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S1. INTRODUCTION

The psezt, paper is concerned with propagatidn of chaos problems for

systems with an infinite number of degrees of freedom such as strings or

spatially extended neurons. The investigation of the asymptotic behavior of

the voltage (membrane) potentials of large assemblages of interacting neurons

leads to precisely such problems and provided the immediate motivation for the

work. Another example to which the approach of the present paper could be

applied e is the Ginsburg-Landau model in hydrodynamics recently

studied by T. Funaki [4].

Sections 2 and 3 are of an introductory nature' Basic properties of duals

of nuclear spaces (denoted throughout by V, the strong dual of a countably

Hilbertian nuclear space 0) are briefly discussed and the results of Kallianpur

et al. ?I on the existence and uniqueness of the solution to (the martingale

problem posed by) a *'-valued stochastic differential equation (SDE) is

extended to a system of such equations. The principal results in which the

infinite dimensionality of our problem call for special arguments are derived , f

in Sections 3, 4, and 5.

In Theorem 4.1. the weak compactness of the sequence of empirical measures
n

1n( , ,} = 1 . 6 () is established and it is shown in Section 6 (Theorem
J=1

6.1) that n, the law of n (w,-) converges weakly to the unique solution of the

McKean-Vlasov equation.

The infinite dimensional (nucelar space-valued) version of the

McKean-Vlasov SDE is introduced in Section 5. The existence and uniqueness of 0

solution of this equation is investigated in detail in Baldwin et al. [1]. In

view of the importance of this result for the propagation of chaos, a slightly

different proof (with a somewhat stronger conclusion) is given for the special --
JesC Ost Avail ador
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choice of the interaction term for our problem. The main results on the

propagation of chaos are given in Theorems 6.2 and 6.3. The existence of a

unique solution to the martingale problem posed by the system (3.2.1) and

Theorem 5.1 on the McKean-Valsov equation are the key steps that enable

Sznitman's technique for finite dimensional SDE's to be used for the nuclear

space valued case.

The application, alluded to above, to the voltage potentials of

interacting, spatially extended neurons is considered in Section 7. For

reasons of space we have limited ourselves to the mathematics of the problem

and excluded any discussion of the neurophysiological implications.

In Section 8 we introduce the assumption that the initial measure of the

system (3.2.1) is Wo-chaotic and show that the results of the previous sections

hold under this more general condition. This is of importance in application

since it is more reasonable to assume (as in the case of the neurons) that the

random variables X,(t)....,X n(t) are exchangeable than that they are

identically distributed.

It is worth remarking that our results contain the finite dimensional

results as a particular case and their relationship with other available

results (e.g. Sznitman [161) is also briefly commented upon.

An outstanding problem, to which we hope to return in a later paper, is

that of proving a fluctuation or central limit theorem. The difficulties that

lie ahead are foreshadowed in a recent paper by Kallianpur and Mitoma [7) that

establishes such a result under restrictive conditions.

S2. PRELIMINARIES ON NUCLEAR SPACES AND V'-VALUED SDE's.

In this section we provide the basics on nuclear spaces and on stochastic

processes and integrals taking values in duals of nuclear spaces followed by
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the results of Kallianpur, Mitoma and Wolpert [8] on the existence and

uniqueness of solutions of SDE's.

2.1 Nuclear spaces

Let 0 be a real linear space whose topology is given by an increasing

sequence 1111 r . r=1,2.... of Hilbertian norms. Let 0 r be the completion of 0

with respect to 11-11 r . Then 0 is called a countably Hilbertian nuclear space

(CHNS) if the following two conditions are satisfied:

W

(i) *= no
r-- r

(ii) For each r, there exists an m>r such that the canonical embedding 0mC Or

is Hilbert-Schmidt.

Let 0' denote the strong dual of 0 whose topology is given by the

following family of semi-norms:

fIB = sup If(x)l where B C 0 is a bounded set in 0.
xEB

0

It is well known that 0' = U 0 where 0 is the dual of 0 . Besides, the
r=l -r -r r

strong topology on 0' coincides with the inductive limit topology induced by

the canonical embeddings 0 C V. Let 11-11 denote the norm in 0 . If jrteannalebdis -r -r -rr

denotes the canonical mapping of 0 r onto its dual 0 -r, then for u E 0-r and

r 
-r

€r .

u(#] = (U.J r>r = <J-r.ul*r

where < - > denotes the inner product in the appropriate space.

For any DO, C denotes the space of all continuous functions from [O,TJ
0*

to 0'. If {[Ia : a E A} is the set of semi-norms defining the strong topology

of 0', then by defining -x = sup IxtI * xC, T the space CT, is seen as a
a O~t T a'
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completely regular topological space under the projective limit topology of

{ Iua: a E A). C 0. denotes the space of all continuous functions from [0.-) to

0. CT is the Banach space with the uniform topology, consisting of all

continuous functions from [0,T] to 0_,.

2.2 V-valued processes.

Let ,()t P) be a stochastic basis satisfying the usual hypotheses.

Definition: An adapted -valued stochastic process{Mt}t 0 is called a

martingale with respect to (5t) if for each # 6 0, {Mt[#1)tO is a real-valued

(5t ) martingale. (M Iis called an L2martingale if EMt []2<0 for all tO and

#C.

For a detailed discussion of V'-valued martingales and their properties we

refer the reader to [6] and [12].

Definition: A continuous 0'-valued process {Wt}t 0 is called a Wiener process

with covariance Q. if the following conditions are satisfied:

(i) W0 =O a.s.

(ii) {Wt[0 )} is a one-dimensional Wiener process with variance parameter

Q(#.#). where Q(-,-) is a continuous positive definite symmetric bilinear form

on 0.

A result of Mitoma [13] implies that any 0'-valued Wiener process W has

paths that lie in the Banach space C for some q(w, and which are continuous
-q

in the 0 -topology P-a.s. The choice of q depends only on the covariance form-q

Q. Let r q be a fixed integer. An important property of the quadratic form

Q is that it admits a unique continuous extension to a nuclear form on 0 r and

Q[01. = (#.QrPr = (&Qr #) (2.2.1)
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for a unique non-negative trace-class operator Qr on 4 r" The trace norm of Q

on 0r (or. equivalently, of Qr) is given by

rr

where {hr} is a ONS for 0

2.3 Stochastic integrals in 0'

Let (Wt} be a 0'-valued Wiener process with covariance form Q(-,-) and let

L(',O') be the space of all continuous linear operators from 0' to 0'.

2For each T>O and # C 4P, let Lw denote the space of progressively

measurable processes H: IR+x[2 -*L(O',O') for which Ef T Q[H *OH % Ods < -, where

H is the operator dual to H
S S

H ODefinition: The stochastic integral It := iasdWsi -valued

L2 -martingale with the quadratic variation process as <I H> , QH [0,,]ds

where QH [OP] = Q[H*.H*P.

H T
s

There exists an )0, depending on H and T such that I H e CT  a.s.. If

{h} C 4 is any CONS in -

H t~~d e, e ~H.h~2 w[H= HdWs[ ] = I S(Hj#,he.)dWl[h (2.3.1)

aL2

where the right hand side is an L -convergent series of It6 integrals.

Besides,

<IH>( = I.; (Hshl)e(Hs,.h )ds Q[h i.h J] (2.3.2)
-i,J=l

2.4 0'-valued SDE's.

V NII I
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We give below the result of Kallianpur. Mitoma and Wolpert [8] on the

existence and uniqueness of solutions of stochastic differential equations.

For a probability measure AO on ' and a pair of functions

A: I+xO' --+ 0' and B: I+x' --*L(4':4'). consider the following SDE:

dXt = A(t.Xt)dt + B(tXt)dWt} (2.4.1)

X0= X(O)

where X0 is a V'-valued random variable with law of X0 given by A' . and W is a

0'-valued Wiener process with covariance form Q.

Let (O') consist of all functions f: 0' -+ P with f(u) = f(u[#]) where

fE C (R) and 0 E . The operator Ls is defined as follows: For each

f ''

Lsf(u) = f'(u[*])A(s.u)[*]+ 2f"(u[*])Q(B (s.u)#.B (s.u)#)

where B(s.u) : 0 --+ 4 is the adjoint of B(s.u). i.e., for all v E 0' and

v[B(s.u)#] = B(su)v[*].

Let CO.=C- = Borel a-algebra of Ct'" and 9 = V 5t and let
t20

Jr t -CP,-* 0' be the canonical process defined by rty = y(t) for all yEC,,.

If )ET(C T  ), then A11tl (A)=p (y C C T : ytC A), A C !(0_k ) .
4-k t0-

Definition: A solution to the martingale problem posed by (2.4.1) is a

probability measure p on C. such that for any f C (V'), the real-valued

process t = f(xt) - f(xo) - f Lsf(xs)ds is a ma.$.{$t).t) nartingale with

-1
A*"ro =

The following conditions are imposed on the space 4. measure A0 and the

coefficients A and B.
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Let {h} be a CONS in 0 obtained by the Cram-Schmidt process applied to a
j m

countable dense set { .} in 0. For every j. we then have

n.
k= . + 77 (2.4.2)

k=l

where nj (depending on m and j) j and 1177Il = 0. Our assumption is the

following:

(A) For each m and p. (p~m), in (2.4.2) fin I 11 = 0.

Let T>O be fixed. Then, for each sufficiently large m~r where r is

introduced in (2.2.1), there exists a number 0>0 and an index pm such that for

all s,t T.

(IC) Initial Condition: co  (l+ulli2 )[en(3+llull2 )] 2wo(du)<-

(CC) Coercivity Condition: For each u C j .

2A(t.u)[JuJu] + )QBCt.u)1-m.-m K 9(1+1u"2 )

where jm denotes the canonical map from $m to 0 -m with jm as its

inverse.

(LG) Linear Growth Condition: If u E -m , then A(t,u) E0 _p and

-m -p

IIA(t~u)II 6(l+IuII)2

IBt,u)l-m.-m '(1+"UII2 M)

(JC) Joint Continuity Condition: A and B are each jointly continuous.

Further,

(1) B(s,u)(v) E 0- if u~v C -0 _Mand

(ii) QB(s.u) (#,) is continuous in u on 0' for each * C 0.

The following condition will be needed in the proof of uniqueness.

(MC) Monotonicity Condition: For all u,v 6 0-M (C 0 )

(A(t.u) - A(tv). u-v) + IQB(t t -p,-p ollu-vll 2(Xtu -p B.u)-B(t,v) -,p-p
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We give below the main result of Kallianpur et al. [8].

Theorem 2.4.1. Assuming conditions (A). (IC), (OC), (LG) and (JC), there exists

a weak solution to the stochastic differential (2.4.1). Besides, it has the

pathwise uniqueness property if ((MC) is satisfied.

Next, we give a moment bound, followed by a tightness result both of which

are due to Baldwin et al [1].

Theorem 2.4.2. Let k~l and EIIX 1 2 k  Then, under all the conditions

of Theorem 2.4.1,

E sup 11X 112 k  (2Ck + 1)exp((136k - k)OT)-I
O<t_<T s -m

Remark 2.4.1: EllXt 112k (2Ck+l)e4k(k-l)Ot - 1 for each O~t<T.

Theorem 2.4.3: Assume that the coefficients associated with the equations

X Xo + f An(sX )ds + f xBn )dWn

and

Xt = X0 + ,f;A(s,Xs)ds + foB(s,Xs)dWs

satisfy the conditions:

1) Conditions (IC), (CC), (LG), (JC) and (MC) hold as stated where the

constants and indices are independent of n.

2) Xn D X00

3) If Qn and Q denote the covariance forms of {Wn } and {WS} respectively, then

Qn converges to Q.

4) For each sE[O,T] and # C 0, An(s.-)[4] converges continuously to A(s,-)[#].

5) For each sE[O,T] and # E 0, (Bn(s,.)) # converges continuousl, to B (s,-)*.

Then P.(xn) - I => P.X - I in CT

-p
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Remark 2.4.2: If T>O is fixed, the solution of SDE (2.4.1) namely X will have

paths in a.s. where p is the index that appears in the conditions.
-p

Remark 2.4.3. Throughout the paper, the notation P_+ is used to denote

convergence in distribution of random variables whereas the notation => is used

to denote weak convergence of measures. Thus, X nD X is equivalent ton

pO(Xn)-1 =) P-X- 1where PX-ln and PX 1 denote the law of X and X respectively.

We adhere to this notation even when the random variables are measure-valued.

3. SYSTEMS OF 0'-VALUED SDE's

The aim of this section is to extend the results of the previous section

to a system of stochastic differential equations which is done by first

introducing the Cartesian product of nuclear spaces.

3.1 Cartesian product of nuclear spaces.

Let 0 denote the nuclear space introduced in Section 2. Consider the

linear space OxO with coordinatewise linear operations. Let

2 j2 +1 2 frrl
Ilx 2 )II I r 21 rf

An increasing sequence of Hilbertian norms is thus defined on Oxo which

preserves nuclearity of OxO. To see this, let 0rxr be the completion of 0* in

the product r-norm given by (3.1.1) for all r 1. Clearly, 0rxr= r x4r and

oxo = n (ox r). Given n>O. if m>n such that the canonical injection
r 1

i: *m C 0n is Hilbert-Schmidt, then the injection (OxO)m C (CX*)n is also

Hilbert-Schmidt.

Let (OxO)' denote the strong dual of OxO so that (Oxf)' = U (Prx(r) '. If
r21

e E (.r XOr ). we can uniquely determine two linear functionals eI and R2 in O-r

such that
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e(O1,02) = el(Od + 82(02) for all #1 ,02E 'r (3.1.2)

Likewise, given eI and e 2 in 0-r, there exists a unique e in (0 r r)' such that

(3.1.2) is satisfied. In short, there exists an isomorphism between (r x4 )'

and 0-xO which is written as ((rXOr), 0_rX _r

The above isomorphism is not just algebraic but topological as well, if

0 X 0 is equipped with the product -r norm. i.e.-r -r

2 2 2II(UlXU2 )ll-r=lluil2I-r + Ilu 211r . We thus get

(OxO)' = U (0r Xr)' = U (0_rX tr) (3.1.3)
r l rl-

Besides, U (0-rx 0 _r) = V'x ' set-theoretically. To see the topological
r l

equivalence, consider a neighbourhood of zero in 'xV' i.e. Let A I and A2 be

two bounded sets in 0, and e>O be given. Consider the set

A = ((e1,e2): sup lp1 {()j < 6, sup e2('P) < E) C O'x 0'.

0 E A 1  ' C A2

For any fixed r~l, 3 ar -.AC{ 11011 <ar) i=1.2 so that

A D ((eillA 2 ((e 1 ,2 2 ): iilellr < "211-r 1

Thus

o ((e ) Ie1
2 + lie1 2 < e2 /a ) (3.1.4)

On the other hand,

A C {(e1, 2 ): sup [ 1(#i)+e 2(#2)I < 2e} (3.1.5)

(01.02) 1 AlxA2

and A x A2 is a bounded set in 0 x 0. (3.1.4) and (3.1.5) give us the

topological equivalence of U (0 rx0_r) and Vx'. Therefore (3.1.3) implies

rtl
that
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(0 x 0)' = U (4 x r)' d U ($_r _) = O'x 0'. (3.1.6)
r~l r l

Equation (3.1.6) carries over for any finite number of Cartesian products.

3.2 System of SDE's

Let X n be V-valued processes, lj~n governed by the SDE
an

dX-(t) = (a(t,X (t)) + iI b(tX'(t). X n(t)))dt
n i=l

+((otXn.(t)) + Ln

- - c(tXn(t),X nt)))dWJ (3.2.1)
J n i=l it

and X (o) lj~n being iid V'-valued r.v.'s with law of Xn(O) given by the

probability measure PO. {WJ}. l j~n, are independent copies of a Brownian

motion with Q as the covariance form. Besides,

+

a: R x' + - '

b: IR+ x 4 x4 --

a: + x 0' -- + L(': V)

c: R+x 0' x V' -- +L(O': V')

Let (X,(t)..... n(t)) E 4'x...x 0' be a solution of (3.2.1). Then the

isomorphism given by (3.1.6) between Vx... x 0' and (0 x... x 0)' we can write

the system of SDE's (3.2.1) as follows:

dXn = Ca(t,Xn) + b(t,Xn))dt + (a(t.Xt) + c(tXn))dW (3.2.2)
t t t t t t

where initial value X6 is a (Ox... x 0)'-valued r.v. such that Xn is isomorphic

to (X,(O) ..... xn(o)) C (4'x.. .x'), and Wt is the (0 x...x 0)'-valued Wiener

process described below.
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n

t(60) = IT wt )
J=l

By the independence of {Wj l

n
<W>[P.4/] = t . QOP,4)

J=l

Besides, {Xn} is a (0 x... x 0)'-valued process. The coefficients appearing in

(3.2.2) are given as follows:

LL x ( x ... x x' -. ( ... x 0),

: + x x x... x x) -- ( x... x 0),

a: x ($ x...x ) -L( x...x ): (xb x...x 0)')

c: x x@ ... x@) -- C x... x 0)': (0 x ...x 0)')

For ,% = ('I..... p) and C=(1..... ) E * x... x and u (u.....u) and
i n 1 x1 n

v (vi....v) C (€ x...x 0)', we have
n

a(tu)[W] = I a(t,u )[.f
~ ~ j=l

n n
b(t-u)[p = I IT b(t,uju )DP I~ - J=l i=1

n
o(t.u)(v)[P] = ! a(t.u )(v )[ ]

- ~ - J=1

1n n

(tTu)(v)] = n nc(t,uJu)(VJ J
~ ~ ~J=l I =

so that

n
f(s.u)dWs V] = o a(su )dW DP I0 s ~J=l Sj

1 n n t

fC c(s'U)dW ['P] = I ; J )dWs[ O
J=l i=J

3.3 Existence and uniqueness of solutions.
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Under the conditions given below, there exists a weak solution Xn of

(3.2.2). Such a solution will also be shown to be pathwise unique and thus

ensures a unique strong solution {Xn} E (0 x...x 0)' to the equation (3.2.2)
t

(see [5]).

Analogous to (3.1.6). the isomorphism C (O C...x , = C0x... xC is easily

established. Towards this, fix T>O and consider y EC 4x . so that for

each Ot T, y(t) C (4 x. ..x 0)'. By using (3.1.6). y(t) is isomorphic to, say,

(Y(t)....Ynt E O 'x...x 40' for 0 K t K T and so, lim y(t) = y(to) is
t-Kt

O

equivalent to lim Yk(t)=yk(tO) for each l~k~n. Let {Ila: aEA} be the set of
t-#tO

semi-norms defining the strong topology of 0'. Set *YkMa = sup lyk(t)la for
0 t T

T 2 n 2yk~CC ,1 k n andaEA. Define.yma = .yk foreachaCA. By
k=l

replacingllIll by m-a in (3.1.4). the arguments used in deriving (3.1.6) hold

in the present context as well and thus C4x . is isomorphic to

T TT
C ,... C . Cx..xC. ad (4) x.. 4)' equipped with the projective limit

topologies of {Cx ... x CV: TEI} and {C0 ,x. .. CT: T C respectively, are

therefore isomorphic.

Let X n(t). 1 j n and t>0, be such that for each E ('1 .... 'n ) C

) x...X 4), xn) T[] Then Xn(-) C C, for 1 j K n and solve (3.2.1).

The conditions for the existence and uniqueness of solutions of SDE (3.2.2) are

as follows: Conditions (A) and (IC) of Section 2 are assumed to hold. It is

easy to note that condition (A) on 4 implies that on 4 x... x 4. Likewise

condition (IC) of Section 2 implies

f (l+11ull 2 )[en(3+llul 2m)]2 p0 (du) (

(0 x...4 ))'
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where uc(Ox...x¢)' and g0 = V(X6). We will call (A) and (IC) as (SA) and (SIC)

whcre S stands for system of stochastic differential equations. The

coefficients a,b,c and a are assumed to satisfy the following conditions:

For any TO, 3 LT r such that for each m LT . 3 a number 0 and an index p

(note that 0 and p depend on m) such that:

(SOC) For u.v C jm, and 0 t T,

2a(tu)[J_mu] + 2b(t.u.v[J_mu]+

IQ I~ - 6(I+11uII 2 m Ptuvlvl2I%(t.u'+C t~u.v)l-.m ° +u- + c t'u )v-M

where

J0 if b(t.u.v) = c(t,uv) = 0
13(t.u.v) =

I otherwi se

(SLG) Let u.v C and 0 t T. Then a(tu) E @_p and b(t.u.v) 0 _p.

Besides.

,,a(tu)l2p 0(+,lull2_)
-p -

IIb(tu v)l - (l+llull2- + Ilvil-)

IQa(t~u) 11.-m 0Cl+Uu"l2 M)

IQ I~m- (+11ul 112 12M

IQc(t.u.v) - e(l+lluI-+lv2-)

(SJC) a.bc and a are jointly continuous functions. Further,

(i) For uv,w C E-m

c(t.u~v)(w) 0
-m

(ii) Q (t.u)(#.#) is continuous in u on 0' and Qc(t u'v)(.) is

continuous in u on 0' for each *C 0.

The following condition is needed to prove the uniqueness of solutions.

(SMC) For uVl.u 2 ,v 2 C -m ( C 0p)



15

(a(t.ul)-a(t.vl).U1 -vl)_p + IQo(tUl)_(t,Vl ) I-p . _p  0 I 1U1-V1 Ii2p

and

(b(tu 1 ,U2 )-b(t,v1 ,v2 ),ul-vl ) p + IQ c(tU2)_c(t,Vl,V2)Ip._p

0 {lul-v 1 
2 + lu 2-v2112}

It is easily verified that the above conditions will imply (OC), (LG).

(JC) and (MC) for the coefficients a,b,c and a for equations (3.2.2), so that

by Theorem 2.4.1 we get existence and uniqueness of solutions for the SDE

(3.2.2). The moment bound given in Theorem 2.4.2 becomes

E sup liXn(t)Il2 I (2Ck+1)exp((136k 2-4k)OT)-1 (3.3.1)
O~t T -M

where Ck = EIXn(0)1I2 k < and is independent of n. In fact, the following

bound can also be derived by an obvious modification of the proof of (3.3.1):

Under the Condition (IC)

E sup IIXn(s)-Xn(t)II 2  c65 (3.3.2)

It-sI<6 -P
OKt.sKT

where c is a constant independent of n. To see this, note that if T t s

0 with t-s K 6. then

X(jCt) = X s) + f {(a(s),X (s)) + i bs.js),Xn(s))ds

n i=l

+ S {a(s.X (s)) + n I c(sX (s).X (s)))dW.
n i=1

We get (3.3.2) by the familiar route namely, via. Doob's inequality, Jensen's

inequality wherein the condition (SLG) is used cruc4 .lly.

Note: O(T<w will be kept fixed till the last paragraph in Section 6. Thus X n
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ljQn, the solution of 3.2.1 will each have paths in CT a.s. where p is the
-p

index that appears in the conditions.

§4. WEAK OOMPACTNESS OF EMPIRICAL MEASURES.

Let Xn denote the solution of the SDE (3.2.2) so that
X? n n T X...T where X n(-), ljQn solve the SDE's
X. (().--Xn(O)) C Ci . xC

-p -p

(3.2.1).
Let 9(CT ) be the Borel a-algebra of CT For (1 6 (, B9(C T define

-p -p -p

the empirical measure

I n

= n jl n (B). (4.1)
j=l XT(-(J)

For any k 2 1, let wC T  ) be the space of all probability measures on-k

CT equipped with the topology of weak convergence of measures. Likewise
C-k

T
T(CT,) will be the space of all probability measures equipped with the topology

of weak convergence of measures. Note that the canonical injection

T T T )i:T(C_ ) C w(C _ ) is continuous if k e. To see this, let Xn C r(% such

that An => A In i(C T  ). Therefore, for all f E Cb(CT ) f f(y)X (dY)n0-k O-k n

.f f(y)X(dy) as n--. If g C Cb(CT ), let J: 4_C *_ be the continuous

-k

Tcanonical injection of -k into _ so that the composition g-j 6 Cb(CT  ).
-k

Besides, J (g-J)(y)Xn(dy)= f g(y)X n(dy) and f (g-j)(y)X(dy)=

T c _ C -k

S g(y)X(Av). so that Xn => X in 7r(C T  ) as n -- a.

CTn

"-p iIP
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An is a random measure with Pn(,-) T ) for each w C 0 and n 2 1.

-p

T
Let vn(B ) = F Un(B ) for all B E (CT ). Let 1n := 2(p.). the law of An' i.e..

-p

the probability measure on Y(CT  ) induced by the random measure wn. Thus,
-p

T7lrT(,))
-p

Theorem 4.1: Under the conditions (SIC). (SA), (SOC), (SLG), (SJC) and (SMC),

we have

(a) the sequence {v} is tight in r(C T  ) for some q 2 p.
-q

T
(b) the sequence {nn is weakly compact in lr(TC T )).

-q

Proof: (a) For any set B C 1(T , ),

in
(,c) = F (Bc) n .P(Xn C BC) = P(XnCBc) since X n ljJn, are identically

n n ~J=l J

distributed random variables. Therefore, the tightness of (Vn} in Tr(cT,) is

equialen to he ightess f {nl i.e.. of the probability measures {n

T n
on T(C,.) where pFn = law of X 1 .

By a result of Mitoma [14]. the tightness of {Pn} is equivalent to the

tihns f(i-1T T T
tightness of {pnI} on T(C1 ) for each 0 C *, where w: CT . -- (j with

v#(u) = u[#]. The tightness of {PnIr.l) follows by verifying the following two

conditions:

(i) Given e > 0, 3 a > 0 such that

sup Pry C T,: sup lYt[#]I > a) (
n O tT T

(ii) Given e > 0 and p > 0, 3 6 > 0 such that

suppn(yC, Sup ly[oil -ys[#]1 2 e) p.
n It-sI<6
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Condition (i) is verified by noting that E sup llXn(t)II2 is finite and
05t T -P

independent of n. To verify (ii), note that

Pn(y: sup lyt [#-ysE[]I a 6) Pn(y: sup [<  IIS ii-i 0 )

2x I E sup IIX1(t) X(s)II2  p

e It-sI(6

if 6 is such that E sup IIXl(t) - Xn(s)l2p <  2
It-s <p -1011 p

By the moment bound given in (3.3.2) we have that

E sup "Xl(t) -Xl(S)I
2  c6"

It-sI<6 p

so that a 6 as desired does indeed exist once we are given ep and #.

T
The tightness of {Vn} is thus established on the space r(CT,). For any

# C 4, and any given e > 0,

P( sup 1x(t)[#]I > e) P( sup IXn(t)Il 11I11 > E)
Ot T JOt T J m m

2
E sup IIXn(t)II

0a 2 Ot T J -m

11.112

!&_. (2C +1)e 1320T PS12

if lll2  p 132r Thus by Mitoma ([14]; Remark (R.1)), {Vn} are
(2Cl+1)e

uniformly m-continuous and hence, are uniformly p-continuous as well.

Therefore, there exists an index q p such that {Vn} is tight in r(CT ).
-q

(b) For the second part of the theorem, let us look upon in(.i,-) as
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TW(C )-valued random variables. Then v n C ( an-qnCr(foal

n~l

Note that vn(B) = f X(B) 1n(dX) V B E T(CT  ). (4.2)
7CCT -q

-q

Using part (a) of the theorem, for each J 1, there exists a compact set K. inJ

T such that VnKc = S '(K)dnn(X) e/j3 where e > 0 is given. Let
-q

K={X: X(K.) 1 - V J} where K 's can, WLOG, be taken to be increasing sets.

K C r(C ) is compact since closed tight subsets of probability measures on a
-q

T
complete separable metric space (in our case, on C_ ) are compact (see Chapter

-q

II, Theorem 6.7 in [15]).

00

nK c )  PCpn C Kc )  J JnJ:JK < 1-
J=1

J" 5 (Kc) dvn
J= ( /))

J=1 2

inuT
Thus tightness of ({ nin T(lr(C ) ensues.

-q

Note that r(C ) equipped with the topology of weak convergence is a
-q

complete separable metric space (see Ch. II, Theorems 6.2 and 6.5 in [15)).

Tight subsets of probability measures on a complete separable metric space are

relatively compact. The proof is thus complete.



20

Remark 4.1. Let {n n be the subsequence given by the above theorem so that

77 => ii (say). Let p denote the w(CT )-valued random variable whose law is
nk )-q

given by T1. Thus % => 71 is equivalent to saying that -k D .

Remark 4.2. By a well-known theorem of Skorohod, there exists a probability

space on which are defined r(CT  )-valued random variables, say {Z n} and Z
-q n

with law of Znk = nk and law of Z = rj such that Znk -=- Z a.s.. Using this

representation and applying Fatou's lemma, we get

E sup f Ily 1i2 Z(dy) = S { sup f Ily sli2 X(dy)}n(dX)
Os T CT -qT O~s T T

% -q -q -q

ji.m E sup f flY II2 Z (dy)
k-i O s T CT _q

-q

= lim f { sup Ify 112 m(dy)}rn (d\)
k-w (cT O~s T cT s-in

-p -p

Irlkcnk 2
lim E sup I I1IX (s)ll 2

k--* O~s T nk J= m

(2C1+l)exp(1326T) (4.3)

by using (3.3.1). The inequality (4.3) holds with C1 and 9 remaining the same

if T is replaced by any t on both sides of the inequality (4.3). Ot T.

Remark 4.3: In case p is a degenerate random variable, and Y is a CT -valued
-q

random variable with 2(Y) = p, then Remark (4.2) implies that for each Ot T,

E sup IIY II2  (2Cl+l)exp{1320t). (4.4)
Os~t s -q 1
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§5. THE McKEAN-VLASOV EQUATION

Let {Yt: O<t T} be a '-valued stochastic process that solves the

following SDE known as the Global McKean-Vlasov equation: For 0 < t <_ T,

tt BSY,()d 51

Yt =Y 0 + f; A(s,Y s.(Y))ds + f6 B(sOYs~i(Y))dW (5.1)

where

TA(s, u, X): [0,.T] x V' x r(cT, -- 0 '

TB(s.u,X): [O.T] x V' x r(cT,) -- (': V')

and W is a V -valued Wiener process. 2(Y) denotes the law of Y, and Y is a

'-valued random variable.

The local McKean-Vlasov equation is of the form:

tsB(S)ds (5.2)
t Y0 + f; A(S,Ys,-(Ys))ds + O 'sY (Ys))dWs

for O~t T.

By uniqueness of solutions of the SDE (5.1). we mean the following:

T
For each X E w(C T .). let, for O~t T,

9' = Y+ Ft A(s.Y".X)ds + tF B(s,Y 5 .X)dW. (5.3)

Suppose there are X 1 and 2 T2 = 2(Y

Then X 1- X2

Existence and uniqueness of solutions of equation (5.1) in full generality

will appear in Baldwin et al. [1]. Here, we content ourselves with the

Tfollowing choice of A and B: For each X C Y(C,), let

A(s,uX) = a(s.u) + b(su.X)

where b(suX) = I b(s.u,ys)X(dy) and

B(s.u,X) = a(su) + c(su.N) (5.5)
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where c(s,u,X) = f c(s.u.ys)X(dy). Besides, we assume that there exists a

sufficiently large number M(m). possibly depending on m, where m is as in

subsection 3.3. such that for each uv C ,-m, and O<s T,

I bs(u.v) if Ilu-vii -M M(m)b(s,u~v) = -, (5.6)

bs(u,v) otherwise

where b s(u,v) and b s(uv) are functions of u.v with lb s(U'v)I_m C(m) for each

s C [O,T]. Likewise

cs v s s(U.V) if ,1u-vii < M(m)

=-m (5.7)
Cs (UV )  otherwise.

with c s(uv) and cs(uv) are functions of uv with IQs. Lm-m C(m) for

c s(u ,v)

each s C [O,T].

With b and c as above we first note that b and Z exist and are finite. To

see this, consider

b(s.u.X) = f b(s,U.v s)dX(v) = f b(s.u.v)dXirl(v).
CTCq,.

Since u C 0 , there exists an index k such that u C 6_k, and such a k ca., be

chosen to be sufficiently large.

Using such an index k in the place of m in our conditions given in

subsection (3.3) as well as (5.6) and (5.7), we get for each v C 0 that

Rbs~u,X)[v]I f Ib(s.uv)[qp]IdX-l (v)

= Ilb(s.u.v)[pl]dw-1(v)
A
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+ .f Ib~s.u~v)[,p'jL - (~v)

AC

where A (v: llu-vIk M(k)}. Continuing.

A llp l+llull-k +llvj-k)d s v) + C(k)

by using (SLG) with Pk k as the index that corresponds to k. Continuing,

114411I (M(k) + 1 + 211ull k + C(k) ( .

Likewise one can establish the finiteness of c(s.u,X) by showing that

IQ 1-k. -k < - whenever u E O-k"
c(s,u.X)

Such a choice of b and c makes physical sense in it that a pair of

particles far apart interact boundedly. This choice includes in particular the

case where b(s,u,v) and c(s.u,v) are both bounded in the sense that

llb(s,u,v)ll C-m

c(uv) -m,-m

for all O~s T, u C 0' and v C 0'. We assume that the functions a,b,c and a

satisfy the conditions (SEC), (SLG). (SJC) and (SMC). It is then a routine

matter to check that A and B, as defined above, satisfy (CC), (LG). (JC) and

(MC) as listed in Section 2 with the same indices and with constants

Tindependent of the measures X E r(CT ,). We need and hence introduce the

following additional condition:

(SJC)' (i) For each X £ Y(C0 .), b(s,u,X) and c(s,u,X) are jointly continuous

in s and u. Q- (0,0) is continuous in u on 0' for each * C 0 and
c(ss.UOX)

s C [0,T].
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(ii) For each * C 0, u C 0-m and s E [O,T], (su,X)[X ] converges

continuously to b(s,u,X)[#] and c (su.Xn)f converges continuously to

-~ T
c (s,u,X)# as X = > X in v(cT

Theorem 5.1: Consider the SDE (5.3) with A and B specified by equations (5.4)

to (5.7). Assume conditions (SA), (SIC), (SC), (SLG), (SJC). (SMC) and (SJC)'

and that EIIY where C is a positive constant. Then,

(i) the McKean-Vlasov equation defined by the equation (5.3) admits a solution.

The solution Y x lies in T a.s.
-p

(ii) The solution is unique if the following additional condition holds
(MCr): For all uv E 0 -m' and r1,C2 C TlT,), and Os T,

<b(s,u.Cl) b(sv,C2 ).u-v>p + q2 I-P,-P

CT{Ks(rI.C 2 )11u-v" + I1u-v112 } (5.8)

where CT is a constant and

inf J" f lu l-U2 11_p x s(du1 du2 ) if C1 A C2

Ks([V C2) =xe0( 1 C2 ) 0' 0 '

if C = C 2

Her, 12 ) = the set of all probability measures X on C . x C . with the

prescribed marginals C1 and r'2" Besides, X = Xtl

Proof: A complete and detailed proof of this result will appear in Baldwin, et

al. [1]. Here we will briefly outline the basic ideas of their proof with

modifications to suit our needs.

X C ( T).o T
Let A = {2(Y>): %r(cT,)}. Then A is a tight subset of ir(CT,) by

. T

Theorem (2.4.3). Define the map +.:(CT,) -* A by *(p) = V(Yp). Again by

theorem (2.4.3), * is sequentially continuous.
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Note that A is a subset of r(CT ). By using Theorem (2.4.2) for k=l and
-p

a result of Mitoma [14]. we know that there exists an index p p such that A

is tight as a subset of (CT _). Let ct(coA) denote the closure of the convex
-p

T T
hull of A in (CT _ ). Then ct(coA) is tight in ir(CT _ ) and is therefore

-p -p

compact in r(CT _ ). The canonical inclusion J:r(C T _ ) C V(C T,) is
-p -p

continuous as can be seen from the proof of part (c) of Theorem 6.3.

T
Therefore, cR(coA) can be viewed as a subset of ir(C,) and is a compact and

Ttight subset of (CT .).

It can be shown that the topology of weak convergence in 7r(C T, ) when

relativized to a compact tight subset of T(C T,) is metrizable so that cR(coA)

is a Polish space under this topology.

Let 4T: ce(coA) --+ ce(coA) be the restriction of 4o to ce(coA).

ce(coA) is metrizable and so sequential continuity of T is equivalent to

continuity of 4. An application of the Schauder-Tychonoff fixed point theorem

T
(see [3]) gives us the existence of the McKean-Vlasov equation. If X °  r(C0

X0

such that X o--(Y o), then, for this choice of measure No. the coefficients A

and B satisfy the conditions of existence and uniqueness of solutions as listed

in Section 2. Therefore Y, CT  since A C Yr(CT  ).
-p -p

For part (ii) of the theorem, let X I and X2 be two measures in r(CT,) such

that X 1 1X 1 ) and = 2(Y . Then Theorem 2.4.2 implies that

E sup 11 1 2 < since E sup 2y 2 12  <
O~tKT t -p O~sT - OKtT t

I 2
Therefore if Y = Y*t -Yt . E sup IIY II < w. Applying the ItO lemma to

t s OKsT t -p

1lYtll2pexp(-2ct) where Cr = C.r(X 2 ) is the constant that appears in (5.8),

and then using the condition in part (ii) of this theorem, we get that
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EIIY211 exp(- 2 CTt) E K ( 2, )IlYsl1pCTe -TSds.

Since Ks (X.X 2 ) EIIY sl p, the above inequality yields

t- C)Cfe % E, sYI2_ ds.
EIIY 2 1 exp(-2C) te-r IY1 s

Gronwall's lemma now yields EIIY II = 0 for all t C [O.T]. Since Y is samplet -P t

continuous, sup 1I - t1 P = 0 a.s.
O~ttT

Remark 5.1: Since the conditions of Theorem 5.1 hold for all sufficiently

large m with p being the index determined by each such m, the conclusion of the

theorem holds in particular when m is replaced by a larger index. Therefore,

the measure X 0 obtained in Theorem 5.1 is the unique solution of the

McKean-Vlasov equation defined by equation (5.3) even among the measures in the

T
larger space viz. ,(C, ) for any k 2 p. This fact will be used in Section 6

-k

for the particular choice of k=q where q is the index that appears in Theorem

4.1.

§6. PROPAGATION OF CHAOS

Let P denote the unique probability measure on T n that solves the

martingale problem posed by the system of equations (3.2.1) subject to the

conditions listed in subsection 3.3, and conditions (SJC)' and (MCi). Besides,

we assume that b and c satisfy conditions (5.6) and (5.7). qn ((CT )) is
-q

given by

in nC

qn(B) = P(yn I B) V B T( )
i=l Yi "q

where yn denotes a generic point in (T ) so that yn nn where
~--(C ) o t a ~ = (y1 ,y2  . . n h r

-q
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each component belongs to CT The method employed by Sznitman [12] is used
-q

in proving the following theorem.

Theorem 6.1: Under the conditions specified in Theorem 5.1, let X °  w( be
-q

the unique probability measure that solves the McKean-Vlasov equation (5.3).

Then, the subsequence (nk } obtained by Theorem 4.1 is such that nk => 5 o

where 6 refers to the Dirac 6 measure provided that there exists a > 0 such

that EIIX(O)'I4+am C, where C is independent of n.

Proof: Let f C QZ) (see subsection 2.4) so that f(u) = ?(u[ p]) for some

p C and f C C ([R).

Li~j(fyns) = f'(y'(s)[f]){a(s y (s))[ o] + b(s y j(s) i(S))[P]}

+ .yj (s)-:4))

k=1

innn=(~~(s)) + c(s,yn(S. (s).y* P]
nk=l

n n.... n

where y (y y ) E O'×...xW. Let

L(f,YCS),S,N) = f [r'(yWsH[o]

-q

{a(s.y(s))[p] + b(s.y(s).z(s))[fp]) + 1- (Y(s)[fl)

Q((JT (a(s.y(s)) + c(sy(s).zl(s))dz(zl))*[,p]).

-q



28

(f T a(s.Y(S)) + c(s.y(s).z2(s))dc(z2))[P])ld C(z)

C _-q

By the conditions listed in subsection 3.3. the existence of a unique solution

to the martingale problem posed by (3.2.1) is guaranteed. We have called such

a solution as P . Therefore

n

iy (t)[qJ) - f y'(r)[ p]) - f nT L sd
a r n ~ Xi'j f.

is a Pn -martingale with O~r~t T. By the conditions listed in the statement of

Theorem 5.1, a unique solution of the McKean-Vlasov equation posed by (5.3)

exists and is denoted by X ' Therefore the following is a X o-martingale:

f(y(t)[qp]) - f((y(r)[p]) - ftL(f~y(s),SXo)dS

where O~r~t T. Consider the function F: T(C defined by
-q

F(X) = f {f(y(t)[ip) - f(y(r)[p]) - ftL(f.y(s),s.X)ds} (6.1)

-q

g1{Y~r,))..--gp(y(rp))cL\(Y)

where O r1 r2.2- .rp t T and g ..... g1P are bounded functions from 0 -IR.
-q

Hence F(Xo)--O. Now we will show that f F (N)T(dX) = 0 by direct
w(~ )

-q

evaluation. From this, it follows that the support of 17 is contained in the

set of solutions to the L-martingale problem. Corresponding to each solution

of the L-martingale problem, we can construct a weak solution of the

McKean-Vlasov equation, by the method employed by Kallianpur et al. [8]. From

the previous section we know that the McKean-Vlasov equation has a unique
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strong solution namely Y . Therefore the set of solutions to the L-martingale

problem is the singleton set {XO). From the fact that X is the unique

solution to the martingale problem it will then follow that n=5 x
0

Claim: lim f F2 (X)7n (da) = f 2(N)n(d)
k-p T kT

(C,-q ) V(C, -q

Proof of Claim. Let X denote Xrs. If X is in the support of 71 recall that

X has support in 0 for each Os T. For each u.v C V, q. X E ir(C ) and
s -m "'n -q

O~s T, let for R > 0,

a R(s,u)[p] = (-RVa(su)[ ])AR

bR(s.u)[p] = (-RVb(s,u,v))[v])AR

Q ( ~ =~ S) h(s,u,X S)(4.)
=5

R R R
where h(su.Xs) = a(s.u) + c(sU.Xs). Replace a,b and Q by a ,b and Q

respectively in the definition of F. and call the resulting function as FR.

1 im 'r F 2 X, (ax) = f F 2(X)n7(d>x)
k-0 T R nk T Rk-T(cT ) T(C T  )

-q )-q

since FR E (T(C T  )). The claim will be proved if we show that
-q

((C 2 ((X) - F 2(X)17(dX)) and T (F2(X) - F-2(X))i(dX) can both be made
Tw(C T )

-q 
-q

arbitrarily small when R is sufficiently large.

Using Fubini's theorem and Jensen's inequality.

T R n k 1 i
(C )

-q
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x JStE [ S (i(y[Ip]a(s.y)[p])-As(dy) (6.2)r (Y: [a~s.y)[ ]j>Rj

+ S (f' (y[,p])b(s~,X s ) [p])2-As (dy)
(Y: lb(s.y.X s )[ o] 1>R)

+ A (?" "(yrP'])Qh(s.y. S) 0 -'P) )2 Xs (dy)]ds

h(s.y. AS)

It remains to show that each of the three terms on the right side of (6.2) can

be made arbitrarily small, uniformly in k. when R is large. Since the method

for each term is essentially the same, we shall consider only the third term.

"2 IQIs. 11112 [30(1+4'lyl1 2m+M2m) )+3Cm)]

by using (SLG) and equation (5.7). Thus

(y: Qh(s.Y.) (X ,) > R) (y: ilyll2 m> R/k}

where k is a suitable positive constant and R is sufficiently large.

Therefore, the third term on the right side of (6.2) is

K1 
5 E (1+lyll4m )X (dy)ds
r E n k ly: lyll 2m>R/k}

by using (SLG) again with K1 as a suitable constant independent of k"

Continuing:

r nL ?C E[ f+llxCsM) ]dsr nk J=l {IIxj (s)112  > R/k)

S-m

K124+a f t 1 = E+ (s),14+a)4/(4+a)(p( llx(s)ll2 > R/k)}a(4+a)ds

by IHdlder's inequality.
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1k3/R a/(4+a
)  0 as R

wherein the last inequality uses Chebyshev's inequality a .- the moment bound

given by (3.3.1). Besides. k 3 is a constant independent of nk. The fact that

(F2 (X) - F-'(X))(dX) can be made smll for large R. follows along the
TRi(CT  ) L

-q

same lines as above and its proof is hence omitted.

Continuation of the proof of the theorem: Using the above claim,

2 uk-'-y 'kt[ ](T F(N) 2 (d) = lim T nk [ ( J (y(t)[])

-q -qW( *1_ )L .yni . (yr(l)) )pyn~p ) 2nnkrt

f (y t(r))[L] r nk ?= i'j(f (r y1 (r sS 2dP n ny

since lnk(B)=P (y k: L ?1 6  EB) so that
nki nk i=i nk

Yi

1 (O ) - fk(r)[p]) - Xt  (fLy n.s)ds)

T(cT ) "k
-r 

nk 2 1

gl(yj k(rl)) ...gp(yk (rp))) dn(- 6 )
p n k nk~ n k

Yi

1 nk n k t1__ t L : L ,(f,ynksds

=((f(Y (t)[]) - f(y (r)[p]) - L n =s)ds)

Tk 2 nk =

g l (y nk(rl))...gp(yj nk(r)))2 dP (y n k  (6.2)
i i p nk.

Then, the right side of (6.2) is equal to

t 1nk 2~ n k 2
2 ((gl(y in(r,)) .. gp(y (rp))) ((f(y i (s)[qP]))

W(C )kr
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(_ = l(a(s. ny(s)) + c(s'y (s),ynksnk 1

n(L Y (s) ))) ['pJ)dsdP (y ) = -2

by using the condition (SLG) and the bound given by (3.3.1). Thus

f F(X) 2 77() = lim {o( ) + - ((y (t)[p])
T( k--m nk kcT Onk

-q -q

.nk t 1 4p n
f(y (r)[,p]) - f' n k L" (f~ y ,s)ds)

1r n i=1 il yns

(7(yk (t)[P]) - f(yk (r)Cqp]) - f t  k =14 2(fky ,s)ds)

Y22k nk nk1i, ('

gl (ynkC r I ) ' " ...%Y n k (rp ))gl( cn kC r) ...' "%p cn k (rp

dP nk(y)} = 0

since the independence of the Wiener processes W1 and W2 implies that

<M r(t). (t)> = 0

where

1 n nk ~ nk t 1nkMr(t) = f(y (t)[p) - f(y1 (r)[*]) f r ? fs)ds
r r n1k i=1i

which is a P -martingale.

Thus f F(X) 2 (&N) = 0 for all F defined by (6.1) with f 2

r(CO )
-q

p E IN and gl....,gp continuous and bounded mapping 0' --- , M. and
Or 1 .. .r pt T. Since A0 is the unique member of YT such that FXo)= 0.

-q
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we get that Tj =

Remark 6.1. By Theorem 6.1, the possibly random measure W such that

ji D - j E w(C . ) has been shown to be a non-random measure and in fact, W=X O .

Our result on propagation of chaos is presented in the next theorem.

Theorem 6.2. Under the conditions (SA), (SIC), (ScC), (SLG), (SJC), (SMC).

(SJC)' and (MCr) and with the coefficients b and c satisfying (5.6) and (5.7),

and sup EIIX1(0) l 4 a-m  C for some a > 0 we get
n

(i) -"n => 6.0 in Ir(wrCCT q ) .

1 n

(it) If t i = (t) where (wx)-, I I

n t -
and {X(-). li~n} solves the system (3.2.1), then Tn => 6 for O~t<T.

That is to say tj --+ 'o VtI in distribution and hence, in probability as well.

Proof.: We have shown in Theorem 6.1 that Tn => 6 X In fact, for any

convergent subsequence {flnJ ) of the sequence of empirical measures (W n}, we

get from Theorem 6.1 that ~n,-> 6 Therefore, the whole sequence Tn weakly

converges to 6 O.

To prove (ii), note that for all real-valued continuous, bounded functions

T
f on w(CT . ) .

f f ()n (dX) f f(X) 6(d\). (6.2)

T T -

%-q 0-q
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In particular, if f(X) = . g(y)d(y) where for all y E CT g(y) = g(y)
(CT  ) -q

-q

for t fixed in [O,T], and g a continuous bounded function from 4) to IR. then

Tf(X) is indeed a real-valued, continuous, bounded function on r(c ,).

Therefore, (6.2) for this choice of f implies that t = 6 7r. Thus
t -0

4n --+ Nowt as n -4 in probability since the limit is non-random.

Theorem 6.3: (a) For each T>O, let the conditions (SA), (SIC), (SOC). (SLG),

(SJC) and (SMC) hold. Then the system of SDE's (3.2.1) admits a weak solution

that is path.se unique. That is, (3.2.1) has a unique strong solution in

(0,4.)'.

(b) Assume the additional conditions (SJC)' and (MCir) for each T)O. If b and c

are as specified by (5.6) and (5.7), the McKean-Vlasov equation posed by (5.3)

has a unique strong solution in CO.
n

(c) In view of (a) and (b) above, define p (-.,w) = I so that its
n n 11ni=1 Xi(.,w)

law 71n C w(w(C 0,)) n 1. Let X0 be the probability measure on C4 that solves

n 4+azthe McKean-Vlasov equation posed by (5.3). If sup ElXl(O)llm C for some
n

a > 0, then

Tj = >6 in rrC,)
X0

Proof: Part (a) follows by reading off the curresponding result in Kallianpur,

Mitoma and Wolpert [8].

(b) Let the conditions of Theorem 6.2 hold for each fixed T>O. Then, the

results in Section 5 and 6 hold in the interval [0.-). To see this, suppose

X0 = (Y O solves the McKean-Vlasov equation in the interval [0,To], and

X1 = ! (7) solves the McKean-Vlasov equation in the interval [0,T], where
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TI>T then, by the uniqueness of solutions to the McKean-Vlasov equation, we

get that the projection of X on the interval [O.T.] must ciincide with No.

Thus X1 is an extension of X0 in the above sense. Such an argument shows the

existence and uniqueness of solutions to the McKean-Vlasov equation (5.3) in

the interval [OT] for any T>O.

Choose Tn = n. and the corresponding measures XnEr(C0.). Solve the

McKean-Vlasov equation (5.3). Then, the projective limit of { n} is a measure

X0 E (C ,) that solves (5.3) for all t > 0.

To prove part (c), we make the following observations: For any positive
index k, i: CTkC CT is continuous. In fact, the topology on CT, as given

in Section 2 is equivalent to the weakest topology with respect to which the

above canonical inclusions are continuous. Therefore, we have

TTClaim: If r => r in Yw(i(C )), then r' => r in (T(C,)a -ka

Proof of the claim: First, note that the inclusion j: r(CT ) C r(C.,) defined
-k

by J(X) = Xi- 1 is continuous. To see this, let IN be a net in ( - u

-- k

that X => X in )(. ). Thereforea -k

f fX f-d Vf T
a fd~ E C(C O)

Let g C Cb T,~ The composition g-i is then in Cb0(C, T Also
-k

S gdX i = f g-idX for all a
T a CT a

C 0 ' 0- k

and
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f gdX = f g-idaTi T a
C C

so that

f gdX - f S gd for al1 g E C(CT.).
T a T
C. C

Therefore j is continuous.
Now let k be the inclusion from Tr(r(ck )) C Tr((.)). Continuity of k

-k

can be proved by following step by step the proof of continuity of j. The

claim is thus shown.

Now part (c) is shown by observing that Theorem 6.2 part (i) implies that

71 
= >6X0  in vrw( T~q

n 0 C-q

and hence

7n = > 6x 0  in r(r(C .)

by the claim shown above.

77n => 6x in rC )

since the inclusion 7r(T(C T )) C v(r(C,)) is also continuous. Note that rn

and 6 are the projections of 77 and 6,- on (T r(, Thus 1n => -- in

x( 0rnc0 T
C

.)
)0

T

Remark 6.3: The unique strong solutions mentioned in parts (a) and (b) of the

above theorem are in general '-valued processes and cannot be guaranteed to

lie in a single Hilbert space OJ. This is so since the indices m and p vary

with T in the conditions.

§7. APPLICATION TO INTERACTING SYSTEMS OF NEURONS.

The random behavior of the voltage potential of a spatially distributed
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neuron has attracted considerable attention in neurophysiology and can be

modeled in the following set-up:

Let H be a separable Hilbert space and T t be a strongly continuous

contraction semigroup on H with a densely defined, closed, negative-definite

generator A. In practice, H is usually taken to be L2 (,p) where I is the

membrane of a neuron and W is a suitable measure on 1. If there exists r1 >0 so

that (I-A) is Hilbert-Schmidt, then there exists ( } I" a CONS for H such

-2r1
that - Ap. = XJj, J=1,2.... with 2 (l+Xj) < w. Let

J=1

0 = J(oEH: I (l+ ) 2r (,.)j2 < w for any r>0}. Define on 0 a family ofJjl H

increasing Hilbertian norms 11-11 with IIpII2 = I (1+N) 2r(, ) and let Pr r J=l r

denote the completion of 0 w.r.t. 1111 r . Since 0 r+r C 0r is Hilbert-Schmidt,

it is easy to see that 0 is a nuclear space. The semigroup {Tt}t 0 can be

written as follows. For any p C 0

0

Tt = IT exp(-tX )(-, i)OT C 0.
J=1

The voltage potential is identified as the solution of the 0'-valued SDE.

dX t = A'Xtdt + dWt

where A' is the adjoint operator of A and W t is a 0'-Brownian motion with a

certain covariance function E(Wt, )(WJP ) = (t A s)Q(p,).

More generally, suppose At generates a strongly continuous contraction

evolution operators T(s,t), s~t on 0. Assume the following conditions on At

For any T and large enough m, there exists a p>m such that IAuI_p Klul for

aJl tKT. and uCO', i.e.. as continuous linear operators from 0' to 0', (A}
in m p t t T

are uniformly bounded.
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Then the following V-valued SDE modeling the voltage potential of a

neuron has a unique solution:

dXt = AXtdt + dW t

X0 = fo"

Moreover, the solution can be explicitly written as:

tds

Xt = T'(O.t)fo + Wt + 0 AsTs,tWs .

Here, T;, t denotes the adjoint operator of Ts t. Now, consider the system of

n-interacting neurons whose voltage potentials are governed by Lhc following

SDE:

n

= (AtX n)(t) + n I bt(X (t), X (t))dt + dW(t), i=1,2....n (7.1)

j=l

Xn(O) = 0' E ' where bt: 'xO' --+ ' represents the interaction between neurons

and {Wi(t) 1  are independent copies of a 0'-valued Brownian motion.

We require that the interaction b : O'x' --+0' satisfy the conditionst

(SCC), (SLG). (SJC). (SMC), (SJC)' and (MCw) as in Theorem 6.2.

The existence and uniqueness theorem in Section 3 thus guarantees that

system (7.1) has a unique solution. The propagation of chaos in Section 6

asserts that the empirical distribution 1 . 6 T converges in

n =1 X(n) 0 -

probability to a deterministic probability measure X C W T which is the
-q

law of the solution of the McKean-Vlasov equation corresponding to (7.1):

dX = (AtXt + bt[Xt.X ])dt + dWt.

where

b[X,Nt] = £ b(xy)d)0(y)
0 ,
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and Xt is the law of X.
0 t"

Thus the asymptotic behavior of a large system of neurons through

mean-interactions becomes asymptotically independent with the distribution

governed by the McKean-Vlasov equation (7.2).

8. CHAOTIC SYSTEMS

8.1 Exchangeable systems.

Till now, the initial random variables Xn(O), lj~n have been assumed to

be i.i.d. random variables. We now relax this condition and assume that Xn(O),

ljQn are exchangeable random variables for each n l. That is, the law of

OnX' (0) l j~n, denoted by .g E w( )I is a symmetric probability measure on

n

We call the symmetric measures go go-chaotic if the following condition

holds: For every integer k 1 and fl ... k E Cb( ').

klim O@n fl(Ul ) .... fk(U d46(u ) = 1 1 fl(Ui)dpo(Ui )  (8.1)

n- (0 ) i=l

where u =(u, ... Un) C (V,) n and go is a probability measure on '. We

1 n
assume that the measures AL are A.-chaotic.

In the context of the neuorphysiological model described in section 7. the

assumption of exchangeability of the law of (XY(O)....,X n(O)) for each n~l is

equivalent to saying that the particular order in which the neuronal membranes

are taken, is immaterial. This is so since the random variables

Xl(t),..... n (t) for each tO and n2l turn out to be exchangeable random

variables. The go-chaoticity assumption is needed in showing the propagation

of chaos result. To see this, consider the simplest case where the drift and

diffusion coefficients are identically zero so that (8.1) itself becomes the

propagation of chaos statement.
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The results of the previous sections hold for the exchangeable model as

well if we assume lio-chaoticity and that EIXn(0)I4 +6  C where C is a constant

independent of n. and m is the index that appears in the conditions listed in

subsection 3.3.

8.2 Finite-dimensional systems

d2 d
By setting with xll xi for each n~l. * = nl n is seen

n i=1nl n

to be a nuclear space with its strong dual 0' being isomorphic to Id. In this

case, all the norms 1111Ik' -w < k < t are one and the same, namely, the

Euclidean norm on d denoted by 11-11. Therefore, the indices m.p.q etc. in our

conditions can and will be taken to be 1. The canonical maps Jm will not

appear in the conditions in this case. Besides, expressions such as

Qo(tu)L_m.m will simply read as trace(a * (t.u)). Also, the condition (SA)

is trivially seen to hold for the choice of -0 = IR d. The propagation of chaos

result for the finite-dimensional exchangeable system is given in the next

theorem:

Theorem 8.2.1. For each T > 0, let the conditions (SIC). (SCC). (SLG), (SJC)

and (SMC) hold. Let Xn(O) lj~n be exchangeable random variables and let
=lwo XO).....Xn(O))b jo-chaotic. Then,n=law of (XO n be

a) The system of SDE's (3.2.1) has a unique strong solution in (C d
)On .

b) In addition, assume (SJC)' and (MCw) for each T > 0. If the coefficients b

and c are as specified by (5.6) and (5.7), then the McKean-Vlasov equation

(5.3) has a unique strong solution in C d-

c) Assume the conditions in part (b). Further, assume that there exists 6>0

suc tat lln 4+6such that ElIX1 O (0)lI C where C is independent of n. Then, in the notation
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of section 6

7n => 5 in v(r(C d)d

0

The above result enables us to compare our results with those of Sznitman [16].

The conditions made by Sznitman are the following:

(i) The initial random variables Xn(O) ... ,X(O) are IR -valued exchangeable
1n

random variables and are bounded.

(ii 0 law of X(O)n..... (0)) on (Id are po -chaotic, where W. is a

probability measure on R
d

(iii) The drift and diffusion coefficients are uniformly bounded and satisfy

uniform Lipschitz conditions in the space and time variables.

(iv) The covariance form Q is the identity matrix.

In the next paragraph the conditions (i) through (iv) are compared with those

that appear in Theorem 8.2.1.

First (SIC) and the moment condition introduced in part (c) of Theorem

8.2.1 are satisfied since (i) says that the initial variables are bounded.

(SCC) is verified as follows:

dFor u,v E IR , O~t T, and h(tu.v) = o(t,u) + c(t,u.v),

12a(t,u)-u + 2b(t.u,v),u + tr(hh (tUv))I

21lallliull + 21lbillilull + trace(hh*(t.uv))

( 6(l+lull2 )

by using the uniform boundedness of the coefficients and condition (iv).

The verifications of (SLG) and (SJC) given the Conditions (I) to (iv) are
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simple and hence left to the reader. (SMC) can be verified by using Lipschitz

continuity of the coefficients. (SJC) and (MC,) are obtained by continuity and

boundedness of the coefficients. Thus, our set of conditions for the

propagation of chaos is weaker than that imposed in the finite-dimensional

set-up by Sznitman [16]. The finite-dimensional result of Leonard [11] is

close in spirit to Theorem 8.2.1 and hence, a comparison of the two is left to

the reader.
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