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FINAL REPORT

INTRODUCTION

This program has comprised a series of investigations of excitation proc-
esses 1in auroral species under various conditions, notably at a variety of
collision frequencies corresponding to a range of altitudes. In our labora-
tory experimentation, emphasis first centered on high-current pulsed dis-
charges in nitrogen atmospheres contained within a large-volume Pyrex tube;

More recently, we have developed several low-current, low-power small-volume

-discharges in order to obtain spectra under a broader range of conditions and

environments than had proved possible within the confines of the large system.

Much of the work undertaken in the present effort has been described in

‘the dissertation of Jeff Morrill which is presented here as Appendix A. It is

our intention to publish most of this material in the near future in several

papers, the first of which is now in final form and which 1is presented as-

Appendix B,

In the following sections, we will be discussing the general trend of the
investigation, from the initial expectations to the final results., Particular
emphasis will be placed on those findings which have not been covered in the
Appendices A and B where the many of the results may be found but which do not

contain references to the more recent experiments, data, and conclusions,

In applying these results to an enhanced understanding of auroral proc-

esses, we have always been cognizant of the circumstance that much auroral
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activity takes place in an environment characterized by considerably lower
collision frequencies than those of laboratory discharges. On the other hand,
with time-resolved spectroscopy capable of time resolution extending to the
sub~microsecond level, we have been able to examine the spectral evolution of
auroral features on a collision-by-collision basis down to and including spec-
tr; which occur effectively prior to the first collision after excitation.
This ability to probe the processes of spectral and population evolution under
a variety of environmental conditions is evident in the discussions of the
experiments in the appendices. We have, in fact, been able to refine those
techniques considerably further in successor experiments with state-of-~the-art

instrumentation, and the more advanced methods will be described below.
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HIGHLIGHTS OF RESEARCH FINDINGS

In the course of these investigations, we have uncovered a wealth of ef-
fects involving the evolution of nitrogen molecular level populations and the
associated spectra both during and after direct electron excitation from the
ground state., We will describe ‘briefly the most interesting of these effects,
and discuss our present understanding of them. As the discussion proceeds, it
should be noted that all of the effects mentioned appear to be associated with
hidden sources of excitaton, l.e. stored energy that is transferred into the

3“ state by means other than the direct electron excitation from the quies-

g
+
cent ground state, X lzg.

B

Three New Effects

(1} The first effect is illustrated in Figure 1 which shows excitation histo-

ry of the v=1 level of the B 3ﬂp state. The quantity recorded and graphed is

>

the emitted band intensity which is proportional on a moment by moment basis
to the level population., Briefly stated, the v=1 level rises monotonically
throughout the current pulse (~ 4 psec) as contrasted to all levels of other

electronic states whose populations begin to fall as soon as pulse current

teaches a maximum (~ 1 usec).

The interpretation of this special behavior of the B 3Hg is that, as

2

+
opposed to the C 3Hu and B Eu states, it 1is not entirely dependent upon

electrons energetic enough to excite from the X 12; v=0 level, but 1is the

rtecipient of excitation from metastable sources with enrergies well above the

lowest vibrational level of the molecule.
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[2] The second effect is illustrated in Figure 2 which shows three decay
curves for the nitrogen 1PG 5-2 band taken at pressures of 30, 120 and 400mT.
The top curve is for the low pressure, bottom curve for the high pressure; the
vertical scale is logarithmic. The three curves rise in unison during the
pulse, then drop precipitously when the current ceases, faster than the
radiative depletion rate of the upper level, v=5, and finally settle into a
long decay corresponding to a level depletion rate much smaller than its
radiative decay. All of the decay rates are found to increase with pressure.

Note particularly that in the afterglow domain, the observed lifetime here
(1/e time) is some 100 microseconds as contrasted with the radiative lifetime

of v=5 which is 6 microseconds.

One interpretation of the dogged persistence of the emission from the
B 3Hg state could lie * .idden source of excitation which continues to feed
into the levels '.ag after the initial energizing pulse has ended. Alterna-
tively, a mechanism for preventing emission from the already populated levels

would provide for a similar lengthening of the emission profile of the B 3IIg

state. For the present, we favor the latter explanation as to the major
cause. The argument goes as follows: The four states B 3Hg, A 32:, B’ 32&

3 : s
and W b, are all connected by intersystem collisional transfer and have been
shown to equilibrate excitation among themselves very rapidly and attain a

common lifetime for emission.

Accordingly, any excitation spends most of its existence in one or another

. . A, . 3
of the long-lived states. but may only be emitted while residing in the B "g
This, of course, considerably lengthens the time of residence within the ni-

trogen molecule. It does seem, however, that the very extensive observed
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emission profiles indicate the presence of long-term excitation enhancement as
well.  Although other mechanisms may, in fact, be principally responsible
here, it would appear that the observed emission profilss point to the occur-

rence of long-term excitation enhancement as a significant contributor.

{3] The third effect that we find quite interesting is the observation of the
marked impact on the nitrogen discharge spectrum of the variation of pulse
repetition rate with all other parameters held constant. An example of the
phenomenon is given in Figures 3 and 4 and the constant parameters are dis-
played on the figures (80 millitorr pressure, spectrum of the discharge at
3 psec after the onset of the pulse, four sequences of the 1PG, AV = 1

through 4). The Figure 3 trace was taken at a repetition rate of 5 Hz, the

Figure 4 trace at 50 Hz.

The striking aspect of the grouping depicted is that the three sequences
on the right seem relatively unaffected by the change in repetition rate while
AV = 4 is clearly much enhanced at the higher frequency. What is happening
here is that the emission in AV = 4 is primarily from the higher vibrational
levels where the effect of repetition rate variation is most pronounced. At
high rep rate there is a preferential excitation of the B 3Hg vibrational lev-
els approaching v=12. The preconditioned gaseous medium is responding in a
different way to the pulse than that of the medium which has been permitted to
relax. This is a non-linear effect which should have its parallel in the

auroral excitation mechanism, particularly at the lower altitudes.

Our interpretation of this effect is that there is an energy carrier

stored within the gaseous medium from pulse to pulse. It is reminiscent of

L L W
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the preferential excitation of the higher levels in the Lewis—Rayleigh after-
glow, and strongly suggests a transfer from the A 32: state. Recently, how-
ever, we have been considering a more basic storage mechanism comprising the
vibrational excitation of the ground state, X 1£+. Preliminary modeling of
the population trends in the B 3Hg have been carried out by mapping ground
state populations onto the B state via the Franck-Condon factors. The ob-

served spectra have been related to enhanced ground state vibrational tempera-

tures. Some of these results appear in Appendix A.

10
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THE MOST RECENT INVESTIGATIONS

Since the experimentation and the compilation of the data presented in the
paper of Appendix A, the emphasis in the program has been on an entirely new
system of operation. The motivation for conmstructing the parallel system was
two-fold., First, there is the matter of continuing concern that much of the
data collected in the several laboratories now working on nitrogen may be
system-dependent, The new system is very much different from the one previ-
ously described, Second, we have incorporated a number of technological

enhancements into the new system and the results have been most gratifying.

The data aquisition section of the system consists of a network comprising
an enhanced IBM PC XT, an EG&G PAR 4400 Signal Processing System, and a SPEX
0.22 meter spectrometer with a microprocessor-based programable scan control-
ler. All calibration data (wavelength and intensity) is stored in the PC,
while most of the data processing is performed by the 4400. The latter is
primarily a super digital boxcar integrator. It provides real-time digitized
and stored signals from two data channels simultanecusly and supplies on-board
reduction and analysis of the stored information. We are able to obtain im~
mediate multiple exponential fits of the excitation and decay curves as well
as both smoothing and background subtraction on a point-by-point basis., Time

tesolution is essentially infinite in terms of present experiments.

As an example of the uses to which this system has been put, we show the
curves on the fcllowing page., The top curve is the raw signal, digitized and

stored by the signal processing system, the middle curve is the signal with

the light blocked out (we are working with a weak signal heavily distorted by

11
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electrical pickup), while the bottom curve is the difference curve represent-
ing the true excitation and decay trajectories for the v=0 level of the B

state.

In deference to the question of obtaining data from a broader range of
experimental environments, we have developed several 1low-current, low-power
small-volume discharges in order to obtain spectra under conditions far re-
moved from those of our big system. One discharge tube that we are using has
the shape of an inverted (1) with a discharge length of 4 in. and a diameter
of 1 in. The current density in this tube is only one percent of that in the
large~volume tube, namely 0.03 amps/cm2 vs. 3.0 amps/cm2 in the %ig tube. One
of the more attractive features of the small tubz systems is our ability to
run them with discharge pulses of almost any width. Accordingly, we have been
extending the pulse width upward and downward from the 4 usec value which has

been the staple of the large tube.

In the earlier experiments, we had been struck by the characteristic of
the B 3ﬂg levels to iucrease their populations throughout the entire 4 pse:
duration of the big tube current pulse while the C 3ﬂu populations begin to
fall almost immediately after discharge onset. It was at first considered
that the prolonged rise of the B 3ﬂg populations might be related to their
relatively long lifetimes (5-10 usec). However, the new system, with its

highly variable pulse width, permits the aquisition of a much broader range of

data and puts a whole new perspective on the population build-up phenomenon.

As the next figure shows, the B 3Hg continues to rise as long as the ex~

citation pulse persists until some 150 usec into the discharge, for this 1PG

13
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F 1-0 band. Another important flexibility in the new system arises from the

§ = addition of infrared sensitive detectors, namely fast red-extended silicon

é. diodes and cooled photomultiplier tubes with S1 photocathodes. Both of these
B detection devices allow observation of the iPG 0~0 band and thus provide ac~

% v cess to the v=0 level of the B state. The Sl photomultiplier has proven the

: most productive of the two thus far in that it permits real-time comparison of
g - a large number of bands over a broad wavelength range. The results of the v=0

studies have been interesting, not to say startling.

A further enhancement of the system is an expanded capability of analyzing

the data through curve fitting to a variety of functions, virtuallv in real
. time. Most advantageous for present purposes has been the fitting of the band

decay curves to single and double exponentials.

The next six graphs illustrate the ability of the data aquisition system

QS e S RN L L e

to provide incisive analysis of the time development of the spectroscopic fea-

_ tures of present interest. In addition, these graphs demonstrate an important

R I X

aspect of the lPG population history, one not previously recognized.

é The data of these curves come from either the 1PG 0-0 or the 1-0 band.
i Both discharges were struck in 300 mT of pure flowing nitrogen with pulse
F lengths of 4 usec and a repetition rate of 1000 Hz. The boxcar integration

mode here 1is that of the moving aquisition aperture which tracks the radiation

of the spectral feature in time. The spectrometer does not scan, but acts as

graph presentation is 0-0 data, 0-0 curve fit, overlap of data and fit; 1-0

data, 1-0 curve fit, overlap. It 1is clear that these are excellent curve

15
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fits, Less evident is the fact that the 0-0 band fits to a single exponen-

tial whereas the 1-0 fits to a double exponentizl.

- - /21

and

[ = 9o~ t/2:91 , - t/25.6

These are intensities as a function of the time in usec. If we attempt to
fit the 0-0 band to a double exponential, both exponents attain the same
value., If we attempt to fit the 1-0 band to a single exponential, the overlap
plot immediately demonstrates an obvious lack of agreement. Another mode of
presentation for these decay data is applied in the next figure where the
logarithm of the emission intensity of the 1-0 band is plotted agaipst time.
The two decay regions are sharply delineated and maintain remarkably constant

decay coefficients within their time domains.

Our preliminary interpretation of these results is that the single expo-
nential of the 0-0 band and the late (second) exponential of the 1-0 band
arise from the same phenomenon. They contain both the radiative decay and the
collisional components of the time development of the level populations. With
increasing pressure, the late time decay constant is reduced. At 22Qu the 1-0
band decays with a 26 psec time constant, whereas at 4 Torr the time constant
is 6 usec. The same pattern holds true for the 0-0 band. The time constant at
the lower pressure is about 30 psec; at the higher pressure it is about 7
usec, This can be seen in the next four figuieZ. There seems to be a

collisional component to the late exponential de-ay.
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What we find most interesting here is the fast exponential decay of the
1-0 band which is absent in the 0-0 decay. All low-lving levels of the B 3ﬂg
show the same dramatic decay following a short excitation pulse (except v=0)
and for all of them the decay is faster than their radiative transition proba-
bilities, more rapid than collisional transfer processes, and essentially

independent of pressure.

We now surmise that what is manifested here is the effect of superradiance
arising from an early population inversion between, for example, B(1) and
W(0)., 1t is deduced that these transitions remain superradiant until collis-
ions have had time to equilibrate the population unbalance. The ~ 3 usec de-
cay rate during sti@ulated emission is largely an invariant, while the dura-
tion of the phenomenon is reduced as the discharge pressure rises. The
probable superradiant transitions are indicated on the following potential
curves, These are the infrared bands that we proposed in 1968 as having given
rise to two groups of 1lines in McFarlane”s early laser studies of condenser-
pulsed nitrogen. The illustrated transitions were found to lase during the
curreat pulse, but not in the afterglow. They are located between 5 and 6

microns wavelength.

The evidence in favor of associating the sharp depopulation trend of the
B 3Hg levels with stimulated emission we list, in order of increasing impor-
tance, as (a) the lack of correlation with collision frequency, (b) the occur-
rence in both discharge systems, (c¢) the circumstance that the superradiance
takes place immediately following short pulses, but not after ilong pulses, and

(d) the fact that the v=0 level follows an entirely different (longer) decay

pattern during the same time domain. It should be pointed out that conditions

28
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in active auroral forms are quite conducive to the production of this type of
superradiance since the medium is characterized by low collision frequency and
minimal local water vapor absorption. The resultant lasing photons could not
be expected to reach ground level, but should be observable at altitude in the
form of short 6000 am bursts.

As a corollary to the observation that the low-lying levels of the B 3Hg
become overpopulated with respect to those of the W 3Au, we point out an as-
pect of the v=0 level that has not been recognized previously. It is that the
v=0 level makes its way through the discharge pulse after starting with a pop-
ulation that generally is remarkably low. The point is illustrated in the
next two figures. The first within the current pulse but with the 0-0 high.

The second with the sample point set 2 usec earlier so that 0-0 is low.,

We have undertaken some studies of nitrogen excitation and decay processes
in noble gas environments. The primary motivation here is to place the nitro-
gen molecule out of reach of its own kind and to permit it to collide only
with monatomic particles. 1In cur preliminary experiments, we have used 17 Ny

in helium and 1% N, in argon.

The next figure shows the spectrum of 1% Ny in a 300 mT helium atmosphere
at 35 psec after a 40 usec pulse, Essentially, there are two features here,
the 0-0 band on the left and the 1-0 band on the right (our previous wave-
length scale has been reversed). In other words, each sequence is represented
almost entirely by its lowest member. This spectral structure is reminiscent
of the early work of Carl Kenty who was also able to drive the vibrational

population down the ladder in predominantly noble gas atmospheres.,
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Our understanding of the effect of the noble gas enviroument is quite
fragmentary at this stage of the investigation, but we make the suggestion
that it is not the special potency of rare gas collisions that impels the
nitrogen population toward v=(). Rather, we believe that it is the absence of
the secondary excitation mechanisms in the non-nitrogen atmosphere that pre-

cludes a continuing repopulation of the higher vibrational levels,
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THE LEWIS-RAYLEIGH AFTERGLOW

The great majority of the effort in this piogram has been devoted to a
study of the emission profiles of nitrogen molecules within a few tens of
microseconds following direct excitation, since that time interval would seem
to be most applicahle to the aurcorai conditioun. On the other hand, the more
long-lived emissions may well be of importance in the case, for example, of
active auroral fnrms behind which decaying populations much exceed in volume

the recently excited and less evolved emitters.

Perhaps the ultimate condition of aged excitation is that preceding the
emission of the Lewis-Rayleigh afterglow, and it has been our intention from
the beginning to attempt to follow the emissinn prucess in nitrogen through to
the Lewis-Rayleigh stage. This has, indeed, proved possible recently with our

upgraded equipment and we will discuss these experiments forthwith,

In general, we find that the LRA is most readily observable at higher
pressures (of the order of 4 Torr) and at times of 20 ysec or more after the
end of the current pulse. Prior to the time of the LRA, the higher vibration-
al levels of the B state become depopulated through collisional and radiative
losses, 1In the LRA, however, the higher levels of the B, notably the levels
near v=12, become 'repopulated" by way of atomic recombination, and a new
vibrational population distribution emerges. Spectra taken during the time

domain of the LRA reveal bands of the Herman Infrared System as well.

The next three figures illustrate the development of the LRA. 1In all of

these spectra, the pressure is 4 Torr, the pulse duration is 2 usec, and the
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repetition rate is 1 kHz. The first spectrum is taken 9 usec after the end of
the current pulse. An analysis of the population of the first 7 vibrational
levels gives the following results. Note that the populations have been

expressed in percentages.

vibrational level percent population
0 54,7
1 25.8
2 15.4
3 1.8
4 1.1
5 0.66
6 0.50

The second spectrum is taken at approximately 100 pusec after the current

pulse. The percentage average populations for each level are:

vibrational level percent population
0 59.3
1 21.5
2 10.1
3 3.3
& 3.3
5 1.6
6 1.0
36
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The third spectrum is taken at approximately 400 usec after the current

pulse.

vibrational level

As the time after the current

percent population

52.6
22.1
13.5
4.2
3.8
1.9

1.8

pulse increases, the higher vibrational

levels of the B state become repopulated, and the spectrum of the 1PG shifts

in favor of the higher quantum numbers., We believe that this is the first

time-resolved investigation of the LRA and of the development of the under-

lying populations into the long-time domain,

37




(swousbuyy yabusiasny
00 .D.me 00 0008

— e -

e

l

——e e 1L

38




00 *00011
L

00 "00t+01
|

00 *00886
1

00 *‘00c8
!

00 *‘0098
!

Aweogummcmv yabuaanoy

00 *0008 00 *00v L 00 *0088 0o .O~QN@ 0GC *009s 00 "000S
J ! 1 ! !

—— —— —— .

!

39




(swouysbuyy yabuajanpy

00 00011 00 Oovow 00 *0p8s 00 0026 00 *0098 00 o008 G0 "00vL 0o Oomw 00 *00e9 00 ‘008s 018 ooow
| . - —— b L . —t e L -l e b ——l

———— !

; %??s ~

40



APPENDIX A

41



ABSTRACT

Title of Thesis: The Effect of Collisions and Plasmia Preconditioning on
the Vibrational.Level Populations of Molecular Nitrogen

Jeff S Merrill, Master of Science, 1986

Thesis directed by: Dr. William Benesch, Professor
Institute for Physical Sciénce !
and Technology

Recent studies have shown the existence of an Intersystem Collisional Transfer Process
that couples vibrational levels of adjacent electronic states. The present study has used
a large volume, pulsed discharge to further our understanding of this process. Time-
resolved spectroscopy has facilitated the analysis of the emission that occurs during and
after the 4 microsecond excitation pulse. The primary spectrum of intrest has been the
First Positive Group (1PG) of molecular Nitrogen. This spectrum reflects emission from
the BT state of N,.

The results have shown that dramatic changes in 1PG band intensities accompany the
variation of experimental conditions. Specificalily, the changes in the distribution of
vibrational population in the B 31 . State, are dependent largely on the number of
collisions, regardless of pressure. A detailed analysis of these distributions during the
first 20 microseconds is presented with the variation in pressure and frequency being from
50 to 400 microns and 5 to SO0Hz, respectively. Other observations show that the emission
from the vibrational levels of the B *[1 p State, continue long after expected, that is,
relative to their natural lifetimes. The relationship between these observations and the
Intersystem Collisional Transfer process is discussed.

Additional studies show that the initial B [T , State population distributions
produced during the excitation pulse vary with pulse discharge frequency. Analysis of
these initial populations gives strong indication the excitation is occuring from an
elevated vibrational distribution within the ground state. Results imply that this ground

state distribution is quasi-Boltzmann with vibrational temperatures of up to 2800 K.
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CHAPTER 1 - HISTORICAL BACKGROUND and INTRODUCTION

The emission spectra of N, have been studied extensively in both the laboratory and in
nature (Aurora). The initial studies, which started the determination of spectroscopic
constants for N,, began around the turn of the century.! This work has continued
throughout the century and has extended into the present decade.? The spectra which have
been studied are due to rovibronic transitions between pairs of electronic states. As a
result of this work, researchers have compiled an extensive amount of information
regarding the rotational, vibrational and electronic structure of the excited and ground
states of the molecule N, and the ion N,*.

Recently, research has begun to focus on observations which indicate that collision
induced transtions between quasi-isoenergetic levels of different electronic states can
and do occur.>™* One of the spectra which researchers commonly observe in the study of
this phenomnon is the First Positive Group (1PG). This corresponds to the transtion
between the B 31'1‘ and the A 3}.'.“* states in the molecule. The 1PG comprises numerous
vibrational bands which occur in the visible and extend into the infra red. This spectrum
is of importance to the study of this phenomenon because of the proximity of the B 31'1‘
state to other excited electronic states of N2 (A 32;, B’ 32;, w 3Au, etc.; see figures
1 & 2). In this study we are able to detect changes in the relative intensity of the
vibrational bands of the 1PG. Consequently, we are able to observe the redistrubution of
excitation among these states. Further, when we follow the decay of a particular
vibrational band, the effect of this redistribution on the population of the specific
level is also observed. By changing the pressure of the system, the role of collisions in

this redistribution can be determined.

A nibntimm mo on Moo mae A memisnsl e
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process".” The term "afterglow” has also been used, and at times inconsistently.
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"Afterglow" has been used to distinguish between different regions in a long, flowing
discharge where the entire length of the tube is not externally excited. The discharge
region itself is referred to as the "glow". As the excited species flow down the tube,
_ the spectra change. The region after the "glow" is called the "afterglow”. This not a
very rigorous definition and is used to cover a variety of experiments. One type of
- afterglow which is specific is the "Lewis-Rayleigh afterglow" (or L-R afterglow). This is
due to the recombination of pairs of N('S) atoms which form excited N, molecules. '® The
excited molecules which result are B 311' state molecules in the vibrational levels 10; 11
and 12. Consequently, the spectrumofanL-R afterglowis a 1 PG spectrum which only shows
emission from the high vibrational levels of the B ’H‘ state.
- In the past, the method used to generate the initiai states associated with the
observed transitions has generally been an electric discharge. Here, collisions between
energetic electrons and N, molecules produce the myriad of states shown in figure 1. The
extent to which each of these states.is created is determined by. the energy dependent
cross-sections associated with each state and the energy distribution of electrons in the
- discharge.

Another method of excitation has involved electron beams. In this case electrons are
emitted from a hot filament and then electrostatically focused and accelerated. This type
of experiment has the advantage of being able to choose electrons of a specific energy
with a certain bandwidth. The disadvantage with this type of experiment is that the
- system pressure must not exceed 10 to 100 millitorr.

Equipment of this type has also been used to measure the electron cross-sections
mentioned above. Researchers studied these cross-sections as early as the 1920’s and
30°s'> and continued into the 1960’s and 70’s. The most complete set of these cross-

sections is given by Cartwright et al. in 1977."
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One of the earliest observations of the "secondary excitation process”, mentioned above,
was reported by Thompson and Williams in 1934"%: at electron energies of 10.5 eV and
greater “a red glow was seen to fill almost the whole of the collecting cylinder." This
glow was the resultof the 1PG. By looking down the length of the electron beam they were
able to see that the emission was "spreading" away from the electron beam. The extent of
this spreading from the beam was determined to be so great that the emission must be duea
secondary excitation process.

Recent experiments have been more extensive than this earlier work. The work of Becker
et al.'® showed that the vibrational level populations of the B 311‘ state changed with
discharge conditions, such as pressure and buffer gas. Electron beam studies by Shemansky
and Broadfoot'®® and Shemansky?' have shown that the decay of the vibrational levels of
the B 3H' state do not follow simple first order decay. Instead, emission from t* levels
of this state continue much longer than expected when we consider the natural lifetimes of
these levels

In these latter studies the sole precursor for the so called "degenerate L-R
afterglow"?® was considered to be the A 32“* state. Other researchers have since shown
that this is not the case." This will be discussed further with the results of the
present study.

The phenomenon of a long-time tail on the emission from the B 3H‘ state has also been
seen in experiments which monitor the emission from B’H' state molecules produced by a
laser pulse. The authors of these Laser Induced Flourescence (LIF) studies have assumed
that the decay curves can be expressed as sums of exponentials. This assumption has also
been made by Shemansky. By dividing these curves into different time regions, they
extracted the decay constants. These have been used to determine the rate constants for

- . : ~l
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electronic states. It has not been absolutely determined to which states and levels these

57



coupling constants apply.’

The most important result of LIF experiments is the emission from numerous levels that
follows the pulsed laser excitation of a single level. In the work of Rotem and Rosenwaks
the excitation of a specific vibrational level in the B 31'1. state is followed not only by
emission from the excited level, but also by emission from lower vibrational levels of the
B 31'\" state. In addition, and most important, emission also occurs from vibrational
levels of overlapping electronic states which are energetically adjacent to the initially
excited level.®

Other observations, using a DC discharge, have shown that adjacent vibrational level
populations of overlapping electronic states are essentially equal if the pressure of the
discharge is greater than about one torr. Benesch and Fraedrich have used this
relationship to determine the transition probabilities of the infrared afterglow system
(B2, 10 B1).¢

All of these observations point to a collisional process which couples adjacent
vibrational levels of overlapping electronic states. This process has been referred to by
a number of names such as Resonance Collisional Transfer ', Collisional Coupling '2 and
Intersystem Collisional Transfer ICT).* """ The term ICT will be used throughout this
discussion.

In the present study we have used a large volume, pulsed-discharge tube with a 4 s,
high current, excitation pulse. This system has allowed time-resolved measurement of the
vibrational level populations of the B 3H‘ state over the range of 0.5 to 200 ps. One of
our initial observations in this study has been the different emission curves which arise
from the decay of different excited states. A similar type of observation is of the long-
time decay of specific vibrational bands of the 1PG. These two topics are discussed in

sections I and IT] of the results.
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A major objective of this study has been to measure the change in the vibrational
population distribution in the B ’H. state as a function of time during and after the
current pulse. Preliminary studies in our laboratory have shown pressure and pulse-
discharge frequency to be the two most significantdischarge parameters regarding changes
in the B 31'1' state vibrational distributions. Consequently, the major portion of data
presented reflect the effect of these two parameters on the vibrational level populations
of the B 31'1‘ state. The difference between these two parameters can be seen if we
recognize the connection of collision frequency with pressure, and relaxation time with
pulsed discharge frequency. This is discussed in section IV of the results.

Finally, the effect of discharge frequency on initial spectra will be discussed. This
effect, known as "pre-conditioning”, causes changes in the initial vibrational
distribution in the B 3H‘ state with changes in pulse-discharge frequency. The observed
change appears to be associated with an increase in the vibrational temperature of the
ground state. This process of "pre-conditioning” will be discussed in the last section of
the results of this study.

In the next two chapters the discharge system and the experimental set up will be

presented, followed by a discussion of some of the processes which occur in an electric

discharge.




CHAPTER 2 - EXPERIMENT

The details of this experiment will be discussed in four parts; the light source, the
spectrometer, the electronics and the system calibration. A block diagram of the system

appears in figure 3.

LIGHT SOURCE

The light source used is a large volume, pulsed discharge tube which was designed and
built at the University of Maryland. As shown in the block diagram (see figure 3), this
discharge tube consists of a DC power supply, a high current'supply and the discharge tube
itself.

The DC power supply comprises a variac controlled AC step-up transformer capable of
supplying 5 amps at 5 kV and a tube type rectifier (Fedral Telephone and Radio Corp.,
model CT-T-20208-A) used to generate the DC voltage. The specified output voltage is
further regulated by a 4 uf/20 kV ballast capacitor.

The high current pulse supply is fairly simple in theory. Its main components are (1)
an induction coil for doubling the input voltage, (2) a set of four, 1000 foot, coaxial
cables (RG-8) used to store the charge for each current pulse and (3) a Thyratron (EG&G,
HY-5) used to discharge the four coaxial cables through the discharge tube. A basic
schematic diagram of the High Current Pulse Supply is shown in figure 4.

Once the cables are charged, a positive pulse is applied to the grid of the thyratron.
This voltage pulse produces a discharge within the thyratron which connects the cables to
the anode of the discharge tube. The resulting current palse through the discharge tube,
has a very sharp rise time (<1 ps). In order to shut off the thyratron a negative
reflected wave must be generated by the discharge (the load). For this to happen the

current must reach levels >300 amperes and the resistance the discharge tube must drop
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below a few ohms. When these conditions are met the current pulse produced is about 4 s
long. The effect of the negative reflected voltage is to change the polarity of the
thyratron. This causes the discharge within the thyratron to cease, which in turn
disconnects the cable from the anode of the discharge tube. This is necessary since the
cables must be recharged for the next current pulse. 2%

If these conditions are not met the thyratron will "latch on". The result is a large
surge of current through the discharge tube followed by blown fuses, tripped circuit
breakers and often ruined electronic parts. In order to ensure the reproducibility in the
current pulse necessary to prevent the thyratron from "latching on", 20 mesh granular Zinc
is used as a cathode start up material. This material gives the cathode a vast array of
rough edges from which electrons can emit and begin each discharge pulse. 2

The light source itself is a glass tube 300 cm in length and 16 cm (ID) in diameter
with Conical ends. There are also three 2.5 cm (ID) glass side arms mounted at various
points along the length of the tube. The tube itself is mounted length wise in a
plexiglas tank which contains water for cooling. The three side arms are approximately 18
cm in length and extend out of the top of the plexiglass tank. The central side arm is
the exhaust of the discharge tube and the side arm at the cathode end of the tube is a
port for measuring pressure.

The end pieces which cap either end of the tube are machined aluminum. These end
pieces contain White cell mirrors and windows as well as electrical feed throughs for the
electrodes.

The electrode assemblies are copper cylinders 12 cm in diameter, 0.25 cm thick and 3 cm
high. These are welded to copper disks which are water cooled. The centers of these
disks have been cut away so that light emitted along the axis of the discharge tube can be

observed. Each of these assemblies is mounted on a two piece concentric copper shaft so

that each electrode assembly extends into the tube about 50 cm. This positions the
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electrodes direcily below the two outer glass side arms.

Nitrogen gas is allowed to flow into the alumminum end piece at the cathode end of the
tube. By varing the N, gas flow rate into the system and by throtiling the exhaust, we are
able to achieve the different system pressures. The flow rate is adjusted by use of a
Brocks flow tube (model R215-D) with the flow rate measured in SCCM, (std. cc/minute @
ipsig). A set of two ditferent sized valves are used to throttle the exhaust. The
combination of these two valves allows us to maintain very good pressure control
throughout the course of an experiment ( +3% ).

The pressure in the system was measured with a Vacuum General Capacitance Manometer
(model CMT -01). This model reads pressure from 0.0001 to 1 torr with an error of 0.15 %
of reading and was zeroed at less than 10 torr.

As mentioned, the current pulse produced by the system is approximately 4 s long,
regardless of the peak current, voltage, or pressure. The rise and fall time of the pulse
becomes less sharp as the system is run at higher pressure. This tends to spread the
current pulse at the base. An example of this is shown in figure 5.

Also shown in this figure are the voltage traces associated with the discharge at the
indicated pressures of 50, 200 and 400 pt of N,. One should note that in each photo the
voltage trace shows a distinct plateau between 2 and 3 microseconds. The ratio of this
plateau voltage to the peak current is taken to be the resistance of the discharge.
Figure 6 shows that these values increase linearly with pressure. Assuming the gas is
ideal, this indicates that the discharge resistance varies linearly with gas density as
well.

Another trend which we see is that the peak current changes significantly with
pressure. Here the observation is that for a given peak voltage the peak current

decreases with increasing N, pressure. This is shown in figure 7. This observation
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agrees with the observed increase in discharge resistance with increasing pressure.

SPECTROMETER

Light which is emitted along the axis of the discharge tube is focused on the entrance
slit of a 2 meter spectrometer. The spectrometer is equipped with a 600 groves/mm, motor
driven, grating. The grating drive is known as a "sine drive”". The sine drive gets its
name from the fact that linear movement of one component of the drive can be related to
the sine of the angle through which the grating has moved.

In this system, the moving component is a metal plate which is driven by a finely
machined, motor driven, lead screw. A lever arm is attached to the top of the main shaft,
to which the grating is mounted and around which the grating tumns. The tip of this arm
rests against the metal plate of the sine drive. As the metal plate is driven by the lead
screw, the lever arm is pushed foward which in tumn causes the grating to rotate. The
arrangement is set so that the linear displacement of the metal plate is directly
proportional to the sine of the angular displacement of the grating.

The advantage of this system can be seen if we examine the grating (or Bragg) equation.
nA = dsin6
Here n is the order, A is the wavelength, d is the line spacing of the grating and 8 the
angle of the grating normal with respect to the incident light. With a sine drive the
sinB term can be replaced with a linear relationship, mX +b. Now the equation becomes,

nA=(mX +b)

were X is the displacement of the metal plate, m a coefficient and b an initial offset.
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In order to measure the position of the metal plate, we have fitted the sine drive with
a digital shaft encoder. This shaft encoder is attached to a small output shaft on the
sine drive. This shaft is connected to the lead screw through a series of gears. A shaft
encoder gives a digital output for both the degree of rotation as well as the number of
revolutions of the output shaft. The digital output of the shaft encoder is fed into a
I/O board in an IBM-XT computer. Software converts the digital signals into numerical
values. Shaft encoder values associated with the peaks in a spectrum of a standard lamp,
werecompared withtheknown wavelengths of those peaks. Bydoing so, we havedetermined
the relationship between shaft encoder values and wavelength. This is discussed further in

the calibration section of this chapter.

ELECTRONICS

As mentioned previously, light which is emitted along the axis of the dischargc tube is
focused on the entrance slit of the spectrometer. After the light is dispersed it is then
focused on the exit slit of the spectrometer. There it is detected by a photomultiplier
tube (Hamamatsu, type R-636). The photomultiplier tube is generally driven by a voltage
of 900 to 1300 volts. The output feeds into a PAR 115 preamplifier (50 ohm termination,
DC input) and preamplified 10 times. The preamp output is then fed to a PAR 160 Boxcar
Integrator and an oscilliscope.

The Boxcar Integrator, which averages repeated waveforms, has been used in our study in
two modes. In the first mode we set the spectrometer to a specific feature in the
spectrum and the repeated pulse is fed into the Boxcar. By scanning along this pulse with
the Boxcar gate, the Boxcar Integrator is able to reproduce this pulse on chart paper or
as a computer file. An example is shown in figure 24. The Boxcar gate (or aperture)

determines the portion of the waveform which the Boxcar amplifies. The gate is the small
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spike which appears at 5 ps in figure 34a. The size of the Boxcar gate was generally
200ns as shown in figure 34a.

For the second mode, we have set the Boxcar gate at a specific time after the start of
cach current pulse. Here the spectrometer is scanned over a specified region of
wavelength. The result in this case is a spectrum of the discharge characteristic of the
position in time of the Boxcar gate (see figure 14).

In order to store and evaluate the large volume of data presented in this study it was
necessary for us toincorporate an IBM-XTcomputerinto the experiment. This was done by
measuring the Boxcaroutputwithan A-to-Dconverterwhichwasreadby thecomputer. When
the spectrometer is scanning, the wavelength is determined by use of a shaft encoder. By
using the digital output from the shaft encoder and the A-to-D converter, spectra from the
Boxcar were stored as computer files. These were plotted and processed using software
written specifically for this system. This greatly facilitated calibration and evalvation

of the spectra.

WAVELENGTH CALIBRATION

In order io calibrate the spectrometer for wavelength we have taken the spectrum of a
standard Mercury. This spectrum appears in figure 8. A wavelength calibration curve was
generated by using the resulting list of measured intensities and associated shaft encoder
values. The peaks in the measured intensities were identified by comparing spectra
supplied by the manufacturer of the lamp with expanded versions of figure 8. This
presented a bit of a challenge in that overlapping orders, which were excluded in the
manufacturer’s spectrum, were included in the calibration spectrum. As a consequence we

were unable to use all peaks in the calibration since all peaks were not identified. The

final set of data consisted of 39 pairs of values and covered arange of 10,000 An

pAYZ R

not including zero order.

70




(wou3sbuy) yadbuaiaaoy

00 "000v} 00 ‘00023 0000003 €0 "0008 00 "0000 00 "000Y 00 "000Z 00° N
NEAREARL AT

:m
g
Avm
m.r
mm
|Tm—*\
i
T8

wnJ3o03dg uo13Duqgl (D) yybuaiaroy DBH -gandy Is

71




It was shown that by use of a sine drive the grating equation could be expressed as a
linear function of displacement. In order to compensate for any inherent non-linearities
in the drive system, we fit the calibration data to a second degree polynomial. The
resulting polynomial has the following form:

A=A +BX)+CX),

were
X = shaft encoder value,
A =-2587,
B =1.518,
C=5.936x 107
and

A = first order wavelength (Angstroms).

This equation is used in the routine which plots the spectra as well as the routine
which evaluates the populations. This polynomial results from a leasts squares fit of the
calibration data. The residuals are defined as the difference between the predicted value
and the measured value. For the final set of data the residuals were on the order of +
0.6A and no greater than + 1.7A .

The resolution of the data collection system, for wavelength values in the 5000 A to
10,000 A range, is about 1.5 Angstroms/shaft encoder value. This is shown by the 1st
degree coefficient (B = 1.518).

INTENSITY CALIBRATION

One of the major objectives of this study has been the measurement of the populations of

the B [T state as a function t;me at a number of different discharge conditions. In

sensitivities of the spectrometer, photomultiplier, and focusing optics. This is
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accomplished by use of aBlack Body Oven at 1273 K + 1 K (Barnes Engineering Co., model
11-201T). A spectrum was taken of the Black Body Oven put in place of the light source
thus calibrating the entire optical system as a unit. The resulting spectrum was stored
as a file and is shown in figure 9.

A computer program was used to generate a black body curve on the same wavelength scale

as the calibration spectrum. This black body curve was produced using the equation,

exp(hc/AkT) - 1 ’

where A = wavelength (Angstroms). This quantity is referred to as the "spectral
concentration of radiant exitance of wavelength A."2* The resulting black body curve was
normalized so that its peak was unity. This puts the Black Body curve on a relative energy
scale and is done merely for convenence. To determine the relative number of photons
being emitted at a given wavelength, for a given temperature, the equation for M(A) must
be divided by the energy per photon, hv or hc/A. The resulting curve is referred to as
the photon flux curve.

The calibration curve results from the ratio of the photon flux curve to the Black Body
spectrum. These computer files are plotted in figures 10 and 9, respectively. Since we
have not sought absolute measurements, this calibration curve has been arbitrarily set
equal to unity at ~8000 Angstroms. Calibration involves the point by point multiplication
of spectra by this calibration curve. Since both the spectra and calibration curve are
computer files, this multiplication takes place within a computer program. This converts

these spectra from units of relative signal to relative numbers of photons. All spectra

‘%
3

A o
A 34ANAS. 4 i

calibration curve appears in figure 11,
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CHAPTER 3 - PROCESSES IN A DISCHARGE

In this section, brief reviews of some of the processes occuring in a discharge are
presented. These processes are divided into two groups, primary and secondary excitation
processes. In this discussion primary excitation processes are those which are due to
excitation by energetic electrons in the discharge. These are the processes which occur
during the current pulse but would be occuring continuously in a DC discharge. Secondary
excitation processes are those which occur after the current pulse and are generally due
to collisions involving excited species in the gas. These would also be occuring
continuously in a DC discharge. The fact that these processes occur in two different
time regimes in a pulsed discharge allows them to be studied separately. Using this
separation and time resolved measurement, the effects of discharge parameters on both the
initial excitation and subsequent relaxation can be independently observed. The following
list is by no means complete, nor have all of these processes been examined in this study.
They are presented both to reflect a review of the literature as well as address the
complexity of the medium under study.

PRIMARY EXCITATION PROCESSES

1. Direct Electctron Excitation - This refers to the process where energetic electrons

in a discharge excite a molecule from its initial electronic state to a final, higher
energy, electronic state. The Born-Oppenheimer approximation is applied in this process.
This states that during an electronic transtition the electronic rearrangement occurs much
more rapidly than does the nuclear motion (rotation or vibration).

For cases where the final state in this transition is an attractive potential, two
things happen.  First, the vibrational distribution which results within a given
potential, is largely governed by the overlap between the initial and final vibrational

wavefunctions (Franck-Condon Principle). Second, the rotational distribution remains




virtually unchanged and initially reflects the rotational spacing of the initial
electronic state.

The relative population of the various excited states depends on the energy dependent
cross sectiors for these states as well as the electron energy distribution in the
discharge.!” The result of this process is the production of the various singlet and
triplet states shown in figure 1.

I1. Dissociation- For the case where final state produced by direct elctron excitation
is a repulsive potential, the molecule will dissociate. The result of this process is
the production of N atoms. %

IN. Ionization - If the electron energies in the discharge are high enough, then
jionization will occur. Again, the Franck-Condon Principle and the Bom-Oppenheimer
approximation apply. Therefore the rotational and vibrational distributions will behave
as discussed under Direct Electron Excitation.

The result of this process is the production of positive ions and electrons. These
play an important role in the maintenance of the quasi-neutrality of the discharge.
During the 4 microsecond current pulse (~700 amps) approximately 2x10'° electrons flow
through a cross-section of the discharge tube. The amount of ionization which occurs will
have to be large enough to balance electron loss processes and satisfy the relationship,

N(ion) ~ N(electron). %

IV. Vibrational Excitation within the Ground State - Excitation of the first few

vibrational levels in N, has been examined in a number of studies. Electron beam studies
by Schultz?’ have shown that vibrational levels up to V = 8 are populated by electrons
with energies in the range of ~1.5 to ~3.5 eV. The measured vibrational cross-sections
oscillate as a function of energy. In addition, the peaks in these cross-sections occured
at different energies for the different vibrational levels. These results complied with

calculations based on a negative ion intermediate, Nz'.
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N(X'E* V=0) +¢¢ > [Ny (XTI, V=0)] -->
->N,(X 'z'* V=1->8+e (1)

It is not unreasonable to expect that as the levels greater than V=0 become populated,
that vibrational excitation by electrons would occur from these levels also. Once
produced, collisions between vibrationally excited molecules will tend to further populate
the high vibrational levels of the ground state.

Massabieaux et al.? have presented results of calculations showing the expected ground
state vibrational distributions as a function of residence time in a flowing N, discharge.
These results indicate that, initially, as the residence time increases the distributions
remain Boltzmann but with elevated vibrational temperatures. For longer residence times
(15 to 50 ms) the distribudon becomes less Boltzmann and shows the presence of a plateau
or over-populated tail. This tail is from about V = 20 to V = 40. By over populated tail
they mean that the high vibrational levels are populated to a larger extent than would be
expected were the distribution Boltzmann and based on the population of the first few
levels.

Other work by Anketell and Brochelhurst ® show experimental results using a weak
microwave discharge to excite the ground state vibrational levels. This was followed by
subsequent RF excitation at various distances down a flow apparatus. Their data showed
changes in the B 3H‘ vibrational distribution which corresponds to direct electron
excitation from a ground state vibrational distribution with an over populated tail An
example of an over populated tail is shown in figure 12.

SECONDARY EXCITATION PROCESSES

1. Radiative Cascading - A number of transtions between excited states in N2 are such

that the lower state of one transition is the upper state for another transition. One
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example is the 2PG (C’I1_->B 311‘ ), feeding the upper state of the 1PG (B 31'1‘ >
A’Zu’ ). An important point in this case is that the 2PG does not feed all vibrational
levels of the B 31'1. state equally. Because the largest contibution is into the V = 0 thru
4 levels®® 3!, this cascade cannot be used as an explaination for the shape of the 1PG
emission curves (see Results I11). Basically the 1PG emission curves all have the same
shape. If cascading from the C 3[1“ state had a significant effect, the 1PG emission
curves of the lower vibrational levels of the B 3I'Il state, would have a different shape
compared to those of the higher levels. This is not the case. This point will be

discussed in more detail in the second section of the results.

Il. Ton-Electron _Recombination -The most important recombination process is
dissociative recombination. This occurs when the incoming electron has sufficient energy
to excite an electron in the ion onto a repulsive potential of the molecule. Then, in
turn, the incoming electron is captured by an unoccupied molecular orbital of the
resulting molecule. The molecule then dissociates along the repulsive potential: the
result of this process is more N atoms. Recombination ratc constants for Nz" are on the
order of 107 cc/sec. This is about 10*° times faster than for other recombination

processes such as radiative recombination.?

ITI. N Atom Recombinavion - As shown above, there are = :..mber of processes which

contribute to the concentration of N atoms in the systems; Dissociation and Ion-Electron
recombination. The N atom recombination process is reported to be a two bedy process
below 1 torr. The mechanism which is reported is:
N('S) + N('s) > [N[°Z " ))--> N,@B°IT , V=13) ()
with a rate constant of,
k(2) = 1.6 X 10" cc/ molecule-sec.'®

There have been other mechanisms proposed which do not inculde the N,( 523* ) state but
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rather the N,(A’E* ) state.”

Regardless of the mechanism, as spectra are taken further from the discharge pulse,
the effect of N atom recombination will become important in the 1PG. During this study no
spectra were taken beyond 200 ps and it appears that recombination has had no significant
contribution in these spectra. None-the-less, as spectra are taken at later times this
process should become the predominant source of B’H‘ state molecules and consequently
1PG emission.

IV Energy Pooling - This term has been used in the literature to refer to the following

types of reaction:

NAZ® J+N(AZE?) >
..... > NYCM) +N,X'Z*) (3)
..... > NCUM) +NX'Z") @)
----- > NBL ) +NX'E") (5)
The rate constants for these reactions are given by Hays and Oskam.”> The values
reported are,
k(3) = 2.5 x 10"'° cc/molecule - sec
k(4) = 2.5 x 10" cc/molecule - sec
k(5) = 1.1(+2/-0.5) x 10°° cc/molecule - sec
An interesting point is that the total rate constant for loss of A 32; state molecules,
by these processes, is given as,
k(tot)=1.4 x 10? cc/molecules - sec
= 1400 flHz/molecule
Relative to other processes this rate constant appears very large. Nonetheless, the

overall rate of this process is expected to be small due to the low concentration of

N,(A’Z * ) molecules in the system.
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V. Redistribution of Vibrational Energy in the Ground State - As mentioned in the

section on primary excitation processes, collisions with low energy electrons can excite

the first few vibrational levels of the ground state of N,
NX'Z' V=0) + e* > NYX'Z " V=1,2,3,derc) + ¢ (1)

Ensuing collisions between vibrationally excited NZ(X 'Z”) molecules will extend this

excitation to higher vibrational levels.? 333

Iy + I + _ Iy + =
NX'E* V50 + NGC'E " V,50) > NV =V, + D+ N 'E* V=V, 1) (6)

The importance of this reaction will be discussed in the results section. The result of
this reaction will be the redistribution of vibrational quanta in the ground state.

VI. Heavy Particle Reaction - As a result of an over populated tail in the vibrational

distribution, excitation between states of the ion, N,", has been postulated to occur via

the following energy pooling reaction,®
1y + 4y 2y + 1y + +nly
N,(X Z. V>12) + N'(X Z' )--> N,(X E' )+N(B L") )

This mechanism could be one possibility for the behavior of the emission curve from the
Nz‘(B 2}2“’ ) state (ING) during the current pulse (see figure 30). Here the increase in
collision frequency at increased pressure would cause reaction (7) to proceed more
rapidly. This may explain why the end of the emission curve in figure 30 rises with

pressure.

VII Intersystem Collisional Transfer - As mentioned in the introduction, numerous

experimental observations have indicated the existence of a collisional process which

! i i nminge alamtmonia cootas Too ablic candl oo
couples adiacent vibrational levels of overlapping clecionic states. In wiis stuay we

examine the effects of this process on the vibrational leve! population of the B 3]'1‘
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state of N,. This is not the only molecule which the study of this process has involved.
Work by D. Katayama and co-workers has involved the collisional transfer of excitation
between different states of N,*, CO* and CN.**3* In the present study the overlapping
triplet states involved are the A 3}3“’ . B 3TIl , W 3Au , and the B’ 322“' . These are
shown in figure 2.

A number of basic observations regarding figure 2 should be noted. First, the B 3I'Ig
and W 3Au potentials overlap very well over the entire range of levels in the B 3r18
state . (see figures 2 and 13). Second, levels in the A 3}3“" state below V = 7 are not
coupled to the B 3I'I‘ state. Finally, levels of the B’ ’Z " state couple to the B 31'13
state such that B 3I'Ig(V~l~4) ~B’3 (V). Another point to be noted in figure 2 is less
cbvious and basicly involves the fact that the minima in the different potentials occur at
different internuclear separations. This effects the values of the Franck-Condon factors
between the vibrational levels of the ground state with those of the excited states shown
in figure 2. As mentioned before, the initial vibrational distributions which result from
direct electron excitation are determined largely by these Franck-Condon factors. If
excitation is occurring primarily from the V=0 level of the ground state the peaks in the
excited state vibrational distributions are expected to be found at the following levels;
A’L! (V=8), BTl (V=2), W4, (V=7)and B"’L (V=7).2¥

Also mentioned above was the fact that the relative population of the various excited
states is determined by the cross-sections associated with these states and the electron
energy distribution in the discharge (current pulse). Consequently, the overall result of
the direct electron excitation process is the production of excited molecules where the
population of adjacent vibrational levels can be initally out of equilibrium.

Values of the expected equilibrium population ratios have been discussed by Benesch and

Fraedrich. The ratio of the populations of the B 3H‘ and B E " states was shown to be
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C= N(B'szu')/N(B My= 3y ) gB3X ) (8)
© QB gBIT)

where the g( )'s are the statstical weights,
g(B"’L )/g®B 311‘) = 1/2 due to lambda doubling
and
Q(B"*Z, QB M) ~ B(B T, )/B(B"’L,)
Here the Q( )'s are the rotational partition functons and the B( )’s are the rotational
constants for the two states. Presumably this analysis would apply to the other excited
states as well.

So what is expected to happen in our system is that first, the states in question are
produced in ratios determined by the electron energy distributions and second the initial
vibrational population distribution within these states are determined by the Franck-
Condon factors. These populations continually emit according to their natural lifetimes.
This represents an imreversible loss of excitaton from a set of coupled vibrational
levels. In addition, the collisions which occur during and after the production of these
initial vibrational populations, will tend to shift the remaining populations toward
values which reflect an equilibrium via the ICT process. This is in accordance with Le
Chatelier’s principle, in that the system has been prepared out of equilibrium and so
tends to shift so as to bring itself back into equilibrium. This shifting of populations
will be demonstrated in section(IV) of chapter 4.

Studies by Katayama et al. involving ICT between states of Nz*, have shown evidence for
certain selection or propensity rules for this process® . These rules involve changes in

symmetry and rotational quantum number. The rule for symmetry changes was found

to be,
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S<-->8 A<-->A ,butS<-I->A (9)
For changes in rotational quantum number, their study showed a propensity rule of
Al~0 (10)
which was prefered to
AE~0 (11)
In discussions in our laboratory the spin slection rule
AS=0 (12)
is also considered to be strong but the role of transitions between the overlapping

singlets and the B 3I'I' state is not certain.
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CHAPTER 4 - RESULTS (I) - SPECTRA

To begin the chapter on the results, a discussion of the spectrum studied is in order.
Asmentioned previously, the primary spectrum which we have observed is the 1PG (B’I'I' -
>A 32'.“* ). An example appears in figure 14. Looking at this figure from left to right, we
see four distinct sets of vibrational bands or sequences. They are the sequences 3V =
4,3,2, and 1 respectively. Here, 8V implies change in vibrational quantum number. An
important point which one should notice about this spectrum is that different sequences
feature different sets of vibrational levels in the B 31'1‘ state. Starting at the left,
dV=4showsbandsduetoV =12through6,8V=3shows V= 10through3,8V=2showsV =7
through 2, and 6V=1 shows V = 3 through 1.

By looking at changes within a sequence, we are able to watch changes in the relative
population within a given set of levels. Also, by observing relative intensities of
different sequences, the behavior of different groups of levels can be observed. It must
be kept in mind that these observations are only qualitative and that the important
comparisions arise from the overall vibrational distributions. These distributions result
when we analyse entire spectrum  Still, the initial work in this study involved the
spectra alone and so they warrant some consideration.

These observations show the role of collisions in producing similar distributions of
band intensities. They also show features which would go largely unnoticed were one to
look at the distributions only. In this section we discuss a number of these
observations.

One of our first observations was of the change in the relative intensity of the (2-0)
band of the §V=2 sequence. As spectra are taken at times further from the current pulse,
the intensity of the (2-0) band increased relative to the other bands in the sequence (see

figure 15 & 16). Our motivation for pursuing this observation came from spectra taken of
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an RF discharge of N, These spectra showed that, as the pressurc was increased the
relative intensity of the (2-0) band increased as well (see figure 17). Our initial
assumption was that this change was due to collisions. The time resolved pressure studies
which were done have borne this out in part. There is a contribution due to the larger
lifetimes of the Jower levels but as we will see, collisions play the predominant role in
the changes following the current pulse.

In figure 15, the 8V=2 sequence has been observed from I to 9ps at 400 p of N,. The
discharge frequency was ~5 Hz. This series of spectra show the increase in the relative
intensity of the (2-0) band with increased time. The distribution does not change much
between 8 and 9 ps, nor between 1 and 4 ps. The distributions in section (IV) (figure
48), show that the percent population for v = 2, 3, and 4 stablize at about 12 jis rather
than 8 or 9 ps. Since the distribution doesn’t change much during the first 4 s of the
curreni pulse, we will consider the salient collisions to be occuring between 4 and 12 ps.
At 400 p of N, with T = 300 K, the gas kinetic collision frequency is about 2.7

collisions/ pts. The number of collisions which have occured at the time of equilibrium is
(2.7 #/ ps) x (8 us) ~ 22 collisions

For the case of 8V=2 at 40 p of Nz’ a much larger amount of time is required to
achieve this equilibrium distribution (figure 16). Here, the discharge frequency is ~35
Hz. From this figure, the equilibrium distribution appears to stabilize some where
between 60 and 160 ps. Again from the results of section (IV) (figure 55), the
distribution stabilizes at about 100 ps. The gas kinetic collision frequency at 40 W is

~0.27 collisions/ ps, so the number of collisions required here is,
(0.27 #/ us) x (~ 96 ps) ~ 26 collisions

So from this we see that it takes about 24 collisions to reach this equilibiium

9.
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distribution of band intensities, regardless of the actual amount of time involved.

Another series of spectra involves the 8V=3 sequence (figure 18). These spectra were
taken at 40 p and 35 Hz from 1 to 200 ps. Notice that as in the previous series, the
distribution of band intensities remains largely unchanged between 60 and 200 ps. Also
the initial and final distributions are virtvally identical. In addition, between 6 and
30 ps the (7-4) ancd (6-3) bands increase relative to the other bands. This increase in
the population of V = 6 and 7 is evidence for ICT from an adjacent electronic state. The
proof, discussed in section (IV}, is based on the observation that the peak in the percent
population for V = 6 occurs at a constant number of gas kinetic collisions after the
current pulse and is not time dependent.

A point which was not mentioned above is that the absolute intensities of the
vibrtational bands of figures 15, 16, and 18 change with time. These three sets of
spectra were taken so that the largest bands all had about the same peak intensity. In
reality, these intensities increase for about 3 to 4 us and then decay away. If we set
the system at a constant gain and take spectra at 1 or 2 ys intervals, the overall 1PG
spectrum can be seen for a given set of conditions. This is shown in figures 19, 20, and
21. These figures show the spectrum for the systemrun at 15 Hz and 150 it of N,, from 0.5
to 20 ps. It should be noted that this spectrum (figure 19) required about half a million
pulses to produce.

It is difficult to extract much information directly from this spectrum. We are able
to see the change in V=2 which was just discussed (compare initial and final §V=2
sequences). Also there is an apparent change in the relative intensities of the §V=4
bands. The most important observation is that the changes in the relative band

. .0
mmtoncihac A/ oy a2t va
ANV UIVIMWIN DG Vvv il UL YL

for time resolved measurement in the study of a pulsed discharge of this type.
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To extract information from these spectra, we have measured the percent populations
from the individual spectra for each time and they are plotted in figure 22. This figure
shows the distinct increase in the percent population for V = 2 which was shown in the
8V=2 sequences discussed above. Also, there is a peak in the distribution for V = 6 as
was seen in the increase in the (6-3) band in the §V=3 sequences. We will discuss plots
of this type in greater detail in section (IV) of chapter 4. They are presented here so
that their relationship with the spectra will be clear.

One final series of spectra will be discussed, the §V=4 sequence in figure 23. This is
perhaps the most significant observation made in this study. In the last two frames of
this figure there is a large spike in the short wavelength (left) side of the (10-6) band.
Returning to figure 18, this spike appears in the (10-7) band as well. In the original
spectrum, these bands are of similar intensity. Consequently, this spike is of a similar
magnitude for both bands. The (10-6) band at 160 ps, is characteristically different then
the other bands present. The width of these bands is produced by emission from a
rotational distribution at the V = 10 level. Clearly this distribution is distinctly
different from those of the other levels. At 160 ps all these levels are being fed by a
secondary excitation process (see chapter 4 - section IIT).  Understanding the source of
additional population would greatly clarify this process.

An interesting experiment would be the observation of emission from the levels, B’ 32;
(V=6)or W’A'1 (V=11). These are the vibrational levels which are adjacent to B’I'I‘ (V=10)
and so are are possible coupling partners. If the above feature is due to ICT from one of
these two states, bands which arise from these levels would show an uncharacteristic
depression in the band shape; the band would have a hole in it. The (6-3) and (6-4) bands
of the B"Eu’ toB 31'1. systemn (IRA) are possible candidates. Both have large transition
probablities (~10°Hz) though they appear at wavelengths near 10,000 A.* This could make

them difficult to detect at this time after the pulse. There also might be interference
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with 1PG bands in this region. Regardless, the above feature is pervasive in the data of
this study. Consequently, it is the result of a dominant process at work in these
experiments and is therefore an important component in the events which produce the

results of this study.
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CHAPTER 4 - RESULTS (1I) - EMISSION CURVES

One of the distinctive features of the pulsed discharge is the shape of the emission
curves produced by three of the emission systems of N, and N, *. Three examples are shown
in figures 24, 25 and 26. In these figures the spectrometer is tuned to a specific band
in the spectrum and the repeated light pulse is observed as a funtion of time. These data
were all taken with the Boxcar Integrator and a strip chart recorder. They were then fit
to the scales as shown. The discharge frequency for all three emission curves is 35 Hz
and the system pressure was 400 1 of flowing N,. The above figures correspond to the 1PG
(1-0) band, 2PG (0-3) band and the ING (0-2) band respectively. Asdiscussed previously
the 1PG is due to the (B 3r1‘ > A 32;' ) transtion in the molecule, N,. The 2PG arises
from the transition (C 3Hu ->B ’H' ) in the molecule, and the ING results from the
transition (B 2Eu* >X 22"' ) in the ion, Nz*. ING and 2PG spectra are not shown.

As illustrated in these figures, each transition yields a unique emission curve or
emission pulse. The primary difference between these three curves is the position of the
peak; the 2PG at ~1 to 2 s, the ING at ~ 3 ps and the 1PG at ~3 to 3.5 pts. More accurate
measurements with the oscilliscope show that the 2PG pulse peaks at ~1 yis (figure 27).
Further observations show that this distinctive behavior is relatively invariant with
pressure for the 1PG and 2PG. The behavior of the ING, on the other hand, varies
dramatically as a function of pressure. These observations are seen in figures 28, 29 and
30.

Regarding the ING emission pulse, a possible explanation could be associated with the
increase in the plateau voltage with increases in pressure (figure 5). The rise in the
end of the ING emission pulse with increasing pressure could reflect direct electron
excitation of ground state molecular ions generated during the first two microseconds of

the current pulse. This explanation is more likely than the one based on a heavy particle
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reaction as proposed in chapter 3. A study of the ING emission pulse as a function of
frequency as well as pressure should distinguish between these two processes. This is due
to the varying amount of vibrationally excited molecules present at different frequencies
(see chapter 3 and chapter 4 - section §).

If we consider the 1PG and 2PG, there are a number of important relationships and
distinctions between them. First, the 2PG emission appears to follow the drop in the
voltage during the current pulse. This is seen when we compare the 2PG emission puise of
figure 27 with the voltage trace of figure 16. Note that the majority of the voltage drop
occurs within the first two microseconds. One microsecond is the point where the 2PG
emission peaks, and is then followed by a slow decay. However, if excitation of the C’Hu
state stopped at 1 ps, the decay would be much more rapid than shown. This is expected
since the lifetime of the C 3TIn state is on the crder of 40 to S0 ns.!” Therefore, given
the data of figure 25 and 27, excitation must still be occurring after 1 ps.

In comparison the 1PG curve peaks at approximately 3.5 s, near the end of the current
pulse. The question which arises is, why does emission from the 1PG continue to rise all
through the current pulse whereas 2PG emission drops rapidly during most of the same
pulse?

A possible explanation arises from the fact that 2PG emission represents cascading into
the the upper state of the 1PG. Consequently, one can argue that the 1PG curves peak
later in the current pulse due to cascading from the C 3H_ state. This is unlikely,
however, since the 2PG feeds the lower vibrational levels of the B 3H‘ state
preferentially.** 3! Data used to produce the long time decay curves of the next section,
show that emission from vibrational levels 1, 2, 5, 8 and 12 of the B 31'1‘ state, all peak
at approximately 3.5 ps. This implies that although cascading may have an effect on the
!0 peak near the end of

the current pulse.
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A second difference between the B 31'1. and C 3nn states is the lifetimes associated
with their vibrational levels: 0.044 to 0.048 ps (C°[1_ ,V=0 thru 4) and 8.9 to 4.6 yis
(B’l'l‘ , V=0 thru 12), 1'cspc::tivcly.19 This shows the B 31'!. state lifetimes to be roughly
two orders of magnitude greater than that of the C’Hﬂ state. Presumably, the effect of
the larger lifetimes of the B 31'1‘ state would tend to spread the emission pulse over a
larger amount of time. An analysis based on the different lifetimes of these states is
presented in appendix A.

Finally, an other process which could be responsible for the continued rise in the
B3l'I‘ state emission pulse is collisional coupling from adjacent vibrational levels of the
A®L*, B’ and W3A states. In this case molecules which are initially excited
into these states would be coupled into the B 31'1' state by collisions. This would
require the initial population of the vibrational levels of these states to be larger than
those of the B 3ﬂ. state. Collisional coupling would then cause the population to flow
into the B 3H‘ state. This type of process would not be possible for the C 3Hn state
since it has no nearby state with which it could collisionally couple. Unfortunately, we
have not made direct measurements of the vibrational level populations of these adjacent
states. This makes it difficult to gauge the effect of collisional coupling from these
levels during the course of the current pulse.

For a complete explanation of the observed B 3H' state emission curves, the inclusion
of all three of the above processes would be necessary. This would require a full set of
emission curves from the 13 observed B 3H‘ state vibrational levels, taken at various
pressures and frequencies. These traces would need to be of greater accuracy than the
present data since slight changes in the position of the peak or the initial decay after
the end of the current pulse, would be significant indicators of the predominant processes

which are taking place in this time regime. Other required information would be the
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relative populations of the C 3Hu state vibrational levels, which one would need to
determine the component of the B 3II‘ state populations due to cascade. Also, some
estimate or measurememt of A 32“* , B 32; and W 3An state populations would be
required as well.

To sum up, the above results for the 1PG and 2PG show only slight changes with
pressure. Nonetheless, these are significant and would be important in a more complete
analysis. Second, due to the proximity of the B 31'1‘ state to other electronic potentials
and its role as the recipient in the 2PG cascade, emission from B 31'1' state vibrational

levels necessarily shows the effects of multiple processes ocurring within the current

pulse.
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CHAPTER 4 - RESULTS (1) - LONG TIME DECAY CURVES

In figures 35 thru 39, the decay of specific bands of the 1PG have been followed at
three different pressures; 30, 120 and 400 p of N,. Agin, all curves were taken at 35
Hz. The 1PG bands shown are (1-0), (2-0), (5-2), (8-4) and (12-8). These bands are
generally free from overlap of other 1PG bands with the exception of (2-0). Table 1
indicates the estimated amount of overlap and the overlap band. These estimates are based
on the ratio of populations at 4 ps (50 p, 32 Hz) and the ratio of the transtion
probabilities of the measured and overlap bands. Since the percent populations of the

upper levels decrease with time, these values of percent overlap will also decrease.

TABLE 1 - LONG-TIME TAIL OVERLAP BANDS

BAND OVERLAPBAND % OVERLAP@ 4 us

(1-0) (6-6) ~4%
(2-0) 8-7) ~12%
(5-2) (12-10) ~6%
(8-4) - ~0%
(12-8) - ~0%

Note that in the following figures, the intensity is on a natural log scale so a
decrease of one unit on the y-axis corresponds to a drop of 1/e in intensity. Each curve
was collected as a number of chart recordings with each of the charts overlapping other

charts as necessary. In general we have taken data from these charts at the following

intervals;
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SET TIME RANGE

1 0to20pus (Bt=1ps)
2 10to 50 ps (8t=2or S ps)
3 15 to 100 ps (5t = 5 ps)
4 80 to 200 ps (6t = 10 ps)

For a given curve, we calculated multiplication factors for the normalization of each
chart to a common scale. The resulting curves were then scaled to the same peak value.
The data for these curves appear in tables 2 thru 6. The scaling factors and std. dev.
appear in table 7.

These curves show a number of interesting and significant trends. First, for each set
of curves, the initial slope increases with pressure. Since these curves are on a natural
log scale, these slopes are the apparent lifetime of the indicated B 3H‘ state vibrational
level. Consequently, these results show a decrease in the apparent lifetime of these
levels with increasing pressure.

This trend of increasing slope with increasing pressure is clearly evident for three
of the five figures shown; V = 5, 8, and 12. In the case of V =1 and 2, the curves for
120 pt and 400 p cross (figure 35 and 36). Regardless, if we consider only the inital
slopes, the general trend is for the apparent lifetimes to decrease with increasing
pressure.

Another very striking feature of these curves is the level to which the intensity drops
before the curves begin their long time behavior. The behavior seen is that as we
decrease the pressure, the decay curves remain at higher values when this long time tail
begins.

The third point to be noted involves the slope of the long-time tail as a function of
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TABLE 7 - SCALING FACTORS AND STANDARD DEVIATIONS

FOR LONG-TIME TAIL DATA
Pressure (microns) 30 120 400
Band Set
(1-0)1t02 1 30.09 | 47.74 1 79.04 |
(110 3) | 0.443 I 2.77 I 1.79 |
| | | |
2103  — | 15.25 |1 26.70 |
[ 1 0.381 I 1.82 |
I | | I
3104 | 9.168 | 11.98 | 18.48 I
| 0.145 1 0.262 ! 0.650 |
(2-0)1t02 | 44.03 | 63.62 I 100.2 I
(Btol) 1 0.832 I 3.50 I 2.13 :
| | |
2103 [ | 20.38 | 32.13 |
[ | 2.07 | 2.89 I
| | i |
3t04 | 8.293 | 14.07 | 23.09 |
| 0.218 | 0.182 1 0.850 |
(5-2) 1102 | 59.94 | 119.1 | 200.7 |
(1t03) | 0.690 | 1.34 | 7.18 :
| | ]
2103 J— | 32.95 | 48.26 ]
[— | 0.826 I 2.75 |
I | | |
3to4 1 10.12 | 21.34 | 21.84 |
| 0.1918 | 0.364 { 0.990 |
(8-4) 1102 | 63.46 | 115.0 | 161.1 |
(1t03) I 2.16 | 3.05 1 132 !
I I | |
2t03 [ | 29.44 I 48.37 |
b ooeees | 1.94 I 0.996 :
| I |
3t04 | 12.16 | 19.40 1 19.24 |
| 0.295 | 0.291 1 1.09 I
(12-8) 1102 1 79.82 | 144.5 | 188.2 |
(1t03) I 230 I 9.06 | 3.29 :
I | |
2103 | 36.23 | 45.25 | 31.83 I
| 145 | 2.37 | 198 :
| I |
3104 | 19.18 | 18.84 1 13.02 f
i 0.879 i 0.430 i 0.257 i

upper entries - scaling factor lower entries - standard deviation
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pressure. Other studies?!

have expressed these curves as a sum of expontials. This
form assumes that the processes contributing to the decay are first order. Considering
this assumption valid for our system, time constants for these curves were calculated
between 100and200ps. These weredetermined eventhoughthedatashowedsomecurvature.
The values obtained are shown in table 8. The present results do not show a dramatic
change in the long-time slope with changes in pressure. The long-time decay constants do
tend to increase as the pressure is increased (see table 8).

As mentioned in the introduction, similar behavior in decay curves has been seen in

past studies.?!

For comparison, Shemansky’s data are plotted in figure 37 with the
present data. This figure is for the (5-2) band whereas Shemansky’s data are for the
(5-3) band. Regardless, both correspond to decay of the V = 5 of the B 31’1' state.

Shemansky’s experiment differed from the present study in that he used an electron
beam. His source was reported to have a "0.5 eV half width at 10 eV." ' The electron
energy for this data was given as 11 ¢V and at a pressure of 3 p1 of pure N,. This was a
pulsed experiment with an electron beam pulse length of 10 ps and a total period of 210
ps. This corresponds to a frequency of approximately 4800 Hz (~5 kHz).

If we compare Shemansky’s data with the present study we see that, first, the initial
decay component for emmision from a given level increases with pressure as seen in this
study (the lifetime decreases with increasing pressure). Next, the point where Shemansky’s
long time behavior begins, occurs at a much lower relative intensity than in this study.
This is at odds with the present results where the point of crossover, to long time
behavior, occurs at lower intensity for higher pressure. Finally, the decay constants
associated with the long-time behavior of Shemansky’s curves changes dramatically with
pressure. The trend in his results is for these decay constants to decrease with

increasing pressure. The present results, on the other hand, show no dramatic change with
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TABLE 8 - LONG-TIME TAIL DECAY CONSTANTS

Pressure -> | 10y b 30u | 120p I 400p

I(Shemansky)! (Present Study)

Vibrational | Upper value § Decay constant (MHz)

Level | Lower value FApparent Lifetime(us)

| aeee RS I oo |-
0 |- P eee- | eees |-

| 9E-3 | 11E-3 | 13E-3 I 17E-3
1 I 111 I 91 I 78 I 61

| 7E-3 | 12E-3 i 14E-3 | 14E-3
2 I 250 | 83 I 72 I 69

| 4E-3 R | eees I -
3 I 250 [ e [P |-

| SE-3 | -ee- [ eeee |~
4 I 200 |- | -ees | —-

| 4E-3 I 11E-3 | 12E-3 | 12E-3
5 I 250 | 88 I 83 X

| 9E-3 I eeee |- | =
6 | 111 I eee e | ~

| 4E-3 |- [ - | —--
7 I 250 R |- | e

| 5E-4 I 8.6E-3 | 11E-3 | 12E-3
8 i 2000 | 116 I 90 | 87

| 4E-4 | e-e- I --e- |~
9 I 2500 | ---- | - | —---

I 7E-3 I e--- | - |-
10 | 143 I - |- | —--

| 7E-3 I eeee boeee- | =
11 I 143 I ---- | ---- | —--

| 4E-3 I8.1E-3 I 10E-3 [ 11E-3
12 I 250 1123 I 99 | 88
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pressure and the trend is for these decay constants to increase with increasing pressure.

An important difference between the present experiment and any low energy beam
experiment involves the production of vibrationally excited molecules by electrons. In
light of the value of the electron beam energy used to generate the excited electronic
staies, E > 10 eV (see table 9), very little vibrational excitation will occur. This is
because the cross-sections for vibrational excitation by electrons peaks between 1.5 and
3.5¢V.7 Also, in a beam experiment, the region of the chamber being excited is usually
a small fraction of the total volume. Consequently, any vibrationally excited molecules
which do result, would not tend to raise the vibrational temperature of the gas.

The present experiment offers two differences when compared to a beam experiment.
First, the excited species which result are produced by a distribution of energetic
electrons. This tends to produce species with a wide range of energy content relative to
the ground state. This includes vibrationally excited ground state molecules. Second,
approximately 2/3 of the entire volume of the chamber is excited during each pulse. Asa
result excited species do not diffuse out of the field of view as was the case with
Shemansky’s experiment. One effect, of these two differences, is that the vibrational
temperture of the gas appears to become clevated under certain conditions. We will
discuss this later in mnre detail (see chapter4 - section V).

Other pulsed discharge experiments by Hays and Oskam show evidence for the following

two reactions, >

NA’L) + NYA'E) > N2(BT, C’T1, or C°I) + N,X'Z")* (1)
and
NJAZ) + NX'E ") > NAE VT + NX 'L ) -->
3 1
->NEBTD+NX'E) (@)
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TABLE 9 - ELECTRON CROSS-SECTIONS AND PERCENT

PoPULATION BETWEEN 11 AND 12 eV

Energy | Electronic States - Cross-Sections (1E16 cm?)
I I | I | | | |
A IB IW IB la la Iw IC
I | | I ! | | I
1 10.148 10.278 10.166 10.055 10.045 10.099 10.071 1 --- |
| | | ! ! | | | !
11.5* 10.160 10.289 10.190 10.065 10.054 10.120 10.085 10.073 |
! | | | ! | i | !
12 10.17110.299 10.213 10.074 10.062 10.140 10.099 10.146 |
Energy | Electronic States - Ratio to B State
I I | ! | | | I |
A IB IW IB la la Iw IC |
I | ! ! I | I |
11 053 1'1 10.60 10.20 10.16 10.36 10.26 |---
I ! | [ I ! | I
11.5 1055 11 10.66 10.22 10.19 10.41 10.29 10.25
I I I I I I I I
12 057 11 1071 10.25 10.21 10.47 10.33 10.49 |
Energy I Electronic States - Percent Population
I I I I I I I I I
A IB IW IB Ia la Iw I1C |
! I I | | I I I !
11 117 132 119 164 151 112 184 |- |
I I [ I | | | I |
11.5 15 128 119 162 153 112 181 17.0 |
I I I I [ I I | |
12 114 125 118 162 152 112 182 112 |

* => Based on extrapolated values between 11 and 12 €V,
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where N.(X ‘Z")' is a vibrational excited ground state molecule.
The first reaction is undoubtedly occuring in beam experiments as well as ours. The
second reaction, on the other hand, would only be expected to be occuring in our system.

As mentioned, other results of this study (chapter 4-section V) have shown that the
apparent vibrational temperature increases under most conditions. Table 10 lists the
estimated vibrational temperature and concentration of ground state molecules with V> 7,
expected for the conditions used for the long time curves. The ground state level, V=7
was chosen since it represents the minimum energy required to excite the V=5 level of the
BT, state from the V=3 level of the AL * state. The V=3 level of the AL * state has
the largest Franck-Condon overlap with the V=5 level of the B’I'I‘ state.

The estimated values of this table shows that as the pressure increases, the density of
ground state molecules with V>7 decreases, within the errors of the measurments of
section V. These values were estimated by fitting a straight line through a plot of the
log of the measured concentrations vs pressure. We have taken the estimated values from
this linear fit.

Returning to figure 37, a possible explaination for the difference between our result
and Shemansky’s is that, as the concentration of vibrationally excited molecules decreases
(going to higher pressure), the curves of this study approach Shemansky’s low pressure
data. His experiment is expected have been generally free of vibrationally excited
molecules so his results can be viewed as a baseline for the effect of this excited
species.

This explanation does not account for the effect of the difference in pressure on
these two sets of data. Nor does it address Intersystem Collisional Transfer (ICT)
between the B 3“; state and other states, besides A 32"*, which is necessarily occuring.

It is difficult for us to estimate the effect of ICT in the above decay curves. It is

126




TABLE 10 - Measured and Estimated Amounts of [N2*(X)}

| I density | | fraction | !
P{u] 1Z{#/us] 1[#/cc) ITv[K] 1inV>7 IN2(X)* [#/cc) !

| | | I
400 I 27 [1.287E161 1980 | 6.60E-6! 8.49E10 I
I | I #64 | 42.8E-61 +3.6E10 I
! | | : -2.1E-61 -2.6E-10 I
| | | | |
200 I 1.3 16.435E151 2100 | 1.31E-51 8.43E10 |
| ! I #29 | +.14E-51 +0.90E10 I
| I I : -.14E-5 : <0.90E10 ;
| ! I
50 I 03 I1.609E151 2540 | 9.16E-5! 147El1 I
! | I #102 | +3.9E-51 +0.62E11 !
| ! ! | -29E-51 -046E11 [
! | !
l [ eoees ESTIMATED VALUES ----- |
! | i I I I
400 I 2.7 I1.28E16 111920 | 4.5E-6 : 5.8E10 :
| ! Il |
120 : 0.8 13.86E15 112220 1 2.3E-5 | 9.0E10 I
| i I I |
30 b 0.2 I9.65E14 112620 | 1.2E-4 | 1.12Ell I

Values of Tv where taken from table -- for the case of 32 Hz

discharge frequency and the above pressures.
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obvious that B’H‘ state molecules are being produced by some secondary process long after
the initial excitation pulse. Once the B 31'1. state molecules are produced, the population
will tend to redistribute itself amongst the adjacent states. This should have the effect
of extending the apparent lifetime. What the above long-time data shows is apparent
liftimes of 60 to 80 Ms, or a factor of about 10 greater than the natural lifetimes. It is
doubtful that ICT alone could increase the lifetimes by this amount. Consequently, these
decay curves probably represent the effects of other processes as well. These processes
are most likely reactions (1) and (2) above.

In order to disentangle the effects of reactions (1) and (2) above, as well as the role
of ICT, further data is required. The present results show that a decrease in the
concentration of vibrationally excited molecules coincide with a more rapid decrease in
the intensity, as a function of time. Unfortunately in these figures, this decrease in
concentration occurs with an increase in pressure and so collision frequency. Changes in
collision frequency will undoubtly effect the rates at which these processes occur.

This decrease in vibrationally excited molecules can also be achieved at a constant
pressure by a decrease in pulse discharge frequency. Therefore, the role of vibrationally
excited molecules would best be shown if we examine decay curves taken at constant
pressure and over a wide range of discharge frequencies. We would expect a trend similar
to that of the present data, but it would not show the effect of the variation in
collision frequency which makes the above curves difficult to interpret. It would,
however, clarify the role of vibrationally excited molecules in the production of B 3I'I‘

state, upon which these results appear to depend.
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Tables 2 through 6. The pressure at which the curves were taken appear at the top
of each pair of columns. The left column of each pair is the time in micro-seconds and
the right column is the natural log of the intensity. All curves have been normalized to

9.5 at the peak.
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Table 3 - HZ DECHY CURYES - DATH
) (2-@) BAND
3¢ MICRONS 126 MICRONS 439 MICRONS
0 0 @ e ) e
- 1 6.43 1 8.36 1 7.47
2 8.5? 2 9.16 2 8.84
3 9.28 3 9.48 3 9.41
N 3.?5 9.45 305 905 3-?5 9'5
4 9.5 4 9,41 4 9.48
6 5.1¢ 6 8.81 £ 9
n 8.98 7 8.62 7 8.78
8 8.78 8 8.47 3 8.62
9 8.€61 9 8.36 9 8.46 ;
10 .47 10 €.29 10 8.3¢ .
11 8.39 11 8.19 11 8.23 :
12 8,26 12 8.69 12 8.11 :
13 8.17 13 8.02 13 7.99
14 g.11 14 7,93 14 7.9
15 7.99 15 7.89 15 7.83
1€ 7,85 1€ V.8 16 7.68
17 7.79 17 7.72 17 7. 59
18 ?.7¢ 18 7.68 18 7.49
19 7.61 19 7.63 19 7.42
20 7.54 2u 7.62 20 7.24.
25 7.25 25 7.25 25 6.9?
20 7.09 3@ €,98% 39 €. 58
39 6.9 35 €.7 29 5.4
49 6.74 44 €.57 4@ .15
45 6.59 4% €.43 45 $.93
S0 6.42 1% €.21 S5e 5.81
S5 6.3 S5 5.99 55 5.56
€0 6.2 €0 5.87 17 S5.44
65 6.03 6% 5.74 S 5.29
’e 6 71 5.58 79 S$.15
75 5.86 75 5.51 figs S.e4
=37 S5.81 81 5.41 =0 4.94
€S 5.7 g8 5.32 35 4.83
90 S5.62 S0 S.23 20 4,73
95 5.52 95 S.1 95 4.6
10 S5.44 166 S5.02 1866 4.53
- 118 5.31 116 4,85 118 4.31
120 S5.15 128 4,67 126 4,14
- 136 5.01 120 4,49 1306 3.96
140 4,37 1442 4,28 140 3.79
15 4,7 150 4,16 154 3.62
160 4.¢€ 120 4,0: 160 3.54
- it 4.53 ity 3.93 i7% I
180 4.44 150 3.85 186 3.29
196 4.38 198 3,71 19¢ 3.17
200 4.:3 208 3.€5 200  3.83
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Table 4b - N2 DECAY CURVES - DATA
SHEMANSKY 95-3) BAND

3 MICRONS ?
4 9.5
14 7.89
24 6.4 :
34 5.16
44 4.81
54 4.2
64 3.79
74 3.51 3
84 3.23
94 3
104 2.69
- 114 2.54
124 2.37
134 2.08
144 1.9
154 1.77
164 1.686
174 1.51
184 1.32
164 1.21
200 1.03

I T T L
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N2 DECAY CURVES - DATA

Table 5 - (8-4> BAND

' ; ONS
30 MICRONS 120 MICRONS 436 MICRO
© 0 1 7.73 1 2.3
1 7.11 5 e ! 23
39 S o ¥ 3 9.39
3 ) 3.75 9 3.75 9.5
3.75 9.49 : 3 a8 ] 33
4 905 5 9.26 5 9.1
s 9.42 g 551 ; T
6 9.19 > 8 66 ¢ 8.7
8 8.74 5 8 07 : g. 26
; 83 1o 8.16 16 7,92
1 23 11 8.0l 11 7.75
Ny 12 7.9 12 7.59
13 7.99 14 7.66 13 7.4
14 ?7.91 15 7.59 14 7.33
15 7.78 16 747 1s 742
s i 17 7.36 17 6.96
19 7.48 20 7.13 29 6.69
2o 7,39 S5 679 22 659
TS 3 6.4 31 5.89
R 35  ©.19 5 5.68
53 6.39 490 €.03 30 5,49
P ot 45 9.8 45  5.36
45 6.17 S8 5.63 gy 5.2
560 6.82 55 5 43 2 L,
i 65  5.17 55 4.8€
€5 5.67 70 5.07 5 4. 76
Y 75 4.96 75 4.63
7S 5.44 8 4.88 SR
ga  5.35 g5 4.74 D A4
% 9%% 90 4.66 90 4.3
I 95  4.59 35  4.18
e i 108 4.43 100  4.09
109 4.99 110 4.28 116 3.92
1o &l 136 3.96 130 2.62
136 4.58 135 3.81 e 282
138 43 156 3.72 150 3.38
158 4,35 156 .51 lco  3.2¢
170 4.25 120 3.45 180 3.0¢8
180 4,22 198 2.37 15 305
152 1S cow 3.3z za9  2.95
200 4.1
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Table 6 -
30 MICKONS
0 e
| 7.05
2 8.42
3 9.19
4 9.47
4,25 9,5
S 9.45
6 9.26
7 S.1!
8 8.93
9 8.75
19 8.61
11 8.47
12 8,32
13 8.17
14 8. Q&
1S ?7.97
16 7.84
1?7 7.74
1€ 7.€3
19 7.53
24 7.43
25 .93
39 €.t
35 €.28
49 6. 04
45 5.78
=L S.57
S5 5.38
£8 5.17
€5 5.02
70 4.93
7S G.82
29 4.74
€5 4.58
90 4,53
95 4.42
150 4.39
110 4,26
12@ 4.13
130 4,01
140 3.94
.‘B 3 . 38
188 3.78
178 3.72
188 3.€6
150 3.€62
200 3.%5¢€

N2 DECRY CURVES - INTH
(12-3»

BAND
128 MICRONS

e (%]

1 T

2 £.93
3 9,32
3.7% 9.3
4 9.4%
5 9.24
€ g.9%
7 g.78
8 g2.48
S g.2¢
19 S.14
11 V.94
12 7.79
13 7.59
14 T.47
1% V.30
1€ 7.23
17 7.09
12 5,98
19 €.89%
20 .76
25 €.
39 €

35 S.73
49 . 5¢
45 9,38
59 S.21
5% .02
€n 4,93
€5 4,86
70 4.7¢
ras) 4.54
£ 4,58
36 4.44
99 4,39
98 4.34
108 4,258
116 4.1
120 3.98
130 2. 84
140 2,73
150 3.64
1€09 2.54
176 %, 4%
154 3.36
130 3.3
20a 3.25
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CHAPTER 4 - RESULTS (IV) - POPULATION PLOTS

The major body of data which we will present involves the change in time of the
vibrational populations of levels 1 thru 12 of the B 311' state. These data make up a
matrix of pressure and frequency conditions at which the discharge was run. The
conditions are,

Pressures => 50, 200, 400 ps
Frequencies => 5, 15, 32, 50 Hz
Cumrent  => 600 amps peak
Therefore, each of the resulting catz sets are elements of a 3x4 matrix composed of the
above conditions.
1PG spectra covering the sequences 8V = 1,2,3,4 were taken at times from 0.5 to 200 ps.

The time ranges and intervals are listed below.

TIME RANGE INTERVAL

Oto 10 s 1 s
1010 20 ps 2us
40to 200 ps 40 us

An example of one of these spectra appears in figure 14,

Spectra from 0.5 to 20 |'s were taken for each combination of pressure and discharge
frequency above, at constant photomultiplier tube (PMT) voltage. In order to optimize the
signal at 3 s we were required to vary the PMT voltage for each set of conditions.
Later we normalized the results to the same relative population scale by a set of spectra
taken at 3 ps and eacn of the above sets of conditions. This set of scaling spectra were

all taken with the same PMT voltage. The results of this procedure showed that the

overall intensity of these scaling spectra increased with increast

nc
NS VP aANEE AEMWALUONS

shown by the increase in the scaling factors with increasing pressure (table 24). This
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implies that the total number of excited molecules in the tube is increasing with pressure
as well. The fractional excitation, however, does decrease with increasing pressure.
This is found from the ratio of the scaling factors to the density, for the three
pressures.

The following collection of tables and plots result from about 300 spectra. All were
calibrated with the calibration curve discussed in chapter 2. The populations were
determined from the spectra using a computer program that integrated band intensities
over a constant wavenumber region around the band origin of each vibrational band
considered. A total of 26 bands were analyzed from each spectrum with the resulting
populations of each level reflecting the average of at least two bands, except for V = 1
and 12. The transition probabilities and band orgins of Shemansky and Broadfoot!® were
used to correct for overlapping bands and determines the populations. These values appear
in table 11. The upper entries are the band origins in Angstroms and th~ lower entries
are the transition probabilities in Hz.

The resulting populations appear in tables 12 thru 23 and figures 40 thru 51. These
tables and figures appear at the end of this section. In the tables, the left hand column
is the time when the spectrum was taken. All time values are relative to the start of the
current pulse. The top row of numbers indicate the vibrational level of the B 3H‘ state.
For a given time, there are two entries for each vibrational level. The upper entry is the
population of the level relative to all other populations shown in the table. As
mentioned, steps were taken to put all results on a common scale. This makes the upper
entries relative to populations in all other tables, within the error of the conversion
factors (table 24). So, by relative population we mean that there is a multiplication
factor, which has not been determined. which would convert the upper entries fromrelative

populations to absolute densities of B 31‘1‘ state molecules at the indicated vibrational
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TABLE 24 - SCALING FACTORS FOR POPULATION TABLES

Pressure ()
| 50 | 200 I 400
Frequency(Hz) ! | !
I I |
5 I 0.360 1 0.742 1 0.893
| 0.033 1 0.073 1 0.192
| (9.2%) | (9.8%) | (22%)*
I | |
15 I 0.325 1 0.736 | 1.000
| 0.040 1 0.078 | 0.207
| (12.3) I (10.6) I 21%)*
! | |
32 I 0.327 1 0.699 | 0.872
I 0.068 | 0.068 | 0.082
| (14%) | (9.7%) | (9.4%)
! | I
50 1 0.337 I 0.709 | 0.864
I 0.043 1 0.076 | 0.098
I (13%) | (11%) I (11%)
! ] i
Average - I 0.337 | 0.722 I 0.907
SD. - I 0.009 1 0.012 1 0.036
as% - I (1%) I (1.5%) I (4%)

N.B. -- Upper entries are scaling factors
+- Middle entries are the average standard
deviation from the scaling spectra
~ Lower entries are the standard deviation
as percent of the factor

* —- These factors were scaled up to 600Amps peak
from 450 and 500 Amps respectively. Factors
for scaling these to 600Amps were gotten from
spectra at 450 and S00Amps at 32Hz. The
standard deviations for these two values are
the sum the average standard deviation from
the two spectra.
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levels.

The errors associated with the populations in tables 12 thru 23 have not been listed.
These errors are the probable error which results from the standard deviation in the
population of a given level. The standard deviadon reflects the spread in the measured
band intensities used to determine the population of a given level. The probable error is
defined as ~0.67 x (Std. Dev.) and the range of probable errcrs for the above populations
was generally 510 15%.

The lower entries in these tables are the percent of the total population for
vibrational levels 1 thru 12 at the indicated time. These percentages are the values that
are plotted in figures 40 thru 51. In these figures the time scale (0 to 20 Us) is the
axis at the right side of each figure and the horizontial axis is the vibrational quantum
number of the B 31'1. state, The vertical axis is the percent relative population (lower
entry in corresponding table).

In order to unclerstand these plots a point of comparison is necessary. Figure 52 shows
the effects of the variation of lifetimes of the different levels on a decaying
vibrational distribution. The axes of this figure are as above. The first line, at t = 1
Us, is the inital distribution from 15 Hz and 150 y. This figure shows that as the
distribution decays the precent population of the lower vibrational levels increases
because of their longer lifetimes. There is however none of the structure which is
evident in all of the experimental distributions. Regardless, we do see the trend that
causes band intensities of the Jower levels (V = 1,2) to increase with time. This type of
effect was shown in the spectral series of the first section of this chapter.

This trend, of the lower levels having an increase in the percent population with

increasing time, implies that the decay of molecules in lower levels occurs more slowly

than from the higher levels This type of behavior is expected because of the decrease in

I e R A s a3

lifetime with increasing vibrational level. This characteristic rise in the percent
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population of the lower levels can be seen in all the experimental population plots. The
major difference is seen when comparing plots of different pressures. For higher
pressures, a larger increase in the precent population of the lower V levels has occured
by 20 .

Longer time plots show that for all conditions the distributions are almost identical
for times between 100 and 200 ps. This will be referred to as a "long time equilibrium”
and is shown in figures 53 to 64 (these figures appear at the end of this section). The
distributions at 120 ps for these 12 figures appears in tables 25, 26, and 27. Looking
back to the 0 to 20 ps plots we see that the greater the pressure the greater the progress
toward this "long time equilibrium” at 20 ps. Another point to be noticed about the 0 to
20 ps plots is that, at a given pressure the degree of progress toward this "long time
equilibrium” at 20 ps, decreases with increased discharge frequency (see figures 40 to
51).

A number of other features in the 0 to 20 ps plots are notable and appear to varying
degrees in all plots. First there is a bump or rise in the plots associated with V = 6.
Notice that its position in time varies with pressure. Table 28 shows the measured time
at which the peak occurs in the percent population for V = 6, for all sets of conditions.
In general the distribution does not change drastically during the 4us of the current
pulse. To determine the actual time to the peak in V = 6, 4 ps is subtracted from the
measured time. These times are the middle entries in table 28, Averaging these times for

plots of identical pressure yields the following values,
400 ~1.0ps

200 ~2.25 pus
50 ~7.8us
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TABLE 27 - PERCENT POPULATION AT 120 us
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TABLE 28 - TIMES TO PEAK IN V=6 (PERCENT POPULATION)

Pressure(y) and

Collision Frequency(#/us)
I 50un I 200 I 400p |
Frequency(Hz) 10.33#/us | 1.3#/us 1 2.7#/us |
| | I |
5 I 12 I 6 I 4/6 I
I 8 I 2 I 02 !
1(9.42) 1(9.26) 1(8.7/8.7) I
I I i I
15 I 12 I 7 I'5 I
I 8 I 3 I 1 I
1(9.34) 1(9.72) 1 (9.44) I
I I I I
32 I 9/14 I 6 IS I
| 5/10 I 2 b1 I
1(5.2/9.2) 1(9.36) 1(9.41) I
I I I !
50 I 12 I 6 5 I
I 8 I 2 I 1 I
1(9.48) 1(9.45) 1(9.41) I
I I ! I
Average Time I 7.8 I 225 I 1.0 |
(us) I I | I
S.D. I 0.89 I 0.29 I 035 I
I I I I
Average Number I 2.6 I 3.0 I 27 I
of Collisions | ! ! I
S.D. i 0.30 I 0.38 I 0.95 I

N.B. -- Upper entries are actual time after start of
current pulse
-- Middle entries are the time after the end of
current pulse
-- Lower entries are the value of percent
population of V = 6 at the peak

-- The average number of collisions is the

product of the average iime afler the end of
the current and the collision frequency
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The product of these times and the collision frequency for the corresponding pressures
determine the number of gas kinetic collisions which have occured at the time
peak.

These values are,

400 i => 2.7 collsions
200 p => 3.0 collisions
50 . => 2.6 collisions

Average => 2.8 collisions

So, it appears that for all conditions of this experiment 2.5 to 3.0 collisions are
required to produce the peak in this feature in the B SH‘ state vibrational distribution.
This feature reflects the number of collisions necessary to equilibrate the popuiztions of
‘the V = 6 level of the B 31'1' state with the V = 7 level of the W ?A_state via the ICT
process. It should be noted that in general, the overall distributions are similar at the
times where the peak in V=6 occurs. Consequently, the position of the peak in V=6 has not
been effected by drastic changes in the percent populations of other (lower) levels.

The role of collisional coupling between the B’l’I‘ and W *A_ states was considered by
Benesch’ in the explanation of the red lower border of B-type Aurora, Specifically, he
discussed the implications of the 85 Km turn-on altitude for this phenomenon. A result of
this discussion was the the estimation of the rate constant for coupling from the
vibrational levels 6,7 and 8 of the WA state to the adjacent levels of the B 3H$ state

(v=5,6,and 7). The analysis was based souly on the teinperature and collision frequency at

this altitude and the lifetimes of the above levels of the W 3An state. The resulting

value was,

k(W?a,->B’I )= 1.3 x 10" cc/s-molecule
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Measurement of the reverse reaction was done by Rotem and Rosenwaks. Their work
produced a value very similar to that estimated by Benesch. This was an LIF experiment
which generated only B 3TI‘ state molecules and monitored the subsequent decay. Loss of

B’I‘I'(V=6) molecules, by collisions, had a measured rate constant of,>
k(B’TI ->W?A) = 1.08 x 10" cc/s- molecule

Their results implied that the ICT process was occuring with the W’Au(V=7) level.
Another point of Benesch’s discussion, and the one which is important here, is the
remark noting that 85 Km reflects a collision frequency of approximately “2 collision per
radiative lifetime" of the V = 6 thru 8 levels of the W 3Au state. He considered this to
be sufficient to divert the excitation from the (W °A_->B 3I'I‘) system to the (B 31'1' >
A’Zﬂ’) system." ' Due to the time resolved niature of the present study the progress of
the collisional coupling of these two levels, B I (V = 6) and W A (V = 7), can be
directly observed. The above analysis indicates that approximately 2.5 to 3 collisions
are required to couple these levels, in close agreement with the estimate of Benesch.
The fact that the percent population rises for B 3I'I‘(V = 6) implies that the absolute
populations of B 3H.(\’ = 6) and W’AU(V = 7) are initially out of equilibrium. In order
to estimate the initial population of these two levels, we must make an assumption about
the amounts cf these two states initially produced in the discharge. Computer studies
done in our laboratory have indicated that the oroduction rate ratio of W-to-B is
generally about 0.65. If it is also assumed that excitation occurs from the V = 0 of the
ground, Nz(X 1L‘Jz’), state then the distribution into these two levels is governed largely
by the Franck-Condon factors (FCF) between N,(X ’z‘*, V=0) and these levels, The

resulting populations will be given by,
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N(W,7) = FCF(W,7) * Ratio(W:B)
=(0.1050) * (0.65)
= 0.070

N(B,6) = FCF(B,6) * Ratio(B:B)
= (0.06587)* (1.0)
= 0.066,
where N( ) is the relative population of the indicated level.

These values represent a difference of ~15% relative to N(W,7). An additional factor
which will increase the differences in these amounts is the lifetimes of the two levels.
In appendix A, it is shown that an increase in the lifetime results in a larger fraction
of the total population, remaining at the end of the excitation pulse. The lifetime of
the WA, (V=7) level is ~54 js*! whereas that of the B°T1 (V=6) level is ~5.5 pis."” This
would further tend to increase the relative amount of W 3A“(V=7) at times just after the
current pulse. From the above two points we see reason to expect that excitaion which
originated in W’AO(V = 7) would be collisional coupled into B 3I'I‘(V = 6) via the ICT
process.

Other evidence for collisional coupling into the B 3I'I‘(V =6) level is shown in the low
pressure data (50 ) for the decay of V=6 between 5 and 8 pis. The population appears to
be falling slightly less rapidly than expected considering the natural lifetime, 5.5 ps.

Another feature which becomes more predominant with increased pressure is the break
or trough at V = 3. The values for the percent population do nic. go through a definite
minimum. Consequently, it is difficult to determine the number of collisions necessary
for achieving an equilibrium, presumably with V = 3 of the W 3Au state. Regardless the

above analysis can be discussed. If the expected populations of the two levels are
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estimated, we see similar compliance with the present results. Proceeding as before,

N(W,3) = FCF(W,3) * Ratio(W:B)
= (0.04383)* (0.65)
=0.028
N(B,3) = FCF(B,3) * Ratio(B:B)
3 = (0.1907) * (1.0)
=0.19.

In this case the population of the B 3n‘(v = 3) level is estimated to be much larger than
the W *A (V = 3) level so that a flow of excitation into the W *A (V = 3) level is
expected. Again if we look at the low pressure data for these plots they show that
between S and 8 ps the decay of V = 3 is occuring more rapidly than expected from the
- natural lifetime of 6.5 ps.!*

Unfortunately if this analysis is extended to B 31'1‘(\’ = 2) the results do not appear,

at first, to comply with the observed changes in the percent population plots. Here, the

estimated populations of the two levels are

N(W,2) = (2.295E-2) * (0.65)
= 1.49E-2
N(B,2) = (1.954E-1) * (1.0)
) = 1.95E-1

which is a difference of about twelve times, B 3“: greater then W 3Au. So it wovld be

expected that the flow would be from B’I’I‘(V =2)10 W3A (V =2). Looking at the plots
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of percent population this does not appear to be the case.

This example is important in that more precise r » of the ICT process (and other
processes that contribute to these results) would have to compare predicted values with
the percent populations and, more important, with the relative populations (upper entries
in tables 12 thru 23). Doing this for B 3H’(V =2) of the low pressure data between 5 and 8
us, we see that the relative population is falling more rapidly than predicted by a
lifetime of 7.0 ps, except for the 50 Hz data. In the 50 Hz case the population seems to
follow the lifetime quite well. A comparison of values from tables 12 thru 15 with
predicted values is shown in table 29.

The range of errors indicated in table 29 are the probable errors of the measured
populations, mentioned above. The errors for the estimated values at 8 s are determined
from the errors of the 5 s values. For the 5 Hz data, the estimated V=2 population is
well above the measured value. The 15 Hz estimate is within the limits of error and the
32 Hz estimate is just outside the limits of error.

So from this it appears that the relative population of B 3I'I‘(V = 2) is generally
falling more rapidly than expected given the lifetime of the level, even though some
values are on the edge of the limits of error. This is in compliance with the example
above for B 3H‘(V =2) comparing the estimated populations of the B’I'l‘ and WsAu levels.
This exercise should serve notice to the reader on the pitfalls of the use of plots of
percent populations. Ultimately the comparision of these results with model results will
have to be made with the relative populations. This does not reduce the value of the plots
of percent population in that the structure which is evident there is not as apparent in
3-D plots of the relative values.

Returning to the example of B 3HS(V = 3) there has been data showing a similiar trough
at this level. The data of Benesch and Fraedrich! show the po

l’p ------------- v A

state and the B’ 3}3"‘ state, (see figure 2). Their data appears in figure 65 and is from
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TABLE 29 - ESTIMATED POPULATIONS OF V=2 AT 8us

FOR 50y, 5 TO S0Hz

Frequency (Hz)

| I | | !
TIME(us) | 35 I 15 P32 I 50 |
| | | | |
S | .613E4 | .476E4 I .S0SE4 1.458E4 |
| +41E3 | +.22E3 I +.20E3 | +.32E2 I
| | I | |
8 ! .353E4 | .281E4 I.301E4 1.308E4 !
| +71E2 | +.15E3 | +.14E3 I +.19E3 :

I | I |
I I I I |
8(est) | .399E4 1.310E4 1.329E4 1.298E4 !
| +27E3 1+.15E3 I +.13E3 I +.13E3 !

dt=3us
and exp(-3/7) = 0.651
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observations of the positive column of a DC discharge. The important feature to note is
the overlap of B JI'I.(V = 4) with B'>Z(V = 0). In general the overlap of vibrational
levels between these two states is B 3I'I‘(V +4) = B'’L (V). Whatis significant in
figure 65 is the observation that the vibrational distribution of the B’I'I' state
vibrational levels abave V = 3, is enhanced by the presence of the levels of the B'3Eu'
state.

The evidence of collisional coupling between B’ 3Zu'and B 3I"I‘, beyond the obvious
trough at V=3, is less striking in this study and it appears in a different set of
vibrational levels. There is a rise in the percent population plot for 200 pt and 5 Hz for
V =9 thru 12. This is shown in figure 66.

An estimate of the B’ 32u' vibrational distribution due to direct electron excitation
from the ground state (with a ground state vibrational temperature of 300 K) is shown
in figure 67. This distribution peaks in the region of V = 6 thru 8 in the B’ 320' state.
This corresponds to the V = 10 to 12 in the B 311z state. As shown in figure 66 this is
the region which shows an increase in the percent population during the early microseconds
after the current pulse.

Estimating the population of the vibrational levels B 3I'I‘(V = 11) and B’ 3).'.“'(\’ =7)
the following values result. In this case the estimated production rate ratio between

B’I'I‘ and B’’Z " is approxiamely, B:B’ ~ 6

N(B,11) = FCF(B,11) * Rato(B:B’)
= (2.918E-3)* (6)
= 1.75E-2
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B AND B' POPULATION DISTRIBUTIDONS
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N(B’,7) = FCF(B',7) * Ratio(B":B")
=(0.1047) * (1.0)
= 1.047E-1

This estimates the B’ > ‘(V=7) level to be populated about 6 times greater than the
B’H‘(V=l 1)level. By examining the relative populations of V =9 through 12 between S an
8 us (table 16), we see that in this case these levels are decaying less rapidly than
expected using the natural lifetimes of these levels. The results appear below in table
30. Here too, the range of errors shown are the probable errors of the measured
populations, with the errors for the estimated values taken from the 5 ps data. In this
table only the estimated and measured values for V = 10 at 8 ps lie outside the limits of
error. For V = 9 and 11 the limits of error overlap by 24% and 36% of total error,
respectively. Even though the error bars overlap, none of the estimated values fall
within the limits of error of the measured values. So again, within the limits of the
above approximation and present data, we see evidence pointing to Intersystem Collisional
Transfer and the source and recepient of transfered excitation.

The above discussion has used approximate values of excitation rate ratios for the
B"Zu' and W’Au states. Also, simply comparing pairs of measured populations from these
tables is far from a complete treatment of this data set. A complete analysis would
require the measurement of the electron energy distribution during the course of the
current pulse, for each set of conditions. This would allow an accurate determination of
the excitation rates for the individual states. Also the effect of discharge frequency on
the initial distributions would need to be accounted for. This effect will be discussed
in the next section. Finally, with this additional information, a set of master equations

could be written coupling the vibrational levels of the AL *, B’’E, and WA state
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TABLE 30 - E3TIMATED POPULATION QF V 9 --> 12 AT

§js FOR 2001, SHz

| TIME(s) 1
| I ! I !
LIFETIME | VIBRATIONAL | I ! I .

(1) I LEVEL 5 | 8 I 8(est) |
I i I | [

5.0 b9 I J79E4A | .110E4 | .0982E4 |
I | +143 b +77 I +79 |

| | | | !

4.8 | 10 | .163E4 | .105E4 | .0872E4 |
| I +65 I +63 I 435 I

I I I I |

4.7 I 11 | .170E4 | .0957E4 | .0898E4 |
I | +85 | +48 | +45 I

I | I ! I

4.6 I 12 | .136E4 | .0659E4 | .0708E4 |

-

| Ioeee I --- !
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with those of the B 31'1‘ state. By fitting the results of these equations to the data of
this section, ICT rate constants could be determined. Even without this type of modeling,

these data sets show evidence for ICT durning the early times following the current pulse.
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Populationmns of B3IIlg Levels Tablel2
SOu & SHz from @ to Z2@us in NZ
tame (us)? v T e e e em e >

1 4 3 i 3 b 7 8 9 10 i1 12

300 . J206+04 16BE404 1320404 A07C04 725,  S61. 7. 18, 145, M5, V34 654
. bl 24 117 B 9 T 485 2% 1HM 1S 106 98

1.60 . 070+04 75E+04 (330E00 263F+04 1BGE04 .147F-04 998. 557, 400, 287, 3. 1N,
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Populations of B3IIg Levels
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Populatiormns of B31Ig Levels Table 16
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Populations of B3IIlIg l_evels Table 18
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CHAPTER 4 - RESULTS (V) - EFFECTS OF DISCHARGE FREQUENCY
ON INITIAL DISTRIBUTIONS

One of the most striking discoveries of this study has been the effect of discharge
frequency on the initial spectra which occur during the current pulse. Examples of this
are shown in figures 68, 69 and 70 where 1PG spectra at 1, 5 and 50 Hz are compared.
Again the sequences shown, from left to right are, 8V = 4,3,2,1 respectively. As
mentioned before each of these sequences feature bands due to emission from different
groups of upper vibrational levels. Starting at the left, 8V = 4 shows bands due tov = 6
thru 12, 8V =3 shows V = 3 thru 10, 8V =2 shows V =2 thru 7 and 8V =4 shows V = 1 thru
3 (reference figure 14),

Figures 68, 69 and 70 show that as the time between each pulse decreases, the
distributions of band intensities change dramatically. These changes are the effect of
the gas being "pre-conditioned” by the previous pulse. As the time between pulses is
varied, by changes in frequency, the degree to which the gas has been able to recover (or
relax) from the previous pulse varies as well. Were the frequency low enough ( << 1Hz)
the gas would relax completely. It would then be devoid of excited species, beyond a
vibrational ¢ :tribution in the ground state reflecting the gas temperture (~ 300 K).
Spectra taken under these conditions would represent excitation from primarily the V=0
level of the ground state. So by "pre-conditioning” we mean that the system (the gas) has
been previously excited and retains a certain amount of excitation at the start of the
next pulse. Due to the variety of methods used in laboratory studies, the effects of pre-
conditioning are not always evident in the results.

If we look at the above three spectra, the most significant differences occur in the
0V=3 and 4 sequences. Specifically, these spectra show that increases in the percent

popuiations of the higher vibrational levels are favored with increasing discharge
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frequency. This is best shown in the 8V=4 sequence. An example is shown in figure 71
which compares spectra at S and 50 Hz. These spectra have been normalized so that they
reflect emission from the same total population (V=1 through 12). This figure shows
about a factor of two increase in the populations of levels V =9 through 12. Compared to
other populations in the overall distributions, the relative magnitude of these increases
is small. Nonetheless, these changes reflect change in the overall B 31'1' state
vibrational distribution and so can be related to an alteration in the source of
excitation.

B 31'1‘ state vibrational distributions for 1 thru 50 Hz, at 3 ps and 50 y, were taken
from the population tables and are plotted in figure 72. This shows that as the frequency
is increased the distribution tends to become less peaked. Also, the higher vibrational
levels are increased with respect to the lower Jevels.

Previous work by Massabieaux et al.®® indicated that ground state vibrational
distributions with strongly over populated tails could be produced if the residence time
in aDCdischarge where long enough. They present results of calculations which show N,
ground state vibrational distributions as a function of residence time. In general these
plots are non-Boltzman and show the presence of an over populated tail extendingupto V=
40 (see figure 12). The exception is the case of a 1.5 ms residence time. This appears
to correspond to a vibrational temperature of about 5600 K. For residence times longer
than this the distribution is predicted to become non-Boltzmann as mentioned above.

Other studies by Benesch et al. have analyzed Auroral spectra of the 1PG and 2PG.
These studies have indicated that vibrational temperatures in excess of 2000 K were
evident under certain conditions.** ¥ The method of determining the apparent
vibrational temperature used values of Franck-Condon factors which reflect the degree of
overlap between the numerous vibrational levels of the ground state with those of the B’ﬂ‘

and C 3l'In states. We have used these factors coupled with ground state vibrational
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distributions, at various elevated temperatures, to estimate the excitation rates of the
levels of the B 31'1. and C 3I'Iu states as a function of vibrational temperature. This has
been the method of analysis used to determine the apparent vibrational temperatures of the
initial distributions at the different frequencies and pressures of this study.

The fractional (or percent) excitaton rate, g(V'), for a given upper level, V’, is

given by,

gV)=Z,. N,.*q,,.

where

V' 1is the lower vibrational level
in the X ‘2‘* state

N... is the percent population of
the level V"’

Q... is the Franck-Condon factor
between levels V' and V"’

The excitation rates for the vibrational levels of the B :’Hil state which result from
this analysis are equated to the estimated initial vibrational distributions. This
processof estimatingrates hasbeendone by acomputer program which generates Boltzmann
vibrational distributions in the ground state at elevated temperatures. These
distributions are then coupled with the appropriate Franck-Condon factors. Finally the
resulting contributions to each vibrational level in the B 31'13 state is summed and the
results arc compared to the experimental distributions. The apparent ground state
vibrational temperature is found by incrementing the temperature and summing the absolute
differences between the experimental and estimated distibution values. This is

represented as

Z=5, PIN_(V)- N, (V)
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The vibrational temperature was taken as the temperature for which Z was a minimum. Fora
given experimental distribution, the minimum Z values occur for the vibrational
temperature which results in the best fit between estimated and measured B 3I'I‘ state
distributions. Of course, the lower the value of Z the better the fit and the more
accurate the resulting vibrational temperature. This analysis was performed on the initial

distributions for all sets of conditions. Distributions at the following times were used,

PRESSURE (1) TIMES( yis)

400 0.5,1,2
200 0.5,1,2,3
50 1,2,34.

The results are shown in figure 73 where the data has been fit to an equation with the

form,
T, = A + Bx(Hz)*’ - Cx(Hz)?
with
PRESSURE
504 200 400u

A= 1022.899 1061.909  841.7807
B= 2559942 176.6419  192.0984
C= 977.8374 940.4904  735.8368.

The apparent vibrational temperatures for the different conditions appear in table 31.
The apparent vibrational temperature for 1 Hz (T, ~300K) was only measured at 50 This

value is assumed to be the same at the other two pressures. The values of table 31 are
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weighted averages which used the reciprocal of the Z parameter as a weight. Minimum Z
values were on the order of 3 to 7% total difference between measurement and estimate.
The error bars in figure 73 are the probable error (P.E.) associated with the average
vibrational temperatures of table 31. The measured distributions can be found in tables 12
through 23,

A comparison between an estimated and experimental distribution appears in figure 74.
One should notice that the best fit is between V = 3 through 10. Also the exnerimental
distribution shows a larger fraction in the last few vibrational levels. Regardless, the
overall estimated distribution appears to fit the experimental distribution quite well.
These results show that the explanation for the observed changes in the spectra, based on
an elevated vibrational temperature in the ground state, appears to hold for a large
portion of these distributions.

At first glance these temperatures, of up to 2800 K, might seem enormous. They are in
fact very large but reflect the fact that the system under study can be characterized as a
non-equilibrium discharge. Here the energy distributions of the different degrees of
freedom are not in equilibrium with one another. In a discharge, the electron energies
need to be very high and, for the sake of discussion, can be considered to be Boltzmann
with temperatures on the order of 10’s of thousands of degrees Kelvin. At the same time
the kinetic and rotational temperatures are expected to be on the order of hund-eds of
degrees (300 to 500 K). For the case of the vibrational distribution, temperatures on
the order of thousands of degrees are evident.

The separation of the electron and the rotational-kinetic temperatures is largely due
to the mass difference between the electron and the N, molecule as well as the pressure
regime under study. For the case of vibration, vibrationally excited ground state

mf\!ﬂl‘lﬂns wh :l\ ..

........ es, whether produced by casiade from excited electronic states or from direct
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TABLE 31 - APPARENT VIBRATIONAL TEMPERATURE VS FREQUENCY AT

50, 200 AND 400y
Frequency (Hz)

I I | I !

Pressure (u) | 5 I 15 I 32 I 50 !
I | I I I

S0 | 1590 | 1930 | 2540 I 2810 !
I +£101 I +74 I +102 I +67 I

! I I | I

200 I 1360 | 1850 I 2010 I 2310 |
I +110 I +205 I +29 I +121 I

[ I I ! I

400 I 1180 i 1720 | 1820 } 2230 |
| +185 I +48 I +64 I +59 I

upper entries - vibrational temperature ( K)

lower entries - probable error
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electron excitation, do not have an efficient mechanism by which to transfer vibrational
energy into rotational or kinetic energy. This is due primarily to the large energy
spacing between vibrational levels of the ground state compared to kT(g). ForN,,V =1
is ~ 2300 cm™ above V = 0 and T(g) is the gas temperature ( kT(g) ~ 200cm at 300 K).

Regardless of the source of excitation, collisions between vibrational excited
molecules will tend to redistribute this vibrational encrgy. This redistribution will
continue until the distribution becomes Boltzmann, time permitting. The resulting
distribution will reflect some temperature and this temperature will reflect the average
vibrational energy of the gas.

What we see in the present case is that for a constant pressure, the vibrational
temper ure of the ground state decays as the amount of time between pulses increases
(figur 73). This increase in time can be related to an increase in the total number of
colli ins between pulses. Also, at constant frequency, as the pressure is increased the
nurr r of collisions between pulses increases as well. From figure 73 we see that the
appa ent vibrational temperature decreases with increasing pressure at constant frequency.
Bc nissues are evidence showing a decrease in vibrational temperature with an increase in
the number of collisions.

It is not clear from this data what the mechanism is for energy loss from the
vibrational manifold. All that we can say is that the vibrational temperature drops with
increased numbers of collisions.

These results have shown the importance of the process of "pre-conditioning” in the
initial B 3H. state distribution which results during direct electron excitation.
Presumably, similar changes are occuring in the other excited states as well.

An interesting explanation which follows from these findings, involves the changes in
the 5V=3sequence. Figure 75 compares the §V=3 sequence fora 1PG spectrumofan Aurora

with that of a laboratory (DC) discharge.” Note the distribution of band intensities.
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For the Aurora, (5-2) and (4-1) are larger than (6-3). For the laboratory case (6-3) is
larger than (5-2) which is larger than (4-1).

The results of this study do not show these extremes. They do, however, show
distributions between these two spectra. Figures 76 and 77 show the effect of frequency
(5 & 50 Hz) on the band intensities of §V=3. By starting with the Auroral spectrum of
figure 75, proceeding through figurss 76 and 77, then finally back to the laboratory
spectrum of figure 75, we see a step-wise progression in the band intensities of the
above three bands. This progression goes from a situtation of very low frequency (Aurora)
to one of very high frequency (DC). If we consider the results of this section, the
difference between the two spectra of figure 75 could be attributed io excitation from an
clevated ground state vibrational distribution, for the case of the laboratory discharge.

Of course, the laboratory spectrum cannot be completely explained in terms of initial
excitation alone since we must consider the effects of ICT, cascading and other processes.
The effects of “pre-conditioning” will play an important role in the initial B 3I'Ig state
distribution which is continually being produced in a DC discharge. The subsequent
redistribution of excitation via secondary excitation processes, will alter the
equilibrium vibrational level populations to something similar to that shown in figure 65

rather than the initial distributions which are characteristic of this study (figure 74).
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CHAPTER S - CONCLUSIONS

By the use of time resolved spectroscopy we have examined changes in the vibrational
level populations of the B 31'1' state of molecular Nitrogen caused by the variation of
pressure and pulsed-discharge frequency. The major process involving these changesasa
function of pressure is Intersystem Collisional Transfer (ICT). Changes which occur with
the variation of discharge frequency result from the effect of Plasma Pre-conditioning.
Regarding the effect of pressure, the changes in the vibrational population distributions
correlate strongly with the number of collisions which have occured rather than the amount
of time which has elasped. The effect of discharge frequency, on the other hand, has been
shown to produce changes in the initial B’l'I' vibrational distributions which occur. We
have determined these changes to be primarily due to increases in the vibrational
temperature of the ground electronic state.

Another important observation of this siudy is the different emission curves which
result from the decay of the C 3I’Iu and B 31'1‘ states. The basic difference involves the
position of the peak; about 1 ps for the C [T state and about 3.5 ps for the B 1
state. The properties of these two states which were considered responsible for th:
difference in position, involve cascade, collisional coupling and the natural lifetimes.
It is also clear from the long-time vibrational distributions and decay curves, that the
population dynamics of the B 3I'I‘ state is a much more complicated phenomenon.
Consequently, a complete explanation of the two different sets of emission curves will
involve cascade, collisional coupling as well as the lifetimes of these two states.

The long-time decay of the levels of the B 3I'Il state have shown significant emission
for times long after that expected, considering the natural lifetimes of these levels.
Obviously, these levels are being fed by a secondary excitation process. The two

-

processes which we proposed eariler, were energy pooling reactions involving the
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metastable A 32" state and vibrationally excited ground state molecules. A possible
explanation of the difference between these results and those of a previous study, using
an electron beam, has been attributed to the energy pooling reaction involving
vibrationally excited ground state molecules.

Our further observations regarding the long-time behavior of the B 31'1‘ vibrational
population distribution shows that the populations reach an identical distribution for all
conditions under study. This observation may be an important clue as to the specific
process that is occuring and the details of the mechanism.

The effects of the Intersystem Collisional Transfer process have been shown in the
changes in the 3-D percent population plots as well as the decaying relative populations.
Although this discussion was largely qualitative, trends expected due to the ICT process
were clearly evideni. The most notable observation being the number of collisions
required to produce the peak in the percent population of V=6. Here the observed 2.5t0 3
collisions was interpreted to be the number of collisions required to equilibrate the
populations of the V=6 level of the B 3I‘Ig state with the V=7 level of the W3A_state.

The relative populations presented will be helpful in more elaborate models of the ICT
process. This will require further measurments from this system, such as electron energy
distributions or relative populations of overlapping electronic states. With the present
data and the above additional measurements the comparison with calculated populations,
based on the ICT process, will be possible.

Finally, we have shown that the effect of Piasma Pre-conditioning is able to produce
changes in the initial vibrational distributions in the B BH‘ state. These charnges appear
to be due to changes in the ground staie vibrational temperature. The results show a

decrease in the vibrational temperature with increasing number of collisions between each

current pulse. From these results it was not clear wh

Ao [P T SR of .1
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vibrational cooling of the gas. Presumably, collisions with the wall are important but
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this remains an open question at this time.

From this study it is evident that Intersystem Collisional Transfer and Plasma Pre-
conditioning are active and predominant processes in an electric discharge. An important
question which remains, involves the explanation of the difference between N, spectra in
the Aurora and in laboratory discharges. By the inclusion of these two processes with the
other better known processes, such asemission and cascading, amore complete explanation
of these differences will probably result. Such an explanation will be helpful in
understanding the role of these two processes in energy transfer in laboratory discharges

as well as atmospheric reactions involving molecular Nitrogen.
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APPENDIX A - ESTIMATE OF THE EFFECT OF LIFETIME ON 1PG AND
2PG EMISSION PULSES

In order to estimate the effect of lifetime on the shape of the 1PG and 2PG emission
curves, anumber of assumptions and approximations must be made. First, itisassumed that
these states emit according to first order decay. This implies that the measured
intensity is directly proportional to the population of the upper level at all times.

Discounting geometric factors and detector sensitivities this can be stated as

1(G,j) = N(i) x A(ij)
where

I(i,j) is the measured intensity
of the (i,j) band

N(i) is the population of the upper
level

A(i,j) is the transition probability
between the levelsi & j.

Second, owing to the short lifetimes of C 3Hu state, it is assumed that the emission
curve of the 2PG is also directly proportional to the excitation pulse which produces the
C"’Hu state. Thirdly, this pulse will be assumed to be the same excitation pulse as for
the B 31'1' state. The excitation pulse will be approximated as the positive part of two

sine waves that peak at different times (figure 31). This function has the form

g(t) = (A) x sin(rt/2) + sin(ny/3.5) ¢))
O<t<g2
= sin(nt/3.5) 2<t<35
. =0 t>3.5

where A = 0.8 (an emperical constant)
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The above function peaks at 1.2 ps rather than 1 ps (see figure 31). In this figure,
values from the oscilliscope trace of a 2PG emission pulse (figure 27) were taken at 0.5

Hs intervals. These values have been plotted in the same figure for comparison with the

, approximation. This approximation is made so that an analytic solution to the following

differential equation can be derived.

- The differential equation, which describes the time rate of change of a population with

a given lifetime, is written as

dN(L.Y)
; "Gm"=gm-N04yL @)
t

where
g(t) s the excitation rate

N(L,t) is the population
and

L is the lifetime of the level

Substituting for g(t) we obtain

; dN(L,1)
T (0.8) x sin(nt/2) + sin(n/3.5) - N(L,t)/L
t
- 0<t<?2 (3)
dN(L,1)
d = sin(rt/3.5) - N(L,t)/L
t

2<1<3.5 4)

and,
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t>3.5 )
The solution to dN/dt is in three parts, one for each time region above.

A{(1/L) x sin(rt/2) - (n/2) x sin(nt/2)}

NL,t) =---- e
[(A/LY + (n2)3)
+  {(1/L) x sin(r¥/3.5) - (/3.5) x sin(nt/3.5))
(/L) + (3.5
-t {A(2)} (n/3.5)

---------------------------------------------------

O<t<2 6)

{(1/L) x sin(ry/3.5) - (r/3.5) x cos(nt/3.5)}

N(L’t) T esseseccustosesaeemsones
(/L) + (r/3.5)]
+ {A@mt/2) x exp -(t-2)/L}
[(/L)? + (2)Y)
-t {A(n/2)} (n/3.5)
a8 e + reoreeen o e e ee

L [+ (2)}) [(1/L) + (n/3.5)9)

2<t<3.5 %)
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{A(n/2) x exp -(1-2)/L}
MUL,E) = =-emmemmmmnmmommmeeoon oo cnnnnas

(/LY + (n2)2)
{(n/3.5) x exp -(t-3.5)/L}
P s ane
-t (A(/2)) (x/3.5)
+ CXP == X osemssssssesssmcmsmccmsamen o eoseeeemesecei e e

t>3.5 (8

This solution predicts the time varing population of an excited state produced by the
excitation pulse (1), based only on the lifetime of the state. The population has been
plotted for various lifetimes in figure 32. Here the results have all been scaled up by a
factor of 2.77. Two of the four lifetimes chosen represent Lifetimes of N, emission

systems from the present discussion.

C*M, (v=0) =>0.044 s
B’H' (v=1) =>7.8us (9)

The value L = 1 x 10° s (1 sec.) is the approximate lifetime of the A °Z * state. This
is a metastable state which is the lower state of the 1PG. The spectrum associated with
emission from the A 32'.“* corresponds to the forbidden transtion (A 32‘.“" ->X 1).‘,g“); this
is known as the Vegard-Kaplan system. The lifetime of L=1 jts was used to see the effects
of a lifetime intermediate between the C°T1 and BT states.

The results, shown in figure 32, can be interpreted as follows. For the case of a very

long lifetime (L = 1 x 10°® ps) the population grows throughout the course of the
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excitation pulse. In this case the effect of loss by emission is negligible, and the
population builds continuously to a peak value. This peak occurs at 3.5 ps; the end of
the excitation pulse. The population remains at this peak value, virtually unchanged
during the 12 ys period shown. This peak value reflects the total population produced by
the excitation pulse. To test this result, the excitation pulse (1) was integrated
between 0 and 3.5 us. The result is the same value as N at 3.5 ps for L = 1 x 10° s,

Conversely, for the case of a very short lifetime (L = 0.0444 pis), loss by emission is
occurring almost as rapidly as excitation. Therefore, the population is never able to
build to an appreciable amount (sec figure 32). As a consequence, the shape of the
population curve retains the shape of the excitation pulse (see figure 33).

For the intermediate cases of L = 1 ps and 7.8 ps, there are two important
observations. First, as L increases, the peak value in the population increases. This is
expected since the larger the value of L the smaller the loss due to emission at any time
during the pulse. Second, as L increases, the position of the peak of the curve moves
toward thie end of the excitation pulse. Retumning to equation (2) we know that at the

peak,

dN@L,)/dt =0 =g(t’) - N(Lt')L
o]
g(’") =N(L,t)L
and finally
L =NL,'')/g) (10)

were t’ is the time at the peak.

This says that the peak in the population occurs at the time when the ratio of the
population to the excitation rate is equal to the lifetime. A fortuitious example is shown
in figure 32 for L=1 ps. The peak in the curve occurs at the point where this curve

crosses the c4ciiation curve. Al this point they both have the same value and so their
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ratio equals unity as required for a lifetime of 1 ps. It is not obvious why equation
(10) is generally satisfied at later times for larger lifetimes.

Comparison of figure 32 (L = 7.8 Us) with the emission pulse of figure 24 shows a
strong similarity. A closer observation of the 1PG emission pulse is seen in the
oscilliscope trace of figure 34b. This trace is of the (2-0) band, with the V = 2 level
having a lifetime of 7us'® The peak in this trace occurs at ~ 3.2 . The predicted value
of the peak for this lifetime is at 3.1 ps. Given the imprecision in the location of t =
0 for this trace and the approximation used, these values are extremely close. A feature
that is not apparent in the oscilliscope trace is the bump which occurs at 2 s in the
predicted cvrv: for L = 7.8 is (compare figures 32 & 34b). Presumably, this is a result
of the approx: nation used.

These results show that the lifetimes of the different states need to be considered

when analysing emission pulses of this t 7pe.
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ABSTRACT

A series of experiments has been performed with pulsed electric discharges
in low-pressure nitrogen in order to elucidate excitation processes which
underlie auroral photon emission. Flowing nitrogen in a large-volume glass
container at 30 to 3000 mTorr 1is excited by 4 usec pulses which, typically,
are at 12000 volts and 900 amps. The radiation issuing from the discharge
tube is analyzed by means of time-resolved spectroscopy with particular atten-
tion given to the nitrogen First Positive System, B 3Hg + A 32:. Dramatic
changes have been noted in the relative band intensities of the 1PG spectra
subject to the influence of the variation of the experimental conditions. 1In
particular, the distribution of population among vibrational levels of the
B 3Hg state evolves 1& time both during and after the exciting electric pulse,
with the trends strongly correlated with the numbers of collisions. Further,
radiation from these excited vibrational levels continues at much higher emis-
sion rates than those commensurate with their radiative lifetimes. Both of
thiese observations constitute evidence of the Intersystem collisional transfer
of excitation. The distinguishing feature of this array of experiments is the
application of time-resclved spectroscopy which permits examination of the

development of level populations on a collisica-by-collision basis.
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INTRODUCTION

Ve have conducted a series of experiments on the excitation and decay
processes in molecular nitrogen with particular emphasis on the First Positive
System (1PG) whose emission takes place generally from the green through the
red and into the near infrared out to about 2000 nm wavelength. The principal
motivation for the experiments is the achieving of a better understanding of
parallel processes in the aurora. In particular, the program has sought to
develcp a model for the production of the dramatic color changes which occur
in auroral forms as they descend to lower altitudes.(1)(2) Special attention
has been given to the generation of the red lower border of type B auroras as
the proposed effect of the increased collision frequency at the lower alti-
tudes on the electronically ex:¢lred nitogen molecules. More specifically, we
have suggested that it is the intersystem cclli  unal transfer (ICT) of exci-~
tation that brings about an alteration of the vibrational population distribu-

tion when the collision frequency reaches a critical level.

There have been a number of laboratory investigations wh-. used
laser-induced fluorescence (LIF) to study collisional transfer processes in
molecular nitrogen. These have generally been based on the generation of Ny
A 32: in a pulsed discharge or flowing afterglow apparatus, followed by the
excitation of selected B 3Hg vibration~rotation 1levels by means of laser
radiation., One of the earliest of these was that of Heidner et al., (3) where
estimates were made of rate constants for ICT. Using similar techniques,
Katayama et 21.(4) and Katayama (5) undertook a series of LIF experiments on

+
the nitrogen molecular iomn, N,. The work of Rotem, Nadler, and Rosenwaks (6)

has shown that emission from a laser-excited level is accompanied by emission




from lower B 3Hg levels as well as emission from adjacent vibrationmal levels
of overlapping electronic states. Both of these accompanying emissions are
the result of collisional coupling of the vibrational levels of the low-lying
triplet states of Ny (ICT). In the LIF studies of Sedeghi and Setzer(7) and
Rotem and Rosenwaks(8), the emis on is followed through a number of radiative
lifetimes and the decay 1is analysed in terms of coupling with the B state.
The results yield rate constants for collisional coupling from specific B
state vibrational levels, though the detailed identification of the recipient
levels of the transferred excitation has been somewhat uncertain, In the
realm of electron beam excitation of nitrogen atmospheres, the experiments of
Shemansky and Broadfoot(9), of Pendleton et al.(10), and of Green et al. (11)

all bear rather closely on the problems addressed in the present work.

Field observations of the bright red of the auroral red border have been
made by Boquist and Snyder(12) on an artificial aurora generated by atmos-
pheric nuclear weapons testing. They were able fo pinpoint the onset of the
sharp color change as occurring within the 84-87 km altitude domain.
Gattinger et al. on the other hand, observed no red emission below 91 km in
natural auroras.(l13) Older literature has the bright emission of type B red
aurora ranging down to below 70 km.(l4) 1In reviewing the extant literature in
1971, Hanna and Anger cautioned against an overemphasis on the want of instru-
mentally recorded spectral changes for type B aurora in the face of striking

visual evidence to the contrary.(15)
In our laboratory, the emission spectrum of the nitrogen 1PG has proved
highly variable in electric discharges. It has turned out that salient

changes take place in the relative intensities of the various bands as func-
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tions of pressure, time, and prior history of the discharge. Such changes go
beyond even the alterations suggested by the model solely based on the inter-—
system collisional transfer of excitation. The challenge has been less in
finding ways of alterling the spectral distribution than in isolating the mo-

lecular processes that give rise to the underlying population rearrangements. .
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EXPERIMENTAL

A block diagram of the experimental set-up is given in Figure 1. The
emission source is a large-volume high-current cylindrical discharge tube of
Pyrex, 3 meters in length with a 16 cm inside diameter, This 60-liter volume
is supplied with electrodes which are water-cooled, copper cylinders 12 cm in
diameter and 3 cm long, mounted on copper shafts. FEach electrode is projected
into the Pyrex tube about 50 cm so that the distance between the electrodes is

2 meters. This results in a discharge volume of some 40 liters.

The excitation pulse supplied has peak currents which range from 400 to
1000 amps and a pulse length of 4 usec. At 700 amps, the current density is
approximately 3.5 amps/cmz. Visual observations of the arc indicate that the
current density is fairly uniform at the higher pressures of nitroger=(100
mTorr and up) but for pressures near 50 mT, the discharge shows enhanced path-

ways of larger relative intensity which correspond to channels of increased

current density.

The primary component of the electronics generating the 4 ysec current
pulse is a 5000 volt DC power supply which furnishes the electrical input to
the pulse-generating system. It feeds an LC voltage doubler which charges
four 1000-foot spools of coaxial cable, RG-8, to voltages of the order 10 to
15 kV. The voltage is maintained by a chain of high-voltage diodes which

prevent cable discharge except as follows.

Once the cables are charged, a positive pulse is applied to the grid of a

thyratron (EG&G HY-5). This voltage pulse fires the thyratron which con.acts
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the charged cables to the anode of the discharge tube. The resulting current
pulse through the discharge tube has a sharp rise time (~1 usec), For present
purposes, it is desirable also to have a sharp turn-off of the current pulse,
but this cannot be accomplished through the agency of the voltage on the
thyratron grid. Rather, the turn-off is brought about through the interaction
of the end of the charge wave travelling down the coaxial cable with the impe-
dence mismatch that it encounters at the discharge tube. A negative reflected
wave develops at that moment (4 usec after the igniting pulse) which serves to

reverse bias the HY-5 anode and break off conduction through the thyratron.

Experimentation has shown that the conditions which must be met to gener-
ate the required reverse wave are that the impedence of the discharge must
drop to but a few ohms and the pulse current levels must exceed 300 amperes.
When such is the case, the current has sharp sides, the thyratron turns off at
4 usec,and the entire process (including the cable charging phase) repeats
dependably and reproducibly. Special precautions must be taken to assure
these conditions, and the details, requirements, and hazards of the procedure

have been dealt with elsewhere.(16)(17)

The supply of flowing nitrogen gas to the experiment consists of Ultra
High Purity (99.999%) nitrogen introduced at the grounded (cathode) end of the
discharge tube through a fitting in an aluminum end-plate. By varying the Ny
gas flow rate into the system and by throttling the exhaust, we are able to
achieve a broad range of discharge pressures, The input is adjusted by means

£1 moe - eslas 1
flow rvate, while a2 com

of o Bruvks {luw tube with & metered
and fine valves are used to throttle the exhaust to the mechanical vacuum

pump., The control of both the intake and outfl>w rates allows us to maintain
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good pressure control throughout the course of an experiment (~3%). The pres=~
sure in the system was measured with a Vacuum General capacitance mancmeter (1

Torr full scale).

A 2-meter spectrometer with off-axis parabolic mirrors and a 600 groove/mm
grating receives the light from the discharge tube through a window at the
cathode end. The optic axis of the system passes through a cut-out in the
cathode itself and along the center-line of the Pyrex cylinder., The dispersed
light is detected by a photomultiplier tube (PMT, Hamamatsu R-636), and the
output of the PMT 1is preamplified and fed into an EG&G PAR 160 Boxcar
Averager as well as a2 monitor oscilloscope. The reduced data from the Boxcar
Averager 1s relayed, finally, to an IBM PC XT for ultimate treatment and
storage. The spectrometer is equipped with a digital encoder connected to the
grating drive shaft. It supplies a wavelength reading which is available to
the computer at all times., Wavelength calibration was carried out with a
mercury lamp, while an intensity calibration curve was generated from the

spectrum of a black body oven.

This system is quite flexible; Figure 2 gives examples of types of dis-
play observed on the monitor and representative of several data-collection
formats. The result of setting the spectrometer on the 2-0 band of the N,
First Positive System while simultaneously tracking the discharge tube current
and the boxcar averager aperture are shown in Figure 2A., The latter appears
as the narrow vertical feature at 5 usec (the horizontal scale here is
2 psec/div). 1In this case, the aperture is approximately 200 usec wide and
delineates the time during which the boxcar averager is accepting signal form

the photomultiplier tube.
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Two modes of operation are possible here. We may fix the time selected
for data registration (as shown here at 5 upsec) and scan the spectrometer
wavelength drive, thus obtaining a spectrum characteristic of a certain point
in time relative to the onset of the excitation pulse. An example of the data
which this mode yields is given in Figure 3, With the gate of the boxcar
averager set at 3 usec, the spectrometer has been scanned from 550 to 900 nm.
Tt is thus a "snapshot" of the spectrum at the 3 usec mark. The discharge
medium was 50 mTorr of flowing nitrogen, pulsed at a repetition rate of 5 Hz.
The figure serves also to delineate the domain of interest of the present

work, namely, the four sequences of the nitrogen 1PG, AV =1, 2, 3, and 4.

Alternatively, we may fix the spectrometer on a particular spectroscopic
feature of interest (here the N, 2-0 band) and scan the boxcar averager
aperture forward in time from the onset of the excitation pulée to the final
epoch of experimenral interest. This mode is illustrated by the long curve in
Figure 2A. Here, the history of the 1PG 2-0 emission is tracked through sev-
eral radiative lifetimes, comprising times both during and after the excita-
tion pulse. The excitation pulse itseit is represented by the oscilloscope
trace of the discharge tube current. It is the curve which rises, flattens at
the top, and ends at 4 usec., Sharp current rise and fall times, as alluded to
previously, were the objectives of considerable development effort in the

early stages of the program.

0f particular interest in this photograph is the time relationship of the
1PG emission and the discharge current. The IPG emission shows a monotonic
increase throughout the current pulse. The same trend is shown on an expanded

time scale in Figure 2B, the photograph of a similar experiment, where again
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the current 1is the flat-topped feature, while the 1PG band is the extended

trace which falls slowly after the current is cut off.

This behavior is to be contrasted with that of the emission feature in
Figure 2C. Here the emission is that of the 0-2 band of the Ny Second Posi-
tive Svstem C 3Hu + B 3Hg. The light pulse, in this case, peaks in the first
microsecond of the current pulse and declines continually thereafter. Its

decay becomes even more precipitous when the current pulse jtself begins to

fall.

The trend of the 2PG emission feature is, in fact, more in concert with
that of the voltage pulse, as may be observed in Figure 2D. On that rectangu-
lar oscilloscope screen image, the voltage trace appears as a short horizontal
line at the 11,000 volt level (the vertical scale here is 3000 volts/div and
extends from -9000 volts at the bottom of the screen to +15,000 volts at the
top). The voltage falls sharply as the current rises, rests for a microsecond
at zero, and then reverses to negative values as the current pulse collapses.
At least qualitatively, the 2PG emission tracks the tube voltage downward,
whereas the 1PG emission continues to rise while the current is flowing in

spite of the fact that the electric field has vanished,
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RESULTS: EVOLUTION OF 1PG SPECTRA

One of the most interesting aspects of the time-resolved spectrum of
molecular nitrogen in a pulsed electric discharge is the evolution of the
relative intensities of the various bands following the expiration of the
exeitation pulse. This phenomenon will be illustrated by selecting the AV = 2
sequence near 750 nm (see Figure 3) and taking snapshots of the spectrum (as
explained in the section above) at various times and under various conditions

of excitation.

Such a series of snapshots is presented in Figure 4, where the AV = 2 se-
quence has been excited by the usual 4 usec pulse in 400 mTorr of flowing
nitrogen, The repetition rate is 5 Hz. This set of shots carries the se-
quence of bands through the excitation pulse and out into the afterglow for a
total time elapse of 9 usec. Clearly discernible change in the relative
intensities begins at 4 usec (just at the end of the excitation pulse) and
proceeds rapidly up to the 8 usec mark. Beyond 8 psec the speed of evolution
slows considerably, and a detailed analysis of the complete body of data indi-
cates that a long-term stabilization sets in at about 12 usec., It will be
recognized that all intensities are falling here accordance with the general
depletion of population resulting from the observed emission which continues
after the primary excitation mechanism has been cut off. 1In these graphs,
however, the general declining trend of intensity has been overridden by
normalization of the maximum band in order to permit ready comparison from one

time to another.

What is to be gleaned from the data set taken at 400 mTorr on the AV = 2
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sequence is that a major redistribution of population takes place during the
8 usec immediately following the excitation pulse. Since the gas kinetic col-
lision frequency under these conditions is 2.7/usec, the number of collisions

which will have occurred between excitation and stabilization is

2.7/usec x 8 usec = 22 collisions

For spectra generated at a pressure of 40 mTorr, a much longer period of
time is required for the onset of the stabilization of the relative vibra-
tional populations. This point is iilustrated in Figures 5 and 6, displaying
the AV = 2 and AV = 3 sequences, respectively, taken at 35 Hz and 40 mTorr.
Again, casual inspection cannot reveal a precise epoch for the stabilization,
but it may be observed that an estimate of ~ 100 uscc deduced from a somewhat
more rigorous procedure is within reasonable bounds. Applying the same arith-
metic as above, then, we obtain for the present stabilization requirement a
value of some 26 collisions., 1In consideration the body of data as a whole, it
is concluded that about 25 gas kinetic collisions are required to bring about
population equilibration regardless of the amount of time consumed in the
process. At present, we feel that the source of this increase may be attri-
buted at least partially to intersystem collisional transfer from the A 32:
state. The reason for this conclusion will be discussed more fully later, but
it primarily involves the fact that the peak in the initial vibrational dis-

tribution in the A state corresponds approximately to V = 1 of the B 3Hg.

As 1indicated above, we have been dealing with normalized spectra 1in
Figures 4, 5, and 6, graphed so that the peak values come at the same height.

To demonstrate the true rise and fall ot emitted intensity, we present Figure
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7 showing the four 1PG sequences at 1 and 2 psec intervals from 0.5 to 20 usec
elapsed time. This is an example of the type of speoctra to be dealt with in
the next section. The pressure is 150 mTorr and the repetition rate is 15
Hz. Such a compound spectrum is the product of the application of about half

a million pulses,
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RESULTS: POPULATION PLOTS

Following the observation and analysis of the evolution of the relative
band intensity patterns, we proceeded to the determination of relative indi-
vidual B 3Hg vibrational 1level populations based on the recorded spectral
data. The procedure 1is initiated with the intensity calibration of each
spectrum by means of the computer-stored black-body data mentioned in the

Experimental section.
The vibrational levels treated were the B 3Hg V =1 through 12. Condi-

tions in the discharge tube comprised the following

Pressures: 50,200,400 mTorr
Repetition rates: 5,15,32,50 Hz

Peak current: 600 amps

Through use of the first mode of operation above, spectra were recorded
and characterized according to the time delay between the onset of the excita-
tion pulse and the instant of their snapshot. Sets of spectra with time

delays of 0.5 to 20 usec were taken for each combination of pressure and

repetition rate listed above.

Each set of spectra was taken through the 0.5 to 20 usec time delay se-
quence at a constant pbotomultiplier tube (PMT) voltage so as to preserve the
changes in relative intensity which deveiop with the passage of time. An ex-
ample has been given in Figure 7 (above). In order to optimize the signal at

the peak of the light emission pulse, we were required to vary the PMT voltage
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for each set of discharge conditions, In general, the peak of the 1PG
emission pulse occurs at approximately 3 psec. Through adjustment of the PMT
voltage, the spectra were arbitrarily altered to conform to the same peak
value, which utilizes the full dynamic range of the detection and

amplification system.

All spectra used in the population determinations were calibrated with the
intensity curve discussed above. The populations were evaluated from the cal-
ibrated spectra using a computer program that integrates band inteansities over
a constant wavenumber region around the band origin of each vibrational band
considered. A total of 26 bands were analyzed from each spectrum, with the
resulting populations of each level reflecting the average of at least two
bands, except for the cases of V =1 and 12. Corrections for band overlapping
were made in consideration of the relative positions of band origins and the
relative intensities of close-lying bands according to the tramsition proba-
bilities given by Shemansky and Broadfoot.(18) An example of the spectra used

in the determination of populations is that of Figure 3.

An adjustment to the raw population distributions was carried out by means
of scaling spectra obtained under each set of discharge conditions at the
3 usec mark. This set of scaling spectra was taken with the same PMT voltage
throughout. One of the results of the .“ove procedure is the determination
that the overall intensity of these scaling spectra increases with the pres-
sure., This indicates that the total number of excited molecules in the dis-
charge tube is increasing as the density increases. The fractional excita-
tion, however, decrrases with density, which fact is detzrmined from the ratio

of the scaling factor to the gas density for each of the three pressures in-
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volved. The values are listed in Table 1. What these values show is that the
peak density of excited molecules in the discharge does not increase as fast

as the gas density when the peak discharge current is held constant.

Table 1 FRACTIONAL EXCITATION AS FUNCTION OF PRESSURE

Pressure(mTorr) Factor/density Normalized
50 0.21 1
200 0.11 0.52
400 0.07 0.33

A portion of the populations obtained from the adjusted band inteusities
appear in Tables 2 through 4 and in Figure 8. These tables and figures con-
stitute the results from experiments at three pressures: 50, 200, and 400
mTorr, and a discharge frequency of 5 Hz. A broader set of these data, ob-

tained at frequencies up to 50 Hz, may be found in ref. 19.

As mentioned, steps were taken to put all results on a common scale and,
in particular, the relative vibrational populations (upper entries of Tables 2
through 4). Relative populations mean, then, that there is a multiplicative
factor which would convert the upper entries from relative populations to
absolute densities of B 3Hg state molecules in their respective vibrational
levels, The errors associated with the populations in Tables 2 through 4 are

considered generally to be of the order of 5 to 15%.
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DISCUSSION

A point of comparison may be useful in clarifying the interpretation of
the plots of percent population. By percent population we mein the percentage
of the remaining population at a particular time. Figure 9 shows the effect
of the non-uniformity of the lifetimes of the various levels on a decaying
vibrational distribution. The first line, at t = 1 usec, is the initial
distribution at 15 Hz rep rate and 150 mTorr pressure. This figure shows that
as time goes by and the initial distribution decays, we should expect the per-
centage share of lower vibrational levels to increase because of their longer
lifetimes. In point of fact, we do see a trend in the distributions in which
the band intensities of the lower levels (V = 1 and 2) increase with time.
This type of behavio; was shown in the series of spectra for AV = 2 in the
previous section. Such a characteristic rise in the lower levels can be seen
in all of the experimental vibrational population plots as well. As shown in
the experimental spectrum plots, however, there 1is a significant enhancement
of that trend with increased pressure. For higher pressures, a larger in-
crease in the percent population of the lower levels has come about by the 20

usec mark.

Longer time plots show that for all conditions the distributions of per-
cent populations are almost identical for times between 100 and 200 usec.
This common distribution will be referred to as the "long-~term quasi-station-
ary distribution” and two examples are shown in Figure 10. The distributions
at 120 usec for these two figures appear in Table 5. Looking back to the 0 to
20 usec plots, we see that the greater the pressure, the greater the progress
of the distribution toward this long-term quasi-stationary distribution which

has been achieved by 20 usec.
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In the 0 to 20 usec plots, a number of other features are notable and
appear in varying degrees throughout. First, there is a pronounced rise in
the plots associated with the level V = 6, Notice that its position in time
varies with pressure., Table 6 gives the measured times at which the peak
occurs in the percent population for V = 6 for all sets of conditions. On the
whole, the distribution does not change drastically during the 4 psec of the
current pulse, so in order to determine the significant time to the peak in
V = 6, 4 psec is subtracted from the elapsed time. These reduced times are
the niddle entries in Table 6. Averaging these times for plots of identical

pressure yields the following values:

400 mTorr > 1.0 usec
200 mTorr > 2.25 usec

50 mTorr > 7.8 usec

The product of these times and the collision frequencies for the corre-
sponding pressures determines the number of gas kinetic collisions which have

occurred at the time of the observed peak. The values are:

400 mTorr + 2.7 collisions
200 mTorr » 3.0 collisions

50 mTorr + 2.6 collisions

It appears, then, that for all conditions of these experiments, 2.5 to 3.0

2
collisions are required to produce the peak in this level of the B ﬁIg state
vibrational distribution. The timing of this peak reflects the number of col-

lisions necessary to equlibrate the populations of the V = 6 level of the
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B 3Hg state with the V = 7 level of the W 3Au state via the ICT process. It

should be noted that, in general, the overall distributions are otherwise
similar at the times when the peak in V = 6 occurs. Consequently, we may feel
confident that the position of the peak has not been affected by drastic

changes in the percent populations of the lower levels.

The role of collisional coupling between the B 3Hg and W 3Au states has
been considered previously in explanation of the red lower border of Type-B
auroras (1),(2). Of particular interest here are the implications of the 85
km turn-on altitude which was noted by Benesch as having been quite sharply
defined in artificial auroras. As pointed out in ref. 2, the aurovral 85 km
corresponds to a kinetic collision frequency of approximately 2 collisions per
radiative lifetime of the levels V = 6, 7, and 8 of the W state. In the
aurora, this appears to be the critical count required to divert excitation
from the W+ B system to the B + A system.(l) With our present applications
of time-resolved spectroscopy to the same problem, the progress of the colli-
sional coupling of the levels of these states, for example B(6) and W(7), can
be directly observed and, as indicated in the analysis above, some 2.5 to 3
collisions are required to couple these levels, This is in good agreement with
Benesch”s estimate.

The fact that the percentage population rises for the B 3ﬂg V = 6 level
indicates that the relative populations of the B(6) and the W(7) are initially
out of equilibrium. In order to estimate basis populations for these two
levels, we must make some assumptions as to the quantities of the two states
directly produced by the discharge. Computer studies which we have carried

out have indicated that the production rate ratio of W to B in the early
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stages of the discharge pulse is about 0.75, Since it may be assumed that the
+

excitation occurs from the V = 0 level of the ground state, X 1Zg’ then the

distribution into the two upper levels is governed largely by the Franck-

Condon factors (FCF) between X(0) and those levels. The resulting relative

populations will be given by

N{W(7); = FCF[(W(7)] * Ratio(W:B)

1]

(0.105) * (0.75)

0.081

it

N[B(6)} FCF[B(6)) * Ratio(B:B)

(0.0659) * (1.0)

0.066

Thus, we calculate that there is an unbalance of about 20% in the two ini-
tial populations in favor of the B(6) over the W(7)., Furthermore, there is a
tendency for the unbalance between these two levels to persist since the B(6)
depopulates ten times more rapidly than the W(7) through spontaneous emis-
sion.(20) For the duration of the unbalance, W(6) supplies secondary excita-
tion to B(7) through ICT.

Another feature in Figure 8, which becomes more prominent with increased
pressure, 1s the depression or trough at V = 3, The values for percentage
population do not go through a well-defined minimum, so it is difficult to
determine precisely the number of collisions necessary for achieving an

3

equilibrium, presumably with V = 3 of the W Au state. However, an analysis

similar to the previous one may be undertaken., Proceeding as before,
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N{W(3)] = FCF[W(3)] * Ratio(W:B)

(0.0438) * (0.75)

0.032

N{B(3)] = FCF[B(3)] * Ratio(B:B)

(0.191) * (1.00)

0019

In this case, the population of the B(3) level is calculated to be much
larger than that of the W(3) level so that a bleed—off of excitation into the

W(3) is to be expected.

The trough at B(3) has been noted also by Benesch and Fraedrich(2l).
Their data is shown in Figure 11 and depicts the relative populations of the
B 3Hg and the B~ 32; levels in a DC discharge, each state to its own scale.
It was postulated in ref. 21 that every B” level is equilibrated by ICT with
an adjacent B level. However, the reverse statement is true only down to B(4)
where the B” levels end with B“(0). B(3), then, while losing excitation to
3

W Au, has no appreciable influx from B~ 32; and manifests a depressed

population in both experiments.,

At B(3) and B(4), the evidence of ICT coupling with B” comes about as a
result of the sudden default of B” below B“(0). Conversely, an enhancement of
excitation in B state levels adjacent to the peak in the B” initial excitation
rate distribution may be observed in the relative population plots., Figure 12
gives a plot ot the distribution of direct electron excitation rates for lev-

els of the B 32;. Each of these levels(V) is adjacent to a level(V+4) of the
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B 3Hg, so that the excitation peak at B7(7) is manifested as a population peak
at B(11)., It appears at some 2 usec or 2,5 collisions after the termination

of the discharge as shown in Figure 13.
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CONCLUSION

The results discussed above demonstrate the role of collisions in the
redistribution of wvibrational population in the B 3Hg state of Ny This
redistribution is seen both in changes in relative band intensities and in the
corresponding changes in the 3-D plots of population percentages. With re-
spect to the 3-D plots, the important observations are (1) that the rates with
which these changes take place increase directly with pressure, and (2) that
marked changes occur at B 3ﬂg vibrational levels which lie adjacent to levels
of overlapping states where peaks arise in the initial population distribu-

tions.,

Referring to the Franck-Condon factors between the ground state and the
overlapping triplet states, we may anticipate vibrational population peaks in

these states at the following levels: A 32:, v=8; W 3Au, v=7; and B~ 32;

)
v=7, The peaks lie adjacent to B 3Hg vibrational levels v=l, 6, and 11,
respectively, As was shown in the previous section, these are the B 3“g

levels in the 3-D plots which show distinct changes as a function of pressure.
Thus, from such observations, we may conclude that the ephemeral peaks in the
3-D plots reflect the ICT process connecting the B 3ﬂg and the other low-lying
triplet states (W, A, and B”). This 1s not to say that the low-lying singlets
do not also participate in the ICT process with the triplet manifold, but that
the present observations correlate most obviously with ICT amongst the trip-
lets. An important point to recognize regarding the 3-D population plots is
the efficacy of this mode of presentation In the detectlon of detailed fea-

excitation distributions.

tures of the B 3ﬂg
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The absolute population data (upper entries) for all levels in Tables 2
through 4 show significant trend deviations when compared with the decay
curves to be expected from spontaneous radiative transition probabilities.
Consideration of the present data indicates that for the intermediate and
lower vibrational levels, their apparent lifetime decreases with pressure dur-
ing the first few microseconds after the end of the excitation pulse (Figure
14A). For the higher levels, the situation appears more complicated, in that
at 50 millitorr the emission peaks at 4 usec rather than 3 usec (Figure 148B),
This latter behavior is not to be expected where direct electron excitation
from the ground state constitutes the sole populating mechanism. Again, what
such an analysis does not readily reveal is the wealth of structure that is

evident in the 3-D percentage population plots of Figures 8 and 10.

The following discussion traces the processes which we consider to be
operative during and immediately after the 4 usec excitation pulse. First,
the triplet states in question are generated at relative rates determined by
the electron energy distribution and the electron excitation cross sections
associated with the low-lying triplets. Second, the initial vibrational popu-
lation distributions within these states are determined largely by the Franck-

Condon overlap between each state and the ground state, X 1

+

Xg. The Franck-
Condon factors vary with vibrational quantum number within a given excited
state and the electron excitation cross sections vary among the electronic

states.
The levels thus populated emit continually according to their transition

probabilities and, in keeping with the trends of Figure 10, begin an evolution

down the vibrational level ladder. Such emission constitutes an irreversible
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loss of excitation from all coupled sets of levels. Furthermore, as might be
expected, the direct electron excitation generates an ensemble of excited
molecular states wherein the populations of adjacent vibrational levels are

initially out of equilibrium vis—-a-vis the ICT process. An example of an

initial set of distributions is shown in Figure 15.

For the case of B“+B, W+B, B+W, and A+B emission, the radiative decay
process constitutes a source of excitation for a group of cascade lower
levels., 1In addition, the collisions which occur during and after the excita-
tion pulse will tend to shift any remaining population toward proportions
which reflect an ICT equilibrium, This shifting of populations has been
demonstrated in the 3-D population plots and in the changing relative band

intensities.

In applying these results to an enhanced understanding of auroral proces-
ses, we have always been cognizant of the circumstance that much auroral
activity takes place in an environment characterized by considerably lower
collision frequencies than those of laboratory discharges. On the other hand,
with time~resolved spectroscopy capable of time resolution extending to the
sub~microsecond level, we have been able to examine the spectral evolution of
auroral features on a collision-by-collision basis down to and including

spectra which occur effectively prior to the first collision after excitation.

Through the course of these investigations, we have come to regard auroral
emission as an inherently dynamic phenomenon in the sense that even under
steady excitation conditions, there is generated a manifold of molecular emit-

ters of increasing age and, thus, of evolving population discribution. As has




been illustrated in Figure 9, this evolution takes place in the absence of
collisions, but it is much accelerated by molecular interaction. The continu-
ally aging populations of emitters become increasingly subject to the colli~
sional effects elaborated on above depending, of course, on the altitude of
the auroral form. At 100 km there will be only a small influence on the part
of collisions since they occur at 400 usec intervals, whereas at 80 km, where
there is but 10 usec between collisions, the presence of neighboring molecules

strongly affects the population distribution and, accordingly, the enitted

spectrum,
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Figure Captions

Figure 1 - Experimental block diagram showing the pulsed supoly for the
discharge tube and the optics and electronics used for time-resolved spectro-
SCOpY. Note that the boxcar averager is triggered by the discharge tube
current pulse through a current transformer near ground. Light exits the
discharge tube through a window at the right end and is directed into the

spectrometer by a mirror and a lens.

Figure 2 - Oscilloscope traces of the time-development of the electrical

and optical signals from the discharge.

A - Current and light emission for the 2-0 band of the nitrogen IPG on a time
scale of 2 vsec per division. The curreat pulse is nearly rectangular, start-
ing at 0 and ending at 4 usec. The IPG emission rises throughout the current
pulse, peaks at approximately 4 usec and then decays with a long tail. Also

shown 1is the 200 ns boxcar gate which appears at 5 usec.

B - Expanded view of the current pulse and the 1PG (2-0) band light emission.
The light signal is seen to begin dropping at the same instant as the current

which is a characteristic common to all of the 1PG bands examined.
C - Expanded view of the current pulse and the 2PG (2-0) band light emission.
Note the differences between C and B. 1In particular, the 2PG begins to fall

just after the onset of the discharge pulse.

D - Current and voltage in juxtaoosition. The voltage trace starts at the




12,000 volt level and drops rapidly at “he onset of the current pulse, Note
how closely the 2PG light emission (C) follows the voltage as contrasted with

the 1PG emission (B).

Figure 3 - The First Positive Group emission spectrum between 5500 and
9000 A&, Four distinct sequences of vibrational bands are labeled. Time-
resolved spectra of this type were used to measure the vibrational population
distributions during and after the current pulse, This spectrum was taken at
3 usec into the discharge pulse with an N, gas pressure of 50 mTorr and a

discharge pulse repetition rate of 5 Hz.

Figure 4 ~ Time-resolved spectra of the 1PG, AV = 2 sequence from I to 9
usec. The pressure was 400 mTorr of N, and the discharge repetition rate 5
Hz. The figure shows the dramatic shift of population to the lower vibra-

tional levels during the period just following the end of the current pulse.

Figure 5 - Time-resolved spectra of the 1PG, AV = 2 sequence from 1 to 200
usec at a lower pressure. The gas pressure for this figure was 40 mTorr and
the discharge frequency 35 Hz. Here the length of time required to transfer
population to the lower levels is seen to be considerably greater than for the

higher pressure case of Figure 4,
Figure 6 - Time~resolved spectra of the AV = 3 sequence from ! to 200 usec
at low pressure (40 mTorr). The figure shows a definite outcropping of the

(6-3) and (7-4) bands during the interval between 6 and 60 us,

Figure 7 - Three dimensional display of 1PG spectra showing the sam. four
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sequences of Figure 3. The spectra were calibrated (in rayleighs) in order to
maintain the significance of relative intensity. Note the ripple effect in
the V = 4 sequence and the increase in the relative intensity of the (2-0)

band between the f{irst and last spectrum.

Figure 8; A, B, C - 3-D plots of population percentages among the
vibrational levels of the B 3ﬂg state taken from PG spectra measured at each
of the indicated times. All plots are from spectra obtained at a discharge
pulse frequency of 5 Hz. The pressures are (A) 50 mTorr, (B) 200 mTorr, and
(C) 400 mTorr. Note the trough which develops at V = 3 and that the rate at
which it develops increases with pressure. Also note the bump in V = 6 which
moves to earlier times at higher pressures. The Z axis is percent population.
The underlying data appears in Tables 2 through 4. Distortions in the early

distributions are due to atomic lines initially present in the spectra.

Figure 9 - A theoretical model demonstrating the effect of lifetime alone
on the development of the relative populations of the B state levels., This is
a 3-D plot of the estimated change in percent population of the decaying B SHg
vibrational distribution, Here the only effect considered is spontaneous
emission according to the radiative lifetimes which vary among the levels.
The initial distribution is from the spectrum at 3 usec with a pressure of 150

mTorr and a discharge pulse frequency of 15 Hz.

Figure 10; A, B - Long term 3-D plots of population percentages among the
3 t

vibrational levels of the B "M  grate (1 to 200

\
1 to 200y
g

mTorr and (B) 400 mTorr. The plots show that the long term quasi-stationary

n
“

\ Dennmis nven
HR oL ol I VEE33UTYES are
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distribution is reached more rapidly at the higher pressure.
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Figure 11 - Population distributions for B 3Hg and B~ 32; in a DC dis-
charge (from ref. 21), Each distribution is on its own scale. Attention has
been drawn to the striking proportionately between the two sets of relative

populations down to the B~ 32; V =0 level.

Figure 12 - Estimated initial population distribution in the B~ 32; state.,
Note that the distribution peaks at V = 7 which lies adjacent to V = 10 in the
B 3Hg state. The largest effects due to ICT from B~ 32; should, accordingly,
occur in the levels around V = 10, in agreement with the data of the previous

figure.

Figure 13 - 3-D plot of perceat population for the B” 32; levels 8 through
12, The figure shows a distinct rise in levels 10 through 12 which is consid-

ered to be due to collisional coupling with the B~ 38; state (ICT).

Figure 14; A, B - Comparison of the time development of level populations
with calculated trends based on the lifetimes of the levels, The system
pressure was 50 mTorr of Ny and the discharge frequency 5 Hz.

(A) is for B 3

ng(v=3) and shows the decay to be more rapid than that to be
expected from radiative losses alone. Here ICT should be from B(V=3) into

Ww(v=3),
(B) is for B 3Hg(V=ll) and shows the emission to be peaking after the end of
the current pulse. In this case. ICT is to bhe expected inro R(¥=11}) from

B7(V=8), as well as from high levels of the W 3Au.
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Figure 15 - Estimated initial vibrational level population distributions
of the A, B, W, and B” states calculated for an electron temperature of 35,000
%K., The tic marks above the distributions label the positions of the vibra-
tional levels. This is to demonstrate that the anomalies which have been
observed in the 3-D population plots all have their origins in corresponding

population peaks in neighboring states which are coupled to the B 3ﬂg through

ICT.
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Table Captions

Tables 2 through 4 - Relative and percent populations of B 31Tg vibrational
levels 1 through 12 during the first 20 usec of the pulsed discharge. The
system pressure is (2) 50 mTorr, (3) 200 mTorr, and (4) 40C wTorr of N The
upper entries are relative populations and so reflect the rise and fall of
each B BHg level during and after the current pulse. Relative populations in

2ll three tables are on the same scale. The lower entries are the percent

population nf the 12 levels shown at each indicated time., These data underlie

the plots of Figure 8; A, B, and C.

Table 5 — Percent population at 120 usec, showing the long-term quasi-station-
ary distribution. The system discharge was 50 Hz and the system pressures
were 530 mTorr and 400 mTorr as indicated. These data underlie the plots of

Figure 10; A aad B.

Table 6 =~ Lapse of time and number of collisions to the peak in the percent
population of V = 6, 1In all cases the number of collisions is between 2.5 and

3 after the end of the current pulse (4 ysec).
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