

AEOSR-JR- 90- 0785

HIGHER ORDER ACOUSTIC RAYLEIGH MODES FOR SENSOR APPLICATIONS

Prepared for

Air Force Office of Scientific Research Bolling Air Force Base Washington, D.C. 20332 Attention: Dr. Howard Schlossberg

AD-A224 412

Prepared by: Dr. Edward J. Staples Amerasia Technology Inc. 2239 Townsgate Road, Suite 208 Westlake Village, California 91361

Professor David M. Barnett Materials Science and Engineering Stanford University Palo Alto, California 94305

and

′ May 1985

t

Submitted by:

Francis Chang Vice-President Operations and Finance

The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Air Force Office of Scientific Research or the U.S. Government.

90 07 25 080

REPORT DOC	UMENTATION	AGÈ	Form Approved OME No. 0706-0188
Анали инициально области полу / Аналия такована от отготора на сталита инициального зако села поразова, отс зако- сонениям от отдетскителя, всем але оператора / уг. н Одина инициального, зако 1456, акториям, у а. 12223 (4.55)		I THE AND STATES AND AND STATES AND	The second restriction, learning example does search, and the burden extracts or any other stants of this is presentation Contracts and Assort, 1215 Jerryroad reset 6784-6186, Wannessen, OC 20382. ND CATES COVER Fra
1. AGENCY USE ONLY (LOOVE SANC)	May 1985	J. AEFURI TITE A	THE OFFICE COTENED
4. TITLE AND SUBTITLE	niy wile and a set if set in the set of the		S. HUNDING NUMBERS
Higher Order acoustic for sensor applicatio	rayleigh models		
6. AUTHORISI			
Dr. Edward J. Staples			
7. PERFORMING ORGANIZATION NAM	ES) AND ADDRESS(ES)		L. PERFORMING ORGANIZATION REPORT NUMBER
Amerasia technology J	inc.		
Westlake Village, Ca	91361		
		AFOSR	HR. 90 0785
S. SPONSORING / MONITORING AGENC	Y NAME(S) AND ADDRESS	5)	10. SPONSORING / MONITORING
		ι,	
US Air Force.			
11. SUPPLEMENTARY NOTES			
122. DISTRIBUTION / AVAILABILITY ST	ATEMENT		125. DISTRIBUTION CODE
Approved for nubl	ic release ;		
distributionunl	FUTCER.		
13. ALSTRACT (Maximum 200 Words)			
14. SUBJECT TERMS			15. NURBER OF PAGES
			16. PRICE CODE
17 SECURITY CLASSIFIC ATION	A SECURITY CLASSICICATIO	H 19. SECURITY CLAS	SUFICATION 20. LUNITATION OF ABSTRAC
OF REPORT	OF THIS PAGE	OF ABSTRACT	it 1 12 alorestil
Unclassified	Unclassified	1 Unclas	Standard form 298 (890104 Dra
DUCC-U03-10-04			Proprieta ay ANM 144. 239-16 219-61

TABLE OF CONTENTS

^.

...

	PAGE
SUMMARY	1
<pre>1.0 INTRODUCTION 1.1 Surface Acoustic Wave Accelerometers 1.2 Present SAW technology Limitations</pre>	2 4
2.Ø OBJECTIVES 2.1 Work statement	6
3.0 TECHNICAL APPROACH 3.1 Surface Acoustic Waves	9 13 19 21
 4.0 TECHNICAL RESULTS 4.1 Layered Substrate Analyses	24 25 31 36 41 48 53 58 59 60
4.3 Stoneley Interface-Wave Accelerometer	. 66
4.4 Comparison With Experimental Results	. 69
5.0 CONCLUSIONS AND RECOMMENDATIONS	• 73
6.Ø REFERENCES	. 75
7.Ø APPENDICES 7.1 Appendix I- Material Constants 7.2 Appendix II- Technical Background	. 76 . 79

LIST OF FIGURES

•

· · · · ·

141.3

.

ς.

1.	Typical Rayleigh wave resonator structure show- ing reflective gratings (acoustic mirrors) and input/output interdigital transducer
2.	Cantilever beam-type Rayleigh wave accelermeter where the output is the difference frequency between the opposing top and bottom resonant cavities
3.	Diagram showing coordinate system orientation for theoretical analysis of wave propagation 10
4.	Rayleigh wave displacements and potential on ST- Quartz when the surface is shorted and unshorted 14
5.	Diagram showing coordinate system orientation for theoretical analysis of wave propagation in layered media
6.	Four possible transducer electrode configurations when both layer and substrate are piezoelectric 18
7.	Diagram showing coordinate system orientation for analysis of wave propagation along the interface between two anisotropic materials
8.	Coordinate system for two-layered resonator geometry 21
9.	Velocity dispersion (a) and wave coupling (b) as a function of layer thickness for Mg0/ST-Quartz 26
10.	Layered velocity solution for MgO/ST-Quartz when the top layer and interface are unshorted. Layer thickness is 10% of a wavelength 27
11.	Layered velocity solution for MgO/ST-Quartz when the top layer surface is shorted. Layer thickness is 10% of a wavelength
12.	Layered velocity solution for MgO/ST-Quartz when the top layer and interface are shorted. Layer thickness is 10% of a wavelength 29
13.	Layered velocity solution for MgO/ST-Quartz when the top layer and interface are unshorted. Layer thickness is Ø.1% of a wavelength 30

14.	Velocity dispersion and wave coupling as a function of layer thickness for Y_2O_3 ./ST-Quartz	32
15.	Layered velocity solution for Y ₂ O ₃ /ST-Quartz when top layer and interface are unshorted	33
16.	Layered velocity solution for $Y_2 O_3 / ST-Quartz$ when top layer surface is shorted	34
17.	Layered velocity solution for Y ₂ O ₃ /ST-Quartz when top and interface surfaces are shorted	35
18.	Velocity dispersion and wave coupling as a function of layer thickness for SiO _x /ST-Quartz	37
19.	Layered velocity solution for SiO _x /ST-Quartz when top layer and interface are unshorted	38
20.	Layered velocity solution for SiO _x /ST-Quartz when top layer surface is shorted	39
21.	Layered velocity solution for SiO _x /ST-Quartz when top and interface surfaces are shorted	40
22.	Velocity dispersion and wave coupling as a function of layer thickness for AlN on ST-Quartz with elect- rodes either at the interface or top surface	42
23.	Velocity dispersion and wave coupling as a function of layer thickness for AlN on ST-Quartz with inter- digital electrodes and an opposing ground plane	43
24.	Layered velocity solution for AlN/ST-Quartz when top and interface surfaces are unshorted	44
25.	Layered velocity solution for AlN/ST-Quartz when top surface is shorted and interface is unshorted	45
26.	Layered velocity solution for AlN/ST-Quartz when top surface is unshorted and interface is shorted	46
27.	Layered velocity solution for AlN/ST-Quartz when top and interface surfaces are shorted	47
28.	Velocity dispersion and wave coupling as a function of layer thickness for TiO ₂ /ST-Quartz	49
29.	Layered velocity solution for TiO2/ST-Quartz when top and interface surfaces are unshorted	5Ø
30.	Layered velocity solution for TiO ₂ /ST-Quartz when top surface is shorted and interface is unshorted	51

Page

31.	Layered velocity solution for TiO ₂ /ST-Quartz when top surface is unshorted and interface is shorted	52
32.	Velocity dispersion and wave coupling as a function of layer thickness for Al ₂ 0 ₃ /ST-Quartz	54
33.	Layered velocity solution for Al ₂ O ₃ /ST-Quartz when top and interface surfaces are unshorted	55
34.	Layered velocity solution for Al ₂ O ₃ /ST-Quartz when top surface is shorted and interface is unshorted	56
35.	Layered velocity solution for Al ₂ O ₃ /ST-Quartz when top and interface surfaces are shorted	57
36.	Coordinate system relative to the interface plane for Stoneley wave analysis	58
37.	Stoneley wave velocity vs material rotation angle in single crystal copper (001) plane	59
38.	Stoneley wave solution on Copper for a rotation angle $\pm 10^{\circ}$ and $\pm 20^{\circ}$	61
39.	Stoneley wave solution for modified copper compared to normal copper	62
40.	Stoneley wave velocity solution for XZ Quartz when the interface is unshorted	63
41.	Stoneley wave velocity solution for XZ Quartz when the interface is shorted	64
42.	Expanded plot of displacements and potential for Stone- ley waves on XZ Quartz	- 65
43.	Stoneley interface wave resonator configuration	66
44.	Proposed baseline interface wave accelerometer in quidance system	68
45.	Experimentally measured frequency, resistance, and Q for SAW resonators on ST-Quartz with sputtered films of MgO and SiO _x	7Ø
46.	Experimentally measured frequency, resistance, and Q for SAW resonators on ST-Quratz with sputtered films of Y_2O_3 and AlN	71

È

Page

SUMMARY

The objective of this project was to establish the theoretical foundations for applying higher order Rayleigh and interface modes to resonators for high stability sensors. Existing crystal resonators, because of their surface sensitivity and thermal characteristics, are not able to meet the stability requirements of Air Force tactical systems.

Theoretical studies of the characteristics of Rayleigh waves in single and multi-layer structures were carried out for ST-cut Quartz substrates. Specified materials for this study were MgO, Y_2O_3 , AlN, SiO_x, Al₂O₃, and TiO₂. Velocity dispersion and coupling to bulk modes were predicted and confirmed by comparison with experimental results for sputtered films.

Stoneley (interfacial) waves were investigated as possible candidates for resonator structures because of their inherently stable and low cost geometry without any type of hermetic enclosure or package. A successful search technique was developed which accurately predicts the existence of Stoneley waves in general anisotropic (and piezoelectric) materials. Using this technique, Stoneley waves were for the first time predicted in single crystal quartz. Several useful orientations where Stoneley waves are well bound and piezoelectrically active were found to exist.

Future plans are to design, fabricate and test interface wave resonators. The end goal is to utilize interface wave resonators and sensors in Air Force tactical systems.

1.0 INTRODUCTION

The purpose of the work reported was to perform analyses of the propagation characteristics of higher order acoustic Rayleigh waves in multiple layered, anisotropic materials. The objective was to establish theoretical foundations for predicting the performance of higher order acoustic waves and to apply this knowledge to the design of acoustic resonators as strain sensors for cantilever beam-type accelerometers. These higher order Rayleigh waves differ from the normal surface waves because their energy is distributed between the layers and the substrate, but not entirely at the top surface of the layers. This has the advantage that the propagation characteristics are less sensitive to contamination or other undesireable effects at the surface of the crystal. The reflective grooves in the resonator structure can be passivated by the layers, thus reducing the possibility of false sensor readings. These conditions all contribute to making a more stable sensor.

1.1 Surface Acoustic Wave Accelerometer

A Rayleigh acoustic wave is an elastic wave which propagates along the surface of an elastic solid. Since its energy is conconfined near the surface, it can be generated, reflected, and detected on the surface. Rayleigh wave devices constitute what is called a planar technology and hence can be fabricated by photolithographic techniques. Thus, these sensors can be produced at costs comparable to those of silicon integrated circuits.

The Rayleigh wave resonator, introduced by Dr. Staples in 1974, consists of a pair of reflective gratings on a surface as mirrors in a Fabry-Perot resonator structure. These waves can be generated and detected by an interdigital transducer on a piezoelectric substrate. The output of the acoustically resonant cavity, shown in Figure. 1, is connected to a feedback amplifier to maintian a high Q, standing wave in the cavity formed by the two grating reflectors.

Figure 1- Typical Rayleigh wave resonator structure showing reflective gratings (acoustic mirrors) and the input/output interdigital transducer.

Since Rayleigh waves are confined to the surface, the sensor can be configured as a cantilever beam, as shown in Figure 2. In this "push-pull" open loop configuration, thermal effects are reduced by using two resonators (top and bottom) and the output is then the difference frequency of the two resonator frequencies.

Figure 2- Cantilever beam-type rayleigh Wave Accelerometer where the output is the difference frequency between the opposing top and bottom resanant cavities.

1.2 Present SAW Technology Limitations

At the present time, short-term frequency stability of Rayleigh wave resonators is comparable to that of bulk-wave crystal oscillators. Long-term stability of fundamental mode Rayleigh resonators⁽¹⁾ is not as good as that of bulk wave crystal oscillators. Rayleigh wave resonators typically have short-term (seconds to minutes) frequency stability with a root Allan variance of 10^{-10} parts/part of the resonant freugency, and long-term aging rates in the range of 10^{-8} part/part/day.

Short-term stabilty for tactical missile applications (flight time typically is less tan 20 minutes) is not a significant problem. A variation of 10^{-10} of 500 MHz would equal 0.05 Hz. With an assumed quantization of 0.1 fps/bit and input acceleration of 200 g, this would equal 100 micro-g acceleration error.

4

I

Long-term frequency stability is a more serious problem since it controls the bias stability of Rayleigh wave sensors. The dual Rayleigh wave sensor aging rate under "ovenized" conditions is about 10-8 per year. For a Rayleigh wave accelerometer with 500 MHz frequency and 0.1 fps/bit, this gives a bias stability error of 0.016 g/year. This stability is adequate for "moderately accurate" inertial grade accelerometer applications. Without oven control of the temperature, the oscillator stability is typically 10^{-6} /year and the resulting bias stability 0.02 g/year which exceeds current tactical missile specifications. Temperature control is a definite limitation of current Rayleigh wave technology.

An important limitation of Rayleigh mode resonators is that 90% of its energy is on the surface, hence it is very sensitive to surface conditions. Changes of 1 part per billion have been observed in the resonator frequency in a period of one hour. (2) This can be traced to molecular surface chemistry, dust particles, or other surface effects on the substrate. After the SAW pattern is defined it would be highly desireable to cover or passivate the surface so as to protect the wave from surface contaimination. This would negate the need for costly packaging and sealing of the sensors. This last limitation is addressed by the current study where higher order acoustic solutions are sought which do not possess the high degree of surface sensitivity.

2.Ø OBJECTIVES

The objective of the phase I research was to establish the theoretical foundations for using higher order Rayleigh and interfacial wave resonators as strain sensors in cantilever-type accelerometers. Existing crystals, because of their surface sensitivity and thermal characteristics, are not able to meet the technical specifications of inertial grade accelerometers for Air Force tactical systems.

The overall research objective is to obtain resonator structures with improved aging characteristics, so that these sensors can meet the performance requirmenets for "moderate accuracy" accelerometers of Air Force tactical inertial navigation systems, including missiles and aircraft.

2.1 Work statement

The research creducted under Phase I was defined by the following work statement:

- Task 1. Perform theoretical studies of Rayleigh waves at single layer surfaces on quartz substrates, to determine the thickness limitations and effects of the layer. Selected materials for this study will include layered acoustic wave resonators of MgO, Y203, AlN, SiOx, Al203, and TiO2.
- Task 2. Correlate the theoretical analysis with any existing published experimental results in either technical journals or DoD reports.
- Task 3. Expand the analysis of single layers to three anisotropic layers. Studies will be made in characterizing various combination of "loading and stiffening" layers on quartz.
- Task 4. Design and develop a high stability Rayleigh wave sen-sor using the theoretical reults of the above studies.
- Task 5. Investigate theoretically and numerically Stoneley waves in joined piezoelectric half-spaces.

3.0 TECHNICAL APPROACH

Higner order Rayleigh waves differ from the normal surface waves because their energy is distributed between the layer and the substrate. This has the advantage that the wave characteristics such as velocity and impedance are less sensitive to changes in the surface acoustic and/or electrical conditions. Also, the reflective grooves and electrode materials in a resonator structure are passivated by the layer and the effects of contamination are reduced. These conditions all contribute to the making of a more stable resonator.

Lord Rayleigh in 1887⁽³⁾ predicted the propagation of seismic (4) waves along the surface of the earth. Ewing, Jardetzky and Press extended Rayleigh's work to layered isotropic media. Since most (5) crystals are anisotropic, Lim and Musgrave in 1970 studied interface wave propagation at boundaries between two similar aniso-(6) tropic media and they extended the work of Stoneley to include anisotropic media.

(7) Farnell and Adler in 1972 studied Rayleigh wave propagation in layered anisotropic media. They concentrated their studies on special cases where the thickness of the layers was small compared to a wavelength. The results showed the existence of singlemode Rayleigh waves at the boundary of half spaces with a single layer of dissimilar material.

Recently the advantages of layered wave behavior has been $\binom{8}{2}$ demonstrated by Yamonouchi for SiO_x on LiTaO₃ and LiNbO₃. In addition to the advantages of surface passivation, these layered substrates show temperature compensation due to the dissimilar

thermal expansion and elastic constants with temperature.

In order to study propagation of waves in layered acoustic media two approaches were taken. The first followed the analysis of Farnell to describe and predict wave behavior for Rayleigh wave propagation in layered media. This analysis was used to evaluate several layer materials deposited on ST-cut quartz. The theoretical predictions were then compared with previously published experimental results.

second approach was undertaken jointly with Professor The D. Barnett of Stanford University. Professor Barnett specifically analyzed search methods for interfacial wave propagation in general anisotropic media. These search methods were derived from the theory published by Barnett and Lothe. A reprint of this paper is included with this report as Appendix II. Theory of interfacial wave propagation is described in section 3, and numerical results for prescribed materials are presented in section 4. The importance of this work is that a method was developed which predicts the existence of interface waves. Unlike surface waves, interface waves do not exist for all material combinations. Until now an exhausting search was always required to determine the existence of such waves. Using new search techniques, Stoneley wave behavior has been predicted without completely solving wave equations. For the first time Stoneley waves have been found in quartz. By properly selecting the cuts of quartz used, it was found that Stoneley waves with good piezoelectric coupling and fast decay with distance from the interface do exist.

3.1 Surface Acoustic Waves

In a piezoelectric material the three displacement components u_j along the Cartesian axes x_j , and t^{*} electrostatic potential are related by the equations of motion and electrostatics,

$$\rho \frac{\partial^2 u_i}{\partial t^2} - c_{ijkl} \frac{\partial^2 u_k}{\partial x_i \partial x_l} - e_{kij} \frac{\partial^2 \varphi}{\partial x_i \partial x_k} = 0$$

$$e_{ikl} \frac{\partial^2 u_k}{\partial x_i \partial x_l} - \epsilon_{ik} \frac{\partial^2 \varphi}{\partial x_i \partial x_k} = 0$$
(1)

in which ρ is the density of the material and c_{ijkl} , e_{kij} and *fik* are respectively, the tensors for the elastic stiffness measured at constant electric field, for the piezoelectric coupling and for dielectric permittivity measured at constant strain. The subscripts i,j,k, and l range over the values 1,2, and 3 and the summation convention on repeated subscripts is employed. The contracted matrix notation and the full tensor notation will be used interchangeably in this report. Particular elastic, piezoelectric, and dielectric constants for materials studied in this report are given in Appendix I.

All solutions considered are straight crested in that the planes of constant phase are perpendicular to the direction of propagation and there is no variation of the amplitude in the direction perpendicular to the sagittal plane. The coordinate system used throughout this report is as shown in Figure 3 with the x_1 direction taken as parallel to the propagation vector and the x_3 direction taken as perpendicular to the surface (also interface in later sections).

Figure 3- Diagram showing coordinate system orientation for theoretical analysis of wave propagation.

For a single material surface, Rayleigh wave solutions will be of the form

$$u_{i} = \alpha_{i} \exp (ikbx_{3}) \exp [ik(x_{1} - vt)]$$

$$\varphi = \alpha_{4} \exp (ikbx_{3}) \exp [ik(x_{1} - vt)].$$
(2)

Substituting (2) into the equations of motion (1) results in a secular matrix of the form

$$\begin{pmatrix} (\Gamma_{11} - \rho v^2) & \Gamma_{12} & \Gamma_{13} & \Gamma_{14} \\ \Gamma_{12} & (\Gamma_{22} - \rho v^2) & \Gamma_{23} & \Gamma_{24} \\ \Gamma_{13} & \Gamma_{23} & (\Gamma_{33} - \rho v^2) & \Gamma_{34} \\ \Gamma_{14} & \Gamma_{24} & \Gamma_{34} & \Gamma_{44} \end{pmatrix} \begin{vmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \end{pmatrix} = 0.$$
(3)

where the terms of the matrix are related to the material constants by the following quadratic coefficients:

$$\Gamma_{11} = c_{1313}b^{2} + 2c_{1113}b + c_{1111}$$

$$\Gamma_{22} = c_{2323}b^{2} + 2c_{1223}b + c_{1212}$$

$$\Gamma_{33} = c_{3333}b^{2} + 2c_{1333}b + c_{1313}$$

$$\Gamma_{12} = c_{1323}b^{2} + (c_{1123} + c_{1312})b + c_{1112}$$

$$\Gamma_{13} = c_{1333}b^{2} + (c_{1133} + c_{1313})b + c_{1112}$$

$$\Gamma_{23} = c_{2333}b^{2} + (c_{1233} + c_{2313})b + c_{1213},$$

$$\Gamma_{14} = e_{331}b^{2} + (e_{131} + e_{311})b + e_{111}$$

$$\Gamma_{24} = e_{332}b^{2} + (e_{132} + e_{312})b + e_{112}$$

$$\Gamma_{34} = e_{333}b^{2} + (e_{133} + e_{313})b + e_{113},$$

$$\Gamma_{44} = -(\epsilon_{33}b^{2} + 2\epsilon_{13}b + \epsilon_{11}).$$

The above homogeneous equations have a nontrivial solution only if the determinant of the square Γ matrix is zero. A computer program was written to expand the above matrix assuming a known velocity, v, as a polynomial (8th order for piezoelectric materials) in the decay constant b. The program evaluated the complex roots b_i which occured as conjugate pairs. In the substrate the solutions of interest decay with depth away from the surface, hence only roots in the lower half of the complex plane are retained.

In order to now satisfy the free surface boundary conditions a wave solution composed of sums of terms given by eq.(2) where each term satisfies the wave equation (1) is used. Each term is considered an eigenfunction, $\alpha^{(n)}$, with an associated eigenvalue or decay constant $b^{(n)}$. The total solution is then given by

$$u_{i} = \sum C_{n} \alpha_{i}^{(n)} \exp (ikb^{(n)}x_{3}) \exp [ik(x_{1} - vt)]$$

$$\varphi = \sum C_{n} \alpha_{4}^{(n)} \exp (ikb^{(n)}x_{3}) \exp [ik(x_{1} - vt)]$$
(5)

where summation over all the root numbers (4 for piezoelectrics). The complete solution is obtained by satisfying the mechanical and electrical boundary conditions. Mechanically the normal stress compoents T_{13} , T_{23} , and T_{33} must be zero at the surface. Electrically there must be continuity of electric potential and the normal componentf displacement current D_3 .

Substitution of eqs.(5) results in a different set of four homogeneous equations in the four weighting functions C_n , and for nontrivial solutions the determinant of the coefficients of C_n must vanish.

$$\begin{pmatrix} c_{3331} + c_{3332}b^{n} \rangle \alpha_{i}^{n} + (e_{143} + e_{333}b^{n}) \alpha_{i}^{n} \\ (c_{3131} + c_{3133}b^{n}) \alpha_{i}^{n} + (e_{131} + e_{331}b^{n}) \alpha_{i}^{n} \\ (c_{3231} + c_{3233}b^{n}) \alpha_{i}^{n} + (e_{132} + e_{332}b^{n}) \alpha_{i}^{n} \\ - (\hat{e}_{331} + \hat{e}_{334}b^{n}) \alpha_{i}^{n} + (\hat{e}_{31} + \hat{e}_{33}b^{n} - ie_{n}) \alpha_{i}^{n}$$

$$(6)$$

An objective of this study was to determine the behavior of Rayleigh waves on ST-cut quartz. Equations 1-6 were solved numerically using an iterative search on velocity until equation (6) was satisfied. A plot of the displacement components and potential are shown in Figure 4a. When the surface is shorted the last row of eq.(6) is replaced by the the eigenvectors which forces the potential to zero at the surface. A plot of the displacements and potential for this case is shown in Figure 4b.

3.2 Surface Acoustic Waves in Layered Media

When the surface of a crystal is covered with a layer of dissimilar material as shown in Figure 5, the behavior of the Rayleigh wave is modified to take into account (1) the elastic properties of the layer and (2) the electric boundary conditions of the layer surface and the interface region.

Solutions to the layered problem can be obtained by solving equations 1-3 in the layer and substrate separately using the appropriate material constants. The individual solutions in the layer and infinite substrate are still assumed to be the same form as equation 5 where the appropriate layer or substrate roots apply.

The complete solution is obtained by satisfying the appropriate boundary conditions. In the case of layered media the boundary condition determinant is more complex. The surface of the layer is stress free and electrically open or shorted. However, the interface region must also be satisfied by matching the normal stresses, the displacements, and electrical potential and/or displacement currents.

Figure 4- Rayleigh wave displacements and potential on ST-Quartz when the surface is (A) unshorted and (B) shorted.

Figure 5 - Diagram showing coordinate system orientation for theoretical analysis of wave propagation in layered media.

In this report three distinct types of materials were analyzed. The first situation involved a piezoelectric substrate (YX-Quartz) and a non-piezoelectric isotropic layer such as fused quartz, hereafter designated PN53 after the notation of Farnell. In this case the transverse displacement component is uncoupled and there are 7 boundary conditions which must be satisfied. The boundary condition equations for a unshorted interface are

$$\begin{bmatrix} T_{3}^{L}(X_{3}=0) & & -T_{3}^{S}(X_{3}=0) \\ T_{5}^{L}(X_{3}=0) & & -T_{5}^{S}(X_{3}=0) \\ T_{3}^{L}(X_{3}=h) & & 0 \\ T_{5}^{L}(X_{3}=h) & & 0 \\ u_{1}^{L}(X_{3}=0) & & -u_{1}^{S}(X_{3}=0) \\ u_{3}^{L}(X_{3}=0) & & -u_{3}^{S}(X_{3}=0) \\ - - - - - - - - - - - - \\ D_{3}^{L}(X_{3}=0) & & 0 \end{bmatrix} = 0$$
(7)

and for a shorted interface are

The displacement vectors of equations 7 and 8 are modified to account for the dielectric constant of the layer and the free space above the layer. When the substrate crystal solution contains transverse displacements these must be accounted for in the boundary conditions. This applies whether the layer material is isotropic (no coupled transverse displacements) or anisotropic. This case is represented by ST-Quartz substrates and layer materials such as fused quartz, Rutile, Sapphire, and Yittrium Oxide. In these cases the unshorted boundary conditions are

and for shorted electrical conditions are

$$\begin{bmatrix} T_{3}^{L}(X_{3}=0) & | & -T_{3}^{S}(X_{3}=0) \\ T_{5}^{L}(X_{3}=0) & | & -T_{5}^{S}(X_{3}=0) \\ T_{4}^{L}(X_{3}=0) & | & -T_{4}^{L}(X_{3}=0) \\ T_{3}^{L}(X_{3}=h) & | & 0 \\ T_{5}^{L}(X_{3}=h) & | & 0 \\ T_{4}^{L}(X_{3}=h) & | & 0 \\ u_{1}^{L}(X_{3}=0) & | & -u_{1}^{S}(X_{3}=0) \\ u_{2}^{L}(X_{3}=0) & | & -u_{3}^{S}(X_{3}=0) \\ u_{3}^{L}(X_{3}=0) & | & -u_{3}^{S}(X_{3}=0) \\ - - - - - - - - - - - \\ \phi^{L}(X_{3}=0) & | & 0 \end{bmatrix} = 0$$
(10)

The boundary conditions are further complicated when the layer material is itself piezoelectric and with coupled transverse displacements. This case was analyzed for the substrate material ST-Quartz and layer Aluminum Nitride. The boundary condition determinant in this case contains twelve equations. The form for unshorted surface and interface is

When the top surface and interface regions are shorted electrically the new for of the boundary matrix is

In the general case there will be a solution which satisfies the wave equations in the layer and substrate and simultaneously satisfies all 12 of the above boundary conditions. Electrical coupling is estimated by comparing the shorted and unshorted wave velocities. For a piezoelectric layer on a piezoelectric substrate there will be four possible combinations of boundary conditions corresponding to four possible transducer electrode configurations shown in Figure 6.

Figure 6- Four possible transducer electrode configurations when both layer and substrate are piezoelectric.

3.3 Interfacial Waves

Interfacial waves, commonly called Stoneley Waves, occur at the boundary of two infinite dissimilar materials as shown in Figure 7. Unlike surface acoustic waves, Stoneley waves only exist under special circumstances. The exact nature of these special circumstances is not well understood and an objective of this study was to develop methods of searching for Stoneley waves in general anisotropic media.

Figure 7- Diagram showing coordinate system orientation for analysis of wave propagation along the interface between two anisotropic materials.

The analysis of interfacial waves is similar to analyzing layered surface acoustic waves. The equations of motion are solved independently in each material and then summation solutions are used to satisfy the boundary conditions. For interface waves the unshorted boundary condition matrix is

The above notation refers to the top (t) and bottom (b) materials and their respective material constants. When the interface is shorted by a conducting plane the boundary condition matrix takes the form

.

2

$$\begin{bmatrix} T_{3}^{t}(X_{3}=0) & | & -T_{3}^{b}(X_{3}=0) \\ T_{5}^{t}(X_{3}=0) & | & -T_{5}^{b}(X_{3}=0) \\ T_{4}^{t}(X_{3}=0) & | & -T_{4}^{b}(X_{3}=0) \\ u_{1}^{t}(X_{3}=0) & | & -u_{1}^{b}(X_{3}=0) \\ u_{2}^{t}(X_{3}=0) & | & -u_{2}^{b}(X_{3}=0) \\ u_{3}^{t}(X_{3}=0) & | & -u_{3}^{b}(X_{3}=0) \\ - - - - - - - - - - \\ \phi^{t}(X_{3}=0) & | & 0 \\ 0 & | & -\phi^{b}(X_{3}=0) \end{bmatrix} \begin{bmatrix} C_{n} \\ = 0 \end{bmatrix}$$
(14)

3.4 Multi-Layered Resonators

Multi-layered resonators are photo etched on crystals containing multiple layers of dissimilar materials on a piezoelectric substrate. The layers may be piezoelectrically active also and shorting planes may exist at any interface as depicted in figure 8 for a two layer system.

Figure 8- Coordinate system for a two-layered resonator geometry.

Analysis reveals the solution contains both Rayleigh and Stoneley wave like solutions. Because of this, the behavior of Rayleigh and Stoneley waves in the individual material sub-sets was studied before solutions in multi-layered media were undertaken.

The analysis follows a familiar trend. The equations of motion are solved independently in each material and summation solutions are used to satisfy the boundary conditions. For waves in unshorted multi-layered resonators the boundary condition matrix is as follows:

The above notation refers to the top layer(m), intermediate layer(n) and substrate(s). When the two interfaces and top layer are shorted the boundary condition matrix takes the form:

Clearly intuitive methods of solution determination would be difficult in this case due to 20 equations in 20 unknowns. However recognizing certain groupings as natural Rayleigh and/or Stoneley wave solution sub-sets may be used as a search method in these multi-layered structures.

4.0 TECHNICAL RESULTS

In this section the technical results of research conducted under Phase I (Section 2.1) is presented. In Section 4.1 the results of layered media surface wave velocity studies are presented for six different layer materials. In Section 4.2 the results of studies on interfacial waves are presented. The discovery of interface waves (Stoneley) in quartz for the first time is an important result of the phase I study and may lead to a new class of acoustic resonators. Using these results, a SAW sensor design is discussed in section 4.3 and in Section 4.4 theoretical results are compared to published experimental results for layered SAW resonators.

4.1 Layered Substrate Analyses

In this section six different materials are considered as candidates for passivation of SAW resonators. The materials considered are magnesium oxide (MgO), yittrium oxide ($Y_2 O_3$), silicon dioxide (SiO₂), aluminum nitride (AlN), rutile or titanium dioxide (TiO₂), and sapphire (Al₂O₃). The theoretical approach for analyzing layered SAW velocity was discussed in Section 3.2. Results are presented as dispersion diagrams, surface wave coupling ($\Delta V/Vo$) and displacement/potential vectors vs distance from the top of the layered surface. For completeness tables of numerical solutions are included with displacement diagrams.

4.1.1 Apalysis of MgO/ST-Quartz

Layers of MgO deposited on ST cut Quartz substrates were analyzed. Elastic and dielectric constant data for single crystal MgO (Appendix I) were used with the crystal c-axis perpendicular to the surface and the X-axis parallel to the Quartz X-axis.

Surface wave velocity vs normalized layer thickness is shown in Figure 9a. Because MgO is a faster (higher velocity) material the velocity increases with layer thickness until reaching the slow-shear wave velocity (dotted line) of ST-Quartz. Surface wave coupling is proportional to $\Delta V/Vo$ and this parameter is plotted in Figure 9b for two transducer configurations. Coupling drops quickly for layers greater than 1% of a wavelength.

Selected numerical solutions for MgO layers are shown in Figures 10,11,12, and 13. Figures 10-12 show the effect of shorting the electric field when the layer is 10% of the wavelength. The displacements/potential show penetration increasing with layer thickness. In Figure 13 displacements and potential are shown for a layer only 0.1% of the wavelength. The increased penetration with increasing layer thickness is due to the nearness of the bulk shear wave in the Quartz substrate.

Numerically MgO/ST-Quartz is governed by equations 9 and 10 of section 3.2 which contain 10 sub-solutions. These are presented in the Tables of Figures 10-13. Displacement/potential vectors associated with each sub-solution root (decay constant) are shown together with the 10 complex weighting factors for the complete summation solution per equation 5 of Section 3.1.

thickness for MgO/ST-Quartz.

House and Anna and An

when the top layer and interface are unshorted. Layer thickness is 10% of a wavelength. Layered velocity solution for Mg0/ST-Quartz Figure 10-

BC DE1	[ERM]	[NANT=+3.463E-18,-4.941E-89				
ROOT	Ч	+8.8888,-1.2366	01= 112=	+0.000, -2.461.	+5.838 +8.600	SUB SUB
			10.5	+1.000,	999.9+	SUB 10 CUB
	•		04=+0.	. 880 E + 88		SUB SUB
ROUT	N	0000 T- 1 3001 - 4+	024	-18.525,	909 0+	SUB
			U3=	+1.000,	+0-600	SUB
			U4=+0.	. 00 E+ 80,	+4.770E+	11 SUB
ROOT	M	+8.0000,-1.0161	=1.)	+0.000.0+	+3.195	SUB
)		U2=	-3.731,	+0.609	SUB
			U3 ≖	+1.000,	+0.000	SUB
			U4=+0	.99+3999.	1.289E+	II SUB
#100g	4	+0.00000627	:01=	+0.060.	+.820	SUB
	•	- - 	U2=	+.196,	+0-060	SUB
			03 ≓	+1.000,	+8.898	SUB
			3+=50	.00+3969.	+4.764E+	88 SUB
*100a	ď	+ 4877 - 7599	=[Ŋ	849,	+.458	LAYER
11000	י		02=	+0.000.0+	+0-040	LAYER
			03=	+1.000.1+	+0.600	LAYER
10000	v	- 4877 7599	= [N	4.849,	+.458	LAYER
FUUT	0		U2=	.000.9+	+0.000.0+	LAYER
			03=	+1.030.1+	+0.600	LAYER
ROOT	2	+.4827, +.7599	- I D	- 649	458	LAYER
	•		U2 ≂	+4.000.4+	+0.609	LAYER
			u3=	+1.000.1+	+0-000	LAYER
ROOT	α	4827. +.7599	= [N	+ .849,	458	LAYER
)		02≖	+0.960,	+0.000	LAYER
			N3≖	+1.600,	+0.090	LAYER
ROOT	9	+0.0000,8685	* 15	+0.00.0+	+0.000+	LAYER
	•		U2≖	+1.600,	+0.000	LAYER
			03=	+0.000.0+	+8.808	LAYER
ROOT	10	+0.0000. +.8685	-1N	+0-000.0+	+0.000	LAYER
	5		U2=	+1.000,	+0.000	LAYER
			63=	+0.000.0+	+0.000	LAYER
		WEIGHTING FACTORS	ĥ	(2)=+5,9	62E-02.+]	i.108E-15
		CT-7-17-0-170-0101-T(T) 3	. :			490F-14
		F(3)=+4.909E-01.46.947E-15		(4)=+1.9	125400	9635400
		F(5)#+5.2135+80,74.005-00	4 (1		4 - 4 0 0 + 4 V	4895+00
		F(1) = + 4. /84 E+00, -4.403 E+00	4 1			
		F(9)=+3.357E-01,+0.600E+00	14	9.1+(9L)	GGE+86°. +1	4.8882788

THE VELOCITY IS N=3270.3999

.

.

۰,

Figure 11- Layered velocity solution for Mg0/ST-Quartz when the top layer surface is shorted. thickness is 10% of a wavelength.

Layer

BC DET	ERMI	NANT=+1.135E-17,-1.780E-12				
ROOT	4	+0.0000,-1.2367	≈ [0	+6-866,	+5.838	SUB
		•	U2 ⊭	-2.461,	+8.600	SUB
			n3 =	+1.600,	+6.606	SUB
			04=+0	. 908E+00.	-5.986E4	IG SUB
ROOT	2	+0.6000,-1.0598	∎1e	+0.000.0+	+2.979	SUB
			02=	-18.488,	+0.600	SUB
			03=	+1.000,	999.8+	SUB
			04=+0	.0043000.	+4.755E+	II SUB
ROOT	e	+0.0000,-1.0161	01 ≖	+0.000.	+3.195	SUB
		•	U2≂	-3.729,	+0.000	SUB
			03=	+1.000,	+0.600	SUB
			04=+0	. 900E+06.	-1.289E4	II SUB
ROOT	4	+0.0000,0629	ul=	+0.999.0+	+.828	SUB
	,		U2=	+.196,	+G.96.9+	SUB
			U3≂	+1.800,	+0.000	SUB
			04=+0	.00+3000.	+4.779E+	-08 SUB
ROOT	S	+.4827,7599	ul=	849,	+.458	LAYER
		•	U2≖	+0.000.0+	+9.660	. LAYER
			U3=	+1.690,	+0.600	LAYER
ROOT	9	4827,7599	" "	+.849,	+.458	LAYER
		•	u2=	+0.03.0+	+0-000	LAYER
			U3=	+1.000.1+	+6.000	LAYER
ROOT	2	+.4827, +.7599	c]=	849,	458	LAYER
			N2#	+0.000,	+6.000	LAYER
			u3≖	+1.000.1+	+6.960	LAYER
ROOT	80	4827, +.7599	*IN	+.849,	458	LAYER
•			U2≖	+0.000.	+0.000	LAYER
			u3≖	+1.000,	+0.000	LAYER
ROOT	თ	+0.0000,8685	= []	, 000.0+	+0.800	LAYER
			U2≡	+1.000,	+0.000	LAYER
			U3 =	+0.000,0+	+0.600	LAYER
ROOT	10	+0.0000, +.8685	*I0	+0.000,	+0.000	LAYER
		•	U2=	+1.000,	+8.000	LAYER
			u3≖	+0-000.	+0-000	LAYER
			1			
		WEIGHTING FACTORS				
		F(1)=-1.544E-01,-3.553E-15	£4	(2)=+6.62	3E-02,+9	.8755-17
		F(3)=+4.445E-01,+2.083E-15	64 G	(4):~1.96	1+°10+31	.284E-14
		F())=+5.20/E+UU, 14.0302700 F(7)=+4.778E+604.482E+60	4 54	(8)=+4.77	8E+00,+4	482E+99
		F(9)=+3.357E-01,+0.000E+00	- 64	(10)+1.60	0E+00,+0	.0005+00

THE VELOCITY IS W=3270.2243

, ` .

-i -

THE VE BC DET	LOCI	TY IS W=3278.0601 NANT=-6.596E-09,-1.944E-17				
ROOT	ч	+0.8000,-1.2367	U1= U2= U3=	+6.880, -2.461, +1.680,	+5.838 +6.860 +6.860	SUB SUB SUB
ROOT	~	+6.6666,-1.6598	U4=+8 U1= U2= U3=	.000E+00, +0.000, -18.453, +1.000,	-5.985£4 +2.981 +6.600 +6.600	-16 SUB SUB SUB SUB
ROOT	m	+0.0000,-1.0161	U4=+0 U1= U2= U3=	.000E+00, +0.000, -3.728, +1.000,	+4.741E+ +3.195 +6.000 +0.000	.11 SUB SUB SUB SUB
R00T#	4	+6.6008,6631	U4=+0 U1= U2= U3=	.0005+00, +0.000, +1.000, +1.000,	-1.2988+ +.026 +0.008 +0.008	11 SUB SUB SUB SUB
ROOT	S	+.4827,7599	U4=+0 U1= U2=	.000 5+02, +0.000, +1.0000,	+4.793E4 +.458 +0.020	LAYER LAYER LAYER
ROOT\$	v	4827,7599		+ 849, + 8	+ + + 58 000 0+ 000 0+	LAYER LAYER Layer
ROOT ROOT	6 7	+. 4 827, +.7599 4 827, +.7599	03** 03**	- 849 + 849 + 849	+ · · • • • • • • • • • • • • • • • • •	LAYER LAYER LAYER LAYER LAYER
ROOT	a	. +0.000,8686	02= 03= 02= 13=	+0.000 +1.000 +1.000 +1.000 +1.000	+0-000 +0-000 +0-000 +0+0-000 +0+0-000 +0+0-000 +0+0-000 +0+0-000 +0+0-000 +0+0-000 +0+0-000 +0+0-000	LAYER Layer Layer Layer Layer
ROOT	16	+0.0000, +.8686	U1= U2= U3=	+1.000.+	000 000 00 00 00 00 00 00 00 00 00 00 0	LAYER Layer Layer
		WEIGHTING FACTORS F(1)=-1.346E-01,-5.329E-15 F(3)=+4.014E-01,+4.054E-16 F(3)=+5.201E+00,+4.054E+00 F(7)=+3.357E-01,+0.000E+00 F(9)=+3.357E-01,+0.000E+00	fin his fis fis fis	(2)=+7.24 (4)=+1.96 (6)=+5.20 (8)=+4.77 (10)+1.00	85-82,-2 15+81,-1 15+80,-4 35+88,+4 85+88,+4	9785-16 4528-13 4528-13 4778+80 .4778+80

when the top layer and interface are shorted. Layer thickness is 10% of a wavelength. Layered velocity solution for Mg0/ST-Quartz Figure 12-

-11	Ul= +0.000, +5.956 SUB U2= -2.523, +0.000 SUB 112- 11 000 4 000 SUB	US= TIRUC, TERED SUB U4=40.000E+00,-5.51E+10 SUB U1= +0.000 + 3.311 SUB U2= -10.681, +0.000 SUB U3= +1.000. +0.000 SUB	U4=+0.000E+00,+1.555E+11 SUB U1= +0.000, +3.698 SUB U2= -3.074, +0.000 SUB U3= +1.000, +0.000 SUB	U4=+0.000E+00,-1.622E+11 SUB U1= +0.000, +.043 SUB U2= +.192, +0.000 SUB U3= +1.000, +0.000 SUB	U4=+0.000E+00,+1.050E+09 SUJ U1=851, +.460 LAYER U2= +0.000, +0.000 LAYER	U3# +1.000, +0.000 LAIER U1# +.651, +.460 LAYER U2# 40.000, +0.000 LAYER	U3= +1.000, +0.000 LAYER U1=851,460 LAYER U2= +0.000, +0.000 LAYER U3= +1.000, +0.000 LAYER	UI= +.651,460 LAYER U2= +0.000, +0.000 LAYER U3= +1.000, +0.000 LAYER	UI* +8.000, +9.000 LAYER U2= +1.000, +0.000 LAYER U3* +0.000, +9.000 LAYER U1= +9.000, +9.000 LAYER	UZ= +1.000, +0.000 LAYER U3= +0.000, +0.000 LAYER -14 F(2)=+4.864E-01,+3.607E-15	-14 F(4)=+2.183E+01,+9.571E-14 +01 F(6)=+6.798E+00,-1.027E+01 -01 F(8)=+3.559E+00,+1.026E-00 -01 F(10)=+1.000E+00,+0.00E+00
ITY IS W=3163.1149 INANT=-3.114E-18,+2.944E	+0.0000,-1.2623	+8.8888,-1.8761	+8.6000,-1.6185	+0.6000,1367	+.4829,7679	4829,7679	+.4829, +.7679	4129, +.7679	+0.0000,8776 +0.0000, +.8776	WEJGHTING FACTORS F(1)3.720E+00,-1.676E	F(3)=+2.079E+00,+1.033E F(5)=+6.780E+00,+1.027E F(7)=+3.559E+00,-1.896E F(9)=+9.890E-01,+0.600E
PERM PERM	٦	2	m	4	ŝ	9	2	89	10 9		
THE VI BC DE1	ROOT	ROOT	ROOT	ROOT\$	ROOT	ROOT	ROOT	ROOT	ROOT#		

Layered velocity solution for MgO/ST-Quartz when the top layer and interface are unshorted. Layer thickness is 0.1% of a wavelength. Figure 134.1.2 Analysis of Y₂O₃ /ST-Quartz

Layers of yittrium oxide on ST-Quartz substrates were analyzed. Elastic and dielectric constant data for single crystal Y₂O₃ (Appendix I) were used with the crystal c-axis perpendicular to the surface and the X-axis parallel to the Quartz X-axis.

Surface wave velocity vs normalized layer thickness is shown in Figure 14a. Because Y_2O_3 has a velocity only slightly higher than that of the quartz substrate, the velocity of the layered wave becomes constant for large normalized thickness. This implies the wave is entirely in the film and not affected by the substrate. This is confirmed by the coupling shown in Figure 14b where the coupling becomes zero as the thickness approaches a wavelength.

Selected numerical solutions for Y_2O_3 layers 10% of a wavelength are shown in Figures 15-17 under different conditions of shorted and unshorted electric fields at the top layer and interface. Numerically Y_2O_3 /ST-Quartz is governed by equations 9 and 10 of section 3.2 which contain 10 sub-solutions. These are presented in the Tables of Figures 15-17. Displacement/potential vectors associated with each sub-solution root (decay constant) are shown together with the 10 complex weighting factors for the complete summation solution per equation 5 of section 3.1.

;

Figure 14- Velocity dispersion (a) and wave coupling (b) as a function of layer thickness for Y_2O_3/ST -Quartz.

ý

THE VEL BC DETE	CCITY	IS W=3070.4024 4T=~1.385E-18,+8.484E-14				
ROOT	I	+0.0300,-1.2830	u1# U2#	+0.000, -2.566,	+6.047 +0.000	SUB SUB
			03-	+1.600,	609°0+	SUB
			U4=+0	. 664E+66	-5.208E+	Te SUB
ROO'S	7	+6.6366,-1.6919	5	+0-000,	185.54	
	I		= 70 0 7	102.1-	000 01	SUB
			03#	, 499. L+	000.04	
			04=+8	.000E+000.	+39.8.6+	AUS UL
10000	ç	±a_aaaa.=].a185	a1*	+0.000,	+2.998	SUB
#100H	n		U2=	-2.701,	+6.699	SUB
			n3=	+1.886,	+8-666	SUB
			04×+0	.000E+00	,-1.826E+	II SUB
		1351 - AAAA A.	-10	+0.000.0+	+.054	SUB
ROUT	đ	TO TO L DODD L	U2=	+.189.	+0.000	SUB
			U3=	+1.000,	+0.000	SUB
			04=+0	.000E+00	,+1.364E+	69 SUB
		. 6040 - 4017	11*	660.	+.438	LAYER
ROOT	ŋ		02=	+0.000.0+	+6.600	LAYER
			03=	+1.000,	+6,000	LAYER
	,	E040 - 4017	-10	+.660,	+.438	LAYER
ROOT	9	1705 · 1 6500 · 1	02œ	+0.000.	+0.600	LAYER
			03=	+1.000,	+0.000	LAYER
	I	- 5210 + 4017	11 3	660	438	LAYER
ROOT	-	+ . 2047 + . 477 /	02*	+0.000.0+	+0.000	LAYER
			13=	+1.000	40.000	LAYER
			=	+ 660	438	LAYER
RJOT#	œ	1.5049, +.491.	12=	+0.000	+0.000	LAYER
			13=	+1.000.	+0.666	LAYER
			111 =	+0.000.0+	+0.000	LAYER
ROOT		1000 - 'AAAA' +	U2=	+1.860,	+0.000	LAYER
			13=	+0.000.0+	+0.990	LAYER
		. <i>. 1000</i> 1 5581	-10 -	+0.000.0+	000.0+0+	LAYER
ROOT	16	TOCC . 1 0001.0+	U2=	+1.000	+0.660	LAYER
			132	+0.000	10.000	LAYER
			}			
	3	EIGHTING FACTORS			1	
	: [4	(1)=-6.857E-01,+7.216E-16		F(2)=+1.	- 19-3866	2.313E-10 1.636E-16
	ŝ	(3)*+4.533E-01,-1.495E-1	_			
	<u>ц</u> , ()	((5)=+6.2]]E+00,+5.835E+00 //2/=+1 265E+00].572E+00	~~~	F(6)=+6. F(8)=+1.	2655+00,+	1.572E+00
	4 54	()) += (F (10)+1.	800E+60 ,+	G . 668E+64

Figure 15- Layered velocity solution for Y₂O₃/ST-Quartz when the top layer and interface are unshorțed. Layer thickness is 10% of a wavelength.

. °

> U2= -2.700, +0.000 SUB U3= +1.000, +0.000 SUB U4=+0.0002.00, -1.8262+11 SUB U2= +0.000, -1.8262+11 SUB U2= +1.600, +0.000 SUB U3= +1.600, +0.000 SUB U4=+0.0002+05,+1.3642+09 SUB U1= -0.600, +0.000 LAYER U2= +0.000, +0.000 LAYER F(2)=+2.0365-01,+9.785E-17 F(4)=+1.498E+01,+1.518E-15 F(6)=+6.205E+00,-5.829E+00 F(16)+1.265E+00,+1.569E+00 F(10)+1.003E+00,+0.000E100 0,--5,207E+10 SJB , +3,389 SUB , +0.000 SUB , +0.010 SUB + 438 LAYER +0.000 LAYER +6.000 LAYER +38 LAYER +0.000 LAYER +0.000 LAYER U3= +1.000, +0.000 SUB U4=+0.0602+00,+9.8652+10 SUB U1= +0.000, +2.998 SUB LAYER CAYER SUB SUB +0.600 +0.600 +6.000 -.438 +6.047 +0.000 +0.000 +0.660 +0.000 +0.000 +0.000 +0.000.0+ +8.000 +0.000 000.0+ +0.00.0+ 002 **P**+ Ul: +0.002 U2: -2.566 U3: +1.000 U1: +0.000 U1: +0.000 U1: +0.000 U2: -9.365 +0.000, .660. +.660, +1.600 +0.400, +1.600 +0.000 +1. ROD 660 P00 +1.000 +0.000 +1.000 + P. 000 +0.000 F(1)=-6.772E-01,+4.441E-16 F(3)=+4.318E-01,-7.440E-17 F(5)=+4.205E+00,-7.829E+00 F(5)=+1.265E+00,-1.569E+00 F(9)=+4.959E-01,+0.000E+00 THE VELOCITY IS W=3070.2139 BC DETERMINANT=+1.304E-18,+5.282E-10 +0.000,-1.2830 -.4918 -.4918 +.4918 -.5049, +.4918 +0.0000, -.5582 +0.0000, +.5582 +0.0000,-1.0919 +0.0000,-1.0185 +0.6500, -.1762 WEIGHTING FACTORS --5849, +.5049, +.5049, ч 2 m 4 S φ ~ 80 σ ROOT# 10 ROOT ROOT ROOT ROOT ROOT# ROOT ROOT ROOT ROOT

Layer Layered velocity solution for Y_2O_3/ST -Quartz when the top layer surface is shorted. Laye a wavelength of 10% thickness is 16-Figure

THE VE BC DET	LOCI	ry is w=3070.0623 Nant=+1.152E-09,+7.170E-18				
ROOT	ч	+0.0000,-1.2831	01= 02=	+0.000, -2.567, +1.000	+6.047 +8.000 +a.000	SUB SUB SUB
ROOT	7	+0.6000,-1.0919	01=+0 01= 102= 102=	-9.364, -9.364,	-5.207E+ +3.389 +0.008	16 SUB SUB SUB SUB
ROOT#	m	+0.0300,-1.0185	U4=+0 U1= U2= U3=	.000E+00, +0.000 -2.699, +1.000,	+9.858E+ +2.998 +8.666 +8.666	10 SUB SUB SUB SUB SUB
ROOT	4	+8.0300,1763	U4=+0 U1= U2= U3=	.900E+00, +0.000, +.189, +1.000,	-1.826E+ +.054 +0.000 +0.000	11 SUB SUB SUB SUB 40 SUB
ROOT	ŝ	+.5049,4918	01=4 01=4 02==		+0.200 +0.438 +0.209 +0.209	LAYER LAYER Layer
ROOT‡	9	5349 <i>,</i> 4918		+0.000	+ 438	LAYER LAYER
\$00T	٢	+.5049, +.4918		+1.000, 660, +3.230,	+ 4.98	LAIER Layer Layer Faved
ROOT	œ	SU49, +.4918	03# 07# 03#	+1.900 +0.000 +0.000	+0.438	LAYER Layer Layer
ROOT	6	+0.0000,5583	03= 02= 03=	+1.000, +0.000, +1.000,	000 000 000 0+ 000 0+	LAYER Layer Layer Laver
ROOT	10	+8.8160, +.5583	01= 02= 03=	+0.000,+1.000,+000,+0000,+0000,+0000,+0000,+00000,+00000,+00000,+00000,+00000,+00000,+00000,+00000,+00000,+00000,+000000	9999 - 9+ 9999 - 9+	LAYER Layer Layer
	•	WEIGHTING FACTORS F(1)=-6.704E-01,+6.661E-16 F(3)=+4.146E-01,-2.076E-16 F(3)=+4.199E+00,+5.824E+00 F(5)=+1.264E+00,-1.568E+00 F(7)=+1.264E+00,-1.568E+00 F(9)=+4.958E-01,+0.000E+00	նո նոնություն։	(2)=+2.06 (4)=+1.49 (6)=+6.19 (6)=+6.19 (8)=+1.26 (10)+1.00	7 E-01,-2 8 E+01,-2 9 E+00,-5 4 E+00,+1 0 E+00,+0	.669E-16 .100E-15 .824E+00 .826E+00

Layered velocity solution for Υ_20_3/ST -Quartz when the top layer and interface are shorted. Layer thickness is 10% of a wavelength. Layer thickness is Figure 17-

.

4.1.3 Analysis of SiO_x/ST-Quartz

Layers of fused quartz on ST-cut Quartz substrates were analyzed. Elastic and dielectric constant data for isotropic fused quartz (Appendix I) were used. Surface wave velocity vs normalized layer thickness is shown in Figure 18a. Because fused quartz is a faster material the velocity increases with layer thickness until reaching the slow shear velocity of the substrate. Surface wave coupling is plotted in Figure 18b for two transducer configurations. The coupling becomes zero for thicknesses greater than half a wavelength.

Selected numerical solutions for fused quartz layers are shown in Figures 19-21. The displacements/potential show penetration increasing with layer thickness. The increased penetration with increasing layer thickness is due to the nearness of the bulk shear wave in the Quartz substrate.

Numerically SiO_x/ST -Quartz is governed by equations 9 and 10 of section 3.2 which contain 10 sub-solutions. Displacement and potential vectors associated with each sub-solution are shown to-gether with the 10 complex weighting factors for the complete summation solution per equation 5 of Section 3.1.

THE VE BC DET	ERMI	TY IS W#3229.7250 NANT#+0.000E+00,+1.189E-10				
ROOT	ч	+8.8888,-1.2466	01= 12-	+0.000,	+5.884	SUB
			- - 20	+1.000,	+0.660	SUB
			04=+0	.000E+000.	-5.795E+	10 SUB
ROOT#	2	+8.8000,-1.8655	5	+0.009.0+	+3.189	SUB
			02 =	-13.449,	+0.000	SUB
			G3#	+1.000,	+0.000	SUB
			04×+0	.000E+00.	+2.702E+	II SUB
ROOT	m	+0.0000,-1.0175	3	+0.000.0+	+3.163	SUB
			U2=	-3.449,	+0.000	SUB
			03=	+1.000,	+0-000+	SUB
			04=+0	.001E+000.	-1.429E+	II SUB
ROOT	-	+0.0000,0979	•T0	+0-000.0+	+.031	SUB
I			U2=	+.194,	+0.000+	SUB
			U3 =	+1.000,	+0.006	SUB
			U4=+0	.000E+000,	+7.473E+	08 SUB
ROOT	S	+0.00008412	n]=	+0.000.0+	+1.189	LAYER
			U2≖	+0.800,	+0.000+	LAYER
			U3=	+1.000,	+0.000	LAYER
ROOT#	9	+0.0000,5143	ul=	+0.000.	+.514	LAYER
		•	u2=	+0.000.0+	+0.000+	LAYER
			U3=	+1.000,	+0.000	LAYER
ROOT#	~	+0.0000, +.5143	=10	+0.000.0+	514	LAYER
			02 ≂	+0.000.9+	+0.000	LAYER
			u3≖	+1.000,	+0.000+	LAYER
ROOT	8	+0.0000, +.8412	U1=	+0.000.0+	-1.189	LAYER
			U2=	+0.000.0+	+0.000	LAYER
			03 =	+1.000.1+	+0.000+	LAYER
ROOT#	6	+0.0000,5143	<u>-1</u> 0	+0.000.0+	+0.000	LAYER
			U2≖	+1.000,	+0.600	LAYER
			U3=	+0.000,0+	+0.000	LAYER
ROOT	10	+0.0000, +.5143	=10	+0.000.0+	+0.000	LAYER
			U2≖	+1.000,	+0.000	LAYER
			n3=	+0.000.0+	+0.600	LAYER
			•		•	
		WEIGHTING FACTORS	I			00.0000
		F(1) =-3.966E-01, +0.000E+00	[14	(Z)=+3.41	2E-02,40	. 6965+99
		F(3)=+3.455E-01,+9.000E+90	<u>ц</u> ;	86.6+=(\$)	3E+00,+0	.0005+000
		F(7)=+2.432E+60.+0.000E+00 F(7)=+2.432E+60.+0.000E+00	4 (4	(8)=-4.05	0E-31,+0	000E+00
		F(9)=+2.746E-01,+0.000E+00	14	00.1+(01)	0E+00,+0	.000E+00
					,	

.

.

.

Layered velocity solution for SiO_x/ST-Quartz when the top layer and interface are unshorted. of a wavelength. Layer thickness is 20% Figure 19-

I.

THE VE BC DET	LOCI	TY IS W≈3229.6590 NANT=+0.000E+00,+5.098E-10				
ROOT	ч	+0.0000,-1.2466	U1= U2=	+0.000, -2.486,	+5.884 +0.000	SUB SUB
			U3= U4=+0	+1.000. .000E+00,	+0.000 -5.794E+	SUB 10 SUB
ROOT	2	+8.8880,-1.8655	-10	+0.000,	+3.189	SUB
			- - - - - - - - - - - - - - - - - - -	-13.445,	+0°000+0+	SUB
			04=+0	606E+66	+2.768E+	II SUB
ROOT#	m	+0.6000,-1.0175	- 70	+0.000.0+	+3.163	SUB
			U2=	-3.448,	+0.990	SUB
			U3#	+1.600,	+0.600	SUB
10000	•		9+=50	.0043000,	-1.429E+	II SUB
¥1008	*	+0.000 <i>°</i> 0380	= 1= 2 = 1	, 1998. 94	+0.50.4	SUB
			03=	+1.660	+0,000	SUB
			04=+0	000E+000	+7.4765+	08 SUB
ROOT	ഹ	+0.0000,8412	e1=	+0.000,	+1.189	LAYER
			U2=	+0.000,	+0.000	LAYER
			U3=	+1.000,	+0.000	LAYER
ROOT#	9	+8.6806,5143	u1=	+0.000,	+.514	LAYER
			U2#	+0.00.0+	+0.000	LAYER
			U3≖	+1.000,	+0.000	LAYER
ROOT	~	+8.8080, +.5143	-1 0	+0.000.0+	514	LAYER
			U2=	+0.000.0+	+0.000.0+	LAYER
1000	¢		03=	+1.000.	+0.690	LAYER
#1.00X	ø	+0.000%, +.0412		+0.000	70 000	LAYER
			121	+1 000	+0,000	LAVER
ROOT	6	+0.0004,5143	-65	+0.000.	+0.000	LAYER
			U2=	+1.000.1+	+0.600	LAYER
			U3 =	+0.040,	+9.600	LAYER
ROOT	10	+0.0001, +.5143	01=	+0.000.0+	+0.000	LAYER
			U2=	+1.600,	+6.666	LAYER
			N3≖	+0.000.0+	+0.000	LAYER
		F(1)=-3.937E-01,+0.000E+00	<u>(</u>	(2)=+3.53	0E-02,+0	.000E+00
		F(3)=+3.388E-01,+0.000E+00	ũ,	4)=+9.98	2E+00,+0	.000E+00
		F(5)=-6.126E+00,+0.000E+00 =/2)=+2 /122+400 +0 000E+00	ω ú	(6)=+1.40	6E+01,+0	.889E+88
		F())=+2.746E-01,+3.800E+00 F(9)=+2.746E-01,+3.800E+00	4 [44	10)+1.00	0+'00+30	.000E+00

Layer Layered velocity solution for SiO_x/ST-Quartz when the top layer surface is shorted. Laye thickness is 20% of a wavelength. Figure 20-

ROOT	Ч	+0.6010,-1.2468	U1= U2= U3=	+0.000, -2.486, +1.000,	+5.885 +0.000 +0.000	SUB SUB SUB SUB
ROOT	2	+8.8818,-1.8656	U]= U2= U3=	-13.407, +1.000, +1.000,	+8-888	SUB SUB SUB
ROOT	m	+0.0000,-1.0175	U4=+6 U1= U2= U3=	. 480 Et 880, +0.000, -3.445, +1.000,	+2.00357 +3.162 +8.000 +6.000	ave 11 SUB SUB SUB
ROOT	4	+0.2040,0983	U4=+0 U1= U2= U3=	-0005+00, +0.000, +.194, +1.000,	-1.4318+ +.031 +0.000 +0.000 +0.000	11 SUB SUB SUB SUB SUB AB
ROOT	ŝ	+0.0000,8413	04=+v Ul= U2=	+0.000, +0, 000, +0, 000, 000, 000, 000,	+1.189	LAYER LAYER
ROOT	Ŷ	+0.0009,5145	03= 01= 02=	+1.000, +0.000, +0.000, +1.000	+0.000 +.515 +0.000 +0.000	LAYER Layer Layer Layer
ROOT	2	+0.0000, +.5145	01= 03= 03=	+0.000.++0.000.++1.0000.	+0.000+0+0.000	LAYER Layer Layer
ROOT	œ	+6.8033, +.8413	U1= U3=	+0.000.+0.000.+1.0000.	-1.189 +0.606 +0.666	LAYER Layer Layer
ROOT #	6	+0.0030,5145	01= 02= 03=	+0.000. +1.000, +0.000,	+0.000 +0.000 +6.000	LAYER Layer Layer
R007#	16	+0.0036, +.5145	U1= U2= U3=	+0.000, +1.000, +0.000,	+0.000 +0.000 +0.000	LAYER Layer Layer
		WEIGHTING FACTORS F(1)=-3.708E-01,+0.000E+00 F(3)=+2.8622E-01,+0.000E+00 F(5)=-6.110E+00,+0.000E+00 F(5)=+2.428E+00,+0.000E+00 F(9)=+2.744E-01,+0.000E+00	(u, (u, fu, fu, fu	(2) =+4.46 (4) =+9.97 (6) =+1.46 (6) =+1.46 (18) =-4.61	56E-82,+8 14E+80,+8 12E+81,+9 12E+81,+9 17E-81,+9 19E+88,+9	

THE VELOCITY IS W=3229.1370 BC DETERMINANT=-1.899E-10,+8.000E+00

۴,

when the top layer and interface äre shorted. Layered velocity solution for $Si0_x/ST-Quartz$ of a wavelength. 20% Layer thickness is Figure 21-

4.1.4 Analysis of AlN/ST-Quartz

Layers of aluminum nitride (AlN) deposited on ST-cut Quartz substrates were analyzed. Surface wave velocity vs normalized layer thickness is shown in Figure 22a and 23a for combinations of shorted layer and/or interface. Because AlN is a faster material, the velocity increases with layer thickness until reaching the slow-shear velocity (dotted line) of the ST-Quartz substrate. Because AlN is piezoelectric, four possible transducer configurations are possible. Coupling efficiency to surface waves with only interdigital electrodes at either the interface or top layer surface is shown in Figure 22b. When the interdigital electrodes are at the interface, the coupling is reduced because the wave displacements are located at the top surface. If the electrodes are at the surface and the layer is thick, coupling efficiency improves because of the piezoelectric AlN layer.

For the floating ground plane (either at the surface or interface) the coupling is shown in Figure 23b. Normally, the coupling is low for thin layers. However when the layer thickness is increased, the coupling peaks at 2% of a wavelength.

Numerical solutions for AlN layers are shown in Figures 24-27 for different shorting conditions and thickness equal to 10% of a wavelength. Numerically AlN/ST-Quartz is governed by equations 11 and 12 of section 3.2 which contain 12 sub-solutions. These are presented in the Tables of Figures 24-27. Displacement and potential vectors associated with each sub-solution root are shown together with the 12 complex weighting factors for the complete summation solution per equation 5 of section 3.1.

4 1.

> Figure 22- Velocity dispersion (a) and wave coupling (b) as a function of layer thickness for AlN on ST-Quartz with electrodes at either the top or interface surface.

*

Figure 23- Velocity dispersion (a) and wave coupling (b) as a function of layer thickness for AlN on ST-Quartz with interdigital electrodes and an opposing ground plane.

when the top layer and inteface are unshorted. Layer thickness is 10% of a wavelength. Layered velocity solution for AlN/ST-Quartz Layer thickness is Figure 24-

۰,

	Ul= +0.000, +5.816 SUB U2≢ -2.449, +0.000 SUB U3∈ +1.000, +0.000 SUB ™.4.40 aaar-40 -6.0878+10 SUB	UL= +0.000, +2.735 SUB UL= +0.000, +2.735 SUB U2= -24.326, +0.000 SUB U3= +1.000, +0.000 SUB U4=+0.000E+00.+7.119E+11 SUB	U1= +0.000, +3.207 SUB U2= -3.872, +0.000 SUB U3= +1.000, +0.000 SUB U4=+0.0005+00,-1.2205-11 SUB	U1= +0.000, +.012 SUB U2= +196, +0.000 SUB U3= +1.000, +0.000 SUB 14=+0.0005+00.+2.759E+08 SUB	Ul= +0.000, +2.843 LAYER U2= +0.000, +0.000 LAYER U3= +1.000, +0.000 LAYER U4=+7.303E+10.+0.000E+06 LAY	UI=365, +.539 LAYER U2= +0.000, +0.000 LAYER U3= +1.000, +0.000 LAYER U4=-1.215E+10,-2.706E+10 LAYER	Ul= +.365, +.539 LAYER U2= +0.000, +0.000 LAYER U3= +1.000, +0.000 LAYER U3=-1.215E+10.+2.706E+10 LAY	Ul=365,539 LAYER U2= +0.000, +0.000 LAYER U3= +1.000, +0.000 LAYER U3= 1.215E+10,+2.706E+10 LAY	UI# +.365,539 LAYER U2= +0.000, +0.000 LAYER U3= +1.000, +0.000 LAYER U3=-1.215E+10,-2.706E+10 LAY	UI= +0.000, -2.843 LAYER U2= +0.000, +0.000 LAYER U3= +1.000, +0.000 LAYER U3= +1.000, +0.000 LAYER U4=+7.303E+10,+0.000E+00 LAY	UI= +0.000, +0.000 LAYER U2= +1.000, +0.000 LAYER U3= +0.000, +0.000 LAYER U3=+0.0005+00 LAYER	UI= +0.000, +0.000 LAYER U2= +1.000, +0.000 LAYER U3= +0.000, +0.000 LAYER U3=+0.0001, +0.000 LAYER	F(2)=+2.169E-02,+1.837E-02 F(4)=+1.480E+01,-4.947E-02 F(6)=+4.519E+00,+3.250E+00 F(6)=+4.294E+00,-3.815E+00 F(10)-1.472E+00,-2.603E+00 F(12)+1.000E+00,+2.603E+00
ITY IS W=3288.9383 INANT=+6.913E-11,-5.632E-87	+0.8000,-1.2320	+0.0000,-1.0575	+0.0000,-1.0152	+0.0000,0364	+(1.0800,-1.3984	+.2352,6516	2352,6516	+.2352, +.6516	2352, +.6516	+1.6860,+1.3984	+3.0000,7958	+3.0000, +.7958	WEIGHTING FACTORS F(1)=+7.786E-03,+8.605E-02 F(3)=+2.563E-01,-1.723E-01 F(5)=-1.221E+00,+4.649E-03 F(5)=+4.379E+00,-3.328E+00 F(9)=+4.590E+00,+3.798E+00 F(11)+3.678E-01,+0.000E+00
ERM	-	2	m	4	ŝ	9	2	æ	ი	10	3	12	
THE VE BC DET	R00T4	ROOT	R00T#	ROOT	ROOT	ROOT	ROOT	ROOT	ROOT	ROOT	R00'2	ROOT	

1

111= +8.600 +5.818 SUB	U2= -2.450, +9.000 SUB U3= +1.000, +9.000 SUB U3= 1.000, 40.000 SUB	U4=+4.000E+00,-0.014E+10 -005 U1= +0.000, +2.766 SUB U2= -23.598, +0.000 SUB U3= +1.000, +0.000 SUB U4=+0.000E+00,4-6.824E+11 SUB	U1= +0.000, +3.206 SUB U2= -3.859, +0.000 SUB U3= +1.000, +0.000 SUB	U4=+0.000E+00,-1.226E+11 SUB U1= +0.000, +.013 SUB U2= +.196, +0.000 SUB U3= +1.000, +0.000 SUB	U4=+0.000E+00,+2.994E+08 SUB U1= +0.000, +2.843 LAYER U2= +0.000, +0.000 LAYER U3= +1.000, +0.000 LAYER	U4#+7.332E+10,+0.000E+NV LAX U1=365, ~.539 LAYER U2= +0.900, +11.000 LAYER U2= +1.000, +11.000 LAYER	Ud=1.215E+10,-2.707E+10 LAY Ul= 1.215E+10,-2.707E+10 LAY Ul= +.365,539 LAYER U2= +0.000, +0.000 LAYER U3= +1.000, +0.000 LAYER	U4=-1.215E+10,+2.707E+10 LAY U1=365,539 LAYER U2= +0.000, +0.000 LAYER U3= +1.000, +0.000 LAYER	U4=-1.215E+10,+2.707E+10 LAY U1= +.365,339 LAYER U2= +0.000, +0.000 LAYER U3= +1.000, +0.000 LAYER	U4=-1.2158+10;-2.7078+10 LAY U1= +0.000, -2.843 LAYER U2= +0.000, +0.000 LAYER U3= +1.000, +0.000 LAYER	U4=+7.302E+10,+0.000E+00 LAY U1= +0.000, +0.000 LAYER U2= +1.000, +0.000 LAYER U2= +1.000, +0.000 LAYER	U4=+0.0808+90,4.0808+90 LAY U4=+0.0808+90,4.0808+90 LAY U1= +0.0800, +9.0808 LAYER U2= +1.0800, +9.0808 LAYER U3= +6.0808+90,+0.0808+90 LAY	<pre>2 F(2)=+2.800E-02,-5.329E-03 2 F(4)=+1.493E+01,+2.482E-02 3 F(6)=+4.402E+00,+3.692E+00 1 F(8)=+4.33E+00,-3.915E+00 1 F(8)-1.433E+00,-3.203E-02 2 F(8)-1.433E+00,-3.203E+02</pre>
	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+8.8888,-1.8577	+6.0000,-1.0153	+0.6666,6394	+6.0000,-1.3984	+.2352,6517	2352,6517	+.2352, +.6517	2352, +.6517	+0.0000,+1.3984	+(1,0080,7960	+11.8886, +.7968	WEIGHTING FACTORS F(1)=-4.897E-03,-2.980E-05 F(3)=+2.368E-01,+5.277E-05 F(5)=-1.152E+00,+3.991E-05 F(7)=+4.493E+00,-3.679E+00 F(7)=+4.432E+00,-3.679E+00 F(7)=+4.526E+00,-3.672E+00
	4	2	m	-	S	9	5	8	σ	10	11	12	
	1 004	ROOT	ROOT	ROOT\$	ROOT	ROOT	ROOT	ROOT	ROOT	ROOT	ROOT	ROOT#	

THE VELOCITY IS W=3287.2710 BC DETERMINANT=-3.546E-19,-6.424E-10

layer is unshorted and the inteface Layer thickness is 10% of a Layered velocity solution for AlN/ST-Quartz Layer thickness is when the top is shorted. wavelength. 26--Figure

	-	וכנכ ו ממממ אי	111≡ +0.000. +5.816 SUB
ROOT	-	1767°T-' AAAA' A*	
			U3= +1.000, +9.000 SUB D4=+0.900E+00,5.080E+10 SUB
ROOT	2	~8.8808 r-1.8576	UL= +0.000, +2.745 SUB
		•	U2= -24.086, +0.000 SUB
			[13= +1.600, +0.600 SUB n.=⊥0 2005+00.47.0275+1] SUB
4 m 0 0 0 0	ſ	כאנם ניי מטמס איי	11 + +0.600. +3.206 SUB
#TOOM	n	7CTA . T	112= -3.868 +0.000 SUB
			U3= +1.660, +9.660 SUB
			U4=+6.606E+00,-1.222E+11 SUB
ROOT	-	+0.00000374	Ul= +0.000, +.012 SUB
	•		U2= +.196, +0.000 SUB
			(13= +1.000, +0.000 SUB
			Uf=+0.000E+00,+2.837E+08 SUB
ROOT#	Ś	+0.0000,-1.3984	Ul= +0.000, +2.843 LAYER
	I		U2= +0.000, +0.000 LAYER
			1)3= +1.000, +0.000 LAYER
			U4=+7.363E+16,+8.660E+66 LAY
ROOT#	و	+.2352,6516	Ul=365, +.539 LAYER
			1)2= +0.000, +0.000 LAIER
			USH +T.+UUU, TV.*UU LAIEN
			U4=-1.2155+10,-2.1065+10 LAI
ROOT	~	2352,6516	UI= +.365, +.354 UIE
			1)2= +0.000, 70.000 LAIGN
			13# +1.000, +0.000 LAXER
			U4=-1.215E+10,+2./06E+10 LAY
ROOT	ω	+.2352, +.6516] =365,539 LAIEK
			12= +0.000, +0.000 LAIEK
			U3a +1.000, +0.000 LAIER) otening in Taeeling tav
			UJ#-1.2156110,72,1006718 UAI
ROOT	ი	2352, +.6516	UJE +.303,339 WAIGA
			1)2# +8.600, +0.800 LAIER
			134 +1.401, 10.40 LAIGN
			U==1.215E+10,-2.706E+10 LAY
ROOT	10	+0.0000,+1.3984	U]= +0.000, -2.843 LAYER
			J2= +0.500, +0.600 LAYER
			J3= +1.000, +0.000 LAYER
			U4*+7.303E+10,+0.000E+00 LAY
ROOT #	11	+0.0000,7959	U1= +0.800, +0.600 LAYER
			J2= +1.000, +0.000 LAYER
			J3× +0.000, +0.000 LAYER
			U4=+0.000E+00,+0.000E+00 LAY
ROOT	12	+0.6430, +.7959	JI= +0.000, +0.000 LAYER
			J2= +1.600, +0.600 LAYER
			J3= +6.060, +6.000 LAYER
			U4=+8.899E+89,+8.888E+88 LAY
		WEIGHTING FACTORS	
		F(I)=+4.245E-02,+7.493E-16	F(Z)=+Z,9895-02,-Z,1105-10
		F(3) *+1.850E-01, -1.574E-15	F(4)=+1.481E+010.202E-13
		F(5) =-1.201E+00,+3.845E-10	F (0)=+4.44/E+00,73.510
		F(7) =+4.442E+00, -3.370E+00	F (8) = +4.3835+00, -4.0505+00 5.22 3 3045400 5 5535.]3
		F(9)=+4.383E+00,+4.080E+00	F(JV)-1.3695700, FD.9325700
		F(11)+3.678E-01,+0.600E+00	F(12) +1.000 LT00, T0.000 F

THE VELOCITY IS W=3288.3990 BC DETERMINANY=+1.505E-19,-1.244E-09

,

RELATIVE DISPLACEMENT/POTENTIAL

	Ul= +0.000, +5.818 SUB 117= -2.450, +0.000 SUB	U4=+0.0005+00,-0.01/25+10 205 U1= +0.000, +2.773 SUB 73 133 40 200	U2* -23.433, ****** 200 U3* +1.000, +0.000 SUB 11-10 0005-10 ±6 7575+1] SUB	U1= +0.000. +3.205 SUB	U2= -3.856, +0.000 SUB	U3# TI.000 +00. TE.000 JUS U4#+0.000 E+001.228 E+11 SUB	U1= +0.000, +.013 SUB	02 = +.196, $+0.000$ SUB	03× +1.000, +0.000 SUB 114=40 4040+43,43,6478+48 SUB	Ul= +0.000, +2.843 LAYER	U2+ +0.000, +0.000 LAYER	U3= +1.000, +0.000 LAYER	U4=+7.302E+10,+8.400E+00 LAX	UL*303, T.333 WAIGN U2* +0.606. +0.600 LAYER	U3= +1.000, +0.000 LAYER	U4=-1.215E+10,-2.707E+10 LAY	Ul= +.365, +.539 LAYER	U2= +0.000, +0.000 LAYER	U3= +1.000, +0.000 LAIER 4=- _215E+10.+2.707E+10 LAY	Ul=365,539 LAYER	U2= +0.000, +0.000 LAYER	U3= +1.000, +0.000 LAYER)	Ul= +.365,539 LAYER	U2= +0.000, +0.000 LAYER	U3= +1.000, +0.000 LAYER	U4=-1.215E+10,-2.707E+10 LAY	U]= +0.000, -2.843 LAYEK 112= +0.000, +0.000 LAYER	U3= +1.000, +0.000 LAYER	U4=+7.302E+10,+8.000E+00 LAY	UI= +0.000, +0.000 LAYEK 1 000 -0 000 FAVER	U3= +0.000, +0.000 LAYER	U4=+0.000E+00,+0.000E+00 LAY	U1= +0.000, +0.000 LAYER +1 000 +0 000 LAYER	112 - 11.000, 70.000 LAYER	U4=+0.000E+00,+0.000E+00 LAY	F(2)=+3.192E-02,-7.248E-17	F(4)=+1.496E+01,-2.537E+14	F(6)=+4.4425+80,+13.1405+00 n(0)=+* *605+00 =3 7075+00	F(8)=+4.400E+00,0.E+00 P(10)_].478E+00.+2.678E-15	F (12)+1.000E+00,+0.000E+00
INANT=+6.519E-10,+2.319E-19	+8.0000,-1.2325	+0.0000,-1.0578		40 000010153			+0_6660,8401			+a aaga].3985				+ 2352,6517			2352,6517			+.2352. +.6517			- 2352. +.6517				+0,0000,+1.3985			+0.0000,7961			+0.0000, +.7961			WEIGHTING FACIONS F(1)=7.606E-04,-7.494E-16	F(3) *+2.132E-01,-1.444E-16	F(5)=-1.141E+00,+1.127E-15	F(7)=+4.442E+00,-3.746E+00 P(0)-11 (for)00 +2 7075+00	F(11) +3.677E-01, +0.000E+00
ERMJ	ч	2		٣	2		4			ď	r			9			~			α	5		σ	n			10			H			12							
BC DET	ROOT	ROOT		4±000	- 100V		ROOT			4400a	11008			ROOT			ROOT			#1004	4 T 000		000 t	1 TOON			ROOT#			ROOT			₽100¶							

THE VELOCITY IS W=3286.8760 BC DETERMINANT=46.519E-10,+2.319E

47

when the top and interface layers are shorted. Figure 27- Layered velocity solution for AlN/ST-Quartz a wavelength. Layer thickness is 10% of

۰.,

4.1.5 Analysis of TiO₂/ST-Quartz

Layers of rutile (TiO₂) on ST-cut Quartz substrates were analyzed. Elastic and dielectric constant data for rutile were used (Appendix I). Surface wave velocity vs normalized layer thickness is shown in Figure 28a. Because rutile is a faster material the velocity increases with layer thickness until reaching the slow shear velocity of the substrate. Surface wave coupling is plotted in Figure 28b for two transducer configurations. The coupling becomes zero for layers greater than 10% of a wavelength.

Selected numerical solutions for rutile layers are shown in Figures 29-31. The displacements/potential show penetration increasing with layer thickness. The increased penetration with increasing layer thickness is due to the nearness of the bulk shear wave in the substrate.

Numerically TiO $_2$ /ST-Quartz is governed by equations 9 and 10 of section 3.2 which contain 10 sub-solutions. Displacement and potential vectors associated with each sub-solution are shown to-gether with the 10 complex weighting factors for the complete summation solution per equation 5 of Section 3.1.

Figure 28- Velocity dispersion (a) and wave coupling (b) as a function of layer thickness for Rutile (TiO₂) on ST-Quartz.

Layered velocity solution for TiO_2/ST -Quartz when the top and interface surface are unshorted. a wavelength Layer thickness is 20% of 29-Figure

ŗ

		41-47.40.47.47.41.000.41-41.NUNT				
ROOT	н	+0.0000,-1.2322	u1= 112=	+0.000, -2.449.	+5.816 +0.000	SUB SUB
			03=	+1.000,	+0.000	SUB
			U4=+0	. 900E+900	-6.079E+	IQ SUB
ROOT	2	+0.0010,-1.0576	5	+0.000,	+2.748	SUB
				929.92-	9999 9+	
			03=	, 999. L+	+8-888	305 11 500
			04=+0	. 0045400,	+0.4406+	ane TT.
ROOT#	M	+0.0010,-1.0152	* 10	+0.000.0+	+3.200	SUB
	•		U2=	-3.866,	+0.000	SUB
			03=	+1.000,	+0.000	SUB
			04=+0	.000E+000,	-1.222E+	II SUB
#100a	4	+0.00000377	01 =	+0.000,	+.012	SUB
	•		U2=	+.196,	+0.000+	SUB
			03=	+1.000,	+0.000	SUB
			04=+0	. 0013000 .	+2.858E+	08 SUB
+ m00a .	v	+ 2762. = 6819	=10	652,	+.856	LAYER
-	'n		U2≡	+0.000.0+	+0.030	LAYER
			n3=	+1.000.1+	+0.900+	LAYER
	ų	- 27K2 - 6819	Ē	+ 652	+.856	LAYER
	0		12=	+0.000.0+	+0.000.0+	LAYER
			13=	+1.600.	+0.000	LAYER
+4000	٢	+ 2762 + 6819	0]=	652.	856	LAYER
#100H	•		U2=	+0.000.0+	+0.690	LAYER
			113=	+1.000.1+	+0.000	LAYER
+100a	α	- 2762 + 6819	n E	+.652.	- 856	LAYER
	0			+0.000.0+	+0.600	LAYER
			≡Ç.υ	+1.000.	+0.060	LAYER
\$00T	σ	+0,0010,-1,0128	n1=	+0.000.	+0.000.0+	LAYER
	•		U2=	+1.000.1+	+0.000	LAYER
			U3=	+0.000,	+0.000+	LAYER
400a	9	+0.0000.+1.0728	-10	+0.000,	+0.629	LAYER
	1		U2≖	+1.000.1+	+0	LAYER
			U3=	+0.000.0+	+0.064	LAYER
		WEIGHTING FACTORS				
		F(l)=+9.645E-01,-3.331E-15	í.	[2]=+4.41	IE-02,+3	. 0858-16
		F(3)=-1.675E-01,+4.509E-15	(rr (r	(4)=+1.95	7E+01,-6 9E+005	.924E-16 .889E+00
		101900001 AAL90000 844 (C) J	4			
		F(7)=+5.214E+30,-1.035E+01	(LL (L	(8)=+5.21 (10)+1.60	4 E+00,+1 GE+00,+0	.0005+00
		F(9)=+6./43E-92,+0. vvvEtvv	4			

THE VELOCITY IS W=1288.2486 BC DETERMINANT=-1.308E-17.-9.609E-10

•

Figure 30- Layered velocity solution for TiO_2/ST-Quartz when the top surface is shorted and the interface g Layer thickness is 20% of is unshorted. wavelength.

ŧ

1

U1× +0.000, +5.816 SUB U2× -2.449, +0.000 SUB U3× +1.000, +0.000 SUB	U4#+0.000E+00,-6.079E+10 SUB U1# +0.000, +2.748 SUB U2# -24.015, +0.000 SUB U2# +1.000, +0.000 SUB	U4=+0.000E+00,+6.993E+11 SUB U1= +0.000, +3.206 SUB U2= -3.866, +9.000 SUB U3= +1.000, +0.000 SUB	U4=+0.000E+00,-1.222E+11 SUB U1= +0.000, +.012 SUB U2≈ +196, +0.000 SUB U2≈ +1.000 +0.000 SUB	U4=+0.000E+00,+2.860E+08 SUB U1=652, +.856 LAYER U2= +0.000, +0.000 LAYER	U3= +1.000, +0.000 LAYER U1= +.652, +.856 LAYER U2= +0.000, +0.000 LAYER	U3* +1.000, +0.000 LAYER U1*652,856 LAYER U2= +0.000, +0.000 LAYER	U3" +1.000, +0.000 LAYER U1" +.652,856 LAYER U2= +0.000, +0.000 LAYER	U3= +1.000, +0.000 LAYER U1= +0.000, +0.000 LAYER U2= +1.000, +0.000 LAYER	U3= +0.000, +0.000 LAYER U1= +0.000, +0.000 LAYER U2= +1.000, +0.000 LAYER U3= +0.000, +0.000 LAYER	F(2)=+4.465E-02,+1.028E-16 F(4)=+1.956E+01,-3.047E-14 F(6)=+4.989E+00,-5.889E+00 F(8)=+5.213E+00,+1.035E+01 F(10)+1.000E+00,+0.000E+00
+0.0004,-1.2322	+0.0000,-1.0576	+0.0006,-1.0152	+0.0000,0377	+.2762,6819	2762,6819	+.2762, +.6819	2762, +.6819	+0.0000,-1.0728	+0.0000,+1.0728	WEIGHTING FACTORS F(l)=+9.666E-01,-1.776E-15 F(3)1.722E-01,+1.127E-15 F(5)=+4.989E+00,+5.882E+00 F(5)=+4.989E+00,-1.035E+01 F(7)=+5.745E-02,+0.000E+00 F(9)=+6.745E-02,+0.000E+00
Ч	7	m	4	S	y	2	8	σ	10	
ROOT	ROOT	ROOT	ROOT	ROOT#	ROOT	ROOT	ROOT	ROOT	ROOT	

THE VELOCITY IS W#3288.2384 BC DETERMINANT=+4.752E-19,-4.526E-12

.

BC DE	TERM	INANT=-5.389E-12,-2.366E-18				
ROOT	Ч	+0.0000,-1.2322	-10	+8.608,	+5.816	SUB
		•	U2=	-2.449,	+0.000	SUB
			03=	~1.860,	+0.000	SUB
			04=+0	.000E+00.	-6.079E+	10 SUB
ROOT	2	+0.0300,-1.0576	-tn	+0.000,0+	+2.749	SUB
			U2=	-24.010,	+0.000	SUB
			U3=	+1.000,	+0.900	SUB
			04=+0	.000E+00.	+6.991E+	11 SUB
ROOT	m	+0.0000,-1.0152	-10	+0.000.0+	+3.206	SUB
			U2=	-3.866,	+0.000	SUB
			U3=	+1.000,	+0.00.0+	SUB
			U4=+0	.0043000.	-1.223E+	11 SUB
ROOT	4	+0.6000,6377	~TN	+0.000.0+	+.012	SUB
		•	U2=	+.196,	+0.000+	SUB
			U3=	+1.600.1+	+0.000.0+	SUB
			04=+0	.00+3000.	+2.861E+	08 SUB
ROOT	S	+.27626819	u1≖	652,	+.856	LAYER
		•	U2=	+0.000.0+	+0.000	LAYER
			03=	+1.000,	+0.00.04	LAYER
ROOT	9	2762,6819	•10 •	+.652,	+.856	LAYER
			U2=	+0.000.0+	+0.000	LAYER
			U3=	+1.000,	+0.000	LAYER
ROOT	7	+.2762, +.6819	u1≖	652,	-,856	LAYER
	•		U2=	+0.000,0+	+0.00.0+	LAYER
			U3=	+1.000,	+0.600	LAYER
ROOT	œ	2762. +.6819	±10	+.652,	856	LAYER
	•		U2=	+0.000.0+	0000-0+	LAYER
			U3 ≊	+1.000,	+0.000	LAYER
ROOT	6	+0.0000,-1.0728	n]=	+0.000,	+0-000	LAYER
			02=	+1.000,	+0.000+	LAYER
			U3=	+0.000,	+0.000	LAYER
ROOT	10	+0.0000.+1.0728	u]ะ	+0.000.0+	+0.000	LAYER
	1		U2≓	+1.000.	+0.000	LAYER
			101	+0.000.	+0.000	LAYER
		WEIGHTING FACTORS				
		F(l) =+9.690E-01,+4.441E-16	íL,	(2)=+4.52	4E-02,+4	.115E-16
		F(3)=-1.773E-01,+2.254E-15	£44	(4)=+1.95	6E+Ø1,-1	.616E-14
		F(5)=+4.988E+00,+5.888E+00	£4	(6)=+4.98	8E+00,-5	.888E+00
		F(7)=+5.213E+00,-1.035E+01	5L.	(8)=+5.21	3E+00,+1	.035E+01
		F(9)=+6.745E-02,+0.000E+00	54 1	(10)+1.60	0E+00'+0	.000E+80

THE VELOCITY IS W=3288.2271

4.1.6 Analysis of Al₂O₃/ST-Quartz

Layers of sapphire (Al_2O_3) on ST-cut Quartz substrates were analyzed. Elastic and dielectric constant data for c-axis oriented sapphire were used (Appendix I). Surface wave velocity vs normalized layer thickness is shown in Figure 32a. Because sapphire is a fast material the velocity increases with layer thickness until reaching the slow shear velocity of the substrate. Surface wave coupling is plotted in Figure 32b for two transducer configurations. The coupling becomes zero for layers greater than 10% of a wavelength.

Selected numerical solutions for sapphire layers are shown in Figures 33-35. The displacements and potential show penetration increasing with layer thickness. The increased penetration with increasing layer thickness is due to the proximity of the bulk shear wave in the substrate.

Numerically Al_2O_3/ST -Quartz is governed by equations 9 and 10 of section 3.2 which contain 10 sub-solutions. Displacement and potential vectors associated with each sub-solution are shown together with the 10 complex weighting factors for the complete summation solution per equation 5 cf section 3.1.

Figure 32- Velocity dispersion (a) and wave coupling (b) as a function of layer thickness for Sapphire $(A1_20_3)$ on ST-Quartz.

BC DET	EKMJ	NAN'T=+U. 600 E+00 , +2. 1/3 E-10				
ROOT	ч	+8.6000,-1.2330	01= U2=	+8.800, -2.451,	+5.820 +0.000	SUB SUB
			03=	+1.600	999.9+	SUB
			U4=+0	.0005+00,	-6.862E+	LIG SUB
ROOT	2	+0.0000,-1.0580	01= 10=	+0.000 CC	598°7+	SUB
				+1.688.	+0-000	SUB
			0+=+0	.00E+000.	+6.465E+	II SUB
#004	"	+0.86891.0154	01=	+0.000,	+3.204	SUB
	'n		U2=	-3.842,	+0.000	SUB
			03=	+1.000,	+0-000	SUB
			04=+0	.00+3000.	-1.234E+	II SUB
ROOT	4	+0.0000,0432	* I0	+0.000.0+	+.014	SUB
	•		U2≖	+.196,	+0-000	SUB
			U3 =	+1.000.	+0.000	SUB
			04=50	.000E+00.	+3.282E+	-08 SUB
100a	ď	+0_00001_3414	#10	+0.000.0+	+2.210	LAYER
11000	\$		U2≖	-1.155.	+0.000+	LAYER
			113=	+1.000.	+0.000 +	LAYER
4400a	ų	+0.00001.0264	=10	+0.000.0+	+1.339	LAYER
	>		U2=	-2.813,	+0.000.0+	LAYER
			03=	+1.000,	+0-000	LAYER
ROOT &	٢	+8.88685233	u]=	+0.666,	+.304	LAYER
	•		U2=	+.372.	+0.090	LAYER.
			03=	+1.000,	+0.000	LAYER
ROOT\$	æ	+0.0000. +.5233	01=	+0.000.0+	304	LAYER
)		02=	+.372,	+0.000	LAYER
			U3⊭	+1.000,	+6.666	LAYER
ROOT #	6	+0.0000.+1.0264	ul≍	+0.000.0+	-1.339	LAYER
	•		U2#	-2.813,	+0.090	LAYER
			U3=	+1.000,	+0.000+	LAYER
ROOT#	10	+0.0000,+1.3414	u1=	+0.000.0+	-2.210	LAYER
	1		U2=	-1.155,	+0.000+	LAYER
			n3≖	+1.600,1+	+0.660	LAYER
		WEIGHTING FACTORS				
		£(1)=-4.415E-02,+0.000E+00	24	(3)=-4.96	38E-03,+0	. 000 E+00
		F(3) =3.733E-02,+0.000E+00	ŝ	(4)=-3.60	38E+00 +0	000E+00
		F(5)=+7.004E-01,+0.000E+00	(E.	((6)=-5.1)	115-01,+0	1.000E+00
		F(7)=-2.021E+60,+0.000E+60	<u>(</u>	(R)=-Z-Z	37E+88,+8	0012000
		F(9)=-6.279E-01,+0.000E+03	<u>с</u> ц	10.1+(01)	10E+00,+6	

THE VELOCITY IS W=3285.0520 BC DETERMINANT=+0.000E+00,+2.173E-10

.

.

Layered velocity solution for $Al_20_3/ST\mathchartz$ when the top and interface surface are unshorted. Layer thickness is 10% of a wavelength. 33**-**Figure

THE VELOCITY IS W"3284.9010 BC DETERMINANT*+0.000E+00,-4.084E-09

.

U1- +0.000, +5.820 SUB U2= -2.451, +0.000 SUB U3= +1.000, +0.000 SUB	U4=+0.000E+00,-6.061E+10 SUB U1= +0.000, +2.806 SUB U2= -22.622, +0.000 SUB U1= +1.000, +0.000 SUB	U4#+0.000E+00,+6.441E+11 SUB U1= +0.000, +3.204 SUB U2= -3.841, +0.000 SUB U2= -3.841, +0.000 SUB	U4=+0.08U5+00,-1.23E+11 SUB U1= +0.000, +.014 SUB U1= +196, +0.000 U1= +196, +0.000 SUB	U4=+0.8905+00,+3.3012+08 SUB U1= +0.000, +2.210 LAYER U2= -1,155, +0.000 LAYER	U3= +1.630, +0.000 LAYER U1= +0.000, +1.339 LAYER U2= -2.813, +0.000 LAYER	U3= +1.000, +0.000 LAYER U1= +0.000, +.304 LAYER U2= +377, +0.000 LAYER	U3= +1.000, +0.000 LAYER U1= +0.000,304 LAYER U2= +.372, +0.000 LAYER	U3= +1.000, +0.000 LAYER U1= +0.000, -1.339 LAYER U2= -2.813, +0.000 LAYER	U3= +1.000, +0.000 LAYER U3= +0.000, -2.210 LAYER U2= -1.155, +0.000 LAYER U3= +1.000, +0.000 LAYER	F(2)=-6.137E-03,+0.000E+00 F(2)=-5.152E+00,+0.000E+00 F(4)=-5.112E-01,+0.000E+00 F(6)=-5.225E+00,+0.000E+00 F(10)+1.000E+00,+0.000E+00 F(10)+1.000E+00,+0.000E+00
+8.6460,-1.2330	+0.0100,-1.0580	+6.0000,-1.0154	+0.0100,0435	+0.0100,-1.3414	+0.0000,-1.0264	+0.0000,5233	+0.0000, +.5233	+0.0000,+1.0264	+8.8368,+1.3414	WEIGHTING FACTORS F(1)=-4.882E-02,+0.000E+00 F(3)=-2.766E-02,+0.000E+00 F(5)=+7.005E-01,+0.000E+00 F(7)=-2.022E+00,+0.000E+00 F(9)=-6.278E-01,+0.000E+00
ч	3	m	4	S	Ŷ	۲	œ	6	10	
ROOT	400T	ROOT	ROOT	ROOT	ROOT	ROOT	ROOT	ROOT	ROOT	

VELLOCITY=3284.901 M/SEC LRYER= .100 Lambda ***U1***

U2 ***U3***

. U3

8

~

o.

ĥ

ហ

RELATIVE DISPLACEMENT/POTENTIAL

4 n

[(100)

ST-CUT QUARTZ [SAPPHIRE

1.1

{

-2.8

-1.6

-1.2

...

1

+0.8+

8.8

U1

-

U2

'n

POT

NORMALIZED DISTANCE FROM SURFACE (H/Lambda)

*

BC DE	rerm	INANT=+2.381E-10,+0.000E+00				
ROOT	ы	+8.6000,-1.2330	u1= U2=	+0.000, -2.452,	+5.821 +0.000	SUB SUB
			U3= U4=+0	+1.000, .000E+00,	+0.000 -6.061E+	SUB 10 SUB
ROOT	3	+0.(1000,-1.0580	-10	+0.600.0+	+2.807	SUB
			02 *	-22.609, +1.800.	999-9+ +0-999	SUB SUB
			U4=+0	.00+3000.	+6.424E+	11 SUB
ROOT	m	+0.0000,-1.0154	=1N	+0.000.0+	+3.204	SUB
		•	02=	-3.840,	+6.996	SUB
			n3=	+1.000,	+6.690	SUB
			04=+0	.0943999.	-1.235E+	II SUB
ROOT	4	+8.4000,6437	≂tu	+0.000,	+.014	SUB
			U2=	+.196,	+0.00.0+	SUB
			03≖	+1.000,	+0.000	SUB
			U4=+0	.000E+000,	+3.314E+	08 SUB
ROOT	ŝ	+0.0000,-1.3414	=10	+0.000.0+	+2.210	LAYER
			U2=	-1.155,	+0-606	LAYER
			n3≖	+1.600,	+0.000+	LAYER
ROOT	Q	+0.(1000,-1.0264	ul.	+0.000.0+	+1.339	LAYER
			U2=	-2.813,	+0.000	LAYER
			U3=	+1.000,	+0.000	LAYER
ROOT #	2	+0.(1000,5233	u]=	+0.000,	+.304	LAYER
			U2≖	+.372,	+0.000+	LAYER
			n3≖	+1.000,	+0.000	LAYER
ROOT	ω	+0.(1000, +.5233	≂tn	+0.00.0+	304	LAYER
			U2=	+.372,	+0.000	LAYER
			03 =	+1.000,	+0-000+	LAYER
ROOT	6	+0.0000,+1.0264	≂In	+0.000.0+	-1.339	LAYER
			U2≡	-2.813,	+0.000	LAYER
			U3≖	+1.000,	+0.000.0+	LAYER
ROOT	10	+0.6000,+1.3414	a10	+0.000.0+	-2.210	LAYER
			U2=	-1.155,	+0.000	LAYER
			U3#	+1.000,	+0*000	LAYER
		WEIGHTING FACTORS	1			00.0000
		F(1)=-5.228E-02,+0.000E+00	£1.	(2) =-7.88	7E-03,+0	. 606 5+66
		F(3)=-2.049E-02,+0.000E+00	ίu	(4)=-3.61	6E+00,+0	. 000E+00
		F(5)=+7.886E-91,+8.809E+89	(L.	(6) = -5.11	ZE-UI, +0	. 888E+88
		F(7)=-2.622E+60,+0.600E+60	54 S	(8) = -2.23	55+00°+9	. 6965+566
		F(9)=-(.278E-01,+0.000E+00	54	00.1+(01)	0E+00,+0	• 6665+66

THE VELOCITY IS W=3284.7881

Layered velocity solution for Al $_20\,_3/$ ST-Quartz when the top and interface surface are shorted. Layer thickness is 10% of a wavelength. Figure 35-

1. 1

4.2 Interfacial Wave Analyses

In this section highlights of a study of Stoneley waves in anisotropic crystals are presented. For illustration, data on copper and quartz crystals is presented. Copper was selected to establish a basis with previous publications. Quartz is of particular interest because it is synonymous with frequency control and stability.

The approach taken in this interfacial wave study is shown in Figure 36 where a view along the X_3 direction (normal to the $X_1 X_2$ plane) is shown. This plane is called the interface plane.

Figure 36- Coordinate system relative to the interface plane plane for Stoneley wave analysis. Crystal material parameters are rotated with respect to the k_x direction along which the interface wave propagates.

In order to obtain interface waves in a single material two different orientations of the same crystal must be used. As shown in Figure 36 each orientation (top and bottom material) is obtained by rotating the crystal material parameters with respect to the wave propagation vector. Typically the top material is rotated by a negative angle and the bottom material by a positive angle. The objective of our study was to determine their properties and how best to search for interface waves.

4.2.1 Analysis of Copper

The interface wave velocity as a function of material rotation is shown in Figure 37. Unrotated material constants for copper (Appendix I) were used. The top and bottom material constants were obtained by rotating negative and positive amounts respectively.

Figure 37- Stoneley wave velocity vs material rotation angle in single crystal copper (001 plane).

Two points are of interest: (1) the larger angles result in large bulk like shears at the interface and (2) angles less than cutoff do not possess Stoneley wave solutions.

A Stoneley wave search technique was developed based upon the prediction of cut-off using techniques of Barnett and Lothe (Appendix II). This search method does not require complete solution of the wave boundary equations and greatly simplified the Stoneley wave searches.

Stonely wave solutions for two different angles are shown in Figure 38. AT \pm 10° the displacements are not strongly bound to the interface however, at \pm 20° the wave is well bound and decays within 3-5 wavelengths of the interface.

Stoneley wave solutions were found to be strongly influenced by the material anisotropy as defined by

$$2 C_{44} / (C_{11} - C_{12})$$

Normal copper possesses an anisotropy of 3.2 however, artificially changing C_{44} to obtain an anisotropy of 1.52 and the effects this has on Stoneley wave solutions is shown in Figure 39. Lower anisotropy lowers the cut-off angle and causes the wave to be more closely bound to the interface.

4.2.2 Analysis of Quartz

Using the above search techniques (Appendix II) a study was performed on single crystal Quartz. Although these waves were not found to exist on all cuts of quartz they have for the first time been found in quartz. The data indicates piezoelectrically active and well bound waves are possible. This result suggests a potentially useful resonator structure with electrodes encapsulated at the material interface.

A complete listing of all numerical search data within this report is not possible due to length restrictions hence only one Stoneley wave solution for quartz will be presented. Shown in Figures 40 and 41 are the velocity solutions for X-cut, Z propagating Stoneley waves with a rotation angle of $\pm 20^{\circ}$. The effects of shorting the electric field at the interface are shown in the detailed plots of Figure 42.

Figure 38- Stoneley wave solution on Copper for a rotation angle of (a) $\pm 10^{\circ}$ and (b) $\pm 20^{\circ}$.

•

!,

Figure 39- Stoneley wave solution for (a) modified Copper (anisotropy=1.52) and (b) normal Copper with (anisotropy=3.2) rotation angle of $\pm 10^{\circ}$.

Stoneley wave velocity solution for XZ-Quartz interface is unshorted when the Figure 40-

THE VELOCITY IS W=3988.5199 BC DETERMINANT=-8.247E-13,-2.637E-17

THE VELOCITY IS W=3988.7167 BC DETERMINANT=-9.087E-18,+4.812E-12

f, 4

Figure 41- Stoneley wave velocity solution for XZ-Quartz when the interface is shorted.

Figure 42- Expanded plot of the displacements and potential of Stoneley waves on XZ-Quartz when the interface is (a) unshorted and (b) shorted.
4.3 Stoneley Interface-Wave Accelerometer

A Stoneley wave is a type of elastic wave that is propagated along the interface of two elastic solids. Because its energy remains at or near the interface, it can be generated, reflected and detected at the interface. Since Stoneley wave, derived from surface acoustic wave (SAW) technology, is also a planar technology, and hence can be fabricated by photolithographic techniques. That is why Stoneley wave devices can be fabricated at costs comparable to those for integrated circuits.

The interface Stoneley wave resonator consists of a pair of reflective gratings on a surface, defining a resonant cavity for interface acoustic waves. These waves can be generated and detected by an interdigital transducer, which is piezoelectrically coupled to the interface strain variations of the acoustic waves. This resonant cavity, shown in Fig.43, is coupled to a feedback amplifier to maintain the energy in the cavity.

The bit quantization for an interface-wave accelerometer is in the same range as those of high precision accelerometers. For an interface wave accelerometer with 320 MHz frequency and proof mass loading to produce 200 ppm strain at 20g input acceleration, the bit quantization will be:

The short-term stability of the interface wave resonator (as suming for the worst case is similar to surface acoustic wave) is in the order of 0.1 parts per billion.

For the above example, this gives a comparable short-term stability of:

and gives a dynamic range of

۱.

$$20 \qquad 6 \\ -6 \qquad -6 \\ 10 \times 10$$

The accelerometer overall design has a direct bearing on the complexity of the inertial guidance system. The digital nature of the interface wave accelerometer output results in an extremely simple system architecture. Shown in Fig.44 is a baseline guidance system block diagram which shows how the interface wave accelerometer signals are processed to generate not only acceleration but also velocity and displacement signals (words) for the guidance system.

Figure 44- Proposed Baseline Interface Wave Accelerometer in Inertial Guidance System

The mixer output is a frequency proportional to acceleration and the acceleration counter generates a binary count with each clock reset from the microprocessor. The output of the acceleration counter is summed (integrated) in another counter which then generates a binary word representing velocity. Displacement is computed by summing the velocity counter output and transmitting the displacement word to the microprocessor. The microprocessor provides the appropriate scaling and generates the needed guidance and control signals.

The digital system proposed is capable of providing acceleration signals with more than 12 bits accuracy due to the large dynamic range of such proposed accelerometer. The system is unique in that 12 bit accuracy is provided without using analogto-digital converters. This, in turn, will enable the design of a system with minimum power requirements. Starting with this baseline system, the detailed design will be the subject for the proposed study.

4.4 Comparison With Experimental Results

The theoretical results of Section 4.1 were compared with experimentally published results. The experimental method consisted of monitoring the frequency (proportional to velocity), resonant resistance, and quality factor (Q) of SAW resonators while a crystalline film was deposited (sputtered) under vacuum. The following films were evaluated by this method: MgO, SiO_x, Y_2O_3 , and AlN. The experimental results are shown in Figures 45 and 46.

Because the experimental results are based upon time of deposition and not absolute film thickness it was difficult to compare directly theory and experiment. Nevertheless it can be assumed that thickness is proportional to time for discussion purposes. Comparing the theoretical results (MgO) of Figure 9 with Figure 45, several points are noted:(1) the velocity or frequency increases with film thickness and (2) after an initial drop in Q the loss is relatively constant with only a small increase with thickness. The increase in frequency with thickness is predicted because we believe the film grown was considerably less than 10% of a wavelength.

Experimental results for Sio_x films are compared to theoretical predictions using Figure 18. The important points are: (1) experimental frequency drops with film thickness in contrast to theory which predicts an increase with film thickness and (2) experimental results indicate a sharp increase in loss at an intermediate thickness. The later is compatible with what is predict-

Figure 45- Experimentally measured frequency, resistance, and Q for SAW resonators on ST-Quartz with sputtered films of (a)MgO and (b) SiO_x.

--

.

Figure 46- Experimentally measured frequency, resistance, and Q for SAW resonators on ST-Quartz with sputtered films of (a) Y_2O_3 and (b) AIN. . .

ed for film thickness in the range than 5-10% of a wavelength. The discrepency between the frequency behavior is explained as follows: For film thickness less than 5% of a wavelength the frequency changes by a very small amount, however this is masked by a relatively large temperature increase during sputtering. Half way into the film deposition there is a decrease in the rate of frequency drop and at the same time the loss increases dramatically. We believe this is where the film thickness is approaching 5-10% of a wavelength resulting in increased wave penetration and a sharp drop in coupling.

Experimentally films of $Y_2 O_3$ were the most well behaved with a uniform drop in frequency during deposition, a relatively small increase in resistance, and a drop in Q. The decrease in frequency and the low loss was predicted because the surface wave does not couple into a bulk wave for $Y_2 O_3$ layers at any thickness.

Experimentaly films of AlN showed an increase in frequency and a uniform increase in loss during deposition. Near the end of the deposition the resistance increase was accelerated. Theoretically the increase in frequency was predicted. The large increase in resonator resistance and loss near the end of the depositon indicates the film was near 5-10% of a wavelength hence the piezoelectric coupling drops and coupling to a bulk wave occurs.

72

ころうち

5.0 CONCLUSIONS AND RECOMMENDATIONS

This study has established the theoretical foundations for using higher order Rayleigh and interfacial (Stoneley) waves for acoustic devices such as SAW resonators and sensors. Techniques for analyzing layered SAW devices as well as multi-layered interfacial waves were developed and applied to many anisotropic materials as part of this study.

Layered SAW device performance using materials such as MgO, SiO_x, AlN, Y_2O_3 , Al_2O_3 , and TiO₂ was theoretically analyzed and the results compared with experimental results. Shifts in frequency, loss to bulk mode coupling, and changes in piezoelectric coupling can now be predicted for any layer material. From this study it is concluded that passivation , for the first order Rayleigh mode cannot be achieved using layers of material. This is due to the fact that the particle displacements of the surface wave are at the surface of any deposited layer and hence a decrease in piezoelectric coupling because of the separation between the elastic displacements of the wave and the potential generating electrodes at the interface.

For future studies of layered SAW devices it is recommended that temperature effects and power flow calculations be added to the existing analysis techniques. These properties can be used to predict temperature compensated materials and determine orientations where power flow is co-linear with the wave vector.

An analysis of interfacial waves in multi-layered media was completed during this phase I study. A method of analyzing interfacial waves was developed which included search methods which greatly reduced the time needed to determine the existence of Stoneley waves. Using these methods, Stoneley waves were for the first time predicted in single crystal quartz. Stoneley waves which are well bound and piezoelectrically active were found to exist for several orientations of quartz. This is an important discovery since it may result in a new class of acoustic resonators and sensors with stability superior to existing SAW devices. Unlike layered SAW devices, Stoneley wave structures are well passivated and require no hermetic enclosure; thus they will have better stability and lower cost.

Based upon the results of this phase I study, recommendations for future work are:

- 1. To add temperature sensitivity and power flow analysis to the existing theoeretical techniques.
- To design, fabricate, and test interface wave resonators and to compare their characteristics with theoretical predictions.
- To design, fabricate, and test interface wave sensors as inertial navigation (acceleration) sensors.

6.Ø REFERENCES

- E.J. Staples and T.C. Lim, "300 MHz Oscillators Using SAW Resonators and Delay Lines," Proceedings of the 31st Annual Symposium on Frequency Control, U.S. Army Electronics Com. Ft. Monmouth, NJ, pp.371-373, 1977.
- 2. E.J. Staples, J. Wise, and A.P. Andrews, "Inertial Guidance and Underwater Sound Detection Using SAW Sensors," 36th Annual Control Symposium, U.S. Army Electronics NJ, June 1982.
- chematic Society Proceedings, V. 17,
- 4. W.M. Ewing, W.S. Jardetzky and F. Press, "Elastic Waves in Layered Media," McGraw-Hill, 1957.
- 5. T.C. Lim andl M.P. Musgrave, "Stoneley Waves in anisotropic Media," Nature, V. 225, 1970, p.372.
- R. Stoneley, "Elastic Waves at the Surface of Separation of Two solides," Proc. Royal Soc. (London), V. A245, 1924, p. 213.
- G.W. Farnell and E.L. Adler, "Elastic Wave Propagation in Thin Layers," in Physical Acoustics, V. IX, Edited by W.P. Mason and R.N. Thurston, Academic Press, 1972.
- K. Yamanouchi and S. Hayama, "SAW Properties of SiO₂/128° YX LiNbO₃ Structure Fabricated by the Magnetron Sputtering Technique," IEEE Transactions on Sonics and Ultrasonics, SU-31, No. 1, January 1984, p. 51-57.
- G.W. Farnell, "Symmetry Considerations for Elastic Layer Modes Propagating in Anisotropic Piezoelectric Crystals," IEEE Transactions on Sonics and Ultrasonics, SU-17, No. 4, October 1970, p.229-238.
- 10. J. Lothe and D.M. Barnett, "On the Existence of Surface Wave Solutions for Anisotropic Elastic Half-Spaces with Free Surface," Journal of Applied Physics, V. 47, No. 2, February 1976, p. 428-433.

7.0 APPENDICES

7.1 Appendix I

The following arrays of material constants were used to perform the studies contained in this report. The constants are arranged by title, elastic constants, piezoelectric constants, dielectric constants and density.

THE MATERIAL IS ST-CUT QUARTZ

+8.670E+10	+2.749E+10	-8.587E+09	-1.038E+09	+0.000E+00	+0.000E+00
+2.749E+10	+9.653E+10	-4.830E+09	-1.3398+10	+0.000E+00 +0.000E+00	+0.0006+00
-1.038E+09	-1.339E+10	+1.872E+0	+4,117E+10	+0.300E+00	+0.0006+00
+0.000E+00	+0.000E+00	+0.000E+00	+0.000E+00	+3.032E+10	-7.593E+Ø9
+0.000E+00	+Ø.000E+00	+0.000E+00	+0.000E+00	-7.593E+09	+6.743E+10
+1.7108-01	-3.832E-02	-1.327E-01	-8.205E-02	+0.000E+00	+0.000E+00
+0.000E+00	+0.000E+00	+0.000E+00	+0.000E+00	-6.653E-Ø2	-9.903E-02
+0.000E+00	+Ø.000E+00	+0.000E+00	+0.000E+00	-7.197E-02	-1.071E-01
+3.920E-11	+0.000E+00	+0.00UE+00			
+0.000E+00	+4.017E-11	-8.972E-13			
+0.000E+00	-8.972E-13	+4.003E-11			

DENSITY = 2650

THE MATERIAL IS FUSED QUARTZ

+7.850E' 0	+1.6.3E+1Ø	+1.610E+10	+0.000E+00	+0.000E+00	+0.000E+00
+1.610E+_0	+7.850E+10	+1.610E+10	+0.000E+00	+0.000E+00	+0.000E+00
+1.610E+10	+1.610E+10	+7.850E+10	+0.000E+90	+0.000E+00	+0.000E+00
+0.000E+00	+0.000E+00	+0.000E+00	+3.129E+10	+0.000E+00	+0.000E+00
+0.000E+00	+0.000E+00	+0.000E+00	+0.000E+00	+3.120E+10	+0.000E+00
+0.000E+00	+0.000E+00	+0.000E+00	+0.000E+00	+0.000E+00	+3.120E+10
+0.000E+00	+0.000E+00	+Ø.000E+00	+0.000E+00	+0.000E+00	+0.000E+00
+0.000E+00	+0.000E+00	+0.000E+00	+0.000E+00	+0.000E+00	+0.000E+00
+0.000E+00	+0.000E+00	+0.000E+00	+0.000E+00	+0.000E+00	+0.000E+00
+3.320E-11	+0.000E+00	+0.000E+00			
+0.000E+00	+3.320E-11	+0.000E+00			
+0.vJ9E+90	+0.000E+00	+3.320E-11			

~ ~~~~

DENSITY = 2200

.

THE MATERIAL IS YITTRIUM OXIDE

+2.270E+11 +1.380E+11	+1.380E+11 +2.270E+11	+1.380E+11 +1.380E+11	+0.000E+00 +0.000E+00	+0.000E+00 +0.000E+00	+0.000E+00 +0.000E+00
+1.380E+11 +0.000E+00 +0.000E+00	+1.380E+11 +0.000E+00 +0.000E+00	+2.270E+11 +0.000E+00	+0.000E+00 +6.860E+10	+0.000E+00 +0.000E+00	+0.000E+00 +0.000E+00
+0.000E+00	+0.000E+00	+0.000E+00	+0.000E+00	+0.000E+00	+6.860E+10
+0.000E+00 +0.000E+00 +0.000E+00	+0.000E+00 +0.000E+00 +0.000E+00	+0.000E+00 +0.000E+00 +0.000E+00	+0.000E+00 +0.000E+00 +0.000E+00	+0.000E+00 +0.000E+00 +0.000E+00	+0.000E+00 +0.000E+00 +0.000E+00
+1.151E-10 +0.000E+00 +0.000E+00	+0.000E+00 +1.151E-10 +0.000E+00	+0.000E+00 +0.000E+00 +1.151E-10			

DENSITY = 5010

.

THE MATERIAL IS UNROTATED COPPER

 +1.710E+11
 +1.239E+11
 +1.239E+11
 +1.239E+11
 +0.000E+00
 +0.000E+00</t

DENSITY = 8950

THE MATERIAL IS RUTILE (001)

+2.66ØE+11	+1.73ØE+11	+1.360E+11	+0.000E+00	+0.000E+00	+0.000E+00
+1.730E+11	+2.660E+11	+1.36ØE+11	+0.000E+00	+0.000E+00	+0.000E+00
+1,360E+11	+1.360E+11	+4.700E+11	+0.000E+00	+0.000E+00	+0.000E+00
+0.0003+00	+0.000C+00	+0.000E+00	+1.240E+11	+0.000E+00	+0.000E+00
+0.000E+00	+0.000E+00	+0.0001:+00	+0.000E+00	+1.240E+11	+0.000E+00
+0.000E+00	+0.000E+09	+0.000E+00	+0.000E+00	+0.000E+00	+1.890E+11
+0.000E+00	+Ø.000E+00	+0.000E+00	+0.000E+00	+0.000E+00	+0.000E+00
+0.000E+00	+0.000E+00	+0.000E+00	+0.000E+00	+0.000E+00	+0.000E+00
+0.000E+00	+0.000E+00	+0.000E+60	+0.000E+00	+0.000E+00	+0.000E+00
+7.610E-10	+0.000E+00	+0.000E+00			
10.000E+00	+7.6102-10	18.0000100			
+0.000E+00	+0.000E+00	+1.504E-09			

DENSITY = 4280

THE MATERIAL IS Z_CUT_X_PROP_MGO

+2.964E+11	+9.500E+10	+9.500E+10	+0.000E+00	+0.000E+00	+0.000E+00
+9.500E+10	+2.964E+11	+9.500E+10	+0.0000+00	10.000E+00	+0.000E+00
+9.500E+10	+9.500E+10	+2.964E+11	+0.000E+00	+0.000E+00	+0.000E+00
+0.000E+00	+0.000E+00	+0.000E+00	+1.560E+11	+0.000E+00	+0.000E+00
+0.000E+00	+0.000E+00	+0.000E+00	+0.000E+00	+1.560E+11	+0.000E+00
+0.000E+00	+0.000E+00	+0.000E+00	+0.000E+00	+0.000E+00	+1.560E+11
+0.000E+00	+0.000E+00	+0.000E+00	+0.000E+00	+0.000E+00	+0.000E+00
+0.000E+00	+0.000E+00	+0.000E+00	+0.000E+00	+0.000E+00	+0.000E+00
+0.000E+00	+0.000E+00	+0.000E+00	+0.000E+00	+0.000E+00	+0.000E+00
+8.544E-11	+0.000E+00	+0.000E+00			
+0.000E+00	+8.544E-11	+0.000E+00			
+0.000E+00	+0.000E+00	+8.544E-11			

DENSITY = 3583

.

A.

الأست بالمريد

1

Partition

1.5.4.4

the Water of

THE MATERIAL IS SAPPHIRE (001)

+4.970E+11	+1.640E+11	+1.110E+11	-2.350E+10	+0.000E+00	+0.000E+00
+1.640E+11	+4.970E+11	+1.110E+11	+2.350E+10	+0.000E+00	+0.000E+00
+1.110E+11	+1.110E+11	+4.980E+11	+0.000E+00	+0.000E+00	+0.000E+00
-2.350E+10	+2.350E+10	+0.000E+00	+1.470E+11	+0.000E+00	+0.000E+00
+0.000E+00	+0.000E+00	+0.000E+00	+0.000E+00	+1.470E+11	-2.350E+10
+0.000E+00 +0.000E+03	+0.000E+00 +0.000E+00	+0.000E+00 +0.000E+00	+0.000E+00	-2.350E+10	+0.000E+00
+0.000E+30	+0.000E+00	+0.000E+00	+0.000E+00	+0.000E+00	+0.000E+00
+0.000E+00	+0.000E+00	+0.000E+00	+0.000E+00	+0.000E+00	
+8.280E-11 +0.000E+00 +0.000E+00	+0.000E+00 +8.280E-11 +0.000E+00	+0.000E+00 +0.000E+00 +1.020E-10			

DENSITY = 3980

THE MATERIAL IS 2X AL NITRIDE

+3.450E+11	+1.2500+11	+1.200E+il	+0.000E+00	+0.000E+00	+0.0005+00
+1.25ØE+11	+3.450E+11	+1.200E+11	+0.0001:+00	+0.000E+00	+0.000E+00
+1.200E+11	+1.200E+11	+3.950E+11	+0.000E+00	+0.000E+00	+0.000E+00
+0.000E+00	+0.000E+00	+0.000E+00	+1.180E+11	+0.000E+00	+0.000E+00
+0.0002+00	+0.000E+00	+0.000E+00	+0.000E+00	+1.180E+11	+0.000E+00
+0.000E+00	+0.000E+00	+0.000E+00	+0.000E+00	+0.000E+00	+1.1000+11
+0.0002+00	+0.000E+00	+0.000E+00	+0.000E+00	-4.800E-01	+0.000E+00
10 000E+00	+0.0000+00	+0.0000+00	-4.800E-01	+0.000E+00	+0.000E+00
-5.800E-01	-5.800E-01	+1.550E+00	+0.000E+00	+0.000E+00	+0.000E+00
+9 000E-11	+0.000E+00	+0.000E+00			
+0.00000+00	+8.000E-11	+0.000E+00			
+0.000E+00	+0.000E+00	+9.500E-11			

DENSITY = 3260

7.2 Appendix II

مەرە يەلەر مەرە

ولاية والمعالية

The basis of a search technique for Stoneley waves is contained in the paper reprinted in this appendix. The importance of formulating the wave impedance is discussed in considerable detail by the authors. Using these techniques a search method for Stoneley waves in piezoelectric materials was developed.

On the existence of surface-wave solutions for anisotropic elastic half-spaces with free surface

J: Lothe

Institute of Physics, University of Oslo, Oslo, Norway

D. M. Barnett

Department of Materials Science and Engineering, Stanford University, Stanford, California 94305

A-proof is developed that for a given direction of propagation on the free surface of a half-infinite anisotropic crystal, a surface-wave solution with a certain phase velocity $v_R < v_L$, where v_L is the limiting velocity, will always exist, except in the special case when the bulk wave defining the limiting velocity satisfies the condition of a free surface. The proof is in terms of the surface impedance, which relates the amplitude at the surface of a surface wave with the external forces needed at the surface. The properties of the impedance as a function of phase velocity determines whether a surface wave not requiring external forces at the surface exists for a certain phase velocity. The proof is valid also in the case of degeneracies in the eigenvalue problem entering the analysis.

I. INTRODUCTION

Recently the present authors¹ provided a proof for the existence of surface-wave solutions for elastic halfspaces with a free boundary. However, the proof was in terms of the Lagrangian for moving dislocations, a quantity not well known among surface-wave researchers. Here an alternative proof in terms of the socalled surface-wave impedance is given. Usually a surface wave-with given phase velocity and given amplitude at the surface requires external forces at the surface. The surface impedance relates amplitude at the surface with external forces needed at the surface. However, when the impedance satisfies certain requirements, surface waves which do not require external forces at the surface may exist. In this paper we will analyze the impedance as a function of velocity to see whether for certain phase velocities the impedance satisfies the reguirements for surface waves in the case of free surfaces.

In Secs. II and III an integral form of the general theory for surface waves maintained by external forces is developed and, in particular, a convenient integral expression for the impedance is derived. As in our previous paper¹ the analysis presupposes no degeneracy in the eigenvalue problem appearing. In Sec. IV the complications that arise with degeneracy are considered and it is concluded that the integral expression for the impedance remains valid. In Sec. V the properties of the impedance are listed. Finally, in Sec. VI we turn to the special problem of surface-wave propagation on free surfaces. This is the real problem to which we are addressing ourselves in this paper. It will be shown how this problem can be discussed in terms of the properties of the impedance developed in Secs. III-V. The first sections of the paper are necessary prerequisites for the discussion in Sec. VI.

The exposition in what follows will be kept quite brief by appropriate reference to earlier work.

II. INTRODUCTORY THEORY

The surface has normal n⁰, see Fig. 1. We consider

harmonic waves traveling along the surface in the $\mathbf{m}^{\mathbf{0}}$ direction

$$\mathbf{u}(\mathbf{x}) = \mathbf{A}(\mathbf{n}^0 \mathbf{x}) \exp[ik(\mathbf{m}^0 \mathbf{x} - vt)], \qquad (2.1)$$

:***** •

where v is the phase velocity for propagation along the surface, x is the position vector with a point on the surface as origin, and n^0x is thus the depth below the surface. With respect to a fixed external Cartesian laboratory set of unit vectors, x has components x_1 , x_2 , and x_3 .

The amplitude A as a function of depth depends on the boundary conditions at the surface and the boundary conditions at infinite depth. For given k, m, n, and v, several independent waves of the type (2.1) will be possible. These are derived in Secs. III and IV.

Referring also the elastic coefficients to the external laboratory system, the elastic force per unit area parallel with the surface is

$$J_j = n_i^0 C_{ijkl} \frac{\partial u_k}{\partial x_l} \tag{2.2}$$

or, by Eq. (2.1)

$$J_{j} = ik(n_{i}^{0}C_{i\,jkl}m_{l}^{0})A_{k} + (n_{i}^{0}C_{i\,jkl}m_{l}^{0})\frac{\partial A_{k}}{\partial y}, \qquad (2.3)$$

where

$$y = n^0 \mathbf{x} \tag{2.4}$$

is a convenient notation for the depth below the surface.

FIG. 1. Coordinate systems for the description of surface waves in a half-infinite crystal, n^0 is the inner unit normal.

If an observer travels with a wave with the phase velocity v of the wave, he sees a stationary wave field, and the condition for dynamic equilibrium can be stated similarly to the condition for equilibrium in the static case as

$$C_{ijkl}^{\prime} \frac{\partial^2 u_k}{\partial x_j \partial x_l} = 0, \qquad (2.5)$$

where C_{ijkl} are the dynamic elastic coefficients

$$C_{ijkl}^{\prime} = C_{ijkl} - \rho v^2 m_i^0 m_l^0 \delta_{jk}. \qquad (2.6)$$

Introducing the vectors

$$\mathbf{L} = ik^{-1}\mathbf{J},\tag{2.7}$$

the equilibrium condition (2, 5) can be expressed in the form

$$\mathbf{N}^{0}\boldsymbol{\xi} = -i\boldsymbol{k}^{-1}\frac{\partial}{\partial y}\boldsymbol{\xi}, \qquad (2.8)$$

where ξ is the six-dimensional vector

$$\boldsymbol{\xi} = \begin{pmatrix} \mathbf{A} \\ \mathbf{L} \end{pmatrix} \tag{2.9}$$

and N^0 is the 6×6 matrix

$$\mathbf{N}^{0} = -\begin{pmatrix} (n^{0}n)^{-1} (n^{0}m^{0}) & (n^{0}n^{0})^{-1} \\ (m^{0}n^{0}) (n^{0}n^{0})^{-1} (n^{0}m^{0}) - (m^{0}m^{0}) & (m^{0}n^{0}) (n^{0}n^{0})^{-1} \end{pmatrix}.$$
(2.10)

The 3×3 matrices (*ab*) occurring in the block representation of \mathbb{N}^0 are defined by

$$(ab)_{jk} = a_i C_{jjkl}^t b_l. (2.11)$$

The symmetry of C'_{ijkl} is such that

$$(ab) = (ba)^T$$

where T means transposition.

The above is essentially the formalism of Stroh² and Ingebrigtsen and Tonning.³

In terms of the above notation, the relation between L and A can be written

$$\mathbf{L} = - (n^0 m^0) \mathbf{A} + i k^{-1} (n^0 n^0) \frac{\partial}{\partial y} \mathbf{A} . \qquad (2.12)$$

Now formally construct the operator N by the prescription (2.10) in terms of a unit vector system (m, n)rotated by ϕ relative to the system (m^0, n^0) . However, note that m^0 in the definition (2.6) of C'_{ijkl} is kept fixed as parallel with the surface and the direction of wave propagation. The resulting N is a function of ϕ , $N(\phi)$, and as shown by Barnett and Lothe⁴

$$\frac{\partial}{\partial \phi} \mathbf{N} = - (\mathbf{I} + \mathbf{N}^2). \tag{2.13}$$

The operator $N(\phi)$ exists for all ϕ up to the limiting velocity v_L . The limiting velocity is the lowest velocity for which there exists an orientation for the unit vector m, m_L such that

$$\|(m_L m_L)\| = 0, (2.14)$$

allowing a bulk wave of amplitude A_L satisfying

$$(m_L m_L) \mathbf{A}_L = 0 \tag{2.15}$$

and traveling in the m_L direction. In the static case,

i.e., -1th v = 0 in Eq. (2.6), (*mm*) is positive definite by elastic stability,

$$\|(mm)\| \ge 0, \quad \forall v = 0.$$
 (2.16)
Thus

(2.17)

 $\|mm\| > 0, \quad v < v_L, \text{ all } \phi$

and likewise

||(nn)|| > 0, all ϕ when $v < v_L$

so that $(nn)^{-1}$ and also $N(\phi)$ exist for all ϕ when $v < v_L$.

The preceding is general. Now we will discuss separately the case of no degeneracy and degeneracy and show that the same integral expression for the surfacewave impedance applies in either case.

III. NO DEGENERACY

Assume that $A(n^0x) = A(y)$ in Eq. (2.1) is of the form

$$\mathbf{A}(y) = \mathbf{A}_{\alpha} \exp(ikp_{\alpha}^{0}y). \tag{3.1}$$

Then Eq. (2, 8) leads to the eigenvalue problem

$$N^{0}\xi_{\alpha} = p^{0}_{\alpha}\xi_{\alpha}, \qquad (3.2)$$

which shows that the p^0_{α} must be the roots of

$$||N^{0} - p_{\alpha}^{0}I|| = 0.$$
(3.3)

This is a sixth-order equation with real coefficients, so there will be six roots occurring in pairs of complex conjugates. Real roots cannot occur for $v < v_L$. At $v = v_L$, one pair of roots coalesces into one real root.

When all p_{α} are *different* (no degeneracy), it can be asserted by general theorems (Nering⁵ and Pease⁶) that

the six
$$\xi_{\alpha}$$
 form a complete set, (3.4)

or said in a more detailed fashion, the six ξ_{α} are linearly independent and any vector ξ in the six-dimensional vector space can be represented by a linear combination of the six ξ_{α} . This explains the meaning of the word "complete" in theorem (3.4).

Thus in the case of all p_{α} different, the general solution of Eq. (2.8) can indeed be constructed by a superposition of partial solutions of the type (3.1).

Now consider the eigenvalue problem

$$N(\phi)\xi_{\alpha} = \rho_{\alpha}(\phi)\xi_{\alpha}. \tag{3.5}$$

From Eq. (2.13) it follows that the eigenvectors for Eq. (3.5) are the same as the ξ_{α} of Eq. (3.2). The eigenvectors ξ_{α} are *invariant* to rotation.

The eigenvalues must vary with ϕ as

$$\frac{\partial p_{\alpha}}{\partial \phi} = -(1+p_{\alpha}^2) \tag{3.6}$$

according to Eq. (2.13). From Eq. (3.6) it follows that

$$\overline{p_{\alpha}} = \frac{1}{2\pi} \int_{0}^{2\pi} \dot{p}_{\alpha} d\phi = \pm i, \qquad (3.7)$$

+ or - according to whether we consider roots with a positive or negative imaginary part.

Introducing

$$\widetilde{\mathbf{N}} = \frac{1}{2\pi} \int_0^{2\pi} \mathbf{N} \, d\phi = \begin{pmatrix} \mathbf{S} & \mathbf{Q} \\ \mathbf{B} & \mathbf{S}^T \end{pmatrix}, \qquad (3.8)$$

where

$$\mathbf{S} = -\frac{1}{2\pi} \int_{0}^{2\pi} \langle m \rangle^{-1} \langle nm \rangle d\phi, \qquad (3.9)$$

$$\mathbf{Q} = -\frac{1}{2\pi} \int_0^{2\pi} (m)^{-1} d\phi, \qquad (3.10)$$

$$\mathbf{B} = -\frac{1}{2\pi} \int_0^{2\pi} \left[(mn)(m)^{-1}(mn) - (mm) \right] d\phi, \qquad (3.11)$$

it now follows that

$$\mathbf{N}\boldsymbol{\xi}_{\boldsymbol{\alpha}} = \pm i\boldsymbol{\xi}_{\boldsymbol{\alpha}}.\tag{3.12}$$

The first three of these equations are

$$\mathbf{SA}_{\alpha} + \mathbf{QL}_{\alpha} = \pm i\mathbf{A}_{\alpha}. \tag{3.13}$$

For $v < v_L$, $(nn)^{-1}$ is positive definite and consequently **Q** is negative definite. Thus Q^{-1} exists and

$$\mathbf{L}_{\mathbf{a}} = \mathbf{Q}^{-1}(\pm i\mathbf{I} - \mathbf{S})\mathbf{A}_{\mathbf{a}}.$$
 (3.14)

Let $\alpha = 1, 2, 3$ be the solutions with positive imaginary part in p_{α} . These are the solutions which show exponential decay with increasing y and which are to be used in the construction of surface waves. For these solutions

$$\mathbf{L}_{\alpha} = \mathbf{Q}^{-1}(i\mathbf{I} - \mathbf{S})\mathbf{A}_{\alpha}, \quad \alpha = 1, 2, 3.$$
 (3.15)

Now suppose that the three A_{α} are linearly dependent. But then by Eq. (3.15), the same linear dependence would exist between the corresponding L_{α} and consequently between the corresponding ξ_{α} , in contradiction with theorem (3.4).

Thus the three A_{α} , $\alpha = 1, 2, 3$, form a *complete* set in three-dimensional space for all $v < v_L$. The same conclusion was reached by Stroh⁷ by more intricate reasoning.

Since A_{α} , $\alpha = 1, 2, 3$, form a complete set, an arbitrary amplitude A on the surface can be obtained by superposition of exponentially decaying solutions provided a force amplitude

$$\mathbf{J} = -ik\mathbf{L} = k(\mathbf{Q}^{-1} + i\mathbf{Q}^{-1}\mathbf{S})\mathbf{A}$$
(3.16)

is maintained at the surface. We can write

$$\mathbf{J} = -\mathbf{Z}\mathbf{A},\tag{3.17}$$

$$\mathbf{Z} = -k(\mathbf{Q}^{-1} + i\mathbf{Q}^{-1}\mathbf{S}) \tag{3.18}$$

will be called the surface impedance. A similar concept was introduced by Ingebrigtsen and Tonning, ³ but in an eigenvector representation. In Sec. IV, the above integral expression for Z will be shown to be valid also in cases of degeneracy.

The matrices S, Q, and B introduced in the foregoing, are not independent, but obey certain completeness relations. From Eq. (3.12), applying N twice gives

$$\overline{\mathbf{N}}^2 \boldsymbol{\xi}_{\alpha} = - \boldsymbol{\xi}_{\alpha}, \qquad (3.19)$$

and since the ξ_{α} form a complete set

$$\overline{N}^2 \xi = -\xi, \qquad (3.20)$$

where ξ is an arbitrary six-dimensional vector. Thus

$$\overline{N}^2 + \begin{pmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{pmatrix} = \mathbf{0}, \qquad (3.21)$$

where I is block notation for a three-dimensional unit matrix.

Written out in components Eq. (3.21) yields

$$QB + S^2 + I = 0,$$
 (3.22)

$$\mathbf{SQ} + \mathbf{QS}^T = \mathbf{0}, \qquad (3.23)$$

$$\mathbf{BS} + \mathbf{S}^T \mathbf{B} = \mathbf{0}, \qquad (\mathbf{3}, \mathbf{24})$$

$$BQ + (S^T)^2 + I = 0, (3.25)$$

From Eq. (3.23) it follows that $Q^{-1}S$ is antisymmetric. Thus since Q^{-1} is symmetric the impedance Z, Eq. (3.18), is Hermitian,

$$Z = (Z^T)^*,$$
 (3.26)

where * indicates complex conjugation.

IV. DEGENERACY

The considerations in Sec. JII were largely based on the fact that the ξ_{α} form a complete set when all p_{α} are different. However, degeneracy may occur. For definiteness, suppose that

$$p_1 \neq p_2 = p_3 , \quad p_4 = p_1^*, \quad p_5 = p_2^*. \quad (4.1)$$

$$p_4 \neq p_5 = p_6$$

The degeneracy may either occur for reasons of symmetry or accidentally for a definite velocity.

If the degenerate N still possesses six independent eigenvectors, the considerations of Sec. III apply *in toto*.

However, with degeneracy one is not assured that six independent eigenvectors exist as in the nondegenerate case, for which theorem (3.4) applies. When the degenerate N does not possess six independent eigenvectors, we say that we have the case of nonsimple degeneracy. Static deformation [i.e., v=0 in Eq. (2.6)] in elastically isotropic bodies is such a case.⁸

In the case of nonsimple degeneracy, one forms a complete set by the introduction of generalized eigenvectors associated with the degenerate eigenvectors. Suppose the degenerate N corresponding to the example (4.1) only allows four independent eigenvectors ξ_1 , ξ_2 , ξ_1 , and ξ_5 . Generalized eigenvectors ξ_3 and ξ_6 associated with the degenerate eigenvectors ξ_2 and ξ_5 can then be formed according to the scheme

$$(N - \rho_2 I)\xi_3 = \xi_2,$$
 (4.2)

$$(N - \rho_5 I)\xi_6 = \xi_5. \tag{4.3}$$

General theorems exist^{5,6} stating that

the eigenvectors together with their associated (4.4) generalized eigenvectors form a complete set.

Let $\xi_3(y)$ be the condition at depth y below the surface when the force-displacement condition at the surface is ξ_3 , and similarly let $\xi_2(y)$ correspond to ξ_2 at the surface. Combination of Eqs. (4.2) and (2.8) show, since N and N- ρ_2 I commute, that

$$(N - \rho_2 I)\xi_3(y) = \xi_2(y). \tag{4.5}$$

 $\xi_3(y)$ remains the generalized eigenvector associated with $\xi_2(y)$. The explicit y dependence of $\xi_3(y)$ is obtained by integration of

$$\frac{\partial}{\partial y} \xi_3(y) = ik \mathbf{N} \xi_3(y) = ik [p_2 \xi_3(y) + \xi_2(y)], \qquad (4.6)$$

which, since

$$\xi_2(\mathbf{y}) = \exp(ikp_2 \mathbf{y}) \xi_2, \qquad (4.7)$$

yields

$$\xi_3(y) = \exp(ikp_2 y) \,\xi_3 + iky \,\exp(ikp_2 y) \,\xi_2. \tag{4.8}$$

It is apparent that since $\xi_2(y)$ is decaying with increasing y because $\text{Im}p_2 > 0$, $\xi_3(y)$ will also vanish as $y \rightarrow \infty$. Thus $\xi_3(y)$ is also an allowed component in a surface-wave construction.

Next consider ξ_3 as a function of the angle ϕ in N(ϕ), $\xi_3(\phi)$. ξ_3 is not invariant to rotations ϕ and the question arises whether Eq. (3.12), which is the basis for the integral impedance expression, holds for ξ_3 .

 $\xi_3(\phi)$ obeys the equation

$$[\mathbf{N}(\phi) - p_2(\phi)\mathbf{I}]\xi_3(\phi) = \xi_2, \qquad (4.9)$$

where ξ_2 is independent of ϕ . Differentiating this equation with respect to ϕ and using Eqs. (2.13) and (3.6) (which holds for p_2), we obtain

$$(\mathbf{N}^2 - p_2^2 \mathbf{I}) \, \boldsymbol{\xi}_3 = (\mathbf{N} - p_2 \mathbf{I}) \, \frac{\partial}{\partial \phi} \, \boldsymbol{\xi}_3, \qquad (4.10)$$

from which follows, by combination with Eq. (4.9),

$$(\mathbf{N} - p_2 \mathbf{I}) \frac{\partial}{\partial \phi} \xi_3 = 2p_2 \xi_2. \tag{4.11}$$

Comparing Eqs. (4.11) and (4.9) one sees that

$$\frac{\partial}{\partial \phi} \xi_3 = 2p_2 \xi_3 + \gamma \xi_2. \tag{4.12}$$

where γ is constant. Actually ξ_3 is not unique; it is unique on to within an arbitrary component of ξ_2 . We may choose $\gamma = 0$. Integration of Eq. (4.12) then yields

$$\xi_3(\phi) = \xi_3(0) \exp[\kappa(\phi)], \qquad (4.13)$$

where

$$\frac{\partial \kappa}{\partial \phi} = 2p_2, \tag{4.14}$$

i.e.,

 $\kappa(\phi) = 2 \int_0^{\phi} p_2(\phi) d\phi. \qquad (4.15)$

Consider now $N(\phi)\xi_3(0)$. By Eqs. (4.9) and (4.13)

$$N(\phi)\xi_{3}(0) = \exp[-\kappa(\phi)]N(\phi)\xi_{3}(\phi)$$

= $\exp[-\kappa(\phi)][p_{2}(\phi)\xi_{3}(\phi) + \xi_{2}]$
= $p_{2}(\phi)\xi_{3}(0) + \exp[-\kappa(\phi)]\xi_{2}.$ (4.16)

Thus making angular averages

$$\vec{N}\xi_3(0) = i\xi_3(0) + \exp[-\kappa(\phi)]\xi_2.$$
(4.17)

From Eqs. (4.15) and (3.6)

$$\kappa(\phi) = -2 \int_{\rho_2(0)}^{\rho_2(\phi)} \frac{p \, dp}{1 + p^2} = -\ln \frac{1 + \rho_2^2(\phi)}{1 + \rho_2^2(0)}, \qquad (4.18)$$

so

$$\exp[-\kappa(\phi)] = \frac{1+p_2^2(\phi)}{1+p_2^2(0)} \cdot$$
(4.19)

$$1 + \rho_2^2 = 0, \qquad (4.20)$$

so finally

$$\overline{\exp[-\kappa(\phi)]} = 0. \tag{4.21}$$

[The special case $p_2(0) = i$ must be considered separately, but the conclusion is the same.]

Equation (4.17) thus reduces to

$$\ddot{N}\xi_3(0) = i\xi_3(0)$$
 (4.22)

and we have reached the important conclusion that Eq. (3.12) applies *both* to eigenvectors and associated generalized eigenvectors. Thus, Eq. (3.14) also applies to eigenvectors as well as generalized eigenvectors. Recalling theorem (4.4) as the equivalent of theorem (3.4), it also follows, by reasoning identical to that of Sec. III, that A_1 , A_2 , and A_3 form a complete set in the threedimensional space and that Z, Eq. (3.18), still determines what force J at the surface is needed to maintain a given amplitude A. The integral expression (3.18) for the surface impedance is generally valid for $v < v_L$.

It is now also immediately clear that Eqs. (3.19)-(3.26) remain valid with nonsimple degeneracy.

V. SOME PROPERTIES OF THE IMPEDANCE AND SOME PROPERTIES OF THE LIMITING WAVE

We consider the velocity range $0 < v < v_L$ for which the theory in the foregoing applies. The appearance of the limiting wave at $v = v_L$ will also be discussed in more detail.

The impedance Z, Eq. (3.18), is Hermitian. Thus it may be represented in the dyadic form

$$\mathbf{Z} = \sum_{i}^{j} \lambda_{i} \mathbf{e}_{i} \cdot \mathbf{e}_{i}^{*}, \quad \mathbf{e}_{i}^{*} \mathbf{e}_{j} = \delta_{ij}, \quad (5.1)$$

where e_i are complex eigenvectors obeying orthogonality relations and λ_i are *real* eigenvalues.

The Lagrange function per unit length per unit depth for a surface disturbance in uniform motion is

$$L = \frac{1}{6} (\mathbf{J}^* \mathbf{A} + \mathbf{J} \mathbf{A}^*), \qquad (5.2)$$

or by Eqs. (3.18) and (3.26),

$$L = \frac{1}{4} \mathbf{A}^* \mathbf{Z} \mathbf{A}. \tag{5.3}$$

At v = 0, -L is strain energy only and thus positive definite. Since A in (5.3) is arbitrary, it follows that

$$\lambda_i > 0, \quad i = 1, 2, 3 \text{ when } v = 0.$$
 (5.4)

Keeping the amplitude A fixed but changing the velocity, the relation

$$2T = v \left(\frac{\partial L}{\partial v}\right)_{\mathbf{A}} \tag{5.5}$$

is valid, where T is kinetic energy per unit length per unit depth. Thus, by Eq. (5.3)

$$\frac{1}{4} v \mathbf{A}^* \left(\frac{\partial}{\partial v} \mathbf{Z} \right) \mathbf{A} = -2T.$$
 (5.6)

Since T is positive definite, it follows that

$$\frac{\partial}{\partial v}$$
 Z is negative definite (5.7)

$$\lambda_i$$
, $i=1,2,3$ decrease with increasing v . (5.8)

A similar conclusion based on the relation

$$E = v^2 \frac{\partial}{\partial v} \left(\frac{1}{v} L \right) ,$$

where E is the total energy, was reached by Ingebrigtsen and Tonning.³

From Eqs. (3.18) and (3.23) it follows that

$$\mathbf{A}\mathbf{Z}\mathbf{A} = -k\mathbf{A}\mathbf{Q}^{-1}\mathbf{A}.\tag{5.9}$$

Since Q^{-1} is real and negative definite when $v < v_L$, it follows that

$$\mathbf{AZA} > 0 \quad \text{for real } \mathbf{A}, \tag{5.10}$$

the possible equality in (5.10) referring to $v = v_L$, which will be discussed later.

The power flux per unit area in the y direction, W_y , is

$$W_{y} = (\omega/4i)(J^*A - JA^*).$$
 (5.11)

Of course, in a surface disturbance in uniform motion parallel with the surface

$$W_{y} = 0.$$
 (5.12)

The impedance (3.18) satisfies this requirement

$$W_{y} = -(\omega/4i) \{ \mathbf{A}^{*}[(\mathbf{Z}^{T})^{*} - \mathbf{Z}] \mathbf{A} \} = 0.$$
 (5.13)

As $v \rightarrow v_L$, Q diverges in the sense that one of its eigenvalues approaches infinity. Q^{-1} is convergent, and one of the eigenvalues approaches zero. S diverges, but Q^{-1} S converges. This is ensured by the eigenvalue in Q^{-1} approaching zero. Thus as is well established and can be ascertained in the present formalism by the methods of Barnett and Lothe, ${}^{1}Z(v)$ approaches a finite limit as $v \rightarrow v_L$, and we define $Z(v_L)$ through this limit

$$\mathbf{Z}(v_L) = \lim_{v \to v_L} \mathbf{Z}(v). \tag{5.14}$$

The limiting wave arises by coalescence of two partial waves ξ_{α} and ξ_{α}^* as $v \rightarrow v_L$. Since Z(v) applies to one of the two coalescing waves (that for which $\text{Im}/\mu_{\alpha} > 0$), we must expect $Z(v_L)$ to apply to the limiting wave itself

$$\mathbf{J}_L = -\mathbf{Z}(\boldsymbol{v}_L)\mathbf{A}_L,\tag{5.15}$$

Indeed, the validity of this relation can be proven.

 A_L is the eigenvector of a real matrix, Eq. (2.15). Thus A_L , the amplitude of the limiting wave, can be chosen as purely *real*. The limiting wave is linearly polarized. We will always choose

$$\mathbf{A}_L \text{ real.} \tag{5.16}$$

With A_L real and the fact that the limiting wave is a bulk wave, it follows that

$$\mathbf{J}_{L}$$
 purely imaginary. (5.17)

From the construction (see for example Ref. 1) of the limiting wave from the slowness surface, it follows that the group velocity is parallel with the surface so that $W_y = 0$ also for the limiting wave. Alternatively, we may say that the limiting wave has inherited this property from ξ_{α} , $\text{Im}p_{\alpha} > 0$. Since A_L is real and J_L purely imaginary, it now follows from Eq. (5.11)

$$\mathbf{J}_L \mathbf{A}_L = \mathbf{0}.$$

VI. EXISTENCE THEOREMS

Most of the facts listed in Sec. Ire well known and therefore detailed proofs have been omitted. The only property which appears not to be commonly realized is that of (5.10), which also will be of some importance in the considerations to follow.

(5.18)

However, what apparently has not been realized before is that the preceding list of facts provide sufficient basis for the construction of existence theorems.

If a velocity
$$v_R < v_L$$
 for which

$$||Z(v_R)|| = 0 (6.1)$$

can be found, then a surface wave satisfying the condition of free surface, i.e., a Rayleigh wave (RW), with phase velocity v_R , exists. Condition (6.1) is the condition that J=0 in Eq. (3.17) be compatible with some nonzero A. The amplitude of the surface wave satisfies

$$Z(v_R)A_R = 0. \tag{6.2}$$

Condition (6.1) is equivalent with the condition that one of the eigenvalues λ_i in Eq. (5.1) be zero at $v = v_R$.

Comparing (5.10) and Eq. (6.2), it is immediately clear that the RW, if it exists, is elliptically polarized.

Now make the following supposition: The limiting wave does not satisfy the condition of free boundary-

$$\mathbf{J}_L \neq \mathbf{0} \tag{6.3}$$

and no RW exists for $v < v_L$. We shall see that a contradiction arises.

From Eq. (6.3)

$$\mathbf{J}_{L}^{*} \mathbf{J}_{L} > \mathbf{0}, \tag{6.4}$$

or, by Eq. (5.15), (5.16), and Eq. (3.26)

$$\mathbf{A}_L \mathbf{Z}^2(\boldsymbol{v}_L) \mathbf{A}_L > 0, \tag{6.5}$$

which by Eq. (5.1) takes the form

$$\sum_{i=1}^{J} \lambda_{i,L}^{2} |e_{i,L} A_{L}|^{2} > 0, \qquad (6.6)$$

where $\lambda_{i,L}$ is the value of λ_i at $v = v_L$, etc.

According, to Eq. (5.18)

$$\sum_{i=1}^{3} \lambda_{i,L} |\mathbf{e}_{i,L} \mathbf{A}_{L}|^{2} = 0.$$
 (6.7)

Let $\lambda_{p,L}$ be the largest eigenvalue. Multiply Eq. (6.7) by $\lambda_{p,L}$ and subtract it from inequality (6.6)

$$\sum_{i=1}^{3} \lambda_{i,L} (\lambda_{i,L} - \lambda_{p,L}) \left| \mathbf{e}_i \mathbf{A}_L \right|^2 > 0.$$
(6.8)

With no RW for $v < v_L$, all $\lambda_{i,L} \ge 0$ according to Eqs. (5.4), (5.8), and (6.1). All terms $\lambda_{i,L} - \lambda_{p,L}$ are negative or zero according to the definition of $\lambda_{p,L}$. Inequality (6.8) is therefore incompatible with our assumption and we have arrived at the following theorem:

When the limiting wave does not satisfy the con-

dition of a free surface, it can be asserted that a Rayleigh-wave solution exists for some $v_R < v_L$. (6.9)

Suppose two RW solutions exist, for $v_{R_1} < v_L$ and $v_{R_2} < v_L$, respectively. Then two eigenvalues, say λ_1 and λ_2 , must be negative at v_L ,

$$\lambda_{i,L} < 0,$$

λ_{2,L}<0.

We can always find a real vector \mathbf{A} which is perpendicular to both the real and imaginary part of $\mathbf{e}_{3,L}$. For this real vector \mathbf{A}

$$\mathbf{AZA} = \lambda_{1,L} |\mathbf{e}_{1,L}\mathbf{A}|^2 + \lambda_{2,L} |\mathbf{e}_{2,L}\mathbf{A}|^2 < 0, \qquad (6.11)$$

(6.10)

in violation of inequality (5, 10).

Thus we also have the theorem:

There is at most one RW solution for $v < v_L$. (6.12)

VII. DISCUSSION

Some complications arise when more than one limiting wave exist at v_L . The various cases that may arise have previously been discussed quite exhaustively by the present authors. The general conclusion is a theorem actually somewhat less restrictive than theorem (6.9):

When one of the limiting waves at v_L does not satisfy the condition of a free surface, it can be asserted that a Rayleigh-wave solution exists for some $v_R < v_L$. (7.1)

When the limiting wave does satsify the condition of a free surface, a Rayleigh wave may or may not occur for some $v_R < v_L$. In this situation both cases occur. The previous considerations¹ by the present authors for transverse isotropy contained some algebraic errors and we will use this opportunity to present a corrected discussion.

We consider wave propagation in the x direction on the surface perpendicular to the y axis. The elastic coefficients C_{11} , C_{33} , C_{44} , C_{66} , C_{12} , and C_{13} describe the crystal. Isotropy about the z axis requires that

$$2C_{66} = C_{11} - C_{12}. \tag{7.2}$$

Lattice stability requires that C_{11} , C_{44} , and C_{44} be positive and that

$$C_{11}^2 - C_{12}^2 > 0. (7.3)$$

Three bulk waves enter the problem. Their respective velocities are

$$V_1 = (C_{44}/\rho)^{1/2},$$

$$V_2 = (C_{cc}/\rho)^{1/2}, (7.4)$$
$$V_3 = (C_{11}/\rho)^{1/2},$$

where ρ is the density. Only the wave with velocity V_1 satisfies the condition of free surface. We are interested in the case when this wave defines the limiting velocity, thus

$$v_L = V_1 \frac{\langle V_2}{\langle V_3}$$
 (7.5)

Since the only restriction on C_{44} is that C_{44} must be positive, this is a possible case.

From the isotropy condition (7.2) and the lattice stability requiremc. (7.3) it follows that

$$V_2 < V_3.$$
 (7.6)

Thus we are discussing the case

$$V_1 < V_2 < V_3.$$
 (7.7)

Explicit calculations show that v_R is a function of V_2 and V_3 only and because of inequality (7.6) v_R is smaller than V_2 , so that

$$v_R = v_R(V_2, V_3) < V_2. \tag{7.8}$$

Now given V_2 and V_3 and thus also v_R , we may vary V_1 independently by changing C_{44} without violating lattice stability, to realize either one of the cases

$$v_R < v_L = V_1 < V_2 < V_3,$$
 (7.9)

$$v_L = V_1 < v_R < V_2 < V_3. \tag{7.10}$$

In case (7.10) there is no RW for $v \le v_L$. In this case the surface wave with velocity v_R belongs to a branch of leaky surface waves.⁹

The theoretical conclusions of this paper are in complete accord with and in fact rationalize the numerical work reported by Farnell.⁹

¹D. M. Barnett and J. Lothe, J. Phys. F. 4, 671 (1974).

- ²A. N. Stroh, J. Math. Phys. 41, 77 (1962).
- ³K. A. Ingebrigtsen and A. Tonning, Phys. Rev. 184, 942 (1969).
- ⁴D. M. Barnett and J. Lothe, Phys. Norv. 7, 3 (1973).
- E.D. Norin_b, Linear Algebra and Matrix Theory (Wiley, London, 1963).

⁶M.C. Pease III, *Methods of Matrix Algebra* (Academic, New York, 1972).

⁷A. N. Stroh, Philos. Mag. 3, 625 (1958).

- ⁸K. Nishioka and J. Lothe, Phys. Status, Solidi B 51, 645 (1972).
- ⁹G.W. Farnell, in *Physical Acoustics VI*, edited by W.P. Mason (Academic, New York, 1970).