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ABSTRACT

ESSAYS ON COOPERATION AND COMPETITION

by
Bruce George Linster

Co-Chairs: Theodore C. Bergstrom, Kenneth G. Binmore

v
- Understanding the basic concepts of cooperation and competition is funda-
mental to understanding economic and social behavior. These essays explore two

somewhat different areas in which cooperation and competition play a role.

This dissertation explores how cooperative behavior evolves and is sustained in
situatio! - »hich can be modeled with the Prisoners’ Dilemms. This is accomplished
through a replication of Robert Axelrod’s famous Prisoners’ Dilemma tournament
with the payoffs calculated to take the infinite nature of the game into account and
computer simulations which analyze the stability these results in the presence of
mutation. We can then see what characteristics the successful strategies have in
various situations.

The rent-seeking games originally modeled by Gordon Tullock are then investi-
gated. Two modifications to the existing literature are explored. First, these games
are modified to be played sequentially. Then, the players’ valuations for the prize in
these games are modified to be vectors. This allows players to have different prefer-
ences over who wins the prize. The results of this study indicate total rent-seeking
expenditure depends on which player goes first and their relative valuations. This
work also explains why some players may choose not to participate in these contests ™™~
If prizes are public goods, it is shown that if some players share interests with some
of the others, the more they have in common with those players the less likely any
of them are to win. The results here have applications in political, international,
and military competition.
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PREFACE

This dissertation began as a number of individually motivated studies into
two different areas. The first area of inquiry was how cooperation evolves and is
sustained in the infinitely repeated Prisoners’ Dilemma,. and the other was how the
results of game theoretic rent-seeking models are altered if we allow players to act
sequentially or have preferences which vary over who wins the prize.

Any study of cooperation must at some time touch on the works of Robert Ax-
elrod. His provocative 1984 book The Evolution of Cooperation is the seed which
grew into many academic papers, and it still evokes controversy over his method-
ology and results. I begin this collection of essays by replicating part of his work
to capture the effect of the infinite nature of the game he described. The results of
the simulation reveal there is indeed a difference in how the strategies do when the
game’s infinite time horizon is taken into account.

In the second essay I consider the evolution of cooperation in the presence
of trembles or perturbations. I find that how the trembles are applied affects the
evolutionary results significantly. I explore the effects of repeated perturbations to
the evolutionary process in the form of mutation. I then study evolutionary stability
in the infinitely repeated Prisoners’ Dilemma in an environment where the strategies
must be implemented by two state Moore machines or finite automata. Again, I
explore the effects of mutation and find TIT-FOR-TAT, clearly the best strategy
in Axelrod’s tournament, lacks qualities which are necessary to be evolutionarily

successful under certain circumstances.

iv




In the last essay I examine models originally studied by Gordon Tullock to
analyze political competition. I alter the model in two ways. First, I analyze the
model as a sequential game. I allow someone to go first in a game which is similar
to a lottery. Next, I allow for a degree of publicness in the prize. These models
have applications in the study of international or military competition, as well as
in analyzing what are generally referred to as rent-seeking expenditures.

The total effect of these four essays, I hope, is to provide some insight into
cooperation and competition. Although these words are part of our everyday vo-
cabulary, they are interesting social phenomena which can be studied and at least

partially understood using game theory.
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CHAPTER I

AUTOMATA PLAY THE PRISONERS’ DILEMMA: ANOTHER
LOOK AT THE EVOLUTION OF COOPERATION

Introduction

The study of how cooperation can be sustained in repeated play of the Pris-
oners’ Dilemma has been an important topic in game theory and economics. This
essay presents the results of a variation on the work reported by Robert Axelrod
in his influential 1984 book, The Evolution of Cooperation, which was based on the
results of a tournament he organized where participants submitted computer pro-
grams to play a repeated Prisoners’ Dilemma (RPD). Although Axelrod considered
primarily political science applications, many economists found his work interesting.
Perhaps the most provocative part of his work was his use of evolutionary dynamics
to demonstrate the robustness of his results. This part of Axelrod’s work provides
the motivation for this essay.

A number of authors have explored the relationship between evolutionary dy-
namical systems and game theory. Josef Hofbauer and Karl Sigmund (1988) provide
an excellent survey of this literature, but perhaps the best known of the theoret-
ical work i.n this field is by John Maynard Smith (1982). Axelrod’s evolutionary
simulation, however, still provides the most well-known applicatibn of these ideas.

Recently, some economists have stu * ed the relationship between equilibrium

concepts and the results of evolutionary dynamical systems. A partial list of the




most recent contributors in this area include Larry Samuelson (1989), John Nachbar
(1989a), and Dean Foster and Peyton Young (1988). Larry Samuelson shows under
very general conditions that reasonable evolutionary dynamical processes lead to
either rationalizable or perfect equilibria.! Specifically, he proves if the dynamical
system employed in this simulation converges, it converges to a perfect equilibrium.
John Nachbar has studied convergence of evolutionary selection dynamics under
somewhat more restrictive conditions. His work in this area forms the basis of his
critique of Professor Axelrod’s simulation. Dean Foster and Peyton Young study
the behavior of dynamical systems which are subject to stochastic influences. The
random effects they have in mind can be thought of as perturbations to the payoff
matrix. In the language of biology, we can think of these as fluctuations around
some mean reproduction rate or the possibility of encountering mutations in the
play of the game. Foster and Young examine what happens as the perturbations
vanish and characterize the set of stochastically stable vectors.

The primary purpose of this essay is to report the results of a simulation which
is to a large degree a replication of Axelrod’s work. Overall, this analysis supports
Axelrod’s conclusions, and it directly answers part of Nachbar’s (1989b) criticism
of the results. That is, I show if the game is modeled differently, defection at every
iteration need not emerge as the outcome of the evolutionary process. Then I simu-
late the play of a variation of the RPD game analyzed by Axelrod and examine the
robustness of the results. I begin by discussing the Prisoners’ Dilemma and some of
the arguments used to justify cooperation in both the finitely and infinitely repeated
games. Then I describe Axelrod’s Prisoners’ Dilemma tournament as well as his
conclusions. I then review Nachbar’s criticism of Axelrod’s results and methodology..

Finally, I discuss the results of my replication of Axelrod’s evolutionary simulation.

1 For an enlightening discussion on this and other Nash equilibrium refinements see Binmore (1987).




The Prisoners’ Dilemma

The versior. of the Prisoners’ Dilemma I employ in this essay is identical to the
stage game used by Axelrod in his tournament. There are many possible variants of
the Prisoners’ Dilemma, but the specific game used for his tournament is represented

in figure 1.1.

Figure 1.1 — A Prisoners’ Dilemma

Player II
C
3,3 0,5
5,0 1.1

C
Player I D

oo B

The Prisoners’ Dilemma is a common way to represent situations in which
either player can benefit by noncooperation regardless of what his opponent does.
The story which goes along with this payoff matrix is well known and involves two
unseemly people trying to maximize their own well being after they are captured
and are being interrogated for some unspeakable misdeed. Either culprit can reduce
his sentence by squealing on the other scoffiaw regardless of what the other does.
Yet, if they were to cooperate with each other and remain tight-lipped they would
both be better off.2

It is easy to see the only reasonable outcome in a single play of the game is for
both players to defect (D,D) yielding a payoff of one to each player. If both players
could be induced to cooperate they would realize a payoff of three each. However,
mutual cooperation cannot be an equilibrium in a single play of the game because
either player can improve his lot by defecting and receiving a higher payoff. This
unique equilibrium in a single play of the game has the unpleasant quality of being

the only pure strategy outcome which is not Pareto efficient. Also, the mutually

2 For other interesting applications of this type of game see Luce and Raiffa (1957) and Schelling
(1960).




defecting equilibrium is the utility minimizing outcome in the sense that the sum
of the payoffs is smallest. Not only is (D,D) the only equilibrium outcome in a
single play of the game, any finite number of repetitions of the stage game has only
one subgame perfect equilibrium outcome which has both players defecting at every
turn. This fact can easily be seen using a backward induction argument. Consider
the last play of the stage game. Certainly, we expect both players will defect on the
last turn. Now consider the penultimate round. We can see neither player has any
reason to cooperate since they will both defect in the last round. We continue all
the way back to the first round. and we can see both players must defect at every
stage. This result seems to be at odds with the body of evidence reported from the

experimental literature as well as real world observations.

There is a strand of the game theory literature which attempts to explain
why cooperation is often observed. Some of the more well-known papers in the
theoretical literature justifying cooperation in the finite RPD have been written by
Roy Radner (1986); Abraham Neyman (1985); and David Kreps, Paul Milgrom.
John Roberts, and Robert Wilson (1982).

Radner attempts to justify cooperation using uncertainty about which trigger
strategy one’s opponent will use. He demonstrates uncertainty of this type can
make cooperation at the beginning of a finite RPD an optimal strategy. That is, if
the players are Bayesian in their approach to the game, the chance one player may
cooperate for a while justifies cooperation by the other player. One criticism of this
approach is the resulting strategies are not in equilibrium. If the degrees of uncer-
tainty are common knowledge, each player can compute the other’s strategy and
defect one turn earlier. Radner also uses his notion of e-equilibrium, or near opti-
mality, to justify cooperation in the finitely repeated game. He shows if players are
satisfied to get nearly the maximum payoff possible given the other playér’s strat-

egy, cooperation can be supported in this game. Radner’s third bounded rationality




argument to justify cooperation in these situations considers only strategies which
can be implemented by finite automata, or Moore machines. which are bounded in
size. His argument is similar to that of Neyman who shows how cooperation can
arise because the players must use up states of their automata to keep track of what
the other player is doing. If the number of states in an automaton is between two
and T — 1, where T is the number of times the game will be repeated, cooperation
can be supported at every iteration. For machines which have a very large number
of states relative to the number of iterations, we can come arbitrarily close to the
cooperative outcome. The criticisms to this approach are (1) the bound on the
complexity of the implementing machines is arbitrary and exogenously irposed on
the players and (2) it doesn’t seem to represent how players choose their strategies.
The first criticism is obvious. The second can be summarized by the argument that
a player in a one hundred iteration Prisoners’ Dilemma may very well cooperate at

the beginning, but it is almost certainly not because he cannot count high enough.

Kreps et al. show if it is common knowledge both that one player is rational and
that there is some uncertainty whether the other player is rational (always defects)
or plays TIT-FOR-TAT (TFT)?, then there is a unique sequential equilibrium in
which cooperation takes place until nearly the end of the game. This argument is
based on the idea that since one player is known to be unsure about the state of
the world, the other player can profitably pretend to be irrational at the beginning
of the game. His opponent can then profit by pretending to be fooled even though
he is almost sure his opponent is rational. The above arguments for cooperation in
the finite RPD rely on either bounded rationality or incomplete information. Also,
“‘Folk Theorem” type results have been discovered for finite games, but they do not

apply to the Prisoners’ Dilemma.*

3 TFT is the strategy where the player cooperates on the first round and then takes the action chosen
by his opponent in the previous round.

4 See Benoit and Krishna (1986) and Fudenberg and Maskin (1986).




If we consider only the class of finite RPD games characterized by complete in-
formation for all of the players, the only perfect equilibrium has the unique outcome
of defection at every stage of the game. However, infinitely repeated games have
an abundance of perfect equilibria. The “Folk Theorem” of repeated games allows
any feasible individually rational payoff vector to be a perfect equilibrium outcome
of the infinite RPD if the discount factor is large enough.® In other words, there
is a discontinuity at infinity because any arbitrarily long finite game has a unique
perfect equilibrium, but an infinite RPD has an infinite number of them. Much of
the theoretical work in this area has been an attempt to reduce the size of the set
of equilibrium outcomes in the infinite RPD.

Ariel Rubinstein (1987) and Dilip Abreu and Rubinstein (1988) employed a
model where the metagame strategies are implemented by finite automata, and
the complexity, or number of states, of the machine is endogenized by making
the metagame payoffs depend positively on stage game payoffs and negatively on
complexity. By this I mean if two machines yield the same stage game payoffs,
the machine with fewer states yields higher metagame payoffs. One model they
employed had complexity enter the metagame payoffs lexicographically. Abreu and
Rubinstein were able to reduce the set of equilibrium outcomes to the rational payoff
vectors on the main and alternate diagonals of the set of feasible outcomes which
provide each player with more than his security level.

Ken Binmore and Larry Samuelson (1989) have done interesting work recently
using the model developed by Abreu and Rubinstein. They show if we consider
the same utility functions used by Abreu and Rubinstein, any evolutionarily stable
outcome must have both players cooperating in all but the first round. In other
words, Abreu and Rubinstein refine the set of possible equilibrium outcomes by

considering complexity of the implementing machine, and Binmore and Samuelson

5 See Aumann (1981).
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further refine this set to one outcome with an evolutionary stability argument.

This result depends crucially on the definition of complexity we choose. Jeffrey

Banks and Rangarajan Sundaram (1989) have shown if we use preferences which

are lexicographic in complexity and use the number of transitions in the Moore

machine as the measure of complexity, the only Nash equilibrium machine defects

always.

Figure 1.2 — Equilibrium Sets in the Infinite RPD
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These ideas are summarized in figure 1.2. The equilibrium outcomes allowed

by the “Folk Theorem™ are all those vectors in the shaded region. The equilibrium

outcome set from the Abreu Rubinstein model are the rational points on the main

and alternate diagonals. Binmore and Samuelson reduced the set to the point (3,3),

and Banks and Sundaram’s model yields the unique equilibrium outcome (1,1).




It is interesting to note even though TIT-FOR-TAT plays a central role in
Axelrod’s theory of cooperation, it is not a subgame perfect equilibrium strategy
in the infinite RPD. This fact is easily verified by looking at what happens if the
plavers find themselves at a node in the game tree where one player has defected
while the other cooperated. It is clear TFT is not an optimal response for the
player who cooperated because the players get themselves “out of sync” and begin

a pattern which has the players taking turns defecting while the other cooperates.

The Evolution of Cooperation

Robert Axelrod's theory of cooperation described in The Evolution of Coop-
eration was based on the results of two rounds of a computer Prisoners’ Dilemma
tournament. Axelrod took the results of the tournament to indicate there are
some characteristics common to successful strategies, and these attributes tend to
generate cooperative outcomes in the Repeated Prisoners’ Dilemma. These charac-
teristics are niceness®, provokability, forgiveness, and clarity.” In this section I will
describe Axelrod’s tournament and subsequent tests of how robust his results are.

Axelrod’s tournament consisted of two rounds. The decision rules, or machines,
could use the opponent’s last move, the sum of payoffs to each player, the iteration
number, and a randomly generated set of digits to make its choice for the next move.
The first round had fourteen entries which along with the RANDOM strategy®
played against each other in an RPD of two hundred iterations. The most successful
program submitted in the first round of the tournament was TIT-FOR-TAT. After
the results of the first round were announced, a second round of the tournament
was held.® This round was designed to eliminate end of game effects by announcing

that after each play of the stage game the RPD would continue with probability

6 Axelrod uses the term “nice” to describe strategies which are not the first to defect.

7 See Axelrod and Dion (1988) for a discussion of these characteristics.

8 This strategy chooses between “Cooperate” and “Defect” with equal probability.

9 For more information on the first round of the Prisoners’ Dilemma tournament see Axelrod (1978).




0.99654. This probability was selected so the expected median game length would
be 200 repetitions. This makes the game strategically equivalent to an infinite RPD
with the payoffs calculated using a discount factor of 0.99654. In the tournament,
however, Axelrod computed the payoffs as the mean of the payoffs from five games
whose lengths were randomly determined beforehand.!® These randomly selected
lengths were sixty-three, seventy-seven, 151, 156, and 308 iterations. In this round
sixty-two decision rules!! were submitted and played against each other and the
RANDOM strategy. TFT proved again the most successful strategy.!> No one was
able to improve on TFT as a strategy in the RPD even though it was reported as

the best performer in the first round.

Axelrod then used two different methods to examine how robust TFT’s success
was in a wide variety of environments. First he constructed a series of hypothetical
tournaments, each having a different distribution of the types of programs partic-
ipating. He reported TFT won five of the six major variants of the tournament
and came in second in the sixth. Another, and to me more interesting, test of
the results’ robustness was to construct a sequence of hypothetical rounds of the
tournament employing an evolutionary process widely used in game theoretical and

evolutionary biology models.

The evolutionary process can best be understood if we imagine players in an
infinite population who are matched randomly and implement strategies with au-
tomata which may choose their actions stochastically. That is, a player chooses one
strategy and plays it. He cannot randomize between different metagame strategies,
but an individual automaton may randomize between “Cooperate” and “Defect”

in the repeated game. After playing the RPD, each player is told his payoff and

10 Tpe metagame payoffs were calculated simply as the undiscounted sum of the payoffs in the stage
games. .

11 Actually only sixty-one distinct strategies were submitted because two were identical. However,
the tournament was run as if there were sixty-two different strategies.

12 For the complete results see Axelrod (1984).
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some information about the payoffs of the other players. Using this information, he
may revise his strategy. To see how this works, imagine a game in which there is
a strategy space S with n pure strategies, S = {s;,$2,...,5,}. The RPD is then
played at time ¢, and each strategy earns a payoff depending on the strategy with
which it is matched. These payoffs can be represented in a n X n matrix A(t) with
elements a;;(t) being the payoff to a player who plays s, if he is matched against
a player who plays s, at time t. The payoff matrix is indexed for time in this case
because the game was designed so the actual number of stage games played by a

generation, and hence payoffs, will depend on when the RPD takes place. Then we

have
ai(t) ap2(t) ... ain(t)
agl(t) azg(t) - agn(t)
A(t) = : : .. :
ani(t) anz(t) ... Gnn(?)

Also, let p(t) = (pl(t),pg(t), . ,p,.(t))T be the vector of proportions of each type
of player in the population at time ¢ € {0,1,2,...}. Here T indicates the transpose
of a matrix. We can then define the expected payoff to a player of strategy s; at

time t as (A(t)p(t))..

;- This is the ith element of the vector A(t)p(t). Also, the
expected payoff for a member of the population at time ¢ is p(¢)T A(t)p(t). The
process we are considering has the proportion of strategy i at time ¢t + 1 equal to
its proportion at time ¢t multiplied by the ratio of its own expected payoff to the

expected payoff of all players. Then we have the following dynamic process:

(A@®p(1), )
P(t)TA(t)p(t) )

It is easy to see whether a strategy’s proportion in the population gets larger or

pi(t+1)= ps(t)(

smaller depends on whether or not it is doing better or worse than average. The
proportion of a strategy in the next generation depends not only on its own per-
formance, but also on it’s proportion in the current population. This capltures the

idea that a strategy must be both successful and observed by others to be copied.
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The dynamic process described above is based on the notion some programs or
rules would be so unsuccessful they would probably not be used in future rounds.
while the superior strategies would be imitated. We can also think of the payoffs
from playing the RPD as fitness in the biological sense. That is, strategies with
higher payoffs are able to reproduce (asexually) more prolifically than strategies with
lower payoffs. In either case, we would expect to see the best strategies flourish and
the worst strategies die out. The term “evolutionary process” is used loosely here
since the process is not truly evolutionary, but ecological, because no new strategies
can be added to the original sixty-three. This process allows us to evaluate how
well a strategy will do when the less effective ones cease being important, and only

the best ones remain to play each other.

In the evolutionary process Axelrod simulated, A(t) is a 63 x 63 matrix. He
chose p(0) such that p;(0) = 1/63 for : = 1,2,...,63. Professor Axelrod used the
matrix of payoffs he obtained from averaging the results of the five games whose
lengths were determined prior to the second round of the tournament for the A(t)
matrix. This was held constant for all generations. After simulating one thousand
generations of the above dynamical process, Axelrod found TFT was again the
best rule in the sense that it was the strategy with the largest proportion of the
population. In this paper I take another look at how the robustness of these results
can be evaluated in this dynamic framework. Specifically, I reevaluated the results
he reported by using a payoff matrix derived from a different procedure; however, I

used the same dynamic process to simulate the future rounds of the RPD.

An important point to note in the description of the evolutionary simulation
performed by Axelrod that is he used the same matrix of payoffs based on a finite
number of plays of the repeated Prisoners’ Dilemma for each simulated generation
of strategies. This point leads to Nachbar’s criticism of the results. He argues in a

finitely repeated Prisoners’ Dilemma, mutual defection is the only Nash equilibrium
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play. Also, the game is dominance solvable to an equilibrium in which players defect
on every turn. I will show for the situation Axelrod was describing, the result is
not as clear cut as Nachbar would have us believe. I demonstrate what happens if

the payoff matrix is derived taking the infinite nature of the RPD into account.

Nachbar’s Criticism

John Nachbar (1989b) proved if the evolutionary dynamic process we are dis-
cussing converges, it must be to a symmetric Nash equilibrium.!® He actually
proved a somewhat more general result. but his criticism of Axelrod’s simulation
rests on this fact. His objection to Axelrod’s results is that they are merely a re-
flection of the strategy set used. Nachbar (1989b) showed for any finite RPD the
resulting limit of the dynamical process will never include TIT-FOR-TAT if the
strategy space is sufficiently rich. Moreover, if “always defect” (DD) is included
in the strategy set, it will be the unique solution after deleting weakly dominated
strategies, and defection will be the only equilibrium play, provided a sequence of
bridging strategies exist.!* Hence, if the evolutionary process I described is conver-
gent, it must converge to a point where defection occurs at every move. Any other
result must come from rounding error which approximates a very small proportion
to zero, terminating the evolutionary simulation too early, or the choice of possible
strategies.

Based on the Axelrod’s methodology, Nachbar’s criticism is well founded. Co-
operation may have survived the evolutionary process only because there is no com-
pletely defecting Nash equilibrium. Although the 63 x 63 payoff matrix does not,
strictly speaking, reflect a finite Prisoners’ Dilemma game, the validity of Nachbar’s

argument is not affected. It will become clear as I describe Nachbar’s argument we

13 This is also proved by others. For example, see also Samuelson (1989).

14 o sequence of bridging strategies in the case of a finite RPD iterated T times is a sequence of
strategies, {01,03,...,07.1), where o, is the strategy which plays TFT until iteration i and then
defects on iteration i and every one afterward.
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will obtain defection at every stage in every Nash Equilibrium if we expand the
strategy space appropriately.

To understand Nachbar's point, consider the version of the Prisoners’ Dilemma
described in figure 1.1 as the stage game. Now, I will examine. as Nachbar (1989b)
did, a finitely repeated version of this game with only six repetitions of the stage
game. We limit our attention to a small subset of all possible strategies. This is
necessary because even such a simple game as this has 9.2 x 10'® possible non-
randomizing strategies. He considered only TFT, DD, and all possible time bomb
strategies. These are strategies which play TFT until son.c predetermined time and
then begin defecting. The strategies are numbered in the following way:

1) TFT.

2) TFT until stage 6 then DD,

3) TFT until stage 5 then DD,

4) TFT until stage 4 then DD,

5) TFT until stage 3 then DD,

6) TFT until stage 2 then DD,

7) DD.

Now look at the payoff matrix for this finitely repeated game.

18 15 13 11 9
20 16 13 11 9
18 18 14 11 9
A=|16 16 16 12 9

14 14 14 14 10
12 12 12 12 12
10 10 10 10 10

b
500~~~ ==
O v O Ot O O

It is _clea.r from the above payoff matrix the only pure strategy symmetric Nash
equilibrium has DD played by both players. This is also the only rationalizable
strategy because it is the unique remaining strategy after succeésively eliminating
weakly dominated strategies. Nachbar showed the only limit point of this evolu-

tionary process has defection at every stage when applied to this game. He also
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showed, through a computer simulation, if we were to terminate the simulation

early, it could appear we had reached convergence when in fact we had not.

Nachbar asserts this argument will hold for Axelrod’s game. That is, if the
strategy space were sufficiently rich, the evolutionary simulation would yield the
result that defection occurs at every round. To see how this argument would work.
imagine first we introduced a strategy which played TFT for the first 307 iterations
in Axelrod's tournament and then defected. Clearly this does better than TF'T or
any other nice strategy. We can also add a strategy which plays TFT for the first

306 moves and then defects on move 307, and so on.

Nachbar's argument correctly reveals if all strategies are possible. defectior
at every stage would eventually emerge as the limit of the dynamic process. A
note of caution is in order here so ihere is no misunderstanding. It is not true
that if all possible strategies are included the result of the evolutionary process
will necessarily have DD played by 2.1 plavers. The only Nash equilibrium play
has defection at everv mouve; however, there is a continuum of equilibria with this
property. As an example. . nsider a two-stage RPD as Nachbar did. Suppose
the strategy “defect then play TFT"(DTFT) is one of the strategies included in
the strategy space and was assigned a positive weight initially in the evolutionary
simulation. This strategy will always have a positive weight (even in the limit) for
the dynamic process under consideration. The intuition behind this is not difficult
to see. Here we have to assume convergence because I am not aware of any result
which assures convergence in cases like this. If the evolutionary process converges,
we know it must converge to a symmetric Nash equilibrium. There will exist in
this game an equilibrium which consists of a mixture of DD and DTFT. In the
limit the strategies which do not defect in both stages against “always defect” will
go to extinction. However, since “always defect” is only better than DTFT when

other strategies are present, DTFT will survive in strictly positive proportion. In
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other words, although “always defect” weakly dominates DTFT, “always defect”
does better only so long as other strategies have a positive weight, but in the limit
they will not.3

Nachbar's argument is not valid for an infinite RPD. I have already noted
any feasible individually rational outcome can be justified as a perfect equilibrium
outcome in infinitely repeated games if the discount factor is large enough. It is
of special interest here that TFT is an equilibrium strategy in the infinite RPD
as long as the discount factor is sufficiently close to unity.'® Axelrod and Douglas
Dion (1989) refer to this as the shadow of the future being sufficiently large. In the
infinite RPD, the best a player can do against TFT without being nice is to either
defect at every stage or alternate defection and cooperation. In this particular
stage game, alternating “Cooperate” and “Defect” yields a higher payoff against
TFT than always defecting. This means any discount factor § with 1 > 6 > %— will
make TFT an equilibrium strategy in the infinite RPD. Note also cooperation can

be supported by the GRIM strategy!” in the infinite RPD.

Evolution in an Approximately Infinite RPD

Nachbar’s criticism of Axelrod’s work appears to be aimed more at his method-
ology than the results. This section addresses that methodology. Here I report the
results of a replication of Axelrod’s simulation which is immune from part of Nach-
bar’s criticism.

The theoretical part of Professor Axelrod’s work dealt with cooperation in
infinitely repeated games. However, Axelrod’s modeling choice for the evolutionary

simulation makes his game essentially a finite RPD, subject to the criticisms leveled

15 See Nachbar (1989b).
16 5 proof of this proposition is provided in Axelrod (1984),.207-8.

17 The GRIM strategy begins by cooperating and subsequently cooperaces as long as its opponent
reciprocates. It punishes either its own defection or the defection of its opponent with permanent
defection thereafter. This is very similar to Friedman’s strategy in the second round of Axelrod’s
RPD tournament. His strategy cooperates until the opponent defects, then it defects always.
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by Nachbar. If the evolutionary simulation were based on the results of an infinite

RPD then it would not be at all surprising to find cooperation flourishing.

Perhaps the easiest way to model strategies in an infinite game is use finite
automata or Moore machines. A Moore machine is described by a four-tuple
< Q,qo, A\ u >, where Q@ = {g0,91,92,...,9m} is a finite set of states, g0 € Q is
the initial state, A : Q — {C.D} is the output function which maps the state into
a strategic choice, and u : @ x {C, D} — Q is the transition function which maps
the current state and the opponent’s choice into a state (not necessarily different).
Moore machines not only allow us to model strategies in repeated games concisely
and conveniently, they let us analytically calculate payoffs for infinite games. When
two finite automata play each other they must eventually enter a cycle. Therefore,
the sequence of payoffs can be represented by an infinite sequence which can be
summed with discounted stage game payoffs. Alternatively, the metagame pay-
off can be calculated as the limit of the mean of the payoffs in each stage game.
This modeling choice was not feasible here because 22 of Axelrod’s strategies have
randomization as a possibility. Also, some strategies count the moves to compute
some summary statistic. Clearly a strategy which counts all stages in an infinitely
repeated game cannot be modeled using a finite number of states. Although Moore
machines have frequently been used to study cooperation in infinitely repeated

games, their use is not appropriate here.

Since calculating the infinite RPD payoffs analytically is not possible, I decided
to use computer simulations to analyze the infinite RPD. Again, there are a number
of possible ways to simulate the metagame. One possibility is to carry Axelrod’s
method further and actually determine the length of each repeated game fandomly.
This alternative is not workable because of the time required. Another variant of
this idea is to determine beforehand a number of payoff matrices which cbrrespond

to games of different lengths. Then we can apply these as a discrete approximation
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to the distribution implied by a termination probability of 0.00346. Performing
these simulations would not be a viable option, either, because of the time required.
This particular method is also open to another criticism. It would fail to capture the
notion that over a sufficiently long time period the players would learn the length
of possible RPDs and evolve so as to maximize fitness in that environment. Finally,
the stage game could be repeated enough times with discounted payoffs so the total
pavoff after stopping the simulation will approximate the sum of the payoffs in the
infinite game. Perhaps the best way to think of this is as a numerical approximation

to a game which is strategically equivalent to Axelrod’s proposed tournament.

I decided to use the approach which approximates an infinite game. I simulated
five thousand iterations of the stage game so the payoffs would be accurate to four
decimal places. Using a discount factor of 0.99654, this means if one player were
able to obtain the maximum payoff in every stage game from move 5001 on, his
payoff is under reported by 4.9 x 10~® percent or 4.286 x 10~% units. In order to
compensate for the randomness in some of the strategies, I simulated the infinite
RPD five times and averaged the payoffs for the five games. These average scores

were then used to form the payoff matrix for the evolutionary simulation.

To perform this analysis I first obtained the FORTRAN code originally used
by Axelrod and wrote Turbo Pascal programs to duplicate his tournament strate-
gies. I simulated the RPD on a Zenith 248 computer, and the compiler generated
the random numbers. First I replicated Axelrod’s tournament. I also replicated
one thousand generations of the ecological dynamic process, using the results of the
replication of Axelrod’s finite RPD tournament for the payoff matrix. I followed
Professor Axelrod’s original procedures as closely as possible, but there is no prac-
tical way to be certain the programs I used do exactly the same thing the programs
did in Axelrod’s tournament. However, it is clear I have sixty-three programs which

closely approximate those in his tournament. My purpose here was not to find an
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error in Axelrod’s work, but to provide a basis for comparison when I derive results
for the approximately infinite game. Therefore, any comparisons I make will be
between my finite game replication and the approximately infinite game.

Next, I completed the numerical approximation of an infinitely repeated game
with payoffs computed as the discounted sum of the stage game payoffs, with the
discount factor 0.99654. I then used the payoff matrix derived from this exercise
to simulate one thousand generations of the evolutionary process from an initial
distribution where each strategy had an equal weight. In addition, I performed one
hundred simulations of the one thousand generation ecological dvnamical process
with randomly chosen starting points in A%2, the unit simplex in R%3. I used the
results of both the finite replication and the approximately infinite game. I will
discuss the results of these simulations shortly.

The results of this replication of Axelrod’s finite RPD tournament and ecologi-
cal process are similar to his. The significant exception is strategy #2 (submitted by
D. Champion).!® This strategy is subject to extreme random fluctuations because
the author uses a variable to count the number of times the opponent cooperates.
However, this variable was never initialized. Therefore, if it was arbitrarily assigned
a very large (in absolute terms) negative value initially, the program should have
behaved very much like TFT.!? I initialized the counting variable to zero every time
the strategy began playing an RPD. The results of this replication seem remarkably

similar to Axelrod’s despite the amount of randomization.?°

18 The strategies are numbered according to their order of finish in Axelrod’s original tournament.
19 1n Axelrod’s tournament the difference in average score between this strategy and TFT was 0.85.
20 For a comparison, see Axelrod (1984), 51.
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Table 1.1 — Results of the Replicated RPDs

Submitter’s In{ﬁm’te Strategy Finite
Name Replication Number Replication

Anatol Rapoport 1 1 1
Otto Borufsen 2 3 2
T. Nicolaus Tideman & 3 9 3
P. Chieruzzi
Rob Cave (R) 4 4 6
William Adams (R) 5 5 8
Herb Weiner 6 7 4
Francois Leyvraz (R) 7 12 12
Danny C. Champion (R) 8 2 11
Graham Eatherly (R) 9 14 13
Charles Kluepfel (R) 10 10 5
Jim Graaskamp & 11 6 7
Ken Katzen
Abraham Getzler (R 12 11 10
Paul D. Harrington (R) 13 8 9
Paul E. Black (R) 14 15 14
Brian Yamachi 15 17 19
Richard Hufford 16 16 16
D. Ambuelh 17 26 20
& K. Hickey
John Maynard Smith 18 24 23
Jonathan Pinkley 19 30 24
Ray Mikkelson 20 20 21
Glenn Rowsam 21 21 17
Edward White, Jr. (R) 22 13 15
John W. Colbert 23 18 26
Tom Almy 24 25 33
Scott Appold (R) 25 22 18
Gail Grisell 26 23 22
Rudy Nydegger 27 31 28
Bernard Grofman 28 28 25
Craig Feathers (R) 29 27 30
Stanley F.Quayle 30 38 31
Nelson Weiderman 31 34 29

slie Downing 32 40 35
Martyn Jones 33 43 42
Steve Newman 34 42 37
Roger F 35 33 39
&James Langsted
Robert Adams 36 35 38
Robin M. Dawes & 37 36 32
Mark Batell
Johann Joss (R) 38 29 48
George Zimmerman 39 41 41
E. E. H. Shurmann (R) 40 44 40
Robert Pebly (R) 41 32 36
George Lefevre 42 37 34
David Gladstein 43 46 44
Fred Mauk (R) 44 19 27
Henry Nussbacher (R) 45 45 45
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Table 1.1 — Results of the Replicated RPDs (cont.)

Submitter’s In{im'te Strategy Finite
Name Replication Number Replication
R. D. Anderson | 46 39 43
Michael F. McGurrin 47 50 49
Mark Batell 48 47 47
David A. Smith (R) 49 48 46
James W, Friedman 50 92 50
Howard R. Hollander (R) 51 51 52
Robert Leyland (R) 52 49 51
Ric Smoody (R) 53 54 54
W. H. Robertson 54 58 53
Gene Snodgrass 55 56 57
George Hufford 56 33 55
Scott Feld (R) 57 55 56
George Duisman 58 57 58
Harold Rabbie 59 59 59
James E. Hill 60 60 60
Edward Friedland 61 61 61
RANDOM (R) 62 62 62
Roger Hotz (R) 63 63 63

(R) indicates randomizing strategy.

The results of the approximately infinite RPD do not appear to be significantly
different than those of the finite RPD if we look only at the order of finish in
the tournament. I have summarized the results of Professor Axelrod’s original
tournament as well as those of my replications in table 1.1. This table doesn’t
reveal any major differences in the order in which the strategies finished in the
finite replication or the approximately infinite game. Switching from a finite game
with undiscounted payoffs to an approximately infinite game with discounted payoffs
doesn’t seem to have caused any major change in the strategies’ relative success. .

The results of the evolutionary simulation in the case of the approximately
infinite game, however, reveal a substantial difference in the relative evolutionary
success of strategies in both tournaments. Figures 1.3 and 1.4 depict the approx-

imate dynamic path of the eighteen most successful strategies in the ecological
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simulations. Although TIT-FOR-TAT was the most successful strategy after simu-
lating the ecological dynamic process with the payoffs from both the approximately
infinite RPD and the finite RPD, some inspection indicates its relative superiority

is diminished in the simulation using the approximately infinite game results.

Figure 1.3 — Ecololgical Success of the Strategies in the Finite RPD
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Figure 1.4 — Ecololgical Success of the Strategies in the

Approximately Infinite RPD
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If we consider the first fifteen decision rules (from Axelrod’s tournament) many
of the strategies which were most successful in the finite game were less successful in
the appraximately infinite game, and some of the strategies which were less success-
ful in the finite game tended to bg more successful in the infinite game. Specifically,
decision rules 1, 3, 4, 6, 7, 8, 9, 10, and 14 did worse in the approximately infinite
game than they did in the replication of Axelrod’s tournament. However, strategies
2,5, 11, 12, 13, and 15 were more successful in the approximately infinite game.

The difference in relative success of the strategies decreased. After one thou-
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sand generations, TIT-FOR-TAT's proportion of the population was almost 40 per-
cent larger using the payoff matrix from the finite RPD than it was after the same
number of generations using the payoff matrix from the infinite RPD. The first
fifteen strategies had a mean proportion of the population of 0.064326 and a vari-
ance of 0.002368 using the payoffs from the finite replication. When the simulation
is accomplished using the payoffs from the approximately infinite game, the same
strategies have a mean proportion of 0.060784 and a variance of 0.001152. Also.
these first fifteen strategies accounted for about 96.5 percent of the population in
the replication with the finite RPD payoff matrix, but they accounted for only 91.2
percent after simulating the ecological dynamic process with the approximately infi-
nite RPD payoffs. This means the first fifteen strategies are more evenly distributed
after 1000 generations using the approximately infinite game payoffs than they are
after the simulation with the finite RPD results. When we moved from the finite
to the infinite RPD the results changed so after one thousand generations we have
less of the population represented by a few strategies, and the difference in the level

of success of those strategies decreases.

The difference in the distribution of strategies after one thousand generations
is interesting, but its explanation is not entirely clear. One possibility is, of course,
the random element. There is no way to separate the stochastic effects. However, in
my attempts to mirror Axelrod’s simulation as closely as possible, I performed the
experiment many times, and what I report here is representative of what emerged.
These results are robust in the sense that the chance of getting very different results
seems very small. A more likely explanation is the strategies perform better in the
game I simulated than they did in the game Axelrod played. I suggest it is not
surprising the strategies perform better on average in this game because they were

designed to play in a game which is strategically equivalent to the one I simulated.

It is also interesting to note cooperation in general did better in the infinitely
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repeated game in a certain sense. The only mean?! strategy to survive Axelrod’s
evolutionary simulation and the finite replication was Paul Harrington's, #8. How-
ever, in the approximately infinite simulation it became insignificant by the eight
hundredth generation. Again, this result is robust. This is not surprising in the
infinite game. The rewards of cooperation overshadow the possible gains from prob-
ing for weakness against strategies which retaliate. Once the exploitable strategies

have been eliminated, defecting strategies will not do well.??

Since Harrington’s strategy was clearly the most successful, or least unsuccess-
ful, of the mean strategies, a brief description of how it acts is in order. This strategy
analyzes the opponent’s play of the game and attempts to exploit weakness in the
opposing strategy. This rule plays cooperatively for the first thirty-six iterations
against a nice strategy. then it defects without provocation. If its opponent makes
its first defectior > the same move, this strategy assumes it is playing itself unless
the oppone..t .cfects again. If it thinks it is playing a strategy identical to itself, it
cooperates. However, if it is not playing itself, it attempts to take advantage of the
orponent. It decides randomly when it should probe the other strategy for weak-
ness. If the opponent appears to be a consistent defector, Harrington'’s strategy will
respond with continual defection. This strategy is interesting because it attempts
to identify its twin, and it tracks the opponent’s responses to its action over the
course of the game. Other strategies monitored the opposing player’s actions during
the game, but this one was the only mean strategy to have any discernable degree

of success.

As another test of the robustness of the evolutionary superiority of coopera-
tion in this environment [ simulated the evolutionary process with different initial
population distributions. Specifically, I simulated one thousand generations of the

ecological dynamic process one hundred times, with randomly chosen initial distri-

21 5 “mean” strategy is one that is not nice.
22 Gee Axelrod (1982), 52.
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butions. The resulting populations were again very cooperative.

Figure 1.5 — Ecologically Successful Strategies in the Finite RPD from

Random Initial Distributions
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When I used the payoff matrix from the finite replication, only seven different
strategies came in first place. In fact, three of the strategies (1, 3, and 9) accounted
for 73 percent of the ecological success in the sense that one of these three strategies
came in first in seventy-three of the one hundred simulations. Not surpmsingly,
TIT- F OR-TAT came in first most frequently, but it only came in first 26 percent
of the time. The second best strategy in this exercise, which was submitted by O.
Borufsen, finished first 23 percent of the time. In Axelrod’s tests for robustness
TFT finished first in five of six tournaments which had different distributions of

strategies. This result differs significantly from the results obtained when we started




26

with equal weights on all strategies, and suggests TFT is not as evolutionarily fit as
Axelrod’s evidence indicates. In all cases, the simulations seemed to be converging
to a cooperative equilibrium. These findings are summarized in figure 1.5, where I
show which strategies finished first and how often they did so when starting from

randomly determined initial distributions.

I also performed similar simulations, starting from the same randomly chosen
initial distributions, using the payoff matrix from the approximately infinite game.
The set of strategies which finished first here contains the set of those which finished
first using the results of the finite game. However. strategies 5, 12. and 14 also
finished first in this simulation. In fact, these three rules accounted for 9 percent of
the first place finishes. Again, convergence was always to a cooperative equilibrium.

These findings are summarized in figure 1.6.

77
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Figure 1.6 — Ecologically Successful Strategies in the Approximately
Infinite RPD from Random Initial Distributions
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Next I will examine the successfu! strategies other than TIT-FOR-TAT. I will
look specifically at the nine other strategies which finished first in one of the sim-
ulations which started from a random initial distribution using the payoff matrix
from either the finite or approximately infinite games.

1. Borufsen's strategy (#3) uses TFT as its main rule. However, it maintains
statistics on the play of the game so it can take advantage of specific irrational op-
ponents. For example, if it detects its opponent is random or defective. it defects on
25 consecutive moves. This program also checks to see how the opponent responds
to his defection. However, like all the other successful strategies. this one will never
be the first to defect.

2. The third most successful strategy was Tideman and Chieruzzi's (#9). This
strategy also has characteristics which are similar to TFT. It is nice, but less pro-
vokable than TFT. The authors of the rule use an expression which depends on
the difference in scores between the two players, the change in the difference in the
players’ scores, and the number of defections the strategy has detected to determine
whether or not to retaliate. After the opponent defects, this strategy will continue
defecting until it has either closed the gap in the scores sufficiently or defected ten
consecutive times. After ten consecutive defections, this strategy returns to coop-
erating as long as the opponent does not switch back from cooperate to defect and
has not defected too often in the past.

3. Weiner’s strategy (#7) is a variation of TFT. It can be thought of as TFT with
special forgiveness because it ignores a defection if it has been more than twenty
moves since the last one and the last defection was followed by cooperation. Also,
this program always defects if the opponent has defected at least five times in the

last twelve moves.

4. Graaskamp and Katzen’s strategy (#6) can best be thought of as checking its

own score against certain milestones during the game. As long as its score is high
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enough at predetermined moves it will play TFT. However, if its score falls below
the minimum acceptable at a checkpoint, it enters an absorbing state which defects
at every turn.
5. Cave's strategy (#4) is similar in spirit to #6 because it :valuates the play
of the game at predetermined points. In addition, if the opponent has defected
less than eighteen times, this rule defects in response to defection by his opponent
with a probability of 1/2. However, after the opponent’s eighteenth and subsequent
defections, this strategy defects with certainty. Also, if the opponent is overly
defective according to certain rules, this strategy gives up and defects until the
opponent’s percentage of cooperative moves increases to acceptable levels.
6. The last of the strategies to finish first in the simulations with the finite game
payoff matrix 1s Kluepfel's (#10). This strategy maintains a history of the last
three moves. It cooperates until the opponent defects. Then it begins randomizing
depending on the three iteration history.

The next three strategies finished first only when the infinite game payoffs were
used.
7. Leyvraz’s strategy (#12) is also similar to TFT; however, its retaliation rules are
slightly different. This strategy keeps track of the opponent’s last three moves. If he
defected the last two times, this rule defects with probability .75. If the opponent
defected two moves ago but not on the last move, this rule defects with certainty.
Finally, if the last move was the opponent’s only defection in the last three iterations,
this strategy defects with probability .5. Otherwise, it will cooperate.
8. William Adams’s strategy (#5) is again similar in spirit to TFT, but it is less
provokable. It starts with a threshold of four defections. Once the threshold is
crossed, it defects and then adjusts the threshold by cutting it in half. It contin-
ues calculating the threshold after it is less than one because it then becomes the

probability this rule cooperates after a defection.
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9. Eatherly’s strategy (#14) is a very simple strategy. This rule calculates the
proportion of defections in all previous moves and uses this as the probability it will
retaliate against a defection.

Overall, the results of this work reinforce Professor Axelrod’s theory of coop-
eration. That is, these simulations indicate cooperation can flourish and can be
supported through swift and sure retaliation to a defection. TFT proved to be su-
perior to all other strategies in these replications, just as it was in Axelrod’s original
simulation. However, it seems to be substantially less superior in this environment
than it appeared to be in Axelrod’s report. Although TIT-FOR-TAT was more
successful than any other strategy in these simulations, it is most unlikely this evo-
lutionary process is converging to virtually all TIT-FOR-TAT as conjectured by
Axelrod.?® In fact, if there is convergence here, it can be to any of a continuum of
symmetric Nash equilibrium.

The simulation of the dynamical process using the payoff matrix from the
approximately infinite RPD is immune from at least part cf Nachbar’s criticism. In
the simulations I have reported here, no argument can be made TFT is subject to
successive elimination of weakly dominated strategies. However, a purely defecting
equilibrium still has no chance of success in this game because there are no purely
defecting strategies. Therefore, we must be careful to refer to TFT’s success as
being conditional on the submitted strategies.

There still may be reasons why cooperation cannot be sustained in this situa-
tion, but Nachbar’s criticism does not negate the robustness of Axelrod’s theory in
this RPD which is modeled only slightly differently. There does remain, however,
the possibility a defecting equilibrium outcome may prevail if we allow defecting
strategies. In subsequent essays I will discuss this further, but for now I will note

both cooperation and defection are possible equilibrium outcomes in the infinite

23 gee Axelrod (1984), 55.
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RPD with discounted payoffs.

Summary

Robert Axelrod’s evolutionary simulation of future rounds of his RPD tour-
nament has provided a basis for our understanding of cooperation. and how it can
evolve in a population. However, for what I believe to be methodological rather than
sound theoretical reasons, his study was open to the criticism a purely defecting
equilibrium would emerge if the strategy space was sufficiently rich. I demonstrated
if the game was modeled differently to represent an infinitely repeated game, it is
not necessarily the case a defecting equilibrium would emerge.

The infinitely repeated version of Axelrod’s simulation provided some addi-
tional insight into the relative evolutionary fitness of the strategies used by Axel-
rod. TIT-FOR-TAT proved to be less evolutionarily superior to the other decision
rules in the approximately infinite game than it was in the finite replication. By
examining the evolutionary process from random initial population distributions, I
obtained results which also tend to support Axelrod’s theory and findings. How-
ever, TIT-FOR-TAT did not emerge as exceptionally dominant when starting from
these initial distributions. In all cases, the simulated future generations revealed the
robust nature of cooperation in this tournament. All of these findings are environ-
ment specific because there is no possibility of defection emerging here. Although
Nachbar’s criticism does not fully apply to the simulation I performed using the
results of an approximately infinite game, it is still true a defecting equilibrium had
no chance because it was never introduced into the game. It is clear if we introduced
the “always defect” strategy into this environment, it would not fare well. However,
it is equally clear if we added a sufficiently large number of defecting strategies or
if we start close enough to the point where every player defects, the evolutionary

process would converge to a purely defecting equilibrium.
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The notion of evolutionary stability also has no force here if the strategy set is
sufficiently rich. I will expand on this idea in subsequent essays. For now, however.
it must suffice to note evolutionary success of cooperation is possible when the game
is modeled to reflect the infinite nature of the RPD when each stage game ends with

a positive probability less than unity.
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CHAPTER II

THE EVOLUTION OF COOPERATION IN A WORLD WITH
DISTURBANCES

Introduction

In the first essay I looked at the ecological dynamics of a very special pop-
ulation. I showed the evolutionary success of cooperative strategies was possible
in Robert Axelrod's tournament if the game was properly modeled. I also simu-
lated an approximately infinitely Repeated Prisoners’ Dilemma (RPD), as well as
a dynamic ecological process, to determine the effect on the results with the game
modeled differently. Mutual cooperation was the most evolutionarily fit outcome in
every case. However, the results did not preclude the possibility a purely defecting
equilibrium could still emerge in another environment. In Axelrod’s environment
purely defecting strategies never had a chance to succeed because none were ever
introduced. We still have not explored what conditions lead an evolutionary process
to result in a cooperating or a defecting population. In this essay, I look at how
perturbations influence the evolution of a population playing an infinite RPD. I will
consider perturbations, or tremblés, in the play of the game as well as perturbations
in the payoff matrix.

Axelrod’s (1984) analysis of the success of cooperation in the repeatéd Prison-

ers’ Dilemma (RPD) is the most famous of many studies on the subject. However,
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many authors have studied RPDs more generally in an evolutionary framework.
Here I review some of these works. These papers offer a wide variety of models, and
the results vary similarly. John Maynard Smith and G. R. Price (1973) are among
those credited with introducing evolutionary game theory, but perhaps the most
well known of the works on the subject is Maynard Smith’s 1982 book Ewvolution
and the Theory of Games. Since its introduction many people in a broz1 range of
disciplines have applied evolutionary game theory to the study of natural and social
science problems. It has frequently been used to study coordination games, com-
mon interest games, and the Prisoners’ Dilemma. My purpose here is to provide a
brief review of some of those studies, especially those analyses which deal with the

Prisoners’ Dilemma.

In his 1984 book The Evolution of Cooperation Axelrod used an evolutionary
argument to justify cooperation in the his RPD tournament. The notion of evolu-
tionary stability he used is less restrictive than the one I apply here. For now. I
will define an evolutionarily stable strategy (ESS) as one which cannot be invaded.
This definition is somewhat less rigorous than the one I use in then next section.
An ESS must be a best reply to itself. In addition, if a strategy is not a unique
best reply to itself, an alternate best reply. must do worse against itself than the
indigenous strategy does against the alternate best reply. This is called the stabil-
ity condition which Axelrod eliminated. He called his version of this idea collective
stability.! This is nothing more than requiring a strategy be part of a symmetric
Nash equilibrium. In choosing this definition, Axelrod disallowed the possibility
an alternate best reply strategy which earns an equal payoff against both the in-
'digenous and invading strategies would be able to successfully infiltrate the native

population. The idea nice? populations can be invaded has been used frequently to

1 See Axelrod (1984) p. 217.
2 Axelrod (1982) defined nice strategies to be those which never defect first.
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demonstrate the evolutionary instability of strategies like TIT-FOR-TAT (TFT)?

and is the basis for the computer simulations which I discuss later.

Recently, Robert Boyd and Jeffrey Lorberbaum (1987) and Joseph Farrell and
Roger Ware (1989) show an ESS does not exist in the infinite RPD in the sense
of Maynard Smith.* Specifically, part of Boyd and Lorberbaum’s contribution in
this area was their proof no pure strategy ESS is possible in the infinite RPD if
every strategy can appear through mutation. That is, no pure strategy is immune
from invasion in the infinite RPD. To gain some intuition, consider any candidate
ESS. If we allow arbitrary strategies to appear through mutation, there will be
strategies which play the same as the indigenous strategy along the equilibrium
path but differently off it. These actions off the equilibrium path may allow it to
be invaded. Farrell and Ware extended this and showed there is no ESS in finitely
mixed strategies. Hence, unless we alter the notion of evolutionary stability we are
doomed to failure in trying to find a solution to the infinite RPD. Here, then. we
find one of the weaknesses of the ESS concept; there is a nonexistence problem.
Reinhard Selten’s concept, the limit ESS, is the most significant attempt to find a
satisfactory way to eliminate the nonexistence problem. However, as we shall see.

there are also nonexistence problems with the limit ESS.

Finding perfect equilibrium outcomes in infinitely repeated games is not a
problem of scarcity but one of surplus. The “Folk Theorem” of repeated games
assures any feasible and individually rational outcome is a possible perfect equi-
librium outcome.® Many economists and game theorists argue that when multiple
equilibria exist, the solution to the game has the players achieving an efficient out-

come. Using the terminology of Harsanyi (1977) and Harsanyi and Selten (1988).

3 This is the strategy which cooperates in the first period and subsequently chooses the action played
by the opponent on the previous move.

4 This is what Selten calls a normal form ESS.
5 See Auman (1981).
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the players should be expected to choose this outcome based on payoff dominance®
if possible. This intuition is especially appealing for repeated games since there is
recurrent interaction between the players. The argument for selecting payoff domi-
nant outcomes is also very strong when some sort of coordinating device is present.
For example, if a payoff dominant equilibrium outcome exists and we allow preplay
communication between players, we should expect the equilibrium they agree upon
to produce that outcome. Even in the absence of such a coordinating device, many
game theorists and economists argue we should expect to see a payoff dominant
equilibrium outcome. In the infinite RPD, of course, this means we should expect
to sec a cooperative outcome.

Drew Fudenberg and Eric Maskin (1990) have shown cooperation in infinite
RPD games is evolutionarily stable in an environment where only strategies of
finite complexity can be used, payoffs are calculated as the limit of the mean stage
game payoffs, and noise exists. In their model, “noise” refers to some chance an
action may be misperceived by a player’s opponent. John Miller (1987) performed
interesting simulations of the evolution of automata which were modeled as a string
of digits. The impact of noise on the model was one of the factors he examined. He
simulated the evolution of a population playing a finite RPD in which there were
strictly positive probabilities of errors in the transmission of information about
what a player’s opponent did on the previous move.” His results are difficult to
characterize in a sentence or two; however, the methodology he used is interesting
and the results indicate the effects of noise on a model like this are not negligible.

Ken Binmore and Larry Samuelson (1989) proved a result similar to Fudenberg

and Maskin’s using a model in which metagame strategies are implemented by finite

automata and metagame payoffs, or profits, increase in stage game payoffs and

6 A payoffl dominant equilibrium outcome, in this case, is one in which both rlayers obtain a higher
payoff than they would get in any other equilibrium outcome. Obviously th. se do not always exist.

7 Specifically, he considered error rates of 1 percent and 5 percent.
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decrease lexicographically in complexity. The complexity measure in their model
is the number of states in the implementing machine, and the stage game payoff is
computed as the limit of the mean. Their theorem is general in that it is true for a
large class of games. They show any equilibrium strategy which yields less than a
utilitarian payoff® can be invaded by a strategy which does as well, in stage game
payoffs, as a native does if it plays a native but does better against itself than it
does against a native. They rely on Dilip Abreu and Ariel Rubinstein’s (1988) result
that any payoff vector on the main diagonal of the set of feasible and individually
rational payoffs is achievable as the outcome of a pair of equilibrium machines. The
payoff maximizing equilibrium machine is the only one which can be invasion-pronf
because it is the minimum complexity equilibrium machine which results in the
utilitarian outcome. In their model, the invading machines are able to signal their
opponents. If they are not playing their own type, it makes no difference in the
stage game payoffs because they are computed as the limit of the mean, and in the
limit they get the same payoff as the native strategy. The fact they earn higher
payoffs against machines like themselves insures them a higher average payoff than

the native machine gets.

Arthur Robson (1989) has studied evolution in coordination games and the
Prisoners’ Dilemma. In his model a mutant is introduced which destroys any ESS
which has a lower payoff than another. He shows the efficient outcome can be
temporarily attained in the Prisoners’ Dilemma using a signal he calls the “se-
cret handshake.” Robson claims such a model makes the evolution of cooperation
unavoidable. Cooperation cannot be permanent in this model because the same
possibilities which allow those with the secret handshake to invade a defecting po;;-
ulation will allow other strategies to give the signal and then exploit the invading

strategy.

8 This is an outcome in which the sum of payoffs to both players is maximized.
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In a recent paper, Yong-Gwan Kim (1989) showed there does not exist an ESS
in infinite RPDs without perturbations. Additionally, he proved a “Folk Theorem”
which states we can find a limit ESS which is arbitrarily close to any point on the

main diagonal of the convex hull of feasible payoffs.

In the next section I discuss evolutionary stability and the RPD. Specifically,
I will review Selten’s ESS concepts. After that I will discuss the introduction of
chance elements to the dynamic process. This can be distinguished from the per-
turbations in Selten’s limit ESS which are probabilities a player will make an error
in the play of the stage game. The random elements in the stochastic dynamic
model are continuous perturbations to the dynamic process. We can think of these
as variations in the payoffs or disturbances caused by mutations from the failure
of strategies to breed true. In a very simple framework, we can characterize when
we should expect to find defecting populations and when we should expect to find
cooperating populations. Then I describe the results of computer simulations where
strategies mutate in an intuitively appealing way based on the idea metagame strate-
gies are implemented by finite automata, or Moore machines. Finally, I summarize

the findings in this essay.

Evolutionar: Stability: Basic Concepts

The purpose of this section is to review the evolutionary stability concepts
which have been applied to games. Most of the work in this field is due to Selten.
He developed the concept of limit ESS which is a modification of the normal form
ESS introduced by John Maynard Smith.® There are two somewhat contradictory
problems with the notion of evolutionary stability. I already identified the first
one, nonexistence. The second problem is it may fail to select the most intu'itivel.v
appealing, or “best,” equilibrium when mﬁltiple equilibria exist. In this section, I

discuss Selten’s attempts to solve the nonexistence problem with the limit ESS.

9 For a concise explanation of Maynard Smith’s concept see Maynard Smith (1982).
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The ESS concept is based on the idea that the evolutionary success from play-
ing a certain strategy depends not only on which strategy a given player chooses but
also on the characteristics of the population in which it plays. Loosely speaking, an
evolutionarily stable strategy is one which can not be invaded. The requirements
for a strategy to be an ESS are more stringent than those of a Nash equilibrium.
A symmetric Nash equilibrium strategy is neutrally stable in the sense that a pop-
ulation which plays this strategy will have no opponents which are strictly more
successful than the native strategy. This is obvious from the definition of Nash
equilibrium. For a strategy to be an ESS, it must be immune from invasion from
any feasible mixed strategy.

I begin by defining evolutionary stability in the context of a two-player sym-
metric normal form game. By convention, a two-player normal form game G is
defined by a four-tuple G =< S}, S, u;, u; > where S; is Player i’s strategy space.
S = 8§51 x 52, and u; : S — R is Player i’s payoff function. In this game the two
players simultaneously choose s € S and t € S, and receive payoffs u,(s,t) and
uz(s,t). A strategy for Player ¢ is defined as o; € A(S;) where A(S;) is the set of
all probability measures on S;. More formally, if there are k pure strategies, then
A(S;) = {oi € RF : 04(s) > 0, Y ses, 9i(s) = 1}. A game is symmetric if 5; = 5,
and u;(s,t) = uy(t,s). In other words, the role of each player is irrelevant in a
symmetric game. Except where necessary for clarity, I will abuse notation slightly
anduse S =5, =S5, and u = u; = u,.

Using the above notation, a strategy o is an evolutionarily stable strategy of a

symmetric game if and only if:
u(,0) 2 u(o',0) (1)
and

u(o,0) = u(o',0) = u(o,0') > u(o’,0'). (2)
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for all o' # o, o' € A(S). In words, these conditions require any strategy be a best
reply against itself, and if there are alternate best replies. the ESS must do strictly
better against an alternate best reply than the alternate ve* rep., does against
itself. The first requirement above means any ESS is a Nash equilibrium. However,
the converse is not true because of the second condition. whici: is often called the
stability condition.

The above definition is actually a characterization of a more basic require-
ment which holds in pairwise random matching models.!® Assuming von Neumann-
Morgenstern utility functions, the following must hold for a sufficiently small pro-

portion of invaders, € > 0:

(1-€u(o,0)+ eu(a,0') > (1 — e)u(a’,0) + eu(a’,o').

This requires the expected payoff from playing ¢ in a population with proportion ¢

of o' to be strictly greater than the expected utility of those playing o'.

Figure 2.1 — A Game with no ESS

Player II
A B C
g 0,0 4,-5 -5.4
Pl 1 -9.4 0,0 4. -5
WElC @5 =54 00

To see some of the problems which can arise, consider the game in figure 2.1.

This is a version of the children’s game rock-scissors-paper. This game has a unique

.trembling hand perfect!! symmetric Nash equilibrium (1/3,1/3,1/3) and no ESS.!?

The equilibrium is easily verified. However, this equilibrium cannot be an ESS

10 See Maynard Smith (1982) for details.
11 gee Binmore (1987) for an excellent discussion of this and other Nash equilibrium refinements.
12 This game is adapted from one in Foster and Young (1989).
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because condition (2) fails. Since the unique equilibrium is a completely mixed
strategy, it must be true that condition (1) holds with equality for all o' € A(S).
The equilibrium strategy will have a payoff of —1/3 when matched with any other
mixed strategy. However, any other strategy will get more than —1/3 when it plays
itself. Hence, it fails condition (2) above.

As an example of the second problem with the ESS, consider the common
interest game presented in figure 2.2. This game has three Nash equilibria. all of
which are perfect. They are (1,0), (0,1), and (1/3,2/3).!® Evolutionary stability
eliminates only the mixed strategy equilibrium in this case. The more intuitively
appealing of these is (1, 0) because it yields the payoff dominant outcome. However.

evolutionary stability fails to eliminate the (0, 1) equilibrium.

Figure 2.2 — A Game with Multiple ESSs

Player 1
A C

A 2,2 0,0
Player I C 0.0 1.1

.

Next we shall see the limit ESS fails to help in either of these cases. That is,
since any ESS is also a limit ESS, it provides no ability to discriminate between
multiple ESSs. Application of the limit ESS concept also fails to provide any help
in the rock-scissors-paper game.

In order to describe Selten’s more general limit ESS concept, we must first
introduce the idea of perturbed games. I do this following Larry Samuelson’s (1989)
exposition modified for the fact that I will deal only with symmetric games in
this essay. For any game G, we can define a perturbed game G by replacing the

strategy set A(S) with {0 € R* : o(s) 2 n(s) 2 0,3 ,¢s, o(s) = 1}. The function

13 The notation here is (p.1 — p) where p is the probability assigned to strategy A.
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n:S — [0,1] assigns a minimum probability of a trer.ble to some of the strategies
in S. We can then define a strategy o* to be a limit ESS of a game G if, for every
€ > 0, there is at least one perturbed game G(¢) with an ESS, o', such that
1/2
Tg)sc{n(s.-)} < ¢ and [Z (o*(si) — 47'(3.~))2 < e
s,€S

The conditions above require the trembles to be less than € in magnitude and the
equilibrium in the perturbed game to be close enough, in the Euclidean metric, to
the candidate limit ESS. It is clear any ESS is also an limit ESS because we can
always set n(s;) to zero for all s, € S.

As Samuelson points out, the trembles in the definition of the limit ESS have
the effect of breaking ties in the payoffs to strategies which yield identical payoffs
without the trembles. There may be a weak best reply to an equilibrium strat-
egy which keeps it from satisfying the conditions for evolutionary stability. These
trembles have the effect of turning weak best replies into inferior replies, hence
potentially enlarging the set of evolutionarily stable strategies.

Now we can see the limit ESS concept fails to be of any help in the two games
I described. In the case of the rock-scissors-paper game the intuition is clear. Since
(1/3,1/3,1/3) is a completely mixed strategy Nash equilibrium, it must be true if
one player employs the equilibrium strategy the other player is indifferent among
the strategies he can play. We have already seen (1/3,1/3,1/3,) is not an ESS. Also,
any perturbation away from (1/3,1/3,1/3) will make another strategy a strict best
reply. For example, suppose we choose the trembles so as to make A slightly more
likely for Player I. This will make C a unique best reply to the perturbed strategy.
Hence, the perturbed strategy cannot be an ESS.

Now consider the second game, the common interest game. As I stated earlier,
(1,0) is the more intuitively plausible result of an evolutionary process. However,

the limit ESS concept is again of no help is distinguishing between the two pure
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strategy equilibria. The significance of this is even more plain if we substitute
101990 for 2. That is, for any arbitrarily high payoff for (1,0) relative to the payoff

for (0,1), both A and C are limit ESSs.
The problems I have described with the ESS and limit ESS are not trivial.

Certainly, any theory of evolutionary games must have as one of its primary goals
the ability to find the game’s solution. In other words, given a game and a dynamical
process, we would expect a reasonable theory of this class of games to provide us
with an idea of what we can expect as the result of the evolutionary process. In
the next section, I describe a theory of evolutionary processes which aveids the two

problems I described here.

Stochastic Stability in Evolutionary Games

In the last section we looked at how disturbances in the form of trembles in
the play of the game could be used in the evolutionary stability framework. We
found by allowing these trembles we could expand the set of ESSs to help reduce the
nonexistence problem. However, we also found the set of limit ESSs contains the
set of normal form ESSs. That is, any normal form ESS must also be a limit ESS.
The converse obviously fails. Now I will describe a theory of evolutionary game
dynamics developed by Dean Foster and Peyton Young (1988) in which stochastic
disturbances are explicitly modeled. The basic difference between these two notions
is that in the case of the evolutionary stability we are looking at stability against a
one-time disturbance in the system. In other words, if the system is displaced by a
single disturbance some arbitrarily small distance from an equilibrium and returns
to the equilibrium, that equilibrium is an ESS. On the other hand, the idea behind
stochastic stability is that in the presence of continuously applied disturbances the

system will select a set of states near which it will stay.

Foster and Young are the only social scientists to have studied evolution in

the presence of this type of stochastic influences. W. G. S. Hines (1982) examined
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the effects of strategy mutations in a different context. He looked at changes in
diversity of the population due to mutation while the population is in strategy
equilibrium, which he defined as a state when the average strategy remains constant
over time. He shows under certain conditions, including no deterministic trend and
independence of the mutation rates, the population will become increasingly diverse
over time. The idea Foster and Young developed is quite different. However, it is
not a refinement of either of the ESS concepts I described in the last section since
not all stochastically stable strategies are ESSs, and not all ESSs are stochastically

stable.

Figure 2.3 — The Prisoners’ Dilemma

Player 11
D

C
C R.R S, T
Player I p T.5 P P

In order to discuss the notion of stochastically stable strategies, I introduce an
extremely simple version of the infinite RPD. The version of the Prisoners’ Dilemma
I will use as the stage game is represented in figure 2.3 with T > R > P > S and
R> (T +S)/2.

I will begin by considering only two possible metagame strategies in the in-
finitely repeated version of this stage game. I will consider one cooperative strategy,
the GRIM strategy'4, and the “always defect” (DD) strategy. DD is always a sub-
game perfect equilibrium strategy in the RPD because D is the dominant strategy
in the stage game. GRIM is also a subgame perfect Nash equilibrium strategy in
the infinite RPD if the common discount facto-, 6, is at least (T ~ R)/(T — P). The

values I will use in the payoff matrix are T = 5 R=3,P=1,and S = 0.!* This

14 The GRIM strategy begins by cooperating, and if either player defects it defects continually
afterwards.

15 These are the same values used in Axelrod's tournament and in the previous essay.




46

means if § > 1/2 both strategies form symmetric subgame perfect equilibria. I will
limit the discussion to those cases.

I will begin with a discount factor of § = 0.9. This yields the following payoff
matrix for the infinitely repeated game.

4= (% %)

In the payoff matrix, A, an element a;; represents the payoff to a player who employs
metagame strategy : when he meets a player who uses strategy j. Here strategy 1 is
GRIM and strategy 2 is DD. As we can see, neither of the ESS concepts I described
earlier can help us decide which of the metagame strategies is more evolutionarily
fit. In this simple game both pure strategies are symmetric Nash equilibria. There
is also a mixed strategy symmetric Nash equilibrium, (5%,12) which is not an
ESS. Applying the normal form and limit ESS concepts here eliminates the mixed
strategy equilibrium but does nothing to help us select between the cooperative and
defecting equilibria. Both pure strategies are limit ESSs. However, as we shall see,
Foster and Young’s stochastic stability concept will always select at least one of the
two strategies in this simple example.®

Suppose the payoffs in the above matrix are continuously subjected to random
perturbations. We can think of these disturbances as fluctuations in fitness rates
due to chance or mutational effects. The difference between this concept and evo-
lutionary stability is if a strateg; :evolutionarily stable it is stable against a single
small perturbation. However, if these disturbances are continuously taking place,
evolutionary stability doesn’t insure a population will be secure against invasion by
mutants. We can apply the notion of stochastic stability to show as the variance of
the perturbations gets close to zero the population will almost always be arbitrarily

close to the cooperative equilibrium in this game.

16 Ay we shall see, both strategies are stochastically stable in this particular game if and only if
§=0.6.
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Foster and Young demonstrate this idea using the continuous-time dynamical

evolutionary process
Bi(t) = pi(1)| (Ap(1)), — P(1)T Ap(1)|.

Here, p(t) = (p;(t),pg(t))T is the vector of proportions of the population playing
each strategy at time ¢, and p,(t) is the proportion of the population playing strategy
i at time t. T indicates the transpose of a matrix. The vector p(¢) can be thought of
the state of the system. In pairwise random matching models with an infinite popu-
lation, we can think of a state of the system as a mixed strategy against which each
participant plays. This dynamic process has essentially the same dynamic behavior
as the discrete time model used by Axelrod (1984). Although generalization from
the continuous time process to the discrete time process is not straightforward, the
two models yield similar dynamics since we consider only symmetric situations.!’

Now we will add a random element to the process. Suppose the dynamic process

can be represented by the stochastic differential equation

dpi(t) = pi(t) | (AP(t)), — p(t)T Ap(t)|dt + wT'(p(t))dB(t).

In the above equation B(t) represents a perfectly random perturbation or white
noise process. B(t) is normally distributed with mean zero and unit rate covariance
matrix. In Foster and Young’s most general formulation, the covariance matrix, I,
is dependent on the state of the dynamical system and bounded away form zero.
Also, in order to assure the process stays within the unit simplex, we assume the
boundaries are reflecting in the sense described by Karlin and Taylor (1975). Foster
‘a.nd Young analyze the asymptotic behavior of this stochastic dynamic process as
w — 0. They find the dynamical system will select among the different metagame

strategies as the noise term gets arbitrarily small.

17 See Nachbar (1988).
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For analytic tractability, we assume I'(p) = 1 in this simple example. Then, if
we abuse notation slightly and denote the proportion of the population playing the

cooperative strategy at time t as p(t), we have

dplt) = p<t>[30p(t) +9((1 — p(t)) ~ [30p(t)? + 8p()(1 — p(1))
+14p(t)(1 - p(t)) +10(1 p(y))’1] +wdB(t)
dp(t) = p(t)[—17p(t)2 +18p(t) - 1] dt +wdB(t).

Foster and Young use a result from Freidlin and Wenzel (1984) to show minimizing
an appropriately derived potential function yields stochastically stable solutions,
and at least one of these always exists. To avoid unnecessary technicalities, I will
loosely define the stochastically stable set as the smallest closed set such that as
t - oo and w — 0, it is almost certain the system is arbitrarily close to the
stochastically stable set regardless of the initial state.

For the case at hand the appropriate potential function is
P
V(p) = -/ z[(A-(sc,l-z)T)1 —(z,1=-2)-A-(z,1-2)T|dz
0

(4
= / z(17z% - 18z + 1)dzr.

0

The above potential function has a unique global minimum at p = 1. The point
p = 0 (all players playing “always defect”) is a local minimum, and the mixed
strategy equilibrium corresponds to a local maximum.

It is easy to see both p =1 (all GRIM) and p = 0 are locally stable. However,
p = 1 is a deeper trough. It is not the steepness of the potential function near the
trough which matters in determining stochastic stability but its depth.!® Foster

and Young indicate as w — 0 the dynamic process will spend increasingly more

18 See Freidlin and Wenzel (1984).
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time near p = 1, and the population will almost surely be all cooperators in the
limit.

Foster and Young proved two other important properties of stochastically stable
sets. First, they always exist. If we use stochastic stability as a solution concept.
we always have a nonempty solution set, even if there is no limit ESS. Second, even
if a game has a unique ESS, it needn’t coincide with the stochastically stable set.
It is clear, then, stochastic stability is not a refinement of the ESS concept.

If we consider the two games we discussed in the previous section, we can see
they botl ~-ve nonempty, stochastically stable strategy sets. The stochastically
stable set of the rock-scissors-paper game is the set consisting of the three corners
in the unit simplex in R®. This means as w — 0, the probability the state of the
system will be arbitranly close to one of the corners is one.!'® The stochastically
stable set in the common interest game is the ESS (1,0). This solution is intuitively
plausible and yields the payoff dominant equilibrium outcome.

This discussion leaves us wondering under what conditions in the simple infinite
RPD will cooperation emerge as a stochastically stable solution. In other words,
will cooperation always emerge if we have only the two simple strategies available
and they are both ESSs? We saw in this very simple framework with a common
discount factor of .9 the population will tend toward the cooperative strategy. Is
this generally true?

The answers to the above questions are completely intuitive. If the discount
factor is sufficiently small, the stochastically stable solution will have defect always
as the only strategy in the stochastically stable set. To find the critical discount fac-
tor ('the value for 6 where “always defect” becomes a stoéhastically stable solution)
we must look at a more general payoff matrix. If the infinite RPD has the payoff

structure I described earlier and a common discount factor &, the payoff matrix

19 For a more detailed discussion see Foster and Young (1988).
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from using the GRIM and DD strategies is the following:

After some algebra, we can see if 6 < 1—(R—P)/(T - S) “always defect” will be in
the stochastically stable set. If the inequality is strict, it will be the unique element
of the set. For this to be of interest it must be the case § > (T — R)/(T — P) so
there are two ESSs in this simple game. In the example above where T = 5, R = 3,
P =1, and S =0 we find “always defect” is stochastically stable if § < 3/5.

We have shown in a very simple environment either defection or cooperation
can be stable in a stochastic setting. If the discount factor, or shadow of the future
as it is described in Axelrod and Dion (1988), is sufficiently large, cooperation should
emerge. However, there are at least two problems standing in the way of this being
particularly interesting. First, the stochastic effects of any reasonable mutation
scheme will almost certainly have a covariance matrix which is meaningfully state
dependent. For example, if we think of these strategies mutating from one to the
other at different rates, the variance will depend on the proportions of the various
strategies in the population. Second, we are looking at only two of an infinite
number of possible strategies. In the next section, I will address these problems.
Specifically, I will simulate an evolutionary dynamic process with mutation. Then
I will allow a simple mutation scheme and simulate the evolutionary process with

multiple mutants.

Simulations of Stochastic Evolutionary Processes

There are two reasons for performing simulations instead of examining this
problem analytically. The first is tractability. Any sensible mutation scheme will
prove to be analytically intractable. The covariance matrix which would reasonably

represent the dynamic process I have in mind would make solving the problem
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extremely difficult, if it could be solved for a closed-form solution at all. The
second problem is adding more strategies further increases the analytic complexity.
To make the exposition as clear as possible, 1 will explore the different concepts of
stability I discussed earlier using computer simulations which shed some light on
the problem. These simulations will also help us answer the questions with which
we ended the last section.

I begin by discussing the mutation scheme I have in mind. The two strategies I
discussed in the simple version of the infinite RPD, the GRIM strategy and “always
defeét,” can easily be represented by finite automata, or Moore machines. A Moore
machine is described by a four-tuple < @, go, A, # >, where @ = {g0.¢1.92,---,9m}
is a finite set of states, ¢o € @ is the initial state, A : @ — {C,D} is the output
function which maps the state into a strategic choice, and x4 : @ x {C,D} — @Q
is the transition function which maps the current state and the opponent’s choice
into a state (not necessarily different). Moore machines not only allow us to model
strategies in repeated games concisely and conveniently, they let us analytically
calculate payoffs for infinite games. When two finite automata play each other, they
must eventually enter a cycle. Hence, the sequence of payoffs can be represented by
an infinite sequence which can be summed if we discount the stage game payoffs.
Figure 2.4 provides representations of the two automata which implement the two
metagame strategies I described in the last section. Here the circles represent the
different states, and the letter inside the circle indicates the action taken in that
state. The initial state is the one on the left, and the arrows indicate transitions.
For example, GRIM transitions from the cooperating state to the defecting state if

the opponent defects. Otherwise, it stays in the cooperating state.
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GRIM ALWAYS DEFECT

The mutation scheme I use in the simulations is based on the fact that the
two automata above have two easily distinguishable parts. They both have the DD
strategy in common because the second state of GRIM is simply DD. If we think
of these strategies as being made up of two fundamental building blocks, we can
visualize these strategies as changing readily, one into the other. One building block
is a state which cooperates as long as the opponent cooperates but moves to the
next state if the opponent defects, and the other is an absorbing state which defects
regardless of what his opponent does. I assume it is just as easy to gain a part of a
strategy as it is to lose one. ] begin by assuming a strategy can have no more than
two states. I hypothesize a mutation rate of u. This means with probability u a
GRIM strategy will change into DD, or a DD strategy will mutate to GRIM.

Using these two strategies, I simulated one thousand generations of the evolu-
tionary process used by Axelrod in his tournament?® with mutation. The simulation
was done in discrete time with a population size of one hundred.?! The procedure
I used simulates random matching with no memory. Each player was assigned a
fitness based on how well he did against the other strategy and other players like

himself. The proportion in the next generation, before mutation, is the proportion

20 por details, see Axelrod (1982).

21 The simulations were accomplished on a Zenith 248 computer with programs written in Turbo Pas-
cal. Some algorithms were taken from John Miller’s (1990) program ECOLSIM which graphically
analyzes ecological dynamics.
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in the current generation times the ratio of the individual strategy’s fitness to the
average fitness in the population. After the evolutionary process takes place, a
strategy changes into the other with probability 4. The initial population for all
simnulations was half GRIM and half DD. However, regardless of the initial distri-

bution, the same qualitative results are observed.

The simulations support the hypothesis that when the discount factor is small
(below .6) DD will be the result of the evolutionary dynamic process as the mutation
rate, u, gets smaller, and if p is large, GRIM will be the evolutionary result. Figures
2.5 - 2.10 reveal as p decreases the populations select one strategy, DD for § = .55
and GRIM for 6 = .7. This is more clear when we simulate the dynamic process

with a mutation rate of .01.
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Figure 2.6 — Evolution with Mutant Strategies
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Figure 2.10 — Evolution with Mutant Strategies
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These simulations suggest Foster and Young's notion of stochastic stability
holds in this dynamic process. Although these simulations were accomplished in
discrete time, these results suggest the validity of their model for continuous time
processes. Although there is only one mutant in each generation on average when
p = .01, the population selects one equilibrium outcome. This indicates the impor-
tance of repeated perturbations in this model. A small perturbation to the system
would not cause the population to move away from either ESS. but the repeated

perturbations cause such a movement to take place.

The intuition is not difficult to see. As the discount factor decreases. DD
becomes a less inferior reply to GRIM. That is, the difference between what a GRIM
player gets aga.ins? himself and what a DD .player gets against GRIM diminishes.
Therefore, as § gets smaller a DD player will persist in the population long enough

for another perturbation to take place. On the other hand. a GRIM player doesn't
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do as well relative to a DD player because the future is less important. If the
discount factor is near one, though, the difference in payoffs to GRIM and DD
players when they play a GRIM player is large enough so defectors die out quickly
if almost all the population plays GRIM. If most of the population defects, a GRIM
player can persevere until the next perturbation because the future isn’t discounted
much. Also, if other cooperators appear, the GRIM strategy does a much better
against them than DD does, so it can increase its proportion of the population.

Now we will examine what happens in a population when we add feasible
mutant strategies. The idea of feasible mutants is important here. As I pointed
out earlier, no strategy is immune from invasion in the infinite RPD. However, we
should have some idea of what feasible strategies are in a given environment. Charles
Darwin (1859) first suggested invading mutants should be readily derived from the
native population. Boyd and Lorberbaum (1987) suggest a way to destroy TIT-
FOR-TAT as an ESS in this game which relies on invasion by the right proportions
of Suspicious TFT (STFT)?? and TIT-FOR-TWO-TATS (TF2T).2* However. if
those two strategies are not possible in the environment, we should consider the
strategy stable against invasion.

Gregory Pollock (1989) proposed a heuristic for deciding what strategies are
possible in a given environment. Pollock analyzed the playing of the infinite RPD
in a viscous lattice where players interact only with their neighbors. He chose to
describe strategies in terms of niceness and provokability. For example, GRIM is
nice and maximally provokable, and DD is not nice and maximally provokable. He
allowed the properties to be altered to introduce new strategies. The way I chose
to model the mutant strategies in the simulations is similar in spirit to Pollock’s

mutation heuristic. Specifically, I allow possible mutants to be constructed of the

22 Suspicious TIT- FOR-TAT is a strategy which begins with defection, and then plays TFT.

23 TIT-FOR-TWO-TATS is the strategy which cooperates in the first two periods, and then defects
if the opponent defects twice in a row. It is the same as TFT except it requires two defections in
a row to trigger retaliation.
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two building blocks I discussed earlier. The possible mutants are, in addition to
GRIM and DD, what I call 2-GRIM, 3-GRIM, ..., n-GRIM. That is, a strategy
will transition to the absorbing defection state after n defections by his opponent.
However, it should not be plausible to have 5-GRIM mutate to DD as easily as
GRIM does. I assume the probability a building block is added or dropped is u.
Therefore, the probability an n-GRIM machine mutates into a DD machine is p".
More generally, an m-GRIM machine will change into an n-GRIM machine with
the probability ul™—"l,

We can describe the probabilities of mutation with a matrix M. An element
m;j is the probability a j machine changes into an 7 machine in one period. I chose
to use six strategies in the simulations, so we have the following mutation matrix

where a; is defined as 3, . mi;, or the sum of the off-diagonal elements in the jth

column.
l—oy g I I pt Iy
g l-az u? u pt
M = #: Aool-ag g pt #;
7 H H 1-ay4 7 Iz
ue #: ui A l-as  p
7 K 7 Iz @ 1-a¢

The results of the simulations are summarized in figures 2.11 - 2.12. The
graphs indicate the possibility of mutation makes cooperation unsustainable in this
stochastic environment. This is true even if we use a discount factor in the range so
DD will not be stochastically stable. We can see even this simple mutation scheme
can destroy GRIM as a unique stochastically stable strategy. If the six mutant
strategies I chose didn’t eliminate the cooperative ESS, I could have allowed more
strategies. It is easy to imagine strategies mutating into increasingly less provokable
strategies. The results of the simulation suggest for any discount factor less than

one, some finitely less provokable strategy will allow DD to invade the population.
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Figure 2.11 — Evolution with Different Mutation Rates
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These simulations suggest the population will tend to cycle over time between
cooperative and defecting outcomes if § is large enough. The same forces which
cause the population to select GRIM in the two strategy evolutionary process will
cause the population to choose GRIM initially when we allow more mutant strate-
gies. However, over time the less provokable strategies drift into the population.
This is because they do as well against the GRIM strategy as it does against itself.
As the population becomes less provokable, it becomes susceptible to being invaded
by DD. After the population is overtaken by DD the same forces which worked
initially are present again. Hence, the population will cycle over time. This argu-
ment can be seen in figure 2.12. We can see the cooperating strateéy dominated
the population for a while, and then the less provokable strategies allowed DD to
invade again, only to be overcome by the GRIM strategy. If é is small enough, there
are no forces moving the population toward cooperation.

These graphs suggest the validity of Foster and Young’s ideas in this process.
The mutation scheme is an important characteristic of this model. If we allow the
population to mutate at a constant rate among all strategies, Foster and Young’s
theory indicates eventually these less provokable strategies would make DD the
unique stochastically stable strategy.?* The correctness of this argument is sug-
gested in figures 2.13 and 2.14. These figures show the results of two simulations of
five thousand generations each, starting from a distribution with equal proportions
of DD and GRIM. The mutation scheme used for these simulations puts the same
probability on mutating from one strategy to any of the others. I used mutation
rates of 0.02 and 0.002 to keep these simulations comparable to those of figures 2.11
and 2.12. Because of differences in the mutation schemes, mutation rates which
are about one-fifth of those used in the earlier simulations were needed to maintain

the expected number of mutations per generation approximately constant for the

24 See Foster and Young (1988) for an example of this.
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different simulations.

The difference between the results from these mutation schemes is obvious. If
we have constant mutation rates across strategies, only DD will be stochastically
stable, and cycling will not take place. Both mutation schemes appear to eliminate
GRIM as the unique stochastically stable strategy. If mutation rates are constant
across strategies, DD becomes the unique stochastically stable strategy. Foster
and Young showed this, and it can be seen in the results of the simulations I
accomplished. However, if mutations occur in the way suggested by the mutation
scheme with differential rates, it appears the population will cycle between being

nearly all DD and almost all cooperative strategies.

Figure 2.13 — Evolution with Constant Mutation Rates
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Figure 2.14 — Evolution with Constant Mutation Rates
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These results are caused by the perturbations adding upon one another. If
all of the strategies were available and we started with a population of all GRIM
players, one small disturbance would not change the equilibrium play of the game.
The population could change in composition, but a small perturbation would not
cause the population to change to a defecting one. The cycling is the result of
repeated perturbations.

Now consider Axelrod’s simulation. It is obvious adding a single defecting
strategy would not have affected the outcome in any significant way. However, if we
allow a mutation scheme similar to the cae I use here, these simulations suggest the

outcome of an infinitely leng evolutionary process may have ended up differently.

[ |
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Summary

The simulations I performed and report here suggest cooperation may not be
the outcome of an evolutionary process subject to continuous perturbations. In this
essay I discussed the notion of evolutionary stability in an environment subject to
disturbances. Much work has been done on the subject, and it both supports and
denies the possibility cooperative outcomes can survive evolutionary processes.

As I pointed out, it has been proved no ESS exists in the infinite RPD. However.
a “Folk Theorem” for the infinite RPD indicates an infinite number of limit ESSs
are possible. The limit ESS is an embellishment on the ESS concept which allows
us to hypothesize a player may make a tremble in the play of the game. This
is not unlike Selten's trembling hand perfect equilibrium refinement to the Nash
equilibrium.?®

Foster and Young have examined the stability of populations in an environment
where the dynamical process is continuously subjected to perturbations. They show
the population will generally select a set of strategies and will almost surely be
arbitrarily close to that set as the variance of the disturbance goes to zero. The
computation of stochastically stable sets is extremely cumbersome with distribution
functions which are meaningfully state dependent or have a large number of possible
strategies. Therefore, I performed a number of simulations using a simple mutation
scheme.

The principal result which comes out of these simulations is that if we employ a
reasonable mutation scheme in this particular evolutionary process, the population
may not tend monotonically toward cooperation. In fact, in these simulations the
population cycled between being cooperative and defective. |

I chose GRIM and DD as the initial st.rategies‘ because they are both subgame
perfect in the infinite RPD. However, if we think of them as being implemented

25 For an excellent comparison, see Samuelson (1989).
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by Moore machines and imagine mutation as adding and subtracting parts of those
machines, we can see neither defection nor cooperation can survive indefinitely if
the shadow of the future is large enough. If the discount factor is small enough.

though, DD will be stochastically stable, even in the presence of these mutants.
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CHAPTER III

EVOLUTIONARY STABILITY IN THE REPEATED PRISONERS’
DILEMMA: AN EMPIRICAL ANALYSIS

Introduction

A large literature which attempts to explain how cooperative outcomes can
be supported in the repeated Prisoners’ Dilemma (RPD) has emerged in recent
years. An interesting branch of this literature has analyzed the infinite RPD as
a game in which two “metaplayers” choose a strategy which is implemented by
a finite automaton, or Moore machine. This line of research has been especially
interesting because it allows us to capture the notion of “bounded” rationality in
the players. Also, the use of these machines as devices to implement strategies
permits us to quantify the notion of strategic complexity. We can then apply the
idea that complexity is costly to the analysis, and the results have proven very
interesting.

So far, the work in this area has applied the concepts of Nash equilibrium
and evolutionary stability in determining what reasonable outcomes are in these
games. However, it has frequently been pointed out these equilibrium concepts
may be either too restrictive or not restrictive enough to be usefﬂ in analyzing the
infinitely repeated Prisoners’ Dilemma. That is, if we use the Nash equilibrium as

the appropriate equilibrium concept, the set of equilibrium outcomes is infinitely
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large. On the other hand, if we require the equilibrium to be evolutionarily stable,
the set of such equilibrium outcomes is frequently empty. It has been suggested the

requirement for evolutionary stability may be too stringent a criterion.

The purpose of this essay is to examine what happens in these games in an
evolutionary framework under various conditions. The results of the simulations
I performed and report here indicate certain combinations of strategies may exist
which, although not evolutionarily stable in the sense of Maynard Smith (1982),
prove to be invasion-proof against permissible mutant strategies. This is akin to
saying a set of possible strategies may exist which cannot be invaded, but neither
the individual strategies nor the mixed strategy represented ty the population is
evolutionarily stable. We can imagine the mix of strategies changing as various
mutants attempt to invade the population but the set of strategies remaining the
same as the one with which we started. In fact, it may well be the case that this set
of strategies will not last forever, but it may last for a very long time. I formalize this
idea later in the essay. In order to test the robustness of the hypothesis, a number
of different mutation schemes were simulated to examine what sort of outcome we

should expect to find in a population similar to the one I explore.

I begin by reviewing the applicable literature and discussing the philosophy
underlying this exercise. Then I describe the set of automata I consider as well
as the various evolutionary models I simulated. As always, the results we obtain
depend upon the assumptions of the model. The assumptions in this case include
the set of permissible strategy implementing machines and the rules for how these
strategies evolve over time. This line of research differs from other attempts to
capture t'hé results of an evolutionary story in two important ways. First, since
the strategies I consider are all those which can be implemented by an automaton
with not more than two states, there is no predisposition, either intentional or un-

intentional, toward a given outcome. The claim can be made the strategies which
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were entered in Robert Axelrod’s (1984) now famous Prisoners’ Dilemma tourna-
ment were in some sense biased toward the TIT-FOR-TAT (TFT) type strategies
because Axelrod identified TFT as the most successful strategy in a preliminary
round of the tournament. The simulations I performed are not predisposed toward
a particular outcome except through the evolutionary processes I use, and these
are made explicit so we can either accept them or reject them on more reasonable
grounds. Second, I implement different schemes for mutation which seem plausible
in a sense [ will explain later. Using Axelrod’s tournament as an example again, we
can imagine mutation entering his dynamic ecological process. Such mutant strate-
gies could easily effect the final population in significant ways. However, what a
reasonable mutant looks like in Axelrod’s framework is not clear. In this essay, I
formalize how the strategies are modeled so we can then evaluate the results based

on the underlying assumptions.

Cooperation and the Infinite RPD

The Prisoners’ Dilemma is a well known bimatrix game which has been used
to study such economic problems as oligopolistic collusion, international trade, and
public goods provision. The players in the game must simultaneously choose be-
tween “Cooperate” (C) and “Defect” (D). The payoffs I will use in this analysis are
described in figure 3.1. Regardless of what one’s opponent does, a player does better
by defecting. This means (D,D) is the only Nash equilibrium in the one-shot game.
The dilemma is that if the players could be induced to cooperate they would both
do better than if they receive the equilibrium payoff. In fact, any finitely repeated
version of the Prisoners’ Dilemma has defection at every stage as the only perfect
equilibrium outcome. It is not until we consider the infinitely repeated game that
cooperation can be sustained. The “Folk Theorem” of repeated games tells us any

individually rational payoff vector can be the outcome of a perfect equilibrium of
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an infinitely repeated game when the payoffs are calculated as “the limit of the

mean.”!

Figure 3.1 — The Prisoners’ Dilemma

Player II
C D
C 3.3 0.4
Player I D 4.0 1.1

John Maynard Smith and G. R. Price (1973) are among those credited with
the introduction of evolutionary game theory, but perhaps the most well known of
the theoretical works on the subject is Maynard Smith’s 1982 book Evolution and
the Theory of Games. Axelrod’s (1984) analysis of the success of cooperation in the
repeated Prisoner’s Dilemma (RPD) is probably the most famous of many studies of
the game in an evolutionary framework. Evolutionary game theory has frequently
been used to study coordination games, common interest games, and the Prisoners’
Dilemma. Since its introduction many people in a broad range of disciplines Lkave
applied it to the study of natural and social science problems. Here I provide a
brief review of some of those studies, especially those analyses which deal with the
Prisoner’s Dilemma.

Robert Axelrod, in his 1984 book The Ewvolutiorn of Cooperation, suggested
cooperation is evolutionarily stable in the RPD. However, th: definition of evo-
lutionary stability he employed differs from that used by Maynard Smith (1982).
Specifically, Axelrod applied a concept he called “collect:ve stability” which requires
only a strategy be a Nash equilibrium when it plays itself. In choosing this def-
inition, Axelrod disallowed the possibility an alternate best reply strategy, which
earns an equal payoff against both the indigenous and invading strategies, would be

able to successfully infiltrate the native population.

1 See Robert Aumann (1981) for a proof and further discussion.




This idea is embodied in the formal definition of an evolutionarnily stable strat-
egy (ESS). A strategy o, which can be either a pure or mixed strategy. is an ESS

of a symmetric game if and only if:
u(o,0) > u(d',0)
and
u(o,0) =u(c',0) = u(o,0') > u(a', o).

for all o' # o, where u(oy,07) represents the payoff to a plaver if he plays strategy
o, and his opponent chooses strategy ;. In words. these conditions require an ESS
be a best reply to itself. and if there are alternate best replies. the ESS must do
strictly better against an alternate best reply than the alternate best reply does
against itself. The first requirement above means any ESS is a Nash equilibrium.
However, the converse is not truc because of the second condition, which is often
called the stability condition. Axelrod eliminated this stability condiiion as part of
his definition of evolutionary stability.? Therefore, it is in this weaker sense TFT is
stable. There were a number of possible strategies which met this requirement but
did not do well in Axelrod’s tournament.

The above definition of an ESS is actually a characterization of a more ba-
sic requirement which holds in pairwise random matching models.> Assuming von
Neumann-Morgenstern utility functions, the following must hold for some suffi-

ciently small proportion of invaders, ¢ > 0:
(1 -¢€)u(o,0) +eu(o,0') > (1 - e)u(a’,0) + eu(a', a").

This requires the expected payoff from playing ¢ in a population with proportion € of

o' is strictly greater than the expected utility of those playing ¢’'. Loosely speaking,

2 See Axelrod (1984) p. 217.
3 See Maynard Smith (1982) for details.
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then, an evolutionarily stable strategy (ESS) is one which cannot be invaded by an
arbitrarily small proportion of potential invading strategies.

Robert Boyd and Jeffrey Lorberbaum (1987) have shown no pure strategy is
evolutionarily stable in this more restricted sense in the infinite RPD. Specifically,
they show a population of TFT players can be invaded by the appropriate mixture
of Suspicious TIT-FOR-TAT, which is the strategy which defects on the first move
and then reciprocates the opponent’s move, and TIT-FOR-TWO-TATS (TF2T),
which reciprocates defection only after two consecutive defections by the opponent.
Moreover, they show if every strategy is possible through mutation. no pure strategy
is immune to invasion by some mixture of strategies. However. they suggest every
strategy will not be possible through mutation. so in reality cooperation based on
reciprocity may indeed flourish. Joseph Farrell and Roger Ware (1989) extended
the work of Boyd and Lorberbaum to show for any evolutionarily stable mixture of
strategies in the infinite RPD. every finite history must occur with positive probabil-
ity. The implicafion of this result is no finite mixture of strategies is evolutionarily
stable in the infinite RPD. They use this result as evidence the ESS concept is too
stringent a criterion to be useful.

More recently, Yong-Gwan Kim (1989) showed an ESS in the infinite RPD
does not exist unless we allow perturbations. Then he applied Reinhard Selten's
(1983) concept of “limit ESS.” This concept expands the set of evolutionarily stable
outcomes by allowing perturbations which may put some minimum probability on
other strategies in the game. In this way, ties which arise may be broken to allow

for more equilibria.*

Kim was able to prove a “Folk Theorem” of sorts which
states we can find a limit ESS outcome which is arbitrarnly close to any convex
combination of the payoffs from two purely defecting strategies and two purely

cooperating strategies.

4 The idea is similar to Selten’s concept of perfect equilibrium. For an excellent discussion, see
Samuelson (1989).
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If we limit the set of possible strategies to those which can be modeled as finite
automata, or Moore machines, we can include measures of complexity in the plavers’
utility functions. This has led to interesting results and has only recently been used
to make evolutionary arguments. It was Robert Aumann (1981) who first suggested
modeling strategies as machines with a finite number of states as a way to handle
bcunded rationality. Abraham Neyman (1985) showed if we model strategies this
way and limit the number of states exogenously, we can find equilibrium machines
which cooperate at every stage of the game if the number of states is less than the
number of iterations of the game. The intuition here is easy to see. Suppose the
Prisoners’ Dilemma will be repeated one hundred times. As long as the machines
which implement the strategies have fewer than one hundred states, cooperation
can be maintained by the GRIM strategy.’ In order to beat the GRIM strategy, an
opponent must be able to identify the last stage of the game so it can defect. Since
it requires one hundred states to count that high, any machine with fewer than
one hundred states cannot improve on the payoff to playing GRIM. Roy Radner
(1986) used a similar argument to show how cooperation can be maintained using
strategies which are implemented by finite automata which are similarly bounded
in size.

Dilip Abreu and Ariel Rubinstein (1988) have studied models where complex-
ity, which in their model is defined to be the number of states in the automaton,
is endogenously determined. The metagame strategies are implemented by finite
automata, and the complexity of the machine enters the players’ decisions by mak-
ing the metagame payoffs depend positively on stage game payoffs and negatively
on compléxity. By this I mean if two machines yield the' same stage game payoffs,
the machine with fewer states yields higher metagame payoffs. One model they

analyzed had complexity enter the metagame payoffs lexicographically. Abreu and

5 The GRIM strategy begins by cooperating, but if either player defects it defects forever.
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Rubinstein were able to reduce the set of equilibrium outcomes to the rational payoff
vectors on the main and alternate diagonals of the set of feasible outcomes which
provide each playver with more than his security level. The interpretation Abreu
and Rubinstein put on their model is that of a rational decision maker who must
choose someone to play the game for him. However, the player who implements
the strategy can only carry out simple instructions. We can think of these decision
rules as “rules of thumb” which evolve over time. Another way to think of this
is to assign some evolutionary process the roll of the metaplayer. In other words,
some evolutionary process selects the strategies. It is this interpretation which I
will explore.

Ken Binmore and Larry Samuelson (1989) have done interesting work recently
using the model developed by Abreu and Rubinstein. They show if we consider the
same type of utility functions used by Abreu and Rubinstein, any evolutionarily
stable strategy has both players earning the cooperative, or utilitarian.® payoft. In
other words, Abreu and Rubinstein refine the set of equilibrnium payoffs by consider-
ing complexity of the implementing machine, and Binmore and Samuelson further
refine this set to one outcome with an evolutionary stability argument. This result
depends crucially on the definition of complexity we choose. Jeffrey Banks and
Rangarajan Sundaram (1989) have shown if we use preferences which are lexico-
graphic in complexity and use the number of transitions in the Moore machine as
the measure of complexity, the only Nash equilibrium machine defects always.

These ideas are summarized in figure 3.2. The equilibrium payoffs allowed by
the “Folk Theorem” are all those vectors in the shaded region. The equilibrium
payoff set from the Abreu/Rubinstein modei contains the rational points on the
main and alternate diagonals which assure each player a payoff greater than one.

Binmore and Samuelson’s evolutionary model reduced the set to the unique point

6 By this they mean the sum of the payoffs is maximized.
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(3,3), and the Banks/Sundaram model yields the one equilibrium outcome in which

both players always defect and receive the payoff vector (1,1).

Figure 3.2 — Equilibrium Sets in the Infinite RPD
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Selecting the “right” equilibrium is frequently the result of some ad hoc decision
rule. For example, many economists and game theorists argue when multiple equi-
libria exist, the solution to the game should have the players achieving an efficient
outcome. Using the terminology of Harsanyi (1977) and Harsanyi and Selten (1988).
the players should choose this outcome based on payoff dominance’ if possible. This
intuition is especially appealing for repeated games since there is recurrent interac-
tion between the players. The argument for selecting payoff dominant equilibrium

outcomes is especially strong when some sort of coordinating device is present. For

T A payoff dominant equilibrium outcome is one in which both players obtain a higher payoff than
they would get in any other equilibrium outcome. Obviously these do not always exist.
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example, if we allow preplay communication between players, we should expect the
equilibrium they agree upon will be payoff dominant if possible. Even in the ab-
sence of such a coordinating device, many game theorists and economists expect to
see the payoff dominant equilibrium outcome. In the infinite RPD, of course, this
means we should expect to see a cooperative outcome. However, if such selection
criteria are to be meaningful. they should be based on first principles and not chosen

because they give nice results.

This area of game theory has just recently become the target of significant
research. The results so far have proven interesting but not conclusive. The work I
described by Binmore and Samuelson is the first research in this area. They prove
any symmetric equilibrium strategy which yields less than the cooperative payoff
can be invaded by a strategy which does as well, in stage game payoffs, as a native
does if it plays a native, but it does better against itself than it does against a native.
The invading machines are able to send a signal to their opponents. If they are not
playing their own type, it makes no difference in the metagame payoffs because
payoffs are computed as the limit of the mean, and in the limit they get the same
payoff as the native strategy. However, they earn greater average payoffs than the
native strategy because they do better when playing strategies like themselves. The
idea behind signalling to opponents is of ancient vintage. Arthur Robson (1989)
speaks of a “secret handshake” which identifies members of a certain group to each

other.

Drew Fudenberg and Eric Maskin (1990) have shown, independently of Binmore
and Samuelson, cooperation in RPD games is evolutionarily stable in an environ-
ment where only strategies of finite complexity can be used, metagame payoffs are
calculated as the limit of the mean and noise exists. In their model, the term “noise”
refers to some chance an action may be misperceived by a player’s opponent. John

Miller (1987) performed interesting simulations of the evolution of automata which
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were modeled as a string of digits. The impact of noise on the model was one of the
factors he examined. He simulated the evolution of a population playing a finite
RPD in which there were strictly positive probabilities of errors in the transmission
of information about what a player’s opponent did on the previous move.® His
results are difficult to characterize in a sentence or two; however, the methodology
he used is interesting and the results indicate the effects of noise on a model like
this are not negligible.

There is no definitive theoretical result explaining why a certain outcome should
emerge from some evolutionary process. We are caught between arguments like
those of Farrell and Ware. which indicate no strategy or mix of strategies is evolu-
tionarily stable in the infinite RPD, and those which identify one particular strategy
as the only reasonable result of an evolutionary process. With this in mind. [ intend
to explore the evolution of strategies which can be implemented by two state Moore
Machines in the infinite RPD. Axelrod’s work has been the standard in this area.
However, as I pointed out earlier, his results may have been part of a self-fulfilling
prophecy in which TFT was identified as the most successful strategy. Another
problem with Axelrod’s work is it is purely ecological in nature. That is, the next
generation's population was determined only by the ecological dynamic process, and
new strategies were not allowed to enter. In other words, the strategies were as-
sumed to be perfect in their ability to breed true. In the next section, I will describe
the basics of the simulations I performed. I describe how I modeled the strategies.
how I chose to model possible mutations, and how I attempted to capture the idea

of strategic complexity.

8 Specifically, he considered error rates of 1 percent and 5 percent.
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The Model
In this essay, I consider only two-player games. The underlying game is the
version of the Prisoners’ Dilemma described in figure 3.1. More formally, I will
consider the game G which is specified by the four-tuple < S;.S5;.7;, 7, > where
S, = {C.D} is the strategy set and 7, : 5; x S; — R is the payoff function. These

elements are summarized in the bimatrix form of the game.

The infinitely repeated game G* =< R;, Rz, P;, P; > is constructed with G
as the stage game. Each player’s strategy space, R;, is the set of functions which
map any history of play into S;. That is, R; = {f : hy — Si} where h, is the
history of the game up to and including time ¢. The payoff functions P, and P, are
defined as the limit of the mean of the stage game payoffs. This is always defined
because we are considering only strategies which can be implemented using finite
automata. Since the machines must eventually enter a cycle, we know this limit
exists. Therefore, we have

Pi(ry,r;) = lim
where r; € R;.

I also use Abreu and Rubinstein’s definition of an automaton selection game.
Here G# is the automaton .clection game defined as < A;, A2,U;,U; >. The
strategy space A; is the set of Moore machines which I will describe more completely
later. The functions U, are the true utility, or profit, functions of the players. At
various times during this essay their precise form will vary. However, these functions
basically adjust the payoff functions P, for complexity. In this automaton selection
game we can think of automaton a € A; as actually being Player : in G*°. In a sense,
this automaton is Player i’s agent who follows the simple instructions represented

by the Moore machine.

Now I will define more formally the kind of machine I have in mind as imple-

menting these simple instructions. A Moore machine is described by a four-tuple
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< Q,q0, A, 4 >, where @ = {¢0,91,92,...,9m} is a finite set of states, go € Q is

the initial state, A : @ — {C,D} is the output function which maps the state into
a strategic choice, and p : Q@ x {C,D} — Q is the transition function which maps
the current state and the opponent’s choice into a state (not necessarily different). -
Moore machines not only allow us to model strategies in repeated games concisely

and conveniently, they let us analytically calculate payoffs for infinite games.

Figure 3.3 — Some Moore Machines
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These machines can be represented quite easily as demonstrated in figure 3.3.
Each circle in a machine represents a possible state of the machine, and the state
on the left is the initial state. I represent the action taken when the machine is
in that state by the letter inside the circle. The arrows indicate how the machines
transition after a play of the stage game. The strategies which are “nice” by Axel-
rod’s definition are those which begin by cooperating and continue cooperating as

long as the opponent does. An example of a nice strategy is GRIM or TFT.
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Determining a reasonable mutation scheme is not without problems. One al-
ternative is to assume it is possible for one strategy to mutate to any other strategy
with equal likelihood. I call this uniform mutation. However, this is not a very satis-
fying way to proceed. If we are thinking of these machines as decision rules evolving
over time, we must develop some idea of “closeness” in the strategies and only allow
strategies to mutate to those which are close. Another idea we should try to capture
is that simplifying mutations are more likely than complicating mutations. T will

use this idea later as a way to pick up the costs of complexity.

In order to capture these notions of “closeness” and simplification, I developed a
mutation scheme based on how these strategies would appear if they were machines
in the physical sense and subject to breakdowns. We can think of these machines
as consisting of transmitters and the appropriate wires hooked up to receivers to
control which signal is transmitted. The simplest machines are those which need
only transmit either “cooperate” or “defect.” These correspond to the single state
machines which always defect or always cooperate. Two state machines are made
up of the two transmitters which send the signals corresponding to cooperation and
defection. I chose to model] these strategies so the machines attempt to move to
the next state, or change the signal it sends, after taking an action. However. the
transition may be blocked for one of two reasons. First, there may be no circuit from
one state to the next. In this case a machine will continually send the same response
because it can reach no other state. Another way the transition can be inhibited
is by perceiving an appropriate action from the opponent to prevent the transition.
We can think of these inhibitors as switches which open to keep the state from
changing. For example, consider the GRIM strategy which I have modeled in the
machine in figure 3.4. In this case, the machi;xe will begin cooperafing and attempt
to switch to the defecting state unless the machine receives the signal the opponent

cooperated. If GRIM fails to detect cooperation by the opponent, it switches to the
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defecting state where it defects forever because there is no wiring available to get

back to the cooperating state.

Figure 3.4 — The Stylized GRIM Machine

This stylized model of how strategies are implemented offers an opportunity to
consider what sensible mutations look like. For example, we can assume a reasonable
mutation involves a wire in the machine breaking. We can imagine a strategy
being misinterpreted by tiie player and some transition being missed. If the mutant
machine continues to function as well or better in the environment than the machine
from which it evolved, we can expect the mutant machine will be copied.

In this essay I will consider “breakdowns” of the machines, or possible mu-
tations in which a wire breaks. Also, I assume it is possible for the signal to get
reversed in the machine so the automaton sends C when it should send D and vice
versa. This is not the only way to model these strategies as mechanical or electrical
devices. However, this is one way which is relatively simple and yields reasonable
mutation patterns. I will not examine increasing complexity through mutation.
This model of the strategies allows us one opportunity to capture the cost of com-
plexity. The more complex a machine is, the more likely it is to break down into
other simpler machines. Therefore, if complexity adds nothing to the payoffs. it will

not endure in the population.
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Another way I try to capture the costs of complexity is to model parts of the
machines as having some cost. This can be applied to the evolutionary dynamic
process in one of two ways which closely follow the notions of complexity described
by Abreu/Rubinstein and Banks/Sundaram. To capture the idea states are costly,
I adjust the payoffs so the single state machines receive a premium in the play
of the game. It turns out the size of the premium affects the result in an evolu-
tionary framework. Also, I impose a cost for maintaining each of these stylized
wires/transitions in the machines. Again, the payoff matrix is modified to reflect
this 1dea.

The model of Abreu and Rubinstein does not lend itself to evolutionary simula-
tions. Operationalizing the idea of lexicographic preferences is not straightforward
in an evolutionary context. In the model I have in mind. the proportion of the
population which plays a particular strategv at time t + 1 depends on how well that
strategy does at time ¢ relative to the average member of the population. Lexico-
graphic preferences do not allow such simple averaging of payoffs, but we can handle
the idea preferences depend on complexity by imposing costs on the metaplayers.

The evolutionary process I have in mind for the simulations has basically two
parts. The first part attempts to capture the idea successful strategies or rules of
thumb will tend to be copied. The second part reflects the idea that over time
these strategies will not be perfectly duplicated, or will not breed true in biological
terms. First I will describe the replication dynamic, and then I will describe how
the strategies mutate.

To see how the replication dynamic process works, imagine a game in which
there is a strategy space A with n strategies or automata, A = {a,,a2,...,as}.
The RPD is then played at time t, and each strategy earns a payoff depending on
the strategy with which it is matched. These payoffs can be represented iin anxn

matrix B with elements b;; being the payoff to a player who uses machine q, if he
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is matched against a player who uses a;. Then we have

bl] bl2 PR bln
_ b21 b22 P b2n
bt bnz ... ban

Also, let p(t) = (pi(t), p2(t), ... ,pn(t))T be the vector of proportions of each type
of player in the population at time t € {0,1,2....}. Here T indicates the transpose
of a matrix. We can then define the expected payoff to a player of strategy a, at
time t as (Bp(t)),. This is the ith element of the vector Bp(t). Also, the expected
pavoff for a member of the population at time t is p(t)T Bp(t). The process we are
considering has the proportion of strategy i at time t + 1 equal to its proportion at

time t multiplied by the ratio of its own expected payoff to the expected payoff of

all players. Then we have the following dynamic process:

(Bp(1)), )

p(t+1) = p‘(t)(p—(t)TBp(t)

It is easy to see whether a strategy's proportion in the population gets larger or
smaller depends on whether or not it is doing better or worse than average. The
proportion of a strategy in the next generation depends not only on its own relative
performance, but also on its proportion in the current population. This captures
the idea a strategy must be both successful and observed by other strategies to be
copied.

The dynamic process described above is based on the idea some machines
or rules of thumb would be so unsuccessful they would probably not be used in
the future, while the superior machines would be imitated. We can also think
of the payofts from playing the RPD as fitness in the biological sense. That is,
strategie;s with higher payoffs are able to reproduce (asexually) more successfully

than strategies with lower payoffs. In either case, we would expect to see the

best strategies flourish and the worst strategies die out. This process allows us
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to evaluate how well a strategy will do when the less effective ones cease being
important, and only the best strategies remain to play each other. The dynamic
process I used simulates evolution with an infinitely large population and random
matching. Essentially, when a player of a certain strategy type plays the game, he
is playing against a mixed strategy which is represented by the different proportions
in the population.

In order to capture the notion strategies mutate in the evolutionary process. I
used a matrix M to represent the rate at which strategies change into each other.
A typical element m,; is the probability a strategy of type j mutates into a type
¢ player. Therefore, after the reproduction dynamic process described above has
taken place, the strategies undergo a mutation process which is described by M.
Then, we can find the proportions of the population, p*(¢ + 1), which play the

infinite RPD in period t + 1 with the equation
pT(t+1)=Mp(t+1)

where p(t + 1) is the vector of proportions which are the result of the dvnamic
replication process described above.

Some very simple examples may help see what the mutation matrix does. For
example, if we assume one strategy can change into any other strategy with equal
probability, 4, then the matrix M has form m;; = pfori # jand m;j; = 1—(n-1)u
if i+ = j and there are n total strategies. On the other hand, if no mutation takes
place the above is true with g = 0. The only restrictions we need to place on this
matrix is the columns must add to one and each element must be in the interval
[0,1]. These restrictions are completely reasonable and merely require an individual
either stay the same or change. We do not a.llo& one machine of type a to turn into

some other number of type b machines.
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Figure 3.5 -— Mutation of UTIL

® CC (UTIL)

With the stylized machines we can derive a mutation matrix. Rather than list
the entire matrix, I will just show how one well known strategy mutates. Consider
the strategy which implements the cooperative outcome in the Abreu and Rubin-
stein automaton selection game. A diagram of the stylized machine is depicted in
figure 3.5. It is easy to see what happens as each of the imagined wires breaks. For
example, if the wire breaks which attempts to change actions from D to C (this
represents the transition from the defecting state to the cooperating state in the
diagram of the Moore machine) the machine will only be able to send the D signal.
If, however, the inhibitor wire on the top of the diagram were to malfunction. this
machine would mutate into AC. If the signals got reversed, this CC machine would
become cc. We need not go any further to see the CC machi.ne can mutate into

DD, AC, CA, CD, or cc if only one of the wires breaks. For simplicity I assume
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only one wire can break in any generation. We can think of this as approximating
independent mutations where the mutation rates are so small the probability of two

mutations in a given generation is negligible.

Finally, before actually discussing the results of the simulations, I will describe
the twenty-six strategies I used. These strategies can be represented by all of the
possible one and two state Moore machines. These simple strategies can be thought
of as decision rules which are very easily implemented. It is not correct to say these
machines are restricted to a memory of only one period. In a sense, the GRIM
strategy has a memory of infinite length. However, the strategies I describe here
are unable to allow for strategies which need to count to any number greater than
one. It is interesting to note the most successful strategy in Axelrod’s RPD, TFT.
tournament is represented here. Nearly all the strategies which enjoyed some degree
of success in the tournament used TFT as the main rule.® All of the strategies are

described in figure 3.6.

Eight of the possible twenty-six strategies form a Nash equilibrium when they
play against an identical machine. These equilibrium strategies include all of the
“nice” strategies except “always cooperate.” Using the notation here, these are ca,
cb, cc, and cd. In addition, the utility maximizing equilibrium strategy from the
Abreu and Rubinstein model,!® CC, is an equilibrium strategy when it plays itself.
The three other strategies which form equilibria when they play themselves are the
“always defect” strategy (DD), aa, and AC. The aa machine cooperates on the first
move and then begins defecting forever. The AC machine begins by defecting and
then switches to a cooperating state where it stays until the opponent defects. An
opponent’s defection will move this machine back to the initial state. Once in the
initial state again, it repezts the same sequence of play by defecting once and then

moving to the cooperating state until it detects another defection.

9 For more discussion on Axelrod’s tournament, see Linster (1990).
10 | follow Binmore and Samuelson and call this strategy “UTIL.”
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Figure 3.6 — Possible Automata
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Simulation Results

In this section I will briefly describe the results of the simulations I performed.
I elaborate on the results only briefly in this section. I save most of the discussion for
the next section where I analyze which strategies do well under the various mutation
schemes and draw conclusions about what characteristics the successful strategies
have. These will not be in strict agreement with the characteristics identified by

11 appears to be a

Axelrod. There are some circumstances in which “niceness”
successful characteristic, but under other circumstances it may not be.

The simulations were accomplished on a Zenith 248 computer with programs
written in Turbo Pascal. Some of the algorithms for the programs were taken from .
John Miller’s program ECOLSIM which graphically analyzes ecological dynamics
with mutation. In the evolutionary dynamic simulations, each machine was assigned
a fitness based on how well it does against the other strategies and other machines
like itself. The proportion in the next generation, before mutation, is the proportion
in the current generation times the ratio of the individual strategy’s fitness to the
average fitness in the population. After the evolutionary process takes place, a

strategy changes into another with a probability determined by the appropriate

mutation scheme.

Evolution Without Mutation

I performed one hundred simulations of one thousand generations without any
mutation as a control to determine which, if any, particular strategiex are the likely
results of a strictly ecological process. These simulations began from randomly
selected starting points in the unit simplex in R?®. Opec thousand génetations
of the evolutionary dynamic process described above were then simulated. These

simulations were repeated one hundred times. The significance of the ecological

11 Axelrod (1984) referred to strategies which are not the first to defect as “nice.”
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simulations is that once a strategy nearly dies out, there are no perturbations or
trembles to increase its proportions again. This ecological simulation is very similar
to what Axelrod did with the results of his RPD tournament.

I graphically describe the average of the proportions of the population for the
final generation in each of the simulations in figure 3.7. It is clear the cooperative
outcomes proved the most evolutionarily fit in this environment. In fact. we can
see the only strategies to survive this dynamic process are the “nice” ones, and all
of them survived.!? It is interesting that the strategy which is most exploitable in
some sense. “always cooperate,” survives in this ecological process. This is because
it does well against those other strategies which do well. Specifically. this strategy
does well against the other "nice” strategies, and those “nice” strategies drive the
“mean” strategies to near extinction quickly enough so the nicest and infinitely

forgiving strategy, ALL C, can survive.

Figure 3.7 — Evolutiopary Success without Mutation
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12 By “surviving” [ mean they were represented in the population by a proportion greater than 10~ 1°.
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Evolution with Uniform Mutation

I then performed similar simulations using uniform mutation with the same
one hundred random starting points I used in the previous simulation. I chose a
mutation rate of 0.0001. I present the data in figure 3.8 in the same format I used
for the evolution without mutation. The same set of strategies that did well in
the last simulation are successful in this simulation.!* The two strategies which
appear to do significantly differeutly are TFT and ALL C. TIT-FOR-TAT does not
do as well in the presence of mutation, and ALL C performs better. The intuition
for why TFT does not do as well seems relatively clear. TFT is not as aggressive
in exploiting poor strategies as GRIM. Hence. when these poor strategies appear.
GRIM does relatively better than TFT. Hence. TFT's proportion of the population

diminishes over time.

Figure 3.8 — Evolutionary Success with Uniform Mutation

(p = 0.0001)
GRIM (co)
0.562
All Others
SRR 0.004
X
§ ALL C (dD
0.048
cd
0.102
ce
TIT-FOR-TAT (cb) 0.151
0.126

13 Here I refer to those strategies which survived in a proportion at least three times the mutation
rate as doing well.
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Note in order for a strategy which is a large proportion of the population
to keep from becoming smaller, it must do well relative to the others because of
the mutation process. The larger the proportion of a given strategy there is in
the population. the better that strategy must do to keep from shrinking in its
proportion. If all strategies did equally well, this mutation scheme would equilibrate
when all strategies are in equal proportion. However, the periodic introduction of
poor strategies allows GRIM to do better than TFT. The improvement of ALL C
seems to be the the result of the mutation scheme. Although ALL C doesn’t do very
well against “mean” strategies, there are not many of them around. Since ALL C is
a small proportion of the population, it is a net gainer when the mutation process
works. Additionally, since most of the population is nice it does not do very badly
in terms of payoffs, so over time it grows in size until it attains the levels found in
this simulation. We can think of strategies like GRIM as “enforcers” in this game.
That is, GRIM keeps the proportions of the “mean” strategies low so ALL C can

survive.

Evolution with Stylized Mutation

The work of Abreu and Rubinstein hypothesizes less complex strategies are
better than more complex strategies. The notion I attempt to capture in this
simulation is that more complex strategies will tend to break down more often than
less complex strategies. Hence, unless the extra complexity results in increased stage
game payoffs, the more complex strategies will tend to be replaced by less complex
strategies through evolution. We can think of these rules of thumb mutating to
simpler rules. If making a rule less complex does not reduce its payoffs in the stage
games, we should expect the simpler rule to be copied more often. Again, which

rules are successful will depend on the environment.

I simulated one hundred evolutionary processes of one thousand generations

once again, and I started at the same random starting points as in the previous
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two simulations with the same mutation rate of 0.0001. I summanze the results
in figure 3.9. Again. the GRIM strategy does much better than any of the others.
The intuition is slightly different here. Not only does the GRIM strategy exploit
irrational strategies. but it is one of the least complex two state machines in terms
of the model I chose because it only needs to perceive one deviation and perform
one transition. Hence, it will increase in proportion as a result of mutation from

other successful strategies as well as its own strategic fitness.

Figure 3.9 — Evolution with Stylized Mutation
(¢ = 0.0001)
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Mutants Who Enter as Groups (Uniform Mutation)

Next, I attempted to capture the possibility strategies can grow in their own
small communities and then attempt to invade the population all at once. The

biological story which goes with this simulation has a certain group of animals
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which are separated from the rest of their species when the land they are on is cut
off from the main land mass by water. The animals live in isolation and develop
their own characteristics. At some point, a land bridge forms, and this relatively
large group of mutants enters the population. I attempt to capture the essence
of this thought experiment by allowing one percent of the population to become a
mutant type and attempt to invade the population. Then I allow the population
dynamics to settle down again. Once the mutant strategy’s influence is absorbed

by the population, another band of mutants enters. This process continues.

I performed this simulation one time for thirty thousand generations. I chose
to use the midpoint of the unit simplex in R2?® as the initial distribution. That
is. I began with every strategy as 1/26 of the population. Also, I chose to regard
a particular strategy as being extinct once it’s proportion of the population falls
below 1075, This allows us to more easily identify when the population stabilizes.
In this exercise, I allow all of the strategies to enter with equal probability. That is, I
assume uniform mutation. I show the final population in figure 3.10. It is interesting
to note after the population stabilizes from the initial starting point, it changes very
little. Specifically, after initial stabilization and before mutants attempt to invade
the population the nice strategies are in these proportions: ca, 0.575; cb, 0.152; cc,

0.164; cd, 0.105; and dd, 0.005. Here again, the “nice” strategies do very well.

We cannot say these strategies are immune from invasion in this model because
there is a very small probability the “always cooperate” strategy will be the invading
mutant for a sufficient number of consecutive generations so the population can be
successfully invaded by “always defect.” Since this probability, although extrem_ely
small, is greater than zero, the event will take place if the process continues long
enough. However, we can say this set of Strategigs is nearly invasion-proof in the
above sense. This idea is akin to the concept formalized by Binmore and Samuelson

(1990) which they call a Payoff-equivalent, Polymorphous Modified ESS (PPMESS)
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without the complexity criteria. The idea behind this concept is certain groups of
strategies may exist which cannot be successfully invaded. The individual propor-
tions of each strategy will change as various types of potential invaders appear, but
the population cannot be invaded.

It is somewhat surprising the ALL C strategy survives in such a large propor-
tion. The reason for this is clear. Although the ALL C strategy can be exploited. it
does not exist in large enough proportions to allow a “mean” strategy to invade. It
is not difficult to see if only the GRIM, ALL C, and ALL D strategies were possible,
ALL D would not be able to invade a “nice” population until ALL C accounted for
at least 2/3 of the population. However. this is extremely unlikely because as ALL

D appears through mutation it keeps the proportion of ALL C low.

Figure 3.10 — Evolution with Mutants Who Enter as Groups

(Uniform Mutation)
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Evolution with Mutants Who Enter as Groups (Stylized Mutation)

In this simulation I attempted to capture the same elements as in the last sim-
ulation except I use the mutation scheme from our stylized strategy implementing
machines. In this example the strategies which attempt to invade in a group must
come from the set of mutants which are possible from one of the strategies in the
population. The probability a strategy mutates in this simulation is its proportion
of the population. Then any possible mutant from that strategy is equally likely.
Here we require those who are “stranded on the island” and then become the invad-
ing mutants be reasonably similar to the population from which they came. This
simulation was performed like the previous one. The final population is described

in figure 3.11.

Figure 3.11 — Evolution with Mutants Who Enter as Groups
(Stylized Mutation)
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The success of GRIM and ALL C is evident here. These two strategies. which
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appeared successful in the previous simulations, are the only two survivors of this
process. The intuition here again relates to their relative simplicity. Here we seem
to have captured the idea simple strategies will be more evolutionarily fit. Although
GRIM is more complex than ALL C, the fact that ALL D enters periodically as a
mutant invader keeps ALL C in small enoush proportions so ALL D cannot suc-
cessfully invade the population. The same sort of symbiotic relationship described
by Binmore and Samuelson is present again. I will discuss the reason why the
“stable” grovp of strategies in this model are different than those in Binmore and

Samuelson'’s model in the next section.

Evolution with Costly States

In this section it may be more accurate to think of the automata as represent-
ing costly rationality in addition to bounded rationality. We can think of this as
increased strategic complexity requiring more time and resources. Rather than deal
with different types of mutation schemes, I will allow mutation in these simulations
from our stylized model of the strategies with a mutation rate of 0.0001. Here I want
to focus primarily on the effects of costly complexity on the evolutionary dynamic
process.

In order to capture the idea that states are costly, I supplement the payoffs
of the one state machines (ALL C and ALL D) by 0.05 and 0.1. I simulated five
thousand generations of this dynamic process which began from the center of the
unit simplex in R?¢. I present the results in figures 3.12 and 3.13. These diagrams
show how the population changes over time. I have chosen to represent only the
GRIM, ALL C, and ALL D strategies because their dynamic behavior accounts for
all of the interesting phenomena.

Again, the GRIM and ALL C strategies play an important role in the evolu-

tionary process. When having states is less costly, we can see the ALL D strategy
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cannot successfully invade the population on a permanent basis. However, when
ALL C gets very large, which wiil occur through both mutation and the supple-
mented payoffs, the ALL D strategy nearly invades but then dies out before it can
complete the invasion. However, if the cost of maintaining a state is sufficiently
large, ALL D can successfully invade. Since it is one of the simplest machines.
there will not be any mutation which can threaten its existence. Note. however.

this result is dependent on specific values for complexity costs.

Figure 3.12 — Evolution with Costly States (¢ = 0.05)
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We can see in figures 3.12 and 3.13 if states are sufficiently costly, ALL D
will be the evolutionary outcome. The population will initially tend to being all
“nice.” Since the mean strategies are in very small proportions in the population.
the ALL C strategy does very well because of the higher payoff. When it becomes
a sufficiently large proportion, it is invaded by ALL D. If the supplemental payoff
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is not great enough, ALL D will enjoy a brief period of success. but will again be

displaced by “nice” strategies. especially GRIM, and the cycle starts again.

Figure 3.13 — Evolution with Costly States (¢ = 0.1)
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Evolution with Costly Transitions

In these simulations I attempt to capture the idea that maintaining transitions
is costly. That is, any time a decision must be made by the person implementing
these rules, there is an associated cost. The major difference in this simulation
relative to the previous ones is that in these simulations GRIM is more successful
than any of the other nice two state machines. The reason is GRIM is less compléx
than some of the other strategies. That is, it is an easier rule to apply than rules
like TF'T, but clearly it is more complex than ALL C. Again, GRIM is able to take

advantage of any of the poor strategies and reap the benefits of cooperation.
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Figure 3.14 — Evolution with Costly Transitions (p = 0.01)
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Figure 3.15 — Evolution with Costly Transitions (p = 0.1)
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The evolutionary results are depicted in figures 3.14 and 3.15. Here I use
penalties for complexity of 0.01 and 0.1 per “wire” in the stylized machines. We
can see as long as the penalty is not too great, the population will tend to cycle.
It begins by evolving to nearly all GRIM. However, since ALL C earns a higher
payoff because it is less complex, it eventually becomes a very large portion of the
population. When the proportion of ALL C in the population is large enough, ALL
D’s proportion grows rapidly. Then, unless the penalty is too large, GRIM emerges
as the dominant strategy, and the cycle begins once more. If the penalty is large

enough. though, ALL D will eventually dominate the population.

Discussion

These simulations suggest a number of things. The most conspicuous result is
the evolutionary success of the GRIM strategy. This is surprising since it has not
appeared as the result of any previous evolutionary simulation of which I am aware.
The argument against the GRIM strategy being successful is that it is not forgiving.
This is not a problem in these simulations because two state Moore machines cannot
probe for weakness in the strategies periodically. However, there is something to be
learned from this result. One possible reason for GRIM’s success is it can exploit
poor strategies. It is not difficult to see TFT can never do strictly better than it’s
opponent because it merely mirrors it’s opponent. GRIM can exploit irrational play
better than TFT. When GRIM and TFT play the other strategies, GRIM is usually
better at taking advantage of bad play. Of the twenty-four other strategies, GRIM
earns more than TFT against fifteen of them. On the other hand TFT does better
than GRIM against only two of them.

The results of these simulations fall far short of suggesting GRIM is evolu-
tionarily superior to all other strategies in the RPD, but they do show what I feel

is a profound weakness in the TFT strategy. The strategy which just copies it's
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opponent cannot take advantage of poor play which will be present through such
processes as mutation. These simulations do, however, suggest the most success-
ful strategies will be those who are able to take advantage of irrational play in an

evolutionary situation where mutants enter over time.

It is obvious the GRIM strategy doesn’t exploit all irrational play because the
ALL C strategy survived in positive proportions in all of the simulations without
complexity costs. The reason for this appears to be the GRIM strategy cannot
identify the ALL C strategy when they play each other. Binmore and Samuelson
(1990) suggested the possibility irrational strategies and rational strategies could
exist together as the consequence of an evolutionary dynamic process. In these
simulations there may be. in the long run, a substantial number of irrational players.
However, the fact they look exactly like the rational strategy GRIM when playing
him keeps them from being exploited. Also, any strategy which attempts to exploit
these irrational strategies is forced to take the noncooperative payoff in the game
most of the time. Therefore, the “nice” strategy GRIM protects, in a sense, the
irrational players. I refer to it as an “enforcer” strategy which keeps the “mean”
strategies from invading the population. If for some reason the number of ALL C
players were to increase, ALL D could invade the population. In the simulations
I performed that was not a likely event. Generally, whenever the proportion of
ALL C grew relative to the other strategies, the ALL D and other mean strategies
would force it to become smaller. However, because nearly all of the strategies in
the population were nice, ALL C survived in small proportions while the “mean”
strategies earned very small payoffs relative to the cooperative strategies and, hence,

died off rapidly.

The “nice” strategies in this simulation have a property which is similar in spirit
to Binmore and Samuelson’s Payoff-equivalent Polymorphous MESS (PPMESS).
They form something akin to a PPMESS in the simulations I performed. It is
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clear this set of strategies is not a PPMESS in the model analyzed by Binmore
and Samuelson. The reason for this gets to the heart of the differences between
the models analyzed by both Abreu/Rubinstein and Binmore/Samuelson and the

evolutionary processes I simulated here.

The simulations I performed have a number of different strategies entering over
time either simultaneously or as a single strategy type in a group. In other words.
my simulations have the populations being repeatedly perturbed. Dean Foster
and Peyton Young (1987) analyzed this type process analytically in a very simple
environment. However, most studies in this area analyze the stability of populations
against a single perturbation. Here, though, we look at how population mixtures .

fare while being repeatedly attacked by possible mutant strategies.

A discussion of Binmore and Samuelson’s results will help clarify the issue.
They suggest a mixture of the cc, cd, CC, and CA machines form a PPMESS. That
is, an appropriate mixture of these strategies cannot be successfully invaded by a
mutant strategy. This is true because they earn equal payoffs against each other
and have equal complexity. There is a symbiotic relationship among these strategies
which protects them from invasion. However, this is true only if we consider these
perturbations as one time events. Certainly this mix of strategies is immune to a
small proportion of invading mutants. Although the exact mix of strategies may
change after a mutant invasion is thwarted, the same set of strategies will survive.
However, in repeated simulations I found these machines are not immune to inva-
sion when mutants repeatedly attempt to enter the population because the GRIM
strategy will be able to invade after some number of unsuccessful tries. When a
GRIM machine plays the Abreu/Rubinstein utility maximizing equilibrium machine
(UTIL) it earns higher payoffs against UTIL than UTIL earns against it. Hence, we
have a situation where cc, cd, and CA attempt to invade the population over time

through mutation and are successful because they earn the cooperative payoff when
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they play themselves and UTIL. However, after these strategies enter the popula-
tion, GRIM can successfully invade if it appears often enough. Each time GRIM
attempts to invade, the proportion of UTIL remaining decreases relative to cc and
cd (both “nice” strategies) because GRIM earns the cooperative payoff against them
and does better against UTIL than UTIL does against GRIM. Also, GRIM earns
the maximum possible payoff against CA. Therefore, after enough attempts GRIM
will successfully invade the population.

The ideas of perfect equilibria and trembles are important to these simulations.
Reinhard Selten (1983) and others have used the idea of trembles in the play of a
game to select among multiple equilibria. He also applies this idea to evolutionary
stability to expand the set of evolutionarily viable strategies.!* However, applying
the idea of trembles to the play of the automaton selection game is not straight-
forward. We cannot allow a machine to “misplay” during an infinite RPD because
there appears to be no sensible way to define such a tremble. If a machine were to
change strategies with positive probability during the game, the change in payoffs
could be discontinuous because we calculate the payoffs as the limit of the mean.
To see this, suppose two GRIM strategies were playing the RPD, and with some
arbitrarily small positive probability one changes to ALL D during the game. We
know the change will occur in finite time. Hence, the payoffs will switch to the
defecting payoff for both machines. Such a discontinuity makes this sort of tremble
unusable. Instead, I consider trembles in the evolutionary process in these simula-
tions. That is, what happens if tae strategies do not breed true. Another way of
looking at the problem is to imagine what happens if there are perturbations to the
payoff ma.trix. |

These trembles point out another difference between these simulations and the

work by Abreu/Rubinstein and Binmore/Samuelson. In this analysis, there is no

14 Gee Selten (1983).
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such thing as an unused state. That is, because mutant strategies can appear over
time, the idea of unused states means nothing here. This goes back to the fact
that in other evolutionary models only one strategy or a mix of strategies enters
at a time. Or, perhaps more precisely, we only analyze how a strategy or mix of
strategies does against potential mix of invaders. Without the aid of computer
simulations it is very difficult to capture the interactions between strategies as well
as the impact of a certain mutation scheme.

It is also interesting to note if the penalty for complexity is sufficiently small,
the nice strategies will remain immune to successful invasion. It is not until the
cost of complexity gets large that it affects the qualitative results of the evolution-
ary simulation. We can think of complexity as being the cost of monitoring your
opponent and responding accordingly. If the cost of monitoring actions increases
enough, the defecting outcome will prevail.

Finally, I will comment on the obvious success of the GRIM strategy in these
simulations. We must keep in mind we considered only two state machines. This
is a severe limitation on the complexity we allow. In fact, a strategy essentially
identical to GRIM was submitted to Axelrod’s RPD tournament and finished fifty-
second out of sixty-three strategies. However, we can say the success of GRIM in
this tournament captures something which has frequently been overlooked in this
sort of model. In order for a strategy to survive over time, it should be able to
exploit possible bad strategies. The idea TFT should be in some sense the “best”
strategy in an infinite RPD has the significant failing that TFT doesn’t do strictly
better than any strategy it meets. It seems reasonable to expect a strategy which

succeeds over time should be able to take adv'antage of bad players who appear.
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Summary

This essay reports the results of a number of computer simulations of infinite
RPDs. The results are somewhat surprising because the GRIM strategy is clearly
the most successful of the cooperative strategies. I attribute this to the fact GRIM
is able to both exploit poor strategies and earn the cooperative payoff against other
“nice” strategies. The results do not suggest GRIM would be the “best” strategy
in all environments.

Although this work appears to be to the contrary, it supports various results
of Binmore and Samuelson's recent work. That is, the idea of a PPMESS seems
valid in evolutionary models. The differences in our results stem from the fact that
the strategies in my simulations are subject to repeated perturbations, and they
analyze a game which is more tranquil since they look at what strategies can invade
a population if the intruders appear only once either one at a time or in certain
mixes. The reason for performing these simulations is to capture what happens
when many things are happening at once. Analyzing these problems analytically is
intractable because of the complex interrelationships among the strategies and the
dynamic process. We are able to see how all of these forces affect the final population

under these specific conditions through the use of computer simulations.
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CHAPTER IV

NEW DIMENSIONS IN RENT-SEEKING

Introduction

When something of value is awarded to the winner of a contest, there is fre-
quently wasteful rent-seeking expenditure. This is true of such prizes as monopoly
rights, tariffs, quotas, government contracts, or favorable legislation. Gordon Tul-
lock’s (1967) insight into this problem was that the social loss associated with
rent-seeking exceeds the deadweight loss identified by A. C. Harberger (1954). Tul-
lock argued the inefficiencies caused by tariffs or regulation also inflict a social cost.
More importantly for the purposes this essay, he pointed out there will be expendi-
tures made in attempts to realize the economic rents. From society’s point of view,
significant resources may be wasted in attempts to form a monopoly or obtain quota
rights from the government. T.xamples of this type of activity are such things as po-
litical lobbying, bribes, or even studying for employment tests.! These expenditures
generally exceed any transfer from individuals to businesses. The original authors
on this subject, most notably Anne Krueger (1974), Richard Posner (1975), and
Gary Becker (1968), formulated models in which rent-seeking activity completely

dissipates the rent. In the case of monopoly and regulation, the economic rent is

1 For an excellent introduction to this problem see Buchanan (1980).
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any monopoly profit which could be generated. However, the loss to society in these
models is the dissipated rent plus any deadweight loss.

Tullock (1980) developed a game theoretic approach to this problem in which
the prize is awarded to the winner of a lottery-like contest. The probability an
individual wins this contest depends on his contribution and the total contributions
of all players. He showed total rent-seeking expenditures can be less than, equal
to, or greater than the value of the prize. The degree of rent dissipation in his
model depends on the number of players and the parameter values for a probability

function.

Many extensions of Tullock’s basic model have been analyzed. William Cor- .
coran (1983), for example, considered a long run setting for Tullock's model and
found rents will be completely dissipated if free entry is allowed. Richa-d Higgins,
William Shugart, and Robert Tollison (1985) examined the situation where the
prize goes to the player who appears to be trying hardest, but effort is observed
imperfectly. Their analysis shows rent-seeking activity will occasionally exceed and
occasionally be less than the value of the prize, but on average rents will be fully
dissipated. William P. Rogerson (1982) examined rent-seeking activity in the con-
text of a monopoly where firms face differential start up costs or monopoly rights
are periodically reassigned but the current monopolist has an advantage. He i ds
rents will be less than completely dissipated in this situation. Ayre Hillman and
Eliakim Katz (1984) employ a model with risk averse rent-seeker< and large prizes
to reach similar results. Corcoran and Gordon Karels (1985) extend the analysis of
Corcoran '( 1983) by allowing different types of long-run competitive response. Ayre
Hillman and John Riley (1987) allow players to value the prize differently, but each
player is indifferent to who wins if it is someone else. Their model is similar in spirit

to this essay.

In addition to the above authors, significant contributions have been made to
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this literature by international economists. The most notable of these are Jagdish
Bhagwati (1980, 1982), Bhagwati and T. N. Srinivasan (1982). and Bhagwati. R.
A. Brecher, and T. Hatta (1985). This branch of the literature deals primarily with
rent-seeking, or as they are called in these works Directly Unproductive Profit-
seeking (DUP), activities in an international trade context. An interesting result
from this branch of the literature shows these activities may be welfare enhancing as
a “second best” solution. This essay is similar in spirit to the works of the “public
choice” economists like Tullock and others rather than these studies.

In this essay I extend Tullock’s model in new directions. In the next section.
I examine the rent-seeking game played sequentially. That is. I allow one player
to go first in contributing toward the prize. We can think of these contributions
as lobbying expenditures or bribes to legislators or bureaucrats for political favors.
After analyzing a sequential rent-seeking game, I examine what happens in the
Tullock model if we allow players to have different preferences over who else wins
the prize. The basic model I use is due to Ted Bergstrom and Hal Varian (1987).
They were the first to suggest this type of framework for analyzing military alliances

and arms races. Finally, I summarize the results.

Sequential Rent-seeking

Suppose there are two individuals, each trying to influence the award of a prize.
We can think of the prize as monopoly or quota rights, or anything else of value
which can be allocated through the political process. This is the type of model
first analyzed by Tullock (1980). The most closely related work in the rent-seeking
literature is that of Hillman and Riley (1987) where they examined a game in which
players compete fqr a prize each values differently. Hillman and Riley found, roughly
speaking rents would be less than fully di;sipated in imperfectiy discriminating

contests? with different valuations among the players. However, throughout this

2 The term “imperfectly discriminating” contests refers to those contests where the player making
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literature the analyses have examined the Nash equilibrium assuming the players
move simultaneously. I will refer to these simultaneous move games as Cournot
games because they are similar in nature to Cournot duopoly games. These rent-
seeking models have not been analyzed as Stackelberg games, or games in which
individuals choose contributions sequentially. In this game. I assume one player
can commit himself to a contribution. Then, the other player makes her decision
knowing the first player's choice. This section is similar in spirit to Hal Varian's
(1989) analysis of public goods provision when agents act sequentially.

Looking at rent-seeking models as a sequential game has a significant impact
on the results. I will use Hillman and Riley’s analysis as a benchmark against which
I can compare the Stackelberg equilibrium. The difference between the equ.hibria of
the simultaneous and sequential games depends on which agent goes first, as well as
the relative difference between the players’ valuations of the prize. 1 will examine
how individual and total equilibrium outlays in the sequential game compare with

those in the simultaneous game.

The Simultaneous Move Game

Before looking at the sequential contributions game, I will briefly describe
the simultaneous move game. This a simplified version of part of Hillman and
Riley’s work. In this game there are two players: Player I and Player II. They
compete for something of value, and the prize goes to Player : with a probability
depending on both players’ contributions. The strategy space for both players is
S; = {zi|zi € Ry} for i € {1,2}. Finally, to complete the specification of the game

I describe each player’s payoff function:

Ui(z1,22) = vi - pi(z1,22) — i, 1€ {1,2}.

the largest contribution doesn’t necessarily win.




112

In this expression, v, is Player ¢’s valuation for the prize. I always assume the val-
uations to be strictly positive, and they are common knowledge among the players.
I relax the common knowledge assumption later. Also, p,(z,,z7) is the probability
Playver : wins the contest when the contributions from Players I and II are z, and z;
respectively. In the model I consider, the probability function is defined as follows:

Zy

_, 1 € {1,2}.
T+ { }

pi(rlsIZ) =

There are more general formulations which have been analyzed in simultaneous
move games. For example, Tullock considered the case with the probability Player
i wins as p;(z;,z2) = z,/(z] + z}). Bergstrom and Varian have generalized this to

be the following for some function gi(z;):

ey.'(t-‘)

= ) 2
p!(Il»:t?) 691(31)+692(1¢2)’ lE {13-}.

It is easy to see Tullock’s formulation is a special case of Bergstrom and Varian's
model where g;(z;) = rlnz;. Of course, these are easily adapted to more playvers
in the obvious way. I will analyze the special case of Bergstrom and Varian’s
formulation where g;(z;) = Inz;. The contest is similar to a lottery, and making
contributions is akin to purchasing lottery tickets. The other probability functions
have similar interpretations.

In Tullock’s formulation, the parameter r captures information about the rate
of change in the marginal cost of influencing the outcome of the contest. A lower
value of r indicates the marginal cost curve rises more steeply. Put another way,
a small r value means a marginal contribution will have a less significant effect on
the outcome than it would if r bwere greater.’ For some intuition, imagine an r
value very close to zero. This means each player has a probability of about 1/2 of

winning regardless of his contribution, so the marginal cost is very high. Hence,

3 Fora complete discussion and some examples see Tullock (1980).
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we should expect to see little rent-seeking activity. As r gets larger, an increase in
contributions has a greater impact on a player’s probability of winning.

Solving for the Cournot/Nash equilibrium is accomplished by first differen-
tiating both players’ payoff functions to obtain the first order utility maximizing

conditions. Then, we can simultaneously solve them. The first order conditions are

oUi(zy, z2) _ vz

0z, s 1=0, (1)
QUz(z1,27) _ va1y o
or; s 0 2)

where s = 1, + z2. Solving for s yields equilibrium total outlays of s* = vjvy/(v; +
v7). In general, Hillman and Riley showed the equilibrium total outlay is (n—1)d/n
where n is the number of contestants, and ¥ is the harmonic mean* of the valuations.
The equilibrium individual outlays in the contest are zr} = t?v,/(v; + v2)? and

23 = viv /(v + vy)2.

An interesting aspect of this game is that in equilibrium
the ratio of outlays to valuations, z}/v;, is the same for both players. That is,
both contestants expend the same proportion of their valuations in equilibrium.
This also means the equilibrium “odds” Player I wins, is the ratio of valuations, or
p1/p2 = v1/vz. Finally, the equilibrium expected payoff to Player i is v} /(vy + v7)?.

Before examining the Stackelberg version of the game it will be helpful to see
how the problem looks when solved graphically. I do this in figure 4.1. In this
diagram I show what each player’s best reply function and equal payoff curves look
like. It is important to note each player’s upper contour, or “better than,” set
lies below his equal payoff curve. The Cournot/Nash equilibrium outcome is the
-point where the best reply functions intersect. That is, if the players make the

contributions indicated at that intersection neither player can unilaterally increase

his utility.

4 The harmonic mean, §, of a set of data {y;,y2....,¥n} is defined as follows: y = Z—,;JLT
imy ¥y
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Figure 4.1 — Cournot Equilibrium in the Rent-seeking Game
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Player i's best reply is found by solving his first order utility maximization
condition and solving for z,. Hence, Player 1’s best reply is (for : # j)

BRi(z;) = {(()vﬂj)l/’ —-z;, ifz; €(0,v];

, if z; > v;.

The two best reply curves intersect at the point (viva/(vy + v2)?,v1v3/(v1 +v2)?).
Notice in the simultaneous move game both players always contribute in equilib-
rium. We will see this need not be true for the sequential game. Another fact
about the best replies which will become more important later is that BR,(z;) is
maximized at r; = v;/4. In order to analyze the sequential game. I will return to

this sort of graph a number of times.®

5 See Congleton (1980) for more discussion of the best reply functions.
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The Stackelberg Game

In order to change the model I have been considering into a Stackelberg game
I must redefine one player’s strategy space and describe the order of play. Player I
will always be the first to move. His strategy space is unchanged, but the strategy
space for Player II is now S; = {f|f : R4 — R4}. In words, Player I's strategy
space is the set of nonnegative real numbers, and Player II's strategy space is the
set of all functions which map a nonnegative real number into a nonnegative real
number. The utility functions remain unchanged.

The sequence of moves in the game is the following: Player I moves first by
selecting a contribution; then Player II chooses a contribution level after observing
Player I's choice. In order to eliminate Nash equilibrium strategies where Player II
makes incredible threats, I will look only at subgame perfect® Nash equilibria in the
sequential game. This eliminates equilibria where Player II makes a threat she would
not want to carry out if Player I strays from the equilibrium path. That is, I will
not allow equilibria which depend on II's unbelievable threats. The requirement the
equilibrium be subgame perfect means regardless what Player I contributes, Player
II chooses her outlay to maximize her utility conditional on what Player I does. An
interesting and simple extension to the sequential game is to add a third player,
say a government official, to the model. We can allow him to decide who gets the
opportunity to make the first offer. I will discuss this shortly.

I will now describe the unique subgame perfect equilibriam for this game. First,
consider what Player II will do when it is her turn. She will choose an outlay using
her best reply function. We find this by differentiating her utility function with
respect to her expenditure. We then set the derivative equal to zero and solve for z;
as a function of z,. If we solve equation (2) for z;(z;) we get z3(z;) = (v2z,)'/?—1;.

However, Player II will not participate if Player I contributes more than v, because

6 For an enlightening discussion of this and other Nash equilibrium refinements see Binmore (1988).
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doing so would assure her a negative payoff. She can always obtain a payoff .
zero with certainty by choosing not to participate. This means her equilibrium
strategy is the following: z3(z;) = max{(v,z;)!/? — z,,0}. In words. Player II will
choose 1, to maximize vyz,/(z) + r3) — z2, unless doing so assures her a negative .
expected payoff. Now, substituting z3(z;) for r; in Player I's utility function, we
can solve for I's optimal choice by differentiating his utility function with respect
to z; and setting the result equal to zero. This is simplified because we know
7, + z3(z;,) = max{(v2z,)'/%,z,} Substituting this into Player I's utility function

we get
v1T)

Ul(IhIz(l‘z)) = I.

max{(v2z)!/2,1,} -
Maximizing Player I's utility function yields z; = min{v}/4v,,v2}. This means if
Player II chooses her outlay from her best reply function, Player I's best strategy

1/2 _ 7, unless doing so yields an outlay

is to choose r, to maximize v,z,/(vy1;)
greater than v,. Player I will never contribute more than Player II's valuation. If
he did, Player II would never rationally choose to participate in the contest, so any
contribution larger than v, would be wasteful.

With these equilibrium strategies we can determine the equilibrium outlays
for both players. First, suppose we have an interior solution. Substitution and
some algebra establish the Stackelberg equilibrium outlays are (4—"5;, 2 - 4—"5;) An
interesting property of the sequential rent-seeking game is that it is possible to
have only one player make a strictly positive contribution in equilibrium. This
will occur if Player II's valuation is less than half of Player I's valuation.” The
Stackelberg equilibrium outlays for a corner solution are (vz,0). Therefore, the sum
of equilibrium outlays is min{v,/2,v,}. This leads us to the first proposition.

Proposition I Suppose the players’ valuations for the prize are different. If the

player with the larger (resp. smaller) valuation goes first, the sum of the resulting

7 This can easily be seen by computing the equilibrium outlays if vy /2 2> v,.
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Stackelberg equilibrium outlays will be larger (resp. smaller) than those in the
Cournot game.

To prove this, I must consider two cases of an interior solution and the corner
solution. Recall v,v;/(v, + v;) is the sum of the equilibrium contributions in the
simultaneous move game. First I look at the interior solutions when v; > v;. In
other words, the player with the larger valuation goes first. To prove the result
I suppose it is not true. That is, suppose v1/2 < vjva /(v + v2). After dividing
through by v, we have 1/2 < v,/(v1 4+ v2) which is a contradiction since vy > v by
hypothesis. Hence, the proposition holds in this case. The proof for vy < v; is the
same argument with the weak inequalities reversed. If we are at a corner solution.
v1/2 > vy. Therefore, all I have remaining to show is v; > vyv2/(vy + v7). I can
again assume the proposition is false and derive the contradiction 1 < vy /(v + vy)
since v2 > 0 by assumption.

Again, it is of some value to solve for the equilibrium outlays graphically. I
begin with the interior equilibrium. Consider figure 4.2, which assumes vy, > v; >
v1/2. 1 labeled the Cournot equilibrium by C and the Stackelberg equilibrium
by S. Since Player I's “better than set” lies below his equal payoff curves, it is
easy to see Player I is as well off at S as he can possibly be. It is easy to verify
the tangency of the two curves. The slope of BR; can be easily derived and is
(dzy(z1)/dz1)BR, = %(02/11)1/2 ~ 1. If we calculate the equilibrium expected
payoff for Player I, we find it is v}/4v,. The slope of the equal payoff curve for

= v?/(4vz) can be shown to be

(dl'z(l'l)) — 4u, (vl 4u, 211) - 73
dzy Uhi=g; (4v; +Il)

Substituting the equilibrium outlays into both expressions we can see the slopes are
the same and equal to %f — 1. Hence, the curves are tangent. We can also see the

sum of the payoffs at S is greater than the sum of the payoffs at C. This is verified
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by noting S is to the right of the line passing through C with a slope of —1.

Figure 4.2 — An Interior Stackelberg Equilibrium in the Rent-seeking

Game
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Now I will graphically describe the corner solution, which occurs when v,/2 >
vs. I have drawn the best reply curves in figure 4.3 for the limiting case where
v1/2 = v2. BR; is not differentiable at r, = vy; however, as z; — v, the slope of
BR; approaches —1/2 from above. By this I mean the slope of BR; is greater than
—1/2 for z; < vy. If Player I chooses an outlay of v,, he assures himself of a payoft

of vy — v2. The slope of Player I's equal payoff curve for U} = v; — vp. It is

<d12(1‘1)) _ (v —va)(vy = 22y — vy +v5) — 1}
d.‘l’l Ur=vy ~vs (vl - VU2 +1'1)2

If we evaluate the above derivative at z; = v, we get the slope of the equal payoff

curve to be —vy/v;. If v /2 = v; as we assumed, the slope is —1/2. If v;/2 > v,
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the slope of the equal payoff curve at (v,,0) is greater (smaller in absolute value)
than the slope of BR; if 7; < v; and smaller (greater in absolute value) for z;, > v;.

Hence, the best Player I can do is achieve the payoff v, — v,.

Figure 4.3 — A Corner Stackelberg Equilibrium (vi/2 > v2)
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Now we can consider adding another player. Suppose we allow a third player.
say a government official, who gets to choose who goes first. If the new player
benefits by these rent-seeking expenditures, he will want the player with the higher
“valuation to go first. On the other hand, if a benevolent government official wants
‘to minimize the rent-seeking expenditure he will have the lower valuation player
go first. In his 1980 essay, Gordon Tullock identified the fundamental problem to
be addressed in these models as finding ways to reduce the rent-seeking expendi-
tures. This proposition lends some insight to that problem if the game is played

sequentially.
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Proposition 2: In the Stackelberg game the first player is not always strictly
better off than he would be in the Cournot game. Certainly, he is no worse off by

going first.

Figure 4.4 — Cournot and Stackelberg Equilibrium with Equal

Valuations
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In Stackelberg duopoly games a firm is generally strictly better off being the
leader even if both duopolists are identical in every respect except the order of
play. This is not true in this rent-seeking game. To prove this proposition consider
a sequential rent-seeking game where players have identical valuations, which I
normalize to one. The Stackelberg equilibrium outlays are (1/4,1/4) which are
the same as the Cournot equilibrium outlays. The reason for the difference is the

best reply curves and equal payoff curves are shaped differently than they are in the
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standard duopoly models. When both players’ valuations are equal, the equilibrium
outlays in the Cournot and Stackelberg games occur at the maximal points on the
best reply curves. I have drawn the appropriate equal payoff curves in figure 4.4.

It is easy to see the indifference curves which yield at least the Cournot equilib-
rium outcome are everywhere inside the best reply curves except at the equilibrium
point. By definition, the slope of a player’s indifference curve is zero everywhere
along his best reply curve, and the slope of the best reply curve is zero at (1/4,1/4)
because it is at a maximum. Therefore, each player’s indifference curve is tangent
to the other player’s best reply curve at the intersection of the best reply curves.
Hence, it makes no difference who goes first. The Stackelberg leader is not able to do
any better than the Cournot equilibrium. However, if the valuations are different,
then the leader can improve his payoff over that of the Cournct game.

Proposition §: In the sequential game the equilibrium ratio of outlays for an
interior solution (also, the “odds” Player I wins) is z}/z5 = v;/(2v7 — v;). This is
greater than the equilibrium ratio of the Cournot game if and only if v; > v,. If
we are at a corner equilibrium, this ratio is not defined because z3 = 0, and Player
I wins with certainty.

The proposition is easily verified by taking the ratio of equilibrium outlays and
simplifying. This means if the person with the lower (resp. higher) valuation goes
first, he is less (resp. more) likely to win. However, the leader will have a higher
expected payoff than he would in the Cournot game. It may seem counter intuitive
at first that the leader may be less likely to win in the sequential game than he
would be in the simultaneous game. However, by contributing less when he has
the first choice he increases his expected payoff as long as his opponent plays the
equilibrium strategy. |

An implication of this proposition is the high valuation player is more likely to

win whether he goes first or second. Hence, in some sense, we can say the outcome
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from a sequential rent-seeking game in which the high valuation player goes second
is socially superior to the outcome of the simultaneous game if the players value
the prize differently. This is because there is less rent-seeking expenditure and the

prize is more likely to go to the player who values it more highly.

Incomplete Information

Another interesting question involves incomplete information. Suppose Player
I is unsure of Player II's type. In this case, Player I will choose an expenditure
level to maximize his expected payoff. It is not very interesting to allow uncertainty
about Player I's type because Player II merely responds to Player I's choice to make
herself as well off as possible based on her type.

For simplicity I will assume Player II can only have one of two possible valua-
tions; v € {vi, vy} where vy > v;. Also. I assume the probability Player II is the
vp type is ¢, and the probability she is the v type is (1 — ¢). Applying what we

found in the last section, we can see Player II's equilibrium strategy is now simply

z3(z,) = max{0, (vaz,)/? ~ 21}, if vz = va;
= max{0,(viz)"/? - z;}, if v; = v

The significant difference comes in the problem Player I must solve. He must choose

r to maximize the following expression:
E[Ul(zl)] = ¢ - vy Pr(I winsjv; = v4) + (1 - ¢) - v; Pr(I wins|vy = v;) — 1.

We can solve this problem for Player I's optimal outlay, z}, as we did earlier. The
twist here is z] depends on the valuations in a more complicated way. I begin by
calculating z] for the situation where the possible values of v, are such that Player
II contributes whether the realization is v, or v;. After substitutix;g (vaz,)'/? and

(vizy)"/? for (z, + z;), this means Player I maximizes the following expression:

n I
(Uhl'x)l/z

n1 Ty

. (vl-"il)l/2 -

E[U(x,)]=q- +(1~-4q)
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The first order condition for maximizing this expression is

~-1/2
v I, /
‘)

[qv;]/2 +(1- q)vl—l/z] = 1.

Solving for Player I's optimal outlay we find if the possible values of v, are such
that either kind of Player II participates we get r} = v3/4. [qv,:l/2 +(1- q)v,'l/z] 2
Keeping this in mind, we know if z] > v; a low valuation type Player II will
choose not to participate in the contest when it is her turn. This occurs if z] =

v3/4 [qv;lﬂ + (1 - q)v,-l/z]2 > v, or vy > 2v,l/2[qvh_l/2 + (1 - q)t‘f1/2]-l.

Therefore, if v; > 2v,1/2 [qvh-l/2 +(1 —q)v,’l/z] -1 Playver II's best reply will be zero
in equilibrium if she is the low valuation type. Then. Player I will maximize the

following expression:

v Ty

E[[J(I] )] =q- m

+(l1=-¢g)vy—1
subject to: ; > v).

This maximization problem is easily solved using the method of Lagrange.
When z; > v, the first order maximization condition is v q(vaz;)~1/?2/2 = 1.
Solving for Player I's optimal expenditure we get z] = max{v;, ¢>v}/(4v;)}. Again.
if 27 = q%v?/(4v)) 2 va, Player II will offer the best reply of zero. This will be true
when v; > 2vp/q. If this condition holds, Player I will choose v; as his outlay.

Now I can summarize the equilibrium strategies.

Ifv, < 2v,l/2 [qv,:l/2 +(1- q)v,_”z]-l, then

:
. _Yir -1)2 —1/272
xl=—4’-[qvhl/ +(1 = q)y, 1/] )

If 2v,1/2 [qv,f”z +(1 - q)v,’ln]'—l < v; < 2v,/g, then
C 22
. qgv
z] = max{vy, 74—;:-}

If vy > 2vn/g, then z} = vy,
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Figure 4.5 — Total Rent-seeking with Complete and Incomplete
Information

Up = 2,y = liv, = 1.5

incomplete Intormation

N

Complste [nformation

............................................

-
o

Total Contributions

hod
o

o

ok ——rdnu__1. 1 1

|

T T T

3 4 5 1y 7 8 ®
Player I's Valuation

I have provided figure 4.5 to show how uncertainty affects the total contri-
butions in this game with incomplete information. In the case I depicted, the
parameter values are ¢ = .5,v; = 1, and vy = 2. I compare that to the case of
complete information with v; = 1.5. We can see as long Player I's contribution is
less than v, the uncertainty increases the total contributions. However, if the values
of v; are in the range where only the high valuation type Player II participates it
is possible the total contributions for the case of complete information exceed the
total contributions for the incomplete information case.

The equilibrium in the incomplete information game is intuitively appealing.

If ¢ is small. Player I's equilibrium choice is close to what it would be with perfect




125

information. The same is true for ¢ close to one. Also, the comparative statics are
completely intuitive. We can see the equilibrium outlay, r}, is nondecreasing in v,
and ¢, and nonincreasing in both v, and v;. In the region where v, and v; type
players contribute, z] strictly increases as they do. Obviously, this model can be

extended to include distributions with more possible types.

Summary

The above analysis has been concerned with the case where one agent can
make the first move by committing to an outlay and allowing thr second agent to
respond. This is an interesting problem because we often see rent-seeking activity
occur sequentially in the world. For example, one interest group will choose to be
the first to endorse a candidate or lobby an agency for the program it wants. There
is frequently an advantage to moving first, and this model captures it. Here it makes
sense to be the first to commit to a choice. Also, if valuations differ between players.
it makes a difference in the total rent-seeking expenditure in which order the players
move. If a Congressman or bureaucrat were looking to maximize the bribes he can
receive, he would want to offer the high valuation contestant the opportunity to go
first. If we are looking to minimize the amount of political rent-seeking, the low
valuation contestant should go first.

Another interesting feature of this model is that it also explains why both
players don’t always participate in a contest. In the case of perfect information
we saw if the high valuation player goes first and has a valuation at least twice
‘the lower valuation, the second player will choose not to compete. In other words,
the high valuation leader will preempt the lower valuation follower in equilibrium.
In the si'multaneous move game, both players compete in equilibrium regardless of
the relative size of the valuations. In this game it is rational at times to make

a contribution equal to your opponent’s valuation of the prize to ensure he does
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not compete. I also showed the higher valuation player is more likely to win in
sequential games than in the Cournot game. This is true regardless which player

goes first.

Finally, I showed how this analysis can be extended to games of incomplete "
information. If Player I is unsure of what Player II's value of the prize is, he will
still choose a level of expenditure to maximize his expected payoff. The calculations

are straightforward.

Rent-seeking When the Prize is a Public Good

The work on rent-seeking so far has ignored any “publicness™ in the prize.
In this section I look at what happens in a Tullock type model where the players
move simultaneously and the prize is to some extent a public good. Another way
of thinking of this is to say a person is not indifferent to who wins the prize if
he doesn’t. This allows us to consider a wide range of problems. For example.
if international political or military competition can be modeled this way, we can
think of this as forming the basis for a theory of alliances. This can also represent a
model of political lobbying where a lobbyist is not indifferent to whose favorite law
passes if his doesn’t. In order to capture this idea I represent a player’s valuation
of the prize by a vector instead of a scalar. Each player’s valuation of the prize is
a vector v; = (vy1,vi2,..., v,-,,)T, where v;; is the value to person : if person ; wins
the prize, and T indicates the transpose of a matrix. In this section I will consider
only imperfectly discriminating contests where the probability person : wins the
prize is p;(x) = z[/s,, where s, = E?:x z}, x = (21,22, .. ,Zn)T and z; is person
i’s outlay to influence the contest in his favor. I begin by looking at the special
case of r = 1. Later I will look at changes in r through numerical examples. We

can denote the vector of probabilities by p(x) = (p1,p2,--.,Pa)T. Finally, we can




express person i's expected payoff for the contest as
Ui(x) = vi - p(x) — 7.

This special case is a nice starting point for this discussion. The model considered
by Hillman and Riley can be represented in this formulation with v;; = 0 for ¢ # ;.
Similarly, Tullock’s original model is a special case with v,; = 0 for ¢ # j and
V] = V22 = ... = Unp.

In order to see how this model is applied, I will begin by showing how simply
Hillman and Riley’s result, y_._, z; = [(n — 1)/n]0 where ¢ is the harmonic mean
of the valuations, can be derived using this model. V is the n X n matrix created
by stacking v7 on v}, and so on. A non-cooperative Nash equilibrium solution can
be derived by simultaneously solving the n first order conditions to the system of

equations below:

V11 0 0 ? I U1
0 V22 ... 0 ‘;1 I U2
0 0 cv. Unp -z-;ﬂ- In Un

The first order maximization condition from Player #’s utility function is vii(s —

z;)/s* = 1. We can summarize all n first order conditions in the following matrix

expression:
U1 0 e 0 .’_:-52-1 1
0 vy ... 0 8_:;; 1
0 0 ... van -'_-‘;.n 1

If we premultiply both sides of the above expression by V! we can simultaneously

solve the first order conditions above. Finding V! is trivial-in this case, and we

get . ‘
s — I m 0 0 .. O 1
8 — T2 2 0 ;t 0 0 1
=3Ss
$—=In 0 0 0 —L 1
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Summing the n equations we get

(n=1)s = s?n/t

n

which yields Hillman and Riley’s result, s = (n — 1)¢/n where v = e is
the harmonic mean of the valuations. However, this formulation can handle more

complicated problems.

An Example which Depends on Distance

As motivation for further analysis, consider the following problem. Suppose
three people live in a neighborhood without a street light. They are identical in
every respect except where they live. A street light is to be placed somewhere on
their street, and each of the residents wants it in his favorite location. However.
each person is not indifferent to the location of the street light if he doesn’t win the

contest. I assume the players’ valuations are as follows (0 < v < 1):

1 v v?
vi=| 7~ ;V2=(1 yV3 = 7)-
72 ¥ 1

In words, each person values the street light equally if it is placed in his favorite
place. Each also prefers having it located at his next-door-neighbor’s favorite place
to having it placed farther away.

]
The system we want to find the Nash equilibrium for is

1 « ‘72 e I U,
¥ oy 1 {‘ z3 Us

In general, the first order conditions for a problem like this can be summarized by
(Jaxn—=V)x = s?1,,, where J, xn is the n x n matrix which has v;; as every element
in the ith row and 1, is the n column vector of ones. In this case we have the

following first order conditions:

0 1-9 1-72 I 1
(150 ) (8)-(0)
1-9%2 1-+« 0 .f.,} 1




129

Inverting the matrix (Jaxn — V') yields the following:

v - g (13 450 1)
nxn = = T 9 - T
20-)\ " 1 1+9 -1

Performing the appropriate matrix multiplications we get the following:

(I]) s? ( -1 1+"7 1 1
I =1+ (1497 1+9])[1].
zs) 1=\ 1+ -1 1

Now, solving for the z,s we get

TN C) N €
DRI T

If we add the z]s and solve for s* we get r] = z5 = 2(1 — v)/(8 — v)%. z} =
2(1 = 7)*/(3~9)% and s* = (2-27)/(3 — 7).

Notice how this equilibrium compares with the case where players have scalar
valuations. If the street light were a purely private good. the equilibrium level
of expenditure would be 2/9 for each player, and the total expenditure would be
2/3. This corresponds to this problem with ¥ = 0. A simple comparative statics
exercise shows as v increases from zero to one, s decreases. That is, the more
“publicness” there is to the street light, the less people will pay to get it in their
vard in equilibrium. Also, each player will individually be willing to pay less as v
increases. Another interesting property of this equilibrium is that if ¥ > 0. Player I
and Player III will always pay more than Player II in equilibrium. To see this, note
zi/z3 = 23/z3 = 1/(1-2) > 1.

In a utilitarian sense, the optimal placement of the street light is in II's yard
because the total value to the neighborhood is 1 + 2y while if it is placed in either
of the other yards the total value of the street light is 1 + v + 42. However, the
socially optimai placement is now the lea.st likely. In this case, then, the public
nature of the prize changes the equilibrium outcome in two conflicting ways. First,

there is less rent-seeking expenditure if the prize is a public good than if it were a
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purely private good. Second, the socially optimal outcome is less likely when the
prize is public in nature. This problem can easily be modified to allow for dissimilar
valuations, different forms for the disutility of being farther away from the street

light, and more players, but the same qualitative results will continue to hold.

An Example with Common Interests

The above example is certainly not the only kind of problem we can analvze
using this framework. As another example, suppose there are three players again.
and we can begin by thinking of them as automobile makers. Each has a legislative
proposal it favors. Let Player I be General Motors, Player II be Ford. and Player
III be Toyota. General Motors has a favorite proposal which it values at one.
However, it would rather see Ford’s proposal accepted than Toyota . Ford has a
favorite proposal with value one to itself, too, but it would rather see GM's proposal
accepted than Toyota’s. Toyota also values its own proposal at one, but it cares
only that it’s proposal is accepted and views the other two as equally undesirable.
I assume GM and Ford value the proposals made by each other equally, so the

problem can be set up in the following way:

1 Yy 0 L Iy U]
0 0 1/\& z3 Us

The first order conditions give the following system of equations:

0 1-v4 1\ /% 1
(o) (E)-0)
1 1 o/ \& 1

Again, we get the following expression after some simple algebra:

(z) 82 ( -1 1 1—+~ )(1)
i — 1 ~1 1- 1].
2) 2= \1-y 109 —a-ap/ s

If we sum the zs and solve for s*, we get s* = 2/(3+v) with z} = z} = 2/(3+v)?

BN R 8

and z3 = 2(1 + 9)/(3 + 7)?. Here too, we have the result that an increase in 7
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results in less total rent-seeking expenditures and less expenditures by GM and
Ford. However, Toyota will now pay more as v increases. That is, if GM and
Ford become more in agreement over the legislation, in equilibrium their individual
contributions decrease, but Toyota’s increases. However, the increase in Toyota’s
contribution is less than the combined decrease in GM’s and Ford's contributions.
This shows as Ford and GM become closer to being in perfect agreement over which
proposal is best, it becomes costlier for Toyota to compete. Here again, the fact that
the prize is a public good means less rent-seeking expenditure. It also means the
agent for whom success is less socially desirable will spend more and become more
likely to win in equilibrium. This again will lead to a decrease in social welfare.
The problem I described above can be given other interpretations. Suppose
instead of calling our agents GM, Ford, and Toyota, we call them country A, country
B. and country C respectively. Then we have a model of military or political
competition. Here p; has the interpretation of being the probability country : wins
the contest, or it can be thought of as the proportion of disputed land country i can
obtain. At first glance this example poses a puzzle of sorts because countries A and
B are less likely to win any competition with country C as their interests become
more closely aligned. Each of A and B has a probability of winning the competition
of 1/(3 + v), and the country C has a probability of winning of (1 + ¥)/(3 + 7).
This is an example which supports a conjecture by Olson and Zeckhauser (1968) in

their initiatory work on the economic theory of alliances.

“... a decline in the amity, unity, and community of interest among allies

need not necessarily reduce the effectiveness of an alliance because the

decline in these alliance ‘virtues’ produces a greater ratio of private to

social benefits.”

This idea is captured explicitly in the example above. As v increases the “com-
munity of interest” between A and B increases accordingly, but their effectiveness,

measured by the probability either wins the competition, decreases This result is

-
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general in the sense that the probability one interest group wins declines as their
interests become more closely aligned in this noncooperative game. The intuition
is easy to see. As the prize's “publicness” increases, countries with common in-
terests can “free ride” on each other’s contribution. Modeling the competition in
this way picks up elements not captured in Olson and Zeckhauser's model. Specifi-
cally, here the level of the other players’ contributions is not exogenously given but

endogenously determined by the expenditures of both groups.

Generalizations

Next, I examine what happens as the number of players increases in this type
of model. To do this, I will add players with interests similar to either those of
Players I and II or those of Player III from the last example. Suppose there are
n; agents who have interests in common with Players I or II and n, players who
share the same concerns as Player III. We can think of the player set as consisting
of two partitions. The first partition consists of the set {1,2,...,n;} and the other

partition is the set {n; +1,n; +2,...,n; + ny}.

The preferences of individuals in the two groups can be characterized by the
set of players with whom they share interests and the amount of publicness there
is inside the group. For the first partition, the value of the prize to each player
is one if he wins it and « if another player in the partition wins it. A member of
the second partition values winning the prize herself at one and attaches a value
of é to the event someone else in her partition wins it. The utility functions which

the players want to maximize are summarized in the following, using matrices for
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notational simplicity:

1y ... vy 0 ... 00

/7 130 0 0) (5 [ =) ( U\
vy 1o ol m L e || .
0 0 01 6 Y ) ﬁ{"—‘ ITn,+1 - Un1+1
0 0 0 6 1 § : : :
i e ) e

The first order conditions are derived in the same way as in the previous examples.

0 1-7 ... 1=v 1 1 ... 1 .
(1—7 0 ... 1-5 1 1) [ ) 1
1 1 . 1 0 1-6 ... 1-¢ R
1 1 ... 1 1-6§ 0 ... 1-6 : :
A T S A fogny |\
\ 1 1 ... 1 1-6§ 1-6 0 / \ =

A matrix of the form (J(n,4+n3)x(n;4+n,) — V) can be inverted for any v,6 # 1 and
ny.ny 2> 1. I will use the notation I, for the n x n identity matrix. We can then

solve for the vector of equilibrium individual contributions, x*.

\2 -1
X = (s ) (J(n1+n3)x(m+ng) - V) ' 1("1+"2)

In the above expression we have

-1 W W
(J(ﬂl+nz)x(nl+n,) - V) - ( 11 12)

W21 Wae

with W;; defined below. Here 1,4, is an n X m matrix of ones.

_ Y [ (-1-8n=l)=n;
W= (1-7) [I,., (ny =1)(ny = 1)1 =4)(1~6)—nyn; mem]
-1 . .
Wi = (n; = 1)(nz2 = 1)(1 = 9)(1 = 6) —nyn, ‘Loixn; 1#]
Y[ (- -&m--n
AR [I"’ (n1 = 1)(nz = 1)1 = 1)(1 = 6) — mmg J]
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From the above equation we can derive expressions for equilibrium total con-
tributions, s*, and the equilibrium individual contributions. I will use z] to denote

the equilibrium contributions of the first n; players and z} for the second group.

We have
. ning — (ny — 1)(ng — 1)(1 — 7)(1 - 6) : (3)
ni[n2 = (1 = 8)(n2 = )] + na[n1 = (1 = 7){ns — 1)]
= 0 e e i (4)
z3=(s") [nlnz my S(;ﬁ(:)l(l‘—l)vxl = 5)]' N

These expressions can be solved for z] and z} in terms of the parameters of the
game. It is interesting to note everyone will choose to contribute in equilibrium.
This is not generally true if we allow “own-valuations” (v;;) to differ among play-
ers. It is easy to see Olson and Zeckhauser’s conjecture holds true from the above
equilibrium outlays.

With these in mind, we can derive some simple comparative statics results.
As either of the publicness parameters increases the sum of the expenditures will
decrease. That is, 0s*/v, 0s*/6 < 0. Also, the representative contribution of a
member of an interest group will decrease as its own publicness parameter increases.
More formally, we have 9z} /v, 0z3/6 < 0. Perhaps the easiest way to see what
happens as we allow parameters to vary is to look at the ratio nyz}/n,z3, which is
also the ratio of the probability the first group wins to the probability the second
group wins. [t is easy to see this ratio increases as § increases, and it decreases as
7 increases. Also, note as the number of players in a group increases, that group’s
probability of winning the contest increases. Even though having more players in
a group with a common intérest allows more' opportunity for free ﬁding among the
participants, having more players with your interests helps your chance of winning

as long as the players’ interests are not identical (y or § # 1).
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Now I will analyze a game where players have different “own-valuations” for
the prize. I will show how the equilibrium strategies change in this model if we allow
the prize to have a different own-value for each player. To keep the model simple.
I will analyze a three player contest where a player in an interest group values the
prize won by another in his group as a constant proportion of his “own-valuation.”
This can be summarized in the following valuation matrix

vp yvnn O
V= (‘)’022 V22 0 )
0 0 v33
Determining the first order conditions for this problem is slightly different than
in previous examples because we allow v;; # vj;. However, the same general rule

continues to hold. Hence, the first order conditions the players simultaneously solve

0 m(l=7) wn ?%‘ 1
v22(l — %) 0 V22 Ei =11].
V33 V33 0 =2 1

52

are

Solving the above simultaneous equations yields the following equilibrium outlays

if all players participate:

o _ 2011025033 - [U11V33 — vav33 + 13 v22(1 = 7))

17 {v11v22 + v22v33 + vi1va3 + vv227))2 (1 - ) (6)
= 2011022033 - [V22033 — V11033 + v11v22(1 — 7)) (7)
[v11v22 + va2v33 + vi1vss + v11v227))2(1 = )
o = 2011 v22v33 - [V22v33(1 = 7) + v11va3(1 = ¥) — vy va2(1 — )7 (8)
[v11v22 + v22v33 + v11vazVIIV227)}3 (1 — )
s* 201, V22033 (9)

[vi1v22 + v22v3s + vi1v33 + v11V227]

It is important to note the above outlays are in equilibrium only when all players
participate. Next I will discuss the conditions for participation by the players.
Certainly if the numerator in any of the above expressions is negative, a player will
choose not to play. I will examine the conditions for a player to want to enter the

game. It turns out the same conditions which assure strictly positive contributions
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in equations (6) - (8) have a very nice interpretation. Those conditions are the
answer to the question, “If two of the players are already active in this game,
when will the third player want to make a marginal contribution rather than not
participate?” We also want to find out if it makes any difference in which order
the players join the game in determining the final set of players, and under what
conditions will all three agents participate in this game. I answer these questions
next.

Suppose first, Players I and II are playing the game against each other, and
Player III must decide whether or not to play. Certainly, she will not want to
contribute if her marginal utility would be negative.® That is, III will want to con-
tribute if OUs(z,, x2,73)/0z3 > 0. In this example, the condition for participation

is

Us(z1.22.23) _ (z1+22)vss _, _(s=Tavss 4
Ozr;3 s2 s?

Since we are evaluating this derivative at z3 = 0, s is the sum of the equilibrium

outlays for Players I and II if they play the game by themselves, which in this case

is s = vy v22(1 — 7)/(v11 + v22). Hence, we have the result that Player III will want

to participate if

v11022(1 — )
vy + V22

V33 >

Consider the above expression with ¥+ = 0. This is exactly what Hillman and

Riley proved for the scalar valuation case. In other words, Player III will choose to

participate if his valuation of the prize is greater than one half the harmonic mean
of the valuations of the first two players.

If we allow publicness in the prize, the condition for another player’s .participa-

tion is modified somewhat. However, we get the same result as Hillman and Riley

if we think of each person’s valuation as the incremental valuation to him if he wins

8 See Hiliman and Riley (1987) for a discussion of participation in this game with scalar valuations.
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the prize over what he gets if someone else wins it. Note the same condition which
produces a positive outlay for Player III in equation (8) is the same condition which
gives him positive utility on the margin. It is also interesting to note as v increases,
the minimum valuation for Player III's active participation decreases. The intuition
is Players I and II will compete less vigorously as v increases, so a lower valuation
Player III can improve his payoff by joining the contest.

If we consider the entry conditions for one of the first two players, the analysis is
only slightly less straightforward because of the public nature of the prize. Suppose
Players I and III are playing the game. Now we ask ourselves when II would want to
play. Using the same type of analysis as we used above, we know Player II will want
to contribute if OU(z,z2,23)/0r2 > 0. We know from the first order conditions

this requirement is

QU(z1,77,73) _ vl — 7)1y 4 b22ds

= -1>0.
0z, s? s?

This can be simplified somewhat by multiplying through by s. This gives us

v22(1 ~ v)zy 4 VT3
s s

> S8

Rearranging this we have

va2(s ~z2)  qvaany
s s

> S8

Players I and III will be playing their equilibrium strategies for a two player
game where Player I values the prize at v;; and III assigns a value of v33 to the prize.
Recall the equilibrium contributions in the two player game are z; = v¥,v33/(vy; +
v33)?, z3 = v11v3;/(v11 + v33)?, and s = vy;v33/(v1) + va3). Now we can substitute
and evaluate the derivative at z, = 0. This yields

RASY! V11033
U2 1~ ) >
2( (v11 + va3) (vi1 + v33)
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as the condition for Player II's participation. This means II will want to make a

contribution if

V11033
v22 > . (10)
v1i(l —7) +v33

Again this is the same condition which generates a positive contribution in equation
(7). Analyzing the situation with Player I inactive and Players II and III partic-
ipating is symmetric. If 4 = 0. this is again the same result Hillman and Rilev
obtained. If we think about condition (10) above, we can see Player II will have to
value the prize more in order to participate if vy, va3, or v increase. The intuition
is Player I will make a larger contribution in the two player game if v;; increases.
and Player II can “free ride” on it. If v increases, Player II will want to contribute
less because he gains more utility from Player I's outlay. Also. an increase in v33
will make a contribution by Plaver II less profitable so he will have to value winning

the prize more before he chooses to be active in the game.

Now I can describe the equilibrium strategies in this game. First, however,
I will introduce the notation that the minimum valuation for Player k to actively

participate in the game is ;. That is,

— v,-,-v33 .. . .
Ui = for1,7 € {1,2} and: :
' v;(1 =) + v33 1.2} 7
v11V22(1 = 7)

U3z =
V11 + V22
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The player’s equilibrium strategies are the following:

( 2v11vg9v33vrivas—vaavaatunivaa (0=l e S 5 forz e (1.2.3):
{vi1v2z+vazvaat v vaa+viivazv}}3(1-4) if vy > i for 1 € 11’_’3}’
2

v11v33 : & Dot

.'L'; = ﬁ (vi1+vas) if vy < Taa;
2

vy v22(1—7) . _

(v11+v33)? if vas < B33

( 0 if vy, < 0y;.

2v33v22v33-(vasvas—viyvaz+unva2(l1=v)} . - -~ . .
( [viivaz+vazvaz+viivaz+vi1v227)]3 (1 =9) if vii > vy, for 1 € {1’2’3}'
2

VasV3s . < _ .
] )
5 = 4 (v22+233) if vi1 < Oyy5
vaovnn(1-9) : & Tans
(vi1+v32)? ff U3z = 1_)33,
.0 if v22 < 9.
( 2vy1vaavas-{vazvaa(l—=y)+vy1vaa(l=Y)~vy v2a(1=9)%] ¢ . _ . )
) [v11v22+v22vaa+vi1vas+v1v227)]2 (1) if vi; > v,; fort € {1,2.3},
vnv:g . < _ .
T3 = 4 (1’2'224'0:;3)2 if vy, < Oyy;
Vaa 11 . < - .
{vi1+va3)? ’f v22 & 1-227
\ 0 lf V33 S U33.

Note at least two players will be active in this game because it is a simultaneous
move game.® The above equilibrium strategies yield the answers we were looking
for. In this model it makes no difference in which order the players join in the
competition. The conditions for players switching from being inactive to active
participants are identical to the conditions for them contributing more than zero
if they are already in the game. The required condition for all three players being
active is obvious from the equilibrium strategies.

If we assume all players are active participants and the set of active players
doesn’t change for a small change in a parameter value, we can make some obser-
vations about the comparative statics of this game. It should not be surprising to
see as increaSes, z3, z3, and s* decrease and zj increases. Again, it will prove
illuminating if we consider the ratio

] + 13 _ 2v11v22
T3 vaa(vig + v2z2) — vi1v22(l — )

It is clear the probability either Player I or Player II wins decreases as v increases

or as v33 increases. An increase in either v;; or vg; will increase this ratio. These

9 For a more detailed explanation, see Hillman and Riley (1987).
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results are not unexpected and verify the results obtained in the examples at the

beginning of this section hold true generally in these games.

Changes in the Probability Function

Now I will briefly look at the effects of changing the probability function.
Specifically, I will consider what happens as r changes using Tullock’s formulation.
I will look only at the street light and automobile maker examples.

Recall according to this setup we have

.
z.

1
Pi(z1,22.23) = 5.
=17%;

If we denote z7 + z + =% = s,, we can restate the street light problem as
1 2 3 ght p

1 ‘7‘2 Iy U]
¥ oy 1 z3 Us

The above equations yield the following first order conditions:

0 rzi N1 ~7) rz]7H(1 - 4?)
rzy (1~ 4) 0 rzy N1~ 9)
rzy  (1=9%) rz37i(1-7) 0

-2

R W L

Sy

~

AR Y T
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This problem cannot be solved analytically for a closed-form solution. However, |

L]
hl

solved it numerically for certain parameter values, and I present equilibrium con-
tributions for various r values and levels of publicness in table 4.1. The first value

in each cell is the z] or z3, and the second value is z3.

Table 4.1 — Equilibrium Contributions in the Street Light Game

r\y 0 .25 5 15

9 111,.111 .095,.081 .072,.052 .041,.025
1 222,.222 .198,.149 .16, .08 .099,.025
5 1.11,1.11 .848,.915 .542,.625 .248, .304
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Now we can look at the auto maker or three country alliance problem. The

utility functions in this problem are summarized by the following:

1 ~ 0
¥y 1 0
0 0 1

These yield the following first order conditions:

0 re]” (1 -45) ra]”!
rzy (1 - 79) 0 rzy”!

TR R

N

rx;_l rr;'l 0

4&“‘1‘5}”‘1‘&)L
1
TN
bt
~———

“»

r

This problem cannot be solved analytically either. Once again. I present equilibrium
contributions which were calculated numerically for various r values and levels of
publicness. In table 4.2, the first value in each cell is the equilibrium contribution
by Players I and II, and the second value is the equilibrium contribution of Player

II1.

Table 4.2 — Equilibrium Contributions in the Auto Maker Game

r\v 0 25 5 .75
5 111,.111 .095,.148 .082,.184 .071,.218
222,.222 .189,.237 .163,.245 .142,.249
5 1.11,1.11 .941,.99 .816, .885 711,.795

Tables 4.1 and 4.2 do not yield surprising results.

As r increases there is

more rent-seeking expenditure which is the same result Tullock obtained. It is
interesting to note as r increases there is a point where the person in the middle
house contributes more than each of the players on the ends in the streét lvight
problem. Also, we can see as the degree of publicness in the prize increases there
will be less rent-seeking. An interesting result from table 4.1 is total expenditures

may be less than the value of the prize to a single player if « is close to one, even for
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large values of r. This contrasts with Tullock’s results when the prize is a private
good. I should note, however, if the sum of the three contributions from tables 4.1
and 4.2 exceed the common valuation, these are not equilibrium outlays. In these

instances no equilibrium exists in this game.!?

Summary

The framework developed here can handle a large number of problems in which
there is publicness in the prize over which competition arises. We have been able to
analyze specific situations in this section because of the symmetry of the problems.
However, this framework is much more general. If we can identify the valuation
matrix we will generally be able to solve for the equilibrium contributions which
result from the non-cooperative game if we use Tullock’s probability function with
r=1.

It is clear adding “publicness” to the rent-seeking problem means less expendi-
ture for the prize. In the cases I have examined, the prize has a common value. This
analysis serves two basic purposes. First, it shows if we consider the public nature
of the prizes in rent-seeking games there may be less socially wasteful expenditure
than Tullock first argued. Second, it provides a useful framework for analyzing
political and military competition.

An excellent example of where this sort  analysis can be useful is in analyzing
expenditures among countries with common goals. This provides evidence in sup-
port of Olson and Zeckhauser’s paradoxical conclusion which we described in this
section. The fundamental difference between this model and what has been done
previously in the theory of alliances is the models of Olson and Zeckhguser and
others are partial equilibrium in nature.!! A country’s demand for defense or secu-

rity expenditures is derived from an exogenously given threat in the other models.

10 See Tullock (1980) for the details of this problem and his results.

11 Some of the more important papers in this literature are Sandler (1977), Sandler and Forbes (1980),
Murdoch and Sandler (1982,1984).
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Here we begin to address the problem which arises when we try to see how enemy
expenditures are derived. We have shown changes in valuations or publicness alter
the equilibrium outlays for all players. As far as I know, no other models have been

developed which address variations both inside and outside the interest groups.

This model of competitive and cooperative rent-seeking behavior can easily
be used as a model of political activity. Now, instead of nations, the players are
lobbying organizations. This model provides insight into how players choose the
level of expenditure for rent-seeking activities. If the benefits are public goods, we
can expect to see little expenditure. However, if the benefits are specific to a player,

we should see much more rent-seeking behavior in equilibrium.

Conclusions

In this essay I have considered two basic extensions to the rent-seeking models
originated by Tullock and refined by others. I analyzed a rent-seeking game which I
assumed was played sequentially, and I allowed players to have valuations described
by vectors in an imperfectly discriminating game. The last topic extended work
primarily done by Hillman and Riley.

In the sequential game we found the equilibrium total expenditures can be
greater or less than those in the simultaneous move game depending on which
player goes first. This has implications for the holder of the contest. We also found,
contrary to what we see in duopoly theory, it may not be strictly beneficial to go
first in these contests. If both players have the same valuation for the prize, it
makes no difference who goes first. I also showed how the game can be extended to
situations of incomplete information.

In the third section, I described a model where there is some degree of pub-
licness in the prize. In other words, a player is not indifferent as to who wins the
prize if he doesn’t. I looked at specific formulations which could be handled ana-

lytically. In this framework we can verify Olson and Zeckhauser’s conjecture that
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a decrease in the coincidence of interests may not decrease the effectiveness of an
alliance. In other words, as the “publicness” parameter increased for one common
interest group in these models, that interest group pecame less likely to win. I
also described some numerically generated results based on different valuations and
probability functions.

This essay examined rent-seeking behavior in situations which haven't been
considered explicitly before. We can see the amount of rent-seeking expenditure
depends on the structure of the game. The framework developed here can be used

to analyze many different problems of this type.
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