AD-A224 472

ki;‘if!" © prTee

pidy
a1 TN)

n

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden tor this collection ot information 15 estimated to average 1 hour per r

esponse, inctuding the Lime {Or reviewing instructions, searching existing data sources,

gathering and maintaining the data needed, and compieting and reviewing the collection of information. Send comments re?ardmg this burden estimate or any other aspect of thrs
collection of intormation, incluging suggestions for reducing this burden. to Washington Headquarters Services, Directorate
Davis Highway, Suite 1204, Arlington, VA 22202-4302. and 10 the Office of Management and Budget. Paperwork Reduction Project (0704-0188), Washington, OC 20503.

or information Operations and Reports, 1215 jetferson

1. AGENCY USE ONLY (Leave blank)]2. REPORT DATE
1990

3. REPORT TYPE AND DATES COVERED
Ihesis/BEBBEFKNYABNRX

4. TITLE AND SUBTITLE
THE EFFECT OF SOFTWARE REUSABILITY ON INFO
BASED SOFTWARE METRICS

5. FUNDING NUMBERS
RMATION THEORY

6. AUTHOR(S)
WILLIAM R. TORRES

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
AFIT Student at:Oklahoma State University

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/CI/CIA -90-61

-

. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AFIT/CI
Wright-Ptatterson AFB OH 45433

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for Public Release IAW AFR 190-1
Distribution Unlimited
ERNEST A. HAYGOOD, lst Lt, USAF

Executive Officer, Civilian Institution Programs

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

- _DTIC :
ELECTE -
AUGO 11390

B
%! I

14. SUBJECT TERMS

15. NUMBER OF PAGES
246

16. PRICE CODE

17. SECURITY CLASSIFICATION [18. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE
UNCLASSIFIED

19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF ABSTRACT

NJN 7540-01-280-5500

90 07

. IR ‘,l " Standard Form 298 (Rev 2-89)
O 1 U Proscribed by ANSI Std 239-'8
-

2981732

THE EFFECT OF SOFTWARE REUSABILITY ON

INFORMATION THEORY BASED SOFTWARE METRICS
William R. Torres, Capt, USAF

Date of Degree: July, 1990 Pages in Study: 246

Degree Awarded: Master of Science
in Computing and Information Science

Institution: Oklahoma State University

ABSTRACT

The main purpose of this thesis is to theoretically
investigate the effect of reusing software on metrics that are
based on the entropy function of communication information
theory. R. Chanon’s Entropy Loading and E. Chen’s Control
Structure Entropy were applied to C and Ada programs obtained
from the open literature. Four units of program decomposition
(statement, component, module, and program) along Chanon’s
definition of an object were introduced to classify software
reuse units. A total of three versions for each of the programs
included in the .udy were considered (i.e., optimum reuse,
intermediate re..e, and no reuse). The lines of code metric was
utilized to quantify the amount of nonreusable code in each of
the versions of the programs. The lines of code metric was not
applied to the "reused" segments of code since they are not
considered part of the effort of writing the new program.

Pearson product-moment correlations were computed between the
metrics studied and the lines of code metric.

Entropy loading was found to be inversely proportional to
the amount of reuse present in the programs. Strong correlations
were found between entropy loading and the size of the resulting
new program, measured by the lines of code metric. Consequently,
entropy loading can presumably provide a mechanism for selecting
the optimum reuse case among different possibilities for reuse.
Control structure entropy was also found to be a good indicator
of reuse. Strong correlations exist between control structure
entropy and the size of the resulting new program.

THE EFFECT OF SOFTWARE REUSABILITY ON

INFORMATION THEORY BASED SOFTWARE METRICS
William R. Torres, Capt, USAF

Date of Degree: July, 1990 Pages in Study: 246

Degree Awarded: Master of Science
in Computing and Information Science

Institution: Oklahoma State University
ABSTRACT

The main purpose of this thesis is to theoretically
investigate the effect of reusing software on metrics that are
based on the entropy function of communication information
theory. R. Chanon’s Entropy Loading and E. Chen’s Control
Structure Entropy were applied to C and Ada programs obtained
from the open literature. Four units of program decomposition
(statement, component, module, and program) along Chanon’s
definition of an object were introduced to classify software
reuse units. A total of three versions for each of the programs
included in the study were considered (i.e., optimum reuse,
intermediate reuse, and no reuse). The lines of code metric was
utilized to quantify the amount of nonreusable code in each of
the versions of the programs. The lines of code metric was not
applied to the "reused" segments of code since they are not
considered part of the effort of writing the new program.
Pearson product-moment correlations were computed between the
metrics studied and the lines of code metric.

Entropy loading was found to be inversely proportional to
the amount of reuse present in the programs. Strong correlations
were found between entropy loading and the size of the resulting
new program, measured by the lines of code metric. Consequently,
entropy loading can presumably provide a mechanism for selecting
the optimum reuse case among different possibilities for reuse.

Control structure entropy was also found to be a good indicator ‘or
of reuse. Strong correlations exist between control structure
entropy and the size of the resulting new program.

Unanncuanced O
Justification
By

Digtrggutiggl

Ava}labllity Codes
Tavail an':!./of]
Dist Special

14
RS BT
AdIvnd !

THE EFFECT OF SOFTWARE REUSABILITY
ON INFORMATION THEORY BASED

SOFTWARE METRICS

By
WILLIAM R. TORRES
Bachelor of Science
in Electrical Engineering
University of Puerto Rico
Mayaguez, Puerto Rico

1985

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the degree of
MASTER OF SCIENCE
July, 1990

-

THE EFFECT OF SOFTWARE REUSABILITY
ON INFORMATION THEORY BASED

SOFTWARE METRICS

Thesis Approved:

Thesis Adviser

Dean of the Graduate College

ii

—

ACKNCWLEDGMENTS

I wish to express sincere appreciation to Dr. Mansur H.
Samadzadeh for his encouragement and advice throughout my
thesis research. His dedication and attention to detail
made all the work required to complete this thesis
worthwhile. Many thanks also go to Dr. G. E. Hedrick and
Dr. John P. Chandler for serving on my graduate committee.

My wife, Maria, and my daughters Maria C. and Diana B.,
encouraged and supported me all the way and kept me
motivated to achieve the end goal. Their love and support
made everything much easier. I also thank my parents,
William and Nelida, and my In Laws, Jose and Marian Setien,

for their support, e.icouragement, and many prayers.

iii

TABLE OF CONTENTS

Chapter
I. INTRODUCTION. . v v o o o « o o o o o o o o o =
II. LITERATURE REVIEW ¢ ¢ ¢ « v « « o o« « =

2.1 Fntropy Function of Information Theory.

2.1.1 Entropy and the Software

Development Process. . .

2.1.2 Information Theory Based
Metrics. . . .« e . .

2.1.2.1 Entropy Loadlng .

2.1.2.2 Control Structure

Entropy . . . e e .

2.1.2.3 Additional Metrlcs. . .
oftware Reusability.
.2.1 Definitions. . . .
2.2 Advantages and leltatlons . .
2.3 Current Trends

IITI. DESCRIPTION OF THE EXPERIMENT . .

3.1 Design Approach « « « « o« .
3.1.1 Introduction
Reuse Candidates . . , .
Theoretical Perspectlve and
Limitations. . . . e e
3.1.4 Coupling and Cohe51on
3.2 Carrying out the Experiment
3.2.1
3.2.2

w N

1
1.

w W
.

Quantifying Software Reuse
Experiment Operation .
3.2.2.1 Programs Developed to
Collect the Data. . . .
3.2.2.2 Data Collection
3.2.3 Programs Studied in the
Experiment
3.2.3.1 C Language Programs
3.2.3.2 Ada Language Programs

IV. ANALYSIS OF THE MEASUREMENTS.
Description of the Analysis

4.1
4.2 Entropy Loading Analysis.
4.3 Control Structure Entropy Ana1y51s

iv

13
15
16
17
19

22

22
22
22

25
27
29
29
30

30
31

32
33
35

39
39

43
44

-

Chapter

V. SUMMARY, CONCLUSIONS, AND FUTURE WORK

REFERENCES . . .

.

SELECTED BIBLIOGRAPHY. ¢ ¢ ¢ o o ¢ o o o « o =«

APPENDIXES . . .

APPENDIX A

APPENDIX B
APPENDIX C
APPENDIX D

APPENDIX E

APPENDIX F

APPENDIX G

PROGRAMS USED TO COMPUTE THE
METRICS.+ « + « + .+ .

ADA PROGRAMS INCLUDED IN THE STUDY
C PROGRAMS INCLUDED IN THE STUDY .
ENTROPY LOADING DATA TABLES.

EXECUTION FLOW CHARTS FOR PROGRAMS
INCLUDED IN THE STUDY.

MAXIMAL INTERSECT NUMBER (MIN)
CHARTS ¢« ¢ v ¢ o o o o« o .

METRICS STATISTICAL DATA

Page
46
49
53

54

55
70
92

112

193

200

222

Table

IT.

III.

IV.

VI.

VII.

VIII.

TX.

XI.

XII.

XIII.

XIV.

LIST OF TABLES

Testbed Program Sources.« . .
Metrics Evaluated for Programs
Correlations Between Metrics

Assumptions for the C Program fastfind,
Case 1 . . .+ « v ¢ o o o o« o =

List of Assumption Numbers for Objects in the
C Program fastfind, Case 1

Assumptions for the C Program fastfind,
CaSe 2 . & ¢ v e e e e e e e e e e e e e

List of Assumption Numbers for Objects in the
C Program fastfind, Case 2

Assumptions for the C Program fastfind,
Case 3 . . v v v e e e e e e e e e e e e

List of Assumption Numbers for Objects in the
C Program fastfind, Case 3

Assumptions for the C Program mail, Case 1

List of Assumption Numbers for Objects in the
C Program mail, Case 1 .

Assumptions for the C Program mail, Case 2

List of Assumption Numbers for Objects in the
C Program mail, Case 2

Assumptions for the C Program mail, Case 3

List of Assumption Numbers for Objects in the
C Program mail, Case 3+ « « . .

Assumptions for the C Program editor, Case 1

vi

Page

42

. 113

116

117

120

121

124

126

128

129

. 131

132

135

138

Table

XVII.

XVIII.

XIX.

: XX.

' XXT.
XXII.

XXIII.

XXIV.

XXV.

XXVI.

XXVII.

XXVIII.

XXTIX.

XXX.

XXXTI.

XXXII.

XXXIII.
XXXIV.

XXXV.

Page

List of Assumption Numbers for Objects in the
C Program editor, Case 1 140

Assumptions for the C Program editor, Case 2 . 141

List of Assumption Numbers for Objects in the
C Program editor, Case 2 144

Assumptions for the C Program editor, Case 3 . 146

List of Assumption Numbers for Objects in the
C Program editor, Case 3 150

Assumptions for the Ada Program intlist,
Case 1 . . + « o ¢ o« o o s e s & e e &« & « . 153

List of Assumption Numbers for Objects in the
Ada Program intlist, Case 1. . . « 155

Assumptions for the Ada Program intlist,
CaSE 2 . . + 4 4 ¢ s+ s e e o 2 e e o « o < . 156

List of Assumption Numbers for Objects in the
Ada Program intlist, Case 2. 158

Assumptions for the Ada Program intlist,
Case 3 . + & o+ o o o ¢ o e o o e v e« o s s . 159

List of Assumption Numbers for Objects in the
Ada Program intlist, Case 3. 161

Assumptions for the Ada Program calc, Case 1 . 163

List of Assumption Numbers for Objects in the
Ada Program calc, Case 1 164

Assumptions for the Ada Program calc, Case 2 . 165

List of Assumption Numbers for Objects in the
Ada Program calc, Case 2+ « . . 167

Assumptions for the Ada Program calc, Case 3 . 168

List of Assumption Numbers for Objects in the
Ada Program calc, Case 3 170

Assumptions for the Ada Program address,
Case 1+ « ¢ ¢ v e e e e e e e e e o172

List of Assumption Numbers for Objects in the
Ada Program address, Case 1. 176

vii

Table

XXXVI.

XXXVII.

XXXVIII.

XXXIX.

Page

Assumptions for the Ada Program address,
Case 2 ¢ . . v s 4 s e s e e e e e e . . 177

List of Assumption Numbers for Objects in the
Ada Program address, Case 2. 181

Assumptions for the Ada Program address,
Case 3 ¢ . ¢ ¢« o 4 ¢ o 4 o s s e e w e o o o 183

List of Assumption Numbers for Objects in the
Ada Program address, Case 3. 189

—d

LIST OF FIGURES

? Figure Page
' 1. Maximal Intersect Number Examples 10
2. Execution Flow Chart for the C Program fastfind . . 194
3. Execution Flow Chart for the C Program mail 195
4. Execution Flow Chart for the C Program editor . . . 196
5. Execution Flow Chart for the Ada Program intlist. . 197
6. Execution Flow Chart for the Ada Program calc . . . 198
é 7. Executicn Flow Chart for the Ada Program address. . 199

8. Maximal Intersect Number Chart for the C Program
fastfind. 0 0 e e 0 e e e e 201

9. Maximal Intersect Number Chart for the C Program
Mail. & ¢ v ¢ v e v e e e e e e e e e e e e e . . 204

10. Maximal Intersect Number Chart for the C Program
editor. . . ¢ ¢+ v 4 4 4 e 4 e e s+ s e « « . . . 208

11. Maximal Intersect Number Chart for the 2da Program
intlist ¢ . . . o 0 . e e e e e e e ... o212

12. Maximal Intersect Number Chart for the Ada Program
CalC. . v v v v e u e e e e e e e e e e e e e .. 214

13. Maximal Intersect Number Chart for the Ada Program
address 0 e e e e e e e e e e e e ... 217

ix

CHAPTER I
INTRODUCTION

The notion of reusing software dates back to the early
stages of the history of computing when subroutine libraries
were developed [SOMMES89].

The advantages and limitations of software reuse have
been widely publicized (BIGGE87, BOLDY89, PRIET87, RATCL87,
and SOMMES89]. In particular, it is clear that the extensive
reuse of software is likely to reduce software costs during
the design and implementation phase (software already exists)
and during the validation phases (software has already been
checked) [SOMMES89]).

The main purpose of this thesis 1is to theoretically
investigate the application of software quality assessment
metrics to development environments that employ reuse
techniques and principles in the construction of software
systems. In particular, the effect of reusing software on
the metrics that are based on the entropy function of
communication information theory will be investigated.

The following chapters define the metrics used in this
study, describe the experimental design including how the

datawere collected, discuss the analysis of the measure-

2
ments, and summarize and conclude with recommendations for

future work.

CHAPTER II

LITERATURE REVIEW

2.1 Entropy Function of Information
Theory

2.1.1 Entropy and the Software
Development Process

In communication information theory, information is
defined as "what we don't know about what is going to happen
next" [SHANN64]. Information theory presents entropy as a
synonym for information uncertainty or unpredictability.
Therefore, entropy can be used as a measure of information.

When an attempt is made to predict the outcome of an
event, uncertainty approaches zero as the probability of an
outcome approaches unity. On the other hand, uncertainty,
as a function of the number of different things that can
happen, reaches its maximum value when all the outcomes have
the same probability of occurrence (i.e., in the case of
equiprobable events). In other words, the more unpredicta-
ble the output of a system, the more information it yields
upon occurrence and the higher the entropy of the systen,
and vice versa. The entropy function, H, which measures

information in bits is defined as

n
H(p;, Ppr -++» P, = z]_pj log, (1/pj) (1)
j=

where pj is the probability of occurrence of the jth event.

van Emden {VANEM70] defines a system as a set of
variables influencing one another. A challenge often faced
by software designers when designing a system is managing
the complexity resulting from the presence of a large number
of variables and the fact that most of them influence many
uthers. To alleviate this problem, Alexander [ALEXA64]
states that a system composed of a set of variables, S,
should be partitioned into subsets or subsystems

(s1l sz, s e sy S-

jroeee S,) in such a way that the

' among subsystems should be minimized with

interactions
respect to the interactions within a subsystem. This
partitioning process allows for the variables in S; to be
manipulated freely without constraints imposed by any of the
other subsets.

If a program structure could be decomposed into
distinct classes of subsystems, the information contained in
the structure can be measured [MOHAN79, MOHAN81, and
VANEM70) by the entropy metric, H, based on Shannon's
communication information theory [SHANN64]. More specific-
ally, the entropy metric H is defined for a system S as

H(s) = H(Py,...,P,) =

n (X 71X Yogy ()X /1%;1))
J

II.M:!
}—l

'An interaction is viewed as an information transfer
within or among subsystems [ALEXA64].

1

or by simple algebraic manipulation
n
H(S) = log,|X| - 1/}x}.z (1%;|20g,]X;]) (2)
J=1
where X,, X,, ..., X, are the distinct classes of
subsystens, ;le denotes the cardinality of the set X;, and

Py = Ile/lxl°

2.1.2 Information Theory Based Metrics

Software metrics are usually categorized as either
process metrics or products metrics. Process metrics are
defined by Conte et al. [CONTE86] as "metrics that quantify
attributes of the development process and of the development
environment." Conte et al. also define product metrics as
"measures of the software product."

Product metrics are the most common metrics since they
are easier to obtain as they "can be derived from analyzing
the software itself using an automatic tool" [CONTES86].
Examples of product metrics include size of the product
(lines of code), logic structure complexity (e.g., flow
control and depth of nesting), and data structure complexity
(number of variables used) [CONTE86].

Information theory based metrics can be classified as
product metrics. The following subsections discuss various

information theory based metrics.

2.1.2.1 Entropy Loading. Section 2.1.1 described how

we can use the entropy metric to measure the information

contained in a system.

6

Using the same basic principles, we

can use the entropy lcading measure, as described by Chanon

[CHANO73], "to measure
subsystems, as opposed

subsysten. "

the information shared among

to the information contained in each

According to Chanon {CHANO73], the term interaction,

means "a shared assumption among two or more objects" where

objects are defined as
that has net effects."
assumptions identified

1. Relationships

"an identified portion of a program
The following is a list of
by Chanon.

that must hold prior to the

execution of an object in order for its effects to

be realized.

2. Data structures or data values.

3. Assumptions about the environment in which an
object is executed, such as frequency of usage or
order of computation.

4. Assumptions based on mathematical theorems

that are relevant

to the problems being solved.

Once all the assumptions have been identified, they can be

recorded in what Chanon calls an object/assumption table.

For a given program, such a table, T, is defined for all

objects, I, and assumptions, J, such that

1,
T(I,J) =

o,

if object I makes assumption J

otherwise

According to van Emden [VANEM70] and as demonstrated by

Chanon [CHANO73)], the data contained in the object/assump-

tion table characterizes the extent to which collections of

=

7
objects interact. This data is used in the calculation of a
measure which van Emden and Chanon call entropy loading.
Entropy loading is defined for a set of rows, S, in an
object/assumption table at a given time in the development
of a systemn.

Assume that S is partitioned into subsets A and B such
that An B =0 and A UB=2S. Then C(S), the entropy
loading of S, is given by

C(S) = H(A) + H(B) - H(S) (3)
where H(X) is given by the entropy metric mentioned in
Equation (2).

Suppose the table T of objects and assumptions is given

as

QOO OOrm
OO OOOI
OoOPrP OO O0OoIn
OO0 OO
PRPERPROOOI
ORr P OPF O

where A and B are subsets of the object set S, and a through
f are the assumptions. For example, for row 1, the entry 1
indicates that object 1 (an element of A) makes one assump-
tion, a. H(A) is computed by considering the columns for
which the entry for any object of A is 1, i.e., a, d, and f.
In the submatrix composed of the columns a, d, and f, (100)
occurs once, (001l) occurs three times, (010) occurs once,
and (000) occurs once. The total number of objects is six.

Therefore, using Equation (2), we have

H(A) = log,6 - 1/6[1llog,1 + 31lo0g,3 + llog,1 + 1log,l]
or

H(A) = log,6 - 1/6[3log,3] = 1.79
Similarly,

H(B) = log,6 - 1/6[2l0og,2] = 2.25

Since 1 occurs in each column at least once and each row is
different, thus
H(S) = log,6 = 2.58

and

C(S) = H(A) + H(B) ~ H(S) = 1.46

Chanon [CHANO73) demonstrated that programs that
possess small entropy locadings also possess properties
consistent with the principles of "good" structure stated by
Alexander [ALEXA64), Dijkstra [DIJKS72), Parnas (PARNA71],

and Simon [SIMON62) as follows:

1. The information required to study, understand,
and verify individual parts of a system is
supplied in conjunction with those parts, and
relatively little information about the rest of
the system is required.

2. Single parts can be changed drastically
(algorithms and/or data structures) without
requiring much knowledge of the rest of the system
and without changing the rest of the system; i.e.,
drastic changes can actually be confined to single
parts.

3. Should an error occur as a result of the
failure of one small part to function correctly,
the error can be localized to that part of the
system quickly and easily, permitting the error to
be repaired using only a knowledge of that part.

4. During system construction, each working group
can be given an assignment to write a set of parts
such that the assignment can be completed with
very little communication between the groups.

9
Based on the aforementioned discussion, entropy loading
can be used as a quality assessment metric to determine how
"good" a program is,'Qhen compared to other input/output
equivalent programs or different versions of the same

program.

2.1.2.2 Control Structure Entropy. Chen [CHEN78]
defines a measure of program control complexity based on an
information theoretic viewpoint. Given a strongly-connected
proper flow chart? which results from structured
programming, Chen defines the maximal intersect number, MIN,
as "the maximum number of edges which can be intersected by
a continuous line drawn such that the line never enters any
region, including the external region, more than once."
Chen utilizes three basic types of control structures
[CHEN78)] to obtain MIN from the charts: 1) SEQUENCE, 2) IF p
THEN £ ELSE g, and 3) WHILE p DO f. These structures are
shown in Figure 1l.a.

If a flow chart or graph is not strongly connected, but
can be visualized as consisting of more than one strongly-
connected subparts connected in series, MIN can be obtained

from

n
MIN = T MIN;, - 2n + 2 (4)

A flow chart is strongly connected if there is a path
from node a to node b for every pair of distinct nodes a and
b [CONTES86]. A flow chart is proper if each node can be
reached from the entry point of the program and if each
control structure has only one entry and one exit [SHOOMS83].

A “sajdwexy Jagquny 3335J433U] [ewixel [aJdn3r4
Q'] 34n314
WHNZ~E NHN+ANvNIm+vHZHEHmJOH
b = TNIU
¢ Z /
/
€] adn3d14
2 35713 4 N3IHL d 41
3 00 d 37IHN .
3ININ03S
o
2 4
3
3

11
where n is the number of strongly-connected subparts and
MINi is the MIN for the ith strongly-connected subpart.
Figure 1.b illustrates an example obtained from [CHEN78] in
which two weakly connected subparts with MIN's equal to 4
and 5, respectively, yield a MIN equal to 7 for the combined
chart (i.e., 4 + 5 = 2(2) + 2 = 7).

The attribute MIN can also be computed analytically
from the expression MIN = Z_ + 1 where Z 6 is given by the
following formula

n
z, =1 +_2 logz(zpj + qj) (5)
j=2
where n is the number of decision symbols on the flow chart
or graph, g; is the probability that the 3™ IF symbol is
forming a serial relation with any of iils preceding and
adjointed3 IF symbols, and p; = 1 - q;. For a given flow
chart, q; is either 1 or 0 depending on whether it is in the
specified serial relationship. Considering the left subpart
in Figure 1.b (three IF symbols), we have that p, = p; = 1
and g, = g; = O since neither IF symbol is serially
connected to their preceding IF symbol. Consequently we
have that

Z; = 1 + log,(2 + 0) + 1log,(2 + 0) =1 + 1 + 1 = 3

thus

MIN = 2, + 1 =3 + 1 = 4

3Adjointed IF symbols are two IF symbols which can be
connected without passing through any vertices (nodes) which
belong to a third IF symbol [CHEN78]).

-l-I-III---IIIIl--II.-l-.IIIIII-IlllIIIIIIlIIIIIIIIlIIl!--lIIIIIIIII----J

12
which is the same result obtained earlier.

Chen describes a programmer to be (in information-
theoretic terms [SHANN64]) a "channel" who is to handle
information from a program specification or problem
statement described as the "source." A source of informa-
tion is characterized by the variety of output symbols that
it produces. 1In this case, the output is a sequence of IF
symbols. The other components of a proper flow chart, i.e.,
function nodes and collecting nodes are considered and
ignored because function nodes do not contribute to the
branching or nesting structure of a flow graph and
collecting nodes are merely converging points for the
branches of the corresponding decision points.

Z, is defined as the control structure entropy of an
information source when it emits n IF symbols. This control
structure entropy is a measure of the control variety of a
source's output and is correlated with the conceptual
complexity of the program [CHEN78). The higher the 2 's
value, the more complex the program is. In fact, MIN was
originally proposed to address some of the deficiencies of
McCabe's cyclomatic complexity measure [MCCAB76].

For a given total number of IF symbols, the programming
job can be modeled [CHEN78] by the task of determining the
exact flow chart structure which will determine the p;'s and
q;'s in Equaticn (5). An approximation to Equation (5) can
be obtained by assuming p; = q; = 1/2 [CHEN78]. Substitu-

ting these values in Egquation (5), we have

13

7z

n (n - 1)10og,3 - n + 2. Given the number of IF symbols

that a program is to have, Z can be calculated easily since
it only depends upon n.

Based on the work by Chen [CHEN78], control structure
entropy can be used as a gquality assessrent metric to
determine how "complex" a program is, when compared to other

programs or different versions of the same program.

2.1.2.3 Additional Metrics. 1In addition to the
entropy loading and control structure entropy metrics, other
information theory based software metrics have been proposed
by, among others, E. Berlinger, M. H. Samadzadeh and W. R.
Edwards, and T. T. Lee.

Berlinger [RERLI80] proposed the following information
theory based complexity measure. Given a program, he counts
the frequency, f, of all tokens in the program. Berlinger
also assumed that the probabilities of the occurrence of the
tokens used in the program are known. The complexity
measure, M, is defined as

n
M= TZ f; log, P; (6)
j=1
where n is the total number of distinct tokens, and fj and
p; are the frequency and probability of occurrence of the
jth token, respectively.
Berlinger [BERLI80) presents two interpretations for

this measure. First, from an information theory point of

view, assuming the program to be a message, the measure

-

14
represents the total information contained in the program.
Second, the measure represents the total length in bits
required to encode the program assuming that each token is
to be coded using a uniform encoding scheme.

One problem with this measure is that the p;'s need to
be accumulated over a period of time at the installation
where the new program is to be written. Consequently, the
measure is of little help to a programmer at a different
installation where the possibility of a completely different
set of pj's exists. This makes two purportedly similar
programs, written in two different installation, incompara-
ble.

Samadzadeh and Edwards presented a model that regards
the understanding process of software as a process of
grouping together the tokens of a software document (either
distinct tokens or all of the tokens) that have certain
characteristics in common [SAMAD88). According to the
authors, "this model captures the amount and some of the
structure of the information present in the software
document." A simple example is the classification of
program tokens into operators and operands, as originally
used by Halstead [HALST79].

The measure, denoted as R, is called residual complex-
ity. This measure is based on the difference between the
maximum value of the computaticnal work and the computatio-
nal work, w, of a partition, 7 which is the result of

classifying a piece of software into g token types. The

J—

15

residual complexity can be obtained from the equation

R =N loq2 N - N H(N,/N, Ny/N, ..., N#/N) (7)
where N is the total number of tokens, N, is the number of
tokens in the i'" block of the partition, and H is the
entropy function.

Lastly, Lee [LEE87] uses Shannon's information
theoretic entropy metric to quantify the information
associated with a set of attributes. An attribute is a
symbol taken from a finite set Q = (a,, ..., A) [LEE87].
For each attribute Aj, 1 < 3j <£n, there is a set of possible
values, denoted DOM(A;), which comprise its domain.

Database design is based on the concept of data dependency,
which is the interrelationship between data contained in
various sets of attributes [LEE87). 1In particular, Lee
(LEE87] states that functional, multivalued and acyclic join
dependencies play an essential role in the design of
database schemas. Lee proves that data dependencies can be
formulated in terms of entropies making the numerical

computation and testing of data dependencies feasible.
2.2 Software Reusability

The notion of software reuse has been around since the
early stages of the history of computing when the main
motivation for the development of subroutine libraries was
software reuse [SOMME89]. Software reuse has also been
associated with software portability. According tc

Sommerville [SOMME8S], "porting a program to another

16
computer can be considered an example of software reuse
although it is possible to reuse a program which is not

portable and can only run on a single computer."

2.2.1 Definitions

Reusability is, as defined by Wegner [WEGNE83], "a
general engineering principle whose importance derives from
the desire to avoid duplication and capture commonality in
undertaking classes of inherently similar tasks." 1In the
title and body of this thesis the notion of reusability has
been used with Wegner's definition in mind.

Prieto-Diaz [PRIET87)] defines reuse as "the use of
previously acquired concepts and objects in a new situation”
and reusability as "a measure of the ease with which one can
use those previous concepts and objects in the new
situation.”" Consequently, in order for software reusability
to be beneficial, the effort to reuse a piece of software
needs to be smaller than the effort required to develop the
software from scratch.

Conceptual complexity and size are two common and
related software problems. As these problems continue to
loom larger, software reuse and reusability is starting to
be looked upon as a possible solution; as demonstrated by
the increasing attention it has received in the last seven
to ten years. 1In spite of this fact, not a lot of effort
has been devoted to standardizing and implementing reuse by

major companies in the USA. On the other hand, Matsumoto

17

[MATSU84) demonstrated that Japanese industries had been

reusing software for the past six to seven years.

2.2.2 Advantages and Limitations

When we think of software reuse, one of the first
things that comes to mind is the reductions in cost as the
number of components that must be specified, designed,
implemented, and tested is reduced. However, Sommerville
[SOMME89] states that "it is difficult to quantify the
actual cost reductions attained by reusing software; if in
fact there are any." The number of applications where code
can be reused without any modification whatsoever is very
small. Nevertheless, cost reduction is not the only
advantage of software reusability. Some of the other
advantages of software reusability are mentioned below.

Software reuse increases system reliability [LUBAR86D
and SOMMER89]. It is widely accepted that operational use
adequately tests software components, and reused components,
which have been previously in operational use, should be
more reliable than brand new components. Also, if a
component 1is originally developed to be reusable, Freeman et
al. and Lubars [FREEM83 and LUBAR86b] state that "the
debugging costs can be amortized among the products that
reuse the component.”

As a result of software reuse, programming resource
utilization can be improved [SOMMER89]. The availability of

reusable software allows for a better distribution of

18
programming resources since not all the code needed is to be
developed anew. Sommerville states that "application
specialists can develop higher reusable components that
encapsulate their knowledge."

Another advantage is the reduction in software
development time [SOMMER89]. Reusing components speeds up
system production because both development and validation
time should be reduced.

However, as expected, software reusability is not a
perfect science and there are limitations that must be kept
in mind. This is specially true since some researchers
think that the limitations and disadvantages outweigh the
advantages.

The first problem is what to do with a piece of
software once it has been determined that it is a candidate
for reuse. In a recent article, Tracz {[{TRACZ88] presents
his "Golden Rules of Reusability." Tracz says that "before
you can reuse something, you need to find it, know what it
does, and know how to reuse it", which go along with the
need for means of cataloging, classifying, and retrieving
software components.

Lubars [LUBAR86a] describes the problem of finding a
desired piece of reusable code as the most significant
technical barrier to code reusability. The problem of
software classification has been addressed by Prieto-Dia:z
and Freeman [PRIET87) where they attempt to rank reusable

software components using a reuse effort estimation metric.

19

Another problem is the not-developed-here syndrome
experienced by some programmers and reflected in some
company policies that do not allow non-local programs to be
utilized. They prefer to write their own code because they
believe that they can improve on the reusable component.
But even if this is true, Cheatham and Sommerville [CHEATS83
and SOMMER89] state that "it is at the expense of greater
risks and higher costs."

The last limitation we are concerned with involves the
reusable code itself. Researchers are concerned about how
specific or, on the other hand, abstract the code needs to
be before reuse pays off. This topic is discussed in the

next section on current trends.

2.2.3 Current Trends

There are two main schools of thought on software
rz2usability [BIGGE87 and PRIET87)]. The first one promotes
the reuse of ideas acnd knowledge acquired while developing
software, while the other promotes the reuse of particular
artifacts and components. Although the second approach is
more popular, researchers disagree on how abstract the code
needs to be before it may be reused. Kernighan [KERNIS84)

presents reuse at the program level utilizing the UNIX*

pipe.

‘UNIX is a Trademark of AT&T Bell Laboratories.

——
4

20

Oon the other hand, Matsumoto [MATSU84) promotes reusing
modules defined in higher levels of abstraction to increase
the scope of the reusable code. According to Matsumoto,
“there are four levels of specification: requirements,
design, program, and source code." A module, when
originally conceived, is transformed from the requirements
level, into the design level, the program level, and finally
into the source code level. When a module is to be reused,
the requirements level of the new module is compared to the
requirements levels of previously designed modules and when
a match is found, a trace is made from the reguirements
level to the source code level through previously made
transformations to reuse the source code.

Other researchers that promote the use of higher
abstract levels for software reusability include Kaiser and
Garlan, Goguen, and Cheng et al. Kaiser and Garlan
[KAISE87] promote the use of Meld, "a language that blends a
package library, automatic software generation, and
object-oriented programming approaches to reusability." 1In
their approach, a software system that needs to be developed
is written in Meld and then translated into the desired
implementation language.

Goguen [GOGUES86] presents a '"library interconnection
language," called LIL, to assemble large programs from

existing entities by combining ada’ programming language

°Ada is a Trademark of the U.S. Department of Defense
(Ada Joint Program Office).

21
specification parts with commands for interconnecting
components to form systems. In a somewhat different
approach, Cheng, Lock, and Prywes [CHENG84) present a very
high level language, Model, which acts as a program gene-
rator to allow the nonprogrammer professional to design a
system by soclely describing the data interrelationships
without referencing any computer operations. The result,
according to Cheng et al., is "a language that is free of
the conventional programming control and flow concepts, and

is thus simpler and easier to use."

CHAPTER ITIL

DESCRIPTION OF THE EXPERIMENT

3.1 Design Approach

3.1.1 Introduction

In this study the intent is to explore theoretically
the effects of software reusability on Chanon's entropy
loading metric [CHANO73) and Chen's control structure
entropy [CHEN78]. But before either calculation can be
applied, we need to establish some guidelines for
identification of the "program parts" that are to be reused.
This is needed because a program part is not defined in
Chanon's definition of an object [CHANO73]), in fact, it is
left, apparently intentionally, an unspecific and generic
concept (See Chapter II for a discussion of Chanon's entropy

loading metric).

3.1.2 Reuse Candidates

Even though program decomposition or partitioning is,
in general, language and application dependent, we define
four units of program decomposition which are objects that

can be considered to be along Chanon's object definition,

22

23
are visible' to one another, and can be candidates for
reuse. These units of decomposition are statements,
components, modules, and the obvious one-block . rtition,
the program itself. The definitions of the four units of
decomposition follow.

The first unit of decomposition is a statement which is
the lowest level at which reuse will be considered and is
defined as any executable instruction of a program which
makes assumptions about, and is visible to, any other object
in the program. Executable instructions that do not make
assumptions are not considered statements, e.g., NEW_LINE in
Ada or printf("\n") in C. These instructions do not depend
on any other instruction for their execution.

The unit of the next higher level decomposition is a
component. A component is a collection of one or more
contiguous statements having a name and represented by the
implementation of a procedure or algorithm. None of the
statements in a component are visible to any other object.
The only assumptions that a component can make are about the
parameters passed to it when invoked or the visibility of
other objects and/or global variables. Examples of
components are functions in C, and procedures and functions
in Ada.

A module is a unit of decomposition or a candidate for

'an object, a, is visible to any other object, b, if b is
in control of program execution and control of execution can
be transferred from object b to a.

24
reuse above the component level. A module is a collection
of components which also has a name and can be invoked by
any other object. Analogously to the component, none of the
components inside a module are visible to any other object.
The only assumptions that a module can make are about the
parameters passed to it when invoked or the visibility of
other objects and/or global variables. Examples of modules
are procedures and packages in Ada and functions in C.

The highest level of decomposition or reuse is
obviously the program itself. An entire program is the
highest level at which reuse can occur. A program is
defined as a collection of modules. It is an extreme case
since it is the only block in the partition.

The four definitions offered above for an object are
not supposed to be rigid prescriptive units of reuse. They
are merely the easily recognizable milestones along the
decomposition spectrum. In other words, a candidate for
reuse can consist of a mixture of the above-mentioned units.

Other possibilities for reuse candidates are plans and
delocalized plans [LETOV86]. These are stereotypic action
sequences 1in a program which are not necessarily contiguous
segments cof code. However, because of the absence of a
standard or a widely-accepted set of criteria for
identification of plans across programming languages and
application areas, only a brief abstract treatment of
non-contiguous "program parts" is mentioned in the next

section.

25

3.1.3 Theoretical Perspective and
Limitations

Now that we have defined the possible ways in which the
objects in a program can be identified, we need to find a
way to relate these objects to program reusability. But
before we do that, we need to establish a basis for
comparison. Assume that there is a program, S, consisting
of n, modules, n_ components, and n, statements. Mocdules are
composed of components and components are composed of
statements. Consequently, in general, to keep the potential
for reuse high, S can be considered as a set of modules plus
some components and even some individual statements.

We can study the reusability of a program, S, by
assuming that a new program, S', is to be written and that
we can identify a set of existing program parts (statements,
components, and/or modules) that can be included in S' thus
saving the effort of writing them from scratch. In this
manner, we can model or simulate the alternative to writing
new code which is reusing an "existing" portion of code as
it can be obtained "off the shelf."

The basic case can be established by removing the
barriers from all modules and components in S, i.e.,
allowing all of the statements to be visible to one another.
In this case, we attempt to simulate a worst case scenario
in which the program has been developed from scratch. A

case where a programmer was asked to write the entire

26
program without the option of reusing any modules or
components.

At the other extreme, we can model an optimum reuse
case where the programmer was asked only to write the main
program statements and had the opportunity of reusing all
the other independent modules and/or components that exist
in the program.

Now that we have described the boundary cases for our
study of reusability, we can describe a third case which
seems to fit inside our reusability spectrum. A case in
which the programmer is asked to developed the main program
statements along with the statements for some of the
components anew, and has the option of using new modules
that combine some of the original components. This generic
case brings out the problem of determining which of
the statements, components, and/or modules are the best
candidates to be "reused".

In general, we have a partition, =, on a program, S,
defined as a collection of disjoint and nonempty subsets of
statements in S whose union is S, i.e., 7 = (B), a € I
where I is an indexing set, such that B, # ¢, for all a € I,
B, n B, =% for a # 8, and U (B,) = S where a € I. We refer
to the sets in 7 as blocks of 7 [HARTM66]. For example, if
S is a set consisting of 4 elements, S = {(1,2,3,4), we can
see that 7 can be written in 8 different ways if the element

sequence 1is to be preserved, i.e., {{1},{(2},(3},{4}},

{({1,2),(3),{4)), {({1},{2,3},(4)}), {{1),(2),(3,4)})},

27
{{1,2}),¢(3,4}), ({1,2,3),(4}), {({(1),(2,3,4}}, and
{{1,2,3,4)). Thus, as the size of S increases, the number
of ways in which 7 can be written increases much faster.

To have an intuitive appreciation of the above-
mentioned increase, consider the problem of the number of
partitions of an integer, p(n) [GROSS84 and HALL67]. p(n)
represents the total number of ways in which an integer,

n > 0, can be represented as a sum of positive integers if
he instances that differ only by the order of the summands
are not considered different. Each such representation is
called a partition of n. For example, p{(4) = 5 (i.e.,
1+1+1+1, 1+2+41, 143, 2+2, and 4) while p(25) = 1958
[HALL67]). Consequently, in a program with a large number of
statements, all the possible ways in which the statements

can be considered becomes prohibitively time consuming.

3.1.4 Coupling and Cochesion

To reduce the number of possible combinations of
objects, we use the notions of coupling and cohesion.
Coupling, as defined by Stevens, Myers, and Constantine
[STEVE74), is a measure of the strength of the association
established by a connection from, in this case, one object
to another. Cohesion is defined by Stevens et al. and
restated by Booch [BOOCH86] as how tightly bound or related
the internal elements within an object are to one another.

Stevens et al. [STEVE74) also state that "the fewer and

simpler the connections between objects, the easier it is to

28
understand each object without reference to other objects."”
The complexity of a system is affected not only by the
number of connections but by the degree to which each
cnrnnection couples two objects, making them interdependent
rather than independent. Thus coupling is reduced when the
relationships between objects are minimized or, in Chanon's
terms, when the number of assumptions that the objects make
is minimized.

One way to minimize coupling is to maximize the
relationships among elements within the same object, i.e.,
obtaining the objects that display the highest cohesiveness
[STEVE74]. Consequently, we can reduce the number of
possible statement combinations by combining into objects
the statements that possess the highest cohesiveness, thus
resulting in the lowest degree of coupling. Similarly, we
can combine into modules the components that possess the
highest cohesiveness.

Based on the aforementioned discussion on coupling, we
can now identify some realistic combinations of the
statements, components, and/or modules in the original
program that potentially can be selected for reuse to allow
us to compute the entropy loading and control structure
entropy of tne resulting program consisting of the reused as

well as original parts.

29

3.2 Carrying out the Experiment

3.2.1 ouantifving Software Reuse

The main objective of the experiment is to determine if
a relation exists between software reusability and the
information theory based metrics: entropy loading and
control structure entropy. The major problem is finding a
mechanism that can help us gquantify the notion of software
reuse.

As mentioned in Chapter II, one of the benefits of
software reusability is the reduction in the amount of
software that needs to be written when software is available
for reuse. The amount of software reused can be correlated
with the amount of code that needs to be developed from
scratch for a given program. The more code that is
available for reuse, the less new code is needed for the new
program. Thus, intuitively, an inverse relation exists
between software reused and the amount of software needed to
be developed anew.

For this study, the lines of code metric® was used to
quantify the amount of code that needs to be developed from
scratch. The lines of code metric was not applied to the
"reused" segments of code since they are not considered part

of the effort of writing the new program.

A line of code is defined by Conte et al. [CONTE86] as
"any line of program text that is not a comment or blank line,
regardless of the number of statements or fragments of
statements on the line."

30

3.2.2 Experiment Operation

The next two subsections explain the software tools

that were developed and used to collect the measurements.

3.2.2.1 Programs Developed to Collect the Data.

Because pre-written software packages that compute entropy
loading and lines of code metrics were not available,
software tools to collect the measurements had to be
developed. A total of three programs in C [KERiI7f1 were
developed on a VAX 11/785 running ULTRIX® (see Appendix A
for program listings). The first program, called ent_lo5.c,
was developed to compute the entropy loading of a collection
of objects in a given program based on the set of
assunptions made by the obiects as demonstrated by Chanon
{CHANO73]. 1In :ZAition to the entropy loading, this program
also computes the average object entropy, system entropy
(H(S)), and the ratio of entropy loading to the total number
of objects. No program was developed to extract the
assumptions made by the objects in the programs. All
assumptions were manually extracted from the programs based
on Chanon's work [CHANO73] and are listed in Appendix D.

The other two programs, called loc_c2.c and loc_adal.c,
were developed to compute the lines of code metric for the C

and Ada language programs used in the experiment. Both

programs compute the lines of code metric as defined by

VAX and ULTRIX are Trademarks of Digital Equipment
Corporation.

31
Conte et al. [CONTE86] but go one step further. The lines
of code was partitioned into three categories for the C
programs, namely, declaration lines, non-declaration lines,
and brace lines ("{" or ")}" and no C statements). Ada lines
of code were partitioned into declaration and non-
declaration lines only. Declaration lines were extracted to
investigate if there is any relation between them and the
information contained in the objects (i.e., average object
entropy and system entropy). Additionally, a relation is
expected between the number of brace lines in C programs and
MIN since they are expected to correlate well with the depth

of nesting in programs.

3.2.2.2 Data Collection. A total of three versions
for each of the programs included in the study (see Section
3.2.3) were considered. These versions follow the guide-
lines for reuse established earlier as follows: version 1,
optimum reuse; version 2, intermediate reuse; and version 3,
no reuse. All metrics were applied to all three versions of
the programs.

The following convention was used to identify the
objects in the programs under study. All object numbers are
of the form A.4, C.0, or FHI.O. A.4 corresponds to the
fourth statement in function or procedure A, C.0 corresponds
to a component which identifies function or procedure C, and

FHI.O corresponds to a module composed of components F, H,

and I.

32
All measurements, with the exception of the control
structure entropy, were collected on the VAX 11/785 running

Control structure entropy, 2,, was the only metric

ULTRIX.
that was not computed using a program. This metric was
computed using the Maximal Intersect Number charts in
Appendix F and the equation

Z, = MIN - 1
where MIN is the Maximal Intersect Number determined from
the charts as demonstrated by Chen [CHEN78)]. The object
numbers are shown inside the IF symbols in the charts in

Appendix F.

3.2.3 Programs Studied in the Experiment

A total of six programs obtained from the open
literature were studied in this experiment (see TABLE I and

Appendixes B and C). Three of the programs were written in

TABLE I

TESTBED PROGRAM SOURCES

Name Language Application Source

fastfind C string processing [MILLES87]
mail C database [SCHIL87]
editor C string processing [SCHILS87)
int_list Ada string processing [SHUMAS89]
calc Ada numeric [MOHNKS86]
address Ada database [MOHNK86)

33
C [KERNI78] and the other three in Ada [ADA83). A
noticeable difference between the C and Ada programs studied
was the number of compilation units. All C programs were
compiled as single units, while all Ada programs had two or
more compilation units per program.

The following subsections describe the main purpose of
each of the programs along with a description of the objects
used in the intermediate reuse case. The set of objects
used in the intermediate reuse case are chosen to be a

mixture of the three types of objects available.

3.2.3.1 ¢ Lanquage Programs. The first C language
program is a program called fastfind. The main purpose of
this program is to search through one or more files
containing ASCII text looking for a match for a character
string given as input. The input string may consist of any
sequence of up to eighty characters including spaces. The
output consists of the entire text line in which a match was
found for the input string preceded by the name of the file
to which the text line belongs if more than one file was
specified.

The fastfind program consists of a main program and six
functions (See Appendix E, Figure 2). Out of the six
functions, two functions (fill_buffer and print line) were
combined into a module called module_1 in the intermediate
reuse case. These functions were combined because of the

logical binding [STEVE74) exhibited between them. Function

34
scan was not considered to be a candidate for reuse so all
of its statements were visible to the rest of the objects.
The remaining functions were "reused" as components.

The second C language program is a program called mail.
The main purpose of this program is to create and update a
personal mailing list database with a total of five fields
per record (name, street, city, state, and zip code). There
are a total of six options available on the database. The
user can enter new records, delete existing records, list
all records, search for a particular record, save all
records to a file, and load an existing database from a
file. The primary field in the database is the field name.

The mail program consists of a main program and eleven
functions (See Appendix E, Figure 3). Out of the eleven
functions, three functions (enter, inputs, and dls_store)
were combined into a module called module_1l in the
intermediate reuse case. These functions were combined
because of the temporal binding [STCVE74] exhibited between
them since all of these functions are executed at one time.
Functions list, search, and delete were the functions not
selected as candidates for reuse in this case. The
remaining functions were "reused" as components.

The last C language program is a program called editcr.
This program simulates a simple text editor with very
limited capabilities. There are five options available to
the user. The user can enter one or more lines of text in

the same operation beginning at the specified line number or

35
delete a line of text based on the line number. He/she can
also list the contents of the text file, save all text into
a file, and retrieve an existing tevt file from a file. All
lines are indexed by the line numbers in each line.

The editor program consists of a main program and nine
functions (See Appendix E, Figure 4). Out of the nine
functions, two functions (patchup and find) were combined
into a module called module_l in the intermediate reuse
case. These functions were combined because of the logical
binding [STEVE74] exhibited between them. Functions enter
and delete were the functions that were not selected for
reuse in this case. The remaining functions were considered

to be objects that are candidates for reuse as components.

3.2.3.2 Ada lLanguage Programs. The first Ada language

program studied is a program called int_list. The main
purpose of this program is to illustrate the concepts of
dynamic allocation and garbage collection. Memory is
dynamically allocated for a list of numbers accepted from
the keyboard as the numbers are added both to the beginning
and end of the list. Subseguently, garbage collection is
used to reclaim memory allocated as numbers are deleted from
the beginning and the end of the list. The remaining
nunbers are then printed to demonstrate that the first and
last numbers were deleted.

The int_list program consists of a main program called

exercise_20_1, seven procedures, and two functions (see

36
Appendix E, Figure 5). Out of the seven procedures, three
procedures (insert_at_head, insert_at_tail, and alloc) were
combined into a module called module_1l in the intermediate
reuse case. These procedures exhibit communicational
binding [STEVE74] as they reference the same input data and
are related in time. Procedures delete_tail and delete_head
were not selected as candidates for reuse. The remaining
functions and procedures were considered for reuse
as components.

The second Ada language program used in the study is a
program called calc. This program simulates a four function
calculator using Reverse Polish Notation (RPN). In RPN, the
equal sign is never used. All operators precede the
operation and when the operation symbol is entered, the
result is displayed. Consequently, no parentheses are
needed either. One of the good points about this program,
is that it accepts numeric input in any of the common
notations, including integers, signed integers, floating
point fractions starting with a decimal point, signed
floating point fractions, and any of the above followed by
an exponent. A stack of ten entries is also provided to
store the last ten operands entered.

The calc program consists of a main program called
calculate_2 and seven procedures (see Appendix E, Figure 6).
Out of the seven procedures, three procedures (push, pop,
and clear) were combined into a module called module_1 in

the intermediate reuse case. These procedures were the only

37
ones that exhibited some binding among themselves although
it was only of a temporal type [STEVE74]. Procedure operate
was not selected for reuse in this case hence all of its
statements were visible to the rest of the objects. The
remaining procedures were considered for reuse as
components.

The last Ada language program included in the
experiment is a program called address. This programs
provides access to an address book database. The concept is
similar to the C language program mail, although the
implementation is completely different. Fields are provided
to accommodate name, street address, city, state, zip code,
and telephone number. The field name is used as the only
key in the database.

A separate index file based on name entries was
maintained. To speed up search operations, binary search
was provided as the search mechanism in contrast with
sequential search used in mail. The operations provided
include database initialization, new address insertion,
address deletion, address modification, and address search
based using the name as the key.

The address program consists of a main program called
address_book and twelve procedures (see Appendix E, Figure
7). Out of the twelve procedures, two of the procedures
(alter_data and alter field) were combined into one module
called module_1 in the intermediate case of reuse. These

two procedures exhibit communicational binding [STEVE74] as

ik

38

they refer to the same input data obtained from the keyboard
and are related in time, i.e., executed at data alteration
time. Procedures delete and insert were not reused in this
case. On the other hand, all other procedures were

considered for reuse as components.

CHAPTER IV
ANALYSIS OF MEASUREMENTS
4.1 Description of the Analysis

All data analysis was done on a VAX 8550 running vMs'
using SAS [SAS85a,b)]. Standard statistical methods
described by Conte et al. [CONTE86] were used.

The sample sizes for this study on software reusability
using Ada and C programs were not arrived at statistically;
rather, three correct programs written in each language
found in the open literature were used. The three Ada
programs have 137, 168, and 493 nonblank, noncomment lines
of code and the three C programs have 138, 272, and 286
nonblank, noncomment lines of code. Each of the three
versions for each of the programs were considered as
separate cases (optimum, intermediate, and no reuse cases).

Pearson product-moment correlations [SAS85a,b) were
computed between the lines of code metric and the control
structure entropy metric, and between the lines of code
metric and the entropy loading metric. Use of this
correlation method requires that the measurements be

parametric [CONTE86]. The measurements should be

'VMS is a Trademark of Digital Equipment Corporation.

39

40
independent, drawn from normally distributed populations,
the populations should have nearly the same standard
deviations, and all measurements should be in at least the
same interval scale (meaning that the data have meaningful
differences and can be ranked and categorized).

Correlations were also computed within the lines of
code class and within the entropy loading class. The lines
of code class is composed of lines of code (LOC),
declaration lines (Dec), non-declaration lines (NDe), Brace
lines (Bra, only used with C programs), comment lines (Com) ,
and blank lines (Bla). The entropy loading class is
composed of the object total (Obj Tot), average object
entropy, system entropy loading to object total ratio (SEL
to OT Ratio), system entropy, and system entropy loading.
See TABLE II for a list of the measurements obtained. TABLE
ITII contains some of the correlations between the metrics.
No correlations were computed between the entropy loading
metric and the control structure entropy as these
correlations were deemed outside of the scope of the
experiment. A complete list of the correlations is provided
in Appendix G.

Correlations using natural logarithm transformations of
the measurements were computed. The next two sections
analyze the results obtained from the correlations of the

metrics.

41

L9916 °88 596889 G2iev -0 62626 °0 8T 9t 6L9 66 LZ1 - SEY 86 £6bd gssaappe
LLSZ2°GL 99CL8°S 969L6°0 £2E€GS0°T LL €T G9¢ 61 LY ——— 91 LE 661 {ssaappe
190LT "0S £€2080°¢ £yoge T 699TV "1 6¢€ 8 2el 8 02 - LL LZ Vol Issoaappe
GL29g-2¢t ¥9969°¢g PG9LG°0 8LGL9°0 LS 1 &4 112 O1 £e -—-=- 9VT (48 891 got1ed
ZvS80°0¢ 668GV Vv LZVIT"T TveLZ" 1T LZC 91 18 £ 11 ~--= 19 9 L9 ZoTeo
£€8Z8L°0T1 9vL80° Y gZvE£9°0 ZLyL8°0 LT £ T9 £ TT ——— cy S LY TOTeO
6E£TLS TS 008ET*'S 60V48°0 81IT96°0 69 8 LLT LT €e -——= 9271 TT LET mamﬂﬂuacﬂ
£€2L99°6C yo912s°*'vy $G6G0°T £0122°1 8¢ [4 L6 0T 1¢ --- 09 9 99 Numﬂﬂlacﬂ
8622€°6G¢C ZsyeL € 6es68v°1 9¢260L°T LT T Vv 1% 0T --=- 82 T 62 T3ISTT qut
TYOTVY LTI 8T€EOV°9 92968°0 y1sv6°0 TE€T 9¢ 6e£e T¢€ Ze 99 L6T €c 98¢ £I03TP9
£eZe6l°6Vv 01TZES°S £€8216°0 8ZSTO0°'T VS €1 ¢ET OT (A T¢ 6L 0ot OTT ¢A103TPpo
ovegGs"€Z T8089°'Vy 9¥E€L8°O0 Z89Vv0°1 L¢C 9 145 14 0T 9 8¢ 9 0S 11031Pps
yo1€T"LOT 0OV660°9 98¢86°0 ¢88¢€0° T 60T 1¢ T€E LE c2 89 81 0¢ cLe grTeu
g80C¥Z2°9Vv 00060°G 069TIC"T ¥80G€°T 8¢t €T v1i1 V1 11T 0c¢ 09 6 68 cltTeuw
6£L0Y 82 c6LvC v €ISV "1 0L8TL"T 61 L £6 S 0T 9 9 9 8¢ Titeu
ZGGTC'0¢ 269zeL"S 6G€£0G°0 £066S5°0 09 €T veZe ve 9 1A% V8 0c¢ g€l cpurjyjysey
8vZs9°1¢ 80v€Z2°S 61G6G6G°0 O0V689°0 6€ 8 vyt 1t 0§ 8T 6V 971 £8 cpuryjasey
geree o 6vLE6"Y GEGE9TO G968L°0 4 S €11 8 v ¢t 9¢ Gl €9 Tputjisey
putpeo] oT3eyd Adoajug Jug 3o erd wod eag oagN 28d 201
Adoajug Adoxjuzm LO jo8lqo 1301 13§ sureN
walsAs walsAs 03 19S abeasay (qo0 uoD 9pod Jo saul] weiboid

SHYIO0Yd ¥40d QILVOTIVAT SOTALIR

IT JI1dVL

TABLE III

CORRELATIONS BETWEEN METRICS

42

(Ada) LocC Dec NDe Com Bla Tot
ConStrEnt .8551 .8385 .8467 .6925 .5225 .8136

(Ada) LocC Dec NDe Com Bla Tot

ObjTot .9860 .8693 ,9886 .9616 .9279 .9921
AveObjEnt -.7692 -.6495 ~.7934 ~.7427 -.6034 -.7619
SELtoOTRat -.6368 -~.5398 ~-,6619 -.6117 =-.4529 -.6257
SysEntr .9852 .9346 .9745 .9505 .8898 .9856
SysEntloa .8095 .7265 .7978 .7949 .8489 .8234

(C) LocC Dec NDe Bra Com Bla Tot
ConStrEnt .9284 .5944 .9510 .9101 .0077 .8900 8395
(C) LocC Dec NDe Bra Com Bla Tot
ObjTot .9947 .8142 .9897 .28%6 .9670 .9168 .9637
AveObJEnt =-.3292 -.6901 -.2442 -.8891 -.3626 -.3524 -.4985
SELtoOTRat -.1778 -.5906 -.0887 ~-.8856 -.2169 -.2141 -.3615
SysEntr .9785 .8549 ,9609 .3942 .9656 .9142 .9732
SysEntLoa .8537 .4589 .8969 -.2007 .8061 .7597 .7251

43

4.2 Entropy Loading Analysis

Entropy loading, as described in Chapter II, is a
measure of the information shared among collections of
objects as opposed to the information used inside each
collection [CHANO73]. Consequently, we can expect a higher
entropy loading as the number of collections making
assumptions increases (considering each object as a
collection only containing itself) since the total amount of
information shared increases. This assumption was verified
by a strong, positive, and significant correlation (signifi-
cance of 0.004 or less) between entropy loading and the
total number of objects for both C and Ada programs.

The increase in the number of collections was
represented by an increase in the amount of code (quantified
by the lines of code metric) that needs to be written when
the opportunity for reuse is smaller. As expected, a
strong, positive, and significant correlation (significance
of 0.0082 or less) was found between the lines of code and
the total number of objects, and between lines of code and
entropy loading for both C and Ada programs. In other
words, the larger the amount of code needed anew (smaller
reuse), the larger the number of objects and consequently,
the higher the entropy loading.

Overall, strong, positive, and significant correlations
(significance of 0.027 or less) were found between the total

numnber of objects, system entropy, and entropy loading on

44
one side and most of the lines of code metrics class for
both C and Ada programs on the other side.

Additionally, strong, negative, and significant
correlations (significance of 0.02 or less) exist between
the average object entropy measure and most of the measures
in the lines of code class for the Ada programs. The
average object entropy is an indicator of the information

contained inside objects.
4.3 Control Structure Entropy Analysis

While entropy loading is used as a measure of
information among collections of objects, control structure
entropy, defined in Chapter II, is used as a measure of the
complexity of a program [CHEN78]. Consequently, a higher
control structure entropy is expected as the perceived
complexity of the program increases.

One of the assumptions that we are trying to validate
(or at least provide support for) in this study is that the
more code that is available for reuse, the less complex the
resulting new program tends to be. This is expected because
the internal complexity of the reusable modules is not seen
by the programmer when the new program is being developed
since the modules already exist and either have been
previously understood or can be understood in one chunk.

Strong, positive, significant correlations (signifi-

cance of 0.0033 or less) exist between the control structure

entropy metric and the lines of code metric for both C and

45
Ada programs. This should be expected as the lines of code
metric is used to quantify the amount of software that needs
to be developed anew, validating our assumption. 1In other
words, the less code available for reuse, the more complex
the new program tends to be.

The relation between MIN and the brace lines measure

discussed in Section 3.2.2.1 was verified by a strong,
positive, significant correlation (significance of 0.0007)

between them.

CHAPTER V
SUMMARY, CONCLUSIONS, AND FUTURE WORK

The main theme of this thesis was to theoretically
explore the relationships between software reusability and
two information theory based metrics: entropy loading and
control structure entropy. A survey of the open literature
indicated that previous work in this area had not addressed
the idea of quantifying software reuse with this type of
metrics.

Entropy loading was found to be inversely proportional
to the amount of reuse present in the programs. Entropy
loading was always smaller in the optimum reuse cases. This
was corroborated by strong correlations found between
entropy loading and the size of the resulting new program,
measured by the lines of code metric. Consequently, entropy
loading can presumably provide a mechanism for selecting the
optimum reuse case among different possibilities for reuse.

Control structure entropy, a measure of the complexity
of a program, was also found to be a good indicator of
reuse. The optimum reuse case (higher reuse) was always
found to be the one with the lowest control structure

entropy. Strong correlations exist between control

46

47
structure entropy and the size of the resulting new progranm,
measured by the lines of code metric.

In conclusion, there seems to be a relation between
entropy loading and software reuse, and between control
structure entropy and software reuse. But, care should be
taken not to make any irrational generalizations since this
study was not a controlled experiment and the sample sizes
were not arrived at statistically. The intent of this study
was only to determine if a possible relation between the
metrics and software reuse existed.

Suggestions for future work include conducting a
similar, but controlled and larger scale experiment to test
the hypothesis that the notion of software reuse can be
quantified. Perhaps, adding other software metrics to the
ones used in this study and/or adding other programming
languages would provide more insight. Possible candidates
include other information theory based metrics such as
residual complexity [SAMAD88) and other metrics such as
software science metrics [HALST79].

Other work might also Znclude software reuse instances
where some of the objects over.ap (i.e., there is a certain
degree of harmless overkill involved in the objects that are
being reused). In such a case, entropy loading can not be
applied but other measures can be applied (e.g., [SAMADSS
and SCHUT77])).

Finally, automated tools can be developed to determine

assumptions made by objects in the calculation of the

e

entropy loading metric. This task is considered the most
time consuming in the application of the entropy loading

nmetric.

48

REFERENCES

[ADAB3] Reference Manual for the Ada Programming Language,
United States Department of Defense, ANSI/MIL-STD-1815h,
January 1983.

[ALEXA64) Alexander, Christopher, Notes on the Synthesis of
Form, Harvard University Press, Cambridge, Mass., 1964.

[BERLI80O] Berlinger, Eli, "An Information Theory Based
Complexity Measure," Proceedings of the 1980 ACM National

Computer Science Conference, Arlington, VA, AFIPS Press,
pp. 773-779.

(BIGGE87] Biggerstaff, Ted and Richter, Charles,
"Reusability: Framework, Assessment, and Directions," IEEE
Software, March 1987, pp. 41-49.

[BOOCH86] Booch, Grady, Software Engineering with Ada, The
Benjamin/Cummings Publishing Company Inc., Second Edition,
1986.

[CHANO73] Chanon, Robert N., "On a Measure of Program
Structure," Ph.D. Dissertation, Department of Computer
Sciences, Carnegie-Mellon University, Pittsburgh, Pa,
November 1973.

[CHEAT83] Cheatham, Jr., T. E., "Reusability Through
Program Transformations,'" Proceedings ITT Workshop on
Reusability in Programming, September 7-9, 1983, pp.
122-128.

[CHEN78] Chen, Edward T., "Program Complexity and
Programmer Productivity," IEEE Transactions on Software
Engineering, Vol. SE-4, No. 3, May 1978, pp. 187-194.

[CHENG84] Cheng, Thomas T., Lock, Evan D., and Prywes, Noah
S., "Use of Very High Level Languages and Program
Generation by Management Professionals," IEEE Transactions
on Software Engineering, Vol. SE-10, No. 5, Septenber
1984, pp. 552-563.

(CONTE86] Conte, $. D., Dunsmore, H. E., and Shen, V. Y.,
Software Engineering Metrics and Models, The
Benjamin/Cummings Publishing Co., Inc., Menlo Park, Ca,
1986.

49

- =

50

[DIJKS72] Dijkstra, E. W., "Notes on Structured

Programming," Structured Programming, Academic Press,
New York, 1972.

(FREEM83] Freeman, Peter, "Reusable Software Engineering:
Concepts and Research Directions," Proceedings of the ITT
Workshop on Reusability in Programming, September 7-9,
1983, pp. 2-15.

[GOGUE86] Goguen, Joseph A., "Reusing and Interconnecting
Software Components," IEEE Computer, Vol. 19, February
1986, pp. 16-28.

[GROSS84]) Grosswald, Emil, Topics from the Theory of
Numbers, Birkhauser, 1984.

[HALL67] Hall Jr., Marshall, Combinatorial Theory,
Blaisdell Publishing Co., 1967.

(HALST79) Halstead, M. H., "Advances in Software Science,"
Advances in Computers, (Yovits, ed.), Vol. 18, Academic
Press, New York, 1979, pp. 119-172.

(HARTM66] Hartmanis, J. and Stearns, R. E., Algebraic

Structure Theory of Sequential Machines, Prentice-Hall,
Inc., Englewood Cliffs, NJ, 1966.

[KAISE87] Kaiser, Gail E. and Garlan, David, "Systems from
Reusable Building Blocks," IEEE Software, July 1987, pp.
17-24.

[KERNI78) Kernighan, Brian W. and Ritchie, Dennis M., The
C Programming Language, Prentice~Hall, Englewood Cliffs,
NJ, 1978.

(KERNI84] Kernighan, Brian W., "The UNIX System and
Software Reusability," IEEE Transactions on Software
Engineering, Vol. SE-10, No. 5, September 1984, pp.
513-518.

(LEE87] Lee, Tony T., "An Information-Theoric Analysis of
Relational Databases-Part I: Data Dependencies and
Information Metric," IEEE Transactions on Software
Engineering, Vol. SE~13, No. 10, October 1987, pp-.
1049-1061.

[LETOV86] Letovsky, Stanley and Soloway, Elliot,
"Delocalized Plans and Program Comprehension," IEEE
Computer, May 1986, pp. 41-49.

51

(LUBAR86a] Lubars, Mitchell D., "Code Reusability in the
Large Versus Code Reusability in the Small," ACM SIGSOFT
Software Engineering Notes, Vol. 11, Neo. 1, January 1986,
pp. 21-27.

[LUBAR86b] Lubars, Mitchell D., "Affording Higher
Reliability Through Software Reusability," ACM SIGSOFT

Software Engineering Notes, Vol. 11, No. 5, October 1986,
pPp. 39-42.

[MATSU84] Matsumoto, Yoshihiro, "Some Experiences in
Promoting Reusable Software: Presentation in Higher
Abstract Levels," IEEE Transactions on Software
Engineering, Vol. SE-10, No. 5, September 1984, pp.
502-513.

(MCCAB76] McCabe, J., "A Complexity Measure,"\IEEE

Transactions on Software Engineering, Vol. SE~2, No. 4,
December 1976, pp. 308-320.

[MILLE87) Miller, Webb, A Software Tools Sampler, Prentice-
Hall, Inc., Englewood Cliffs, NJ, 1987.

[MOHAN79] Mohanty, Siba N., "Models and Measurements for
Quality Assessment of Software," ACM Computing Surveys,
Vol. 11, No. 3, September 1979, pp. 251-275.

[MOHAN81] Mohanty, Siba N., "Entropy Metrics for Software
Design Evaluation, ! The Journal of Systems and Software 2,

1981, pp. 39-46.

{MOHNK86] Mohnkern, Gerald L. and Mohnkern, Beverly,
Applied Ada, Tab Professional and Reference Books, 1986.

{PARNA71) Parnas, D. L., "Information Distribution Aspects
of Design Methodology," Proceedings of the IFIP Congress,
Ljubljana, Yugoslavia, 1971.

[PRIET87] Prieto-Diaz, Rubén and Freeman, Peter,
"Classifying Software for Reusability," IEEE Software,
January 1987, pp. 6-16.

[SAMAD88)] Samadzadeh, Mansur H. and Edwards, William R.,
Jr., "A Classification Model of Comprehension," Twenty

First Annual Hawaii International Conference on Svstem
Sciences (HICSS21), Hawaii, 1988.

(SAS85a] SAS User's Guide: Basics, Version 5 Edition, SAS
Institute Inc., Box 8000, Cary, NC 27511, 1985.

[SAS85b] SAS User's Guide: Statistics, Version 5 Edition,
SAS Institute Inc., Box 8000, Cary, NC 27511, 1985.

52

[SCHIL87] Schildt, Herbert, Advanced Turbo C, Osborne
McGraw-Hill, New York, NY, 1987.

(SCHUT77] Schiitt, Dieter, "On a Hypergraph Oriented Measure

for Applied Computer Science," Proceedings of COMPCON,
Washington, D.C., Fall 1977, pp. 295-296.

[SHANN64] Shannon, Claude E. and Weaver, Warren, The

Mathematical Theory of Communication, The University of
Illinois Press, Urbana, Ill., 1964.

[SHOOM83] Shooman, Martin L., Software Engineering: Design,
Reliability, and Management, McGraw-Hill Book Company, New
York, 1983.

[SHUMAB9] Shumate, Ken, Understanding Ada with Abstract
Data Types, John Wiley and Sons, Inc., New York, NY,

Second Edition, 1989.

[SIMON62] Simon, H. A., "The Architecture of Complexity,"

Proceedings of the American Philosophical Society, 106,
December 1962, pp. 467-482.

[SOMMES9] Sommerville, Ian, Software Engineering, Addison-
Wesley Publishing Co., Third Edition, 1989.

[STEVE74] Stevens, W. P., Myers, G. J., and Constantine, L.
L., “Structured Design," IBM Systems_Journal, Vol. 2,
1974, pp. 115-139.

[TRACZ88] Tracz, Will, "Software Reuse Maxims,'" ACM SIGSOFT

Software Engineering Notes, Vol. 11, No. 5, October 1988,
pp. 28-31.

[VANEM70] van Emden, M. H., "Hierarchical Decomposition of
Complexity," Machine Intelligence 5, 1970, pp. 361-380.

[WEGNE83] Wegner, Peter, "Varieties of Reusability,"

Proceedings of the ITT Workshop on Reusability in
Programming, September 7-9, 1983, pp. 30-44.

~

SELECTED BIBLIOGRAPHY

1. Belady, L. A. and Evangelisti, C. J., "System
Partitioning and Its Measure," The Journal of Systems and

Software 2, 1981, pp. 23-29.

2. Brown, P. J., Software Portability, Cambridge
University Press, 1977.

3. Chandersekaran, C. S. and Perriens, M. P., "Towards an
Assessment of Software Reusability,'" Proceedings of the ITT

Workshop on Reusability in Programming, September 7-9, 1983,
pp. 179-182.

4. Hellerman, Leo, "A Measure of Computational Work," IEEE
Transactions on Computers, Vol. C-21, No. 5, May 1972, pp.
439-446.

53

APPENDIXES

54

APPENDIX A

PROGRAMS USED TO COMPUTE THE METRICS

55

/% 3k g sk kT vk sk ke sk sk ok ke ok ok ok ok ok ok ok gk ok ok ok sk ok e sk ok sk sk ok ke ok ok ok ok sk ok kg ke ke Sk ke ko ok e ok ok ke ek ke ok ke ok ok ok

* Entropy Loading Metric *
A A EI KA AKAKA A KA AR KA KA AR AR AR A AR AR Ak AR AR AR A Ak kR ks kA A bk bk kkkdhdrkk
* *
* File: ent lo5.c *
* Author: VWilliam R. Torres *
* Date: 90/01/25 *
* Class: COMSC 5000 - Thesis *
* Adviser: Dr. Mansur Samadzadeh *
* *
s 9 K Fe sk T Fe K gk de %k ke gk Kk Tk Kk Tk ok sk %k gk gk ok vk R ok ok gk ke vk ok 3k Tk ok e ok gk ok ok ok Tk ke vk gk ok ok sk e Sk ok ke ok ek ok ok ke ok ok ke

*

>

by Chanon [CHANO74].

number of assumptions.

the program under study.

the program under study.

ok ok ok ko % ok X O Sk % % ok % Ok % % % % X Ok X X % %

number of objects),

¥

* number of objects.
*

The remaining input lines are divided into two groups.
line in the first group corresponds to each of the objects in
Each line contains the object’s name
(i.e., A.1, C.2), the total number of assumptions the object
makes, and the numbers of the assumptions the object makes
(i.e., 2 4 5 when the object makes assumptions 2, 4, and 5).
Each line in the second group corresponds to each subsystem in
Each of these lines contain the
total number of objects in the subsystem and the numbers that
identify the objects in the subsystem.

The output of this program is divided into two groups.
first group, the program produces a line with the name of the
object and the entropy for each of the objects in the program.
The next output group produces the total number of objects, the
average object’s entropy (sum of entropies divided by total

the system entrupy,
loading, and the ratio of system entropy loading to total

This program computes the entropy loading metric as presented
The input for this program consists of thex
name of the file that contains the input data for the program.
The first line of the input file must contain the total number
of subsystems, which in our case is always the same as the

number of objects, the total number of objects, and the total

Each

In the

the system entropy

L B A . e R I R B S R D S I R R . T

Ihkkokhkkhkhhkkkhkhkhkhhrkhhkkhkkkhkkhkhdhhkhhkhkkhkkhkkkhkhkkkkhkhkhhhkkkhrhkhhkhkkxk /

$include <stdio.h>
$#include <math.h>
#define OBJECTS 190
$define ASSUMPTIONS 170
tdefine SUBSYSTEMS 190

main()
{
int i, j, &, m, n, p;
double entropy[OBJECTS + 1],
entropy loading,
double sum,
temp_dauble;

/*subsystem entropy calculation*/
/*system entropy loading*/
/*temporary double variable*/
/*temporary double variable*/

56

.-

57

int OAT[OBJECTS][ASSUMPTIONS], /*Object/Assumption Table*/

subsys cnt, /*subsystem count*/

subsys size[SUBSYSTEMS], /*No. of Objects in Subsys.*/
sub system[SUBSYSTEMS]{OBJECTS], /*Subsys. Objectsx/

obj cnt, /*number of Objects in QAT*/
asmB cnt, /=assumption count in QAT*/
asmp no, /*Number of assmp. for Object*/
asmp col, /*columns with assumptions*/

- occurrences|OBJECTS], /*submatrix element occurrences*/
NODO, /*Number Of Distinct Occurrences*/
sub matrix[OBJECTS][ASSUMPTIONS], /*OAT temporary submatrix*/
submatrix size, /*submatrix rov size*/
columns{ASSUMPTIONS][2], /*columns where assmp. are present*/
columns head, /*columns list head*/
rem obj[OBJECTS]; /*remaining rows not compared yet*/

char file buffer[25]; /*data filename bufferx/
struct
char name[10];)} obj[OBJECTS]; /*object names*/
FILE *datafp, /*data file pointer*/
*outputfp; /*output file pointer*/

double loga n();
double power();

strcepy(file_buffer, "");
vhile(strcmp(file buffer, "quit") != 0)
{
printf("\nEnter data filename or quit to stop program\n==>> ");
scanf("%s", file buffer); /*get data filename*/
if(stremp(file buffer, "quit™) != 0)
{
if((datafp = fopen(file buffer, "r")) == NULL) /*open filex*/
printf("Error opening file Z%s\n", file_buffer);
else /*file opened for reading*/
{
outputfp = fopen("ent_load out", "w"); /*open output filex/
/*Read No. of Subsystems, Objects, and Assumptions*/
fscanf(datafp, "%d %d %d", &subsys_cnt, &obj_cnt, &asmp_cnt);
for(i = 0;1 < obj_cnt; i++) /*initialize OAT to zero*/
for(j = 0;3 < asmp_cnt; j++)
0AT(i][j] = O;
for(i = 0;1 < obj _cnt; i++) /*assumption input locp*/
{
fscanf(datafp, "%s", objli].name); /*read object’s name*/
fscanf(datafp, "%d", &asmp no); /*read number of assumptions*/
for(j = 0;j < asmp_no; j++) /*read assumptions*/
{
fscanf(datafp, "%d", &asmp _col);
OAT{i]J[asmp _col - 1] = 1; /*assign assumptions*/
} /*end forx/
} /%end for*/
for(i = 0;1 < subsys cnt; i++) /*subsystem input loop*/
{
tscanf(datafp, "%d", &subsys size[i]): /*no. of objects*/
for(j = 0;j < subsys size[i]}; j+«+) /*read object numbers*/

{

e -

58

fscanf(datafp, "X%d", &sub_system[i][j]);
sub system{i]{j]--; /*adjust object numberx*/
)} 7*end for#*/

} /%*end forx/

printf("\nObject Name Entropy (H(X))\n");

printf("========:======================\n");

for(i = 0O;i < subsys cnt; i++) /*subsystem loop*/
{

submatrix size = 0;
columns head = 0; /*initialize list*/
for(n = O;n < subsys_size[i]; n++)
{ /*Find Assmp. made in the subsys. objects*/
for(j = 033 < asmp_cnt; j++)
{ /*obtain subsystem submatrix from OAT*/

if(0AT[sub_system[i][n]][]j] == 1) /*1 pres. in the col.*/
{
if(submatrix size == 0) /*empty list*/
{

columns{submatrix_size]{0] =
columns(submatrix_size++]}{1]
} /*end if*/
else /*list is not empty*/
{
for(k = columns head;k > -1;p = k,k = columns[k][1])
{ /*search list to insert column numberx/
if(j < columns{k][0]) /*insert before present*/
{
columns|[submatrix size][l] = k; /*1link to pres.*/
columns[submatrix_size++][0] = j; /*save col. #*/
if(k == columns_head) /*pres. was first*/
columns_head = submatrix_size - 1; /*new first*/
else /*pres was not first, link to previous*/
columns[p][1] = submatrix size - 1;
break; /*end search*/
} /*end ifx/
else if(j == columns{k][0]) /*repeated column*/
break; /*stop search*/
} /*end for*/
if((j > columns[p][0]) && (k == -1))
{ /*place at the end of the list*/
columns[submatrix_size][0] = j; /*save col. no.*/
columns|submatrix _size++][1] = -1; /*end*/
columns[p][1] = submatrix_size - 1; /*link back*/
} /*end if*/
} /*end else*/
} /*end ifx/
] /*end forx/
} /*end for*/
for(j = 0;3 < obj_cnt; j++) /*form submatrix*/
for(k = columns head,m = O;k > -1; m++,k = columns[k][1])

j; /*save col. no.*/
= -1; /*end*/

sub matrix[j}[m] = OAT[j][columns[k][0]];
for(j = 0;j < obj_cnt; j++)
rem obj[j) = 0; /*mark rows as not compared yet*/

for(j = 0,NODO = 0;(j < (obj_cnt - 1)); j++)
{ /*jth row is compared with mth row*/

39

m=j+1;
if(rem obj[j] !'= 1) /*row not previously compared*/
{
rem obj{j) = 1; /*remove object from submatrix*/
occurrences|[NODO++} = 1; /*initial occurrencex/
vhile(m < obj cnt)
{ /*m is the following row index*/
if(rem_obj[m} != 1) /*row not matched before*/
{
for(k = O;((sub_matrix[j][k] == sub_matrix{m}{k]) &&
(k < submatrix size)); k++); /*compare rows*/
if(k == submatrix_size) /*matching rows*/
{
occurrences[NODO - 1}++; /*increase count*/
rem obj(m] = 1; /*remove object from submatrix*/
} 7*end if*/
} /*end ifx/
m++; /*get ready for next row*/
} /*end while*/
} /*end if*/
} /*end forx/
if((j == (obj cnt ~ 1)) && (rem obj[j] == 0))
occurrences[NODO++] = 1; /*last row is uniquex*/
/*Entropy function computation for the subsystems*/
entropy[i]) (double) obj ent;
entropy[i] = loga n(entropy[i}); /* log [X]| */
double sum = 0.0; /*initialize sum of partitions*/

for(j = 0;j < NODO; j++)

1]

[

temp double = (double) occurrences{j];
/*printf("%d ",occurrences(j]); DEBUG*/
temp _double *= loga n(temp_double); /* Xj log Xj */
double sum += temp _double; /* Sum of terms */
} /%*end forx/
/*printf£("\n"); DEBUG*/
double sum = (double) double sum / obj cnt; /*Div by X */

entropy[i] -= double sum;
entropy[i] /= loga n(2.0); /*convert result to log base 2 */
printf("%1ls %15.12f\n", obj{i].name, entropy(i]);

fprintf{outputfp,"¥15.12f %3d\n", entropy(i], 1 + 1);

} /*end for*/
/*hnalyze system matrix to compute system entropy*/
for(j = 0;j < obj ent; j++)

rem obj[j] = O; /*mark rows as not compared yetx/
for(j = 0,NODO = 0;(j < (obj _cnt ~ 1)); j++)

{ /*jth rov is compared with mth rowx/

m=3 + 1;
if(rem obj(j] != 1) /~»row not previously compared*/
rem obj{j} = 1; /*remove object from submatrix*/

occurrences|[NODO++] = 1; /*initial occurrence*/
vhile(m < obj cnt)
{ /*m is the followving rov index*/
if(rem_obj[m] != 1) /*row not matched before*/

{

for(k = O;((0AT[j)[k] == OAT[m][k]) &&
(k < asmp_cnt)); k++); /*compare system rows*/
if(k == asmp_cnt) /*matching rows*/
{
occurrences[NODO - 1]++; /*increase count*/
rem objlm} = 1; /*remove object from submatrix*/
} 7%*end if*/
] /*end 1f*/
m++; /*get ready for next row*/
} /%end while*/
} /*end if*/
} /*end forx/
if((j == (obj_cnt - 1)) && (rem_objfj] == 0))
occurrences|[NODO++] = 1; /*last row is unique*/
/*System Entropy Computation*/
entropy(OBJECTS] = (double) obj cnt;
entropy[OBJECTS] = loga_n(entropy{OBJECTS]); /*log [X|*/
double sum = 0.0; /*initialize sum of partitions*/

for(j = 0;3 < NODO; j++)

temp_double = (double) occurrences(j};

temp_double *= loga n(temp_double); /* Xj log Xj */

double sum += temp_double; /* Sum of terms */

} /*end forx/
double_sum = (double) double sum / obj_cnt; /*Div by X */
entropy[OBJECTS] -= double _sum;
entropy{OBJECTS] /= loga_n(z 0); /*convert to log base 2*/
for(i = 0, entropy loading = 0.0;i < subsys_cnt; i++)

entropy loading += entropy[i]; /*compute entropy loading*/
temp double = (double) entropy_loading / subsys_cnt;
prlntf("\nObJect Count is %d\n", i);
printf("Average Object Entropy is %15.12f\n", temp_double);
printf("System Entropy (H(S)) is %15.12f\n",entropy[OBJECTS]);
fprintf(outputfp, "Z%15.12f %3d\n", entropy{OBJECTS}, i + 1);

60

entropy loading -= entropy[OBJECTS]; /*subtr. system entropy*/

printf("System Entropy Loading (C(S)) is %15.12f\n",
entropy loading);
temp double = (double) entropy loading / obj_cnt;
prlntf("C(S) to Object Count Ratio is X15. 12f\n",temp double);
fclose(datafp); /*close input data filex/
fclose(outputfp); /*close output filex/
} /*end else*/
} /*end ifx/
} /*end whilex/
} /*end main*/

[HkhkkkdkhkhkhkddhhhkhkhdhkhkhkhhkhkhkkhkhkkkkkhkhkkkkkkhkkFhrhkrhhkkhkhhdhhkdhkhkhkkkhkkdkk

This function accepts a double floating point number as input.
The output consists of the natural logarithm of the number
passed as input. The output is of double floating point type.

* ok ok % %
¥ E X ¥ *

Fhkhkdkrhkhhkkrhhkhkhhhkrhkdhkhhkrhhkhhh kI ok hhkhkhhhhkhhkhhkkhkkhhkhkhkkhkkkhkkFhkkkhk/
double loga n(param)

double param;

{

double temp[3];
int i, 3, k;

temp[1l] = 0.0;
temp[2] = (param - 1.0) / (param + 1.0);
for(i = 1;i < 16051 += 2)

temp[1] += (double) power(temp[2], i) / 1i;
temp[1l] *= 2.0;
return temp[l];
} /*end loga n*/

[Hdkkhkkkkkkhkkhkhkkhhkkkk ko k kA kA kA kkkkhkkkkhkhkkkkkkkk Rk kA kkkkhkkkkkkk

This function computes the nth power of a double floating point
number. The power can only be an integer. The output is a
double floating point number.

* X A % *
* o+ % A #

Fhkkkkhkhkhkhkhkkhkdkhkhhhdkhhhkdekhkkkhkhkkkkhhkhhkdhkhhkkkkhkkkkhkhkkkhkkkkkk /

double power(base, exp)
double base;
int exp;
{
double temp;
int 1i;

for(i = 1, temp = 1.0;1i <= exp; i++)
temp *= base;

return temp;

} /*end power*/

61

JRKKRK I KKk dkkdd k ok kkkk ok ke dk ok ke k ke ke ok K d ok kkok ok kdde gk kA kK ok ok ko ok sk ok ko
* Lines of Code Me t ric () *
Kk Ak hkhkkkkhkkkhkkhkhkdkdkhkkdkhkkkkhkkkhkhkkkkdhkkkhhkkkkkkkkhkkkkhkkkkhkkkohkkkk
*

File: loc_c2.c

Author: William R. Torres
Date: 89/09/23

Class: COMSC 5000 -~ Thesis
Adviser: Dr. Mansur Samadzadeh

* % % % % ¥ %

KKK AR A kA RA ARk k ke kkkkhkk kA hkkkhkkkkkhkkhkkhhk kK kkhkhk Rk hkhkkhkkkkhkkkkkx

This program computes the lines of code for correct C
language source code. The input for this program consists
of the filename of the file for which the lines of code
metric is desired. The output is broken down into six
categories: actual C language lines of code, declaration
lines of code, non-declaration lines of code, lines of code
vith braces (’{' or ’}'), comments lines, and blank lines.

(1) all lines in vhich C stateme.ts are present, even if they
include comments or multiple statements separated by
terminators (;), are counted as one line of code, (2) all
lines with comments and no C statements, even if the lines
have multiple comments, are counted as one comment line,

(3) all other lines are considered blank lines.

The following criteria is used to subdivide the lines of
code: (1) all lines with a brace and no C statement are
counted as brace lines, (2) all lines in which a variable is
declared are counted as declaration lines, and (3) all other
lines are considered non-declaration lines.

O % Ok ok ok kR ok Sk R ¥ %k F ¥ X A F X ¥ ¥

*
¥
*
*
*
*
*
*
*
*
*
*
*
*
*
*
The followving criteria is used to categorize the lines: *
*
*
*
*
*
¥
*
*
*
*
*
*
*
/

Fhkkkhkkdkhkkhkkkhkhhhkhkkhkhkhkdkhhkhkhkkkkkdkhkkhkdkkkhkkhkkdkkkkkhkkkkhkkdkhkk ok

#include <stdio.h>
#include <ctype.h>
#define BUF SIZE 80
¢define TRUE 1
.wefine FALSE O

main()

{

int loc, /*lines of code*/
blank cnt, /*blank line count*/
comm cnt, /*comment line count*/
comm_pres, /*comment present*/
instr pres, /*instruction present*/
comm counted, /*1ine counted as comment*/
brace cnt, /*brace line count”*/
brace pres, /*brace present*/
decla cnt, /*declaration line count*/
decla pres, /*declaration line presence*/

decla counted, /*1line counted as declaration*/

62

63

i, 33
char inp buffer[BUF_SIZE], /*buffer for program lines*/
file buffer[25], /*buffer for input program filename*/
c3
FILE *filefp; /*pointer to input program*/

strepy(file buffer, "");
while(strcmg(file_buffer, "quit") !'= 0) /*main loop*/
{
printf("Enter filename or quit to stop program\n==>> ");
scanf("%s", file buffer); /*get input filenamex/
if(stremp(file buffer, "quit") != 0)
{
if((filefp = fopen(file buffer, "r")) == NULL) /*open file*/
printf("Error opening_file %s\n", file buffer);
else /*file opened for reading*/ -
{
loc = 0; /*initialize lines of code count*/
blank _cnt = 0; /*initialize blank line count*/
comm cnt = O; /*initialize comment line count*/
brace_cnt 0; /*initialize brace line count*/
decla cnt 0; /*initialize declaration line count*/
comm_pres FALSE; /*no comment*/
decla pres = FALSE; /*no declaration*/
while(fgets(inp buffer, BUF_SIZE, filefp)) /*read pgm. linex/
{
instr pres = FALSE; /*clear instruction presence*/
comm counted = FALSE; /*line not counted as commentx/
decla counted = FALSE; /*line not counted as declaration*/
brace pres = FALSE; /*clear brace presence*/
for(i = O;inp_buffer[i] != '\n’; i++)
{
if((inp buffer[i] == '/’) && (inp_buffer{i + 1] == %))
comm_pres = TRUE; /*beginning of comment found*/
c = inp_buffer(i];
if(((c == 'c") || (e == "d") || (c == "£") || (c == "i") ||
(c == '1")]} (c == *s’)]] (¢ == '"F’)) && (!comm pres))
{ /*1st letter in declarations*/ B
if(isdecla(inp buffer, i))
decla pres = TRUE;
} /*end if*/
if((inp_buffer(i] == ";’) && (decla_pres))
{
decla pres = FALSE; /*cancel decla. presence*/
decla_counted = TRUE; /*mark line as counted*/
} /*end if*/
if((isgraph(inp buffer[i')) && (!comm_pres) &é&

[t}

(inp buffer(i] !'= '{’) && (inp_buffer[i] !'= *}'))
instr_pres = TRUE; /*print char, not sp, comm, or brace*/
if((inp_buffer(i} == " {’") {1 (inp_buffer|i] == "}’) &&

(!instr pres) && (!comm_pres))
brace_pres = TRUE; /*brace found*/

1f((inp_buffer[i - 1] == "*") && (inp_buffer(i] == /"))
{

comm pres = FALSE; /*cancel comment presence*/

-

if((!instr_pres) && (!comm_counted) && (!brace pres) &&
(!decla pres))
{
comm cnt++; /*add to comment count*/
comm counted = TRUE; /*mark line as counted for comm*/
} /*end if*/
} /*end if*/
} /%*end for*/
if((decla pres) || (decla counted))
decla cnt++; /*add to declaration line to count*/
else if(instr pres)
loc++; /*add to lines of codex/
else if((comm pres) && (!brace_pres))
comm_cnt++; /*add comment line to count*/
else if(brace_pres)
brace _cnt++; /*add to brace line count*/
else if(!comm counted)
blank_cnt++? /*add to blank line count*/
if((comm_counted) && (instr_pres))

comm cnt--; /*correct comm. count if intr. is found*/
} /*end whilex/
printf(”\nTotal lines of code = Zd\n", loc + decla_cnt
brace_cnt);
printf(" Total declaration lines of code = %d\n", decla cnt
printf(" Total non-declaration lines of code = Xd\n", loc);
printf(" Total brace lines = Zd\n", brace _cnt);

printf("Total comment lines = %Zd\n", comm cnt);
printf("Total blank lines = %d\n", blank cnt);
printf("\nTotal program lines = Zd\n\n",loc + decla cnt +
comm_cnt + brace_cnt + blank_cnt); -
fclose(filefp); /*close input file*/
} /*end else*/
} /*end if*/
} /*end while*/
} /*end main*/

[hkkkkkkkhhkkkhkkkhkhkhhhkhkhkhkkkkkhkhkhhhkkhkhkhkdhbhkhkkhkrkhhkkkrhhkFkhhkhkkkkhsd

*
This function is used to determine if a declaration line has *
been found. This function is called whenever a character is *
found that matches the first character of the different *
variable declaration types (e.g., char, int, float, etc.). >
This program assumes that these keyword: are always followed *
by at least one space in the input progrcm. Function *
declaration lines are not counted as declaration lines. *
¥*
¥
>
>
/

If a2 match is found, a TRUE condition is returned to the main
program. A FALSE condition is returned othervise.

* ok ok N oA Rk H o A A ¥

hhkhkhkkrRI Rk kA b hkhkFrhhkhkhkhkkFhhkhhhhkhk bk k kb khkkhk kT kb h bk kdkrFdhhbrnhrrhkkhdhdd
isdecla(buffer, i)

char buffer(];

int 1i;

{

64

+

)s

B

int j, type;
char c¢;

c = bufferfi];
type = FALSE;

if(c == ’'c¢’) /*char*/
{
if((buffer[i + 1] == 'h’) && (buffecli + 2] ==~ 'a’) &é&
(buffer[i + 3] == 'r’) && (buffer[i + 4] == "' "))
{
type = TRUE;
j=i+5;
} /%*end ifx/
} /*end if*/
else if(c == "i7) /*int*/
{
if((buffer[i + 1] == 'n’) && (buffer{i + 2] == "t’) &&
(buffer[i + 3] == "' "))
{
type = TRUE;
j=i+ll;
} /*end if*/
} /*end else ifx/ .
else if(c == *d’) /*double*/ :
{
if((buffer{i + 1] == ’0’) && (buffer{i + 2] == ’'u’) &&
(buffer[i + 3] == 'b') && (buffer{i + 4] == '1') &&
(buffer[i + 5] == 'e’) && (buffer{i + 6] == * 7))
{
type = TRUE;
j=1+7;
} /*end if*/
} /*end else if*/
else if(c == "f') /*floatx/
{
if((buffer[i + 1] == "1') && (buffer[i + 2] == ‘0’) &&
(buffer[i + 3] == 'a’') && (buffer{i + 4} == "t’') &&
(buffer[i + 5] == ' "))
{
type = TRUE;
j=1+6;
] /*end ifx*x/
] /*end else if*/
else if(c == '1') /*long*/
{
if((buffer{i + 1) == ’0’) && (buffer[i + 2] == 'n’') &&
(buffer[i + 3] == "g’) && (buffer[i + 4] == ' "))

{
type = TRUE;
jo= 1 + 5;
} /*end if*/

} /*end else if*/

else if(c == ’'s’) /*short*/
{
if((buffer{i + 1] == 'h’) && (buffer{i + 2] == ‘0') &&

65

66

rrr) && (buffer[i + 4] == "t’) &é&

(buffer{i + 3] ==
== "))

(buffer[i + 5
{
type = TRUE;
j =1 + 63
] /*end ifx*/
} /*end else if*/
else if(c == 'F’) /*FILE*/

{
if((buffer{i + 1] == 'I') && (buffer[i + 2] == 'L") &&
(buffer{i + 3] == 'E’) && (buffer[i + 4] == ' "))

{
type = TRUE;
j =1+ 5;
} /*end if*/
} /*end else if*/
if(type == TRUE)
{
for(;buffer[j] '= '\n’;j++)
if(buffer|{j] == '(') /*function declaration*/
return (FALSE);
return (TRUE);
} /*end ifx/
return (FALSE);
} /*end isdecla*/

1

[hkkkkdkkhkdhkhkhkhkkhkhkhkhkkhkkhkhkhhhkkhkdkhkhkdkkhkhkkdkhkhkkkhhkhhkhkhkhkhkhhkihkhdkhkhkdkkkkk

* Lines of Code Metriec (Ada) *
KA A I I A A KA A KK A A A KA R KA A AR KR E A A AR A AR AR AR AR AARA R A A AR A ARk kA hkhkkkkkkkhkik

File: 1loc adal.c

Author: Villiam R. Torres
Date: 90/03/12

Class: COMSC 5000 - Thesis
Adviser: Dr. Mansur Samadzadeh

* X % X ¥ * %
* % % % X ¥ %

% e e ok sk Tk e ke e e sk ok ke Tk ok ok o ok sk gk kK ok ok 3ok ok ok ok ok ok ok e ok ok ok ok ok R ok ok ok Sk e ke Sk sk i 9k ok e g gk 3k ok o ok o ok ke e ok

This program computes the lines of code for correct Ada
language source code. The input for this program consists
of the filename of the file for which the lines of code
metric is desired. The output is broken down into five
categories: actual Ada language lines of code, variable
declaration lines of code, non-declaration lines of code,
comments lines, and blank lines.

The following criteria is used to categorize the lines:

(1) all lines in which Ada statements are present, even if
they include comments or multiple statements separated by
terminators (;), are counted as one line of code, (2) all
lines with comments and no Ada statements are counted as one
comment line, (3) all other lines are considered blank lines.

The following criteria is used to subdivide the lines of
code: (1) all lines in which a variable is declared are
counted as declaration lines and (2) all other lines are
counted as non-declaration lines.

ok % R ok kN Ok %k Kk % Ok %k ok A F % % % %
LA A . I B SR S I S I T N S

**/

#include <stdio.h>
#include <ctype.h>
#define BUF SIZE 80
#define TRUE 1
$define FALSE O

main()

{

int loc, /*lines of code*/
blank cnt, /*blank line count*/
comm_cnt, /*comment line count*/
comm_pres, /*comment present*/
instr_pres, /*instruction present*/
paren count, /*parenthesis count*/
decla cnt, /*declaration line count*/
decla pres, /*declaration line presence*/
term pres, /*command terminator (;) presence*/

i;
char inp_ buffer[BUF SIZE], /*buffer for program lines*/
file buffer[25]; /*buffer for input program filename*/
FILE *filefp; /*pointer to input program*/

67

68

strepy(file_buffer, "");
vhile(stremp(file_buffer, "quit") != 0) /*main loop*/
{
printf("Enter filename or quit to stop program\n==>> ");
scanf("%s", file buffer); /*get input filename*/
if(stremp(file_buffer, "quit") != 0)
{
if((filefp = fopen(file buffer, "r")) == NULL) /*open filex/
printf("Error opening file Xs\n", file buffer);
else /*file opened for reading*/

{
loc = 0; /*initialize lines of code count*/
blank _cnt = 0; /*initialize blark line countx/
comm cnt = Q; /*initialize comment line count*/
declg_cnt = 0; /*initialize declaration line count*/
paren_count = O; /*clear parenthesis count*/
vhile(fgets(inp buffer, BUF SIZE, filefp)) /*read pgm. linex/
{
instr pres = FALSE; /*clear instruction presence*/
decla pres = FALSE; /*clear declaration presencex/
p FALSE; /*no comment*/

comm pres =
term pres = FALSE; /*clear terminator presence*/
for(i = O;inp_buffer[i] !'= '\n’; i++)
{
if((inp buffer[i} == '-') && (inp_buffer[i + 1} == '~'))
comm_Eres = TRUE; /*comment found*/
if(inp buffer[i] == (")
pareﬁ_count++; /*opening parenthesis found*/
if(inp buffer[i] == ")')
pareﬁ_count—-; /*closing parenthesis found*/
if((inp_buffer[i] == 7:7) && (inp_buffer{i + 1] != ’=") &&
(paren_count == 0) && (!comm_pres))
decla_Eres = TRUE; /*declaration found*/
if(inp buffer[i] == ";’)

term_pres = TRUE; /*command terminator present*/
if((isgraph(inp_buffer[i])) && (!comm pres))
instr_pres = TRUE; /*print char, not sp, or comm*/
} /*end for*/
if((decla_pres) && (term pres))
decla cnt++; /*add to declaration line to count*/
else if(instr_pres)
loc++; /*add to lines of code*/
else if(comm pres)
comm_cnt++; /*add comment line to count*/
else
blank cnt++; /*add to blank line count*/
} /*end while*/
printf("\nTotal lines of code = Zd\n", loc +« decla_cnt);
printf(” Total declaration lines = %d\n", decla cnt);
printf(" Total non-declaration lines = %d\n", loc);
printf("Total comment lines = %d\n", comm cnt);
printf("Total blank lines = %d\n", blank cnt);
printf("\nTotal program lines = %d\n\n",loc + decla cnt +
comm_cnt + blank cnt); B

o

)
}

fclose(filefp);
} /*end else*/
} /*end if*/
/*end wvhile*/
/*end main*/

/*close input filex/

69

-

APPENDIX B

ADA PROGRAMS INCLUDED IN THE STUDY

70

— % % de sk ok 3k %k % ok sk Kk ok %k ok 9k % %k Kk ok ke Kk ok ok dk sk sk K sk ok gk ok 3k gk ok gk ok ok ok ok sk ke e gk vk ke sk ke sk ok vk ke ok sk kb ok ok e ok ok ot ok ke ok

——% Integer List (1 of 2) *
__***

% *
-—% File: intmain.ada *
—% Author: Ken Shumate *
— "Understanding Ada with Abstract Data Types” *
——% John Wiley and Sons, 2nd ed., 1989 *
——% *

dodke ek % vk %k e ek ok T s sk ok ok sk ok sk e ok ok ok gk ke ke ok e s ke s e ke e sk sk ok ok ok ok ok sk ok e ke sk e e ok ke gk ok e ke ke e de ok ek ok ok

with TEXT 10; use TEXT_I10;
with Integer List; use Integer List;
procedure ExErcise_20_1 is
package Int I0 is new INTEGER_IO(INTEGER);
use Int_10;

Number : INTEGER;
begin
Initialize Jist;
PUT_LINE("Enter list of numbers terminated by -1");
Create List : loop
1 GET(Number);
2 exit Create List when Number = -1;
.3 Insert_At_HEad(Number);
4 Insert At Tail(Number);
end loop Create List;

> > >

PUT LINE("The list of numbers is"j;

for I in 1..List_Length loop
PUT(Value At Position(I));

end loop;

NEW_LINE;

>
W

PUT _LINE(“Chopping the ends off");
Delete Head;
Delete Tailj;

PUT LINE("The list of numbers is");
for I in 1..List _Length loop
PUT(Value At Position(I));
end loop;
NEW LINE;
end Egercise_20_1;
TR R T TRk IR IR AT kR KR T kT kT kI bk F Rk Ak hkhkkhkhkFddrh b kb kb hkhkhk bk kb hhkrhhkhkkhFhdhkd

—— Integer List (2 of 2) *

Lo h kb ok kk kb hkrhk kb k kAT ddr kb kb hr kI x T I Ik hkkkFF ok kkhkhFrddhr kb rhkhhhddddhddk

> >
o ~J

¥ *

* File: intlist.ada *
-—% tuthor: Ken Shumate *
* "Understanding Ada with Abstract Data Types" *

* John Viley and Sons, 2nd ed., 1989 *

*

+

e 2 22222 22 22 RS RS EEE TR S 2SR TSRS SRS SRS ARSI RS SRR E e S Sl

71

e~Bve R eclic-Ro-Biye]
[o ANV, B S UL I S IR

(@}
-

OO0
(U R SRS I N)

[oNe!
~N

loRoNeNw)
LR 0% Il
&~ N =

package Integer List is
procedure Initialize List;
procedure Insert_At_Head(Value : in INTEGER);
procedure Insert At Tail(Value : in INTEGER);
procedure Delete Head;
procedure Delete Tail;
function Value At Position(Pos : in POSITIVE); return INTEGER;
function List_Length return NATURAL;

end Integer List;

package body Integer List is
type List;
type Link is access Lisc;
type List is record
Value : INTEGER;
Next : Link;
end record;

Free, Head, Tail : Link;

procedure Reclaim(P : in Link) is
-~add the node indicated by P onto the free list

begin

if Free = null then
Free := P;
Free.Next := null;

else
P.Next := Free;
Free := P;

end if;

end Reclaim;

function Alloc(Initial Value : List) return Link is
~--allocate storage and initialize it
P : Link := Free;

begin
if P = null then
P := new List;
else
Free := Free.Next;
end if;
P.all := Initial Value;
return P; B
end Alloc;

procedure Initialize List is
P : Link; -
begin
vhile Head /= null loop
P := Head;
Head := Head.Next;
Reclaim(P);
end loop;
Tail := null;
end Initialize List;

72

o2l e

jnr Bas Bies BieoNie s Mies |
(oA B O S

aaOnn
[V, 0 S VS N]

[sofiieriie oo oliie ol a o]
N OV W

o ofite ofite o]

procedure Insert At Head(Value : in INTEGER) is

begin
1 Head := Alloc(List’(Value, Head));
2 if Tail = null then -- new list
3 Tail := Head;
end if;
end Insert At _Head;
procedure Insert At _Tail(Value : in INTEGER) is
begin
if Head = null then -- first item to put into list
Head := Alloc(List’(Value, null));
Tail := Head;
else
Tail.Next := Alloc(List’(Value, null)); --tack onto end
Tail := Tail.Next; --move tail to the new end of the list
end if;

end Insert At Tail;

procedure Delete Head is

.1 P : Link := Head;

begin
Head := Head.Next;
Reclaim(P);
if Head = null then --deleted last item in list
Tail := null;
end if;
end Delete Head;

procedure Delete Tail is

.1 P : Link := Head;

begin

if Head = Tail then --single item list
Head := null;
Tail := null;

else --more than one item in list
vhile P.Next /= Tail loop

P := P.Next;

end loop;
--P nov points to the next to last item in the list
Reclaim(Tail);
Tail := P;

— 0O 0o

.10 Tail.Next := null;

end if;
end Delete Tail;

function Value At Position(Pos : in POSITIVE) return INTEGER is

.1 P : Link := Head;

begin
for T in 2..Pos loop

2
.3 P := P.Next;

end loop;

b return P.Value;

73

74

end Value_At_Position;

function List_Length return NATURAL is
Len : NATURAL := O;
P : Link := Head;
begin
vhile P /= null loop
Len := Len + 1;
P := P.Next;
end loop;
return Len;
end List Length;
end Intege;_List;

emkh ok kkkkkhk kR khkk kA kkkkkkkkkkok kA kkkkkkkkkhkkhkkkhkkkhkkhkkkkkkkkskkk ok ko

——% Four Function Calculator (1 of 3) *
e KR A A AR A A AT A A A AR AR AR AR AR A A A A AR A A kA AR AR AR ARk R h A A kA kR hkkk

—_—% *
—% File: calcmain.ada *
——%* Author: Gerald L. Mohnkern and Beverly Mohnkern *
—=% "Applied Ada" *
- Tab Professional and Reference Books, 1986 *
——% *

mmkk ko kkkkkk ok ko kkokhkhkkkhkkkkkdkdkhkhkkkhhkkkhkhkhkhhhkhhkhhhkhkhkhkkkhkrhhkhkhkhkkkkkkkk

vith TEXT 10, FPSTACK, FLOAT_CONV;
- procedure CALCULATE?2 is

use TEXT IO, FPSTACK, FLOAT CONV;
package F 10 is new FLOAT IO(FLOAT),
subtype LINE4O is STRING(1. .40);
STR : LINE4O := (1..40 => ' *);
NUM VAL : FLOAT := 0.0;
FIRST : BOOLEAN := TRUE;
LEN : NATURAL;
INVALID_ENTRY : exception;

procedure DIRECTIONS is --To display directions for use
begin
NEW LINE;
PUT LINE("Thls is a simple calculator program. It can "“);
PUT _LINE("add(+), subtract(-), multiply(*), and ");
PUT _LINE("divide(/). The calculator uses reverse Polish");
PUT LINB("notatlon and has a stack holding up to ten");
PUT LINE("floatlng point numbers. Numbers and operators");
PUT_LINE("must be entered one per line. Enter 'R’ for");
PUT LINE("reset to start over, ‘?’ to get directions,");
PUT _LINE("'D’ to delete last entry, and ‘Q’ to quit.");
NEW_LINE;
end DIRECTIONS;

procedure OPERATE(STRG : LINE4Q) is
X, Y : FLOAT:

begin
case STRG(1l) is

B.1 when "+’ => POP(X); POP(Y); Y := X + Y;
B.2 PUSH(Y); F_I0.PUT(Y);
B.3 when ‘-’ => POP(X); POP(Y); Y := Y -~ X;
B.4 PUSH(Y); F_IO.PUT(Y);
B.5 when ’'*’ => POP(X); POP(Y); Y := X * Y;
B.6 PUSH(Y); F_IO.PUT(Y);
B.7 wvhen /' => POP(X); POP(Y); Y := Y / X;
B.8 PUSH(Y); F_I0.PUT(Y);
B.9 vhen 'r’ | 'R’ => CLEAR;
B.10 vhen ‘d’ | ‘D’ => POP(X);
B.11 vhen '7?' => DIRECTIONS;
B.12 vhen 'q’ | 'Q’ => null;
B.13 vhen others => raise INVALID ENTRY;

end case; -

NEV_LINE;

75

end OPERATE;

begin --Body of CALCULATE2
DIRECTIONS;
A.1 while STR(1) /= 'Q’ and STR(1l) /= 'q’ loop
ERROR SCOPE: begin --Block containing exception handler

A.2 if not FIRST then
SKIP LINE;
end if;
A.3 GET STRING(STR, LEN);
NEV LINE;
A.b FIRST := FALSE;
4.5 if (STR(1) in 'O’ .. ’'9') or (STR{1) = ".’) or
(STR(1) = ‘-’ and LEN > 1) then
A.6 STR TO FLT(STR, LEN, NUM VAL);
A.7 PUSH(NUM_VAL); -
A.8 else
A.9 OPERATE(STR);
end if;
exception --Handler for block ERROR_SCOPE
A.10 vhen INVALID ENTRY => PUT LINE(" Invalid entry."”);
A1l vhen NUMERIC ERROR =>

PUT_LINE(" Attempt to divide by zero.");
end ERROR_SCOPE;
end loop;
end CALCULATE2;
e KR A A KA AR A KA A A AR I A AR A AR A A AR AR AT AR A AR R KA AR AR AR A A A ARk hkkkhkkkhkhkhkhkhxk

——% Four Function Calculator (2 of 3) *
kR A A A ARA A AR A AR AR A AR A A A A A kA Ak A kT Ak bk bk bk hkkhk kT hkhkhkhkhhkkhrhkhkkx

% *
—% File: calcstac.ada *
-k Author: Gerald L. Mohnkern and Beverly Mohnkern *
-=% "Applied Ada" *
—% Tab Professional and Reference Books, 1986 *
=% *

mmFkkdkokkkkhkkkhkkhhkkhhkkhkdhdkrhkhkkkkrkkhkhkhkkhkkkdkhkkhhdkhkdrkhkkkkkkkkkk

package FPSTACK is
procedure CLEAR; --Resets the stack
procedure PUSH(NUM : FLOAT);
procedure POP(NUM : out FLOAT);
STACK_OVERFLOW, STACK UNDERFLOW: exception;
end FPSTACK; -

package body FPSTACK is
NUM : FLOAT;
LIMIT : constant NATURAL := 10;
STACK : array(l .. LIMIT) of FLOAT;
TOP : NATURAL := 0O;

procedure PUSH(NUM : FLOAT) is
begin
C.1 if TOP = LIMIT then
raise STACK OVERFLOV;
C.2 else -

76

c.3 TOP := TOP + 1;
C.4 STACK(TOP) := NUM;
end if;
end PUSH;
procedure POP(NUM : out FLOAT) is
begin
D.1 if TOP = 0 then
raise STACK_UNDERFLOV;
D.2 else
D.3 NUM := STACK(TOP);
D.4 TOP := TOP - 1;
end if;
end POP;
procedure CLEAR is
begin
E.1 TOP := O;
end CLEAR;

end FPSTACK;
e ok ek ok ke ok sk ok ok ok ok ok ok ok ok ok ok ok ek ok ke ok ke ek ok ok ok sk ok ook ok ok e sk ok ok gk ok g ok ke ok ke ke ok ok

——% Four Function Calculator (3 of 3) *
— = Fe % % % 3k vk g e sk v T I P 9 e 3k i e e sk e e e dhe Ik v ke vk e e ok e vk ke gk ke Rk kv vk e ke e ok dk ok ok I sk ok ok vk ok sk ok e ok ok e e sk ok ek

_% *
——% File: calcfloa.ada *
=% Author: Gerald L. Mohnkern and Beverly Mohnkern *
——%* "Applied Ada" *
——% Tab Professional and Reference Books, 1986 *
% *

o kdkkkkkkkkkkkkkkkhkkhkhkkkhkhhkkkkkkkdkhhkhkhkhkhhkhkhkkhhhkhkhrhhkhkkkhkkkkkhkkkkk

with TEXT I0; use TEXT_IO;
package FLOAT_CONV is
subtype LINE40O is STRING(1 .. 40);
INVALID ENTRY : exception;
procedu;e GET_STRING(STR : out LINE4O;
LEN : out NATURAL);
procedure STR TO FLT(STR : LINE4Q;
LEN : NATURAL;
NUM VAL : out FLOAT);
end FLOAT CONV;

package body FLOAT CONV is
procedure GET_STRING(STR : out LINE4O;
LEN : out NATURAL) is
CH : CHARACTER;
CUM_COUNT : NATURAL := O;

begin
F.1 wvhile not END OF LINE loop
F.2 GET(CH);
F.3 CUM_COUNT HE CUH_COUNT + 1;
F.4 STR(CUH_COUNT) := CH;
end loop;
F.5 LEN := CUM COUNT;

end GET_STRING;

77

aan

O

.10
.11
.12
.13

.14
.15

.16
.17

.18

.19

78

procedure STR_TO FLT(STR : LINEA4O;

LEN : NATURAL;
NUM_VAL : out FLOAT) IS

X : FLOAT := 0.0;

SIGN : FLOAT := 1.0;

DECIMAL POINT : BOOLEAN := FALSE;

COUNT : INTEGER := O;

EXP : INTEGER := 0;

EXP SIGN : INTEGER := 1;

INDEX : INTEGER := 1;

CH, CHR : CHARACTER;

begin
if STR(1) = '-' then
SIGN 1= -1
INDEX := 2;
end if;
vhile INDEX <= LEN loop
CH := STR(INDEX);
case CH is
vhen ‘.' => DECIMAL POINT :-=
when ’0’..79’ => X 1= X * 10.
+ FLOAT(CHARACTER'POS(CH) - CHARACTER'POS(’'0'));
if DECIMAL_POINT then
COUNT := COUNT + 1;
end if;
vhen ‘E’ | ‘e’ =>
for JDEX in (INDEX + 1)..LEN loop
CHR := STR(JDEX);
case CHR is
vhen ’'07..'9" =>
EXP := EXP * 10 + CHARACTER'POS(CHR)
-~ CHARACTER'POS(’'0");

- Yy

TRUE;
0

when ’-’ => EXP _SIGN := -1;
vhen others => raise INVALID ENTRY;
end case;
end loop;
INDEX :- LEN;
vhen others => raise INVALID ENTRY;
end case;
INDEX := INDEX + 1;

end loop;
NUM VAL := SIGN * X * 10.0**x(EXP SIGN * EXP - COUNT);
end STR_TO FLT; B
end FLOAT_CONV;

medkkhdedhkhdhhdk kR kkokddkddekdhdkhkdkhhhhkhdkhkhkhhhhkhkhhkhkkhhkhkkhkhhhkkdhkhkhhkhkkhkkikhkkihk

——% Address Book (1 of 12) *
e KR A IR A KT A AR AR A RAIAKR AR AR A A AR A AR AR ARk kkkk ko khkhkhkdhhhkkkkhhkhkhkhkkkkk
%k *
——% File: addrdec.ada *
——% Author: Gerald L. Mohnkern and Beverly Mohnkern *
——k "Applied Ada" *
- Tab Professional and Reference Books, 1986 *
—=% *

— — Je e g de Fe e e e e 3k e I e T e sk e e vk e I e e gk e e Ik e Tk e dke e e d e kool sk sk ok ok o ke ke e ok vk sk ke sk ok ok ke ke vk ok ke k ok ok ko ok ok ok

wvith DIRECT_IO;
vith TEXT_IO0; use TEXT_IO;

package ADDRDEC is

subtype LINE4QO is STRING(1l..40);

type ADDRESS is record
NAME : STRING(1l..40) := (1
STREET : STRING(1l..40) :=
CITY : STRING(1..20) := (1..20 => '
STATE : STRING(1l..2) := " ";
ZIP : STRING(1..5) := (1..5 => ’
AREA : STRING(1..3) := " ",
PHONE : STRING(1..8) := (1..8 => ¢

end record;

type KEY is record
NAME : STRING(1..40)
PT DATA : POSITIVE;

end recoird;

MAX SIZE : constant := 20; --Maximum size of deletion array

typE INT ARRAY is array (POSITIVE range <>) of INTEGER;

type KEY ARRAY is array (POSITIVE range <>) of KEY;

L 40 =>)
(1..40 => ' ');

‘)

")

= (1..40 => ' ')

type LIST(SIZE :
INTEGER;

LAST REC :
NEXT SPACE :

NATURAL) is record

INTEGER;

SPACE : INT ARRAY(1..MAX SIZE);
KEY LIST : KEY ARRAV(1..SIZE);
end record;
type A_LIST is access LIST;

package ADDRESS I0 is new DIRECT_IO(ADDRESS);
package INDEX I0 is new DIRECT_IO(LIST);

type OPERATION is (CREATE, ADD, DELETE, CHANGE, SEARCH, QUIT);

QUITTING : exception;
INDX ID : INDEX IO.FILE TYPE;
DATA ID : ADDRESS IO.FILE TYPE;

"ADDRBK1";
"ADDRINDX1";

constant STRING :=
constant STRING :=

DATA_NAME :
INDX_NAME :

end ADDRDEC;
mmkdkkkkkhkkokk ok ok kk kR ok kh K d Ak ko Ak ok ko kk sk ko ko sk ok sk bk ek sk sk sk ok ok ek ok ko ok e ot

——% 4ddress Book (2 of 12) =

ek kA A AR kT T A AR A A A AR AT AR AR A A Ak Ak A A A AR AR A AR A kK hkkk ko kkkkkhkhhkkkkk
- *

——% File: addrmain.ada *

79

——% Author: Gerald L. Mohnkern and Beverly Mohnkern *
—_— "Applied Ada" *
—— Tab Professional and Reference Books, 1986 *

*

% Yo Yok e % e Fe e 3k Kk ek e vk ok gk e vk ok ok ok ok ok ok %k gk ok ok ok gk ok vk sk vk 3k ok ok ok ok ok ke ok ok ok ok ok ke ke ok ok ok ok ok ok e ok ok ke ke ke k

wvith TEXT I0; use TEXT_10;
vith GET_STRING;

with DISPLAY;

with ADDRDEC; use ADDRDEC;
with START UP;

with ENTER DATA;

with CREATE LIST;

with SELECT_ALTERNATIVE;
with SEARCH;

with ALTER _DATA;

wvith INSERT;

vith DELETE;

procedure ADDRESS BOOK is
NAME : STRING(1..40);
PT_LIST : A_LIST;

LEN LIST : A_LIST;

DATA : ADDRESS;

INDEX : INTEGER;

FOUND : BOOLEAN;

OP : OPERATION;

FIRST : BOOLEAN := TRUE;

procedure GET_NAME(NAME : in out STRING) 1is
COUNT : INTEGER;
begin
PUT LINE("Enter name(last, first)");
SKIP_LINE;
B.1 GET STRING(NAME, COUNT);

B.2 for I in COUNT + 1..NAME’LAST loop
B.3 NAME(I) := ' ';

end loop;

return;

end GET_NAME;

begin --Open Files and Load Index from File

A.l PT_LIST := new LIST(O);
A.2 LEN LIST := newv LIST(O);
A.3 START UP(PT_LIST, LEN LIST, FIRST);

loop
AL SELECT ALTERNATIVE(OP, FIRST);

case OP is

A.5 vhen CREATE => CREATE LIST(PT_LIST, LEN_LIST);
A.6 when ADD => ENTER DATA(DATA);
A7 INSERT(DATA, PT_LIST);
A.8 vhen CHANGE => GET_NAME(NAME);
4.9 SEARCH(SEEK_NAME => NAME,

PT_LIST => PT_LIST,
DATA => DATA,

80

INDEX => INDEX,
FOUND => FOUND);

A.10 if FOUND then

A.11 ALTER DATA(DATA);

A.12 ADDRESS IO.WRITE(DATA ID, DATA,
ADDRESS I0.POSITIVE COUNT
(PT_LIST.KEY_LIST(INDEX).PT_DATA));

A.13 else

PUT_LINE("Name not found.");
end if;

A.14 when DELETE => GET NAME(NAME);

A.15 DELETE(NAME, PT_LIST);

A.16 vhen SEARCH => GET NAME(NAME);

A.17 SEARCH(SEEK NAME => NAME,

PT LIST => PT LIST,
DATA => DATA,
INDEX => INDEX,
FOUND => FOUND);

A.18B if FOUND then

A.19 DISPLAY(DATA);

A.20 else

PUT_LINE("Name not found.");
end if;

A.21 wvhen QUIT => null;

end case;

A.22 exit when OP = QUIT;

end loop;

A.23 LEN LIST.LAST REC := PT_LIST.SIZE;

A.24 INDEX IO.VRITE(INDX ID, LEN LIST.z1l, 1);

A.25 INDEX IO.VRITE(INDX ID, PT LIST.all, 2);

A.26 INDEX I0.CLOSE(INDX ID);

A.27 ADDRESS I0.CLOSE(DATA ID);

end ADDRESS BOOK;
——kkkkkkhkhkkhkhkhkhkhkkhkhkkhkhkkhkhkhkhkhkhkkhkhkthkhhkhkhrkhkrkdkdkkhhkhkhkkrkkkhkhkhkkhkkkkkid

—-—% Address Book (3 of 12) *
= = % e %k e Tk %k ok ok S gk sk ke 3k ke % vk e ok vk Tk e sk e 3k ok ke vk ok gk e vk ok vk sk 9 ke ok gk e vk ok ke e 9k ok ok ok ok ok ok ok ok ok ok ok ke vk ok ke ke ok ok

——% *
-—% File: startup.ada *
——% Author: Gerald L. Mohnkern and Beverly Mohnkern *
- "Applied Ada" *
——* Tab Professional and Reference Books, 1986 *
——% *

——kkkddkok ko kk ko ko koo k ks k ke Ak ko kkhk kA khkh kA khkkhk kA xkhkkhkkhk*

wvith TEXT_I0; use TEXT_IO;
wvith ADDRDEC; use ADDRDEC;
with GET_STRING;
with CREATE LIST;
procedure START UP(PT_LIST : in out A LIST;
LEN LIST : in out A LIST; FIRST : in out BOOLEAN) is
RESPONSE : STRING(1..40);
LEN : NATURAL;

begin

81

e NeNeNe!
PP S

C.5

[eNeNe
0o~ o>

[eNe]
= O

0

Cc.11
C.12

c.13

__***********;****k**

—_—%

—ekkkkkkhkhkhkkhkhhkk kI hkkk Ak krkkkkkkkhkkk Ak hkdkkkdkkkkFdhkkkkdx: *xo rhhkkkhkkk

—ok kK kd Ak TR Ak Rk kR kA hk kA Ak h Ik hh kAR kA ARk hhkhhhkkkhkhkhkhkkkk Tk khkkrhkkkhkhkk

with TEXT I0; use TEXT_IO;

OPTN

82

INDX :

begin

IND
IND
PT

EX_TO.OPEN(INDX ID, INDEX_IO.INOUT_FILE, INDX_NAME);
EX I10. READ(INDX 1D, LEN LIST.all, 1);
LIST := new LIST(LEN LIST.LAST REC);

INDEX IO.READ(INDX_ID, PT_LIST.all, 2);

exc

eption

vhen INDEX IO0.NAME ERROR =>

end O

OPEN

PUT LINE("There is no Index File. Do you");

PUT_LINE("want to create one (C) or quit (Q)7");

GET_STRING(RESPONSE, LEN);

FIRST := FALSFE;

if RESPONSE(1l) = ’'Q’ or RESPCNSE(1l) = ’'q’ then

raise QUITTING;

else
CREATE_LIST(PT_LIST, LEN LIST);

end if; -

PEN_INDX;

DATA :

begin

if
A

end

exc

not ADDRESS I0.IS OPEN(DATA _ID) then

DDRESS_I10.0PEN(DATA_1ID, ADDRESS_IO.INOUT_FILE, DATA_NAME);
if;

eption

vhen ADDRESS IO0.NAME ERROR =>

end O

end S

PUT LINE("There is no Data File. Do you");
PUT_LINE("want to create one (C) or quit (Q)7");
if FIRST then
FIRST := FALSE;
else
SKIP LINE;
end if;
GET_STRING(RESPONSE, LEN);
if RESPONSE(l) = ‘Q‘ or RESPONSE(1l) = ’'q’ then
raise QUITTING;
else
INDEX_IO.DELBTE(INDX ID);
CREATE_LIST(PT_LIST,—LBN_LIST);
end if;
PEN DATA;

TART UP;
Address B ook (4 of 12) *

File: crelist.ada

Author: Gerald L. Mohnkern and Beverly Mohnkern

"Applied Ada"
Tab Professional and Reference Books, 1986

* % ¥ ¥ ok

83

with ADDRDEC; use ADDRDEC;

with ENTER DATA;

procedure CREATE LIST(PT LIST : in out A_LIST;
LEN LIST : in out A _LIST) is

RESPONSE : STRING(1..40);

INIT KEY : KEY;

DATA : ADDRESS;

begin
FILEl GEN :
begin
D.1 ADDRESS_IO.CREATE(DATA ID, ADDRESS_I0.INOUT_FILE, DATA_NAME);
cxception
D.2 vhen ADDRESS_I0.STATUS_ERROR =>
D.3 ADDRESS I0.DELETE(DATA ID);
D.& ADDRESS_I10.CREATE(DATA ID, ADDRESS_I0.INOUT FILE, DATA NAME);
end FILE1l_GENj -
FILE2 GEN :
begin
D.5 INDEX IO.CREATE(INDX_ID, INDEX_IO.INOUT_FILE, INDX_NAME);
exception
D.6 vhen INDEX_I0.STATUS ERROR =>
D.7 INDEX_I0.DELETE(INDX_ID);
D.8 INDEX_I0.CREATE(INDX_ID, INDEX I0.INOUT_FILE, INDX_NAME);
end FILE2_GEN;
D.9 ENTER DATA(DATA);
D.10 ADDRESS IO.WRITE(DATA_ID, DATA, 1);
D.11 INIT KEY.NAME := DATA.NAME;
D.12 INIT KEY.PT DATA := 1;
D.13 PT LIST := new LIST'(SIZE => 1,

LAST REC => 1,
NEXT_SPACE => O,
SPACE => (1..MAX SIZE => 0),
KEY_LIST => KEY ARRAY'(1 => INIT KEY));
D.14 LEN LIST.LAST REC := 1; -
D.15 LEN LIST.NEXT_SPACE := 0;
D.16 LEN LIST.SPACE := (LEN_LIST.SPACE'RANGE => 0);

end CREATE LIST;
= Fe e de e e e ek vk Tk ok 3k ek e e g e ok ok Tk 3k ek o ke ok ok ok e ok ok gk e ok ok ok ok ok ok sk ok ok ke ok e ok ok ok ok sk ok ok ok ok o

——% Address B ook (5 of 12) *
oKk Ak k kA A A kA kA kb kb bk d kkkddh bk hhhkhkhhkhk kA hkkhkkkkkhkkkkkhkkkkhhkh

——k *
- File: entdata.ada *
-—* Author: Gerald L. Mohnkern and Beverly Mohnkern *
——% "Applied Ada" *
--%* Tab Professional and Reference Books, 1986 *

-——%
—aFhkkFhkkkhkkhkhkkkkkkhhkkkhkkdhkkhdhkdhihkhhkhkhkhkhkhkhkkkhkhrhhkhkhkhhhkhkhhkkkhkkkkhkx

with TEXT I0; use TEXT_IO;
with ADDRDEC; use ADDRDEC;
vith GET_STRING;

E.S
E.10
E.11

E.12

-—%

vith ALTER DATA;
vith DISPLAY;

procedure ENTER DATA(DATA : out ADDRESS) is
RESPONSE : STRING(1..40);
COUNT : INTEGER;

NEV_ADDRESS :

begin

ADDRESS;

PUT LINE("Enter name of addressee(last, first).");

SKIP LINE;

GET_§TRING(NEU_ADDRESS.NAME, COUNT);

PUT LINE("Street address");

SKIP LINE;

GET_STRING(NEW_ADDRESS.STREET, COUNT);

PUT LINE("City");

SKIP LINE;

GET_STRING(NEV_ADDRESS.CITY, COUNT);

PUT LINE("Two-letter abbreviation for state");

SKIP LINE;

GET_STRING(NEW ADDRESS.STATE, COUNT);

PUT LINE/"Five digit zip code");

SKIP LINE;

GET_§TRING(NEV_ADDRESS.ZIP, COUNT) ;

PUT LINE("Phone area code");

SKIP LINE;

GET_§TRING(NEV_ADDRESS.AREA, COUNT);

PUT LINE("Phone number");

SKIP LINE;

GET_§TRING(NEV_ADDRESS.PHONE, COUNT) ;

DISPLAY(NEV_ADDRESS);
PUT LINE("Is this correct? (Y/N)");

SKIP LINE;

GET_STRING(RESPONSE, COUNT);
if RESPONSE(1) /= ‘Y’ and RESPONSE(1) /= 'y’
then ALTER DATA(NEW ADDRESS);

end if;

DATA := NEV_ADDRESS;

end ENTER DATA;

__***********;**************************t****************************

Address B ook (6 of 12)

84

*

——kkdk ko k kb khkhkhkkkkkkkhkhkhkhkkkhkkkdk bk hkhhkhhkdhkhkkdkwdhhkrhrhhhkhkhkkkhkrkx

-
——k
—_——
%

File:
Author:

display.ada
Gerald L. Mohnkern and Beverly Mohnkern
"Applied Ada"

*

*
*
*

——%k Tab Professional and Reference Books, 1986 *
—— *
ok e e e s e e gk e e sk ok gk ok ok sk vk gk e e ok sk ok ke ok ok e ok ok 3k vk ok ke ke ok vk ok ok sk ok ok ok sk ok ok ok o ok ok ok ok kook ek e ok ok ok ok

vith TEXT I0; use TEXT _I0;
vith ADDRDEC; use ADDRDEC;

procedure DISPLAY(DATA : ADDRESS) is
begin
PUT LINE(DATA.NAME);
PUT LINE(DATA.STREET);
PUT(DATA.CITY);PUT(", ");PUT(DATA.STATE);
PUT(" ");PUT(DATA.ZIP);NEV_LINE;
PUT(DATA.AREA) ; PUT("-"); PUT(DATA.PHONE) ; NEW_LINE;

o IR Bieo e Bie s
W oWt

end DISPLAY;
o kkkok kK ek kg sk ke gk ke e d e ek ok ek ok ok o e ok ok ok ok ok gk ok ok ok ke sk ok ke ok ok ok ke ok ok ok sk ok ke ok ok k ok

-k Address Book (7 of 12) *
AR A I A AR AR KA A KA AARKRAA KR AR KRR AR Ak kA Ak kA hkhkkhkkkkhkkhkhkkhkkk

% *
- File: altdata.ada *
-—% Author: Gerald L. Mohnkern and Beverly Mohnkern *
-—% "Applied Ada" *
—-—% Tab Professional and Reference Books, 1986 *
- *

— — e Je e 3k e e e ek ok ke e vk e de I o ke ke Sk e sk o sk T e sk sk e e ke gk gk ok 7k ok sk 9k dk ke e e sk ke ke 9k dk e vk e vk ke e e o ke kg o ok ok ok ok ok ok

vith TEXT I0; use TEXT I0;
with ADDRDEC; use ADDRDEC;
vith GET_ STRING;

with DISPLAY;

procedure ALTER_DATA(DATA : in out ADDRESS) is
NUM_CHAR : NATURAL;
RESPONSE : STRING(1..40);

procedure ALTER FIELD(STRG : in out STRING) is
REPLY : STRING(STRG'range) :=

(STRG' FIRST..STRG'LAST => ' /);
IN CHAR : NATURAL;

begin
H.1 PUT_LINE(STRG);
SKIP_LINE;
H.2 GET_STRING(REPLY, IN CHAR);
H.3 if IN CHAR > O then
H.4 STRG := REPLY;

end if;
end ALTER FIELD;

begin -~ ALTER_DATA
loop
PUT LINE("For each line push carriage return wvithout");
PUT_LINE("entry to leave line unchanged. Otherwise,");
PUT_LINE("enter a new line.");
NEV_LINE;

ALTER_FIE'.D/MATA.NAME);
ALTER_FIELD\UATA.STREET);
ALTER_FIELD(DATA.CITY);
ALTER_FIELD(DATA.STATE);
ALTER FIELD(DATA.ZIP);
ALTER_FIELD(DATA.AREA);
ALTER FIELD(DATA.PHONE);
PUT LINE("Address is now: ");
NEV LINE;
DISPLAY(DATA);
NEW LINE;
PUT:LINE("IS this correct? (Y/N)");
G.9 RESPONSE(1) := 'Y';
SKIP_LINE;
G.10 GET _STRING(RESPONSE, NUM CHAR);
G.11 if RESPONSE{(1) = ‘Y’ or RESPONSE(1l) = 'y’ then
return;
end if;
end loop;

o6

SN s W

[
e 2]

end ALTER DATA;
= % % ok ek % e ok ok o sk ke ke e dke sk e ke gk gk 9k ke ok T ke ok ok ok ok ke sk sk ke e kg ok e sk ke e ok v ok b ke ke e ok ok ke 3 e vk gk ok ok vk ok ok ok ek ok

- Address Book (8 of 12) *
ek ook Fod kA Ak ok ko ok ok ok ok ok ok e ok ok ok sk ok ok o ek ok ok ok ok ok ok ok ok ok ko ok e ko ok e ok ok ok ok

— *
——% File: selalte.ada *
——% Author: Gerald L. Mohnkern and Beverly Mohnkern *
——% "Applied Ada" *
—-% Tab Professional and Reference Books, 1986 *

*

%% vk e % Tk e vk v ke vk ke ke sk sk ok ok vk ke sk v sk ok ok ok ok ok ok ke ok gk vk ke ok ok ok Sk ek ok P % ok sk ke sk ok ok gk ok ok ke ok o ok ke ok e e ke ke ke o

vith TEXT_I0, ADDRDEC;
use TEXT_ 10, ADDRDEC;
vith GET_STRING;

procedure SELECT ALTERNATIVE(MODE : out OPERATION;
FIRST : in out BOOLEAN) is

RESPONSE : STRING(1..40);

COUNT : INTEGER;

begin
loop
PUT_LINE("Data base operations are:");
NEV_LINE;
PUT_LINE(" INITIALIZE DELETE");
PUT_LINE(" CHANGE SEARCH");
PUT_LINE(" ADD QUIT");
NEV_LINE;
PUT_LINE("Enter first character of selection.");
I.1 if not FIRST then
SKIP LINE;

end if;

I.2 GET_STRING(RESPONSE, COUNT);

86

I.3

I.4

o
v

P R
e e e
=0 0 N
- O

FIRST := FALSE;
case RESPONSE(1l) is
vhen I’ | 'i’ => MODE := CREATE;
PUT LINE("Initialize replaces your address files!");
PUT_LINE("Do you vant to continue? (Y/N)");
SKIP LINE;

GET STRING(RESPONSE, COUNT);
if RESPONSE(1) = 'Y' or RESPONSE(1l) = 'y’ then
return;

end if;
wvhen 'C’ | 'c¢’' => MODE := CHANGE; return;
wvhen 'A’ | ’'a' => MODE := ADD; return;
wvhen 'D’ | ’d’ => MODE := DELETE; return;
vhen 'S’ | ’s’ => MODE := SEARCH; return;
wvhen Q' | 'q’ => MODE := QUIT;

PUT_LINE("QUIT (Y/N)?");

SKIP LINE;

GET_STRING(RESPONSE, COUNT);
if RESPONSE(l) = 'Y’ or RESPONSE(l) = 'y’ then
return;
end if;
wvhen others => null;
end case;
end loop;

end SELECT ALTERNATIVE;

——Fe sk ok sk ok Sk s sk ok o T ok ok ok ek kv ek ke e e o o ko ek ok ek ek ok ok ek ek e ek ek sk ok ke ok ok

-

Address Book (9 of 12)

*

——kkkhkhkkkkhkhkhkhkkhkhkrkhkhkhkhkhkhkhkhkkhhkhkhkkrhkhkhkkhkhkhkhhhkhkhkkhhkhhkkkhkhkhkhkhkkrkkhkk

-_—%
——
-
—=%
—_
—=%

File: insert.ada

Author: Gerald L. Mohnkern and Beverly Mohnkern
"Applied Ada"
Tab Professional and Reference Books, 1986

* % % ¥ %

e KA K IR K KKK KA KT A A A A A A A A ARk A kKA KA AR AR AR KA AR AT AR AR A A KA KA R Ak h kA k ok

[SR S
N 2

vith TEXT_IO; use TEXT_I0;
with ADDRDEC; use ADDRDEC;
with DISPLAY;

with GET_STRING;

with SEARCH;

procedure INSERT(DATA : ADDRESS; PT_LIST : in out A_LIST) is
TEMP_DATA : ADDRESS; - -

INDEX, COUNT, REC_NUM : NATURAL;

FOUND : BOOLEAN; ~

RESPONSE : STRING(1..40);

NEV_LIST : A LIST;

begin
SEARCH(DATA.NAME, PT LIST, TEMP DATA, INDEX, FOUND);
if FOUND then B
PUT_LINE("There is an address for this name. It is: ");
NEV_LINE;

87

[OORy 2
[, B o

[VR AP

.12
.13

[209y &

.14
.15
.16
.17
.18
.19
.20
.21

LSRN UL UL SR SU SV I

.22
.23

(SR e

.24
.25

<

DISPLAY(TEMP DATA);

PUT_LINE("Overvrite (0) or Leave (L) this address?");

SKIP LINE;

GET STRING(RESPONSE, COUNT);

if RESPONSE(1) /= ‘0’ AND RESPONSE(1) /= 'o' then
return; --terminate insertion

else --overwrite the existing record
REC NUM := PT_LIST.KEY LIST(INDEX).PT_DATA;

end if;

else ~-- no address found

-- allocate a new index list with space for a new entry

NEV_LIST := new LIST(PT_LIST.SIZE + 1);

for I in 1..INDEX loop
-- copy entries up to one preceding insertion
NEV_LIST.KEY LIST(I) := PT_LIST.KEY_LIST(I);

end loop;

INDEX := INDEX + 1;

NEV_LIST.KEY_LIST(INDEX).NAME := DATA.NAME;

-~ Where should data be written?

if PT_LIST.NEXT_SPACE = O then -- append to file
NEV LIST.LAST REC := PT LIST.LAST_REC + 1;
REC_NUM := NEV_LIST.LAST_REC;
NEV _LIST.NEXT SPACE := 0;

else —- a deleted address can be overwritten
NEV_LIST.LAST REC := PT_LIST.LAST_REC;
REC_NUM := PT_LIST.SPACE(PT_LIST.NEXT_SPACE);
NEW LIST. NEXT SPACE := PT_LIST.NEXT_SPACE - 1;

end if;

NEV_LIST.SPACE := PT_LIST.SPACE;

NEV LIST.KEY LIST(INDEX) PT_DATA :=REC_NUM;

-—copy entries following insertion

for I in INDEX+1l..NEV LIST.SIZE loop
NEWV LIST.KEY LIST(I) := PT_LIST.KEY LIST(I - 1);

end loop;

PT _LIST := NEV_LIST; -- access nev list with PT_LIST

end if;
ADDRESS I10. VRITE(DATA ID, DATA,

ADDRESS I0.POSITIVE_COUNT(REC NUM));

end INSERT;

—kkkkkk kR hkkhkhkkkkkhkhhkkkhkhkhkhkkhkhkkkhdhkhkhkkkkhkhhkhkhkkkhkhkkkhkkkkhkkrkkkkhkk

-

Address Book (10 of 12)

*

= T3 % 3k e e e B K Tk Tk ok de ke K vk gk ok sk ok Kk ke gk vk 3k sk ok vk ke ok 9k 9k gk Sk vk vk sk Sk vk ke vk sk ok ok ok e e e ok ok ok ke gk ke ke ok ek ke sk ok ok ok

File: search.ada

Author: Gerald L. Mohnkern and Beverly Mohnkern
"Applied Ada"
Tab Professional and Reference Books, 1986

* % % * % *

——kkkk Rk kE Ak kkh kb ko k ks k kb hkkkhdd kb dddkhkhkhkhkhhdrhdrhkrhhkhhddhkdrdxk

wvith TEXT I0; use TEXT_IO;
wvith ADDRDEC; use ADDRDEC;

procedure SEARCH(SEEK NAME : STRING; PT_LIST : A_LIST;

88

-
J—)

DATA : out ADDRESS; INDEX : out NATURAL;
FOUND : out BOOLEAN) is
THIS_NAME : STRING(SEEK_NAME’RANGE);
LAST : INTEGER := O;
LLAST : INTEGER := O;
HIGH : INTEGER := PT_LIST.SIZE;
LOV : INTEGER := 1;
NEXT : INTEGER := (KIGH + LOV)/2Z;
BLANKS : ADDRESS;
begin
K.1 while (NEXT /= LAST) and (NEXT /= LLAST) loop
K.2 THIS NAME := PT_LIST.KEY LIST(NEXT).NAME;
K.3 if SEEK NAME = THIS NAME then
K.4 FOUND := TRUE;
K.5 INDEX := NEXT;
K.6 ADDRESS_IO0.READ(DATA_ID, DATA, ADDRESS_IO.
POSITIVE_COUNT(PT_LIST.KEY LIST(NEXT).PT_DATA));
return;
K.7 elsif SEEK_NAME > THIS_NAME then
K.8 LOW := NEXT;
K.9 LLAST := LAST;
K.10 LAST := NEXT;
K.11 NEXT := (NEXT + HIGH + 1)/2;
K.12 else -- SEEK_NAME < THIS NAME
K.13 HIGH := NEXT; -
K.14 LLAST := LAST;
K.15 LAST := NEXT;
K.16 NEXT := (NEXT + LOW)/2;
end if;
end loop;
K.17 FOUND := FALSE;
K.18 DATA := BLANKS;
K.19 if SEEK NAME > THIS_NAME then
K.20 INDEX := LAST;
K.21 else -- SEEK NAME < THIS NAME
K.22 INDEX := LAST - 1; -
end if;
end SEARCH;
——kkkdkkkdkhhkhkkhkhkhkkhkhkkhkhkhkhkrhkhkhkhkhkhkhkhkhkhkhkhhkhkhhhkhhhkhhkhkhkhhhkhhkhhhkhkkhkkkkk
——% Address B ook (11 of 12) ~*
e — e % Fe e Fe e ek d ok de ok ke e e e e sk ke ke e T Tk ok ok ok v ke ke ok ok ok %k 9k K ke ke Sk dk vk e sk vk vk ok gk gk e sk dk ke ok ok ok ok ok ok ke e ok ok ke ok
Y *
-——% File: delete.ada *
- Author: Gerald L. Mohnkern and Beverly Mohnkern *
——%* "Applied Ada" *
——% Tab Professional and Reference Books, 1986 *
—% *

ok kk Rk hkkkhkhkkhkkkkhkkhdkhhhkhkhkhkkdhkrhkkhkhkEhhkhkkhkhFkhkhhkhhkhkkhhhkhkkhhhkdhdks

with TEXT _I0; use TEXT_I0;
vith DISPLAY;

vith ADDRDEC; use ADDRDEC;
with GET STRING;

with SEARCH;

89

90

procedure DELETE(DEL_NAME : STRING;
PT_LIST : in out A_LIST) is

RESPONSE : STRING(1..40) := (1..40 => ' *);

TEMP_DATA : ADDRESS;

INDEX, COUNT, REC NUM : INTEGER;

FOUND : BOOLEAN;

NEW_LIST : A_LIST;

begin
L.1 SEARCH(SEEK NAME => DEL_NAME,
PT LIST => PT_LIST,
"DATA => TEMP_DATA,
INDEX => INDEX,
FOUND => FOUND);
L.2 if not FOUND then
PUT_LINE("Name not found.");

return;
L.3 else --delete index entry and address record
NEV LINE;
L.4 DISPLAY(TEMP_DATA);
PUT LINE("Do you want to delete this address? (Y/N");
SKIP LINE;
L.5 GET STRING(RESPONSE, COUNT);
L.6 if RESPONSE(1) /= ‘Y’ and RESPONSE(1) /= 'y’ then
return;
end if;
--delete entry from index
L.7 REC NUM := PT LIST.KEY LIST(INDEX).PT DATA;
L.8 for I in INDEX..PT LIST.SIZE - 1 loop
L.9 °T_LIST.KEY_LIST(I) := PT_LIST.KEY LIST(I + 1);
end loop;

--make a new list that is one

L.10 NEW _LIST := new LIST’(PT_LIST
PT_LIST.NEXT_ SPACE, PT_LIST
PT_LIST.KEY_LIST(1..PT_LIST

entry shorter

.SIZE - 1, PT LIST.LAST REC,
.SPACE, - -
.SIZE - 1));

--add record number to stack of space available

L.11 if NEW_LIST.NEXT SPACE < NEV_LIST.SPACE’LAST then
L.12 NEV_LIST.NEXT~SPACE t= NEV_LIST.NEXT_SPACE + 1;
L.13 NEW_LIST.SPACE(NEW_LIST.NEXT_SPACE) := REC_NUM;
end if;
L.14 PT LIST := NEV_LIST; --access new list with PT_LIST
end if;
end DELETE;
ek hkkkkkh bk bk kkrhhkkk kA hkhhkkhhkhkhkhhkkkhkhhkhkhkkhhhdhkhhkhkdhkFhkhkdkrhhhkhhhtdk
——% Address B ook (12 of 12) *
——kkkkkkkhkkkkhkhkkdkhkhkhkhkdhhkkhkbhkhkkhkkhhkrhkhhkrdbdhhhhrFrhkdrdhkhhrdhdkhkhkdhkkkdhkst
—k *
-—%* File: getstr.ada *
-—%* Author: Gerald L. Mohrkern and Beverly Mohnkern *
*

-=%* "Applied Ada"

Fimas

91

——% Tab Professiona’ and Reference Books, 1986 *
_—— *
-_***i***********

with TEXT_IO; use TEXT_IO;
with ADDRDEC; use ADDRDEC;
procedure GET_STRING(STR : out LINEA4O;
LEN : out NATURAL) is
CH : CHARACTER;
CUM_COUNT : NATURAL := O;

begin
M.1 while not END_OF_LINE loop
M.2 GET(CH);
M.3 CUM_COUNT := CUM_COUNT + 1;
M.4 STR(CUM COUNT) := CH;
end loop;
M.5 LEN := CUM COUNT;

end GET_STRING;

APPENDIX C

C PROGRAMS INCLUDED IN THE STUDY

92

-

/e Je e e e e e S e e v e I e e 5 e de ke Ik ko ek

* F
Fedede ke dededede e deok ko ek ke ek ke k ok

File: fastfind.c
Author: Webb Miller

Prentice-Ha

* Ok % % %

e e e J 3k v e e e ke e ko v ok ke ok ok ke de ok oke ok

fastfind - print lines ¢
Program description:

A command line has the
fastfind pat [filel]
wvhere pat is any seque

or end of a text line.
input is read. If mor
printed line is preced

Portability:
Files are read with th

int read(fd, buffer,
int fd, max_chars;
char buffer[];
Read at most max
file descriptor
is the actual nu

File lines should be sep

LR R A A I IR I R A R R E EEE R EE

% % e ek e ok ks ok ok ke e ek ke ok ok ok ok koo ok

#include <stdio.h>
#define MAX“NAME 50

/*Two buffers of length
a circle; the locatio
of the other buffer.

*/

#define TO LEFT
$define DECREMENT(x)
#define INCREMENT(x)
¢define PROG_NAME

int curbuf,
fd,
nfile,
shift[128};

"A Software Tools Sampler"

"\n" at the beguinning or end of pat matches the beguinning

fd to the buffer. The returned value

93

Khkkkkhkkkkkkhhkhkkhkhhkkkkhkhkkhkkhkkhkkkkkkkk

astfind *
Je 3k e v e ok %k ok %k gk e e de K %k v de sk g e gk T ke ok e ok ok e ok v ok ok ok ke e ok ok Kk ok

* ¥ ¥ X % ¥

11, Inc., 1987

e 3 Je e sk ke e s sk dk ke ke ok e e de sk ok ok ok sk ok ok ke ok ok ok ok vk ok ok ok e o ok ok ok e

ontaining a given pattern string.

form
[file2]

nce of characters. A character pair
If no file is named, then standard

e than one file is named, then each
ed by its file's name.

e UNIX routines:

max_chars)

chars characters from the file with
mber of characters read.

arated by ’'\n’.

I RN R R R I R

***************************************/

BUFSIZ (defined in stdio.h are arranged as
n just left of the current buffer is the end

buf[l - curbuf} + BUFSIZ - 1

if(x == buf{ecurbuf]) x = TO_LEFT; else --x
if(x == TO_LEFT) x = buf[curbuf); else ++x
"fastfindl"

/*current bufferx/
/*file descriptor*/
/*number of files*/
/*shift table*/

>

x>

> > > >

> > > > > > > > > > > >

e i S

£ N

oo~

.20
.21
.22
.23

.24
.25

.26

char buf{2]{BUFSIZ], /*text buffersx*/

*end pat, /*last position in the pattern*/
xfile, /*name of the file*/

*]im, /*limit for search*/

*pat, /*pattern*/

*pos; /*search pointer to the text*/

char prog_name[MAX NAME + 1]; /*used in error messages*/

main(argec, argv)
int argc;
char *argv(];

int i, length;
char *p;

savename (PROG_NAME); /*for error messages*/
if(arge == 1)
fatal("No pattern was given.");
pat = argv|[l};
/*handle new line characters in the pattern*/
if(pat{0] == '\\’ && pat|{l] == 'n’)
*++pat = '\n’;
if((length = strlen(pat)) == 0)
fatal("Pattern length is zero.");

if(length > 1 && pat[length - 2] == ‘\\’ && pat[length - 1] == ’n

{
pat{length - 2] = '\n’;
pat{length - 1} = '\0';

--length;

} /*end if*/
end_pat = pat + length - 1;
for(i = 0;i < 128; ++1)

shift[i] = length;
for(p = pat; *p != ‘\O'; ++p)
shift{*p & 0177] = --length;
if((nfile = argc - 2) == 0)
{
fd = 0; /*standard input*/
scan();
] /*end if*/
else
{

for(i = 2;i < arge; ++i) /*for each specified file*/
{
file = argv(i];
if((fd = open(file, 0)) < 0)

fprintf(stderr, "Zs: Cannot open Z%s.\n", PROG NAME, file);
else

{

scan();

close(fd);

} /*end else*/
} /*end for*/

94

")

)

95

} /*end elsex/
exit(0);
} /*end mainx/

/*scan - find lines in file that contains the pattern stringx/
scan()

{

int increment;

B.1 buf{1]{BUFSIZ - 1) = '\n’; /*in case the first line matches*/
B.2 curbuf = 1;
B.3 lim = pos = buf{l]; /*force an immediate call to £fill buffer()*/
for(;;)
{
/*Pos points to a text position that might end on an occurrence
of
pat. If that character differs from the last character of pat,
then pos is shifted to the next position that might yield a
match. The shifting stops when pos reaches the end of the
buffer
or an instance of the last pattern character.
*/
B.4 while(pos < lim && (increment = shift[*pos & 0177]) > 0)
B.5 pos += increment;
B.6 if(pos < 1lim) /*shifting ended with pos in buffer*/
{
B.7 if(is match())
print line();
B.8 ++pOS;
} /*end if*/
/*else past end of buffer; fill the other bufferx/
B.9 else if(fill_buffer() == EOF)
break;
} /*end for*/
} /*end scan*/
/*£ill buffer - fill other buffer; points pos to first char read;
poeint
lim just beyond the last character read; return EOF at the end of
the file.
*/
£i11 buffer()
{
Cc.1 curbuf = 1 - curbuf;
c.2 pos = buvZfcurbuf];
C.3 if((lim = pos + read(fd, pos, BUFSIZ)) == pos)
return(EQF);

return(!EOF);
} /*end fill_buffer*/

/*is_match - tell if a copy of the pattern ends at pos*/
is_match()

96

{

D.1 char *t = pos, *p = end_pat; /*already know that *t == *p */

D.2 wvhile(--p >= pat)

{
D.3 DECREMENT (t);
D.4 if(*p '= *t)

return(0);
} /*end while*/
D.5 return(l);
) /*end is_matchx/

L e

/*print_line - print the line pointed to by pos; move pos to the end

of line.
*/
print_line()
{
char *t;
E.1 if(nfile > 1)
E.2 printf("%s:", file);
E.3 if(*pos == ‘\n’) /*find the start of the linex*/
E.4 DECREMENT(pos);
E.5 for(t = pos; *t != ’\n’;)
E.6 DECREMENT(t);

i /*print the portion of the line before the matchx/
; E.7 while(t !'= pos)
{
INCREMENT(t);
putchar(*t);
} /*end while*/
/*print the portion of the line after the match*/
E.10 while(*pos != ’\n')
{
E.11 if(++pos >= lim && £ill buffer() == EOF)
break; B
E.12 putchar(*pos);
} /*end while*/
} /*end print line*/

[o)
O o

/*savename - record a program name for error messages*/
savename(name)
char *name;

{

char *strecpy();

1 if(strlen(name) <= MAX NAME)
.2 strcpy(prog_name, name);
} /*end savename*/

/*fatal - print message and die*/
fatal(msg)

e o e
W N -2

97

char *msg;

{

if(prog _name[0] != \0")
fprintf(stderr, "X%s: ",prog_name);

fprintf(stderr, "Ys\n",msg);

exit(1);

}] /*end fatal*/

JhhkkkkhkkkAk kA kA kAR A kAR Ak hhk kA h kA khhkhkkkhkhkkkhhkhkhhkhkhkhkrhkhkkkhkk

* Mailing List *
S sk ok ok ok ok ek kb ok kA AR Ak kKA KK Ak ok kKK kkkk kA kA Ak ks kkkkkkdedk sk kkk Rk *

File: mail.c *
Author: Herbert Schildt *
"Advanced Turbo C" *

Osborne McGraw-Hill, 1987 *
*

/

¥ % ¥ % o %

hhkhkhkkkkhkkhkhkhhhhkdkkhkhkhhkhkhkhkkhkhkhkkhhhkhkhkhkhkhhhkkhkhhhkhkkhhhkdbhkhhhkkkhkhkhhkixkk

#include "stdio.h"

struct address |
char .30];
char s.ceet[40];
char city([20};
char state[3}];
char zip[10]; /*hold US & Canadian zips*/
struct address *next; /*pointer to next entryx/
struct address *prior; /*pointer to previous entry*/
} list_entry;

struct address *start; /*pointer to first entry in list*/
struct address *last; /*pointer to last entry*/

void enter(), display(), search(), save(), load();

main()
{
char s[80], choice;
struct address *info;

A.1 start = last = NULL; /*zero length list*/
for(;;)
{

swvitch(menu_select())

{

A.2 case 1: enter();
break;

A.3 case 2: delete();
break;

A.4 case 3: list();
break;

A.5 case 4: search(); /*find a namex/
break;

A.6 case 5: save(); /*save list to disk*/
break;

A.7 case 6: load(); /*read from disk*/
break;

A.8 case 7: exit(0);

} /%end switch*/
} /*end forx/
} /*end main*/

98

99

/* select an operation */
menu_select()

(
char s[80];
int c¢;

printf("1l. Enter a name\n");
printf("2. Delete a name\n");
printf("3. List the file\n");
printf("4. Search\n");
printf("5. Save the file\n");

- printf("6. Load the file\n");
? printf("7. Quit\n");
do
{
printf("\nEnter your choice: ");
B.1 gets(s);
B.2 c = atoi(s);
B.3 } while(c <1 || ¢ > 7);

return c;
} /*end menu_select*/

/* enter name and address */
void enter()

{

struct address *info, *dls_store();

for(;;)
{
c.1 info = (struct address *) malloc (sizeof(list_entry));
C.2 if('info)
{
printf("\nOut of memory\n");
return;

} /*end if*/
inputs(" enter name: ",info->name,30);
if(!info->name[0]) break; /*stop entering*/

inputs("enter street: ",info->street,40);
inputs(" enter city: ",info->city,20);
inputs(" enter state: ",info->state,3);
inputs(" enter zip: ",info->zip,10);

OO0 0
WO~JOWL e W

start = dls_store(info, start);
} /*end for*/ '
} /*end enter*/

/* This function will input a string up to the length in count.
This will prevent the string from overrunning its space and
display a prompt message.

*x/

inputs(prompt, s, count)

char *prompt;
char *s;

=

1 momm tr

Mt m

oo
o

| m

tn tr1 03
[s BE NN)

Wb weN

.10
.11

.12

.13

.14
.15
.16
.17
.18

.19
.20
.21
.22

100

int count;
{
char p[255];

do
{
printf(prompt);
gets(p);
if(strlen(p) > count)
printf("\ntoo long\n");
} while(strlen(p) > count);
strepy(s,p);
} /*end inputs*/

/* This function creates a doubly linked list in sorted order. A
pointer to the first element is returned because it is possible
that a new element will be inserted at the start of the list.

*/

struct address *dls_store(i,top)

struct address *i; /*new element*/
struct address *top; /*first element in list*/

{

struct address *old, *p;

if(last == NULL) /*first element in list*/
{
i->next = NULL;
i->prior = NULL;
last = i;
return i;
} /%*end if*/
p = top; /*start at top of list*/

old = NULL;
vhile(p)
{
if(strcmp(p->name, i->name) < 0)
{
old = p;
P = p->next;
} /*end if*/
else
{
if(p->prior)
{

p->prior->next = i;
i->next = p;
i->prior = p->prior;
p->prior = i;
return top;
} /*end if*/
i->next = p; /*nev first element*/
i->prior = NULL;
p->prior = i;
return i;

as]

o)

o Mo B e Mie s | o>

3

‘1 ™

jaz e Mo Bao Bieo!
woNovWL

~N

.10

.11
.12
.13
.14
.15

.16

v w

} /*end else*/

} /*end while*/
old->next = i; /*put on end*/
i->next = NULL;
i->prior = old;
last = i;
return start;
} /*end dls store*/

/* Remove an element from the list. */
delete()

{

struct address *info, *find();

char s[80];

printf("enter name: ");
gets(s);
info = find(s);
if(info)
{
if(start == info)
{
start = info->next;
if(start)
start->prior = NULL;
else
last = NULL;
} /*end if*/
else
{
info->prior->next = info->next;
if(info != last)
info->next->prior = info->prior;
else
last = info->prior;
} /*end else*x/
free(info); /*return memory space to system*/
} /*end ifx/
} /*end delete*/

struct address *find(name)
char *name;
f

struct address *info;

info = start;
wvhile(info)
{
if(!strcmp(name, info->name))
return info;
info = info->next; /*get next address*/
] /*end whilex/
printf("name not found\n");

101

Ny b

=]
s~ W

o HH A
« o e+ e ®
oW N

K.1

return NULL; /*not found*/
} /*end find*/

list()
{
register int t;
struct address *info;

info = start;
wvhile(info)

{
display(info);
info = info->next; /*get next address*/
} /*end while*/
printf("\n\n");
} /*end list*/

void display(info)
struct address *info;
{
printf("%s\n",info->name);
printf("%s\n",info->street);
printf("%s\n",info->city);
printf("%Zs\n",info->state);
printf("%s\n",info->zip);
printf("\n\n");
} /*end display*/

void search()
{
char name[40];
struct address *info, *find();

printf("enter name to find: ");
gets(name);
if(!(info = find(name)))
printf("not found\n");
else
display(info);
} /*end search*/

void save()
{
register int t;
struct address *info;
FILE *fp;

if((fp = fopen("mail list","wb")) == NULL)
{
printf("Cannot open file\n");
exit(1l);

102

103

} /*end if*/
printf("\nSaving file\n");
2 info = start;
3 wvhile(info)
K.4 Evrite(info,sizeof(struct address),1,fp);
K.5 info = info->next; /*get next address*/
} /*end vhile*/

K.6 fclose(fp);

} /*end save*/

void load()
{
register int t;
struct address *info, *temp = NULL;
FILE *fp;

L.1 if((fp = fopen("mail list","rb")) == NULL)
{
printf("Cannot open file\n");
exit(l);
} /*end if*/
L.2 while(start)
{
info = start->next;
free(info);
start = info;
} /*end whilex/
printf("\nLoading file\n");
start = (struct address *) malloc (sizeof(struct address));
if(!start)
{
printf("Out of memory\n");
return;
] /*end if*/
L.8 info = start;
9 vhile(!feof(fp))
{
L.10 if(1 !'= fread(info,sizeof(struct address),1,fp))
break;
/*get memory for next*/
.11 info->next = (struct address *) malloc(sizeof(struct address));
.12 if(!info->next)
{
printf("Out of memory\n");
return;
} /*end if*/
L.13 info->prior = temp;
L.14 temp = info;
L.15 info = info->next;
} /*end while*/
L.16 temp->next = NULL; /*last entry*/
L.17 last = temp;
L.18 start->prior = NULL;

e
v oW

-
~N O

| qull o

L.19 fclose(fp);
} /*end load*/

104

Py

-

/**

* Text Editor *
ded g d gk Ao ek ke sk ok Rk ko ke ok ke ok e g ok ek ok ok Aok ok ok ok ek sk ke e e ok ok ok sk ko ok

*
File: editor.c *
Author: Herbert Schildt *
"Advanced Turbo C" *

Osborne McGraw-Hill, 1987 *

*

/

* % * % * *

Fhkkhkhkhkkhkhkdkdkhkdhd kA h kb k ke hh kA A kAR A A AR T A Ik kA A kA kA A Ak kh A kkkhk k%

#include "stdio.h"
t#include "ctype.h"

Struct line
{
char text[B1l];
int num; /*line number of line*/
struct line *next; /*pointer to next entry*/
struct line *prior; /*pointer to previous entryx/
};
struct line *start; /*pointer to first entry in listx/
struct line *last; /*pointer to last entry*/
struct line *dls_store(), *find();
void patchup(), delete(), list(), save(), load();

main(arge, argv)
int argce;
char *argv{];

char s{80], choice, fname[80];
struct line *info;
int linenum = 1;

A.l start = NULL; /*zero length list*/
A2 last = NULL;
A.3 if(arge == 2)
A.4 load(argv{l]); /*read file on command linex/
do
{
A.5 choice = menu_select();
switch(choice)
{

A.6 case 1: printf("Enter line number: ");
A.7 gets(s);
A.8B linenum = atoi(s);
A.9 linenum = enter(linenum);

break;
A.10 case 2: delete();

break;
A.11 case 3: list();

break;
A.12 case 4: printf("Enter filename: ");
A.13 gets(fname);

A.14 save(fname); /*write to disk*/

105

)

106
break;
A.15 case 5: printf("Enter filename: ");
A.16 gets(fname);
A.17 load(fname); /*read from disk*/
break;
A.18 case 6: exit(Q);

=~
[V

o N NN

[eNe]
o

—

[SR IV SR U8 4

} /*end switch*/
} while(l);
} /*end main*/

/* Select a menu option */
menu_select()

{
char s[80];
int c¢;

printf("1l. Enter text\n");
printf("2. Delete a line\n");
printf("3. List the file\n");
printf("4. Save the file\n");
printf("5. Load the file\n");
printf("6. Quit\n");
do

{

printf("\nEnter your choice: ");
gets(s);
c = atoi(s);
} while(ec <1 || ¢ > 6);
return c;
) /*end menu_select*/

/* Enter text at linenum */
enter(linenum)

int linenum;

{

struct line *info;

char t[81};

do /*entry loop*/
{
info = (struct line *) malloc (sizeof 'struct line));
if('info)
{
printf("\nOut of memory\n");
return linenum;
} /*end if*/
printf("%d : ",linenum);
gets(info->text);
info->num = linenum;
if(*info->text)

{
if(find(linenum))
patchup(linenum, 1); /*fix up old line numbers*/

C.11

C.12

a2
—

mmmm
wmoeswN

mm™mm
o o BEN I o ¥

E.10
E.11

E.12

if(*info->text)

start = dls_store(info);
} /*end if*/
else
break;

linenum++;

} while(l);
return linenum;
} /*end enter*/

/*This function increases line numbers by 1 of lines below an
inserted line and decreases line numbers by 1 of lines after
deleted lines.

*/

void patchup(n, incr)
int nj;
int incr;

{

struct line *i;

i = find(n);
vhile(i)
{
i->num = i->num + incr;
i = i->next;
} /%*end whilex/
} /*end patchup*/

/* Store in sorted order by line number */
struct line *dls_store(i)
struct line *ij;

{

struct line *old, *p;

if(last == NULL) /*first element in listx/
{

i->next = NULL;
i->prior = NULL;
last = i;
return ij;

} /*end if*/

p = start; /*start at top of listx*/
old = NULL;
vhile(p)
{
if(p->num < i->num)
{
old = p;
p = p->next;
} /*end ifx/
else

{
if(p->prior)

107

e Ml Bies Biles]
P

o e Bhas Bias Moo |
WO 0~

F.11

F.12
F.13
F.14
F.15
F.16

{
p->prior->next = i;
i->next = p;
i->prior = p->prior;
p->prior = i;
return start;
] /*end if*/
i->next = p; /*newv first element*/
i->prior = NULL;
p->prior = i;
return i;
} /*end elsex/
} /*end while*/
old->next = i; /*put on end*/
i->next = NULL;
i->prior = old;
last = i
return start;
) /*end dls_store*/

/* Delete a line */
void delete()

{

struct line *info;
char s[80];
int linenum;

printf("Enter line number: ");
gets(s);

linenum = atoi(s);

info = find(linenum);

if(info)
{
if(start == info)
{
start = info->next;
if(start)
start->prior = NULL;
else
last = NULL;
} /*end ifx/
else
{

info->prior->next = info->next;
if(info '= last)
info->next->prior = info->prior;
else
last = info->prior;
} /*end else*/
free(info); /*return memory space to system*/

patchup(linenum + 1, -1); /*decrement line numbers*/

} /*end if*/
} /*end delete*/

108

]

=

o0
o

[2H N~
v W

—
~N Oy

o

W

/* Find a line of text */
struct line *find(linenum)
int linenum;

{

struct line *info;

info = start;
vhile(info)
{
if(linenum == info->num)
return info;
info = info->next; /*get next address*/
} /*end whilex*/
return NULL; /*not found*/
} /*end findx/

/* List the text */
void list()

{

struct line *info;

info = start;
wvhile(irio)

printf("%d: Zs\n",info->num, info->text);
info = info->next; /*get next address*/
} /*end whilex*/

printf("\n\n");

} /*end list*/

/* Save the file */
void save(fname)
char *fname;
{
register int t;
struct line *info;
char *p;
FILE *fp;

if((fp = fopen(fname, "v")) == NULL)
{
printf("Cannot open file\n");
exit(0);
} /*end if*/
printf("\nSaving file\n");
info = start;
vhile(info)
{
p = info->text; /*convert to char pointer*/
wvhile(*p)
putc(*p++, fp); /*save byte at a time*/
putc(’\r’, fp); /*terminator*/

110

1.8 putc(’\n’, fp); /*terminator*/
1.9 info = info->next; /*get next line*/
} /*end whilex*/
I1.10 fclose(fp);
} /*end save */

/* Load the file */

void load(fname)
char *fname;
{
register int t, size, lnct;
struct line *info, *temp;
char *p;
FILE *fp;

J.1 if((fp = fopen(fname, "r")) == NULL)
{
printf("Cannot open file\n");
exit(0);
} /*end if*/
J.2 while(start) /*free any previous edit*/

{

J.3 temp = start;
J.4 start = start->next;
J.5 free(temp);

} /*end whilex/

printf("\nLoading file\n");

J.6 size = sizeof(struct line);
J.7 start = (struct line *) malloc (size);
J.8 if(!start)

{

printf("Out of memory\n");

return;

} /*end ifx*x/
J.9 info = start;
J.10 p = info->text; /*convert to char pointerx/
J.11 1lnct = 1
J.12 while((*p = getc(£fp)) != EOF)

{
J.13 if(lisprint(*p))

break;
J.14 p++;
J.15 wvhile((*p = getc(fp)) != ’\r")
J.16 p++;
J.17 getc(fp); /*throw away the \n */
J.18 *p = '\0’;
J.19 info->num = lnct++;
J.20 info->next = (struct line *) malloc (size); /*get memory for
nextx/
J.21 if('info->next)
{

printf("Out of memory\n");
return;

e

) /*end ifw/

info->prior = temp;

temp = info;

info = info->next;

p = info->text;

} /*end while*/
temp->next = NULL;
last = temp;
free(info);
start->prior = NULL;
fclose(fp;,

} /*end load*/

/*last entry*/

111

e

han |

APPENDIX D

EJTRCPY LOADING DATA TABLES

R

113

TABLE IV

ASSUMPTIONS FOR THE C PROGRAM
FASTFIND, CASE 1

Asmp.

Number Assumption

1 There exists a function called fill buffer().

2 There exists a function called is_match().

3 There exists a function called print line().

4 There exists a function called savename() with one
parameter.

5 The parameter for the function savename() has read
access only.

6 There exists a function called fatal() with one
parameter.

7 The parameter for the function fatal() has read
access only.

8 Read access to character string pointer called
end_pat that points to the last character in
pattern.

9 Read access to integer table called shift.

10 Read access to curbuf, index to the text buffer in
use.

11 Write access to curbuf, index to the text buffer in
use.

12 Read access to buf, buffers used to store tex* read
from the files being searched.

13 Write access to buf, buffers used to store text read
from the files being searched.

14 Read access to lim, character pointer that points
to the last character read from the file being
searched.

15 Write access to lim, character pointer that points
to the last character read from the file being
searched.

16 Read access to pos, character pointer that points
to the character being compared with the input
pattern.

17 Write access to pos, character pointer that points
to the character being compared with the input
pattern.

18 Function is_match returns 1 if a match to the input
pattern has been found in the file being searched,
and returns 0 otherwise.

19 Function fill_buffer returns EOF when the an

attempt is made to read from the file being
searched beyond the end of the file.

el -

——

114

TABLE IV (Continued)

Asmp.

Number Assumption

20 Read access to prog _name, character string that
holds the name of the executable program, i.e.
(fastfindl).

21 Write access to prog_name, character string that
holds the name of the executable program, i.e.
(fastfindl).

22 Write access to character string name.

23 Read access to integer variable argc.

24 Variable argc equals 1.

25 Write access to character string msg.

26 Write access to character string pointer pat that
points to the pattern to be matched.

27 Read access to character string pointer argv([].

28 Read access to character string pointer pat that
points to the pattern to be matched.

29 The first character in the string pointed at by pat
is '"\'.

30 The second character in the string pointed at by pat
is 'n’'.

31 Read access to character string pointed at by pat.

32 Write access to character string pointed at by pat.

33 Read access to integer variable length.

34 Write access to integer variable length.

35 Variable length equals 0.

36 Variable length is greater than 1.

37 The next to last character in the string pointed at
by pat is '"\'.

38 The last character in the string pointed at by pat
is 'n’'.

39 Write access to character string pointer called
end_pat that points to the last character in
pattern.

40 Read access to integer variable i.

41 Write access to integer variable 1i.

42 Variable 1 is less than 128.

43 Write access to integer array shift.

44 The character being read from the string pointed at
by the pointer p is not the line terminator ('\0').

45 Write access to character string pointer p.

46 Read access to character string pointer p.

47 Read access to the character string pointed at by p.

48 Variable nfile equals 0.

49 Read access to integer nfiles holding the number of

files to be searched for pattern.

115

TABLE IV (Continued)

Asmp.

Number Assumption

50 Write access to integer nfiles holding the number of
files to be searched for pattern.

51 Read access to character string file holding the
name of the file presently being searched.

52 Write access to character string file holding the
name of the file presently being searched.

53 Read access to file pointer fd that points to the
file presently open.

54 Write access to file pointer fd that points to the
file presently open.

55 Complement of assumption number 48.

56 i < argc, i.e., there are more files to be searched.

57 File pointed at by fd can't be opened for reading.

58 Complement of assumption number 57.

e

116
TABLE V

LIST OF ASSUMPTION NUMBERS FOR OBJECTS
IN THE C PROGRAM FASTFIND, CASE 1

Object Assumptions
A.l 4, 5

A.2 23, 24

A.3 6, 7

A.4 26, 27

A.S 29, 30, 31

A.6 32

A7 31, 33, 35, 36
A.8 5

A.9 31, 33, 36, 37, 38
A.10 31, 33

A.11 31, 33

A.12 34

A.13 28, 33, 39
A.14 40, 41, 42
A.15 33, 40, 43
A.16 28, 44, 45, 46, 47
A.17 34, 35, 43
A.18 23, 48, 49, 50
A.1l9 54

A.20 23, 49, 50, 55
A.21 40, 41, 56
A.22 27, 40, 52
A.23 51, 53, 54, 57
A.24 51

A.25 51, 53, 54, 58
A.26 53

1, 2, 3, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19
io0, 11, 12, 15, 16, 17, 53 '
8, 10, 12, 16, 28

10, 12, 14, 16, 17, 19, 49, 51

117
TABLE VI

ASSUMPTIONS FOR THE C PROGRAV
FASTFIND, CASE 2

Asmp.

Number Assumption

11

12

13

14

15

16

17

18

There exists a module called module_1 with one
parameter.

The parameter in module module_1l1 has read access
only.

There exists a function called is_match().

There exists a function called savename() with one
parameter.

The parameter for the function savename() has read
access only.

There exists a function called fatal() with one
parameter.

The parameter for the function fatal() has read
access only.

Read access to character string pointer called

end _pat that points to the last character in
pattern.

Read access to integer array called shift.

Read access to curbuf, index to the text buffer in
use.

Write access to curbuf, index to the text buffer in
use.

Read access to buf, buffers used to store text read
from the files being searched.

Write access to buf, buffers used to store text read
from the files being searched.

Read access to lim, character pointer that points
to the last character read from the file being
searched.

Write access to lim, character pointer that points
to the last character read from the file being
searched.

Read access to pos, character pointer that points
to the character being compared with the input
pattern.

Write access to pos, character pointer that points
to the character being compared with the input
pattern.

Function is_match returns 1 if a match to the input
pattern has been found in the file being searched,
and returns 0 otherwise.

118

TABLE VI (Co: -inued)

Asmp.

Number Assumption

19 Module module_1 returns EOF when the an attempt is
made to read from the file being searched beyond the
end of the file.

20 Read access to prog name, character string that
holds the name of the executable program, i.e.
(fastfindl).

21 Write access to prog_name, character string that
holds the name of the executable program, i.e.
(fastfindl).

22 Write access to character string name.

23 Read access to integer variable argc.

24 variable argc equals 1.

25 Write access to character string msg.

26 Write access to character string pointer pat that
points to the pattern to be matched.

27 Read access to character string pointer argv([].

28 Read access to character string pointer pat that
points to the pattern to be matched.

29 The first character in the string pointed at by pat
is "\'.

30 The second character in the string pointed at by pat
is 'n'.

31 Read access to character string pointed at by pat.

32 Write access to character string pointed at by pat.

33 Read access to integer variable length.

34 Write access to integer variable length.

35 Variable length equals 0.

36 Variable length is greater than 1.

37 The next to last character in the string pointed at
by pat is '"\'.

38 The last character in the string pointed at by pat
is 'n'.

39 Write access to character string pointer called
end_pat that points to the last character in
pattern.

40 Read access to integer variable 1i.

41 Write access to integer variable 1i.

42 Variable i is less than 128.

43 Write access to integer array shift.

44 The character being read from the string pointed at
by the pointer p is not the line terminator ('\0').

45 Write access to character string pointer p.

46 Read access to character string pointer p.

47 Read access to the character string pointed at by p.

48 Variable nfile equals 0.

119

TABLE VI (Continued)

Asmp.

Number Assumption

49 Read access to integer nfiles holding the number of
files to be searched for pattern.

50 Write access to integer nfiles holding the number of
files to be searched for pattern.

51 Read access to character string file holding the
name of the file presently being searched.

52 Write access to character string file holding the
name of the file presently being searched.

53 Read access to file pointer fd that points to the
file presently open.

54 Write access to file pointer fd that points to the
file presently open.

55 Complement of assumption number 48.

56 i < argc, i.e., there are more files to be searched.

57 File pointed at by fd can't be opened for reading.

58 Complement of assumption number 57.

59 Read access to character string pointed at by pos.

60 Write access to integer variable increment.

61 Read access to integer variable increment.

62 Pointer pos is less than pointer lim, i.e., the
character pointed at by pos is closer to the
beginning of the file than the character pointed at
by lim.

63 Variable increment is larger than zero.

64 Module module_1 is in fill_buffer mode.

4

TABLE VII

LIST OF ASSUMPTION NUMBERS FOR OBJECTS

IN THE C PROGRAM FASTFIND, CASE 2

120

Object Assumptions
1
: A.l 4, 5
A.2 23, 24
A.3 6, 7
A.4 26, 27
A.5 29, 30, 31
A.6 32
A.7 31, 33, 35, 36
A.8 5
A.9 31, 33, 36, 37, 38
A.10 31, 33
A.1l1 31, 33
A.12 34
; A.13 28, 33, 39
! A.1l4 40, 41, 42
A.15 33, 40, 43
A.l6 28, 44, 45, 46, 47
A.17 34, 35, 43
A.18 23, 48, 49, 50
A.19 54
A.20 23, 49, 50, 55
A.21 40, 41, 56
A.22 27, 40, 52
A.23 51, 53, 54, 57
A.24 51
A.25 51, 53, 54, 58
A.26 52
B.1 13
B.2 11
B.3 12, 15, 16, 17
B.4 9, 12, 14, 59, 60, 61, 62, 63
B.5 le, 17, 61
B.6 14, 16, 62
B.7 3, 18
B.8 16, 17
B.9 1, 2, 19, 64
CE.O 10, 11, 12, 14, 15, 16, 17, 49, 51, 53
D.0O 8, 10, 12, 16, 28
F.0 5, 21
G.0 7, 20

121
TABLE VIII

ASSUMPTIONS FOR THE C PROGRAM
FASTFIND, CASE 3

Asmp.

Number Assumption

1 Write access to character string name.

2 Read access to character string name.

3 Write access to character string prog_name.

4 Read access to integer variable argc.

5 Variable argc equals 1.

6 Write access to character string msgqg.

7 Read access to character string prog_name.

8 First character in character string prog_name is
not the line terminator ('\O0').

9 Read access to character string msg.

10 Write access to character string pointer pat that
points to the pattern to be matched.

11 R~2~ access to character string pointer argv{].

12 Re id access to character string pointer pat that
.oints to the pattern to be matched.

13 The first character in the string pointed at by pat
is '\'.

14 The second character in the string pointed at by pat
is 'n'.

15 Read access to character string pointed at by pat.

16 Write access to character string pointed at by pat.

17 Read access to integer variable length.

18 Write access to integer variable length.

19 Variable length equals O.

20 Variable length is greater than 1.

21 The next to last character in the string pointed at
by pat is '\'.

22 The last character in the string pointed at by pat
is 'n'.

23 Write access to character string pointer end_pat.

24 Read access to integer variable 1.

25 Write access to integer variable 1i.

26 Variable i is less than 128.

27 Write access to integer array shift.

28 The character being read from the string pointed at
by the pointer p is not the line terminator ('\0').

29 Write access to character string pointer p.

30 Read access to character string pointer p.

31 Read access to the character string pointed at by p.

32 Variable nfile equals 0.

33 Read access to integer variable nfile.

34 Write access to integer variable nfile.

122

TABLE VIII (Continued)

Asmp.

Number Assumption

35 Write access to integer file descriptor fd.

36 Write access to character string buf.

37 Write access to integer variable curbuf.

38 Read access to character string pointer pos.

39 Write access to character string pointer pos.

40 Write access to character string pointer lim.

41 Read access to character string buf.

42 Read access to integer array shift.

43 Read access to character string pointed at by pos.

44 Write access to integer variable increment.

45 Read access to integer variable increment.

46 pos < lim, i.e., the character pointed at by pos is
closer to the beginning of the file than the
character pointed at by 1lim.

47 Variable increment is greater than O.

48 Read access to character string pointer lim.

49 Read access to character string pointer end_pat.

50 Write access to the character string pointed at by
p.

51 Write access to the character string pointed at by
t.

52 p >= pat, i.e., the character pointed at by p is at
the same location as the character pointed at by pat
or at a location after the location of the character
pointed at by pat.

53 Read access to character string pointer t.

54 Write access to character string pointer t.

55 Read access to integer variable curbuf.

56 Variable t equals buf[curbuf].

57 Character being read from the string pointed at by
p is not the same character being read from the
string pointed at by t.

58 Complement of assumption number 52.

59 Character string pointed at by p is the same as the
character string pointed at by t.

60 nfile > 1, i.e., more than one file is to be
searched for the same pattern.

61 Read access to character string pointed at by
pointer file.

62 The character being read from the string pointed at
by pos is the newline character ('\n').

63 Variable pos equals buf{curbuf].

64 Complement of assumption number 62.

65 Read access to character string pointed at by t.

123

TABLE VIII (Continued)

Asmp.

Number Assumption

66 Pointers t and pos are not equal, i.e., point to
different locations in the file.

67 t = buf[l - curbuf] + BUFSIZ - 1.

68 The character being read from the string pointed at
by pos is not the newline character ('\n').

69 Complement of assumption number 46.

70 The end of the file being searched has been reached.

71 lim = pos, i.e., lim and pos point to the same
character in the file.

72 Read access to integer file descriptor fd.

73 Write access to string pointed at by pos.

74 Complement of assumption number 70.

75 Complement of assumption number 32.

76 i < argc, i.e., there are more files to be searched.

77 Write access to character string pointer file.

78 File pointed at by fd can't be opened for reading.

79 Complement of assumption number 78.

cemd

124
TABLE IX

LIST OF ASSUMPTION NUMBERS FOR OBJECTS
IN THE C PROGRAM FASTFIND, CASE 3

Object Assumptions

A.l 1l

A.2 4, 5

A.3 6

A.4 10, 11

A.5 13, 14, 15

A.6 16

A.7 15, 17, 18, 19

A.8 6

A.S 15, 17, 20, 21, 22
A.10 l6, 17

A.11 l6, 17

A.12 18

A.13 12, 17, 23

A.14 24, 25, 26

A.15 17, 24, 27

A.16 12, 28, 29, 30, 31
A.17 17, 18, 27, 31
A.18 4, 32, 33, 34

A.19 35

A.20 4, 33, 34, 75

A.21 24, 25, 76

A.22 11, 24, 77

A.23 35, 61, 72, 78
A.24 61

A.25 35, 61, 72, 79
A.26 72

B.1 36

B.2 37

B.3 38, 39, 40, 41

B.4 38, 42, 43, 44, 45, 46, 47, 48
B.5 38, 39, 45

B.6 38, 46, 48

B.7 59

B.8 38, 39

B.9 70

c.1 37, 55

C.2 39, 41, 55

c.3 38, 40, 70, 71, 72, 73
D.1 38, 49, 50, 51

D.2 12, 29, 30, 52

D.3 41, 53, 54, 55, 56
D.4 31, 51, 57

D.5 58, 59

125

TABLE IX (Continued)

Object Assumptions

E.1l 33, 60

E.2 61

E.3 43, 62

E.4 38, 39, 41, 55, 63
E.5 38, 54, 64, 65

E.6 41, 53, 54, 55, 56
E.7 38, 53, 66

E.S8 41, 53, 54, 55, 66
E.9 65

E.10 43, 68

E.1l1 38, 39, 48, 69, 70
E.12 43

F.1 2

F.2 2, 3

G.1 7, 8

G.2 7

G.3 9

126
TABL: X

ASSUMPTIONS FOR THE C PROGRAM
MAIL, CASE 1

Asmp.

Number Assumption

1 There exists an structure of type address with five
character string fields (name, street, city, state,
and zip) and two pointers of type address (next and
prior).

2 Write access is required to pointer called start of
type address.

3 Write access is required to pointer called last of
type address.

4 Read access is required to pointer called start of
type address.

5 Read access is required to pointer called last of
type address.

6 There exists a function called menu_select().

7 Integer value returned by function menu_select
equals 1.

8 There exists a function called enter().

9 Integer value returned by function menu_select
equals 2.

10 There exists a function called delete().

11 Integer value returned by function menu_select
equals 3.

12 There exists a function called list().

13 Integer value returned by function menu_select
equals 4.

14 There exists a function called search().

15 Integer value returned by function menu_select
equals 5.

16 There exists a function called save().

17 Integer value returned by function menu_select
equals 6.

18 There exists a function called load().

19 Integer value returned by function menu_select
equals 7.

20 There exists a function called inputs() with three
parameters.

21 The first and second parameters of the function
inputs() have read and write access. The third
parameter has only read access.

22 There exists a function called dls_store() with two
parameters.

23 Both of the parameters for the dls_store function

have read and write access.

127

TABLE X (Continued)

Asmp.

Number Assumption

24 Function dls_store() returns the address of the
first element of a doubly-linked list of structures
of type address.

25 There exists a function called find() with one
parameter.

26 The parameter for the function called find() has
read access only.

27 Function find() returns the address of the structure
holding a string that matches the input parameter or
NULL if there is no match.

28 There exists a function called display() with one
parameter.

29 The parameter for the function display() has read
access only.

30 Function menu_select () returns an integer.

—d

128

TABLE XI

LIST OF ASSUMPTION NUMBERS FOR OBJECTS

IN THE C PROGRAM MAIL, CASE 1

Object Assumptions

A.1l 1, 2, 3, 5

A.2 6, 7, 8, 30

A.3 6, 9, 10, 30

A.4 6, 11, 12, 30

A.5 6, 13, 14, 30

A.6 6, 15, 16, 30

a.7 6, 17, 18, 30

A.8 6, 19, 30

B.O 30

C.0 1, 2, 4, 20, 21, 22, 23, 24
D.0O 1, 21

E.O 1, 2, 3, 4, 5, 23, 24

F.0 1, 2, 3, 4, 5, 25, 26, 27
G.0 1, 26, 27

H.O 1, 4, 28, 29

I.0 1, 29

J.0 i, 25, 26, 27, 28, 29

K.0 1, 4

L.0 1, 2, 3, 4, 5

=

129

TABLE XII

ASSUMPTIONS FOR THE C PROGRAM
MAIL, CASE 2

Asmp.
Number

Assumption

11

12

13

14
15

16
17

i8

19

20

21

22

There exists an structure of type address with five
character string fields (name, street, city, state,
and zip) and two pointers of type address (next and
prior).

Write access is required to pointer called start of
type address.

Write access 1is required to pointer called last of
type address.

Read access is required to pointer called start of
type address.

Read access is required to pointer called last of
type address.

There exists a function called menu_select().
Function menu_select() returns an integer.

Integer value returned by function menu_select
equals 1.

There exists a module called module_1l.

Integer value returned by function menu_select
equals 2.

Integer value returned by function menu_select
equals 3.

Integer value returned by function menu_select
equals 4.

Integer value returned by function menu_select
equals 5.

There exists a function called save().

Integer value returned by function menu_select
equals 6.

There exists a function called load().

Integer value returned by function menu_select
equals 7.

There exists a function called £ind() with one
parameter.

The parameter for the function called find() has
read access only.

Function find() returns the address of the structure
holding a string that matches the input parameter or
NULL if there is no match.

There exists a function called display() with one
parameter.

The parameter for the function display() has read
access only.

U |

130

TABLE XII (Continued)

Asmp.

Number Assumption

23 Write access to character string s.

24 Write access to pointer info of type address.

25 Read access to pointer info of type address.

26 Pointer info points to the structure to be deleted
or NULL if the structure was not found.

27 Pointer info points to the first structure in the
list.

28 Read access to the field next in structure pointed
at by info.

29 List is not empty.

30 List is emnpty.

31 Write access to the field prior in structure
pointed at by start.

32 Complement of assumption number 26.

33 Read access to the field prior in structure pointed
at by info.

34 Write access to the field next in structure pointed
at by the field prior in the structure pointed at
by info.

35 Structure pointed at by info is not the last struc-
ture in the 1list.

36 Write access to the field prior in structure pointed
at by the field next in the structure pointed at by
info.

37 Pointer info points to the last structure in the
list.

38 Pointer info points to the structure being presently
looked at in the list or NULL if there are no more
structures in the list.

39 Pointer info points to the structure to be displayed

or NULL if the structure was not found.

131

TABLE XIII

LIST OF ASSUMPTION NUMBERS FOR OBJECTS

IN THE C PROGRAM MAIL, CASE 2

Object

Assumptions

.

[3K

.
HPRERRPRERPRFOUOONNOAUAE WNDRERMOIOWUMS WN
oW .

o

.

.
NP O

e B B B B Bo B B B e Bes Bas Bies B @ M oe B diiedibe - dile e gl e Jite 4

.

Hy
._l
(6]

[l S I R SR E i, ofe ofile ol AN) |
QO WNROBRWNP O W
fo)

L R
ASEESERNEEN IEN IS N R

W

O =~ = s = =
(%]
=

28,
5,
28,
37
3,
25
19,
4,
25,
21,
24,
22

DS % 8 % w m N v wm o w e

19,
39
21,

PRPRPRPONRPHRPRHERPRRPRPRRPRHOUPOURPREREPRERDHENOOOOONGOH
N~

- w W W ow

33,
25,
33,

33
20

24
38
22,
28
20,

22,

34
35
36

25

21,

25

24, 39

e

132
TABLE XIV
ASSUMPTIONS FOR THE C PROGRAM
MAIL, CASE 3

Asmp.

Number Assumption

1 Read access to pointer start of type address.

2 Write access to pointer start of type address.

3 Read access to pointer last of type address.

4 Write access to pointer last of type address.

5 Write access to string s.

6 Read access to string s.

7 Write access to integer c.

8 Read access to integer c.

9 c is in the range c < 1 or c > 7.

10 c = 1.

11 Structure of type address exists.

12 Write access to pointer info of type address.

13 Memory space for pointer info is not available.

14 Read access to pointer info of type address.

15 Write access to integer count.

16 Write access to string p.

17 Read access to string p.

18 Length of string p is larger than value in count.

19 Write access to field name in structure pointed at
by info.

20 Read access to field name in structure pointed at
by info.

21 Length of field name in structure pointed at by
info is O©.

22 Write access to field street in structure pointed
at by info.

23 Write access to field city in structure pointed

: at by info.

24 Write access to field state in structure pointed
at by info.

25 Write access to field zip in structure pointed at
by info.

26 last = NULL and list is empty.

27 Write access to field next in structure pointed at
by info.

28 Write access to field prior in structure pointed at
by info.

29 Write access to pointer p of type address.

30 Write access to pointer c¢ld of type address.

31 Pointer p points to structure being presently

looked at in the list or NULL if there are no more
structures in the list.

133

TABLE XIV (Continued)

Asnp.

Number Assumption

32
33

34

35

36

37
38

39
40
41
42
43
44
45
46
47
48

49
50

51
52
53

54

55

Read access to pointer p of type address.

Read access to field name in structure pointed at
by info.

Read access to field name in structure pointed at
by p.

Field name in structure pointed at by p precedes
alphabetically the field name in structure pointed
at by info.

Read access to field next in structure pointed at
by p.

Complement of assumption number 35.

Read access to field prior in structure pointed at
by p.

Structure pointed at by p is not the first one in
the list.

Write access to field next in structure pointed at
by the field prior in the structure pointed at by p.
Write access to field prior in structure pointed at
by p.

Read access to pointer old of type address.

c = 2.

Pointer info points to the structure being presently
loocked at in the list or NULL if there are no more
structures in the list.

String in s is the same as the string in the field
name in the structure pointed at by info.

Read access to field next in structure pointed at
by info.

Pointer info points to the structure to be deleted
or NULL if the structure was not found.

Pointer info points to the first structure in the
list.

List is not empty.

Write access to field prior in structure pointed at
by start.

Complement of assumption number 49.

Complement of assumption number 47.

Read access to field prior in structure pointed at
by info.

Write access to field next in structure pointed at
by the field prior in the structure pointed at by
info.

Structure pointed at by info is not the last struc-
ture in the list.

134

TABLE XIV (Continued)

Asmp.

Number Assumption

56 Write access to field prior in structure pointed at
by the field next in structure pointed at by info.

57 Pointer info points to the last structure in the
list.

58 Read access to field street in structure pointed at
by info.

59 Read access to field city in structure pointed at
by info.

60 Read access to field state in structure pointed at
by info.

61 Read access to field zip in structure pointed at by
info.

62 Pointer info points to the structure to be displayed
or NULL if the structure was not found.

63 c =3

64 c = 4.

€5 c =25,

66 c = 6.

67 c = 7.

68 Write access to field next in structure pointed at
by old.

69 File mail_list exists.

70 File mail_list can be opened for writing.

71 Write access to file pointer f£fp.

72 Read access to file pointer fp.

73 File mail_list can be opened for reading.

74 Pointer start points to the present structure being
looked at or NULL if there are no more structures
in the list.

75 Read access to field next in structure pointed at
by start.

76 Memory space for pointer start is not available.

77 End of the file pointed by fp has not been reached.
78 Memory space for pointer pointed by the field next
in the structure pointed at by info, is not

available.

79 Read access to pointer temp of type address.

80 Write access to pointer temp of type address.

81 Write access to field next in the structure pointed

at by temp.

M

135

TABLE XV

LIST OF ASSUMPTION NUMBERS FOR OBJECTS

IN THE C PROGRAM MAIL, CASE 3

Object Assumptions
A.l 2, 3, 4, 11
A.2 8, 10

A.3 8, 43

A.4 8, 63

A.5 8, 64

A.6 8, 65

A.7 8, 66

A.B 8, 67

B.1l 5

B.2 6, 7

B.3 8, 9

c.1 11, 12

C.2 11, 13, 14
C.3 11, 15, 19
C.4 11, 20, 21
C.5 11, 15, 22
C.6 11, 15, 23
c.7 11, 15, 24
C.8 11, 15, 25
c.9 2, 11

D.1 16

D.2 17, 18

D.3 17, 18

E.1 3, 11, 26
E.2 11, 27

E.3 11, 28

E.4 4, 11, 14
E.5 11, 14

E.6 1, 11, 29
E.7 30

E.8 31, 32

E.9 11, 31, 33, 34, 35
E.10 30, 32
E.11 11, 29, 36
E.12 37

E.13 11, 38, 39
E.14 11, 14, 38, 40
E.15 11, 27, 32
E.16 11, 28, 38
E.17 11, 14, 41
E.18 1, 11

E.19 11, 27, 32
E.20 11, 28

TABLE XV (Continued)

136

Assumptions

HREREPOONOU S WY
WN RO

e RC R R R R B B B e B I B |

!
WA
o

.

VMBEWLWNRP_BWUNHEFUSWRORESWND O S

ARXRRXRAUUYUUHHHHHIN I ZOQO O Q Q W 'y

11, 14, 41
11, 14
11, 14, 68
11, 27
11, 28, 42
4, 11, 14
1, 11
5
11, 12
11, 14, 47
1, 11, 14, 48
2, 11, 46
1, 11, 49
1, 11, 50
51
2, 11
52
11, 46, 53, 54
3, 11, 14, 55
11, 46, 53, 56

11, 57
4, 11, 53
11, 14 -
1, 11, 12
11, 14, 44
6, 11, 33, 45
11, 14

11, 12, 46
1, 11, 12
11, 14, 44
11, 14

11, 12, 46
11, 33

11, 58

11, 59

11, 60

11, 61

5

11, 12, 62
11, 62

11, 14

69, 70, 71, 72
1, 11, 12
11, 14, 44
11, 14, 72

11, 12, 46

137

TABLE XV (Continued)

Object Assumptions
K.6 72

L.1 69, 71, 72, 73
L.2 1, 11, 74

L.3 11, 12, 75

L.4 11, 14

L.5 2, 11, 14

L.6 1, 11

L.7 1, 11, 76

L.8 1, 11, 12

L.9 72, 77

L.10 11, 12, 72, 77
L.11 11, 27

L.12 11, 46, 78
L.13 11, 28, 79
L.14 11, 14, 80
L.15 11, 12, 46
L.16 11, 81

L.17 4, 11, 79

L.18 11, 50

L.19 72

TABLE XVI

ASSUMPTIONS FOR THE C PROGRAM
EDITOR, CASE 1

138

Asmp.
Number

Assumption

(O}

W o Jo

11
12
13
14
15
16

17
18

19
20
21
22
23

24

25

There exists an structure of type line with one
character string field (text), one integer field
(num) , and two pointers of type line (next and

prior).

Write access is required to pointer called start of

type line.

Write access is required to pointer called last of

type line.

Read access is required to pointer called start of

type line.

Read access is required to pointer called last of

type line.

There exists a function called menu_select().
Function menu_select() returns an integer.

Character choice equals
There exists a function
parameter.

The parameter for the function

write access.

Character choice equals
There exists a function
Character choice equals
There exists a function
Character choice equals
There exists a function
parameter.

Character choice equals
There exists a function
parameter.

Character choice equals
There exists a function

1.
called enter() with one

2.
called delete().
3.
called list().
4.
called save() with one

5.
called lozd() with one

6.
called patchup().

enter () has read and

Both parameters of the patchup() function have read

access only.

There exists a function called dls store() with one

parameter.

The parameter for the dls store() function has read

and write access.

Function dls_store() returns the address of the
first element of a doubly-linked list of structures

of type line.
There exists a function
parameter.

called find() with one

139

TABLE XVI (Continued)

Asmp.

Number Assumption

26 The parameter for the function find() has read
access only.

27 Function find() returns the address of the structure
holding the line number that matches the input
parameter or NULL if there is no match.

28 The parameter for the function save() has read
access only.

29 The parameter for the function load() has read
access only.

30 Each line stored in the field, text, in the
structure type line is terminated with a carriage
return (\r) character followed by a new line
character (\n).

31 Write access to integer variable linenum.

32 Read access to integer variable argc.

33 Integer variable argc equals 2, i.e., filename
present in command line.

34 Read access to character string argv.

35 Write access to character choice.

36 Read access to character choice.

37 Read access to integer variable linenum.

38 Write access to character string s.

39 Read access to character string s.

40 Write access to character string fname.

41 Read access to character string fname.

140

TABLE XVII

LIST OF ASSUMPTION NUMBERS FOR OBJECTS

IN THE C PROGRAM EDITOR, CASE 1

Object Assumptions

A.l 1, 2

A.2 i, 3

A.3 32, 33

A.4 18, 29, 34

A.5 6, 7, 35

A.6 8, 36

A.7 38

A.8 31, 39

A.9 9, 10, 31, 37

A.10 11, 12, 36

A.11 13, 14, 36

A.12 15, 36

A.1l3 40

A.14 16, 28, 41

A.15 17, 36

A.1l6 40

A.17 18, 29, 41

A.18 19, 36

B.O 7

C.0 i, 2, 10, 20, 21, 22, 23, 24, 25, 26, 27
D.O 1, 21, 25, 26, 27

E.O i, 2, 3, 4, 5, 23, 24
F.O i, 2, 3, 4, 5, 20, 21, 25, 26, 27
G.O 1, 4, 26, 27

H.O 1, 4

I.0 1, 4, 28, 30

J.O i, 2, 3, 4, 29, 30

141

TABLE XVIIX

ASSUMPTIONS FOR THE C PROGRAM
EDITOR, CASE 2

Asmp.
Number

Assumption

(§)]

PR PO -J0
WO

14

15
16

17

18
19

20

21

22

23
24

There exists an structure of type line with one
character string field (text), one integer field
(num), and two pointers of type line (next and
prior).

Write access is required to pointer called start of
type line.

Write access is required to pointer called last of
type line.

Read access is required to pointer called start of
type line.

Read access is required to pointer called last of
type line.

There exists a function called menu_select().
Function menu_select() returns an integer.
Character choice equals 1.

Character choice equals 2.

Character choice equals 3.

There exists a function called list().

Character choice equals 4.

There exists a function called save() with one
parameter.

The parameter for the function save() has read
access only.

Character choice equals 5.

There exists a function called load() with one
parameter.

The parameter for the function load() has read
access only.

Character choice equals 6.

There exists a function called dls_store() with one
parameter.

The parameter for the dls_store() function has read
and write access.

Function dls_store() returns the address of the
first element of a doubly-linked list of structures
of type line.

Each line stored in the field, text, in the
structure type line is terminated with a carriage
return (\r) character followed by a new line
character (\n).

Write access to integer variable linenum.

Read access to integer variable argc.

142

TABLE XVIII (Continued)

Asmp.

Number Assumption

25 Integer variable argc equals 2, i.e., filename
present in command line.

26 Read access to character string argv.

27 Write access to character choice.

28 Read access to character choice.

29 Read access to integer variable linenum.

30 Write access to character string s.

31 Read access to character string s.

32 Write access to character string fname.

33 Read access to character string fname.

34 There exists a module called module_1 with three
parameters.

35 All parameters in module module_1 have read access
only.

36 Module module_1 is in patchup mode.

37 Module module_1 is in find mode.

38 Module module_1 returns the address of the structure
holding the line number that matches the input
parameter or NULL if there is no match when
module_1 is in find mode.

39 Write access to pointer info of type line.

40 Memory space for pointer info is not available.

41 Read access to pointer info of type line.

42 Write access to field text in structure pointed at
by info.

43 Read access to field text in structure pointed at
by info.

44 The first character in the field text in the
structure pointed at by info is not the line
terminator ('\0').

45 Pointer info points to the structure in the list
whose field num has the same value as linenum.

46 Write access to integer variable increment.

47 Complement of assumption number 44.

48 Pointer info points to the structure to be deleted
or NULL if the structure was not found.

49 Pointer info points to the first structure in the
list.

50 Read access to field next in structure pointed at
by info.

51 List is not empty.

52 Write access to field prior in structure pcinted at
by start.

53 Complement of assumption number 51.

54 Complement of assumption number 48.

143

TABLE XVIII (Continued)

Asmp. .
Number Assumption

55 Read access to field prior in structure pointed at
by info.

56 Write access to field next in structure pointed at
by the field prior in the structure pointed at by
info.

57 Structure pointed at by info is not the last struc-
ture in the list.

58 Write access to field prior in structure pointed at
by the field next in structure pointed at by info.

59 Pointer info points to the last structure in the

list.

144

TABLE XIX

LIST OF ASSUMPTION NUMBERS FOR OBJECTS
IN THE C PROGRAM EDITOR, CASE 2

Object Assumptions

’
24, 25

HEROONoOWU b WD

8, 28
30
23, 31
23, 29
0 9, 28
1 10, 11, 28
A.12 12, 28
A.13 32
A.14 13, 14, 33
A.15 15, 28
A.16 32
A.17 16, 17, 33
A.18 18, 28
7
1, 39
1, 40, 41
29
1, 42
1, 29, 42
, 44
29, 34, 35, 37, 38
’
1

By

P HRPOUOITANEWNPRPO
o>
W

OO
o
w
o
~J

34, 35, 36
44

Q) ¢
PO®ONOUS WNRE O

*d:fl"!’ﬂ:f]’ﬂ"i’ﬂ*ﬂ’ﬁMUOOOOOOOOOOOOw
o

TABLE XIX (Continued)

145

Object Assumptions
F.1l1 1, 41, 54
F.12 i1, 50, 55, 56
F.13 1, 5, 41, 57
F.14 1, 50, 55, 58
F.15 1, 5, 41, 59
F.1l6 1, 3, S5

F.17 1, 41

F.18 46

H.0 1, 4

I.0 1, 4, 14, 22
J.o 1, 2, 3, 4, 17, 22

146

TABLE XX

ASSUMPTIONS FOR THE C PROGRAM
EDITOR, CASE 3

Asmp.]

Number Assumption

1 Write access to integer variable linenum.

2 Write access to pointer start of type line.

3 Write access to pointer last of type line.

4 argc = 2, i.e., filename present in command line.

5 Read access to integer variable argc.

6 Read access to character string argv.

7 Write access to character choice.

8 Write access to string s.

9 Read access to string s.

10 Write access to integer c.

11 Read access to integer c.

12 c is in the range c < 1 or c > 6.

13 choice = 1.

14 Read access to integer variable linenum.

15 choice = 2,

16 choice = 3.

17 choice = 4.

18 Write access to character string fname.

19 choice = 5.

20 choice = 6.

21 Structure of type line exists.

22 Write access to pointer info of type line.

23 Memory space for pointer info is not available.

24 Read access to pointer info of type line.

25 Write access to field text in structure pointed at
by info.

26 Read access to field text in structure pointed at
by info.

27 The first character in the field text in the
structure pointed at by info is not the line
terminator ('\0').

28 Pointer info points to the structure being presently
looked at in the list or NULL if there are no more
structures in the list.

29 Read access to field text in structure pointed at by
info.

30 The value of the integer linenum is the same as the
value in the field num in the structure pointed at
by info.

31 Read access to field next in structure pointed at by

info.

147

TABLE XX (Continued)

Asnmp.

Number Assumption

32 Pointer info points to the structure in the list
whose field num has the same value as linenum.

33 Write access to pointer i of type line.

34 Pointer i points to the structure whose field num
needs to be incremented by one.

35 Read access to pointer i1 of type line.

36 Read access to field num in the structure pointed at
by i.

37 Write access to field num in the structure pointed
at by 1i.

38 Write access to integer variable increment.

39 Read access to integer variable increment.

40 Read access to field next in the structure pointed
at by i.

41 Read access to pointer last of type line.

42 last = NULL and list is empty.

43 Write access to field next in structure pointed at
by info.

44 Write access to field prior in structure pointed at
by info.

45 Read access to pointer start of type line.

46 Write access to pointer p of type line.

47 Write access to pointer old of type line.

48 Pointer p points to structure being presently
looked at in the list or NULL if there are no more
structures in the list.

49 Read access to pointer p of type line.

50 Read access to field num in structure pointed at by
info.

51 Read access to field num in structure pointed at by
p.

52 Field num in structure pointed at by p is smaller
than the field num in structure pointed at by info.

53 Read access to field next in structure pointed at
by p.

54 Complement of assumption number 52.

55 Read access to field prior in structure pointed at
by p.

56 Structure pointed at by p is not the first one in
the list.

57 Write access to field next in structure pointed at
by the field prior in the structure pointed at by p.

58 Write access to field prior in structure pcinted at

by p.

148

TABLE XX (Continued)

Asmp. .

Number Assunmption

59 Write access to field next in structure pointed at
by old.

60 Read access to pointer old of type address.

61 Complement of assumption number 27.

62 Pointer info points to the structure to be deleted
or NULL if the structure was not found.

63 Pointer info points to the first structure in the
list.

64 List is not empty.

65 Write access to field prior in structure pointed at
by start.

66 Complement of assumption number 64.

67 Complement of assumption number 62.

68 Read access to field prior in structure pointed at
by info.

69 Write access to field next in structure pointed at
by the field prior in the structure pointed at by
info.

70 Structure pointed at by info is not the last struc-
ture in the list.

71 Write access to field prior in structure pointed at
by the field next in structure pointed at by info.

72 Pointer info points to the last structure in the
list.

73 Filename fname can be opened for writing.

74 Write access to file pointer fp.

75 Read access to character string fname.

76 Write access to character string pointer p.

77 The character pointed at by p 1s not the null
terminator ('\0').

78 Read access to character string pointer p.

79 Read access to the character pointed at by p.

80 Read access to file pointer fp.

81 Filename fname can be opened for reading.

82 Pointer start points to the present structure being
looked at or NULL if there are no more structures
in the list.

83 Write access to pointer temp of type line.

84 Read access to pointer tremp of type line.

85 Read access to field next in structure pointed at
by start.

86 Write access to register variable size.

87 Read access to register variable size.

88 Memory space for pointer - :art is not available.

89 Write access to register variable lnct.

149
TABLE XX (Continued)

Asmp.

Number Assumption

90 Write access to character pointed at by p.

91 End of the file pointed by fp has not been reached.

92 The character pointed at by p is not a printable
character.

93 The character pointed at by p is not a carriage
return ('\r').

94 Write access to field num in structure pointed at
by info.

95 Read access to register variable 1lnct.

96 Memory space for pointer pointed by the field next
in the structure pointed at by info, is not
available.

97 Read access to pointer temp of type address.

98 Write access to pointer temp of type address.

99 Write access to field next in the structure pointed
at by tenp.

100 Read access to character choice.

TABLE XXI

LIST OF ASSUMPTION NUMBERS FOR OBJECTS
IN THE C PROGRAM EDITOR, CASE 3

150

Object Assumptions
A.l 2, 21

A.2 3, 21

A.3 4, 5, 21
A.4 6

2.5 7, 11

A.6 13, 100
A.7 8

A.8 1, 9

A.S 1, 14

A.10 15, 100
A.11 16, 100
A.12 17, 100
A.13 18

A.14 75

A.15 19, 100
A.1l6 18

A.17 75

A.18 20, 100
B.1 8

B.2 9, 10

B.3 11, 12

c.1 21, 22

c.2 21, 23, 24
c.3 14

C.4 21, 25

c.5 14, 21, 25
c.6 26, 27

c.7 14, 21, 24, 32
c.s8 14, 38

C.9 26, 27
C.10 2, 21, 24
c.1l1 26, 61
c.12 1, 14

D.1 14, 21, 33
D.2 21, 34, 35
D.3 21, 36, 37, 39
D.4 21, 35, 40
E.1 21, 41, 42
E.2 21, 43

E.3 21, 44

E.4 3, 21, 24
E.5 21, 24

E.6 21, 45, 46

151

TABLE XXI (Continued)

Object Assumptions
E.7 21, 47

E.8 21, 48, 49

E.9 21, 48, 50, 51, 52
E.10 21, 47, 49
E.11 21, 46, 53
E.1l2 21, 48, 50, 51, 54
E.13 21, 55, 56
E.14 21, 24, 55, 57
E.15 21, 43, 49
E.16 21, 44, 55
E.17 21, 24, 58
E.18 21, 45

E.19 21, 43, 49
E.20 21, 44

E.21 21, 24, 58
E.22 21, 24

E.23 21, 24, 59
E.24 21, 43

E.25 21, 44, 60
E.26 3, 21, 24

E.27 21, 45

F.1 8

F.2 1,

F.3 1, 21, 22

F.4 21, 24, 62

F.5 21, 24, 45, 63
F.s 2, 21, 31

F.7 21, 45, 64

F.8 21, 65

F.o zl, 45, 66
F.l0 2, 21

F.11 21, 24, 67
F.l1l2 21, 31, 68, 69
F.13 21, 24, 41, 70
F.14 21, 31, 68, 71
F.15 21, 24, 41, 72
F.1l6 3, 21, 68

F.17 21, 24

F.18 38

G.1 1, 21, 22

G.2 21, 24, 28

G.3 14, 21, 29, 30
G.4 21, 24

G.5 21, 22, 31

H.1 21, 22, 45

H.2 21, 24, 48

152

TABLE XXI (Continued)

Object Assumptions
H.3 21, 29, 50
H.4 21, 22, 31
I.1 73, 74, 75
I.2 21, 22, 45
I.3 21, 24, 28
I.4 21, 29, 76
I.5 77, 79

1.6 76, 78, 79
I.7 80

I.8 g0

I.9 21, 22, 31
I.10 80

J.1 74, 75, 81
J.2 21, 45, 82
J.3 2., 45, 83
J.4 2, 21, 85
J.5 21, 84

J.6 21, 86

J.?7 2, 21, 87
J.s 88

J.9 21, 22, 45
J.10 21, 29, 76
J.11 89

J.12 79, 80, 90, 91
J.13 79, 92
J.14 76, 78
J.1l5 79, 80, 90, 93
J.1l6 76, 78
J.17 80

J.18 90

J.1l9 89, 94, 95
J.20 21, 43, 87
J.21 21, 31, 96
J.22 21, 44, 97
J.23 21, 24, 98
J.24 21, 22, 31
J.25 21, 29, 76
J.26 21, 99
J.27 3, 21, 97
J.28 21, 24
J.29 21, 65
J.30 80

153
TABLE XXII

ASSUMPTIONS FOR THE ADA PROGRAM
INTLIST, CASE 1

Asmp. '
Number Assumptlon

Read access to pointer Head of type link.

There exists a record of type List with an integer

field called Value and a pointer to the next record
of type link called Next.

3 Read access to the field Next in the pointer Head.

4 Write access to pointer Head of type link.

5 Read access to pointer Free of type link.

& Write access to pointer Free of type link.
-

8

LS

Write access to field Next in pointer Free.
Write access to pointer Tail of type link.

9 Write access to integer variable Number.

10 Read access to integer variable Number.

11 Integer variable Number equals -1.

12 Read access to pointer Tail of type link.

13 Write access to field Next in pointer Tail.

14 Read access to field Next in pointer Tail.

15 Read access to integer variable I.

16 Write access to integer variable I.

17 There exists a procedure called Insert_At_Head with
one parameter.

18 The parameter in procedure Insert_ At_Head has read
access only.

19 There exists a procedure called Insert_ At Tail with
one parameter.

20 The parameter in procedure Insert At _Tail has read
access only.

21 There exists a function called List_Length.

22 Function List_Length returns the number of elements
in the list, i.e.. the length of the list.

23 There exists a function called Value_At_Position
with one parameter.

24 The parameter in function Value_At_Position has read
access only.

25 Function Value At_Position returns the number stored

in the field Value in the positicn determined by the
input parameter.

26 There exists a procedure called Reclaim with one
parameter.

27 The parameter in procedure Reclaim has read access
only.

28 There exists a function called Alloc with one

parameter.

TABLE XXII (Continued)

154

Asmp.

Number Assumption

29 The parameter in function Alloc has read access
only.

30 Function Alloc returns a pointer of type Link to

the newly created record that contains the new
value and a pointer to the next record.

155
TABLE XXIII

LIST OF ASSUMPTION NUMBERS FOR OBJECTS
IN THE ADA PROGRAM INTLIST, CASE 1

Object Assumptions

ALl 9

A.2 10, 11

A.3 10, 17, 18

A4 10, 19, 20

A.5 15, 16, 21, 22

A.6 15, 23, 24, 25

A7 15, 16, 21, 22

2.8 15, 23, 24, 25

B.0O 2, 5, 6, 7, 27

C.0 2, 5, 7, 29, 30

D.0 1, 2, 3, 4, 8, 26, 27

E.O 1, 2, 4, 8, 12, 18, 28, 29, 30
F.0 1, 2, 4, 8, 13, 14, 20, 28, 29, 30
G.0 1, 2, 3, 4, 8, 26, 27

H.0 1, 2, 4, 8, 12, 13, 26, 27

I.0 l, 2, 24, 25

J.0 1, 2, 22

156

TABLE XXIV

ASSUMPTIONS FOR THE ADA PROGRAM
INTLIST, CASE 2

Asmp.
Number

Assumption

N =

21

22

23

24

25

26

27

28

Read access to pointer Head of type link.

There exists a record of type List with an integer
field called Value and a pointer to the next record
of type link called Next.

Read access to the field Next in the pointer Head.
Write access to pointer Head of type link.

Read access to pointer Free of type link.

Write access to pointer Free of type link.

Write access to field Next in pointer Free.

Write access to pointer Tail of type link.

Write access to integer variable Number.

Read access to integer variable Number.

Integer variable Number equals -1.

Read access to pointer Tail of type link.

Write access to field Next in pointer Tail.

Read access to field Next in pointer Tail.

Read access to integer variable I.

Write access to integer variable I.

There exists a function called List_Length.

Function List_Length returns the number of elements
in the 1list, i.e., the length of the list.

There exists a function called Value_ At_Position
with one parameter.

The parameter in function Value_At_Position has read
access only.

Function Value_At_Position returns the number stored
in the field Value in the position determined by the
input parameter.

There exists a procedure called Reclaim with one

parameter.

The parameter in procedure Reclaim has read access
only.

There exists a module called module_1 with two
parameters. :

The first parameter in module_1 has read access and
the second, called mode selector, has also read
access.

The mode selector in module_1 is in Insert At Head
node. -

The mode selector in module_1 is in Insert At_Tail
mode. -
Write access to pointer P of type link.

N

157

TABLE XXIV (Continued)

Asmp.
Number

Assumption

29
30
31
32
33
34
35

36
37
38

39

Read access to the field Next in the pointer Head.
Write access to pointer Head of type link.

Read access to pointer P of type link.

Pointer Head is null, i.e., list is empty.

Write access to pointer Tail of type Link.

Read access to pointer Tail of type link.

Pointers Head and Tail are equal, i.e., only one
record in list.

Complement of assumption 35.

Read access to field Next in pointer P.

The record pointed by the field Next in pointer P
is not the same record pointed at by pointer Tail.
Write access to field Next in pointer Tail.

158
TABLE XXV

LIST OF ASSUMPTION NUMBERS FOR OBJECTS
IN THE ADA PROGRAM INTLiST, CASE 2

Object Assumptions
A.l 9

A.2 10, 11

A.3 10, 24, 25, 26
A.4 10, 24, 25, 27
A.5 15, 16, 17, 18
A.6 15, 19, 20, 21
A.7 15, 16, 17, 18
A.8 15, 19, 20, 21
B.O 2, 5, 6, 7, 23
CEF.0O i, 2, 4, 5, 7, 8, 12, 13, 14, 25
D.O i, 2, 3, 4, 8, 22, 23
G.l l, 28

G.2 2, 29, 30

G.3 22, 23, 31

G.4 1, 32

G.5 33

H.1l 1, 28

H.2 1, 34, 35

H.3 30

H.4 33

H.5 1, 34, 36

H.6 2, 34, 37, 38
H.7 2, 28, 37

H.8 22, 23, 34

H.9 31, 33

H.10 2, 39

I.0 1, 2, 20, 21
J.0 1, 2, 18

159

TABLE XXVI

ASSUMPTIONS FOR THE ADA PROGRAM
INTLIST, CASE 3

Asmp.)

Number Assumption

1 Read access to pointer Head of type link.

2 Pointer Head is not null, i.e., points to the first
record in the list.

3 Write access to pointer P of type link.

4 There exists a record of type List with an integer
field called Value and a pointer to the next record
of type link called Next.

5 Read access to the field Next in the pointer Head.

6 Write access to pointer Head of type link.

7 Read access to pointer P of type link.

8 Read access to pointer Free of type link.

9 Pointer Freec is null, i.e., no records in free
list.

10 Write access to pointer Free of type link.

11 Write access to field Next in pointer Free.

12 Complement of assumption 9.

13 Write access to field Next in pointer P.

14 Write access to pointer Tail of type link.

15 Write access to integer variable Number.

16 Read access to integer variable Number.

17 Integer variable Number equals -1.

18 Write access to integer variable Value.

19 Read access to integer variable Value.

20 Pointer Tail is null, i.e., number list is empty.

21 Read access to pointer Tail of type link.

22 Pointer P is null, i.e., list is empty.

23 Complement of assumption 22.

24 Write access to field Value in pointer P.

25 Write access to field Value in pointer
Initial_Value.

26 Write access to field Next in pointer
Initial_Value.

27 kead -ccess to field Value in pointer
Initial_Value.

28 Read access to field Next in pointer
Initial_Value.

29 Complement of assumption 2.

30 Write access to field Next in pointer Tail.

31 Read access to field Next in pointer Tail.

32 Read access to integer variable I.

33 Write access to integer variable I.

34 Read access to natural variable LEN.

160
TABLE XXVI (Continued)
Asmp.)
Number Assumption
35 Write access to natural variable LEN.
36 Read access to field Next in pointer P.
37 Read access to positive variable Pos.
38 Write access to positive variable Pos.
39 Read access to field Value in pointer P.
40 Pointers Head and Tail are egqual, i.e., only one
record in list. '
41 Complement of assumption 40.
42 The record pointed by the field Next in pointer P

1s not the same record pointed at by pointer Tail.

161
TABLE XXVII

LIST OF ASSUMPTION NUMBERS FOR OBJECTS
IN THE ADA PROGRAM INTLIST, CASE 3

Object Assumptions

15

16, 17

16, 18

16, 18

32, 33, 34
32, 38, 39
32, 33, 34
32, 38, 39
9

10

11

12

8, 13
10

8

22

4

23

10, 11
13, 24, 27, 28

.
o]

D L T L O O O

L]
WORUOULEWONFPOOUMBEWNDHFWNHEOAODWUNREPEPNOAUDLDWNDROAODD WNRPONOOWUM D W R
- W™
w

.
(@]
N
[aad

6, 19, 25, 26

19, 25, 26, 30
14, 31

L R S T L O

&S~

-~ 0~

EEEE.:L‘.O.O.OSDED:Tl:ﬂ:‘d"i%:UMMMOUUUUOOOOOOOUJUJmwwmw:l"?’ﬁ’?’?’}‘?’

ORPERENMRAMPRPLARRPNRRNIORERP I8 JWIWI S0
o

162

TABLE XXVII (Continued)

Object Assumptions
H.4 14

H.5 1, 21, 41
H.6 4, 21, 36, 42
H.7 3, 4, 36
H.8 3, 21

H.9 7, 14

H.1 4, 30

I.1 1, 3

I.2 32, 33, 37
I.3 3, 4, 36
I.4 4, 39

J.1 1, 3

J.2 7, 23

J.3 34, 35

J.4 3, 4, 36
J.5 34

163
TABLE XXVIII

ASSUMPTIONS FOR THE ADA PROGRAM
CALC, CASE 1

Asmp.)
Number Assumption

1 Write access to string variable STR.

2 Write access to float variable NUM_VAL.

3 Write access to boolean variable FIRST.

4 Read access to string variable STR.

5 The fircst character in string variable STR is not
nqn or uQn .

6 Read access to boolean variable FIRST.

7 Boolean variable FIRST is not true.

8 Write access to natural variable LEN.

9 The first character in string variable STR is either
a digit, a ".", or a "-" and the value of the
natural variable LEN is larger than one.

10 Read access to natural variable LEN.

11 Read access to natural variable TOP.

12 Read access to natural constant LIMIT.

13 Write access to natural variable TOP.

14 Write access to array of float STACK.

15 Write access to float variable NUM.

16 Read access to float variable NUM_VAL.

17 Read access to float variable NUM.

18 Complement of assumption 9.

1% Read access to array of float STACK.

20 Exception INVALID_ENTRY has been raised.

21 Exception NUMERIC_ERROR has been raised.

22 There exists a procedure called GET_STRING with two
parameters.

23 Both of the parameters in procedure GET_STRING have
write access only.

24 There exists a procedure called STR_TO_FLT with
three parameters.

25 Two parameters in procedure STR_TO_FLT have read
access and the third parameter has write access.

26 There exists a procedure called PUSH with one paran.

27 The p7.ameter in procedure PUSH has read access.

28 There 2:xists a procedure called OPERATE with one
parameter.

29 The parameter in procedure OPERATE has read access.

30 There exists a procedure called POP with one param.

31 The parameter in procedure POP has write access.

32 There exists a procedure called CLEAR with no

parameters.

TABLE

XXIX

LIST OF ASSUMPTION NUMBERS FOR OBJECTS
IN THE ADA PROGRAM CALC, CASE 1

164

Object

Assumptions

P:ﬁh10(3UJb:V>'?:P3*>3’w3’w
OOOOOOHH\om\lo\mAuN;_J

- O

4, 5
6, 7

1, 8, 22, 23

3

4, 9

2, 4, 10, 24, 25
16, 26, 27

4, 18

4, 28, 29

20

21

26, 27, 29, 30, 31,
11, 12, 13, 14, 17,

11, 13, 15, 19, 31
13
23
25

32
27

165

TABLE XXX

ASSUMPTIONS FOR THE ADA PROGRAM
CALC, CASE 2

Asnmp.)

Number Assumption

1 Write access to string variable STR.

2 Write access to float variable NUM_VAL.

3 Write access to boolean variable FIRST.

4 Read access to string variable STR.

5 The first character in str.ing variable STR is not
llqll or IIQII.

6 Read access to boolean variable FIRST.

7 Boolean variable FIRST is not true.

8 Write access to natural variable LEN.

9 The first character in string variable STR is either
a digit, a ".", or a "-" and the value of the
natural variable LEN 1is larger than one.

10 Read access to natural variable LEN.

11 Read access to float variable NUM_VAL.

12 Complement of assumption 9.

13 Exception INVALID_ENTRY has been raised.

14 Exception NUMERIC_ERROR has been raised.

15 There exists a procedure called GET_STRING with two
parameters.

16 Both of the parameters in procedure GET_STRING have
write access only.

17 There exists a procedure called STR_TO_FLT with
three parameters.

18 Two parameters in procedure STR_TO_FLT have read
access and the third parameter has write access.

19 Read access to float variable X.

20 Write access to string variable STRG.

21 Read access to string variable STRG.

22 The first character in string variable STRG is "+".

23 The first character in string variable STRG is "-".

24 The first character in string variable STRG is "=*",

25 The first character in string variable STRG is "/".

26 The first character in string variable STRG is "r"
or ||RH.

27 The first character in string variable STRG is "g"
or IIDH'

28 The first character in string variable STRG is "?2".

29 The first character in string variable STRG 1is 'g"
or "QU.

30 The first character in string variable STRG is not
l|+n, n_n, u*n, ||/n’ nrn’ an’ "d", “D", n?n, uqu,

nor

llQII .

166

TABLE XXX (Continued)

Asnp.

Number Assumption

31 Read access to float variable Y.

32 Write access to float variable Y.

33 There exists a module called module_l with two
parameters.

34 The first parameter in module_1 has read and write
access and the second, called mode selector, has
read access only.

35 The mode selector in module_1 is in PUSH mode.

36 The mode selector in module_l is in POP mode.

37 The mode selector in module_1 is in CLEAR mode.

167
TABLE XXXI

LIST OF ASSUMPTION NUMBERS FOR OBJECTS
IN THE ADA PROGRAM CALC, CASE 2

Object Assumptions

A.l 4, 5

A.2 6, 7

A.3 1, 8, 15, 16

A.4 3

A.5 4,

A.6 2, 4, 10, 17, 18

A7 11, 33, 34, 35

A.8 4, 12

A.9 4, 20

A.10 13

A.l1l 14

B.1 19, 21, 22, 31, 32, 33, 34, 36
B.2 31, 33, 34, 35

B.3 19, 21, 23, 21, 32, 33, 34, 36
B.4 31, 33, 34, 35

B.5 19, 21, 24, 31, 32, 33, 34, 36
B.6 31, 33, 34, 35

B.7 19, 21, 25, 31, 32, 33, 34, 36
B.8 31, 33, 34, 35

B.9 21, 26, 33, 34, 37

B.10 19, 21, 27, 33, 34, 36

.11 21, 28

B.12 21, 29

B.13 21, 30

CDE. O 34

F.O 16

v |

168
TABLE XXXII

ASSUMPTIONS FOR THE ADA PROGRAM
CALC, CASE 3

Asmp.
Number

Assumption

[S 0 SR OC B S

15
16
17
i8
19
20
21
22
23
24

25
26
27
28
29
30
31
32

33
34
35
36
37

Write access to string variable STR.

Write access to float variable NUM_VAL.

Write access to boolean variable FIRST.

Read access to string variable STR.

The first character in string variable STR is not
nqu or "“Q".

Read access to boolean variable FIRST.

Boolean variable FIRST is not true.

Write access to natural variable LEN.

Write access to natural variable CUM_COUNT.
Boolean variable END_OF_LINE is not true.

Write access to character variable CH.

Read access to natural variable CUM_COUNT.

Read access to character variable CH.

The first character in string variable STR is either
a digit, a ".", or a "-" and the value of the
natural variable LEN is larger than one.

Read access to natural variable LEN.

Write access to float variable X.

Write access to float variable SIGN.

Write access to boolean variable DECIMAL_POINT.
Write access to integer variable COUNT.

Write access to integer variable EXP.

Write access to integer variable EXP_SIGN.

Write access to integer variable INDEX.

The first character in string variable STR is a "-".
Integer variable INDEX is smaller than or egual to
natural variable LEN.

Read access to integer variable INDEX.

The character in character variable CH is a ".".
The character in character variable CH is a digit.
Read access to float variable X.

Boolean variable DECIMAL_POINT is true.

Read access to boolean variable DECIMAL_POINT.
Read access to integer variable COUNT.

The character in character variable CH 1is either an
lle'l or an IIE" .

Read access to integer variable JDEX.

Write actess to integer variable JDEX.

Write access to character variable CHR.

Read access to character variable CHR.

The character in character variable CER is a digit.

168

TABLE XXXII (Continued)

Asnp.
Number Assumption

38 Read access to integer variable EXP.

39 The character in character variable CHR is the "w-',

40 The character in character variable CHR is not the
"-" nor a digit.

41 The character in character variable CHR is not the
n.n’ a dlglt, IIEII' nor “e".

42 Read access to float variable SIGN.

43 Read access to integer variable EXP_SIGN.

44 Read access to integer variable EXP.

45 Read access to natural variable TOP.

46 Read access to natural constant LIMIT.

47 Integer variables TOP and LIMIT are equal.

48 Complement of assumption 47.

49 Write access to natural varialle TOP.

50 Write access to array of float STACK.

51 Write access to float variable NUM.

52 Read access to float variable NUM_VAL.

53 Read access to float variable NUM.

54 Complement of assumption 14.

55 Write access to string variable STRG.

56 Read access *to string variable STRG.

57 The first character in string variable STRG is "+'".

58 The first character in string variable STRG is "-".

59 The first character in string variable STRG isg "=*",

60 The first character in string variable STRG is "/".

61 The first character in string variable STRG is "r"
or llRll.

62 The first character in string variable STRG is "“g"
or IIDII.

63 The first character in string variable STRG is "?".

64 The first character in string variable STRG is "g"
or uQn.

65 The first character in string variable STRG is not
l|+l|, II._", ”*ll’ ll/", Hrll, "R”, Ildll’ llD'I, II?H’ 'IOHI
nor "Q". .

56 Read access to float variable Y.

67 Write access to float variable Y.

68 Integer variable TOP eguals 0.

69 Complement of assumption 68.

70 Read access to array of float STACK.

71 Exception INVALID_ENTRY has been raised.

72 Exception NUMERIC_ERRCR has been raised.

TABLE XXXIII

LIST OF ASSUMPTION NUMBERS FOR OBJECTS
IN THE ADA PROGRAM CALC, CASE 3

170

Object

Assumptions

-~ W o~

LT Y

WONOATMDEWNERRE WOV JAUTN WN R
= O
~3
N

wgnp:wtnpiw:nuautwtnnfblv:vzvv

VMELWNREFONONNERERP OO DS WN R R R e
W= o

o §)]

U (o}

~ -

17
22
15,
4,

F)P(DF)Q’ﬂhiﬂ'ﬁ"1MKDCJO!J()O(ﬁf)m

12
12,
12
23

24,
11,

47
48

13

25
25

57,
58,
59,

60,

62

66,
66,
66,

66,

67

67

67

67

TABLE XXXIII (Continued)

171

Object Assumptions
G.6 13, 18, 26

G.7 13, 16, 27, 28
G.8 29, 30

G.9 19, 31

G.10 13, 32

G.1ll1 15, 25, 33, 34
G.12 4, 33, 35

G.13 20, 36, 37, 38
G.1l4 21, 36, 39
G.15 36, 40

G.16 15, 22

G.17 13, 41

G.18 22, 25

G.19 2, 28, 31, 42, 43, 44

172
TABLE XXXIV

ASSUMPTIONS FOR THE ADA PROGRAM
ADDRESS, CASE 1

Asmp.

Number Assumption

1 Write access to pointer PT_LIST of type A_LIST.

2 There exists a record of type LIST with two integer
fields called LAST_REC and NEXT_SPACE respectively,
a field called SPACE which is an array of type
integer, and a field called KEY_LIST which is an
array of type KEY.

3 There exists a record of type KEY with a field
called NAME of character string type and a field
PT_DATA of type positive.

4 Read access to constant MAX_SIZE.

5 Write access to pointer LEN_LIST of type A_LIST.

6 Read access to pointer LEN_LIST of type A_LIST.

7 Read access to pointer PT_LIST of type A_LIST.

8 Read access to boolean variable FIRST.

9 Write access to boolean variable FIRST.

10 Write access to variable OP of type OPERATION.

11 Read access to variable OP of type OPERATION.

12 The value in variable OP is equal to CREATE.

13 The value in variable OP is equal to ADD.

14 The value in variable OP is equal to CHANGE.

15 The value in variable OP is equal to DELETE.

16 The value in variable OP is equal to SEARCH.

17 The value in variable OP is equal to QUIT.

18 Write access to variable DATA of type ADDRESS.

19 Read access to variable DATA of type ADDRESS.

20 Write access to character string variable NAME.

21 Read access to character string variable NAME.

22 Write access to integer variable INDEX.

23 Write access to boolean variable FOUND.

24 Boolean variable FOUND is true.

25 Read access to boolean variable FOUND.

26 There exists a record of type ADDRESS with the
following seven character string fields: NAME,
STREET, CITY, STATE, ZIP, AREA, and PHONE.

27 Read access to file pointer DATA_ID of type
ADDRESS_IO.

28 Read access to field PT_DATA in the record pointed
at by the field KEY_LIST in the record pointed at
by pointer PT_LIST.

29 Read access to integer variable INDEX.

30 Boolean variable FOUND is not true.

-1

173

TABLE XXXIV (Continued)

Asmp.

Number Assumption

31 Write access to field LAST_REC in record pointed at
pointer LEN_LIST.

32 Read access to field SIZE in record pointed at by
pointer PT_LIST.

33 Read access to file pointer INDX_IL of type
INDEX_IO.

34 Read access to all fields in record pointed at by
pointer LEN_LIST.

35 Read access to all fields in record pointed at by
pointer PT_LIST.

36 Read access to character string constant INDX_NAME.

37 Write access to file pointer DATA_1D of type
ADDRESS_IO.

38 Write access to file pointer INDX_ID of type
INDEX_IO. ,

39 There exists a procedure GET_NAME with one
parameter.

40 The parameter in the procedure GET_NAME has read
and write access.

41 Procedure GET_NAME returns a character string
obtained from standard input.

42 There exists a procedure START_UP with three
parameters.

43 All cf the three parameters in procedure START_UP
have read and write access.

44 Procedure START UP returns a pointer to the first
record of data, a pointer to the first record of
the index, and a boolean indicator that indicates
if input has been accepted.

45 There exists a procedure CREATE_LIST with two
parameters.

46 Both parameters in procedure CREATE_LIST have read
and write access.

47 Procedure CREATE_LIST returns a pointer to the
created list of data records and a pointer to the
list of index records.

48 There exists a procedure ENTER_DATA with one
parameter.

49 The parameter in procedure ENTER_DATA has write
access only.

50 Procedure ENTER_DATA returns a pointer to a
newly created data record.

51 There exists a procedure DISPLAY with one

parameter.

174

TABLE XXXIV (Continued)

Asmp.
Number

Assumption

52

53

54

55

56

57

58

59

60

€1

62
63

64

€5

66

67

68

69

70

71

72

The parameter in procedure DISPLAY has read access

only.
There exists a procedure ALTER_DATA with cne

parameter.

The parameter in procedure ALTER_DATA has read and
write access.

Procedure ALTER_DATA returns a pointer to the
record for which the data has been altered.

There exists a procedure ALTER_FIELD with one
parameter.

The parameter in procedure ALTER_FIELD has read and
write access. :

Procedure ALTER_FIELD returns a new character
string accepted from standard input or the same
character string received as input if no changes
were desired.

There exists a procedure SELECT_ALTERNATIVE with two
parameters.

One parameter in procedure SELECT_ALTERNATIVE has
both read and write access, the other has only
write access.

Procedure SELECT_ALTERNATIVE returns the type of
operation desired to be performed on the database.
There exists a procedure INSERT with two parameters.
One parameter in procedure INSERT has both read and
write access, the other has only read access.
Procedure INSERT returns a pointer to the first
record after the insertion has taken place.

There exists a procedure SEARCH with five
parameters.

Two parameters in procedure SEARCH have read access
only, the other three have both read and write
access.

Procedure SEARCH searches the index for a name and
if found, returns the address of the record and
indicates that the record was found.

There exists a procedure DELETE with two parameters.
One parameter in procedure DELETE has both read andg
write access, the other has only read access.
Procedure DELETE returns a pointer to the first
record after the deletion has taken place.

There exists a procedure GET_STRING with two
parameters.

Both parameters in procedure GET_STRING have write
access only.

175

TABLE XXXIV (Continued)

Asmp.
Number Assumption

73 Procedure GET_STRING returns a character string
obtained from standard input and the number of
characters in the returned string.

176
TABLE XXXV

LIST OF ASSUMPTION NUMBERS FOR OBJECTS
IN THE ADA PROGRAM ADDRESS, CASE 1

Object Assumptions

A.l 1, 2, 3, 4

A.2 2, 3, 4, 5

A.3 1, 5, 6, 7, 8, 9, 42, 43, 44

A.4 8, 9, 10, 59, 60, 61

A.5 i, 5, 6, 7, 11, 12, 45, 46, 47

A.6 11, 13, 18, 48, 49, 50

A.7 1, 7, 19, 62, 63, 64

A.8 11, 14, 20, 21, 39, 40, 41

A.9 7, 18, 21, 22, 23, 65, 66, 67

A.1l0 24, 25

A.11 18, 19, 53, 54, 55

A.12 2, 3, 19, 27, 28, 29

A.13 25, 30

A.1l4 11, 15, 20, 21, 39, 40, 41

2.15 1, 7, 21, 68, 69, 70

A.16 11, 16, 20, 21, 39, 40, 41

A.17 7, 18, 21, 22, 23, 65, 66, 67

A.18 24, 25

A.19 19, 51, 52

A.20 25, 30

A.21 11, 17

A.22 11, 17

A.23 2, 31, 32

A.24 2, 33, 34

A.25 2, 33, 35

A.26 33

A.27 27

B.O 40, 41, 71, 72, 73

C.0 2, 27, 33, 36, 37, 38, 43, 44, 45, 46, 47, 71,
72

D.0O 2, 3, 4, 26, 27, 36, 37, 38, 46, 47, 48, 4S9, 50

E.O 26, 49, 50, 51, 52, 53, 54, 55

F.o 26, 52

G.0 26, 51, 52, 54, 55, 56, 57, 58, 71, 72, 73

H.O 57, 58, 71, 72, 73

1.0 60, 61, 71, 72, 73

J.o 2, 3, 4, 26, 27, 51, 52, 63, 64, 65, 66, 67, 71,
72, 73

K.0 2, 66, 67

L.o 2, 3, 4, 51, 52, 65, 66, 67, 69, 70, 71, 72, 73

M.0 72, 73

e

TABLE XXXVI

177

ASSUMPTIONS FOR THE ADA PROGRAM
CASE 2

ADDRESS,

Asmp. i

Number Assumption

1 Write access to pointer PT_LIST of type A_LIST.

2 There exists a record of type LIST with two integer
fields called LAST_REC and NEXT_SPACE respectively,
a field called SPACE which is an array of type
integer, and a field called KEY_LIST which is an
array of type KEY.

3 There exists a record of type KEY with a field
called NAME of character string type and a field
PT_DATA of type positive.

4 Read access to constant MAX_SIZE.

5 Write access to pointer LEN_LIST of type A_LIST.

6 Read access to pointer LEN_LIST of type A_LIST.

7 Read access to pointer PT_LIST of type A_LIST.

8 Read access to boolean variable FIRST.

9 Write access to boolean variable FIRST.

10 Write access to variable OP of type OPERATION.

11 Read access to variable OP of type OPERATION.

12 The value in variable OP is equal to CREATE.

13 The value in variable OP is equal to ADD.

14 The value in variable OP is equal to CHANGE.

15 The value in variable OP is equal to DELETE.

16 The value in variable OP is equal to SEARCH.

17 The value in variable OP is equal to QUIT.

18 Write access to variable DATA of type ADDRESS.

19 Read access to variable DATA of type ADDRESS.

20 Write access to character string variable NAME.

21 Read access to character string variable NAME.

22 Write access to integer variable INDEX.

23 Write access to boolean variable FOUND.

24 Boolean variable FOUND is true.

25 Read access to boolean variable FOUND.

26 There exists a record of type ADDRESS with the
following seven character string fields: NAME,
STREET, CITY, STATE, ZIP, AREA, and PHONE.

27 Read access to file pointer DATA_ID of type
ADDRESS_IO.

28 Read access to field PT_DATA in the record pointed
at by the field KEY_LIST in the record pointed at
by pointer PT_LIST.

29 Read access to integer variable INDEX.

30 Boolean variable FOUND 1is not true.

178

TABLE XXXVI (Continued)

Asmp.)
Number Assumption

31 Write access to field LAST REC in record pointed at
pointer LEN_LIST.

32 Read access to field SIZE in record pointed at by
pointer PT_LIST.

33 Read access to file pointer INDX_ID of type
INDEX_IO.

34 Read access to all fields in record pointed at by
pointer LEN_LIST.

35 Read access to all fields in record pointed at by
pointer PT_LIST.

36 Read access to character string constant INDX_NAME.

37 Write access to file pointer DATA_ID of type
ADDRESS_1IO.

38 Write access to file pointer INDX_ID of type
INDEX_IO.

39 There exists a procedure GET_NAME with one
parameter.

40 The parameter in the procedure GET_NAME has read
and write access.

41 Procedure GET_NAME returns a character string
obtained from standard input.

42 There exists a procedure START_UP with three
parameters.

43 All of the three parameters in procedure START_UP
have read and write access.

44 Procedure START UP returns a pointer to the first

record of data, a pointer to the first record of
the index, and a boolean indicator that indicates
if input has been accepted.

45 There exists a procedure CREATE_LIST with two
parameters.

46 Both parameters in procedure CREATE_LIST have read
and write access.

47 Procedure CREATE_LIST returns a pointer to the

created list of data records and a pointer to the
list of index records.

48 There exists a procedure ENTER_DATA with one
parameter.

49 The parameter in procedure ENTER_DATA has write
access only.

50 Procedure ENTER_DATA returns a pointer to a
newly created data record.

51 There exists a procedure DISPLAY with one

parameter.

179

TABLE XXXVI (Continued)

Asmp. .
Number Assumption

52 The parameter in procedure DISPLAY has read access
only.

53 Theie exists a module called MODULE_1 with
one parameter.

54 The parameter in module MODULE_1 has read and write
access.

55 Module MODULE_1 returns a pointer to the record for
which the data has been altered.

56 There exists a procedure SELECT_ALTERNATIVE with two
paranmeters.

57 One parameter in procedure SELECT_ALTERNATIVE has

both read and write access, the other has only
write access.

58 Procedure SELECT_ALTERNATIVE returns the type of
operation desired to be performed on the database.

59 There exists a procedure SEARCH with five
parameters.

60 Two parameters in procedure SEARCH have read access
only, the other three have both read and write
access.

61 Procedure SEARCH searches the index for a name and

if found, returns the address of the record and
indicates that the record was found.

62 There exists a procedure GET_STRING with two
parameters.

63 Both parameters in procedure GET_STRING have write
access only.

64 Procedure GET_STRING returns a character string

obtained from standard input and the number of
characters in the returned string.

65 Write access to integer variakble COUNT.

66 Write access to integer variable I.

67 Read access to integer variable I.

68 Write access to character string RESPONSE.

69 Read access to character string RESPONSE.

70 Read access to field NAME in record pointed at by
pointer DATA of type ADDRESS.

71 Read access to field NAME in record pointed at by
pointer DATA.

72 The first character in character string RESPONSE 1is
either a "y" or a "y".

73 Write access to pointer TEMP_DATA of type ADDRESS.

74 Read access to pointer TEMP_DATA of type ADDRESS.

75 The first character in character string RESPONSE 1is

either a "o" or a "O".

et

180

TABLE XXXVI (Continued)

Asmp.)

Number Assumption

76 Complement of assumption number 111.

77 Write access to natural variable REC_NUM.

78 Write access to pointer NEW_LIST of type A_LIST.

79 Read access to field KEY_LIST in record pointed at
by pointer PT_LIST.

80 Write access to field KEY_LIST in record pointed at
by pointer NEW_LIST.

81 Write access to field NAME pointed at by the field
KEY_LIST ir. the record pointed at by pointer
NEW_LIST.

82 Field NEXT_SPACE in record pointed at by pointer
PT_LIST is zero.

83 Read access to field NEXT_SPACE in record pointed at
by pointer NEW_LIST.

84 Write access to field LAST REC in record pointed at
by pointer NEW_LIST.

85 Read access to field LAST REC in record pointed at
by pointer PT_LIST.

86 Read access to field LAST REC in record pointed at
by pointer NEW_LIST.

87 Write access to field NEXT_SPACE in record pointed
at by pointer NEW_LIST.

88 Complement of assumption number 118.

89 Read access to field SPACE in record pointed at by
pointer PT_LIST.

Q0 Read access to field NEXT_SPACE in record pointed
at by pointer PT_LIST.

91 Write access to field SPACE in record pointed at by
pointer NEW_LIST.

g2 Read access to natural variable REC_NUM.

93 Write access to field PT_DATA in record pointed at
by f£1d KEY_LIST in rec. pointed at by ptr. NEW_LIST.

94 Read access tc field SIZE in record pointed at by
pointer NEW_LIST.

95 Read access to pointer NEW_LIST of type A_ LIST.

96 Read access to natural variable REC_NUM.

97 Read access to character string DEL_NAME.

98 Write access to field KEY_LIST in record pointed at
by pointer PT_LIST.

99 Read access to field SPACE in record pointed at by
pointer NEW_LIST.

100 The last entry in the arrayed field SPACE in record

pointed at by ptr. NEW_LIST is larger than the field
NEXT_SPACE in record pointed at by pointer NEW_LIST.

TABLE XXXVII

LIST OF ASSUMPTION NUMBERS FOR OBJECTS

IN THE ADA PROGRAM ADDRESS, CASE 2
Object Assumptions
A.l 1, 2, 3, 4
A.2 2, 3, 4, 5
A.3 i, 5, 6, 7, 8, 9, 42, 43, 44
A.4 8, 9, 10, 56, 57, 58
A.5 1, 5, 6, 7, 11, 12, 45, 46, 47
A.6 11, 13, 18, 48, 49, 50
A.7 1, 7, 19
A.8 11, 14, 20, 21, 39, 40, 41
A.S 7, 18, 21, 22, 23, 59, 60, 61
A.10 24, 25
A.11 18, 19, 53, 54, 55
A.12 2, 3, 19, 27, 28, 29
A.13 25, 30
A.1l4 11, 15, 20, 21, 39, 40, 41
A.15 i, 7, 21
A.16 11, 16, 20, 21, 39, 40, 41
A.17 7, 18, 21, 22, 23, 59, 60, 61
A.18 24, 25
A.1l9 19, 51, 52
A.20 25, 30
A.21 11, 17
A.22 11, 17
A.23 2, 31, 32
A.24 2, 33, 34
A.25 2, 33, 35
A.26 33
A.27 27
B.0O 40, 41, 62, 63, 64
c.0 2, 27, 33, 36, 37, 38, 43, 44, 45, 46, 47, 62,
63
D.O 2, 3, 4, 26, 27, 36, 37, 38, 46, 47, 48, 49, 50
E.O 26, 49, 50, 51, 52, 53, 54, 55
F.O 26, 52
GH.O0 26, 51, 52, 54, 55, 62, 63, 64
I.0 57, 58, 62, 63, 64
J.1 7, 19, 22, 23, 59, 60, 61, 71, 73
J.2 24, 25
J.3 51, 52, 82
J.4 €62, 63, 64, 65, 68
J.5 69, 75
J.6 69, 76
J.7 2, 3, 28, 2%, 77
J.8 25, 30

TABLE XXXVII (Continued)

182

Object Assunmptions

J.9 2, 3, 4, 32, 78
J.10 29, 66, 67

J.11 2, 67, 79, 80

J.12 22, 29

J.13 2, 3, 26, 29, 70, 81
J.14 2, 82, 83

J.15 2, 84, 85

J.16 2, 77, 86

J.17 2, 87

J.18 2, 83, 88

J.19 2, 84, 85

J.20 2, 77, 89, 90

J.21 2, 87, 90

J.22 2, 89, 91

J.23 2, 3, 29, 92, 93
J.24 2, 29, 66, 67, 94
J.25 2, 67, 79, 80

J.26 1, 95

J.27 19, 27, 96

K.0 2, 60, 61

L.1 7, 22, 23, 59, 60, 61, 73, 97
L.2 25, 30

L.3 24, 25

L.4 51, 52

L.5 62, 63, 64, 65, 68
L.6 68, 72

L.7 2, 3, 28, 29, 77
L.8 29, 32, 66, 67

L.9 67, 79, 98

L.10 2, 3, 4, 78, 80, 84, 87, 91
L.11 2, 83, 99, 100
L.12 2, 83, 87

L.13 2, 83, 91, 92

L.14 l, 95

M.0 72, 73

183

TABLE XXXVIII

ASSUMPTIONS FOR THE ADA PROGRAM
ADDRESS, CASE 3

Asmp.)

Number Assumption

1 Write access to pointer PT_LIST of type A_LIST.

2 There exists a record of type LIST with two integer
fields called LAST REC and NEXT_SPACE respectively,
a field called SPACE which is an array of type
integer, and a field called KEY LIST which is an
array of type KEY.

3 There exists a record of type KEY with a field
called NAME of character string type and a field
PT_DATA of type positive.

4 Read access to constant MAX_SIZE. .

5 Write access to pointer LEN_LIST of type A_LIST.

6 Read access to pointer LEN_LIST of type A_LIST.

7 Read access to pointer PT_LIST of type A_LIST.

8 Read access to boolean variable FIRST.

9 Write access to boolean variable FIRST.

10 Write access to variable OP of type OPERATION.

11 Read access to variable MODE of type OPERATION.

12 Read access to variable OP of type OPERATION.

13 The value in variable OP is equal to CREATE.

14 The value in variable OP is equal to ADD.

15 The value in variable OP is equal to CHANGE.

16 The value in variable OP is equal to DELETE.

17 The value in variable OP is equal to SEARCH.

18 The value in variable COP is equal to QUIT.

19 Write access to variable DATA of type ADDRESS.

20 Read access to variable DATA of type ADDRESS.

21 Write access to character string variable NAME.

22 Read access to character string variable NAME.

23 Write access to character string variable SEEK_NAME.

24 Write access to integer variable INDEX.

25 Write access to boolean variable FOUND.

26 Boolean variable FOUND is true.

27 Read access to boolean variable FOUND.

28 There exists a record of type ADDRESS with the
following seven character string fields: NAME,
STREET, CITY, STATE, ZIP, AREA, and PHONE.

29 Read access to file pointer DATA_ID of type
ADDRESS_IO.

30 Read access to field PT_DATA in the record pointed
at by the field KEY LIST in the record pointed at
by pointer PT_LIST.

31 Read access to integer variable INDEX.

184

TABLE XXXVIII (Continued)

Asmp.

Number Assumption

32 Boolean variable FOUND is not true.

33 Write access to field LAST REC in record pointed at
pointer LEN_LIST.

34 Read access to field SIZE in record pointed at by
pointer PT_LIST.

35 Read access to file pointer INDX_ID of type
INDEX_IO.

36 Read access to all fields in record pointed at by
pointer LEN_LIST.

37 Read access to all fields in record pointed at by
pointer PT_LIST.

38 Write access to integer variable COUNT.

39 Read access to integer variable LEN.

40 Read access to character string variable STR.

41 Write access to integer variable I.

42 Read access to integer variable I.

43 Read access to integer variable COUNT.

44 Read access to character string constant INDX_NAME.

45 Write access to all fields in record pointed at by
pointer LEN_LIST.

46 Read access to field LAST REC in record pointed at
by pointer LEN_LIST.

47 Write access to all fields in record pointed at by
pointer PT_LIST.

48 Exception INDEX_IO.NAME_ERROR has been raised.

49 Write access to character string RESPONSE.

50 Write access to natural variable LEN.

51 The first c..aracter in character string RESPONSE is
either a "q" or a "Q".

52 Read access to character string RESPONSE.

53 Complement of assumption number 51.

54 File pointer DATA_ID of type ADDRESS_IO is null,
i.e., file. is not open.

55 Write access to file pointer DATA_ID of type
ADDRESS_IO.

56 Write access to file pointer INDX_ID of type
INDEX_IO.

57 Read access to character string constant DATA_NAME.

58 Exception ADDRESS_IO.NAME_ERROR has been raised.

59 Boolean variable FIRST is true.

60 Boolean variable FIRST is not true.

61 Exception ADDRESS_IO.STATUS_ERROR has been raised.

62 Exception INDEX_IO.STATUS_ERROR has been raised.

63 Read access to field NAME in record pointed at by

pointer DATA of type ADDRESS.

185

TABLE XXXVIII (Continued)

Asmp.
Number

Assumption

64

65

66
67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

Write access to field
pointer INIT_KEY of t
Write access to field
by pointer INIT_KEY o
Read access to pointe
Write access to field
at by pointer LEN_LIS
Write access to field
pointer LEN_LIST.
Write access to field
pointer NEW_ADDRESS.
Write access to field
pointer NEW_ADDRESS.
Write access to field
pointer NEW_ADDRESS.
Write access to field
pointer NEW_ADDRESS.
Write access to field
pointer NEW_ADDRESS.
Write access to field
pointer NEW_ADDRESS.
Write access to field
pointer NEW_ADDRESS.
Read access to pointe
Write access to point
Read access to field
pointer DATA.

Read access to field
pointer DATA.

Read access to field
pointer DATA.

Read access to field
pointer DATA.

Read access to field
pointer DATA.

Read access to field
pointer DATA.

Read access to field
pointer DATA.

Write access to field
pointer DATA.

Write access to field
pointer DATA.

Write access to field
pointer DATA.

NAME in record pointed at by
ype KEY.
PT_DATA in record pointed at
£ type KEY.
r INIT_KEY of type KEY.
NEXT_SPACE in record pointed
T.
SPACE in record pointed at by
NAME in record pointed at by
STREET in record pointed at by
CITY in record pointed at by
STATE in record pointed at by
ZIP in record pointed at by
AREA in record pointed at by
PHONE in record pointed at by
r NEW_ADDRESS of type ADDRESS.
er NEW_ADDRESS of type ADDRESS.
NAME in record pointed at by
STREET in record pointed at by
CITY in record pointed at by
STATE in record pointed at by
ZIP in record pointed :t by
AREA in record pointed at by
PHONE in record pointed at by
NAME in record pointed at by
STREET in record pointed at by

CITY in record pointed at by

186

TABLE XXXVIII (Continued)

Asmp.

Number Assumption

g8
89
90
S1

92
93

94
95
96
97
98
99
100
101

102
103
104
105
106

107

108
109
110
111

112
113
114
115

116

Write access to field STATE in record pointed at by
pointer DATA.

Write access to field ZIP in record pointed at by
pointer DATA.

Write access to field AREA in record pointed at by
pointer DATA.

Write access to field PHONE in record pointed at by
pointer DATA.

Write access to natural variable NUM_CHAR.

The first character in character string RESPONSE is
either a "y" or a "Yy".

Read access to character string STRG.

Write access to character string STRG.

Read access to character string REPLY.

Write access to character string REPLY.

Write access to natural variable IN_CHAR.

Natural variable IN_CHAR is larger than zero.

Read access to natural variable IN_CHAR.

The first character in character string RESPONSE is
either a "i" or a "I“.

The first character in character string RESPONSE is
either a "c" or a "C".

The first character in character string RESPONSE is
either a "a" or a "A".

The first character in character string RESPONSE is
either a "d" or a "D".

The first character in character string RESPONSE 1is
either a "s" or a "s".

Write access to variable MODE of type OPERATION.
The first character in character string RESPONSE is
not an llill’ III"' "C", IICII, nan' "A", ndn’ "D", "S",
nor "s".

Write access to pointer TEMP_DATA of type ADDRESS.
Write access to character string SEEK_NAME.

Read access to pointer TEMP_DATA of type ADDRESS.
The first character in character string RESPONSE is
either a "o" or a "O".

Complement of assumption number 111.

Write access to natural variable REC_NUM.

Write access to pointer NEW_LIST of type A_LIST.
Read access to field KEY_LIST in record pointed at
by pointer PT_LIST.

Write access to field KEY LIST in record pointed at
by pointer NEW_LIST.

187

TABLE XXXVIII (Continued)

Asmp.

Number Assumption

117

118

119

120

121

122

123

124
125

126

127

128
129

130

131
132
133
134
135
136
137
138
138

140
141
142

Write access to field NAME pointed at by the field
KEY_LIST in the record pointed at by pointer
NEW_LIST.

Field NEXT_SPACE in record pointed at by pointer
PT_LIST is zero.

Read access to field NEXT_SPACE in record pointed at
by pointer NEW_LIST.

Write access to field LAST REC in record pointed at
by pointer NEW_LIST.

Read access to field LAST_REC in record pointed at
by pointer PT_LIST.

Read access to field LAST_REC in record pcinted at
by pointer NEW_LIST.

Write access to field NEXT_SPACE in record pointed
at by pointer NEW_LIST.

Complement of assumption number 118.

Read access to field SPACE in record pointed at by
pointer PT_LIST.

Read access to field NEXT SPACE in record pointed
at by pointer PT_LIST.

Write access to field SPACE in record pointed at by
pointer NEW_LIST.

Read access to natural variable REC_NUM.

Write access to field PT_DATA in record pointed at
by field KEY_LIST in record pointed at by pointer
NEW_LIST.

Read access to field SIZE in record pointed at by
pointer NEW_LIST.

Read access to pointer NEW_LIST of type A_LIST.
Read access to natural variable REC_NUM.

Read access to integer variable NEXT.

Read access to integer variable LAST.

Read access to integer variable LLAST.

Variable NEXT is not equal to variable LAST.
Variable NEXT is not equal to variable LLAST.
Write access to character string THIS_NAME.

Read access to field NAME in record pointed at by
field KEY_LIST in record pointed at by pointer
PT_LIST.

Read access to character string SEEK_NAME.

Read access to character string THIS_NAME.
Character strings SEEK_NAME and THIS_NAME contain
the same string.

188

TABLE XXXVIII (Continued)

Asmp.

Number Assumption

143

144
145
146
147
148
149

150
151
152
153
154

155

156

157
158
159
160
161
162
163

The character string in variable SEEK_NAME succeeds
alphabetically the character string in variable
THIS_NAME.

Write access to integer variable LOW.

Write access to integer variable LLAST.

Write access to integer variable LAST.

Write access to integer variable NEXT.

Read access to integer variable HIGH.

The character string in variable THIS_NAME succeeds
alphabetically the character string in variable
SEEK_NAME.

Write access to integer variable HIGH.

Read access to integer variable LOW.

Read access to pointer BLANKS of type ADDRESS.

Read access to character string DEL_NAME.

Write access to field KEY_LIST in record pointed at
by pointer PT_LIST.

Read access to field SPACE in record pointed at by
pointer NEW_LIST.

The last entry in the arrayed field SPACE in record
pointed at by pointer NEW_LIST is larger than the
field NEXT_SPACE in record pointed at by pointer
NEW_LIST.

END_OF_LINE boolean indicator is not true.

Write access to character variable CH.

Read access to character variable CH.

Write access to natural variable CUM_COUNT.

Read access to natural variable CUM_COUNT.

Write access to character string STR.

Write access to natural variable LEN.

TABLE XXXIX

LIST OF ASSUMPTION NUMBERS FOR OBJECTS
IN THE ADA PROGRAM ADDRESS, CASE 3

i8¢

Object Assumptions

A.l 1, 2, 3, 4

A.2 2, 3, 4, 5

A.3 1, 5, 6, 7, 8, 9
A.4 g, 9, 10, 11

A.5 1, 5, 6, 7, 12, 213
A.6 12, 14, 19

A.7 1, 7, 20

A.8 12, 15, 21, 22
A.9 7, 19, 22, 23, 24, 25
A.10 26, 27

A.11 18, 20

A.12 2, 3, 20, 29, 30, 31
A.13 27, 32

A.14 12, 16, 21, 22
A.1l5 1, 7, 22

A.16 12, 17, 21, 22
A,17 7, 19, 22, 23, 24, 25
A.18 26, 27

A.19 20

A.20 27, 32

A.21 12, 18

A.22 12, 18

A.23 2, 33, 34

A.24 2, 35, 36

A.25 2, 35, 37

A.26 35

A.27 29

B.1 21, 38, 39, 40
B.2 22, 41, 42, 43
B.3 21, 42

c.1 44, 56

c.2 2, 35, 45

C.3 1, 2, 46

C.4 2, 35, 47

C.5 48

C.6 39, 40, 49, 50
C.7 S

c.8 51, 52

C.s 52, 53

C.10 1, 5, 6, 7

C.11 29, 54

C.12 55, 57

C.13 58

o

150

TABLE XXXIX (Continued)

i

S WwN

-
N O

OOOOOMWWWWMMNMNNMNMM
VHELUNHFUBWNEH P00 Jda O

Assumptions
8, 59
9
8, 60
39, 40, 49, 50
51, 52
52, 53
56
. 1, 5, 6, 7
D.1 55, 57
D.2 61
D.3 55
D.4 55, 57
D.5 44, 56
D.6 62
D.7 56 .
D.8 a4, 56 ‘
D.9 19
D.10 20, 29
D.11 28, 63, 64
D.12 28, 65
1, 2, 3, 4, 47, 66
2, 33
2, 67
2, 68

28, 38, 39, 40, 69
28, 38, 39, 40, 70
28, 38, 39, 40, 71
28, 38, 39, 40, 72
28, 38, 39, 40, 73
28, 38, 39, 40, 74
28, 38, 39, 40, 75
76

38, 39, 40, 49

52, 93

76, 77

19, 76

28, 78

28, 79

28, 80, 81

28, 82

28, 83, 84

28, 85

28, 86

28, 87

28, 88

28, 89

TABLE XXXIX (Continued)

191

Object Assumptions

G.6 28, 90

G.7 28, 91

G.8 20

G.9 48

G.10 39, 40, 49, 92
G.11 52, 93

H.1 94

H.2 39, 40, 97, 98
H.3 99, 100

H.4 95, 96

I.1 8, 60

I.2 39, 40, 43, 49
I.3 9

I.4 52, 101, 106

I.5 38, 39, 40, 49
I.6 52, 93

I.7 52, 102, 106

I.8 52, 103, 106

I.9 52, 104, 106
I.10 52, 105, 106
I.11 51, 52, 106

I.12 38, 39, 40, 49
I.13 52, 93

I.14 52, 107

J.1l 7, 20, 24, 25, 78, 108, 109
J.2 26, 27

J.3 110

J.4 38, 39, 40, 49
J.5 52, 111

J.6 52, 112

J.7 2, 3, 30, 31, 113
J.8 27, 32

J.9 2, 3, 4, 34, 114
J.10 31, 41, 42

J.11 2, 42, 115, 116
J.12 24, 31

J.13 2, 3, 28, 31, 63, 117
J.14 2, 118, 119

J.1l5 2, 120, 121

J.1l6 2, 113, 122

J.1l7 2, 123

J.18 2, 118, 124

J.19 2, 120, 121

J.20 2, 113, 125, 126
J.21 2, 113, 126

J.22 2, 125, 127

-

TABLE XXXIX (Continued)

192

Object Assumptions

J.23 2, 3, 31, 128, 129
J.24 2, 31, 41, 42, 130
J.25 2, 42, 115, 116
J.26 1, 131

J.27 20, 29, 132

K.1 133, 134, 135, 136, 137
K.2 2, 133, 138, 139
K.3 140, 141, 142

K.4 25

K.5 24, 133

K.é6 2, 20, 29, 30, 133
K.7 140, 141, 143

K.8 133, 144

K.9 134, 145

K.10 133, 146

K.11 133, 147, 148

K.12 140, 141, 149

K.13 133, 150

K.14 134, 145

K.15 133, 146

K.16 133, 147, 151
K.17 25

K.18 13, 152

K.19 140, la., 143

K.20 24, 134

K.21 140, 141, 149

K.22 24, 134

L.1 7, 24, 25, 108, 109, 153
L.2 27, 32

L.3 26, 27

L.4 110

L.5 38, 39, 40, 49

L.6 52, 93

L.7 2, 3, 30, 31, 113
L.8 31, 34, 41, 42

L.9 2, 42, 115, 154
L.10 2, 3, 4, 37, 114, 116, 120, 123, 127
L.11 2, 119, 155, 156
L.12 2, 119, 123

L.13 2, 119, 127, 128
L.14 1, 131

M.1 15

M.2 158

M.3 160, 161

M.4 159, 161, 162

M.5S 161, 163

APPENDIX E

EXECUTION FLOW CHARTS FOR PROGRAMS

INCLUDED IN THE STUDY

193

—

194

AUT[UL ad

‘puUljIsSes weuasodyd J dayy) JOy JEY] NO[4 UOTINIAax]

4344ngTIILY

dweu—anes

[eaey

ueas

ureuw

*7 34n8r4

yojreuw s

195

peof

*{lew weuas3o0Jdd J ayiy JOg 1J4ey) moy4 u0rinaIax;y

anes

aJolsTs[p

‘¢ aundui4

sindut

T

putld

hetrdsip

ajaiap

yodeas

1s1]

193[as "nuauw

Al

ureuw

O

196

*U07Ipa WeJds0dgd J 3yl JOJ 14€Y) MO[4 UOLINIAXT *H 3Jdn31y

peof

[P

ey

N

Py

dnyagjed ‘ 34016 TS[P

o N

dajua

D

ureuw

15 1] 133[3as T nuau

197

*1SI1[7Ul weusoudd epy ayq JOo4 jJ4eYy) MO[4 UOIINIAX]

*G aJdnsgd4

uorjrsod—je—~anjen

Yisua[~asi]

Jdojye

s

wreygoad

N
~

~

N

[tTel T 1e 7~ 34d8sUl

peay— e "343asul

peay~aiafap|l{rer~atafapijisiyTaziferitul

........ L1

N

oo

] @7 ~3s1043Xxa

r—-

"J[ed wed8o0Jg epy 3yl JOY JJ4eY) MO[4 UDLINIAX]

dad

z"a3de[naged

4dJ91s 71383 1147037 4115S

*9g aJdn3u 4

B I
hmco_auwng

D ——

198

"Ss3Jppe wedd0ud epY 3Yy 40y JJey) MO[4 UOIINIAXY

[——— e —————— e

a5

2UTU1S

*, 3d4ns 4

platy " danje —

a3 ﬁmamv

—’LUmem

\

*ameWM;

-

hetdsip

%ﬂ/ AN

;magm

\q;A“,éVL N

PN

T

|

1P " JB U2

/]

_w_uﬂugzg

g

6’

b —e

wbuamCngﬁmldbm~mm~

AN

=

Mooq~

ssadppe

1

Q:lg(_mqm‘

| S —{

ﬁwsmzlumW;

T

APPENDIX F

MAXIMAL INTERSECT NUMBER (MIN) CHARTS

200

201

*putlgisey wedaldodd J ayy 40y NIW

‘g 3J4n314

b’

202

4

= NIW

[eyey

Z

au

= NIMW

(P3nurquo)]) *g 8J4Nn314

SENFET RN

aul]y—jutJdd

Ja44nq T

yojeuw—st

9°a

ueds

yajeuw sl

b 8

203

(pPanulquojl) *g aJdnsr4

9 = ¢ + (G)C -

4a44nqQTQl1ly

C + ¢ + ¢+ ¢ + ¢

aury—qurad

M

204

‘[lew wedaso0dd J 3yl 403 NIW ‘6 24n314

e —— - — e mw~wml3CmE
SN o Py TV

\Awgw~mb

ommm e e e

yoJeas

{a0es—

ureu

—

205

(PeanuUtluo])

‘6 3Jdns14

m(_n:miw,:u

¢ = NIMN
AN et et et e+ e
Sanaut JA&V%.,.Q_ Whfaeas i

206

(panuriquo]) ‘' a4n3t4g

A--_xMim._lzll $- | \lﬂ/ = NIU
A hejdstp A? H_/ /mqu\A xmlc,..muAi
e RO T < JVA
<A — }xi¢%XI. ,MWA\WMVA
/ﬁivmmzmﬂln_ lttl

e STaTh

. = NIN

;Zf »-z N Q\A;....-HH,.I,?
< mm &M/Mm imﬁ% XWW¢ %A

yodeas i

207

(Panutrquo])

‘6 3J4NB 4

= NIUW

anes

208

81

'Y

+JO0j1pa wedsodd J ayl 404 NIW @B 3a4nBly4

L= NIU (Mr
e (O U

e Aaaave X {peol] 1

o .fi&@ﬂ%T
7,%_azi.,%,m.:T

e m nes

/W‘Iwghc/ f@.!q

uteuw

209

Z = NIU

Al\/w\mo\VAl .7 Iﬂlﬁmﬂn«; |

dnydied

<
¢ = NIMW

(PanuUtiucy) *gl 9a4nsl

S

3

= NIUW

340957 s[p

b = NIUW

VA,!.; S

-

A;ADX%T ¢

133[35s~nuau

putd 2" B0 >
-~
Trgsiedl OEueisTiie

~
Jaqjua

—

B

210

_.@,,lﬁp ed)

(Panutiuoy)

————— e e

agalap

‘81 24n314

211

(panutijuo])

S

NIW

‘81 24n814

b = NIUW

—a

*4sI[3uUl weuaBoud epy ayly 404 NIW “TT 24n3T4

212

2 =7 +(8)¢ ~2 + 2 + ¢ = NIH

peay N
BERERER o m\Al\i-,lili |

Lol

I uorqrsod uotjisod ~
rlu Pl - L

[“1e~anieal AAm1e-anten|

— —_—

~

M.%hmmﬁnltgmlw.gwmciwmalamxtmpr

I @ TSt

L

17 QL "9ST243Xd

213

(panutiu

= = NIW

Nk

03) "11 8aJ4n814

m = NIUW

ﬁw G m.,..%w

e e = e . - [— |

yasuar—asI] Uoij1sod—1e—~anye m@mgrmgudum
¢ = NIUW
......... Z = NIU J0(1¢®

ﬂ!-i.:J\ﬁ Z = NIW
CaXfoud-

!%!wwwcLuwwmum L WWCm-E:iI vmm: qe—q4asul
Jite1—qe—jJdasur
Z = NIM ¢ = NIM z = NIM
gl e /. \1_/
¢ I Y T
)
ueraa) J

IsII-azr[elnIul

214

-

*o[ed wedgodd epy ayar Jo04 NIU

SASCELE R

@
o | x5y

~—~——>{3aqed42d0

Z°y mmmwwmmwwmmwlpn;_ U

LA

01~ 41s| [ysnd

Z—aie[nafed

BI1° m

215

(panugiuod)

‘2] aJdnd14

dod

ajedado

(panurjuo)d) -zl a4nsiyg

216

. 114 To TS -~
4]

L

gUlJ41s 138

217

Ny

o mew
Kw ‘Y "

*ssaJppe wea804d epyY ays Joy NIW *¢7 a4ns14

6 = NIMW

——— e . mme s+ P a .»..."‘,.. B zsl
S —————— Y £ TUE R I SR E X ﬁl

JB1S
1MB1 S

— B s
~13 Mﬁ 424835 , M
/@ ﬁ ' m e

yooq—ssadJdppe

218

(Pa3aNnuUIqUO])

14

i
=z
P
p 2t

= ¢ +

“§1 24ns1y

_‘Iclxl e e

1S1]
< {a1eal

dn—14e175

(e)e - t

Aw
i TTaresanlked

RIS

<82
Y

= NIU

w.cfa.mixp.w.mwl

(8]

8

1

.\ m ./u,,‘..uAn-
_‘WCALJ. l~ \u
\m _ . Amw._

l%ﬁwf.m%hwé-NMXiﬂ \ Z OXI

1S1[— 231834

(PanuIiu0]) g a4nsr4
b o= NIN

219

yadJdeasg—

3utuls
~n2a8 A;mmﬁzmmn

143s5UT
Z = NIM Z = NIM
3UtJdas plaly
gutunas — _ herdsip ~ 13 mA /
A () ~las [133 21
aweu—133 chep-doare
¢ = NIU
¢ = NIUW
gUTJTS
— gutas|,
‘ 138 _As ARTASTP —aas [
erep—
= Jajle e e
Plalsy—Jdanfe . B1ep " Jdajua

220

(PanuIiu0)) gl 34n314

9°1

2urJds
S S

|
3utJs|, P - S
SEaOS

anljeudaj[e " 303r9s

221

(panuiiuo)) g1 a4n3r4

gUTJ1S
128

ajarap

Z = NIU

w:mH%miamw

Relds l&f/
@Almmumww -

WEEDE

APPENDIX G

METRICS STATISTICAL DATA

222

223

9L00°0 06¥1°0 L8¢0°0 0v00°0 Ltvyoo"o £€o00°0
79€18°0 162ZS°0 €5269°0 €99v8°0 8VBEE°0 60658°0 LHILISNOD

IN1OL ANNTE SINIWWOD TDO3QNON 1234 330001

6 = N / O0O=OHUY:0H ¥IANN ¥l ¢ 8oud / SLNIIDI4430D NOILVIIYYOD NOSUVid

00S€8S° ¢ 000000°0 096b0° 81 TI806T1° 1 11650072 6 IN3ISNOD
00902S°9 oozveL € 0ESLE DY (68S¢€8°0 6850€C6° ¢ 3 VY101
00SLLO" ¥ 009860°1 0E9PE O £9bZS6° 0 0o0L09t°¢ 6 ANVI1E
oozvrys-v 009Z0€°2 06v9F 8L 01881870 L9LTt ¢ 6 SINIHHOD
00ESLO"S opzzee"¢€ oLTI09° 0¥ LL6STe° 0 00ETIS P 6 71D3AHON
00v090° ¥ 003000°0 006V9° T2 TLEIST T (22 23 AN 6 123a
00S00Z°9 0oeL9t € oop6L TV 8EZZs8° 0 BLLEDPS ¥ 6 3000501
WARIXVH WAKWININW HNs A3Q als NV3H N 31aVI¥VA

SHVYHO0Ud YAV dOd
T 0661 ‘01 TI¥dY ‘XAVAS3INL ETiE1 AJOHLINI 3UNALONAYLS TOHINOD

<
o~
(3]
|
|
,
f
|
0000°0C 9000°0 1000°0 1000°0 8000°0 1000°0
00000° Y 6911670 v8ZL6° 0O £1666°0 LV¥906°0 82966°0 Twvlol
9000°0 0000°0 1000°0 P102°0 vy620°0 6Y00°0
69116°0 00000°1 LYEvée- o {9L89°0 S6LTIL"0 SOLLE O MNVIG
100070 10000 00000 1000°0 9v00°0 100070
vezZLe6’ o LYEPE O 00000°T Sk¥s6° 0 086€¢8°0 6£1S6°0 SINIWWOD
100070 P100°0 1000°0 0000°0 T100°0 1000°0
€1666°0 €9L88°0 SFVSH6°O 00000° 1Y [224X] S1966°0 TO3ANON
8000°0 v620°0 9v00° 0 2100°0 0000°0 €000°0
Lb906°0 S6LTIL 0 086€(8°0 yr268°0 00000° T £9926°0 103a
1000°0 6100°0 1000°0 100070 £E000°0 0000°0
829660 SOLLE 0 6€IS6°0 ST966°0 €9926°0 00000° 1T 3Qq02501
qvlol ANV14 SLN3IWKHOD 1D>3dnoM 1Daaq 300501
6 = N / 0=OHY:0H ¥3ANN |¥| < go¥d / SIN3IDIJII30D NOIIVIIYYOD NOSUVIJ
SHVYYO0¥d VAV ¥Od4
T 0661 ‘Ol ‘1IM4Y ‘AvasS3nl €Z:¢T AdOYLIN3 IJUNLIONHLS TOYINOD

225

€

0661

‘DT ‘11ddY

‘A¥as3inl gT:Et

stes ¢
6v9S6°2
v6L0 2
18LT°€E
TLL't
9860° 1
F6LO" 2
T£€69°0
0000°0

INJILSNOD

907s°9
L6LS S
8zse " b
61st°S
12X 10]
6071V
T9LT"S
LyLsS v
TyeL- ¢

T¥YLl0olLl

SLLO" ¥
|22 2K4
v6L0" T
9z0¢€° ¢
9860°1
9860°1
[2 9% 4
920€ "2
v609°1

ANV

Threy
1058 ¢
LS66°¢
S96¢° ¢
6L6E T
6L6E° L
sst1° ¢
Stvo- ¢
szot-

€SL0°9
9L80°S
sEve b
9€86° ¢
6011 b
LLeL ¢
€9ee’ v
tv60° Vv
Tree ¢

SINIHKHOD TDOIUNON

A40ULN3

vo90° ¥
6019 ¢
85627 ¢
0160 €
g16L "1
¥609°1
6L6E€" T
$16L° 7
0000°0

1230

$00Z°9
£L6T°S
(222
orZI"S
Lvor-y
1068°¢
0076 ¥
L68T° Y
€EL9c- ¢t

N e Voo

3Q05017 SuO

SHYUD0uUd Vvav uod
3JYNlONYLS TOHINOD

226

1

‘AY¥AS3INL BO:S1

o00LLBY Y
00¥6Z6° T
00586¢€°0
00T9¢€S° 0
005861°S
009025°9
00SLLO" Y
oozrbe'y
00ESLO"9
00¥090° ¥
0oso0z"9

HOHRIXVYH

¥900°0 86€00°0 S0T0°0 00lI0°0 9920°0 2800°0
ZhET8°0 S8EFPO°O0 L6V6L O LLL6LTO0 9PILLTO 9P608°O VOT1INI

1000°0 €100°0 100070 1000°0 000" 0 1400°0
6SS686°0 T86EBB°0 ¥SO0S6°0 BVVL6"O0 T19vE6°O0 1IS86°0 LN3SAS

STL0°0 60ZZ°0 008070 TTS0°0 9¢EELT" 0 169070
€L529°0- 6825v°0- €LIT9°0- 9819970~ 086€S5 0~ 089€9°0- olivy

0LY0"0 ¥s80°0 612070 Ltovo-o y8S0°0 PS10°0
0619L°0- 6€E09 0= VLIVL O- €PEO6L 0- 9V6VI 0- PI69L 0~ N3doAY

1000°0 £000°0 1000°0 100070 £100° 0 1000°0
012660 06LZ6°0 SST196°0 v9886°0 S7698°0 86S5S86°0 IViOolrao
TviloL ANVIE SINIWWOD “ID3ANON 1D13Q 300001

/ 0=0HY¥:OH H3ANA [H¥]| < do¥d / SINIIDIIJI3I0D NOILVIIUUOD HOSHVId

ooosLE"T 09296 °2¢ STeYEY 0 L90919°¢t 6 vO11nd
009LTE" T ovorTeE v SES681°0 T1L06S5° 1 6 IN3ISAS
00801L°0- 0Q€8SO0°T1— €oceLt’o 68SLT11°0- 6 o13ivy
00Z9€9°0- 0680810 LLvese- o 6606026°0 6 N3doaAY
oozeee "t 06029 ¢t LIvL9IL o 969stL "¢ 6 IN10LLYO
oozveL"¢ OESLE Y L68SE8° 0 68S0€L6° P 6 viol
0098601 [R%2 B ¥4 €9¥Is6 0 00L09Z "2 [3 ANV
00920€°¢T o6r9v 82 otreetls o L9LT9tT ¢t 6 SINIWWOD
ooZTee" ¢ oLTI09°0F% LL6SZS O 00ETIS b 6 T23ANON
00000070 006Vv9° 12 TLE9ST T 122 29') 24 6 103aa
00EL9E" € oov6L TP 8E7IS8°0 BLLEPI "V 6 300501
HOAWINIHW HNS A3G als NYIK N 379VIdva

SHYUDOHd VAV dOd

JI¥L3IW ONIQVYO1 AJOHINT

227

0000°0 9000°0 100070 100070 §€000°0 1000°0
00000°T 6911670 $8ZL6°0 (€1566°0 (L¥906°0 8296670 vlol

9000°0 0000°0 1000°0 v1o00°0 V6200 6100°0
69TT6°0 00000°'T (v€V6°"C (9¢BE 0 S6LIL°0 6G0LL®°0 XHVIE

1000°0 1000°0 000070 1000°0 9r00°0 100070
peeLE 0 LPEP6 O 00000°T SHYPS6°0 0868 0 6€156°0 SINIWHOD .

100070 $100°0 1000°0 0000°0 10070 1000°0
€1666°0 €9L88°0 SVPS6°0 00000 T bHIER O S1966°0 TD3ANON

8000°0 $620°0 9v¥00°0 ¢1o0°0 0000°0 £000°0
L¥906°0 S6LTL°0 086E€86°0 H¥Z68°C 00000°T €9926°0 1234

1000°0 61060°0 1000°0 1000°0 £000°0 0000°0
82966°0 SOLLB"0 6€T1S6°0 ST966°0 €9%Z6°0 0000071 300201
vilol ANVIE SIN3IWWOD ‘IDJANON 1D3Q 3005071

6 = N / 0=OMY:OH H3IQNA |u] ¢ goud / SINIIDILJII0D NOILVIFUUOD NOSUVIJ

SHV¥D0¥d VAV ¥O0d
T 0661 ‘OT TI¥AY ‘1IVAS3INL 60:6G1 DI¥Ll3W ONIAVOT AdOUINI

r-

228

€

0661

‘0T TIY¥4AY

‘INQs3Inl 60:61

0000°0
00000°1

6200°0
01098°0

tres o
t8280°0-

6ELY O
86VLT 0~

TTo0°0
€LoL8’0

NOTINI

6 = N / 0=OHY:O0H ¥3AND

6200°0 [44% AN 6ELY O L0000
01098°0 I8INO0"0- 86PLT 0~ [LOLB°0 VOTLIN3

0000°0 Ssttr°o €Evvo-o 100070
000001 O09LES°0- 906L9 0- SO06LE"O LNISAS

SSt1°0 0000°0 100070 1S11°0
09LES 0~ 00000°1 veeL6°0 6129570~ olivy

€Evvo o 1000°0 0000°0 S1to°0
906(9°0~ $66L6°0 00000°1 9LTTL O~ N3UoAV

100070 1$11°0 S1{0°0 0000°0
SO06L6°0 6I296°0— 9LITL 0- 00000°1 IAVIOLCEO
JHISAS ollvd N3Igoav INlOolrso

ldl < goud / SINIID14430D NOILIVIIYIOD HOSUVId

SHYUYOO0Ud VQV ¥OJd
J1dlidW ONIGVOT AdOMINI

229

LL8Y "V P6Z6°T 8O0TL 0~ T9E9°0- SB61°S 90ZS"9 SLLO'V Zvee' ¥ £SL0°9 ¥090°P S00Z°9 6
SO0ZE b E0LL"T €€20°0~ 615070 BEPE" W L6LSTS PPP6 T T0S8°C 9L80°S 6019°¢ €E6T°S ¢
PST6°€ ¥SZ9°T 61ST°0 €8¥E" 0 9£99°¢t 8788V P6LO'T LS66°1 BEPE L BG6T°C PRPITHL L
£26Y°€ PST9'T LOSS 0~ 6T6E°0- TEPO'V 616E€°G6 9Z0€'T S96F°¢ 9¢86°F 0160°C OPZY 'S 9
oOFOYP € 8PEY T ZBOT 0 ¥9YZ°O0 BS6T € PPEE"Y 9B60°T 6L6F°1 60TT Yy BI6GL™T LPOZ'V S
08L€°7 6LOFV°T ESSYP°0- 6EE€T 0~ ZEE8°T 60TT ¥ 9860°T1T 6L6C° LLEL € v609°T TO0S8° € ¥
0EP6 € L9E9°T 9PET 0~ 96£0°0~ SLLO" P T9LT°6 ZEE® T GSSE1°¢C €9¢(8°V 6L6C°C 00Z6 b ¢
006€°€ 680S°T 8LGS0°0 L661°0 TTEE € LVLS PV 920677 SVhbvo'¢ (V60" b 816471 L6BT v
LIETZ E 9LTE T S86E°0 19¢tS°0 TEEB T THBL'C V609 T 9ZoOf" I dree"t 000C"0 €L9g° € 1

YOT11NI IN3ISAS OILlVY N3E0AY IV1O0lrgo V1Ol ANVYI8 SINIWHWOD T1D3AHON 1034 3Q0D501 S80

SHYUD0¥d VAV H¥OJ
» 0661 ‘O "TI¥AY “iAvasinl 60:¢1 DIUli3W ONIAVO1 XJOHING

o
)
™~
9¥00°0 £100°0 Tve6° 0 L0000 1000°0 Y160°0 (0000
TS6ER°0 T0068°0 VLLOO'0 €1016°0 2Z0IS&°0 OPPGES 0 GS(BZ6°0 LHIALSNOD
IViolL ANNTA SIN3IWWOD 3DVUug 123QHON 1D3Q 400501
6 = N / 0=OHY:0H H3aANN {u| ¢ go¥d / SINIIDI4440D NOJINTIUEOI NOSHVId
000VEDY "€ 00V609°T1 [ER 3 &' 4 §9901C(9°0 OOLEZV 2 6 1H3ILSNOD
000928°S 0080L6" € oTS8d b TIPTTISS 0 68LZVE "V 6 TVil0L
006019°¢ ooc9et" 1 oLLeEy e ZCe0QLL 0 00(ST1S§°2 6 HNVTIY
00TLIT ¥ 00920€°2 089V - LY LETTRIL O ¥HISVO L 6 SIN3IWWOD
00S61Z° %V 008T6L" Y oOLYEE 92 T068Z6R°0 VVLTG66"Z 6 aovus
0ozZegz" s 00T86Z° ¢ 09¢€9L°LE SI88VOL 0 966561 ¢F 6 "ID3QNON
00SSET" € 00816L°1 00T69° 22 TO6TISLTIS 0 TTTTZIS T 6 1234
0009$9°§ 009L€9°¢ 0LEBY TP OET6L69°0 LS66D09 Y 6 3002501
HAWIXVYH HOWININ Hns AdQ als NVIW N 37aVI¥VA
SWVUD0dd D HOd
1 0661 ‘01 "IIYdY ‘XVAS3INL §S:67T KJOYLINI 3UNLONELS TOWINOD

231

0000°0 100070 119170 1000° 0 2000°0 €000°0 100070
00000°Y 90b96°0 T1960S°0 SEEB6 0 VYVE6 'O Q2GLI6°0 L92L6°0 Ivi0L

1000°0 0000°0 19vZ°0 1000°0 90000 820070 1000°0
$0r96°0 00000°Y BSTCH 0 BOEB6°0 (LSTT6°0 8VZYB 0 LO6V6 0 ANVIY

Tt91°0 1920 6000°0 (A X R S1v9° 0 6v10°0 ZveEv o0
19605°0 PSYEY 0 00000 T L9t8€°0 €8081°C C9VLL 0 €1662°0 SINIWNHOD

1000°0 1000°0 L90E" 0 0000°0 1000°0 Lzoo o 10000
SEEB6'0 BOEBE 0 L9¥BC 0 00000°T 910S6°0 €8Z986°0 06486°0 3dvug

200070 9000°0 SIv9’ o 1000°0 000070 §270°0 1000°0
PIPE6 O LSZTI6°0 €9081°0 918BS6°0 00000°1 Ssefe 0 Yol166°0 TO3ANON

£000°0 8Z00° 0 6v10°0 Ltoo-o 8220°0 0000°0 890070

ISLTE"0 8YZ98°0 T9TLL O €8298°C SS6CL 0 00000°Y 19618°0 1534

1000°0 1000°0 ZvEDP° O 1000°0 100070 §900°0 0000°0 w
L9TLE 0 VO6VE 0 €166Z°0 O06Y86°C VOI66°0 19618°0 000001 340507

IVLOL ANVIG SINIWKHOD 3IDVHR T23aNON 133a 3Q0501

6 = N/ 0=OH¥:OH ¥3IANN || < doud / SINIIDI4430D HNOILVIFHUOD Nosuvad

SHYHD0Ud 2 HOd
T 0661 ‘01 7T1¥dVY ‘Avadsinl §g:§1 AJdOYLINI 3UNLDONYULS TOUINOD

232

18S2°¢ 09Z8°S OovEP°"C 0160°¢ (681"
6v9G° 7 888"V 9ZOE"T 6¥8BY°T SEPO
9I6L°Y 69ST°Pp €9BE°T1T 9Z0E°7 @16L° 9LEY"L BI6L"T 0Z16°¢C
obEr e TZOB'S 6019°C O0160°FE S61Z° 6T S LS66°2 8S09°S
6V9S° T T9EL"Y 16€9°C 6L6L°T (S66°T CV60"P TLE6TT 988F P
6S¥6°T €O0L6°€ V60T 9TO0E°Z SI6L°T T8ST°C BIGL Y 9L¢E9°¢
6V96°C 9YTH"G TSLT € TLIY'b #9ZS°C GOEP" b LS66°F fLIG" Y
P6L0°Z B8696°F 6L6€°7 0TI6°C VO6GR'Z RTI68°C 9TLLT 8BYF' D
v609°T VLTL Y ¥6L0°T LLEL"C 6VOV'Z SEBS'C TROL"ZT TEHTI' W

TEBIZ"S SSET"C 0969°S
P69E Y 9Z0E°T SOOL"Y

< "~

N N0~ o o

INIISNOD IVIOL 3NVIE SIN3IWWOD 3D0VyEe 1D3aNON 1D30 340207 S80

SHYYOOoUd D> ¥O2
£ 068 ‘0T T1¥dY ‘IvVvAS3INL §S:ST AJdOULIN3 JUNIONYLS TOULINOD

233

TLZ0°0 SLY0°0 Svo9°o £L800°0 0100°0 ovIZ°o0 bE00°0
01SZL"0 TL6SL 0 bHLOOZ O0- €1908°0 68968°0 T68GV°0 69ESE°0 NOT1IN3

100070 900070 8€E6Z°0 1000°0 10000 tEoo0’0 1000°0
BIEL6°0 HZVI6°0 2ZTH6E°0 LSS96°0 B9096°0 88YSE°0 VvSBLE™O IN3SAS

16€8°0 108S°0 S100°0 1sLs°0 voZs' o Tv60°0 €LY9 o
8P19¢C 0— ZTIPIZ 0- 09688 0~ LB89TZ 0- €L880 0~ 8S06S 0~ SLLLTI70- orlvy

61LT O TIStE’o £100°0 SLEE" O 992S°0 96€0°0 0tee’o0
€586F°0— 9¥ZSE 0~ 1688 0- €979€°0- 8IVVI 0- S1069°0- 0Z62E°0- N380AY

1000°0 S000°0 L6¥Y O 1000°0 100070 9L£00°0 100070
ZLE96°0 08916°0 T9682°0 86996°0 PL6ES6 0 (LTIVIB 0 (ELP6EH 0 1IVIOLLEO

Y101 ANVIE dvyg SIN3WWOD 1D3ANON 1234 3002501

6 = N / O0=OHY:O0M u3anun l¥l ¢ goyd / SINIIDIIIIOD NOILIVIIUYOD NOSuvad

00LS9L" V¥ 00Z210°¢ otbLY EE 6958199°0 €££0989°¢ 6 VOTILINI

008968° Y 00b9bY° T 0006641 9LS962ZT°0 95$699°1 6 LN3SLS

oozzor-0 000989°0~- 08Z8V' T1- €62995SC°0 9SLPI1 0- 6 o1lvy

009T¥S° 0 00vZIS 0~ 0SSEZ 0- 769Z¥ZE°0 LYTYZOTO- 6 NIUOAY

oozsSLe ¥ 00PP¥G6° T 06959 b€ 1GZLTE9 0 L9L0S8 € 6 aviolrgo

000978°S 00€0L6°€ o1Sey b TIPTIIS9 0 68LIKE" D 6 Iviol

0060T9° ¢ 00€98€° T oLLES LT 2E80BLLT0 00€STS° 2 6 ANVIE

00TLZT V¥ 00920€°2 089bb LT L61182L°0 btVI6VO € 6 3ovusg

00S6TZ° Y 008T6L° 1T OLYES 92 2068268°0 PYLIEGZ 6 SINIHWOD

002€82°S 00T18SZ"€ 09€9L°L¢ STEBLOL 0 9S6S6T Y 6 723aN0R0

00SSET"€E 008T6L"T 00169°2¢C Z6ISLYIS 0 TTIILS N 6 71234

000959°S 009LE9" € 0L68Y TV OEY6L69°0 L96609 ¥ 6 3300501

HANIXVH HOWINIR NS A3Q aQls NViW N 379VIHVA

: SWYHO0Hd D ¥OJ
1T 0661 ‘TIT 7TIddvY ‘AVASINAIM 921 ¢l JI1Ul3W DNIAVOT AJOUINI

34

0000°0 1000°0 TI91°0 1000°0 000" 0 £000°0 1000°0
00000°T 90¥96°0 19605°C SCEB6°0 PIPEE6°0 ZSLI6°0 L9TL6E O IVi0ol

100070 000070 920 1000°0 900070 $200°0 106070
90¥96°0 00000°T PSICP 'O BOEB6°0 (STY6E°0 @BVIYEB 0 tO6VE 'O NHRNT4

119170 T9vT- 0 0000°0 L9o0e- 0 SIVv9-0 6vi0~ 0 Ivev o
1960570 bHSIEFP°0 00000°T L9VBE 0 €BUBI'O0 Z9TLL 0 €1662Z°0 3ovug

1000°0 1000°0 L9og" 0 0000°0 1000°0 Lzo0o 1000°0
SEEBE6 0 80EB6°0 LIVBE O 00000 T 918S6°0 €BZYB 0 0686 0 SINIWWOD

1000°0 9000°0 PRS2 A] 1000°0 000070 821070 1000°0
YIPESE 0 LSZT6°0 €808T 0 918G6°0 00000°T SS6CL°0 POI66°0 TO3IQNON

£€000°0 870070 6v10°0 L7000 $LL0°0 0000°0 8900°0

ISLZ6°0 8KZ98°0 T9TLL O €8BZ98°0 SG6EL 0 00000°1 19618°0 1234
10000 100070 Tvev- o 1000°0 1000°0 8900°0 00000
L9TL6°0 vO6FP6°0 E€T66Z°0 O06v86°0 HOTE6°0 T96I8°0 00000 T 3400017
IV1LOoL ANN18 Jovyd SLN3IWKOD TTDJANON IDiaq 3002501

6 = N / 0=OHY:O0M u3aNn |¥| ¢ QOUJd / SINIIDIJJIIC) NOILIVIFHUOD NOSUVId

SHYUDOUd > ¥Od4
T 0681 ‘IT TIMAY ‘XYASINAIM 9(:El JiULIIN ONIAVOT AJOYINI

235

€ 066T ’11 TTIYAY 'XVAS3INGIM 9I:

0000°0
000060° 71

081070
YeLSL O

ogstg-o
X231 Y

ovo09°0
£E0TOT N

8€00°0
oo6%8°0

VOTLNI

6 = N / 0=OH¥:O0H YIANN

081070
V6LSL O

0000°0
000001

6LLE°0
ISty 0~

616170
0T6LY 0~

1000°0
62E86°0

IN3ISAS

lul «

LESET 0
v61s€e’ 0

6LLE°0
g15€tC 0~

00000
00000° 1

10000
LELBG L

LE19°0
08s61° 0~

orxIvyd

0r09-°0
€0r102°0

6161°0
016LY 0~

1000°0
tiLe6" o0

0000°0
00000°1

409t "0
LLyve o~

N3Uoav

8€00°0
006r8°0 YO11IN3

100070
62€86°0 LN3ASAS

Leve o
08561 0~ O1l1vH

909¢°0
LL9ve o~ N38OAY

00000
00000° Y 1vlolrso

violrao

g4oud / SINIIDIJ4430D NOLLVIIUYOD NOSHVIJ

SHVYYOOud O dO4

JDIULIW ONIAQAVOT AJOYLINI

236

‘ANGS3INGIM 9T:¢Z

LsoL”
sLé68”
S091°
19L9°
6€€8°
99% €t
212
1SL0°

TT10° ¢

¥YO11IN3

MMM e e

8968 °
9oIL”
SErsS”
808"
£Le9”
2220
ISsvL”
1569 °

696S" 1

IN3ISAS

S60T°0-
1160°0-
£SE€T° 0
€L10°0-
€961°

orivd

¥950°0-

TS10°0
gsro"o
T880°0
Looe"o
EAS AD]

YZI1S 0
61LE° 0~
T9tZ 0~

N3goav

ISLe’ v
0686° ¢
8567°¢
€169° %
SLE9 "€
122 2204
Eve60° V¥
9¢99°¢
Lsov-t

aNlolcdao

0%8°§
8lse’ v
68ST° ¥
TZ09°S
T9LL" ¥
EOLE"E
9TIL"S
8696° 0
vLL'y

INLOL

ovee”
970¢ "
£98¢°
6019°
16€9°

bP609° 1
18L1°¢
6L6E"C
¥6L0°C

ANV

0160° ¢
6vey-
920¢° ¢
0160°¢
6L6€°C
toe”
ey
0T16°
Leels

MmN

3ovud

LG6RT”
SYeo°
e16L"
S612°
LS66°C
s16L" 1
P9Is ¢t
y068°1
6vev-l

< -

e’
A3
9Ly’
6vIZ-”
€veo”
1862°

gotV b
8168°¢€
S€8S°¢€

SINIWWOD TD3IANON

Lo BRIV AN TR - i To)

SSEI € 09S9°S 6
970€°7 S00L"V @
B16L°T 02167 ¢ L
Ls66°7 8S09°S 9
TL61°T 988b°v S
BI6LT 9L€E9°€E ¥
LS66°T ELZ6TY €
9TLL"T 8BIV ¥V T
180072 1eptl ¥y 1

1030 3Q0007 sSUO

SHYYO0Ud DO dOd

JI¥l3H ONIQVOT KJdOYINI

A

VITA
William R. Torres
Candidate for the Degree of

Master of Science

Thesis: THE EFFECT OF SOFTWARE REUSABILITY ON INFORMATION
THEORY BASED SOFTWARE METRICS

Major Field: Computing and Information Science

Biographical:

Personal Data: Born in San Juan, Puerto Rico, December
27, 1962, the son of William R. and Nelida Torres.
Married to Maria A. Torres and father of Maria C.

and Diana B. Torres.

Education: Graduated from Our Lady of Pilar High
School, Rio Piedras, Puerto Rico, in May 1980;
received Bachelor of Science Degree in Electrical
Engineering from University of Puerto Rico at
Mayaguez in May 1985; completed requirements for
the Master of Science degree at Oklahoma State

University in July 1290.

Professional Experience: Teaching Assistant,
Department of Electrical Engineering, University
of Puerto Rico at Mayaguez, August 1984, to
December 1984. Physical Security Systems
Engineer, Tinker Air Force Base (AFB) Oklahoma,
June 1985, to July 1987. Local Area Network
Design Engineer, Tinker AFB Oklahoma, July 1987,
to August 1988. Branch Chief, Communications
Support Branch, Wright Patterson AFB Ohio, January

1990, to present.

BIBLIOGRAPHY

(ADA83] Reference Manual for the Ada Programming Language,
United States Department of Defense, ANSI/MIL-STD-1815a,
January 1983.

[ALEXA64) Alexander, Christopher, Notes on the Synthesis of
Form, Harvard University Press, Cambridge, Mass., 1964.

(BIGGE87] Biggerstaff, Ted and Richter, Charles, "Reusability:
Framework, Assessment, and Directions," IEEE Software, March
1987, pp. 41-49.

[BOOCH86] Booch, Grady, Software Engineering with Ada, The
Benjamin/Cummings Publishing Company Inc., Second Edition,
1986.

[CHANO73] Chanon, Robert N., "On a Measure of Program
Structure, " Ph.D. Dissertation, Department of Computer
Sciences, Carnegie-Mellon University, Pittsburgh, PA, November
1973.

[CHEAT83] Cheatham, Jr., T. E., "Reusability Through Program
Transformations," Proceedings ITT Workshop on_Reusability in
Programming, September 7-9, 1983, pp. 122-128.

[CHEN78] Chen, Edward T., "Program Complexity and Programmer
Productivity,"”" 1EEE Transactions on Software Engineering, Vol.
SE-4, No. 3, May 1978, pp. 187-194.

[CHENG84] Cheng, Thomas T., Lock, Evan D., and Prywes, Noah §S.,
"Use of Very High Level Languages and Program Generation by
Management Professionals," IEEE Transactions on Software
Engineering, Vol. SE-10, No. 5, September 1984, pp. 552-563.

[CONTE86] Conte, S. D., Dunsmore, H. E., and Shen, V. Y.,
Software Engineering Metrics and Models, The Benjamin/Cummings
Publishing Co., Inc., Menlo Park, CA, 1986.

{GOGUE86] Goguen, Joseph A., "Reusing and Interconnecting
Software Components," IEEE Computer, Vol. 19, February 1986,
pp. 16-28.

[HALST79] Halstead, M. H., "Advances in Software Science,"
Advances in Computers, (Yovits, ed.), Vol. 18, Academic Press,
New York, 1979, pp. 119-172.

[HARTM66) Hartmanis, J. and Stearns, R. E., Algebraic Structure
Theory of Sequential Machines, Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1966.

[KAISEB87) Kaiser, Gail E. and Garlan, David, "Systems from
Reusable Building Blocks," IEEE Software, July 1987, pp. 17-24.

[{KERNI78]) Kernighan, Brian W. and Ritchie, Dennis M., The C
Programming Language, Prentice-Hall, Englewood Cliffs, NJ,
1978.

{KERNI84] Kernighan, Brian W., "The UNIX System and Software
Reusability," IEEE Transactions on Software Engineering, Vol.
SE-10, No. 5, September 1984, pp. 513-518.

[LETOV86] Letovsky, Stanley and Soloway, Elliot, "Delocalized
Plans and Program Comprehension," I1EEE Computer, May 1986, pp.
41-49.

[LUBAR86a] Lubars, Mitchell D., "Code Reusability in the Large
Versus Code Reusability in the Small," ACM SIGSOFT Software
Engineering Notes, Vol. 11, No. 1, January 1986, pp. 21-27.

[LUBAR86b] Lubars, Mitchell D., "Affording Higher Reliability
Through Software Reusability," ACM SIGSOFT Software Engineering
Notes, Vol. 11, No. 5, October 1986, pp. 39-42.

[MATSU84} Matsumoto, Yoshihiro, "Some Experiences in Promoting
Reusable Software: Presentation in Higher Abstract Levels,"
IEEE Transactions on Software Engineering, Vol. SE-10, No. 5,
September 1984, pp. 502-513.

[MCCcAB76) McCabe, J., "A Complexity Measure," IEEE Transactions
on Software Engineering, Vol. SE-2, No. 4, December 1976, pp.
308-320.

[MILLE87) Miller, Webb, A Software Tools Sampler, Prentice-Hall,
Inc., Englewood Cliffs, NJ, 1987.

(MOHAN81] Mohanty, Siba N., "Entropy Metrics for Software Design
Evaluation,” The Journal of Systems and Software 2, 1981, pp.
39-46.

[MOHNK86] Mohnkern, Gerald L. and Mohnkern, Beverly, Applied
Ada, Tab Professional and Reference Books, 1986.

[PRIET87] Prieto-Diaz, Rubén and Freeman, Peter, "Classifying
Software for Reusability," IEEE Software, January 1987, pp.
6-16.

[SASB8B5a) SAS User’'s Guide: Basics, Version 5 Edition, SAS
Institute Inc., Box 8000, Cary, NC 27511, 1985.

(sAS85b) SAS User'’'s Guide: Statistics, Version 5 Edition, SAS
Institute Inc., Box 8000, Cary, NC 27511, 1985.

[SCHIL87]) Schildt, Herbert, Advanced Turbo C, Osborne McGraw-
Hill, New York, NY, 1987.

[SCHUT77] Schiitt, Dieter, "On a Hypergraph Oriented Measure for
Applied Computer Science," Proceedings of COMPCON, Washington,
D.C., Fall 1977, pp. 295-296.

{SHANN64] Shannon, Claude E. and Weaver, Warren, The
Mathematical Theory of Communication, The University of
Illinois Press, Urbana, Ill., 1964.

[sHOOM83] Shooman, Martin L., Software Engineering: Design,

Reliability, and Management, McGraw-Hill Book Company, New
York, 1983.

[SHUMA89] Shumate, Ken, Understanding Ada with Abstract Data
Types, John Wiley and Sons, Inc., New York, NY, Second Edition,
1989.

[SOMME89] Sommerville, Ian, Software Engineering, Addison-Wesley
Publishing Co., Third Edition, 1989.

[STEVE74] Stevens, W. P., Myers, G. J., and Constantine, L. L.,

"Structured Design," IBM Systems Journal, Vol. 2, 1974, pp.
115-139. '

[TRACZB88]) Tracz, Will, "Software Reuse Maxims," ACM SIGSOFT
Software Engineering Notes, Vol. 11, No. 5, October 1988, pp.
28-31.

{VANEM70] van Emden, M. H., "Hierarchical Decomposition of
Complexity," Machine Intelligence 5, 1970, pp. 361-380.

