
REPORT DOCUMENTATION PAGE [r 0pp00d88

Public reporting burden for this collection of information is estitmated to average 1 hour per response, including the time for reviewing instruction$. searcrnii existing data sources.,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or an other aspect of this
collection of information, including suggestions for reducing this burden. to Washington Headquarters Services, Directorate ror information Operations and Reports, 12t5 Jefferson
Davis Highway. Suite 1204. Arlington. VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188). Washington. DC 20503.

1. AGENCY USE ONLY (Leave blank) 12. REPORT DATE 3. REPORT TYPE AND DATES COVERED

! 19901 Thesis/B1 * X x
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

THE EFFECT OF SOFTWARE REUSABILITY ON INFORMATION THEORY
BASED SOFTWARE METRICS

q~ 6. AUTHOR(S)

CWILLIAM R. TORRESIN

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT Student at: Oklahoma State University AFIT/CI/CIA -90-61

1. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AFIT/CI AGENCY REPORT NUMBER

Wright-Ptatterson AFB OH 45433

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for Public Release lAW AFR 190-1
Distribution Unlimited
ERNEST A. HAYGOOD, ist Lt, USAF
Executive Officpr, Civilian Institution Programs

13. ABSTRACT (Maximum 200 words)

DTIC
ELECTE.

SAUGO 1 MOD

14. SUBJECT TERMS 15. NUMBER OF PAGES

246
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT 1 OF THIS PAGE 1 OF ABSTRACT

UNCLASSIFIED 1_ _ _ _

N 7540-01-280-55001 Standard Form 298 (Rev 2-89)N~~~~~~~~~N~~Po 70--8050 7 j i nribried by ANSI S~id 139-18

THE EFFECT OF SOFTWARE REUSABILITY ON

INFORMATION THEORY BASED SOFTWARE METRICS

William R. Torres, Capt, USAF

Date of Degree: July, 1990 Pages in Study: 246

Degree Awarded: Master of Science
in Computing and Information Science

Institution: Oklahoma State University

ABSTRACT

The main purpose of this thesis is to theoretically
investigate the effect of reusing software on metrics that are
based on the entropy function of communication information
theory. R. Chanon's Entropy Loading and E. Chen's Control
Structure Entropy were applied to C and Ada programs obtained
from the open literature. Four units of program decomposition
(statement, component, module, and program) along Chanon's
definition of an object were introduced to classify software
reuse units. A total of three versions for each of the programs

included in the .udy were considered (i.e., optimum reuse,
intermediate re-,e, and no reuse). The lines of code metric was
utilized to quantify the amount of nonreusable code in each of
the versions of the programs. The lines of code metric was not
applied to the "reused" segments of code since they are not
considered part of the effort of writing the new program.
Pearson product-moment correlations were computed between the
metrics studied and the lines of code metric.

Entropy loading was found to be inversely proportional to
the amount of reuse present in the programs. Strong correlations
were found between entropy loading and the size of the resulting

new program, measured by the lines of code metric. Consequently,
entropy loading can presumably provide a mechanism for selecting
the optimum reuse case among different possibilities for reuse.
Control structure entropy was also found to be a good indicator
of reuse. Strong correlations exist between control structure
entropy and the size of the resulting new program.

90 ~<

THE EFFECT OF SOFTWARE REUSABILITY ON

INFORMATION THEORY BASED SOFTWARE METRICS

William R. Torres, Capt, USAF

Date of Degree: July, 1990 Pages in Study: 246

Degree Awarded: Master of Science
in Computing and Information Science

Institution: Oklahoma State University

ABSTRACT

The main purpose of this thesis is to theoretically
investigate the effect of reusing software on metrics that are
based on the entropy function of communication information
theory. R. Chanon's Entropy Loading and E. Chen's Control
Structure Entropy were applied to C and Ada programs obtained
from the open literature. Four units of program decomposition
(statement, component, module, and program) along Chanon's
definition of an object were introduced to classify software
reuse units. A total of three versions for each of the programs
included in the study were considered (i.e., optimum reuse,
intermediate reuse, and no reuse). The lines of code metric was
utilized to quantify the amount of nonreusable code in each of
the versions of the programs. The lines of code metric was not
applied to the "reused" segments of code since they are not
considered part of the effort of writing the new program.
Pearson product-moment correlations were computed between the
metrics studied and the lines of code metric.

Entropy loading was found to be inversely proportional to
the amount of reuse present in the programs. Strong correlations
were found between entropy loading and the size of the resulting
new program, measured by the lines of code metric. Consequently,
entropy loading can presumably provide a mechanism for selecting
the optimum reuse case among different possibilities for reuse.
Control structure entropy was also found to be a good indicator or
of reuse. Strong correlations exist between control structure
entropy and the size of the resulting new program.

UrlftzloLtaced
Justtfication

By_
Diptribution/

Availability Codes

Ivii and/orDit special

THE EFFECT OF SOFTWARE REUSABILITY

ON INFORMATION THEORY BASED

SOFTWARE METRICS

By

WILLIAM R. TORRES

Bachelor of Science

in Electrical Engineering

University of Puerto Rico

Mayaguez, Puerto Rico

1985

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of

the requirements for
-he degree of

MASTER OF SCIENCE
July, 1990

THE EFFECT OF SOFTWARE REUSABILITY

ON INFORMATION THEORY BASED

SOFTWARE METRICS

Thesis Approved:

Thesis Adviser

Dean of the Graduate College

ii

ACKNOWLEDGMENTS

I wish to express sincere appreciation to Dr. Mansur H.

Samadzadeh for his encouragement and advice throughout my

thesis research. His dedication and attention to detail

made all the work required to complete this thesis

worthwhile. Many thanks also go to Dr. G. E. Hedrick and

Dr. John P. Chandler for serving on my graduate committee.

My wife, Maria, and my daughters Maria C. and Diana B.,

encouraged and supported me all the way and kept me

motivated to achieve the end goal. Their love and support

made everything much easier. I also thank my parents,

William and Nelida, and my In Laws, Jose and Marian Setien,

for their support, encouragement, and many prayers.

iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION 1

II. LITERATURE REVIEW 3

2.1 Fntropy Function of Information Theory. 3
2.1.1 Entropy and the Software

Development Process 3
2.1.2 Information Theory Based

Metrics 5
2.1.2.1 Entropy Loading 5
2.1.2.2 Control Structure

Entropy 9
2.1.2.3 Additional Metrics. . 13

2.2 Software Reusability 15
2.2.1 Definitions 16
2.2.2 Advantages and Limitations . 17
2.2.3 Current Trends 19

III. DESCRIPTION OF THE EXPERIMENT 22

3.1 Design Approach 22
3.1.1 Introduction 22
3.1.2 Reuse Candidates 22
3.1.3 Theoretical Perspective and

Limitations 25
3.1.4 Coupling and Cohesion 27

3.2 Carrying out the Experiment 29
3.2.1 Quantifying Software Reuse . . . 29
3.2.2 Experiment Operation 30

3.2.2.1 Programs Developed to
Collect the Data 30

3.2.2.2 Data Collection 31
3.2.3 Programs Studied in the

Experiment 32
3.2.3.1 C Language Programs . . . 33
3.2.3.2 Ada Language Programs . . 35

IV. ANALYSIS OF THE MEASUREMENTS 39

4.1 Description of the Analysis 39
4.2 Entropy Loading Analysis 43
4.3 Control Structure Entropy Analysis. 44

iv

Chapter Page

V. SUMMARY, CONCLUSIONS, AND FUTURE WORK. 46

REFERENCES 49

SELECTED BIBLIOGRAPHY 53

APPENDIXES 54

APPENDIX A - PROGRAMS USED TO COMPUTE THE
METRICS 55

APPENDIX B - ADA PROGRAMS INCLUDED IN THE STUDY . 70

APPENDIX C - C PROGRAMS INCLUDED IN THE STUDY . 92

APPENDIX D - ENTROPY LOADING DATA TABLES 112

APPENDIX E - EXECUTION FLOW CHARTS FOR PROGRAMS
INCLUDED IN THE STUDY 193

APPENDIX F - MAXIMAL INTERSECT NUMBER (MIN)
CHARTS 200

APPENDIX G - METRICS STATISTICAL DATA 222

v

LIST OF TABLES

Table Page

I. Testbed Program Sources 32

II. Metrics Evaluated for Programs 41

III. Correlations Between Metrics 42

IV. Assumptions for the C Program fastfind,
Case 1 113

V. List of Assumption Numbers for Objects in the
C Program fastfind, Case 1 116

VI. Assumptions for the C Program fastfind,
Case 2 117

VII. List of Assumption Numbers for Objects in the
C Program fastfind, Case 2 120

VIII. Assumptions for the C Program fastfind,
Case 3 121

IX. List of Assumption Numbers for Objects in the
C Program fastfind, Case 3 124

X. Assumptions for the C Program mail, Case 1 . 126

XI. List of Assumption Numbers for Objects in the
C Program mail, Case 1 128

XII. Assumptions for the C Program mail, Case 2 . . 129

XIII. List of Assumption Numbers for Objects in the
C Program mail, Case 2 131

XIV. Assumptions for the C Program mail, Case 3 . . 132

XV. List of Assumption Numbers for Objects in the
C Program mail, Case 3 135

XVI. Assumptions for the C Program editor, Case 1 . 138

vi

Table Page

XVII. List of Assumption Numbers for Objects in the
C Program editor, Case 1140

XVIII. Assumptions for the C Program editor, Case 2 . 141

XIX. List of Assumption Numbers for Objects in the

C Program editor, Case 2 144

XX. Assumptions for the C Program editor, Case 3 . 146

XXI. List of Assumption Numbers for Objects in the
C Program editor, Case 3150

XXII. Assumptions for the Ada Program intlist,
Case 1153

XXIII. List of Assumption Numbers for Objects in the
Ada Program intlist, Case 1. 155

XXIV. Assumptions for the Ada Program intlist,
Case 2156

XXV. List of Assumption Numbers for Objects in the
Ada Program intlist, Case 2 158

XXVI. Assumptions for the Ada Program intlist,
Case 3159

XXVII. List of Assumption Numbers for Objects in the
Ada Program intlist, Case 3 161

XXVIII. Assumptions for the Ada Program calc, Case 1 . 163

XXIX. List of Assumption Numbers for Objects in the
Ada Program calc, Case 1164

XXX. Assumptions for the Ada Program calc, Case 2 165

XXXI. List of Assumption Numbers for Objects in the

Ada Program calc, Case 2167

XXXII. Assumptions for the Ada Program calc, Case 3 . 168

XXXIII. List of Assumption Numbers for Objects in the
Ada Program calc, Case 3170

XXXIV. Assumptions for the Ada Program address,
Case 1172

XXXV. List of Assumption Numbers for Objects in the
Ada Program address, Case 1 176

vii

Table Page

XXXVI. Assumptions for the Ada Program address,
Case 2 177

XXXVII. List of Assumption Numbers for Objects in the
Ada Program address, Case 2 181

XXXVIII. Assumptions for the Ada Program address,
Case 3183

XXXIX. List of Assumption Numbers for Objects in the
Ada Program address, Case 3 189

viii

LIST OF FIGURES

Figure Page

1. Maximal Intersect Number Examples 10

2. Execution Flow Chart for the C Program fastfind . 194

3. Execution Flow Chart for the C Program mail 195

4. Execution Flow Chart for the C Program editor . . . 196

5. Execution Flow Chart for the Ada Program intlist. 197

6. Execution Flow Chart for the Ada Program calc . . 198

7. Executicn Flow Chart for the Ada Program address. 199

8. Maximal Intersect Number Chart for the C Program
fastfind 201

9. Maximal Intersect Number Chart for the C Program
mail 204

10. Maximal Intersect Number Chart for the C Program
editor 208

11. Maximal Intersect Number Chart for the Ada Program
intlist 212

12. Maximal Intersect Number Chart for the Ada Program
calc 214

13. Maximal Intersect Number Chart for the Ada Program
address 217

ix

"1

CHAPTER I

INTRODUCTION

The notion of reusing software dates back to the early

stages of the history of computing when subroutine libraries

were developed [SOMME89].

The advantages and limitations of software reuse have

been widely publicized [BIGGE87, BOLDY89, PRIET87, RATCL87,

and SOMME89]. In particular, it is clear that the extensive

reuse of software is likely to reduce software costs during

the design and implementation phase (software already exists)

and during the validation phases (software has already been

checked) [SOMME89].

The main purpose of this thesis is to theoretically

investigate the application of software quality assessment

metrics to development environments that employ reuse

techniques and principles in the construction of software

systems. In particular, the effect of reusing software on

the metrics that are based on the entropy function of

communication information theory will be investigated.

The following chapters define the metrics used in this

study, describe the experimental design including how the

datawere collected, discuss the analysis of the measure-

2

ments, and summarize and conclude with recommendations for

future work.

CHAPTER II

LITERATURE REVIEW

2.1 Entropy Function of Information
Theory

2.1.1 Entropy and the Software
Development Process

In communication information theory, information is

defined as "what we don't know about what is going to happen

next" [SHANN64). Information theory presents entropy as a

synonym for information uncertainty or unpredictability.

Therefore, entropy can be used as a measure of information.

When an attempt is made to predict the outcome of an

event, uncertainty approaches zero as the probability of an

outcome approaches unity. On the other hand, uncertainty,

as a function of the number of different things that can

happen, reaches its maximum value when all the outcomes have

the same probability of occurrence (i.e., in the case of

equiprobable events). In other words, the more unpredicta-

ble the output of a system, the more information it yields

upon occurrence and the higher the entropy of the system,

and vice versa. The entropy function, H, which measures

information in bits is defined as

3

4

n
H(p 1 , P2, "'', P.) =Z pi log2 (1/pj) (1)j=1

where pj is the probability of occurrence of the jth event.

van Emden [VANEM70] defines a system as a set of

variables influencing one another. A challenge often faced

by software designers when designing a system is managing

the complexity resulting from the presence of a large number

of variables and the fact that most of them influence many

,-thers. To alleviate this problem, Alexander [ALEXA64]

states that a system composed of a set of variables, S,

should be partitioned into subsets or subsystems

(S1, S2, ... , Sj, ... , S.) in such a way that the

interactionsI among subsystems should be minimized with

respect to the interactions within a subsystem. This

partitioning process allows for the variables in Sj to be

manipulated freely without constraints imposed by any of the

other subsets.

If a program structure could be decomposed into

distinct classes of subsystems, the information contained in

the structure can be measured [MOHAN79, MOHAN81, and

VANEM70] by the entropy metric, H, based on Shannon's

communication information theory [SHANN64]. More specific-

ally, the entropy metric H is defined for a system S as

n
H(S) = H(Pi,. .,Pn) = Z { (x12/IX)logX(IxI/IXj))

j=l

IAn interaction is viewed as an information transfer

within or among subsystems [ALEXA64].

5

or by simple algebraic manipulation

n
H(S) = log2 X - 1/1X1 Z (jX j 11og 2 1X j1) (2)

j=1

where X1, X2, ... , Xn are the distinct classes of

subsystems, I XjI denotes the cardinality of the set X., and

Pi = IXjl/IXl.

2.1.2 Information Theory Based Metrics

Software metrics are usually categorized as either

process metrics or products metrics. Process metrics are

defined by Conte et al. [CONTE86] as "metrics that quantify

attributes of the development process and of the development

environment." Conte et al. also define product metrics as

"measures of the software product."

Product metrics are the most common metrics since they

are easier to obtain as they "can be derived from analyzing

the software itself using an automatic tool" [CONTE86].

Examples of product metrics include size of the product

(lines of code), logic structure complexity (e.g., flow

control and depth of nesting), and data structure complexity

(number of variables used) [CONTE86].

Information theory based metrics can be classified as

product metrics. The following subsections discuss various

information theory based metrics.

2.1.2.1 Entropy Loadin . Section 2.1.1 described how

we can use the entropy metric to measure the information

6

contained in a system. Using the same basic principles, we

can use the entropy loadng measure, as described by Chanon

(CHAN073], "to measure the information shared among

subsystems, as opposed to the information contained in each

subsystem."

According to Chanon [CHANO73], the term interaction,

means "a shared assumption among two or more objects" where

objects are defined as "an identified portion of a program

that has net effects." The following is a list of

assumptions identified by Chanon.

1. Relationships that must hold prior to the
execution of an object in order for its effects to
be realized.

2. Data structures or data values.

3. Assumptions about the environment in which an
object is executed, such as frequency of usage or
order of computation.

4. Assumptions based on mathematical theorems
that are relevant to the problems being solved.

Once all the assumptions have been identified, they can be

recorded in what Chanon calls an object/assumption table.

For a given program, such a table, T, is defined for all

objects, I, and assumptions, J, such that

1, if object I makes assumption JT(I,J) =

0, otherwise

According to van Emden [VANEM70] and as demonstrated by

Chanon [CHANO73], the data contained in the object/assump-

tion table characterizes the extent to which collections of

7

objects interact. This data is used in the calculation of a

measure which van Emden and Chanon call entropy loading.

Entropy loading is defined for a set of rows, S, in an

object/assumption table at a given time in the development

of a system.

Assume that S is partitioned into subsets A and B such

that A n B = 0 and A U B = S. Then C(S), the entropy

loading of S, is given by

C(S) = H(A) + H(B) - H(S) (3)

where H(X) is given by the entropy metric mentioned in

Equation (2).

Suppose the table T of objects and assumptions is given

as

a b c d e f
(1 1 0 0 0 0 0

A 2 0 0 0 0 0 1
S 3 0 0 0 1 0 0

4 0 1 0 0 1 1
5 0 0 1 0 1 1
6 0 0 0 0 1 0

where A and B are subsets of the object set S, and a through

f are the assumptions. For example, for row 1, the entry 1

indicates that object 1 (an element of A) makes one assump-

tion, a. H(A) is computed by considering the columns for

which the entry for any object of A is 1, i.e., a, d, and f.

In the submatrix composed of the columns a, d, and f, (100)

occurs once, (001) occurs three times, (010) occurs once,

and (000) occurs once. The total number of objects is six.

Therefore, using Equation (2), we have

8

H(A) = 1og 26 - 1/6[ilog 21 + 31og 23 + llog21 + llog2 1]

or

H(A) = 1og 26 - 1/6[31og 23] = 1.79

Similarly,

H(B) = 1og 26 - 1/6[21og 22] = 2.25

Since 1 occurs in each column at least once and each row is

different, thus

H(S) = 1og 26 = 2.58

and

C(S) = H(A) + H(B) - H(S) = 1.46

Chanon [CHAN073] demonstrated that programs that

possess small entropy loadings also possess properties

consistent with the principles of "good" structure stated by

Alexander [ALEXA64], Dijkstra [DIJKS72], Parnas [PARNA71],

and Simon [SIMON62] as follows:

1. The information required to study, understand,
and verify individual parts of a system is
supplied in conjunction with those parts, and
relatively little information about the rest of
the system is required.

2. Single parts can be changed drastically
(algorithms and/or data structures) without
requiring much knowledge of the rest of the system
and without changing the rest of the system; i.e.,
drastic changes can actually be confined to single
parts.

3. Should an error occur as a result of the
failure of one small part to function correctly,
the error can be localized to that part of the
system quickly and easily, permitting the error to
bc repaired using only a knowledqe of that part.

4. During system construction, each working group
can be given an assignment to write a set of parts
such that the assignment can be completed with
very little communication between the groups.

9

Based on the aforementioned discussion, entropy loading

can be used as a quality assessment metric to determine how

"good" a program is, when compared to other input/output

equivalent programs or different versions of the same

program.

2.1.2.2 Control Structure Entropy. Chen [CHEN78]

defines a measure of program control complexity based on an

information theoretic viewpoint. Given a strongly-connected

proper flow chart2 which results from structured

programming, Chen defines the maximal intersect number, MIN,

as "the maximum number of edges which can be intersected by

a continuous line drawn such that the line never enters any

region, including the external region, more than once."

Chen utilizes three basic types of control structures

[CHEN78] to obtain MIN from the charts: 1) SEQUENCE, 2) IF p

THEN f ELSE g, and 3) WHILE p DO f. These structures are

shown in Figure l.a.

If a flow chart or graph is not strongly connected, but

can be visualized as consisting of more than one strongly-

connected subparts connected in series, MIN can be obtained

from

n
MIN = Z MINi - 2n + 2 (4)

i=l

2A flow chart is strongly connected if there is a path
from node a to node b for every pair of distinct nodes a and
b [CONTE86]. A flow chart is proper if each node can be
reached from the entry point of the program and if each
control structure has only one entry and one exit [SHOOM83].

10

:)

LU LU

CI

E

m

L7 L.~

LUL
L)CI

LU L

-. LL -

U--

oo
LL

bbO

LU

LU
C4- -

11

where n is the number of strongly-connected subparts and

MINi is the MIN for the ith strongly-connected subpart.

Figure l.b illustrates an example obtained from [CHEN78] in

which two weakly connected subparts with MIN's equal to 4

and 5, respectively, yield a MIN equal to 7 for the combined

chart (i.e., 4 + 5 - 2(2) + 2 = 7).

The attribute MIN can also be computed analytically

from the expression MIN = Zn + 1 where Zn is given by the

following formula

n
Zn = 1 + Z log2 (2pj + qj) (5)

j=2

where n is the number of decision symbols on the flow chart

or graph, q, is the probability that the jth IF symbol is

forming a serial relation with any of its preceding and

adjointed3 IF symbols, and pj = 1 - qj. For a given flow

chart, q, is either 1 or 0 depending on whether it is in the

specified serial relationship. Considering the left subpart

in Figure l.b (three IF symbols), we have that P2 = P3 = 1

and q2 = q3 = 0 since neither IF symbol is serially

connected to their preceding IF symbol. Consequently we

have that

Z3 = 1 + iog 2(2 + 0) + iog 2(2 + 0) = 1 + 1 + 1 = 3

thus

MIN = Z3 + 1 = 3 + 1 = 4

3Adjointed IF symbols are two IF symbols which can be
connected without passing through any vertices (nodes) which
belong to a third IF symbol [CHEN78].

12

which is the same result obtained earlier.

Chen describes a programmer to be (in information-

theoretic terms [SHANN64)) a "channel" who is to handle

information from a program specification or problem

statement described as the "source." A source of informa-

tion is characterized by the variety of output symbols that

it produces. In this case, the output is a sequence of IF

symbols. The other components of a proper flow chart, i.e.,

function nodes and collecting nodes are considered and

ignored because function nodes do not contribute to the

branching or nesting structure of a flow graph and

collecting nodes are merely converging points for the

branches of the corresponding decision points.

Zn is defined as the control structure entropy of an

information source when it emits n IF symbols. This control

structure entropy is a measure of the control variety of a

source's output and is correlated with the conceptual

complexity of the program [CHEN78]. The higher the Zn's

value, the more complex the program is. In fact, MIN was

originally proposed to address some of the deficiencies of

McCabe's cyclomatic complexity measure [MCCAB76].

For a given total number of IF symbols, the programming

job can be modeled [CHEN78) by the task of determining the

exact flow chart structure which will determine the ps's and

qj's in Equation (5). An approximation to Equation (5) can

be obtained by assuming pj = qj = 1/2 [CHEN78]. Substitu-

ting these values in Equation (5), we have

13

Zn Z (n - 1)1og 23 - n + 2. Given the number of IF symbols

that a program is to have, Z, can be calculated easily since

it only depends upon n.

Based on the work by Chen [CHEN78], control structure

entropy can be used as a quality assessrent metric to

determine how "complex" a program is, when compared to other

programs or different versions of the same program.

2.1.2.3 Additional Metrics. In addition to the

entropy loading and control structure entropy metrics, other

information theory based software metrics have been proposEd

by, among others, E. Berlinger, M. H. Samadzadeh and W. R.

Edwards, and T. T. Lee.

Berlinger [KERLI80] proposed the following information

theory based complexity measure. Given a program, he counts

the frequency, f, of all tokens in the program. Berlinger

also assumed that the probabilities of the occurrence of the

tokens used in the program are known. The complexity

measure, M, is defined as

n
M = -E fj log2 pj (6)

j=1

where n is the total number of distinct tokens, and fj and

pj are the frequency and probability of occurrence of the

jth token, respectively.

Berlinger [BERLI80] presents two interpretations for

this measure. First, from an information theory point of

view, assuming the program to be a message, the measure

14

represents the total information contained in the program.

Second, the measure represents the total length in bits

required to encode the program assuming that each token is

to be coded using a uniform encoding scheme.

One problem with this measure is that the p,'s need to

be accumulated over a period of time at the installation

where the new program is to be written. Consequently, the

measure is of little help to a programmer at a different

installation where the possibility of a completely different

set of pj's exists. This makes two purportedly similar

programs, written in two different installation, incompara-

ble.

Samadzadeh and Edwards presented a model that regards

the understanding process of software as a process of

grouping together the tokens of a software document (either

distinct tokens or all of the tokens) that have certain

characteristics in common [SAMAD88]. According to the

authors, "this model captures the amount and some of the

structure of the information present in the software

document." A simple example is the classification of

program tokens into operators and operands, as originally

used by Halstead [HALST79].

The measure, denoted as R, is called residual complex-

ity. This measure is based on the difference between the

maximum value of the computational work and the computatio-

nal work, w, of a partition, r which is the result of

classifying a piece of software into q token types. The

"1

15

residual complexity can be obtained from the equation

R = N log 2 N - N H(NI/N, N2/N, ... , Nq/N) (7)

where N is the total number of tokens, Ni is the number of

tokens in the it' block of the partition, and H is the

entropy function.

Lastly, Lee [LEE87] uses Shannon's information

theoretic entropy metric to quantify the information

associated with a set of attributes. An attribute is a

symbol taken from a finite set n = (Al, ..., A,) (LEE87).

For each attribute Aj, 1 - j n, there is a set of possible

values, denoted DOM(AJ), which comprise its domain.

Database design is based on the concept of data dependency,

which is the interrelationship between data contained in

various sets of attributes [LEE87]. In particular, Lee

[LEE87] states that functional, multivalued and acyclic join

dependencies play an essential role in the design of

database schemas. Lee proves that data dependencies can be

formulated in terms of entropies making the numerical

computation and testing of data dependencies feasible.

2.2 Software Reusability

The notion of software reuse has been around since the

early stages of the history of computing when the main

motivation for the development of subroutine libraries was

software reuse [SOMME89]. Software reuse has also been

associated with software portability. According to

Somnerville [SOMME89), "porting a program to another

16

computer can be considered an example of software reuse

although it is possible to reuse a program which is not

portable and can only run on a single computer."

2.2.1 Definitions

Reusability is, as defined by Wegner [WEGNE83], "a

general engineering principle whose importance derives from

the desire to avoid duplication and capture commonality in

undertaking classes of inherently similar tasks." In the

title and body of this thesis the notion of reusability has

been used with Wegner's definition in mind.

Prieto-Diaz [PRIET87] defines reuse as "the use of

previously acquired concepts and objects in a new situation"

and reusability as "a measure of the ease with which one can

use those previous concepts and objects in the new

situation." Consequently, in order for software reusability

to be beneficial, the effort to reuse a piece of software

needs to be smaller than the effort required to develop the

software from scratch.

Conceptual complexity and size are two common and

related software problems. As these problems continue to

loom larger, software reuse and reusability is starting to

be looked upon as a possible solution; as demonstrated by

the increasing attention it has received in the last seven

to ten years. In spite of this fact, not a lot of effort

has been devoted to standardizing and implementing reuse by

major companies in the USA. On the other hand, Matsumoto

17

[MATSU84] demonstrated that Japanese industries had been

reusing software for the past six to seven years.

2.2.2 Advantages and Limitations

When we think of software reuse, one of the first

things that comes to mind is the reductions in cost as the

number of components that must be specified, designed,

implemented, and tested is reduced. However, Sommerville

[SOMME89] states that "it is difficult to quantify the

actual cost reductions attained by reusing software; if in

fact there are any." The number of applications where code

can be reused without any modification whatsoever is very

small. Nevertheless, cost reduction is not the only

advantage of software reusability. Some of the other

advantages of software reusability are mentioned below.

Software reuse increases system reliability [LUBAR86b

and SOMMER89]. It is widely accepted that operational use

adequately tests software components, and reused components,

which have been previously in operational use, should be

more reliable than brand new components. Also, if a

component is originally developed to be reusable, Freeman et

al. and Lubars [FREEM83 and LUBAR86b] state that "the

debugging costs can be amortized among the products that

reuse the component."

As a result of software reuse, programming resource

utilization can be improved [SOMMER89]. The availability of

reusable software allows for a better distribution of

18

programming resources since not all the code needed is to be

developed anew. Sommerville states that "application

specialists can develop higher reusable components that

encapsulate their knowledge."

Another advantage is the reduction in software

development time [SOMMER89]. Reusing components speeds up

system production because both development and validation

time should be reduced.

However, as expected, software reusability is not a

perfect science and there are limitations that must be kept

in mind. This is specially true since some researchers

think that the limitations and disadvantages outweigh the

advantages.

The first problem is what to do with a piece of

software once it has been determined that it is a candidate

for reuse. In a recent article, Tracz [TRACZ88] presents

his "Golden Rules of Reusability." Tracz says that "before

you can reuse something, you need to find it, know what it

does, and know how to reuse it", which go along with the

need for means of cataloging, classifying, and retrieving

software components.

Lubars [LUBAR86a) describes the problem of finding a

desired piece of reusable code as the most significant

technical barrier to code reusability. The problem of

software classification has been addressed by Prieto-Diaz

and Freeman [PRIET87] where they attempt to rank reusable

software components using a reuse effort estimation metric.

19

Another problem is the not-developed-here syndrome

experienced by some programmers and reflected in some

company policies that do not allow non-local programs to be

utilized. They prefer to write their own code because they

believe that they can improve on the reusable component.

But even if this is true, Cheatham and Sommerville [CHEAT83

and SOMMER89] state that "it is at the expense of greater

risks and higher costs."

The last limitation we are concerned with involves the

reusable code itself. Researchers are concerned about how

specific or, on the other hand, abstract the code needs to

be before reuse pays off. This topic is discussed in the

next section on current trends.

2.2.3 Current Trends

There are two main schools of thought on software

reusability [BIGGE87 and PRIET87]. The first one promotes

the reuse of ideas and knowledge acquired while developing

software, while the other promotes the reuse of particular

artifacts and components. Although the second approach is

more popular, researchers disagree on how abstract the code

needs to be before it may be reused. Kernighan [KERNI84]

presents reuse at the program level utilizing the UNIX

pipe.

4UNIX is a Trademark of AT&T Bell Laboratories.

20

On the other hand, Matsumoto [MATSU84] promotes reusing

modules defined in higher levels of abstraction to increase

the scope of the reusable code. According to Matsumoto,

"there are four levels of specification: requirements,

design, program, and source code." A module, when

originally conceived, is transformed from the requirements

level, into the design level, the program level, and finally

into the source code level. When a module is to be reused,

the requirements level of the new module is compared to the

requirements levels of previously designed modules and when

a match is found, a trace is made from the requirements

level to the source code level through previously made

transformations to reuse the source code.

Other researchers that promote the use of higher

abstract levels for software reusability include Kaiser and

Garlan, Goguen, and Cheng et al. Kaiser and Garlan

[KAISE87] promote the use of Meld, "a language that blends a

package library, automatic software generation, and

object-oriented programming approaches to reusability." In

their approach, a software system that needs to be developed

is written in Meld and then translated into the desired

implementation language.

Goguen [GOGUE86] presents a "library interconnection

language," called LIL, to assemble large programs from

existing entities by combining Ada5 programming language

5Ada is a Trademark of the U.S. Department of Defense
(Ada Joint Program Office).

21

specification parts with commands for interconnecting

components to form systems. In a somewhat different

approach, Cheng, Lock, and Prywes [CHENG841 present a very

high level language, Model, which acts as a program gene-

rator to allow the nonprogrammer professional to design a

system by solely describing the data interrelationships

without referencing any computer operations. The result,

according to Cheng et al., is "a language that is free of

the conventional programming control and flow concepts, and

is thus simpler and easier to use."

CHAPTER III

DESCRIPTION OF THE EXPERIMENT

3.1 Design Approach

3.1.1 Introduction

In this study the intent is to explore theoretically

the effects of software reusability on Chanon's entropy

loading metric [CHAN073] and Chen's control structure

entropy [CHEN78). But before either calculation can be

applied, we need to establish some guidelines for

identification of the "program parts" that are to be reused.

This is needed because a program part is not defined in

Chanon's definition of an object [CHANO73], in fact, it is

left, apparently intentionally, an unspecific and generic

concept (See Chapter II for a discussion of Chanon's entropy

loading metric).

3.1.2 Reuse Candidates

Even though program decomposition or partitioning is,

in general, language and application dependent, we define

four units of program decomposition which are objects that

can be considered to be along Chanon's object definition,

22

23

are visible I to one another, and can be candidates for

reuse. These units of decomposition are statements,

components, modules, and the obvious one-block . rtition,

the program itself. The definitions of the four units of

decomposition follow.

The first unit of decomposition is a statement which is

the lowest level at which reuse will be considered and is

defined as any executable instruction of a program which

makes assumptions about, and is visible to, any other object

in the program. Executable instructions that do not make

assumptions are not considered statements, e.g., NEWLINE in

Ada or printf("\n") in C. These instructions do not depend

on any other instruction for their execution.

The unit of the next higher level decomposition is a

component. A component is a collection of one or more

contiguous statements having a name and represented by the

implementation of a procedure or algorithm. None of the

statements in a component are visible to any other object.

The only assumptions that a component can make are about the

parameters passed to it when invoked or the visibility of

other objects and/or global variables. Examples of

components are functions in C, and procedures and functions

in Ada.

A module is a unit of decomposition or a candidate for

1An object, a, is visible to any other object, b, if b is
in control of program execution and control of execution can
be transferred from object b to a.

24

reuse above the component level. A module is a collection

of components which also has a name and can be invoked by

any other object. Analogously to the component, none of the

components inside a module are visible to any other object.

The only assumptions that a module can make are about the

parameters passed to it when invoked or the visibility of

other objects and/or global variables. Examples of modules

are procedures and packages in Ada and functions in C.

The highest level of decomposition or reuse is

obviously the program itself. An entire program is the

highest level at which reuse can occur. A program is

defined as a collection of modules. It is an extreme case

since it is the only block in the partition.

The four definitions offered above for an object are

not supposed to be rigid prescriptive units of reuse. They

are merely the easily recognizable milestones along the

decomposition spectrum. In other words, a candidate for

reuse can consist of a mixture of the above-mentioned units.

Other possibilities for reuse candidates are plans and

delocalized plans [LETOV86]. These are stereotypic action

sequences in a program which are not necessarily contiguous

segments of code. However, because of the absence of a

standard or a widely-accepted set of criteria for

identification of plans across programming languages and

application areas, only a brief abstract treatment of

non-contiguous "program parts" is mentioned in the next

section.

25

3.1.3 Theoretical Perspective and
Limitations

Now that we have defined the possible ways in which the

objects in a program can be identified, we need to find a

way to relate these objects to program reusability. But

before we do that, we need to establish a basis for

comparison. Assume that there is a program, S, consisting

of nm modules, nc components, and ns statements. Modules are

composed of components and components are composed of

statements. Consequently, in general, to keep the potential

for reuse high, S can be considered as a set of modules plus

some components and even some individual statements.

We can study the reusability of a program, S, by

assuming that a new program, S', is to be written and that

we can identify a set of existing program parts (statements,

components, and/or modules) that can be included in S' thus

saving the effort of writing them from scratch. In this

manner, we can model or simulate the alternative to writing

new code which is reusing an "existing" portion of code as

it can be obtained "off the shelf."

The basic case can be established by removing the

barriers from all modules and components in S, i.e.,

allowing all of the statements to be visible to one another.

In this case, we attempt to simulate a worst case scenario

in which the program has been developed from scratch. A

case where a programmer was asked to write the entire

26

program without the option of reusing any modules or

components.

At the other extreme, we can model an optimum reuse

case where the programmer was asked only to write the main

program statements and had the opportunity of reusing all

the other independent modules and/or components that exist

in the program.

Now that we have described the boundary cases for our

study of reusability, we can describe a third case which

seems to fit inside our reusability spectrum. A case in

which the programmer is asked to developed the main program

statements along with the statements for some of the

components anew, and has the option of using new modules

that combine some of the original components. This generic

case brings out the problem of determining which of

the statements, components, and/or modules are the best

candidates to be "reused".

In general, we have a partition, 7r, on a program, S,

defined as a collection of disjoint and nonempty subsets of

statements in S whose union is S, i.e., r = (B,), a C I

where I is an indexing set, such that Ba A 4, for all a e I,

Ba n B. = for a X B, and U (B,) = S where a E I. We refer

to the sets in r as blocks of r [HARTM66]. For example, if

S is a set consisting of 4 elements, S = (1,2,3,4), we can

see that r can be written in 8 different ways if the element

sequence is to be preserved, i.e., ((1),(2),(3),(4)),

{ {1,2), {3),({4)), {{i), {2,3), {4)), ((1),(2),(3,4)),

27

((1,2),(3,4)), ((1,2,3),(4)), ((1),(2,3,4)), and

{(1,2,3,4)). Thus, as the size of S increases, the number

of ways in which r can be written increases much faster.

To have an intuitive appreciation of the above-

mentioned increase, consider the problem of the number of

partitions of an integer, p(n) [GROSS84 and HALL67]. p(n)

represents the total number of ways in which an integer,

n > 0, can be represented as a sum of positive integers if

he instances that differ only by the order of the summands

are not considered different. Each such representation is

called a partition of n. For example, p(4) = 5 (i.e.,

1+1+1+1, 1+2+1, 1+3, 2+2, and 4) while p(25) = 1958

[HALL67). Consequently, in a program with a large number of

statements, all the possible ways in which the statements

can be considered becomes prohibitively time consuming.

3.1.4 Coupling and Cohesion

To reduce the number of possible combinations of

objects, we use the notions of coupling and cohesion.

Coupling, as defined by Stevens, Myers, and Constantine

[STEVE74], is a measure of the strength of the association

established by a connection from, in this case, one object

to another. Cohesion is defined by Stevens et al. and

restated by Booch [BOOCH86] as how tightly bound or related

the internal elements within an object are to one another.

Stevens et al. [STEVE74] also state that "the fewer and

simpler the connections between objects, the easier it is to

28

understand each object without reference to other objects."

The complexity of a system is affected not only by the

number of connections but by the degree to which each

cnnnection couples two objects, making them interdependent

rather than independent. Thus coupling is reduced when the

relationships between objects are minimized or, in Chanon's

terms, when the number of assumptions that the objects make

is minimized.

One way to minimize coupling is to maximize the

relationships among elements within the same object, i.e.,

obtaining the objects that display the highest cohesiveness

[STEVE74]. Consequently, we can reduce the number of

possible statement combinations by combining into objects

the statements that possess the highest cohesiveness, thus

resulting in the lowest degree of coupling. Similarly, we

can combine into modules the components that possess the

highest cohesiveness.

Based on the aforementioned discussion on coupling, we

can now identify some realistic combinations of the

statements, components, and/or modules in the original

program that potentially can be selected for reuse to allow

us to compute the entropy loading and control structure

entropy of tne resulting program consisting of the reused as

well as original parts.

29

3.2 Carrying out the Experiment

3.2.1 ouantifving Software Reuse

The main objective of the experiment is to determine if

a relation exists between software reusability and the

information theory based metrics: entropy loading and

control structure entropy. The major problem is finding a

mechanism that can help us quantify the notion of software

reuse.

As mentioned in Chapter II, one of the benefits of

software reusability is the reduction in the amount of

software that needs to be written when software is available

for reuse. The amount of software reused can be correlated

with the amount of code that needs to be developed from

scratch for a given program. The more code that is

available for reuse, the less new code is needed for the new

program. Thus, intuitively, an inverse relation exists

between software reused and the amount of software needed to

be developed anew.

For this study, the lines of code metric2 was used to

quantify the amount of code that needs to be developed from

scratch. The lines of code metric was not applied to the

"reused" segments of code since they are not considered part

of the effort of writing the new program.

2A line of code is defined by Conte et al. [CONTE86] as
"any line of program text that is not a :omment or blank line,
regardless of the number of statements or fragments of
statements on the line."

30

3.2.2 Experiment Operation

The next two subsections explain the software tools

that were developed and used to collect the measurements.

3.2.2.1 Programs Developed to Collect the Data.

Because pre-written software packages that compute entropy

loading and lines of code metrics were not available,

software tools to collect the measurements had to be

developed. A total of three programs in C [KERiJ7Pl were

developed on a VAX 11/785 running ULTRIX 3 (see Appendix A

for program listings). The first program, called entlo5.c,

was developed to compute the entropy loading of a collection

of objects in a given program based on the set of

assumptions made by the objects as demonstrated by Chanon

[CHANO73]. In addition to the entropy loading, this program

also computes the average object entropy, system entropy

(H(S)), and the ratio of entropy loading to the total number

of objects. No program was developed to extract the

assumptions made by the objects in the programs. All

assumptions were manually extracted from the programs based

on Chanon's work [CHAN073] and are listed in Appendix D.

The other two programs, called loc_c2.c and loc_adal.c,

were developed to compute the lines of code metric for the C

and Ada language programs used in the experiment. Both

programs compute the lines of code metric as defined by

3VAX and ULTRIX are Trademarks of Digital Equipment
Corporation.

31

Conte et al. [CONTE86] but go one step further. The lines

of code was partitioned into three categories for the C

programs, namely, declaration lines, non-declaration lines,

and brace lines ("(" or ")" and no C statements). Ada lines

of code were partitioned into declaration and non-

declaration lines only. Declaration lines were extracted to

investigate if there is any relation between them and the

information contained in the objects (i.e., average object

entropy and system entropy). Additionally, a relation is

expected between the number of brace lines in C programs and

MIN since they are expected to correlate well with the depth

of nesting in programs.

3.2.2.2 Data Collection. A total of three versions

for each of the programs included in the study (see Section

3.2.3) were considered. These versions follow the guide-

lines for reuse established earlier as follows: version 1,

optimum reuse; version 2, intermediate reuse; and version 3,

no reuse. All metrics were applied to all three versions of

the programs.

The following convention was used to identify the

objects in the programs under study. All object numbers are

of the form A.4, C.0, or FHI.O. A.4 corresponds to the

fourth statement in function or procedure A, C.0 corresponds

to a component which identifies function or procedure C, and

FHI.0 corresponds to a module composed of components F, H,

and I.

32

All measurements, with the exception of the control

structure entropy, were collected on the VAX 11/785 running

ULTRIX. Control structure entropy, Zn, was the only metric

that was not computed using a program. This metric was

computed using the Maximal Intersect Number charts in

Appendix F and the equation

Zn = MIN - 1

where MIN is the Maximal Intersect Number determined from

the charts as demonstrated by Chen [CHEN78]. The object

numbers are shown inside the IF symbols in the charts in

Appendix F.

3.2.3 Programs Studied in the Experiment

A total of six programs obtained from the open

literature were studied in this experiment (see TABLE I and

Appendixes B and C). Three of the programs were written in

TABLE I

TESTBED PROGRAM SOURCES

Name Language Application Source

fastfind C string processing [MILLE87]
mail C database [SCHIL87]
editor C string processing [SCHIL87]
int_list Ada string processing [SHUMA89]
calc Ada numeric [MOHNK86]
address Ada database [MOHNK86]

33

C [KERNI78] and the other three in Ada [ADA83). A

noticeable difference between the C and Ada programs studied

was the number of compilation units. All C programs were

compiled as single units, while all Ada programs had two or

more compilation units per program.

The following subsections describe the main purpose of

each of the programs along with a description of the objects

used in the intermediate reuse case. The set of objects

used in the intermediate reuse case are chosen to be a

mixture of the three types of objects available.

3.2.3.1 C Language Programs. The first C language

program is a program called fastfind. The main purpose of

this program is to search through one or more files

containing ASCII text looking for a match for a character

string given as input. The input string may consist of any

sequence of up to eighty characters including spaces. The

output consists of the entire text line in which a match was

found for the input string preceded by the name of the file

to which the text line belongs if more than one file was

specified.

The fastfind program consists of a main program and six

functions (See Appendix E, Figure 2). Out of the six

functions, two functions (fill_buffer and print_line) were

combined into a module called module_1 in the intermediate

reuse case. These functions were combined because of the

logical binding [STEVE74] exhibited between them. Function

'1

34

scan was not considered to be a candidate for reuse so all

of its statements were visible to the rest of the objects.

The remaining functions were "reused" as components.

The second C language program is a program called mail.

The main purpose of this program is to create and update a

personal mailing list database with a total of five fields

per record (name, street, city, state, and zip code). There

are a total of six options available on the database. The

user can enter new records, delete existing records, list

all records, search for a particular record, save all

records to a file, and load an existing database from a

file. The primary field in the database is the field name.

The mail program consists of a main program and eleven

functions (See Appendix E, Figure 3). Out of the eleven

functions, three functions (enter, inputs, and dls_store)

were combined into a module called module_1 in the

intermediate reuse case. These functions were combined

because of the temporal binding [STZVE74] exhibited between

them since all of these functions are executed at one time.

Functions list, search, and delete were the functions not

selected as candidates for reuse in this case. The

remaining functions were "reused" as components.

The last C language program is a program called editor.

This program simulates a simple text editor with very

limited capabilities. There are five options available to

the user. The user can enter one or more lines of text in

the same operation beginning at the specified line number or

35

delete a line of text based on the line number. He/she can

also list the contents of the text file, save all text into

a file, and retrieve an existing text file from a file. All

lines are indexed by the line numbers in each line.

The editor program consists of a main program and nine

functions (See Appendix E, Figure 4). Out of the nine

functions, two functions (patchup and find) were combined

into a module called module_1 in the intermediate reuse

case. These functions were combined because of the logical

binding [STEVE74] exhibited between them. Functions enter

and delete were the functions that were not selected for

reuse in this case. The remaining functions were considered

to be objects that are candidates for reuse as components.

3.2.3.2 Ada Language Programs. The first Ada language

program studied is a program called int list. The main

purpose of this program is to illustrate the concepts of

dynamic allocation and garbage collection. Memory is

dynamically allocated for a list of numbers accepted from

the keyboard as the numbers are added both to the beginning

and end of the list. Subsequently, garbage collection is

used to reclaim memory allocated as numbers are deleted from

the beginning and the end of the list. The remaining

numbers are then printed to demonstrate that the first and

last numbers were deleted.

The int_list program consists of a main program called

exercise_20_1, seven procedures, and two functions (see

36

Appendix E, Figure 5). Out of the seven procedures, three

procedures (insertathead, insertat tail, and alloc) were

combined into a module called module_1 in the intermediate

reuse case. These procedures exhibit communicational

binding [STEVE74] as they reference the same input data and

are related in time. Procedures delete-tail and deletehead

were not selected as candidates for reuse. The remaining

functions and procedures were considered for reuse

as components.

The second Ada language program used in the study is a

program called calc. This program simulates a four function

calculator using Reverse Polish Notation (RPN). In RPN, the

equal sign is never used. All operators precede the

operation and when the operation symbol is entered, the

result is displayed. Consequently, no parentheses are

needed either. One of the good points about this program,

is that it accepts numeric input in any of the common

notations, including integers, signed integers, floating

point fractions starting with a decimal point, signed

floating point fractions, and any of the above followed by

an exponent. A stack of ten entries is also provided to

store the last ten operands entered.

The calc program consists of a main program called

calculate_2 and seven procedures (see Appendix E, Figure 6).

Out of the seven procedures, three procedures (push, pop,

and clear) were combined into a module called module_1 in

the intermediate reuse case. These procedures were the only

37

ones that exhibited some binding among themselves although

it was only of a temporal type [STEVE74]. Procedure operate

was not selected for reuse in this case hence all of its

statements were visible to the rest of the objects. The

remaining procedures were considered for reuse as

components.

The last Ada language program included in the

experiment is a program called address. This programs

provides access to an address book database. The concept is

similar to the C language program mail, although the

implementation is completely different. Fields are provided

to accommodate name, street address, city, state, zip code,

arid telephone number. The field name is used as the only

key in the database.

A separate index file based on name entries was

maintained. To speed up search operations, binary search

was provided as the search mechanism in contrast with

sequential search used in mail. The operations provided

include database initialization, new address insertion,

address deletion, address modification, and address search

based using the name as the key.

The address program consists of a main program called

addressbook and twelve procedures (see Appendix E, Figure

7). Out of the twelve procedures, two of the procedures

(alter_data and alterfield) were combined into one module

called module_1 in the intermediate case of reuse. These

two procedures exhibit communicational binding [STEVE74] as

38

they refer to the same input data obtained from the keyboard

and are related in time, i.e., executed at data alteration

time. Procedures delete and insert were not reused in this

case. On the other hand, all other procedures were

considered for reuse as components.

CHAPTER IV

ANALYSIS OF MEASUREMENTS

4.1 Description of the Analysis

All data analysis was done on a VAX 8550 running VMS1

using SAS [SAS85a,b]. Standard statistical methods

described by Conte et al. (CONTE86] were used.

The sample sizes for this study on software reusability

using Ada and C programs were not arrived at statistically;

rather, three correct programs written in each language

found in the open literature were used. The three Ada

programs have 137, 168, and 493 nonblank, noncomment lines

of code and the three C programs have 138, 272, and 286

nonblank, noncomment lines of code. Each of the three

versions for each of the programs were considered as

separate cases (optimum, intermediate, and no reuse cases).

Pearson product-moment correlations [SASS5a,b] were

computed between the lines of code metric and the control

structure entropy metric, and between the lines of code

metric and the entropy loading metric. Use of this

correlation method requires that the measurements be

parametric [CONTE86]. The measurements should be

VMS is a Trademark of Digital Equipment Corporation.

39

40

independent, drawn from normally distributed populations,

the populations should have nearly the same standard

deviations, and all measurements should be in at least the

same interval scale (meaning that the data have meaningful

differences and can be ranked and categorized).

Correlations were also computed within the lines of

code class and within the entropy loading class. The lines

of code class is composed of lines of code (LOC),

declaration lines (Dec), non-declaration lines (NDe), Brace

lines (Bra, only used with C programs), comment lines (Com),

and blank lines (Bla). The entropy loading class is

composed of the object total (Obj Tot), average object

entropy, system entropy loading to object total ratio (SEL

to OT Ratio), system entropy, and system entropy loading.

See TABLE II for a list of the measurements obtained. TABLE

III contains some of the correlations between the metrics.

No correlations were computed between the entropy loading

metric and the control structure entropy as these

correlations were deemed outside of the scope of the

experiment. A complete list of the correlations is provided

in Appendix G.

Correlations using natural logarithm transformations of

the measurements were computed. The next two sections

analyze the results obtained from the correlations of the

metrics.

41

(nco N m o It 0 m -4 coe MrjL - -r

N~C -Tr Lfn' en~f 00 %DHC' N n co- f-C r .

fO Q n r-(r-4 mO~ N 0 v r-4 0Cj n 0 U-)

r-~w r r-4 0r-q1 ~ c, - o o w

or Lo " E0 C) r- o N C k-0 %1D L
4-r 0 HLO 0%~ 0c(LflLA CC)'Lf -4 4 U- D -T l r'N%0

0) 0 -W %D cr- 00 0 r) Iq? 1-4 c- e- co Q ar- O~

th00 4- Nc0 Q000 r L H0 OH Q H oc

0 LO cnD m 0%D\0 m JLAC) 0)L C r-v m o
4J- 0 fn H- o ri0 o Q oC nL l n vmc

E-0- oL)m L)Q N m(Q 0%m1, Il TQ k -

oa 0 ~ 0O(m m o0c nU A r- \OH "cr l .

4J r DL r, m 0 ~0 0 C r 0" a c~ C)U

00
04 4- Va om r- r-OHco m r- r-H - H e \ r- N-

0Q 0 0LflN HH) H r"J HCNN HH r- I) c -

0 E- r H\ I I II I

00

0 4- r- - n r-' N 4O r- -

E-1 0 11N W)" f) kCO0 mr CC)~ -4O0 m~l %.Dr r--

Uq C- N O r' m 0 r-4r m- - (N r N%

oz co r- U - r"1L0 rLAH m~(m 0 c 0ON
Hn HC'q H- H HH n r- l -4rI

4J- 4jHr
HC ~ L~)

E-4J'~~ N H 0J~J~ rII NU 0 -4m
0 0 , U) %D CH-4 - *- -4- 4 JJ 4 HHH CNC - n NK

-u uE 0))) -4U C

42

TABLE III

CORRELATIONS BETWEEN METRICS

(Ada) LOC Dec NDe Com Bla Tot

ConStrEnt .8551 .8385 .8467 .6925 .5225 .8136

(Ada) LOC Dec NDe Com Bla Tot

ObjTot .9860 .8693 .9886 .9616 .9279 .9921
AveObjEnt -.7692 -.6495 -.7934 -.7427 -.6034 -.7619
SELtoOTRat -.6368 -.5398 -.6619 -.6117 -.4529 -.6257
SysEntr .9852 .9346 .9745 .9505 .8898 .9856
SysEntLoa .8095 .7265 .7978 .7949 .8489 .8234

(C) LOC Dec NDe Bra Com Bla ,ot

ConStrEnt .9284 .5944 .9510 .9101 .0077 .8900 .8395

(C) LOC Dec NDe Bra Com Bla Tot

ObjTot .9947 .8142 .9897 .2896 .9670 .9168 .9637
AveObjEnt -.3292 -.6901 -.2442 -.8891 -.3626 -.3524 -.4985
SELtoOTRat -.1778 -.5906 -.0887 -.8856 -.2169 -.2141 -.3615
SysEntr .9785 .8549 .9609 .3942 .9656 .9142 .9732
SysEntLoa .8537 .4589 .8969 -.2007 .8061 .7597 .7251

43

4.2 Entropy Loading Analysis

Entropy loading, as described in Chapter II, is a

measure of the information shared among collections of

objects as opposed to the information used inside each

collection [CHAN073]. Consequently, we can expect a higher

entropy loading as the number of collections making

assumptions increases (considering each object as a

collection only containing itself) since the total amount of

information shared increases. This assumption was verified

by a strong, positive, and significant correlation (signifi-

cance of 0.004 or less) between entropy loading and the

total number of objects for both C and Ada programs.

The increase in the number of collections was

represented by an increase in the amount of code (quantified

by the lines of code metric) that needs to be written when

the opportunity for reuse is smaller. As expected, a

strong, positive, and significant correlation (significance

of 0.0082 or less) was found between the lines of code and

the total number of objects, and between lines of code and

entropy loading for both C and Ada programs. In other

words, the larger the amount of code needed anew (smaller

reuse), the larger the number of objects and consequently,

the higher the entropy loading.

Overall, strong, positive, and significant correlations

(significance of 0.027 or less) were found between the total

number of objects, system entropy, and entropy loading on

44

one side and most of the lines of code metrics class for

both C and Ada programs on the other side.

Additionally, strong, negative, and significant

correlations (significance of 0.02 or less) exist between

the average object entropy measure and most of the measures

in the lines of code class for the Ada programs. The

average object entropy is an indicator of the information

contained inside objects.

4.3 Control Structure Entropy Analysis

While entropy loading is used as a measure of

information among collections of objects, control structure

entropy, defined in Chapter II, is used as a measure of the

complexity of a program [CHEN78]. Consequently, a higher

control structure entropy is expected as the perceived

complexity of the program increases.

One of the assumptions that we are trying to validate

(or at least provide support for) in this study is that the

more code that is available for reuse, the less complex the

resulting new program tends to be. This is expected because

the internal complexity of the reusable modules is not seen

by the programmer when the new program is being developed

since the modules already exist and either have been

previously understood or can be understood in one chunk.

Strong, positive, significant correlations (signifi-

cance of 0.0033 or less) exist between the control structure

entropy metric and the lines of code metric for both C and

45

Ada programs. This should be expected as the lines of code

metric is used to quantify the amount of software that needs

to be developed anew, validating our assumption. In other

words, the less code available for reuse, the more complex

the new program tends to be.

The relation between MIN and the brace lines measure

discussed in Section 3.2.2.1 was verified by a strong,

positive, significant correlation (significance of 0.0007)

between them.

CHAPTER V

SUMMARY, CONCLUSIONS, AND FUTURE WORK

The main theme of this thesis was to theoretically

explore the relationships between software reusability and

two information theory based metrics: entropy loading and

control structure entropy. A survey of the open literature

indicated that previous work in this area had not addressed

the idea of quantifying software reuse with this type of

metrics.

Entropy loading was found to be inversely proportional

to the amount of reuse present in the programs. Entropy

loading was always smaller in the optimum reuse cases. This

was corroborated by strong correlations found between

entropy loading and the size of the resulting new program,

measured by the lines of code metric. Consequently, entropy

loading can presumably provide a mechanism for selecting the

optimum reuse case among different possibilities for reuse.

Control structure entropy, a measure of the complexity

of a program, was also found to be a good indicator of

reuse. The optimum reuse case (higher reuse) was always

found to be the one with the lowest control structure

entropy. Strong correlations exist between control

46

47

structure entropy and the size of the resulting new program,

measured by the lines of code metric.

In conclusion, there seems to be a relation between

entropy loading and software reuse, and between control

structure entropy and software reuse. But, care should be

taken not to make any irrational generalizations since this

study was not a controlled experiment and the sample sizes

were not arrived at statistically. The intent of this study

was only to determine if a possible relation between the

metrics and software reuse existed.

Suggestions for future work include conducting a

similar, but controlled and larger scale experiment to test

the hypothesis that the notion of software reuse can be

quantified. Perhaps, adding other software metrics to the

ones used in this study and/or adding other programming

languages would provide more insight. Possible candidates

include other information theory based metrics such as

residual complexity [SAMAD88] and other metrics such as

software science metrics [HALST79].

Other work might also include software reuse instances

where some of the objects overlap (i.e., there is a certain

degree of harmless overkill involved in the objects that are

being reused). In such a case, entropy loading can not be

applied but other measures can be applied (e.g., [SAMAD88

and SCHUT77]).

Finally, automated tools can be developed to determine

assumptions made by objects in the calculation of the

48

entropy loading metric. This task is considered the most

time consuming in the application of the entropy loading

metric.

REFERENCES

[ADA83] Reference Manual for the Ada Programming Language,
United States Department of Defense, ANSI/MIL-STD-1815A,
January 1983.

[ALEXA64] Alexander, Christopher, Notes on the Synthesis of
Form, Harvard University Press, Cambridge, Mass., 1964.

[BERLI80] Berlinger, Eli, "An Information Theory Based
Complexity Measure," Proceedings of the 1980 ACM National
Computer Science Conference, Arlington, VA, AFIPS Press,
pp. 773-779.

[BIGGE87] Biggerstaff, Ted and Richter, Charles,
"Reusability: Framework, Assessment, and Directions," IEEE
Software, March 1987, pp. 41-49.

[BOOCH86] Booch, Grady, Software Engineering with Ada, The
Benjamin/Cummings Publishing Company Inc., Second Edition,
1986.

[CHANO73] Chanon, Robert N., "On a Measure of Program
Structure," Ph.D. Dissertation, Department of Computer
Sciences, Carnegie-Mellon University, Pittsburgh, PA,
November 1973.

[CHEAT831 Cheatham, Jr., T. E., "Reusability Through
Program Transformations," Proceedings ITT Workshop on
Reusability in Programming, September 7-9, 1983, pp.
122-128.

[CHEN78] Chen, Edward T., "Program Complexity and
Programmer Productivity," IEEE Transactions on Software
Engineering, Vol. SE-4, No. 3, May 1978, pp. 187-194.

[CHENG84] Cheng, Thomas T., Lock, Evan D., and Prywes, Noah
S., "Use of Very High Level Languages and Program
Generation by Management Professionals," IEEE Transactions
on Software Engineering, Vol. SE-10, No. 5, September
1984, pp. 552-563.

[CONTE86] Conte, S. D., Dunsmore, H. E., and Shen, V. Y.,
Software Engineering Metrics and Models, The
Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA,
1986.

49

50

[DIJKS72] Dijkstra, E. W., "Notes on Structured
Programming," Structured Programming, Academic Press,
New York, 1972.

[FREEM83] Freeman, Peter, "Reusable Software Engineering:
Concepts and Research Directions," Proceedinqs of the ITT
Workshop on Reusability in Programming, September 7-9,
1983, pp. 2-15.

[GOGUE86) Goguen, Joseph A., "Reusing and Interconnecting
Software Components," IEEE Computer, Vol. 19, February
1986, pp. 16-28.

[GROSS84] Grosswald, Emil, Topics from the Theory of
Numbers, Birkhauser, 1984.

[HALL67] Hall Jr., Marshall, Combinatorial Theory,
Blaisdell Publishing Co., 1967.

[HALST79] Halstead, M. H., "Advances in Software Science,"
Advances in Computers, (Yovits, ed.), Vol. 18, Academic
Press, New York, 1979, pp. 119-172.

[HARTM66] Hartmanis, J. and Stearns, R. E., Algebraic
Structure Theory of Sequential Machines, Prentice-Hall,
Inc., Englewood Cliffs, NJ, 1966.

[KAISE87] Kaiser, Gail E. and Garlan, David, "Systems from
Reusable Building Blocks," IEEE Software, July 1987, pp.
17-24.

[KERNI78] Kernighan, Brian W. and Ritchie, Dennis M., The
C Programming Language, Prentice-Hall, Englewood Cliffs,
NJ, 1978.

[KERNI84] Kernighan, Brian W., "The UNIX System and
Software Reusability," IEEE Transactions on Software
Engineering, Vol. SE-10, No. 5, September 1984, pp.
513-518.

[LEE87] Lee, Tony T., "An Information-Theoric Analysis of
Relational Databases-Part I: Data Dependencies and
Information Metric," IEEE Transactions on Software
Engineering, Vol. SE-13, No. 10, October 1987, pp.
1049-1061.

[LETOV86] Letovsky, Stanley and Soloway, Elliot,
"Delocalized Plans and Program Comprehension," IEEE
Computer, May 1986, pp. 41-49.

51

[LUBAR86a3 Lubars, Mitchell D., "Code Reusability in the
Large Versus Code Reusability in the Small," ACM SIGSOFT
Software Enaineering Notes, Vol. 11, No. 1, January 1986,
pp. 21-27.

[LUBAR86b] Lubars, Mitchell D., "Affording Higher
Reliability Through Software Reusability," ACM SIGSOFT
Software EnQineerinQ Notes, Vol. 11, No. 5, October 1986,
pp. 39-42.

[MATSU84] Matsumoto, Yoshihiro, "Some Experiences in
Promoting Reusable Software: Presentation in Higher
Abstract Levels," IEEE Transactions on Software
Engineering, Vol. SE-10, No. 5, September 1984, pp.
502-513.

[MCCAB76] McCabe, J., "A Complexity Measure," IEEE
Transactions on Software Enqineering, Vol. SE-2, No. 4,
December 1976, pp. 308-320.

[MILLE87] Miller, Webb, A Software Tools Sampler, Prentice-
Hall, Inc., Englewood Cliffs, NJ, 1987.

[MOHAN79] Mohanty, Siba N., "Models and Measurements for
Quality Assessment of Software," ACM Computing Surveys,
Vol. 11, No. 3, September 1979, pp. 251-275.

[MOHAN81] Mohanty, Siba N., "Entropy Metrics for Software
Design Evaluation," The Journal of Systems and Software 2,
1981, pp. 39-46.

[MOHNK86] Mohnkern, Gerald L. and Mohnkern, Beverly,
Applied Ada, Tab Professional and Reference Books, 1986.

[PARNA71 Parnas, D. L., "Information Distribution Aspects
of Design Methodology," Proceedings of the IFIP Congress,
Ljubljana, Yugoslavia, 1971.

[PRIET87] Prieto-Diaz, Ruben and Freeman, Peter,
"Classifying Software for Reusability," IEEE Software,
January 1987, pp. 6-16.

[SAMAD88] Samadzadeh, Mansur H. and Edwards, William R.,
Jr., "A Classification Model of Comprehension," Twenty
First Annual Hawaii International Conference on System
Sciences (HICSS21), Hawaii, 1988.

(SAS85a] SAS User's Guide: Basics, Version 5 Edition, SAS
Institute Inc., Box 8000, Cary, NC 27511, 1985.

[SAS85b] SAS User's Guide: Statistics, Version 5 Edition,
SAS Institute Inc., Box 8000, Cary, NC 27511, 1985.

52

[SCHIL87] Schildt, Herbert, Advanced Turbo C, Osborne
McGraw-Hill, New York, NY, 1987.

(SCHUT77] Schutt, Dieter, "On a Hypergraph Oriented Measure
for Applied Computer Science," Proceedings of COMPCON,
Washington, D.C., Fall 1977, pp. 295-296.

[SHANN64] Shannon, Claude E. and Weaver, Warren, The
Mathematical Theory of Communication, The University of
Illinois Press, Urbana, Ill., 1964.

(SHOOM83] Shooman, Martin L., Software Engineering: Design,
Reliability, and Management, McGraw-Hill Book Company, New
York, 1983.

[SHUMA89] Shumate, Ken, Understanding Ada with Abstract
Data Types, John Wiley and Sons, Inc., New York, NY,
Second Edition, 1989.

[SIMON62] Simon, H. A., "The Architecture of Complexity,"
Proceedings of the American Philosophical Society, 106,
December 1962, pp. 467-482.

[SOMME89] Sommerville, Ian, Software Engineering, Addison-
Wesley Publishing Co., Third Edition, 1989.

[STEVE74) Stevens, W. P., Myers, G. J., and Constantine, L.
L., "Structured Design," IBM Systems Journal, Vol. 2,
1974, pp. 115-139.

[TRACZ88] Tracz, Will, "Software Reuse Maxims," ACM SIGSOFT
Software Engineering Notes, Vol. 11, No. 5, October 1988,
pp. 28-31.

[VANEM70] van Emden, M. H., "Hierarchical Decomposition of
Complexity," Machine Intelligence 5, 1970, pp. 361-380.

[WEGNE83] Wegner, Peter, "Varieties of Reusability,"
Proceedings of the ITT Workshop on Reusability in
PrQgramminq, September 7-9, 1983, pp. 30-44.

SELECTED BIBLIOGRAPHY

1. Belady, L. A. and Evangelisti, C. J., "System
Partitioning and Its Measure," The Journal of Systems and
Software 2, 1981, pp. 23-29.

2. Brown, P. J., Software Portability, Cambridge
University Press, 1977.

3. Chandersekaran, C. S. and Perriens, M. P., "Towards an
Assessment of Software Reusability," Proceedings of the ITT
Workshop on Reusability in Programming, September 7-9, 1983,
pp. 179-182.

4. Hellerman, Leo, "A Measure of Computational Work," IEEE
Transactions on Computers, Vol. C-21, No. 5, May 1972, pp.
439-446.

53

APPENDIXES

54

APPENDIX A

PROGRAMS USED TO COMPUTE THE METRICS

55

56

* En t ropy Loading Me t r i c *

* File: ent 1o5.c
* Author: William R. Torres *

* Date: 90/01/25 *

* Class: COMSC 5000 - Thesis *

* Adviser: Dr. Mansur Samadzadeh *

* This program computes the entropy loading metric as presented *

* by Chanon ICHAN074]. The input for this program consists of the*
* name of the file that contains the input data for the program. *

* The first line of the input file must contain the total number *

* of subsystems, which in our case is always the same as the *

* number of objects, the total number of objects, and the total *

* number of assumptions. *
* *

* The remaining input lines are divided into two groups. Each *

* line in the first group corresponds to each of the objects in *

* the program under study. Each line contains the object's name *

* (i.e., A.1, C.2), the total number of assumptions the object *

* makes, and the numbers of the assumptions the object makes *

* (i.e., 2 4 5 when the object makes assumptions 2, 4, and 5). *

* Each line in the second group corresponds to each subsystem in *

* the program under study. Each of these lines contain the *

* total number of objects in the subsystem and the numbers that *

* identify the objects in the subsystem. +

* The output of this program is divided into two groups. In the *

* first group, the program produces a line with the name of the *

* object and the entropy for each of the objects in the program. *

* The next output group produces the total number of objects, the *

* average object's entropy (sum of entropies divided by total *

* number of objects), the system entrupy, the system entropy *

* loading, and the ratio of system entropy loading to total *

* number of objects. *

#include <stdio.h>
#include <math.h>
'define OBJECTS 190
#define ASSUMPTIONS 170

'define SUBSYSTEMS 190

main()

int i, j, k, m, n, p;
double entropy[OBJECTS + 11, /*subsystem entropy calculation*/

entropyloading, /*system entropy loading*/
double sum, /*temporary double variable*/
temp double; /*temporary double variable*/

57

int OAT[OBJECTSJ[ASSUMPTIONSJ, /*Object/Assumption Table*/
subsys cnt, /*subsystem count*/
subsys size[SUBSYSTEMS1, /*No. of Objects in Subsys.*I
sub system[SUBSYSTEMSJ [OBJECTS), /*Subsys. Objects*/
obj _cnt, /*number of Objects in OAT*/
asmp cnt, /wassumption count in OAT*/
asmp no, /*Number of assmp. for Object*/
asmp-col, /*columnns with assumptions*/
occurrences[OBJECTS], /*submatrix element occurrences*/
NODO, /*Number Of Distinct Occurrences*/
sub matrix[OBJECTSH[ASSUMPTIONS], /*OAT temporary submatrix*/
submatrix size, /*submatrix row size*/
columns[ASSUMPTIONS][2], /*columns where assmp. are present*/
columns-head, /*columns list head*/
rem obj[OBJECTSI; /*remaining rows not compared yet*/

char file buffer[25J; /*data filename buffer*/
struct (

char name[lO];) objIOBJECTS]; /*object names*/
FILE *datafp, /*data file pointer*/

*outputfp; /*output file pointer*/
double loga_no;
double power();

strcpy(file buffer, ")

while(strcmp(file-buffer, "quit") != 0)

printf("\nEnter data filename or quit to stop program\n==)> "

scanf("%s", file buffer); /*get data filename*/
if(strcmp(file-buffer, "quit") !=0)

if((datafp =fopen(file buffer, "r")) == NULL) /*open file*/
printf("Error opening file %s\n", file-buffer);

else /*file opened for reading*/

outputfp = fopen("ent-load-out", "w"); /*open output file*/
/*Read No. of Subsystems, Objects, and Assumptions*/
fscanf(datafp, "%d %d %d", &subsys cnt, &obj _cnt, &asmp cnt);
tor(i = O;i < obj _cnt; i++i) /*initialize OAT to zero+/
for(j = O;j < asmp cnt; j++)
OAT~iI(jI = 0;

for(i = O;i < obi _cnt; i++) /*assumption input loop*/

fscanf(datafp, "Xs", objfi].name); /*read object's name*/
fscanf(datafp, "%d", &asmp no); /*read number of assumptions*/
for(j = O;j < asmp-no; j++) /+read assumnptions+/

fscanf(datafp, "Ud", &asmp col);
OAT[illasmp_ col - 1] = 1; /+assign assumptions*/

/*ernd for*/
/*end for*/

for(i = 0;i < subsys-cnt; i-.+) /*subsystemn input loop*/

fscanf(datafp, "%d", &subsys size [4]): /+no. of objects+/
for(j = O;j < subsys sizelil; j,--) /*read object numbers*/

58

fscanf(datafp, "Ud", &sub -system[il[jl);
sub system~il[jJ--; /*adjust object number*/
) *end for*/

)/*endJ for*/
printf("\nObject Name Entropy (H(X))\n");

for(i = O;i < subsys-cnt; i++) /*subsystem loop*/

submatrix size = 0;
columns-head = 0; /*initialize list*/
for(n =0;n < subsys -sizelil; n++)
(/*Find Assmp. made in the subsys. objects*/
for(j = 0;j < asmp cnt; j++)

(/*obtain subsystem submatrix from OAT*/
if(OATtsub-systemlillnllj == 1) /*1 pres. in the col.*/

if(submatrix size == 0) /*empty list*/

columns[submatrix sizelt0l = j; /*save col. no.*/
columnsfsubmatrix size++Ifll = -1; /*end*/

else /*list is not empty*/

for(k = columns head;k > -1;p = k,k = columns~k][lJ)
(/*search list to insert column number*/
if(j < columnslk][0]) /*insert before present*/

columns~submatrix sizel [1] = k; /*link to pres.*/
columns[submatrix size±+.][0I = j; /*save col. #*/
if(k == columns-head) /*pres. was first*/

columns head = submatrix size - 1; /*new first*/
else /*pres was not first, link to previous*/

columnslpllll submatrix-size - 1;
break; /*end search*/
) /*end if*/

else if(j == columnslk][01) /*repeated column*/
break; /*stop search*/
3/*end for*/

if((j > columnsipltol) && (k =-)

fi /*place at the end of the list*/
columns[submatrix sizej[0J = j; /*save col. no.*/
columnsisubmatrix size++J1] = -1; /*end*/
columns[p][l] = submatrix size - 1; /*link back*/
3/*end if*/

3/*end else*/
3/*end if*/
/*end for*/

3/*end for*/
for(j =0;j < obj _cnt; j--~) /*form submatrix*/

for(k = columns head,m = 0;k > -1; m++,k =columnstk)[1])
sub-matrix[j][m] = OAT[j)[columns[k][0II;

for(j = 0;j < obj _cnt; j+.+)
rem-objfi] = 0; /*mark rows as not compared yet*/

for(j = 0,14ODO = 0;(j < (obj cnt - 1)); j++)
/*jth row is compared with mth row*/

"1

59

m = j + 1;
if(remobj[j] != 1) /*row not previously compared*/

remobj[j] = 1; /*remove object from submatrix*/
occurrences[NOD++] = 1; /*initial occurrence*/
while(m < obj cnt)

(/*m is the following row index*/
if(remobj[m] != 1) /*row not matched before*/
f
for(k = 0;((submatrix[j][kI == sub matrix[m][k]) &&

(k < submatrix size)); k++); /*compare rows*/
if(k == submatrix size) /*matching rows*/

I
occurrences[NODO -- 11+; /*increase count*/
rem obj[m] = 1; /*remove object from submatrix*/

7*end if*/
3 /*end if*/

m++; /*get ready for next row*/
} /*end while*/

3 /*end if*/
3 /*end for*/

if((j == (obj cnt - 1)) && (rem obj[j] == 0))
occurrencesTNODO++] = 1; /*last row is unique*/

/*Entropy function computation for the subsystems*/
entropy[i) = (double) obj cnt;
entropy[i] = logan(entropy[i]); /* log IXI */
double sum = 0.0; /*initialize sum of partitions*/
for(j = O;j < NODO; j++)
I
temp double = (double) occurrences[j];
/*printf("%d ",occurrences[j]); DEBUG*/
temp double *= loga n(tempdouble); /* Xj log Xj */
double sum += temp double; /* Sum of terms */
) /*end for*/

/*printf("\n"); DEBUG*/
double-sum = (double) doublesum / obj_cnt; /*Div by X */
entropy[i] -= double sum;
entropy[i] /= loga n(2.0); /*convert result to log base 2 */
printf("%lls %15.12f\n", objfi].name, entropy[i]);
fprintf(outputfp,''l, .1l2f %3d\n", entropy[i], i + 1);
) /*end for*/

/*Analyze system matrix to compute system entropy*/
for(j = O;j < obj cnt; j+)
remobj[j] = 0; /*mark rows as not compared yet*/

for(j = O,NODO = 0;(j < (obj cnt - 1)); j++)
(/*jth row is compared with mth row*/

m = j + 1;
if(remobjj] != 1) /-row not previously compared*/

remobj[j] = 1; /*remove object from submatrix*/
occurrences[NODO++] = 1; /*initial occurrence*/
while(m < obj cnt)

[/*m is the following row inde>:*/

if(rem obj[m] != 1) /*row not matched before*/
I

60

for(k = O;((OAT[jI[kJ .. OATjm][k)) &Em
(k < asmp cnt)); k++); /*compare system rows*/

if(k == asmp ent) /*matching rows*/

occurrences[NODO - I]++; /*increase count*/
rem obj~mJ = 1; /*remove object from submatrix*/
S7*end if*/

)/*end if*/
m++4; /*get ready for next row*/

) /*endt while*

/*end f*/

if((j == (obj cnt - 1)) && (rem obj[jJ = 0))
occurrencesTNODO++1 = 1; /*last row is unique*/

/*System Entropy Computation*/
entropy[OBJECTSJ = (double) obj cnt;
entropy[OBJECTS] = loga n(entropy[OBJECTS]); /*log lXI*/
double sum = 0.0; /*initialize sum of partitions*/
for(j = 0;j < NODO; j++)

temp_double =(double) occurrencesij];
temp double *=loga n(temp double); /* Xj log Xj *
double -sum += temp double;- /* Sum of terms *
) /*end~ for*/

double -sum = (double) double-sum / obj_cnt; /*Div by X *
entropy[OBJECTS] -=double sum;
entropy[OBJECTS] 1=loga n(2.0); /*convert to log base 2*1
for(i = 0, entropy -loading = 0.0;i < subsys-cnt; i++)
entropy loading += entropy[i]; /*compute entropy loading*/

temp -double = (double) entropy 7,loading / subsys cnt;
printf("\nObject Count is %d\n , i);
printf('Average Object Entropy is X15.12f\n", temp double);
printf("'System Entropy (H(S)) is %15.12f\n",entropy[OBJECTS]);
fprintf(outputfp, "%15.12f %3d\n", entropy[OBJECTSJ, i + 1);
entropy loading ,~ entropy[OBJECTS]; /*subtr. system entropy*/
printf(7"System Entropy Loading (C(S)) is %l§5.12f\n",
entropy loading);

temp -double = (double) entropy-loading / obj cnt;
printf("C(S) to Object Count Ratio is %15.12f\n",temp-double);
fclose(datafp); /*close input data file*/
fclose(outputfp); /*close output file*/
}/*end else*/

}/*end while*/
)/*end main*/

* This function accepts a double floating point number as input.*
* The output consists of the natural logarithm of the number
* passed as input. The output is of double floating point type.

double loga-n(param)

61

double param;
{
double temp[3];
int i, j, k;

temp[l] = 0.0;
temp[2] = (param - 1.0) / (param + 1.0);
for(i = l;i < 160;i += 2)

temp[l] += (double) power(temp[2], i) / i;
temp[l] *= 2.0;
return temp[l];
) /*end logan*/

* This function computes the nth power of a double floating point *
* number. The power can only be an integer. The output is a *
* double floating point number. *

double power(base, exp)
double base;
int exp;
I
double temp;
int i;

for(i = 1, temp = 1.0;i <= exp; i++)
temp *= base;

return temp;
} /*end power*/

62

*L i n e s o f C o d e M e t r ic (C)

* File: loc c2.c *
* Author: William R. Torres *
* Date: 89/09/23 *
* Class: COMSC 5000 - Thesis *
* Adviser: Dr. Mansur Samadzadeh *

* This program computes the lines of code for correct C *
* language source code. The input for this program consists *
* of the filename of the file for which the lines of code *
* metric is desired. The output is broken down into six *
* categories: actual C language lines of code, declaration *
* lines of code, non-declaration lines of code, lines of code *
* with braces ('[' or 'j'), comments lines, and blank lines. *
* *

* The following criteria is used to categorize the lines: *
* (1) all lines in which C statemets are present, even if they *
* include comments or multiple statements separated by *
* terminators (;), are counted as one line of code, (2) all *
* lines with comments and no C statements, even if the lines *
* have multiple comments, are counted as one comment line, *
* (3) all other lines are considered blank lines. *

* The following criteria is used to subdivide the lines of *
* code: (1) all lines with a brace and no C statement are *
* counted as brace lines, (2) all lines in which a variable is *
* declared are counted as declaration lines, and (3) all other *
* lines are considered non-declaration lines. *

#include <stdio.h>
#include <ctype.h>
#define BUF SIZE 80
#define TRUE 1

. efine FALSE 0

main()

int loc, /*lines of code*/
blank cnt, /*blank line count*/
comm cnt, /*comment line count*/
comm pres, /*comment present*/
instrpres, /*instruction present*/
comm counted, /*line counted as comment*/
brace cnt, /*brace line count*/
brace pres, /*brace present*/
decla cnt, /*declaration line count*/
decla pres, /*declaration line presence+/
decla counted, /*line counted as declaration*/

63

j, j;
char inp buffer[BUFSIZE], /*buffer for program lines*/

file-buffer[25], /*buffer for input program filename*/

FILE *filefp; /*pointer to input program*/

strcpy(file -buffer, "") ;
while(strcmp(file_buffer, "quit") != 0) /*main loop*/

printf("Enter filename or quit to stop program\n== ")

scanf("%s", file buffer); /*get input filename*/
if(strcmp(file-buffer, "quit") != 0)

if((filefp = fopen(file buffer, "r")) == NULL) /*open file*/
printf("Error opening file %s\n", file-buffer);

else /*file opened for reading*/
I
loc = 0; /*initialize lines of code count*/
blank cnt = 0; /*initialize blank line count*/
comm cnt = 0; /*initialize comment line count*/
brace cnt =0; /*initialize brace line count*/
decla cnt = 0; /*initialize declaration line count*/
comm pres = FALSE; /*no comment*/

decla pres = FALSE; /*no declaration*/
while~fgets(inp_buffer, BUFSIZE, filefp)) /*read pgm. line*/

I
instr pres = FALSE; /*clear instruction presence*/
comm counted =FALSE; /*line not counted as comment*/
decla counted =FALSE; /*line not counted as declaration*/
brace pres = FALSE; /*clear brace presence*/
for(i = 0;inp_buffer[i] != '\n'; i+.+)

if((inp_buffertil == 'P') && (inp -bufferfi + 11 =

comm pres = TRUE; /*beginning of comment found*/
c = inp buffer(i];
if(((c == 'c') 11 (c == 'd') 11I (c == If,) 11(c =')

(c == '1') 11(c == s') 11 (c == 'F')) && (!comm-pres))
(/*1st letter in declarations*/

if(isdecla(inp buffer, i))
decla pres = TRUE;
)/*enj if*/

if((inp-bufferti] = ')&& (decla-pres))

decla pres =FALSE; /*cancel decla. presence*/
decla counted = TRUE; /*mark line as counted*/

if((isgraph(inp buffer[il)) && (!comm -pres) &&
(inp _'buffertiT ' && (inp-bufferti]
instr-pres = TRUE; /*print char, not sp, comm, or brace*/

if((inp -buffer~i) == '[') 11 (inp-buffer[il == I)') &&
(!instr-pres) && (!corm-pres))
brace-pres = TRUE; /*brace found*/

if((inp_ bufferli - 1) == I*') && (inp_ buffer[i] ='I)

comm pres = FALSE; /*cancel comment presence*/

64

if((!instrpres) && (!commcounted) && (!bracepres) &&
(Ideclapres))
{
comm-cnt++; /*add to comment count*/
comm-counted = TRUE; /*mark line as counted for comm*/

/*end if*/
) /*end if*/

/*end for*/
if((decla pres) 11 (decla counted))

decla cnt++; /*add to declaration line to count*/
else if~instr pres)

loc++; /*add to lines of code*/
else if((commpres) && (!bracepres))

comm cnt++; /*add comment line to count*/
else if(bracepres)

brace cnt++; /*add to brace line count*/
else ifT!comm counted)

blank cnt++; /*add to blank line count*/
if((comm_counted) && (instrpres))

comm cnt--; /*correct comm. count if intr. is found*/
}/*end while*/

printf("\nTotal lines of code = %d\n", loc + decla cnt +

brace cnt);
printf(" Total declaration lines of code = %d\n", decla cnt);
printf(" Total non-declaration lines of code = %d\n", loc);
printf(" Total brace lines = %d\n", brace cnt);
printf("Total comment lines = %d\n", commcnt);
printf("Total blank lines = %d\n", blank cnt);
printf("\nTotal program lines = %d\n\n",loc + decla cnt +

comm cnt + brace cnt + blank cnt);
fclose(filefp); /*close input file*/
)/*end else*/

} /*end if*/
}/*end while*/

}/*end main*/

* This function is used to determine if a declaration line has +
* been found. This function is called whenever a character is *
* found that matches the first character of the different *

* variable declaration types (e.g., char, int, float, etc.). *

* This program assumes that these keyword- are always followed *
* by at least one space in the input program. Function +

* declaration lines are not counted as decliration lines. *

* If a match is found, a TRUE condition is returned to the main *

* program. A FALSE condition is returned otherwise. *

,******** *

isdecla(buffer, i)
char buffer[];
int i;
(

65

int j, type;
char c;

c = buffer[i];
type = FALSE;
if(c == 'c') /*char*/

I
if((buffer[i + 1] == 'h') && (buffez[i + 21 == 'a') &&
(bufferli + 3] == 'r') b& (bufferli + 4] == '
I
type = TRUE;
j = i + 5;

/*end if*/
} /*end if*/

else if(c == 'i') /*int*/
(
if((buffer[i + 1] == 'n') && (buffer[i + 2] == 't') &&

(buffer[i + 3] == '))

{
type = TRUE;
j = i + 4;
} /*end if*/
/*end else if*/

else if(c == 'd') /*double*/
{
if((buffer[i + 1] == 'o') && (buffer[i + 2] == 'u') &&

(buffer[i + 3] == 'b') && (buffer[i + 4] == '1') &&
(buffer[i + 5] == 'e') && (buffer[i + 61 == '

I
type = TRUE;
j = i + 7;
) /*end if*/

) /*end else if*/

else if(c == 'f') /*float*/
(
if((buffer[i + 1] == '1') && (bufferli + 2] == 'o') &&

(buffer[i + 3] == 'a') && (buffer[i + 4] == 't') &&

(buffer[i + 5] == '
(
type = TRUE;
j = i 4 6;
) /*end if*/
/*end else if*/

else if(c == '1') /*long*/
{
if((bufferli + 1] == 'o') && (bufferli + 2] == 'n') &&

(bufferli + 3] == 'g') && (buffer[i + 4] == '

type = TRUE;
j = i + 5;
) /*end if*/
/*end else if*/

else if(c == 's') /*short*/

(
if((buffer[i + 1] == 'h') && (buffer[i + 2] == 'o') &&

66

(buffer[i + 31 == 'r') && (bufferfi + 41 't') &&
(bufferli + 51 == '))

type = TRUE;
j = i + 6;
) /*end if*/

) /*end else if*/

else if(c == 'F') /*FILE*/
(
if((buffer[i + 1] == 'I') && (buffer[i + 2] == 'L') &&

(bufferli + 3] == 'E') && (bufferli + 4] == '
I
type = TRUE;
j = i + 5;
) /*end if*/

3 /*end else if*/

if(type == TRUE)
I
for(;buffer[j] != '\n';j+)

if(buffer[j] == '(') /*function declaration*/
return (FALSE);

return (TRUE);
) /*end if*/

return (FALSE);
} /*end isdecla*/

67

* L i n e s o f C o d e M e t r i c (Ada) *

* File: loc adal.c *
* Author: William R. Torres *
* Date: 90/03/12 *
* Class: COMSC 5000 - Thesis *
* Adviser: Dr. Mansur Samadzadeh *

* This program computes the lines of code for correct Ada *
* language source code. The input for this program consists *
* of the filename of the file for which the lines of code *
* metric is desired. The output is broken down into five *
* categories: actual Ada language lines of code, variable *
* declaration lines of code, non-declaration lines of code, *
* comments lines, and blank lines. *

* The following criteria is used to categorize the lines: *
* (1) all lines in which Ada statements are present, even if *
* they include comments or multiple statements separated by *
* terminators (;), are counted as one line of code, (2) all *
* lines with comments and no Ada statements are counted as one *
* comment line, (3) all other lines are considered blank lines. *

* The following criteria is used to subdivide the lines of *
* code: (1) all lines in which a variable is declared are *
* counted as declaration lines and (2) all other lines are *
* counted as non-declaration lines. *

#include <stdio.h>
#include <ctype.h>
#define BUF SIZE 80
#define TRUE 1
#define FALSE 0

main()

int loc, /*lines of code*/
blank cnt, /*blank line count*/
comm cnt, /*comment line count*/
commpres, /*comment present*/
instrpres, /*instruction present*/
paren count, /*parenthesis count*/
decla cnt, /*declaration line count*/
decla-pres, /*declaration line presence*/
term_pres, /*command terminator (;) presence*/
i ;

char inp buffer[BUFSIZE], /*buffer for program lines*/
file buffer[25l; /*buffer for input program filename*/

FILE *filefp; /*pointer to input program*/

68

strepy(file-buffer, ")

vhile(strcmp(file buffer, "quit") != 0) /*main loop*/

printf("Enter filename or quit to stop program\n== ")

scanf("Xs", file buffer); /*get input filename*/
if(strcmp(file_buffer, "quit") != 0)

if((filefp = fopen(file_buffer, "r',)) == NULL) /*open file*/
printf("Error opening file %s\n", file buffer);

else /*file opened for reading*/
I
loc = 0; /*initialize lines of code count*/
blank cnt = 0; /*initialize blank line count*/
comm cnt = 0; /*initialize comment line count*/
decla cnt = 0; /*initialize declaration line count*/
paren count - 0; /*clear parenthesis count*/
vhile~fgets(inp-buffer, BUFSIZE, filefp)) /*read pgm. line*/

I
instr-pres = FALSE; /*clear instruction presence*/
decla-pres = FALSE; /*clear declaration presence*/
comm pres = FALSE; /*no comment*/
term-pres = FALSE; /*clear terminator presence*/
for(i = 0;inp_bufferl != '\n'; i++t)

if((inp bufferfil '= -1) && (inp -bufferli + 1)

comm-pres = TRUE; /*comment found*/
if(inp_bufferfi]==')

paren-count++; /*opening parenthesis found*/
if(inp-bufferfi] == 11

paren_count--; /*closing parenthesis found*/
if((inp -bufferfi] ':') && (inp-buffer~i + 11 !'=)&&

(paren -count == 0)&& (!comm-pres))
decla pres = TRUE; /*declaration found*/

if(inp_buffer[i] == 11
term-pres = TRUE; /*command terminator present*/

if((isgraph(inp buffer~i])) && (!comm pres))
instr pres = TRUE; /*print char, not sp, or comm*/
)/*enj3 for*/

if((decla pres) && (term pres))
decla cnt++; /*add to declaration line to count*/

else if(instr pres)
loc.+; /*add to lines of code*/

else if(comm pres)
Comm cnt++; /*add comment line to count*/

else
blank cnt++; /*add to blank line count*/
/*end while*/

printf("\nTotal lines of code = Zd\n", loc - decla cnt);
printf(" Total declaration lines = %od\n', decla cnt);
printf(" Total non-declaration lines = %d\n", loc);
printf("Total comment lines - %d\n", comm cnt);
printf("Total blank lines = %d\n', blank_ cnt);
printf('\nTotal program lines = %d\n\n",loc + decla cnt +

comm cnt + blank cnt);

69

fclose(filefp); /*close input file*/
/ I*end else*/

I /*end if*/
/*end while*/

/*end main*/

APPENDIX B

ADA PROGRAMS INCLUDED IN THE STUDY

70

71

I n t e g e r L i s t (I of 2)

File: intmain.ada *

Author: Ken Shumate *

__, "Understanding Ada with Abstract Data Types" *

John Wiley and Sons, 2nd ed., 1989 *

with TEXT 10; use TEXT_10;
with IntegerList; use IntegerList;
procedure Exercise 20 1 is

package Int 10 is new INTEGERIO(INTEGER);
use IntIO;

Number : INTEGER;
begin

Initialize]ist;
PUT LINE("Enter list of numbers terminated by -1");
Create List : loop

A.1 GET(Number);
A.2 exit Create List when Number = -1;
A.3 Insert At Head(Number);
A.4 Insert At Tail(Number);

end loop CreateList;

PUT LINE("The list of numbers is");
A.5 for-I in 1..List Length loop
A.6 PUT(Value At Position(I));

end loop;

NEW LINE;

PUT LINE("Chopping the ends off");
Delete Head;
Delete-Tail;

PUT LINE("The list of numbers is");
A.7 for I in 1..List Length loop
A.8 PUT(Value At Position(I));

end loop;
NEW LINE;

end Exercise 20 1;

I n t e g e r L i s t (2 of 2) *
__*** ********

File: intlist.ada *

Author: Ken Shumate *

"Understanding Ada with Abstract Data Types" *

John Wiley and Sons, 2nd ed., 1989 *

.........

72

package Integer List is
procedure Initialize List;
procedure Insert At Head(Value in INTEGER);
procedure Insert At Tail(Value in INTEGER);
procedure Delete Head;
procedure Delete Tail;
function Value At Position(Pos in POSITIVE); return INTEGER;
function ListLength return NATURAL;

end Integer List;

package body IntegerList is
type List;
type Link is access Lisc;
type List is record
Value INTEGER;
Next Link;

end record;

Free, Head, Tail : Link;

procedure Reclaim(P : in Link) is
--add the node indicated by P onto the free list
begin

B.1 if Free null then
B.2 Free P;
B.3 Free.Next := null;
B.4 else
B.5 P.Next := Free;
B.6 Free := P;

end if;
end Reclaim;

function Alloc(Initial Value : List) return Link is
--allocate storage and initialize it

C.1 P : Link := Free;
begin

C.2 if P = null then
C.3 P new List;
C.4 else
C.5 Free := Free.Next;

end if;
C.6 P.all := InitialValue;
C.7 return P;

end Alloc;

procedure Initialize List is
P : Link;

begin
D.1 while Head /= null loop
D.2 P := Head;
D3 Head := Head.Next;
D.4 Reclaim(P);

end loop;
D.5 Tail := null;

end Initialize List;

73

procedure InsertAtHead(Value : in INTEGER) is
begin

E.1 Head := Alloc(List'(Value, Head));
E.2 if Tail null then -- new list
E.3 Tail Head;

end if;
end InsertAtHead;

procedure InsertAtTail(Value : in INTEGER) is
begin

F.1 if Head = null then -- first item to put into list
F.2 Head Alloc(List'(Value, null));
F.3 Tail Head;
F.4 else
F.5 Tail.Next := Alloc(List'(Value, null)); --tack onto end
F.6 Tail := Tail.Next; --move tail to the new end of the list

end if;
end InsertAtTail;

procedure DeleteHead is
G.1 P : Link := Head;

begin
G.2 Head := Head.Next;
G.3 Reclaim(P);
G.4 if Head = null then --deleted last item in list
G.5 Tail null;

end if;
end DeleteHead;

procedure DeleteTail is
H.1 P : Link := Head;

begin
H.2 if Head = Tail then --single item list
H.3 Head null;
H.4 Tail null;
H.5 else --more than one item in list
H.6 while P.Next /= Tail loop
H.7 P := P.Next;

end loop;
--P now points to the next to last item in the list

H.8 Reclaim(Tail);
H.9 Tail := P;
H.10 Tail.Next := null;

end if;
end Delete Tail;

function ValueAtPosition(Pos in POSITIVE) return INTEGER is

I.1 P : Link := Head;
begin

1.2 for I in 2..Pos loop
1.3 P := P.Next;

end loop;
1.4 return P.Value;

74

end ValueAtPosition;

function List Length return NATURAL is

Len : NATURAL := 0;

J.1 P : Link Head;
begin

J.2 while P 1= null loop

J.3 Len := Len + 1;
J.4 P := P.Next;

end loop;
J.5 return Len;

end ListLength;
end Integer-List;

75

--* F o u r F u n c t i o n C a 1 c u 1 a t o r (1 of 3) *

File: calcmain.ada *
Author: Gerald L. Mohnkern and Beverly Mohnkern *

-- * "Applied Ada" *
Tab Professional and Reference Books, 1986 *

with TEXT 10, FPSTACK, FLOAT CONV;
procedure CALCULATE2 is

use TEXT 10, FPSTACK, FLOAT CONV;
package F 10 is new FLOAT IO(FLOAT);
subtype LiNE40 is STRING(l..40);
STR : LINE40 := (l..40 => '

NUM VAL : FLOAT := 0.0;
FIRST : BOOLEAN := TRUE;
LEN : NATURAL;
INVALID-ENTRY : exception;

procedure DIRECTIONS is --To display directions for use
begin
NEW LINE;
PUT LINE("This is a simple calculator program. It can ");
PUTLINE("add(+), subtract(-), multiply(*), and ");
PUTLINE("divide(/). The calculator uses reverse Polish");
PUTLINE("notation and has a stack holding up to ten");
PUTLINE("floating point numbers. Numbers and operators");
PUT LINE("must be entered one per line. Enter 'R' for");
PUTLINE("reset to start over, '?' to get directions,");
PUTLINE("'D' to delete last entry, and '0' to quit.");
NEW LINE;

end DIRECTIONS;

procedure OPERATE(STRG : LINE40) is
X, Y : FLOAT;

begin

case STRG(1) is
B. when '+' => POP(X); POP(Y); Y X Y;
B.2 PUSH(Y); F IO.PUT(Y);
B.3 when '-' => POP(X); POP(Y); Y Y - X;
B.4 PUSH(Y); F IO.PUT(Y);
B.5 when '*' => POP(X); POP(Y); Y X *Y;
B.6 PUSH(Y); F IO.PUT(Y);
B.7 when '/' => POP(X); POP(Y); Y := Y I X;
B.8 PUSH(Y); F IO.PUT(Y);
B.9 when 'r' I 'R' => CLEAR;
B.1O when 'd' I 'D' => POP(X);
B.11 when '?' => DIRECTIONS;
B.12 when 'q' I '0' => null;
B.13 when others => raise INVALID-ENTRY;

end case;
NEW LINE;

76

end OPERATE;

begin --Body of CALCULATE2
DIRECTIONS;

A.1 while STR(1) /= '0' and STR(1) /= 'q' loop
ERROR SCOPE: begin --Block containing exception handler

A.2 if not FIRST then
SKIP LINE;

end if;
A.3 GET STRING(STR, LEN);

NEW LINE;
A.4 FIRST := FALSE;
A.5 if (STR(l) in '0' .. '9') or (STR(1) = . ') or

(STR(l) = '-' and LEN > 1) then
A.6 STR TO FLT(STR, LEN, NUM VAL);
A.7 PUSH(NUMVAL);
A.8 else
A.9 OPERATE(STR);

end if;
exception --Handler for block ERROR SCOPE

A.10 when INVALID ENTRY => PUTLINE(" Invalid entry.");
A.11 when NUMERIC ERROR =>

PUT LINE(" Attempt to divide by zero.");
end ERROR SCOPE;

end loop;
end CALCULATE2;

-* F o u r F u n c t i o n C a 1 c u 1 a t o r (2 of 3) *

File: calcstac.ada *
Author: Gerald L. Mohnkern and Beverly Mohnkern *

"Applied Ada" *
Tab Professional and Reference Books, 1986 *

package FPSTACK is
procedure CLEAR; --Resets the stack
procedure PUSH(NUM : FLOAT);
procedure POP(NUM : out FLOAT);
STACK OVERFLOW, STACKUNDERFLOW: exception;

end FPSTACK;

package body FPSTACK is
NUM : FLOAT;
LTMIT : constant NATURAL := 10;
STACK array(I .. LIMIT) of FLOAT;
TOP : NATURAL := 0;

procedure PUSH(NUM : FLOAT) is
begin

C.1 if TOP = LIMIT then
raise STACK OVERFLOW;

C.2 else

77

C.3 TOP := TOP + 1;
C.4 STACK(TOP) :w NUM;

end if;
end PUSH;

procedure POP(NUM : out FLOAT) is
begin

D.1 if TOP = 0 then
raise STACKUNDERFLOW;

D.2 else
D.3 NU: STACK(TOP);
D.4 TOP := TOP - 1;

end if;
end POP;

procedure CLEAR is
begin

E.1 TOP := 0;

end CLEAR;
end FPSTACK;

* o u r F u n c t i o n C a 1 c u 1 a t o r (3 of 3) *

File: calcfloa.ada *

Author: Gerald L. Mohnkern and Beverly Mohnkern *

"Applied Ada" *
Tab Professional and Reference Books, 1986 *

with TEXT 10; use TEXT 10;
package FLOAT CONV is -

subtype LINE40 is STRING(I .. 40);
INVALID ENTRY : exception;
procedure GETSTRING(STR : out LINE40;

LEN : out NATURAL);

procedure STRTOFLT(STR : LINE40;
LEN : NATURAL;
NUM VAL : out FLOAT);

end FLOATCONV;

package body FLOAT CONV is
procedure GET STRING(STR out LINE40;

LEN : out NATURAL) is

CH : CHARACTER;
CUM-COUNT : NATURAL := 0;

begin
F.1 while not ENDOFLINE loop
F.2 GET(CH);
F.3 CUM COUNT := CUM COUNT + 1;
F.4 STR(CUM COUNT) := CH;

end loop;
F.5 LEN := CUM COUNT;

end GET STRING;

78

procedure STR TOFLT(STR LINE40;
LEN NATURAL;
NUM VAL : out FLOAT) IS

X : FLOAT := 0.0;
SIGN : FLOAT 1.0;
DECIMAL POINT BOOLEAN FALSE;

COUNT : INTEGER := 0;
EXP : INTEGER := 0;
EXP SIGN : INTEGER := 1;
INDEX : INTEGER := 1;
CH, CHR : CHARACTER;

begin
G.1 if STR(1) = '-' then
G.2 SIGN -1.0;
G.3 INDEX 2;

end if;
G.4 while INDEX <= LEN loop
G.5 CH := STR(INDEX);

case CH is
G.6 when '.' => DECIMAL POINT TRUE;
G.7 when '0'..19' => X := X * 10.0

+ FLOAT(CHARACTER'POS(CH) - CHARACTER'POS('O'));

G.8 if DECIMAL POINT then
G.9 COUNT :=-COUNT + 1;

end if;
G.1O when 'E' I 'e' =>
G.11 for JDEX in (INDEX + 1)..LEN loop
G.12 CHR := STR(JDEX);

case CHR is
G.13 when '0'..'9' =>

EXP := EXP * 10 + CHARACTER'POS(CHR)
- CHARACTER'POS('0');

G.14 when '-' => EXP SIGN := -1;
G.15 when others > raise INVALIDENTRY;

end case;
end loop;

G.16 INDEX := LEN;
G.17 when others => raise INVALID-ENTRY;

end case;
G.18 INDEX := INDEX + 1;

end loop;
G.19 NUM VAL := SIGN * X * lO.O**(EXP SIGN * EXP - COUNT);

end STR TO FLT;
end FLOATCONV;

79

A d d r e s s B o o k (I of 12) *

File: addrdec.ada *

Author: Gerald L. Mohnkern and Beverly Mohnkern *

"Applied Ada" *

Tab Professional and Reference Books, 1986 *

with DIRECT 10;
with TEXTI0; use TEXTIO;

package ADDRDEC is
subtype LINE40 is STRING(1..40);
type ADDRESS is record
NAME : STRING(1..40) := (1..40 => '

STREET : STRING(1..40) := (1..40 => '

CITY : STRING(1..20) := (1..20 => '

STATE : STRING(I..2) := " "
ZIP : STRING(1..5) (1..5 => '

AREA : STRING(1. 3) := "

PHONE : STRING(1..8) := (1..8 => '

end record;
type KEY is record
NAME : STRING(I..40) := (1..40 => '

PT DATA : POSITIVE;
end recoid;
MAX SIZE : constant := 20; --Maximum size of deletion array
type INT ARRAY is array (POSITIVE range <>) of INTEGER;
type KEY ARRAY is array (POSITIVE range >) of KEY;
type LIST(SIZE : NATURAL) is record
LAST REC : INTEGER;
NEXT SPACE : INTEGER;

SPACE : INT ARRAY(1..MAX SIZE);
KEY LIST : KEYARRAV(1..SIZE);

end record;
type ALIST is access LIST;

package ADDRESS 10 is new DIRECT I0(ADDRESS);
package INDEX 10 is new DIRECT IO(LIST);

type OPERATION is (CREATE, ADD, DELETE, CHANGE, SEARCH, QUIT);

QUITTING : exception;
INDX ID : INDEX IO.FILE TYPE;
DATA ID : ADDRESS IO.FILE TYPE;
DATA NAME : constant STRING := "ADDRBK1";
INDX NAME : constant STRING "ADDRINDXI";

end ADDRDEC;

A d d r e s s B o o k (2 of 12) *

File: addrmain.ada *

80

Author: Gerald L. Mohnkern and Beverly Mohnkern *

"Applied Ada" *
Tab Professional and Reference Books, 1986 *

__* *

with TEXT IO; use TEXT_10;
with GET STRING;
with DISPLAY;
with ADDRDEC; use ADDRDEC;
with START UP;
with ENTER DATA;
with CREATE LIST;
with SELECTALTERNATIVE;
with SEARCH;
with ALTER DATA;
with INSERT;
with DELETE;

procedure ADDRESS BOOK is
NAME : STRING(I..40);
PT LIST A LIST;
LEN LIST : A LIST;
DATA ADDRESS;
INDEX : INTEGER;
FOUND BOOLEAN;
OP : OPERATION;
FIRST : BOOLEAN := TRUE;

procedure GET NAME(NAME : in out STRING) is
COUNT ; INTEGER;
begin

PUT LINE("Enter name(last, first)");
SKIP LINE;

B.1 GET STRING(NAME, COUNT);
B.2 for I in COUNT + 1..NAME'LAST loop
B.3 NAME(I) '

end loop;
return;

end GETNAME;

begin --Open Files and Load Index from File
A.1 PT LIST new LIST(O);
A.2 LEN LIST := new LIST(O);
A.3 START_UP(PTLIST, LENLIST, FIRST);

loop
A.4 SELECT ALTERNATIVE(OP, FIRST);

case OP is
A.5 when CREATE => CREATE LIST(PT LIST, LENLIST);
A.6 when ADD => ENTER DATA(DATA);-
A.7 INSERT(DATA, PT LIST);
A.8 when CHANGE => GET NAME(NAME);
A.9 SEARCH(SEEK NAME => NAME,

PT LIST => PT LIST,
DATA => DATA,-

81

INDEX => INDEX,
FOUND -> FOUND);

A.1O if FOUND then
A.11 ALTER DATA(DATA);
A.12 ADDRESS IO.RITE(DATAID, DATA,

ADDRESS IO.POSITIVE COUNT
(PTLIST.KEYLIST(INDEX).PTDATA));

A.13 else
PUT LINE("Name not found.");

end if;
A.14 when DELETE => GET NAME(NAME);
A.15 DELETE(NAME, PT LIST);
A.16 when SEARCH => GET NAME(NAME);
A.17 SEARCH(SEEK NAME => NAME,

PT LIST => PT LIST,
DATA => DATA,-
INDEX => INDEX,
FOUND => FOUND);

A.18 if FOUND then
A.19 DISPLAY(DATA);
A.20 else

PUT LINE("Name not found.");
end if;

A.21 when QUIT => null;
end case;

A.22 exit when OP = QUIT;
end loop;

A.23 LEN LIST.LAST REC := PT LIST.SIZE;
A.24 INDEX IO.WRITE(INDX ID, LEN LIST.2ll, 1);
A.25 INDEXIO.WRITE(INDX ID, PT LIST.all, 2);
A.26 INDEX IO.CLOSE(INDX ID);-
A.27 ADDRESS_IO.CLOSE(DATAID);

end ADDRESS BOOK;

A d d r e s s B o o k (3 of 12) *

-- * *

File: startup.ada *
Author: Gerald L. Mohnkern and Beverly Mohnkern *

"Applied Ada" *

Tab Professional and Reference Books, 1986 *

with TEXT 10; use TEXT 10;
with ADDRDEC; use ADDRDEC;
with GET STRINC;
with CREATE LIST;
procedure START UP(PTLIST : in out A LIST;

LEN LIST : in out A LIST; FIRST : in out BOOLEAN) is
RESPONSE : STRING(1..40);
LEN : NATURAL;

begin

82

OPSNINDX
begin

C.1 INDEX IO.OPEN(INDX ID, INDEX IO.INOUTFILE, INDX NAME);
C.2 INDEX IO.READ(INDX ID, LEN LIST.all, 1);
C.3 PT LIST :=new LIST(LEN LIST.LASTREC);
C.4 INDEX_-IO.READ(INDXID, TLIST-all, 2);

exception
C.5 when INDEX IO.NAME ERROR =

PUT LINET"There Ts no Index File. Do you");
PUT LINE("want to create one (C) or quit (0)?");

C.6 GETSTRING(RESPONSE, LEN);
C .7 FIRST :=FALSE;
C.8 if RESPONSE(l) = 'Q' or RESPCNSE(l) ='q' then

raise QUITTING;
C.9 else
C-l0 CREATELIST(PT LIST, LENLIST);

end if;
end OPENINDX;

OPENDATA
begin

C.11 if not ADDRESS IO.IS OPEN(DATA ID) then
C.12 ADDRESS_-IO.OPEN(DATAID, ADDRESSIO.INOUTFILE, DATANAME);

end if;
exception

C.13 when ADDRESSIO.NA1E ERROR =>
PUT LINE("There is-no Data File. Do you");
PUT LINE("want to create one (C) or quit (Q)?");

C.14 if FIRST then
C.15 FIRST := FALSE;
C.16 else

SKIPLINE;
end if;

C.17 GET STRING(RESPONSE, LEN);
C.18 if RESPONSE(1) = '0' or RESPONSE(1) ='q' then

raise QUITTING;
C.19 else
C.20 INDEX IO.DELETE(INDX ID);
C.21 CREATE_-LIST(PTLIST, LENLIST);

end if;
end OPENDATA;

end STARTUP;

A d d r e s s B o o k (4 of 12) *

File: crelist.ada*
Author: Gerald L. Mohnkern and Beverly Mohnkern*

"Applied Ada"
Tab Professional and Reference Books, 1986*

with TEXT 10; use TEXT 10;

83

with ADDRDEC; use ADDRDEC;
with ENTER DATA;
procedure CREATELIST(PT LIST in out A-LIST;

LEN LIST : in out A LIST) is

RESPONSE : STRING(1..4O);
INIT KEY : KEY;
DATA : ADDRESS;

begin
FILE1 GEN
begin

D.l ADDRESS IO.CREATE(DATAID, ADDRESS IO.INOUT FILE, DATANAME);
7 cxception

D.2 when ADDRESS IO.STATUS ERROR =>

D.3 ADDRESS IO.DELETE(DATA ID);
D.L ADDRESS IO.CREATE(DATAID, ADDRESSIO.INOUTFILE, DATA NAME);

end FILE1_GEN;

FILE2 GEN
begin

D.5 INDEX IO.CREATE(INDXID, INDEXIO.INOUTFILE, INDXNAME);
exception

D.6 when INDEX IO.STATUS ERROR =>
D.7 INDEX IO.DELETE(INDXID);
D.8 INDEX IO.CREATE(INDXID, INDEXIO.INOUT FILE, INDXNAME);

end FILE2_GEN;

D.9 ENTER DATA(DATA);
D.1O ADDRESS IO.WRITE(DATA ID, DATA, 1);
D.l1 INIT KEY.NAME := DATA.NAME;
D.12 INIT-KEY.PT DATA := 1;
D.13 PTLIST := new LIST'(SIZE => 1,

LAST REC => .,

NEXTSPACE => 0,
SPACE => (1..MAX SIZE => 0),
KEY LIST => KEY AiRRAY'(1 => INIT KEY));

D.14 LEN LIST.LAST REC := 1;
D.15 LEN LIST.NEXTSPACE := 0;
D.16 LEN-LIST.SPACE := (LENLIST.SPACE'RANGE => 0);

end CREATE LIST;
_****************************** ** ***

A d d r e s s B o o k (5 of 12) *

File: entdata.ada *

Author: Gerald L. Mohnkern and Beverly Mohnkern
"Applied Ada"
Tab Professional and Reference Books, 1986 *

with TEXT 10; use TEXT 10;
with ADDRDEC; use ADDRDEC;
with GET STRING;

84

with ALTERDATA;
with DISPLAY;

procedure ENTER DATA(DATA out ADDRESS) is
RESPONSE : STRING(1..40);
COUNT : INTEGER;
NEWADDRESS : ADDRESS;

begin
PUT LINE("Enter name of addressee(last, first).");
SKIP LINE;

E.1 GET_STRING(NEW_ADDRESS.NAME, COUNT);

PUT LINE("Street address");
SKIP LINE;

E.2 GET_STRING(NEW_ADDRESS.STREET, COUNT);

PUT LINE("City");

SKIP LINE;
E.3 GET_STRING(NEW_ADDRESS.CITY, COUNT);

PUT LINE("Two-letter abbreviation for state");
SKIP LINE;

E.4 GET_STRING(NEWADDRESS.STATE, COUNT);

PUT LINE("Five digit zip code");
SKIP LINE;

E.5 GET_STRING(NEWADDRESS.ZIP, COUNT);

PUT LINE("Phone area code");
SKIP LINE;

E.6 GET_STRING(NEWADDRESS.AREA, COUNT);

PUT LINE("Phone number");
SKIT LINE;

E.7 GET_STRING(NEWADDRESS.PHONE, COUNT);

E.8 DISPLAY(NEW ADDRESS);
PUT LINE("Is this correct? (YIN)");
SKIP LINE;

E.9 GET_STRING(RESPONSE, COUNT);
E.10 if RESPONSE(l) I= 'Y' and RESPONSE(1) 1= 'y'
E.11 then ALTERDATA(NEWADDRESS);

end if;

E.12 DATA := NEW ADDRESS;

end ENTER DATA;__*************************************** ****************************

A d d r e s s B o o k (6 of 12) *

File: display.ada *
Author: Gerald L. Mohnkern and Beverly Mohnkern *

"Applied Ada" *

85

Tab Professional and Reference Books, 1986 *

with TEXT 10; use TEXT 10;
with ADDRDEC; use ADDRDEC;

procedure DISPLAY(DATA : ADDRESS) is
begin

F.1 PUT LINE(DATA.NAME);
F.2 PUT-LINE(DATA.STREET);
F.3 PUTTDATA.CITY);PUT(", ");PUT(DATA.STATE);
F.4 PUT(" ");PUT(DATA.ZIP);NEW LINE;
F.5 PUT(DATA.AREA);PUT("-");PUT(DATA.PHONE);NEW LINE;

end DISPLAY;

A d d r e s s B o o k (7 of 12) *

File: altdata.ada *

Author: Gerald L. Mohnkern and Beverly Mohnkern *
"Applied Ada" *
Tab Professional and Reference Books, 1986 *

__* *

with TEXT 10; use TEXT 10;
with ADDRDEC; use ADDRDEC;
with GET STRING;
with DISPLAY;

procedure ALTER DATA(DATA : in out ADDRESS) is
NUM CHAR : NATURAL;
RESPONSE : STRING(1..40);

procedure ALTER FIELD(STRG : in out STRING) is
REPLY : STRING(STRG'range) :=

(STRG'FIRST..STRG'LAST => ' ');
INCHAR : NATURAL;
begin

H.1 PUT LINE(STRG);
SKIP LINE;

H.2 GET STRING(REPLY, INCHAR);
H.3 if IN CHAR > 0 then
H.4 STRG := REPLY;

end if;
enld ALTERFIELD;

begin -- ALTERDATA
loop
PUTLINE("For each line push carriage return without");
PUTLINE("entry to leave line unchanged. Otherwise,");
PUTLINE("enter a new line.");
NEW-LINE;

86

G.1 ALTER FIEI.DM'ATANAME);
G. 2 ALTER FIELDkj)ATA. STREET);
G.3 ALTER FIELD(DATA.CITY);
G.4 ALTER FIELD(DATA. STATE);
G.5 ALTER FIELD(DATA.ZIP);
G.6 ALTERFIELD(DATA.AREA);
G.7 ALTER FIELD(DATA.PHONE);

PUTLINE(Q'Address is now:
NEW LINE;

G.8 DISPLAY(DATA);
NEW-LINE;
PUT LINE("Is this correct? (MI)");

0.9 RESPONSE(1):=Y'
SKIP LINE;

0.10 GET STRING(RESPONSE, NUM CHAR);
G.11 if RESPONSE(1) = 'Y' or RESPONSE(1) 'y' then

return;
end if;

end loop;

end ALTERDATA;

A d d r e s s B o o k (8 of 12) *

File: selalte-ada*
Author: Gerald L. Mohnkern and Beverly Mohnkern*

"Applied Ada"*
Tab Professional and Reference Books, 1986*

with TEXT_10, ADDRDEC;
use TEXT_10, ADDRDEC;
with GETSTRING;

procedure SELECT ALTERNATIVE(MODE : out OPERATION;
FIRST : in out BOOLEAN) is

RESPONSE : STRING(1. .40);
COUNT : INTEGER;

begin
loop
PUTLINE("Data base operations are:");
NEWLINE;
PUT LINE(" INITIALIZE DELETE");
PUTLINE(" CHANGE SEARCH");
PUTLINE(" ADD QUIT");
NEWLINE;
PUT LINE("Enter first character of selection.");

I.1 if not FIRST then
SKIPLINE;

end if;

1.2 GET STRING(RESPONSE, COUNT);

87

1.3 FIRST := FALSE;
case RESPONSE(1) is

1.4 when 'I' I 'i' => MODE := CREATE;
PUT LINE("Initialize replaces your address files!");
PUT LINE("Do you want to continue? (Y/N)");
SKIP LINE;

1.5 GET STRING(RESPONSE, COUNT);
1.6 if RESPONSE(l) = 'Y' or RESPONSE(1) = 'y' then

return;
end if;

1.7 when 'C' I 'c' => MODE := CHANGE; return;
1.8 when 'A' 'a' => MODE := ADD; return;
1.9 when 'D' I 'd' => MODE DELETE; return;
I.10 when 'S' I 's' => MODE := SEARCH; return;
I.11 when '0' I 'q' => MODE := QUIT;

PUT LINE("QUIT (Y/N)?");
SKIP LINE;

1.12 GET STRING(RESPONSE, COUNT);
1.13 if RESPONSE(1) = 'Y' or RESPONSE(1) = 'y' then

return;
end if;

1.14 when others => null;
end case;

end loop;

end SELECT ALTERNATIVE;

A d d r e s s B o o k (9 of 12) *

File: insert.ada *
Author: Gerald L. Mohnkern and Beverly Mohnkern *

"Applied Ada" *
Tab Professional and Reference Books, 1986 *

with TEXT 10; use TEXT 10;
with ADDRDEC; use ADDRDEC;
with DISPLAY;
with GETSTRING;
with SEARCH;

procedure INSERT(DATA : ADDRESS; PTLIST in out A LIST) is
TEMP DATA : ADDRESS;
INDEX, COUNT, REC NUM : NATURAL;
FOUND : BOOLEAN;
RESPONSE : STRING(1..40);
NEWLIST : A_LIST;

begin
J.1 SEARCH(DATA.NAME, PTLIST, TEMPDATA, INDEX, FOUND);
J.2 if FOUND then

PUT LINE("There is an address for this name. It is: ");
NEW LINE;

88

J.3 DISPLAY(TEMP DATA);
PUT LINE("Overwrite (0) or Leave (L) this address?");
SKIP LINE;

J.4 GET STRING(RESPONSE, COUNT);
J.5 if RESPONSE(1) /= '0' AND RESPONSE(1) /= 'o' then

return; --terminate insertion
J.6 else --overwrite the existing record
J.7 REC NUM := PTLIST.KEYLIST(INDEX).PTDATA;

end if;
J.8 else -- no address found

-- allocate a new index list with space for a new entry
J.9 NEW LIST := new LIST(PT LIST.SIZE + 1);
J.lO for I in 1..INDEX loop

-- copy entries up to one preceding insertion
J.11 NEW LIST.KEYLIST(I) := PTLIST.KEYLIST(I);

end loop;
J.12 INDEX := INDEX + 1;
J.13 NEW LIST.KEY LIST(INDEX).NAME := DATA.NAME;

-- Where should data be written?
J.14 if PT LIST.NEXT SPACE = 0 then -- append to file
J.15 NEWLIST.LAST-REC := PT LIST.LASTREC + 1;
J.16 RECNUM := NEW LIST.LAST REC;
J.17 NEW-LIST.NEXT SPACE := O;
J.18 else -- a deleted address can be overwritten
J.19 NEW LIST.LAST REC := PT LIST.LAST REC;
J.20 RECNUM := PT-LIST.SPACE(PT LIST.NEXT SPACE);
J.21 NEW LIST.NEXT-SPACE := PT LIST.NEXT SPACE - 1;

end if;
J.22 NEW LIST.SPACE := PT LIST.SPACE;
J.23 NEWLIST.KEY LIST(INDEX).PTDATA :=RECNUM;

--copy entries following insertion
J.24 for I in INDEX+I..NEW LIST.SIZE loop
J.25 NEW LIST.KEYLIST(I) := PT LIST.KEYLIST(I - 1);

end loop;
J.26 PTLIST := NEWLIST; -- access new list with PTLIST

end if;
J.27 ADDRESSIO.WRITE(DATA ID, DATA,

ADDRESS IO.POSITIVE COUNT(RECNUM));

end INSERT;

A d d r e s s B o o k (10 of 12) *

__* *

File: search.ada *

Author: Gerald L. Mohnkern and Beverly Mohnkern *

"Applied Ada" *

Tab Professional and Reference Books, 1986 *

with TEXT 10; use TEXT IO;

with ADDRDEC; use ADDRDEC;

procedure SEARCH(SEEKNAME : STRING; PTLIST : A-LIST;

89

DATA : out ADDRESS; INDEX : out NATURAL;
FOUND : out BOOLEAN) is

THIS NAME : STRING(SEEKNAME'RANGE);
LAST : INTEGER 0;
LLAST : INTEGER 0;
HIGH : INTEGER PT LIST.SIZE;
LOW : INTEGER := 1;
NEXT : INTEGER := (HIGH + LOW)/2;
BLANKS : ADDRESS;

begin
K.1 while (NEXT 1= LAST) and (NEXT /= LLAST) loop

K.2 THIS NAME := PT LIST.KEY LIST(NEXT).NAME;
K.3 if SEEK NAME = THISNAME then
K.4 FOUND := TRUE;
K.5 INDEX := NEXT;
K.6 ADDRESS IO.READ(DATA ID, DATA, ADDRESS 10.

POSITIVECOUNT(PTLIST.KEYLIST(NEXT).PTDATA));
return;

K.7 elsif SEEK NAME > THISNAME then
K.8 LOW := NEXT;
K.9 LLAST := LAST;
K.1O LAST NEXT;
K.11 NEXT := (NEXT + HIGH + 1)/2;
K.12 else -- SEEK NAME < THIS NAME

K.13 HIGH := NEXT;
K.14 LLAST LAST;
K.15 LAST := NEXT;
K.16 NEXT (NEXT + LOW)/2;

end if;
end loop;

K.17 FOUND := FALSE;
K.18 DATA := BLANKS;
K.19 if SEEK NAME > THIS NAME then
K.20 INDEX := LAST;
K.21 else -- SEEK NAME < THIS NAME

K.22 INDEX := LAST - 1;
end if;

end SEARCH;

A d d r e s s B o o k (11 of 12) *

__* *

File: delete.ada *

Author: Gerald L. Mohnkern and Beverly Mohnkern *

"Applied Ada" *
Tab Professional and Reference Books, 1986 *

with TEXT 10; use TEXTIO;
with DISPLAY;
with ADDRDEC; use ADDRDEC;
with GET STRING;
with SEARCH;

"1

90

procedure DELETE(DEL NAME STRING;
PT LIST in out ALIST) is

RESPONSE : STRING(l..40) (l..40 => '

TEMP DATA : ADDRESS;

INDEX, COUNT, REC NUM : INTEGER;

FOUND : BOOLEAN;
NEWLIST : ALIST;

begin
L.1 SEARCH(SEEK NAME => DEL NAME,

PT LIST => PT LIST,
DATA => TEMP DATA,

INDEX => INDEX,
FOUND => FOUND);

L.2 if not FOUND then
PUT LINE("Name not found.");
return;

L.3 else --delete index entry and address record
NEW LINE;

L.4 DISPLAY(TEMPDATA);
PUT LINE("Do you want to delete this address? (Y/N");
SKIP LINE;

L.5 GET STRING(RESPONSE, COUNT);
L.6 if RESPONSE(l) /= 'Y' and RESPONSE(l) /= 'y' then

return;
end if;

--delete entry from index
L.7 REC NUM := PT LIST.KEY LIST(INDEX).PTDATA;
L.8 for I in INDEX..PT LIST.SIZE - I loop

L.9 IT_LIST.KEYLISTTI) := PTLIST.KEYLIST(I + 1);

end loop;

--make a new list that is one entry shorter
L.10 NEW LIST := new LIST'(PT LIST.SIZE - 1, PT LIST.LASTREC,

PT LIST.NEXT SPACE, PT LIST.SPACE,

PT-LIST.KEYtIST(l..PTLIST.SIZE - 1));

--add record number to stack of space available
L.11 if NEW LIST.NEXT SPACE < NEW LIST.SPACE'LAST then
L.12 NEW LIST.NEXT SPACE := NEW-LIST.NEXT SPACE + 1;

L.13 NEWLIST.SPACE(NEWLIST.NEXTSPACE) -= RECNUM;
end if;

L.14 PT LIST := NEWLIST; --access new list with PTLIST
end if;

end DELETE;

A d d r e s s B o o k (12 of 12) *

__* *

File: getstr.ada *

Author: Gerald L. Mohnkern and Beverly Mohnkern *

"Applied Ada" *

'1

91

Tab Professional and Reference Books, 1986 *

with TEXT 10; use TEXT 10;
with ADDRDEC; use ADDRDEC;
procedure GET STRING(STR : out LINE40;

LEN : out NATURAL) is

CH : CHARACTER;
CUM COUNT : NATURAL := 0;

begin
M.1 while not END OF LINE loop
M.2 GET(CH);
M.3 CUM COUNT := CUM COUNT + 1;
M.4 STR(CUMCOUNT) CH;

end loop;

M.5 LEN := CUM COUNT;

end GETSTRING;

1

APPENDIX C

C PROGRAMS INCLUDED IN THE STUDY

92

93

* Fast find *

* File: fastfind.c •
* Author: Webb Miller *
* "A Software Tools Sampler" *
* Prentice-Hall, Inc., 1987 *

* fastfind - print lines containing a given pattern string. *

* Program description: *

* A command line has the form ,
* fastfind pat Ifilel] [file2I *
* where pat is any sequence of characters. A character pair *
* "\n" at the beguinning or end of pat matches the beguinning *
* or end of a text line. If no file is named, then standard *
* input is read. If more than one file is named, then each *
* printed line is preceded by its file's name. *

* Portability: *
* *

* Files are read with the UNIX routines: *, *

* int read(fd, buffer, max-chars) *
* int fd, max-chars; *
* char buffer[]; *
* Read at most max chars characters from the file with *
* file descriptor fd to the buffer. The returned value *
* is the actual number of characters read. *

* File lines should be separated by '\n'. *

#include <stdio.h>
#define MAXNAME 50

/*Two buffers of length BUFSIZ (defined in stdio.h are arranged as
a circle; the location just left of the current buffer is the end
of the other buffer.

*/

#define TO LEFT buf[l - curbuf] + BUFSIZ - 1
#define DECREMENT(x) if(x buf[curbufJ) x = TO LEFT; else --x
#define INCREMENT(x) if(x == TO LEFT) x = buftcurbuf]; else ++x
#define PROGNAME "fastfindl1

int curbuf, /*current buffer*/
fd, /*file descriptor*/
nfile, /*number of files*/
shift[128]; /*shift table*/

94

char buf[2IfBUFSIZI, /*text buffers*/
*end_pat, /*last position in the pattern*/
*file, /*name of the file*/
*lim, /*limit for search*/
*pat, /*pattern*/
*pos; /*search pointer to the textr*/

char prog_name[MAX NAME + 1]; /*used in error messages*/

iain(argc, argv)
int argc;
char *argv[];

mnt i, length;
char *p;

A-1 savename(PROGNAME); /*for error messages*/
A.2 if(argc ==1)
A.3 fatal("No pattern was given.");
A.4 pat = argv[lI;

/*handle new line characters in the pattern*/
A.5 if(pat[0] == '\\' && patil] == In')
A.6 *++Pat ='\n';
A.7 if((length = strlen(pat)) == 0)
A.8 fatal("Pattern length is zero.");
A.9 if(length > 1 && pat[length - 21 I= \\' && pat[length -1 =''

A.10 pat[length - 2] = n;
A.11 patflength - 11 = \;
A.12 --length;

) /*end if*/
A.13 end_pat = pat + length - 1;
A.14 for(i = 0;i < 128; ++i)
A.15 shift[i) = length;
A.16 for(p = pat; *p !- '\0'; ++p)
A.17 shiftl*p & 01771 =--length;
A.18 if((nfile = argc - 2) == 0)

I
A.19 fd = 0; /*standard input*/

scano;
) /*end if*/

A.20 else
I

A.21 for(i = 2;i < argc; ++i) /*for each specified file*/

A.22 file =argv[i];
A.23 if((fd = open(file, 0)) < 0)
A.24 fprintf(stderr, "%s: Cannot open %s.\n", PROG-NAME, file);
A.25 else

scan Q;
A.26 close(fd);

/*end else*/
/*end for*/

95

) /*end else*/

exit(O);
} /*end main*/

* /*scan - find lines in file that contains the pattern string*/

scan()

int increment;

B.1 buf[1](BUFSIZ - 1] = '\n'; /*in case the first line matches*/
B.2 curbuf = 1;

-n B.3 lim = pos = buffl]; /*force an immediate call to fill buffer(*/
for(;;)

/*Pos points to a text position that might end on an occurrence
of

pat. If that character differs from the last character of pat,
then pos is shifted to the next position that might yield a
match. The shifting stops when pos reaches the end of the

buffer
or an instance of the last pattern character.

*/

B.4 while(pos < lim && (increment = shift[*pos & 0177]) > 0)
B.5 pos += increment;
B.6 if(pos < lim) /*shifting ended with pos in buffer*/

B.7 if(is match()

printline(;
B.8 ++pos;

) /*end if*/
/*else past end of buffer; fill the other buffer*/

B.9 else if(fillbuffer() == EOF)
break;

) /*end for*/
/*end scan*/

/*fillbuffer - fill other buffer; points pos to first char read;
point

lim just beyond the last character read; return EOF at the end of
the file.

*/

fillbuffer()

C.1 curbuf = 1 - curbuf;
C.2 pos = bt'[curbuf];
C.3 if((lim = pos + read(fd, pos, BUFSIZ)) == pos)

return(EOF);
return(!EOF);
) /*end fill buffer*/

/*is match - tell if a copy of the pattern ends at pos*/
ismatch()

96

D.1 char *t = pos, *p =end_pat; /*already know that *t *p *

D..2 while(--p >= pat)

D.3 DECREMENT(t);
D.4 jf(*p !.= *t)

return(O);
D.5)/*end while*/
D5 return(l);

/*end is-match*/

/*print line - print the line pointed to by pos; move pos to the end
of line.

print _lineo)

char *t;

E.1 if(nfile > 1)
E.2 printf("%s:", file);
E.3 if(*pos == '\n') /*find the start of the line*/
E.4 DECREMENT(pos);
E.5 for(t = pos; *t != '\n';)
E.6 DECREMENT(t);

/*print the portion of the line before the match*/
E.7 while(t != pos)

E.8 INCREMENT(t);
E.9 putchar(*t);

) /*end while*/
/*print the portion of the line after the match*/

E.10 while(*pos != '\n')
I

E.11 if(++pos >= lim && fill-buffer() == EOF)
break;

E.12 putchar(*pos);
/*end while*/

/*end print-line*/

/*savename - record a program name for error messages*/
savename (name)

char *name;

char *strcpy();

F.1 if(strlen(name) <= MAXNAME)
F.2 strcpy(prog name, name);

)/*end savename*/

/*fatal - print message and die*/
fatal(msg)

97

char *msg;

G.I if(prog_narne[O] != '\0')

G.2 fprintf(stderr, "%s: ",prog name);

G.3 fprintf(stderr, "Zs\n",msg);
ex it (1);
]/*end fatal*/

98

* Hailing List *

* File: mail.c *
* Author: Herbert Schildt *
* "Advanced Turbo C" *
* Osborne McGraw-Hill, 1987 *

#include "stdio.h"

struct iddress (
char 30];
char sLkLeet[40];
char city[20j;
char state[3];
char zip[lO]; /*hold US & Canadian zips*/

struct address *next; /*pointer to next entry*/
struct address *prior; /*pointer to previous entry*/
} listentry;

struct address *start; /*pointer to first entry in list*/

struct address *last; /*pointer to last entry*/

void entero, display(, search(, save(, load();

main()

char s[80], choice;
struct address *info;

A.1 start = last = NULL; /*zero length list*/
for(;;)

I
switch(menu-selecto)

A.2 case 1: enter);
break;

A.3 case 2: delete);
break;

A.4 case 3: list();
break;

A.5 case 4: search(); /*find a name*/
break;

A.6 case 5: save(); /*save list to disk*/
break;

A.7 case 6: loado; /*read from disk*/
break;

A.8 case 7: exit(O);
3 /*end switch*/
/*end for*/

/*end main*/

99

/* select an operation *
menu select()

char s[801;
int c;

printf(I'l. Enter a name\n");
print f("2. Delete a name\n");
printf("3. List the file\n");
printf("4. Search\n");
printf("5. Save the file\n");
printf("6. Load the file\n");
printf('"7. Quit\n');
do

printf("\nEnter your choice: "1);
B.1 gets(s);
B.2 c =atoi(s);
B.3) while(c < 1 11 c > 7);

return c;
)/*end~ menu-select*/

1* enter name and address *
void enter()

I
struct address *info, *dls-storeo,

for(;;)

C.1 info = (struct address *) malloc (sizeof(list-entry));
C.2 if(!info)

printf("\n~ut of memory\n"l);
return;
) /*end if*/

c.3 inputs(" enter name: ",info->name,30);
C.4 if(!info->namejO]) break; /*stop entering*/
C.5 inputs("enter street: ",info->street,40);
C.6 inputs(" enter city: ",info->city,20);
C.7 inputs("t enter state: ",info->state,3);
C.8 inputs(" enter zip: ",info->zip,l0);
C.9 start = dls store(info, start);

/*end for*/
/*end enter*/

/* This function will input a string up to the length in count.
This will prevent the string from overrunning its space and
display a prompt message.

inputs(prompt, s, count)
char *prompt;
char *s;

100

int count;

char p[255);

do

print f(prompt);
D.1 gets(p);
D-2 if(strlen(p) > count)

printf("\ntoo long\n");
D.3)while(strlen(p) > count);

strcpy(s,p);

/* This function creates a doubly linked list in sorted order. A
pointer to the first element is returned because it is possible
that a new element will be inserted at the start of the list.

struct address *dls store(i, top)
struct address *i; /*new element*/
struct address *top; /*first element in list*/

struct address *old, *p;

E.1l if(last == NULL) /*first element in list*/
I

E.2 i->next NULL;
E-3 i->prior =NULL;

E.4 last = i
E.5 return i;

) /*end if*/
E-6 p = top; /*start at top of list*/
E.7 old = NULL;
E-8 vhile(p)

E..9 if(strcmp(p->name, i->name) < 0)

E.10 old = p
E.11 p = p-5next;

)/*end if*/
E.12 else

E.13 if(p->prior)

E.14 p->prior->next = i
E.15 i->next p;
E.16 i->prior =p->prior;

E.17 p->prior i ;
E.18 return top;

) /*end if*/
E.19 i-.>next =p; /*new first element*/
E.20 i->prior =NULL;

E.21 p->prior =;

E.22 return i;

101

E.23 old->next = i; /*put on end*/
E.24 !->next =NULL;
E.25 i->prior old;
E.26 last = i
E.27 return start;

3/*end~ dls-store*/

/* Remove an element from the list. *
delete()

I
struct address *info, *findo;
char s[R01;

printf("enter name:")
F.1 gets(s);
F.2 info = find(s);
F.3 if(info)

I
F.4 if(start == info)

F.5 start =info->next;
F.6 if(start)
F.7 start->prior = NULL;
F.8 else
F.9 last =NULL;

) /*end if*/
F.10 else

I
F.11 info->prior->next = info->next;
F.12 if(info != last)
F.13 info->next->prior = info->prior;
F.14 else
F.15 last = info->prior;

) /*end else*/
F.16 free(info); /*return memory space to system*/

3/*end if*/
3/*end delete*/

struct address *find(name)
char *name;

struct address *info;

G.1 info = start;
G.2 while(info)

G-3 if(!strcmp(name, info->name))
G.4 return info;
G.5 info = info->next; /*get next address*/

) /*end while*/
printf("name not found\n');

102

return NULL; /*not found*/
) /*end~ find*/

list()

register int t;

struct address *info;

11.1 info = start;
H.2 while(info)

H.3 display(info);
H.4 info = info->next; /*get next address*/

)/*end while*/
printf("\n\n");
) /*end list*/

void display(info)
struct address *info;

1.1 printf("%s\n",info->name);
1.2 printf("%s\n"1,info->street);
1.3 printf("%s\n"1,iflfo->city);
1.4 printf("%Xs\n"1,info->state);
1.5 printf("'%s\n"1,info->zip);

printf("\n\n");
) /*end display*/

void search()
I
char name[40];
struct address *info, *findo;

printf('enter name to find:")
J.1 gets(name);
J.2 if(!(info = find(name)))

printf("not found\n t);
J.3 else
J.4 display(info);

) /*n search*/

void save()

register mnt t;
struct address *info;
FILE *fp;

K.1 if((fp = fopen("mail-list","wb")) ==NULL)

printf("Cannot open file\n");
exit(1);

103

) /*end if*/
printf("\nSaving file\n");

K.2 info - start;
K.3 while(info){
K.4 fwrite(info,sizeof(struct address),l,fp);
K.5 info = info->next; /*get next address*/

) /*end while*/

K.6 fclose(fp);
) /*end save*/

void load()

{
register int t;
struct address *info, *temp = NULL;
FILE *fp;

L.1 if((fp = fopen("mail list","rb")) == NULL)
(
printf("Cannot open file\n");
exit(l);
) /*end if*/

L.2 while(start)
f

L.3 info = start->next;
L.4 free(info);
L.5 start = info;

) /*end while*/

printf("\nLoading file\n");
L.6 start = (struct address *) malloc (sizeof(struct address));
L.7 if(!start)

(
printf("Out of memory\n");
return;
) /*end if*/

L.8 info = start;
L.9 while(!feof(fp))

{
L.10 if(l != fread(info,sizeof(struct address),1,fp))

break;
/*get memory for next*/

L.11 info->next = (struct address *) malloc(sizeof(struct address));
L.12 if(!info->next)

{
printf("Out of memory\n");
return;
) /*end if*/

L.13 info->prior = temp;
L.14 temp = info;
L.15 info = info->next;

) /*end while*/
L.16 temp->next = NULL; /*last entry*/
L.17 last = temp;
L.18 start->prior = NULL;

104

L.19 fclose(fp);
I/*end~ load*/

105

* Text Editor

* File: editor.c •
* Author: Herbert Schildt *
* "Advanced Turbo C" ,
* Osborne McGraw-Hill, 1987 *
* ,

#include "stdio.h"
#include "ctype.h"

struct line
{
char text[BI];
int mum; /*line number of line*/
struct line *next; /*pointer to next entry*/
struct line *prior; /*pointer to previous entry*/
;

struct line *start; /*pointer to first entry in list*/struct line *last; /*pointer to last entry*/

struct line *dls store(, *find(;
void patchupo, delete(, list(, save(, load(;

main(argc, argv)
int argc;
char *argv[];

I
char s(801, choice, fname[80J;
struct line *info;
int linenum = 1;

A.1 start NULL; /*zero length list*/
A.2 last = NULL;
A.3 if(argc == 2)
A.4 load(argv[1]); /*read file on command line*/

do
I

A.5 choice = menu selecto;
switch(choice)

A.6 case 1: printf("Enter line number: ");
A.7 gets(s);
A.8 linenum = atoi(s);
A.9 linenum = enter(linenum);

break;
A.10 case 2: delete(;

break;
A.11 case 3: list(;

break;
A.12 case 4: printf("Enter filename: ");
A.13 gets(fname);
A.14 save(fname); /*write to disk*/

106

break;
A.15 case 5: printf("Enter filename:)

A.16 gets(fname);
A.17 load(fname); /*read from disk*/

break;
A.18 case 6: exit(O);

Mendfl~ switch*/
) hile(l);

) /*nd main*/

A* Select a menu option *
menu select()

char s[80);
int c;

priptf("1. Enter text\n");
printf("2. Delete a line\n");
printf("3. List the fNOWn);
printf("4. Save the SAOe~");
printf("5. Load the fiAWn);
printf("6. Quit\n");
do

printf("\nEnter your choice: Q);
B.1 gets(s);
B.2 c = atoi(s);
B.3)i vhile(c <1 11c>)

return c;
) /Mend menu-select*/

/A Enter text at linenum *
enter(linenum)

int linenum;

struct line *info;
char Q[811;

do /*entry loop*/
I

CA1 info = (struct line *) malloc (sizeof'struct line));
C.2 if(!info)

printf("\n~ut of memory\n");
return linenum;
)/Mend if*/

M. printf("%d : ",linenum);
CAL gets(info->text);
C.5 info->num = linenum;
CA6 if(*info->text)

W. if(find(linenum))
C.8 patchup(linenum, 1); /*fix up old line numbers*/

107

C.9 if(*info->text)
C-10 start -dis store(info);

)/*end~ it*/
C.11 else

break;
C.12 linenum++;

w hile(1);
return linenum;
)/*end~ enter*/

/*This function increases line numbers by 1 of lines below an
inserted line and decreases line numbers by I of lines after
deleted lines.

void patchup(n, incr)
mnt n;
int incr;
I
struct line *j;

D.1 i = find(n);
D..2 vhile(i)

D.3 i->num =i->num + incr;
D.4 1 = i->next;

J/*end vhijle*/
)/*end patchup*/

/* Store in sorted order by line number *
struct line *dls store~i)

struct line *j;
I
struct line *old, *p;

E.1 if(last == NULL) /*first element in list*/
I

E.2 i->next =NULL;

E.3 i->prior =NULL;

E.4 last = i
E.5 return i;

) /*end if*/
E.6 p =start; /*start at top of list*/
E.7 old =NULL;
E.8 while(p)

I
E.9 if(p->num < i->num)

E.10 old = p
E.11 p = p->next;

)/*end if*/
E.12 else

E.13 if(p->prior)

108

(
E.14 p->prior->next =

E.15 i->next =p;

E.16 i->prior = p->prior;

E.17 p->prior =i;

E.18 return start;
) /*end if*/

E.19 i->next = p; /*new first element*/

E.20 i->prior = NULL;

E.21 p->prior =i;
E.22 return i;

) /*end else*/
} /*end while*/

E.23 old->next = i; /*put on end*/
E.24 i->next = NULL;
E.25 i->prior = old;
E.26 last = i;
E.27 return start;

) /*end dis_store*/

/* Delete a line */

void delete()f
struct line *info;
char s[801;
int linenum;

printf("Enter line number: ");

F.1 gets(s);
F.2 linenum = atoi(s);
F.3 info = find(linenum);
F.4 if(info)

(
F.5 if(start == info)

F.6 start = info->next;
F.7 if(start)

F.8 start->prior = NULL;
F.9 else
F.10 last = NULL;

} /*end if*/

F.11 else

I
F.12 info->prior->next = info->next;
F.13 if(info != last)
F.14 info->next->prior = info->prior;
F.15 else
F.16 last = info->prior;

) /*end else*/

F.17 free(info); /*return memory space to system*/
F.18 patchup(linenum + 1, -1); /*decrement line numbers*/

} /*end if*/
/*end delete*/

109

/* Find a line of text */
struct line *find(linenum)

int linenum;(
struct line *info;

G.1 info = start;

G.2 while(info)

c.3 if(linenum == info->num)

G.4 return info;
G.5 info = info->next; /*get next address*/

j /*end while*/

return NULL; /*not found*/
) /*end find*/

/* List the text */
void list()

(
struct line *info;

H.1 info = start;
H.2 while(ir.fo)

H.3 printf("Zd: %s\n",info->num, info->text);

H.4 info = info->next; /*get next address*/
) /*end while*/

printf("\n\n");
} /*end list*/

/* Save the file */
void save(fname)

char *fname;
{
register int t;

struct line *info;
char *p;
FILE *fp;

I.1 if((fp = fopen(fname, "w")) NULL)

printf("Cannot open file\n");
exit(O);
) /*end if*/

printf("\nSaving file\n");

1.2 info = start;

1.3 while(info)
1

1.4 p = info->text; /*convert to char pointer*/

1.5 while(*p)
1.6 putc(*p+ , fp); /*save byte at a time*/

1.7 putc('\r', fp); /*terminator*/

110

1.8 putc('\n', fp); /*terminator*/
1.9 info = info->next; /*get next line*/

) /*end while*/

1.10 fclose(fp);
) /*end save */

/* Load the file */
void load(fname)

char *fname;
I
register int t, size, lnct;
struct line *info, *temp;
char *p;
FILE *fp;

J.1 if((fp = fopen(fname, "r")) == NULL)
(
printf("Cannot open file\n");
exit(0);
) /*end if*/

J.2 while(start) /*free any previous edit*/
{

J.3 temp = start;
J.4 start = start->next;
J.5 free(temp);

) /*end while*/
printf("\nLoading file\n");

J.6 size = sizeof(struct line);
J.7 start = (struct line *) malloc (size);
J.8 if(!start)

f
printf("Out of memory\n");
return;
) /*end if*/

J.9 info = start;
J.10 p = info->text; /*convert to char pointer*/
J.1l lnct = 1;
J.12 while((*p = getc(fp)) != EOF)

J.13 if(!isprint(*p))
break;

J.14 p++;
J.15 while((*p = getc(fp)) != '\r')
J.16 p++;
J.17 getc(fp); /*throw away the \n */
J.18 *p = P\0';
J.19 info->num = lnct++;
J.20 info->next = (struct line *) malloc (size); /*get memory for
next*/
J.21 if(!info->next)

printf("Out of memory\n");
return;

)/*end if*/
J.22 info->prior = temp;
J.23 temp -info;
J.24 info = info->next;
J.25 p = jnfo->text;

I /*end while*/

J.26 temp->next = NULL; /*last entry*/

J.27 last = temp;
J.28 free(infn);
J.29 start->prior = NULL;
J-30 fclose(fp),

)/*end load*/

APPENDIX D

EiTRCPY LOADING DATA TABLES

112

113

TABLE IV

ASSUMPTIONS FOR THE C PROGRAM
FASTFIND, CASE 1

Asmp.
Number Assumption

1 There exists a function called fillbuffer).
2 There exists a function called is match(.
3 There exists a function called print line).
4 There exists a function called savename() with one

parameter.
5 The parameter for the function savename() has read

access only.
6 There exists a function called fatal() with one

parameter.
7 The parameter for the function fatal() has read

access only.
8 Read access to character string pointer called

endpat that points to the last character in
pattern.

9 Read access to integer table called shift.
10 Read access to curbuf, index to the text buffer in

use.
11 Write access to curbuf, index to the text buffer in

use.
12 Read access to buf, buffers used to store text- read

from the files being searched.
13 Write access to buf, buffers used to store text read

from the files being searched.
14 Read access to lim, character pointer that points

to the last character read from the file being
searched.

15 Write access to lim, character pointer that points
to the last character read from the file being
searched.

16 Read access to pos, character pointer that points
to the character being compared with the input
pattern.

17 Write access to pos, character pointer that points
to the character being compared with the input
pattern.

18 Function ismatch returns 1 if a match to the input
pattern has been found in the file being searched,
and returns 0 otherwise.

19 Function fill buffer returns EOF when the an
attempt is made to read from the file being
searched beyond the end of the file.

114

TABLE IV (Continued)

Asmp.
Number Assumption

20 Read access to progname, character string that
holds the name of the executable program, i.e.
(fastfindl).

21 Write access to progname, character string that
-holds the name of the executable program, i.e.

(fastfindl).
22 Write access to character string name.
23 Read access to integer variable argc.
24 Variable argc equals 1.
25 Write access to character string msg.
26 Write access to character string pointer pat that

points to the pattern to be matched.
27 Read access to character string pointer argv[].
28 Read access to character string pointer pat that

points to the pattern to be matched.
29 The first character in the string pointed at by pat

is '\'.
30 The second character in the string pointed at by pat

is In'.
31 Read access to character string pointed at by pat.
32 Write access to character string pointed at by pat.
33 Read access to integer variable length.
34 Write access to integer variable length.
35 Variable length equals 0.
36 Variable length is greater than 1.
37 The next to last character in the string pointed at

by pat is '\'.
38 The last character in the string pointed at by pat

is 'n'.
39 Write access to character string pointer called

end_pat that points to the last character in
pattern.

40 Read access to integer variable i.
41 Write access to integer variable i.
42 Variable i is less than 128.
43 Write access to integer array shift.
44 The character being read from the string pointed at

by the pointer p is not the line terminator ('\0').
45 Write access to character string pointer p.
46 Read access to character string pointer p.
47 Read access to the character String pointed at by p.
48 Variable nfile equals 0.
49 Read access to integer nfiles holding the number of

files to be searched for pattern.

115

TABLE IV (Continued)

Asmp.
Number Assumption

50 Write access to integer nfiles holding the number of
files to be searched for pattern.

51 Read access to character string file holding the
name of the file presently being searched.

52 Write access to character string file holding the
name of the file presently being searched.

53 Read access to file pointer fd that points to the
file presently open.

54 Write access to file pointer fd that points to the
file presently open.

55 Complement of assumption number 48.
56 i < argc, i.e., there are more files to be searched.
57 File pointed at by fd can't be opened for reading.
58 Complement of assumption number 57.

116

TABLE V

LIST OF ASSUMPTION NUMBERS FOR OBJECTS
IN THE C PROGRAM FASTFIND, CASE 1

Object Assumptions

A.1 4, 5
A.2 23, 24
A.3 6, 7
A.4 26, 27
A.5 29, 30, 31
A.6 32
A.7 31, 33, 35, 36
A.8 5
A.9 31, 33, 36, 37, 38
A.10 31, 33
A.11 31, 33
A.12 34
A.13 28, 33, 39
A.14 40, 41, 42
A.15 33, 40, 43
A.16 28, 44, 45, 46, 47
A.17 34, 35, 43
A.18 23, 48, 49, 50
A.19 54
A.20 23, 49, 50, 55
A.21 40, 41, 56
A.22 27, 40, 52
A.23 51, 53, 54, 57
A.24 51
A.25 51, 53, 54, 58
A.26 53
B.0 1, 2, 3, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19
C.0 10, 11, 12, 15, 16, 17, 53
D.0 8, 10, 12, 16, 28
E.0 1, 10, 12, 14, 16, 17, 19, 49, 51
F.0 5, 21
G.0 7, 20

117

TABLE VI

ASSUMPTIONS FOR THE C PROGRAM
FASTFIND, CASE 2

Asmp.
Number Assumption

1 There exists a module called module_1 with one
parameter.

2 The parameter in module module_1 has read access
only.

3 There exists a function called ismatch().
4 There exists a function called savename() with one

parameter.
5 The parameter for the function savename() has read

access only.
6 There exists a function called fatal() with one

parameter.
7 The parameter for the function fatal() has read

access only.
8 Read access to character string pointer called

endpat that points to the last character in
pattern.

9 Read access to integer array called shift.
10 Read access to curbuf, index to the text buffer in

use.
11 Write access to curbuf, index to the text buffer in

use.
12 Read access to buf, buffers used to store text read

from the files being searched.
13 Write access to buf, buffers used to store text read

from the files being searched.
14 Read access to lim, character pointer that points

to the last character read from the file being
searched.

15 Write access to lim, character pointer that points
to the last character read from the file being
searched.

16 Read access to pos, character pointer that points
to the character being compared with the input
pattern.

17 Write access to pos, character pointer that points
to the character being compared with the input
pattern.

18 Function is match returns 1 if a match to the input
pattern has been found in the file being searched,
and returns 0 otherwise.

118

TABLE VI (Coi _inued)

Asmp.
Number Assumption

19 Module module 1 returns EOF when the an attempt is
made to read from the file being searched beyond the
end of the file.

20 Read access to progname, character string that
holds the name of the executable program, i.e.
(fastfindl).

21 Write access to progname, character string that
holds the name of the executable program, i.e.
(fastfindl).

22 Write access to character string name.
23 Read access to integer variable argc.
24 Variable argc equals 1.
25 Write access to character string msg.
26 Write access to character string pointer pat that

points to the pattern to be matched.
27 Read access to character string pointer argv[].
28 Read access to character string pointer pat that

points to the pattern to be matched.
29 The first character in the string pointed at by pat

is '\'.

30 The second character in the string pointed at by pat
is 'n'.

31 Read access to character string pointed at by pat.
32 Write access to character string pointed at by pat.
33 Read access to integer variable length.
34 Write access to integer variable length.
35 Variable length equals 0.
36 Variable length is greater than 1.
37 The next to last character in the string pointed at

by pat is '\'.
38 The last character in the string pointed at by pat

is 'n'.
39 Write access to character string pointer called

endpat that points to the last character in
pattern.

40 Read access to integer variable i.
41 Write access to integer variable i.
42 Variable i is less than 128.
43 Write access to integer array shift.
44 The character being read from the string pointed at

by the pointer p is not the line terminator ('\0').
45 Write access to character string pointer p.
46 Read access to character string pointer p.
47 Read access to the character string pointed at by p.
48 Variable nfile equals 0.

119

TABLE VI (Continued)

Asmp.
Number Assumption

49 Read access to integer nfiles holding the number of
files to be searched for pattern.

50 Write access to integer nfiles holding the number of
files to be searched for pattern.

51 Read access to character string file holding the
name of the file presently being searched.

52 Write access to character string file holding the
name of the file presently being searched.

53 Read access to file pointer fd that points to the
file presently open.

54 Write access to file pointer fd that points to the
file presently open.

55 Complement of assumption number 48.
56 i < argc, i.e., there are more files to be searched.
57 File pointed at by fd can't be opened for reading.
58 Complement of assumption number 57.
59 Read access to character string pointed at by pos.
60 Write access to integer variable increment.
61 Read access to integer variable increment.
62 Pointer pos is less than pointer lim, i.e., the

character pointed at by pos is closer to the
beginning of the file than the character pointed at
by lim.

63 Variable increment is larger than zero.
64 Module module_1 is in fill buffer mode.

120

TABLE VII

LIST OF ASSUMPTION NUMBERS FOR OBJECTS
IN THE C PROGRAM FASTFIND, CASE 2

Object Assumptions

A.1 4, 5
A.2 23, 24
A.3 6, 7
A.4 26, 27
A.5 29, 30, 31
A.6 32
A.7 31, 33, 35, 36
A.8 5
A.9 31, 33, 36, 37, 38
A.10 31, 33
A.11 31, 33
A.12 34
A.13 28, 33, 39
A.14 40, 41, 42
A.15 33, 40, 43
A.16 28, 44, 45, 46, 47
A.17 34, 35, 43
A.18 23, 48, 49, 50
A.19 54
A.20 23, 49, 50, 55
A.21 40, 41, 56
A.22 27, 40, 52
A.23 51, 53, 54, 57
A.24 51
A.25 51, 53, 54, 58
A.26 53
B.1 13
B.2 11
B.3 12, 15, 16, 17
B.4 9, 12, 14, 59, 60, 61, 62, 63
B.5 16, 17, 61
B.6 14, 16, 62
B.7 3, 18
B.8 16, 17
B.9 1, 2, 19, 64
CE.0 10, 11, 12, 14, 15, 16, 17, 49, 51, 53
D.0 8, 10, 12, 16, 28
F.0 5, 21
G.0 7, 20

121

TABLE VIII

ASSUMPTIONS FOR THE C PROGRAM
FASTFIND, CASE 3

Asmp.
Number Assumption
1

1 Write access to character string name.
2 Read access to character string name.3 Write access to character string prog name.

4 Read access to integer variable argc.
5 Variable argc equals 1.
6 Write access to character string msg.
7 Read access to character string progname.
8 First character in character string prog name is

not the line terminator ('\0').
9 Read access to character string msg.
10 Write access to character string pointer pat that

pointr to the pattern to be matched.
11 P,' access to character string pointer argv[].
12 Rpd access to character string pointer pat that

loints to the pattern to be matched.
13 The first character in the string pointed at by pat

is '\'.
14 The second character in the string pointed at by pat

is 'n'.
15 Read access to character string pointed at by pat.
16 Write access to character string pointed at by pat.
17 Read access to integer variable length.
18 Write access to integer variable length.
19 Variable length equals 0.
20 Variable length is greater than 1.
21 The next to last character in the string pointed at

by pat is '\'.
22 The last character in the string pointed at by pat

is 'n'.
23 Write access to character string pointer endpat.
24 Read access to integer variable i.
25 Write access to integer variable i.
26 Variable i is less than 128.
27 Write access to integer array shift.
28 The character being read from the string pointed at

by the pointer p is not the line terminator ('\0').
29 Write access to character string pointer p.
30 Read access to character string pointer p.
31 Read access to the character string pointed at by p.
32 Variable nfile equals 0.
33 Read access to integer variable nfile.
34 Write access to integer variable nfile.

122

TABLE VIII (Continued)

Asmp.
Number Assumption

35 Write access to integer file descriptor fd.

36 Write access to character string buf.

37 Write access to integer variable curbuf.
38 Read access to character string pointer pos.
39 Write access to character string pointer pos.
40 Write access to character string pointer lim.
41 Read access to character string buf.
42 Read access to integer array shift.
43 Read access to character string pointed at by pos.
44 Write access to integer variable increment.
45 Read access to integer variable increment.
46 pos < lim, i.e., the character pointed at by pos is

closer to the beginning of the file than the
character pointed at by lim.

47 Variable increment is greater than 0.
48 Read access to character string pointer lim.
49 Read access to character string pointer endpat.
50 Write access to the character string pointed at by

p.
51 Write access to the character string pointed at by

t.
52 p >= pat, i.e., the character pointed at by p is at

the same location as the character pointed at by pat
or at a location after the location of the character
pointed at by pat.

53 Read access to character string pointer t.
54 Write access to character string pointer t.
55 Read access to integer variable curbuf.
56 Variable t equals buf[curbuf].
57 Character being read from the string pointed at by

p is not the same character being read from the
string pointed at by t.

58 Complement of assumption number 52.
59 Character string pointed at by p is the same as the

character string pointed at by t.
60 nfile > 1, i.e., more than one file is to be

searched for the same pattern.
61 Read access to character string pointed at by

pointer file.
62 The character being read from the string pointed at

by pos is the newline character ('\n').
63 Variable pos equals buf[curbuf].
64 Complement of assumption number 62.
65 Read access to character string pointed at by t.

123

TABLE VIII (Continued)

Asmp.
Number Assumption

66 Pointers t and pos are not equal, i.e., point to
different locations in the file.

67 t = buf[l - curbuf] + BUFSIZ - 1.
68 The character being read from the string pointed at

by pos is not the newline character ('\n').
69 Complement of assumption number 46.
70 The end of the file being searched has been reached.
71 lim = pos, i.e., lim and pos point to the same

character in the file.
72 Read access to integer file descriptor fd.
73 Write access to string pointed at by pos.
74 Complement of assumption number 70.
75 Complement of assumption number 32.
76 i < argc, i.e., there are more files to be searched.
77 Write access to character string pointer file.
78 File pointed at by fd can't be opened for reading.
79 Complement of assumption number 78.

124

TABLE IX

LIST OF ASSUMPTION NUMBERS FOR OBJECTS
IN THE C PROGRAM FASTFIND, CASE 3

Object Assumptions

A.1 1
A.2 4, 5
A.3 6
A.4 10, 11
A.5 13, 14, 15
A.6 16
A.7 15, 17, 18, 19
A.8 6
A.9 15, 17, 20, 21, 22
A.10 16, 17
A.11 16, 17
A.12 18
A.13 12, 17, 23
A.14 24, 25, 26
A.15 17, 24, 27
A.16 12, 28, 29, 30, 31
A.17 17, 18, 27, 31
A.18 4, 32, 33, 34
A.19 35
A.20 4, 33, 34, 75
A.21 24, 25, 76
A.22 11, 24, 77
A.23 35, 61, 72, 78
A.24 61
A.25 35, 61, 72, 79
A.26 72
B.1 36
B.2 37
B.3 38, 39, 40, 41
B.4 38, 42, 43, 44, 45, 46, 47, 48
B.5 38, 39, 45
B.6 38, 46, 48
B.7 59
B.8 38, 39
B.9 70
C.1 37, 55
C.2 39, 41, 55
C.3 38, 40, 70, 71, 72, 73
D.1 38, 49, 50, 51
D.2 12, 29, 30, 52
D.3 41, 53, 54, 55, 56
D.4 31, 51, 57
D.5 58, 59

125

TABLE IX (Continued)

Object Assumptions

E.1 33, 60
E.2 61
E.3 43, 62
E.4 38, 39, 41, 55, 63
E.5 38, 54, 64, 65
E.6 41, 53, 54, 55, 56
E.7 38, 53, 66
E.8 41, 53, 54, 55, 66
E.9 65
E.10 43, 68
E.11 38, 39, 48, 69, 70
E.12 43
F.1 2
F.2 2, 3
G.1 7, 8
G.2 7
G.3 9

126

TABLZ X

ASSUMPTIONS FOR THE C PROGRAM
MAIL, CASE 1

Asmp.
Number Assumption

1 There exists an structure of type address with five
character string fields (name, street, city, state,
and zip) and two pointers of type address (next and
prior).

2 Write access is required to pointer called start of
type address.

3 Write access is required to pointer called last of
type address.

4 Read access is required to pointer called start of
type address.

5 Read access is required to pointer called last of
type address.

6 There exists a function called menuselect().
7 Integer value returned by function menu-select

equals 1.
8 There exists a function called enter(.
9 Integer value returned by function menuselect

equals 2.
10 There exists a function called delete(.
11 Integer value returned by function menuselect

equals 3.
12 There exists a function called list(.
13 Integer value returned by function menuselect

equals 4.
14 There exists a function called search().
15 Integer value returned by function menuselect

equals 5.
16 There exists a function called save().
17 Integer value returned by function menuselect

equals 6.
18 There exists a function called load().
19 Integer value returned by function menuselect

equals 7.
20 There exists a function called inputs() with three

parameters.
21 The first and second parameters of the function

inputs() have read and write access. The third
parameter has only read access.

22 There exists a function called dls store() with two
parameters.

23 Both of the parameters for the dlsstore function
have read and write access.

127

TABLE X (Continued)

Asmp.
Number Assumption

24 Function dls_store() returns the address of the
first element of a doubly-linked list of structures
of type address.

25 There exists a function called find() with one
parameter.

26 The parameter for the function called find() has
read access only.

27 Function find() returns the address of the structure
holding a string that matches the input parameter or
NULL if there is no match.

28 There exists a function called display() with one
parameter.

29 The parameter for the function display() has read
access only.

30 Function menu-select() returns an integer.

128

TABLE XI

LIST OF ASSUMPTION NUMBERS FOR OBJECTS
IN THE C PROGRAM MAIL, CASE 1

Object Assumptions

A.1 1, 2, 3, 5
A.2 6, 7, 8, 30
A.3 6, 9, 10, 30
A.4 6, 11, 12, 30
A.5 6, 13, 14, 30
A.6 6, 15, 16, 30
A.7 6, 17, 18, 30
A.8 6, 19, 30
B.0 30
C.0 1, 2, 4, 20, 21, 22, 23, 24
D.0 1, 21
E.0 1, 2, 3, 4, 5, 23, 24
F.0 1, 2, 3, 4, 5, 25, 26, 27
G.0 1, 26, 27
H.0 1, 4, 28, 29
1.0 1, 29
J.0 1, 25, 26, 27, 28, 29
K.0 1, 4
L.0 1, 2, 3, 4, 5

129

TABLE XII

ASSUMPTIONS FOR THE C PROGRAM
MAIL, CASE 2

Asmp.
Number Assumption

1 There exists an structure of type address with five
character string fields (name, street, city, state,
and zip) and two pointers of type address (next and
prior).

2 Write access is required to pointer called start of
type address.

3 Write access is required to pointer called last of
type address.

4 Read access is required to pointer called start of
type address.

5 Read access is required to pointer called last of
type address.

6 There exists a function called menuselecto).
7 Function menu select() returns an integer.
8 Integer value returned by function menuselect

equals 1.
9 There exists a module called module 1.
10 Integer value returned by function menuselect

equals 2.
11 Integer value returned by function menu-select

equals 3.
12 Integer value returned by function menuselect

equals 4.
13 Integer value returned by function menuselect

equals 5.
14 There exists a function called save().
15 Integer value returned by function menuselect

equals 6.
16 There exists a function called load).
17 Integer value returned by function menuselect

equals 7.
18 There exists a function called find() with one

parameter.
19 The parameter for the function called find() has

read access only.
20 Function find() returns the address of the structure

holding a string that matches the input parameter or
NULL if there is no match.

21 There exists a function called displayo) with one
parameter.

22 The parameter for the function display() has read
access only.

130

TABLE XII (Continued)

Asmp.
Number Assumption

23 Write access to character string s.
24 Write access to pointer info of type address.
25 Read access to pointer info of type address.
26 Pointer info points to the structure to be deleted

or NULL if the structure was not found.
27 Pointer info points to the first structure in the

list.
28 Read access to the field next in structure pointed

at by info.
29 List is not empty.
30 List is empty.
31 Write access to the field prior in structure

pointed at by start.
32 Complement of assumption number 26.
33 Read access to the field prior in structure pointed

at by info.
34 Write access to the field next in structure pointed

at by the field prior in the structure pointed at
by info.

35 Structure pointed at by info is not the last struc-
ture in the list.

36 Write access to the field prior in structure pointed
at by the field next in the structure pointed at by
info.

37 Pointer info points to the last structure in the
list.

38 Pointer info points to the structure being presently
looked at in the list or NULL if there are no more
structures in the list.

39 Pointer info points to the structure to be displayed
or NULL if the structure was not found.

131

TABLE XIII

LIST OF ASSUMPTION NUMBERS FOR OBJECTS
IN THE C PROGRAM MAIL, CASE 2

Object Assumptions

A.1 1, 2, 3, 5
A.2 6, 7, 8, 9
A.3 6, 7, 10
A.4 6, 7, 11
A.5 6, 7, 12
A.6 6, 7, 13, 14
A.7 6, 7, 15, 16
A.8 6, 7, 17
B.0 7
CDE.0 1, 2, 3, 4, 5
F.1 23
F.2 1, 18, 19, 20, 24
F.3 1, 25, 26
F.4 1, 4, 25, 27
F.5 1, 2, 28
F.6 1, 4, 29
F.7 1, 31
F.8 30
F.9 1, 2
F.10 32
F.1I 1, 28, 33, 34
F.12 1, 5, 25, 35
F.13 1, 28, 33, 36
F.14 1, 37
F.15 1, 3, 33
F.16 1, 25
G.0 1, 19, 20
H.1 1, 4, 24
H.2 1, 25, 38
H.3 1, 21, 22, 25
H.4 1, 24, 28
1.0 1, 22
J.1 23
J.2 1, 19, 20, 21, 24, 39
J.3 1, 39
J.4 1, 21, 22, 25
K.0 1, 4
L.0 1, 2, 3, 4, 5

132

TABLE XIV

ASSUMPTIONS FOR THE C PROGRAM
MAIL, CASE 3

Asmp.
Number Assumption

1 Read access to pointer start of type address.
2 Write access to pointer start of type address.
3 Read access to pointer last of type address.
4 Write access to pointer last of type address.
5 Write access to string s.
6 Read access to string s.
7 Write access to integer c.
8 Read access to integer c.
9 c is in the range c < 1 or c > 7.
10 c = 1.
11 Structure of type address exists.
12 Write access to pointer info of type address.
13 Memory space for pointer info is not available.
14 Read access to pointer info of type address.
15 Write access to integer count.
16 Write access to string p.
17 Read access to string p.
18 Length of string p is larger than value in count.
19 Write access to field name in structure pointed at

by info.
20 Read access to field name in structure pointed at

by info.
21 Length of field name in structure pointed at by

info is 0.
22 Write access to field street in structure pointed

at by info.
23 Write access to field city in structure pointed

at by info.
24 Write access to field state in structure pointed

at by info.
25 Write access to field zip in structure pointed at

by info.
26 last = NULL and list is empty.
27 Write access to field next in structure pointed at

by info.
28 Write access to field prior in structure pointed at

by info.
29 Write access to pointer p of type address.
30 Write access to pointer old of type address.
31 Pointer p points to structure being presently

looked at in the list or NULL if there are no more
structures in the list.

133

TABLE XIV (Continued)

Asmp.
Number Assumption

32 Read access to pointer p of type address.
33 Read access to field name in structure pointed at

by info.
34 Read access to field name in structure pointed at

by p.
35 Field name in structure pointed at by p precedes

alphabetically the field name in structure pointed
at by info.

36 Read access to field next in structure pointed at
by p.

37 Complement of assumption number 35.
38 Read access to field prior in structure pointed at

by p.
39 Structure pointed at by p is not the first one in

the list.
40 Write access to field next in structure pointed at

by the field prior in the structure pointed at by p.
* 41 Write access to field prior in structure pointed at

by p.
42 Read access to pointer old of type address.
43 c = 2.
44 Pointer info points to the structure being presently

looked at in the list or NULL if there are no more
structures in the list.

45 String in s is the same as the string in the field
name in the structure pointed at by info.

46 Read access to field next in structure pointed at
by info.

47 Pointer info points to the structure to be deleted
or NULL if the structure was not found.

48 Pointer info points to the first structure in the
list.

49 List is not empty.
50 Write access to field prior in structure pointed at

by start.
51 Complement of assumption number 49.
52 Complement of assumption number 47.
53 Read access to field prior in structure pointed at

by info.
54 Write access to field next in structure pointed at

by the field prior in the structure pointed at by
info.

55 Structure pointed at by info is not the last struc-
ture in the list.

134

TABLE XIV (Continued)

Asmp.
Number Assumption

56 Write access to field prior in structure pointed at
by tie field next in structure pointed at by info.

57 Pointer info points to the last structure in the
list.

58 Read access to field street in structure pointed at
by info.

59 Read access to field city in structure pointed at
by info.

60 Read access to field state in structure pointed at
by info.

61 Read access to field zip in structure pointed at by
info.

62 Pointer info points to the structure to be displayed
or NULL if the structure was not found.

63 c = 3.
64 c = 4.
65 c = 5.
66 c = 6.
67 c = 7.
68 Write access to field next in structure pointed at

by old.
69 File mail list exists.
70 File maillist can be opened for writing.
71 Write access to file pointer fp.
72 Read access to file pointer fp.
73 File mail list can be opened for reading.
74 Pointer start points to the present structure being

looked at or NULL if there are no more structures
in the list.

75 Read access to field next in structure pointed at
by start.

76 Memory space for pointer start is not available.
77 End of the file pointed by fp has not been reached.
78 Memory space for pointer pointed by the field next

in the structure pointed at by info, is not
available.

79 Read access to pointer temp of type address.
80 Write access to pointer temp of type address.
81 Write access to field next in the structure pointed

at by temp.

135

TABLE XV

LIST OF ASSUMPTION NUMBERS FOR OBJECTS
IN THE C PROGRAM MAIL, CASE 3

Object Assumptions

A.1 2, 3, 4, 11
A.2 8, 10
A.3 8, 43
A.4 8, 63
A.5 8, 64
A.6 8, 65
A.7 8, 66
A.8 8, 67
B.1 5
B.2 6, 7
B.3 8, 9
C.1 11, 12
C.2 11, 13, 14
C.3 11, 15, 19
C.4 11, 20, 21
C.5 11, 15, 22
C.6 11, 15, 23
C.7 11, 15, 24
C.8 11, 15, 25
C.9 2, 11
D.1 16
D.2 17, 18
D.3 17 , 18
E.1 3, 11, 26
E.2 11, 27
E.3 11, 28
E.4 4, 11, 14
E.5 11, 14
E.6 1, 11, 29
E.7 30
E.8 31, 32
E.9 11, 31, 33, 34, 35
E.10 30, 32
E.11 11, 29, 36
E.12 37
E.13 11, 38, 39
E.14 11, 14, 38, 40
E.15 11, 27, 32
E.16 11, 28, 38
E.17 11, 14, 41
E.18 1, 11
E.19 11, 27, 32
E.20 11, 28

136

TABLE XV (Continued)

Object Assumptions

E.21 11, 14, 41
E.22 11, 14
E.23 11, 14, 68
E.24 11, 27
E.25 11, 28, 42
E.26 4, 11, 14
E.27 1, 11
F.1 5
F.? 11, 12
F.3 11, 14, 47
F.4 1, 11, 14, 48
F.5 2, 11, 46
F.6 1, 11, 49
F.7 1, 11, 50
F.8 51
F.9 2, 11
F.10 52
F.11 11, 46, 53, 54
F.12 3, 11, 14, 55
F.13 11, 46, 53, 56
F.14 11, 57
F.15 4, 11, 53
F.16 11, 14
G.1 1, 11, 12
G.2 11, 14, 44
G.3 6, 11, 33, 45
G.4 11, 14
G.5 11, 12, 46
H.1 1, 11, 12
H.2 11, 24, 44
H.3 11, 14
H.4 11, 12, 46
1.1 11, 33
1.2 11, 58
1.3 11, 59
1.4 11, 60
1.5 11, 61
J.1 5
J.2 11, 12, 62
J.3 11, 62
J.4 11, 14
K.1 69, 70, 71, 72
K.2 1, 11, 12
K.3 11, 14, 44
K.4 11, 14, 72
K.5 11, 12, 46

137

TABLE XV (Continued)

Object Assumptions

K.6 72
L.1 69, 71, 72, 73
L.2 1, 11, 74
L.3 11, 12, 75
L.4 11, 14
L.5 2, 11, 14
L.6 1, 1i
L.7 1, 11, 76
L.8 1, 11, 12
L.9 72, 77
L.10 11, 12, 72, 77
L.11 11, 27
L.12 11, 46, 78
L.13 11, 28, 79
L.14 11, 14, 80
L.15 11, 12, 46
L.16 11, 81
L.17 4, 11, 79
L.18 11, 50
L.19 72

138

TABLE XVI

ASSUMPTIONS FOR THE C PROGRAM
EDITOR, CASE 1

Asmp.
Number Assumption

1 There exists an structure of type line with one
character string field (text), one integer field
(num), and two pointers of type line (next and
prior).

2 Write access is required to pointer called start of
type line.

3 Write access is required to pointer called last of
type line.

4 Read access is required to pointer called start of
type line.

5 Read access is required to pointer called last of
type line.

6 There exists a function called menuselect).
7 Function menuselect() returns an integer.
8 Character choice equals 1.
9 There exists a function called enter() with one

parameter.
10 The parameter for the function enter() has read and

write access.
11 Character choice equals 2.
12 There exists a function called delete).
13 Character choice equals 3.
14 There exists a function called list).
15 Character choice equals 4.
16 There exists a function called save() with one

parameter.
17 Character choice equals 5.
18 There exists a function called load() with one

parameter.
19 Character choice equals 6.
20 There exists a function called patchup().
21 Both parameters of the patchup() function have read

access only.
22 There exists a function called dls_store() with one

parameter.
23 The parameter for the dls_store() function has read

and write access.
24 Function dlsstore() returns the address of the

first element of a doubly-linked list of structures
of type line.

25 There exists a function called find() with one
parameter.

139

TABLE XVI (Continued)

Asmp.
Number Assumption

26 The parameter for the function find() has read
access only.

27 Function find() returns the address of the structure
holding the line number that matches the input
parameter or NULL if there is no match.

28 The parameter for the function save() has read
access only.

29 The parameter for the function load() has read
access only.

30 Each line stored in the field, text, in the
structure type line is terminated with a carriage
return (\r) character followed by a new line
character (\n).

31 Write access to integer variable linenum.
32 Read access to integer variable argc.
33 Integer variable argc equals 2, i.e., filename

present in command line.
34 Read access to character string argv.
35 Write access to character choice.
36 Read access to character choice.
37 Read access to integer variable linenum.
38 Write access to character string s.
39 Read access to character string s.
40 Write access to character string fname.
41 Read access to character string fname.

140

TABLE XVII

LIST OF ASSUMPTION NUMBERS FOR OBJECTS
IN THE C PROGRAM EDITOR, CASE 1

Object Assumptions

A.1 1, 2
A.2 1, 3
A.3 32, 33
A.4 18, 29, 34
A.5 6, 7, 35
A.6 8, 36
A.7 38
A.8 31, 39
A.9 9, 10, 31, 37
A.10 ii, 12, 36
A.11 13, 14, 36
A.12 15, 36
A.13 40
A.14 16, 28, 41
A.15 17, 36
A.16 40
A.17 18, 29, 41
A.18 19, 36
B.0 7
C.0 1, 2, 10, 20, 21, 22, 23, 24, 25, 26, 27
D.0 1, 21, 25, 26, 27
E.0 1, 2, 3, 4, 5, 23, 24
F.0 1, 2, 3, 4, 5, 20, 21, 25, 26, 27
G.0 1, 4, 26, 27
H.0 1, 4
1.0 1, 4, 28, 30
J.0 1, 2, 3, 4, 29, 30

141

TABLE XVIII

ASSUMPTIONS FOR THE C PROGRAM
EDITOR, CASE 2

Asmp.
Number Assumption

1 There exists an structure of type line with one
character string field (text), one integer field
(num), and two pointers of type line (next and
prior).

2 Write access is required to pointer called start of
type line.

3 Write access is required to pointer called last of
type line.

4 Read access is required to pointer called start of
type line.

5 Read access is required to pointer called last of
type line.

6 There exists a function called menuselect).
7 Function menu select() returns an integer.
8 Character choice equals 1.
9 Character choice equals 2.
10 Character choice equals 3.
11 There exists a function called list(.
12 Character choice equals 4.
13 There exists a function called save() with one

parameter.
14 The parameter for the function save() has read

access only.
15 Character choice equals 5.
16 There exists a function called load() with one

parameter.
17 The parameter for the function load() has read

access only.
18 Character choice equals 6.
19 There exists a function called dlsstoreo with one

parameter.
20 The parameter for the dls_storeo function has read

and write access.
21 Function dls store() returns the address of the

first element of a doubly-linked list of structures
of type line.

22 Each line stored in the field, text, in the
structure type line is terminated with a carriage
return (\r) character followed by a new line
character (\n).

23 Write access to integer variable linenum.
24 Read access to integer variable argc.

142

TABLE XVIII (Continued)

Asmp.
Number Assumption

25 Integer variable argc equals 2, i.e., filename
present in command line.

26 Read access to character string argv.
27 Write access to character choice.
28 Read access to character choice.
29 Read access to integer variable linenum.
30 Write access to character string s.
31 Read access to character string s.
32 Write access to character string fname.
33 Read access to character string fname.
34 There exists a module called module_1 with three

parameters.
35 All parameters in module module_1 have read access

only.
36 Module module_1 is in patchup mode.
37 Module module_1 is in find mode.
38 Module module_1 returns the address of the structure

holding the line number that matches the input
parameter or NULL if there is no match when
module 1 is in find mode.

39 Write access to pointer info of type line.
40 Memory space for pointer info is not available.
41 Read access to pointer info of type line.
42 Write access to field text in structure pointed at

by info.
43 Read access to field text in structure pointed at

by info.
44 The first character in the field text in the

structure pointed at by info is not the line
terminator ('\0').

45 Pointer info points to the structure in the list
whose field num has the same value as linenum.

46 Write access to integer variable increment.
47 Complement of assumption number 44.
48 Pointer info points to the structure to be deleted

or NULL if the structure was not found.
49 Pointer info points to the first structure in the

list.
50 Read access to field next in structure pointed at

by info.
51 List is not empty.
52 Write access to field prior in structure pointed at

by start.
5n Complement of assumption number 51.
54 Complement of assumption number 48.

143

TABLE XVIII (Continued)

Asmp.
Number Assumption

55 Read access to field prior in structure pointed at
by info.

56 Write access to field next in structure pointed at
by the field prior in the structure pointed at by
info.

57 Structure pointed at by info is not the last struc-
ture in the list.

58 Write access to field prior in structure pointed at
by the field next in structure pointed at by info.

59 Pointer info points to the last structure in the
list.

144

TABLE XIX

LIST OF ASSUMPTION NUMBERS FOR OBJECTS

IN THE C PROGRAM EDITOR, CASE 2

object Assumptions

A.1 1, 2
A.2 1, 3
A.3 24, 25
A.4 16, 17, 26
A.5 6, 7, 27
A.6 8, 28
A.7 30
A.8 23, 31
A.9 23, 29
A.10 9, 28
A.11 10, 11, 28
A.12 12, 28
A.13 32
A.14 13, 14, 33
A.15 15, 28
A.16 32
A.17 16, 17, 33
A. 18 18, 28
B.0 7
C.1 1, 39
C.2 1, 40, 41
C.3 29
C.4 1, 42
C.5 1, 29, 42
C.6 43, 44
C.7 29, 34, 35, 37, 38

C.8 29, 34, 35, 36
C.9 43, 44
C.10 1, 2, 19, 20, 21, 41
C.11 43, 47
C.12 23, 29
DG.0 1, 4, 35, 38
E.0 1, 2, 3, 4, 5, 20, 21
F.1 30
F.2 23, 31
F.3 1, 34, 35, 37, 38, 39
F.4 1, 41, 48
F.5 1, 4, 41, 49
F.6 1, 2, 50
F.7 1, 4, 51
F.8 1, 52
F.9 1, 4, 53
F.10 1, 2

145

TABLE XIX (Continued)

Object Assumptions

F.11 1, 41, 54
F.12 1, 50, 55, 56
F.13 1, 5, 41, 57
F.14 1, 50, 55, 58
F.15 1, 5, 41, 59
F.16 1, 3, 55
F.17 1, 41
F.18 46
H.0 1, 4
1.0 1, 4, 14, 22
J.0 1, 2, 3, 4, 17, 22

146

TABLE XX

ASSUMPTIONS FOR THE C PROGRAM
EDITOR, CASE 3

Asmp.
Number Assumption

I Write access to integer variable linenum.
2 Write access to pointer start of type line.
3 Write access to pointer last of type line.
4 argc = 2, i.e., filename present in command line.
5 Read access to integer variable argc.
6 Read access to character string argv.
7 Write access to character choice.
8 Write access to string s.
9 Read access to string s.
10 Write access to integer c.
11 Read access to integer c.
12 c is in the range c < 1 or c > 6.
13 choice = 1.
14 Read access to integer variable linenum.
15 choice = 2.
16 choice = 3.
17 choice = 4.
18 Write access to character string fname.
19 choice = 5.
20 choice = 6.
21 Structure of type line exists.
22 Write access to pointer info of type line.
23 Memory space for pointer info is not available.
24 Read access to pointer info of type line.
25 Write access to field text in structure pointed at

by info.
26 Read access to field text in structure pointed at

by info.
27 The first character in the field text in the

structure pointed at by info is not the line
terminator ('\0').

28 Pointer info points to the structure being presently
looked at in the list or NULL if there are no more
structures in the list.

29 Read access to field text in structure pointed at by
info.

30 The value of the integer linenum is the same as the
value in the field num in the structure pointed at
by info.

31 Read access to field next in structure pointed at by
info.

147

TABLE XX (Continued)

Asmp.
Number Assumption

32 Pointer info points to the structure in the list

whose field num has the same value as linenum.
33 Write access to pointer i of type line.
34 Pointer i points to the structure whose field num

needs to be incremented by one.
35 Read access to pointer i of type line.
36 Read access to field num in the structure pointed at

by i.
37 Write access to field num in the structure pointed

at by i.
38 Write access to integer variable increment.
39 Read access to integer variable increment.
40 Read access to field next in the structure pointed

at by i.
41 Read access to pointer last of type line.
42 last = NULL and list is empty.
43 Write access to field next in structure pointed at

by info.
44 Write access to field prior in structure pointed at

by info.
45 Read access to pointer start of type line.
46 Write access to pointer p of type line.
47 Write access to pointer old of type line.
48 Pointer p points to structure being presently

looked at in the list or NULL if there are no more
structures in the list.

49 Read access to pointer p of type line.
50 Read access to field num in structure pointed at by

info.
51 Read access to field num in structure pointed at by

p.
52 Field num in structure pointed at by p is smaller

than the field num in structure pointed at by info.
53 Read access to field next in structure pointed at

by p.
54 Complement of assumption number 52.
55 Read access to field prior in structure pointed at

by p.
56 Structure pointed at by p is not the first one in

the list.
57 Write access to field next in structure pointed at

by the field prior in the structure pointed at by p.
58 Write access to field prior in structure pointed at

by p.

148

TABLE XX (Continued)

Asmp.
Number Assumption

59 Write access to field next in structure pointed at

by old.
60 Read access to pointer old of type address.
61 Complement of assumption number 27.
62 Pointer info points to the structure to be deleted

or NULL if the structure was not found.
63 Pointer info points to the first structure in the

list.
64 List is not empty.
65 Write access to field prior in structure pointed at

by start.
66 Complement of assumption number 64.
67 Complement of assumption number 62.
68 Read access to field prior in structure pointed at

by info.
69 Write access to field next in structure pointed at

by the field prior in the structure pointed at by
info.

70 Structure pointed at by info is not the last struc-
ture in the list.

71 Write access to field prior in structure pointed at
by the field next in structure pointed at by info.

72 Pointer info points to the last structure in the
list.

73 Filename fname can be opened for writing.
74 Write access to file pointer fp.
75 Read access to character string fname.
76 Write access to character string pointer p.
77 The character pointed at by p is not the null

terminator ('\0').
78 Read access to character string pointer p.
79 Read access to the character pointed at by p.
80 Read access to file pointer fp.
81 Filename fname can be opened for reading.
82 Pointer start points to the present structure being

looked at or NULL if there are no more structures
in the list.

83 Write access to pointer temp of type line.
84 Read access to pointer tr mp of type line.
85 Read access to field next in structure pointed at

by start.
86 Write access to register variable size.
87 Read access to register variable size.
88 Memory space for pointer .art is not available.
89 Write access to register variable lnct.

149

TABLE XX (Continued)

Asmp.
Number Assumption

90 Write access to character pointed at by p.
91 End of the file pointed by fp has not been reached.
92 The character pointed at by p is not a printable

character.
93 The character pointed at by p is not a carriage

return ('\r').
94 Write access to field num in structure pointed at

by info.
95 Read access to register variable inct.
96 Memory space for pointer pointed by the field next

in the structure pointed at by info, is not
available.

97 Read access to pointer temp of type address.
98 Write access to pointer temp of type address.
99 Write access to field next in the structure pointed

at by temp.
100 Read access to character choice.

150

TABLE XXI

LIST OF ASSUMPTION NUMBERS FOR OBJECTS
IN THE C PROGRAM EDITOR, CASE 3

Object Assumptions

A.1 2, 21
A.2 3, 21
A.3 4, 5, 21
A.4 6
A.5 7, 11
A.6 13, 100
A.7 8
A.8 1, 9
A.9 1, 14
A.10 15, 100
A.12 16, 100
A.12 17, 100
A.13 18
A.14 75
A.15 19, 100
A.16 18
A.17 75
A.18 20, 100
B.1 8
B.2 9, 10
B.3 11, 12
C.1 21, 22
C.2 21, 23, 24
C.3 14
C.4 21, 25
C.5 14, 21, 25
C.6 26, 27
C.7 14, 21, 24, 32
C.8 14, 38
C.9 26, 27
C.10 2, 21, 24
C.11 26, 61
C.12 1, 14
D.1 14, 21, 33
D.2 21, 34, 35
D.3 21, 36, 37, 39
D.4 21, 35, 40
E.1 21, 41, 42
E.2 21, 43
E.3 21, 44
E.4 3, 21, 24
E.5 21, 24
E.6 21, 45, 46

151

TABLE XXI (Continued)

Object Assumptions

E.7 21, 47
E.8 21, 48, 49
E.9 21, 48, 50, 51, 52
E.10 21, 47, 49
E.11 21, 46, 53
E.12 21, 48, 50, 51, 54
E.13 21, 55, 56
E.14 21, 24, 55, 57
E.15 21, 43, 49
E.16 21, 44, 55
E.17 21, 24, 58
E.18 21, 45
E.19 21, 43, 49
E.20 21, 44
E.21 21, 24, 58
E.22 21, 24
E.23 21, 24, 59
E.24 21, 43
E.25 21, 44, 60
E.26 3, 21, 24
E.27 21, 45
F.1 8
F.2 1, 9
F.3 1, 21, 22
F.4 21, 24, 62
F.5 21, 24, 45, 63
F.6 2, 21, 31
F.7 21, 45, 64
F.8 21, 65
F.9 21, 45, 66
F.10 2, 21
F.11 21, 24, 67
F.12 21, 31, 68, 69
F.13 21, 24, 41, 70
F.14 21, 31, 68, 71
F.15 21, 24, 41, 72
F.16 3, 21, 68
F.17 21, 24
F.18 38
G.1 1, 21, 22
G.2 21, 24, 28
G.3 14, 21, 29, 30
G.4 21, 24
G.5 21, 22, 31
H.1 21, 22, 45
H.2 21, 24, 48

152

TABLE XXI (Continued)

Object Assumptions

H.3 21, 29, 50
H.4 21, 22, 31
I.l 73, 74, 75
1.2 21, 22, 45
1.3 21, 24, 28
1.4 21, 29, 76
1.5 77, 79
1.6 76, 78, 79
1.7 80
1.8 80
1.9 21, 22, 31
1.10 80
J.1 74, 75, 81
J.2 21, 45, 82
J.3 2.L, 45, 83
J.4 2, 21, 85
J.5 21, 84
J.6 21, 86
J.7 2, 21, 87
J.8 88
J.9 21, 22, 45
J.10 21, 29, 76
J.11 89
J.12 79, 80, 90, 91
J.13 79, 92
J.14 76, 78
J.15 79, 80, 90, 93
J.16 76, 78
J.17 80
J.18 90
J.19 89, 94, 95
J.20 21, 43, 87
J.21 21, 31, 96
J.22 21, 44, 97
J.23 21, 24, 98
J.24 21, 22, 31
J.25 21, 29, 76
J.26 21, 99
J.27 3, 21, 97
J.28 21, 24
J.29 21, 65
J.30 80

153

TABLE XXII

ASSUMPTIONS FOR THE ADA PROGRAM
INTLIST, CASE I

Asmp.
Number Assumption

1 Read access to pointer Head of type link.

2 There exists a record of type List with an integer
field called Value and a pointer to the next record
of type link called Next.

3 Read access to the field Next in the pointer Head.
4 Write access to pointer Head of type link.
5 Read access to pointer Free of type link.
6 Write access to pointer Free of type link.
7 Write access to field Next in pointer Free.
8 Write access to pointer Tail of type link.
9 Write access to integer variable Number.
10 Read access to integer variable Number.
11 Integer variable Number equals -1.
12 Read access to pointer Tail of type link.
13 Write access to field Next in pointer Tail.
14 Read access to field Next in pointer Tail.
15 Read access to integer variable I.
16 Write access to integer variable I.
17 There exists a procedure called InsertAtHead with

one parameter.
18 The parameter in procedure InsertAtHead has read

access only.
19 There exists a procedure called InsertAtTail with

one parameter.
20 The parameter in procedure InsertAtTail has read

access only.
21 There exists a function called List Length.
22 Function ListLength returns the number of elements

in the list, i.e., the length of the list.
23 There exists a function called ValueAtPosition

with one parameter.
24 The parameter in function ValueAtPosition has read

access only.
25 Function Value At Position returns the number stored

in the field Value in the position determined by the
input parameter.

26 There exists a procedure called Reclaim with one
parameter.

27 The parameter in procedure Reclaim has read access
only.

28 There exists a function called Alloc with one
parameter.

154

TABLE XXII (Continued)

Asmp.
Number Assumption

29 The parameter in function Alloc has read access

only.
30 Function Alloc returns a pointer of type Link to

the newly created record that contains the new
value and a pointer to the next record.

155

TABLE XXIII

LIST OF ASSUMPTION NUMBERS FOR OBJECTS
IN THE ADA PROGRAM INTLIST, CASE 1

Object Assumptions

A.1 9
A.2 10, 11
A.3 10, 17, 18
A.4 10, 19, 20
A.5 15, 16, 21, 22
A.6 15, 23, 24, 25
A.7 15, 16, 21, 22
A.8 15, 23, 24, 25
B.0 2, 5, 6, 7, 27
C.0 2, 5, 7, 29, 30
D.0 1, 2, 3, 4, 8, 26, 27
E.0 1, 2, 4, 8, 12, 18, 28, 29, 30
F.0 2, 2, 4, 8, 13, 14, 20, 28, 29, 30
G.0 1, 2, 3, 4, 8, 26, 27
H.0 1, 2, 4, 8, 12, 13, 26, 27
1.0 1, 2, 24, 25
J.0 1, 2, 22

156

TABLE XXIV

ASSUMPTIONS FOR THE ADA PROGRAM
INTLIST, CASE 2

Asmp.
Number Assumption

1 Read access to pointer Head of type link.
2 There exists a record of type List with an integer

field called Value and a pointer to the next record
of type link called Next.

3 Read access to the field Next in the pointer Head.
4 Write access to pointer Head of type link.
5 Read access to pointer Free of type link.
6 Write access to pointer Free of type link.
7 Write access to field Next in pointer Free.
8 Write access to pointer Tail of type link.
9 Write access to integer variable Number.
10 Read access to integer variable Number.
11 Integer variable Number equals -1.
12 Read access to pointer Tail of type link.
13 Write access to field Next in pointer Tail.
14 Read access to field Next in pointer Tail.
15 Read access to integer variable I.
16 Write access to integer variable I.
17 There exists a function called ListLength.
18 Function ListLength returns the number of elements

in the list, i.e., the length of the list.
19 There exists a function called ValueAtPosition

with one parameter.
20 The parameter in function ValueAtPosition has read

access only.
21 Function Value At Position returns the number stored

in the field Value in the position determined by the
input parameter.

22 There exists a procedure called Reclaim with one
parameter.

23 The parameter in procedure Reclaim has read access
only.

24 There exists a module called module_1 with two
parameters.

25 The first parameter in module 1 has read access and
the second, called mode selector, has also read
access.

26 The mode selector in module_1 is in InsertAtHead
mode.

27 The mode selector in module_1 is in insertAtTail
mode.

28 Write access to pointer P of type link.

157

TABLE XXIV (Continued)

Asmp.
Number Assumption

29 Read access to the field Next in the pointer Head.
30 Write access to pointer Head of type link.
31 Read access to pointer P of type link.
32 Pointer Head is null, i.e., list is empty.
33 Write access to pointer Tail of type Link.
34 Read access to pointer Tail of type link.
35 Pointers Head and Tail are equal, i.e., only one

record in list.
36 Complement of assumption 35.
37 Read access to field Next in pointer P.
38 The record pointed by the field Next in pointer P

is not the same record pointed at by pointer Tail.
39 Write access to field Next in pointer Tail.

158

TABLE XXV

LIST OF ASSUMPTION NUMBERS FOR OBJECTS
IN THE ADA PROGRAM INTLIST, CASE 2

Object Assumptions

A.1 9
A .2 10, 11
*A.3 10, 24, 25, 26
*A.4 10, 24, 25, 27
A .5 15, 16, 17, 18
A .6 15, 19, 20, 21
A .7 15, 16, 17, 18
A .8 15, 19, 20, 21
B.0 2, 5, 6, 7, 23
CEF.0 1, 2, 4, 5, 7, 8, 12, 13, 14, 25

D.0 1, 2, 3, 4, 8, 22, 23
G.1 1, 28
G.2 2, 29, 30
G.3 22, 23, 31
G.4 1, 32
G.5 33
H.1 1, 28
H. 2 1, 34, 35
H.3 30
H.4 33
H.5 1, 34, 36
H.6 2, 34, 37, 38
H.7 2, 28, 37
H.8 22, 23, 34
H1.9 31, 33
H.10 2, 39
1.0 1, 2, 20, 21
J.0 1, 2, 18

159

TABLE XXVI

ASSUMPTIONS FOR THE ADA PROGRAM
INTLIST, CASE 3

Asmp.
Number Assumption

1 Read access to pointer Head of type link.
2 Pointer Head is not null, i.e., points to the first

record in the list.
3 Write access to pointer P of type link.
4 There exists a record of type List with an integer

field called Value and a pointer to the next record
of type link called Next.

5 Read access to the field Next in the pointer Head.
6 Write access to pointer Head of type link.
7 Read access to pointer P of type link.
8 Read access to pointer Free of type link.
9 Pointer Free is null, i.e., no records in free

list.
10 Write access to pointer Free of type link.
11 Write access to field Next in pointer Free.
12 Complement of assumption 9.
13 Write access to field Next in pointer P.
14 Write access to pointer Tail of type link.
15 Write access to integer variable Number.
16 Read access to integer variable Number.
17 Integer variable Number equals -1.
18 Write access to integer variable Value.
19 Read access to integer variable Value.
20 Pointer Tail is null, i.e., number list is empty.
21 Read access to pointer Tail of type link.
22 Pointer P is null, i.e., list is empty.
23 Complement of assumption 22.
24 Write access to field Value in pointer P.
25 Write access to field Value in pointer

Initial Value.
26 Write access to field Next in pointer

Initial Value.
27 Read ccess to field Value in pointer

Initial Value.
28 Read access to field Next in pointer

Initial Value.
29 Complement of assumption 2.
30 Write access to field Next in pointer Tail.
31 Read access to field Next in pointer Tail.
32 Read access to integer variable I.

33 Write access to integer variable I.
34 Read access to natural variable LEN.

160

TABLE XXVI (Continued)

Asmp.
Number Assumption

35 Write access to natural variable LEN.
36 Read access to field Next in pointer P.
37 Read access to positive variable Pos.
38 Write access to positive variable Pos.
39 Read access to field Value in pointer P.
40 Pointers Head and Tail are equal, i.e., only one

record in list.
41 Complement of assumption 40.
42 The record pointed by the field Next in pointer P

is not the same record pointed at by pointer Tail.

161

TABLE XXVII

LIST OF ASSUMPTION NUMBERS FOR OBJECTS
IN THE ADA PROGRAM INTLIST, CASE 3

Object Assumptions

A.1 15
A.2 16, 17
A.3 16, 18
A.4 16, 18
A.5 32, 33, 34
A.6 32, 38, 39
A.7 32, 33, 34
A.8 32, 38, 39
B.1 8, 9
B.2 7, 10
B.3 4, 11
B.4 9, 12
B.5 4, 8, 13
B.6 7, 10
C.1 3, 8
C.2 7, 22
C.3 3, 4
C.4 7, 23
C.5 4, 10, 11
C.6 4, 13, 24, 27, 28
C.7 7

D.1 1, 2
D.2 1, 3
D.3 4, 5, 6
D.4 7
D.5 14
E.1 1, 4, 6, 19, 25, 2C
E.2 20, 21
E.3 1, 14
F.1 1, 29
F.2 4, 6, 19, 25, 26
F.3 1, 14
F.4 1, 2
F.5 4, 19, 25, 26, 30
F.6 4, 14, 31
G.1 1, 3
G.2 4, 5, 6
G.3 7
G.4 1, 29
G.5 14
H.1 1, 3
H.2 1, 21, 40
H.3 6

162

TABLE XXVII (Continued)

object Assumptions

H.4 14
H.5 1~, 21, 41.
H.6 4, 21, 36, 42
H.7 3, 4, 36
H.8 3, 21
H.9 7, 14
H.10 4, 30
1.1 1, 3
1.2 32, 33, 37
1.3 3, 4, 36
1.4 4, 39
J.1 1, 3
J.2 7, 23

J.3 34, 35
J.4 3, 4, 36
J.5 34

-1

163

TABLE XXVIII

ASSUMPTIONS FOR THE ADA PROGRAM
CALC, CASE 1

Asmp.
Number Assumption

1 Write access to string variable STR.
2 Write access to float variable NUM VAL.
3 Write access to boolean variable FIRST.
4 Read access to string variable STR.
5 The firct character in string variable STR is not

"q" or "Q".
6 Read access to boolean variable FIRST.
7 Boolean variable FIRST is not true.
8 Write access to natural variable LEN.
9 The first character in string variable STR is either

a digit, a ".", or a "-" and the value of the
natural variable LEN is larger than one.

10 Read access to natural variable LEN.
11 Read access to natural variable TOP.
12 Read access to natural constant LIMIT.
13 Write access to natural variable TOP.
14 Write access to array of float STACK.
15 Write access to float variable NUM.
16 Read access to float variable NUM VAL.
17 Read access to float variable NUM.
18 Complement of assumption 9.
19 Read access to array of float STACK.
20 Exception INVALIDENTRY has been raised.
21 Exception NUMERIC ERROR has been raised.
22 There exists a procedure called GETSTRING with two

parameters.
23 Both of the parameters in procedure GETSTRING have

write access only.
24 There exists a procedure called STRTOFLT with

three parameters.
25 Two parameters in procedure STR_TO_FLT have read

access and the third parameter has write access.
26 There exists a procedure called PUSH with one paran.
27 The pr.ameter in procedure PUSH has read access.
28 There ;xists a procedure called OPERATE with one

parameter.
29 The parameter in procedure OPERATE has read access.
30 There exists a procedure called POP with one param.
31 The parameter in procedure POP has write access.
32 There exists a procedure called CLEAR with no

parameters.

164

TABLE XXIX

LIST OF ASSUMPTION NUMBERS FOR OBJECTS
IN THE ADA PROGRAM CALC, CASE 1

Object Assumptions

A.1 4, 5
A.2 6, 7
A.3 1, 8, 22, 23
A.4 3
A.5 4, 9
A.6 2, 4, 10, 24, 25
A.7 16, 26, 27
A.8 4, 18
A.9 4, 28, 29
A.10 20
A.11 21
B.0 26, 27, 29, 30, 31, 32
C.0 11, 12, 13, 14, 17, 27
D.0 11, 13, 15, 19, 31
E.0 13
F.0 23
G.0 25

165

TABLE XXX

ASSUMPTIONS FOR THE ADA PROGRAM
CALC, CASE 2

Asmp.
Number Assumption

1 Write access to string variable STR.
2 Write access to float variable NUM VAL.
3 Write access to boolean variable FIRST.
4 Read access to string variable STR.
5 The first character in str~ng variable STR is not

"IqI or "Q".
6 Read access to boolean variable FIRST.
7 Boolean variable FIRST is not true.
8 Write access to natural variable LEN.
9 The first character in string variable STR is either

a digit, a ".", or a "-" and the value of the

natural variable LEN is larger than one.
10 Read access to natural variable LEN.
11 Read access to float variable NUMVAL.
12 Complement of assumption 9.
13 Exception INVALIDENTRY has been raised.
14 Exception NUMERIC ERROR has been raised.
15 There exists a procedure called GETSTRING with two

parameters.
16 Both of the parameters in procedure GETSTRING have

write access only.
17 There exists a procedure called STRTOFLT with

three parameters.
18 Two parameters in procedure STR TO FLT have read

access and the third parameter has-write access.
19 Read access to float variable X.
20 Write access to string variable STRG.
21 Read access to string variable STRG.
22 The first character in string variable STRG is "+".

23 The first character in string variable STRG is "-"

24 The first character in string variable STRG is "*"

25 The first character in string variable STRG is "/".
26 The first character in string variable STRG is "r"

or "R".
27 The first character in string variable STRG is "d"

or "D" .
28 The first character in string variable STRG is If?".
29 The first character in string variable STRG is "a"

or "Q".
30 The first character in string variable STRG is not

vv ._ v..I/ ' r", "R' , I"d", I" , IT?", " ,v ,i r i * '

nor "Q".

166

TABLE XXX (Continued)

Asmp.
Number Assumption

31 Read access to float variable Y.
32 Write access to float variable Y.
33 There exists a module called module 1 with two

parameters.
34 The first parameter in modulel has read and write

access and the second, called mode selector, has
read access only.

35 The mode selector in module 1 is in PUSH mode.
36 The mode selector in module 1 is in POP mode.
37 The mode selector in module_1 is in CLEAR mode.

167

TABLE XXXI

LIST OF ASSUMPTION NUMBERS FOR OBJECTS
IN THE ADA PROGRAM CALC, CASE 2

object Assumptions

A.1 4, 5
A.2 6, 7
A.3 1, 8, 15, 16
A.4 3
A.5 4, 9
A.6 2, 4, 10, 17, 18
A.7 11, 33, 34, 35
A.8 4, 12
A.9 4, 20
A.10 13
A.11 14

B.1 19, 21, 22, 31, 32, 33, 34, 36
B.2 31, 33, 34, 35
B.3 19, 21, 23, 21, 32, 33, 34, 36

B.4 31, 33, 34, 35
B.5 19, 21, 24, 31, 32, 33, 34, 36
B.6 31, 33, 34, 35

B.7 19, 21, 25, 31, 32, 33, 34, 36
B.8 31, 33, 34, 35
B.9 21, 26, 33, 34, 37
B.10 19, 21, 27, 33, 34, 36
B.11 21, 28
B.12 21, 29
B.13 21, 30
CDE.0 34
F.0 16
G.0 18

168

TABLE XXXII

ASSUMPTIONS FOR THE ADA PROGRAM
CALC, CASE 3

Asmp.
Number Assumption

1 Write access to string variable STR.
2 Write access to float variable NUM_VAL.
3 Write access to boolean variable FIRST.
4 Read access to string variable STR.
5 The first character in string variable STR is not

"q" or "Q".
6 Read access to boolean variable FIRST.
7 Boolean variable FIRST is not true.
8 Write access to natural variable LEN.
9 Write access to natural variable CUM COUNT.
10 Boolean variable END OF LINE is not true.
11 Write access to character variable CH.
12 Read access to natural variable CUM_COUNT.
13 Read access to character variable CH.
14 The first character in string variable STR is either

a digit, a ".", or a "-" and the value of the

natural variable LEN is larger than one.
15 Read access to natural variable LEN.
16 Write access to float variable X.
17 Write access to float variable SIGN.
18 Write access to boolean variable DECIMALPOINT.
19 Write access to integer variable COUNT.
20 Write access to integer variable EXP.
21 Write access to integer variable EXPSIGN.
22 Write access to integer variable INDEX.
23 The first character in string variable STR is a "-"

24 Integer variable INDEX is smaller than or equal to
natural variable LEN.

25 Read access to integer variable INDEX.
26 The character in character variable CH is a "
27 The character in character variable CH is a digit.
28 Read access to float variable X.
29 Boolean variable DECIMAL POINT is true.
30 Read access to boolean variable DECIMAL POINT.
31 Read access to integer variable COUNT.
32 The character in character variable CH is either an

"e" or an "Ell.
33 Read access to integer variable JDEX.
34 Write ac:ess to integer variable JDEX.
35 Write access to character variable CHR.
36 Read access to character variable CHR.
37 The character in character variable CHR is a digit.

169

TABLE XXXII (Continued)

Asmp.
Number Assumption

38 Read access to integer variable EXP.
39 The character in character variable CHR is the "-"

40 The character in character variable CHR is not the
"-" nor a digit.

41 The character in character variable CHR is not the
Si, a digit, "E", nor "ell.

42 Read access to float variable SIGN.
43 Read access to integer variable EXP SIGN.
44 Read access to integer variable EXP.
45 Read access to natural variable TOP.
46 Read access to natural constant LIMIT.
47 Integer variables TOP and LIMIT are equal.
48 Complement of assumption 47.
49 Write access to natural variaLle TOP.
50 Write access to array of float STACK.
51 Write access to float variable NUM.
52 Read access to float variable NUM VAL.
53 Read access to float variable NUM.
54 Complement of assumption 14.
55 Write access to string variable STRG.
56 Read access to string variable STRG.
57 The first character in string variable STRG is "+".
58 The first character in string variable STRG is "-"
59 The first character in string variable STRG is "
60 The first character in string variable STRG is "/"
61 The first character in string variable STRG is "r"

or "R".
62 The first character in string variable STRG is "d"

or "D".
63 The first character in string variable STRG is ",",

64 The first character in string variable STRG is "a"
or "Q".

65 The first character in string variable STRG is not
r I .V /V , r', 'R' , '' ' ,, 3' '? ' , Vl V

nor "Q"
Q'6 Read access to float variable Y.
67 Write access to float variable Y.
68 Integer variable TOP equals 0.
69 Conplement of assumption 68.
70 Read access to array of float STACK.
71 Exception INVALID ENTRY has been raised.
72 Exception NUKERICERROR has been raised.

170

TABLE XXXIII

LIST OF ASSUMPTION NUMBERS FOR OBJECTS
IN THE ADA PROGRAM CALC, CASE 3

Object Assumptions

A.1 4, 5
A.2 6, 7
A.3 1, 8
A.4 3
A.5 4, 14
A.6 2, 4, 15
A.7 51, 52
A.8 4, 54
A.9 4, 55
A.10 71
A.11 72
B.1 28, 53, 56, 57, 66, 67
B.2 51, 66
B.3 28, 53, 56, 58, 66, 67
B.4 51, 66
B.5 28, 53, 56, 59, 66, 67
B.6 51, 66
B.7 28, 53, 56, 60, 66, 67
B.8 51, 66
B.9 56, 61
B.10 28, 53, 56, 62
B.11 56, 63
B.12 56, 64
B.13 56, 65
C.1 45, 46, 47
C.2 45, 46, 48
C.3 45, 49
C.4 45, 50, 53
D.1 45, 68
D.2 45, 69
D.3 45, 51, 70
D.4 45, 49
E.1 49
F.1 10
F.2 11
F.3 9, 12
F.4 1, 12, 13
F.5 8, 12
G.1 4, 23
G.2 17
G.3 22
G.4 15, 24, 25
G.5 4, 11, 25

-i

171

TABLE XXXIII (Continued)

Object Assumptions

G.6 13, 18, 26

G.7 13, 16, 27, 28

G.8 29, 30
G.9 19, 31
G.10 13, 32
G.1I 15, 25, 33, 34
G.12 4, 33, 35
G.13 20, 36, 37, 38
G.14 21, 36, 39
G.15 36, 40
G.16 15, 22
G.17 13, 41
G.18 22, 25
G.19 2, 28, 31, 42, 43, 44

7
172

TABLE XXXIV

ASSUMPTIONS FOR THE ADA PROGRAM
ADDRESS, CASE 1

Asmp.
Number Assumption

1 Write access to pointer PTLIST of type AL1IST.
2 There exists a cecord of type LIST with two integer

fields called LAST REC and NEXTSPACE respectively,
a field called SPACE which is an array of type
integer, and a field called KEYLIST which is an
array of type KEY.

3 There exists a record of type KEY with a field
called NAME of character string type and a field
PTDATA of type positive.

4 Read access to constant MAX SIZE.
5 Write access to pointer LENLIST of type A LIST.
6 Read access to pointer LENLIST of type A_LIST.
7 Read access to pointer PT LIST of type A LIST.
8 Read access to boolean variable FIRST.
9 Write access to boolean variable FIRST.
10 Write access to variable OP of type OPERATION.
11 Read access to variable OP of type OPERATION.
12 The value in variable OP is equal to CREATE.
13 The value in variable OP is equal to ADD.
14 The value in variable OP is equal to CHANGE.
15 The value in variable OP is equal to DELETE.
16 The value in variable OP is equal to SEARCH.
17 The value in variable OP is equal to QUIT.
18 Write access to variable DATA of type ADDRESS.
19 Read access to variable DATA of type ADDRESS.
20 Write access to character string variable NAME.
21 Read access to character string variable NAME.
22 Write access to integer variable INDEX.
23 Write access to boolean variable FOUND.
24 Boolean variable FOUND is true.
25 Read access to boolean variable FOUND.
26 There exists a record of type ADDRESS with the

following seven character string fields: NAME,
STREET, CITY, STATE, ZIP, AREA, and PHONE.

27 Read access to file pointer DATAID of type
ADDRESS 10.

28 Read access to field PT DATA in the record pointed
at by the field KEYLIST in the record pointed at
by pointer PT LIST.

29 Read access to integer variable INDEX.
30 Boolean variable FOUND is not true.

173

TABLE XXXIV (Continued)

Asmp.
Number Assumption

31 Write access to field LASTREC in record pointed at
pointer LENLIST.

32 Read access to field SIZE in record pointed at by
pointer PTLIST.

33 Read access to file pointer INDX_Ib of type
INDEX 10.

34 Read access to all fields in record pointed at by
pointer LENLIST.

35 Read access to all fields in record pointed at by
pointer PTLIST.

36 Read access to character string constant INDXNAME.
37 Write access to file pointer DATAID of type

ADDRESS IO.
38 Write access to file pointer INDXID of type

INDEXIO.
39 There exists a procedure GETNAME with one

parameter.
40 The parameter in the procedure GETNAME has read

and write access.
41 Procedure GET NAME returns a character string

obtained from standard input.
42 There exists a procedure STARTUP with three

parameters.
43 All of the three parameters in procedure STARTUP

have read and write access.
44 Procedure START UP returns a pointer to the first

record of data, a pointer to the first record of
the index, and a boolean indicator that indicates
if input has been accepted.

45 There exists a procedure CREATELIST with two
parameters.

46 Both parameters in procedure CREATELIST have read
and write access.

47 Procedure CREATE LIST returns a pointer to the
created list of data records and a pointer to the
list of index records.

48 There exists a procedure ENTERDATA with one

parameter.
49 The parameter in procedure ENTERDATA has write

access only.
50 Procedure ENTERDATA returns a pointer to a

newly created data record.
51 There exists a procedure DISPLAY with one

parameter.

174

TABLE XXXIV (Continued)

Asmp.
Number Assumption

52 The parameter in procedure DISPLAY has read access
only.

53 There exists a procedure ALTERDATA with one
parameter.

54 The parameter in procedure ALTERDATA has read and
write access.

55 Procedure ALTER DATA returns a pointer to the
record for which the data has been altered.

56 There exists a procedure ALTERFIELD with one
parameter.

57 The parameter in procedure ALTERFIELD has read and
write access.

58 Procedure ALTER FIELD returns a new character
string accepted from standard input or the same
character string received as input if no changes
were desired.

59 There exists a procedure SELECTALTERNATIVE with two
parameters.

60 One parameter in procedure SELECTALTERNATIVE has
both read and write access, the other has only
write access.

61 Procedure SELECT ALTERNATIVE returns the type of
operation desired to be performed on the database.

62 There exists a procedure INSERT with two parameters.
63 One parameter in procedure INSERT has both read and

write access, the other has only read access.
64 Procedure INSERT returns a pointer to the first

record after the insertion has taken place.
65 There exists a procedure SEARCH with five

parameters.
66 Two parameters in procedure SEARCH have read access

only, the other three have both read and write
access.

67 Procedure SEARCH searches the index for a name and
if found, returns the address of the record and
indicates that the record was found.

68 There exists a procedure DELETE with two parameters.
69 One parameter in procedure DELETE has both read and

write access, the other has only read access.
70 Procedure DELETE returns a pointer to the first

record after the deletion has taken place.
71 There exists a procedure GETSTRING with two

parameters.
72 Both parameters in procedure GETSTRING have write

access only.

175

TABLE XXXIV (Continued)

Asmp.
Number Assumption

73 Procedure GETSTRING returns a character string
obtained from standard input and the number of
characters in the returned string.

176

TABLE XXXV

LIST OF ASSUMPTION NUMBERS FOR OBJECTS
IN THE ADA PROGRAM ADDRESS, CASE 1

Object Assumptions

A.1 1, 2, 3, 4
A.2 2, 3, 4, 5
A.3 1, 5, 6, 7, 8, 9, 42, 43, 44
A.4 8, 9, 10, 59, 60, 61
A.5 1, 5, 6, 7, 11, 12, 45, 46, 47
A.6 11, 13, 18, 48, 49, 50
A.7 1, 7, 19, 62, 63, 64
A.8 11, 14, 20, 21, 39, 40, 41
A.9 7, 18, 21, 22, 23, 65, 66, 67
A.10 24, 25
A.11 18, 19, 53, 54, 55
A.12 2, 3, 19, 27, 28, 29
A.13 25, 30
A.14 11, 15, 20, 21, 39, 40, 41
A.15 1, 7, 21, 68, 69, 70
A.16 11, 16, 20, 21, 39, 40, 41
A.17 7, 18, 21, 22, 23, 65, 66, 67
A.18 24, 25
A.19 19, 51, 52
A.20 25, 30
A.21 11, 17
A.22 11, 17
A.23 2, 31, 32
A.24 2, 33, 34
A.25 2, 33, 35
A.26 33
A.27 27
B.0 40, 41, 71, 72, 73
C.0 2, 27, 33, 36, 37, 38, 43, 44, 45, 46, 47, 71,

72
D.0 2, 3, 4, 26, 27, 36, 37, 38, 46, 47, 48, 49, 50
E.0 26, 49, 50, 51, 52, 53, 54, 55
F.0 26, 52
G.0 26, 51, 52, 54, 55, 56, 57, 58, 71, 72, 73
H.0 57, 58, 71, 72, 73
1.0 60, 61, 71, 72, 73
J.0 2, 3, 4, 26, 27, 51, 52, 63, 64, 65, 66, 67, 71,

72, 73
K.0 2, 66, 67
L.0 2, 3, 4, 51, 52, 65, 66, 67, 69, 70, 71, 72, 73
M.0 72, 73

177

TABLE XXXVI

ASSUMPTIONS FOR THE ADA PROGRAM
ADDRESS, CASE 2

Asmp.
Number Assumption

1 Write access to pointer PTLIST of type A-LIST.
2 There exists a record of type LIST with two integer

fields called LASTREC and NEXTSPACE respectively,
a field called SPACE which is an array of type
integer, and a field called KEYLIST which is an
array of type KEY.

3 There exists a record of type KEY with a field
called NAME of character string type and a field
PTDATA of type positive.

4 Read access to constant MAXSIZE.
5 Write access to pointer LENLIST of type ALIST.
6 Read access to pointer LENLIST of type ALIST.
7 Read access to pointer PTLIST of type A-LIST.
8 Read access to boolean variable FIRST.
9 Write access to boolean variable FIRST.
10 Write access to variable OP of type OPERATION.
11 Read access to variable OP of type OPERATION.
12 The value in variable OP is equal to CREATE.
13 The value in variable OP is equal to ADD.
14 The value in variable OP is equal to CHANGE.
15 The value in variable OP is equal to DELETE.
16 The value in variable OP is equal to SEARCH.
17 The value in variable OP is equal to QUIT.
18 Write access to variable DATA of type ADDRESS.
19 Read access to variable.DATA of type ADDRESS.
20 Write access to character string variable NAME.
21 Read access to character string variable NAME.
22 Write access to integer variable INDEX.
23 Write access to boolean variable FOUND.
24 Boolean variable FOUND is true.
25 Read access to boolean variable FOUND.
26 There exists a record of type ADDRESS with the

following seven character string fields: NAME,
STREET, CITY, STATE, ZIP, AREA, and PHONE.

27 Read access to file pointer DATAID of type
ADDRESS 10.

28 Read access to field PT DATA in the record pointed
at by the field KEYLIST in the record pointed at
by pointer PT LIST.

29 Read access to integer variable INDEX.
30 Boolean variable FOUND is not true.

178

TABLE XXXVI (Continued)

Asmp.
Number Assumption

31 Write access to field LASTREC in record pointed at
pointer LENLIST.

32 Read access to field SIZE in record pointed at by
pointer PTLIST.

33 Read access to file pointer INDXID of type
INDEXIO.

34 Read access to all fields in record pointed at by
pointer LENLIST.

35 Read access to all fields in record pointed at by
pointer PTLIST.

36 Read access to character string constant INDXNAME.
37 Write access to file pointer DATAID of type

ADDRESS 10.
38 Write access to file pointer INDXID of type

INDEX IO.
39 There exists a procedure GETNAME with one

parameter.
40 The parameter in the procedure GETNAME has read

and write access.
41 Procedure GET NAME returns a character string

obtained from standard input.
42 There exists a procedure STARTUP with three

parameters.
43 All of the three parameters in procedure STARTUP

have read and write access.
44 Procedure STARTUP returns a pointer to the first

record of data, a pointer to the first record of
the index, and a boolean indicator that indicates
if input has been accepted.

45 There exists a procedure CREATELIST with two
parameters.

46 Both parameters in procedure CREATELIST have read
and write access.

47 Procedure CREATELIST returns a pointer to the
created list of data records and a pointer to the
list of index records.

48 There exists a procedure ENTERDATA with one
parameter.

49 The parameter in procedure ENTERDATA has write
access only.

50 Procedure ENTERDATA returns a pointer to a
newly created data record.

51 There exists a procedure DISPLAY with one
parameter.

179

TABLE XXXVI (Continued)

Asmp.
Number Assumption

52 The parameter in procedure DISPLAY has read access
only.

53 There exists a module called MODULE1 with
one parameter.

54 The parameter in module MODULE_1 has read and write
access.

55 Module MODULE 1 returns a pointer to the record for
which the data has been altered.

56 There exists a procedure SELECTALTERNATIVE with two
parameters.

57 One parameter in procedure SELECTALTERNATIVE has
both read and write access, the other has only
write access.

58 Procedure SELECT ALTERNATIVE returns the type of
operation desired to be performed on the database.

59 There exists a procedure SEARCH with five
parameters.

60 Two parameters in procedure SEARCH have read access
only, the other three have both read and write
access.

61 Procedure SEARCH searches the index for a name and
if found, returns the address of the record and
indicates that the record was found.

62 There exists a procedure GETSTRING with two
parameters.

63 Both parameters in procedure GETSTRING have write
access only.

64 Procedure GETSTRING returns a character string
obtained from standard input and the number of
characters in the returned string.

65 Write access to integer variable COUNT.
66 Write access to integer variable I.
67 Read access to integer variable I.
68 Write access to character string RESPONSE.
69 Read access to character string RESPONSE.
70 Read access to field NAME in record pointed at by

pointer DATA of type ADDRESS.
71 Read access to field NAME in record pointed at by

pointer DATA.
72 The first character in character string RESPONSE is

either a "y" or a "Y".
73 Write access to pointer TEMPDATA of type ADDRESS.
74 Read access to pointer TEMPDATA of type ADDRESS.
75 The first character in character string RESPONSE is

either a "o" or a "0".

180

TABLE XXXVI (Continued)

Asmp.
Number Assumption

76 Complement of assumption number 111.
77 Write access t natural variable REC NUM.
78 Write access to pointer NEWLIST of type ALIST.
79 Read access to field KEYLIST in record pointed at

by pointer PTLIST.
80 Write access to field KEYLIST in record pointed at

by pointer NEWLIST.
81 Write access to field NAME pointed at by the field

KEYLIST in the record pointed at by pointer
NEW LIST.

82 Field NEXT SPACE in record pointed at by pointer
PT LIST is zero.

83 Read access to field NEXTSPACE in record pointed at
by pointer NEWLIST.

84 Write access to field LASTREC in record pointed at
by pointer NEW LIST.

85 Read access to field LASTREC in record pointed at
by pointer PT LIST.

86 Read access to field LASTREC in record pointed at
by pointer NEWLIST.

87 Write access to field NEXTSPACE in record pointed
at by pointer NEWLIST.

88 Complement of assumption number 118.
89 Read access to field SPACE in record pointed at by

pointer PTLIST.
90 Read access to field NEXTSPACE in record pointed

at by pointer PTLIST.
91 Write access to field SPACE in record pointed at by

pointer NEWLIST.
92 Read access to natural variable REC NTUM.
93 Write access to field PTDATA in record pointed at

by fld KEY_LIST in rec. pointed at by ptr. NEWLIST.
94 Read access to field SIZE in record pointed at by

pointer NEWLIST.
95 Read access to pointer NEW LIST of type ALIST.
96 Read access to natural variable REC NUi4.
97 Read access to character string DELNAME.
98 Write access to field KEYLIST in record pointed at

by pointer PTLIST.
99 Read access to field SPACE in record pointed at by

pointer NEW LIST.
100 The last entry).n the arrayed field SPACE in record

pointed at by ptr. NEW LIST is larger than the field
NEXTSPACE in record pointed at by pointer NEWLIST.

181

TABLE XXXVII

LIST OF ASSUMPTION NUMBERS FOR OBJECTS
IN THE ADA PROGRAM ADDRESS, CASE 2

Object Assumptions

A.1 1, 2, 3, 4

A.2 2, 3, 4, 5
A.3 1, 5, 6, 7, 8, 9, 42, 43, 44

A.4 8, 9, 10, 56, 57, 58
A.5 1, 5, 6, 7, 12, 12, 45, 46, 47
A.6 11, 13, 18, 48, 49, 50
A.7 1, 7, 19
A.8 11, 14, 20, 21, 39, 40, 41
A.9 7, 18, 21, 22, 23, 59, 60, 61
A.10 24, 25
A.11 18, 19, 53, 54, 55
A.12 2, 3, 19, 27, 28, 29
A.13 25, 30
A.14 11, 15, 20, 21, 39, 40, 41
A.15 1, 7, 21
A.16 11, 16, 20, 21, 39, 40, 41
A.17 7, 18, 21, 22, 23, 59, 60, 61
A.18 24, 25
A.19 19, 51, 52
A.20 25, 30
A.21 11, 17
A.22 11, 17
A.23 2, 31, 32
A.24 2, 33, 34
A.25 2, 33, 35
A.26 33
A.27 27
B.0 40, 41, 62, 63, 64
C.0 2, 27, 33, 36, 37, 38, 43, 44, 45, 46, 47, 62,

63
D.0 2, 3, 4, 26, 27, 36, 37, 38, 46, 47, 48, 49, 50
E.0 26, 49, 50, 51, 52, 53, 54, 55
F.0 26, 52
GH.0 26, 51, 52, 54, 55, 62, 63, 64

1.0 57, 58, 62, 63, 64
J.1 7, 19, 22, 23, 59, 60, 61, 71, 73
J.2 24, 25
J.3 51, 52, 82
J.4 62, 63, 64, 65, 68
J.5 69, 75
J.6 69, 76

J.7 2, 3, 28, 29, 77
J.8 25, 30

_1

182

TABLE XXXVII (Continued)

Object Assumptions

J.9 2, 3, 4, 32, 78
J.10 29, 66, 67
J.11 2, 67, 79, 80
J.12 22, 29
J.13 2, 3, 26, 29, 70, 81
J.14 2, 82, 83
J.15 2, 84, 85
J.16 2, 77, 86
J.17 2, 87
J.18 2, 83, 88
J.19 2, 84, 85
J.20 2, 77, 89, 90
J.21 2, 87, 90
J.22 2, 89, 91
J.23 2, 3, 29, 92, 93
J.24 2, 29, 66, 67, 94
J.25 2, 67, 79, 80
J.26 1, 95
J.27 19, 27, 96
K.0 2, 60, 61
L.1 7, 22, 23, 59, 60, 61, 73, 97
L.2 25, 30
L.3 24, 25
L.4 51,.52
L.5 62, 63, 64, 65, 68
L.6 69, 72
L.7 2, 3, 28, 29, 77
L.8 29, 32, 66, 67
L.9 67, 79, 98
L.10 2, 3, 4, 78, 80, 84, 87, 91
L.11 2, 83, 99, 100
L.12 2, 83, 87
L.13 2, 83, 91, 92
L.14 1, 95
M.0 72, 73

183

TABLE XXXVIII

ASSUMPTIONS FOR THE ADA PROGRAM
ADDRESS, CASE 3

Asmp.
Number Assumption

1 Write access to pointer PT LIST of type A LIST.
2 There exists a record of type LIST with two integer

fields called LAST REC and NEXT SPACE respectively,
a field called SPACE which is an array of type
integer, and a field called KEYLIST which is an
array of type KEY.

3 There exists a record of type KEY with a field
called NAME of character string type and a field
PTDATA of type positive.

4 Read access to constant MAX SIZE.
5 Write access to pointer LENLIST of type A LIST.
6 Read access to pointer LEN LIST of type A LIST.
7 Read access to pointer PT LIST of type ALIST.
8 Read access to boolean variable FIRST.
9 Write access to boolean variable FIRST.
10 Write access to variable OP of type OPERATION.
11 Read access to variable MODE of type OPERATION.
12 Read access to variable OP of type OPERATION.
13 The value in variable OP is equal to CREATE.
14 The value in variable OP is equal to ADD.
15 The value in variable OP is equal to CHANGE.
16 The value in variable OP is equal to DELETE.
17 The value in variable OP is equal to SEARCH.
18 The value in variable OP is equal to QUIT.
19 Write access to variable DATA of type ADDRESS.
20 Read access to variable DATA of type ADDRESS.
21 Write access to character string variable NAME.
22 Read access to character string variable NAME.
23 Write access to character string variable SEEKNAME.
24 Write access to integer variable INDEX.
25 Write access to boolean variable FOUND.
26 Boolean variable FOUND is true.
27 Read access to boolean variable FOUND.
28 There exists a record of type ADDRESS with the

following seven character string fields: NAME,
STREET, CITY, STATE, ZIP, AREA, and PHONE.

29 Read access to file pointer DATAID of type
ADDRESS I0.

30 Read access to field PT DATA in the record pointed
at by the field KEYLIST in the record pointed at
by pointer PT LIST.

31 Read access to integer variable INDEX.

184

TABLE XXXVIII (Continued)

Asmp.
Number Assumption

32 Boolean variable FOUND is not true.

33 Write access to field LASTREC in record pointed at
pointer LENLIST.

34 Read access to field SIZE in record pointed at by
pointer PTLIST.

35 Read access to file pointer INDX_ID of type
INDEX 10.

36 Read access to all fields in record pointed at by
pointer LENLIST.

37 Read access to all fields in record pointed at by
pointer PTLIST.

38 Write access to integer variable COUNT.
39 Read access to integer variable LEN.
40 Read access to character string variable STR.
41 Write access to integer variable I.
42 Read access to integer variable I.
43 Read access to integer variable COUNT.
44 Read access to character string constant INDXNAME.
45 Write access to all fields in record pointed at by

pointer LENLIST.
46 Read access to field LASTREC in record pointed at

by pointer LENLIST.
47 Write access to all fields in record pointed at by

pointer PT LIST.
48 Exception INDEXIO.NAMEERROR has been raised.
49 Write access to character string RESPONSE.
50 Write access to natural variable LEN.
51 The first cl-aracter in character string RESPONSE is

either a "q" or a "Q".
52 Read access to character string RESPONSE.
53 Complement of assumption number 51.
54 File pointer DATAID of type ADDRESSIO is null,

i.e., file is not open.
55 Write access to file pointer DATAID of type

ADDRESS _O.
56 Write access to file pointer INDXID of type

INDEX 10.
57 Read access to character string constant DATA NAME.
58 Exception ADDRESSIO.NAMEERROR has been raised.
59 Boolean variable FIRST is true.
60 Boolean variable FIRST is not true.
61 Exception ADDRESS_IO.STATUS_ERROR has been raised.
62 Exception INDEX IO.STATUSERROR has been raised.
63 Read access to field NAME in record pointed at by

pointer DATA of type ADDRESS.

-.7

185

TABLE XXXVIII (Continued)

Asmp.
Number Assumption

64 Write access to field NAME in record pointed at by
pointer INITKEY of type KEY.

65 Write access to field PT DATA in record pointed at
by pointer INIT KEY of type KEY.

66 Read access to pointer INIT KEY of type KEY.
67 Write access to field NEXT_SPACE in record pointed

at by pointer LEN LIST.
68 Write access to field SPACE in record pointed at by

pointer LENLIST.
69 Write access to field NAME in record pointed at by

pointer NEWADDRESS.
70 Write access to field STREET in record pointed at by

pointer NEWADDRESS.
71 Write access to field CITY in record pointed at by

pointer NEWADDRESS.
72 Write access to field STATE in record pointed at by

pointer NEWADDRESS.
73 Write access to field ZIP in record pointed at by

pointer NEWADDRESS.
74 Write access to field AREA in record pointed at by

pointer NEWADDRESS.
75 Write access to field PHONE in record pointed at by

pointer NEWADDRESS.
76 Read access to pointer NEW ADDRESS of type ADDRESS.
77 Write access to pointer NEW ADDRESS of type ADDRESS.
78 Read access to field NAME Jn record pointed at by

pointer DATA.
79 Read access to field STREET in record pointed at by

pointer DATA.
80 Read access to field CITY in record pointed at by

pointer DATA.
81 Read access to field STATE in record pointed at by

pointer DATA.
82 Read access to field ZIP in record pointed ±t by

pointer DATA.
83 Read access to field AREA in record pointed at by

pointer DATA.
84 Read access to field PHONE in record pointed at by

pointer DATA.
85 Write access to field NAME in record pointed at by

pointer DATA.
86 Write access to field STREET in record pointed at by

pointer DATA.
87 Write access to field CITY in record pointed at by

pointer DATA.

186

TABLE XXXVIII (Continued)

Asmp.
Number Assumption

88 Write access to field STATE in record pointed at by
pointer DATA.

89 Write access to field ZIP in record pointed at by
pointer DATA.

90 Write access to field AREA in record pointed at by
pointer DATA.

91 Write access to field PHONE in record pointed at by
pointer DATA.

92 Write access to natural variable NU!M CHAR.
93 The first character in character string RESPONSE is

either a "y" or a "Y".
94 Read access to character string STRG.
95 Write access to character string STRG.
96 Read access to character string REPLY.
97 Write access to character string REPLY.
98 Write access to natural variable INCHAR.
99 Natural variable IN CHAR is larger than zero.
100 Read access to natural variable IN CHAR.
101 The first character in character string RESPONSE is

either a "i" or a "I".
102 The first character in character string RESPONSE is

either a "c" or a "C".
103 The first character in character string RESPONSE is

either a "a" or a "A".
104 The first character in character string RESPONSE is

either a "d" or a "D".
105 The first character in character string RESPONSE is

either a "s" or a "S".
106 Write access to variable MODE of type OPERATION.
107 The first character in character string RESPONSE is

not an "ill "I"l "lc" "C", "a", "A", "d" "D", "s",

nor "S".
108 Write access to pointer TEMP DATA of type ADDRESS.
109 Write access to character string SEEKNAME.
110 Read access to pointer TEMPDATA of type ADDRESS.
ill The first character in character string RESPONSE is

either a "o" or a "O".
112 Complement of assumption number 111.
113 Write access to natural variable RECNUM.
114 Write access to pointer NEWLIST of type ALIST.
115 Read access to field KEYLIST in record pointed at

by pointer PTLIST.
116 Write access to field KEYLIST in record pointed at

by pointer NEWLIST.

187

TABLE XXXVIII (Continued)

Asmp.
Number Assumption

117 Write access to field NAME pointed at by the field
KEYLIST in the record pointed at by pointer
NEWLIST.

118 Field NEXTSPACE in record pointed at by pointer
PTLIST is zero.

119 Read access to field NEXTSPACE in record pointed at
by pointer NEWLIST.

120 Write access to field LASTREC in record pointed at
by pointer NEW LIST.

121 Read access to field LASTREC in record pointed at
by pointer PTLIST.

122 Read access to field LASTREC in record pointed at
by pointer NEW LIST.

123 Write access to field NEXTSPACE in record pointed
at by pointer NEW LIST.

124 Complement of assumption number 118.
125 Read access to field SPACE in record pointed at by

pointer PTLIST.
126 Read access to field NEXTSPACE in record pointed

at by pointer PT LIST.
127 Write access to field SPACE in record pointed at by

pointer NEWLIST.
128 Read access to natural variable REC NUM.
129 Write access to field PTDATA in record pointed at

by field KEY_LIST in record pointed at by pointer
NEWLIST.

130 Read access to field SIZE in record pointed at by
pointer NEWLIST.

131 Read access to pointer NEW LIST of type A LIST.
132 Read access to natural variable RECNUM.
133 Read access to integer variable NEXT.
134 Read access to integer variable LAST.
135 Read access to integer variable LLAST.
136 Variable NEXT is not eaual to variable LAST.
137 Variable NEXT is not equal to variable LLAST.
138 Write access to character string THIS NAME.
139 Read access to field NAME in record pointed at by

field KEYLIST in record pointed at by pointer
PT LIST.

140 Read access to character string SEEKNAME.
141 Read access to character string THISNAME.
142 Character strings SEEKNAME and THISNAME contain

the same string.

7
188

TABLE XXXVIII (Continued)

Asmp.
Number Assumption

143 The character string in variable SEEK NAME succeeds
alphabetically the character string in variable
THISNAME.

144 Write access to integer variable LOW.
145 Write access to integer variable LLAST.
146 Write access to integer variable LAST.
147 Write access to integer variable NEXT.
148 Read access to integer variable HIGH.
149 The character string in variable THISNAME succeeds

alphabetically the character string in variable
SEEK NAME.

150 Write access to integer variable HIGH.
151 Read access to integer variable LOW.
152 Read access to pointer BLANKS of type ADDRESS.
153 Read access to character string DELNAME.
154 Write access to field KEYLIST in record pointed at

by pointer PTLIST.
155 Read access to field SPACE in record pointed at by

pointer NEW LIST.
156 The last entry in the arrayed field SPACE in record

pointed at by pointer NEWLIST is larger than the
field NEXTSPACE in record pointed at by pointer
NEWLIST.

157 END OF LINE boolean indicator is not true.
158 Write access to character variable CH.
159 Read access to character variable CH.
160 Write access to natural variable CUM COUNT.
161 Read access to natural variable CUM COUNT.
162 Write access to character string STR.
163 Write access to natural variable LEN.

189

TABLE XXXIX

LIST OF ASSUMPTION NUMBERS FOR OBJECTS
IN THE ADA PROGRAM ADDRESS, CASE 3

Object Assumptions

A.1 1, 2, 3, 4
A.2 2, 3, 4, 5
A.3 1, 5, 6, 7, 8, 9
A.4 8, 9, 10, 11
A.5 1, 5, 6, 7, 12, 13
A.6 12, 14, 19
A.7 1, 7, 20
A.8 12, 15, 21, 22
A.9 7, 19, 22, 23, 24, 25
A.10 26, 27
A.11 19, 20
A.12 2, 3, 20, 29, 30, 31
A.13 27, 32
A.14 12, 16, 21, 22
A.15 1, 7, 22
A.16 12, 17, 21, 22
A.17 7, 19, 22, 23, 24, 25
A.18 26, 27
A.19 20
A.20 27, 32
A.21 12, 18
A.22 12, 18
A.23 2, 33, 34
A.24 2, 35, 36
A.25 2, 35, 37
A.26 35
A.27 29
B.1 21, 38, 39, 40
D.2 22, 41, 42, 43
B.3 21, 42
C.1 44, 56
C.2 2, 35, 45
C.3 1, 2, 46
C.4 2, 35, 47
C.5 48
C.6 39, 40, 49, 50
C.7 9
C.8 51, 52
C.9 52, 53
C.10 1, 5, 6, 7
C.11 29, 54
C.12 55, 57
C.13 58

190

TABLE XXXIX (Continued)

Object Assumptions

C.14 8, 59
C.15 9
C.16 8, 60
C.17 39, 40, 49, 50
C.18 51, 52
C.19 52, 53
C.20 56
C.21 1, 5, 6, 7
D.1 55, 57
D.2 61
D.3 55
D.4 55, 57
D.5 44, 56
D.6 62
D.7 56
D.8 44, 56
D.9 19
D.10 20, 29
D.11 28, 63, 64
D.12 28, 65
D.13 1, 2, 3, 4, 47, 66
D.14 2, 33
D.15 2, 67
D.16 2, 68
E.1 28, 38, 39, 40, 69
E.2 28, 38, 39, 40, 70
E.3 28, 38, 39, 40, 71
E.4 28, 38, 39, 40, 72
E.5 28, 38, 39, 40, 73
E.6 28, 38, 39, 40, 74
E.7 28, 38, 39, 40, 75
E.8 76
E.9 38, 39, 40, 49
E.10 52, 93
E.11 76, 77
E.12 19, 76
F.1 28, 78
F.2 28, 79
F.3 28, 80, 81
F.4 28, 82
F.5 28, 83, 84
G.1 28, 85
G.2 28, 86
G.3 28, 87
G.4 28, 88
G.5 28, 89

191

TABLE XXXIX (Continued)

Object Assumptions

G.6 28, 90
G.7 28, 91
G.8 20
G.9 49
G.10 39, 40, 49, 92
G.11 52, 93
H.1 94
H.2 39, 40, 97, 98
H.3 99, 100
H.4 95, 96
1.1 8, 60
1.2 39, 40, 43, 49
1.3 9
1.4 52, 101, 106
1.5 38, 39, 40, 49
1.6 52, 93
1.7 52, 102, 106
1.8 52, 103, 106
1.9 52, 104, 106
1.10 52, 105, 106
1.11 51, 52, 106
1.12 38, 39, 40, 49
1.13 52, 93
1.14 52, 107
J.1 7, 20, 24, 25, 78, 108, 109
J.2 26, 27
J.3 110
J.4 38, 39, 40, 49
J.5 52, Iil
J.6 52, 112
J.7 2, 3, 30, 31, 113
J.8 27, 32
J.9 2, 3, 4, 34, 114
J.10 31, 41, 42
J.11 2, 42, 115, 116
J.12 24, 31
J.13 2, 3, 28, 31, 63, 117
J.14 2, 118, 119
J.!5 2, 120, 121
J.16 2, 113, 122
J.17 2, 123
J.18 2, 119, 124
J.19 2, 120, 121
J.20 2, 113, 125, 126
J.21 2, 113, 126
J.22 2, 125, 127

192

TABLE XXXIX (Continued)

Object Assumptions

J.23 2, 3, 31, 128, 129
J.24 2, 31, 41, 42, 130
J.25 2, 42, 115, 116
J.26 1, 131
J.27 20, 29, 132
K.1 133, 134, 135, 136, 137
K.2 2, 133, 138, 139
K.3 140, 141, 142
K.4 25
K.5 24, 133
K.6 2, 20, 29, 30, 133
K.7 140, 141, 143
K.8 133, 144
K.9 134, 145
K.10 133, 146
K.11 133, 147, 148
K.12 140, 141, 149
K.13 133, 150
K.14 134, 145
K.15 133, 146
K.16 133, 147, 151
K.17 25
K.18 1), 15?
K.19 140, 1, 143
K.20 24, 134
K.21 140, 141, 149
K.22 24, 134
L.1 7, 24, 25, 108, 109, 153
L.2 27, 32
L.3 26, 27
L.4 110
L.5 38, 39, 40, 49
L.6 52, 93
L.7 2, 3, 30, 31, 113
L.8 31, 34, 41, 42
L.9 2, 42, 115, 154
L.10 2, 3, 4, 37, 114, 116, 120, 123, 127
L.11 2, 119, 155, 156
L.12 2, 119, 123
L.13 2, 119, 127, 128
L.14 1, 131
M.1 157
M.2 158
M.3 160, 161
M.4 159, 161, 162
M.5 161, 163

APPENDIX E

EXECUTION FLOW CHARTS FOR PROGRAMS

INCLUDED IN THE STUDY

1~93

1~94

E
(to
c

(Vn

CC-

C--

L)L

LnL

L

'V'

195

-00

Ln 0

c-c

L
0

ClC-

LAL

0

CLC

_0 :0

LA Ii

L I A

CC

Eb

196

0

bO
0
L

L.-

CL L-

Li ci

'V 0

EaE

197

-4E

C-4)

al I

L I L)

I- I:
I 0

L)

C.) -.L

IL' 4

C -LJ

- .- ' .1 -

-~L0

198

I -

L e-i

rucu

0 0

L

Lj L
K ~0

00

0-0

- L

199

0.1 L

-0

cu L

ru I bO
0

rv L

0)l

01 L

0) -0

L C..L

0 'IL

L

L ID -

HF7 0)

1 cu I L

0) I; x

L LM bo

L4I
ai

'-.1

APPENDIX F

MAXIMAL INTERSECT NUMBER (MIN) CHARTS

200

201

_0

CC-

E 0

L IL

LLL

CC

202

C14J

(NJ

CL

m

LI-

U Li0

i-n-

O

I-i

roK

203

L

(~+ C',

L. LiJ)

+4a)

+ b

L Lu J

CN LL-

Li

\Lu

204

C= 0

CL

NrO

205

CNN

CNC

CLC

Ln

L L

LUL

206

CNN

LA -

C,

LiL bo

G.M \LL.

u))

Th~CD
C:~

K-n
K>z

207

-D

r- L

208

co

-4

- ID

I m

0

I *L
'U 1~~c 5 , K aj fJ

cu*

LL

bo

01

209

4

NJ4

C14-

:33

C.C

-0

/)

FUJ
Oil

L

L
I

I

'-'I-

LL

UL

210

Qj.

LL Z

LL

F< UU

211

CD

,k..
L n L rL

212

C::

I L

CLC

bO

rN 0r-

I LA cu
+0I ~aJ V -C -

C14 fr

Ln1 C,

-C +
LA

4 -L.4

Li] Ln
L -)

ro roLS

213

iN A

C%4N

cuj

ou~i' ~LI
00

(NJN

N L

~a

C"4 (N

C14)

C-1 1

Axj

0>r I!~ U

214

IT

C.)

Kt 0
co 0

LA -L

ru CL

Li To

I-~ , -

- . A

/ IO

215

-C -n

Ln L L

t C:

00

C14,

0 0

LE

a) I

216

\LL

-LI

L<aL

217

V,-

CL

IL-

0 a)

2 0

:1 L~L

t-

* 1 ~~ roI

-0 c

LnL

/

218

LL

II

L; C,

oi L

c.' a %nb

L) /AN

C44

OJ O
bI C-

LA
iz I, *IL

- In

I~L QC..)
bI

'C be

AK. C *1*

219

'AK

cu I.c

Ei

a, Ii

-O I>

LAn

7r-4

C

bo

cuI

bO CU~ L
LA ---

bo

LL

L LA i

aI

b --) .- K
un 01

220

'U bo

CQ L

bO .0
-4 4:'

(Uo

ai w

-4o

w - 0.'

LI' L

221

ANo

-/-

- I-

0 a;
-bO

bObO

L

/9T\ bO-

-II

kn i

cu

w<

APPENDIX G

METRICS STATISTICAL DATA

222

- 223

00

%D mQ w

0r
1!.1

Hc

~~ 000 0

IN~~ ~~ 00 *~Il

x 000 00 0 Ln o
F. 00 0 0 u 0 o0

u a:00

I= 0

I- iz 05

o0Q w W 0-
.4-Edc0 0 H u) H

0 0o-0r0 . 0 0W 0

>. 00a

r4 224
0

ol

0

'.3

'.4

0

N~ ~ L 0. . . ' 00

I 0 00 00 00 tO -o 00

0 0- 0 0 .

0

Z 0o- a, 'C-4 1 00 n O

0 0 0 0 a 0

3: CD 0, 0 0 . 0 C
w 'D*o 0 0 0 0

o o0 0 0 ; 0 0
cz u

M . ~ C0 InO 0 0 C0 Ctd
13 0 0;0 0;0 00 UC0 C, 00

U- 10 0 0D 0

91, C 0 0 0 0 D 0

U

~~~~~.~~C 1. . C 0 EN 0 rE C

u 0: 0 . 0
:D U *0 C: *0 .0*0

0 -' 0 0> 0 0

1% 0

003 0 u. 00 .. , s z r

1 0 'C 0 r0 0 4N

C 0: 0 0. o. 0. r- <

00 ~ 030 0 0 .1 0
z u 0



225

I-

w. 0 m 0% w Ch

E- 0 m r-o r' r-.

oo inN-.E~

ON Ln ..04~ 4 ! 4

o0

" 40 In r-04040 o

3: 0000:0

1. 004 4O t



.4 226

ar. r g L

%0

01

w:00 0 0 00 %n 0 0

>4 0 n0 0S 0. C;44@ 4

N D 0 00 C; H4 C, 'o

.0 -0 o-0 ' ~ io ~
~~~~~3 ~ ~ ,I 0 0 0 0,00 ,0 0 0 40 0 N

0.' 0 0 W 0 M w 0 4 z "N m 0 ID0%010

1 0 0 ~ 0 . 4 0 0 0 0 0 0

C> 0 l

00 2 0 - 0 0 t

0 In r0 1.0 .1~4 0 0

u:0 0 0 0 0 0 0 0 00 0 Co0

0 C>000 0 4 C 0 0

0*. 0 0 0- 00 40 * 40

W 0 4. 40 F- I=

0 0: o 00 .0 0 0
> c H0 4 ~0: 0 0 0 0. 0 0n

227

011

C0w

F-0-0

Ch1 ; ; C 0C

040

on 04 0 00 <D0 a 4 00

a, 0 0 .0 In0 0 * 0

0 0 c;0 0 -

0 C

1.3 .3 ~ r D 40 0 0 0 4
0~ ~ 40 0 0 4 4

a0 . 0 .l0 *0 a0 0

C,0 0 0 0 - 0

0 C> C> 0 - 0 00 00 0

.3 x 00 0 In 0 10~
E 0 -0 CIO4 0 0. CIO

o 4 0 -0
0 cc

z 0 W- 0 j 0 00 40 .

228

0 0

0 C

I c
o - c

c ; c

o0

a. c

A : ' a
c ;c

c

w0,C . :

II 0 a o

4 0 1%0 0to 00c

0 a: 00 0. N 0 0

a 0 Z F .
0 ~ 0 A 0 0 -

zI o

w 00 a.. 0C~ 00C

229

a-z

mvmIm n

inn

o ~ c w.o.i r-

.2 i- - - r- - ~-n
2- iN ' r- ..-

o o,

0 In 0 - -00

- 230

0i

Ln
Ln

vw

E~~~~ oNf-O~0a
w n m m r Q w a, C,

f4 %o

Q 000 000 a Q- c Q c
a cQ=c 0 a,

* .0

0 Z r

0 m c. ee
U -. o

0 0

231
Ch

04

I.In

o~ c>0 U -e o m 00o 0
a, 0 (40 o N I0 Q0 O.c0 0

E- 0 * C4 * 04 * 04 IA 4.

0l 0; 0 1 0 ; 0 0; -4

o o 04 o o4 0 n 0. 0 o o4

c! 0 0 0o 0 o 0
0

c

tn U rqN (44 ~ A t-- 0 - --
El% w0 In .I 00 0 140

O : 0I . 0 0 0 0 04

I.~ 40 (0 00 ON 00 ~ N 0
0c c>..I . . I

2:o %o w c, o* 0 ~ .
cD 0o 0 o o

Lmc o
0~~~ g. .~ ~ r- 4- 0 rr

O- 0, 0D 0o

0.c:

a, o 0 IN 0 0 lo o0

I-.~ ~ w o -' o 4 . - 4 .

1 : 0 0 - z

0 0 .3 4 . 0 4 0 0

232

01

In

0

-o

u 1
0

Lin

IMle. wo
V k.

233
0

0

Ln

z
0

10

caooooooooooa r, FC n U fl 0 ,
So0% E ~ E F in EEO F -. E o-E wUr m0 r

& n f 0 w m w tE 0% 0 %oC0 0.- %0E > 0-

* 0 0> 00a0C 0 0

cc 000 0 00 0000 0 01 4n C0 N% l lO 0

C> 0

cc 4 0 00 O f0% 0

I. 1 0n 1 0 0 0%E 0

~ F0 -- n0 mAE,0 0 C0 0

00~ ~ ~ I0VI

g 0F :g w CD -0 w~4

- H 04 %or 0L mf% -

cm~~L %00 w01 .. IU -10 - ' L0 0
I- 0% . a~. 0

> EN .. E 4 N0 0 o 0 0 ; 0 0
Li 0%1'.tOO%%F-1 0 L I D

w .E C00f UAU
0%tO0...F-EN 0%OC.3 l C'0 E~i W- 0%

Li 0 0 0 0>

OE 0 0 flS E u e 0 . 040 0 40 mO mE

-. L 0 *0 uz4 .0 I-0

z0 04l'0 1 0 0 0 0 0wt>4-z:<

0 uc g 1 L<izt w' 00 .01 fL U

'"4 234

0n% oc

o >
c>al

.~~ ~ 'O 10 .0 0 4O 0 00

La"t r-' mo 'o a O 0

c: 0n o o o4 CO LA(CO 0
m- 04. 04 04D 04c4 . 0

0

a o

0
= I~ "r4 4444 444 9--- 0o

U z C C 0 44C '-

o o ~. r ro 0 . ~ 04
o. 0 or 4 0 Ct C 0 ''4 0.

Ot oo -4mo. 4

0 W4 4 O 00 r 4
A: CO ' O 14 0 CC' O C

0 U
cl .ve

235

0 C

0' '

om -

00

0

0 0

0

00

04

I- Cc tm~- 0

0 0 0 0

2 - 0 0 ~ 0' 0

- 236

C,

wV

m)%

.a n en en -%e . n

1; C

fv

z ocD eC> OOu o

0 I I

aaL

~ OO0000Lm
4 II al lo

m en, a, w
m-

oI o o.eaO'T

E. 0~ Cf" O

*n w CO en m n.4C

,Z 0
0 ..unCl.l

1w 0. 0OC 00

VITA

William R. Torres

Candidate for the Degree of

Master of Science

Thesis: THE EFFECT OF SOFTWARE REUSABILITY ON INFORMATION

THEORY BASED SOFTWARE METRICS

Major Field: Computing and Information Science

Biographical:

Personal Data: Born in San Juan, Puerto Rico, December
27, 1962, the son of William R. and Nelida Torres.
Married to Maria A. Torres and father of Maria C.
and Diana B. Torres.

Education: Graduated from Our Lady of Pilar High
School, Rio Piedras, Puerto Rico, in May 1980;
received Bachelor of Science Degree in Electrical
Engineering from University of Puerto Rico at
Mayaguez in May 1985; completed requirements for
the Master of Science degree at Oklahoma State
University in July 1990.

Professional Experience: Teaching Assistant,
Department of Electrical Engineering, University
of Puerto Rico at Mayaguez, August 1984, to
December 1984. Physical Security Systems
Engineer, Tinker Air Force Base (AFB) Oklahoma,
June 1985, to July 1987. Local Area Network
Design Engineer, Tinker AFB Oklahoma, July 1987,
to August 1988. Branch Chief, Communications
Support Branch, Wright Patterson AFB Ohio, January
1990, to present.

BIBLIOGRAPHY

tADA83] Reference Manual for the Ada Programming Language,
United States Department of Defense, ANSI/MIL-STD-1815A,
January 1983.

[ALEXA64] Alexander, Christopher, Notes on the Synthesis of
Form, Harvard University Press, Cambridge, Mass., 1964.

(BIGGE87] Biggerstaff, Ted and Richter, Charles, "Reusability:
Framework, Assessment, and Directions," IEEE Software, March
1987, pp. 41-49.

[BOOCH86] Booch, Grady, Software Engineering with Ada, The
Benjamin/Cummings Publishing Company Inc., Second Edition,
1986.

[CHANO73] Chanon, Robert N., "On a Measure of Program
Structure," Ph.D. Dissertation, Department of Computer
Sciences, Carnegie-Mellon University, Pittsburgh, PA, November
1973.

[CHEAT83] Cheatham, Jr., T. E., "Reusability Through Program
Transformations," Proceedings ITT Workshop on Reusability in
Programming, September 7-9, 1983, pp. 122-128.

[CHEN78] Chen, Edward T., "Program Complexity and Programmer
Productivity," IEEE Transactions on Software Engineering, Vol.
SE-4, No. 3, May 1978, pp. 187-194.

[CHENG84] Cheng, Thomas T., Lock, Evan D., and Prywes, Noah S.,
"Use of Very High Level Languages and Program Generation by
Management Professionals," IEEE Transactions on Software
Engineering, Vol. SE-10, No. 5, September 1984, pp. 552-563.

[CONTE86J Conte, S. D., Dunsmore, H. E., and Shen, V. Y.,
Software Engineering Metrics and Models, The Benjamin/Cummings
Publishing Co., Inc., Menlo Park, CA, 1986.

[GOGUE86] Goguen, Joseph A., "Reusing and Interconnecting
Software Components," IEEE Computer, Vol. 19, February 1986,
pp. 16-28.

[HALST79] Halstead, M. H., "Advances in Software Science,"
Advances in Computers, (Yovits, ed.), Vol. 18, Academic Press,
New York, 1979, pp. 119-172.

[HARTM66] Hartmanis, J. and Stearns, R. E., Algebraic Structure
Theory of Sequential Machines, Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1966.

[KAISE87J Kaiser, Gail E. and Garlan, David, "Systems from
Reusable Building Blocks," IEEE Software, July 1987, pp. 17-24.

[KERNI78] Kernighan, Brian W. and Ritchie, Dennis M., The C
Programming Language, Prentice-Hall, Englewood Cliffs, NJ,
1978.

[KERNI84] Kernighan, Brian W., "The UNIX System and Software
Reusability," IEEE Transactions on Software Engineering, Vol.
SE-10, No. 5, September 1984, pp. 513-518.

[LETOV86] Letovsky, Stanley and Soloway, Elliot, "Delocalized
Plans and Program Comprehension," IEEE Computer, May 1986, pp.
41-49.

[LUBAR86a] Lubars, Mitchell D., "Code Reusability in the Large
Versus Code Reusability in the Small," ACM SIGSOFT Software
Engineering Notes, Vol. 11, No. 1, January 1986, pp. 21-27.

[LUBAR86b] Lubars, Mitchell D., "Affording Higher Reliability
Through Software Reusability," ACM SIGSOFT Software Engineering
Notes, Vol. 11, No. 5, October 1986, pp. 39-42.

[MATSU84] Matsumoto, Yoshihiro, "Some Experiences in Promoting
Reusable Software: Presentation in Higher Abstract Levels,"
IEEE Transactions on Software Engineering, Vol. SE-10, No. 5,
September 1984, pp. 502-513.

[MCCAB76] McCabe, J., "A Complexity Measure," IEEE Transactions
on Software Engineering, Vol. SE-2, No. 4, December 1976, pp.
308-320.

[MILLE87] Miller, Webb, A Software Tools Sampler, Prentice-Hall,
Inc., Englewood Cliffs, NJ, 1987.

[MOHAN81I Mohanty, Siba N., "Entropy Metrics for Software Design
Evaluation," The Journal of Systems and Software 2, 1981, pp.
39-46.

[MOHNK86] Mohnkern, Gerald L. and Mohnkern, Beverly, Applied
Ada, Tab Professional and Reference Books, 1986.

[PRIET87] Prieto-Diaz, Ruben and Freeman, Peter, "Classifying
Software for Reusability," IEEE Software, January 1987, pp.
6-16.

[SAS85a] SAS User's Guide: Basics, Version 5 Edition, SAS
Institute Inc., Box 8000, Cary, NC 27511, 1985.

(SAS85b] SAS User's Guide: Statistics, Version 5 Edition, SAS
Institute Inc., Box 8000, Cary, NC 27511, 1985.

[SCHIL87] Schildt, Herbert, Advanced Turbo C, Osborne McGraw-
Hill, New York, NY, 1987.

[SCHUT77] Schtt, Dieter, "On a Hypergraph Oriented Measure for
Applied Computer Science," Proceedings of COMPCON, Washington,
D.C., Fall 1977, pp. 295-296.

[SHANN64] Shannon, Claude E. and Weaver, Warren, The
Mathematical Theory of Communication, The University of
Illinois Press, Urbana, Ill., 1964.

[SHOOM831 Shooman, Martin L., Software Engineering: Design,
Reliability, and Management, McGraw-Hill Book Company, New
York, 1983.

[SHUMA89] Shumate, Ken, Understanding Ada with Abstract Data
Types, John Wiley and Sons, Inc., New York, NY, Second Edition,
1989.

[SOMME89] Sommerville, Ian, Software Engineering, Addison-Wesley
Publishing Co., Third Edition, 1989.

(STEVE74] Stevens, W. P., Myers, G. J., and Constantine, L. L.,
"Structured Design," IBM Systems Journal, Vol. 2, 1974, pp.
115-139.

(TRACZ88] Tracz, Will, "Software Reuse Maxims," ACM SIGSOFT
Software Engineering Notes, Vol. 11, No. 5, October 1988, pp.
28-31.

[VANEM70] van Emden, M. H., "Hierarchical Decomposition of
Complexity," Machine Intelligence 5, 1970, pp. 361-380.

