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1. Introduction.

Recently, several proposals appeared in the literature dealing with security models

for object-oriented databases. While some of them are of considerable interest and merit

(see Section 6 for a discussion of related work), they seem to lack in intuitive appeal

because they do not appear to model security in a way that would take full advantage of

the object-oriented paradigm.

Our goal in the present work is to construct a database security model that dove-

tails with the object-oriented data model in a natural way. The result, we hope, is a set of

principles to help design and implement security policies in a clear and concise fashion.

The object-subject paradigm of Bell and LaPadula [1] is widely used in work on

security. An object is understood to be a data file or, at an abstract level, a data item. A

subject is an active process that can request access to objects. Every object is assigned a

classification, and every subject a clearance. Classifications and clearances are collec-

tively referred to as security levels (or classes). Security levels are partially ordered. A

subject is allowed a read access to an object only if the former's clearance is equivalent

to or higher (in the partial order) than the latter's classification. A subject is allowed a

write access to an object only if the former's clearance is equivalent to or lower than the

latter's classification. The above two restrictions are intended to ensure that there is no

flow of information from high objects to low subjects. For otherwise (since subjects can

represent userst) a breach of security occurs wherein a user gets access to information

for which he or she has not been cleared.

It i, a mistake, however, to completely identify subjects with users.
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Most security models today are based on the traditional Bell-LaPadula paradigm.

While this paradigm has proven to be quite effective for modeling security in operating

systems as well as relational databases, it appears somewhat forced when applied to

object-oriented systems. The problem is that the notion of object in the object-oriented

data model does not correspond to the Bell-LaPadula notion of object. The former

combines the properties of a passive information repository, represented by attributes and

their values, with the properties of an active agent, represented by methods and their

invocations. Thus, the object of the object-oriented data model can be thought of as the

object and the subject of the Bell-LaPadula paradigm fused into one.

Continuing the examination of the object-oriented model from the security angle,

one arrives at the realization that information flow in this context has a very concrete and

natural embodiment in the form of messages. Moreover, taking into a count encapsula-

tion, a cardinal property of object-oriented systems, messages can be considered the only

instrument of information flow.

The main elements of the proposed model can be sketched out as follows. The sys-

tem consists of objects (in the new, object-oriented sense). Every object is assigned a

unique classification. Objects can communicate (and exchange information) only by

means of sending messages among themselves. However, messages are not allowed to

flow directly from one object to another. Instead every message is intercepted by the

message filter, a system element charged with implementing security policies. The mes-

sage filter decides, upon examining a given message and the classifications of the sender

and receiver, what action is appropriate. It may let the message go through unaltered; or



it may completely reject it (e.g., when a low object sends a message to a high object

requesting the value of one of the latter's attributes); or it may take some other action (to

be discussed later).

The main advantages of the proposed model are its compatibility with the object-

oriented data model and the simplicity and conceptual clarity with which security poli-

cies can be stated and enforced.

One comment is in order at this point. Even though all objects are single-level (in

the sense of having a unique classification assigned to the entire object and not assigning

any classifications to individual attributes or methods), this zoes not preclude the possi-

bility of modeling multilevei entities, as will be demonstrated later.

In this paper, we focus on the problem of mandatory access control. Discretionary

access control is not addressed here.
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2. Object-Oriented Data Model.

An object-oriented database is a collection of objects communicating via messages.

Each object consists of a unique identifier, a set of attributes and a set of methods, the

latter being essentially pieces of code. Each attribute has a value, which can change over

time.

An object can invoke one of its methods in response to a message received from

another object. A method invocation can, in turn, (1) directly access an attribute belong-

ing to the object (read or change its value); (2) invoke other methods belonging to the

object; (3) send a message to another object; or (4) create a new object.

There is a special type of object, called user object. A user object represents a user

session with the system. User objects differ from regular objects in that, in addition to

being able to invoke methods in response to messages, they can also invoke methods

spontaneously.t User object can be created only by the system, at the login time.

Let us formalize now the central elements of the object-oriented data model. We

postulate a finite set of domains D 1, D 2, ..., D,. Let D be the union of the domains aug-

mented with a special element nil, i.e., D = D I u D 2 U ... u D, u (nil). Every ele-

ment of D is referred to as a primitive object. Let A be a set of symbols called attribute

' The notion of spontaneous method invocation may seem rather arbitrary at first. It is, however,
necessary in order to avoid running into a version of the chicken-and-egg paradox. Namely, if a
message can be sent only through a method invocation (see property (3) of method invocations)
and if a method can be activated only by a message received from another object, then how does
any processing in such a system ever get initiated? (One has to insist that either the egg or tie
chicken come first.) In reality, we want a user to be able to initiate a system activity, e.g., by
typing a string of characters on the keyboard. This would serve as a signal for the corresponding
user object to initiate a method. We choose to think of this as a "spontaneous" initiation, because
the keyboard and any signals that it sends are external to our model.

4



names, I a set of identifiers, and M a set of finite strings of code called methods. Let V be

a set of values defined as follows: V = D u I. That is, a value is either a primitive object

or an identifier.

Definition 1. An object is either a primitive object or a quadruple o = (i, a, v, t)

such that i e I, a = ( a, ..., ak) where aj E A for all j (1 j < k), v = (1v, ... , Vk) where

vje Vforallj(l j k),andigcM. 11

Definition I states that an object is defined by its identifier, an ordered set of attri-

bute names, an ordered set of corresponding values, and a set of methods. We assume

that every object has a unique identifier, i.e., for any two objects o, = ( is, as, Vs, is) and

ot = ( it, at, vi, Itt), Os = ot iff is = it. The uniqueness of object identity is commonly

considered a fundamental property of object-oriented systems [6].

We will use the following notation in the rest of the paper. Let os = (is, as, vs, Is)

be an object. Then i ( o) denotes the object identifier, is; a ( os) denotes the list of attri-

butes, as; v ( Os) denotes the list of attribute values, vs, and It( o,) denotes the object's set

of methods, ts.

Definition 2. A message is a triple g = (h, p, r) where h is the message name,

p = (PI ...., p), k > 0, is an ordered set (list) of primitive objects or object identifiers

called the message parameters, and r is the return value. 0]

Similarly to the notation used for objects, we let h ( g), p ( g), and r( g) denote the

name, the parameter list, and the return value of message g respectively.

t A more general object model would also permit a value to be a set of identifiers by defining
V = D u I u 21. However, for the sake of simplicity we forego this generalization in the
present paper. The results developed here do not depend on this simplification.
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An object sends a message by invoking a system primitive SEND ( g, i) where i is

the identifier of the receiver object. The value r ( g) is computed by the method activated

in the receiver upon the arrival of g there and returned to the sender. §

Definition 3. The interface f, of object o is a function f,: H --- p.(o) u {void)

where H is a set of all possible message names. 0

The interface of object o determines which messages o responds to. Those are the

messages whose names, h, are such that fo( h) # void. If f0 ( h) = void, o does not

respond to messages whose name is h. Moreover, the interface determines which partic-

ular method, out of the set of methods, t( o), defined for object o, is to be invoked,

depending on the name of the given message.

We have defined methods as strings of code. Now we are in a position to give a

more formal definition of methods.

Definition 4. Let o be an object. A method m defined for o (m E pi) is a function

m: P -- 2a(o) x V x 2a x1 x V where P is a set of all possible parameter lists. 0

Definition 4 states that a method maps a list of parameters into a triple. The first ele-

ment of the triple is a set (possibly empty) of attribute-name-attribute-value pairs where

the names are drawn from the set of the object's attribute names. The second element is

a set (possibly empty) of message-identifier pairs. The third element is a value (a primi-

tive object or an object identifier).

§ As we shall see in the next section, sometimes the security component of the system will have
to interfere in the matter of computing r ( g).
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In response to a message g = ( h, p, r), an object o invokes a method in E 4( o)

such that m = fo( h) (we assume that f0 ( h) # void). Then, the value m (p) is computed

(this corresponds to executing the method's code with the argument list p). The compu-

tation results in m(p) = ( { ( a 1 , v1 )I..., (as, vs)), ( (g 1 , i 1 ), .... (gi, i,)), vj}). The

semantics of this are as follows. Attributes a , ..., as of o are updated with new values

v 1' ..., v, respectively; messages g 1, ..., gt are sent to the objects with identifiers i 1, ..., it

respectively; and vj is returned to the sender of g. Note that for some k we could have

ik = i ( o), i.e., an object can send a message to itself. This, for instance, can serve as a

mechanism for invoking other methods within the same object.

Objects are used to model real-world entities.t This is done by associating proper-

ties, or facets, of an entity with attributes of the corresponding object. The attribute

values are, then, instantiations of those properties. For instance, a country can be

represented in a geographic object-oriented database by an object o where a ( o) =

(COUNTRYNAME, POPULATION, CAPITAL, NATIONALFLAG,

FORMOFGOVERNMENT) and v (o) = ("Albania", 117, i (o 1), i (o 2), i (o 3 )). The

values of the first and second attributes are a string and an integer, respectively; the

values of the rest of the attributes are references to other objects that, in turn, describe the

capital, the national flag, and the form of government of the nation of Albania.

Note that an object's methods, unlike its attributes, do not have counterparts in the

real-world entity mod,-led by the object. The purpose of methods is quite different. It is to

provide support for basic database functionality such as querying and updating objects.

As we will see later, a single entity may be modeled by more than one object.

7



A realistic object-oriented model should also contain the notion of constraints. For

instance, an attribute of an object may be allowed to assume values only from a restricted

subset of domains or object identifiers. To simplify the exposition, we choose to disre-

gard the issue of constraints in this paper. However, it should be a simple matter to incor-

porate this notion in our security-data model.
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3. Object-Oriented Security Model.

An informal exposition of our sccurity model was given in Section 1 in terms of

objects with unique security level assignments exchanging messages subject to some

security constraints. This section is devoted to developing a formal model of object-

oriented security, in accordance with that general idea.

3.1. Security Levels and Information Flow.

The system consists of a set 0 of objects (see Definition 1) and a partially ordered

set S of security levels with ordering relation <. A level Si e S is said to be dominated by

another level Sj E S, tis being denoted by Si <- Sj, if i =j or Si < Sj. For two levels Si

and Sj that are unordered by <, we write Si < > Sj.

There is a total function L: 0 -4 S, called security classification function, i.e., for

every o : 0, L ( o) E S. In other words, every object has a unique security level associ-

ated with it.

3.2. Characterization of Information Flows.

The main goal of a security policy must be to control the flow of information among

objects. More specifically, information can legally flow from an object oj to an object ok

if and only if L ( oj) < L ( Ok). All other information flows are considered illegal.

In the Bell-LaPadula model this objective is achieved by prohibiting read-ups and

write-downs. That is, a subject is allowed to read an object only if the security level of

the subject dominates the security level of the object. Similarly, a subject is allowed to

update an object only if the security level of the former is dominated by that of the latter.

9



In our model, due to the property of encapsulation, information transfer among

objects can take place either (1) when a message is passed from one object to another or

(2) when a new object is created. In the first case, information can flow in both direc-

tions: from the sender to the receiver and back. The forward flow is carried through the

list of parameters contained in the message, and the backward flow through the return

value. In the second case, information flows only in the forward direction: from the

creating object to the created one, e.g., by means of supplying attribute values for the

new object.

A transfer of information does not have to occur every time a message is passed. An

object acquires information by changing the values of some of its attributes. Thus, if no

such changes occur as a result of a method invocation in response to a message, then no

information transfer has been enacted.t We say that the forward flow has been

ineffective. This situation is analogous to taking pictures with an unloaded camera. The

information in the form of light is flowing into the camera but not being retained there.

Similarly, if the return value of a message is nil, the backward flow has been

ineffective. To eliminate the covert channel associated with the receiver object's security

level being dynamically changed (in which case the sender can get back a sequence of

nil and non-nil return values if it repeatedly sends messages to the same object), we have

to require that all security level assignments be static. That is, the level associated with

an object at creation time cannot be changed. If, however, the security level of the real-

t This is true because an objc,t has no means of registering the very event of a message arrival.
Therefore, a covert channel is not possible of the type wherein a message causing a state change
encodes a 1 and a message causing none is a 0.
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world entity that the object models must be changed, then a new object has to be created.

The new object will be exactly like the one that it replaced, except for the new security

level to reflect the desired change.

A transitive flow from an object o I to an object 02 occurs when there is a flow from

o I to a third object o 3 and from 0 3 to o 2.

All types of flows discussed until now can be termed direct flows. Now, consider

what happens when an object o I sends a message g 1 to another object 02, and 0 2 does

not change its internal state (the values of its attributes) as a result of receiving g, but

instead sends a message g 2 to a third object 03. Further, suppose that p ( g 2 ) contains

some of the parameters of p( g I). If, then, the invocation of fo3 ( h ( g2)) with parameters

P ( g 2 ) results in updating 03'S state, a transfer of information has taken place from 01 to

03. There is no message exchange between 01 and 03, nor was 03 created by o1, there-

fore this flow cannot be considered direct. Moreover, there is no flow from o I to 03,

therefore this is not a transitive flow either. This is an instance of what we call an

indirect flow of information. Note that an indirect flow can involve more than three

objects. For example, instead of updating its state, 03 could send a message to a fourth

object that would result in updating the latter's state.

Both direct and indirect illegal flows of information should be prevented (this would

also take care of all the transitive flows) if the system is to be secure.

We assume that access to internal attributes, object creation (creation by an object

of an instance of itself), and invocation of internal methods are all implemented by hav-

ing an object send a message to itself.t We now define four built-in messages for that

+ There are existing object-oriented database systems that, in fact, use this kind of
implementation, e.g., GemStone.
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purpose. First, however, it is necessary to modify the definition of message in Section 2.

Definition 2a. A message is a triple g = ( h, p, r) where h is the message name,

p = 1, ..., P), > 0, is an ordered set (list) of message parameters where

pj Vu A u M u S, and r is the return value. 0

The difference is that now a parameter can be a method, an attribute name, or a

security level as well as a value.

A read message is a message sent by an object o to itself defined as

g = (READ, (aj), r) where aj E a ( o). A read message results in binding r to the value

of attribute aj.

A write message is a message sent by an object o to itself defined as

g = (WRITE, ( aj, vj), nil) where aj r a ( o). The effect of sending a write message is an

update of attribute aj with value v,.

An invoke message is a message sent by an object o to itself defined as

g = (INVOKE, (m), r) where m E 4t(o). Method m is invoked as a result of this mes-

sage.

Finally, a create message is defined as g = (CREATE, { v 1, ... , vk, Sj}, r) where p

is a list of attribute values appended with a security level. When sent by an object o to

itself, a create message results in a new object being created. This new object is assigned

an identifier i by the system. The object inherits attributes and methods from o. The attri-

butes are initialized with the values v 1, ... , vk. The new object is assigned security level

Sj, specified by o. The identifier i is returned to o as r.

12



3.3. Message Filtering Algorithm.

The message filter is a security element of the system whose goal is to recognize

and prevent illegal information flows. The message filter intercepts every message sent

by any object in the system and, based on the security levels of the sender and receiver,

as well as some auxiliary information, decides how to handle the message.

In this subsection, we outline an algorithm used by the message filter and show that

it indeed prevents all illegal information flows.

Let g = (h,p, r) be a message. Let o = (i 1 , a1 , v 1,ti) and

02 = (i 2 , a 2 , V2, 112) be the sender and the receiver objects respectively. Let t, be a

method invocation in 01 that was responsible for sending g. Finally, let t2 be the invoca-

tion of the method fo2( h) in 02 after receiving g. We assume that every method invoca-

tion t has a status s ( t). The status is either U (unrestricted) or R (restricted). The default

is U.

The message filtering algorithm is given in Figure 1. We now argue informally that

this algorithm works correctly, i.e., guarantees to prevent any illegal flow of information

among objects.

The first part of the algorithm (Case A) deals with message sending between two

distinct objects, while the second part (Case B) takes care of the situation when an object

sends a message to itself. There are four subcases of Case A, by the number of possible

ways in which two security levels - those of objects o I and 02 - can be related. Also,

there are four subcases (with yet finer subdivisions) of Case B, by the number of built-in

messages.

13



Subcases (2)-(4) prevent direct illegal information flows between two distinct

existing objects. When the two security levels are unrelated, this is done by blocking the

message completely (subcase 2). When the sender's level is strictly lower than the

receiver's level, the return value is set to nil by the message filter to prevent any leakage

of information from the receiver to the sender (subcase 3). Finally, when the sender is at

a higher security level, the invocation of the method (in the receiver) in response to the

message is given the restricted status by the message filter (subcase 4). This would

prevent the receiver from making updates to its local attributes (see subcase 1.b of Case

B) thereby retaining sensitive information that could have been extracted from the mes-

sage.

Direct illegal flow during the creation of a new object is prevented by letting the

create message pass only if the security level specified for the new object dominates that

of the creator object (subcase B.3).

It remains to show now that indirect illegal flows are also prevented by our algo-

rithm. To understand how this is done, it is helpful to think of trees of method invoca-

tions. Such a tree is is shown in Figure 2. Let t, be the root. t, is a "spontaneous" method

invocation within a user object. Let ti be an internal node in this tree. Then ti 's children

are the method invocations that were initiated either within the same object directly by ti

or in another object as a result of receiving a message sent by ti . Thus, the entire tree can

be viewed as the execution of a user request.

Information can be carried down a method invocation tree along the parent-child

links. Let t I and t 2 be two internal nodes. Suppose that t I is an invocation of a method

14



CASEA: o1 02

(1) ifL(ol) = L(o 2 )

let g pass; s( t2) <- S( t)

(2) ifL(o 1 )<>L(o 2 )

block g
(3) ifL(o 1) < L(o 2)

let g pass; r - nil; s( t2) s( t1)

(4) ifL(0 2 ) < L(oI)

let g pass; s (t 2 ) <- R

CASEB: 0 1 =02

(1) if h = WRITE

(1.a) ifs( ti) = U

let g pass

(1.b) ifs(t 1 ) = R

block g

(2) if h =READ

let g pass

(3) if g = (CREATE, { v 1, ... , Vk, Sj }, r)

(3.a) ifs(t 1 ) = Uand (Sj < L(o 1 ) or Sj <> L(o 1 )

block g;

(3.b) if s(tj) = R

block g

(3.c) ifs(r 1 ) = U and L( o1 ) <Sj

let g pass

(4) if h =INVOKE

let g pass, s( t2) <- s( )

Figure 1. The Message Filtering Algorithm.
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Figure 2. Method-Invokation Tree
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in object 01, t2 in object 02 such that L( 02) < L( o), and t 2 is a child of It. Then, by

making t2 restricted (as in A.4) we cut off forward direct flow from o to 02. If we also

want to prevent indirect illegal flows from o I to objects other than 02, as a result of the

same message from o 1 to 02, we have to make sure that all ancestors of t2 are made res-

tricted as well. This is taken care of in subcases A. 1, A.3, A.4, and B.4.

The general idea of a message filter is similar to that of a law filter introduced by

Minsky and Rozenshtein [11 ], although their work has no direct relation to security.

In the standard kernelized architecture, the message filter does not have to be made

trusted, because the actual mandatory access control is delegated to the trusted kernel

that includes a reference monitor. The kernel is part of the operating system, wich is

based on the traditional read/write primitives to implement data access. However, newly

emerging operating systems based on message-sending primitives may radically change

the place of the message filter in the security structure of the overall system. It seems

that, under such conditions, it would be quite natural to make the filter part of the kernel,

thus substituting it for the reference monitor in this new architecture. This would obvi-

ously necessitate making the message filter trusted. In our future w ork, we plan to study

this alternative together with its implications.
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4. Class Hierarchy and Security.

The notion of classes is usually considered very important for object-oriented data-

bases, if not for object-oriented systems in general. Most existing object-oriented data-

bases support classes.

The notion of classes is akin to that of relations in relational databases. Objects of

similar structure (types and names of attributes) and similar behavior (methods) are

grouped into classes, just like, tuples of the same structure, in relational databases, are

grouped into relations. The parallel to relational systems does not go very far, however.

First, in relational databases, there is no notion analogous to that of object behavior.

Second, classes in object-oriented databases are represented by objects that contain

information (in the form of attributes) on the names and types of attributes of the consti-

tuent instance objects of the class as well as the methods common to them. Ohjects of

this kind are called class-defining objects, or simply class objects. Thus, there is essen-

tially no distinction in representation of data and metadata in object-oriented systems.

We assume that the reader has a basic familiarity with the notions of inheritance

and class hierarchy. A typical class hierarchy has a class OBJECT at its root. It also

includes a special class CLASS such that every object defining a class is an instance of

CLASS.

In Section 3.2 we discussed ways by which objects can "-ansfcr information to one

another. Message sending and object creation were mentioned 1-i thi connection. We,

then, went on to define several types of information flow. With Ole introduction of

classes and inheritance, two more (implicit) ways of infwinnation transf,:r are ad(!cd.
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Since a class object (a class-defining object) contains structure and behavior infor-

mation for all its instance objects, the latter have an implicit read access to the former.

Thus, an information flow exists from a class object to an instance object. We refer to this

type of flow as a class-instance flow.

Since classes inherit attributes and methods from their ancestors in the class hierar-

chy, a class object has an implicit read access to all its ancestors. Therefore, there is an

information flow down along all hierarchy links. This type of flow is designated inheri-

tance flow.

It is easy to see that an inheritance flow is illegal unless the level of a class object

dominates the level of each of its ancestors. Similarly, a class-instance flow is illegal

unless the level of an instance object dominates that of its class.

Our approach to dealing with illegal inheritance and class-instance flows is to

implement the classification and inheritance features by means of message passing. For

the details of such an implementation see [11]. The purpose achieved by this approach is

to make the implicit flows discussed above explicit, i.e., realized by means of messages.

As a consequence, class-instance and inheritance flows can be checked by the message

filter, just like forward, backward, and indirect flows are.

It is still a good idea, though, to place the following constraints on the way the secu-

rity levels of instance objects and subclasses objects relate to those of the corresponding

class objects.

Security-Level Constraint 1.
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If oj is an object of class cj (cj also denotes the corresponding class object),

then L ( c ) :_ L ( oj).

Security-Level Constraint 2.

If ci and cj are classes such that cj is a child of ci in the class hierarchy, then

L ( ci) <! L ( cj).

It is important to understand that the above constraints are not introduced for secu-

rity reasons - security is still handled by the message filtering algorithm because all

flows, including the class-instance and inheritance flows, are explicitly cast in the form

of messages - and therefore, a violation of these constraints will not lead to a violation

of security. Instead, a violation of Constraint 2, for example, will result in the break-

down of inheritance mechanism by creating a situation wherein a class object is

prevented by the message filter from gaining access to a method it inherits from its parent

class, because the security level of the child does not dominate that of the parent, as

required by the constraint.

Note that Constraint 1 is automatically satisfied by the message-filtering algorithm

(see subcase B.3) at the instance-creation time. It is interesting to note, though, that this

feature was originally included in the algorithm to prevent the illegal direct flow to the

newly created object at the creation time rather than the illegal class-instance flow,

which can take place at any time after the instance is created. However, the provision

works equally well in both cases.

Constraint 2 is not automatically satisfied by the message filtering algorithm, but the

latter could be modified for that purpose. Alternatively, the constraint cculd be enforced

2()



by supplying the object CLASS with a method for creation of new classes that would

include provisions for checking that the security level of the new class is in the

prescribed relationship to the levels of its parents.
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5. Modeling Multilevel Entities with Single-Level Objects.

In an object-oriented data model, objects are used to model real-world entities.

Therefore, it may seem somewhat discouraging that our security model insists that all

objects have to be "flat," i.e., at a single security level. Much modeling flexibility would

be lost if multilevel entities could not be represented in our database.

In this section we will demonstrate that restricting objects to be single-level does

not have to imply that the same type of restriction exists for entities that we are trying to

model. We will do so by means of a simple example.

Suppose that there are two security levels: U (unclassified) and S (secret), the latter

dominating the former. Consider an entity e characterized by attributes A, B, and C such

that A and B are at level U and C is at level S. (e could be a collection of information per-

taining to an employee where A is the employee's name, B is the home address, and C is

the salary.) The intention is to allow access to C only for users with secret clearance. All

other users can access only A and B. Entity e can be represented by objects o I and 02

such that a(o 1) = (A, B), a (o 2 ) = (A, B, C), L (o 1 ) = U, and L (o 2 ) = S. Object 02 is

the internal representation of entity e for users with the secret clearance, while oI is the

representation of e for all other users. The example is illustrated in Figure 3. Attributes of

entity e have individual security labels (shown in parentheses). This is in contrast to

objects o 1 and 02, which only have labels at the object level.

Suppose now that we have an entire collection of entities of the ,anic type as e (e.g..

a set of employee entities), i.e., entities with unclassified attributes A and B and a secret

attribute C. Let us call this type of entity X. In our model c:,h entity of this type will be
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e

A (U)

B (U)

C (S)

01 (U) 0 2 (S)

A 
A

B 
B

C

Figure 3. Representing a multilevel entity by
multiple single-level objects
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represented by two objects: one for the users with the secret clearance and one for all

others. Thus, we end up with two classes of objects for one type of entity. The distinc-

tion between the two classes is based on security, not semantics, as would normally be

the case in object-oriented databases. Let XU be the class of the unclassified objects and

XS the class of the secret objects representing entities of type X.

It is convenient, for modeling purposes, to relate classes XU and XS in the class

hierarchy. Namely, if XS is made a child of XU, then it can inherit from XU attributes A

and B and add to them a locally defined attribute C. Figure 4 shows the relevant segment

of the hierarchy. Note that the class object XU is placed at security level U, and XS at

level S. The effect of this is that not only do the uncleared users have no access to the

values of attribute C in entities of type X, but also they are not even aware of the

existence of this secret attribute because access to the class object XS is prohibited to

them. It is possible to place the class object XS at level U, while keeping instances of XS

at level S. In that case, the uncleared users will be aware of the existence of attribute C

but not of any values of it in instance objects. Note that such a dichotomy between the

class-object level and the level of its instances is in conformity with Security-Level Con-

straint 1. The choice of label for XS depends on the policy decision.

To carry our example a little further, suppose that there is a second type of entity

that we have to model, type Y. Y consists of the same attributes at the same security levels

as X plus a new attribute D at level U. The conceptual class hicarchy (or schema) is

shown in Figurn 5. In that schema, Y is a child of X.
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x

A (U)

B (U)

C (S)

xU (U)

A

B

xs (S)

A

B

C

Figure 4. Representing a type of multilevel entities

by a hierachy of classes of single-level objects
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x

A (U)

B (U)

C (S)

Y

A (U)
B (U)
C (S)
D (U)

Figure 5. Conceptual schema for types X and Y
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Let us now address the question of how this schema can be implemented in our

model. Using the idea of Figure 4, we arrive at the implementation schema for our data-

base, shown in Figure 6. The implementation schema takes into account security level

assignments to attributes in the conceptual schema and transforms the latter into the form

ready for actual implementation in a system that uses our security paradigm. In particu-

lar, we have four classes in our implementation schema: XU, XS, YU, and YS. XU

represents the view of X for uncleared users; XS, the view of X for users with the secret

clearance; YU, the view of Y for uncleared users; and YS, the view of Y for users with the

secret clearance.

In Figure 6, links between classes represent inheritance relationships among classes.

It is helpful to distinguish between two kinds of inheritance in the implementation

schema: semantic inheritance and security inheritance. The actual inheritance mechan-

ism is identical in both cases, but the motivation is different. Semantic inheritance

corresponds to the usual notion of inheritance in object-oriented databases. It is intended

to represent the semantic relationships among data types found in the conceptual schema.

The notion of security inheritance, on the other hand, is introduced solely for the purpose

of representing multilevel entities in our security paradigm. Thus, for instance, YU is a

subclass of XU in the semantic sense because this relationship reflects the specialization

of the entity type X into Y by adding to the former a new attribute D. On the other hand,

XS is a subclass of XU in the security sense because XS reveals a new attribute of entities

of type X that is not visible to uncleared users. Note that the notion of security inheri-

tance is in agreement with Security-Level Constraint 2, which requires that the security
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B

A A
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YS (S)

A
B semantic
C inheritance
D

security
inheritance

Figure 6. Implementation Schema
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level of a class dominate that of its ancestors.

Instance objects, as was discussed earlier in this section, do not have to be at the

same security level with their class object. By the same token, instance objects may

sometimes be placed at different levels with one another, just like it may be required that

real-world entities of the same type have different security classifications. Our model

does not prohibit this, although it would not make sense of course (but not violate secu-

rity) to have some instance objects at levels higher than the corresponding class object.
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6. Review of Relevant Research

Object-oriented approach has been a major area of research in the context of pro-

gramming languages, knowledge representation, and databases for some years now (e.g.,

see [7, 13, 17]). In spite of this, there has been relatively little work on security related

issues in the object-oriented databases, although some work does exist. Initial efforts in

[2, 3, 12] handle only the discretionary access controls. Meadows and Landwehr [10] are

the first to model mandatory access controls using object-oriented approach, however,

their effort is limited to considering the Military Message System. Spooner in [14] takes

a preliminary look at the mandatory access control and raises several important concerns.

In [4,5,8,15,161, objects can be multilevel. This means, for example, that an object's

attributes can belong to different security levels, which in turn means that that the secu-

rity system must monitor all methods within an object. As we have argued in the intro-

duction, we consider it to be contrary to the spirit of the object-oriented paradigm.

Finally, Lunt and Millen in [9] mention some problems associated with having mul-

tilevel objects. In their model, only single-level objects are permitted; however, the

notion of subjects is still retained, and subjects are assigned security levels.
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7. Conclusions and Future Work.

An examination of the object-oriented data model leads one to believe that there is

much in it, particularly in the notion of encapsulation, that makes this model naturally

compatible with the notion of security. However, until -w, relatively little use has been

made of this apparent compatibility.

This paper is part of an effort to develop a better understanding of the interactions

between multilevel security and the object-oriented data model. This interaction, in our

opinion, can be very subtle, and for that reason, we chose a formal approach. We wanted

to state precisely all critical assumptions, which are necessary if we hope to use this

paper as a departure point for further research.

We believe that there is much more interesting work to be done in the area of

object-oriented multilevel security. In particular, we would like to be able to construct a

complete and unified formal model of data and security based on the object-message

paradigm. Initial steps have been taken in this direction in the present paper, but more

remains to be done. For example, we would like to formalize the notion of classes and

inheritance in a way adaptable to security concerns.

In Section 5, we presented some ideas for representing multilevel entities using

multiple objects at different security levels. These ideas were illustrated by an example.

The subject clearly merits further study, and perhaps one should address the issue of

designing an algorithm for multi-object representation of multilevel entities.

The issue of polyinstantiation in the context of object-oriented databases has not

been discussed here. We plan to study this in the future to see how this relates to
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polyinstantiation in relational databases.

Implementing the class and inheritance mechanisms by message passing is essential

to our approach to enforcing security. In a system that follows such an implementation,

all information flows are rendered explicit, and therefore controllable uniformly by thc

message filter. Consequently, our future work should address this issue of implementa-

tion, as it relates to modeling security, at a more detailed level.

Finally, an additional research direction of significant interest is the study of the

potential benefits of message-based operating systems to implementation of the proposed

security model.
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