate the first aind second derivatives of strain
for both one and two-dimensional members. lie tises this information to determine local inertial
acceleration, effectively using a portion of the structure as the accelerometer proof mass. This same
approach can be used as an effective way of determining the direction and amplitude of longitudinal and
transverse travelling waves.



Example L3-(Longitudinal Waves in a Rod)
Equation (9), presented earlier, describes the dynamics of a rod in compression or tension without

distributed loading. The longitudinal strain at any location in the member is given by
uu( x .w)

r ( X 0)=L I ,y -25)
Using this relation in conjunction with the central difference method, the second spatial derivative can be

approximated as follows
-a % ,w) -et(x, --- ,w)

eCf X +,) L) i 2 X W
X A (26)

where A is separation between the two strain sensors and the error is on the order of the 5quare of the
separation distance (See Figure 7). Following the sign convention shown in this figure the direction and
amplitude of wave-modes can be approximated by the following relation

(0 o)) 2jk 2k 2  
CL(O .a0)

2 k~ 27 )

where xi = 0. This expression is equivalent to the sequential measurement scheme in the ipproximation

kA<<l(eq'n 20). The two methods are related by the following finite difference transformation

[:tC aE 0 0) jII E if A ] )
(28)

This substitution leads directly to equation-(20),
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Figure 7 Illutration of the Spatial Dervative Method for
esti ting deflection and internal fotces to complete the
phvsic3l state vector 3t a crxi1i-Recuon. Example of local
esurnuaon along a longitudinal rod.

Example B-(Bending waves in a B-E beam)
Because the second spatial derivative of displacement is related to the curvature of the member, the

bending strain corresponding to transverse propagating waves is given by
2e~xt3 u(x, )

b 2 ' = 2 ,(29)
Again applying the first central difference scheme, the third spatial derivative can be approximated as

r ( ) { (A. t) C ( Xi - 2 ) . ,
E) 2b ux J 230 )

The second derivative of strain yields the fourth derivative of displacernent which by equation (12) is related
to the local beam acceleration. Applying the centnil difference method for the second derivative of bending
strain, and exploiting equation (12) leads to the following expression for the transverse beam deflection



2 b ( ) A. (+ b 2 e(0. W)

u(0 .,) - 2 2

tb PA S (31)
where xi=O and s is the Laplace variable.

The only element of the physical cro,,-sectional state vector yet to be accounted for is the local slope.
Since the slope represents the rate of change of deflection with respect to position along the member. the

deflection at two neighboring points must be found usioR equation (31) before the slope can be estimated.
Applying this methx the local slope can be approximated as

U Aa,) -uI A. W)

u'( 0, W) 22

0) -Cb b )+3.)2 El I bb( -2 ) 2 2'Sbp A S2  A 3 A (32)

The error in this expression is on the order of A, the separation between strain sensors.
Equation (32) completes the estimation of elements of the physical state vector at a particular location

from only 4 local strain sensors. Combining equations (29-32) with equation (14) we can approximate the
evolution of rightward and leftward going wave-modes along a beam member in terms of local strain
measurement.
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As in the sequential sensor scheme, contributions dtue to the evanescent terms can be considered negligible
when measurements are taken more than a wavelength away from structural discontinuities. This implies that
the rightward and leftward propagating components can be found from extracting the Ist and 3rd rows of the
matrix given in equation (31). It was pointed out earlier, however, that this expression is not realizable in
real-time because the terms in the third column of the matrix in eqitation (33) are non-i.ausai. However,
since the evanescent terms have been considered negligible it is possible to exploit the remaining causal

terms in elttation (33) to derive an expression which uses only knowledge of local bending strain rb and
slope-u' to estimate the propagating wave components w m and wtp. Such an approximation would lead to
the following equation for the propagating wave components for a beam

3 I
Cb F- A. W)

rA 0- -P3P -3P P C ' )

tO 2 k -0,-3 3 3 2

0 b - ( 01 _ -El -El b '
'p 2 k 2 Elk 2 2 3

(34.)

Since the local deflection and slope represent a causal pair of physical measurements they can also be
used to estimate propagating wave components far away from structural discontinuities. However, such a
selection would introduce additfinal resolution errors associated with inacctiracies in estimating local
deflection from four point strain measurements. Other non-realizable pairs include (deflection & strain) and
those physical measurements which are combined with an estimate of the internal shear force at a cross-
section.

3.2.3 Optimal Sensor Spacing in the Presencef Noise
Up until this point we have ommitted any restrictions imposed by the possibility of noisy strain



measurements. Clearly we will not be able tn choose the separation distance A arbitrarily small since the
difference b'.aween strain signals will become very small, potentially smaller than the noise level in the
measurement. Further restrictions will be imposed by the occurence of spatial aliasing. limiting the smallest
resolvable wavelength that can be accurately detected by this measurement scheme. The optimal spacing
between succesive strain sensors will be bnsed on our ability to achieve the maximum rms signal to notse
level for each wave component for a given noise spectrum and stencil configuration.

Assuming that the sensors are corrupted with stationary, uncorrelated white noise, the wave sensor
observation integral determines the estimated wave components from the following equation.

i+ n

0 (35)
where f(A.t-t) is the convolution kernel associated with the observation matrix-F(A,w), n(t) is twe noise

vector and ECt) is vector of discrete strain measurements. This convolution expression permits the

covariance matix-Oww(t) for the estimated wave components to be computed from
1,vw ) = ( w ( I) wT t + 0)7.

= I dr I dr 2 f( ,.rI )E(( t(f- T) +n(t- fT))

TT
(2t + r M- r2  *n + r- r2 )) )f( 6. 2J (36)

where 0E(t) and Onn('t) are the covariance matrices for the deterministic and stochastic part of the
measurement. The power spectral density matrix is found by taking the fourier transform of the covariance

matrix Oww(t). This leads to
O(l( s) .) .. Fe ,-T)

. 0

0 a ) F( A... ..........

0

W ) . 0 ) ,(37)

Because each elastic waveguide couples the spatially non-cnlocated strain measurements, there will be

off-diagonal elements appearing in the "w(o(w) matrix. These cross-spectra terms are essential for
determining the optimal sensor spacing along a member. If no correlation exists between the spatially non-
collocated sensors then relative phase information between each sensor is lost and it is impossible to infer the
magnitude and directionality of each wave component.

ExamleLA-(Longitudinal Waves in a Rod)
Tlhe power spectral density matrix for wave propagation along a longitudinal rod is given by

S F( ( s) F,,( A,,s) F,( 1-) F ( ()1 21
F 22( S ) O F 2( .- s ) F 22 1 (3)

where Or2E()=(t a2((O)*)-(*-denotes complex conjugate). The estimated rms response of the rightward
and leftward wave components are available from the diagonal elements of this matrix.

: 4)0, = ( ) L o)

+ 0 -2 cos( kA )Re(0 )-2 s in( kA)Im( 0 )

4 k sin2 ( ka) (39)

where Re and Im denote the real and imaginary parts of the of the cross-spectra term OrtI2(w) repectivetv.

The points where this expression has an extremum can be found by computing its derivative with respect

to A and equating the result to zero. Hence, the necessary condition for the existence of a maximum is

S 4 +cos(kA) + ') si( kd)cos( kd) - I = 0
Re(Oet0 Re( 0, r r) (1

Finding the exact solution of equation (40) is cumbersome since it requires solving a fourth order
polynomial. To gain insight into the optimal sensor spacing we can make some limiting approximations



which spectrally factor the solution into its low and high frequency parts. At low frequencies-(kA<<1) it is
reasonable to assume that the lm((Delc2(co))<<Re(tDEt2(M)). This implies that the non-dimensional optimal
spacing can be found from the following expression

kA Scos R0 Z ) + 2 ± + (; Low Frequency) (1Il (41)
where t(Dcl(o))=(Dt'2r2(0)). The sign of the real Plrt of (fetr2(0))) determine- whether the positive or
negative sign of the radical should be used to compute the optimal sensor spacing. When the argument of
this expression is equal to +/-I there is ambiguity in determining the optimal sensor spacing-
(cos(nn)=cos(kA)=+/-I for n--O.1,2....). However, this expression is restricted to the low frequency part of
the spectrum where spatial aliasing does not occur for kA<<l. To first order the linear approximation to
equation (40) gives

kA " Im(O )O0", Ir(€ 2 )  O (42)

as a rough estimate for the optimal sensor spacing.
At high frequencies or kA >>1 the full non-linear fon of equation (40) is required to determine the

optimal spacing between point sensors, but the solution is of little practical importance.

3.2.4 Transient Behavior of the Spatially Seqia yapro~ah
The preceding sections of this paper have developed all ideas in the frequency domain. Althotigh general

transients are not excluded from this frequency domain discussion, it is often difficult to make the transition
to time response. This section presents a particular transient response of a particular wave sensing scheme.
The example is motivated by a desire to enhance intuitive understanding of the wave decoupling procedure.

Examole L5-(Longitudinal Waves in a Rod)
This section calculates the transient response of a first order-(linear in kA) wave-mode filter using two

strain sensors spaced a distance A apart. We excite the sensor with a sinusoidal wave train arriving from the
left at t=O. If we assume that the rod is semi-infinite and that only a rightward travelling longitudinal wave is
present in the member than we would hope that our approach would indicate the presence of only a
rightward going wave. Before we attempt to examine how well the fit order approximation achieves
decoupling of wave components along a rod, it is convenient to express equation (20) in state-space form;

r =Ax + Be

= rC11 1' ' 22(43)
where the linear time invariant matrices ae

A -[0 J j; C -C =[12. = [!Z -
2 2C c 1,D=[OI; c = -AC2 =_E C241 -2L2 pA

Assuming that we have perfect strain sensors, we can describe the evolution of rightward and leftward
components using the following convolution integrals

A(-1

14 1 A( By r dr C 1 A(r) dr
. ( 0 t) 2 •' 22 ( 4

where e1 and c2 are the strain measurements taken at location I-(x=-A/2) and 2-(x=A/2). As mentioned
earlier suppose a cosine deflection u(xt)=Mcos(r(t-t)) wave is incident from the left arriving at sensor I at
t=O. Then sensors I and 2 would measure the following strains

t = M -- i n( oWt) .t t a 0

weuea te f-ren of -the); travelling (45)
where M is the strain amplitude and two is the frequency of the travelling wave. Substituting for elt and t:2 in



equation (43) we find that

•(0O.): I t) [C 02 -. -€ )O °

AA

0 , 1le AI-)BM ! s ino.r) dr + e "A BM Woript wot)dr

10.0 1 2' C
t>aO t ato= ,

(t6)

Substituting for matrices A and B and integrating equation (45) with all initial conditions set to zero leads to
tie followAing temporal evolution of the rightward and leftward travelling components

(00.) C o 0 0

0 ( , ) C 2 - Co s( m t) ] c C 2 CO S( 0) ( t .to ) )
0)0 t

(1t 0) 0 t t= -,

(47)
Notice in these expressions how the restriction on the initial condition leads to steady state sinusoidal
dynamics superposed upon a ramp. Fortunately, for t > to the effect of the ramp cancels out and we are only
left with the dynamics of a sinusoid. This is apparent %khen we substitute for the C matrices, i.e.

A cS'0, 3 1'tv o(tot)
w (0.t) = Ct- 4 + M + (t 0)

1 2 Awo 2 4 4 4
c itWo to) Cs o I Mo + c( r Z to  -

, -4 2 A (48)

and

A J cSir( Wr) Cos( W t)
w (0.t) = 0 + M (t a 0)2 o) 2 a 44

sin( co - t Cs( 0)(t -t)) + c (t a =I-)
0 c (49)

For t < to no decoupling is achieved and the both wave component estimates undergo a transient phase
which leads to a dc offset in the temporal evolution of their approximate decoupled state. This offset can be
estimated for every frequency component in the spectrum of the measurement by considering only the
temporal history of equations (48) and (49) up until to. Thus, the dc offset in the rightward and leftward
wave components can be estimated at each frequency wo from the following expressions:

0, )- 24oc 2 A 
(50)

w 0.1o, 4) -2c 2  (51)

For t > to decoupling is approximately achieved; the effect of the ramp cancels and we are only left with

the steady state dynamics about the dc offset for each wave component.

A 5 C042
w 0O't) - M (Cos(too0(t) - 2)  M t>_to)

24c (52)

A 0) 6 2  02 ,62

w O't) ---- M cos(m ot) + - 0---- M ( 1 t o )
24c 24c2  (53)

The above expressions are good to second order in the argument omt o. Figure 8 shows the transient and
steady state dynamics for a generic wave travelling to the right along a rod.



Fig-ire S Temporal evoluiien of rightI'.rd and leftw~ard
propagating cormponents along a longaudinal rod.
U(X.i)-NtSIiflo.,4-tjc)

3.2 The aSnj!or Transfer Functri(Ln
Because of the assumned form of the solution which is us-ed to infer wave propagation along 1.

dimensional structures, an inherent ditficulty associated with the decoupling of rightward and leftward wave
components is the renli7ability ot elements of the obs;ervation matrix F(iA.ol. Since the elements at this
mftnx are typcially infinite dimensional we must approximate them by low order elements-Ceg. linear in kA)
which are physically reali7able. Untortunately, this lineariiation limits our ability to achieve perfect
decouipling of rightward and leftward wave components trom discrete measurements. However, it the
condition kA<<l is satisfied we expect that rightward and leftward components will be sufficiently
deconpled trom one another.

The required transfer tunction from actual wave-modes present tb wave-mode estimates delivered by the
sensor is given by

A
w = H( a. o) w + F( A.w) n (54)

where H(AX~w) is the wave sensor tr;%nsfrr fuinciion, n is the sectn of uncorrelated noises, w is the vector of
actual wave-modes arid w represents the vector of wave sensor estimates. In all of these approaches the
wave-modes which are present in a member are infered from physical variables y(x,w) using a frequency
dependent transtormation of the form: [ _ w 1w5)

Each approach works by attempting to invert F-t (w). This is done approximitely for a variety of reasons:
1. Not always possible to implement F(cc) with causal filters.
2. Prefer a first order approximation to F(w) rather than an infinite-order solution.
3. The model is not accurate over all frequencies.

Further, the physical measurements y(xmo) a1re corjupted with noise. This leads to two kinds of
imperfections in the approaches outlined in this paper, F is not F and is not y. The wave sensor output
for w is thus '

A A A
w =F C o)y

A

=F (A,oJ)( y + noise) (56)
But y=F 1I(A,wo)w. This implies that

A A
w =F ti, o) F a) j~,w + F ( 6.oM) noise) (57)

ExqmpjCL-(Longitudinal Waves in a Rod)
Considering examples 12 and L5 again we know from the exact model given in equations (17) and (18)

that

~~2~~~=Fw~~ A)[~ e' wOo)(8

2 .0 -e 2e 2 .0)



Substituting equations (20) and (58) into equation (57) gives the corresponding wave sensor transfer
function to first order for a rod.

24 2 ka A j 2 ka A ¢j II w __ _ I - __n

2 2

k j I__ -, 1 2 4i 4jk

24 2 k jk 2 4jk

The first order approximation to F(A.c) leads to off-diagonal terms of second order which couple actual

rightward and leftward wave components to iheir estimates. However, for low frequencies-kA<<l) these

off diagonal contributions can be considered to be negligible. The estimated wave components are thus
decoupled except for the presence of measurement noise in the sensors.

4.0 1 LEMENTATION ISSUES
I he previous sections have outlined two similar approaches for observing wave components from

spatially discrete local measurements along a compression rod and a Bernoulli-Euler beam. For the rod

analog circuitry will suffice to implement the elements of the observation matrix F(A.0). In the case of the

heam. altough methods have been developed which can ,irnlate terms with (i,)( ,/ 2 delendencie-[ 161, all

the schemes developed in this paper required further acausal filtering. We have not yet discovered a causal
scheme, applicable to the B-E beam over an arbitrarily broad frequency range. lowever, the observation
methods discussed in this paper are only valid in the frequency range vkhere the mathematical models
provide an accurate description of the system dynamics. T hus. the bandwidth of accuracy will not only be
limited by the model accuracy but also by spatial aliasing, instrumentation and the level of the signal to noise
ratio.

In addition to giving rise to the phenomenrn of spatial aliasing, discretization also affects the resolution
of a measured dietibance. Since a single sensor spacing stencil will only provide optimal resolution in a
narrowband about Anpt(nb)-(b denotes bandwidth of signal), broadband signals may suffer some loss in
resolution for frequencies to<<0o,,. To improve the resolution for these frequerncy components, it may be

advinnageouq to construct an additional wave-mode observer which has higher sensitivity in a lover
frequency range(See Figure 9). This will require that a second sensor stencil be estabilished to resolve the
lo,er frequency components. The two observers can be combined by passing the higher frequency
compn!,onents through the first stencil and lower frequenicy components through the second and then summing
the resulting signals. This approach leads to higher resolution of a broadband measurement.

LPF LPF
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Figure Q Pnniih!e qcheme For rioling hrnadhnd signal.
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5.0 SUMMARY
In this paper theoretical procedures have been developed for estimating wave components which

propagate along one-dimensional members from spatially colocated and non colocated measurements. In
each procedure we have derived temporal filters which decouple wave-mode states from local physical
measurements in a member. The problem with these filters, however, is tha, for dispersive mediums they
are not guaranteed to be causal. 1his acausal behavior makes it difficult to -bserve all wave components
vhich may propagate along a dispersive member. For certain physical geometries, however, where the
response of the member is dominated by evanescent or propagating dynamics, approximations can he made
to render a subset of the full wave-mode vector observable by exploiting only the causal entries of the
observation matrix, or by limiting interest to a relatively narrow frequency range.



Besides being limited by the dispersive nature ot the medium, the non-colocited approach is also
complicated by the phenomenon of ,patial aliasing I his arises from the fact that this approach uses point
sensors which are postitioned symmetrically about the location where waves are to be inferred. For
wavelengths which are small compared to sensor spacing there will be amhiguity in determing the true
wavelength being resolved by this observation scheme. This restricts the non-colocated -.rheme to those
wavelengths which are large compared to sensor spacing. Thus a first-order approximation to the entries of
the observation matrix is sufficient for practical implementation.

Sensor noise further restricts the bandwidth of the non-cnlocated observation scheme to those signals
which are large compared to the noise level Optimal resolution is achieved when the sensor spacing is
chosen tn maximize the signal-to-noise ratio of each wave cnoponent at each frequency. Of cotise for
broadband signals multiple sensor stencils may be required to adequately resolve all frequencies which may
be preset in the dynamics.

T1he next logical step in this work is to experimentally verify the procedures outlined in this paper and to
subsequendy conine them with previously developed active wave control methods.
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