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m CHAPTER I

m INTRODUCTION

m In this report we consider the process of obtaining an image

of the cross section of an object from measurement of rays which pass

3 through the object. This process Is referred to as reconstruction of a

cross sectional image of an object from its projections. In this

3 context, a projection is defined to be an integration of some parameter

of the object along a line through the object. A ray which passes

3 through the object and attenuates along its path as a function of the

object's physical characteristics (along that path) would give an

3 approximation of this line Integral.

Practical application of the method of reconstructing a cross

3 section of an object from measurement of a set of line integrals

through the object dates back to the 1950s with Bracewell's work in

radio astronomy (1]. The application of this theory to medical

imaging dates back to the 1960s [2], [3] with the first commercially

available scanner Introduced in 1972 [4].

Surprisingly, the mathematical foundations for this theory date

back to 1917 with Radon's classic paper on recovering a function from

its line integrals [5], and to 1923 with Hadamard's work on inverse

and ill-posed problems [6]. We call this reconstruction process an

inverse problem since we are supplied the projection values and must

invert the data in order to obtain some characteristic (as a function

3 of position) of the object being scanned.

Reconstructing images from projections has also found application

3 in nondestructive testing [7] and seismology [8]. However, in this

report the emphasis is on scanning an underground cross section of the

3 earth ising electromagnetic rays. This operation is often referred to

as gootomogrqpty. One particular measurement geometry which is used

3 for scanning an underground region is shown in Fig. 1.1. In this

I
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geometry, two boreholes are drilled Into the ground outside of the

5 region to be scanned. A transmitting antenna Is lowered Into one

borehole, and measurements of the received signal are taken in the

3 opposite borehole. These measurements are taken over a range of

transmitter and receiver positions. This operation Is normally

automated using a computer.

The ability to obtain a cross section of a region of earth has

Important consequences. For example, geotomography has been used to

locate burn fronts In coal seams (9], to monitor heavy oil recovery

(10], and to detect, locate and identify tunnels (11]. It is apparent

that as our natural resources are diminished, better ways of exploring

the underground environment will be needed. Geotomography is one

i method which will help fill this need.

Some of the early work In this field was done at Lawrence Livermore

5 Laboratory [111, [12], [13]. Utilizing a system configuration that

measured the power at receiver locations, the attenuation through the

earth as a function of position could be found. In obtaining the cross

sectional images of attenuation, the assumption was made that the

electromagnetic rays follow a direzt path from the transmitting to the

receiving antenna. This assumption caused errors in the reconstructed

3- images when the rays experienced reflections, refractions, and

diffractions. Attempts were made [14] - [18], to reduce the effects of

noise, reflections, and refractions by incorporating ray tracing into

the geotomography process. This process involves reconstructing an

3 Image assuming direct rays, and then Iteratively improving the ray path

knowledge by using Snell's law to find the path a ray would follow

through the current estimate of the image. Unfortunately, this method

ignores diffraction of the rays which in some cases may be the dominant

effect.

eeA method was devised by Devaney and others [19], [20] for implicitly

incorporating reflections, refractions, and diffractions into the

3 reconstruction process. This method is known as diffraction tomography.

I
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Reconstruction* are obtained by inverting the wave equation using either the 3
Born or Rytov approximations. Unfortunately, these approximations are only

valid for cross sections containing weak scatterers (slight inhomogeneities), 3
so that this method may not be useful, for example, in tunnel detection. One

of the goals of this project was to develop a method which Is sufficiently 3
robust to handle cross sections containing strong inhomogeneitles, yet still

account for diffraction effects. An outline of the development of such a

method follows.

Chapter II gives some of the more common models for describing the 3
propagation of electromagnetic waves In the earth. In addition, a new

ray optics model [211 is presented which is of great importance to 3
certain reconstruction methods. A thorough understanding of the

propagation of electromagnetic waves in earth is a necessary first step 3
for considering the subsurface Image reconstruction problem. In fact,

the ray optics model developed In this chapter leads to a potentially

powerful reconstruction method which is described In Chapter III. This

ray optics model along with some of the other models developed in

Chapter II serves as building blocks for the reconstruction methods

developed here. In addition, some of the difficulties with Inverse

problems are described in Chapter III with emphasis on image I
reconstruction theory.

Numerical algorithms for the image reconstruction problem are 3
developed in Chapter IV. A new method for incorporating a priori

information Into the reconstruction process using weighted least squares 3
is presented. An extension of the method of conjugate gradients and an

implementation of the singular value decomposition are applied to the 3
subsurface reconstruction problem. It is shown that the conjugate

gradient method (for subsurface detection, location and identification) 3
is far superior to the previous standard method used in geotomography.

the algebraic reconstruction technique, In terms of fast convergence and 3
immunity to noise.

Chapter V presents some methods of post-processing a reconstructed 3

I
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I image to reduce noise, enhance features, and locate, detect, and identify

subsurface anomalies [22]. In addition to some standard results, a new

detection scheme is discussed. This detection scheme is shown to be

most effective in accurately locating high contrast subsurface

i anomalies, such as tunnels.

A new method of combining reconstructions from two types of

measurement processes in order to detect, locate, and Identify anomalies

in a homogeneous earth is presented in Chapter VI. In this chapter, it

3 is shown that reconstructions obtained using either continuous wave or

time-of-flight measurements can lead to ambiguous interpretations (see

3 [23] for a description of time-of-flight reconstructions). A way of

avoiding this ambiguity, by utilizing both sets of measurements, is

3 presented along with some guidelines for identifying subsurface

anomalies in a cross section of the earth.

I
I
I
I
I
I
I[
I
U
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3 CHAPTER 11

* GEOPHYSICAL MODEL

3 2.1 Introduction

In order to adequately understand and model the geophysical

reconstruction problem, it is first necessary to have a good

description of how electromagnetic waves travel through the earth. To

this end, the present chapter will attempt to give such a description.

The following section will describe the electrical parameters of earth,

and their various relationships. The succeeding sections will discuss

different ways that the forward problem can be solved. This forward

3 problem consists of generating simulated data of the electromagnetic

field at different depths in the receiver borehole given the

* characteristics of the earth between the receiver and transmitter

borehole. This modciing problem is important since:

I a) actual field data are available only for limited geological

structures,

3 b) analysis of simulated data gives insight into the inversion

process, and

3 c) analysis of simulated data can help to optimize the field

measurement process.

After the forward problem is well understood, the reconstruction

problem can then be solved.

1 2.2 Electromagnetic Characteristics of the Earth

I Unless otherwise noted, this section will consider the problem of

determining the electromagnetic fields in a homogeneous earth. This

means that the electric parameters do not change with location in the

earth. This simplified assumption will be relaxed in the next section.I
I
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2.2.1 Electrical Parcieters for Continuous Wve TomographI

The basic electrical parameters of interest in describing a

material are:

a) c - permittivity, in Farads/meter,

b) ju - permeability, in Henries/meter, and

c) ; - conductivity, in Siemens/meter.

It is customary to express the permittivity and permeability in terms

of their values in a vacuum as I

E r Eo ,  (2-1)

= Jr Po' (2-2)

where Eo (=8.854xlO-12 F/m) and jLo(=4rxlO- 7H/m) are the free space 3
values. For the cases we will be considering, it will be assumed that

the earth does not contain any magnetic materials (e.g. iron ore 3
deposits); therefore Jur = 1. On the other hand, the relative

permittivity, Er, can take on values much greater than I. depending on 3
such conditions in the ground as type of rock/soil, particle sizes, and

water content. The conductivity of the earth also depends on these 3
conditions.

Although the relative permittivity, er, and conductivity, a, will, 3
in general, depend on frequency [24],[251, for the following we will

assume that these two parameters are independent of frequency (for 3
illustrative purposes). Given this assumption, we see that a, E, and ji

are static parameters. Since we are interested in the propagation of 3
waves in the ground, a more useful quantity is the propagation constant

'Y = i= [(6 + juE)j(j]1 (2-3)

I
3
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I
I where j = fi , w is the radian frequency, a is the attenuation

constant, and p is the phase constant. This propagation constant is

used to describe the transmission of a uniform plane wave of frequency,

Iw , through a homogeneous medium (Note: an e+j~t time convention is

assumed). The traveling nature of the wave is evident if we consider a

wave moving in the +z direction, then the field at any point along the

z axis is given by

I u(z) = uoe-VZ = u e- (a*jP)z (2-4)

where uo is the magnitude of the field at z=O. It is now evident that

3 the field is attenuated in the +z direction according to the constant

I This attenuation constant is important for cross-borehole

tomography since it determines the amount of electromagnetic power

3 which reaches the receiver borehole. Note that a is not truly a

constant in that it will depend on j, a, C, and p as

a= -Vp WE 1 (2-5)

and a and E will, in general, be functions of position.

It is useful to get a good characterization of attenuation, since,

when continuous wave (CW) geotomography is performed, the attenuation

of the earth as a function of position is the unknown quantity to be

found. This will allow us to map a cross section of the earth using

attenuation as our parameter. Also, the attenuation will determine how

far the electromagnetic waves can travel in the earth and still be

measured at the receiver. For these reasons, in Figs. 2.1 - 2.3 the

attenuation Is plotted as a function of frequency, conductivity, and

3 relative permittivity. In generating these plots, all other parameters

I
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were kept constant at values representative of dry soil (Er = 10, a =

0.001 S/m). The following conclusions may be drawn from examination of

these figures:

a) Fig. 2.2 gives an upper limit on the conductivity of the earth

which can be scanned using a transmission frequency of 50 MHz.

For example, for a = 0.2 S/m the attenuation is about I Np/m.

3 If we assume a transmitted power of 1000 W, then at a distance

of 10 meters from the transmitter the received power would be

3 on the order of 2 .W, which would be difficult to measure.

b) Finally, Fig. 2.3 shows that attenuation is also a strong

3 function of permittivity.

These conclusions suggest that the region of earth to be scanned for

geotomography purposes needs to be investigated before any measurements

are made.

Another parameter of interest for a traveling wave is wavelength,

given by

S + )21 + 1 1/2 (2-6)I
The wavelength gives some indication of the resolution of the

geotomography process. For example, we do not expect to "see" objects

which are significantly smaller than the intrinsic wavelength. In

Figs. 2.4 - 2.6, the wavelength in meters is plotted versus the same

quantities as the attenuation was in Figs. 2.1 - 2.3. Fig. 2.4 shows

3 that measurements must be made at frequencies greater than 10 MHz, for

the given values of conductivity and permittivity, in order to resolve

3 objects smaller than 10 m. This suggests a trade-off between

increasing the transmission frequency to increase resolution (Fig.

3 2.4), and decreasing frequency to obtain greater penetrating range

(Fig. 2.1).

3 Fig. 2.5 shows the wavelength as a function of conductivity with

I
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frequency and permittivity maintained constant. Finally, Fig. 2.6 is a

plot of wavelength versus permittivity with frequency maintained

constant. These figures will be referred to later, when sample

reconstructions are presented.I
2.2.2 Electrical Parameters for Time-of-Flight Measurements

m The main electrical parameter of interest for time-of-flight (TOF)

3 measurements is the wave velocity, given by

a=WE 1/[ + I 1// m. (2-7)

I When taking TOF measurements, the time It takes a pulse to travel from

transmitter to receiver is measured. Therefore, the time taken will be

a direct function of the intrinsic velocity of the intervening medium.

Like the attenuation, the velocity is a function of frequency,

conductivity, and relative permittivity. These relationships are

plotted in Figs. 2.7 - 2.9. Also plotted in these figures are the

velocities that would be obtained if the conductivity were zero. This

zero conductivity velocity is important since a will be neglected when

deriving the reconstruction algorithm for TOF measurements. By

neglecting the conductivity, it can be seen that the velocity is a

function of only the permeability and permittivity. If the

permeability is assumed to be constant, the TOF measurements will then

allow us to map the permittivity of a cross section of the earth versus

position. As can be seen in Fig. 2.7, a can be neglected when the

conductivity is equal to 0.001 S/m and the frequency is greater than 10

MHz. Figs. 2.8 and 2.9 also give Justification for using this

approximation.

2.3 Sinusoidal Response of a Homogeneous Earth Containing Isolated

I
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I Anomalies

2.3.1 Ilntroduction

Up until this point in the chapter, the discussion has been for

the case of an earth whose electrical parameters do not change with

position. Of course, if this were always the case, there would be no

need for the theory of geotomography.

Heterogeneities can exist in the earth in the form of: rock

layers, faults, seams, extrusions, water deposits, or tunnels. We will

refer to isolated heterogeneities of limited extent such as water

deposits or tunnels as anomalies. These anomalies will be easier to

detect than the other types of heterogeneities because of their finite

extent in the viewing space. In fact, it is often the case that the

geophysicist attempts to detect and locate anomalies in spite of the

presence of other heterogeneities. So, although theory exists for

modeling electromagnetic waves in stratified media [26], it is the

opinion of this author, that these phenomena must be handled on a

case-by-case basis. For instance, if a geophysicist is exploring for

oil, and s/he knows that a layer of limestone exists in the region to

be examined, s/he should then adapt the model accordingly.

Because these global heterogeneities should be addressed only when

there is a priori knowledge about their presence, and because they will

in general complicate the geophysical model, they will not be discussed

in detail here. Rather, in the remainder of this chapter, modeling of

isolated anomalies in a homogeneous earth will be presented.

We consider in this section the sinusoidal response of the earth

containing a line source antenna. This theory will be important for

considering electromagnetic probing of the earth for continuous wave

(power) measurements. In the next section the time response of the

I earth will be investigated in order to characterize the time-of-flight

measurement process.

I



I

21

2.3.2 Green's Function Solution for a Homogeneous Earth

It is important to derive a Green's function solution for a I
homogeneous earth. This Green's function gives the electromagnetic

response of an antenna radiating in a homogeneous earth. Once this

solution is found, it can be used to solve more complex problems in

which the earth contains scatterers. These more complex problems will 1

be given attention later in this section. Fortunately, this Green's

function solution exists [27], [28], for the so-called damped wave

equation given by I
~E +eE _ u,5E E Y (2-8)

a9X 2  ay2 C9t at2 C

where E is the electric field assumed to be a function of x, y, and 3
time; and J is the current density (J will be non-zero only at the

location of the electric line source which will be aligned along the z 3
direction). This equation relates the electric field in a two

dimensional region to the position in a region, the time, and the

derivative of the source. Fig. 2.10 is an illustration of the problem.

Equation (2-8) is a result of combining the equations

V x E = - , (2-9a)
atI

V x H = J + aE + --EE , (2-9b)

E ,and (2-9c) U
V x V x E V(V o E) - V2E ; (2-9d) 3

in the following manner.

a) Take the curl of (2-9a).

b) Use (2-9c) and (2-9d) in the resulting equation. 1

I
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c) Use (2-9b) to substitute for V x H In the result. I
Equations (2-9 a. b, and c) are three of Maxwell's equations. H is

the magnetic field intensity, and J Is the electric current density I
representing the source.

The Green's function can be found by proceeding as follows [27].

a) Replace the right hand side (the source term) of the damped

wave equation by the three dimensional dirac delta function.

-S(x)8(y)6(t). In this way it Is assumed that the source is

at the origin of the coordinate system.

b) Apply a two-dimensional spatial Fourier transform to the

resulting equation, to get

-OUt- 2xU - ae - 6(t) (2-10)

where we have defined the quantity U to be I
U = U(k1 ,ka,t) :- FxyG(X,y t) 3

-t CO aG(.y~t) eik1xeikay dx dy (2-11)

In this equation, ka := k + kIc , I and k. are spatial

frequency variables, F Is the Fourier transform operator, and G I
has been substituted for E to denote that the solution is a

Green's function. Implicit in this development is that the I
solution Is of such form (for example, E and its first two

derivatives are square integrable) to allow taking such I
liberties as bringing the time derivatives outside of the

Fourier integral.

c) As can be seen. (2-10) is an ordinary differential equation.

whose solution is again a Green's function (note the delta

function on the right hand side). This equation can be solved

by again using a Fourier transform, but with respect to the

I
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3 time variable to get

-k2V -ijuwV + = (2n)-2/a (2-12)

where V = V(k1 ,k2 tW) = FtU(k ,k ,t) and u is the temporal

frequency. This equation can be solved algebraically to yieldI
V (20)-3/2 -(2)-312 (2--13a)

ka + j)OW -E ( )( - W2)

where wi and wa are the roots of the denominator given by

I = jf + p (2-13b)

I2 = jr - p (2-13c)

=E u [p=[ _-] " (2-13d)

Note that these roots are in the upper half of the complex

plane.

3 d) To find U(k ,ka t) from (2-12), take the inverse Fourier

transform as

I
U = F

m---= 1 -(2n) - 3 / 2  eJ~td
f (W - W )( W.) " W . (2-14)

This integral can be solved by using the residue theorem and

I= Jordan's lemma to obtain

I
I=
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U(k, t) sn(pt), for t>O, (2-15)

where r and p are defined in (2-13). I
e) To find G(x,yt) from (2-15). again Inverse transform as

I
G Fxy'U

-rt JkxeJk yf e sin(pt) e e dk dk2  (2-16) I

f) It is convenient now to convert to polar coordinates such that

I'p& _ X2 + y2 , (2-17a)m

k "  = k J .(2-17b)m

eJkI x ejkay =e jkpcosf (2-17c)

dk dka = k dk dcP (2-17d) m

where cose - x/p, and 9 =( - e. Equation (2-16) becomes I

= .. ~: -rt jkpcos d

= f-' Jo Z p sin(pt) e k d dkm

= I -- sin(pt) Jo(kp) k dk

I
I
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=- eftf sin(k 1r()2/2 k Jo(kpVii?) dk, (2-18)

3 where Jo(O) is the Bessel function of zero order. This

integral can be evaluated by referring to the table of Hankel

3 transforms in [29] to get

G(p,t) . e-rt coshfr(t2- p2)E)L/2IH(t - p(-

=~p 2T1 Htt _ p2'U- ) (2-19)
i1 (t2  - P2JE)/2

where H(o) is the Heaviside step function, which is equal to

zero for its argument less than zero, and is unity for its

3 equal or greater than zero.

The result derived above is the electric field at a radial

3 distance, p, and time, t, assuming a source term of

J = S(x)S(y)[i - H(t)], (2-20a)

d 1(t)] = -S(t), (2-20b)
dt

3 where the derivative is taken in the distributional sense. Now that

this basic problem is solved, we can determine the sinusoidal response

3 of a homogeneous earth, and earth containing scatterers.

3 2.3.3 Sinusoidal Response of Homogeneous Earth

We consider again the damped wave equation developed in the last

section. The source term as before is an infinite current-carrying

cable in the z direction (refer again to Fig. 2.10). The fields are

I



I
I

27

invariant in the z direction, so the problem reduces to a

two-dimensional situation in (x,y) or (pP), for cylindrical

coordinates. The problem is further simplified if we assume that the 3
current in the cable has a sinusoidal variation of t rad/s. If the

location of the cable coincides with the origin of the coordinate

system, then this source term takes the form

J = I ejutS(x)$(y), (2-21)

where I is the magnitude of the current through the cable. For this

sinusoidal source term, the solution will also be sinusoidal of the 3
form

E(x,y,t) = E(x,y) ejot, (2-22)

I
Now substitute (2-21) and (2-22) into the damped wave equation, take

the time derivatives, and then cancel out the ej~t to get 3

V2 E - f2E = jQ IS(x)8(y). (2-23) I

Fourier transforming with respect to x and y, and then collecting terms 3
gives

F E = -LJuuI (2-24)aw(k2 *V2 )' I

where 
k2  = k2 + k. 

(2-25)
1 L

The electric field can now be found in polar coordinates by an inverse

transform as 3

I
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E(p. T) e f N -jw+I eikpc0s  k d'P dk

IT 0 Y ( k 7
_-JI,, Jo (kp) k dkAt T ( 0~ +v )

- -wIl H(a)(_J'P)o, (2-26)I 4

where the last integral was evaluated by referring to the Hankel

transform table in [29]. As would be expected from the symmetry of the

problem, the electric field is invariant with respect to Y. Since the

3 electric field is a function only of the distance from the antenna, it

can be given in rectangular coordinates asI
E(Z) = WR H(

2
)(-jy lX l), (2-27)

where we have defined

i := (x y)T (2-28)

as a two-dimensional vector, and

SIZI = (x 2 + y2)1/2 (2-29)

If the cable axis is at It , which does not coincide with the origin, the

I electric field will be

E(Z) H'(-jvX-Ztl). (2-30)

This completes the discussion of the response of a homogeneous earth

3- containing a line source antenna with a sinusoidal current variation.
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2.3.4 Sinusoidal Response of a Homogeneous Earth Containing a SingJe

Circular Cylindrical Anomaly

Refer to the geometry shown in Fig. 2.11. We consider finding the

sinusoldal response of a homogeneous earth containing a circular

cylinder. A problem of this type is solved [30], [31] by considering

the field external to the cylinder to be the sum of an incident field

and a scattered field as

E = Ei + ES (2-31)

The incident field is the field from the line source antenna assuming

the cylinder is not present; it is given by (2-30). The scattered field I
(Es ) is now expanded in a Fourier series, where the Fourier functions

are the elgenfunctions of the homogeneous (no source term) damped wave

equation with origin at the center of the cylinder. They are given by

Gn(pT ) = ejnT in(-Jap), for p S a, (2-32a) 3
n = e 'n P H n(a ( eP) , for p 1 a, (2-32b) I

where a is the cylinder radius. The origin is taken at the cylinder

center, and (pT) are the cylindrical coordinates. The subscripts on 3
the propagation constants are 'a' for anomaly (for inside the cylinder)

and 'e' for external (for outside the cylinder). The Bessel functions 3
were chosen for p~a since they remain finite at p=0 (and represent

standing waves), while the Hankel functions were chosen for p>ma since 3
they decay rapidly as p+- (and therfore represent traveling waves).

For the conditions under which a function can be expanded in terms of 3
these functions, the reader is referred to [32]. Using the expansion

functions given above, the scattered field takes the forms 3

I
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Es(p~a) = E bnn(pY) (2-33a)

ES(pa) =Z CEn(p,-T) (2-33b)
n=- I

where the Fourier coefficients, bn and cn, can be determined by

enforcing boundary conditions at the cylinder wall. These boundary

conditions take the forms 3

Ei + ES(p.>a) = ES(pga), (2-34a) 3
S+ H (pa) = HN(pja). (2-34b)

The T component of the H field can be obtained by assuming an ejot time

variation and using Maxwell's equation given in (2-9a) as m

H ZIE (2-35) U
I

The incident field can also be expressed as an infinite series by using

the addition theorem for Hankel functions [30]. The Fourier 3
coefficients can now be found by using (2-34a) and (2-34b) then

formally differentiating through the infinite summation as suggested in 3
(2-35). After some manipulation the following result is obtained for

the scattered field exterior to the cylinder [311. 3

E8 (p>a) - d_.d (-je ) Ha)(-Jyept), (2-36) I
where U

r
I
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Ko/Qo, for n=O
dn = f (2-37)

I2Kncosn(f-Yt)/Qn , for n>O

and

3 Kn = Vaa Jn(-JVea) Jn+1(-jYaa) -

+ Vea Jn(-Jaa) an+i(-J~ea), (2-38)
a H(2)-J a (-JVa a ) -

Qn = Vaa Hn (J~ea) Jn+i -

+ Yea Jn(-Jvaa ) Hn(2 (-JPea). (2-39)

3 Of importance in using (2-36), is the number of terms needed in the

summation to get accurate results. In order to determine the number of

3 terms needed, we first make use of the asymptotic expansion of the

Hankel function,

I
i (2)(z) r /2 ie/ (2-40)

3 which is valid for large Izi. From this expansion, it can be seen that

for the antenna and field point far from the cylinder axis (i.e., large

z), the Hankel functions in the summation do not increase in magnitude

with increasing order. Therefore, it is only necessary to evaluate the

3 behavior of dn with increasing n. Since dn is a function of the

external propagation constant, the cylinder radius, and the order, its

1 behavior will depend on these parameters. To show some typical

responses of dn with increasing order, in Fig. 2.12 Idni is plotted

3 - versus n for radii of I and 2 meters. For both of these cases the

magnitude of dn is insignificant for n>15, indicating that less than 15

3 terms in the summation need to be evaluated. In evaluating the Bessel

and Hankel functions needed for this figure, the FORTRAN subroutines

described in [33] were used.
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SIn summary, a method for calculating the electromagnetic field

generated by a line source antenna in the earth and scattered by a

3 circular cylinder whose axis is parallel to the line source is given by

(2-36). Although there are times when this type of modeling is

3 important (e.g., in finding the electromagnetic response of a circular

tunnel), a more general modeling technique is desirable. Such a

3 technique is described below.

12.3.5 Sinusoidal Response Using the Volume Current Method

In this section the anomalies are assumed to be cylinders of

arbitrary cross sectional shape with axes parallel to the line source

antenna. An approximate solution to finding the scattered

electromagnetic field can be achieved by representing the anomalies by

small circular cylinders [34], [35]. The total field is then found as

3 the sum of the contribution from each cylinder. This technique for

solving for the scattered electromagnetic field is commonly referred to

3 as the volume current method (VCM), it is from the class of numerical

techniques called moment methods [36]. A typical geometry for using

3 this method is shown in Fig. 2.13. The figure illustrates how a large

circular cylinder would be approximated using this technique.

3 Reference [35] gives a good description of the procedure to follow

in generating electromagnetic cross-borehole data using VCM, and an

* outline of this procedure is in Appendix A. A couple of items

concerning the use of VCM need to be mentioned:

3 a) As suggested by the authors, using 8 - 10 small cylinders per

intrinsic wavelength gives results which compare favorably with

the exact solution (i.e., for a circular cylinder).

b) In cases where the anomalous cylinder(s) has zero conductivity

(e.g., an air filled tunnel), the method appears to break down.

The problem is that with zero conductivity, the equivalent

currents cannot be sustained in the anomaly. To resolve this

U
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3 problem, the tunnel is modeled as having a small conductivity

(less than 0.0001 S/m), and the result is then checked against

3 the exact solution for a circular tunnel.

Such a comparison between the VCM solution and the exact solution is

shown in Fig. 2.14. As can be seen from the figure the agreement is

quite good.

1 2.3.6 Sinusoidal Response Using the Born Approximation

I We now consider solving the problem of finding the sinusoidal

response of a homogeneous earth containing an anomalous region using an

approximation which is valid when the electrical parameters of the

region are similar to the surrounding earth. This approximation is

3 important since it is the basis for a reconstruction method which will

be discussed in Chapter III. The method to be used is described in

3 [37]. Again, the total electric field is considered to be the sum of

incident and scattered fields as in (2-31). Assuming that the

3 field is to be calculated at locations away from the source, equation

(2-23) reduces to,

I
( 2 - y

2 )E(1) = 0, (2-41)I
where ' is a function of position, and the electric field's dependence

3 on position is explicitly noted. Since isolated anomalies are being

considered, the propagation constant can be represented as,

Y V(Z) = Ven(Z), (2-42)

where ye is the propagation constant of the external medium, and n(1)

3] represents a perturbation from the background propagation constant.

Equation (2-41) can be re-written using (2-42) as

3m
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I(V 2 - Y4L1-l+n 2(I)I)E(Z) = 0,(24a

3~~~ ~~~ (V )()=Vf 2 1]E(Z), (2-43b)

(2- y2)[E '(I)+E 5 (Z)I = y1n 2 (X)-i]E(Z), (2-43c)

I(V2 y Ve)E5 (X) = y2 [n 2 ()-lIE(Z), (2-43d)

U where we have used the fact that the incident field salves the wave

3 equation in the external medium. that is,

-V _ y2
e (I) = 0. (2-44)

3 Now, (2-43d) can be considered to be the wave equation for the

scattered field with the source term as shown on the right hand side of

3 the equation. This equation can be solved by finding the Green's

function solution to

(2- Y2)G(Z) = S(1), (2-45)

and then by convolving G(X) with the source term as

E E5(Z) = J V2-[n 2 (:1')- 1]E(X')G(Jl-Z' )dX' (2-46)

3 where the integration is over the area of the anomalies. The Green's

function can be found by referring to (2-30) as

G( I-I' I) H (' H 2 )(-jV iZ-Z'I). (2--47)
0 oe

The first Born approximation Involves neglecting the contribution
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of the scattered field in the right hand side of (2-46) to get 3

Es(I) - fAf -ea [n
2 (1')- IIE'(Z')G(Z-Z'I)dZ'. (2-48) 3

This equation was used to find the approximate electromagnetic

response of a low conductivity circular cylinder buried In the earth.

The result of using the Born approximation is plotted along with the

exact solution in Fig. 2.15. The characteristics of the background

earth are the same as in Fig. 2.14. The cylinder represents a slight

inhomogeneity in that its conductivity (a=0.0005 S/m) and permittivity

(Er= 8 ) are only mildly different than the background. The anomaly's 3
characteristics can not be much different than the background in order

to justify dropping the contribution from the scattered field in

(2-46).

Although there is good agreement between the Born approximation I
and the exact solution in the figure, as stated above the Born

approximation is only useful for determining the response of mildly 3
scattering objects. The main interest in studying the Born

approximation is that it and the Rytov approximation are used in the 3
Fourier diffraction theorem [37] which will be considered in the next

chapter as a means of image reconstruction. 3
2.# Transient Response of a Homogeneous Earth Containing Isolated 3

Anomalies

2.#.1 Introduction I

In this section we consider solving the problem of finding the N
time signal at a receiver location given the input time signal at a

transmitter location. This problem is important for characterizing

the time-of-flight measurement process used in geotomography. In this

!
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process the time it takes a pulse to travel from transmitter to 3
receiver is measured, and in this way the intrinsic velocity of the

medium can be obtained. The results in this section draw upon the

those obtained in the last section. We first consider using the

Green's function solution for a homogeneous earth. I

2. .S2 Time Response of a Homogeneous Earth Using the Green's Function

SolutionU

The Green's function solution for a line source antenna in a I
homogeneous earth was derived in the last section, this function is

plotted against tine in Fig. 2.16. It is useful for finding the 3
electromagnetic response to arbitrary time functions. For example, in

the GPEMS cross-hole radar system [38], one cycle of a 100 MHz sine 3
wave is used as a transmission signal. This means that the source term

will take the form 3

J = sinwt[H(t) - H(t (2-49)

with u = an x 100 x 106. With this input function the right hand side

of the damped wave equation becomes I

)PY = ywcoswt[H(t)- H(t-
at

8(t - AR)). (2-50)

The electromagnetic response to such an input can be found by I
convolution, as

E(p,t) = -G(p,t) * , t .  (2-51)

Fig. 2.17 is the result of carrying out this operation numerically. 3
I
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443 Note that the first arrival time is at approximately 1.055 ps, which is

the time that would be obtained by dividing the distance by the zero

conductivity velocity. Also note that the time of arrival of the first

peak (the quantity which would be measured in a TOF system) is

approximately 0.0025 ps (i/* cycle) after the first arrival time. This

is to be contrasted with the result for a 1 MHz sine pulse shown in

Fig. 2.18, where the first peak arrives about 30% slower than 1/4 cycle

of the source signal. This discrepancy can be resolved by referring

again to Fig. 2.7, and noting that although the velocity assuming zero

conductivity matches the true velocity at 100 MHz. this is not the case

at 1 MHz.I
2.#.3 Fourier Transform Method for Finding the Transient ResponseI

The method described above can not be used for finding the

* transient response of a cross section of earth containing arbitrarily

shaped anomalies. However, we can use the results of the last section

3 in conjunction with Fourier analysis in order to solve this problem.

This allows the calculation of the time response of the electromagnetic

3 field at the receiving antenna given the input signal at the

transmitting antenna. The process involves the following steps:

a) Calculate the sinusoidal response of the earth containing

isolated anomalies over a range of frequency values starting at

frequencies close to zero.

b) Fourier transform the input signal (e.g., the sine pulse

mentioned previously) either analytically or using the fast

I Fourier transform (FFT) algorithm.

c) Multiply the results of' a) and b) together for each frequency

3 value selected.

d) Inverse transform the result of c) using the FFT algorithm.

3 Fig. 2.19 shows the responses of a homogeneous earth and a homogeneous

earth containing a tunnel. Two items of interest in this figure are:3
I
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a) Although the magnitude response falls off rapidly at low I
frequencies, it decays slowly above 100 MHz. Of course, this

behavior could have been predicted by referring to Fig. 2.1.

b) Although the homogeneous response Is relatively smooth above

100 MHz, with the tunnel included, noticeable oscillations

occur in the response. These oscillations are sometimes

referred to as resonances, and are the result of reflections at

the tunnel wall causing cancellation and reinforcement of the

transmitted waves.

The spike in the plot for the tunnel at about 500 M4Hz is the result of

a numerical difficulty in calculating the complex Bessel functions at 3
this frequency. This does not seem to cause any errors in the results

that follow.

For the examples that follow, the input signal will be the sine

pulse of (2-49). Using the convolution theorem, its Fourier transform

S( ) J [e ( wc ) / 2 sirr(wc -)/2 e - ' ( wc-+ )/a sinr(w cW)/2 1
-T W c--w-r(w c+Q)

(2-52) m
where T (= 2i/ c) Is the pulse duration time. We need only to multiply

this transform by the frequency response, and then inverse transform to 3
obtain the time signal at the receiving antenna. This operation was

performed for both the homogeneous earth, and the earth containing the 3
tunnel. The time responses are shown in Figs. 2.20 and 2.21. As can

be seen from the second figure, the tunnel causes multiple pulses to 3
reach the receiver. The first pulse seen is the result of the

electromagnetic ray traveling through the tunnel to reach the receiver. 3
This ray has the shortest travel time, since part of the distance

travelled is through air, which has a higher wave velocity than the 3
earth. After the first pulse arrives there is the interference between

this pulse and a pulse which has twice reflected inside the tunnel and 3
I
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3 then is detected at the receiver. Finally, we see the pulse which has

diffracted from the tunnel ceiling and floor before reaching the

3 receiver. Surprisingly, this pulse has the largest amplitude.

Although this frequency domain method is of use for predicting the

transient response of a tunnel in the earth or any other buried circular

cylindrical object, it becomes impractical for arbitrarily shaped

objects in that it is very time consuming to use the volume current

method over a wide range of frequencies. In addition, the frequency

domain method only gives us information at a single receiver location,

and it might be useful to obtain the response over the entire

cross sectional region between the boreholes. For these and other

reasons, a ray optics approach is investigated in the next section.

2. 5 Ray Optics Nethoi

3 2'.2.1 Introduction

3 In the ray optics approach the assumption is made that in a

homogeneous medium an electromagnetic wave follows straight paths from

3 the transmitter to the receiver. For heterogeneous media we still

consider the electromagnetic wave to follow straight paths although the

3 ray may be subject to refractions, reflections, and/or diffractions at

boundaries between different media. These effects will alter the

direction of the ray.

The value of the electric field can be determined at any point

along its ray path by using (2-30) and the large argument asymptotic

expansion for the Hankel function to getI

E - - 2] 1/2 e P, (2-53)

3 where the electric field is measured at a radial distance, p, from the

I
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line source transmitter. In order to find the electric field at a 3
point in a heterogeneous medium, we need to find the ray linking the

transmitter and the receiver after taking into account the effects of I
refraction, reflection, and diffraction. These effects will be

discussed in subsequent sections. It is worth mentioning that in I
heterogeneous media there will often be more than one ray path linking

transmitter and receiver. If such is the case, the electric field

should be calculated by summing the contributions from the different I
paths.

Before discussing the details of ray optics, its importance in 3
the geotomography setting needs to be highlighted. First of all, the

calculated fields using ray optics will not be as accurate as those 3
obtained using the methods described above. Also, although it is often

true that the ray optics method is more computationally efficient than 3
the VCM, it is often much more difficult (i.e., time consuming) to

program, thereby nullifying any net computational advantage. 3
Rather, the main reason for considering the ray optics approach is

that in performing the inversion of cross-hole data (i.e.,

geotomography), the assumption is often made that the electromagnetic

wave follows ray paths between transmitters and receivers. Therefore, 3
two immediate reasons for studying ray optics are to address the

following questions.

a) Under what conditions is the straight ray path a good

approximation, and

b) If it is not a good approximation, is there anything that can

be done to improve the approximation?

With these questions in mind we consider some of the details involved in 3
the ray optics method. I
2.3.2 Refraction and Reflection of Electromagnetic ,aves In Lossy Media

Consider a ray obliquely incident on a boundary between two lossy I
I
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523 media. The configuration is shown In Fig. 2.22. The incident,

reflected, and transmitted rays are assumed to lie in the x-y plane,3 making the problem two-dimensional. The electric fields along the

three rays can be expressed as

Ei = azEie-JP (2-54a)

I Er = azEre -$1 2 , and (2-54b)

Et = azEte-Ja23 (2-54c)

where

Ei = E e-t, (2-55a)

I = ysing 1 xcosi , (2-55b)

ti = ysin[ 1I+P] + xcos[l +Pil]' (2-55c)

Er = rEeXita, (2-55d)

t 2 = -ysiniti + xcosit.' (2-55e)

t 2] yi~g P1 + xcosig¢ +P I],' (2-55f)

Et = TEe'2t3, (2-55g)

33 = ysing2 + xcosig, and (2-55h)

= ysjn['g+p2] + Xcos[( 2 +p2 ]. (2-55i)

r and T are the reflection and transmission coefficients (factors), and

E is the value of the incident field at the interface. For the incident

ray, the direction of travel Is along the t. direction, but the ray

attenuates along the C, directions. The reflected and transmitted

I (refracted) rays have similar directions of travel and attenuation. As

can be seen from the figure, the incident ray Is at an angle of fromI
I
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the normal to the interface. If the incident wave is nonuniform (i.e.,

the direction of attenuation differs from the direction of travel),

3 then 41+p1 is the angle from the normal at which the wave attenuates.

If the wave is uniform, then p1 is zero. In this development it is

assumed that the wave starts out from the antenna being uniform, and

then when it encounters an interface it becomes nonuniform as predicted

* by the equations above.

For an incident plane wave, the relations between the incident and

transmitted directions were derived in [39]. These relations are,

3 c sin(i 1 +p) = a2 si n(0 2 +p2 ), and (2-56a)

P sin, = P siri , , (2-56b)

I where a. and P2 are different from the intrinsic constants (co, P02 )

3 in medium 2, and are found from,

212 = 1 12 -Re(-y 2 ) +12- To2 and (2-57a)2 18 02 1 2

2a= i 12 + Re(y 2 ) +  - o2  12-57b)

The symbol 02 in the equations above is the intrinsic propagation

constant in medium 2. For the configuration being considered, the

3 waves are cylindrical since the transmitting antenna is a line source.

But, if the interface is assumed to be far from the antenna, then the

waves at the interface are locally plane waves, so that in this far

field case, the above equations can be used to find the reflected and

refracted rays.

The transmission and reflection factors were not derived in [39],

but are easily found by requiring the sum of the incident and reflected

electric and magnetic fields to be equal to the transmitted electric and

magnetic fields at the interface. This requirement results in,

lyt - yi
r = 1yi +lyt (2-58a)

Iy y
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2Iyt 
(2-58b)T = yi +  Tyt '

lyt= - and (2-58c)
42 COS (C2 2 2 2 os 2

-ly + W , . (2-58d) 3
1yi 1 COS( ) + J1 1cos~

Fig. 2.23 illustrates how this theory can be used to determine the 3
field at a receiver using the ray optics approach. The ray travels a

distance p1. and reaches the first interface. The transmission

coefficient at this interface can be calculated from the equations

given above. The propagation constant times the distance along this 3
first path will be defined by

Vdi := Vldl. (2-59) I
I

However, over p2 ' it is defined by I
Vd2 a d2cos(p2 ) + jf1d 2 , (2-60)

where p2 is the angle between the phase (direction of travel) and I
attenuation directions of the transmitted rays. Similarly, for the ray 3
along d .. its propagation constant times distance traveled is defined

by3

Yd3 := a3d2 cos(P 3) + jp3d3
'  (2-61) I

Finally, by summing all length contributions, the electric field at the

receiver is given by , see also (2-40),

-/a (Vdi+Vd 2 +Vd2 ) I
E - JL/2 [ e / VdIL d2 Vd3  TI T2 (2-62)

rcGd Yda + Id3
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where TI and T2 are the transmission coefficients at the first and

second interfaces. A similar formulation can be made for a ray which

reflects from an interface at an oblique angle, and then reaches the

receiver. In this reflection case, Ti or T2 in equation (2-62) would

then be replaced by a reflection coefficient.

Even in this two interface example presented here, it is not

difficult to see that the process of linking a transmitter with a

receiver over a path which involves refractions and/or reflections will

not be a trivial matter.

2.5.3 Diffraction of Electromagnetic Waves from a Lossy Uege

Diffraction theory was developed as an approximate high frequency

technique to account for the fields which are present in the shadow

region of a conducting object [40], [41]. For a depiction of the

shadow region of a square cylinder, see Fig. 2.24. This theory 3
describes the total field to be the sum of incident, reflected, and

diffracted rays. No refracted rays exist since the object is conduct- 3
ing, and therefore cannot be penetrated by the electromagnetic rays.

The field at the receiver resulting from the diffracted ray is

found by calculating the incident field at the cylinder corner and

then multiplying this by a diffraction coefficient which is a function

of the angles (and distances) to transmitter and receiver locations.

For example, if the distance from the transmitter (receiver) to the 3
corner is p (p') with corresponding angle, V (Y'), then the field at

the receiver due to the corner diffraction is given by, "

Ercv = '4 L[L.f'D(PPJ~s T? (2r

where V is the propagation constant of the surrounding medium and Do I
is the diffraction coefficient function. The total field at the

I
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receiver Is then the sum of the fields from the diffracted rays from

all non-shadowed edges of the cylinder, the field from any ray which

reflects from the side of the cylinder, and the field from the direct 3
ray from transmitter to receiver. Refer, again to Fig. 2.24.

Fortunately, this theory has been extended to diffractions from

wedges (corners) with finite conductivity [42], [43). The field at the

receiver due to the edge diffracted ray is calculated in the same way

as for the perfectly conducting object using (2-63), except that the

diffraction coefficient is also a function of the surface impedance of

the wedge. See [43, eqns. (9) - (15)] for a complete description of I
the lossy wedge diffraction coefficient.

The surface impedance for the wedge (cylinder, in the present

case) is given by,

Zsurf = Te (2-64a)

= J1 (2-64b) Ua = a~j~

e = e e (2-64c) I

where na and le represent, respectively, the intrinsic impedances of

the anomaly and the external medium. This surface impedance is the

effective impedance seen by the field at the interface to the cylinder

[41]. It represents an approximation to the boundary conditions at the

interface. This approximation is valid when the magnitude of the

refractive index of the cylinder is much greater than the external

medium. The complex index of refraction Is giveni by,

N = [{ i~ } /2265

I
where E and o are the electrical parameters of the medium beingm

I
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considered, while co is the permittivity of free space. The magnitude

of the index of refraction is plotted against frequency, conductivity,

and permittivity in Figs. 2.25 - 2.27. As can be seen from these

plots, for a background medium having electrical parameters which are

typical for dry soil (o=0.001 S/M, Er=10), the anomaly must have a

conductivity greater than 0.1 S/m and/or a relative permittivity

greater than 50 in order for the index of refraction of the anomaly to

be at least twice as large as the Index of refraction of the medium.

For these values, the surface impedance approximation gives good

results when simulating cross-hole data using diffraction theory.

For example, Fig. 2.28 shows the electromagnetic response for a

square cylinder in a homogeneous medium. The results were obtained by

* calculating the electric field at varying depth in a receiver borehole

located 20 m from the transmitter borehole. The transmitting antenna

is 17 m below the top receiver. The earth between boreholes has

electrical parameters of o=0.001 S/m and Er=10 . The square cylinder

has electrical parameters of a=0.1 S/m and Er=15. It is 2 m on a side,

is at a depth of 9 m, and is at a horizontal distance of 11 m from the

transmitter borehole. Note how significant the diffracted field is.

Also plotted in this figure is the field that was reflected from one

face of the cylinder. The value of this reflected field must be found

using the reflection coefficient also based on the surface impedance

approximation, and given by,

r = ZsurfcosQ l, (2-66)

Zsurfcose + I

I where 0 is the angle of .ncidence measured from the normal to the

interface. This reflection coefficient is analogous to that obtained

from transmission line theory assuming that the line impedance is

i normalized to unity.

I
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2.5. 4 Summary of Ray Optics Results

It has been shown that ray optics techniques can be used to

simulate cross-hole geophysical data. In this simulation process,

there are three cases of interest,

a) Case I is a low conductivity cylinder (e.g., a tunnel) imbedded

in a hezmcgeneous medium. In this case one must consider

direct, reflected, and refracted rays which reach the receiver.

The method for finding the total field at the receiver was I
discussed in Section 2.5.2.

b) Case II is a high conductivity cylinder imbedded in a I
homogeneous medium. In this case direct, diffracted, and

reflected rays must be taken into account. The field at the

receiver can be found using the methods presented in Section

2.5.3.

c) Case III is a conducting cylinder in which the index of

refraction is not significantly higher than the surrounding

medium. Therefore, the impedance boundary approximation cannot

be used. However, by studying data from VCM simulations, it is

apparent that significant energy is diffracted from the

cylinder edges. Therefore, ray optics cannot be used to

adequately model this case.

For cases I and II above, ray optics can be used to predict the

ray paths the electromagnetic field follows in generating the data.

This can be used to determine the reasonableness of assuming the rays

follow a straight line path from transmitters to receivers. This

assumption is made in the algebraic inversion process described in the

next chapter. The straight ray assumption does not take into account

reflections, refractions, and diffractions the ray might undergo (of

course, this is not a bad assumption given no other a priori I
Information). I

I
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As an illustration of determining the validity of using the

straight ray assumption, refer to Fig. 2.29. This is a plot of the

* electromagnetic response of a square cylinder in a homogeneous medium.

The parameters are the same as for Fig. 2.28, except that the

transmitter depth is 6 meters. Along with the curves using VCM and ray

optics is the curve obtained using a straight ray assumption. For this

last curve, the locations in the receiver borehole in the shadow region

of the cylinder indicate small values of the electric field. These

small values of the field are the result of assuming ray paths straight

through the cylinder (which is highly attenuating). By comparing this

'straight ray' curve to the other curves, the following observations

I can be made:

a) Since the actual electric field (using VCM or ray optics

approximations) is much higher than the 'straight ray' field in

the shadow region, when the cross-hole data is inverted, the

apparent attenuation of the cylinder will be be much lower than

expected.

b) Since the actual electric field in the region adjacent to the

shadow does not abruptly return to the incident field value (as

does the 'straight ray' field), the apparent size of the

cylinder will be larger than expected when the data is

* inverted.

c) The peaks and nulls in the actual data outside of' the shadow

region indicate a source of additive noise for the

reconstruction process.

In summary, the diffraction and reflection effects will cause

errors to be present in the reconstructed image. Some means of

reducing these errors will be discussed in the next chapter.

I
I
I
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m CHAPTER III

I IMAGE RECONSTRUCTION METHODS FOR GEOPHYSICAL APPLICATIONS

I 3.1 Introduction

Now that several models for describing the propagation of

electromagnetic waves in the earth have been presented, methods for

determining the electrical characteristics of the earth from

measurements of received electromagnetic fields can be developed. Once

the electrical characteristics of the earth have been found, some

interpretations as to the composition of the earth can be made. For

example, if a region of high conductivity exists in the earth, then a

geophysicist might suspect an oil or mineral deposit in this region.

At this point the region would warrant further study.

For the techniques to be developed, it will be assumed that

measurements are made using a cross-borehole arrangement (although the

techniques will be applicable in situations when either transmitters or

receivers are mounted on the earth's surface). For an illustration of

the measurement process, refer again to Fig. 1.1. If the assumption is

made that the electromagnetic waves travel in the plane of the two

boreholes, then the problem is a two-dimensional one. In this case,

one can speak of the cross sectional image of the earth between the

boreholes. This image Is, in fact, Just some electrical parameter of

the earth (e.g., attenuation or index of refraction) as a function of

Iposition (i.e., x and y coordinates). Although it may seem overly

restrictive to assume a two-dimensional model, this is an adequate

assumption in many cases. For example, if the goal of a geophysicist

is to locate a tunnel in a region between two boreholes, then the axial

direction of the tunnel is probably known, and one would need only

determine its depth and horizontal distance from either borehole. In

this case, the reconstructed image would ideally show a cross section
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of the tunnel located in the earth. Usually some kind of gray scale is I
used to generate the image (with, for example, different levels

representing different attenuation values), although contour and m

three-dimensional plots are also used.

Now that the image reconstruction problem has been described in

this geophysical setting, the objective is to solve the problem using

some of the models developed in the Chapter II. In particular, the

Born approximation and the ray optics models will be used. I
3.2 A Comparison of Reconstruction Methods

3.2.1 Straiqht Rar Ayoproxmations 1

The straight ray model is the crudest model used in Chapter II, 1

and accordinelv. it can be used to generate the simolest reconstruction

algorithms. The assumDtion is made that the electromagnetic waves

travel along straight ray paths connecting transmitters and receivers.

Reflection, refraction, and diffraction effects are ignored.

Reconstruction techniques using the straight ray assumption are usually

based on finding a relationship between the line integral of the I
parameter of Interest and the measurement data. This relationship can

be obtained for continuous wave (CW) measurements in the following

manner (an analogous development for time-of-flight measurements can

also be made).

a) For the line source antenna, the electric field at a radial

distance p from the antenna is given by equation (2-53), which

is repeated here in a simplified form. I
E K emVP

K -. e-JOP (3-1) I

I
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I where the far field approximation has been made, and K is a

complex scale factor whose exact form is given in (2-53).

b) In CW tomography, measurements are made of the received

electromagnetic power; therefore, only the magnitude of the

field is of interest. The magnitude of the field is given by

IEI - I., • (3-2)

c) If the assumption is made that a is constant for small changes

in p. then the differential change in the electric field is

given by,

AJE IKI[ 7--,]Apo (3-3)U
from which we obtain

AJEI [ +- ]AP. (3-4)

d) The above equation can now be used to find a line integral

relation between the attenuation and the electric field as.

rEL d*jj . fr'a(p) dp _ 1 .r1 IL.0 (3-5)I'Eo lEt r 0  r r0 P

or

I.

ln ( E r, ) - ln(Eo ,) _ f'.-(p) dp, (3-6)
IIr 

o

where the line integral is over a particular radial ray path

mm
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and E1 (E0 ) Is the magnitude of the electric field at a radial

distance ri (ro). I
For the development above, the receiver is assumed to be at a

radial distance r.. The radial distance ro must be sufficiently large

for the far field approximation to be valid. If the term Eo4 o is

normalized to unity (by adjusting the gain of the transmitting

antenna), then the equation above reduces to

ln(E VF) = frL-(p) dp. (3-7)
-r

0

The reconstruction problem is seen to consist of finding the

attenuation as a function of position, from knowledge of the electric 1
field intensity El. It is easy to see that a(p) will not be uniquely

determined by measuring E C In order to resolve this uniqueness

problem, measurements must be taken over a large number of ray paths.

Fig. 3.1 illustrates a set of measurements taken along ray paths which

are at an angle of (n/a - 0) with respect to the x axis. One such ray

path is labeled 1, in the figure. This ray path is determined by the

angle 0, and by its radial distance, p, from the origin. For this

ray path, (3-7) can be rewritten as,

ln(ELVI) = fL(p,) -a di, (3-8)

or

ln(EL 1) = - RO(W). (3-9) I
L I

I
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where EL indicates the magnitude of the electric field at the receiver

end of the line L, dA is the incremental length along the line, and R#

is called the Radon transform operator along the line L at the angle 0.

If a set of measurements is taken for all p such that L(p,0)

intersects the region, then this set is called a projection of the

region at an angle 0. If projections are taken for all 0 in the range

[O,n], then a(x,y) will be uniquely determined in the region [44], and 3
a simple and efficient algorithm exists (i.e., the convolution-

backprojection algorithm) for recovering the attenuation profile. 1

Unfortunately, in the present setting we are faced with an

incomplete data problem in that due to physical constraints,

measurements can not be made for all values of p or 0. In particular,

Fig. 3.1 would not be accurate in that projections can only be taken at

values of 0 close to 90 degrees (assuming that the boreholes are

located on the sides of the region). In this case, the convolution--

backprojection algorithm is inadequate for reconstructing the image of 1

attenuation values. In such limited data cases it is generally

accepted that the inversion problem is highly ill-posed, and therefore

some means of regularization or incorporation of a priori information

must be used in order to obtain meaningful results [45]. Methods for

better posing this inversion problem are discussed in a later section,

while some of the more well-known inversion techniques based on (3-8)

are discussed below.

I
A. Radon Transform Theory and the Convolution-Backprojection

Algorithm

The Radon transform theory developed here is taken from

Deans (44]. The description below will be brief since the inversion

process obtained is not useful for the limited data reconstruction

problem. The primary interest here is to show that a direct solution

of the reconstruction problem exists for the full data case. As

I
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mentioned, the Radon transform of a function in the x-y plane is the

set of integrals along all lines passing through the support of this

function. That is,

R[a(x-y)] = -L a(x,y)dA (3-10)

for all lines L. This defines the Radon transform. We will make the

convention to call (3-10) the Radon operator when the restriction of

'for all lines L' is not imposed, although this distinction may become

fuzzy at times. In order to express (3-10) in a more usable form, we

define the line L in the normal form (Fig. 3.1),I
p = xcoso + ysino (3-11)I

where p is the normal distance from the origin to L, and 0 is the angle

between the normal and the x-axis. We can use the Dirac delta function

to allow the integration to be performed over this line as

R1a(X,Y)] Qa f(xy)S(p-xcos0-ysin0)dxdy

Qa c (x, y) (p-cZC>) dxdy, (3--12)I

where I = (X y)T, = (COS0 sriO)T, and it is assumed that the

attenuation is measured on the cross sectional region [a,b]xla,b]. We

are taking some liberties in this development, such as using the Dirac

delta 'function', but this derivation can be made rigorous by appealing

to the theory of distributions (see, for example, [46]). The Radon

transform is seen to be a function of p, parameterized by the angle 0.

It may be useful, though, to consider the transform as a function of

I both p and 0:
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It[a(x,y)] = Cc(P) = (p,0), (3-13)

where '-' denotes the Radon transform. I
Here it is assumed that the Radon transform is a mapping from the

set of square integrable functions in the x-y plane to the set of I
functions defined on the semi-infinite cylinder (RxS1 ). To make this

clear, let p=O, then the cylinder reduces to a circle and all integrals

are over lines through the origin in the x-y plane. The Radon

transform in this case will be the values of the line integrals at all I
points 0 around the circle.

The ultimate goal in developing Radon transform theory is to be

able to determine the function a in the x-y plane given its projections

which are usually discrete samples of the Radon transform of a. That

is, for the case at hand, we want to be able to determine the

attenuation constant function over the cross section of the earth given

a set of received electromagnetic power data points. Therefore, the

existence of the inverse Radon transform needs to be determined, along

with a method for calculating the inverse.

The development of the inverse Radon transform presented here is

based on the relationship between the Radon and Fourier transforms.

This relationship is known as the projection-slice theorem [44]. The

theorem is easily obtained by taking the Fourier transform of the

function g(p,0) (which is assumed to be the Radon transform of some

attenuation function) with respect to the p variable as

g-(p.O) = [X(a)(p,) H
bb f (x y)(p<I,>)dxdyeJPdp

bJb faxXY) fJ& (p<Z,>)eJPdpdxdy

I

I
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0 sb ff(,, >Y CeW<z >dxy (314)

I where " signifies the Fourier transform operation. Switching the

order of integration is justified since a is assumed to be a square

integrable function of compact support. In words this theorem states

that a Radon transform followed by a Fourier transform of the function

I is equivalent to taking the two-dimensional Fourier transform of a.

This theorem leads to two methods of inverting the Radon

transform. The first follows immediately from (3-14), that is, take

the Fourier transform of the Radon transform (of a), and perform a

two-dimensional Fourier inversion of the result, thereby recovering a.

This results inI
QC(p,0) = F'[F(R(a(x,y))] (3-15)I

where is found as a function of polar coordinates. In (3-15), F

Istands for the Fourier transform operator and F_ stands for a
2

two--dimensional Fourier inversion. This method has the drawback that

the attenuation is determined on a polar grid, and therefore must be

interpolated to find a as a function of (x,y).

The second method is the one given by Radon 15], but the

development here is patterned after Rowland [471:

Cx (x, y) F. F2F(CK)}

-o JOF (a) (pcose,psinO)

-- exp[2njp(xcose+yslnG)]pdpdO

f_ fOF 2 (a)pcosepsin)
0 _.

expI2nJp(xcose+ysine)Ilplpdpde

I
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111 f 0 F(R)a))(Pe)IpI
o -.00

exp[2rjp(xcosO+yslnG)]pdpdO

-f f[ix F(R(a))](p,e)
S- o exp[2njp(xcos9+ysin9)JpdpdO I

f- T xJ F(R())](xcose+ysine,O)de. (3-16) 3
0

If a back-projection operator is defined by

[Sh](x,y) = h(xcosQ+ysinO,Q)dG (3-17)
0 I

then (3-16) can be written as

1
a(x,y) = OF-[xl F(R(a))] (3-18) I

From the convolution theorem for Fourier transforms I
-2nF-'[x F(R(f))] = N (a) (3-19) I

where W is the Hilbert transform operator and D is the differential

operator. Then (3-18) becomes

a(x,y) = aN 6 ?fR(a) (3-20)

which is equivalent to the inversion formula developed by Rador, [5]. 1
The convolution-backprojection method uses (3-20) as the basis for

inverting the sampled Radon transform. In this method a convolution is

used instead of the Hilbert transform and differentiation in (3-20) I
I
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(see [48] for details).

B. The Algebraic MethoU for Solving the Image Reconstruction Problem

In this section a simpler method is presented for solving the

reconstruction problem. Note that in deriving this method, some

assumptions must be made which might not always be valid. This method

is easily developed by first discretizing the cross sectional region

being scanned [48]. Fig. 3.2 shows one such discretization obtained by

dividing the region into rectangular picture elements (pixels). If the

assumption is made that the attenuation is constant over each pixel,

then one can speak of an image vector of attenuation values as

I x = [a a2 ... an]' ,  (3-2)U
where ai is the attenuation value of the ith pixel and 'T' denotes

matrix transpose. For the example in Fig. 3.2, the pixels are numbered

consecutively by rows, and n=16. For this discretization, the line

integral in (3-8) reduces to an algebraic equation. For the line

integral over the line L in Fig. 3.2, this algebraic equation isI
a d3 = d3a3 4+ d * + da8, (3-22)

where the d's represent the ray path distances through the respective

pixels. If dij is now defined by the distance the ith ray path travels

I through the jth pixel, then the following equation is obtained

n

i : dij , (3-23)I

I
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where p1 is the measurement data for the ith ray path, and is equal to

the left side of (3-8). Note that d.j will be zero if the Ith ray path

does not intersect the jth cell.

We are now in a position to develop a matrix equation relating

the measurement data to the unknown attenuation values by defining

b = [p L 1 "2 "  Pm i
T, (3-24)

I
as the measurement vector, and#

A [dij], (3 25)I
as the path length matrix. The matrix equation isU

b = Ax 4 e, (3-26)I
where an error vector, e, has been added to account for measurement and

modeling errors. The basis for the algebraic method for image

reconstructions is (3-26). Algorithms which solve for the unknown

3 image vector, x, will be presented in Chapter IV.

3.2.2 Diffraction Tomography

Diffraction tomography was developed as an improvement over

straight-ray methods in that ray diffractions (as well as reflections

and refractions) are implicitly included in the inversion process. As

mentioned in the Chapter II, the forward modeling method using the Born

approximation (the Rytov approximation can also be used) is the basis

i for the inversion algorithm known as diffraction tomography [19), [37].

The integral formulation for the scattered field was given in (2-48).I
I
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This equation is repeated here in simplified form

Es(I) - ffAO(Z')Ei (Z ')G(IX-X 'I)dX '. (3-27)

I
where O(X) represents the object inhomogeneity. The Green's function

in this equation is In fact the zero order Hankel function of the

second kind. It has an integral expansion given by [37]

G(IZ-Z'I) = H ( 2 (-jv l-')

= 1-j f - e-J t(x-x')'Tl(Y-Y')]d0, (3-28) I

where

I
e ( 2  j>2)L/2 (3--29)

As in Chapter II, )e is the propagation constant for the external

medium. If this expansion is substituted into (3-27) we get I

s()- (-'Ei(Xf) L e-JIX(x-x') l(yY')]dXdX,.

(3-30) I
In order to simplify the derivation, it is assumed that we have a m

plane wave incident on the object of the form

E' (1) = eV" , (3-31)

where, for convenience, the plane wave is taken to be traveling in the

I
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+y direction. For an extension of these results to the case of a

cylindrical input wave front, see [37]. Under the assumption that the

scattered field is measured along the line y=40 ' (3-30) becomes

Es(Z) - -ffk w e e'jIXx (Pl0 -y'I~d'1

3 (3-32)

5 This equation can be Fourier transformed to yield (see [37] for

details)I
ETo T e 0 Y (X-e), for IJI < le

E (, = (3--33)
0, for I X > 'eI

where rl is given in (3-29). This result is in fact a generalization

projection-slice theorem in which the Fourier transform of the

received field is related to the Fourier transform of the object. In

3 this case, however, the Fourier transform of the object is taken over

circular arcs in the frequency domain (see [37] for an illustration).

One drawback to the diffraction tomography method is that it is

limited to objects which satisfy either the Born or Rytov

atiproximations. This limitation will be discussed later in this

chapter.

I 3.2.3 Other Reconstruction Methods

I The methods presented In this section are not as practical as

those described in the previous seutions. Their limitations are mainly

due to excessive computational requirements in terms of time and memory

size. Therefore, although these methods may not be practical at the

I
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present time, it is worthwhile giving brief descriptions in

anticipation of evolving computer systems.

A. Noment tetho Inversions I

These methods have been developed for medical applications, where I
it is desirable to use low-level electromagnetic waves as an

alternative to X-rays [49], [50]. The basis for moment method

inversion is the VCM (a type of moment method described in Chapter I)

used for solving the problem of scattering from an arbitrarily shaped

cylinder. The problem was solved by considering the total field to be

the sum of an incident field (in the absence of the cylinder), and a

scattered field. The unknown scattered field was then represented as a

series of pulse basis functions over the area of the cylinder. This 3
scattered field was then substituted into an integral equation of the

form of (2-46). After some manipulations, the scattered field is 3
obtained via a matrix equation relating the scattered field, incident

field, and the cylinder geometry.

For the inverse problem, the assumption is made that the magnitude

and phase of the scattered field are known from measurements, and the

goal is to find tLe location and characteristics of the scatterers.

The scatterers are the small circular cylinders into which the region

is divided (refer, again, to Fig. 2.16). The inversion method consists

of' (pseudo-) inverting the matrix equation to find the scatterers.

This method has the f3llowing difficulties: I
I) For a large cross sectional area, the matrix involved In the

solution will be very large, resulting in numerical problems. 3
Additionally, the authors in [49] noted that the matrix becomes

more Ill-conditioned as its size increases. 5
2) In (49] and [501 the authors assumed scattering of a plane

wave. The cross-borehole geometry being considered here 5
Involves the scattering of cylindrical waves originating from I

I



I
I

84

multiple sources (transmitting antennas). The challenge would

be to use the solution from each transmitter as some kind of a

priori information to aid in solving the inversion of

successive transmitters.

3) Inherent in this inversion process is the need to measure both

magnitude and phase of the received signal. However, phase

measurements are generally more difficult to obtain than

I magnitude measurements.

In spite of these difficulties, the moment method inversion

technique has the advantage of accounting for diffraction (as well as

reflection and refraction) effects without being limited by the

restrictions of the Born or Rytov approximation. Therefore, it is an

attractive method which might be useful in the future,I
B. Model Matching Using the Ray Optics MethodI

The inversion algorithm being proposed here is shown in block

5 diagram form in Fig. 3.3. The basic idea is to attempt to match the

output of a ray optics simulation program to actual field measurement

3 data. This method is similar to that discussed in [51], where the

authors were concerned with inversion of seismic data. The differences

between their approach and the one given in this section are summarized

below.

1) In Fig. I of [51], the authors consider matching the mode] to

the data through human intervention. Here, it is suggested to

perform this model matching process using a computer.

2) In discussing forward modeling techniques, the authors in [51J

mention ray optics methods, but do not include diffractioii

effects. These effects will have major impact in many cases,

and therefore are not ignored here.

3 The major feature of the method being presented is that it is

based on ray optics techniques, which when diffraction effects are



851

x Ir

0~ 00 r>

W 0 1

Ix I
I- 0

CL

-W

E

z c-4

00

0 0,

0.

E
cro

W

OW C -0

C, I
.,I



I
I
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Note that although a forward modeling algorithm such as the VCM could3 be used instead of ray optics in this procedure, it is so

computationally intensive that it would make the method infeasible.

The characteristics of this inversion method are listed in the

following.

1) The main assumption is that the region under study Is

homogeneous except for a single scatterer (anomaly) and that

the electrical characteristics of the background and scatterer

I are known.

2) The model is adapted by placing a grid over the cross sectional

3 region, and then locating the scatterer at successive locations

on the grid.

3 3) For each location of the scatterer, the simulated measurement

data is compared against the actual measurement data, and ti1'

I location of the scatterer giving the smallest error is saved.

4) After the smallest error location is found, the process can be

repeated over a more finely gridded area centered on this

location. In addition, the size and shape of the scatterer can

3 also be adjusted to minimize the error.

The assumption in 1) may seem overly restrictive, but it is

3 possible that a geophycisist has some reason to suspect a parlicular

kind of anomaly (e.g. tunnel or ore deposit) in a homogeneous medium,

and would therefore know beforehand its characteristics. In the case

of a tunnel, he may even know its approximate size and shape.

Additionally, this method could be used in conjunction with some other

inversion algorithm in order to refine estimates of an anomaly's

location, size, and shape (this procedure will be discussed in more

detail In Chapter V). Also, the assumption of a single scatterer could

be relaxed by using the method iteratively to find all scatterers. Of

3 course, this would complicate the modeling since the interactions

between scatterers would have to be taken into account.I
I
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In order to justify modifying the model by moving the cylinder on 3
a grid, one would have to show that the measured field data uniquely

determines the location of the cylinder. In addition, one would have

to show that for small changes in the cylinder location, the measured

data experiences a small change in some norm. Certainly, if the

location, size, and shape of the cylinder were all free to change, then

the amplitude measurement data would not uniquely determine the

cylinder for a single transmitting antenna. Whether this remains true

for measurement data from multiple transmitter locations is still a

topic of open debate [52]. As for the question of' the effect of small3

changes in the cylinder location, we do know that the diffraction

coefficient [43] is a continuous function of angle and distance. 3
However, it would be very difficult to assess the effect a change in

location has on the total field (which is the sum of direct, 3
diffracted, and reflected rays). Some indication that a small change

in location means a small difference in the total field can be given by 3
considering the scattering from a circular cylinder, which was

presented in Chapter II.

The scattered field from a cylinder was given by (2-37), and is

repeated here for convenience 3

ES(p) = . dnH( 2 ) (-jeP)Hn2 1 -jyePt) ,  (3-34)

where the origin is taken at the cylinder axis. Chapter 11 notes that I
for the cases we are considering, only a finite number of terms arc

needed in the summation. To simplify the analysis, we assume that the I
transmitter, cylinder axis, and receiver are colinear, and that the

cylinder is moved a distance Ap along this line. The Hankel functions 3
in (3 34) are analytic off the negative real axis, and, subsequently, a

finite sum of these functions will also be analytic In this region. 3
Therefore, (3 34) can he expressed as I

I
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ES(p) " My& (3-35)

where f is an analytic function equal to the finite sum. From this

3 one can obtain

I ES(p4Ap) - ES(p) = f(p+Ap,pt-Ap)- f(ppt)
2f(p+Ap,pt-Ap)-f(p,pt)

= AP

AP -p , (3-36)
&P&Pt

I which, since f is analytic, shows that small changes in the location

imply small changes in the received field. Of course, to make this

analysis complete, the above calculations would have to be performed

for arbitrary transmitter and receiver locations. In any case, (3-36)

gives some confidence in the method. In support of this, Fig. 3.4

shows the effect on the total field of moving a square cylinder I m

3 horizontally in both directions. The results add credence to the

claim, since only slight changes in the field are observed.

3 In testing for a minimum error we choose the norm for square

Integrable functions given byI
(11f-g11 2 )2  = J f(y) _ g(y)12 dy. (3-37)

3 Since the received field will be measured at discrete points in the

receiver borehole, this norm is approximated by

!N
(ll-gl ) 2 1 1f(y 1 ) ) g(yi)I2 (3-38)

Un=
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I It is worth mentioning that this method does have a shortcoming,

3 which is the same as that of the ray optics method discussed in the

Chapter I. That is, the diffraction theory being used (refer to

Chapter II) is based on the impedance boundary approximation. This

approximation will be valid for higher conducting anomalies in a

homogeneous earth, but will not be valid for lower conducting

anomalies. However, the method will be applicable in those cases for

which the approximation is a good one, and will be even more valuable

if diffraction theory is extended to cover the lower conducting case.

3 3.32.# Conclusions

3 In this section some methods for inverting geophysical data have

been presented. The majority of these techniques were originally

3developed for medical imaging, and therefore might not be well suited

for geophysical applications. In particular, the convolution-

3 backprejection algorithm does not perform well when only an incomplete

set of data is available, which is typically the case in geophysical

3 tomography. The two main methods that do appear to work well in the

geophysical setting are the algebraic method using the straight ray

3 approximation, and diffraction tomography using either the Born or

Rytov approximations.

The major limitation of the algebraic method was noted to be that

the method ignored diffraction, reflection, and refraction effects,

while diffraction tomography is only applicable for media containinlg

slight inhomogeneities (that is, inhomogeneities whose electrical

characteristics do not differ widely from the background).

I -To put these limitations into perspective, Figs. 3.5 and 3.6 show

calculated electric field responses of a circular cylinder imbedded in

a homogeneous medium. Each figure contains plots of the responses

using the exact solution, the straight ray approximation, and the Born

I
1I
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approximation. In both figures, the background medium is the same, 3
while the cylinder characteristics are different. Fig. 3.5 is for the

case of a slight inhomogeneity in that the conductivity is 0.002 S/rm

(the background conductivity is 0.001 S/m) and the relative

permittivity is the same as the background. As can be seen from the

data in this figure figure, the Born approximation matches the exact

solution quite closely, while the straight ray solution is in error.

For this case, one would expect that reconstructions using diffraction I
tomography would do very well. Fig. 3.6, on the other hand, is for a

strongly scattering cylinder having a conductivity of 0.05 S/rn and a3

relative permittivity of 15 (the background's is 10). As can be seen

from this figure, the straight ray approximation underestimates the 3
size of the null behind the cylinder, and overestimates the attenuation

of the cylinder because it ignores diffraction of the fie]ds. However, 1
the Born approximation is badly in error for this case, since the

scattered field is so large. For most cases, geophysicists are more 3
concerned with detecting and locating large contrast anomalies (i.e.,

large scatterers), and ignoring slight inhomogeneities, therefore, it .

is felt that the algebraic method is the best inversion method for this

application. For this reason, in the remainder of this dissertation 3
the main emphasis will be on the algebraic method for geophysical

inversions. 3
3.3 The Ill-Posed Nature of Geotomography 3
3.3.1 Introduction

There has been much interest in ill--posed problems, see for

example, [45],[53],54],[55,[6l,[56]. The description of ill-posed 3
problems was first given by iadamard 16]. The definition of an

ill--posed inverse problem is one that is not well posed. For the 3
operator equation: I

I
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I Ax = b (3--39)

I the problem of solving for the unknown vector x given data b and the

mapping A (A is a matrix in the algebraic reconstruction method) is

well posed if

a) An inverse (denoted by A-L) exists for A, and

b) The inverse is continuous.

For the limited data tomography problem, an inverse does not exist.

This is easily seen by considering the Radon operator given by (3-10)

which measures the attenuation over the line L. This operator will

have a non-zero kernel consisting of (at least) all two-dimensional

functions (attenuations) which are defined in the region but are only

non-zero off L. Recall that the kernel of an operator is the set of

all vectors (functions) which are mapped by the operator to zero. The

Radon transform operator (where all lines L are considered) has an

inverse which was found previously using the projection theorem.

3 However, the inverse is not continuous when the mapping (A) is from the

set of square integrable functions on the region (I, ([a,bJx[a,b]) into

3 square integrable functions on the unit cylinder [57]. The authors in

[57] do show that the inverse is continuous when the mapping is taken

3 to be between Sobolev spaces.

So the tomography problem in its original form Is ill-posed. Our

3 main interest here is in the algebraic reconstruction method for which

the mapping, A, is an mxn matrix, where m is the total number of

3 measurements and n is the number of pixels in the reconstructed image.

Since it is assumed that m>n (an overdetermined system of ec-iations), A

3 does not have an inverse. We can, however, consider a generalized

inverse which when post-multiplied by the measurement vector results in

a least squares solution of (3-39) (See Appendix B for a discussion of

least squares solutions). This generalized Inverse has the form

I
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A+ = (ATA)-LAT, (3-40)

such that 3

J(x) = IIAA 4x - bil (3-4J) 3

is a minimum. In this dissertation, 11o11 refers to the Euclidean norm 3
unless otherwise stated (see Appendix B). The matrix A+ is obviously

continuous if the inverse on the right side exists (i.e., the rank of A

= n). However, small errors in the measurement vector may imply large

errors in the least squares solution as can be seen from theorem 5.2.4 3
in Stewart [58] I

1A 4b - A+bli b (A) Il b C 1 (3-42)

II A+ bI2  IIb 11 5
where

w(A) = IlAII 11A411. (3-43) 1

The vector b is the measurement vector with added error and b and b I
1 1

are the projections of b and b onto the range of A. What this theorem 3
says is that the error in the solution is bounded by some measure of

the error in the measurement vector times the condition number of the 3
matrix. If the matrix Is nearly singular (i.e., close to some

singular matrix), then the condition number is large and the equation 3
can be considered to be in some sense ill-posed. However, numerical

analysts usually refer to the system as being ill-conditioned. 3
Unfortunately, the situation is even worse for cross-hole

tomography in that the matrix A does not even have full column rank.

In fact an upper bound on the rank is given by [591

1
I
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3 rank(A) 9 n - 1(Nv- 1), (3 44)
2 VZ

3 where, Nvz, the number of vertical zones, is the number of pixels in

each row of the discretized image (see Fig. 3.2). A generalized

solution still exists which can be obtained using the singular value

decomposition (see appendix B). In any case the problem is ill-posed,

so we discuss the method of regularization for better posing the

problem.I
3.3.2 RegularizationI

A. IntroductionI
Regularization consists of methods for solving a problem similar

5 to the original inverse problem given by (3-39), but with solutions

which are not as sensitive to errors in the data. In fact, the method

3 of least squares mentioned above is one such technique In that. it gives

an alternate description of the solution. In addition, for an

inconsistent system of equations there is no x such that Ax=b, and in

this case we are restricted to finding an x which minimizes IlAx-b.

Methods also exist for restricting the space in which solutions are to

be sought. This might come about by enforcing constraints that the

solution has to satisfy (e.g., a positivity constraint by which all

pixels in a solution image are required to have positive value).

In this section the method of regularization will be restricted

to methods of finding a set of approximate solvers for (3-41)

(50], [53], [54], [55], [56], [60]. What is desired, is a solution of

3 the form

I x = A* b. (3--45)

I
I
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Since A+ does not exist, we attempt to find A, such that 3

.F-A,, b, (3-46)

and

lim x =x (3-47)1

I
where y is known as the regularization parameter. Unless otherwise

indicated, by a solution we mean a least squares solution in the 3
following. In general the limit in (3-47) does not really exist

because S will not exist as V40. The goal Is to choose y sufficiently 3
small to get a good approximation to the solution, yet sufficiently

large such that A. remains bounded and does not magnify errors in b. 3
Three methods of regularization will be discussed:

1) Tlkhonov regularization, I
2) the truncated singular value decomposition, and

3) truncated iterative procedures. 3
It will be seen, however, that these methods are related. Although

these different techniques will be described for an mxn matrix, they 3
are applicable to a general linear operator between Hilbert spaces.

This setting might be important if, for example, discretization were to

be performed after regularlzation (see (60) for further details).

B. Tikhonov Regularization I
As previously stated, our interest is in solving (3-41). That is, I

find an approximate solution, xLs, such that IIAxLS-bj12 is a minimum

(see appendix B for a more detailed discussion). As was previously

noted, this problem can be very ill-conditioned in that small errors in I

I
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I b can lead to large errors in xLS. Tikhonov 154) suggested trying to

minimize the alternative functional

J(x) = IlAx-bll - 'llMxll, (3-48)

where M is an nxn matrix which we will take to be the identity matrix

in the following. J(x) can be minimized with respect to x by taking

its derivative with respect to x as

1 2ix) 2-<Ax-b,Ax-b> + T<x,x>
ax ax

Ix = -2bTA + 2XTATA + 2VXT, (3-49)

3 and then setting the derivative equal to zero

I bA + xT A TA + xT = 0

3 x(ATA y VI) bTA

I = bTA(ATA + vl)-

x = (ATA + Tl)- ATb, (3-50)

where I is the nxn identity matrix. Equation (3-50) is also referred1 to as ridge regression or the Lagrange multiplier method. The problem

then reduces to optimally choosing the regularization parameter T.

3 Some methods for choosing T will be discussed later.

C. Truncated Singular Value Decomposition (SUO)

The SVD is a well known expansion for an operator (e.g., a matrix)

[61], (see also appendix B). The decomposition for the matrix A is

given by

I



U
1

99

A = U S VT, (3-51)

where U (mxm) and V (nxn) are orthogonal matrices, and S (mxn) has the

form 3

S [(3] 352)

where the 0 represents a matrix having all zero elements and of '

dimension (m-n) by n, and X is a diagonal matrix (of dimension n) whose

elements (called singular values) I

are the square roots of the eigenvalues of ATA. Using this 3
decomposition, the original equation can be transformed into an

uncoupled system of equations as (45J i

Ax b 4 e I
] S VTx = b 4 e

S VTX- UTb 4 IlTe

Sx'= b'+ e', (3-53) I
where the error in the system has been represented by e and x' and e'

are the representations of x and b in the new coordinates. In 3
deriving the above, we have used the fact that, UTU = I. Since S has

the form given in (3-52). it is easy to solve for x' as 3

ti t( EP)! (3-54)

ai

where the oi are arranged in descending order. It is assumed that e I
I
I
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3 is a random vector with all of its elements having similar magnitudes.

We also assume that the elements of x' have similar sizes. This may be

3an unfair assumption, and actually it is desireable to have the largest

components of x' correspond to the largest singular values. With these

3 two assumptions in mind, it can be seen that the 3 decreases with i,

and at some point the E! will dominate in (3-54). It is at this point

3 that the SVD is truncated as

1 = f I(~+ E') f or- i N (-5

0 ,for i > NI
where the integer 'N' is chosen as suggested above. Transforming back

I to the original coordinates, the following formula for the solution can

be obtained

N
x= Z 1 uT(b+e) vi, (3-56)

i-i Oi 3

3 where u i is the ith row of U, and v i is the ith row of V. Note that 'N' must

be less than the rank of A, or a divide exception may occur. Tikhonov

regularization may be used with the SVD to obtain a formula similar to (3-56)

(see Appendix B for details)

N i Tx E uT(b+e) v i ,  (3-57)

U Note that y has effectively damped the effects of the small singular

values, consequently the name 'damped least squares' has also been

3 applied to Tikhonov regularization.

I
I
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D. Truncated Iterative Procedures I

It is a well-known phenomena that some iterative procedures which

find a solution to (3-41) converge to a good solution and then diverge

from this solution. This behavior has been observed in the algebraic

reconstruction technique [59], the method of conjugate gradients, and

the method of successive approximations [551. It appears that in a

fashion similar to the SVD, the noise tends to dominate as the solution I
progresses.

In a general iterative scheme, the solution at the (k+l)st step 3
is given by U

Xk+i f(A,bxk), k IN (3--58) U
where f(o) represents the particular iterative algorithm and N is the

number of iterations to be performed. The regularization simply 3
consists of choosing N, the number of iteration steps sufficiently

small to minimize the effects of error in the measurement data, yet 3
sufficientl large to get a good approximation to the solution. Methods

for choosing N will depend on the iterative algorithm, and will be 3
discussed later.

3.3.3 Constrained Solutions

The geot omography problem has been noted to be ill--posed, which

in this setting means that the solution does not depend continuously

on the data. For example, one could find a set of solutions to the

problem which do depend continuously on the data, then it would be I
best to search in this set for the unknown image. This would be one

method of constraining the solution. In fact, most regularization

schemes attempt to accomplish this goal. I
In addition, we can also constrain the solution based on our I

I
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3 underlying knowledge of the problem. For example, we might want to

search for (solution) images having attenuation values within a certain

range, or parts of an image to have attenuation values equal to some

previously known value. In this way, the resulting image will one that

satisfies the physical constraints imposed upon it. The imposition of

these physical constraints may also produce a regularizing effect on

the solution [60]. However, our primary interest is in imposing the

constraints in order to obtain a physically realizable solution.

U
I
I
I
I
I
I
I
I
I
I
I
I
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3 CiAPTER IV

3NUMERICAL ALGORITHMS FOR IMAGE RECONSTRUCTIONS

1 4'.I Introduction

In this chapter we will develop algorithms for solving the system

of equations arising from the discretized (image) tomography model. As

discussed in Chapter III, the first step in regularizing this problem

is to search for a least squares solution to the problem. However, for

the case at hand, even a least. squares solution will be subject to

large variations as result of relatively small changes (often due to

noise) in the measurement data. Therefore, it will be important to

insure that the algorithms developed are relatively insensitive to

5 noise in the data. Finally, the algorithms must be able to

incorporate a priori information in the form of inequality constraints

1 on the solution. This will in general provide a further regularizing

effect on the solution.

3 Although computational requirements of the algorithms are a

concern, the computations are usually performed 'off-line', so speed

3 is not a major consideration. However, the solution image vectors may

be composed of a large number of pixels, so that algorithms which can

operate 'out-of-core' are desireable.

3= #.2 Least Squares Solutions

3 4#.2.1 Introduction

As stated in the Chapter III we consider the problem of finding a

solution vector x which minimizes IAx-blj as a means of solving the

discretized tomography problem, given by equation (3-26). For a

I general description of least squares solutions, see Appendix B. The

name "least squares" comes from the fact that the norm being used is

I
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the euclidean norm. This norm is giveii by the square root of the sun 3
of the squares of the elements of a vector. The minimization could be

performed using some other norm such as the 1-norm or -- norm, but the

2-norm or euclidean norm has some important theoretical and

computational advantages. Some of these advantages ace listed below 3
a) The 2-norm has an associated inner product (i.e.. II I  =I

<x,x>), which adds a geometric structure to the problem. In 3
addition, the problem cart be solved by setting to zero the

derivative of <(Ax-b),(Ax-b)> resulting in the consistent

normal equations (see appendix B) which are sometimes easier to

solve. This inner product (which is not available with 1-norm

or --norm minimizations) affords additional computational

advantages. See [621 for a discussion of these advantages and

an overview of least squares methods. I
b) The least squares solution arises naturally when a maximum

likelihood estimator is used to solve (3-26) (631. The maximum 5
likelihood estimate is the one W.1 cI maximizes the conditional

probability density f"iicLion p(bix). The vector b is the data 3
vector, and x is the unknown mode] vector. If the assumption

is made that the error vectur, e, in (3-26) is zero mean 3
Gaussian distributed, then the maximum likelihood estimate of x

is given by [631 3

X = (ATR 'A)-'ATR 1b, (4-1)e eI

where Re is the covariance matrix for the random vector e. If 3
it is further assumed that the elements of e are uncorrelated.

and have identical variances a. then (4-1) reduces to I

x (AT A)-AT). (4-2)

I
I
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3 Note that (4-2) gives the least squares solution via the

generalized inverse, (3-40).

3 Therefore, from the discussion in the Chapter III on

regularization, we are led to solving the approximate problem of

3 minimizing the norm of the residual. In addition, from the reason.

cited above, the norm wze will use is the euclidean norm which results

I in a least squares solution.

The least squares problem for limited data reconstructions has

some particular requirements which may not exist in other settings.

These requirements need to be kept in mind when developing algorithms

for solving the reconstruction problem. Some of these requirements

are listed in the following.

a) The reconstruction problem often leads to large matrices and

vectors. For example, a cross--hole arrangement for scanning a

region 20 meters on a side will require an image vector having

3 400 elements for a 1 meter pixel size. The associated distance

matrix will have 400 columns and over 400 rows (for an

3 overdetermined system of equations). For configurations

resulting in such a large distance matrix, it may not be

3 feasible to store the matrix in core memory. This requirement

would preclude the use of inversion algorithms which operate

3directly on the distance matrix.
b) In addition to being large, the distance matrix often has many

3 elements equal to zero. This 'sparseness' is due to the fact

that each ray will intersect only a small percentage of the

3 pixels in the region. It is important to develop algorithms

which can take advantage of this sparseness to reduce computer

memory and time requirements.

c) It will be necessary to incorporate the theory of

regularization, discussed In the Chapter II, into any least

squares algorithm developed.

d) It Is often necessary to constrain the solution vector (i.e..

I
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image) to have non-negative values, or values in some specified 3
range.

All of these requirements will be considered when designing the image

reconstruction algorithms in this chapter.

C2.2. Alternate Oescriptions of the Least Squares Problem I

A. Introduction U

Because of the geometry involved in the least squares solution, 3
there exist other systems of equations which when solved also yield a

least squares solution. These alternate descriptions are important for 3
the computational advantages that they possess. We list some of the

other descriptions and point out their computational advantages. 3

B. Normal Equations 5

The normal equations are derived in Appendix B. They are repeated 3
here in matrix form for convenience

ATAx = ATb. (4-3) I
This equation is the result of requiring that the residual vector of

a least squares solution is orthogonal to the columns of A. This 3
equation has a number of computational advantages over solving the

original equation, Ax--b. The advantages are listed below.

1) If round-off errors are neglected, (4-3) represents a

consistent set of equations. This is especially important when

using the projection method [64] (also known as the ART

algorithm) for finding a solution since this algorithm only

converges when the set of hyperplanes given by the individual I
equations intersect at a single point. This fact will be I

I



I

1 107

3 discussed later when the projection method is fully described.

2) Equation (4-3) has n equations with n unknowns. For m>n (an

overdetermined set of equations), (4-3) will require less

computational labor than the original equation.

1 3) The coefficient matrix (ATA) in (4-3) is symmetric, positive

semidefinite. This is often a requirement in using gradient

algorithms for finding a least squares solution.

The normal equations do have two disadvantages that are not so

deleterious if they are given proper attention. These disadvantages

are:

1) It is well-known that forming the normal equations results in a

squaring of the condition number of the system of equations

1581. This follows easily from

m (A TA) = Y(A)x(A) (4-4)

where m(o) is the condition number of the given matrix as

defined in Appendix B. As Stewart [58] points out,this problem

may be alleviated by performing the computations in double

3 precision.

2) Forming the normal equations will, in general, result in a loss

3 of sparsity in the coefficient matrix. This will be a problem

when the size of the problem is sufficiently large that it is

3 more efficient to use the sparseness to reduce storage and time

requirements. This problem may be avoided by using an

3 iterative scheme where ATA does not have to be explicitly

formed.

5 The normal equations should be considered as a viable method of

solving the least squares problem. However, the disadvantages listed

3above should be kept in mind when using this technique.
3 C. Iterative Refinement

I
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The following augmented matrix equation was studied by BJorck [651 3
as a method of improving a least squares solution 3

However, it may be useful to solve (4-5) directly for the least I
squares solution. This method is similar to the normal equations in

that the coefficient matrix is symmetric, and that use is made of the

fact that the residual vector is orthogonal to the columns of A. Note

that the new coefficient matrix in (4-5) need not be explicitly formed U
if an iterative procedure is used to solve (4-5). However. using

(4-5) has the disadvantage of requiring the solution of a larger set 3
of equations. Using (4-5) may also have the same conditioning problem

as the normal equations. Bjorck [65] has shown that the condition 3
number of the new coefficient matrix lies between the condition of A

and the square of the condition of A. If for a particular geometry 3
the condition number can be determined to be lower than ATA, then

(4-5) may be used in lieu of the normal equations. 3

#.2.3 Weighted Least Squares 3

A. Introduction 3

When comparing the maximum likelihood estimate and the least 3
squares solution at the beginning of this chapter, a noise covariance

term was used. This term was eliminated from (4--I) by assuming that 3
the elements of the noise vector are uncorrelated and have equal

variances. We now drop the assumption that the elements have equal

variances. Rather, it is assumed that there exists a priori knowledge

that some of the equations in the model are more reliable than others.

I
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3 Two practical examples of this a priori knowledge will be presented in

this section. In this case, the inverse of the noise covariance matrix

3 is replaced by a weighting matrix W. This matrix has the form

W = [ (4 -6)

I
where the scalar wi will weight the equation corresponding to the 

ith

ray path measurement. The least squares minimization problem now

3 involves finding the solution x.Ls such that the functional

SWLS (x) = IIW(AxwLs - b)I1a (4-7)

3 is a minimum. Note that if there is a unique solution to (4-7) [i.e.,

bER(A)], then xLS = XWL s . Of course, it would be overly optimistic to

3 hope for this to happen in practice. The weighted normal equation

obtained from (4-1) is found to be

I
ATWAx = ATWb (4-8)

8. Path Length eighting

I
We now address the problem of determining the diagonal elements of

the matrix W. One method often suggested is to make wi inversely

proportional to the standard deviation of the it h measurement. This

5process would obviously give greater weight to the more reliable
measurements. The major drawback to this method is that the statistics

of the measurement data are not usually available. We suggest a more

elementary means of weighting by lettingI
I
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= dj (49)

where d i is the distance the 1 th ray travels from the transmitting

antenna to the receiving antenna, and a is some positive constant which

will be dependent on the geometry of the problem and the amount of

noise in the measurement data. Note that a type of path length

weighting was also used in 1111 in conjuction with the algebraic

reconstruction technique (ART), but using the weighting method (4--6) is

more flexible since we are not restricted to single inversion I
algorithm. On the average, the received signals resulting from shorter

paths have a greater signal to noise ratio than those from longer 3
paths. Thus, this type of weighting is attractive since it is expected

that measurements resulting from shorter paths will be more reliable. 3
In practice, It is more useful to normalize di by dividing it by

the shortest possible distance, d, to get 5

dd - (4-10)

U
This WLS method is easy to implement on a computer since the A matrix

contains the path length information. In fact, d. is found by summing

all of the elements in the Ith row of A. As noted above, the constant 3
a should be chosen with consideration to the amount of noise in the

measurement data. To understand this relationship, the effects ol 3
adding noise will be Investigated in more detail later.

C. Estimated Received Power Weighting I

It has been shown (66] that the geotomography problem can be I
better posed by calculating estimated received powers. The procedure

I
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3 is to use a preliminary estimate of the attenuation over the region

(i.e., the image) and substitute this into the forward equation given

3 by (3-6). The system of equations is then modified by eliminating

those equations whose measured received power differs significantly

* from the estimated power. The criterion used in [661 was to select, a

constant k such that if

k Prec >P > P path is retained-e -'e e (4-1l1)

* otherwise path is eliminated

where P is the measured power for the ith path and P is theIrec I rec

estimated received power. This procedure has the advantagc of removing

equations which may not accurately model the geotomography problem, but

has the disadvantage that in removing equations (i.e. rows of A) the

rank of A may be decreased. We propose here to retain all paths, but

inversely weight those paths which are suspect according to (4-11).

Applying these results, a new W matrix is obtained with

I_ W = '~i (4-12)

3 where (oi is chosen as in (4 10) and ti is given by

I 
P

3 if the path met the elimination criterion in (4-11). Otherwise. t i is

set to unity so that the weighting is utaffected by this procedure.

3 It is seen that solving the underground reconstruction problem

I



I
I

112

using weighted least squares is a four step process:

I) The weighting matrix is formed as in (4-6) using path length

weighting.

2) The weighted normal equation (4--8) is solved using some least

squares algorithm to find a cross sectional ima xuLS*

3) This cross sectional image is then used to calculate estimated

received powers and a new weighting matrix (4-12).

4) Equation (4-8) is now solved using the new W matrix resulting in

an improved cross sectional image.

0. Illustration of the Effects of Additive Noise

11' the assumption is made that the noise is additive, white and

Gaussian (AWGN), then a signal-to-noise ratio can be defined after Ney, 3
et al. [67] as

SNR = 2Olog {Iir}.(4-14)

where Ei is the vector whose elements are the magnitudes of the

electric fields incident at the receiving antennas, and n is a normally I
distributed pseudo-random noise vector.

Fig. 4.1 shows the predicted electric field magnitude, the 3
electric field with additive noise, and the random noise vector, all

plotted versus borehole depth (in the receiving borehole) for a 3
cross-hole configuration with a homogeneous earth. The signal-to-noise

ratio was chosen to be equal to 30 dB. As can be seen from the plot, 3
the additive noise is less significant at those receiver locations

directly opposite the transmitting antenna than for those locations 3
near the top or bottom of the borehole.

This example gives justification for using the WLS method in that j
those paths with the shorter ray distance (from a given transmitter to

a given receiver) will on the average have the higher signal-to--noise 3

I
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ratio. These 'reliable' paths will then be given stronger weighting,

and therefore will have greater influence on the reconstruction.

Also, note that as the amount of noise Increases, the measurements

resulting from the longer ray paths will become less reliable when

compared to the shorter ray path measurements. Therefore, for

applications where the magnitude of the additive noise ic 2xpected to I
be large, one should use a greater value of x in (4-10) than in cases

where the noise is not expected to be significant. However, a can not 3
be made too large, or resolution in the horizontal direction will be

compromised since the longer ray paths give horizontal information. 3
Also, some consideration should be given to the effect. a has on the

conditioning of the system as shown in the next. section. 3
E. Numerical Considerqtions for Path Reighting 3

The WLS method is easily applied to geophysical inversion 3
problems. The A ,atrix contains the path length information, so the

weighting matrix, W, is easy to generate. Once the W matrix has beenm

found, the matrix multiplications given in (4-8) can be carried out to

get a new matrix equation of the form m

Cx = d (4- 15)

where C is a symmetric nxn matrix and d is an nxl vector. Certainly

these matrix multiplications are additional computations which would I
not normally be required, but since in most cases m>n, (4-15)

represents a reduced set of equations over that of solving Ax-b, and 3
will therefore require fewer calculations.

We would also like to consider the conditioning of the system of 3
equations representing the reconstruction problem. The equations to

consider are (4-3) for the least squares problem (using the normal 3
equations) and (4-8) for the weighted least squares problem. For I

I
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either problem, the reduced equation is of the form given in (4-15),

where C = ATA for the least squares problem and C = ATWA for the

3 weighted least squares problem. The condition number for (4-15)

represents the susceptibility of the solution to errors (noise) in the

data. The condition number is defined in Appendix B.

Table 4.1 shows the effect weighting has on the conditioning of

the system of equations. For this table the matrix A was formed by

considering an underground reconstruction problem consisting of 20

transmitting and 20 receiving antennas, and the cross sectional image

divided up into 100 square cells. The table demonstrates the effect.

the exponential factor, a in (4-10), has on the condition number. As

can be seen from the table for values of a between 0.5 and 3.0, the

rank of C = ATWA is actually greater than the rank of C = AT A. This

increase in rank results in a system of equations with greater

stability. Also from the table it can be seen that the optimum value

of a from a conditioning standpoint is between I and 2.

3 Table 4.1

Choosing the path weighting exponentI
a rank LS K LS rank WLS K WLS

1 0.5 93 22x10 93 12xl s

1.0 . 94 12xI03

3 2.0 .. 95 17x 10
3

3.0 93 8x103

I
i.2.4 Conclusions

In this section a discussion of the applicability of least

squares methods to the image reconstruction problem has been

presented. Along with this discussion, some alternate methods forI
I
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solving the least squares problem have been reviewed. A

generalization of the least squares solution (i.e., weighted least

squares technique) has also been reviewed. Two new methods for

determining weighting coefficients for the WLS technique have been I
introduced. These weighting coefficients are based on the following.

a) Making the observation that the geometry of the cross--hole 3
configuration makes some measurements inherently more reliable

than others, and 3
b) Using an initial estimation of the cross section to determine

the reliability of each measurement. 3
Now that the least squares problem has been described, and a means of

improving the least squares solution by weighting the measurements has 3
been suggested, in the remainder of' this chapter numerical algorithms

will be introduced which solve the LS and/or WLS problems. 3
4.3 A Direct Algorithm Using the Singular Value Decomposition 3

q.3.1 Introduction 3

Direct algorithms for finding a solution to Ax=b operate directly

on the matrix A in solving for x. The most well-known direct algorithm

is Gaussian elimination which attempts to reduce A to upper trapezoidal

form. Once A has this form, a solution is easily obtained. I
Unfortunately, Gaussian elimination will not work when A is rank

deficient or ill-conditioned. Since we are faced with a rank deficient 3
matrix in this setting, some other more stable algorithm must be used.

The singular value decomposition is one such algorithm which will be 3
developed in this section. Not only is this decomposition useful in

its own right, but it also provides analytical tools for studying the 3
properties of other algorithms which will be presented later in this

chapter. 3

I
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f-.3.2 Singular Value Decomposition Algorithm

The singular value decomposition (SVD) was introduced in Chapter

III as a means of regularization for an ill-posed problem. It is also

discussed in Appendix B as a way of computing the generalized inverse

of a matrix. The solution using the SVD was given in (3-57), it is

repeated here for convenience

X= N 6. b v. (4-10)
i +

where y is the regularization parameter, and the error vector, e, has

been dropped for simplicity. There are three issues that must be

3 addressed before using (4-16).

a) What value should be chosen for N?

3 b) What value should be chosen for y?

c) How can constraints be applied to the solution?

3 These issues will be given consideration in the succeeding sections.

3 #.3.3 Truncating the Singular Value Decomposition

3 In the last chapter it was noted that the SVD was able to effect a

change of coordinates such that in the new coordinate system, the

equation Ax=b was reduced to diagonal form. Once reduced, the equation

is easily solved. However, as noted in (3-54), errors in the elements

of the data vector corresponding to small singular values can cause

large errors in the solution. The goal is to choose N in order to

ignore the terms which cause large errors. In Fig. 4.2 are plotted the

singular vtlues, elements of the data vector, and the ratio of these

two quantities for a system of equations arising from a discretized

3 cross-hole configuration. The singular values are plotted in

decreasing order. As can be seen from the figure, the ratio p/a stays
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relatively constant, and then takes a large Jamp at i=91. If we assume

that the components of the solution have similar magnitudes in the new

coordinate system, then it appears that the error in the data vector

dominates the real data for i>90. In this case, it would make sense to

choose N=90.

In general, when solving a system of equations the ratio p/a can

be averaged, and a large deviation from the average could be detected.

At this point, N would be chosen to be one less than the value of i at

which the large deviation was found.I
4.3.# Tikhonov Regularization for the SUD AlgorithmI

This regularization method was described in the Chapter III. The

method is given by (4-16), with N = n which is the number of elements

in the x vector. In this section some ways of choosing a value for V

in (4-16) will be discussed.

One method for choosing y is taken from statistical analysis

I [68], and , it is based on observing the elements of the solution

vector (i.e., x) as ' is increased from zero. A plot of these

elements versus V is referred to as a ridge trace. The selection

process involves finding the smallest value of T after which the ridge

trace does not fluctuate. This value of' is then used in (4-16).

Unfortunately, this method has the disadvantage of requiring that

(4-16) be solved for different values of r. In addition, a subjective

test is needed to choose the minimum value of y.

Another method using statistical analysis is the generalized

cross-validation method which attempts to minimize the expected value

of the error between the actual solution and the regularized solution

[69]. In this case, the expected value function has to be calculated

versus V so that a minimum can be found.

3 A more efficient method of choosing v would be in line with the

discussion above on truncating the SVD. That is, detect the point atI
I
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which the error dominates in the summation of (4-16), and then choose 'r

to damp out the effects of the small singular values. For example, if

it has been found that the error is dominant for i>90 in (4-16) then

choose y on the order of a s. This procedure should introduce a small

bias into the lower order terms while reducing the effects of noise in

the higher order terms. In Fig. 4.3. i/ai is again plotted with

singular values damped as 3

o i oi (4--17)

Also plotted is the undamped version of pi/oi- As can be seen from

the figure, the damping has reduced the error in the high order terms, 3
while leaving the low order terms relatively unaffected. This method

has an advantage over the truncation method in that the ui coordinates 3
for large i are not neglected. However, the magnitudes will be

reduced along these axes. In addition, if the noise in the

measurement vector increases, such that it starts to affect some of

the lower order terms, then this method will be more immune to the 1
additional noise.

#.3.5 Aoplying Constraints in the SOD Algorithm I
The most obvious method of applying constraints would be to

project the solution given by (4-16) onto the constraint surface. For

example, if a nonnegativity constraint is to be applied, then set all

of the negative elements in the solution to zero. Unfortunately, this 3
procedure does not result in good reconstructions, since It has been

observed by the author that the resulting images have a significant

number of pixels which are zero. One would expect, In general, that

the Images should not have any zero-valued pixels. Rather, the reason

I
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for imposing the constraints, as mentioned in Chapter III, is to limit

the space of solutions and therefore produce some kind of regu]arlzing I
effect. Therefore, we are not necessarily interested in a solution

which lies on the constraint surface (i.e., has elements with zero I
values). For this reason another method of applying constraints is

needed. 3
Fig. 4.4 is an illustration which suggests another method of

applying constraints. This figure depicts a least squares solution in 3
two dimensions (i.e., x has two components). In this figure, e and e2

are the usual euclidean coordinates, with the constraint surface being

the boundaries of the first quadrant. u1 and u2 are the transformed

coordinates given by the SVD which are guaranteed to be orthogonal. U
The components of the solution vector along these coordinates are given

by x' and x'. This solution vector is labeled x in the figure. The 3
1 2 L

process of projecting the solution onto the constraint surface (e , in

this case) is indicated by the dashed line.

The method we suggest for applying constraints is summarized in

the following:

a) Search for a feasible component. of the solution (x; here).

b) Search for another component of the solution which when added

to the current solution does not move the solution outside of

the constrained region. In the example of Fig. 4.4, no such

component exists. If such a component exists, repeat this I
step, otherwise, go to c).

c) If no component was found in b), then we assume an error in the

measurement vector, b, is the cause of no solution being found. I
This error is assumed to cause an innacuracy in the magnitude

of the corresponding component. Therefore, choose the 3
component with the least error (i.e. it takes the solution the

least distance outside of the constrained region), and the 3
magnitude of the component is reduced such that the solution I

U
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remains in the feasible region. The result of' this process is

xc in Fig. 4.4.
LS

d) If all components have been used, then stop; otherwise, go back

to b).

Note that as a result of using this method, the solution, xCs, in Fig.

4.4 is closer to the u2 axis than the solution obtained by projecting

x onto the constraint surface. This reflects the greater confidence I
we have in the x; component.

The assumption made above that the source of the error be

restricted to the measurement vector may not be valid since numerical

and modeling errors could cause the 'u' coordinates to be inaccurate.

However, it would be more difficult to characterize and correct for

these errors. Therefore, the method summarized above represents a good

compromise between properly handling constraints and simplicity of

implementation.

f.3.6 Conclusions

The SVD algorithm was shown to be a viable algorithm for the

solution of the image reconstruction problem. Methods for regularizing

the output of this algorithm and applying constraints were (leveloptd. 3
This algorithm does suffer from the same shortcomings of any direct

algorithm when applied to large sparse systems of equations. HfowVer-, 3
some of the methods developed in this section will also be applicable

to the iterative algorithms which will be given greater emphasis in 3
reconstruction process.

#.# Iterative Algorithms for Image Reconstructions I

#.. Introduction

I
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Iterative algorithms are very attractive for image reconstruction

problems featuring large, sparse, coefficient matrices. The advantages

of iterative techniques in this case include the following.

a) The sparsity of the coefficient matrix can be used to reduce

computer storage and time requirements. This is not a]ways the

case for direct inversion algorithms.

b) Since in most iterative schemes the coefficient matrix is only

used to form matrix-vector products, the coefficient matrix can

be stored out of core and brought into main memory one row at a

time.

In addition to these advantages for large, sparse systems, iterative

* techniques have the following advantages for general reconstruction

probl ems:

a) As mentioned in Chapter IIl, the selection of stopping criteria

for the iterative process can be used as a method of

regularization.

b) Iterative techniques are more amenable to the application of

constraints than direct inversion methods. This is because

constraints can be applied at each step of the iterative

* process.

We will be interested in two major iterative techniques in this

section. The first operates by attempting to successively satisfy

each equation in Ax=b, and the second seeks to minimize a functional

which results in a solution to the problem.

f.f.2 Projection Methods

A. Basic ART Algorithm

The projection method described in this section was originally

developed by Kaczmarz as a means of inverting a large system of

equations [70]. It was rediscovered as a method of solving theI
I
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tomography problem and renamed the algebraic reconstruction technique

(ART) in the early 70's (see, for example [711 for an early paper on

the application of the ART algorithm to computed tomography). Since

its first use, it has remained one of the most popular methods for

solving the system of equations resulting from the discretized

tomography problem. Perhaps the best way to understand the ART i
algorithm is to take a geometrical point of view in the style of Tanabe

(641. The following notation is needed:

1) ai = ith row of A matrix

2) pi = ith element of b vector

n I
3) <ai,x> = Z ait i = inner product of ai with x

i=1

4) IIx112 = <,X> I
where the a i's are the elements of the ai vector, and the ti's are the

elements of the x vector. In this way, Ax=b is seen to be a set of m

hyperplanes in n-dimensional Euclidean space, where the equation of the

th plane (which will be called H i) is seen to be

I
Hi :<aix> z Pi. (4 18)

If the system of equations is consistent, these planes will intersect

in a unique vector, x. The system of equations is almost never

consistent in practice because of measurement noise and the error

inherent in the discretization process. The ART algorithm can be

summarized as follows:

1) Choose an initial image vector, x0.

2) Project this vector onto the hyperplate <a I x 1  > using

the equation i
I
I
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xI = 0  <a 1 'xo> -
x = x0  a > a (4-19)Ila 1112 1

I 3) Iteratively project the result of (4-19) onto successsive

hyperplanes such that the kth iterate has the form

Xk k-i 11akkl 1k ak (4 20)

I
where k is greater than 1 and less than m. The iteration described by

3 (4-20) is repeated until the updated image vector, xk, has achieved

some level of convergence. Note that in applying (4-20) if k=m, then

set k=l and k-I - m in the next iteration.

3 B. Applying Constraints

In the form described above, no constraint has been made on the

image vector, i.e. some elements of xk may become negative, which is

not physically possible. An inequality constraint of the form

ti 8, for i = l,n (4-2])

may be applied by choosing the xk which is closest to the one given by

(4-20) and also satisfies (4-21). That is, if some tis less thau 6

at the kth step, then project xk back onto the hyperplane C,=S. A

typical set of ART iterations is pictorially shown in Fig. 4.5 for m 3,

n=2. and with inconsistent data. The constraints are t 1 > 0.

C. Properties of the ART Algorithm

I
I
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Some of the basic properties of the ART algorithm will be listed

in this section. For proofs of these results, see [64]. These

properties will be useful for understanding the convergence properties

of the algorithm. The first property is that each iteration can be

written as the vector sum of an orthogonal projection of the latest

iterate and the kth row of A scaled by the kth measurement. That is.

(4-20) can be expressed as u
Xk =Pkxkl 2 ak '  (4-22) 1

1lakl

where Pk is an orthogonal projection matrix. I
It we consider a set of iterations over all m rows of A then we

can express these iterations as

xm = Qxo + Rb, (4-23) U

where I

Q P L 2 " 'PrM, (4 24)

and U

Rb A - Lai "  (4-25)

Equation (4-23) is important since if x0 is contained in the kernel of 3
A, then

I
Qx°  x0 . (4 26)

I
I
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U Therefore, if an initial vector (x ) is chosen with a component in the

null space of A, this component will appear in the final solution.

The final property which will be discussed is that (4-20)

converges to the generalized inverse solution plus a projection of x0

onto the null space of A. That is,I
lim Xk+m = A+b + PIN(A)x, (4-27)

where PiN(A) is the projection operator onto the null space of A.

Note that if the equations are inconsistent, the convergence will be

cyclical such that no matter how large k is, xk+l will differ from xk

(see Fig. 4.5). However, for large k, Xk+m is close to Xk -

I D. Underrelaxat ion for the ART Algorithm

The ART algorithm as described above has one problem in that for

inconsistent equations the algorithm never converges to a solution.

This behavior can be seen in Fig. 4.5. A means of' avoiding this

behavior is to use a relaxation parameter X in (4-20) [72]. By

including this parameter, (4-20) becomes

<ak'xk-> -k (4-28)

Xk 'k-L Ilak 11 -k

For this relaxation method, the authors in [721 show that

lim x*(X) = A b ' PIN(A)Xo, (4-29)
IXo

I
I
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where

x*() = lm Xk(). (4-30)
k4

Note that this is better than (4-27) in that for large k, Xk 4 1 ( is

close to xk(X). Therefore, we can avoid cyclic conicrgence by choosing

I )X sufficiently small. However, for O<X<l, (4-28) represents an

incomplete projection onto the hyperplane Hk' of (4-18). That is, Xk+1

does not reach the kth hyperplane (hence the name underrelaxation).

This implies that a small X will mean slow convergence.

3 E. Other Projection liethods

Other methods have been developed (see [73] for an overview) which

are similar to the ART algorithm in that at each iteration a projection

is taken onto a convex set. For the ART algorithm, the convex set is

the half-space defined by H1 , of (4-18). These different methods are

obtained by giving different interpretations to the desired solution.

For example, if the goal is to satisfy the ith equation in Ax=b within

3 some bounds, then we are led to searching for solution in the

intersection of m (number of equations) hypersiabs. These hypersiabs

will be defined by the equations and the (error) bounds. This method

is referred to as 'ART4' in [73]. In general, these other methods will

converge to a solution in fewer steps than the ART algorithm, but will

also require more computations per step. Instead of investigating

these methods here, we wish to develop an iterative method which has

some advantages over projection methods in the next section.

3~.~.C C3 Grodient Methods

I
I
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A. Introduction

In this section we consider solving an image equation of the formi

Qx = b (4-31) 1

where Q is an nxn symmetric positive definite matrix. Even though the

matrix A will not be of this form in general, this assumption on Q I
will be made, but will be relaxed later. Also note that if the matrix

A has full rank, then Q can be generated from the normal equations,

(4-3). I
B. Method of Steepest Descent I

This method Is a good introduction to the conjugate gradient

algorithm, so it is discussed here. Solving (4--31) for the vector x is

equivalent to minimizing the functional

I
f(x) = LxTQx - xTb (4-32)

2

over xER n. This can be seen by taking the gradient of f(x) with

respect to x. and setting it equal to the zero vector. We seek an

iterative method such that

f(xk + kPk) ' f(xk i) (4--33)

at each iteration. The p vectors are known as the search direction

vectors, and ak is the magnitude of the search. One choice for Pk is

the negative gradient of f(xki), giving the steepest descent direction

for minimizing f(xk-L). In this case Pk takes the form I
I
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Pk = b - Qxk (4-34)

Iwhich is also known as the negative of the residual vector. The

which minimizes f(xk_,+akpk) can be found by expanding this functional

as in (4-32). This ak is found to beU
S=Pk 'Pk (4-35)I ak =<QpkPk>5

If Q were allowed to be other than positive definite, as required, the

denominator in (4-35) could become zero. The convergence of xk to a

solution vector, x, can be quite slow if the ratio of the largest

eigenvalue of Q to its smallest elgenvalue is large [61J. For this

reason the method of steepest descent is not practical for solving

(4-31). However, the conjugate gradient algorithm is able to achieve3 accelerated convergence even in this ill-conditioned case.

5 C. Method of Conjugate Gradients

3 Again, we wish to solve (4-31) by minimizing the functional given

in (4-32). If we define p. through Pn as n, nxl independent column

3 vectors, then the span of these vectors will define an n-dimensional

subspaceU
V = span(p , .... pn )  (4-36)

The solution vector, x, is obviously contained in V, so it can be

5 written as the sum

U
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x = a~pi.. + anpn  (4-37) 3

The goal of the CG algorithm is at each iteration step k represent xk

on a k-dimensional subspace. Therefore, after n steps, if ak is

properly chosen, we will have found x. This is the essential content

of the expanding subspace theorem described in [74]. The CG algorithm

also gives an efficient way to generate the vector space, V. such that 3
the vectors, pi, are Q-conjugate (i.e. piTApj = 0 for all i~j). The

algorithm that accomplishes this task was originally discovered by

Hestenes and Stiefel [75]. An updated version is given here [611.

1) x = 0

2) ro  b

3) po = 0 3
For k = 1,

11rk- 1112I

a) Pk jirklBj (4-38)

b) Pk rk-, + PkPk-I I

c) ak 1 rk-1 112 I
<Pk "QPk>

d) xk xk i + Qk'k 3
e) rk - rk 1 - akQPk"

The first three steps above are initialization. In the iteration loop,

steps a and b insure that the direction vectors, Pk 5S, are 3
Q--orthogonal, while steps c and d minimize the functional in (4-32) by

choosing xk as the sum of the previous solution vector and a scalar 3
multiple of the present direction vector. Step e in the iteration loop

U
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3 is an efficient way of determining the residual. Note that in the

algorithm above, no stopping criteria was specified for terminating the

iterations, and no method of constraining the solution image was given.

These two concerns will be given consideration in the remainder of this

i section.

i D. Stopping Criteria

In any iterative algorithm it is important to determine at what

point we should terminate the iteration process and output a solution.

Not only is the determination of this stopping point necessary since it

3 is inefficient to make additional unwanted computations, but as

mentioned in Chapter 11, stopping the iteration process can give a

Sregularizing effect to the solution. Indeed, if the iteration process

is continued too long, then a divergence from a good solution may

I occur.

The logical choice for deciding on a stopping point would be to

3 proceed along the same lines as in the determination of a truncation

point for the SVD algorithm. For the SVD algorithm the truncation

3m decision was based on finding the point at which the error dominated in

the (transformed) measurement vector. This was equivalent to ordering

the singular values of the matrix A, and then finding the number of

singular values to be used in the solution. Unfortunately, each step

of the CG algorithm does not correspond to adding another coordinate

(i.e.. singular vector), in the SVD algorithm. Therefore. we cannot

set the number of iterations equal to the truncation number found

1previously in the SVD procedure. If, however, at the kth step of an

-- iterative algorithm the solution, xk , were to somehow depend on the

singular values a for i<j (where j is to be determined), then we could

3 use the results of the SVD analysis to choose a stopping point.

Fortunately, this behavior has been observed in the CG algorithm [76].

3but the algorithm as presented in (4-38) does not include any mechanism
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for observing and acting upon it. The LSQR algorithm presented in

[76], which is analytically equivalent to the CG algorithm, does U
provide a mechanism for detecting the point at which 'j' singular

valiis have been 'used' in the solution. The algorithm is outlined il l

Appendix C. In summary, the following steps should be performed for

stopping the CG algorithm:

1) The singular value decomposition can be used to find the

singular values and vectors of the matrix A. I
2) The procedure for selecting which singular values should be

used in the solution is given in the discussion on truncating 3
the SVD algorithm.

3) Once this point has been determined to find a solution, use the 3
algorithm in Appendix C, which bases its stopping procedure on

the singular values, to find a solution. 3
E. Applying Constralnts 3

As mentioned in Chapter 111, the application of constraints on a

solution vector (image) is of great importance. One of the advantages

of iterative algorithms is the ability to constrain the solution at

each iteration. In this way, errors will be corrected at each step. I
The first method when considering the application of constraints

(in the CG algorithm) is to project the solution onto the constraint

surface after each iteration. As noted in 177], this procedure will

not in general result in the generation of n linearly independent 3
direction vectors. Therefore even if the least squares solution lies

in the constrained region, it may not be found by this method. A

solution to this problem is to restart the algorithm whenever the

iterates have converged. The resulting algorithm is given by [771

0 0

r. 0
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5 For k = 0. N

1) Perform a CG iteration (4-39)

m 2) Apply constraints to xk

3) If ABS(I1rkI - lrkl I ) < E

restart by setting pk = rk

3 where the CG iteration mentioned above is given by (4-38) or by the one

in Appendix C, and ABS(o) is the absolute value operator. Restarting

5 causes the next search direction to be a steepest descent direction.

See, for example, [781 or [791 for the convergence properties of

3 restarted CG methods. Step 3 in the iteration loop above checks for

convergence by observing the behavior of the residual vectors from one

3 iteration to the next. This method has the following shortcomings:

1) At each step, the application of constraints may mean that the

functional in (4-32) is not being minimized.

2) No criterion is given for choosing E in (4-39), and E may

depend on the problem being solved.

3) The restart procedure may take the solution out of the feasible

region.

For these reasons, an alternative method is desired for applying

constraints.

The application of constraints can be based on the methods of

constrained optimization discussed in [74). The simplest is the

3 method of feasible directions. This method could be adapted to the CG

algorithm (4-38) by using the new update formula for xk given by1
Xk Xk _± a Pk (4-40)

where ak is chosen such that its magnitude is the maximum value of ak

(given in 4-38) which leaves xk inside the feasible region. As noted

3 by the author (741, the feasible direction method can be subject to

3
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jamming, which means that the solution does not change at each

iteration. This jamming has been observed In the image reconstruction

problem by the author. Of course, the algorithm could be restarted as

above when jamming has occurred. Instead, we consider another method m
for applying constraints.

The gradient projection method wa3 originally given by Rosen

[80], as a method of maximizing or minimizing a functional subject to

constraints. The method is also described in [74]. A summary ot this 5
technique follows for minimizing f(x) of (4-32).

1) Initialize x0 in the feasible region (i.e., so that it 5
satisfies all constraints).

2) Let x, = xo + a ' p,, where a, and p, are chosen by the steepest m
descent method, and a, is the maximum value of a, such that x,

is still in the feasible region. I
3) If in step 2 a constraint surface were encountered, then

define the working surface to be the (intersection of all) m
constraint surface(s).

4) Continue to minimize f(x) using xk = Xk-L + a _, over the I
working surface as in step 2. o

5) If f(xk) is a minimum for xk on the working surface, then

determine, by moving in the direction of the negative gradient

of f(xk). if f(xk) can be further minimized and Xk+* is still

in the feasible region. If so, go back to step 4 with the m
corresponding constraint surface rentoved from the working

surface; otherwise stop. m
When this algorithm terminates, f(x) will be minimized over the

feasible region. A more detailed description of the algorithm is given

in Appendix D. The technique can be adapted to use the CG algorithm

for minimizing f(x) and thereby avoid the slow convergence of steepest

descent. Note that by moving in the direction of steepest descent in m
step 5, an Implicit restart of the CG algorithm has occurred. Also I

I
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3 note that by minimizing f(x) over the working surface, the

dimensionality of the problem has been reduced, and a computational

advantage could be exploited.

An illustrative example of the procedure will be helpful. The

example is shown in Fig. 4.6. The gradient projection method is used

to solve the system of equations

IalL a 121 JL = "1 4-

subject to the constraints t and t2 0 0. The CG algorithm is used to

Igenerate the first direction vector. As can be seen from the figure.

this direction is not feasible since it would result in t2 being less

than zero. Therefore, the working surface becomes the tI axis, and a

3minimum point of the functional (4-32) is found on this axis. At this

point it is found that f(x) can be further minimized by moving in the

3direction of the negative gradient. Now, no working surface exists,

and the CG algorithm finds the solution to (4-41).

S4.5 A Comparison of the Algorithms

IIn this chapter, three algorithms have been presented for solving

the matrix equation arising from the discretized tomography problem.

IOf these algorithms, the ART is the most well-known in the field of

image reconstructions, and it has been thoroughly studied in the

3literature. The SVD algorithm is a standard algorithm for solving the

least squares problem, although the method of handling constraints,

3which was developed here, may be new. The CG algorithm has been

previously applied to the tomography problem (771,[81], but an adequate

3means of incorporating constraints was not given.
Before comparing these algorithms on some reconstructionI

I
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3problems, some graphical examples of their convergence behavior will

be presented. Table 4.2 summarizes the various cases which will be

i examined. An explanation of the table is as follows: if the equations

are consistent, then the lines defining the equations intersect in a

unique point; if the LS solution is feasible then this solution

satisfies the constraints; and finally if the equations are highly

independent, then the lines do not have slopes which are nearly equal.

Table 4.2

Test examples for comparing the algorithms

Consistent LS Sol'n Highly
Figure * Equations? Feasible? Independent

4.7 Yes Yes Yes
4.8 Yes No Yes
4.9 Yes Yes No
4.10 No Yes Yes
4.11 No No YesI

In general, for the tomography problem, one would expect the equations

to be inconsistent, the LS solution to be infeasible, and some of the

equations to be almost dependent. So by examining the algorithms for

the cases outlined in Table 4.2, some insight into their, behavior for

reconstruction problems may be obtained. For these figures, the

3 algorithms will be denoted as follows:

a) SVD - The singular value decomposition with constraints applied

as suggested in Section 4.2.

b) ART -- The projection method applied to Ax=b (see 4-41). Unless

3 otherwise noted, underrelaxation will not be used.

c) CG-GPM - The conjugate gradient algorithm applied to the

gradient projection method. The CG-GPM operates on the

normal equations, A TAx = A Tb.

3 The first example is shown in Fig. 4.7. This is the easiest

problem to solve, and all three algorithms converge to the unique

3 solution. The second example, which Is shown In Fig. 4.8, has as

I
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3 constraints t and C2 0.8. As can be seen from the figure, both the

SVD and CG-GPM converge to the same solution which is the point in the

3 feasible region closest to the unconstrained solution. The ART

algorithm never converges to a solution. The third example features a

set of equation resulting in a pair of almost colinear lines (see Fig.

4.9). The SVD and CG-GPM algorithms show the same convergence to the

solution (their graphs are in fact overlapping), while the ART

algorithm shows slow progress towards the solution. The fourth example

is for a set of three inconsistent equations (see Fig. 4.10). The

CG-GPM converges to the minimum norm least squares solution given by

the SVD. The basic ART algorithm would, of course, never arrive at the

SVD solution. However, by using underrelaxation with a relaxation

parameter of 0.8, convergence is obtained. The last example is for the

same set of equations (see Fig. 4.11) as above with constraints t and

t 2 Z 1.0. In this case, the CG-GPM algorithm is the only algorithm to

converge to the point in the feasible region closest. to the solution

obtained above.

In summary, the GPM-CG algorithm appears to be the most flexible

algorithm in that it arrived at the best solution in all five cases

above. In addition, it is easiest to use since constraints are

implicitly incorporated into the solution process, and no relaxation

parameter needs to be chosen. In these examples, stopping criteria

were not really an issue. Therefore the effect of choosing stopping

criteria will have to be considered when actual reconstructions are

performed.I
I
I
I
I
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3 CHAPTER V

3 IMAGE PROCESSING

m.I Introduction

In Chapter IV, various method for reconstructing a cross sectional

image from its projections were discussed. The images generated by

these algorithms are often hard to interpret because of limitations in

the measurement process and In the reconstruction model. For example,

if diffraction effects are ignored by using the straight-ray model,

then the reconstructed image will exhibit features (due to the

diffraction phenomena) which are not present in the actual cross

3 section.

Fig. 5.1 shows the reconstruction of a cross section of earth

3 containing a circular conducting cylinder. The details of the process

of obtaining this reconstruction will be discussed in Chapter VII. In

1 this figure, the pixel attenuation values are given at the intersection

of the horizontal and vertical grid lines and the higher attenuating

3 regions are represented by the peaks in the figure. The peak in the

center of the figure gives the location of the cylinder, but additional

peaks are evident which are probably the result of diffraction effects

(recall the ripple in the electromagnetic response of Fig. 2.29). The

spreading of the cylinder location in the horizontal direction is a

result of the limited view angle. It would be desireable to smooth out

the peaks and valleys in Fig. 5.1 which do not represent the cylinder's

location.

Fig. 5.2 is the result of' applying a technique called selective

smoothing (481 to the image in Fig. 5.1. Note that the unwanted

artifacts in the image have been smoothed out with little effect to the

3 peak which indicates the location of the cylinder. The goal in this

chapter is to develop techniques, such as selective smoothing, whichU
I
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will improve some feature(s) of a reconstructed image.

5.2 Image Filte-ing and Smoothing

5 2.1 Introduction I
In the survey article on image enhancement [821, the authors list

three methods of image enhancement that are used in the spatial 3
domain. These are:

a) Spatial smoothing of regions using low-pass filters. 3
b) Gray level rescaling.

c) Edge enhancement using high pass filters. 3
Since our goal is to reduce unwanted artifacts in the image, we will

consider only spatial smoothing of the reconstructed images. 3

5.2.2 Spatial Smoothing 3

Spatial smoothing techniques usually operate by passing a window

over an image and then replacing the attenuation of the pixel at the

center of the window by the weighted average of all the cells in the

window. We will be interested only in nine cell windows (see Fig.

5.3), so that the attenuation at the center pixel is given by

I I
00 D i=_i j=_& W i  lij (5 1

where the indexing on c is indicated in Fig. 5.3, wij is the i-jth

element of the weighting matrix, and D is the sum of all wij 's. If all

wjj's are equal to 1.0, then (5-1) gives an equally weighted spatial

smoothing filter. The equally weighted filter will tend to excessively 3
blur the image. The following weighting matrix is able to achieve

I
I
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smoothing without excessive blurring [82]

W 0.0 .00 0.50. (5-2
10.25 0.50 o.0s.j

Blurring has been reduced by giving the center cell larger weighting 3
than the adjacent cells. Fig. 5.4 is the result of applying (5-1)

using the weighting in (5-2) to the unfiltered image of' Fig. 5.1. Note

that the unwanted peaks and valleys have been smoothed out, but it is

hard to distinguish the boundary of the cylinder. 3
A spatial filter which is able to smooth out the unwanted peaks

and valleys without blurring the boundary between the cylinder and the 3
background is the selective smoothing filter [48]. For this spatial

filter the weighting matrix is given by I
{ f ( C- I- L)  f  a L ) f a L )] 

I

f(cx 2 f(cX ) (5-3)

1(aL-) faLo f(aL) I
refer again to Fig. 5.3 for the definitions of the a's. The function

f(-) is nonlinear and is given by 3
= f I if laij - o°1  T I

0 otherwise. I
The threshold value, T, will determine the amount of smoothing to be

performed. For example, if T is set to a large value, (5-3) reduces to 3
a weighted average matrix. The idea behind using a threshold is that

if a pixel has a much higher (or lower) attenuation value than I
surrounding pixels, its attenuation will remain unchanged. The

threshold value should be some fraction of the difference between the I
highest and lowest value of attenuation in the unfiltered image. A

value between 1/5 and 2/5 for this fraction was suggested in [661. The

I
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image in Fig. 5.2 is the result of using selective smoothing on Fig.

5.1 with the threshold value equal to 0.3 times the difference between

the maximum and minimum attenuation values.

5.2.3 Spectral Filtering

We do not expect filtering in the frequency domain to be as

effective as spatial filtering for reconstructed images. This is 3
because the most effective spatial filter was nonlinear (i.e., 5-3).

and therefore would not have a correspondingly simple frequency domain 3
implementation.

Fig. 5.5 was obtained by taking the two-dimensional discrete 3
Fourier transform (DFT) of the unfiltered image shown in Fig. 5.1. 'Ih,

zero frequency ('DC') point is in the center of the x-y plane. Fig.

5.6 is the DFT of the selective smoothed image shown in Fig. 5.2. Note

that it is hard to determine the relationship between Figs. 5.6 and 3
5.5, except to note that regions of high frequency in both (i.e.,

simultaneously) the horizontal and vertical directions have been 3
somehow attenuated. Fig. 5.7 is the DFT of the weighted average

filtered image shown in Fig. 5.4, and again a relationship to Fig. 5.5

is hard to discern.

Fig. 5.8 shows how a low pass filter could be applied to the U
spectrum in 5.5. That is, set the high frequency components in the

spectrum equal to zero. By taking the inverse DFT of this low-passed

spectrum, the image in Fig. 5.9 is obtained. This image has been I
successfully smoothed, but the location of the cylinder is severely

blurred. 3

3.3 Object Detection 3

Once a reconstructed image has been filtered, one often wants to 3
perform some sort of processing of the image to separate regions (of

I
I
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pixels) having similar attenuation. This type of processing Is called

partitioning. In this way we may be able to discern anomalous regions

from the background. Although this process can be accomplished by a 3
human operator, a more objective means is desirable. For this reason

we consider ways to partition the cells in a reconstructed image. The

partitioning process involves placing the cells into groups (usually 2

or 3 groups) based on the attenuation value found during the

reconstruction process.

Two types of partitioning will be used here. The two partitioning

schemes are similar in that the groups are found by minimizing the

distance between members of the group and the group average. The first

scheme is called minimum variance partitioning (MVP) [83], and the

distance function is given by

d~v,(J) = (-u'.) (5-5)
iEgroup -

where ai is the attenuation coefficient of the ith cell in the image 3
and uj is the average value of the pixels in the jth group. The second

method we call minimum max partitioning (MMP), with a distance function I
defined by

d MP(j) rMax Jai-Ajl (5-6)

That is, the distance is equal to the maximum difference between the

group average and the members (i.e. pixels) of the group. This

distance function should be used in cases where outliers (e.g., tunnels

or oil deposits) may be present and need to be emphasized. Using this

distance function would corresponds to a minimization problem in the L.,

norm. As can be seen from comparing (5-5) and (5-6), the MVP will have

more of an averaging effect than the KMP since all members of the group

I
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1623 are used in the distance function of (5-5). For either distance

function, the quantity to be minimized will be given by

I K
e = I d(j), (5-7)i j=1

where, for example K=2 for a two-group partition. The quantity d(j) is

given by (5-5) or (5-6). The objective is to find all partitionings of

the pixels into K groups. Then, for each partitioning, calculate Je in

(5-7), and choose that partitioning which has the smallest Je' thereby

minimizing (5-7).

Fig. 5.10 shows the result of using the MVP on the smoothed image

of Fig. 5.2. Note that pixels outside of the cylinder location have

been included in the high attenuation group. Fig. 5.11, on the other

hand, which uses the MMP, includes only adjacent pixels in the high

attenuation region. Fig. 5.12 summarizes these results in

two-dimensional displays, with higher attenuation regions represented

by darker shading. The (a) part of the figure is for the MVP. while

the (b) part of the figure is for the MMP. Also shown in both parts

3 of the figure is the location (indicated by a circle) of the cylinder

which was present when the data was simulated.

3 In summary, by taking the raw reconstructed image in Fig. 5.3.

then filtering this image using selective smoothing, and finally

3 performing the MMI', a very good indication (to the resolution of the

pixels) of the actual location of the cylinder is achieved.I
I
I
I
I
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CHAPTER VI

COMBINING TIME-OF-FLIGHT AND CONTINUOUS WAVE MESUREMENTS

0.1 Introduction

Two methods we will be considering for taking measurements iii a

I cross-hole system are:

a) Time-of-flight (TOF) measurement, in which the time it takes a

3 radio frequency pulse to travel between transmitter and

receiver is measured.

5 b) Continuous wave (CW) measurement, in which the amplitude ratio

between a transmitted and received sinusoidal wave is measured.

3 Thus far in this dissertation, the emphasis has been on CW

measurements. However, as will be demonstrated shortly, the

3 reconstruction process for TOF measurements is almost identical to

that for CW. The only difference is that the pixel values in the

3 reconstructed image will be for index of refraction (square root of

permittivity), instead of for attenuation.

3 Some of the reasons for considering both types of measuremnt

systems include:

a) CW measurements give information on the attenuation of the

earth between boreholes. The attenuation constant, whose

formula was given in (2-5), is a function of the pernittivity

and the conductivity (we assume the permeability and the

frequency to be constant). As will be shown, TOF measurements

can give information on permittivity. Therefore, by combining

both types of measurements, the permittivity and conductivity

of the earth can be determined.

b) Because of diffraction effects, CW measurements can lead to

ambiguous interpretation of reconstructed images. For

example, as shown in Fig. 6.1, the shapes of the received

I
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* electromagnetic field versus borehole depth when the earth

contains a tunnel and when it contains a high conducting

cylinder are very similar. Supplementing CW measurements with

TOF measurements will help remove this ambiguity.

c) Some of the errors in each measurement system are unique to

that system, and therefore by combining the two systems the

errors may be reduced. For example, determining the time of

arrival of a pulse in a TOF system involves the use of some

kind of pulse picking process which will be prone to errors.

3 The pulse picking process is an automated process for

determining the time-of-arrival of the first pulse. A CW

* system will not have this problem.

For these and other reasons, it makes sense to obtain as much

3 information about the region being scanned as is possible. Therefore.

we first discuss reconstruction for TOF measurements, and then present

a way of combining results from analyzing CW and TOF data.

3 6.2 Reconstructions from TOF Measurements

The electromagnetic wave velocity was given in (2-7). Using this

wave velocity, the time it takes for a pulse to travel (assuming travel

along straight ray paths) from a transmitting to a receiving antenna is

given by the line integral

L(x'y ( 1

where L is the line linking the transmitter and the receiver. The wave

velocity is a function of the permeability, permittivity, conductivity.

and frequency which are assumed to be functions of positions (x and y).

3 If the contribution of the conductivity is assumed to be negligible

(refer to Figs. 2.7-2.9 for conditions under which this assumption is

U
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valid) then the wave velocity is given approximately by

= = C (6-2)
(ME)"~ Tr I

where c is the speed of light in free space, and Er is the relative

permittivity. Using this approximation, (6-1) becomes

t =- [Er(x'y)]1/2 dA. (6-3)

This equation can be discretized by again dividing the cross-sectional 3
region into rectangular pixels and assuming the permittivity is

constant over each pixel. A matrix equation Is obtained as in (3-26), 3
where the unknown image vector, x, is now composed of the square roots

of relative permittivity in each pixel. 3
6.3 Detecting Anomalous Regions Using CM and TOF Heasurements 3

Methods have been described for reconstructing a cross-sectional 3
image of the earth. From this image we wish to detect, locate, and

Identify anomalous regions (if they exist) in the cross-section. The

method we propose to use in this process can be summarized as follows:

a) Reconstruct the attenuation image from CW measurement data.

Perform the image processing techniques described in Chapter V

to paritition the image into low and high attenuation regions.

b) Perform the same steps as in step a I
to the TOF data to obtain an image having low and high

permittivity regions. 5
c) Compare the two partitioned Images of steps a and b to

determine if there is any overlap in the partitionings. 3
d) Using results on the electrical characteristics of earth (see, I

I
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3 for example, [24]) to determine the type of region that has

been detected.

The exact procedure to be used in step d) is beyond the scope of this

dissertation. but the interested reader may refer to (241 and the

3 references therein for further information.

An example of using this four step process for detecting a tunnel

will be given. It is assumed that a 1 m radius tunnel is located

between two boreholes. The region being scanned is 20m x 20m and the

background conductivity and relative permittivity are 0.001 S/m and 10,

respectively. The increment between antenna locations (for both

transmitter and receiver) is I m for a total of 400 measurements.

The MMP displays for both the CW and TOF reconstructions are shown

in Fig. 6.2. In the (a) part of the figure, the higher attenuating

regions are indicated by darker shading, while the darker shading in

(b) indicates higher permittivity regions. The eight pixel region in

3 the center of the image is seen to have higher attenuation yet lower

permittivity. This clearly indicates the presence of a tunnel since a

3 region of higher conductivity (e.g. a water deposit) would also have a

higher permittivity. Thus, the ambiguity shown in Fig. 6.1 has been

I resolved.

I

I
i
I
I



171

1= I
. . . . . . . . . . r-

-J

-) C)

) CZ)

.0r

SSQ



U
I
3 CHAPTER VII

RECONSTRUCTIONS

3 7. 1 Introduction

In this chapter the methods developed in the preceding chapters

will be used to reconstruct cross sectional images from simulated

data. We will be interested in cross sections of homogeneous earth

containing single or multiple anomalies. The goal is to detect,

identify, and locate these anomalies. One interest will be in

coasparing the algorithms developed in Chapter IV, under adverse

conditions, such as limited view angles, noisy data, and multiple

3 anomalies.

7.2 Simulation of Data

5The simulation of data in a cross-hole environment was discussed

in detail in Chapter II. For CW operations either exact solutions for

circular cylindrical anomalies (discussed in Section 2.3.2) or the

volume current method for arbitrarily shaped anomalies (discussed in

3 Section 2.3.3) will be used to simulate the data. For TOF operation

the ray optics method (discussed in Section 2.4) will be used to find

3 the rays linking transmitters and receivers. From this ray path length

information, the time it takes the ray to traverse the path is easily

obtained from the electrical parameters of the earth along the path.

For cases in which rays can reach the receiver along different paths,

the path which results in the shortest travel time will be used. The

method discussed in Section 2.3.5 (using the FFT) could be used for

this simulation, but since we are only interested in the time it takes

for the earliest pulse to reach the receiver, the ray optics method,

discussed in Section 2.5.2 will be adequate (and computationally

I
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faster). I

7.3 Review: Total Geotomography Process

In this dissertation a variety of methods were discussed for

reconstructing an image from its projections. In this section a review 3
of the steps that will be taken to reconstruct a cross section of the

earth from cross-hole data will be given. The emphasis will be on the 3
detection of anomalous regions, thus the geotomography process will be

geared to this problem. n
Fig. 7.1 is a block diagram of the reconstruction process that

will be used in this chapter. Note that there are 'inputs' for both CW 3
and TOF data. The reconstruction algorithm featured in one of the

blocks will consist of assuming a straight ray model as in Section 3
3.2.3 and then using one of the algorithms developed in Chapter IV.

Methods for improving upon the straight ray model will be discussed in 3
Section 7.6. The output of the reconstruction algorithm will be an

image of attenuation or the index of refraction (square roots of

permittivity) values. I
This image is then processed using the techniques of Chapter V.

This processing includes using 1 iteration of selective smoothing I
filtering and then partitioning the filtered image using the 4MI1. If

anomalous regions are clearly identifiable in the processed image, then 3
the images from both the CW and TOF data are compared as in Chapter VI.

If at this point an anomalous region has been identified, we can 3
attempt to refine the exact location (the ima,,es give only an

approximate location due to the finite resolution of the pixels) of the 3
anomaly in the region by using refinement methods which will be

discussed in Section 7.6. Note that if an anomalous region has been 3
found in either the attenuation or index of refraction image, but not

in both, then both data sets are suspect, and further study would be 3
required.

I
U
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The algorithms developed in Chapter IV were the singular value

decomposition (SVD), the algebraic reconstruction technique (ART), and

the gradient projection method using conjugate gradient minimization

(CG-GPM). Unless otherwise noted, these algorithms will all be I
inverting the weighted normal equation given in (4-8), that is, we will

be using the WLS method. A value of a=1.8 will be used for the path I
weighting in (4-10). All of the images will be constrained to have

pixels whose values are greater than zero. The method for applying

constraints was discussed in Chapter IV.

For the SVD algorithm of (4-16), V will be chosen to damp out the 3
effects of the small singular values as discussed in Chapter IV. The

truncation value N will be selected in a similar manner (refer to I
Chapter IV for details). For the ART algorithm an underrelaxation

value of 0.8 will be used in (4-28) as a compromise between faster 3
converge and avoidance of cyclic behavior. This algorithm will also

use Tikhonov regularization as in 5

(AWA V p)x = ATWb, (7-1) 3
w tn the regularization parameter, y. chosen using the singular value I
decomposition as above. This equation is a result of combining (3-50)

and (4-8).

The CG-GPM will also be used to solve (7-1) with the same

regularization parameter found above. The stopping procedure discussed

in Section 4.4.3 will be used to determine the number of iterations to

be performed. However, this stopping point is not critical since the

effects of' the small singular values will be damped through use of theI

regularization parameter in (7-1). Iterating past this point will

result in unnecessary computations. 3
7.' Reconstrctions Using Three nversion Algorithms

I
I
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I 7.#.I Test ProfiJes

We will be performing reconstructions using the three algorithms

discussed above on test profiles which present difficulties of various

forms to the reconstruction process. The six profiles to be considered

are shown in Fig. 7.2. The attributes of these profiies are summarized

in Table 7.1. All profiles feature one or two cylindrical anomalies

(of circular or square cross section) imbedded in a homogeneous earth.

The background earth is assumed to have a conductivity of 0.001 S/m and

a relative permittivity of 10. All profiles except for the last are 20

m in extent in both the horizontal and vertical directions. The last

5 profile is 40 m in the horizontal direction and 20 m in the vertical

direction. For both CW ant TOF, measurements will be taken at 20

3 transmitter and 20 receiver locations, with a spacing of 0.5 m between

locations. This will result in a total of 400 measurements. The size

5 given in the second column of Table 7.1 is either the circle's radius

or the side of the square. The range of view angles represent the

3 minimum and maximum view angles obtained as the location of the

transmitting antenna is changed.

U Table 7.1

5 Test profiles for comparing the algorithms

Profile Shape Size No. of anomalies Matches pixels View angle

(a) circ. 1 m 1 No 43.5- 50.80
(b) sq. 2 m 1 Yes 43.5'- 50.80

(c) sq. 2 m 1 No 43.5' - 50.803 (d) circ. 1 m 2 No 43.5'- 50.80

(e) circ. 0.5 m 1 No 43.5 ° - 50.80

(f) circ. I m 1 No 26.7* - 25.40

3The profiles listed in Table 7.1 have the following properties:

a) Profile (a) features a single large circular cylinder centered

3 in the region. The circular cylinder should be easy to detect

I
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3since it will be viewed over large angles.

b) Profile (b) features a single large square cylinder near the

center of the region. The square cylinder is more difficult to

detect since it will scatter the electromagnetic waves

differently depending on the aspect angle. However. this

cylinder coincides exactly with one of the square pixels used

in the reconstruction process. This should allow this cylinder

to be easily detected. In general, one should not expect the

cylinder to coincide exactly with one of the reconstruction

3 pixels.

c) Profile (c) is again a single large square cylinder near the

5 center of the region. This time the cylinder does not exactly

overlap a reconstruction pixel.

3 d) Profile (d) features two large circular cylinders centered

between the boreholes. These cylinders will be difficult to

3 detect since they do not lie near the center of the region

where they would be subject to a maximum number of

m projections.

e) Profile (e) features a small circular cylinder centered in the

region. This cylinder will be difficult to detect due to its

small size (it is smaller than one wavelength at 50 MHz).

f) Profile (f) features a circular cylinder in a profile that is

expanded in the horizontal direction. The limited view angtle

will make this cylinder difficult to detect.

These six profiles will provide a variety of conditions under which to

test the various algorithms. It should be noted, however, that the

m algorithms will be able to reconstruct profiles which contaiL more

complex anomalies than those being considered.

7.q.2 Reconstructions for High Conductivity Anomalies

In this section reconstructions will be obtained for the six
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profiles described above for which the anomalous cylinder will have a

higher conductivity (and permittivity) than the background medium. In

all cases, the conductivity of the cylinder(s) will be 0.05 S/m with a

relative permittivity of 20. The displayed results will be three-group U
(high, medium, and low attenuation) partitioned images of the

reconstructed cross section for the CW simulations, and also

three-group (high, medium and low permittivity) partitioned images for

the TOF simulations. Ideally the (actual) location of the anomaly will

coincide with the high attenuation (permittivity) region in the

partitioned image.

The results for CW data will be presented first. For all the CW

reconstructions, noise will be added to the simulated data to obtain a

signal-to-noise ratio equal to 30 dB.

The reconstructions for the six profiles using the SVD algorithm 3
are shown in Fig. 7.3. In the images, the actual locations of the

anomalies are illustrated by the circles or squares drawn in the 3
images. The darker shading indicates regions of higher attenuation.

As can be seen from the figure, the SVD algorithm gives good

reconstructions for almost all of the profiles. However, the small

circular cylinder (profile e) is not located in the high attenuation

region. In addition, extraneous pixels are included in the high I
attenuation regions In profiles (b), (d), and (f) of the figure.

The reconstructions in Fig. 7.4 were obtained by using 400 1
iterations of the ART algoritha. These images are similar in quality

to the results shown in Fig. 7.3 in that in only one case (profile b) 3
the cylinder does not lie in the high attenuation region, and some of

the other cases (i.e., c, d, e. and f) have extraneous pixels in the 3
high attenuation regions.

Fig. 7.5 shows reconstructions from using 180 iterations of the 3
CG-GPM algorithm. For all cases the anomaly is located in the high

attenuation region, and only three of the images (i.e., profiles b.d, 3
and e) have extraneous pixels. This algorithm gives the best results

U
I
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183 1
for the CW data.

From these results, the following general conclusions for the CW

reconstructions can be drawn.

a) In all of the reconstructions, the anomalies were detected. I
The only differences are in how accurately the anomalies were

located and how many extraneous pixels are included in the high

attenuation regions.

b) In all of' the reconstructions there is spreading of the high

attenuation region in the horizontal direction. This spreading

is the result of the limited view angles for all of the 3
reconstructions. There does not seem to be any way to avoid

this phenomenon for the cross-borehole geometry. 3
c) In general, spreading in the vertical direction is limited to

only a few of the reconstructions. This is due to the fact 3
that there is adequate coverage in the vertical direction since

the transmitter and receiver increments result in a fine 3
spacing in this direction. This fine spacing is at the expense

of requiring more measurements to be taken.

The results of using the SVD algorithm on the TOF data are shown

in Fig. 7.6. For the TOF operation. 1% additive noise has been added I
to the simulated data. It is felt that in general TOF measurements

will not be subject to as much noise since no calibration of the

transmitted power will have to be made. As can be seen from the 1

figure, profile (b) is the only one in which the cylinder is clearly

identifiable. The reconstructions for profiles (a) and (d) show some 3
indications of the presence of the cylinder(s), but the results are

inconclusive. 3
ART reconstructions for the TOF data are shown in Fig. 7.7. In

profiles (a) and (b) the anomalies are located in the high 3
permittivity regions. However, extraneous pixels are present in

profile (a). Profiles (c) and (f) have the anomalies partially in the 3
high permittivity regions. Again, profile (d) shows some indications

I
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of the cylinders, but they are not easily identifiable.

Reconstructions using the CG-GPM algorithm are shown in Fit. 7.8.

Again, the cylinders are located in the high permittivity regions for

profiles (a) and (b). Profiles (c) and (f) have half of the cylinders:

in the high permittivity region, and some indication of the presence

of the cylinders is evident in profile (d). Finally, although the

cylinder is located in the high permittivity region for profile (e),

the results are inconclusive. We can conclude from these results that

for the TOF data, the CG-GPM algorithm gives the best reconstruction

results. In addition, the following ge!neral conclusions for the TOF

reconstructions can be drawn.

3 a) Unlike for the CW reconstructions, the anomalies were not

detected in all cases. This gives further reason for obtaining

3 both types of measurements.

b) When the anomalies were detected, the high permittivity region

3 did not always contain the entire anomaly. This suggests that

a partitioning scheme which would be biased to include

3 neighboring pixels into the high permittivity region might

perform better for TOF reconstructions.

It is worthwhile to investigate why the reconstruction results for

the CW data are better than for the TOF data. To this end, Fig. 7.9

shows plots of the received electromagnetic field and pulse arriv'al

times versus (receiver) borehole depth for profile (e). For this

figure the transmitter is located at a depth equal to the center of the

anomaly. Note that because of diffraction effects the cylinder

'shadow' for the received field magnitude (CW data) is larger than the

optical (straight ray) 'shadow' of the cylinder. However, the

attenuation of the field in this region is significant. On the other

3 hand, for the time-of-flight data the 'shadow' from the cylinder is

nearly the same as the optical shadow, but the diffference between

3 arrival times in the 'shadow' and 'lit' regions is very slight. This

figure further emphasizes the need to obtain both CW and TOFI
I
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measurement data in that one set of data might yield better

reconstructions depending on the profile.

The results of combining both CW and TOF reconstructions for the

CG-GPM algorithm are shown in Fig. 7.10. This figure was obtained by 3
intersecting the regions of high attenuation in Fig. 7.5 with the

regions of high permittivity in Fig. 7.8 as suggested in Chapter VI. 3
These results are shown for the CG-GPM algorithm since this algorithm

gave the overall best reconstructions. All of the profiles except for 3
(d) give a good indication of the location of the anomaly, although the

recor,- ction for profile (e) might be suspect since the TOF 3
reconstruction (Fig. 7.8) for this profile did not give a localized

region of high permittivity. For profiles (a), (b), (c), and (f) we 3
can conclude that we have located regions of high attenuation and

permittivity, which would signify, for example, a section of earth 3
having high water content.

7.#.3 Reconstructions for Tunnels Located in the Earth 3

In this section the cylinder imbedded in the earth will be an I
air-filled void, that is, a tunnel. In this case the conductivity of

the cylinder is zero and its relative permittivity is unity. As I
before, the conductivity of the background is 0.001 S/m and its

relative permittivity is 10. 3
Reconstructions for CW data for the SVD, ART, and CG-GPM

algorithms are shown in Figs. 7.11, 7.12, and 7.13, respectively. The 3
results are similar to those obtained for the high conducting case.

This is not surprising in light of the discussion in Chapter VI and the 3
plots in Fig. 6.1. Because of the diffraction of the rays around the

cylinder, the tunnel causes an attenuating effect (see Fig. 6.1), which 3
results in a region of high attenuation in the reconstructed image.

For the CW data it might be judged that the ART algorithm does slightly 3
better than the CG-GPM algorithm from comparing the reconstructions for

I
I



190

I1 -1 J I-

. . . -. .. .. .

. .- . .- . . . . 0 . .I
* . . . .I .. 1

. . . . . . .- .

* . . . . )
..-.- .- . .. . . 0 -. --kI

. . .. . . . % .-

. . . ..... . .

u ..

II

3 . .. 0



191I

F J .J

. . . . . .

. . . . . . .. 3U
. . . .- - .

. .. . . . . . . .

[II)I'lI

0)

. . . . .. .

CU

0 ~
tAJ

m .

0 E

Ix co



192

. . . .

00

00

.* . . . . .. . .

*~~T . - . - -

0 E

I



1933

. .r . . .-

77 .. .4 .I
* .. .. 4 . . . .I

I- Ik

0C 0

c

-4 -4

.... . . .. . .. .

E cc

InI
7 E
u 0N

_ on



I

194

profiles (b) and (e) in Figs. 7.12 and 7.13. However, for all the

other profiles the performances of the two algorithms are very similar.

The SVD algorithm gives reconstructions comparable in quality to the

ART or CG--GPM, although there are many extraneous pixels in profile (f)

of Fig. 7.11. In addition, the following general conclusions for the

CW reconstructions can be drawn.

a) In all of the reconstructions, the tunnels were detected.

Again, the only differences are in how accurately they are

located and how many extraneous pixels are included in the high

3 attenuation regions.

b) The spreading in the horizontal direction is again evident in

3 all of the profiles.

c) The tunnel reconstructions are very similar to those obtained

Sfor the high conductivity anomalies. This was expected from

the similarity of the magnitude responses of the tunnel and

3 high conductivity cylinder in Fig. 6.1.

Reconstructions for TOF data are shown in Figs. 7.14, 7.15, and

3 7.16. Note that since the tunnels have lower permittivity than the

background, the tunnels are identified by the regions that have light

3 shading. All three algorithms are able to identify the tunnels in

profiles (a) and (b), and all show parts of the tunnel in profiles (c)

and (e). None of the algorithms is able to distinguish the two tunnels

in profile (d), although the tunnels are located in the low

permittivity region. Finally, only the CG-GPM algorithm is able to

detect part of the tunnel in profile (f). In addition, the following

general conclusions for the TOF reconstructions can be drawn.

a) Again, for the TOF reconstructions, the tunnels were not

detected in all cases.

3 b) When the tunnels were detected, the low permittivity region

was smaller (fewer extraneous pixels) than for the CW

3 reconstructions. This phenomenon can be explained by

referring again to Fig. 7.8.

I

I
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c) The reconstructions for the 
tunnels were in general superior

to those obtained for the high conductivity anomalies. This

is due to the fact that the ratio of the tunnel's permittivity

to the background is 1:10, while for the high conductivity

anomaly it was 2:1. This suggests that TOF measurements will

in general be most effective for detecting turnels.

Since it is unclear which algorithm has performed best in locating

3 tunnels in the six profiles, all three have been used to combine CW and

TOF data as described above. The results are shown in Figs. 7.17,

1 7.18, and 7.19. In these figures the dark shading indicates regions of

high attenuation and low permittivity. From the discussion in Chapter

3 6, such regions would signify the presence of a tunnel. All three

algorithms are able to identify the tunnels in profiles (a). (c). (d),

3 and (e), although the results shown for the two tunnel case (profile d)

are suspect since the TOF reconstructions for the profile were

3 inconclusive. Both the SVD and ART algorithms located the tunnel in

profile (b), but the CG-GPM was the only algorithm to identify the

3 tunnel in profile (f). The CG-GPM did not identify the anomaly in (b)

because the regions of high attenuation and low permittivity did not

intersect. However, from studying the attenuation image of Fig. 7.13

(b) and the permittivity image of 7.16 (b) one would be led to believe

that an anomaly exists in the region surrounding the actual anomaly

location.

3 7. q.q Conclusions

3 From the results presented in this section a number of

conclusions may be drawn:

a) For the profiles considered, the CG--GPM performed better at

locating high conducting anomalies than either the SVD or ART

3 algorithms. This agrees with the results of Chapter IV where

the CG-GPM algorithm performed best on all of the test cases.

i
U
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3 For identifying and locating tunnels none of the algorithms

significantly outperformed the others.

3 b) Reconstructions using CW data were. in almost all cases, able

to detect the anomalies in the profile; the same was not true

for TOF reconstructions. However, reconstructions using TOl

data, when they did detect an anomaly, were able to more

accurately locate its position. This phenomenon is due to the

fact that although the diffraction of the rays causes a deep

attenuation in the CW measurements, it also causes the anomaly

to appear larger than its actual size. On the other hand, TOF

measurements are not as greatly affected by diffraction of the

rays. In addition, reconstructions using TOF data were more

sensitive to whether or not. the anomaly 'fit' exactly on the

3 reconstruction pixels. Again, diffraction of the rays for the

CW measurements made placement of the grid less critical. This

3 suggests the possibility of performing multiple TOF

reconstructions with the grid relocated for each

* reconstruction.

c) Combining CW and TOF data enables one to detect anomalies and

3 to give good insight into their composition.

37.5 Additional Reconstructions Using the CG-GPI Algorithm

37.5.1 Introduction

In this section some additional reconstructions will be performed

in order to demonstrate the effectiveness of some of the methods in

reducing the effects of noise in the data and reducing the effects of

diffraction of the rays. For all of the reconstructions presented in

this sect ion. the CW-GI'M algorithm will be used since it, in general,

Iproduced the best results for the examples given in the last section.

1
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7.5.2 The Effectiveness of the ULS Methodl

The weighted least squares (WLS) method was presented in Chapter

4 as a means of adding a priori information to the reconstruction 3
process. In fact, all of the reconstructions presented up until this

point have used the WLS method. We would like to present some results 3
which compare solutions obtained with and without the WLS method. For

these reconstructions, the signal-to-noise ratio (SNR) will be lower 3
(i.e., 25 and 20 dB) than what was used in the last section. The

result of using these lower values of SNR is demonstrated in Figs. 3
7.20 and 7.21, where the electric field versus borehole depth is

plotted with and without added noise, for the case of a tunnel in a 3
homogeneous earth. The SNR was equal to 25 d in Fig. 7.20. and equal

to 20 dB in Fig. 7.21. Note how badly distorted the noisy data is in

Fig. 7.21.

The reconstructions which will be presented will be for CW data I
generated from the two-tunnel profile, (d) in Table 7.1, and the small

tunnel profile, (e) in Table 7.1. These profiles are two of the more

difficult ones to reconstruct. Fig. 7.22 shows reconstructions for the

two tunnel anomaly. The images shown in (a), (b). and (c) are the

results of using the least squares method, the WLS method with path 3
length weighting, and the WLS method with path length and estimated

power weighting, respectively. For a discussion of these methods refer 3
back to Chapter IV. For these images the SNR was equal to 25 di. Note

the extraneous pixels in the image in (a) which are not present in (b)

and (c). The images shown in (d), (e) and (f) are the same as those in

(a) - (c), except that the SNR was equal to 20 dB. Note that the image 3
found using the WLS method with path length and estimated power

weighting gives the best indication of the presence of the tunnels. 3
Fig. 7.23 shows the result of attempting to detect the small

tunnel. The images shown in (a), (b), and (c) use the same methods as 3
in (a), (b), and (c) of Fig. 7.22. Again note that fewer extraneous

m
I



1 204

* 0

E E

0 - 9
T- 1. . in

T--

c C;
o - o3p N-0 C

3 0.. if)
-L 0

4- 0 0 i

c 0)
0 - L ocI> 0 r

& E

0

S. )

-06. 0B Oz
C) (0I.r

0. V) E

Q0

I I
UC



2051
0

044

- 0C

c. C-' 33V

0 .

0C 6
CL 0 0.

co b N

E~ c 0

IJ , C). a
CO~~ U) 0

m~~- C; LLM

L~~ 0. C)-

C4

4.,a _)Q

0 O E

S =3

-~-7 -..

0 0
0 In~

PIQJ IJ491 P ZIILLJO



206

. . . . . .. c
* * U . . .cc

S. . . . .C

C -c

.~~~~~~C .. . . . .

. ~~~ ~- .. . . .

C) cc Q

. . . . . . . . .

. . . .. . . . .c~

I .



207U

- -. .- . . . . . . .

.. . . . . . tI :

. .. . . . .

*. . . . .. .-.-. ..

TTLl C: C:

- - -- - -. . .- . . . . .i .

U. M
L

.. ..- .- . *~

)cc'I

-~~~~C _r_' - -0 c

C14

004-



I
I

208

pixels are present in the images in (b) and (c) than in the image in

(a). The images shown in (d), (e) and (f) are the same as those in (a)

- (c). except that the SNR was equal to 20 dB. Again the imam., found

using the WIS method with path length and estimated power weightiny

gives the best indication of the presence of the small tunnel.

As these examples show, the WLS method is extremely effective for

reconstructing images under conditions in which the data is very

noisy. Since it is expected that actual measurements will contain

considerable noise, the WLS method should be used in all cases.

7.5.3 The Effectiveness of Constraining the Solution ImageI
In this section we present results which show the effectiveness of

3 applying constraints to the reconstructed image. Recall that the

results in Section 7.4 were obtained by constraining the pixel values

3 in the reconstructed images to be greater than zero. The discussion in

Chapter III gives reasons for considering constrained solutions. In

fact, the CG-GPM algorithm was developed in Chapter IV as a means of

finding a constrained solution. We again consider detection of the two

3 tunnels and the small tunnel in a homogeneous earth using CW

measurement data. Signal-to-noise ratios of 25 and 20 dB will be used.

As already stated, the background medium has a conductivity equal

to 0.001 S/m and a relative permittivity equal to 10. These values

result in an attenuation equal to 0.06 Np/m at 50 MHz. When the

solution is constrained to this value of attenuation, the resulting

image has all pixel values equal to this value ol attenuation.

Instead, we shall use constraint values equal to 0.00, 0.01, 0.02, and

0.03 Np/rn.

The results of using the above constraint values for the two-

tunnel profile are shown in Fig. 7.24, with (a) having a constraint

value of zero and (d) having the highest constraint value of 0.03 Np/m.

(b) and (c) have the intermediate constraint values. Note that theI

I
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image in (d) best identifies the anomalies in that the extraneous

pixels are localized adjacent to the anomalies' positions. The same

constraint values were applied to the reconstruction of the small

cylinder, and the results are shown in Fig. 7.25. The image in (a) of

the figure has regions of low attenuation directly above and below the

anomaly. These low attenuation regions are artifacts of the

diffraction effects which cause the peaks in the electric field at

borehole depths of 4 and 16 m in Figs. 7.20 and 7.21. Note that the

artifacts have been eliminated in (c) and (d) of Fig. 7.25.

With the SNR equal to 20 dB, the two tunnels cannot be identified

in the images (a) and (b) of Fig. 7.26. However, for constraint values

of 0.02 and 0.03 Np/m (c and d of the figure) the anomalies are clearly

distinguishable. Fig. 7.27 shows the reconstructions foi the small

tunnel with the SNR equal to 20 dB. Again, the best images are for

constraint values equal to 0.02 and 0.03 Np/m. Note also that these

3 reconstructions are superior to the one in Fig 7.13 (e), where the SNR

was equal to 30 dB. In that figure the constraint value was equal to
* zero.

In summary, by using constraints the reconstructions are less

susceptible to the effects of noise as demonstrated in Figs. 7.24 -

7.27. In addition, the application of constraints reduces the unwanted

artifacts due to the diffraction of the electromagnetic waves. In

general the constraint value should be chosen to be less than the

attenuation value of the background medium. For the cases investigated

above, one third of the background attenuation value was a good

compromise between reducing unwanted artifacts, and washing out the

image entirely.

3 7.6 Ray Optics Refinement

7.6.1 Introduction

I
I
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In this section we will present methods for improving

reconstructed images. As can be seen from the examples presented

previously, the reconstructed images are not idea] in that the images

do not exactly match the actual cross section of the earth being

investigated (i.e., the reconstructions are not perfect). Reasons for

this mismatch include:

a) The straight ray model, which is used as the basis for the

algebraic inversion method, neglects the reflections,

refractions, and diffractions of the rays.

b) The finite resolution of the pixels does not allow the

adequate representation of some images.

Note that the shortcoming discussed in b cannot always be resolved by

decreasing the size of the pixels, since this will result in a

(computationally) longer and more instable inversion process. Two

methods for accounting for non-straight rays are ray tracing and the

ray optics model matching procedure discussed in Section 3.2.3.

Ray tracing is a method for improving a reconstructed image by

finding the paths rays would take through the current estimate of the

cross section in order to obtain a better indication of the actual ray

paths [14], [15], [66]. This new path length information is then used

to construct a new coefficient matrix for (3-26), and then this

equation can be inverted using the methods of Chapter IV to find an

improved image. The ray tracing process can be repeatedly applied in

order to obtain better estimates of the ray paths and therefore better

reconstructed images. This method normally considers the reflection

and refraction of the rays at Interfaces between pixels, and ignores

diffraction efiects. The refraction and reflection angles can be

calculated from Snell's law (661. However, from the discussion In

Section 2.5.2, Snell's law will not always be a good approximation for

the refraction of rays in lossy media.

The other method for refining the reconstructed image was

described in Section 3.2.3. The main assumptions in using this methodI

I
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are that the region contains high contrast anomalies and that

diffraction effects are dominant (over refraction effects). The I
reconstructed image will be used to locate regions where a high

contrast anomaly might exist and then the model matching method will be

used to locate the anomaly within the region(s). The second assumption

is necessary since a theory for adding the contributions from refracted

and diffracted rays in the reconstruction process does not presently

exist. 3
From the discussion above, we can conclude that ray tracing will

be effective when refraction is the dominant effect, and the model

matching procedure will be effective when diffraction is the dominant

effect. As noted in Chapter II, diffraction will be significant when

the index of refraction of the scatterer (anomaly) diffei, Irom the

index of refraction of the background. If we consider as an example a

background earth having a conductivity equal to 0.001 S/im and a

relative permittivity equal to 10, then it can be seen from Fig. 2.26

that if the conductivity of the anomaly differs from the background but

its permittivity is the same, then the index of refraction of the

anomaly will be comparable to the background, and diffraction will not

be significant. However, if the permittivity of the anomaly differs

from the background, then the index of refraction of the anomaly could I
be greatly different from the background (Fig. 2.27) and diffraction

will be significant. In most cases, a region having a higher

permittivity will also have a higher conductivity [241, so that a

technique based on diffraction theory will be the best choice. 3

7.6.2 Ray Tracing Using Snell's Low 3

A. Introduction 3

The method of using ray tracing was described above, and a more 3
complete description is given in [66]. See [841 for details of the

I
I
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algorithmic process for finding the ray paths between transmitters and

receivers. Note that in [84J Snell's law was used for finding the

direction of travel of the refracted rays. However, we have shown in

Chapter II that in lossy media an extension of Snell's law must be

used. In particular, see (2-54) through (2-57) for a description of

the transmission of rays through an interface between lossy media.

Note that in tracing a refracted ray, the ray corresponding to the

direction of constant phase is the one being considered. Refer again

to Fig. 2.22 for clarification of these ideas. The interfaces that are

being considered are the boundaries between adjacent pixels in a

reconstructed image.

Fig. 7.28 gives an illustration of the process of finding the rays

linking a single transmitter to a number of receiver locations. The

rectangle in the center of the figure represents a region having lower

conductivity (and permittivity) than the background. Some of the items

of interest in this figure include:

1) The ray tracing algorithm could not find ray paths linking some

of the receivers to the transmitter. This failure of the

algorithm is due the discontinuity caused by the corners of the

rectangle.

2) The presence of the rectangle causes the ray paths to deviate

from the straight line connecting the transmitter to the

receivers. In particular, if many rectangles were present (as

would be the case in a reconstructed image where each pixel is

i a rectangle) then the paths would be very erratic.

Physically, one does not expect that the rays would behave as

described above in an actual cross section of the earth where abrupt

changes in the medium do not normally occur. The imposition of a

discrete nature to the cross section (via the pixels) will cause the

estimated ray paths to not coincide with the actual ray paths. It is

3for this reason that ray tracing cannot be applied to the unprocessed

reconstructed image.
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It was suggested in 1661 that filtering of the type described in

Chapter V be applied to the reconstructed image in order to reduce the

sharp discontinuities between pixels. We have also found that it helps

to partition the image (using the MMP, for example) prior to tracing

rays. This partitioning in effect removes the 'noise' in the

background image. This is important since even if two pixels have

similar (but not identical) electrical parameters, a ray which exits

the first pixel and enters the second pixel at an angle far from normal

will experience a large refracting angle. This phenomenon can be seen

in Fig. 7.28 where the rays which enter the rectangle at larger angles

from normal are refracted more.

Another technique for ensuring that the traced rays more closely

represent the actual ray paths taken in the measurement process is to

* use some sort of interpolation between pixels in the reconstructed

image [14], [15]. This interpolation will also remove some of the

adverse effects of discretizing the cross section into pixels. We have

found that a linear interpolation 1151 gives the best results at the

3 least computational expense. In judging the merit of an interpolation

scheme, we consider the scheme which is able to find the most rays

linking transmitter and receiver locations to be the best. In using

linear interpolation, if a ray enters at the center of a pixel, then we

use the parameters of that pixel and the exiting pixel in (2-54)

through (2--57) in determining the refracted ray. If, however, the ray

enters below the center of the pixel, then a linear combination of that

pixel and the one below it (as well as for the exiting pixel) are usi

in (2-54) through (2-57). Fig. 7.29 shows an illustration of tracing

a ray through an interface between two pixels. The electrical

parameter of the entering pixel for this example would be

X = (I - d/H) X1 + (d/H) X2 1 (7-2)

where d is the distance from the center of the pixel to the point

I
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where the ray enters the pixel, H is the height of the pixel and X

(X 2 ) is the electrical parameter of the upper (lower) pixel. The same

3 process is applied to find the electrical parameters of the pixel

which the ray exited.

Figs. 7.30 and 7.31 illustrate the usefulness of the techniques

described above. Fig. 7.30 shows an example of ray tracing through a

I raw reconstructed image. In this figure six transmitter and receiver

locations are shown. Note that the ray trace algorithm is unable to

find paths linking all the transmitters and receivers, and the paths

which are found are very erratic. Fig. 7.31 shows the result of

tracing rays using the techniques described above. Note that in this

figure, all the paths linking transmitters and receivers have been

found. In addition, the paths are not as erratic as those found in

Fig. 7.30. We will first apply the ray tracing process to

reconstructions using CW data, and then to reconstructions using TOF

I data.

3 B. Ray Tracing for CM Data

In this section we will show examples of using ray tracing to

improve reconstructions obtained using CW data. As described above.

I ray tracing will only be effective when refraction effects are more

dominant than diffraction effects. Therefore, we will only consider

profiles where this criterion is met.

The ray tracing process was applied to the reconstruction ol a

I high conductivity circular cylinder in a homogeneous earth. The

background earth has a conductivity of 0.001 S/m and a relative

I permittivity of 10. The cylinder has a conductivity of 0.004 S/m and

a relative permittivity of 10. Since the permittivity of the

background and the cylinder are the same. we expect refraction will be

the dominant effect. Fig. 7.32 Is a three dimensional representation

of the reconstructed image. The image was reconstructed using the

I
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CG-GPM algorithm with a constraint value of 0.002 S/m. Regions of

higher attenuation are indicated by greater height in the figure.

Note that the cylinder's presence is seen near the center of the

figure, but it is not clearly distinguishable. Fig. 7.33 shows the

result of applying one iteration of ray tracing to the reconstructed

image (further iterations caused the solution to diverge). Note that

ray tracing has caused the presence of the cylinder to be more clearly

indicated, and the region surrounding the cylinder to have fewer

perturbations.

Fig. 7.34 summarizes the ray tracing example using two-dimensial

images. In part (a) of the figure the filtered reconstructed image is

3 shown. Part (b) shows the result of partitioning this image into two

groups using the 1MP. Note the spreading of the cylinder in both

horizontal and vertical directions. Part (c) is the filtered

reconstructed image after applying ray tracing, with (d) showing the

partitioned version of this image. Note that the pixel adjacent to the

cylinder is identified as the high attenuation region. This gives a

more accurate indication of the size of the cylinder although its

location is in error.

n C. Ray Tracing for TOF Data

I In this section we will use ray tracing to improve the

reconstructed images obtained from TOF data. Note that for TOF

measurements, refracted rays will in general be more important than

diffracted rays since in TOF measurements the time of the first pulse

I reaching the receiver will be measured. For example, Fig. 2.21 shows

the pulse waveform which would be observed at the receiver, and the

Spulse due to the diffracted ray is the last pulse to be observed.

Therfore, we can use ray tracing on the high contrast profiles

considered in Section 7.4. The anomalies will either have a relative

permittivity of 20 (high permittivity) or a relative permittivity of 1

I
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(tunnel). As before, the background has a relative permittivity of 10

and a conductivity of 0.001 S/m. I
We first consider the profile having the square cylinder

coinciding with one of the reconstructed pixels (profile b in Table 3
7.1). Ray tracing should be most effective on this profile since the

reconstructed image will have the cylinder exactly on one of the

pixels. Fig. 7.35 summarizes the results for the high permittivity

cylinder. In part (a) of the figure is the filtered reconstructed 3
image while part (b) is the result of partitioning this image into two

groups using the MMP. Parts (c) and (d) of the figure are the results

of using one iteration of ray tracing. As can be seen, ray tracing has

not improved the image. This result is not surprising in that the 3
reconstructed image was already a good representative of the actual

cross section. Fig. 7.36 shows similar results for the low

permittivity cylinder. Again, ray tracing was unable to improve a good

reconstruction.

We now consider ray tracing applied to the square cylinder which

does not coincide with one of the pixels (profile c in Table 7.1).

Fig. 7.37 shows the reconstructed images for the high permittivity

cylinder. This time ray tracing has slightly degraded the image in

that the partitioned ray traced image, (d), does not indicate the U
presence of the cylinder. However, the filtered ray traced image, (c).

does show some indication of the presence of the cylinder. For the low 3
permittivity cylinder, the results are shown in Fig. 7.38. This time

ray tracing has greatly improved the image in that the partitioned 3
image clearly indicates the presence of the cylinder, although its

location is slighlty in error. 3
D. Conclusions 3

In this section it was shown that ray tracing can be an effective 3
method for improving reconstructed images resulting from measurements

I
3
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which are largely refractive in nature. The ray tracing method is

most effective on reconstructions where the anomaly nearly coincides

with the reconstruction pixels, although methods to alleviate this

dependency have been presented. In addition, care must be taken in

applying this technique in that improvements may not be obtained in

all cases. However, for some profiles the improvements in the

reconstructed image are worth using this method.

7.6. 3 Ray Optics Model Matching MethodI
A. IntroductionI

As discussed in Chapter II, and as shown in the block diagram of

Fig. 7.1, it is possible to use the ray optics method (Section 2.4) to

improve the reconstructed image. This process is illustrated by the

block diagram in Fig. 3.3. As noted above, this process will be most

effective when the profile being reconstructed contains high contrast

anomalies, making diffraction the dominant effect in the measurement

process. It will be demonstrated on the cross section containing the

high conductivity square cylinder (profile c of Table 7.1).

From the results of combining the CW and TOF reconstructions as

presented in Fig. 7.10, we have reason to suspect the presence of a

high conductivity anomaly in the region of the shaded pixels in the

image, (c). Therefore, we will search for the exact position of the

anomaly in the four pixel region fc ed by the shaded pixels and their

two mutual neighbors. Of course, the search region could be expanded

at the expense of greater computation time. The search method to be

used will be as follows:

a) Choose a location inside the search region.

b) Calculate the CW measurement data using the ray optics method

*I assuming a small square cylinder centered at the chosen

location.
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c) Increase the size of the cylinder and calculate new CW data.

d) If the calculated CW data using the current size of cylinder

more closely matches the actual measurement data, save this

size for the cylinder. U

e) Repeat steps c and d until the cylinder size giving the

smallest error is found. 3
f) Choose a new location inside the search region.

g) Repeat steps b through f until the location and size of the

cylinder giving the smallest error is found.

For the example to be presented, the smallest cylinder size is chosen

to be 1.0 m on a side, and the size increment will be 0.5 m. The

cylinder will be moved over the search region in steps of 0.25 m. As 3
in the examples of Section 7.4. the SNR wil be equal to 30 dB.

B. Excpple from Test Profiles

When the search method described above was applied to the CW data

for the square anomaly, profile (c) of Table 7.1, the position of

minimum error was found to 7.5 m in the horizontal direction and 8.0 m

in the vertical direction. The actual location of the cylinder was 8.0 I
m in the horizontal direction and 8.0 m in the vertical direction.

Therefore, the error in position was 0.5 m. The cylinder size having

smallest error was 2 m. This is the same as the size of the cylinder I
used to simulate the data.

Fig. 7.39 is a graphical depiction of the process of finding the 5
cylinder location having minimum error. The graphs in this figure were

generated by fixing the horizontal (vertical) position of the cylinder 3
' at the actual position and then plotting the error versus vertical

(horizontal) position of the cylinder. Note that the 'vertical error'

(obtained by changing the vertical position of the cylinder) has a

better defined minimum than the 'horizontal error'. In addition, the 3
'vertical error', unlike the 'horizontal error' is monotonic on either

I
I
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side of the minimum. These results are not surprising in that

resolution in the vertical direction should be greater than the I
horizontal direction because of the scanning geometry. Note the

limited view angles listed in Table 7.1. The view angles determine the 3
horizontal resolution, while the transmitter and receiver spacings

determine the vertical resolution. The transmitter/receiver spacings 3
were sufficiently close to give good vertical resolution. In fact,

this effect explains the spreading of the location of the anomaly in 3
the horizontal direction, which was seen in the reconstructions

presented at the beginning of this chapter.

C. Scwple Reconstructions for Complex Anomalies 3
In this section we would like to demonstrate that the methods 3

previously used are not restricted to cross sections containing only

square or circular cylinders. Since simulations for arbitrarily shaped

cylinders can only be obtained using the VCM (which gives CW data), the

reconstructions to be presented will only be for CW data. For all of

the examples, the WLS method with the CG-GPM algorithm will be used.

The solution will be constrained at one third the attenuation of the

background medium. I
The first example features a tunnel with an arched roof located

in a background medium having a conductivity of 0.001 S/m and a 3
relative permittivity of 10. The floor of the tunnel is approximately

1.2 m across, and the height of the tunnel is also approximately 1.2

m. The reconstruction region is 20 m by 20 m, and the incremvint

between transmitter (receiver) locations is 1 m. A total of 400 3
measurements of the received power will be simulated. The SNR will be

equal to 30 dB. 3
After performing the reconstruction process as previously

described, a high attenuation region 4 m in height and 8 m in width, 3
centered around the tunnel, was identified. This region is labeled the

I
I
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search region in Fig. 7.40. Also shown in the figure is the actual

location of the tunnel. Since a diffraction theory does not presently

5 exist for objects having lower index of refraction than the surrounding

medium, the ray optics method for locating the tunnel cannot strictly

be used. However, by noting the similarity between the magnitude

responses of the tunnel and conducting cylinder in Fig. 6.1. we can

attempt to locate the tunnel by using a high conducting cylinder in the

search process. By using the high conducting cylinder, the ray optics

method can be used to efficiently find the location of minimum error

(refer to Fig. 3.3). When this operation was performed, the tunnel was

'located' 1.2 m from the actual tunnel position as shown in Fig. 7.40.

3 This gives a much more accurate indication of the tunnel location than

the raw, reconstructed image.

3 The second example has the same conditions as the one above,

except that the anomaly has a conductivity of 0.05 S/m and a relative

3 permittivity of 20. The cross section of the anomaly is in the shape

of an 'L' as shown in Fig. 7.41. The high attenuation region in the

5 reconstructed image is again 4 m, by 8 m, as can be seen, in Fig. 7.41.

In this case, the process of accurately locating the anomaly using the

3 ray optics method is very effective as the located anomaly nearly

coincides with the actual anomaly.

1 7.7 Conclusions

U In this chapter we have presented a process for reconstructing

underground images and detecting and identifying high contrast

anomalies in the image. This process uses both CW and TOF measurement

data in order to characterize the anomalous region. The effectiveness

I of this process was demonstrated on a number of test cases using three

different algorithms. Of the three algorithms, the CG-GPM gave the

3 best reconstructions.

The ability of the WI.S method (used in finding the reconstructedI
I
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image) to diminish the effects of additive noise was also demonstrated.

In all cases, using this method resulted in better images. The U
application of constraints on the solution image was shown to reduce

artifacts due to diffraction phenomena. This reduction was evident for 3
two test cases and for different noise levels.

Of importance to the reconstruction process is the ability to

accurately locate and determine the size of an anomaly. This would be

important if, for example, it were required to accurately drill into an 3
underground stream or a tunnel. Since the electromagnetic rays do not

follow straight paths, the size, shape, and location of the anomalous

region in the reconstructed image does not match the actual anomaly.

For this reason, we have used the ray optics model as a too] in 3
refining the size and location of the anomaly. This takes the form of

the ray tracing method for cross sections in which refraction is the 3
dominant effect and takes the form of the model matching method when

diffraction is the dominant effect. I

I
I
I
I
I
I
I
I
I
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CHAPTER VIII

U SUMMARY AND CONCLUSIONS

1 B.I of Re lts

I In this report some new methods for geotomography are presented.

As Indicated by the block diagram In Fig. 7.1, geotomography is not a

one step process, and our goal has been to make improvements to all of

the steps illustrated in the block diagram. In addition, in order to

5obtain good reconstructions, one must use as much a priori information

as possible. This is accomplished through the use of the weighted least

squares method and the application of constraints to the reconstruction

process.

As a first step In understanding and characterizing the image

reconstruction problem, it is first necessary to develop good models of

5the process. Chapter II reviews some of the models used for the

cross-borehole geometry. A feature lacking in these models is the

* ability to characterize the diffraction of electromagnetic rays from

objects located in the earth. Note that some of the models implicitly

3 include diffraction effects, but give no indication of the relative

magnitude of the contribution of these effects to the total response.

Therefore, ray diffraction theory has been adapted to this application.

In this way, the ray optics model is able to explicitly predict

diffraction phenomena, and quantify its effects.

In Chapter III some of the standard reconstruction methods for

geophysical applications are reviewed. The algebraic method, which uses

a straight ray model, is chosen since it is the most robust method.

This is in line with our focus on locating, detecting, and identifying

high contrast anomalies. The major shortcoming with the algebraic

method is that it ignores diffractions. refractions, and reflections.

It is for this reason that a new method (i.e., the model matching

I
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241 i
method) based on the ray optics model of Chapter II has been Introduced.

This method can be used to verify and refine a reconstructed image

obtained using the algebraic method. In addition, Chapter III discusses

the general theory of inverse problems. Regularization methods are I
presented to reduce the effects of noise in the measurement data.

One meads of regularization is to find an approximate solution

using least squares techniques. These techniques are Investigated in

Chapter IV. An extension of the least squares method is the weighted

least squares method. This method allows the Incorporation of a I
priori knowledge into the solution. Specific approaches for achieving

this goal are presented. 5
The singular value decomposition (SVD) is a powerful tool for

examining the behavior of least squares algorithms. This decomposition 3
is exploited for developing the algorithms in Chapter IV. In addition,

this decomposition leads to an algorithm which is able to incorporate

constraints into the solution. Unfortunately, the SVD algorithm is not

useful for reconstructing large images. In these cases an iterative

algorithm is needed. The conjugate gradient (CG) is one such algorithm

having many desireable properties. However, this algorithm can not 3
directly incorporate constraints. Therefore, a method using the CG

algorithm with the gradient projection method is developed. In this

way an explicit method for finding a constrained solution is obtained.

Chapter V discusses some methods of processing raw, reconstructed

images in order to reduce noise artifacts and detect subsurface

anomalies. A new method of detecting high contrast anomalies is I
introduced, and its superiority over a standard technique is

demonstrated.

In Chapter VI a discussion of the importance of obtaining both i
continuous wave (CW) and time-of-flight (TOF) measurements when

scanning between two boreholes is given. It is important to obtain 3
both types of measurements since:

a) Using one of the measurement processes alone does not uniquely 3
I
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I determine a reconstructed image.

b) The two measurement processes are susceptible to different

types of errors. Therefore, both should be used to maximize

the probability of detecting an anomaly.

A viable method of incorporating both types of measurements into the

reconstruction process is suggested.

Chapter VII summarizes the results of the preceding chapters into a

process for reconstructing a cross sectional image and then detecting,

3 locating, and identifying anomalies in the region. The efficacy of this

process is demonstrated on some geophysical sample cross sections. Once

3 an anomalous region Is detected, ray tracing or the model matching

procedure can then be used to pinpoint the location of the anomaly, to

3 identify it, and to estimate its size. These procedures are

demonstrated on a number of sample cross sections.

I
8.2 Conclusions

The image reconstruction problem has been shown to be very

3 ill-posed in the geotomography setting. Accordingly, algorithms are

presented which are numerically stable and are able to incorporate a

priori information into the reconstruction process. Of these

algorithms, the gradient projection method using conjugate gradient

minimization (CG-GPM) is found to be the best algorithm forI
incorporating inequality constraints into the solution. In addition,

this algorithm achieves fast convergence. The weighted least squares

(WLS) method should be used in conjunction with the CG-GPM in order to

reduce the effects of noise in the measured data.

The algorithms that were developed can be used on data generated

using continuous wave (CW) or time-of-flight (TOF) subsurface

measurements. To obtain maximum information about an underground cross

section being scanned, It Is recommended that both types of measurements

3 should be made in the reconstruction process.
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The reconstructed underground Image an be improved using ray I
tracing or the model matching procedure. If it is known a priori that

the subsurface anomalies will cause refraction to be the dominant 1
effect, then ray tracing should be used. If diffraction effects are

dominant, then the model matching procedure is the best choice. If no 3
knowledge about the subsurface anomalies is available, then both methods

should be attempted to determine which one leads to improvements in the 3
reconstructed image. I

I
I

I
I
I
I
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I THE VOLUME CURRENT METHOD
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This is the standard method used in this dissertation for

calculating the electromagnetic response of arbitrarily shaped I
cylinders imbedded in the earth. The method was originally developed

in [341. but the description here is taken from [351. I

This method can be derived from the damped wave equation for a

homogeneous earth assuming a sinusoidal source term (ejut time I
convention). As in Chapter 2, the total field is equal to the sum of

an incident and scattered field. The scattered field can be found I
using a Green's function formulation as in (2-46), which is repeated

here in an equivalent form 3

Es (X)= - , J(v _')-p2)E(1')G(p) d' (A-i) I
A

where the integration is over the area of the cylinder. ya (Ye) is the

propagation constant of the cylinder (background) , G(o) is the Green's I
function solution for the homogeneous problem,

X := (x y)T (A-2) I
is the position vector, and

p := IX-X'l (A-3) I
Since the total field is the sum of the incident and scattered fields

it is given by I

E(Z) = E i(I) - f J{IV(I)-V) E(X') G(IX-X'I) d1'. (A-4)

A

I
The equation given above can be solved numerically for the total

I
I
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3 field by expanding the total field as

N
E(I) = E anllA(X), (A-5)

n=L n

I where An represents a partitioning of the cylinder into N

non-overlapping square patches, IAW1 ) is the indicator functionI n
defined byI

IA(Z) I f ZEA (A-6)
n 0if ZA n

and an is the average value of total field in each An . The an can be

determined by choosing a vector Zn such thatI
3 an  = E(Zn), (A-7)

3 where Zn is the vector to a location inside the nth patch.

Substituting (A-4) into the right hand side of (A-3) givesI
E(Z) = Ea e)- 1{(')-e} N(nI(')G(p) dZ'

Z) A n= n

N 2 f
= () - i (Y2an-)E(n X')G(p) dZ' (A-8)n= L A An

IA

where the assumption was made that the propagation constant does not

3 vary over each An . The integral above can be evaluated by replacing

each square patch by a circular patch of radius a. Making thisI
3
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replacement, the integral becomes for the nth patch 3

f G(p) C' = G(p)p'dp'dO'

= 2i fa H( 2 )(-JeP)P'dp'd' 3fo 0 o

_ - ta J(-i a) (2 )(-j pn), (A-9)

2)'e I e o e nI

where the explicit form for the Green's function was substituted to 3
get he second line above, and the final result was obtained by using

the addition theorem for Hankel functions. The quantity Pn is the 1
distance from the observation point to the nth patch.

Substituting (A-8) into (A-7), the total field can be expressed as 3
E(Z) = Ei (- a -e)E(Zn ) 2 -) J (-je a) l(2 1(-j eP )5

(Z an e n 2e eI e 0 en

(A-10) 1

where Pn is the distance from the observation point to the nth patch I
The total field can be found using Galerkin's method. Multiply (A-10)

by I (Z) and integrate over all Z to obtain

A2E (Xm ) =2 E (Im ) + Y  v2 )E(Z 11 2 (leea) knm (A-lI)

n=L e

where A is the length of the side of the square patch , m ranges from 3
I to N, and I

I
I
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(knm = (A H (2o (-3JePn) dZ (A-12)

Again, substituting circular patches for the square patches and using3 the addition theorem, this equation can be evaluated to give

A 2 i e(aH2)l-Jyea) - 2j]. for m n

knm V e (A-13)

Je a)H(2](jJePmn), for mr n

)1 Ith), o te th

I where Pmn Is the distance from the mth patch to the nt h patch. (A-10)

can be put in the form of a matrix equation by combining the total

3 field terms as

3 L c = b. (A-14)

3 where

3 L = [IN - T1. (A 15)

I [ E(11 )

E(XNI 6

andI
* b = . (A- 7)

The matrix IN is the identity matrix in (A-15) and the elements of TU
i
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are

(am-e -- J, (-jvea)IjWVeal 2 (-Jea) + 2j] for m=n

- V2 Ve f (A- 18)
(V ( o  ( P for mdn

am e 2 ' 1 e 0 emn

The total field at each of the patches can be found by inverting (A-14)

as

c = L-b. (A-19)

and substituting this into (A-10) to find the total field at the 1
observation point.

I
I
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3 SOME USEFUL RESULTS FROM LINEAR ALGEBRA
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In this appendix we review some results from linear algebra and

the solution of linear systems of equations. The following notation I
will be used.

NOTATION

Ax = b matrix equations arising from linearized geophysical I
model.

A mxn distance matrix. 3
x unknown nxl image vector.

b mxl power measurement vector. 3
x a solution to Ax = b.

XLS a least squares solution to Ax = b. I
xk  the solution vector at the kTH step of an iterative 3

algorithm.

rk = Axk-b residual vector at the kTH step of an iterative 3
al o h :an nxl direction vector at the kTH step of a

conjugate direction algorithm. 3
<xx> vector inner product

IIxl2=<x.x> vector norm 3
The following notations, definitions, and formulas are necessary 3

for an understanding of some of the ideas presented In the

dissertation. All vectors will be assumed to be column vectors with 3
real components(e.g. x E R n)

I
8.1 Vectors

OOne particular vector of interest is an~ image vector, which is a

I
I
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3 vector produced by taking the values of successive pixels in an image

and aligning these values into a column. The norm or magnitude of a

5vector is the standard Euclidean norm, 11o11,, where the norm of an nxI

vector x with elements ti will be given by:

11 x112  Z 1 
2  xTx (B-1)i=l

3
The vector inner product is defined in the usual fashion:I n

<x,y> = i:E'' = xTy (B-2)

Two vectors are said to be orthogonal if' their inner product is

equal to zero. Two vectors will be A-orthogonal(or A-conjugate) if,

* given a matrix A:

3 <xAy> = 0 (B 3)

3 A functional is a mapping from a vector space to the real or

complex numbers. For example, the norm of a vector is a functional. A

functional of particular interest in developing conjugate direction

algorithms is the quadratic functional:

O(X) = xT Ax - x b (B-4)

U
The span of a set of vectors is the set of all linear combinations

3 of the given vectors, that is:

3 span(x1 x2 ) all y = axI + Jx 2  (B-5)

I
I
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A set of vectors will be said to span a vector space if any vector

in the space can be represented as a linear combination of the vectors

in the set. For example, taking the vector space of all nxl vectors.

it is easily seen that any n linearly independent vectors will span I
this space. Two vector spaces that are needed in the sequel are the

range space and null space of a matrix. The range space of a matrix 3
A(denoted R(A)) is the set of all vectors x such that: I

x = Ay (B- 6) I
for all vectors y. It is easy to show that this set forms a vector

space. The null space of a matrix(denoted N(A) for the matrix A) is 3
the set of' all vectors x such that:

I
Ax = 0 (B-7)

where 0 represents the zero vector.

B.2 Matrices

The transpose of a matrix is the matrix resulting from an I
interchange of the rows and columns of a matrix. A symmetric matrix is

a matrix which is equal to its transpose. It is easily shown that for 3
a general matrix, A,

WA T =ATA

Another property of interest is that of positive definiteness.

The matrix A is positive definite if:

(xrAx) > 0. for all x 9 0 (I$-9) 1

I
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I If a matrix is real and symmetric this condition translates into

requiring that all eigenvalues of the matrix are greater than zero.

The condition number of a matrix gives an indication of how close the

matrix is to a non-invertible(singular) matrix. A matrix that is

nearly singular (i.e., has a large condition number) will be

susceptible to small errors in the b vector when solving the equation

Ax = b. In this paper the condition number will be defineu to be:

K(A) -Amax(AA) (B-10)

>min(A TA)

I Where Amax(min)(O) denotes the largest(smallest) eigenvalue of the

3 given matrix.

3 8.B3 Solving Linear Equations

We are interested in solving the linear equation Ax = b. where in

the problem at hand, x is an unknown image vector. A solution of this

equation will be given by x = A-'b when the matrix is square and of

full rank(i.e. it has no linearly dependent rows or columns). When the

3 matrix A has m rows and n columns and it is not of full rank an x

cannot be found which solves Ax = b txactly. However, a least squares

3 solution, xLS * can be found such that VAXLS - hil is minimized(i.e.

this solution 'fits' the equation in the norm sense). A least squares

3 solution is the only feasible solution available in applications where

noise and errors are introduced into the measurement and modeling

processes.

3 8. q Least Squares Solutions

I
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For convenience. in the following the matrix A will be assumed to I
be square and of dimension n. If the matrix A is of full rank (= n),

then the range space of A is the entire n-dimensional space. In this

case the equation Ax=b has a unique solution as noted above. If the

matrix A is of less than full rank(e.g. rank(A) = m < n), then the 3
range space of A is an m-dimensional space which provides a natural

splitting of the entire space into: 3

R n = R(A) $ R(A)~ (B 11)3

where R(A). is the orthogonal complement of the range of A (that is. 

every vector in R(A) is orthogonal to any vector in R(A)). For this

rank deficient case the equation Ax=b may not have a solution for all b 1
since an arbitrary vector b can be written as:

b = a1x * a2 X2  (B-12)

where x1 is in R(A) and x2 is in R(A) . A simple example may help 1
illustrate this point.

Let: A = 4 5 j I

b = 15 (L-l1)

I
For this example it is seen that no x solves Ax-h since it is

impossible to generate the third element of the b vector by multiplying 3
A by any vector x. I

U
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3 A least squares solution can be found even in this rank deficient.

case. The solution involves finding an xS which minimizes IAX s-bl 2 .

5 For the example above it is seen that:

x =[] (B-14)

U
is one such least squares solution sinceI

3Ax LS - b = [.] (B-14)

0 Of course, this solution is not unique because

3 [0.5

X [2.0 (B-15)

also minimizes the norm of the residual vector.

U Least squares solutions are important for a number of reasons.

Two reasons are:

Ii) The least squares problem lends itself easily to analysis.

ii) The least squares problem arises naturally in estimation

1 problems when the given data is normally distributed.

It should be noted, however, that in some applications(e.g. in

situations with outlying data points) that a least squares solution may

not be the optimum solution.U
B.5 Normal Equations

I It is now possible to develop the normal equations for the least

I

I
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squares problem from the results above. First of all, the relation

between the range space of a matrix and the null space of the U
transposed matrix is needed. It can be shown that the orthogonal

complement of the range space of a matrix is equal to the null space 3
of the transpose of the matrix, or in notational form:

R(A)L = N(AT) (B-16) I
From this it follows that AT(AXLs-b) = 0, or in the more standard form:

ATAxLS = ATb (-7) 3

the so called normal equations. In the example above, it was seen 3
that:

01
Ax LS -b = k0](1)L2oI

and this vector is in R(A) . Also it is easy to see that: 3

AT(AXLS- b) = 0 (B-19) 3

for this example. I
The normal equations are important when the equation solving

algorithm (e.g. the conjugate gradient algorithm) requires a symmetric

coefficient matrix. For this case instead of solving the original

problem Ax=b, the equivalent set of equations ATAx L- ATb can be solved I
for the least squares solution.

8.6 The Pseudo-Inverse 3

U
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Perhaps the most widely used method for finding a least squares

solution to a linear equation is through the use of the pseudo-inverse

3 (also known as the generalized fnverse) of the matrix A(denoted by A+).

This inverse has the following form when the matrix A is of full rank:

A + = (A TA) A T (b-20)

This form is easily obtained by appealing to the normal equations given

3 above. When the matrix A is not of full rank the pseudo-inverse can be

found by using the singular value decomposition(SVD) algorithm. In

3 either case, the least squares solution can then be found as:

XLS =Ab (B-21)

3 This method has two major drawbacks when applied to the problem of

inverting geophysical data. The first drawback is that for geophysical

3 applications the A matrix may be very large which precludes the

computation and storage of A+. The second drawback is that this method

3 does not allow the application of constraints to the solution vector.

For example there may be a need to find a solution vector close to xLS

3 but with all of its elements constrained to be positive.

3 8. 7 Singular Value Decomposition (SUD)

The SVD is a standard decomposition of a linear operator. Its

3 usefulness lies in its ability to diagonalize a matrix using

orthogonal matrices. Its form for a rectangular mxn matrix isI
A - U S VT (B-22)

I
where U (mxm) and V (nxn) are orthogonal matrices. S (mxn) is a

I
I
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diagonal matrix whose elements are the square roots of the eigenvaiues

of ATA. As mentioned above, this decomposition can be used to find

the pseudo-inverse of the matrix A. This result will be derived for 3
the regularized inverse A, which reduces to A+ for V=O, as follows

I
A) = (ATA 4 VI)-IAT

= ([USVT]TUSVT+ yi)-[USVT]T

- (VSTsvT+ I)-IVSTUT

= IV(D+VI)VT]-IVSTUT

I
=V(D4Vyl)-IVTVSTUT

V V(D+)VI)-is T UT (B- 23)3

where D := STS, and (D+I) - is a diagonal matrix whose elements are

of the form 3
( -V _~ = (B-24)

where a, is the ith singular value of A. 3
1
I
I
I
3
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APPENDIX C

3 THE LSQR ALGORITHM
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In this appendix, the algorithm LSQR which was derived in [761 is

described. The stopping criterion based on the effects of the

singular values is used. The singular value decomposition should

first be used to determine which singular values should be ignoreo

(see chapter 4 for a discussion of this). If singular values beyond

some value K are to be ignored, then set I

CONLIM = ( +° ' (C-1)
II

before using the algorithm below. In the following vectors will be

denoted by lower case letters, while scalars will be denoted by lower I

case Greek letters (except for ck and sk which are also scalars). The

algorithm for solving Ax=b is as follows I

13= II b12  I
u k-

1 l3t I

a, I V1

v I
2.

wI =v alP1  - i

Pl ( p + I 2 1/

11 I
I
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For k = 1. MAXITERATIONS

1) uk, . = Avk - ckuk

32) Pk41 = 1Uk-+ 1 11

3) v Uk

3 k+± gk

4) vk- AukIk.v

I5) =k J. 11vk, LI11

6) vk - ___

37) Pk+t (Ok 9)1/

38) Ck Pk

9) Sk -__

10 ) ek.+ S kak+

I11) Pk~i-- =ckok+,

312) Ok =Ck~k

13) ik+ i Skik +

14) llk+i = Tk + ak+, + k+L

315) Sk-'i = 8k+ 11 W 11

16) 1 f (nk+i&k+i > CONL I f

3 STOP

17) xk Xk-i + _k w k

38) Wk+l Vkf+i pkk (('- k.2)

Ik+
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In the algorithm above, nk and 8k denote the squares of the norms of i

the matrices Bk and Dk defined in [761. For the definitions of the 3
other quantities used above, see [76J.

I
I
U
I
I
!
!
I
I
I
I
I
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APPENDIX D

I
3 THE GRADIENT PROJECTION METHOD

I
I
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The following algorithm is based on that given in 1801. It has

been simplified to handle linear inequality constraints only, since

these are the major constraints of interest in tomography. In

addition, the CG algorithm has been substituted for the steepest U
descent method in performing the minimization over the working

surface. 3
The gradient projection method for minimizing the functionai I

I 1

f(x) = x TQx - x b. ()- I)

where Q is symmetric and positive definite, subject to the constraints

tmin ti <- tmax' (D-2)

where ti denotes an element of x for l-i~n is given by

1) Set elements of x = tmin

2) ro = b - Qx 3
3) P0 = 0

4) i -1 3
For k 1, ... MAX ITERATIONS

1) 11 rk_  11 I
9) ~k = irkI2

2) If (i>l) I
Pk= rk-, 3kPk-t 3

Else

P rk- I

3 = rk _ 1112
3) <Pk'QPk>

4) dk = ak PkP k

I
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5) If (xk_ + dk) is feasible

Xk = Xk.., + dk

* Else

a) Choose a < ak such that

Xk = Xki + ak PkPk is feasible

b) Zero the row of Pk corresponding

to the unfeasible component of dk

k k-i k k

6) rk = rk_, - kQPk

7) If dk = 0

a) Add row to Pk corresponding to

I maximum element of rk

b) Re-start by setting i 7 0

8) i = i + 1. ()-3)

I In the above, Pk is the projection matrix which takes the direction

3 vector onto the constraint surface.

I
I
I
U
I
I
I


