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CHAPTER I
INTRODUCTION

In this report we consider the process of obtaining an image
of the cross section of an object from measurement of rays which pass
through the object. This process is referred to as reconstruction of a
cross sectional image of an object from its projections. In this
context, a projection is defined to be an integration of some parameter
of the object along a line through the object. A ray which passes
through the object and attenuates along its path as a function of the
object's physical characteristics (along that path) would give an
approximation of this line integral.

Practical application of the method of reconstructing a cross
section of an object from measurement of a set of line integrals
through the object dates back to the 1950s with Bracewell's work in
radio astronomy [1]. The application of this theory to medical
imaging dates back to the 1960s [2], [3] with the first commercially
available scanner introduced in 1972 (4].

Surprisingly, the mathematical foundations for this theory date
back to 1917 with Radon's classic paper on recovering a function from
its line integrals [5], and to 1923 with Hadamard's work on inverse
and ill-posed problems [6]. We call this reconstruction process an
inverse problem since we are supplied the projection values and must
invert the data in order to obtain some characteristic (as a function
of position) of the object being scanned.

Reconstructing images from projections has also found application
in nondestructive testing [7] and seismology [8]. However, in this
reﬁort the emphcsis Is on scanning an underground cross section of the
earth using electromagnetic rays. This operation is often referred to
as geotomography. One particular measurement geometry which is used

for scanning an underground region is shown in Fig. 1.1. In this
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geometry, two boreholes are drilled into the ground outside of the
region to be scanned. A transmitting antenna is lowered into one
borehole, and measurements of the received signal are taken in the
opposite borehole. These measurements are taken over a range of
transmitter and receiver positions. This operation is normally
automated using a computer.

The ability to obtain a cross section of a region of earth has
important consequences. For example, geotomography has been used to
locate burn fronts in coal seams [9], to monitor heavy o0il recovery
[10], and to detect, locate and identify tunnels [11]. It is apparent
that as our natural resources are diminished, better ways of exploring
the underground environment will be needed. Geotomography is one
method which will help fill this need.

Some of the early work in this field was done at Lawrence Livermore
Laboratory [11], [12], [13]). Utilizing a system configuration that
measured the power at receiver locations, the attenuation through the
earth as a function of position could be found. In obtaining the cross
sectional images of attenuation, the assumption was made that the
electromagnetic rays follow a direct path from the transmitting to the
receiving antenna. This assumption caused errors in the reconstructed
images when the rays experienced reflections, refractions, and
diffractions. Attempts were made [14] - [18], to reduce the effects of
noise, reflections, and refractions by incorporating ray tracing into
the geotomography process. This process involves reconstructing an
image assuming direct rays, and then iteratively improving the ray path
knowledge by using Snell's law to find the path a ray would follow
through the current estimate of the image. Unfortunately, this method
ignores diffraction of the rays which in some cases may be the dominant
effect.

A method was devised by Devaney and others [19], [20] for implicitly
incorporating reflections, refractions, and diffractions into the

reconstruction process. This method is known as diffraction tomography.




Reconstructions are obtained by inverting the wave equation using either the
Born or Rytov approximations. Unfortunately, these approximations are only
valid for cross sections containing weak scatterers (slight inhomogeneities),
80 that this method may not be useful, for example, in tunnel detection. One
of the goals of this project was to develop a method which is sufficiently
robust to handle cross sections containing strong inhomogeneities, yet still
account for diffraction effects. An outline of the development of such a
method follows.

Chapter II gives some of the more common models for describing the
propagation of electromagnetic waves in the earth. In addition, a new
ray optics model [21] is presented which is of great importance to
certain reconstruction methods. A thorough understanding of the
propagation of electromagnetic waves in earth is a necessary first step
for considering the subsurface image reconstruction problem. In fact,
the ray optics model developed in this chapter leads to a potentially
powerful reconstruction method which is described in Chapter III. This
ray optics model along with some of the other models develéped in
Chapter Il serves as building blocks for the reconstruction methods
developed here. In addition, some of the difficulties with inverse
problems are described in Chapter III with emphasis on image
reconstruction theory.

Numerical algorithms for the image reconstruction problem are
developed in Chapter IV. A new method for incorporating g priori
information into the reconstruction process using weighted least squares
is presented. An extension of the method of conjugate gradients and an
implementation of the singular value decomposition are applied to the
subsurface reconstruction problem. It is shown that the conjugate
gradient method (for subsurface detection, location and identification)
is far superior to the previous standard method used in geotomography,
the algebraic reconstruction technique, in terms of fast convergence and

immunity to noise.
Chapter V presents some methods of post-processing a reconstructed




image to reduce noise, enhance features, and locate, detect, and identify
subsurface anomalies [22]. 1In addition to some standard results, a new
detection scheme is discussed. This detection scheme is shown to be
most effective in accurately locating high contrast subsurface

anomalies, such as tunnels.

A new method of combining reconstructions from two types of
measurement processes in order to detect, locate, and identify anomalies
in a homogeneous earth is presented in Chapter VI. In this chapter, it
is shown that reconstructions obtained using either continuous wave or
time-of-flight measurements can lead to ambiguous interpretations (see
(23] for a description of time-of-flight reconstructions). A way of
avoiding this ambiguity, by utilizing both sets of measurements, is
presented along with some guidelines for identifying subsurface

anomalies in a cross section of the earth.
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CHAPTER 11

GEOPHYSICAL MODEL

2.1 Introduction

In order to adequately understand and model the geophysical
reconstruction problem, it is first necessary to have a good
description of how electromagnetic waves travel through the earth. To
this end, the present chapter will attempt to give such a description.
The following section will describe the electrical parameters of earth,
and their various relationships. The succeeding sections will discuss
different ways that the forward problem can be solved. This forward
problem consists of generating simulated data of the electromagnetic
field at different depths in the receiver borehole given the
characteristics of the earth between the receiver and transmitter
borehole. This modeiing problem is important since:

a) actual field data are available only for limited geological

structures,

b) analysis of simulated data gives insight into the inversion

process, and

c) analysis of simulated data can help to optimize the field

measurement process.
After the forward problem is well understood, the reconstruction

problem can then be solved.

2.2 Electromagnetic Characteristics of the Earth

Unless otherwise noted, this section will consider the problem of
determining the electromagnetic fields in a homogeneous earth. This
means that the electric parameters do not change with location in the

earth. This simplified assumption will be relaxed in the next section.




2.2.1 Electrical Parameters for Continuous Wave Tomography

The basic electrical parameters of interest in describing a
material are:

a) € - permittivity, in Farads/meter,

b) p - permeability, in Henries/meter, and

c¢) ¢ - conductivity, in Siemens/meter.
It is customary to express the permittivity and permeability in terms

of their values in a vacuum as

r o' (2_1)

S (2-2)

where so(=8.854x10"2F/m) and yo(=4nx10_7ﬂ/m) are the free space

values. For the cases we will be considering, it will be assumed that
the earth does not contain any magnetic materials (e.g. iron ore

deposits); therefore rp = 1. On the other hand, the relative

permittivity, ¢ can take on values much greater than 1, depending on

r)
such conditions in the ground as type of rock/soil, particle sizes, and
water content. The conductivity of the earth also depends on these
conditions.

Although the relative permittivity, €p and conductivity, &, will,

in general, depend on frequency [24],(25), for the following we will
assume that these two parameters are independent of frequency (for
illustrative purposes). Given this assumption, we see that 6, ¢, and n
are static parameters. Since we are interested in the propagation of

waves in the ground, a more useful quantity is the propagation constant

1/2
Y =a+ Jg = [(6+ jue)juul (2-3)




where j = /-1, w is the radian frequency, a is the attenuation
constant, and g is the phase constant. This propagation constant is
used to describe the transmission of a uniform plane wave of frequency,

w, through a homogeneous medium (Note: an e‘“j“’t time convention is
assumed). The traveling nature of the wave is evident if we consider a
wave moving in the +z direction, then the field at any point along the

z axis is given by
u(z) = uoe_"'z = u e (@ip)z (2-4)

where u, is the magnitude of the field at z=0. It is now evident that

the field is attenuated in the +z direction according to the constant
.

This attenuation constant is important for cross-borehole
tomography since it determines the amount of electromagnetic power
which reaches the receiver borehole. Note that o is not truly a

constant in that it will depend on w, 6, €, and u as

1/2

« = (.;/;E{g[ 1 +(5.)2 ]1/2- 1} . (2-5)

WE

and 6 and € will, in general, be functions of position.

It is useful to get a good characterization of attenuation, since,
when continuous wave (CW) geotomography is performed, the attenuation
of the earth as a function of position is the unknown quantity to be
found. This will allow us to map a cross section of the earth using
attenuation as our parameter. Also, the attenuation will determine how
far the electromagnetic waves can travel in the earth and still be
measured at the receiver. For these reasons, in Figs. 2.1 - 2.3 the
attenuation is plotted as a function of frequency, conductivity, and

relative permittivity. In generating these plots, all other paramecters
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were kept constant at values representative of dry soil (sr = 10, ¢ =

0.001 S/m). The following conclusions may be drawn from examination of
these figures:
a) Fig. 2.2 gives an upper limit on the conductivity of the earth
which can be scanned using a transmission frequency of 50 MHz.
For example, for ¢ = 0.2 S/m the attenuation is about 1 Np/m.
If we assume a transmitted power of 1000 W, then at a distance
of 10 meters from the transmitter the received power would be
on the order of 2 _W, which would be difficult to measure.
b) Finally, Fig. 2.3 shows that attenuation is also a strong
function of permittivity.
These conclusions suggest that the region of earth to be scanned for
geotomography purposes needs to be investigated before any measurements
are made.
Another parameter of interest for a traveling wave is wavelength,

given by

2 /2 -1/2
A= {ue pel 1 ()2 ]‘ P 1} (2-6)
n

The wavelength gives some indication of the resolution of the

geotomography process. For example, we do not expect to "see" objects

which are significantly smaller than the intrinsic wavelength. 1In

Figs. 2.4 - 2.6, the wavelength in meters is plotted versus the same
quantities as the attenuation was in Figs. 2.1 - 2.3. Fig. 2.4 shows
that measurements must be made at frequencies greater than 10 MHz, for
the given values of conductivity and permittivity, in order to resolve
objects smaller than 10 m. This suggests a trade-off between
increasing the transmission frequency to increase resolution (Fig.
2.4), and decreasing frequency to obtain greater penetrating range
(Fig. 2.1).

Fig. 2.5 shows the wavelength as a function of conductivity with
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frequency and permittivity maintained constant. Finally, Fig. 2.6 is a
plot of wavelength versus permittivity with frequency maintained
constant. These figures will be referred to later, when sample

reconstiructions are presented.
2.2.2 Electrical Parameters for Time-of-Flight Measurements

The main electrical parameter of interest for time-of-flight (TOF)

measurements is the wave velocity, given by

v = {—fi[ 1+ ]‘/2+ 1}-‘/3-.. (2-7)

When taking TOF measurements, the time it takes a pulse to travel from
transmitter to receiver is measured. Therefore, the time taken will be
a direct function of the intrinsic velocity of the intervening medium.
Like the attenuation, the velocity is a function of frequency,
conductivity, and relative permittivity. These relationships are
plotted in Figs. 2.7 - 2.9. Also plotted in these figures are the
velocities that would be obtained if the conductivity were zero. This
zero conductivity velocity is important since 6 will be neglected when
deriving the reconstruction algorithm for TOF measurements. By
neglecting the conductivity, it can be seen that the velocity is a
function of only the permeability and permittivity. If the
permeability is assumed to be constant, the TOF measurements will then
allow us to map the permittivity of a cross section of the earth versus
position. As can be seen in Fig. 2.7, 6 can be neglected when the
conductivity is equal to 0.001 S/m and the frequency is greater than 10
MHz. Figs. 2.8 and 2.9 also give justification for using this

approximation.

2.3 Sinusoidal Response of a Homogeneous Earth Containing Isolated
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Anomalies

2.3.1 Introduction

Up until this point in the chapter, the discussion has been for
the case of an earth whose electrical parameters do not change with
position. Of course, if this were always the case, there would be no
need for the theory of geotomography.

Heterogeneities can exist in the earth in the form of: rock
layers, faults, seams, extrusions, water deposits, or tunnels. We will
refer to isolated heterogeneities of limited extent such as water
deposits or tunnels as anomalies. These anomalies will be easier to
detect than the other types of heterogeneities because of their finite
extent in the viewing space. In fact, it is often the case that the
geophysicist attempts to detect and locate anomalies in spite of the
presence of other heterogeneities. So, although theory exists for
modeling electromagnetic waves in stratified media [26], it is the
opinion of this author, that these phenomena must be handled on a
case-by-case basis. For instance, if a geophysicist is exploring for
oil, and s/he knows that a layer of limestone exists in the region to
be examined, s/he should then adapt the model accordingly.

Because these global heterogeneities should be addressed only when
there is g prior{ knowledge about their presence, and because they will
in general complicate the geophysical model, they will not be discussed
in detail here. Rather, in the remainder of this chapter, modeling of
isolated anomalies in a homogeneous earth will be presented.

We consider in this section the sinusoidal response of the earth
containing a line source antenna. This theory will be important for
considering electromagnetic probing of the earth for continuous wave
(power) measurements. In the next section the time response of the
earth will be investigated in order to characterize the time-of-flight

measurement process.
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2.3.2 Green's Function Solution for a Homogeneous Earth

It is important to derive a Green's function solution for a
homogeneous earth. This Green's function gives the electromagnetic
response of an antenna radiating in a homogeneous earth. Once this
solution is found, it can be used to solve more complex problems in
which the earth contains scatterers. These more complex problems will
be given attention later in this section. Fortunately, this Green's
function solution exists [27], [28], for the so-called damped wave

equation given by

9t . 3°E SE 32E 3J
gL gL _ 4@ _ gL L = @ (2-8)
% Y 5t "atz "at

where E is the electric field assumed to be a function of x, y, and
time; and J is the current density (J will be non-zero only at the
location of the electric line source which will be aligned along the z
direction). This equation relates the electric field in a two
dimensional region to the position in a region, the time, and the
derivative of the source. Fig. 2.10 is an illustration of the problem.

Equation (2-8) is a result of combining the equations

VxE=-2uK, (2--9a)
ot
VxH=J+6E + Q—EE , (2-9b)
ot
Vo E=0, and (2-9c¢)
VxVxE=%(VoeE)-VE ; (2-9d)

in the following manner.
a) Take the curl of (2-9a).
b) Use (2-9c) and (2-9d) in the resulting equation.
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c) Use (2-9b) to substitute for v x H in the result.
Equations (2-9 a, b, and c¢) are three of Maxwell's equations, H is
the magnetic field intensity, and J 18 the electric current density
representing the source.
The Green's function can be found by proceeding as follows [27],
a) Replace the right hand side (the source term) of the damped
wave equation by the three dimensional dirac delta function,
-5(x)8(y)8(t). In this way it is assumed that the source is
at the origin of the coordinate system.
b) Apply a two-dimensional spatial Fourier transform to the

resulting equation, to get

-kzu-cag- ﬂ._s(ﬂ' 2-10
g ot ”Eatz 2n ( )

where we have defined the quantity U to be

U= "(k;'ka't) 1= nyG(x.v.t)

- E%ff I G(x,y,t) e . 1xe 't dx dy (2-11)

In this equation, ¥ := kf + k: , k, and k, are spatial

frequency variables, F is the Fourier transform operator, and G
has been substituted for E to denote that the solution is a
Green's function. Implicit in this development is that the
solution is of such form (for example, E and its first two
derivatives are square integrable) to allow taking such
liberties as bringing the time derivatives outside of the
Fourier integral.

c) As can be seen, (2-10) is an ordinary differential equation,
whose solution Is again a Green's function (note the delta
function on the right hand side). This equation can be solved

by again using a Fourier transform, but with respect to the

23
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time variable to get

-K2V - juowV + pewdV = (2m) 73/ (2-12)

where V = v(kz'ka'”) 1= Ftu(kx'ka't) and «w is the temporal

frequency. This equation can be solved algebraically to yvield

v - (2"1-3/2 . _(2")-3/2 (2-132

K2 + juow - pew? (-0 )Mo - W)

where o, and w, are the roots of the denominator given by

0 = jr+p (2-13b)
w, = jgr-p (2-13c)

L

e (2-13d)

Note that these roots are in the upper half of the complex
plane.

To find U(kl,ka.t) from (2-12), take the inverse Fourier

transform as

[
n

-1
F,'V

00

1 —(am) 7?2 ot 3
/;_'_‘-; _“(u_utj(u_ua)eudu . (2-14)

This integral can be solved by using the residue theorem and

Jordan's lemma to obtain




-r't

Uk, .k, . t) = =£_sin(pt), for t>0, (2-15)

anp

where I’ and p are defined in (2-13).

e) To find G(x,y,t) from (2-15), again inverse transform as

-t
G = ny U

w Tt jk‘x jkzy

- L j'_“J' -& sin(pt) e * e dk dk,  (2-16)

—<2TP

f) It is convenient now to convert to polar coordinates such that

2=y, (2-17a)

e = kf + k: , (2-17b)
eJktx ejkzy e Jkpcos® (2-17¢)
dkldk2 = k dk d¢ (2-17d)

where cose = x/p, and & = ¢ - ¢. Equation (2~16) becomes

- 1y

G = Fp¢

i_
an

-t JjkpcosE

© cam o p
J' f £ _"gin(pt) e k d¢ dk
[v] 0

21p

-T't

e
e sin(pt) Ju(kp) k dk
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-t /a
= -MEe sint (& 12)!
oo r: (k3-12)t/2 k J, (kp/p€) dk, (2-18)

where Jo(o) is the Bessel function of zero order. This

integral can be evaluated by referring to the table of Hankel

transforms in [{29) to get

-I't cosh[r(t®- p2pe)t/2

(t2 - Pape)t/a

where H(o) is the Heaviside step function, which is equal to

zero for its argument less than zero, and is unity for its
equal or greater than zero.
The result derived above is the electric field at a radial

distance, p, and time, t, assuming a source term of

J = 8(x)8(y)[1 - H(t)], (2-20a)

91 - H(t)) = -8(t), (2-20b)
dt

where the derivative is taken in the distributional sense. Now that
this basic problem is solved, we can determine the sinusoidal response

of a homogeneous earth, and earth containing scatterers.
2.3.3 Sinusoidal Response of Homogeneous Earth
We consider again the damped wave equation developed in the last

section. The source term as before is an infinite current-carrying

cable in the z direction (refer again to Fig. 2.10). The fields are
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invariant in the z direction, so the problem reduces to a
two-dimensional situation in (x,y) or (p,?), for cylindrical
coordinates. The problem is further simplified if we assume that the
current in the cable has a sinusoidal variation of « rad/s. If the
location of the cable coincides with the origin of the coordinate

system, then this source term takes the form

J =1 eI®t%(x)s(y), (2-21)

where 1 is the magnitude of the current through the cable. For this
sinusoidal source term, the solution will also be sinusoidal of the

form

E(x,y,t) = E(x,y) eI®t, (2-22)

Now substitute (2-21) and (2-22) into the damped wave equation, take

jot

the time derivatives, and then cancel out the e to get

V2E - Y2E = jopls(x)s(y). (2-23)

Fourier transforming with respect to x and y, and then collecting terms

gives
F.E = ——Jusl (2-24)
Xy an(k2+y2)
where
2 _ .2 2 -
k = k‘ + k‘. (2-25)

The electric field can now be found in polar coordinates by an inverse

transform as
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- A M —jupl jkpcos®
E(p.?) = oq j: j: @ 7) e k de dk
_-joul Jm J (kp)
an (1] (k2+'ya)
= mail pl2)(_jyp), (2-26)

where the last integral was evaluated by referring to the Hankel

transform table in [29]. As would be expected from the symmetry of the
problem, the electric field is invariant with respect to ¢. Since the
electric field is a function only of the distance from the antenna, it

can be given in rectangular coordinates as
E() = Sl g2 5y 3)), (2-27)
where we have defined
X = (xy)T (2-28)
as a two-dimensional vector, and
X} = (x4 yR)H/2, (2-29)

If the cable axis is at xt, which does not coincide with the origin, the

electric field will be
E(3) = 2 pi2)( 5y i3-x ). (2-30)

This completes the discussion of the response of a homogeneous earth

containing a line source antenna with a sinusoidal current variation.
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2.3. 4 Sinusoidal Response of a Homogeneous Earth Containing a Single
Circular Cylindrical Anomaly

Refer to the geometry shown in Fig. 2.11. We consider finding the
sinusoidal response of a homogeneous earth containing a circular
cylinder. A problem of this type is solved [30], [31] by considering
the field external to the cylinder to be the sum of an incident field

and a scattered field as

E=E +ES . (2-31)

The incident field is the field from the line source antenna assuming

the cylinder is not present; it is given by (2-30). The scattered field

(Es) is now expanded in a Fourier series, where the Fourier functions
are the eigenfunctions of the homogeneous (no source term) damped wave

equation with origin at the center of the cylinder. They are given by

Jo¢® - -
e,(p.?) = e Ja(-J7gp). for p S a, (2-32a)

3, (p.9) = eI K2 -y p), for p 2 a, (2-32b)

where a is the cylinder radius. The origin is taken at the cylinder
center, and (p,9) are the cylindrical coordinates. The subscripts on
the propagation constants are 'a' for anomaly (for inside the cylinder)
and 'e' for external (for outside the cylinder). The Bessel functions
were chosen for pSa since they remain finite at p=0 (and represent
standing waves), while the Hankel functions were chosen for p2a since
they decay rapidly as p+= (and therfore represent traveling waves).

For the conditions under which a function can be expanded in terms of
these functions, the reader is referred to [32]. Using the expansion

functions given above, the scattered field takes the forms
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s o0
E"(psa) = Z b (p.9) , (2-33a)
n:-oo
o0
ES(p2a) = T c % (p.%) . (2-33b)
n=-«
where the Fourjer coefficients, bn and c,» can be determined by
enforcing boundary conditions at the cylinder wall. These boundary
conditions take the forms
el + ES(pga) = ES(psa), (2-34a)
i S, .5 _ us -
Hy + Hg(p2a) = Hy(pSa). (2-34b)
The ¢ component of the H field can be obtained by assuming an e-j"’t time
variation and using Maxwell's equation given in (2-9a) as
Hy = =i 9E (2-35)

The incident field can also be expressed as an infinite serjies by using
the addition theorem for Hankel functions [30]. The Fourier
coefficients can now be found by using (2-34a) and (2-34b) then
formally differentiating through the infinite summation as suggested in
(2-35). After some manipulation the following result is obtained for
the scattered field exterior to the cylinder (31},

EMpza) = T diB®(-Svep) Bt (-ivepy). (2-36)

where
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Ko/Qo. for n=0
d“ = (2-37)
2Kncosn(¢—¢t)/0n, for n>0
and
K, = Ya2 Jp(=37vqa) J, . (-jvaa) -
+ Ped Jp(=ivaa) J . (-3¥.a), (2-38)
= 2y (_
Q, = vaa H " (-Jrea) J,,. (-§v,a) -
+ Yea Jp(-3v,a) H(2)(-jyea). (2-39)

Of importance in using (2-36), is the number of terms needed in the
summation to get accurate results. In order to determine the number of
terms needed, we first make use of the asymptotic expansion of the

Hankel function,

q1/2 ;
(2) - 2]) n_-jz _
3 (z) 2 [“z] e 37, (2-40)
which is valid for large jz|. From this expansion, it can be seen that

for the antenna and field point far from the cylinder axis (i.e., large
z), the Hankel functions in the summation do not increase in magnitude
with increasing order. Therefore, it is only necessary to evaluate the

behavior of dn with increasing n. Since dn is a function of the

external propagation constant, the cylinder radius, and the order, its
behavior will depend on these parameters. To show some typical

responses of dn with increasing order, in Fig. 2.12 |dn| is plotted

versus n for radii of 1 and 2 meters. For both of these cases the

magnitude of dn is insignificant for n>15, indicating that less than 15

terms in the summation need to be evaluated. In evaluating the Bessel
and Hankel functions needed for this figure, the FORTRAN subroutines

described in [33] were used.
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In summary, a method for calculating the electromagnetic field
generated by a line source antenna in the earth and scattered by a
circular cylinder whose axis is parallel to the line source is given by
(2-36). Although there are times when this type of modeling is
important (e.g., in finding the electromagnetic response of a circular
tunnel), a more general modeling technique is desirable. Such a

technique is described below.

2.3.5 Sinusoidal Response Using the Uolume Current Method

In this section the anomalies are assumed to be cylinders of
arbitrary cross sectional shape with axes parallel to the line source
antenna. An approximate solution to finding the scattered
electromagnetic field can be achieved by representing the anomalies by
small circular cylinders [34], [35]. The total field is then found as
the sum of the contribution from each cylinder. This technique for
solving for the scattered electromagnetic field is commonly referred to
as the volume current method (VCM), it is from the class of numerical
techniques called moment methods [36]. A typical geometry for using
this method is shown in Fig. 2.13. The figure illustrates how a large
circular cylinder would be approximated using this technique.

Reference [35] gives a good description of the procedure to follow
in generating electromagnetic cross-borehole data using VCM, and an
outline of this procedure is in Appendix A. A couple of items
concerning the use of VCM need to be mentioned:

a) As suggested by the authors, using 8 - 10 small cylinders per
intrinsic wavelength gives results which compare favorably with
the exact solution (i.e., for a circular cylinder).

b) In cases where the anomalous cylinder(s) has zero conductivity
(e.g.., an air filled tunnel), the method appears to break down.
The problem is that with zero conductivity, the equivalent

currents cannot be sustained in the anomaly. To resolve this




JOAIR00Y

Jojlwisun. |

Typical configuration for VCM solution of cross-borehole simulation problem.

Fig. 2.13.
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problem, the tunnel is modeled as having a small conductivity
(less than 0.0001 S/m), and the result is then checked against
the exact solution for a circular tunnel.
Such a comparison between the VCM solution and the exact solution is
shown in Fig. 2.14. As can be seen from the figure the agreement is

quite good.
2.3.6 Sinusoidal Response Using the Born Approximation

We now consider solving the problem of finding the sinusoidal
response of a homogeneous earth containing an anomalous region using an
approximation which is valid when the electrical parameters of the
region are similar to the surrounding earth. This approximation is
important since it is the basis for a reconstruction method which will
be discussed in Chapter 1I11. The method to be used is described in
[37). Again, the total electric field is considered to be the sum of
incident and scattered fields as in (2-31). Assuming that the
field is to be calculated at locations away from the source, equation

(2-23) reduces to,

(v - Y*)E(®) = 0, (2-41)

where ¥ is a function of position, and the electric field's dependence
on position is explicitly noted. Since isolated anomalies are being

considered, the propagation constant can be represented as,

Y(X) = y,n(X), (2-42)

where Ye is the propagation constant of the external medium, and n(X)

represents a perturbation from the background propagation constant.

Equation (2-41) can be re-written using (2-42) as
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(v - Y2[1-1+n%(X)]}E(X) = O, (2-43a)
(v - Y2E(E®) = 72[n*(X)-1]E(X), (2-43b)
(v - ¥2)[EL@)ES (X)) = Y2 (D)-1]E(X),  (2-43¢)
(v2 - ¥2ES(X) = ¥2[n*(X)-1]E(X), (2-43d)
where we have used the fact that the incident field solves the wave
equation in the external medium, that is,
(v® - vz)Ei(X) =0, (2-44)

Now, (2-43d) can be considered to be the wave equation for the
scattered field with the source term as shown on the right hand side of
the equation. This equation can be solved by finding the Green's

function solution to
(v - ¥2)6(2) = 8(X), (2-45)

and then by convolving G(X) with the source term as

ES(X) - IAI 2[0®(X')- 1)E(X')G(|X-X'|)dx’ (2-46)

where the integration is over the area of the anomalies. The Green's

function can be found by referring to (2-30) as

GUIZ-X'{) = "4 w@ (-jy ix-x D). (2-47)

The first Born approximation involves neglecting the contribution
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of the scattered field in the right hand side of (2-46) to get
5 - | [ v2e®x)- 11BN X)6(12-X |)ax'. (2-48)
A

This equation was used to find the approximate electromagnetic
response of a low conductivity circular cylinder buried in the earth.
The result of using the Born approximation is plotted along with the
exact solution in Fig. 2.15. The characteristics of the background
earth are the same as in Fig. 2.14. The cylinder represents a slight
inhomogeneity in that its conductivity (6=0.0005 S/m) and permittivity

(er=8) are only mildly different than the background. The anomaly's

characteristics can not be much different than the background in order
to justify dropping the contribution from the scattered field in
(2-46).

Although there is good agreement between the Born approximation
and the exact solution in the figure, as stated above the Born
approximation is only useful for determining the response of mildly
scattering objects. The main interest in studying the Born
approximation is that it and the Rytov approximation are used in the
Fourier diffraction theorem [37] which will be considered in the next

chapter as a means of image reconstruction.

2.4 Transient Response of a Homogeneous Earth Containing Isolated

Anomalies
2.4.1 Introduction

In this section we consider solving the problem of finding the
time signal at a receiver location given the input time signal at a
transmitter location. This problem is important for characterizing

the time-of-flight measurement process used in geotomography. In this
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process the time it takes a pulse to travel from transmitter to
receiver is measured, and in this way the intrinsic velocity of the
medium can be obtained. The results in this section draw upon the
those obtained in the last section. We first consider using the

Green's function solution for a homogeneous earth.

2.4.2 Time Response of a Homogeneous Earth Using the Green's Function

Solution

The Green's function solution for a line source antenna in a
homogeneous earth was derived in the last section, this function is
plotted against tire in Fig. 2.16. It is useful for finding the
electromagnetic response to arbitrary time functions. For example, in

the GPEMS cross-hole radar system [38], one cycle of a 100 MHz sine

wave ls used as a transmission signal. This means that the source term

will take the form

J = sinot[H(t) - H(t - gﬂ)]. (2-49)

with @ = 2m x 100 x 10%. With this input function the right hand side

of the damped wave equation becomes

J 2n
= pwcoswt[H(t) - H(t - &)
yg—t- mocoswt[H(t) ( =]

+ psinot[s(t) - 8(t - %F)]. (2-50)

The electromagnetic response to such an input can be found by

convolution, as

E(p.t) = -G(p,t) * @ (2-51)
ot

Fig. 2.17 is the result of carrying out this operation numerically.
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Note that the first arrival time is at approximately 1.055 us, which is

the time that would be obtained by dividing the distance by the zero
conductivity velocity. Also note that the time of arrival of the first
peak (the quantity which would be measured in a TOF system) is
approximately 0.0025 us (1/¢ cycle) after the first arrival time. This
1s to be contrasted with the result for a 1 MHz sine pulse shown in
Fig. 2.18, where the first peak arrives about 30% slower than i1/s¢ cycle
of the source signal. This discrepancy can be resolved by referring
again to Fig. 2.7, and noting that although the velocity assuming zero
conductivity matches the true velocity at 100 MHz, this is not the case

at 1 MHz.
2.4.3 Fourier Transform Method for Finding the Transient Response

The method described above can not be used for finding the
transient response of a cross section of earth containing arbitrarily
shaped anomalies. However, we can use the results of the last section
in conjunction with Fourier analysis in order to solve this problem.
This allows the calculation of the time response of the electromagnetic
field at the receiving antenna given the input signal at the
transmitting antenna. The process involves the following steps:

a) Calculate the sinusoidal response of the earth containing
isolated anomalies over a range of frequency values starting at
frequencies close to zero.

b) Fourier transform the input signal (e.g., the sine pulse
mentioned previously) either analytically or using the fast
Fourier transform (FFT) algorithm.

c) Multiply the results of a) and b) together for each frequency
value selected.

d) Inverse transform the result of c) using the FFT algorithm.

Fig. 2.19 shows the responses of a homogeneous earth and a homogeneous

earth containing a tunnel. Two items of interest in this figure are:
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a) Although the magnitude response falls off rapidly at low
frequencies, it decays slowly above 100 MHz. Of course, this
behavior could have been predicted by referring to Fig. 2.1.

b) Although the homogeneous response is relatively smooth above
100 MHz, with the tunnel included, noticeable oscillations
occur in the response. These oscillations are sometimes
referred to as resonances, and are the result of reflections at
the tunnel wall causing cancellation and reinforcement of the
transmitted waves.

The spike in the plot for the tunnel at about 500 MHz is the result of
a numerical difficulty in calculating the complex Bessel functions at
this frequency. This does not seem to cause any errors in the results
that follow.

For the examples that follow, the input signal will be the sine

pulse of (2-49). Using the convolution theorem, its Fourier transform

S(w) = =% [ej'r(“’c"")/3 sinT(w, -w)/2 e°JT(“c+”)/2 sinT(w, +w)/2 ]
Jvzn K0T N T Tlogrel

(2-52)

where 1 (= Zn/uc) is the pulse duration time. We need only to multiply

this transform by the frequency response, and then inverse transform to
obtain the time signal at the receiving antenna. This operation was
performed for both the homogeneous earth, and the earth containing the
tunnel. The time responses are shown in Figs. 2.20 and 2.21. As can
be seen from the second figure, the tunnel causes multiple pulses to
reach the receiver. The first pulse seen is the result of the
electromagnetic ray traveling through the tunnel to reach the receiver.
This ray has the shortest travel time, since part of the distance
travelled is through ajr, which has a higher wave velocity than the
earth. After the first pulse arrives there is the interference between

this pulse and a pulse which has twice reflected inside the tunnel and




48

*indur asynd auls zHW OOl B JI0J Yyiiea snosuadowoy B jo asuodsar juarsuex] °z°z *814
SuUu ul awlj

osZ 002 oSt 001 os ()

r i i b e, \P A A A L F i i '8 ol — g ' A L — 1 A 'y Y on'
ZHIN 001 = Aduanba.y s
01 = AQaguuwisd 2AR0RY  t
w/S 100" = AjAgonpuoy
: WQZ = 9JUDISIP JOAIEO9Y | Z
ypo3 snoausbowon | sz- 9
- 3
! o
f @
. AP
°o m
- 1)
o
o ~—r
.
F 0
| Iy
-SZ o
. Q
-
Z . ssind nding I
- 0S

S & U GO & G W 0 B e D B BN G E G W e



o
3
*andut asynd
auts zHW Q01 © 103y [auuny e Sururejuod Yiles snoausdowoy B jo 3dsuodsai judrsuel] °[z°7 ‘314
sSu ul swlj
0S¢ ooc oS 001 0s 0
— A A ' 4 - A A ' A _ A A A ' — A s ' & — A 4. A A on'

ZHIN 001 = Adoudnbaiy -
0L = ApAnpwaed eAnoIRYy
w/S 100" = Ayanonpuoy |
WQOZ = 9OUDISIP JBAI9D9Y [

YHo3d ul duun) wi — GC—

20U 4P| -
£

wbis jo aun -t

X P21904431Q

(o]
PI8l4 O}08|3 PaZIIDWION

asind ndinQ




50

then is detected at the receiver. Finally, we see the pulse which has
diffracted from the tunnel ceiling and floor before reaching the
receiver. Surprisingly, this pulse has the largest amplitude.

Although this frequency domain method is of use for predicting the
transient response of a tunnel in the earth or any other buried circular
cylindrical object, it becomes impractical for arbitrarily shaped
objects in that it is very time consuming to use the volume current
method over a wide range of frequencies. In addition, the frequency
domain method only gives us information at a single receiver location,
and it might be useful to obtain the response over the entire
cross sectional region between the boreholes. For these and other

reasons, a ray optics approach is investigated in the next section.
2.5 Ray Optics Method
2.5.1 Introduction

In the ray optics approach the assumption is made that in a
homogeneous medium an electromagnetic wave follows straight paths from
the transmitter to the receiver. For heterogeneous media we still
consider the electromagnetic wave to follow straight paths although the
ray may be subject to refractions, reflections, and/or diffractions at
boundaries between different media. These effects will alter the
direction of the ray.

The value of the electric field can be determined at any point
along its ray path by using (2-30) and the large argument asymptotic

expansion for the Hankel function to get

1/2
B = el () (-gyp) ~ Teml [22177%00P, (2-53)

where the electric field is measured at a radial distance, p, from the
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line source transmitter. In order to find the electric field at a
point in a heterogeneous medium, we need to find the ray linking the
transmitter and the receiver after taking into account the effects of
refraction, reflection, and diffraction. These effects will be
discussed in subsequent sections. It is worth mentioning that in
heterogeneous media there will often be more than one ray path linking
transmitter and receiver. If such is the case, the electric field
should be calculated by summing the contributions from the different
paths.

Before discussing the details of ray optics, its importance in
the geotomography setting needs to be highlighted. First of all, the
calculated fields using ray optics will not be as accurate as those
obtained using the methods described above. Also, although it is often
true that the ray optics method is more computationally efficient than
the VCM, it is often much more difficult (i.e., time consuming) to
program, thereby nullifying any net computational advantage.

Rather, the main reason for considering the ray optics approach is
that in performing the inversion of cross-hole data (i.e.,
geotomography), the assumption is often made that the electromagnetic
wave follows ray paths between transmitters and receivers. Therefore,
two immediate reasons for studying ray optics are to address the
following questions.

a) Under what conditions is the straight ray path a good

approximation, and

b) If it is not a good approximation, is there anything that can

be done to improve the approximation?
With these questions in mind we consider some of the details involved in

the ray optics method.

2.5.2 Refraction and Reflection of Electromagnetic Waves in Lossy Media

Consider a ray obliquely incident on a boundary between two lossy
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media. The configuration is shown in Fig. 2.22. The incident,

reflected, and transmitted rays are assumed to lie in the x-y plane,

making the problem two-dimensional. The electric fields along the

three rays can be expressed as

E. = aine_jgxsx
E. = azEre-jﬂzga and
E, = azEte_szea
where

1)
E' = E e-ctgl'

£ = ysml;1 + xcosgi,

§, = ysin[g +p ] + xcos|& +p ],

E, = MEe®: %2,
£, = -ysing + xcosg ,
£, = 'YSin[§1+PI] + xcos[g1+pz],

]
E, = TEe%2%s,

= i +
ta ysml;2 xcosgz, and

§5 = vsin[g,+p ] + xcos[g +p ].

(2-54a)

(2-54b)

(2-54c¢)

(2-55a)

(2-55b)

(2-55¢c)

{2-55d)

(2-55¢)

(2-551)

(2-55g)

(2-55h)

(2-551)

I''and T are the reflection and transmission coefficients (factors), and

E is the value of the incident field at the interface.

ray, the direction of travel is along the 51 direction,

For the incident

but the ray

attenuates along the £1 directions. The reflected and transmitted

(refracted) rays have similar directions of travel and attenuation. As

can be seen from the figure, the incident ray is at an angle of gl from




53

‘eIpaW ASSOT OM] U33M33Q @dBJIIIUT
ue 1e pajdeljal pue paldaTjal Buraq saem aueld JUSPIOUT ue JO UOTIRIASNTT]

*
aT_ .y ‘
»
‘o

3 e

Z WNIQ3N

AV

NARLRRRR RN RANARAATAR

H
\
% ~3
~
A
‘o
\ '3
v & N
» >
'3
I WNIQ3N "
LI \

*Z2°C *3814




54

the normal to the interface. If the incident wave is nonuniform (i.e.,
the direction of attenuation differs from the direction of travel),

then 8, *P, is the angle from the normal at which the wave attenuates.
If the wave is uniform, then P, is zero. In this development it is

assumed that the wave starts out from the antenna being uniform, and
then when it encounters an interface it becomes nonuniform as predicted
by the equations above.

For an incident plane wave, the relations between the incident and

transmitted directions were derived in [39]. These relations are,

aisin(g1+pl) = “aSin(§a+Ph)' and (2-56a)

]

stingx gpsing, (2~-56b)

where x, and B, are different from the intrinsic constants (aoa' Boz)

in medium 2, and are found from,

282 = |, [® - Re(¥2)) + [¥2 - ¥2,|, and (2-57a)
2 _ 2 2 2 _ .2 .
2 = |¥, 1% + Re(y( ) + Y] - ¥ ! . (2-57b)

The symbol ¥ in the equations above is the intrinsic propagation
02

constant in medium 2. For the configuration being considered, the
waves are cylindrical since the transmitting antenna is a line source.
But, if the interface is assumed to be far from the antenna, then the
waves at the interface are locally plane waves. so that in this far
field case, the above equations can be used to find the reflected and
refracted rays.

The transmission and reflection factors were not derived in [39],
but are easily found by requiring the sum of the incident and reflected
electric and magnetic fields to be equal to the transmitted electric and
magnetic fields at the interface. This requirement results in,

r =I]..tL__nl!

. (2-58a)




55
2Ny,
T = , (2-58b)
i (%)
Nys = , and (2-58¢)
vt azcos(ga*rpj + JB cosg,
(2-58d)

= —-Jo
Nyi u1c0§T§1+p:§ + Jp cosg -

Fig. 2.23 illustrates how this theory can be used to determine the
field at a receiver using the ray optics approach. The ray travels a

distance p , and reaches the first interface. The transmission

coefficient at this interface can be calculated from the equations
given above. The propagation constant times the distance along this

first path will be defined by

7d1 =y d . (2-59)

However, over p,, it is defined by

Yda i czdzcos(pa) + jpadz, (2-60)

where P, is the angle between the phase (direction of travel) and

attenuation directions of the transmitted rays. Similarly, for the ray

along da' its propagation constant times distance traveled is defined
by

Y43 = °ad3°°s(93) + jssda' {(2-61)

Finally, by summing all length contributions, the electric field at the

receiver is given by , see also (2-40),

Y3, Y4,V da)
- 1/2 dys "da2 ‘da

Ercv .1211_1[2] e T1 T2 (2-62)
= e n Y% Ydz* Vds
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where T1 and T2 are the transmission coefficients at the first and
second interfaces. A similar formulation can be made for a ray which
reflects from an interface at an oblique angle, and then reaches the
receiver. In this reflection case, T1 or T2 in equation (2-62) would
then be replaced by a reflection coefficient.

Even in this two interface example presented here, it is not
difficult to see that the process of linking a transmitter with a
receiver over a path which involves refractions and/or reflections will

not be a trivial matter.

2.5.3 Diffraction of Electromagnetic Waves from a Lossy Wedge

Diffraction theory was developed as an approximate high frequency
technique to account for the fields which are present in the shadow
region of a conducting object [40], [41]. For a depiction of the
shadow region of a square cylinder, see Fig. 2.24. This theory
describes the total field to be the sum of incident, reflected, and
diffracted rays. No refracted rays exist since the object is conduct-
ing, and therefore cannot be penetrated by the electromagnetic rays.

The field at the receiver resulting from the diffracted ray is
found by calculating the incident field at the cylinder corner and
then multiplying this by a diffraction coefficient which is a function
of the angles (and distances) to transmitter and receiver locations.
For example, if the distance from the transmitter (receiver} to the
corner is p (p') with corresponding angle, ® (?'). then the field at

the receiver due to the corner diffraction is given by,

/2 -rp’
~JunI[ 2 1'"2 -vp C ooty € )
Ercv = < [ﬂ'yp] e D('P.‘P -Pop ) 77P’ (2 63)

where ¥ is the propagation constant of the surrounding medium and D()

is the diffraction coefficient function. The total field at the
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receiver is then the sum of the fields from the diffracted rays from
all non-shadowed edges of the cylinder, the field from any ray which
reflects from the side of the cylinder, and the field from the direct
ray from transmitter to receiver. Refer, again to Fig. 2.24.

Fortunately, this theory has been extended to diffractions from
wedges (corners) with finite conductivity [42], [43]). The field at the
receiver due to the edge diffracted ray is caiculated in the same way
as for the perfectly conducting object using (2-63), except that the
diffraction coefficient is also a function of the surface impedance of
the wedge. See (43, eqns. (9) - (15)] for a complete description of
the lossy wedge diffraction coefficient.

The surface impedance for the wedge (cylinder, in the present

case) is given by,

Na
Zsurt = 7, (2-64a)
- Jop -
na - [Ga,JQEa] ’ (2 64b)
- ) —64c
ne - [s%4ec] (2-64c)

where N, and n, represent, respectively, the intrinsic impedances of

the anomaly and the external medium. This surface impedance is the
effective impedance seen by the field at the interface to the cylinder
[41]. It represents an approximation to the boundary conditions at the
interface. This approximation is valid when the magnitude of the
refractive index of the cylinder is much greater than the external

medium. The complex index of refraction is giveu by,

o e e g 203

where ¢ and ¢ are the electrical parameters of the medium being
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considered, while €, is the permittivity of free space. The magnitude

of the index of refraction is plotted against frequency, conductivity,
and permittivity in Figs. 2.25 - 2.27. As can be seen from these
plots, for a background medium having electrical parameters which are

typical for dry soil (6=0.001 S/m, er=10), the anomaly must have a

conductivity greater than 0.1 S/m and/or a relative permittivity
greater than 50 in order for the index of refraction of the anomaly to
be at least twice as large as the index of refraction of the medium.
For these values, the surface impedance approximation gives good
results when simulating cross-hole data using diffraction theory.

For example, Fig. 2.28 shows the electromagnetic response for a
square cylinder in a homogeneous medium. The results were obtained by
calculating the electric field at varying depth in a receiver borehole
located 20 m from the transmitter borehole. The transmitting antenna
is 17 m below the top receiver. The earth between boreholes has

electrical) parameters of 6=0.001 S/m and sr=10. The square cylinder
has electrical parameters of 6=0.1 S/m and £r=15. It is 2 m on a side,

is at a depth of 9 m, and is at a horizontal distance of 11 m from the
transmitter borehole. Note how significant the diffracted field is.
Also plotted in this figure is the field that was reflected from one
face of the cylinder. The value of this reflected field must be found
using the reflection coefficient also based on the surface impedance

approximation, and given by,

Z cosé - 1
surf (2-66)

Zsurfcose + 1

where 6 is the angle of "ncidence measured from the normal to the
interface. This reflection coefficient is analogous to that obtained
from transmission line theory assuming that the line impedance is

normalized to unity.
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2.5. ¢ Summary of Ray Optics Results

It

has been shown that ray optics techniques can be used to

simulate cross-hole geophysical data. In this simulation process,

there are three cases of interest,

a)

b)

c)

Case I is a low conductivity cylinder (e.g., a tunnel) imbedded
in a homcgeneous medium. In this case one must consider
direct, reflected, and refracted rays which reach the receiver.
The method for finding the total field at the receiver was
discussed in Section 2.5.2.

Case II is a high conductivity cylinder imbedded in a
homogeneous medium. In this case direct, diffracted, and
reflected rays must be taken into account. The field at the
receiver can be found using the methods presented in Section
2.5.8.

Case 111 is a conducting cylinder in which the index of
refraction is not significantly higher than the surrounding
medium. Therefore, the impedance boundary approximation cannot
be used. However, by studying data from VCM simulations, it is
apparent.that significant energy is diffracted from the
cylinder edges. Therefore, ray optics cannot be used to

adequately model this case.

For cases I and Il above, ray optics can be used to predict the

ray paths the electromagnetic field follows in generating the data.

This can be used to determine the reasonableness of assuming the rays

follow a straight line path from transmitters to receivers. This

assumption is made in the algebraic inversion process described in the

next chapter. The straight ray assumption does not take into account

reflections, refractions, and diffractions the ray might undergo (of

course, this is not a bad assumption given no other aq priori

information).
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As an illustration of determining the validity of using the

straight ray assumption, refer to Fig. 2.29. This is a plot of the
electromagnetic response of a square cylinder in a homogeneous medium.
The parameters are the same as for Fig. 2.28, except that the
transmitter depth is 6 meters. Along with the curves using VCM and ray
optics is the curve obtained using a straight ray assumption. For this
last curve, the locations in the receiver borehole in the shadow region
of the cylinder indicate small values of the electric field. These
small values of the field are the result of assuming ray paths straight
through the cylinder (which is highly attenuating). By comparing this
'straight ray' curve to the other curves, the following observations
can be made:

a) Since the actual electric field (using VCM or ray optics
approximations) is much higher than the 'straight ray' field in
the shadow region, when the cross-hole data is inverted, the
apparent attenuation of the cylinder will be be much lower than
expected.

b) Since the actual electric field in the region adjacent to the
shadow does not abruptly return to the incident field value (as
does the 'straight ray' field), the apparent size of the
cylinder will be larger than expected when the data is
inverted.

¢) The peaks and nulls in the actual data outside of the shadow
region indicate a source of additive noise for the
reconstruction process.

In summary, the diffraction and reflection effects will cause

errors to be present in the reconstructed image. Some means of

reducing these errors will be discussed in the next chapter.
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CHAPTER III

IMAGE RECONSTRUCTION METHODS FOR GECPHYSICAL APPLICATIONS

3.1 Introduction

Now that several models for describing the propagation of
electromagnetic waves in the earth have been presented, methods for
determining the electrical characteristics of the earth from
measurements of received electromagnetic fields can be developed. Once
the electrical characteristics of the earth have been found, some
interpretations as to the composition of the earth can be made. For
example, if a region of high conductivity exists in the earth, then a
geophysicist might suspect an oil or mineral deposit in this region.

At this point the region would warrant further study.

For the techniques to be developed, it will be assumed that
measurements are made using a cross-borehole arrangement (although the
techniques will be applicable in situations when either transmitters or
receivers are mounted on the earth's surface). For an illustration of
the measurement process, refer again to Fig. 1.1. If the assumption is
made that the electromagnetic waves travel in the plane of the two
boreholes, then the problem is a two-dimensional one. In this case,
one can speak of the cross sectional image of the earth between the
boreholes. This image is, in fact, just some electrical parameter of
the earth (e.g., attenuation or index of refraction) as a function of
position (i.e., x and y coordinates). Although it may seem overly
restrictive to assume a two-dimensional model, this is an adeguate
assumption in many cases. For example, if the goal of a geophysicist
is to locate a tunnel in a region between two boreholes, then the axial
direction of the tunnel is probably known, and one would need only
determine its depth and horizontal distance from either borchole. In

this case, the reconstructed image would ideally show a cross section
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of the tunnel located in the earth. Usually some kind of gray scale is
used to generate the image (with, for example, different levels
representing different attenuation values), although contour and
three~-dimensional plots are also used.

Now that the image reconstruction problem has been described in
this geophysical setting, the objective is to solve the problem using
some of the models developed in the Chapter II. 1In particular, the

Born approximation and the rav optics models will be used.
3.2 A Comparison of Reconstruction MNethods
3.2.1 Straight Ray Approximations

The straight ray model is the crudest model used in Chapter II,
and accordinglv. it can be used to generate the simplest reconstruction
alegorithms. The assumption is made that the electromagnetic waves
travel along straight ray paths connecting transmitters and receivers.
Reflection, refraction, and diffraction effects are ignored.
Reconstruction techniques using the straight ray assumption are usually
based on finding a relationship between the line integral of the
parameter of interest and the measurement data. This relationship can
be obtained for continuous wave (CW) measurements in the following
manner (an analogous development for time-of-flight measurements can
also be made).

a) For the line source antenna, the electric field at a radial

distance p from the antenna is given by equation (2-53), which

is repeated here in a simplified form.

K e-uoe-jso' (3-1)




b)

c)

d)

where the far field approximation has been made, and K is a

complex scale factor whose exact form is given in (2-53).

In CW tomography, measurements are made of the received

electromagnetic power; therefore, only the magnitude of the

field is of interest. The magnitude of the field is given by
LRI (3-2)

If the assumption is made that o« is constant for small changes

in p, then the differential change in the electric field is

given by,
wp _-ap
AlE| = - IKI[cx e ", e ]Ap. (3-3)
75- 3P3/’2
from which we obtain
alE| _ _ [, + 25 |op. (3-4)

The above equation can now be used to find a line integral

relation between the attenuation and the electric field as,

Es r r
dlE] _ (2 do - L [ 2 gg' (3-5
IEO |E| J'ro—a(p) P 3Ir°P )
or
r
In(E/F;) - In(E/E) = [ *-alp) dp. (3-6)

0

where the line integral is over a particular radial ray path

70
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and 31 (Eo) is the magnitude of the electric field at a radial

distance r, (ro).
For the development above, the receiver is assumed to be at a

radial distance r,. The radial distance r, must be sufficiently large

for the far field approximation to be valid. If the term Eo/ro is

normalized to unity (by adjusting the gain of the transmitting

antenna), then the equation above reduces to

r
eV = [ t-alp) dp. (3-7)

0

The reconstruction problem is seen to consist of finding the
attenuation as a function of position, from knowledge of the electric

field intensity E:‘ It is easy to see that «(p) will not be uniquely
determined by measuring E‘. In order to resolve this uniqueness

problem, measurements must be taken over a large number of ray paths.
Fig. 3.1 illustrates a set of measurements taken along ray paths which
are at an angle of (n/2 - ¢#) with respect to the x axis. One such ray
path is labeled I, in the figure. This ray path is determined by the
angle ¢, and by its radial distance, p, from the origin. For this

ray path, (3-7) can be rewritten as,

In(E /T]) = [L(p")-u dae, (3-8)
or
In(E /F]) = - Ryla), (3-9)
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where EL indicates the magnitude of the electric field at the receiver
end of the line L, d2 is the incremental length aiong the line, and R‘

is called the Radon transform operator along the line L at the angle ¢,
If a set of measurements is taken for all p such that L(p,¢)
intersects the region, then this set is called a projection of the
region at an angle #. If projections are taken for all ¢ in the range
[o.n], then a(x,y) will be uniquely determined in the region [44], and
a simple and efficient algorithm exists (i.e., the convolution-
backprojection algorithm) for recovering the attenuation profile.
Unfortunately, in the present setting we are faced with an
incomplete data problem in that due to physical constraints,
measurements can not be made for all values of p or ¢. In particular,
Fig. 3.1 would not be accurate in that projections can only be taken at
values of ¢ close to 90 degrees (assuming that the boreholes are
located on the sides of the region). 1In this case, the convolution-
backprojection algorithm is inadequate for reconstructing the image of
attenuation values. 1In such limited data cases it is generally
accepted that the inversion problem is highly ill-posed, and therefore
some means of regularization or incorporation of q priori information
must be used in order to obtain meaningful results [45]. Methods for
better posing this inversion problem are discussed in a later section,
while some of the more well-known inversion techniques based on (3-8)

are discussed below.

A. Radon Transform Theory and the Convolution-Backprojection

Algorithm

The Radon transform theory developed here is taken from
Deans (44]. The description below will be brief since the inversion
process obtained is not useful for the limited data reconstruction
problem. The primary interest here is to show that a direct solution

of the reconstruction problem exists for the full data case. As
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mentioned, the Radon transform of a function in the x-y plane is the
set of integrals along all lines passing through the support of this
function. That {s,

Rla(x.v)] = [ atx.y)de (3-10)

for all lines L. This defines the Radon transform. We will make the
convention to call (3-10) the Radon operator when the restriction of
'for all lines L' is not imposed, although this distinction may become
fuzzy at times. In order to express (3-10) in a more usable form, we

define the line L in the normal form (Fig. 3.1),
p = xcosg + ysing (3-11)

where p is the normal distance from the origin to L, and ¢ is the angle
between the normal and the x-axis. We can use the Dirac delta function

to allow the integration to be performed over this line as

b

b
Riax(x,v)] = jaf a(X,y)8(p-xcosg-ysing)dxdy
a

b .b
- [ J atxvsp-<zie>)anay, (3-12)
a

where X = (x y)T, ¢ = (cos# sing)T, and it is assumed that the
attenuation is measured on the cross sectional region [a,b]xla,b]. We
are taking some liberties in this development, such as using the Dirac
delta 'function’', but this derivation can be made rigorous by appealing
to the theory of distributions (see, for example, [46]). The Radon
transform is seen to be a function of p, parameterized by the angle #.
It may be useful, though, to consider the transform as a function of

both p and #:
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Rlx(x,y)] = ;,(p) - alp), (3-13)

where '~' denotes the Radon transtform.
Here it is assumed that the Radon transform is a mapping from the

set of square integrable functions in the x-y plane to the set of

functions defined on the semi-infinite cylinder (RxS*). To make this
clear, let p=0, then the cylinder reduces to a circle and all integrals
are over lines through the origin in the x-y plane. The Radon
transform in this case will be the values of the line integrals at all
points ¢ around the circle.

The ultimate goal in developing Radon transform theory is to be
able to determine the function « in the x-y plane given its projections
which are usually discrete samples of the Radon transform of «. That
is, for the case at hand, we want to be able to determine the
attenuation constant function over the cross section of the earth given
a set of received electromagnetic power data points. Therefore, the
existence of the inverse Radon transform needs to be determined, along
with a method for calculating the inverse.

The development of the inverse Radon transform presented here is
based on the relationship between the Radon and Fourier transforms.
This relationship is known as the projection-slice theorem [44]. The
theorem is easily obtained by taking the Fourier transform of the
function g(p,#) (which is assumed to be the Radon transform of some

attenuation function) with respect to the p variable as

R(x)])" (p.#)

j;:[:[:“(x'y)s(P~<x.€>)dxdyej°pdp

g (p.g)

J:[:a(x,y) I:S(p--<!.€>)ej°pdpdxdy
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b.b

= Iaj c(x.y)eju(x’€>dxdy (3-14)
a

where '"' signifies the Fourier transform operation. Switching the
order of integration is justified since o is assumed to be a square
integrable function of compact support. In words this theorem states
that a Radon transform followed by a Fourier transform of the function
« is equivalent to taking the two-dimensional Fourier transform of .
This theorem leads to two methods of inverting the Radon

transform. The first follows immediately from (3-14), that is, take
the Fourier transform of the Radon transform (of «), and perform a
two-dimensional Fourier inversion of the result, thereby recovering o.

This results in
a(p.$) = F'[F(R{x(x,¥))}] (3-15)

where o is found as a function of polar coordinates. 1In (3-15), F
stands for the Fourier transform operator and F;‘ stands for a

two-dimensional Fourier inversion. This method has the drawback that
the attenuation is determined on a polar grid, and therefore must be
interpolated to find « as a function of (x,y).

The second method is the one given by Radon [5], but the

development here is patterned after Rowland [47]:

F,{F, (@}

amn
I F_(x)(pcosd,psing)
0’0 ?

x(x,y)

exp[2njp(xcos6+ysing) | pdpdo

i} o
I I Fé(a)(pcose.psine)
Q7 -

exp[2njp(xcoso+ysing)] |p|pdpdd
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“ - -3
= [ Fr@)p.0)1pl
o -0
exp[2njp(xcosé+ysiné) ) pdpdeo
" o0
= jJ' [1x| F(R(x))]}(p,6)
g7 ~o
exp[2njp(xcoso+ysing) Jpdpde
LI
= J F'[|x] F(R(x))](xcos6+ysing,e)de. (3--16)
0
If a back-projection operator is defined by
n
(Bh)(x,y) = I h(xcos6+ysing,9)de (3-17)
0
then (3-16) can be written as
a(x,y) = BF *[|x| F(R(«))] (3-18)
From the convolution theorem for Fourier transforms
-2nF Y[ x| F(R(f))] = ¥ D R(x) (3--19)
where ¥ is the Hilbert transform operator and P is the differential
operator. Then (3-18) becomes
alx,y) = 183D R (3-20)

which is equivalent to the inversion formula developed by Radon [5].
The convolution-backprojection method uses (3-20) as the basis for
inverting the sampled Radon transform. In this method a convolution is

used instead of the Hilbert transform and differentiation in (3-20)
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(see {48] for details).
8. The Algebraic Method for Solving the Image Reconstruction Problem

In this section a simpler method is presented for solving the
reconstruction problem. Note that in deriving this method, some
assumptions must be made which might not always be valid. This method
is easily developed by first discretizing the cross sectional region
being scanned [48]. Fig. 3.2 shows one such discretization obtained by
dividing the region into rectangular picture elements (pixels). If the
assumption is made that the attenuation is constant over each pixel,

then one can speak of an image vector of attenuation values as

= T =
SR CRR SN L (3-21)

th

where o is the attenuation value of the i pixel and 'v' denotes

matrix transpose. For the example in Fig. 3.2, the pixels are numbered
consecutively by rows, and n=16. For this discretization, the line
integral in (3-8) reduces to an algebraic equation. For the line

integral over the line L in Fig. 3.2, this algebraic equation is

jLa A = da, + da, + deg (3-22)

where the d's represent the ray path distances through the respective

th

pixels. If d is now defined by the distance the i ray path travels

ij

h

through the jt pixel, then the following equation is obtained
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th

where g, is the measurement data for the i ray path, and is equal to

ith

the left side of (3-8). Note that djj will be zero if the ray path

h cell.

does not intersect the jt
We are now in a position to develop a matrix equation relating

the measurement data to the unknown attenuation values by defining
- T .
b = [31 32 e 3m] , (3-24)

as the measurement vector, and

ij
as the path length matrix. The matrix equation is
b = Ax + e, (3-26)

where an error vector, e, has been added to account for measurement and
modeling errors. The basis for the algebraic method for image
reconstructions is (3-26). Algorithms which solve for the unknown

image vector, X, will be presented in Chapter IV.

3.2.2 Oiffraction Tomography

Diffraction tomography was developed as an improvement over
straight-ray methods in that ray diffractions (as well as reflections
and refractions) are implicitly included in the inversion process. As
mentioned in the Chapter II, the forward modeling method using the Born
approximation (the Rytov approximation can also be used) is the basis
for the inversion algorithm known as diffraction tomography [19], [37].

The integral formulation for the scattered field was given in (2-48).
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This equation is repeated here in simplified form
e5x) - [[ oxstxs(x x Az, (3-27)
A

where 0(X) represents the object inhomogeneity. The Green's function
in this equation is in fact the zero order Hankel function of the

second kind. It has an integral expansion given by [37]

et _J ut2ry,_; e
GUIZ-X'|) = 4 HI® (~jv, I1%-%'|)
= L iAx-x")+n(y-y')] 3.
wlone dx, (3-28)
where
nos g (2 . AR (3-29)

As in Chapter II, ¥ is the propagation constant for the external

e

medium. If this expansion is substituted into (3-27) we get

ES(x) - L HAO(X')Ei(X')j: L e IR MY ) g

(3-30)

In order to simplify the derivation, it is assumed that we have a

plane wave incident on the object of the form

- = IR
E'(X) =e ¢, (3-31)

where, for convenience, the plane wave is taken to be traveling in the
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+y direction. For an extension of these results to the case of a
cylindrical input wave front, see [37]. Under the assumption that the

scattered field is measured along the line y=90 , (3-30) becomes

N i aad —? ! : ) oyt
ES(x) - L jjA[4591%;) e '€V o IIMX X )My Y gpag

(3-32)
This equation can be Fourier transformed to yield (see [37] for
details)
LMo for |A
- 2n © 0 (An-7,). for [Af < 7,
E (A.lo) = (3-33)
o, for |[A{ > %

e

where n is given in (3-29). This result is in fact a generalization
projection-slice theorem in which the Fourier transform of the
received field is related to the Fourier transform of the object. In
this case, however, the Fourier transform of the object is taken over
circular arcs in the frequency domain (see [37] for an illustration).
One drawback to the diffraction tomography method is that it is
limited to objects which satisfy either the Born or Rytov
avproximations. This limitation will be discussed later in this

chapter.

3.2.3 Other Reconstruction Methods

The methods presented in this section are not as practical as
those described in the previous sections. Their limitations are mainly
due to excessive computational requirements in terms of time and memory

size. Therefore, although these methods may not be practical at the
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present time, it is worthwhile giving brief descriptions in

anticipation of evolving computer systems.

A. Moment Method Inversions

These methods have been developed for medical applications, where
it is desirable to use low-level electromagnetic waves as an
alternative to X-rays [49], [50]. The basis for moment method
inversion is the VCM (a type of moment method described in Chapter I1)
used for solving the problem of scattering from an arbitrarily shaped
cylinder. The problem was solved by considering the total field to be
the sum of an incident field (in the absence of the cylinder), and a
scattered field. The unknown scattered field was then represented as a
series of pulse basis functions over the area of the cylinder. This
scattered field was then substituted into an integral equation of the
form of (2-46). After some manipulations, the scattered field is
obtained via a matrix equation relating the scattered field, incident
field, and the cylinder geometry.

For the inverse problem, the assumption is made that the magnitude
and phase of the scattered field are known from measurements, and the
goal is to find thLe location and characteristics of the scatterers.

The scatterers are the small circular cylinders into which the region
is divided (refer, again, to Fig. 2.16). The inversion method consists
of (pseudo-) inverting the matrix equation to tind the scatterers.

This method has the following difficulties:

1) For a large cross sectional area, the matrix involved in the
solution will be very large, resulting in numerical problems.
Additionally, the authors in [49] noted that the matrix becomes
more ill-conditioned as its size increases.

2) In [49] and [50] the authors assumed scattering of a planc
wave. The cross-borehole geometry being considered here

involves the scattering of cylindrical waves originating from
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multiple sources (transmitting antennas). The challenge would
be to use the solution from each transmitter as some kind of q
priori information to aid in solving the inversion of
successive transmitters.

3) Inherent in this inversion process is the need to measure hoth
magnitude and phase of the received signal. However, phasec
measurements are generally more difficult to obtain than
magnitude measurements.

In spite of these difficulties, the moment method inversion
technique has the advantage of accounting for diffraction (as well as
reflection and refraction) effects without being limited by the
restrictions of the Born or Rytov approximation. Therefore, it is an

attractive method which might be useful in the future.

8. Mcdel Matching Using the Ray Optics Method

The inversion algorithm being proposed here is shown in block
diagram form in Fig. 3.3. The basic idea is to attempt to match the
output of a ray optics simulation program to actual field measurement
data. This method is similar to that discussed in [51], where the
authors were concerned with inversion of seismic data. The differences
between their approach and the one given in this section are summarized
below.

1) In Fig. 1 of [51], the authors consider matching the model to
the data through human intervention. Here, it is suggested Lo
perform this model matching process using a computer.

2) In discussing forward modeling techniques, the authors in [51]
mention ray optics methods, but do not include diffraction
effects. These effects will have major impact in many cases,
and therefore are not ignored here.

The major feature of the method being presented is that it is

based on ray optics techniques, which when diffraction effects are
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included, afford an accurate and efficient forward modeling algorithm.
Note that although a forward modeling algorithm such as the VCM could
be used instead of ray optics in this procedure, it is so
computationally intensive that it would make the method infeasible.

The characteristics of this inversion method are listed in the
following.

1) The main assumption is that the region under study is
homogeneous except for a single scatterer (anomaly) and that
the electrical characteristics of the background and scatterer
are known.

2) The model is adapted by placing a grid over the cross sectional
region, and then locating the scatterer at successive locations
on the grid.

3) For each location of the scatterer, the simulated measurement
data is compared against the actual measurement data, and tic
location of the scatterer giving the smallest error is saved.

4) After the smallest error location is found, the process can be
repeated over a more finely gridded area centered on this
location. In addition, the size and shape of the scatterer can
also be adjusted to minimize the error.

The assumption in 1) may seem overly restrictive, but it is
possible that a geophycisist has some reason to suspect a particular
kind of anomaly {(e.g. tunnel or ore deposit) in a homogeneous medium,
and would therefore know beforehand its characteristics. 1In the case
of a tunnel, he may even know its approximate size and shape.
Additionally, this method could be used in conjunction with some other
inversion algorithm in order to refine estimates of an anomaly's
location, size, and shape (this procedure will be discussed in more
detail in Chapter V). Also, the assumption of a single scatterer could
be relaxed by using the method iteratively to find all scatterers. O0f
course, this would complicate the modeling since the interactions

between scatterers would have to be taken into account.
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In order to justify modifying the model by moving the cylinder on
a grid, one would have to show that the measured field data uniquely
determines the location of the cylinder. In addition, one would have
to show that for small changes in the cylinder location, the measured
data experiences a small change in some norm. Certainly, if the
location, size, and shape of the cylinder were all free to change, then
the amplitude measurement data would not uniquely determine the
cylinder for a single transmitting antenna. Whether this remains true
for measurement data from multiple transmitter locations is still a
topic of open debate [52]. As for the question of the effect of small
changes in the cylinder location, we do know that the diffraction
coefficient [43) is a continuous function of angle and distance.
However, it would be very difficult to assess the effect a change in
location has on the total field (which is the sum of direct,
diffracted, and reflected rays). Some indication that a small change
in location means a small difference in the total field can be given by
considering the scattering from a circular cylinder, which was
presented in Chapter 11.

The scattered field from a cylinder was given by (2-37), and is

repeated here for convenience
s = (2) (21 (_ _
ESp) = E dHE () ep)Hi®t (-Jvepy). (3-34)

where the origin is taken at the cylinder axis. Chapter 11 notes that
for the cases we are considering, only a finite number of terms are
needed in the summation. To simplify the analysis, we assume that the
transmitter, cylinder axis, and receiver are colinear, and that the
cylinder is moved a distance Ap along this line. The Hankel functions
in (3 34) are analytic off the negative real axis, and, subsequently, 4
finite sum of these functions will also be analytic in this region.

Theretfore, (3-34) can be expressed as
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ES(p) ~ f(p.py). (3-35)
where f is an analytic function equal to the finite sum. From this
one can obtain
ES(p+ap) - ES(p) = f(p+ap,p -8p) - f(p.p;)
e f(p+rap.p, -ap)-f(p.p,)
ap°
- ap2 2L (3-36)
9PoP ¢

which, since f is analytic, shows that small changes in the location
imply small changes in the received field. Of course, to make this
analysis complete, the above calculations would have to be performed
for arbitrary transmitter and receiver locations. In any case, (3-36)
gives some confidence in the method. In support of this, Fig. 3.4
shows the effect on the total field of moving a square cylinder 1 m
horizontally in both directions. The results add credence to the
claim, since only slight changes in the field are observed.

In testing for a minimum error we choose the norm for square

integrable functions given by
GE-gli)? = [ ie(y) - ely)i®dy. (3-37)

Since the received field will be measured at discrete points in the

receiver borehole, this norm is approximated by

z

(ne-gll,)* = Zfyg) ) - gly;) 2. (3-38)
=1
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It is worth mentioning that this method does have a shortcoming,
which is the same as that of the ray optics method discussec in the
Chapter 11. That is, the diffraction theory being used (refer to
Chapter II) is based on the impedance boundary approximation. This
approximation will be valid for higher conducting anomalies in a
homogeneous earth, but will not be valid for lower conducting
anomalies. However, the method will be applicable in those cases for
which the approximation is a good one, and will be even more valuable

if diffraction theory is extended to cover the lower conducting case.

3.2. 4 Conclusions

In this section some methods for inverting geophysical data have
been presented. The majority of these techniques were originally
developed for medical imaging, and therefore might not be well suited
for geophysical applications. In particular, the convolution-
backprejection algorithm does not perform well when only an incomplete
set of data is available, which is typically the case in geophysical
tomography. The two main methods that do appear to work well in the
geophysical setting are the algebraic method using the straight ray
approximation, and diffraction tomography using either the Born or
Rytov approximations.

The major limitation of the algebraic method was noted to be that
the method ignored diffraction, reflection, and refraction effects,
while diffraction tomography is only applicable for media containing
slight inhomogeneities (that is, inhomogeneities whose electrical
characteristics do not differ widely from the background).

To put these limitations into perspective, Figs. 3.5 and 3.6 show
calculated electric field responses of a circular cylinder imbedded in
a homogeneous medium. Each figure contains plots of the responses

using the exact solution, the straight ray approximation, and the Born
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approximation. In both figures, the background medium is the same,
while the cylinder characteristics are different. Fig. 3.5 is for the
case of a slight inhomogeneity in that the conductivity is 0.002 S/m
(the background conductivity is 0.001 S$S/m) and the relative
permittivity is the same as the background. As can be seen from the
data in this figure figure, the Born approximation matches the exact
solution quite closely, while the straight ray solution is in error.
For this case, one would expect that reconstructions using diffraction
tomography would do very well. Fig. 3.6, on the other hand, is for a
strongly scattering cylinder having a conductivity of 0.05 S/m and a
relative permittivity of 15 (the background's is 10). As can be seen
from this figure, the straight ray approximation underestimates the
size of the null behind the cylinder, and overestimates the attenuation
of the cylinder because it ignores diffraction of the fields. However,
the Born approximation is badly in error for this case, since the
scattered field is so large. For most cases, geophysicists are more
concerned with detecting and locating large contrast anomalies (i.e.,
large scatterers), and ignoring slight inhomogeneities, therecfore, it
is felt that the algebraic method is the best inversion method for this
application. For this reason, in the remainder of this dissertation
the main emphasis will be on the algebraic method for geophysical

inversions.

3.3 The Il1-Posed Nature of Geotomography

3.3.1 Introduction

There has been much interest in ill-posed problems, see for
example, [45),(53]),(54],(55],(6],(56]. The description of ill-posed
problems was first given by Hadamard |6). The definition of an
ill-posed inverse problem is one that 1s not well posed. For the

operator equation:
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Ax = b (3-39)

the problem of solving for the unknown vector x given data b and the
mapping A (A is a matrix in the algebraic reconstruction method) is

well posed if

a) An inverse (denoted by A™!) exists for A, and

b) The inverse is continuous.
For the limited data tomography problem, an inverse does not exist.
This is easily seen by considering the Radon operator given by (3-10)
which measures the attenuation over the line L. This operator will
have a non-zero kernel consisting of (at least) all two-dimensional
functions (attenuations) which are defined in the region but are only
non-zero off L. Recall that the kernel of an operator is the set of
all vectors (functions) which are mapped by the operator to zero. The
Radon transform operator (where all lines L are considered) has an
inverse which was found previously using the projection theorem.
However, the inverse is not continuous when the mapping (A) is from the

set of square integrable functions on the region (Lz([a.bjx[a.b]) into

square integrable functions on the unit cylinder [57]. The authors in
(57]) do show that the inverse is continuous when the mapping is taken
to be between Sobolev spaces.

So the tomography problem in its original form is ill-posed. Our
main interest here is in the algebraic reconstruction method for which
the mapping, A, is an mxn matrix, where m is the total number of
measurements and n is the number of pixels in the reconstructed image.
Since it is assumed that m>n (an overdetermined system of ecuations), A
does not have an inverse. We can, however, consider a generalized
inverse which when post-multiplied by the measurement vector results in
a least squares solution of (3 -39) (See Appendix B for a discussion of

least squares solutions). This generalized inverse has the form
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A* = (ATA)T'AT, (3-40)
such that
J(x) = [|AA"x - b (3-41)
is a minimum. In this dissertation, |l¢|| refers to the Euclidean norm

unless otherwise stated (see Appendix B). The matrix A* is obviously
continuous if the inverse on the right side exists (i.e., the rank of A
= n). However, small errors in the measurement vector may imply large
errors in the least squares solution as can be seen from theorem 5.2.4

in Stewart [58]

+ + b-b
ILA_D__:_ML s K(A) h__‘ll. (3-42)
1A% bl X,
where
x(A) = JIAll J1A*) . (3-43)

The vector b is the measurement vector with added error and b1 and b1

are the projections of b and 8 onto the range of A. What this theorem
says is that the error in the solution is bounded by some measure of
the error in the measurement vector times the condition number of the
matrix. If the matrix is nearly singular (i.e., close to some
singular matrix), then the condition number is large and the equation
can be considered to be in some sense ill-posed. However, numerical
analysts usually refer to the system as being ill-conditioned.
Unfortunately, the situation is even worse for cross-hole
tomography in that the matrix A does not even have full column rank.

In fact an upper bound on the rank is given by [59]




96

rank(A) § n - %(sz- 1), (3 44)

where, N the number of vertical zones, is the number of pixels in

vz’
each row of the discretized image (see Fig. 3.2). A generalized
solution still exists which can be obtained using the singular value
decomposition (see appendix B). 1In any case the problem is ill-posed,
so we discuss the method of regularization for better posing the

problem.
3.3.2 Regularization
A. Introduction

Regularization consists of methods for solving a problem similar
to the original inverse problem given by (3-39), but with solutions
which are not as sensitive to errvors in the data. In fact, the method
of least squares mentioned above is one such technique in that it gives
an alternate description of the solution. 1In addition, for an
inconsistent system of equations there is no x such that Ax=b, and in
this case we are restricted to finding an x which minimizes ||Ax-bj| .
Methods also exist for restricting the space in which solutions are to
be sought. This might come about by enforcing constraints that the
solution has to satisfy (e.g., a positivity constraint by which all
pixels in a solution image are required to have positive value).

In this section the method of regularization will be restricted
to methods of finding a set of approximate solvers for (3-41)

(501, [53], [54], [55]., (56], [60]. What is desired, is a solution of

the form

x = A' b. (3-45)
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Since A" does not exist, we attempt to find Ay such that
xy = A? b, (3-46)
and
lim x,, = x (3-47)
o ¥

where ¥ is known as the regularization parameter. Unless otherwise
indicated, by a solution we mean a least sqguares solution in the
following. 1In general the limit in (3-47) does not really exist

because Ay will not exist as ¥20. The goal is to choose ¥ sufficiently

small to get a good approximation to the solution, yet sufficiently

large such that Ay remains bounded and does not magnify errors in b.

Three methods of regularization will be discussed:

1) Tikhonov regularization,

2) the truncated singular value decomposition, and

3) truncated iterative procedures.
It will be seen, however, that these methods are related. Although
these different techniques will be described for an mxn matrix, they
are applicable to a general linear operator between Hilbert spaces.
This setting might be important if, for example, discretization wcre to

be performed after regularization (see [60) for further details).
8. Tikhonov Regularization

As previously stated, our interest is in solving (3-41). That is,
find an approximate solution, x _, such that "Ast-bll2 is a minimum

(see appendix B for a more detailed discussion). As was previously

noted, this problem can be very ill-conditioned in that small errors in
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b can lead to large errors in X o Tikhonov [54]) suggested trying to
minimize the alternative functional
J(x) = ||Ax-b]| + ¥liMx||, (3-48)

where M is an nxn matrix which we will take to be the identity matrix
in the following. J(x) can be minimized with respect to x by taking

its derivative with respect to x as

QJ(x) _ 3 <Ax-b,Ax-b> + P<x,x>
9x ox

-2b"A + 2xTATA + 29xT, (3-49)

and then setting the derivative equal to zero

-bTA + xTATA + yx; =0

x;(A‘A + vI) = bTA

bTA(ATA + yI)7*

Xy

X

y (ATA + 91) %A, (3-50)

where 1 is the nxn identity matrix. Equation (3-50) is also referred
to as ridge regression or the Lagrange multiplier method. The probliem
then reduces to optimally choosing the regularization parameter ¥.

Some methods for choosing ¥ will be discussed later.
C. Truncated Singular Ualue Decomposition (SV0)
The SVD is a well known expansion for an operator (e.g., a matrix)

[61], (see also appendix B). The decomposition for the matrix A is

given by
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A = usvVT, (3-51)

where U (mxm) and V (nxn) are orthogonal matrices, and S (mxn) has the

form
s = [%] (3 52)

where the O represents a matrix having all zero elements and of
dimension (m-n) by n, and £ is a diagonal matrix (of dimension n) whose

elements (called singular values)

are the square roots of the eigenvalues of ATA. Using this
decomposition, the original equation can be transformed into an

uncouplied system of equations as (45}

c
w
<
-4
]
n
o
+
@

SX'= b'+ e’', (3-53)

where the error in the system has been represented by e and x' and e

are the representations of x and b in the new coordinates. In

deriving the above, we have used the fact that, UTU = I. Since S has

the form given in (3-52), it is easy to solve for x' as
€' = L (B] + €)), (3-54)
i

where the 6. are arranged in descending order. It is assumed that e'

i
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is a random vector with all of its elements having similar magnitudes.
We also assume that the elements of x' have similar sizes. This may be
an unfair assumption, and actually it is desireable to have the largest
components of x' correspond to the largest singular values. With these

two assumptions in mind, it can be seen that the B; decreases with 1,
and at some point the ei will dominate in (3-54). [t is at this point

that the SVD is truncated as

1 ! ' .-
. { Gi(Bi + €5), for i <N
1 0 , for i > N

where the integer 'N' is chousen as suggested above. Transforming back

to the original coordinates, the following formula for the solution can

be obtained

N
= i ,7 3-
X jfl ciuj(b+e) Vi (3-56)

where u: is the ith row of U, and v, is the ith row of V. Note that 'N'

1 1

be less than the rank of A, or a divide exception may occur. Tikhonov

regularization may be used with the SVD to obtain a formula similar to (3-56)

(see Appendix B for details)

u}(b+e) v (3-57)

i 3

Note that ¥ has effectively damped the effects of the small singular
values, consequently the name 'damped least squares' has also been

applied to Tikhonov regularization.
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0. Truncated Iterative Procedures

It is a well-known phenomena that some iterative procedures which
find a solution to (3-41) converge to a gouod solution and then diverge
from this solution. This behavior has been observed in the algebraic
reconstruction technique [59], the method of conjugate gradients, and
the method of successive approximations [55]. It appears that in a
fashion similar to the SVD, the noise tends to dominate as the solution
progresses.

In a general iterative scheme, the solution at the (k+1)st step

is given by

Xey ~ 1(ABX), k = 1N (3-58)

where f(o) represents the particular iterative algorithm and N is the
number of iterations to be performed. The regularization simply
consists of choosing N, the number of iteration steps sufficiently
small to minimize the effects of error in the measurement data, yet
sufficientl large to get a good approximation to the solution. Methods
for choosing N will depend on the iterative algorithm, and will be

discussed later.

3.3.3 Constrained Solutions

The geotomography problem has been noted to be ill-posed, which
in this setting means that the solution does not depend continuously
on the data. For example, one could find a set of solutions to the
problem which do depend continuously on the data, then it would be
best to search in this set for the unknown image. This would be one
method of constraining the solution. In fact, most regularization
schemes attempt to accomplish this goal.

In addition, we can also constrain the solution based on our
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underlying knowledge of the problem. For example, we might want to
search for (solution) images having attenuation values within a certain
range, or parts of an image to have attenuation values equal to some
previously known value. 1In this way, the resulting image will one that
satisfies the physical constraints imposed upon it. The imposition of
these physical constraints may also produce a regularizing effect on
the solution [60]. However, our primary interest is in imposing the

constraints in order to obtain a physically realizable solution.




CHAPTER 1V

NUMERICAL ALGORITHMS FOr IMAGE RECONSTRUCTIONS

4.1 Introduction

In this chapter we will develop algorithms for solving the system
of equations arising from the discretized (image) tomography model. As
discussed in Chapter 111, the first step in regularizing this problem
is to search for a least squares solution to the problem. However, for
the case at hand, even a least squares solution will be subject to
large variations as result of relatively small changes (often due to
noise) in the measurement data. Therefore, it will be important to
insure that the algorithms developed are relatively insensitive to
noise in the data. Finally, the algorithms must be able to
incorporate g priori information in the form of inequality constraints
on the solution. This will in general provide a further regularizing
effect on the solution.

Although computational requirements of the algorithms are a
concern, the computations are usually performed ‘off-line', so speed
is not a major consideration. However, the solution image vectors may
be composed of a large number of pixels, so that algorithms which can

operate 'out-of-core' are desireable.

4.2 Least Squares Solutions

4.2.1 Introduction

As stated in the Chapter 111 we consider the problem of finding a
solution vector x which minimizes ||Ax-bj] as a means of solving the
discretized tomography problem, given by equation (3-26). For a
general description of least squares solutions, see Appendix B. The

name "least squares"” comes from the fact that the norm being used is
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the euclidean norm. This norm is given by the square root of the sum

of the squares of the elements of a vector. The minimization could be

performed using some other norm such as the l1-norm or e-norm, but the

2-norm or euclidean norm has some important theoretical and

computational advantages. Some of these advantages atre listed below

a)

b)

The 2-norm has an associated inner product (i.e.. ||x|® =
<x,x>), which adds a geometric structure to the problem. In
addition, the problem can be solved by setting to zero the
derivative of <{Ax-b),(Ax-b)> resulting in the consistent
normal equations (see appendix B) which are sometimes easier to
solve. This inner product (which is not available with 1-norm
or «-norm minimizations) affords additional computational
advantages. See [62] for a discussion of these advantages and
an overview of least squares methods.

The least squares solution arises naturally when a maximum
likelihood estimator is used to solve (3-26) (63]. The maximum
likelihood estimate is the one w..cin maximizes the conditional
probability density fuction p(bix). The vector b is the data
vector, and x is the unknown model vector. 1If the assumption
is made that the error vectur, ¢, in (3-26) is zero mean
Gaussian distributed, then the maximum likelihood estimate of X
is given by [63]

_ AT ¢ “1,T- 8 A
X = (A'R,A) "AR.D, {(4-1)

where Re is the covariance matrix for the random vector e. 1If
it is further assumed that the elements of e are uncorrelated.

and have identical variances &%, then (4-1) reduces to

x = (ATA) *ATb. (4-2)
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Note that (4-2) gives the least squares solution via the
generalized inverse, (3-40).

Therefore, from the discussion in the Chapter III on
regularization, we are led to solving the approximate problem of
minimizing the norm of the residual. In addition, from the reasons
cited above, the norm we will use is the euclidean norm which results
in a least squares solution.

The least squares problem for limited data reconstructions has
some particular requirements which may not exist in other settings.
These requirements need to be kept in mind when developing algorithms
for solving the reconstruction problem. Some of these requirements
are listed in the following.

a) The reconstruction problem often lJeads to large matrices and
vectors. For example, a cross-hole arrangement for scanning a
region 20 meters on a side will require an image vector having
400 elements for a 1 meter pixel size. The associated distance
matrix will have 400 columns and over 400 rows (for an
overdetermined system of equations). For configurations
resulting in such a large distance matrix, it may not be
feasible to store the matrix in core memory. This requirement
would preclude the use of inversioﬁ algorithms which operate
directly on the distance matrix.

b) In addition to being large, the distance matrix often has many
elements equal to zero. This 'sparseness' is due to the fact
that each ray will intersect only a small percentage of the
pixels in the region. It is important to develop algorithms
which can take advantage of this sparseness to reduce computer
memory and time requirements.

c) It will be necessary to incorporate the theory of
regularization, discussed in the Chapter IIl, into any least
squares algorithm developed.

d) It is often necessary to constrain the solution vector (i.e.,
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image) to have non-negative values, or values in some specified
range.

All of these requirements will be considered when designing the image

reconstruction aigorithms in this chapter.

#4.2.2 Alternate Oescriptions of the Least Squares Problem

A. Introduction

Because of the geometry involved in the least sqguares solution,
there exist other systems of equations which when solved also yield a
least squares solution. These alternate descriptions are important for
the computational advantages that they possess. We list some of the

other descriptions and point out their computational advantages.

8. Normal Eguations

The normal equations are derived in Appendix B. They are repeated

here in matrix form for convenience

ATax = ATb. (4-3)

This equation is the result of requiring that the residual vector of
a least sqguares solution is orthogonal to the columns of A. This
equation has a number of computational advantages over solving the
original equation, Ax=b. The advantages are listed below.

1) If round-off errors are neglected, (4-3) represents a
consistent set of equations. This is especially important when
using the projection method [64) (also known as the ART
algorithm) for finding a solution since this algorithm only
converges when the set of hyperplanes given by the individual

equations intersect at a single point. This fact will be




2)

3)
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discussed later when the projection method is fully described.
Equation (4-3) has n equations with n unknowns. For m>n (an
overdetermined set of equations), (4-3) will require less

computational labor than the original equation.

The coefficient matrix (ATA) in (4-3) is symmetric, positive
semidefinite. This is often a requirement in using gradient

algorithms for finding a least squares solution.

The normal equations do have two disadvantages that are not so

deleterious if they are given proper attention. These disadvantages

are:

1)

2)

It is well-known that forming the normal equations results in a
squaring of the condition number of the system of equations

{58]. This follows easily from

k(ATA) = x(A)x(A) (4-4)

where k(o) is the condition number of the given matrix as
defined in Appendix B. As Stewart [58] points out,this problem
may be alleviated by performing the computations in double
precision.

Forming the normal equations will, in general, result in a loss
of sparsity in the coefficient matrix. This will be a problem
when the size of the problem is sufficiently large that it is
more efficient to use the sparseness to reduce storage and time

requirements. This problem may be avoided by using an

iterative scheme where ATA does not have to be explicitly

formed.

The normal equations should be considered as a viable method of

solving the least squares probiem. However, the disadvantages listed

above should be kept in mind when using this technique.

C. Iterative Refinement
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The following augmented matrix equation was studied by Bjorck {65)

as a method of improving a least squares solution

However, it may be useful to solve (4--5) directly for the least
squares solution. This method is similar to the normal equations in
that the coefficient matrix is symmetric, and that use is made of the
fact that the residual vector is orthogonal to the columns of A. Note
that the new coefficient matrix in (4-5) need not be explicitly formed
if an iterative procedure is used to solve (4-5). However, using
{4-5) has the disadvantage of requiring the solution of a larger set
of equations. Using (4-5) may also have the same conditioning problem
as the normal equations. Bjorck (65] has shown that the condition
number of the new coefficient matrix lies between the condition of A

and the square of the condition of A. [f for a particular geometry

the condition number can be determined to be lower than ATA, then

(4-5) may be used in lieu of the normal equations.

4.2.3 Weighted Least Squares

A. Introduction

When comparing the maximum likelihood estimate and the least
squares solution at the beginning of this chapter, a noise covariance
term was used. This term was eliminated from (4-1) by assuming that
the elements of the noise vector are uncorrelated and have equal
variances. We now drop the assumption that the elements have equal
variances. Rather, it is assumed that there exists a priori knowledge

that some of the equations in the model are more reliable than others.
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Two practical examples of this q priori{ knowledge will be presented in
this section. 1In this case, the inverse of the noise covariance matrix

is replaced by a weighting matrix W. This matrix has the form

1
W o= -0 (4-6)

th

where the scalar Wi will weight the equation corresponding to the i

ray path measurement. The least squares minimization problem now

involves finding the soiution X,is such that the functional

Iy s (%) = IW(ax, o - B, (4-7)

is a minimum. Note that if there is a unique solution to (4-7) [i.e.,

beR{A)], then X = Xye 0f course, it would be overly optimistic to

hope for this to happen in practice. The weighted normal equation

obtained from (4-1) is found to be

ATwAx = ATwb (4-8)
8. Path Length Weighting

We now address the problem of determining the diagonal elements of

the matrix W. One method often suggested is to make Wi inversely

th measurement. This

proportional to the standard deviation of the i
process would obviously give greater weight to the more reliable
measurements. The major drawback to this method is that the statistics
of the measurement data are not usually available. We suggest a more

elementary means of weighting by letting
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wy T dj (4--9)

th

where di is the distance the i ray travels from the transmitting

antenna to the receiving antenna, and « is some positive constant which
will be dependent on the geometry of the problem and the amount of
noise in the measurement data. Note that a type of path length
weighting was also used in [11] in conjuction with the algebraic
reconstruction technique (ART), but using the weighting method (4--6) is
more flexible since we are not restricted to single inversion
algorithm. On the average, the received signals resulting from shorter
paths have a greater signal to noise ratio than those from longer
paths. Thus, this type of weighting is attractive since it is expected
that measurements resulting from shorter paths will be more reliable.

In practice, it is more useful to normalize dj by dividing it by

the shortest possible distance, d, to get
di i = ¢
W, = |— (4-10)

This WLS method is easy to implement on a computer since the A matrix

contains the path length information. In fact, dj is found by summing

all of the elements in the jth row of A. As noted above, the constant
o should be chosen with consideration to the amount of noise in the
measurement data. To understand this relationship, the effects of

adding noise will be investigated in more detall later.
C. Estimated Received Power Weighting

It has been shown {66] that the geotomography problem can be

better posed by calculating estimated received powers. The procedure
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is to use a preliminary estimate of the attenuation over the region
(i.e., the image) and substitute this into the forward equation given
by (3-6). The system of equations is then modified by eliminating
those equations whose measured received power differs significantly
from the estimated power. The criterion used in (66] was to select a

constant k such that if

* 1
>P > P path is retained
rec; recy k rec; (4-11)

otherwise path is eliminated

k P

th * .
where Preci is the measured power for the 1 path and Preci is the

estimated received power. This procedure has the advantage of removing
equations which may not accurately model the geotomography problem. but
has the disadvantage that in removing equations (i.e. rows of A) the
rank of A may be decreased. We propose here to retain all paths, but
inversely weight those paths which are suspect according to (4-11).

Applying these results, a new W matrix is obtained with
W - ety (4-12)
where w; is chosen as in (4-10) and gi is given by

Preci - Pruc.[
1 (4-13)

or
[N
n
-
1
-

rec

if the path met the elimination criterion in (4-11). Otherwise. ;i is

set to unity so that the weighting is unaffected by this procedure.

1t is seen that solving the underground reconstruction problem
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using weighted least squares is a four step process:
1) The weighting matrix is formed as in (4-6) using path length
weighting.
2) The weighted normal equation (4-8) is solved using some least

squares algorithm to find a cross sectional ima.c, X,is

3) This cross sectional image is then used to calculate estimated
received powers and a new weighting matrix (4-12).
4) Equation (4-8) is now solved using the new W matrix resulting in

an improved cross sectional image.
0. Illustration of the Effects of Additive Noise

1f the assumption is made that the noise is additive, white and
Gaussian (AWGN), then a signhal-to-noise ratio can be defined after Ney,

et al. [67] as

i
SNR = 20log, Hr—'f"ll} (4-14)

where Ej is the vector whose elements are the magnitudes of the
electric fields incident at the receiving antennas, and n is a normally
distributed pseudo-random noise vector.

Fig. 4.1 shows the predicted electric field magnitude, the
electric field with additive noise, and the random noise vector, all
plotted versus borehole depth (in the receiving borehole) for a
cross-hole configuration with a homogeneous earth. The signal-to-noise
ratio was chosen to be equal to 30 dB. As can be seen from the plot,
the additive noise is less significant at those receiver locations
directly opposite the transmitting antenna than for those locations
near the top or bottom of the borehole.

This example gives justification for using the WLS method in that
those paths with the shorter ray distance (from a given transmitter to

a given receiver) will on the average have the higher signal-to-noise
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ratio. These 'reliable' paths will then be given stronger weighting,
and therefore will have greater influence on the reconstruction.

Also, note that as the amount of noise increases, the measurements
resulting from the longer ray paths will become less reliable when
compared to the shorter ray path measurements. Therefore, for
applications where the magnitude of the additive noise is =2xpected to
be large. one should use a greater value of o« in (4-10) than in cases
where the noise is not expected to be significant. However, o« can not
be made too large, or resolution in the horizontal direction will be
compromised since the longer ray paths give horizontal information.
Also, some consideration should be given to the effect « has on the

conditioning of the system as shown in the next section.

£. Numerical Considerations for Path Weighting

The WLS method is easily applied to geophysical inversion
problems. The A i.atrix contains the path length information, so the
weighting mat1.x, W, is easy to generate. Once the W matrix has been
found, the matrix multiplications given in (4-8) can be carried out to

get a new matrix equation of the form

Cx = d (4-15)

where C is a symmetric nxn matrix and d is an nx1 vector. Certainly
these matrix multiplications are additional computations which would
not normally be required, but since in most cases m>n, (4-15)
represents a reduced set of egquations over that of solving Ax-b, and
will therefore require fewer calculations.

We would also like to consider the conditioning of the system of
equations representing the reconstruction problem. The equations to
consider are (4-3) for the least squares problem (using the normal

equations) and (4-8) for the weighted least squares problem. For
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either problem, the reduced equation is of the form given in (4-15),
where C = ATA for the least squares problem and C = ATWA for the
weighted least squares problem. The condition number for (4-15)
represents the susceptibility of the solution to errors (noise) in the
data. The condition number is defined in Appendix B.

Table 4.1 shows the effect weighting has on the conditioning of
the system of equations. For this table the matrix A was formed by
considering an underground reconstruction problem consisting of 20
transmitting and 20 receiving antennas, and the cross sectional image
divided up into 100 square cells. The table demonstrates the effect
the exponential factor, « in (4-10), has on the condition number. As

can be seen from the table for values of « between 0.5 and 3.0, the

rank of C = ATWA is actually greater than the rank of C = ATA. This
increase in rank results in a system of eguations with greater
stability. Also from the table it can be seen that the optimum value

of « from a conditioning standpoint is between 1 and 2.

Table 4.1

Choosing the path weighting exponent

(>4 rank LS K e rank WLS KuLs
0.5 93 22x10° 93 12x10°
1.0 " o 94 12x10°
2.0 " " 95 17x 103
3.0 " " 93 8x10°

4.2.4 Conclusions

In this section a discussion of the applicability of least
squares methods to the image reconstruction problem has been

presented. Along with this discussion, some alternate methods for
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solving the least squares problem have been reviewed. A
generalization of the least squares solution (i.e., weighted least
squares technique) has also been reviewed. Two new methods for
determining weighting coefficients for the WLS technique have becn
introduced. These weighting coefficients are based on the following.
a) Making the observation that the geometry of the cross-hole
configuration makes some measurements inherently more reliable
than others, and
b) Using an initial estimation of the cross section to determine
the reliability of each measurement.
Now that the least squares problem has been described, and a means of
improving the least squares solution by weighting the measurements has
been suggested, in the remainder of this chapter numerical algorithms

will be introduced which solve the LS and/or WLS problems.

4.3 A Direct Algorithm Using the Singular Ualue Decomposition

4.3.1 Introduction

Direct algorithms for finding a solution to Ax=b operate directly
on the matrix A in solving for x. The most well-known direct algorithm
is Gaussian elimination which attempts to reduce A to upper trapezoidal
form. Once A has this form, a solution is easily obtained.
Unfortunately, Gaussian elimination will not work when A is rank
deficient or ill-conditioned. Since we are faced with a rank deficient
matrix in this setting, some other more stable algorithm must be used.
The singular value decomposition is one such algorithm which will be
developed in this section. Not only is this decompousition useful in
its own right, but it also provides analytical tools for studying the
properties of other algorithms which will be presented later in this

chapter.
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4.3.2 Singular Value Decomposition Algorithm

The singular value decomposition (SVD) was introduced in Chapter
111 as a means of regularization for an ill-posed problem. It is also
discussed in Appendix B as a way of computing the generalized inverse
of a matrix. The solution using the SVD was given in (3 57), it is

repeated here for convenience

N ,
X, = £ —32  yT b, (4- 16)

where ¥ is the regularization parameter, and the error vector, e, has
been dropped for simplicity. There are three issues that must be
addressed before using (4-16).

a) What value should be chosen for N?

b) What value should be chosen for y?

c) How can constraints be applied to the solution?

These issues will be given consideration in the succeeding sections.
4.3.3 Truncating the Singular Value Decomposition

In the last chapter it was noted that the SVD was able to effect a
change of coordinates such that in the new coordinate system, the
equation Ax=b was reduced to diagonal form. Once reduced, the equation
is easily solved. However, as noted in (3-54), errors in the elements
of the data vector corresponding to small singular values can cause
large errors in the solution. The goal is to choose N in order to
ignore the terms which cause large errors. In Fig. 4.2 are plotted the
singular values, elements of the data vector, and the ratio of these
two quantities for a system of equations arising from a discretized
cross-hole configuration. The singular values are plotted in

decreasing order. As can be seen from the figure, the ratio g/6 stays
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relatively constant, and then takes a large jump at i=91. If we assume

that the components of the solution have similar magnitudes in the new
coordinate system, then it appears that the error in the data vector
dominates the real data for i>90. In this case, it would make sense to
choose N=80.

In general, when solving a system of equations the ratio g/6 can
be averaged, and a large deviation from the average could be detected.
At this point, N would be chosen to be one less than the value of i at

which the large deviation was found.

4.3.4 Tikthonov Regularization for the SUO Algorithm

This regularization method was described in the Chapter I11. The
method is given by (4-16), with N = n which is the number of elements
in the x vector. 1In this section some ways of choosing a value for ¥
in (4-16) will be discussed.

One method for choosing ¢ is taken from statistical analysis
(68]., and , it is based on observing the elements of the solution
vector (i.e., X) as ¥ is increased from zero. A plot of these
elements versus ¥ is referred to as a ridge trace. The selection
process involves finding the smallest value of ¥ after which the ridge
trace does not fluctuate. This value of ¥ is then used in (4-16).
Unfortunately, this method has the disadvantage of requiring that
(4-16) be solved for different values of . 1In addition, a subjective
test is needed to choose the minimum value of 7.

Another method using statistical analysis is the generalized
cross-validation method which attempts to minimize the expected value
of the error between the actual solution and the regularized solution
[69]. In this case, the expected value function has to be calculated
versus Y so that a minimum can be found.

A more efficient method of choosing ¥ would be in line with the

discussion above on truncating the SVD. That is, detect the point at
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which the error dominates in the summation of (4-16)., and then choose ¥
to damp out the effects of the small singular values. For example, if

it has been found that the error is dominant for i>90 in (4-16) then
choose ¥ on the order of G:o' This procedure should introduce a smail

bias into the lower order terms while reducing the effects of noise in

the higher order terms. 1In Fig. 4.3, ai/oj is again plotted with

singular values damped as

(67 +¥)
G, : T —m———m———.

Y1 S;

(4-17)

Also plotted is the undamped version of Bj/c;- As can be seen from

the figure, the damping has reduced the error in the high order terms,
while leaving the low order terms relatively unaffected. This method

has an advantage over the truncation method in that the v, coordinates

for large i are not neglected. However, the magnitudes will be
reduced along these axes. In addition, if the noise in the
measurement vector increases, such that it starts to affect some of
the lower order terms, then this method will be more immune to the

additional noise.

4.3.5 Applying Constraints in the SUD Algorithm

The most obvious method of applying constraints would be to
project the solution given by (4-16) onto the constraint surface. For
example, if a nonnegativity constraint is to be applied, then set all
of the negative elements in the solution to zero. Unfortunately, this
procedure does not result in good reconstructions, since it has been
observed by the author that the resulting images have a significant
number of pixels which are zero. One would expect, in general, that

the images should not have any zero-valued pixels. Rather, the reason
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for imposing the constraints, as mentioned in Chapter I1II, is to limit
the space of solutions and therefore produce some kind of regularizing
effect. Therefore, we are not necessarily interested in a solution
which lies on the constraint surface (i.e., has elements with zero
values). For this reason another method of applying constraints is
needed.

Fig. 4.4 is an illustration which suggests another method of
applying constraints. This figure depicts a least squares solution in

two dimensions (i.e., x has two components). In this figure, e, and e,

are the usual euclidean coordinates, with the constraint surtace being

the boundaries of the first quadrant. u and u, are the transformed

coordinates given by the SVD which are guaranteed to be orthogonal.
The components of the solution vector along these coordinates are given

by x; and xé. This solution vector is labeled X o in the figure. The

process of projecting the solution onto the constraint surface (e‘, in

this case) is indicated by the dashed line.
The method we suggest for applying constraints is summarized in
the following:

a) Search for a feasible component of the solution (xé here).

b) Search for another component of the solution which when added
to the current solution does not move the solution outside of
the constrained region. In the example of Fig. 4.4, no such
component exists. If such a component exists, repeat this
step, otherwise, go to c).

c) If no component was found in b), then we assume an error in the
measurement vector, b, is the cause of no solution being found.
This error is assumed to cause an innacuracy in the magnitude
of the corresponding component. Therefore, choose the
component with the least error (i.e. it takes the solution the
Jeast distance outside of the constrained region), and the

magnitude of the component is reduced such that the solution
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remains in the feasible region. The result of this process is

¢ .
X in Fig. 4.4.

d) 1f all components have been used, then stop; otherwise, go back

to b).
Note that as a result of using this method, the solution, xis. in Fig.
4.4 is closer to the u, axis than the solution obtained by projecting

X s onto the constraint surface. This reflects the greater confidence

we have in the xé component .

The assumption made above that the source of the error be
restricted to the measurement vector may not be valid since numerical
and modeling errors could cause the 'u' coordinates to be inaccurate.
However, it would be more difficult to characterize and correct for
these errors. Therefore, the method summarized above represents a good
compromise between properly handling constraints and simplicity of

implementation.
¢.3.6 Conclusions

The SVD algorithm was shown to be a viable algorithm for the
solution of the image reconstruction problem. Methods for regularizing
the output of this algorithm and applying constraints were developed.
This algorithm does suffer from the same shortcomings of any direct
algorithm when applied to large sparse systems of equations. However,
some of the methods developed in this section will also be applicable
to the iterative algorithms which will be given greater emphasis in

reconstruction process.
4.4 Iterative Algorithms for Image Reconstructions

4.4.1 Introduction
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Iterative algorithms are very attractive for image reconstruction

problems featuring large, sparse, coefficient matrices. The advantages
of iterative techniques in this case include the following.

a) The sparsity of the coefficient matrix can be used to reduce
computer storage and time requirements. This is not always the
case for direct inversion algorithms.

b) Since in most iterative schemes the coefficient matrix is only
used to form matrix-vector products, the coefficient matrix can
be stored out of core and brought into main memory one row at a
time.

In addition to these advantages for large, sparse systems, iterative
techniques have the following advantages for general reconstruction
problems:

a) As mentioned in Chapter 111, the selection of stopping criteria
for the iterative process can be used as a method of
regularization.

b) Iterative techniques are more amenable to the application of
constraints than direct inversion methods. This is because
constraints can be applied at each step of the iterative

process.

We will be interested in two major iterative techniques in this
section. The first operates by attempting to successively satisfy
each equation in Ax=b, and the second seeks to minimize a functional

which results in a solution to the problem.

4.4.2 Projection Methods

A. Basic ART Algorithm

The projection method described in this section was originally

developed by Kaczmarz as a means of inverting a large system of

equations (70]. It was rediscovered as a method of solving the
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tomography problem and renamed the algebraic reconstruction technique
(ART) in the early 70's (see, for example (71] for an early paper on
the application of the ART algorithm to computed tomography). Since
its first use, it has remained one of the most popular methods for
solving the system of equations resulting from the discretized
tomography prcblem. Perhaps the best way to understand the ART
algorithm is to take a geometrical point of view in the style of Tanabe
(64). The following notation is needed:

.th

1) a; =i row of A matrix
_ .th
2) gy = i element of b vector
n
3) <aj,x> = b ajE. = inner product of a. with x
i=1 171 1

4) ||x||2 = <X,X>

where the a;'s are the elements of the a; vector, and the ti's are the

elements of the x vector. In this way, Ax=b is seen to be a set of m
hyperpianes in n-dimensional Euclidean space, where the equation of the

ith plane (which will be called H;) is seen to be

x> = B, (4 18)

If the system of equations is consistent, these planes will intersect
in a unique vector, Xx. The system of equations is almost never
consistent in practice because of measurement noise and the error
inherent in the discretization process. The ART algorithm can be
summarized as follows:

1) Choose an initial image vector, X,
2) Project this vector onto the hyperplane <a x> = 3‘ , using

the equation

i G G O G A A e G B BN D BE BE O =
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<a_ ,Xx > - B
Xt = Xo - *——1——0-——3——1- at (4-19)
Na, I
3) Iteratively project the result of (4-19) onto successsive
hyperplanes such that the kth iterate has the form
<a, ,X > g
k' k k (4 20)

where k is greater than 1 and less than m. The iteration described by

(4-20) is repeated until the updated image vector, Xy has achieved

some level of convergence. Note that in applying (4-20) if k=m, then

set k=1 and k-1 = m in the next iteration.
8. Applying Constraints

In the form described above, no constraint has been made on the

image vector, i.e. some elements of X may become negative, which is

not physically possible. An inequality constraint of the form

¢, 25, for i =1,n (4-21)

may be applied by choosing the x, which is closest to the one given by

(4-20) and also satisfies (4-21). That is, if some si is Jess than &

at the kth step, then project X back onto the hyperplane €j=8. A

typical set of ART iterations is pictorially shown in Fig. 4.5 for m=3,

n=2, and with inconsistent data. The constraints are tx‘ £, > 0.

C. Properties of the ART Algorithm
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Some ot the basic properties of the ART algorithm will be listed

in this section. For proofs of these results, see [64]}. These
properties will be useful for understanding the convergence properties
of the algorithm. The first property is that each iteration can be

written as the vector sum of an orthogonal projection of the latest

iterate and the kth row of A scaled by the kth measurement. That is,

(4-20) can be expressed as

. Pk
X = Ppxp o+ ——, 8. (4-22)
“dk"

where Pk is an orthogonal projection matrix.

It we consider a set of iterations over al)l m rows of A then we

can express these iterations as

X, = Qx, + Rb, (4-23)

where

(4 24)

and

B Q. a
i=1 "31"2 it

Iag

Rb = (4-25)

Equation (4-23) is important since if X, is contained in the kernel of

A, then

Qx. = Xx_. (4 26)
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Therefore, if an initial vector (xo) is chosen with a component in the

null space of A, this component will appear in the final solution.
The final property which will be discussed is that (4-20)

converges to the generalized inverse solution plus a projection of X,

onto the null space of A. That is,

. _ Nt -
iiﬂ Xgom = A'b + PIN(A)X' (4-27)

where P|N(A) is the projection operator onto the null space of A.

Note that if the equations are inconsistent, the convergence will be

cyclical such that no matter how large k is, Koy will differ from X

(see Fig. 4.5). However, for large Kk, Xkom is close to X+

0. Underrelaxation for the ART Algorithm

The ART algorithm as described above has one problem in that for
inconsistent equations the algorithm never converges to a solution.
This behavior can be seen in Fig. 4.5. A means of avoiding this
behavior is to use a relaxation parameter A in (4-20) [72]. By

inciuding this parameter, (4-20) becomes

<a, X, > - B
Xy © K, - A k' k-t 2 Ko (4-28)
"ak“

For this relaxation method, the authors in [72] show that

+
ijg X*¥(A) = A'b 4 PIN(A)xo' {4-29)
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where

Xx*(A\) = lim xk(x). (4-30)
koo

Note that this is better than (4-27) in that for large k, xk‘](A) is
close to xk(A). Therefore, we can avoid cyclic convergence by choosing

A sufficiently small. However, for 0<A<1, (4-28) represents an

incomplete projection onto the hyperplane Hk' of (4-18). That is, X1

does not reach the kth hyperplane (hence the name underrelaxation).

This implies that a small A will mean slow convergence.
E. Other Projection Methods

Other methods have been developed (see [73] for an overvicew) which
are similar to the ART algorithm in that at each iteration a projection
is taken onto a convex set. For the ART algorithm, the convex set is

the half-space defined by Hi' of (4-18). These different methods are

obtained by giving different interpretations to the desired solution.

ith equation in Ax=b within

For example, if the goal is to satisfy the
some bounds, then we are led to searching for solution in the
intersection of m (number of equations) hyperslabs. These hyperslabs
will be defined by the equations and the (error) bounds. This method
is referred to as 'ART4' in [73]. In general, these other methods will
converge to a solution in fewer steps than the ART algorithm, but will
also require more computations per step. Instead of investigating

these methods here, we wish to develop an iterative method which has

some advantages over projection methods in the next section.

¥. 4.3 Gradient Methods
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A. Introduction
In this section we consider solving an image equation of the form
Qx = b (4-31)

where Q is an nxn symmetric positive definite matrix. Even though the
matrix A will not be of this form in general, this assumption on Q
will be made, but will be relaxed later. Also note that if the matrix
A has full rank, then Q can be generated from the normal equations,

(4-3).
B. Method of Steepest Descent

This method is a good introduction to the conjugate gradient
algorithm, so it is discussed here. Solving (4-31) for the vector x is

equivalent to minimizing the functional

f(x) = %xTQx - x'Db (4-32)

over xeR™. This can Ye seen by taking the gradient of f(x) with
respect to x. and setting it equal to the zero vector. We seek an

iterative method such that

fx_ +oqpy) < f(xp ) (4--33)

at each iteration. The p vectors are known as the search direction

vectors, and @ is the magnitude of the search. One choice for Py is
the negative gradient of f(xk_x), giving the steepest descent direction

for minimizing f(xk_t). In this case Py takes the form
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P = b - ka (4-34)

which is also known as the negative of the residual vector. The o
which minimizes f(xk—1+“kpk) can be found by expanding this functional

as in (4-32). This X is found to be

_ <pk 'pk>
% T <Qpy.p >

(4-35)
If Q were allowed to be other than positive definite, as required, the

denominator in (4-35) could become zero. The convergence of X toa

solution vector. x, can be quite slow if the ratio of the largest
eigenvalue of Q to its smallest eigenvalue is large (61). For this
reason the method of steepest descent is not practical for solving
(4-31). However, the conjugate gradient algorithm is able to achieve

accelerated convergence even in this ill-conditioned case.
C. Method of Conjugate Gradients

Again, we wish to solve (4-31) by minimizing the functional given
in (4-32). 1If we define P, through P, as n, nx1 independent column

vectors, then the span of these vectors will define an n-dimensional

subspace
vV = span{pl, R .pn) (4-36)

The solution vector, x, is obviously contained in V, so it can be

written as the sum
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(4-37)

The goal of the CG algorithm is at each iteration step k represent Xy
on a k-dimensional subspace. Therefore, after n steps, if oy is
properly chosen, we will have found x. This is the essential content

of the expanding subspace theorem described in (74). The CG algorithm

also gives an efficient way to generate the vector space, V, such that
the vectors, p;, are Q-conjugate (i.e. pjTApj = 0 for all i#j). The

algorithm that accomplishes this task was originally discovered by

Hestenes and Stiefel [75]. An updated version is given here [61].

1) x, =0
2) r, = b
3) P, = 0
For k = 1,
a) By = ﬂfh:lgz (4-38)
eyl

b)Y Py = Ty * BiPi-y
i Pk_lllz
<pk.ka>

d) X = X, * Py

it

c) )

e) ry = I, -~ Q.

The first three steps above are initialization. In the iteration Joop,

steps a and b insure that the direction vectors, pk's, are

Q-orthogonal, while steps ¢ and d minimize the functional in (4-32) by

choousing X) 8s the sum of the previous solution vector and a scalar

multiple of the present direction vector. Step e in the iteration loop




135
is an efficient way of determining the residual. Note that in the
algorithm above, no stopping criteria was specified for terminating the
iterations, and no method of constraining the solution image was given.
These two concerns will be given consideration in the remainder of this

section.
0. Stopping Criteria

In any iterative algorithm it is important to determine at what
point we should terminate the iteration process and output a solution.
Not only is the determination of this stopping point necessary since it
is inefficient tc make additional unwanted computations, but as
mentioned in Chapter IIl, stopping the iteration process can give a
regularizing effect to the solution. Indeed, if the iteration process
is continued too long, then a divergence from a good solution may
occur.

The logical choice for deciding on a stopping point would be to
proceed along the same lines as in the determination of a truncation
point for the SVD algorithm. For the SVD algorithm the truncation
decision was based on finding the point at which the error dominated in
the (transformed) measurement vector. This was equivalent to ordering
the singular values of the matrix A, and then finding the number of
singular values to be used in the solution. Unfortunately, each step
of the CG algorithm does not correspond to adding another coordinate
(i.e., singular vector), in the SVD algorithm. Therefore, we cannot

sel the number of iterations equal to the truncation number found

previously in the SVD procedure. 1If, however, at the kth step of an

iterative algorithm the solution, X+ were to somehow depend on the

singular values ¢ for i<j (where j is to be determined), then we could
use the results of the SVD analysis to choose a stopping point.
Fortunately, this behavior has been observed in the CG algorithm [76].

but the algorithm as presented in (4-38) does not include any mechanism
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for observing and acting upon it. The LSQR algorithm presented in
{761, which is analytically equivalent to the CG algorithm, does
provide a mechanism for detecting the point at which 'j' singular
values have been 'used' in the scolution. The algorithm is outlined in
Appendix C. In summary, the following steps should be performed for
stopping the CG algorithm:

1) The singular value decomposition can be used to find the
singular values and vectors of the matrix A.

2) The procedure for selecting which singular values should be
used in the solution is given in the discussion on truncating
the SVD algorithm.

3) Once this point has been determined to find a solution, use the
algorithm in Appendix C, which bases its stopping procedure on

the singular values, to tind a solution.

E. Applying Constraints

As mentioned in Chapter 111, the application of constraints on a
solution vector (image) is of great importance. One of the advantages
of iterative aigorithms is the ability to constrain the solution at
each iteration. In this way, errors will be corrected at each step.

The first method when considering the application of constraints
(in the CG algorithm) is to project the solution onto the constraint
surface after each iteration. As noted in {77], this procedure will
not in general result in the generation of n linearly independent
direction vectors. Therefore even if the least sguares solution lies
in the constrained region, it .ay not be found by this method. A
solution to this problem is to restart the algorithm whenever the

iterates have converged. The resulting algorithm is given by (77]
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For k = 0,...,N
1) Perform a CG iteration (4-39)

2) Apply constraints to X
3) If ABS(Hrk" - "rk_tﬂ) <t

restart by setting Py = Ty o

where the CG iteration mentjoned above is given by (4-38) or by the one
in Appendix C, and ABS(¢) is the absolute value operator. Restarting
causes the next search direction to be a steepest descent direction.
See, for example, [78] or (79] for the convergence properties of
restarted CG methods. Step 3 in the iteration loop above checks for
convergence by observing the behavior of the residual vectors from one
iteration to the next. This method has the following shortcomings:
1) At each step, the application of constraints may mean that the
functional in (4-32) is not being minimized.
2) No criterion is given for choosing ¢ in (4-39), and £ may
depend on the problem being solved.
3) The restart procedure may take the solution out of the feasible
region.
For these reasons, an aiternative method is desired for applying
constraints.
The application of constraints can be based on the methods of
constrained optimization discussed in [74]. The simplest is the
method of feasible directions. This method could be adapted to the CG

algorithm (4-38) by using the new update formula for Xy given by

Xp = Xt a& Py (4-10)
where “k is chosen such that its magnitude is the maximum value of Xy
(given in 4-38) which [eaves Xy inside the feasible region. As noted

by the author [74), the feasible direction method can be subject to
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jamming, which means that the solution does not change at each
iteration. This jamming has been observed in the image reconstruction
problem by the author. O0f course, the algorithm could be restarted as
above when jamming has occurred. Instead, we consider another method
for applying constraints.

The gradient projection method was originally given by Rosen
{80}, as a method of maximizing or minimizing a functional subject to
constraints. The method is also described in [74]. A summary of this
technique follows for minimizing f(x) of (4-32).

1) Initialize X, in the feasible region (i.e., so that it

satisfies all constraints).

2) Let X =X 0t ui P, where o, and p, are chosen by the steepest

descent method, and u; is the maximum value of «, such that X,

is still in the feasible region.

3) 1f in step 2 a constraint surface were encountered, then
define the working surface to be the (intersection of all)
constraint surface(s).

4) Continue to minimize f(x) using X = X, *+ o over the

working surface as in step 2.

5) If f(xk) is a minimum for X, on the working surface, then

determine, by moving in the direction of the negative gradient

of f(x,). if f(x,) can be further minimized and x,  is still

in the feasible region. 1If so, go back to step 4 with the
corresponiding constraint surface removed from the working
surface; otherwise stop.
When this algorithm terminates, f(x) will be minimized over the
feasible region. A more detailed description of the algorithm is given
in Appendix D. The technique can be adapted to use the CG algorithm
for minimizing f(x) and thereby avoid the slow convergence of steepest
descent. Note that by moving in the direction of steepest descent in

step 5, an implicit restart of the CG algorithm has occurred. Also
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note that by minimizing f(x) over the working surface, the
dimensionality of the problem has been reduced, and a computational
advantage could be exploited.

An illustrative example of the procedure will be helpful. The
example is shown in Fig. 4.6. The gradient projection method is used

to solve the system of equations

e - Bl
oy %ol L&, o
subject to the constraints il and £2 2 0. The CG algorithm is used to

generate the first direction vector. As can be seen from the figure,

this direction is not feasible since it would result in iz being less
than zero. Therefore, the working surface becomes the tt axis, and a

minimum point of the functional (4-32) is found on this axis. At this
point it is found that f(x) can be further minimized by moving in the
direction of the negative gradient. Now, no working surface exists,

and the CG algorithm finds the solution to (4-41).
4.5 A Comparison of the Algorithms

In this chapter, three algorithms have been presented for solving
the matrix equation arising from the discretized tomography problem.
Of these algorithms, the ART is the most well-known in the field of
image reconstructions, and it has been thoroughly studied in the
literature. The SVD algorithm is a standard algorithm for solving the
least squares problem, although the method of handling constraints,
which was developed here, may be new. The CG algorithm has been
previously applied to the tomography problem {77].{81}, but an adequate
means of incorporating constraints was not given.

Before comparing these algorithms on somc reconstruction
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problems, some graphical examples of their convergence behavior will
be presented. Table 4.2 summarizes the various cases which will be
examined. An explanation of the table is as follows: if the equations
are consistent, then the lines defining the equations intersect in a
unique point; if the LS solution is feasible then this solution
satisfies the constraints; and finally if the equations are highly

independent, then the lines do not have slopes which are nearly equal.

Table 4.2

Test examples for comparing the algorithms

Consistent LS Sol'n Highly
Figure # Equations? Feasible? Independent
4.7 Yes Yes Yes
4.8 Yes No Yes
4.9 Yes Yes No
4.10 No Yes Yes
4.11 No No Yes

In general, for the tomography problem. one would expect the equations
to be inconsistent, the LS solution to be infeasible, and some of the
equations to be almost dependent. So by examining the algorithms for
the cases outlined in Table 4.2, some insight into their behavior for
reconstruction problems may be obtained. For these figures, the
algorithms will be denoted as follows:
a) SVD - The singular value decomposition with constraints applied
as suggested in Section 4.2.
b) ART - The projection method applied to Ax=b (see 4-41). Unless
otherwise noted, underrelaxation will not be used.
c) CG-GPM - The conjugate gradient algorithm applied to the

gradient projection method. The CG-GPM operates on the

normal equations, ATAx = ATb.
The first example is shown in Fig. 4.7. This is the easiest
problem to solve, and all three algorithms converge to the unigue

solution. The second example, which is shown in Fig. 4.8, has as
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constraints £1 and iz 2 0.8. As can be seen from the figure, both the

SVD and CG-GPM converge to the same solution which is the point in the
feasible region closest to the unconstrained solution. The ART
algorithm never converges to a solution. The third example features a
set of equation resulting in a pair of almost colinear lines (see Fig.
4.9). The SVD and CG-GPM algorithms show the same convergence to the
solution (their graphs are in fact overlapping), while the ART
algorithm shows slow progress towards the solution. The fourth example
is for a set of three inconsistent equations (see Fig. 4.10). The
CG-GPM converges to the minimum norm least squares solution given by
the SVD. The basic ART algorithm would, of course, never arrive at the
SVD solution. However, by using underrelaxation with a relaxation
parameter of 0.8, convergence is obtained. The last example is for the

same sel of equations (see Fig. 4.11) as above with constraints 51 and

£. 2 1.0. In this case, the CG-GPM algorithm is the only algorithm to

2
converge to the point in the feasible region closest to the solution
obtained above.

In summary, the GPM-CG algorithm appears to be the most flexible
algorithm in that it arrived at the best solution in all five cases
above. In addition, it is easiest to use since constraints are
implicitly incorporated into the solution process, and no relaxation
parameter needs to be chosen. In these examples, stopping criteria
were not really an issue. Therefore the effect of choosing stopping
criteria will have to be considered when actual reconstructions are

performed.




CHAPTER V

IMAGE PROCESSING

5.1 Introduction

In Chapter 1V, various method for reconstructing a cross sectional
image from its projections were discussed. The images generated by
these algorithms are often hard to interpret because of limitations in
the measurement process and in the reconstruction model. For example,
if diffraction effects are ignored by using the straight-ray model,
then the reconstructed image will exhibit features {(due to the
diffraction phenomena) which are not present in the actual cross
section.

Fig. 5.1 shows the reconstruction of a cross section of earth
containing a circular conducting cylinder. The details of the process
of obtaining this reconstruction will be discussed in Chapter VII. 1In
this figure, the pixel attenuation values are given at the intersection
of the horizontal and vertical grid lines and the higher attenuating
regions are represented by the peaks in the figure. The peak in the
center of the figure gives the location of the cylinder, but additional
peaks are evident which are probably the result of diffraction effects
(recall the ripple in the electromagnetic response of Fig. 2.29). The
spreading of the cylinder location in the horizontal direction is a
result of the limited view angle. 1t would be desireable to smooth out
the peaks and valleys in Fig. 5.1 which do not represent the cylinder's
location.

Fig. 5.2 is the result of applying a technique called selective
smoothing (48] to the image in Fig. 5.1. Note that the unwanted
artifacts in the image have been smoothed out with little effect to the
peak which indicates the location of the cylinder. The goal in this

chapter is to develop techniques, such as selective smoothing, which
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will improve some feature(s) of a reconstructed image.
5.2 Image Filtering and Smoothing
§.2.1 Introduction

In the survey article on image enhancement [82], the authors list
three methods of image enhancement that are used in the spatial
domain. These are:

a) Spatial smoothing of regions using low-pass filters.

b) Gray level rescaling.

c) Edge enhancement using high pass filters.

Since our goal is to reduce unwanted artifacts in the image, we will

consider only spatial smoothing of the reconstructed images.

5.2.2 Spatial Smoothing

Spatial smoothing techniques usually operate by passing a window
over an image and then replacing the attenuation of the pixel at the
center of the window by the weighted average of all the cells in the
window. We will be interested only in nine cell windows (see Fig.

5.3), so that the attenuation at the center pixel is given by

(5-1)

where the indexing on « is indicated in Fig. 5.3, Wi is the i—jth

element of the weighting matrix, and D is the sum of all wjj's. If all

j's are equal to 1.0, then (5-1) gives an equally weighted spatial

smoothing filter. The equally weighted filter will tend to excessively

w;

blur the image. The following weighting matrix is able to achieve
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smoothing without excessive blurring [82]

n.2% 0.%50 0.2%
W = 0.%0 1.00 0.80]. (5-2)
0.23 0.%30 0.2%

Blurring has been reduced by giving the center cell larger weighting
than the adjacent cells. Fig. 5.4 is the result of applying (5-1)
using the weighting in (5-2) to the unfiltered image of Fig. 5.1. Note
that the unwanted peaks and vaileys have been smoothed out, but it is
hard to distinguish the boundary of the cylinder.

A spatial filter which is able to smooth out the unwanted peaks
and valleys without blurring the boundary between the cylinder and the
background is the seiective smoothing filter [48]). For this spatial

filter the weighting matrix is given by

f(“—x—x) f(“-xo) f‘“-xx)

W= fleg,) 2 flog,) | (5-3)

f(ul."l.) f(al.[)) f(ull,

refer again to Fig. 5.3 for the definitions of the a's. The function

f(e) is nonlinear and is given by

i s <
1 if |a1J “00' ST (5-4)

f(ajj) = {
: 0 otherwise.

The threshold value, T, will determine the amount of smoothing to be
performed. For example, if T is set to a large value, (5-3) reduces to
a weighted average matrix. The idea behind using a threshold is that
if a pixel has a much higher (or lower) attenuation value than
surrounding pixels, its attenuation will remain unchanged. The
threshold value should be some fraction of the difference between the
highest and lowest value of attenuation in the unfiltered image. A

value between 1/5 and 2/5 for this fraction was suggested in [66]. The
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image in Fig. 5.2 is the result of using selective smoothing on Fig.
5.1 with the threshold value equal to 0.3 times the difference between

the maximum and minimum attenuation values.

5.2.3 Spectral Filtering

We do not expect filtering in the frequency domain to be as
effective as spatial filtering for reconstructed images. This is
because the most effective spatial filter was nonlinear (i.e., 5-3),
and therefore would not have a correspondingly simple frequency domain
implementation.

Fig. 5.5 was obtained by taking the two-dimensicnal discrete
Fourier transform (DFT) of the unfiltered image shown in Fig. 5.1. The
zero frequency ('DC') point is in the center of the x-y plane. Fig.
5.6 is the DFT of the selective smoothed image shown in Fig. 5.2. Note
that it is hard to determine the relationship between Figs. 5.6 and
5.5, except to note that regions of high frequency in both (i.e.,
simultaneously) the horizontal and vertical directions have been
somehow attenuated. Fig. 5.7 is the DFT of the weighted average
filtered image shown in Fig. 5.4, and again a relationship to Fig. 5.5
is hard to discern.

Fig. 5.8 shows how a low pass filter could be applied to the
spectrur in 5.5. That is, set the high frequency components in the
spectrum equal to zero. By taking the inverse DFT of this low-passed
spectrum, the image in Fig. 5.9 is obtained. This image has been
successfully smoothed, but the location of the cylinder is severely

blurred.

5.3 Object Detection

Once a reconstructed image has been filtered, one often wants to

perform some sort of processing of the image to separate regions (of
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pixels) having similar attenuation. This type of processing is called
partitioning. In this way we may be able to discern anomalous regions
from the background. Although this process can be accomplished by a
human operator, a more objective means is desirable. For this reason
we consider ways to partition the cells in a reconstructed image. The
partitioning process involves placing the cells into groups (usually 2
or 3 groups) based on the attenuation value found during the
reconstruction process.

Two types of partitioning will be used here. The two partitioning
schemes are similar in that the groups are foudd by minimizing the
distance between members of the group and the group average. The first
scheme is called minimum variance partitioning (MVP) [83], and the

distance function is given by

d.,.(3)

MUP pX (5-35) (5-5)

i€group

where o is the attenuation coefficient of the 1th cell in the image

and My is the average value of the pixels in the Jth group. The second

method we call minimum max partitioning (MMP), with a distance function

defined by

d _(j) = Max |e;-u,l (5-6)
HHP iEgroupl i

That is, the distance is equal to the maximum difference between the
group average and the members (i.e. pixels) of the group. This
distance function should be used in cases where outliers (e.g., tunnels
or oil deposits) may be present and need to be emphasized. Using this

distance function would corresponds to a minimization problem in the L_

norm. As can be seen from comparing (5-5) and (5-6), the MVP will have

more of an averaging effect than the MMP since all members of the group
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are uscd in the distance function of (5-5). For either distance
function, the quantity to be minimized will be given by

K
Je = 2 d(.j)v (5‘7)
> =1

where, for example K=2 for a two-group partition. The guantity d(j) is
given by (5-5) or (5-6). The objective is to find all partitionings of

the pixels into K groups. Then, for each partitioning, calculate Je in
(5-7), and choose that partitioning which has the smallest Je’ thereby

minimizing (5-7).

Fig. 5.10 shows the result of using the MVP on the smoothed image
of Fig. 5.2. Note that pixels outside of the cylinder location have
been included in the high attenuation group. Fig. 5.1i, on the other
hand, which uses the MMP, includes only adjacent pixels in the high
attenuation region. Fig. 5.12 summarizes these results in
two-dimensional displays, with higher attenuation regions represented
by darker shading. The (a) part of the figure is for the MVP, while
the (b) part of the figure is for the MMP. Also shown in both parts
of the figure is the location (indicated by a circle) of the cylinder
which was present when the data was simulated.

In summary, by taking the raw reconstructed image in Fig. 5.1,
then filtering this image using selective smoothing, and finally
performing the MMP, a very good indication (to the resolution of the

pixels) of the actual location of the cylinder is achieved.
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CHAPTER VI

COMBINING TIME-OF-FLIGHT AND CONTINUOUS WAVE MESUREMENTS

6.1 Introduction

Two methods we wili be considering for taking measurcments in a

cross-hole system are:

a) Time-of-flight (TOF) measurement, in which the time it takes a
radio frequency pulse to travel between transmitter and
receiver is measured.

b) Continuous wave (CW) measurement, in which the amplitude ratio
between a transmitted and received sinusoidal wave is measured.

Thus far in this dissertation. the emphasis has been on CW
measurements. However, as will be demonstrated shortliy, the
reconstruction process for TOF measurements is almost identical to
that for CW. The only difference is that the pixel values in the
reconstructed image will be for index of refraction (square root of
permittivity), instead of for attenuation.

Some of the reasons for considering both types of measuremnt

systems include:

a) CW measurements give information on the attenuation of the
earth between boreholes. The attenuation constant, whose
formula was given in (2-5), is a function of the permittivity
and the conductivity (we assume the permeability and the
frequency to be constant). As will be shown, TOF measurements
can give information on permittivity. Therefore, by combining
both types of measurements, the permittivity and conductivity
of the earth can be determined.

b) Because of diffraction effects, CW measurements can lead to
ambiguous interpretation of reconstructed images. For

example, as shown in Fig. 6.1, the shapes of the received
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electromagnetic field versus borehole depth when the earth

contains a tunnel and when it contains a high conducting
cylinder are very similar. Supplementing CW measurements with
TOF measurements will help remove this ambiguity.

c) Some of the errors in each measurement system are unigue to
that system, and therefore by combining the two systems the
errors may be reduced. For example, determining the time of
arrival of a pulse in a TOF system involves the use of some
kind of pulse picking process which will be prone to errors.
The pulse picking process is an automated process for
determining the time-of-arrival of the first puise. A CW
system will not have this problem.

For these and other reasons, it makes sense to obtain as much

information about the region being scanned as is possibie. Therefore,
we first discuss reconstruction for TOF measurements, and then present

a way of combining results from analyzing CW and TOF data.
6.2 Reconstructions from TOF Measurements

The electromagnetic wave velocity was given in (2-7). Using this
wave velocity, the time it takes for a pulse to travel (assuming travel
along straight ray paths) from a transmitting to a receiving antenna is

given by the line integral

- dg .
t L—UTiTﬁ)' (6 1)

where L is the line linking the transmitter and the receiver. The wave
velocity is a function of the permeability, permittivity, conductivity,
and frequency which are assumed to be functions of positions (x and v).
If the contribution of the conductivity is assumed to be negligible

(refer to Figs. 2.7-2.9 for conditions under which this assumption is
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valid) then the wave velocity is given approximately by
v = __1__72 = 7%_ (6-2)
(pe)t r
where ¢ is the speed of light in free space, and € is the relative
permittivity. Using this approximation, (6-1) becomes
= L 1/2 -
Cos b ] leyt/® ae. (6-3)

This equation can be discretized by again dividing the cross-sectional
region into rectangular pixels and assuming the permittivity is

constant over each pixel. A matrix equation is obtained as in (3-26),
where the unknown image vector, x, is now composed of the square roots

of relative permittivity in each pixel.

6.3 Detecting Anomalous Regions Using CW and TOF Measurements

Methods have been described for reconstructing a cross-sectional
image of the earth. From this image we wish to detect, locate, and
identify anomalous regions (if they exist) in the cross-section. The
method we propose to use in this process can be summarized as follows:

a) Reconstruct the attenuation image from CW measurement data.

Pertorm the image processing techniques described in Chapter V
to paritition the image into low and high attenuation regions.

b) Pertform the same steps as in step a

to the TOF data to obtain an image having low and high
permittivity regions.

c) Compare the two partitioned images of steps a and b to

determine if there is any overlap in the partitionings.

d) Using results on the electrical characterjstics of earth (see,
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for example, [24]) to determine the type of region that has

been detected.
The exact procedure to be used in step d) is beyond the scope of this
dissertation. but the interested reader may refer to {24] and the
references therein for further information.

An example of using this four step process for detecting a tunnel
will be given. It is assumed that a 1 m radius tunnel is located
between two boreholes. The region being scanned is 20m x 20m and the
background conductivity and relative permittivity are 0.001 S/m and 10,
respectively. The increment between antenna locations (for both
transmitter and receiver) is 1 m for a total of 400 measurements.

The MMP displays for both the CW and TOF reconstructions are shown
in Fig. 6.2. In the (a) part of the figure, the higher attenuating
regions are indicated by darker shading, while the darker shading in
{b) indicates higher permittivity regions. The eight pixel region in
the center of the image is seen to have higher attenuation yet lower
permittivity. This clearly indicates the presence of a tunnel since a
region of higher conductivity (e.g. a water deposit) would also have a
higher permittivity. Thus, the ambiguity shown in Fig. 6.1 has been

resolved.
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CHAPTER VI1

RECONSTRUCTIONS

7.1 Introduction

In this chapter the methods developed in the preceding chapters
will be used to reconstruct cross sectional images from simulated
data. We will be interested in cross sections of homogeneous earth
containing single or multiple anomalies. The goal is to detect,
identify, and locate these anomalies. One interest will be in
cowparing the algorithms developed in Chapter IV, under adverse
conditions, such as limited view angles, noisy data, and multiple

anomalies.

7.2 Simulation of Data

The simulation of data in a cross-hole environment was discussed
in detail in Chapter II. For CW operations either exact solutions for
circular cylindrical anomalies (discussed in Section 2.3.2) or the
volume current method for arbitrarily shaped anomalies (discussed in
Section 2.3.3) will be used to simulate the data. For TOF operation
the ray optics method (discussed in Section 2.4} will be used to find
the rays linking transmitters and receivers. From this ray path length
information, the time it takes the ray to traverse the path is easily
obtained from the electrical parameters of the earth along the path.
For cases in which rays can reach the receiver along different paths,
the path which results in the shortest travel time will be used. The
method discussed in Section 2.3.5 (using the FFT) could be used for
this simulation, but since we are only interested in the time it takes
for the earliest pulse to reach the receiver, the ray optics method,.

discussed in Section 2.5.2 will be adequate (and computationally
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faster).

7.3 Review: Total Geotomography Process

In this dissertation a variety of methods were discussed for
reconstructing an image from its projections. In this section a review
of the steps that will be taken to reconstruct a cross section of the
earth from cross-hole data will be given. The emphasis will be on the
detection of anomalous regions, thus the geotomography process will be
geared to this problem.

Fig. 7.1 is a block diagram of the reconstruction process that
will be used in this chapter. Note that there are 'inputs' for both CW
and TOF data. The reconstruction algorithm featured in one of the
blocks will consist of assuming a straight ray model as in Section
3.2.1 and then using one of the algorithms developed in Chapter 1IV.
Methods for improving upon the straight ray model will be discussed in
Section 7.6. The output of the reconstruction algorithm will be an
image of attenuation or the index of refraction (square roots of
permittivity) values.

This image is then processed using the techniques of Chapter V.
This processing includes using 1 iteration of selective smoothing
filtering and then partitioning the filtered image using the MMP. 1If
anomaious regions are clearly identifiable in the processed image, then
the images from both the CW and TOF data are compared as in Chapter VI.
If at this point an anomalous region has been identified, we can
attempt to refine the exact location (the images give only an
approximate location due teo the finite resolution of the pixels) of the
anomaly in the region by using refinement methods which will be
discussed in Section 7.6. Note that if an anomalous region has been
found in either the attenuation or index of refraction image, but not
in both, then both data sets are suspect, and further study would be

required.
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The algorithms developed in Chapter IV were the singular value
decomposition (SVD), the algebraic reconstruction technique (ART), and
the gradient projection method using conjugate gradient minimization
(CG-GPM). Unless otherwise noted, these algorithms will all be
inverting the weighted normal equation given in (4-8), that is, we will
be using the WLS method. A value of x=1.8 will be used for the path
weighting in (4-10). All of the images will be constrained to have
pixels whose values are greater than zero. The method for applying
constraints was discussed in Chapter IV.

For the SVD algorithm of {(4-16), ¥ will be chosen to damp out the
effects of the smail singular values as discussed in Chapter IV. The
truncation value N will be selected in a similar manner (refer to
Chapter IV for details). For the ART algorithm an underrelaxation
value of 0.8 will be used in (4-28) as a compromise between faster
converge and avoidance of cyclic behavior. This algorithm will also

use Tikhonov regularization as in

(ATWA + yI)x = ATWD, (7-1)

w.in the regularization parameter, ¥, chosen using the singular value
decomposition as above. This equation is a result of combining (3-50)
and (4-8).

The CG-GPM will also be used to solve (7-1) with the same
regularization parameter found above. The stopping procedure discussed
in Section 4.4.3 will be used to determine the number of iterations to
be performed. However, this stopping point is not critical since the
effects of the small singular values will be damped through use of the
regularization parameter in (7-1). Iterating past this point will

result in unnecessary computations.

7.4 Reconstructions Using Three Inversion Algorithms
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7.-4.1 Test Profiles

We will be performing reconstructions using the three algorithms
discussed above on test profiles which present difficulties of various
forms to the reconstruction process. The six profiles to be considered
are shown in Fig. 7.2. The attributes of these profiles are summarized
in Table 7.1. All profiles feature one or two cylindrical anomalies
(of circular or square cross section) imbedded in a homogeneous earth.
The background earth is assumed to have a conductivity of 0.001 S/m and
a relative permittivity of 10. All profiles except for the last are 20
m in extent in both the horizontal and vertical directions. The last
profile is 40 m in the horizontal direction and 20 m in the vertical
direction. For both CW and TOF, measurements will be taken at 20
transmitter and 20 receiver locations, with a spacing of 0.5 m between
locations. This will result in a total of 400 measurements. The size
given in the second column of Table 7.1 is either the circle's radius
or the side of the square. The range of view angles represent the
minimum and maximum view angles obtained as the location of the

transmitting antenna is changed.

Table 7.1

Test profiles for comparing the algorithms

Profile Shape Size No. of anomalies Matches pixels View angle

(a) circ. 1 m 1 No 43.5°- 50.8°
(b) sq. 2 m 1 Yes 43.5°- 50.8°
(c) sq. 2 m 1 No 43.5°- 50.8°
(d) circ. 1 m 2 No 43.5"- 50.8°
(e) circ. 0.5 m 1 No 43.5° - 50.8°
(f) circ. 1 m 1 No 26.7°- 25.4°

The profiles listed in Table 7.1 have the following properties:
a) Profile (a) features a single large circular cylinder centercd

in the region. The circular cylinder should be easy to detect
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since it will be viewed over large angles.

Profile (b) features a single large square cylinder near the
center of the region. The square cylinder is more difficult to
detect since it will scatter the electromagnetic waves
differently depending on the aspect angle. However, this
cylinder coincides exactly with one of the square pixels used
in the reconstruction process. This should allow this cylinder
to be easily detected. In general, one should not expect the
cylinder to coincide exactly with one of the reconstruction
pixels.

Profile (c) is again a single large square cylinder near the
center of the region. This time the cylinder does not exactly
overlap a reconstruction pixel.

Profile (d) features two large circular cylinders centered
between the boreholes. These cylinders will be difficult to
detect since they do not lie near the center of the region
where they would be subject to a maximum number of
projections.

Profile (e) features a small circular cylinder centered in the
region. This cylinder willi be difficult to detect due to its
small size (it is smaller than one wavelength at 50 MHz).
Profile (f) features a circular cylinder in a profile that is
expanded in the horizontaj direction. The limited view angle

will make this cylinder difficult to detect.

These six profiles will provide a variety of conditions under which to

test the various algorithms. It should be noted, however, that the

algorithms will he able to reconstruct profiles which contain more

complex anomalies than those being considered.

7.4.2 Reconstructions for High Conductivity Anomalies

In this section reconstructions will be obtained for the six
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profiles described above for which the anomalous cylinder will have a
higher conductivity (and permittivity) than the background medium. In
all cases, the conductivity of the cylinder(s) will be 0.05 S/m with a
relative permittivity of 20. The displayed results will be three-group
(high, medium, and low attenuation) partitioned images of the
reconstructed cross section for the CW simulations, and also
three-group (high, medium and low permittivity) partitioned images for
the TOF simulations. Ideally the (actual) location of the anomaly will
coincide with the high attenuation (permittivity) region in the
partitioned image.

The results for CW data will be presented first. For all the CW
reconstructions, noise will be added to the simulated data to obtain a
signal-to-noise ratio equal to 30 dB.

The reconstructions for the six profiles using the SVD algorithm
are shown in Fig. 7.3. 1In the images, the actual locations of the
anomalies are illustrated by the circles or squares drawn in the
images. The darker shading indicates regions of higher attenuation.
As can be seen from the figure, the SVD algorithm gives good
reconstructions for almost all of the profiles. However, the small
circular cylinder (profile 2) is not located in the high attenuation
region. In addition, extraneous pixels are included in the high
attenuation regions in profiles (b), (d), and (f) of the figure.

The reconstructions in Fig. 7.4 were obtained by using 400
iterations of the ART algorithm. These images are similar in quality
to the results shown in Fig. 7.3 in that in only one case (profile b}
the cylinder does not lie in the high attenuation region, and some of
the other cases (i.e., ¢, d, e, and f) have extraneous pixels in the
high attenuation regions.

Fig. 7.5 shows reconstiructions from using 180 iterations of the
CG~-GPM algorithm. For all cases the anomaly is located in the high
attenuation region, and only three of the images (i.e., profiles b,d,

and e) have extraneous pixels. This algorithm gives the best results
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for the CW data.

From these results, the following general conclusions for the Cw
reconstructions can be drawn.

a) In all of the reconstructions, the anomalies were detected.

The only differences are in how accurately the anomalies were
located and how many extraneous pixels are included in the high
attenuation regions.

b) In all of the reconstructions there is spreading of the high
attenuation region in the horizontal direction. This spreading
is the result of the limited view angles for all of the
reconstructions. There does not seem to be any way to avoid
this phenomenon for the cross-borehole geometry.

c} In general, spreading in the vertical direction is limited to
only a few of the reconstructions. This is due to the fact
that there is adequate coverage in the vertical direction since
the transmitter and receiver increments result in a fine
spacing in this direction. This fine spacing is at the expense
of requiring more measurements to be taken.

The results of using the SVD algorithm on the TOF data are shown
in Fig. 7.6. For the TOF operation, 1% additive noise has been added
to the simulated data. It is felt that in general TOF measurements
will not be subject to as much noise since no calibration of the
transmitted power will have to be made. As can be seen from the
figure, profile (b) is the only one in which the cylinder is clearly
identifiable. The reconstructions for profiles (a) and (d) show some
indications of the presence of the cylinder(s), but the results are
inconclusive.

ART reconstructions for the TOF data are shown in Fig. 7.7. In
profiles (a) and (b) the anomalies are located in the high
permittivity regions. However, extraneous pixels are present in
profile (a). Profiles (c) and (f) have the anomalies partially in the

high permittivity regions. Again, profile {(d) shows some indications
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of the cylinders, but they are not easily identifiable.

Reconstructions using the CG-GPM algorithm are shown in Fig. 7.8.
Again, the cylinders are located in the high permittivity regions for
profiles (a) and (b). Profiles (c) and (f) have half of the cylinders
in the high permittivity region, and some indication of the presence
of the cylinders is evident in profile (d). Finally, although the
cylinder is located in the high permittivity region for profile (e),
the results are inconclusive. We can conclude from these results that
for the TOF data, the CG-GPM algorithm gives the best reconstruction
results. In addition, the following general conclusions for the TOF
reconstructions can be drawn.

a) Unlike for the CW reconstructions, the anomalies were not
detected in all cases. This gives further reason for obtaining
both types of measurements.

b} When the anomalies were detected, the high permittivity region
did not always contain the entire anomaly. This suggests that
a partitioning scheme which would be biased to include
neighboring pixels into the high permittivity region might
perform better for TOF reconstructions.

It is worthwhile to investigute why the reconstruction results for

the CW data are better than for the TOF data. To this end, Fig. 7.9
shows plots of the received electromagnetic field and pulse arrival
times versus (receiver) borehole depth for profile (e). For this
figure the transmitter is located at a depth equal to the center of the
anomaly. Note that because of diffraction effects the cylinder
'shadow’ for the received field magnitude (CW data) is larger than the
optical (straight ray) 'shadow' of the cylinder. However, the
attenuation of the field in this region is significant. On the other
hand, for the time-of-flight data the 'shadow' from the cylinder is
nearly the same as the optical shadow, but the difference between
arrival times in the 'shadow' and 'lit' regions is very slight. This

figure further emphasizes the need to obtain both CW and TOF
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measurement data in that one set of data might yield better

reconstructions depending on the profile.

The results of combining both CW and TOF reconstructions for the
CG-GPM algorithm are shown in Fig. 7.i0. This figure was obtained by
intersecting the regions of high attenuation in Fig. 7.5 with the
regions of high permittivity in Fig. 7.8 as suggested in Chapter VI.
These results are shown for the CG-GPM aligorithm since this algorithm
gave the overall best reconstructions. All of the profiles except for
(d) give a good indication of the location of the anomaly. although the
recor~ .ction for profile (e¢) might be suspect since the TOF
reconstruction (Fig. 7.8) for this profile did not give a localized
region of high permittivity. For profiles (a), (b), (c), and (f) we
can conclude that we have located regions of high attenuation and
permittivity, which would signify, for example, a section of earth

having high water content.

7.4.3 Reconstructions for Tunnels Located in the Earth

In this section the cylinder imbedded in the earth will be an
air-filled void, that is, a tunnel. In this case the conductivity of
the cylinder is zero and its relative permittivity is unity. As
before, the conductivity of the background is 0.001 S/m and its
relative permittivity is 10.

Reconstructions for CW data for the SVD, ART, and CG-GPM
algorithms are shown in Figs. 7.11, 7.12, and 7.13, respectively. The
results are similar to those obtained for the high conducting case.
This is not surprising in light of the discussion in Chapter VI and the
plots in Fig. 6.1. Because of the diffraction of the rays around the
cylinder, the tunnel causes an attenuating effect (see Fig. 6.1), which
results in a region of high attenuation in the reconstructed image.

For the CW data it might be judged that the ART algorithm does slightly

better than the CG-GPM algorithm from comparing the reconstructions for

|
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profiles (b) and (e) in Figs. 7.12 and 7.13. However, for all the
other profiles the performances of the two algorithms are very similar.
The SVD algorithm gives reconstructions comparable in quality to the
ART or CG-GPM, although there are many extraneous pixels in profile (f)
of Fig. 7.11. 1In addition, the following general conclusions for the
CW reconstructions can be drawn.

a) In all of the reconstructions, the tunnels were detected.
Again, the only differences are in how accurately they are
located and how many extraneous pixels are included in the high
attenuation regions.

b) The spreading in the horizontal direction is again evident in
all of the profiles.

c) The tunnel reconstructions are very similar to those obtained
for the high conductivity anomalies. This was expected from
the similarity of the magnitude responses of the tunnel and
high conductivity cylinder in Fig. 6.1.

Reconstructions for TOF data are shown in Figs. 7.14, 7.15, and
7.16. Note that since the tunnels have lower permittivity than the
background, the tunnels are identified by the regions that have light
shading. All three algorithms are able to identify the tunnels in
profiles (a) and (b), and all show parts of the tunnel in profiles (c)
and (e). None of the algorithms is able to distinguish the two tunnels
in protfile (d), although the tunnels are located in the low
permittivity region. Finally, only the CG-GPM algorithm is able to
detect part of the tunnel in profile (f). 1In addition, the following
general conclusions for the TOF reconstructions can be drawn.

a) Again, for the TOF reconstructions, the tunnels were not

detected in all cases.

b) When the tunnels were detected, the low permittivity region
was smaller (fewer extraneous pixels) than for the CW
reconstructions. This phenomenon can be explained by

referring again to Fig. 7.8.
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c) The reconstructions for the tunnels were in general superior

to those obtained for the high conductivity anomalies. This
is due to the fact that the ratio of the tunnel's permittivity
to the background is 1:10, while for the high conductivity
anomaly it was 2:1, This suggests that TOF measurements will
in general be most effective for detecting turnels.

Since it is unclear which algorithm has performed best in locating
tunnels in the six profiles, all three have been used to combine CW and
TOF data as described above. The results are shown in Figs., 7.17,
7.18, and 7.19. In these figures the dark shading indicates regions of
high attenuation and low permittivity. From the discussion in Chapter
6., such regions would signify the presence of a tunnel. All three
aigorithms are able to identify the tunnels in profiles (a)., (c¢)., (d),
and (e), aithough the results shown for the two tunnel case (profile d)
are suspect since the TOF reconstructions for the profile were
inconclusive. Both the SVD and ART algorithms located the tunnel in
profile (b), but the CG-GPM was the only algorithm to identify the
tunnel in profile (f). The CG-GPM did not identify the anomaly in (b)
because the regions of high attenuation and low permittivity did not
intersect. However, from studying the attenuation image of Fig. 7.13
(b) and the permittivity image of 7.16 (b) one would be led to believe
that an anomaly exists in the region surrounding the actual anomaly

location.

7.4. 4 Conclusions

From the resul’.s presented in this section a number of
conclusions may be drawn:
a) For the profiles considered, the CG-GPM performed better at
locating high conducting anomalies than either the SVD or ART
algorithms. This agrees with the results ot Chapter 1V where

the CG-GPM algorithm performed best on all of the test cases.
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For identifying and locating tunnels none of the algorithms
significantly outperformed the others.

b) Reconstructions using CW data were, in almost all cases, able
to detect the anomalies in the profile; the same was not true
for TOF reconstructions. However, reconstructions using TOF
data, when they did detect an anomaly, were able to more
accurately locate its position. This phenomenon is due to the
fact that although the diffraction of the rays causes a deep
attenuation in the CW measurements., it also causes the anomaly
to appear larger than its actual size. On the other hand. TOF
measurements are not as greatly affected by diffraction of the
rays. In addition, reconstructions using TOF data were more
sensitive to whether or not the anomaly 'fit' exactly on the
reconstruction pixels. Again, diffraction of the rays for the
CW measurements made placement of the grid less critical. This
suggests the possibility of performing multiple TOF
reconstructions with the grid relocated for each
reconstruction.

c) Combining CW and TOF data enables one to detect anomalies and

to give good insight into their composition.

7.5 Adqitional Reconstructions Using the CG-GPM Algorithm

7.5.1 Introduction

In this section some additional reconstructions will be performed
in order to demonstrate the effectiveness of some of the methods in
reducing the effects of noise in the data and reducing the effects ot
diffraction of the rays. For all of the reconstructions presented in
this section, the CG-GPM algorithm will be used since it, in general,

produced the best results for the examples given in the last section.
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7.5.2 The Effectiveness of the WLS MNethod

The weighted least squares (WLS) method was presented in Chapter
4 as a means of adding a priori information to the reconstruction
process. In fact, all of the reconstructions presented up until this
point have used the WLS method. We would like to present some results
which compare solutions obtained with and without the WLS method. For
these reconstructions, the signal-to-noise ratio (SNR) will be lower
(i.e., 25 and 20 dB) than what was used in the last section. The
result of using these lower values of SNR is demonstrated in Figs.

7.20 and 7.21, where the electric field versus borehole depth is
plotted with and without added noise, for the case of a tunnel in a
homogeneous earth. The SNR was equal to 25 dB in Fig. 7.20. and equal
to 20 dB in Fig. 7.21. Note how badly distorted the noisy data is in
Fig. 7.21.

The reconstructions which will be presented will be for CW data
generated from the two-tunnel profile, (d) in Table 7.1, and the small
tunnel profile, (e) in Table 7.1. These profiles are two of the more
difficult ones to reconstruct. Fig. 7.22 shows reconstructions for the
two- tunnel anomaly. The images shown in (a), (b), and (c) are the
results of using the least squares method, the WLS method with path
length weighting, and the WLS method with path length and estimated
power weighting, respectively. For a discussion of these methods refer
back to Chapter IV. For these images the SNR was equal to 25 dB. Note
the extraneous pixels in the image in (a) which are not present in (b)
and (c). The images shown in (d), (e) and (f) are the same as those in
(a) - (c). except that the SNR was equal to 20 dB. Note that the image
found using the WLS method with path length and estimated power
weighting gives the best indication of the presence of the tunnels.

Fig. 7.23 shows the result of attempting to detect the smail
tunnel. The images shown in (a), (b), and (c) use the same methods as

in (a), (b), and (c) of Fig. 7.22. Again note that fewer extraneous
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pixels are present in the images in (b) and (c¢) than in the image in
(a). The images shown in (d), (e) and (f) are the same as thouse in (a)
- (c¢)., except that the SNR was equal to 20 dB. Again the ima;, - found
using the WLS method with path length and estimated power weighting
gives the best indication of the presence of the small tunnel.

As these examples show, the WLS method is extremely eftective for
reconstructing images under conditions in which the data is very
noisy. Since it is expected that actual measurements will contain

considerable noise, the WLS method should be used in all cases.

7.5.3 The Effectiveness of Constraining the Solution Image

In this section we present results which show the effectiveness of
applying constraints to the reconstructed image. Recall that the
results in Section 7.4 were obtained by constraining the pixel values
in the reconstructed images to be greater than zero. The discussion in
Chapter [II gives reasons for considering constrained solutions. In
fact, the CG-GPM algorithm was developed in Chapter 1V as a means of
finding a constrained solution. We again consider detection of the two
tunnels and the small tunnel in a homogeneous earth using CW
measurement data. Signal-to-noise ratios of 25 and 20 dB will be used.

As already stated, the background medium has a conductivity equal
to 0.001 S/m and a relative permittivity equal to 10. These values
result in an attenuation equal to 0.06 Np/m at 50 MHz. When the
solution is constrained to this value of attenuation, the resulting
image has all pixel values equal to this value of attenuation.

Instead, we shall use constraint values equal to 0.00, 0.01, 0.02, and
0.03 Np/m.

The resuits of using the above constraint values for the two-
tunnel profile are shown in Fig. 7.24, with (a) having a constraint
value of zero and (d) having the highest constraint value of 0.03 Np/m.

(b) and (c) have the intermediate constrajint values. Note that the
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image in (d) best identifies the anomalies in that the extraneous
pixels are localized adjacent to the anomalies' positions. The same
constraint values were applied to the reconstruction of the small
cylinder, and the results are shown in Fig. 7.25. The image in (a) of
the figure has regions of low attenuation directly above and below the
anomaly. These low attenuation regions are artifacts of the
diffraction effects which cause the peaks in the electric field at
borehole depths of 4 and 16 m in Figs. 7.20 and 7.21. Note that the
artifacts have been eliminated in (c) and (d) of Fig. 7.25.

With the SNR equal to 20 dB, the two tunnels cannot be identified
in the images (a) and (b) of Fig. 7.26. However, for constraint values
of 0.02 and 0.03 Np/m (c and d of the figure) the anomalies are clearly
distinguishable. Fig. 7.27 shows the reconstructions for the small
tunnel with the SNR equal to 20 dB. Again, the best images are for
constraint values equal to 0.02 and 0.03 Np/m. Note also that these
reconstructions are superior to the one in Fig 7.13 (e), where the SANR
was equal to 30 dB. In that figure the constraint value was equal to
zero.

In summary, by using constraints the reconstructions are less
susceptible to the effects of noise as demonstrated in Figs. 7.24 -
7.27. 1In addition, the application of constraints reduces the unwanted
artifacts due to the diffraction of the electromagnetic waves. In
generai the constraint value should be chosen to be less than the
attenuation value of the background medium. For the cases investigated
above, one third of the background attenuation value was a good
compromise between reducing unwanted artifacts, and washing out the

image entirely.

7.6 Ray Optics Refinement

7.6.1 Introduction
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In this section we will present methods for improving
reconstructed images. As can be seen from the examples presented
previously, the reconstructed images are not ideal in that the images
do not exactly match the actual cross section of the earth being
investigated (i.e., the reconstructions are not perfect). Reasons for
this mismatch include;

a) The straight ray model, which is used as the basis for the
algebraic inversion method, neglects the reflections,
refractions, and diffractions ot the rays.

b) The finite resolution of the pixels does not allow the
adequate representation of some images.

Note that the shortcoming discussed in b cannot always be resolved by
decreasing the size of the pixels., since this will result in a
(computationally) longer and more instable inversion process. Two
methods for accounting for non-straight rays are ray tracing and the
ray optics model matching procedure discussed in Section 3.2.3.

Ray tracing is a method for improving a reconstructed image by
finding the paths rays would take through the current estimate ot the
cross section in order to obtain a better indication of the actual ray
paths {14], [15]), {66]. This new path length information is then used
to construct a new coefficient matrix for (3-26), and then this
equation can be inverted using the methods of Chapter IV to find an
improved image. The ray tracing process can be repeatedly applied in
order to obtain better estimates of the ray paths and therefore better
reconstructed images. This method normally considers the reflection
and refraction of the rays at interfaces between pixels, and ignores
diffraction efiects. The refraction and reflection angles can be
calculated from Snell's law (66]. However, from the discussion in
Section 2.5.2, Snell's law will not always be a good approximation for
the refraction of rays in lossy media.

The other method for refining the reconstructed image was

described in Section 3.2.3. The main assumptions in using this method
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are that the region contains high contrast anomalies and that

diffraction effects are dominant (over refraction effects). The
reconstructed image will be used to locate regions where a high
contrast anomaly might exist and then the model matching method will be
used to locate the anomaly within the region(s). The second assumption
is necessary since a theory for adding the contributions from refracted
and diffracted rays in the reconstruction process does not presently
exist.

From the discussion above, we can conclude that ray tracing will
be effective when refraction is the dominant effect, and the model
matching procedure will be effective when diffraction is the dominant
effect. As noted in Chapter II, diffraction will be significant when
the index of refraction of the scatterer (anomaly) differ: trom the
index of refraction of the background. If we consider as an example a
background earth having a conductivity equal to 0.001 S/m and a
relative permittivity equal to 10, then it can be seen from Fig. 2.26
that if the conductivity of the anomaly differs from the background but
its permittivity is the same, then the index of refraction of the
anomaly will be comparable to the background, and diffraction will not
be significant. However, if the permittivity of the anomaly differs
from the background, then the index of refraction of the anomaly could
be greatly different from the background (Fig. 2.27) and diffraction
will be significant. In most cases, a region having a higher
permittivity will also have a higher conductivity {24]), so that a

technique based on diffraction theory will be the best choice.

7.6.2 Ray Tracing Using Snell’'s Law

A. Introduction

The method of using ray tracing was described above, and a more

complete description is given in [66]. Sec [84] for details of the
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algorithmic process for finding the ray paths between transmitters and
receivers. Note that in [84] Snell's law was used for finding the
direction of travei of the refracted rays. However, we have shown in
Chapter Il that in lossy media an extension of Snell's law must be
used. In particular, see (2-54) through (2-57) for a description of
the transmission of rays through an interface between lossy media.

Note that in tracing a refracted ray, the ray corresponding to the
direction of constant phase is the one being considered. Refer again
to Fig. 2.22 for clarification of these ideas. The interfaces that are
being considered are the boundaries between adjacent pixels in a
reconstructed image.

Fig. 7.28 gives an illustration of the process of finding the rays
linking a single transmitter to a number of receiver locations. The
rectangle in the center of the figure represents a region having lower
conductivity (and permittivity) than the background. Some of the items
of interest in this figure include:

1) The ray tracing algorithm could not find ray paths linking some
of the receivers to the transmitter. This failure of the
algorithm is due the discontinuity caused by the corners of the
rectangle.

2) The presence of the rectangle causes the ray paths to deviate
from the straight line connecting the transmitter to the
receivers. In particular, if many rectangles were present (as
would be the case in a reconstructed image where each pixel is
a rectangle) then the paths would be very erratic.

Physically, one does not expect that the rays would behave as
described above in an actual cross section of the earth where abrupt
changes in the medium do not normally occur. The imposition of a
discrete nature to the cross section (via the pixels) will cause the
estimated ray paths to not coincide with the actual ray paths. It is
for this reason that ray tracing cannot be applied to the unprocessed

reconstructed image.
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It was suggested in |66] that filtering of the type described in

Chapter V be applied to the reconstructed image in order to reduce the
sharp discontinuities between pixels. We have also found that it helps
to partition the image (using the MMP, for example) prior to tracing
rays. This partitioning in effect removes the 'noise' in the
background image. This is important since even if two pixels have
similar (but not identical) electrical parameters, a ray which exits
the first pixel and enters the second pixel at an angle far from normai
will experience a large refracting angle. This phenomenon can be seen
in Fig. 7.28 where the rays which enter the rectangle at larger angies
from normal are refracted more.

Another technique for ensuring that the traced rays more closely
represent the actual ray paths taken in the measurement process is to
use some sort of interpolation between pixels in the reconstructed
image [14], [15]. This interpolation will also remove some of the
adverse effects of discretizing the cross section into pixels. We have
found that a linear interpolation [15] gives the best results at the
least computational expense. In judging the merit of an interpolation
scheme, we consider the scheme which is able to find the most rays
linking transmitter and receiver locations to be the best. In using
linear interpolation, if a ray enters at the center of a pixel, then we
use the parameters of that pixel and the exiting pixel in (2-54)
through (2--57) in determining the refracted ray. If, however, the ray
enters below the center of the pixel, then a linear combination of that
pixel and the one below it (as well as for the exiting pixel) are used
in (2-54) through (2-57). Fig. 7.29 shows an illustration of tracing
a ray through an intertace between two pixels. The electrical

parameter of the entering pixel for this example would be

X = (1 - d/H) Xl + (d/H) Xz' (7-2)

where d is the distance from the center of the pixel to the point
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where the ray enters the pixel, H is the height of the pixel and x1

(Xa) is the electrical parameter of the upper (lower) pixel. The same

process is applied to find the electrical parameters of the pixel
which the ray exited.

Figs. 7.30 and 7.31 illustrate the usefulness of the techniques
described above. Fig. 7.30 shows an example of ray tracing through a
raw reconstructed image. In this figure six transmitter and receiver
locations are shown. Note that the ray trace algorithm is unable to
find paths linking all the transmitters and receivers, and the paths
which are found are very erratic. Fig. 7.31 shows the result of
tracing rays using the techniques described above. Note that in this
figure, all the paths linking transmitters and receivers have been
found. In addition, the paths are not as erratic as those found in
Fig. 7.30. We will first apply the ray tracing process to
reconstructions using CW data, and then to reconstructions using TOF

data.
8. Ray Tracing for CW Data

In this section we will show examples of using ray tracing to
improve reconstructions obtained using CW data. As degtribed above,
ray tracing will only be effective when refraction effects are more
dominant than diffraction effects. Therefore., we will only consider
profiles where this criterion is met.

The ray tracing process was applied to the reconstruction of a
high conductivity circular cylinder in a homogeneous earth. The
background earth has a conductivity of 0.001 S/m and a relative
permittivity of 10. The cylinder has a conductivity of 0.004 S/m and
a relative permittivity of 10. Since the permittivity of the
background and the cylinder are the same, we expect refraction will be
the dominant effect. Fig. 7.32 is a three dimensional representation

of the reconstructed image. The image was reconstructed using the
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CG-GPM algorithm with a constraint value of 0.002 S/m. Regions of
higher attenuation are indicated by greater height in the figure.
Note that the cylinder's presence is seen near the center of the
figure, but it is not clearly distinguishable. Fig. 7.33 shows the
result of applying one iteration of ray tracing to the reconstructed
image (further iterations caused the solution to diverge). Note that
ray tracing has caused the presence of the cylinder to be more clearly
indicated, and the region surrounding the cylinder to have fewer
perturbations.

Fig. 7.34 summarizes the ray tracing example using two-dimensional
images. In part (a) of the figure the filtered reconstructed image is
shown. Part (b) shows the result of partitioning this image into two
groups using the MMP. Note the spreading of the cylinder in both
horizontal and vertical directions. Part (c) is the filtered
reconstructed image after applying ray tracing, with (d) showing the
partitioned version of this image. Note that the pixel adjacent to the
cylinder jis identified as the high attenuation region. This gives a
more accurate indication of the size of the cylinder although its

location is in error.

C. Ray Tracing for TOF Data

In this section we will use ray tracing to improve the
reconstructed images obtained from TOF data. Note that for TOF
measurements, refracted rays will in general be more important than
diffracted rays since in TOF measurements the time of the first pulse
reaching the receiver will be measured. For example, Fig. 2.21 shows
the pulse waveform which would be observed at the receiver, and the
pulse due to the diffracted ray is the last pulse to be observed.
Therfore, we can use ray tracing on the high contrast profiles
considered in Section 7.4. The anomalies will either have a relative

permittivity of 20 (high permittivity) or a relative permittivity of 1
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(tunnel). As before, the background has a relative permittivity of 10
and a conductivity of 0.001 S/m.

We first consider the profile having the square cylinder
coinciding with one of the reconstructed pixels (profile b in Table
7.1). Ray tracing should be most effective on this profile since the
reconstructed image will have the cylinder exactly on one of the
pixels. Fig. 7.35 summarizes the results for the high permittivity
cylinder. In part (a) of the figure is the filtered reconstructed
image while part (b) is the result of partitioning this image into two
groups using the MMP. Parts (c) and {d) of the figure are the resuilts
of using one iteration of ray tracing. As can be seen, ray tracing has
not improved the image. This result is not surprising in that the
reconstructed image was already a good representative of the actual
cross section. Fig. 7.36 shows similar results for the low
permittivity cylinder. Again, ray tracing was unable to improve a good
reconstruction.

We now consider ray tracing applied to the square cylinder which
does not coincide with one of the pixels (profile ¢ in Table 7.1).

Fig. 7.37 shows the reconstructed images for the high permittivity
cylinder. This.time ray tracing has slightly degraded the image in
that the partitioned ray traced image, (d), does not indicate the
presence of the cylinder. However, the filtered ray traced image, (c).
does show some indication of the presence of the cylinder. For the low
permittivity cylinder, the results are shown in Fig. 7.38. This time
ray tracing has greatly improved the image in that the partitioned
image clearly indicates the presence of the cylinder, although its

location is slighlty in error.
0. Conclusions

In this section it was shown that ray tracing can be an effective

method for improving reconstructed images resulting from measurements
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which are largely refractive in nature. The ray tracing method is
most effective on reconstructions where the anomaly nearly coincides
with the reconstruction pixels, although methods to alleviate this
dependency have been presented. In addition, care must be taken in
applving this technique in that improvements may not be obtained in
all cases. However, for some profiles the improvements in the

reconstructed image are worth using this method.

7.6.3 Ray Optics Model Matching Method

A. Introduction

As discussed in Chapter II, and as shown in the block diagram of
Fig. 7.1, it is possible to use the ray optics method (Section 2.4) to
improve the reconstructed image. This process is illustrated by the
block diagram in Fig. 3.3. As noted above, this process will be most
effective when the profile being reconstructed contains high contrast
anomalies, making diffraction the dominant effect in the measurement
process. It will be demonstrated on the cross section containing the
high conductivity square cylinder (profile c of Table 7.1).

From the results of combining the CW and TOF reconstructions as
presented in Fig. 7.10, we have reason to suspect the presence of a
high conductivity anomaly in the region of the shaded pixels in the
image, (c). Therefore, we will search for the exact position of the
anomaly in the four pixel region fc «=d by the shaded pixels and their
two mutual neighbors. Of course, the search region could be expanded
at the expense of greater computation time. The search method to be
used will be as follows:

a) Choose a location inside the search region.

b) Calculate the CW measurement data using the ray optics mecthod

assuming a small square cylinder centered at the chosen

location.
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c) Increase the size of the cylinder and calculate new CW data.
d) If the calculated CW data using the current size of cylinder
more closely matches the actual measurement data, save this
size for the cylinder.
e) Repeat steps c and d until the cylinder size giving the
smallest error is found.
f) Choose a new location inside the search region.
g) Repeat steps b through f until the location and size of the
cylinder giving the smallest error is found.
For the example to be presented, the smallest cylinder size is chosen
to be 1.0 m on a side, and the size increment will be 0.5 m. The
cylinder will be moved over the search region in steps of 0.25 m. As

in the examples of Section 7.4, the SNR wil be equal to 30 dB.

8. Example from Test Profiles

When the search method described above was applied to the CW data
for the square anomaly, profile (c) of Table 7.1, the position of
minimum error was found to 7.5 m in the horizontal direction and 8.0 m
in the vertical direction. The actual location of the cylinder was 8.0
m in the horizontal direction and 8.0 m in the vertical direction.
Therefore, the error in position was 0.5 m. The cylinder size having
smallest error was 2 m. This is the same as the size of the cylinder
used to simulate the data.

Fig. 7.39 is a graphical depiction of the process of finding the
cylinder location having minimum error. The graphs in this figure were
generated by fixing the horizontal (vertical) position ot the cylinder
at the actual position and then plotting the error versus vertical
(horizontal) position of the cylinder. Note that the 'vertical error’
(obtained by changing the vertical position of the cylinder) has a
better defined minimum than the 'horizontal error'. In addition, the

'vertical error', unlike the 'horizontal error' is monotonic on either
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side of the minimum. These results are not surprising in that
resolution in the vertical direction should be greater than the
horizontal direction because of the scanning geometry. Note the
limited view angles listed in Table 7.1. The view angles determine the
horizontal resolution, while the transmitter and receiver spacings
determine the vertical resolution. The transmitter/receiver spacings
were sufficiently close to give good vertical resolution. In fact,
this effect explains the spreading of the location of the anomaly in
the horizontal direction, which was seen in the reconstructions

presented at the beginning of this chapter.

C. Sample Reconstructions for Complex Anomalies

In this section we would like to demonstrate that the methods
previously used are not restricted to cross sections containing only
square or circular cylinders. Since simulations for arbitrarily shaped
cylinders can only be obtained using the VCM (which gives CW data), the
reconstructions to be presented will only be for CW data. For all of
the examples, the WLS method with the CG-GPM algorithm will be used.
The solution will be constrained at one third the attenuation of the
background medium.

The first example features a tunnel with an arched roof located
in a background medium having a conductivity of 0.001 S/m and a
relative permittivity of 10. The floor of the tunnel is approximately
1.2 m across, and the height of the tunnel is also approximately 1.2
m. The reconstruction region is 20 m by 20 m, and the increment
between transmitter (receiver) locations is 1 m. A total of 400
measurements of the received power will be simulated. The SNR will be
equal to 30 dB.

After performing the reconstruction process as previously
described, a high attenuation region 4 m in height and 8 m in width,

centered around the tunnel, was identified. This region is labeled the
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search region in Fig. 7.40. Also shown in the figure is the actual
location of the tunnel. Since a diffraction theory does not presently
exist for objects having lower index of refraction than the surrounding
medium, the ray optics method for locating the tunnel cannot strictly
be used. However, by noting the similarity between the magnitude
responses of the tunnel and conducting cylinder in Fig. 6.1, we can
attempt to locate the tunnel by using a high conducting cylinder in the
search process. By using the high conducting cylinder, the ray optics
method can be used to efficiently find the location of minimum error
(refer to Fig. 3.3). When this operation was performed, the tunnel was
'located' 1.2 m from the actual tunnel position as shown in Fig. 7.40.
This gives a much more accurate indication of the tunnel location than
the raw, reconstructed image.

The second example has the same conditions as the one above,
except that the anomaly has a conductivity of 0.05 S/m and a relative
permittivity of 20. The cross section of the anomaly is in the shape
of an 'L' as shown in Fig. 7.41. The high attenuation region in the
reconstructed image is again 4 m by 8 m, as can be seen in Fig. 7.41.
In this case, the process of accurately locating the anomaly using the
ray optics method is very effective as the located anomaly nearly

coincides with the actual anomaly.

7.7 Conclusions

In this chapter we have presented a process for reconstructing
underground images and detecting and identifying high contrast
anomalies in the image. This process uses both CW and TOF measurement
data in order to characterize the anomalous region. The effectiveness
of this process was demonstrated on a number of test cases using three
different algorithms. Of the three algorithms, the CG-GPM gave the
best reconstructions.

The ability of the WLS method (used in finding the reconstructed
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image) to diminish the effects of additive noise was also demonstrated.

In all cases, using this method resulted in better images. The
application of constraints on the solution image was shown to reduce
artifacts due to diffraction phenomena. This reduction was evident for
two test cases and for different noise levels.

Of importance to the reconstruction process is the ability to
accurately locate and determine the size of an anomaly. This would be
important if, for example, it were required to accurately drill into an
underground stream or a tunnel. Since the electromagnetic rays do not
follow straight paths, the size, shape, and location of the anomalous
region in the reconstructed image does not match the actual anomaly.
For this reason, we have used the ray optics model as a tool in
refining the size and location of the anomaly. This takes the form of
the ray tracing method for cross sections in which retfraction is the
dominant effect and takes the form of the model matching method when

diffraction is the dominant effect.




CHAPTER VIII

SUMMARY AND CONCLUSIONS

8.1 Summary of Results

In this report some new methods for geotomography are presented.
As indicated by the block diagram in Fig. 7.1, geotomography is not a
one step process, and our goal has been to make improvements to all of
the steps illustrated in the block diagram. In addition, in order to
obtain good reconstructions, one must use as .much q priori information
as possible. This is accomplished through the use of the weighted least
squares method and the application of constraints to the reconstruction
process.

As a first step in understanding and characterizing the image
reconstruction problem, it is first necessary to develop good models of
the process. Chapter II reviews some of the models used for the
cross-borehole geometry. A feature lacking in these models is the
ability to characterize the diffraction of electromagnetic rays from
objects located in the earth. Note that some of the models implicitly
include diffraction effects, but give no indication of the relative
magnitude of the contribution of these effects to the total response.
Therefore, ray diffraction theory has been adapted to this application.
In this way, the ray optics model is able to explicitly predict
diffraction phenomena, and quantify its effects.

In Chapter III some of the standard reconstruction methods for
geophysical applications are reviewed. The algebraic method, which uses
a straight ray model, is chosen since it is the most robust method.
This is in line with our focus on locating, detecting, and identifying
high contrast anomalies. The major shortcoming with the algebraic
method is that it ignores diffractions, refractions, and reflections.

It is for this reason that a new method (i.e., the model matching
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method) based on the ray optics model of Chapter II has been introduced.
This method can be used to verify and refine a reconstructed image
obtained using the algebraic method. In addition, Chapter III discusses
the general theory of inverse problems. Regularization methods are
presented to reduce the effects of noise in the measurement data.

One means of regularization is to find an approximate solution
using least squares techniques. These techniques are investigated in
Chapter IV. An extension of the least squares method is the weighted
least squares method. This method allows the incorporation of a
priori knowledge into the solution. Specific approaches for achieving
this goal are presented.

The singular value decomposition (SVD) is a powerful tool for
examining the behavior of least squares algorithms. This decomposition
is exploited for developing the algorithms in Chapter IV. In addition,
this decomposition leads te an algorithm which is able to incorporate
constraints into the solution. Unfortunately, the SVD algorithm is not
useful for reconstructing large images. In these cases an iterative
algorithm is needed. The conjugate gradient (CG) is one such algorithm
having many desireable properties. However, this algorithm can not
directly incorporate constraints. Therefore, a method using the CG
algorithm with the gradient projection method is developed. In this
way an explicit method for finding a constrained solution is obtained.

Chapter V discusses some methods of processing raw, reconstructed
images in order to reduce noise artifacts and detect subsurface
anomalies. A new method of detecting high contrast anomalies is
introduced, and its superiority over a standard technique is
demonstrated.

In Chapter VI a discussion of the importance of obtaining both
continuous wave (CW) and time-of-flight {TOF) measurements when
scanning betwecn two boreholes is given. It is important to obtain
both types of measurements since:

a) Using one of the measurement processes alone does not uniquely
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determine a reconstructed image.

b) The two measurement processes are susceptible to different
types of errors. Therefore, both should be used to maximjize
the probability of detecting an anomaly.

A viable method of incorporating both types of measurements into the
reconstruction process is suggested.

Chapter VII summarizes the results of the preceding chapters into a
process for reconstructing a cross sectional image and then detecting,
locating, and identifying anomalies in the region. The efficacy of this
process is demonstrated on some geophysical sample cross sections. Once
an anomalous region is detected, ray tracing or the model matching
procedure can then be used to pinpoint the location of the anomaly, to
identify it, and to estimate its size. These procedures are

demonstrated on a number of sample cross sections.

8.2 Conclusions

The image reconstruction problem has been shown to be very
ill-posed in the geotomography setting. Accordingly, algorithms are
presented which are numerically stable and are able to incorporate a
priori information into the reconstruction process. Of these
algorithms, the gradient projection method using conjugate gradient
minimization (CG-GPM) is found to be the best algorithm for
incorporating inequality constraints into the solution. In addition,
this algorithm achieves fast convergence. The weighted least squares
(WLS) method should be used in conjunction with the CG-GPM in order to
reduce the effects of noise in the measured data.

The algorithms that were developed can be used on data generated
using continuous wave (CW) or time-of-flight (TOF) subsurface
measurements. To obtain maximum information about an underground cross
section being scanned, it is recommended that both types of measurements

should be made in the reconstruction process.
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The reconstructed underground image can be improved using ray
tracing or the model matching procedure. If it is known g prior{ that
the subsurface anomalies will cause refraction to be the dominant
effect, then ray tracing should be used. If diffraction effects are
dominant, then the model matching procedure is the best choice. If no
knowledge about the subsurface anomalies is available, then both methods
should be attempted to determine which one leads to improvements in the

reconstructed image.
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This is the standard method used in this dissertation for
calculating the electromagnetic response of arbitrarily shaped
cylinders imbedded in the earth. The method was originally developed
in (34], but the description here is taken from [33].

This method can be derived from the damped wave equation for a
homogeneous earth assuming a sinusoidal source term (ejut time
convention). As in Chapter 2, the total field is equal to the sum of
an incident and scattered field. The scattered field can be found
using a Green's function formulation as in (2-46), which is repeated

here in an equivalent form
S _ 2 ' 2 ' '
2 = - [ [n2@)+2E@ e « (A-1)
A

where the integration is over the area of the cylinder, Ya (ye) is the

propagation constant of the cylinder (background) , G(o) is the Green's

function soiution for the homogeneous problem,

X := (xy)7 (A-2)
is the position vector, and
p = i%-X'| (A-3)

Since the total field is the sum of the incident and scattered fields

it is given by
B - B @) - [ [0R@-v?) B@) sUx-X ) dF'. (A-d)
A

The equation given above can be solved numerically for the total
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field by expanding the total field as
: ( )
E(X) = Z a_ 1,(X), A-5
n=g " An
where An represents a partitioning of the cylinder into N
non-overlapping square patches, IA(X) is the indicator function
n
defined by
1 if XeA,
IA(x) = ’ (A'G)
n 0 if xeAn

and a, is the average value of total field in each An’ The a, can be

determined by choosing a vector xn such that

a, = E(Z)), (A-7)

th

where Zn is the vector to a location inside the n patch.

Substituting (A-4) into the right hand side of (A-3) gives

. N
E(X) = E}NZ) - (P2 (X')-Y2) £ E(X.)I,(X')G(p) dX'
JAJ Ya el S0’ Al P

. N
1 2 2 ' '
ENZ) - 2 0, Py IAJ [5(X')G(p) X (A-8)

where the assumption was made that the propagation constant does not

vary over each An. The integral above can be evaluated by replacing

each square patch by a circular patch of radius a. Making this
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replacement, the integral becomes for the nth patch
21 ,a
j I G(p) dx' = f [ G(p)p'dp'dg’
A 0 0
n
21 a4
= (2) -3 ¢ ' 1
- j j L H(2 (~5v p)p'dp'de
o 0
= I, (mivga) BB (-gvee ). (A9)

2%e

where the explicit form for the Green's function was substituted to
get he second line above, and the final result was obtained by using

the addition theorem for Hankel functions. The quantity Pu is the

th

distance from the observation point to the n patch.

Substituting (A-8) into (A-7), the total field can be expressed as

: N
| 2 2,0 na s (2),_
E(Z) = E"(X) + ngz(ya" ?e)h(xn);;;~Jl( J?ea) HO ( J?epn).
(A-10)
where Pn is the distance from the observation point to the nth patch

The total field can be found using Galerkin's method. Multiply (A-10)

by IA;X) and integrate over all X to obtain

. N
2 _ a2pd 2 .2 na . _
67E(X,) = &%ET(R,) ¢ T O 0RIE@ T, ((3vea) Ky o (A-1D)

where A is the length of the side of the square patch , m ranges from

1 to N, and
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= r ' (2),_ s ' ' Y
K '[AJ Ip (X) B2 (-3vgpy) ox'. (A 12)

Again, substituting circular patches for the square patches and using

the addition theorem, this equation can be evaluated to give

2 . (2) (. o . .
—— limreal 7 (-jvea) - 2j]. for m = n

Kom * € (A-
j2na _ 2y, _ .
Ve Jx( J'yea)H0 { IVePpp): for m #n
where Pan is the distance from the mth patch to the n'('h patch. (A-

can be put in the form of a matrix equation by combining the total

field terms as

Lc=0D>D, (A-
where
L = [IN - T], (A
[ E(X)
c = :
E(Xy)
and
. Ei(xii
b = : (A
EL(Xy)

The matrix lN is the identity matrix in (A-15) and the elements of

13)

10)

14)

15)

i 161)

~17)

T
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are
2 ,2,ma Cim oM s (2),_; . -
(Yam ye),ys J‘ ( ,)'yed)IJn‘yeall1 ( J'yea) + 2j] for m=n
Ton " € 5 (A-18)
2 ,2,jn%a e a121(2) .
(Yam Ve V2 I« Jvea)} Ho® ' (-3%ePpp) for m#¥n

e

The total field at each of the patches can be found by inverting (A-14)

as

c = L 1b, (A-19)

and substituting this into (A-10) to find the total field at the

observation point.
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In this appendix we review some results from linear algebra and

the solution of linear systems of equations. The following notation

will be used.

"
o

AXx

LS

Xk

ry = Axk—b
algorithm

Py

<X,X>

k)2 =<x.x>

NOTATION

matrix equations arising from linearized geophysical
model .

mxn distance matrix.

unknown nxl image vector.

mx1 power measurement vector.
a solution to Ax = b.
a least squares solution to Ax = b.

kTH

the solution vector at the step of an iterative

algorithm.

residual vector at the k™" step of an iterative

an nx1 direction vector at the k'" step of a

conjugate direction algorithm,

vector inner product

vector norm

The following notations, definitions, and formulas are necessary

for an understanding of some of the ideas presented in the

dissertation.

All vectors will be assumed to be column vectors with

real components(e.g. Xx € Rn).

8.1 Vectors

One particular vector of interest is an image vector, which is a
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vector produced by taking the values of successive pixels in an image
and aligning these values into a column. The norm or magnitude of a

vector is the standard Euclidean norm, "°"z' where the norm of an nx1

vector x with elements ii will be given by:

nxn* = £,2 = x™x (B-1)

"M
|l

) ijni = X'y (B-2)

Two vectors are said to be orthogonal if their inner product is
equal to zero. Two vectors will be A-orthogonal(or A-conjugate) if,

given a matrix A:

0 (B-3)

<xX,Ay>

A functional is a mapping from a vector space to the real or
complex numbers. For example, the norm of a vector is a functional. A
functional of particular interest in developing conjugate direction

algorithms is the quadratic functional:

#(x) = é xTAx - x'b (B-4)

The span of a set of vectors is the set of all linear combinations

of the given vectors, that is:

span(x1 x2) = ally-= ax, o+ BX, {B-5)
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A set of vectors will be said to span a vector space if any vector
in the space can be represented as a linear combination of the vectors
in the set. For example, taking the vector space of all nx1 vectors.
it is easily seen that any n linearly independent vectors will span
this space. Two vector spaces that are needed in the sequel are the
range space and null space of a matrix. The range space of a matrix

A(denoted R(A)) is the set of all vectors x such that:

X = Ay (H-6)
for all vectors y. It is easy to show that this set forms a vector
space. The null space of a matrix(denoted N(A) for the matrix A) is
the set of all vectors x such that:

Ax = 0 (B-7)
where 0 represents the zero vector.

B.2 Matrices
The transpose of a matrix is the matrix resulting from an
interchange of the rows and columns of a matrix. A symmetric matrix is

a matrix which is equal to its transpose. It is easily shown that for

a genecral matrix, A,

(ATA)T = ATA (B-8)

Another property of interest is that of positive definiteness.

The matrix A is positive definite if:

(xTAx) > 0. for all x # 0 (B-9)
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If a matrix is real and symmetric this condition translates into
requiring that all eigenvalues of the matrix are greater than zero.
The condition number of a matrix gives an indication of how close the
matrix is to a non-invertible(singular) matrix. A matrix that is
nearly singular (i.e., has a large condition number) will be
susceptibie to small errors in the b vector when solving the equation

Ax = b. In this paper the condition number will be defineu tou be:

(ATA)
iﬂéﬂ_____ (B-10)

K(A) =
Min(A74)

Where A )(o) denotes the largest(smallest) eigenvalue of the

max(min

given matrix.
8.3 Solving Linear Equations

We are interested in solving the linear equation Ax = b. where in

the problem at hand, x is an unknown image vector. A solution of this

equation will be given by X = A"!'b when the matrix is square and of

full rank(i.e. it has no linearly dependent rows or columns). When the

matrix A has m rows and n columns and it is not of full rank an X

cannot be found which solves AX = b e¢xactly. However, a least squares
solution, its , can be found such that "AiLs - b|| is minimized(i.e.

this solution 'fits' the equation in the norm sense). A least squares
solution is the only feasible solution available in applications where
noise and errors are introduced into the measurement and modeling

processes.

8.4 Least Squares Solutions
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For convenience, in the following the matrix A will be assumed to
be square and of dimension n. If the matrix A is of full rank (= n),
then the range space of A is the entire n-dimensional space. In this
case the eguation Ax=b has a unique solution as noted above. If the
matrix A is of less than full rank(e.g. rank(A) = m < n). then the
range space of A is an m-dimensional space which provides a natural

splitting of the entire space into:
n L
R = R(A) & R(A) (B-11)

where IE(A)'L is the orthogonal complement of the range of A (that is,

. I S . .
every vector in R(A) is orthogonal to any vector in R(A)). For this
rank deficient case the equation Ax=b may not have a solution for all b

since an arbitrary vector b can be written as:

b= ax + oX (B-12)

where X, is in R(A) and X, is in R(A)L. A simple example may help

illustrate this point.

l.et: A=

c & -
o o
o o w

b = 15 (B-13)

For this example il is seen that no X solves Ax-b since it is
impossible to generate the third element of the b vector by multiplying

A by any vector Xx.

R
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A least squares solution can be found even in this rank deficient
case. The solution involves finding an iLS which minimizes HAiLs—bnz.

For the example above it is seen that:

= 1 (B-14)

AX -b=10 (B-14)

0f course, this solution is not unique because

0.5]
(B-15)

el
]

LS :
0.5])
aiso minimizes the norm of the residual vector.
Least squares solutions are important for a number of reasons.
Two reasons are:
i) The least squares problem lends itself easily to analysis.
ii) The least squares problem arises naturally in estimation
problems when the given data is normally distributed.
It should be noted, however, that in some applications{e.g. in
situations with outlying data points) that a least sguares solution may

not be the optimum solution,
8.5 Normal Equations

1t is now possible to develop the normal equations for the least
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squares problem from the results above. First of all, the relation
between the range space of a matrix and the null space of the
transposed matrix is needed. 1t can be shown that the orthogonal
complement of the range space of a matrix is equal to the null space

of the transpose of the matrix, or in notational form:

R(AY = wn(AT) (B-16)

From this it follows that AT(AiLs—b) = 0, or in the more standard form:

A*ARLS = ATb (B-17)

the so called normal equations. In the example above, it was seen

that:

AX _ - b =0 (B-18)
20

i
and this vector is in R(A) . Also it is easy to see that:
T X - = _—
A (AxLs b) (] (B-19)

for this example.
The normal equations are important when the equation solving
algorithm (e.g. the conjugate gradient algorithm) requires a symmetric

coefficient matrix. For this case instead of solving the original

problem Ax=b, the equivalent set of equations ATAx = ATb can be solved

for the least squares solution.

8.6 The Pseudo-Inverse
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Perhaps the most widely used method for finding a least squares

solution to a linear equation is through the use of the pseudo-inverse

{(also known as the generalized inverse) of the matrix A(denoted by A*).

This inverse has the following form when the matrix A is of full rank:

At = (ATA) AT (B-20)

This form is easily obtained by appealing to the normal equations given
above. When the matrix A is not of full rank the pseudo-inverse can be
found by using the singular value decomposition(SVD) aligorithm. In

either case, the least squares solution can then be found as:

x _ = A*b (B-21)

This method has two major drawbacks when applied to the problem of
inverting geophysical data. The first drawback is that for geophysical

appiications the A matrix may be very large which precludes the

computation and storage of A*. The second drawback is that this method

does not allow the application of constraints to the solution vector.

For example there may be a need to find a solution vector close to RLS

but with all of its elements constrained to be positive.

8.7 Singular VUalue Decomposition (SUD)
The SVD is a standard decomposition of a linear operator. Its
usefulness lies in its ability to diagonalize a matrix using

orthogonal matrices. Its form for a rectangular mxn matrix is

A = UsSVT (B-22)

where U (mxm) and V (nxn) are orthogonal matrices. S (mxn) is a
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diagonal matrix whose elements are the square roots of the eigenvaiues

of ATA. As mentioned above, this decomposition can be used to find

the pseudo-inverse of the matrix A. This result will be derived for

the regularized inverse Ay which reduces to A* for v=0, as follows

(ATA + yI)7*AT

Ay

([usvT1Tusv™+ p1) t{usvT)T

(vsTsvT+ 1) tvsTyT

(V(D+yI)VT ] tvsTy"

"

V(D+p1) " tvTysTy"

fl

= V(D+yI) *sTu" (B-23)
where D := STS, and (D+yI)™! is a diagonal matrix whose elements are
of the form

(D+ypl);t = —2 (B-24)
ii 2 + v

th

where 6 is the i singular value of A.
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In this appendix, the algorithm LSQR which was derived in [76] is
described. The stopping criterion based on the effects of the
singular values is used. The singular value decomposition should
first be used to determine which singular values should be ignorea
(see chapter 4 for a discussion of this). 1If singular values beyond

some value K are to be ignored, then set

261

CONLIM = , (c-1)
(6) * Okay)

before using the algorithm below. In the following vectors will be
denoted by lower case letters, while scalars will be denoted by lower

case Greek letters (except for Cx and Sk which are also scalars). The

algorithm for solving Ax=b is as follows

2

8, = by
o -2
By

v, = Au

«, = liv,h
\Y

v, T &
1
wl = Vl
’1 N Bl
P, T




—

For k
1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)

17)

18)

Vk+1

, MAX ITERATIONS

= Avk - ukuk

Vi1 T

C+s ~

Vk+1

Pk+1

¢k+1
“k+1

Sk*x

n

2
"uk+1"

W
It

I W2
K+1

If (N, 8y, > CONLIM® )

1

Wiy =

270

- 2)
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In the algorithm above, Nk and &y denote the squares of the norms of
the matrices Bk and Dk defined in [76]. For the definitions of the

other quantities used above, see [76].
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The following algorithm is based on that given in [80}). It has
been simplified to handle linear inequality constraints only, since
these are the major constraints of interest in tomography. In
addition, the CG algorithm has been substituted for the steepest
descent method in performing the minimization over the working
surface.

The gradient projection method for minimizing the functionai

fix) = £ x"ox - x"b, (D-1)

i
2
where Q is symmetric and positive definite, subject to the constraints

gmin s gi s imax’ (D-2)

where zi denotes an element of x for 15isn is given by

1) Set elements of x = § ;.
2)r0=b~Qx
3) p, =0
4) i =1
For k = 1, ... MAX_ITERATIONS
ey it
1) gy = —==b
hrkh
2) If (i>1)

Pk = Tk-1 ™ BkPk-4

Else
- Pg = Tk-y
e 2
3) uk =
<pk'ka>

4) dk = Qkpkpk
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5) If (xk—:+ dk) is feasible
Xy = Xg., * di
Else

a) Choose o < oy such that
X = X, * o PPy is feasible
b) Zero the row of Py corresponding
to the unfeasible component of dk
k k-1 k k
S
7) It dk =0
a) Add row to Py corresponding to
maximum element of rp

b) Re-start by setting i - O
8) i =1 + 1. (h-3)

In the above, Pk is the projection matrix which takes the direction

vector onto the constraint surface.




