UNCLASSIFIED

REPORT DOCUMENTATION PAGE

_1990 Final, Jun 85 - May 90

4 TiE ANG susTILE S. FUNDING NUMBE

Fortran Programs for Weapon Systems Analysis 1L162618AH80
DA30 6667

AV S

Bunn, Fred L.; Olah, Joseph M.; Ritondo, Michele

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADORESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMSER

Ballistic Research Laboratory

ATTN: SLCBR-DD-T
Aberdeen Proving Ground, MD 21005-5066 BRL-TR-3116

| B T T T Y YT
11. SUPPLEMENTARY NOTES

120. OISTRISUTION CODE |

1P s
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

S —
13. ABSTRACT (Maximum 200 words)
This report documents small Fortran 77 routines which are useful to those

interested in ballistics and related work. The programs include skeletal combat
models, a set of discrete-event timing routines, mathematical and statistical
routines, hit probability routines, acquisition routines, ballistic routines, and

others.

All of the programs, subroutines, and functions are in the public domain and

may be copied freely. Government agencies and contractors may request copies from

the Ballistic Research Laboratory.

JP———
TV ————
14, SURECT TeRmS 15. NUMBER OF PAGES

ballistics, Fortran, weapon, combat effectiveness . 89
16. PRICE COOC

7. ot CLASSWHICA 8. STCURITY CLAS TioN
OF REPORT OF THIS PAGE OF ABSTRACT A Ass
UNCLASSIFIED UNCLASSIFIED UNCLASS IFIED SAR
Standard Form 298 (Rev 2-89)

NSK 7540-01-200-5500
Prescriing By ANSI Stg 2)9-'8

29%-102

TABLE OF CONTENTS

Page
ACRONYMS v
1. Preliminaries 1
1.1 Introduction 1
1.2 On Not Re-Inventing Software Wheels 3
2. Combat Simulation 6
2.1 Duel3: Simulate Combat Between Two Tanks 6
22 Duel3: Continued 8
23 Lanchester: Find the Survivors of Lanchester Square Law Combat .10
2.4 Tiny Wars: Simulate Combat Stochasticallyccvuuimivveesineiniimsenmssnmnisiesisnsssines 12
2.5 Tiny Wars CONUNUEccoocueemeecccnrcninenereosmsteeseassasssessesasessessescsnsssssensesseessssonsesssosssrsssnsiasasesessesnssns 14
2.6 Tgtrg: Find Probability Target is in a Given Range Band...........cocecevvrencmrencrrcnnnneneneencnsenensesensesesencsnes 16
2.7 Markov: Update Kill Probabilitiescoccuvimerccnsisinnicniisesscnnsssisecnscsssssessssssssessnsses 18
3. EVEDL ROULDES ...c.oocerrncirerinannsssisssessesessssesssssssinsrossossssmscssassasssssastonnassassonsessssrassessessststsenssessssmsesssnsssassssercasersses 20
3.1 Even Handling Using Linked Lists . reereneese s e rane s aans 20
3.2 Reset: Reset the Event Clock ... deeeeee e et aen 22
33 Skedul: Schedule an EVENL ...ttt cssesessese e sssesss e ssesssaseseaemsessas st stsesasasn 24
3.4 Event: Select the Next Event........... eevereraraeuste s s bt s s es ettt s et s st bt araes bR e berarebntne 26
3.5 Cancel: Cancel an Event . vertaere sttt e e sae 28
4. Mathematicai etetue st sr et ae s b AR R e E e st et anere s e 30
4.1 Center: Find the Centroid of 2 POIYEON..........ccouiirireecnerirrteeeernesresesseseennsesesesersenneasesessseeeens 30
4.2 Indexx: Find an Index in a Table for Intcrpolatmg ... 32
4.3 LinEgs: Solve Linear Equations Like @ TEXIDOOK........cccoooruirenrerreecenemrionmsceeanemsnenscnnscesscassasssessasses 34
4.4 Xform: Rotate and Translate CoOOrdiNates.......c.ouu.uruerrreeerveesrnssnssesersesssensssessrssesssasssssenssssssssssssssnssen 36
5. Probability @nd SLALSHICSc.ccoerversieesressesccensunsasesssseessssosassssssssossssesesssassssssssassssssasssssssnesssssssssssasessenssssssecn 38
5.1 Binomial: Find the Probability of N Successes in M Trials With Replacement..............ccccoevuunucce 38
5.2 Hyper: Find the Probability of N Successes in M Trials Without Replacement................................ 40
53 Ndtr, Fnd: Integrate the Normal Distribution 82
5.4 Fsubij: Integrate the Bivariate Normal Under a Directed Line Segment 44
5.5 Confb: Find Confidence Intervals on a Binomial Outcome ...46
5.6 Confn: Find Confidence Intervals on a Normal Qutcome..........coiiremmsessisnsecnsinsinssssssmssssesensessinnens 48
5.7 Ranu: Draw a Uniform Random Number 50
5.8 Rann: Draw From a Normal Distribution .52
6. Hit PrODADINILYcoeruernecinccmseronensennsmsinssesncscssnesisssanenssssnsassussassssssesssessassssssssssssssssssssssss ssssasssssssssssssnsesssnsenss 54
6.1 Box Find the Probability of Hitting a Rectanglecoocmniiicinnininceiiicnnnenincnsennes 54
6.2 Circle: Find the Probability of Hitting @ Circlecccconrenrenvcennmirccniniisiiisisescnissessinnes 56
6.3 Polygon: Find the Probability of Hitting a Polygon reesresetantent s b s s eas bt 58
6.4 Solid: Find the Probability of Hitting an Irregular Solid............cccocvcuernmmmnnirriiniinininic s 60
6.5 Tank3: Find the Probability of Hitting a Tankcc.e.cn.. Creses e st 62
6.6 Targetl: Target Find Which Faces are Entered or Exited..........cccoevriveniincnceninniininccenninnnnnind 64

iii

TABLE OF CONTENTS (contd)

v SCIISOT c.cirnriniriririnitnisiistsistnisssiststsatstssensssestsetssssonesesssssstsbssatssstssosssesshossassssssssnssastsansssenenensnsossronanasnrasasassssssnnad 66
7.1 Eye: Find Detection Rate for the Human Eye cerrrenrenssaeniaeraend 66
7.2 Los: Find a Weibull Curve for Line-of-Sight reesreemer Rttt e sor s s s et et sensastas s s enaeheseens 68

e BALISHICS.....cveeuernsninsssecnsinnssassssssestnssnsnssssssssssssssssssesnsrssassstsssasesss sstass s bes st ssa s assses e sassenstsassasessiunasnssnnansasssssresans 70
8.1 Mayer: Find the Muzzle Velocity Using the Mayer-Hart Equation eetereeren e rsaarerasranes 70
8.2 Shoot: Find the Trajectory of a BUlletciiiciscscisinccaseannessssensasssssasssessesseeens 74
8.3 Super: Find the Super-Elevation of @ GUI.......ivniininieecciensisissensesstssscessesernssssssssssssesssanes 76
8.4 Drag: Find the Deceleration of @ Bulletuccmnnnencnnneinisceiasensiesscariassensiosssssssessasssnens 78

o GENETAL UILY ..ouueoeceiririinc ettt sre s enessssastss et bt mes bbb e snesasasnens b ssneans 80
9.1 Calc: Calculate Little Miscellaneous IEemScovveeremeicrcniinencsnncseesesnssssssessssessessasssaosssasssssaons 80
9.2 Histo: Show a Histogram on a Terminal..........c.cceeeeuecrnerneesisnnmsessensessesesssmorssasesssssssessssessassens 84
9.3 Shell: Shell Sort a Set Of NUMDELSccceemmrmeemriunrnesernmresessamsssesssessisssessnssssassstsssssssssssesssssossssessans 86

DISTRIBUTION LIST ... ceeestesena et R e bR R R A e AR R R et R e et aen et entaeae 89

iv

APFSDS
DARCOM

TRADOC
WSMR

ACRONYMS

Armor-Piercing Fin-Stabilized Discarding-Sabot
Development and Readiness Command

Hull Defilade (only tank turret is exposed)
Kinetic Energy (projectile)
Meters/Kilograms/Seconds

TRADOC Analysis Center

Training and Doctrine Command

White Sands Missile Range, NM

,&ZCL’?IU' For
;{-NTiS CRA&I
C DTG TAB

U..anno.: iced
Justiticabion o

coay

By
Oist-ibution |

Availability Codes

Avall and| 6r-
Special

R

INTENTIONALLY LEFT BLANK.

vi

1. Preliminaries

1.1 Introduction

This report contains generally useful Fortran 77 programs, subroutines, and functions. They are
short routines to aid those interested in ballistics and related work. The routines in the report are public
domain. You may either copy them or obtain them from the authors. They are standard Fortran 77 with
few exceptions.

Getting and Using the Software. How can you obtain copies? If you have access to the Smoke
computer at BRL, simply copy them from the directory /secad/fred/Tools/Rpt. If not, and you work for
a government agency, call the authors at AV 298-8676 (or 6653) or email your request to fred@brl.mil or
joeo@brl.mil. The programs are available on IBM compatible 5-1/4 floppy discs. If you work for a
government contractor, send a letter requesting the programs to:

Director

Ballistic Research Laboratory
SLCBR-SE-B (attn: Fred Bunn)
Aberdeen Proving Ground, MD 21005

Fortran Conventions. The algorithms are written in standard Fortran 77, with few exceptions.
What's non-standard about the codes? They use mixed upper and lower case, the include statement, and
tabs.

We insist on compilers that allow lower case. Lower case is far more readable and listings are more
compact. If you want single case, use the tr command in Unix, or some similar command on your system,
or we can translate to the appropriate case for you.

Some of the programs use the include statement. This is not standard Fortran 77, although many
Fortran 77 compilers accept some form of the include statement and the Fortran 8X standard will have
this feature. If this causes a problem, you have these options: use the Unix m4 macro processor, edit the
include statements to conform to your compiler, manually replace the include statements with the file to
be included, or let us apply the m4 macro processor for you.

We use the tab character to move to column 7. Many compilers accept this. If yours does not, run
the program through the Unix expand program or request the programs without tabs.

To compile the programs on the Unix operating system, we suggest you use a command of the form:
f77 namel.f name2.f ... -0 name. Other operating systems will use some similar command.

The algorithms were written using the following ten commandments, which are generally accepted as
good programming practice. They are so important we include them here.

-

Construct new code by successive refinements. (Top down, structured programming).
Never use assigned GOTO’s or arithmetic IF’s.

Never use alternate returns.

Avoid GOTO’s as much as possible.

Make loops and branches with only 1 entry and 1 exit.

Keep routines to a page or less.

Indent the code neatly and logically.

Use upper case to highlight changes in the logical flow*.

Choose mnemonic variable names.

©WND RN

* These include FUNCTION, SUBROUTINE, END, IF-THEN, ELSE, ELSEIF, ENDIF, DO, CONTINUE, GOTO, and
STOP. Calls to subrout:nes and functions are not included since these are a lower level of abstraction and should not be
thought of as changes in the flow of control by the reader of the calling routine.

10. Make 10%-20% of the lines meaningful comments.

Other Needed Software. Some of the programs need subroutines from Numertcal Recipes’. We
cannot include them because of copyright. However, the book is excellent and should be on every weapon
analyst’s bookshelf. The fnd2d, polygon, and solid routines call the gsimp and trap routines found in
Numerical Reespes and the drag routine calls the hunt routine found there.

Coordinates and Units. When the algorithms use geographical coordinates, they are the standard

coordinates used at test ranges and in navigation systems. That is,

1. X is positive Eastward,

2.Y is positive Northward,

3. Z is positive upward,

4. @ (azimuth) is positive clockwise from North,

5. ¢ (elevation) is positive upward from the XY plane.
Figure 1.1 below shows the standard right-handed coordinate system this forms.

X
Figure 1.1 The Coordinate System

Inside the algorithms, units are meters, seconds, and radians unless otherwise stated. Frequently, the
aigorithms read input in other standard units. The most common is the military mil, which divides the
circle in 6,400 parts.

Corrections. These routines have proved their usefulness over the years, however we make no
claim to infallibility. If you find errors, have suggestious {cr improvements, or have difficulty using the
routines, please contact the authors at AV 298-6676 or email to fred@brl.mil or joeo@brl.mil.

1. Numerical Recipes, Press, W., Flannery, B., Teukolsky, S., Vetterling, W., Cambridge University Press, NY.

2

1.2 On Not Re-inventing Software Wheels

We can only avoid the plague of software re-invention by banding together in sub-fields and
developing catalogs of small, widely usable algorithms. These efforts will proceed only if managers realize
the value of producing and disseminating such documentation and institutionalize rewards for this
valuable work.

Software algerithms are constantly being re-invented and the waste caused by this is a significant
factor in what has been termed "the software crisis.” Richard Hamming observed in his 1966 Turing
Lecture that

"While Newton could attribute his success to having stood on the shoulders of
giants, in compuler science we tend to stand mostly on each other’s feet.”

This is as true in the development of scientific and engineering software for military applications as it is of
computer science.

This crisis occurs in all fields, including the modeling of logistics, mobility, ballistics, and combat
simulation. A partial solution to this ‘crisis’ is the construction and use of specialized Small Parts
Catalogs for each field. These Small Parts Catalogs would reduce the constant re-invention of software
‘wheels’ much as a designer of machines uses a small parts catalog to select standard bolts, gears, pins, etc.

If a designer of machinery were to design each nut and bolt of a new machine he would not have a
job for very long. Either he would be fired or his company would quickly go out of business because the
product would be far too expensive to meet the competition. Yet that’s exactly how many of us proceed
when we develop software to aid us. The problem is that we have never created catalogs of standard
parts.

We Constantly Re-Invent Software. Many is the time a model developer finds he needs an
algorithm and says to himself, "This must have been coded before - and more than once.” The chances are
he’s right. He then has three choices: search for the algorithm in books and among friends, cannibalize it
from an existing large program, or write it anew.

So what does he do? He might go searching for the algorithm he needs. If he searches the literature,
he’ll probably come up empty handed. If he asks around he either draws a blank or somebody hands him
a hundred pages of code and says, "It’s in there.”

If he actually wades through the code, or wonder of wonders, documentation of the code exists, and
he wades through the documentation and eventually finds what he wants, he is cannibalizing.
Cannibalizing isn’t a bad idea in an emergency. In battle, tankers do it all the time when the parts aren’t
otherwise available, but only as a last resort.

One experience like this occurred about four years ago. We developed a quick and dirty algorithm to
do a job, extended it, checked out the results with standard tables, and thought about writing it up.
Belatedly, it occurred to us that we have a branch whose mission in life for fifty years or more has been to
produce this kind of work - why not look over their code first. They were more than willing to give me a
copy of their code. It was production code that was used constantly.

Now, admittedly, their code was far more powerful than our two page algorithm because they had to
solve the problem for far more exotic conditions, but there was no way we could have ferreted out the
portion we needed. The listing was 99 pages long, the main program was 37 pages long, comments were
minimal, there was no indentation, ‘goto’ statements were rampant, variables were nowhere defined, non-
standard Fortran was used, and some of the code appeared to use Fortran II constructs. The listing is now
sitting on a shelf unused.

A Partial Solution. Those of us in the subfield of say, combat modeling, have developed small
algorithms useful to many. We have explored new terrain - but have not blazed the trail well, either for
ourselves or for those who follow after. We can only avoid this by combining efforts and blazing the trail
with something like Small Parts Catalogs containing the algorithms most generally useful to our sub-field.

Such a catalog for combat modeling, for example, would contain many small stand-alone programs
modeling facets of combat. For each program, the problem would be stated and the input and output
described. The mathematical solution would be given, as would the source code, and test cases. Each
program would contain a main routine to interface with the user and a subprogram to solve the algorithm.
The subprogram could be removed and used as a part in a larger program or the program itself could be
used for debugging purposes or to solve small problems.

This technique has been used in other subfields, but to my knowledge not in ours. Examples include:

The IBM Scientific Subroutine Package

BMDP Biomedical Computer Programs

Operations Research for Immediate Application, by Woolsey & Swanson
Software Tools, by Kernighan & Plauger

Applied Numerical Methods, by Carnahan, et al.

Numerical Recipes, by Press et al.

Benefits of Catalogs. This approach to the ‘software crisis’ has numerous benefits. First, the
software builder can reduce his labor by quickly selecting ready made parts. Second, if he documents his
large program, he need not document these standard parts. So the documentation task is both less
formidable and more likely to get done. Third, the parts are available for wide scrutiny. In time this
filters out bugs and bad algorithms, leaving algorithms that are widely available, documented, fast,
precise, and as error free as possible. Fourth, the stand alone program may solve his problem directly, or
he may want to use it for debugging purposes.

Developing Small Parts Catalogs. At the grass roots level, program developers must contact
others in the same subfield and begin to form ad hoc groups. These groups must settle on the contents of
their Small Parts Catalog (SPC), collect algorithms, cull, document, publish, advertise and distribute
them.

On a higher level, management should be aware that millions of dollars are being wasted on the
constant re-invention of what should be standard software algorithms. It is up to management to establish
offices for this purpose, encourage the formation of ad hoc groups to develop SPC’s, and develop methods
to reward contributors and compilers of SPC'’s.

FORTRAN 77 PROGRAMS, SUBROUTINES, AND FUNCTIONS

2. Combat Simulation

2.1 Duel4: Simulate Combat Between Two Tanks.

Duel4 finds the probability that a Blue or Red tank (or neither) wins a duel. It is a deterministic,
discrete event simulation, useful for examining important tank parameters and as a framework for
building more detailed models of one on one combat.

Input. The input file contains 8 lines of data. All data are in the MKS metric system, unless
otherwise stated. Lines 1-3 are data for the Blue system, lines 4-6 are for the Red system, and lines 7,8 are
simulation control values.

Line 1 contains 5 firing cycle parameters for the Blue combatant.

1. Time between rounds in a burst (sec).

2. Time between bursts (sec). This is the time between the last round in a burst and the first
round in the next burst. If you are simulating a weapon that doesn’t fire bursts, just set this value to zero
or one.

3. # rounds per burst.

4. # rounds on board

5. Time first round is fired (sec).

Line 2 contains 2 ballistic parameters for the rounds for the Blue combatant.

1. Muzzle velocity (m/s).

2. Drag (m/s per meter) (must be negative #).

Line 3 contains 3 lethality parameters for the Blue combatant.

1. Dispersion (mils). (assumes circular shot pattern w/ no bias).

2. System radius {m). The target is assumed to be circular; this is the radius of the Blue system. It
used to find the hit probability of Red rounds.

3. Probability of kill given a hit.

Lines 4-6 contain similar data for the Red combatant.
Line 7 contains 4 range parameters.

1. Minimum range between combatants (m).

2. Maximum range between combatants (m). Section 2.6 discusses this.

3. Range increment (m).

4. Parameter for range between combatants (m).

Line 8 contains 2 game control parameters.
1. Print level (O=minimal print, 1 adds results of each shot, 2 adds time of fire).
2. Maximum time for a duel (sec).

Sample run at multiple ranges. The following shows the input and output for a due] at ranges
from 200 meters to 2400 meters.

Table 2.1a: Sample Input File

DATA FILE DESCRIPTION
1.3.081.5 tirr.e between rds, time between bursts, #rds/burst, #rds, tstart
1000. -.1 muzzle velocity, drag
051005 dispersion (mils), system radius (m}, pkfh
1.5.283. time between rds, time between bursts, #rds/burst, #rds, tstart
051005 dispersion (mils), system radius (m), pkfh
200 2400 200 700 | min rg, max rg, inc rg, mean rg
0 20. print level

Table 2.1b: Sample Output for Multiple Ranges

Range P Eng —— 3tate Probabilities — Exchange
(meters) at Both Blue Red Both Ratio
Range Alive Wins Wins Dead

200 0.21 0.00 0.60 0.40 0.00 1.50
400 0.21 0.00 0.60 0.40 0.00 1.50
600 0.18 0.00 0.60 0.33 0.07 1.66
800 0.13 0.00 0.59 0.34 0.07 1.61
1000 0.09 0.00 0.57 0.36 0.07 1.50
1200 0.06 0.00 0.55 0.38 0.07 1.38
1400 0.04 0.01 0.40 0.31 0.28 1.15
1600 0.03 0.02 0.41 0.34 0.23 1.13
1800 0.02 0.04 0.42 0.35 0.19 1.11
2000 0.01 0.07 0.41 0.36 0.16 1.10
2200 0.01 0.10 0.41 0.36 0.13 1.09
2400 0.01 0.14 0.36 0.36 0.14 1.00

Mean exchang;: ratio over all rangesis 1.491

The second column shows the probability that an engagement will occur at the range shown in
column 1. This is explained further in the description of the tgtrg routine.

Sample of detailed run at 1000 meters range. Now, we change the last 2 lines of the input
data so that combat is simulated at only 1000 meters range and so that each event is printed. The last
two input lines now read as follows:

1000 1000 200 700 min rg, max rg, Inc rg, mean rg
220 print level

Table 2.1¢: Sample Output at One Range

Range PEng - State Probabilities -—-- Exchange
(meters) at Both Blue Red Both Ratio
Range Alive Wins Wins Dead

0.00 At start time 1.00 0.00 0.00 0.00
1.50 Blue fires at Red
2.55 Blue rd 1 hits. 0.56 0.44 0.00 0.00
3.00 Red fires at Blue
4.00 Red fires at Blue
4.05 Red rd 1 hits. 0.32 0.44 0.25 0.00 1.78
4.50 Blue fires at Red
505 Red rd 2 hits. 0.18 0.44 0.38 0.00 1.14
5.55 Bluerd 2 hits. 0.10 0.52 0.32 0.06 1.50
7.50 Blue fires at Red
8.55 Bluerd 3 hits. 0.06 0.56 0.32 0.06 1.61
9.00 Red fires at Blue
10.00 Red fires at Blue
10.05 Red rd 3 hits. 0.03 0.56 0.35 0.06 1.51
10.50 Blue fires at Red
11.05 Red rd 4 hits. 0.02 0.56 0.36 0.06 1.46
11.55 Bluerd 4 hits. 0.01 0.57 0.36 0.07 1.50
13.50 Blue fires at Red
14.55 Blue rd 5 hits. 0.01 0.57 0.36 0.07 1.51

15.00 Red fires at Blue
16.00 Red fires at Blue

16.05 Red rd 5 hits. 0.00 0.57 0.36 0.07 1.50
16.50 Blue fires at Red
17.05 Red rd 6 hits. 0.00 0.57 0.36 0.07 1.49
17.55 Blue rd 6 hits. 0.00 0.57 0.36 0.07 1.50
19.50 Blue fires at Red

1000 1.00 0.00 0.57 0.36 0.07 1.50

Mean exchange ratio over all ranges is 1.497

7

2.2 Duel4 Continued.

This section discusses the mathematics of Duel4 and lists the Fortran code.

Mathematics. The time of flight of a KE round may be approximated by:
t = log((dr+v)/v)) / d
Where:
d = drag (m/s per km)(d <0).
r = range between combatants (km).
v = muzzle velocity (m/s).

Duel4 treats the combatants as circular targets for the purpose of finding hit and kill probabilities.
The probability of kill given a shot is:
e U
P = p€

Where:

p = the probability of kill given a hit,

r = the radius of the target, and

o = the linear dispersion of the round.

Hierarchy. Here is the hierarchy tree showing which routines call which. It is followed by a list of

the three event handling routines the program uses.
DUELA4 - simulate duels at various ranges.

EVENTS - simulate all events in a single duel.

FIRE - simulate firing a round.

IMPACT - simulate impact of round.

MARKOY - find probability of each outcome. {Section 2.7)

TGTRG - finds probability combat occurs at range r. (Section 2.6)

Utility routines:

RESET - initialize the event queue. {Section 3.2)
SKEDUL - schedule an event. (Section 3.3)
EVENT - find the next event. (Section 3.4)

Data Structure. The following values are in the duel4.h filc to be used by the main program as
well as by the fire and impact subroutines. These values do not change during a run:
name(2) - the color of the two sides.
lev - the printing level
nrds(2) - the number of rounds available at the beginning of combat.
dt1(2) - the time between rounds (sec).
dt2(2) - the time between bursts (sec).
nrb(2) - the number of rounds in a burst.
These values do not change during an engagement at a single range:
tof(2) - the time of flight (sec).
pk(2) - the probability of kill given a shot.
These values change during the engagement:
nrd(2) - the number of rounds remaining.
palive(2,50) - the probability the ith tank is alive after firing j rounds.
ex - the exchange ratio (probability Red is dead / probability Blue is dead).
p(4) - the probability of each of the 4 final states.

[-] D000 0000

QbW

“

20

LB BR B J

duel4.h include file:

character name®4

common /charc / nam

common [allc [lev, nrds(2z nrd(Z% alive(2,50)
common /firec / dtl(2) dt2(2), nrb 2{ tof(2)
common [impete/ ex, pk(2), p

PROGRAM DUEL4
Duel4: Simulste a duel at various ranges.
include 'duel4.b’

real tstart(2), vm(2), drag(2), radiv~'2), pkh(2), sigma(2)

integer r .
fr - frequency of duel occurring at range r.

exmean - mean exchange ratio over all engagement ranges.

ph - the hit probability

minr - minimum range between combatants (m).
maxr - maximum range between combatants (m).
iner - range increment (m).

meanr - the parameter defining the combat range dlst,nbut.lo (m).
r - the range between combatants for the current engagement (m)

tstop - the time the engagement stops (sec).
data name /'Blue’,'Red '/

format (/éllx,

’Range Eng - State Probabilities -----
(meters) Both Blue Red Both
15x, ' Range Alive Wins Wins Dead’)

format(10x, i6, 6{9.2)

format{10x, '"Mean exchange ratio over all ranges is',f8.3)

format{ad,’ tof="{6.2," nh="16.2," pk=",16.2)
format(f11.2," At start time ', 5.2,419.2)

Initialize.

print *," DUEL4: Written by Fred Bunn, July 1989’

print *

DO 20 i=1,2
read *, dt1fi), dt2(i), nrb(i), nrds(i), tstart(i)
read *, vm(i), dra
read *, sig, radnus?n , pkh(i)
sigma(i) = 0.9817¢-3%sig

CONT!

read *, minr, maxr, incr, meanr

read *, lev, tstop

exmean = 0.0

DO 40 r=minr,maxr,iner
Simulate a duel at ranger.

p(1} = 1.0

p(2) = 0.0

p(3) = 0.0

p(4) = 0.0

call reset(.false.)

DO 30 I=1,2
nrd(l) = nrds l)
temp=(drag(l)*r+vm(I))/vm(l
if (temp.ne.0.)t,of(I) = alog(temp)/drag()

palive(l,nrd(1})
temp - -0 5 rsdnus%l)/(sngma(l)‘r))“2
h - 1.0 mp
pK(D) = phepkh(1)
lf ev.eq.2) print 5, nsme(l) t.ol‘(& ph, pk(l)
1 skedul (t.st.u'.(l) 1,'fire *,nrds(l))
ONTINUE

call skedul (tstop,0,'stop ',0)

if (r.eq.minr .or. lev. gt.0) print 2

lf lev.ge.1) print 6, ¢t,p

1 events

fr = tgtrg(r,minr,maxr,incr,meanr)

print 3, r, fr, p, ex

exmesn = exmean + [r®ex

CONTINUE
print 4, exmean
END

SUBROUTINE EVENTS

Events: Simulate all events in a single duel.
character what®6

integer who, which

CONTINUE
call event(who,what,which when)
if (what.eq.’fire ') call ﬁre(when who)

Ratio'/

Exchange’/

nAana6o

[

if (what.eq. 'impact’ cdl 1myact(when who,which)
IFNgvhu. .ne.'stop ') 020

SUBROUTINE FIRE (t,1)

Fire: Simulate the firing of a round.

include 'duel4.b’

t - the current time (sec).

I- the current firer.

n - the remaining rounds for the firer.

dt - the delay before firing the next round.

k - the number of rounds in the current burst.
format(f11.2,28," fires at’,a5)

if (lev.eq.2) print 1, ¢, name(1), same(3-1)
call akedulltﬂ.of(l)l 'impact’ nrd(l))
n = ard(I}1
palive(l,n) = palive(l,n+1)
nrd(l) = n
IF (n.gt.0) THEN
Fire next round.
dt = de1(l}
k = mod(nrds(I}-n,nrb(I))
if (k.4q.0) dt = dudll
call skedul(t+dt I fre *,n)
ENDIF
END

SUBROUTINE IMPACT (t,1,k)
impact: Simulate the impact of a round.
t - current time (sec).
1- firer ID.
k - round ID.
prdead - the probability Red is dead.
pbdead - the probability Blue is dead.
inciude "duef4.h’
format(3x, 8.2, a6, ' rd',i3,’ hits.’,15.2,415.2)
call markov(Lk,pk(l) palive,p,nrd)
Find exchange ratio (p(red dead) / p(blue dead)].
ex = 0.0
prdead = p(2 +p&4
pbdead = p(3)+p(4
if spbdead .ge. .001) ex = prdead/pbdead
IF (lev.ge.1) THEN

if (ex.gt.0.0) print 1, t, name(l), nrds(I}k+1, p, ex
if e[);::eq.0.0 print 1, t, name{l), nrds{I}k+1, p

END

include "tgtrg.f’
include 'markov.f'
include 'reset.f’'
include 'skedul.f’
include 'event.f*

2.3 Lanchester: Find the Survivors of Lanchester Square Law Combat.

Lanchester finds the number of combat survivors versus time. It uses the lanchester square law
which is applicable to general combat (not hand-to-hand combat, area fire, or guerrilla warfare).

Input/Output. The first input is the number of Blue and Red combatants at the start of battle.
The second are the Blue and Red kill rates. The Blue kill rate is the probability of kill (p,) times the rate

of fire (r) in rounds per time unit. If p, = 0.5, and r = 4 rounds/minute, then the kill rate is 2
kills/minute. A similar calculation gives the Red kill rate.

The out; .t is the number of survivors on each side at each time step. The time units will be the
inverse of the kill rate units, i.e., if the kill rate is 2 kills/minute then the time units will be minutes.

The following is a sample dialog.

% lanchester.x
How many Blue, Red troops? (float)
100., 50.
What is Blue, Red kill rate? (float)
0.2,0.1
Time Blue Red
0 100.00 50.00
1 90.97 40.47
2 8376 31.75
3 78.23 23.66
4 7426 16.05
5 71.79 8.76
6 70.75 1.64
end 70.71 0.00
How many Blue, Red troops? (float)
C
*** Interrupt!
*** Execution terminated

Blue Survivors

0

0 # Red Survivors n
Figure 2.3 Survivors at Each Time Step

10

Mathematics. The lanchester square-law equations assume the following for battle:?

Everyone is visible and within range of fire.

Every member of one side randomly picks an opponent on the other side.

Each marksman fires until killed or makes a kill at which point he randomly picks a new target and
resumes firing.

All marksmen fire independently.

Ammunition supply is unlimited.

Kill probabilities and firing rates are constant.

Battle continues until one side is eliminated.

W

N e

Lanchester’s equations are the following:
b= —fr
r=—pb
where
b is the number of ‘blue’ combatants, and
T is the number of ‘red’ combatants,
B is the number of ‘blue’ combatants killed by a single ‘red’ combatant in a unit of time, and
p is the number of ‘red’ combatants killed by a single ‘blue’ combatant in
a unit of time.
The solutions are

b = b,coshVBpt—V8/pb sinhVapt
r= rocosh\/gp-t— v p/ﬂrasinh%t

b="Vb2—ri8/p, r=0.
r= Vrg—bozﬂ/ﬂ, b=0.

When blue wins

When red wins

Code.
[LANCHESTER: Simulates battle under lanchester square law. r=sqr{r0**2 - (rho/beta)*v0**2)
1 format (" Time Blue Red’) b=0.0
2 format (i5,218.2) ELSE
3 format (' end’,218.2) print *, 'Error: b, r="br
ENDIF
20 Print *, "How many Blue, Red troops? (float)’ print 3, b, r
read " b0, r0 ENDIF
print *, "What is Blue, Red kill rate? (float)’ IF (b.gt.0.0 .and. r.gt.0.0) GOTO 30
read *, beta, rho GOTO 20
facl = sqrt(beta®*rho END
fac2 = sqrt(beta/rho
fac3 = sqrt{rho/beta
t=0.0
i=0
print 1
30 CONTINUE

b = bO*cosh(fac1®t) - fac2®r0*sinh(facl®s
r = r0%cosh(facl®t) - fac3*b0*sinh(facl®t
IF (b.gt.0 .and. r.gt.0) THEN

print 2,i, b, ¢

tet41.0

imi+1

ELSE
IF (b.gt.0) THEN
buesqrt(b0**2 - (beta/rho)*r0**2)
r={0.0

ELSEFF (r.gt.0) THEN

2. C.). Ancker, Jr. and A. V. Galarian, The Validity of Assumplions Underiying Current Uses of Lanchester Altrition Rates,
TRAC-WSMR-TD-7-88, Department of the Army, US Army TRADOC Analysis Command, White Sands Missile Range, New
Mexico 88002-5502, March 1988, pp. 1-2.

11

2.4 Tiny Wars: Simulate Combat Stochastically.

Tiny Wars is a stochastic, discrete event simulation of combat between homogeneous forces. It has
limited capability but may be of some use as it stands. Primarily, it serves to show how one might build a
Monte Carlo combat simulation and provides a base for developing more detailed, more realistic models.

In these battles, each side has guns or other long range weapons and no one moves or changes
exposure. Detection, selection, and kills are random. After reading and echoing the input data, the main
routine initializes summary statistics to zero, loops through the desired number of battles, and prints
summary statistics.

When all the combatants on a side are killed, or time expires, the battle ends.

The following are likely extensions: extend detection to include firing signature detection (easy),
motion (hard), mobility and firepower kills (hard), terrain intervisibility (hard).

Input. The data are free format, with numbers separated by blanks or commas. Below is a sample
input file. The last line of the file contains 2 print flags. If the first flag is 0, minimal output prints; if it is
1, the number of survivors of each engagement is printed, and if it is 2, each event of each engagement is
printed. The second flag is normally set to 0; each event scheduled or cancelled is printed if it is 1.

INPUT FILE DESCRIPTION
33 Number of Blue, Red combatants
010.1 Probability Blue, Red detect 1 tgt in 1 sec.
0505 Probability of kill given a shot.
5050 Time of flight of round (sec).
13. 13. Median time between shots (sec).
100 0 0 600. 1111111 | # replications, print flag, print flag,

max engagement time (sec), random number seed.

Output. The output contains the number of battles that end in each of 4 possible states: some
alive on both sides, Blue wins, Red wins, and all dead. It also shows the number of Blue and Red
survivors over all battles. A sample output file is:

Blue Red
3 3 Number of combatants
0.10 0.10 P(firer detects target in 1 second)
0.50 0.50 P(kill given a shot)
5.00 5.00 Time of flight
13.00 13.00 Time between rounds (sec)
100 1111111 Replications, seed
49 47 Blue, Red wins.
0 4 Draws w, w/o survivors.
77 82 Blue, Red survivors.

12

Code. The Tiny Wars code consists of the following code plus the code in section 2.5, the clock
routines from sections 3.2 to 3.5, and the random number generators from sections 5.7 and 5.8.

The global file is:
(L=20)

P e (). tusy(L), seen(L.L)

ive(L), busy(L), seen(L,

e?l'xmon /iopute/ nbsu, nred, pdet(2), pks(2), tof(2), tsub(2)
common /inputg/ nreps, lev, lev2, tmax

common /varble/ alive, busy, ntgt(L), seen, t

The routines are:

PROGRAM TINY WARS
¢ Tiny Wars: Simulate battle nreps times.
include 'global.h’
common /erandm/ j
integer nsys(2), sum({6)

1 format{s

2 format(218,s)

3 format{28.2,a)
¢ Read input data.

read *, nblu, nred, pdet, pks, tof, tsub
read ®, oreps, lev, lev2, tmax, j
¢ Echo input dats.
print 1,' Blue Red’
print 2, nblu, ared,’ Number of combatants’
print 3, pdet,’ P(firer detects target in I second)’
print 3, pks,’ P(kill given a shot.)'
print 3, tof,’ Time of flight (sec)
print 3, tsub,” Time between rounds (sec)’
print 2, nreps, j,’ Replications, seed’
print *
¢ Initialize summary statistics.
DO 20 k-lbﬁ
sum(k) =
20 CON’&'[}VUE
DO 80 nrep=1,nreps
call reset(lev2.ge.1)
nsys(1) = nblu
nsys(2) = nred
call battie (nsys)
if (lev.ge.1) print 2, nsys,’ Survivors’
if (nsys(1).gt.0 .and. nsys(2).eq.0) sum(1}=sum(1)+1
if (nsys(1).¢q.0 .and. nsys(2).gt.0) sum(2)=sum(2)+1
if (nsys(1).gt.0 .and. nsys(2}.gt.0} sum(3)=sum(3)+1
if (nsys(1).eq.0 .and. nsis 2).eq.0) sum{4)}=sum(4)+1

sum(5)=sum(5 +nsys£l
sum(8)=sum(6)+nsys(2
80 co
¢

Print summary statistics.
print 2, sum(1), sum(2),’ Blue, Red wins.’
print 2, sum(3), sum(4
, sum

," Draws w, w/o survivors.’
5 6

,' Blue, Red survivors.’

rint 2, suml

13

2.5 Tiny Wars Continued: a Single Battle.

The battle routine initializes the state of the combatants, starts the search process and then loops
through the chains of subsequent events triggered by the search process. These events are: look, see, fire,
and kill.

The look (search) event. The look event reschedules itself at 1 second intervals if alive systems
have not yet detected alive targets. Look also schedules see events randomly based on detection
probability.

The see (detect) event. The see event calls for target selection if the combatant is not busy firing
at another target.

The fire event. The fire event schedules a subsequent fire event. It may also schedule a kill event.
The probability of scheduling a kill event is equal to the probability of a kill given a shot.

The kill event. The kill event simulates destruction of a target and triggers a change in the firer’s
activity. It counts the destruction of the target, and cancels all detect events and fire events that have
been scheduled for the target. It also calls the disengage routine which simulates the firer switching
targets.

Target selection. The select routine simulates a firer selecting a target from among the alive foes
he has seen.

Target disengagement. The disengage routine simulates systems disengaging a newly killed
target. Any pending see events on the target are cancélled, then those engaging the target are disengaged
and begin selection of a new target. Disengagement means pending fire events are cancelled and the
systems are marked as not busy. Disengagement also has these systems select new targets and schedules
fire on them.

When all the combatants on a side are killed, or time expires, the battle ends.

Code.
The routines are: call search (2,1,nblu+1,nblu+nred,1,nblu,02)
if ({o1.0r.02) .and. t.It. tm;x)
SUBROUTINE BATTLE (nsys) 1 call skedul (t+1.0,ALL, "looks ",ALL)
include 'global.h’ ELSEIF (what.eq.’sees ') THEN
character what*6, color(2)*4 ¢ Simulate detection of a target.
logical ol, 02 seen(l it I)- true. lect{L,m)
integer nsys(2 aliv and. .not.bus, call select{l,m
data color ? &lu'.’ Red'/ éEIF (what.eq. ﬁra@ {%
dats ALL, 10,0/ ¢ Simulate firing st a t.
3 format(f8.2,34,i3,27,24,i3) lr‘g;anu()(lt. p)ks(m)) ca.ll skedul(l-ﬂor(m) 1,'kills " it)
call rann{p,q
¢ Set initial conditions for each combatant. call skedul(tﬁ.sub(m)'exp(o 5*p),1,'fires@",it)
DO 30i=]1L ELSEIF (what.eq.'k'lls * .and. ;hve(at)) THEN
alive{i) = true. ¢ Simulate kili of g hvmg target.
busy(i) = .false. nsys(n)-nsy
nt -0 alive(it) =
j=LL call cancel |t. ﬁres@ ,NULL)
.“N‘&' j) = .false. call cancel(it,'sees *,NULL)
20 call diseng(it,m)
30 CONTINUE ENDIF
call skedul(tmax,NULL, done..’ NULL) GOTO 40
call skedul(0.0, NULL, 'looks ',NULL) 70 CONTINUE
40 Cco END
¢ Loop through all events or until tmax.
call event{l,what,i it,t SUBROUTINE DISENG (it,m)
IF (what.eq. ‘done..') GOTO 70 ¢ Diseng: disengage any engaging it.
3 &ctpelnf max time is reached. include 'global k'
Mme
if (I.gt.nblu) m=2 nlel
n=3m nn = nblu
if (lev.ge.2.and. what.ne.'looks z if (it.le.nblu} nl = nblu+1
1 n?nnw 4 color(m) I,what,color(n),it |f it.le.nblu) nn = nblu+nred
(what.eq.'looks ’)THEN 20]-nl nn
e Simulsate search. ntgt(l) eq. n) THEN
call search (1,2,1,nblu,nblu+1,nblu+nred,ol) 1 cancel(l,'fires@ '.it}

14

O0onn

call cancel(l,'sees ',it)
busy(I) = .false.

Eir&&lls"ve(l)) call select(l,m)

CONTINUE
END

SUSROUTINE SEARCH (m,n,il,in,itl,itn,repeat)

Search: Simulate searchers on side m searching for targets.

m, b - side of searcher, target.
i1, in - id of first, last searcher.
itl, itn - id of first, last target.
include 'global.h’

logical repeat

repeat = false.
DO 30 I=il,in
IF gxinm) THEN
DO 20 it=it],itn
IF (dive(it.(j.snd. .not. seen(l,it)) THEN
p = ranu
IF (p.It.pdet{m)) THEN
call skedul(t-+ranu(),1,’sees ',it)
ELSE

repeatw. true.
ENDIF
ENDIF
CONTINUE
ENDIF
CONTINUE
END

SUBROUTINE SELECT Sl,m)
Select: Combatant I on side m selects a target.
include 'global.h’

integer list{L)

format (8.2,4x,i3," picks ’,i5)

itl =1

ith = nblu

if El.le.nblu itl = nblu+1

if (I.le.nblu) itn = nblu+nred

k=0

DO 20 it=itl,itn

List seen, alive targets.

IF (alive(it) .and. seen(l,it)) THEN

k= k+1

list(k) = it
ENDIY
CONTINUE
IF (k.gt.0) THEN
Randomly select from the list.
j = 1+k*rany()
it = list(j)
ntgt(i) = it
call rann(p.q)
p = exp(0.5%p)
call skedul{t+tsub(m)*p 1, fires@",it)
brusly(l) -é;rue. :
if (lev.ge.2) print 1, ¢, 1, it
ENDIF

END

15

2.6 Tgtrg: Find Probability Target is in a Given Range Band.

Tgtrg is a subroutine for finding the probability that combat occurs within one or more range
bands. It is based on data for tank vs tank combat in NW Europe in World War II. About 41% of the
time visibility range was greater than 744 yards and about 41% of the time combat range was greater
than 660 yards.

Tgtrg is used to weight simulated combat results at reasonable range bands. The average range
between combatants will depend on the terrain and weather. More rugged terrain will generally have a
smaller average range and flatter terrain will have a larger average range. However, we don’t expect the
average range between tank combatants to change much in NW Europe, where the data was taken. The
terrain is the limiting factor and this doesn’t change much. Factors that might affect this further are
clearing of forests, the spread of urban areas, improved vision devices, and early warning.

Input. Tgtrg requires 5 inputs. They should be in a consistent set of units; all yards, all meters,
etc.
r - the range between combatants
rmin - the minimum range for r
rmax - the maximum range for r
dr - the range increment
rmean - the constant defining the ‘average’ range

Normally, the calling routine will vary r between rmin and rmax. Tgtrg will then find the
probability that combat occurs in a band from r-dr/2 to r+dr/2, however the first range band is from 0 to
r+dr/2 and the last range band is from r-dr/2 to infinity. If rmin = rmax, the program assumes a single
range band and returns a 1.0 as the probability that combat occurs in the range band.

Mathematics. Peterson® approximates the range between combatants as follows:

=2r/p,
“G(r) = (142r/u)E
where
4, = 660 yards,
G(r) = the fraction of casualties from ranges greater than R, and g, is
the average* range of the distribution.”

BRL MR 702, likewise approximates sighting ranges with the following distribution:

”

. sighting ranges of NW Europe may be approximately represented by a
cumulative distribution of the form

—2?/#'
F(r) = (1420/u)e

with
p,= 744 yds.”

It further states: “Only 14% of the allied tanks destroyed by direct fire weapons
were victims of guns at ranges greater than 1000 yds.”

Figure 2.6 shows the probability that combat will occur in each range band. Note that the first band
is from O to 300 meters, the last is from 2,500 meters to infinity, and the interior bands are only 200
meters wide.

16

0O Oo0n6no

02¢

Probability Combat 0.1
Occurs in Range Band ™

T

LU Y)

0 1 2 3
Distance Between Combatants

Figure 2.6 Probability of Combat in Each Range Band

Code.

FUNCTION TGTRG (r,rmin,rmax,dr,rmean)

Tgtrg: Find probability tgt isin a given range band.

r - middle of range band (band is from r-dr{2 to r+dr/2,
except first band is from O to r+dr/2 and last band is
from r-dr/2 to infinity. If only 1 band, it is from O to infinity.

rmin - if r=rmin, we're at 1st band.

rmax - if r+dr/2 > = rmax, we're at last band.

rmean - mean rg to tgts. This defines the distribution.

integer r, rmin, rmax, dr, rmean

pr(x% w= (1.0+2.0*x/rmean) * exp(-2.0*x/rmean)

IF (r.le.rmin) THEN
Find for 1st range.
IF (r+dr .gt. rmax) THEN
Find for only 1 range.
pl =10
p2 = 0.0
ELSE
Find for 1st range of several.
pl=1.0
p2 = pr(r+0.5*dr)
ENDIF

ELSE
Find at later range.
IF (r+dr .le.rmax) THEN
Find at an intermediate range.
pl = pr(r-0.5%dr)
p2 = pr(r+0.5%dr)
ELSE

Find at last range.
pl = pr(r-0.5%dr)
0.

. Peterson, R. H., The Range and Angular Distribution of A.P. Hit Tanks, BRL MR 590A, APG, MD.

-2
The phrase ‘sverage range' needs explanation. If £ = u_ then G(r) = 3¢ "~0.406. Hence there's a 40.6% chance the
combatants are more than 660 yards apart. Likewise, there's 8 40.8% chance the ‘visibility range' is more than 744 yards. Here,
visibility range means the range to masking terrain.

. Peterson, R. H., Hardison, D. C., Benvienuto, A. A., Terrain and Ranges of Tank Engagements, June 1953, Ballistic Research
Laboratory, APG, MD, p3.

. ibid p5.

17

2.7 Markov: Update Kill Probabilities

In realistic duels, the time of flight of rounds is non-zero; so both combatants can have rounds in the
air simultaneously and both can end up dead. Markov updates the 4 possible states of such a duel: both
alive, Blue wins, Red wins, both dead.

As time passes during combat, the probability of either combatant remaining alive decreases. At any
instant, a given combatant is in one of two states; dead or alive. If we consider both combatants, there are
4 possible states; both alive, Blue alive & Red dead, Blue dead & Red alive, and both dead.

We can visualize the computations involved by imagining a sheet of paper being cut. The width of
the paper is proportional to the probability Blue is alive and the height is proportional to the probability
Red is alive. This is illustrated on the left below.

Blue Alive Blue Dead Blue Alive Blue Dead

Red Alive Red Alive

|

]

Red Dead Red Dead .
\

|

If the probability of kill given a shot is 0.3 for both combatants and a Red round hits before Blue
has fired then the probability of Blue being alive is reduced to 0.7. Analogously, we may cut off the right
30% of the sheet and move it to the upper right quadrant as shown on the right above.

Now, imagine that a Blue round is fired and impacts before Red fires a second round. In our paper
cutting analogy, we cut off the lower 30% of the sheet remaining in the upper left quadrant and move it to
the iower left quadrant as shown in the figure below.

Blue Alive Blue Dead

:

]

Red Alive '
S |

]

1

|
]
Red Dead \
:
1

All this is quite simple. Suppose, however, that the second Blue round is in flight when the second
Red round impacts. The paper slicing analogy is continued in the following two diagrams. First, Red
round number 2 strikes as shown on the left.

Then, Blue round number 2 strikes and not only must we cut off the lower 30% of the sheet in the
upper left quadrant, but we must cut off the lower 30% of the small sheet we just moved to the upper
right quadrant and move it to the lower right quadrant. This is shown on the right below. This last
operation is the tricky one; we must account for the times when several rounds are in the air resulting in
the possibility that both combatants may end up dead.

18

Blue Alive Blue Dead Blue Alive Blue Dead

Red Alive

i

)

]

Red Alive —— !
T

)

- wm o wn e e e ve— - e = | —

1]

]]
Red Dead \ Red Dead] :
m =
] \

Input/Output. Markov requires as input these integers:
¢ - integer identifying the firer (1=Blue, 2=Red)
{ - number of this round by firer
n ; - number of rounds remaining on jth system
and the probabilities that:
K - firer kills the target given a shot
P, , - jth system was alive when it had k remaining rounds
S, - both were alive
S, - Blue won
S, - Red won
S5 - both were dead
Markov updates and returns:
P, . - probability target is alive just after the round arrived
S - new state probabilities

Mathematics. On impact, the probability that neither is dead decreases and the probability that
the firer wins increases by an equal amount. The first pair of equations below account for this. The
probability that the target wins decreases and the probability that both die increases by an equal amount.
The second pair of equations below account for this. The last equation updates the probability that the
target is alive. In each of these equations, we simply find the area of the appropriate rectangle and
increment or decrement another area.

S, = S,—KS,
S! = S+KS,
Sj, = SJ'-KP;',u(P",l_PI',m)
53' = SS+KP)'.u(P|'.l_P|',m)
Pl .' = Pj.l_KPj,l
Code.

SUBROUTINE MARKOV (L,],k,p,s,nrd) 8(3) = 5(3) + del

Mukov update markov state probabilities. p(i,n) = p(j.n) - k*p(j,n)
- firer IO E

k - probability of kill given & shot (res!).
- ID of impacting round.

m ID of last round [fired

n - ID of last round it (j) fired.

real k, p(2,50), 8(0:3)

lnteger ord(2

" OoONO AN

¢ i‘lnd prob firer alive now & prob tgt alive before this impact.
m = nrd(i}
n = nrd(j)
¢ Update prob firer wins & prob frer draws.
del = k*s(0)
sfo) = 5(0}-del
= s(i}+del
¢ te probd tgt vnns & prob tgt draws.
del -k* P(J n) (p(i.}}p(i,m))
8(j) = s(j} - del 19

3. Event Routines

3.1 Event Handling Using Linked Lists.

The two major ways of handling events are stepping a fixed time interval and stepping to the next
significant event. Stepping to the next significant event (the method discussed here) requires routines to
reset (initialize) the data structure, schedule an event, fetch an event, and cancel events. In this section,
we touch on various techniques for handling the event lata and then discuss the Linked List technique
used by the software in the next four sections.

As a minimum, we must store the time at which an event will occur, the identity of the entity that
will perform the event, and the type of event. It may also be desirable to store the entity receiving the
action of the event and other information about the event. If, at the current time t, the program finds
that after a delay of 5 seconds, tank 4 may fire at tank 6, this would require a Fortran call as follows:

call skedul (t+5.0,4, fire..",6)

Typically, the numbers in the above call would be variables.

Methods of handling event data. A great many methods have been used for storing and
retrieving event data. The simplest is to add an event to the end of a list and when the next event is
needed, simply search the list for the event with the smallest time. The next simplest is to insert the event
just before the next following event. This requires moving the next and all subsequent events down in the
list and is slow. The method used here uses linked lists, so that the events are always sorted
chronologically, L% records of subsequent events need not be moved. Other methods* include a partially
sorted structure called a heap. ,

The search from the front linear linked-list technique was used in the algorithms in the following
sections. The key elements are:

o A set of links

e A poiuter to the first idle link

¢ A pointer to the link containing the next event

» Several auxiliary pointers for manipulating the links
Initially, the ‘idle’ pointer points to the first available link, which points to the subsequent link, and so on
uatil the last available link, which points to the null link 2. The ‘next event’ pointer points to {2 also.

When an event is inserted in the list, the algorithm removes the first idle link from the chain of idle links,
inserts it chronologically in the chain of active links, and inserts the event data into the link.

Retrieving the next event simply involves copying the data from the first link of the chain of active
links, removing the link from that chain, and inserting it at the head of the chain of idle links.

Cancelling an event is similar, but involves links anywhere in the chain of active links. This
implementation stores up to 100 events. Each type of information is stored in an array dimensioned to
100, however a given link consists of the ith element of each array. The arrays are:

* For a comparison of eight different event handling algorithms on & variety of differing simulation problems, see Current Issues in
Computer Simulation, Compearison of Fulure Event Set Algorithms for Simulations of Closed Queuing Systems, McCormack,
William M., and Sargent, Robert G., Academic Press, NY, 1979, pp 71-82. None of the eight was fastest at all 12 problems,
however the method described here was best for 6 of them.

20

real when(100) Time of the event

integer who{100) The entity performing the event
character*6 what(100) The type of event performed
integer whom(100) The entity receiving the event
integer next(100) The pointer to the next link
when(9) who(9) what(9) | whom(9) next(9)

18.32

4 fire.. 6 31

Figure 3.1 Contents of a Link

21

3.2 Reset: Re-initialize the Event List

The Reset subroutine ‘resets the clock’ to time zero. To do this it rebuilds the linked list of idle
events and clears the linked list o active events. It is one of four routines, Reset, Skedul, Cancel, and
Event, that cooperate to handle evewt< in Monte Carlo Simulations. Although it was designed for use in
combat simulations, it has much broader use.

If the single argument to reset is true, the event routines will print out each event as it is scheduled
or cancelled; if false, this printing is not done. The subroutine then builds a linked list of idle links, as
shown at the top of exhibit 3.2. It also makes a null linked list of active links as shown at the bottom of
exhibit 3.2; no events are yet scheduled.

idle link 1 link 2 link n| n

nxevit—s {2

Figure 3.2 The Initial Linked Lists
Code.

c V7.1
¢ clock.h file
parameter (NE=200)
character®6 what
integer who, whom
logical prﬂag
common /eventl/ whatiNE%
common!éE ent2/ when(NE), who(NE),
1 whom(NE), next(NE% nxevnt nxidle, prflag
v save /eventl/ /event2/
e V7.1

SUBRQUTINE RESET (prflg)

c0 Reset: Initialize the clock to time zero.
include 'clock.h’
logical prflg

prflag = prilg
nxevnt = 0
nxidle =]
DO 10 j=1 NE
ne;rp} - j+1
10 CONTINUE

next(NE) = 0
END

22

INTENTIONALLY LEFT BLANK.

23

3.3 Skedul: Schedule an Event.

The Skedul subroutine schedules an event in a linked list of events. It is one of four routines, Reset,
Skedul, Cancel, and Event, that cocperate to handle events in Monte Carlo simulations. Although it was
designed for use in combat simulations, it has much broader use. The event information stored is; event
type, entity that will perform the event, time the event will occur, and perhaps the receiver of the action.

The calling statement. A tvpical calling statement is:

call skedul (t+tfI,"impact’,it)
Where:
t is the current time,
tf is the time delay after which the event may occur,
I is the subject or actor causing the event,
‘impact’ is a 6 character string identifying the type of event, and
it is an integer identifying the object of the event.
Note that the event must always occur in the future, so in our example, tf > 0.0.

Algorithm. On average, Skedul must traverse half the linked list to find the place to insert the
event link. It must also check to see if an idle link is available. If so, it then inserts the new event using
these 6 steps, as shown in exhibit 3.3.

Store the index of the idle link/event in n.

Store the index of the new head of the idle chain in idle.

Store the index of the immediately preceding link /event in l.

Store the index of the succeeding idle link/event in m.

Store the index of the now active link/event in next(l).

Store the index of the succeeding link/event in the now active link/event in next(n).

Start idle a b ENE
axevnt—s .. —= x [F={ vy [F=

R INE EE

Step2 idle —sf b [J={ ¢ [}

swps 1 —o{ = 35 3=

Step 4 m EBE

Step 5 n x a y

LN A

Step6 nextev—> ... X a y

Figure 3.3 Scheduling an Event

24

Code.

¢ V7.3
SUBROUTINE SKEDUL (t,],act,it)
c9 Schedule: Scheduie an event for later execution.
include 'clock.h’
character®s act
1 format(0x,'skedul *,i3,' °,6,i3," at time’,f8.2)
¢
if (prfiag) print 1, 1, act, it, t
f idle.eq.0) THEN
¢ lf swnge all used stop
g;{nt. ’ Storage overloaded with too many events.’
ELSE
¢ Store the event
c Cut storage unit from empties
n = nxidle
nxidle = next(nxidle)
¢ Then find where to insert this event in the event list.
IF (nxevnt.le.0) THEN
[New event ls only event
next(n) =
nxevnt = n
ELSE
¢ Then find where to insert it.
¢ Point to first 2 events
) = nxevnt
m = next(l)
¢ Find where to insert them
IF (t.ge.when(l)) THEN
[See if between 2 scheduled events.
¢ Loop till found.
20 lPl‘ (m.ne.0 .and. t.ge.when(m)) THEN
=m
m = next(m)
GOTO 20
ELSE
¢ Splice new event into lis*
next(n) = m
next(l) = n
END
ELSE
3 Place new event as most imminent
next(n) = nxevnt
nxevnt = n
ENDIF
ENDIF
c Finally store event info
when(n) = t
what(n) = act
who(n) = [

whom(n) = it
IF

END

3.4 Event: Find Next Event

The Event subroutine finds the next event to be simulated from a linked list of events. It is one of
four routines, Reset, Skedul, Cancel, and Event, that cooperate to handle events in Monte Carlo
simulations. Although it was designed for use in combat simulations, it has much broader use.

The event routine simply extracts the information for the next event from the first link on the linked
list of events and then moves that link to the head of the linked list of idle links. The information
extracted is:

I - the entity performing the event

act - the event or act

it - the object of the event (or other useful information)

t - the time the event occurs
Figure 3.4 shows the arrangement of the idle and active linked lists before and after the most imminent
event is fetched.

Before idle —sdlink a] J-slink b| }=>
After idle —sdlink x| J-s{link a] }->dlink b|J=
nxevnt—s{link y[|

Figure 3.4 Selecting the Next Event

Code.
c V7.2
SUBROUTINE EVENT (I act,it,t)
c0 Event: Find the next scheduled event.

include 'clock.b’
character®6 act

¢ Fill arguments
1 = who/nxevnt)
act = what(nxevnt}
it = whom(nxevnt)
t = when(nxevnt)
¢ Drop storage unit from active storage chain
0 = nxevnt
nxevnt = next{nxevnt)
¢ Add storage unit to inactive storage.
next(n) = nxidle
nxidle = n
END

26

INTENTIONALLY LEFT BLANK.

27

3.5 Cancel: Cancel an Event

The Cancel Subroutine cancels an event from a linked list of events. It is one of four routines, Reset,
Skedul, Cancel, and Event, that cooperate to handle events in Monte Carlo Simulations. Although it was
designed for use in combat simulations, it has much broader use.

Cancel removes zero or more links (events) from the list of scheduled events and places them in the
linked list of idle links. This removes the record of these events, so they never occur. The cancel routine is
called in the four ways illustrated below:

call cancel (I,’fire ’,it)

call cancel (I,’all °,it)
call cancel (I,’all ’ NULL)
call cancel (I,’fire ',NULL)

The first call to cancel cancels any fire events associated with entity I and object it. The second
version cancels all events associated with entity 1 and object it. The third version cancels all events
associated with entity I, no matter what is the object of the action. The third version cancels all fire
events associated with entity I.

Figure 3.5 shows how the active and idle chains look before and after cancelling the second active
event; event y.

Before idle —s{link a] J->{link b[->
nxevat—slink x [-={link y[J={link 2[J-=

After idle —sqlink y[4->{link a| J-{link b[>
nxevnt—slink x| J-=dlink 2]

Figure 3.5 Cancelling an Event

Code.
c V7.1 men
SUBROUTINE CANCEL (I, act, it) n = pext(n)
(X Cancel: cancel 'act’ events for 'I’ entity. ENDIF
¢ (all events if act=""} GOTO 10
¢ Definitions of local varisbles: ENDIF
¢ m - pointer to previous event END
¢ D - pointer to current event being considered

include 'cloek.h’
logical is what, is who, is whom

character®s act
1 format{Ox,’cancel *,i3," ’,28,i3,” at time’,f8.2)
[
m=0
b = pxevat
10 IF (n.ne.0) THEN
¢ Continue until n=0

is who = [.eq.who(n)
is what = sct.eq.what(n) .or. sct.eq.’all '
is whom = it.eq.whom(n) .or. it.eq.0
[F (is who .and. is what .and. is whom) THEN
¢ Then remove event
if {(prfiag)print 1, 1, act, it, when(n)
if (m.eq.0) nxevnt = next(n)
if (m.ne.0) next(m) = next(n)
next(n) = nxidle
nxidie = n
if (m.eq.0) n = nxevnt
Eill: m.ne.0) n = next(m)

¢ Don't remove eveat. Shift to next event. 28

INTENTIONALLY LEFT BLANK.

29

4 Mathematical

4.1 Center: Find the Centroid of a Polygon.

If you want to know the centroid (center of gravity) of an iriegular shape, for instance to find the
aim point on a target, use the center function. Input a set of x,y coordinates representing consecutive
corner points of a polygon with 3 to 30 sides. Center will compute the centroid and output its coordinates.

Input/Output. This routine reads in from a data file one pair of x,y coordinates per line. The
coordinates correspond to consecutive corners of a polygon. They may be ordered either clockwise or
counterclockwise. You may enter a maximum of 30 points, which would describe a thirty-sided shape.
Center responds with the x,y coordinates of the polygon’s centroid. Figure 4.1 shows a sample input and
output as well as a diagram of the polygon to which they refer.

Sample input:
00
-55
-110
810
158
10 4
100

Sample output:
x¢ = 4.316
yc = 5.247

Figure 4.1 Centroid of a Polygon

- Mathematics. Center ‘integrates’ under the perimeter vectors to find the area bounded by the
polygon. It takes one line segment (i) at a time and determines the area between that segment and the x-
axis. To do this, the program divides each area into a rectangle and a triangle and calculates the area and
centroid for both. For the rectangles:

ar, = (Ii - I{—l)yl'—l
;= (1, + 7,_,)/2
yri = ¥,.,/2

7, Ny, — vio)/2
o, = (22, + 7,_,)/3

ytl' = (yi + 23’-'—1)/3

And for the triangles:
at, = (z; —

A3

Where,
ar;, at; are the areas of the rectangle and triangle,
zr;, zt; are the x coordinates of the centroids, and
yr;, y¢; are the y coordinates of the centroids.

As the program moves around the perimeter above the x-axis, travel to the right adds area to the
cumulative area, and travel to the left subtracts. The opposite occurs when the line segment is below the
x-axis. After each segment, the program calculates the cumulative moment and area. Finally, the total
moment divided by the total area gives us the coordinates of the centroid (zc,yc):

arzr, + atzt)) Nar;yr, + atyt,)
Tc = ;Yo =
Nar, + at)) Dar, + at)

.30

oo
o

o

Code.

PROGRAM CENTER

Center: Find the centroid of a polygon.
dimension x(30), y(30)

format(’ xc=',f10.3,' yc=',10.3)

D -1,
ms?.zndl-a?%k(m)d(ws)

CONTINUE

Set initial values
sumA=0Q
sum Mx = 0
sum =90
x1 = x nsega;
¥1 = y(nsegs
DO 30 nseg=1,nsegs
x2 = x(nseg
y2 = y(oseg
Find area and cg of rectangle
ar = (x2-x1)*y1
xr = (x14x2)/2
yr=yl/2
Find area and cg of triangle
at = (x2-x1)*{(y2-y1)/2
xt = (x2+x2+x1)/3
yt = {yl+yl+y2)/3
Accumulate moments and areas
sum Mx = sum Mx + ar®xr + at®xt
sum My = sum My + ar®yr + at®yt
sum A = sum A + ar + at
Set beginning of next line segment
x1 = x2
yl=y2
CONTINUE
Find final result
xc = sum Mx/sum A
yc = sum My/sum A
print I xc,y¢
ND

31

4.2 Indexx: Find an Index in a Table for Interpolation Purposes.

To interpolate in tables, use the indexx function. Indexx assumes that the dependent variable is
stored in a vector of reals, for example, x(1) .. x(n), in ascending or descending order. Given the arguments
X, n, z,, where x is an ascending vector, it finds the value i such that z; < z, < z,, using binary search. If
z, <z 0r 3,>1,, it returns a zero value for i.

Suppose we wish to linearly interpolate in the table shown in exhibit 4.2. We may use the following
lines of code, where the second line is a statement function:

real f(10), x(10)
fi(xi) = 1) + (F+1}()) * (xi-x(i)) / (x(i+1)}x(i))

i = indexx(x,10,x})

y = fi(xj)
Table 4.2 Find an index
X 00 05 1.0 1.5 2.0 25 3.0 3.5
flx) 00 04 081 1.23 168 210 252 295
Code.
¢ V7.2
FUNCTION INDEXX(a, 1, 4/
¢ Find the index j, where - '} - . x < a{j+1)

integer n ,lo, hi, mid
logical incres, above

real a(n), x
incres = a{n’ zt.a{1)
lo=0
hi=n+1
10 TF (hi-'>.gt.1) THEN
mid=(hi+lo)/2

abovemx . gt.a(mid)

IF (incres.eqv.above) THEN
lommid

ELSE
hi=mid

indexx=io

END

32

INTENTIONALLY LEFT BLANK.

33

4.3 LinEgs: Solve a Set of Linear Equation

LinEqs uses the simple text book method for solving a set of up to 19 linear equations. If you have a
single problem to solve, want to check out another algorithm for linear equations, or are just learning how
to solve linear equations, this program works fine. It is not robust, however, because it fails if there is a
sero element on the diagonal! (which you may be able to get around by re-arranging the input lines). You
should use another algorithm* if you wish to solve many sets of linear equations.

Input/Output. The program reads in each of the simultaneous linear equations as a row of
coefficients separated by commas or blanks. Each equation must be on a separate input line. In the first
line put the number of equations (19 is the maximum) and a ‘t’ or ‘{’, depending on whether you want the
program to trace its steps or just print the results. You must arrange the equations in an order that does
not place zeroes on the diagonal. If the equations are dependent, LinEgs will tell you. Otherwise, it will
return the solution to the system of equations. As an example, consider the following four simultaneous
linear equations:

5z, + 1z, + 3z, + 0z, = 16
1z, + 4z, + 12, + 12, =11
=1z, + 2z, + 6z, — 22, =23
Iz, — 1z, + 125 + 42, = =2
The program gives its solution as z,=1,7,=2,7;,=3,and z, = —-1.
Input File Output file
4 £ Input is:
5. 1. 3. 0. 16. 5.00000 1.00000 3.00000 0.00000 16.00000
1. 4. 1. 1. 11. 1.00000 4.00000 1.00000 1.00000 11.00000
-1. 2. 6. ~-2. 23. -1.00000 2.00000 6.00000 -2.00000 23.00000
1. -1. 1. 4. -2. 1.00000 ~1.00000 1.00000 4.00000 -2.00000
SOLUTION 1IS:
1.00000 2.00000 3.00000 -1.00000

If you change the ‘f’ to a ‘t’ on the first input line, the output will contain a step by step description
of the solution. Below is a fragment showing how the off diagonal elements in the first column are zeroed.

Row 1 Col 1 is on the diagonal.

Row 2 Col 1 is being zeroed.
-1.00000 -0.20000 -0.60000 0.00000 -3.20000
Row 3 Col 1 is being zeroed.
1.00000 0.20000 0.60000 0.00000 3.20000
Row 4 Col 1 is being zeroed.
-1.00000 -0.20000 =-0.60000 0.00000 -3.20000

2urrent matrix is:

We highly recommend the algorithms in Numerical Recipes by Press et al.
Teukolsky, S., Vetterling, W., Cambridge University Press, NY.

34

Numerical Recipes, Press, W, Flanaery, B,,

5.00000 1.00000 3.00000 0.00000 16.00000
0.00000 3.80000 0.40000 1.00000 7.80000
0.00000 2.20000 6.60000 -2.00000 26.20000
0.00000 -1.20000 0.40000 4.00000 -5.20000

Mathematics. LinEgs works by zeroing the off-diagonal elements of the matrix that has one linear
equation as each row. The program proceeds down each column, except the last column of constaats,
setting each element to zero by adding to its row the appropriate multiple of another row. This method
eventually isolates each variable on the diagonal, so that its value becomes apparent.

Code.

PROGRAM LINEQS

LinEqgs: Solve simultaneous linear equations.

¢ Trace each step if desired.

real ¢(20,20), x(20)

integer n

logical trace

format lOflO.S)

format{' Row ',i2,' Col ',i2," is on the diagonal.’)
format(’ Row ',i2,’ Col ',i2,’ is already zero.’
format(’ Row ",i2,’ Col ',i2," is being zeroed.’

a

Py

o

Read equations
read *, n, trace
m = n+1
DO 20 i=1,n
read hd (C(I,j),j-l m)
(c(| i).eq. 0) THEN
print *,'Re-arrange eqns so zeros aren''t on diagonal.’
STOP
ENDIF
20 CONTINUE
Zero off-diagonal elements of jth column
DO 70 j=1,n
if (j.eq.1) print *, "Input is:’
if ().ne.1 .and. trace) print *, 'Current matrix is:’
DO 30 im1,n
if (j.eq.1 .or. trace) print 1,(c(i,k),k=1,m)
30 CONTINUE
IF (abs(c(n,n)).1t.0.00001) THEN
print *,'The equations are probably not independent.’
STOP
ENDIF
DO 60 j=],n
IF (1 ¢q.j) THEN

rac? rint 2,1, j
EL IF {),J).eq.OAO) THEN
lf! race) print 3, i,)

if (trace) print 4, i, j
DO 40 k=1,m

X(N = - o{j,k)*c(i.j)/ (i)
if (trace) print 1, {x(k),k=1,m)
DO 50 k=1,m

s ék_z_ cnk\+x(k)
o

60 CONTINUE
70 CONTINUE
rint *
O 80 i=l,n

if St.uce print 1,(c(i,k),k=1,m)
x(i) = efi,m)/c(i,i
CONT
print *, 'SOLUTION IS:’
print 1, (x(i},i=1,n)
END

“

40

35

4.4 Xform: Transform Cartesian Coordinates

A target is being approached by a projectile. The target may be approximated by a concave or
convex polyhedron with convex polygons as faces. We know the coordinates of the corners of the
polygons, i.e. of the target. We also know the position and velocity of the incoming projectile near the
time of impact. For convenience of further calculation, Xform rotates and translates all these coordinates
so that the projectile is traveling through the origin of the new coordinate system along the y axis in the
negative direction. Normally, other software then finds whether a projectile penetrates the target or
integrates the bivariate normal to find the hit probability.

Input/Output. The main program passes to the xform subroutine the following values:
The number of corners (in ncorn)
The coordinates of the corners (in matrix corner(NN,3)))
The projectile position (in vector p(3))
The projectile velocity (in vector v(3))
output level

The subroutine passes the newly calculated corner positions back to the calling program in matrix
cornr2(nn,3). If the output level option is 3 it also prints out the projectile position after rotation as well
as the final (x,y,z) coordinates of each corner.

Mathematics. First, xform rotates the projectile coordinates through the angles # and ¢,
determined from the projectile velocity as shown in Figure 4.4. This reorients the velocity vector such that
it becomes aligned with the positive y axis.

X
Figure 4.4 The Rotation Angles 8 and ¢

We can represent each rotation by a matrix, such that multiplying that matrix by any set of
coordinates (x,y,z) will yield "new" rotated coordinates (z',y',z'). We can rotate first through the angle ¢
and then through the angle ¢ with the following matrix operation:

1 cosf —sind O
0 cos¢ smd)”smo cost OH v
0

~sin¢ cosd

36

Xform applies the corresponding algebraic relations to rotate the projectile coordinates:
p,' = p,cos 6 — p sin 6
p, = p,sin § cos ¢ + p cos b cos ¢ + p,sin ¢
p,) = —p,sin 8 sin ¢ — p cos 6 sin ¢ + p,cos ¢

Next, xform rotates the corner coordinates using the same equations. It also has to translate the
target corners to correspond with a projectile positioned at the origin. To do this translation, the routine
simply subtracts (p,',p,’,p,’) from each set of rotated corner coordinates.

Code

SUBROUTINE XFORM(cornr2)
[Xform: Rotate and translate target & proj to proj base coords.
parameter (NN=25)
common /comtgt/ corner (NN,3), iface(NN,6), ncorns, nfaces
common /projec/ v(3), p(3), lev
real cornr2(NN,
format(' New projectile pos:',3(10.3)
format(' New corner positions are:')
format(20x,3110.3)

AR

¢ Find sin, cos of 1st rotation angle
fac = sqrt(v(1)**2 + v(2)**2)
facl = 1.0/fac
sinl = v(1)*facl
cosl = v{2)*facl

¢ Find sin, cos of 2nd rotation angle.
fac2 = 1.0/sqrt(v(1)**2 + v(2)**2 + v{(3)**2)
sin2 = v(3)*fac2
cos2 = fac*fac2

¢ Rotate projectile position
Xp = p}l *cosl - p(2)*sinl
yp = p(1)*sin1*cos2 + p(2)*cos1®cos2 + p(3)*sin?2
zp = -p(1)*sin1*sin2 - p(2)®cos1*sin2 + p(3)}*cos?
if (lev.eq.3) print 1, xp, yp, p(3)

¢ Rotate & transiate coordinates of target corners
DO 20 nc=1,ncorns
cornr2(nc,1) = corner(nc,1)*cosl - corner(nc,2)*sinl - xp
cornr2(ne¢,2) = corner(nc,1)*sinl*cos2 +
1 corner{nc,2)*cos1*cos2 + corner(nc,3)*sin2 - yp
cornr2(nc,3) = -corner(ne,1)*sin1*sin2 -
1 corner?nc,?)‘cosl’sinZ + corner(ne,3)%cos2 - zp
20 CONT
if (lev.eq.3) print 2
if (lev.eq.3) print 3,((cornr2(i,j),j=1,3),i=1,ncorns)
END

37

5. Probability and Statistics

5.1 Binomial: Calculates Values of the Binomial Probability Function.

Given the two parameters of the binomial probability distribution, p = the probability of a success,
and n = the number of trials, this program calculates the probability of ¢ successes, 1=0,1,...,n. The
binomial probability distribution is discussed and a sample run is shown.

Input/Output. Binomial prompts for the probability of success in a single trial and the number of
trials. It then finds the probabilities of zero to n successes. If the number of trials is greater than 20, it
abbreviates the output by finding oaly the probabilities for zero to five trials and for multiples of five trials
thereafter. To produce all values, simply delete the IF.. THEN and ENDIF statements in the main
routine.

Here is a sample dialog, showing how to find the probability of zero to 10 hits on a target, given ten
shots and a probability of 0.2 of hitting with a single shot. Figure 5.1 illustrates the results of this
calculation.

% a.out

Binomial distribution.

What is prob, number of trials?
0.2, 10

Probability of 0 successes = 0.11
Probability of 1 successes = 0.27
Probability of 2 successes = 0.30
Probability of 3 successes = 0.20
Probability of 4 successes = 0.09
Probability of 5 successes = 0.03
Probability of 6 successes = 0.01
Probability of 7 successes = 0.00
Probability of 8 successes = 0.00
Probability of 9 successes = 0.00
Probability of 10 successes = 0.00

What is prob, number of trials?

*** Interrupt!

*** Execution terminated

%

0.5

Probability

—

0

1

2

3 4 5 6
Number of Hits

7

Figure 5.1 Probability of Exactly K Hits

38

Mathematics. The binomial probability function is

P, = (:)p"(l—p)"*, k=0,1,..n

Where,
P, is the probability of exactly k successes in n trials, and
p is the probability of 1 success in 1 trial,
Code.
PROGRAM BINOMIAL
1 format (* Probability of', i3, ' successes =’, 16.2)
print *, 'Binomial distribution.’
20 pnnt * 'What is prob, number of trials?’
resd *,'p, n
DO 30 i=0,n
IF(nle?O .or. i.1t.5 .or. O.e mod(l)) THEN
pi = bico(n,i)* p**i * (1. % (n-1)
print 1, i, pi
ENDIF
30 CONTINUE
GOTO 20
END
FUNCTION BICO (i,j)
¢ Bico: find binomial coefficient.
IF (j.eq.0 .or. j.eq.i) THEN
bico = 1
ELSE
k = min0(},i-j)
p = i-k+1
DO 20 m=2,k
p = p*(i-k+m)/float(m)
20 CONTINUE
bico = p
ENDIF
if (j.gt.i? bico = 0.0
¢ Wil fail il j<Qor j>i
END

39

5.2 Hyper: Find the Outcomes of Draws Without Replacement

Hyper uses the hypergeometric distribution to find the number of successes in trials without
replacement. Traditionally, this is illustrated by the problem of randomly drawing balls from an urn. The
program uses input parameters analogous to this situation: number of red balls, number of draws, and
total number of balls. Hyper computes the probability for each number of successes, or number of red
balls drawn.

Two versions of the code are included, the first with hyper as a program, and the second with hyper
as a subroutine.

Sample Problems. Figure 5.2 shows the probability of each outcome for the following two
problems.

1. In the 7-card poker game, baseball, 3’s and 9’s are wild. What’s the chance of drawing 0-7 wild cards?

2. Intelligence tells you the enemy is moving forces to 2 of 4 key military targets, but you don’t know
which of the 4 will be attacked. Further, you only have forces to defend 2 of the 4 targets. What is the
chance you'll defend 0,1, or 2 of the targets that will actually be attacked?

1 1
P(k) .5 P(k) 5
0 | 0
0 1 2 3 4 5 6 0 1 2
Wild Cards Drawn Attacks Met

Figure 5.2 Probability of k Occurrences Without Replacement.

Input/Output. Execute the Hyper program and it will ask you for the number of red balls, the
number od draws, and the number of balls. For the first sample problem, enter 8, 7, 52, since there are 8
wild cards, 7 cards drawn, and 52 cards in the deck. Results are shown in figure 5.2. For the second
sample problem, enter 2, 2, 4, since two will be attacked, you can protect 2 targets, and there are 4
targets. Again, results are shown in figure 5.2. To escape the program, type "C or "D.

Mathematics.

Given:
t = number of red balls,
J = number of draws,
k£ = number of successes,
n = number of balls, and

40

— 0 0ON

10

el

OO OOOD

el

Find P,, the probability of exactly k successes.

P‘=

n
;
Code

PROGRAM HYPER

Hyper: Find the probability of outcomes without replacement.
i = gof desired objects in the set from which you draw.

j = #hof draws w/o replacement

m = maximum number that can be drawn

n = number of objects in the set from which you draw.
format (' Probability of",i3,’ successes is’,{6.3)

print *,'What is #of red balls, #of draws, #of balls?’
CONTINUE
read *,i,j,n
m=min0(i,j)
DO 20 k=0,m
al = bico(i k)
a2 = bico(n-i j-k)
a3 = bico n,jS
p=al*a2/a3
print 1, k, p
CONTINUE
GOTO 10
END

FUNCTION BICO (i,j)
Bico: find binomial coefficient.
IF (j.q.0 .or. j.eq.i) THEN
bico = |
ELSE
k = min0(j,i-j)
p = i-k+1
DO 20 m=2k
p = p*(i-k+m)/float(m)
INUE

if j.gt.i? bico = 0.0
Will fail if j<0or j>i
END

SUBROUTINE HYPER(i,j,n

Hyper: find the outcomes of draws without repiacement.
i = fof desired objects in the set from which you draw.
j = #kof draws w/o replacement

m = maximum number that can be drawn

n = number of objects in the set from which you draw.

format (' Probability of",i3," successes is',(6.3)

m=min0(i,j
A ER: i,j,m,n="i,j,m,n

DO 20 k=0,m

al = bicofi,k)

22 = bico(n-i j-k)

23 = bico(n,j)

p=21°22/23

print 1, k, p
CONTINUE

END

FUNCTION BICO (i, j)
Bico: find binomial coefficient.
IF (j.eq.0 .or. j.eq.i) THEN
bico = |
ELSE
k = min0(j,i-j)
- j-k+1
O 20 m=2,k

p = p*(i-k+m)/float(m
CON'F[I&UE) m)

bico = p
ENDIF

)

i

if (j.gt-i
Will fai
END

41

?bico = 0.0
if j<Oor j>i

5.3 Ndtr, Fnd: Integrate the Normal Distribution.

Ndtr and Fnd are two common routines that find the integral under the standard normal density
function from ~—oo to z using an approximation technique adapted from the ndtr routine in the IBM
Scientific Subroutine Package’. A simple transformation of the argument makes it usable for normal
density functions with # # 0 and ¢ # 1. The approximation technique is discussed and a sample run is
shown.

The standard normal density function, illustrated in F2‘igure 5.3, is defined by the following equation:
-%p
_f € dz

p=
vVar

-3 -2 -1 0 1 2 3
Figure 5.3 The Area Under the Standard Normal Density Function

Input/Output. These functions find the probability that a normally distributed number is less
than z. Thus, the user passes a real argument z and either routine produces an output between 0 and 1.
For the standard normal density function, g = 0 and ¢ = 1. If you wish to find the area under a normal
density function with any other mean and standard deviation, just use (z—u)/o instead of z for the
argument.

Mathematics. Ndtr uses this approximation by Hastings’. (Because of a change of variable, all
Hastings constants must be multiplied by \/E) Various authors differ on the maximum error: Hastings
says it is 1.5E-7, the Handbook of Mathematical Functions® says it is 7.5E-8, the IBM Scientific Subroutine
Package says it is 7TE-7.

P(z) = 1 = Z(z)(b,t+b,t"+byt°+b,t*+5,1%)
Where:
t = 1/(14pz)
-2
Z(z)=€ Vo

We have added a line of code truncating the argument at +6 to avoid overflow on 32 bit single
precision computers. Values of x outside this range yield probabilities sufficiently close to 1 or 0 to be
ignored in most practical problems.

Fnd uses this polynomial approximation by Hastings®:
1
P(z)=1-

2 3 6 16’
[1+8,24+6,2° 40,2 40,2 + a2 +a42")'°

6. System/360 Scientific Subroutine Package (360A-CM-03X) Version Il Programmer’s Manual, H20-0265-3, [BM Data
Processing Division, 112 East Post Road, White Plains, NY 10601, undated, p78.

7. Approximations for Digital Computers, C. Hastings, Jr., Princeton Univ. Press, Princeton, N.J., 1955, p 169.
8. Handbook of Mathemati-al Functions, Abramowitz, M., and Stegun, Irene A., Dover Publications, Inc., NY, p 932, eq 26.2.17.
9. ibid, p. 187.

42

where each a, is a coefficient given by Hastings, multiplied by (VE)' This factor of V2 for each z is due
to a change of variable which was used to convert the given form to the standard normal density function.

Hastings reports the maximum error in his approximation as 3.0E-7. We added a line in the code
that truncates the argument at +5 to avoid overflow. Values of z beyond this range yield probabilities
sufficiently close to 0 or 1 to be assigned these values in most practical problems.

Code

REAL FUNCTION NDTR (x
¢ Ndtr: Integrate the Normal lst.nbut.xon from -infinity to x.
¢ Source: Adapted from ndtr in the IBM SSP pg?8.

ax = abs(x)

t=10, 0/(1.0+.2316419%x)

lf(l.x h. 6.0)d = 0.3989423*exp(-x*x/2.0}

p=lo0- d*t*((((1.330274% - 1.821256)°¢ + 1.781478)% -
. 0.3565638)*¢ + 0.3193815)

if (x.1t.0.0 p-l -p

ndtr = p

REAL FUNCTION FND(x{)
¢ Fnd: Integrate the Normal Distribution from -infinity to x.
c from hastings approximations for digital computers

{=0.
ax = abs(x)
e.5.)goto 10
(% .5383e-5%ax-+.488906e-4)*ax+.380036e-4)* ax+.0032776263)*ax
1 + 021141006) ax+.0498673469)%ax+1.0

f=5/((r*s)**

10 if{x geO)f-lf
fod = f
END

43

5.4 Fnd2d: Integrate the Normal Distribution Under a Directed Line Segment.

Fnd2d finds the area under the bivariate normal between the limits z, and z, in the z direction, and
between —oo0 and y, = c+dz in the y direction. Figure 5.4 illustrates the limits. The solution is useful in
for finding the hit probability on one or more triangles, hence on polygons.

This subroutine, originally named fsubij, was developed by Art Groves'?. We have made cosmetic
changes and substituted a call to gqsimp, a cleaner, more efficient simpson integration routine. See
Numerical Recipes for gsimp.

-y
Figure 5.4 The Limits of Integration

Input/Output. When you call fnd2d, pass eight values in the argument list. The first and second
arguments are the x and y coordinates of the starting point of the directed line segment under which you
want to integrate. The next two arguments are the coordinates of its endpoint. The last four arguments
give the means and standard deviations of the bivariate normal density function, in this order: z, y, 7,, o,

Mathematics.

ymc+dz %

1 ((e=s) %20 D ¥H(r=0)/207)
p=—T f f e dzr dy
2rVo,0,

2z
L]

10. The Probability of Hitting a Polygonal Target, Arthur Groves, U.S. Army Materiel Systems Analysis Activity,
Aberdeen Proving Ground, MD, Technical Report No. 330, April 1981.

44

Code.

FUNCTION FND2D (xi,yi,xj,yj,xbar,ybar sigmax,sigmay)
Fnd2d: Integrate the bivariate normal density function 'under’ the
directed line segment from (xi,yi) to (xy,yj).

commoa /fj/ a,b,c

external fun

fnd2d=0.

IF (xi.ne.xj) THEN
xmin=aminl{xi,xj)
xmax=amax1(xi,x})
smin=amax]1((xmin-xbar) sigma.x.’S.Sf
smax=aminl({{(xmax-xbar)/sigmax,3.5
IF (smin.lt.smax) THEN

a=(yi-ybar)/sigmay
¢w=(xi-xbar jaigma.x

yi.eq.y)) THEN
fnsdE2d-fn (a)*(fd{{xj-xbar)/sigmax)-fnd(c))

b=sigmax*®(yj-yi})/(sigmay*(xj-xi))
call gsimp(fun,smin,smax,fnd2d)
iIsBj.lt.xis’fndZd-‘fndM

ENDIF

ENDIF
ENDIF
END

FUNCTION FUN (s)

common /fij/ a,b,c
fun=.3989422804%exp(-.5*s*s)* nd{a+b*/s-c))
END

include 'gsimp.f’
include 'fnd.f’

45

5.5 Confb: Find Confidence Intervals on a Binomial Outcome.

Construct confidence intervals on an outcome with a binomial distribution. Enter the sample size
and either the probability of occurrence or the number of occurrences. The confb function gives 90%, 95%,
and 99% confidence intervals.

Input/Output. An input line consists of an integer and a floating point number separated by a
comma or blank. The integer is the sample size. If the floating point number is less than one, it is taken to
be the probability of occurrence; otherwise, it is taken to be the number of occurrences. If you do not
designate an input file on the command line, confb will prompt for each input line. Hit "D to quit. The
output appears as a line of a table with the headings, N, PROB, 90%, 85%, and 99%.

Sample Problem. Say you run Tank Wars for 50 repetitions. You find that the Blue side wins
10% or 20% or 50% or 80% or 90% of the confrontations. What are the 95% confidence intervals on these
binomial outcomes? The confb output for this case follows. See Figure 5.5 for a graphical representation of
the results.

N PROB --90% -- --95% -— -—- 99% ---
50 0.100 0.037-0.198 0.031-0.220 0.022-0.265
50 0.200 0.112-0.315 0.101-0.338 0.083-0.383
50 0.500 0.377-0.623 0.357-0.643 0.320-0.680
50 0.800 0.685-0.888 0.662-0.899 0.617-0.917
50 0.900 0.802-0.963 0.780-0.969 0.735-0.978

1

Win
Probability

0 Arbitrary Parameter 1
Figure 5.5 Tank Wars Probabilities With 95% Confidence Intervals

Mathematics. The confb routine uses the method of Dixon and Massey!!, to calculate the
confidence intervals as follows:

11. Introduction to Statisticel Analysis, 3rd edition, Dixon, Wilfred J., and Massey, Frank J., McGraw Hill, New York, 1969, p.246.

46

where

a=05/n

b = (p+a)(1-p—a)/n
= (p—a)(l-p+a)/n
d = n/4n+z'-)

¢ = az
-zVbht[)
p+a+c+z c+/)

(33

]
®
wl
N
©

TS
ll
'e
b
+
n
N

ll

n is the sample size

p is the sample mean (the experimentally determined probability)
= 1.645, 1.960, 2.576 for 90, 95, and 99% intervals, respectively

L; is the lower bound of the 90, 95, or 99% confidence interval

H, is the upper bound of the 90, 95, or 99% confidence interval

Code.

o 0060

OO eD

10

O 6 006

CONFB: Find confidence intervals on a binomial probability.
First value read is sample size. Second value read is taken
t}) be number of successes if > 1 and probability of success
if< 1.
real hi(3), 10(3)
logical fail
format i5,f10.3)
format{’ Sample too small. N*prob < 5 or N*{1-prob} < 5.")
format(8x,i6,18.3,3, 2x I'S 3,'-'f5.3))
format| 12x 'N P --- 90% ---
Teee 959 - - 99% ---)

write(6,5
CONTI

read (5,1, END=99) n,p

if (p.gt.1.0)p=p/n

call confb (p,n,hi,lo,fail)

if (fail)write(6,2)

if (.not.fail) write(6,3) n,p,(lo(i),hi(i),i=1,3)
GOTO 10
CONTINUE
END

SUBROUTINE CONFB (p, nr, hi, lo, fail)

Confb: Find the 90, 95, and 99% confidence intervals
on a probability p, where p is the estimated probability
and nr is the sample size.

Reference: Introduction to Statistical Analysis, 3rd edition,
Dixon and Massey, p24R.

real hi(3), 1o(3), 2(3), a

logical fail

data 1z /1.645, 1.960, 2.576/

n = float(n R
fail = (0%p.It.5 or ((n-n*p).1t.5)
IF (.not.fail) T!
Method is spphctble so apply it
DO 20 i=1,3
sl= n/(n+ l *2)

32 0. 5‘1 | 21n
1 0-p-0 S/n;

& +0.5/n
'5 n z 1* {5 +s§ 2(1)*sqrt(s3/n+s5))
n
o 1“ :l‘!p+0 /n+32+z(|)Ssqrt(s4/n+ss))
ENDIF
END

47

5.6 Confn: Find Confidence Intervals on a Normal Outcome.

Confn constructs confidence intervals for the mean of a rormal population. Enter the mean, an
estimate of the standard deviation, and the sample size. The program gives 90%, 95%, and 99%
confidence intervals.

Input. The program reads from standard input using free format. A line of input consists of the
following in order: the mean of the sample, the estimate of the standard deviation, and the sample size.
There is no limit to the number of input lines. Use the -i option if you want the program to prompt for
each input line. Hit “D to quit.

Sample Problem. Say that we fire a gun 20 times and find that the mean and standard deviation
in the horizontal direction are 0.10 and 1.17 meters, and in the vertical direction they are 0.44 and 0.74
meters. What are the horizontal and vertical 95% confidence intervals on these measurements?

Following is the conf dialog used to solve this problem, and Figure 5.6 gives a graphical
representation of the results. Only the horizontal bar crosses the axis, indicating that the gun has a
vertical, but not a horizontal, bias. Since we simulated these shots, we know that the true mean is (0.2 m,
0.3 m). As you would expect, this point falls within the horizontal and vertical confidence intervals.

confn -i
What is sample: mean, S.D., size?
Sample Sample Sample ---90C5--- ---95%%-—- —-99%%---
Mean S.D. Size Interval Interval Interval
0.10,1.17,20
010 117 20 (-0.35, 0.55) (-0.45, 0.65) (-0.65, 0.85)
0.44,0.74,20
044 0.74 20 (0.15, 0.73) (0.09, 0.79) (-0.03, 0.91)
‘D
y
A
/(.1,.44) Sample mean

\(.2,.3) True mean

2 X

Figure 5.6 95% Confidence Intervals on Sample Data

48

Mathematics. The method used by this program comes from Mood and Graybill.'? They give the
upper and lower bounds of the 90% confidence interval as follows:

F 2 tos\/| X(z; - 3)°/(n"~ n)),
where: 7z is the sample mean
n is the sample size
t 5 is the 5% level of ¢

The 5% level of t refers to the student’s ¢ distribution, the subscript dcuoting the percentage of the
area under the curve that the desired point will cut off from each end. Values for other subscripts, or levels
of ¢, are used to determine other confidence intervals. Besides 90%, this program finds 95% and 89%
confidence intervals, using ¢ o, and ¢ ., respectively. These values vary with sample size and are retrieved
from a table that is stored in DATA statements, either directly or by interpolating between sample sizes.
In the above equation, the square root term is almost identical to the expression for the standard
deviation, the difference being a factor of 1/4/,. Thus, the user inputs ¢ and n are sufficient for confn tc
calculate the three confidence intervals.

Code.

o

¢ intervals on a normal distribution, given 1 2.447, 2.365, 2.306, 2.262, 2.228,
[sample mean, sample S.D., sample size 2 2.201, 2.179, 2.160, 2.145, 2.131,
real d(6) 3 2.120, 2.110, 2.101, 2.093, 2.086,
1 format(19.2,18.2,i6,3x,3(' ('.16.2,",".16.2,'}')) 4 2.080, 2.074, 2.069, 2.064, 2.060,
2 format(’ Sample Sample Sample °, 5 2.056, 2.052, 2.048, 2.045, 2.042,
1 ! -e-80%--- ~-85%--- ---99%---’) 6 2.021, 2.000, 1.980, 1.960/
3 format(" Mean S.D. Size ', data t395 463.657, 9.925, 5.841, 4.604, 4.032,
1 ' Interval Interval Interval’) 1 3.707, 3.499, 3.355, 3.250, 3.169,
2 3.106, 3.055, 3.012, 2.977, 2.947,
print *,"What is sample: mean, S.D., size?’ 3 2.921, 2.898, 2.878, 2.861, 2.845,
print 2 4 2.831, 2.819, 2.807, 2.797, 2.787,
print 3 5 2.779, 2.771, 2.763, 2.756, 2.750,
10 CONTINUE 6 2.704, 2.660, 2.617, 2.576/
read(5,*,end=99) xbar, s, n
factor = s/sqrt(float(n)) IF (df.le.0) THEN
call tstats{n-1,t1,t2,t3 print *,"TSTATS: Degrees of freedom must be > 0.’
d(1) = xbar - t1*factor OP
d(2) = xbar + t1*factor ELSEIF (df.le.30) THEN
d(3) = xbar - t2%factor t] = t950(df
d(4) = xbar + t2*factor t2 = t975(df
d{5) = xbar - t3*factor t3 = t995(dfl
d(6) = xbar + t3*factor ELSE
print 1, xbar, s, n, d =30
GOTO 10 if (df.gt.40) j = 31
99 CONTINUE if (df.gt.60)) = 32
END if (df.gt.120) j = 33
factor = float (df-dfs(j+1))*dfs(j) /
SUBROUTINE TSTATS (df,t1,t2,t3) 1 float(dfs(j)-dfs(j+l y4dr)
¢ Tstats: Find Student's T-statistic t1 = fun(t950(j+1),t950(j).factor
¢ for 95%, 97.5%, 99.5% t2 = (un(t975(: +1),t975()),factor
integer df, dfs(34 t3 = fun(t995()+1),t995(j).fsctor
real t950(34), t9 5(342, 1995(34) ENDIF
fun(s,b,c) = 2 + (b-a)’c END
datadfs /1,23, 4,5,
1 6, 7, 8, 9,10,
2 11,12,13,14,15,
3 16,17,18,19,20,
4 21,22,23,24,25,
5 26,27,28,29,30,
] 40,60,120,9999999
data tOSOé 6.314, 2.920, 2.353, 2.132, 2.015,
1 1.943, 1.995, 1.860, 1.833, 1.812,
2 1.796, 1.782, 1.771, 1.761, 1.753,
3 1.746, 1.740, 1.734, 1.729, 1.725,
4 1.721, 1.717, 1.714, 1.711, 1.708,
5 1.706, 1.703, 1.701, 1.699, 1.697,
8 1.684, 1.671, 1.658, 1.645/

CONFN: Find the 90, 95, 99% confidence

data 1975 /12.706, 4.303, 3.182, 2.776, 2.571,

12. Introduction to the Theory of Statistics, Alexander M. Mood and Franklin A. Graybill, McGraw-Hill, 1963, New York, p.252.

5.7 Ranu: Draw a Random Number

This subroutine uses a version of the uran3l uniform random numbe: generator to pseudo-randomly
draw a number from the uniform distribution extending from 0 to 1. The following explains how to “seed”
the generator and shows some sample draws.

Why use a random number generator coded in Fortran? For the following reasons:
1. First, we believe this is one of the better random number generators®.

2. 1If you are transporting a program from one computer to another, and it draws random numbers,
you'll be more confident if test cases generate exactly the same results on each machine.

3. If a long run dies in mid-stream, and you've printed the random number seed periodically, you may
be able to restart the run at the point it last printed the seed.

4. And finally, if you are debugging a run by turning on more and more print statements, you can
suppress enormous volumes of printout by judiciously setting the random number seed and
restarting the run in mid-stream.

Input/Output. Ranu requires the calling program to initialize the variable j in the common
statement /crandm/ j. We have used the value j=1111111, however other odd integers are legal. The
common statement may be replaced with a data statement such as: data j /1111111/ if you do not wish to
reset the seed. The calling statement: call ranu{), of course, requires no argument. Figure 5.7, below

illustrates ten draws using ranu, and shows a plot of 20 draws using pairs of variates as the coordinates of
the 10 points. '

1 Seed= 1111111
° First ten draws from the function:
o o 0.7401378
0.9308131
e 0.7908101
o 0.2813551
o 0.2351466
0.8330226
0.1955611
° o 0.1284252
0.3288300
o 0.5939014
0 = X
0 1

Figure 5.7 Ten Pairs of Numbers Drawn from a Uniform Distribution

Mathematics. Ranu®* is a variant of the uran31 subroutine long used at BRL. We have tested a
anumber of random number generators and found Ranu to be the only one to pass all 5 tests. Ranu &
uran3l will work on any computer with 31 or more bits per integer. Any odd seed between 1 and
87108863 was acceptable for the earliest version. Revisions to accommodate 31 bit machines will have
reduced this upper limit and the cycle length. Cycle length of the current version is 16,777,215.

50

Code.

FUNCTION RANU (dm)

c Ranu: A version of uran31 uniform random nr generator.
common /crandm/ j
resl al

j=j*25

J-j-‘(% 467108864)'67108864
J-

]-]-.(‘% /67108864)*67108864
1=]
J=j-(1/67108864)*67108864
slm)

ranu= a1/67108864

END

12. We recommend the discussion of random number generators in Numerical Recipes, by Press, Flannery, Teukolsky, &
Vetterling, pages 191-199. See also, Seminumerical Algorithms, The Art of Computer Programming, by Donald Knuth,
pages 1-190.

* For further information on this pseudo-random number generator, see: Collected Algorithms from CACM, volume I, Algorithm
266, Psuedo-Random Numbers, page 266-P 1- 0, by M.C. Pike and I.D. Hill. Also see: Remark on Algorithm 266, Psuedo-
Random Numbers, page 266-P 2- R1.

51

5.8 Rann: Draw From a Normal Distribution.

Rann draws two random variates from the standard normal distribution using the Box-Muller
method.

Output. This subroutine generates two real numbers randomly chosen from the normal
distribution. Interpreting the output as x and y coordinates, we produced the twenty points drawn in
Figure 5.8, which represent random shots.

Figure 5.8 Draw of 20 Random Shots

Mathematics. Rann is based on CACM algorithm 267 by James R. Bell, called "Random Normal
Deviate" published by the Association for Computing Machinery, Inc. (ACM),'? that in turn is based on
the method developed by Box and Muller in 1958. It produces two independent random variables, each
from the normal distribution with mean 0 and standard deviation 1. The subroutine calls the real function
ran twice. Ranu is a pseudo-random number generator that produces a number lying strictly between O
and 1. See section 5.7 for details. Algorithm 334 is a slightly faster, but more complex version of
algorithm 267. See also algorithm 442 for a slower, but higher precision algorithm. Finally, see algorithm
448, which may be faster if one of the 2 random deviates must be discarded.

Code.

SUBROUTINE RANN(p,q)
c? Rann: draw two random numbers from the std normal distribution.
Box-Muller methed

x = sqrt(-2.%alog(ranu(dm)))
y = 2.*3.1415926535*ranu{dm)

P = x*cos y?
q = x*sin(y
END

13. Collected Algorithms From ACM, Volume 11, 1980, Algorithm #267, Association for Computing Machinery, New York.

52

INTENTIONALLY LEFT BLANK.

53

6. Hit Probability

8.1 Box: Find the Probability of Hitting a Rectangle.

Box assumes the shots {all in an uncorrelated, bivariate normal distribution on a rectangular box.

Input. For input use any consistent set of units; feet, meters, whatever. You can quit at any time
by typing “D.

Box asks for the left and right edges of the target and then the lower and upper edges of the target.
Then it asks for the horizontal and vertical standard deviations of the shot pattern. With this
information, it finds the hit probability on the rectangle.

After completing this, it loops back and asks for further shot pattern sizes. If you are not interested
in further shot patterns at this target, just enter a pair of zeros. It then gives you a chance to change the
target size and repeat the process.

Sample Dialog. Below is a sample dialog. In the first case, the target is a square extending 1 unit
left and right, below and above the center of the shot pattern and the shot pattern is circular with a
standard deviation of one unit. The probability of hitting the target is 46.6%. In the second case, the size
of the shot pattern has doubled in each direction; now the hit probability is 14.7%. We are no longer
interested in this case, so we enter 0.,0. for the dimensions of the next shot pattern and Box asks for new
target dimensions. This time, the rectangle extends 1 unit left and 2 units right, and 2 units above and
below the aim point. Again, the standard deviation of the shot pattern is 2 units in each direction. In this
third case, the hit probability is 36.4%.

If you make xsig=0, I will ask for new tgt.

What is xlow, xhigh?
-1. 1.

What is ylow, yhigh?
-1. 1.

What is xsig, ysig?
1. 1.

p = 0.4660650

What is xsig, ysig?
2.2

p = 0.1466315

What is xsig, ysig?
*C

Mathematics. The probability (P,) of hitting a rectangular target is:

’A/‘c '/'a
1 N T
Po=— [e e [e 4y
2” ’l/‘a 'I/'a

54

99

Zair Ui

T\ —t1° shot pattern
» X

—
N

Ziow Yiow
Figure 6.1 Box
Code.
PROGRAM BOX
Box: Find the probability of hitting a rectangular box.
real ndtr
CONTINUE

print *, ' If you make xsig=0, | will ask for new tgt.’
print *, ' What is xlow, xhigh?’
read (5,%,end=99,err=99) x|, xh
print *, ' What is ylow, yhigh”’
read (5,*,end=99,err=99) yl, yh
CONTINUE
print *, ' What is xsig, ysig?'
read (5,%,end=99,err=99) xs, ys
IF (xs.1t..005) GOTO 20
Find phit
pl = ndtr(xh/xs)
p2 = ndtr(xl/xs)
px = pl-p
p3 = ndtr%yh ys)
p4 = ndtr{yl/ys)
py = p3-pd
P = px*py
print *'p =’ p
GOTO 30
CONTINUE
END
incjude 'ndtr.f’

55

6.2 Circle: Find the Probability of Hitting a Circle.

Circle finds the provability of a circular shot pattern with no aim bias hitting a circular target. The
program prompts for the radius of the circle and the total linear dispersion of the round. Then it calculates
the hit probability using the following equation:

p=1- e

Input/Output. This program is interactive. It simply prompts for the radius of the circular target
and the linear dispersion of the round. These may be entered in any consistent set of units, as floating
point values separated by a comma or blank. Circle returns the value for probability of hit. Enter zeros to
quit.

Sample Problem. Suppose the target is a circle with a 1 meter radius. The dispersion of your
rounds is 1 meter at 100 meters range, 2 meters at 200 meters range, ..., 5 meters at 500 meters range. To
analyze these data with the circle routine, respond to the prompt with the following pairs of numbers, and
you will get the following answers:

radius, dispersion phit
1.,1. .393
1.,2. .118
1..3. .054
1.4. .031
1.,5. .020

From this information, you can plot hit probability as a function of range. Figure 6.2 contains such a plot
for this sample data. '

0.4

P (hit)

100 200 300 400 500

Range (m)
Figure 6.2 Plot of Circle Output Data
Mathematics. The mathematical basis of the circle program is straightforward®. We assume a
normally distributed shot pattern. The probability density function in one dimension is:
1 ~(2-n %203
le)=—""c¢ " (and similarly for f(y)),
V2rao,

where:
n, is the mean, and

® The source for the following derivation is DARCOM Pamphliet No. 706-101, Army Weapon Systems Analyeis, Part One,
November 1977, pp. 13-6 - 13-11.

56

o, is the linear dispersion.
Now, the dispersion we observe in firing weapons is bivariate. If z and y are statistically independent, the
product f(z)f(y) gives the bivariate probability density function f(z,y). Assuming no aim bias
(#y = p, = 0) and a circular dispersion (0, = 0,), we get this equation:

/(z,y) = 1 c"(("""lﬁ/z”a'

2
2x0

To obtain the probability of hitting a circular target 201' radius I with a weapon having the shot
pattern described above, integrate f(z,y) over z and y for z° + y2 < r". Converting to polar coordinates
simplifies the integral to:

r 2%
1 —Rr2
p= [[e®) pargs.
2
2r0” 4
This can be evaluated to yield the hit probability for a circle, given the radius r and dispersion o, as:
.2
p=1l—c¢ '/(202).
Code.
¢ CIRCLE: Find the probability of hitting a circular tgt.
1 format (" Phit=",16.3)
20 print *, ' What is radius, dispersion {m)"

read *,r, s

[F (r.eq.0) STOP
P = l.-exp(-0.5%r**2/5**2)
print 1, p

GOTO 20

END

57

6.3 Polygon: Find the Probability of Hitting a Polygon.

Polygon computes the probability of hitting a target of arbitrary shape. First, approximate the
boundaries of the target by straight line segments. Then, input the number of vertices, the coordinates of
each, and the aim point and linear dispersion. The program assumes the shot pattern is normally
distributed.

Input. An input file consists of the following lines of data:
Number of straight line segments (n<100)
Coordinates of the first corner

Coordinates of the nth corner
Coordinates of aim point, linear x and y dispersions

The corners must traverse the figure in clockwise order, and commas must separate all elements on
the same line.

Sample Problem. Suppose you have used the center routine to determine the centroid, or aim
point, of an irregularly shaped target. Now you wish to find the probability of hitting that target. For our
sample application let’s use the same polygon as Figure 4.1 and take as the aim point the centroid found
by center. With a linear dispersion of 5 units in each direction, the program calculates a hit probability of
0.5664. Figure 6.3 shows the output for this case as well as a diagram of the figure with a one-sigma ellipse
(a circle here because o, = ¢,) around the aim point.

Output:
number of vertices = 7
coordinates of vertices (horiz, vert)
0.000 0.000
-5.000 5.000
-1.000 10.000
8.000 10.000
15.000 8.000
10.000 4.000
10.000 0.000

mean (horiz,vert) and sigma (horiz,vert)
4316 5247 5.000 5.000

hit probability = 0.5664

58

S

Figure 6.3 Hit Probability on an Irregular Target

Mathematics. Polygon assumes the shot pattern is normally distributed. It uses the bivariate
normal density function with the aim point coordinates as its means and the linear dispersions as its
standard deviations. The program integrates this function under each directed line segment, using
Simpson’s rule and the trapezoidal rule.

Code.
¢ POLYGON: Find prob of hitting a polygon. FUNCTION FUN (s)
dimension x(100),y(100) common /fij/ a,b.¢
1 format(i10) funw=.3989422804%exp(-.5%s*s)*fnd(a+b*(s-c))
2 format(210.0) END
3 forimat{' ',2{10.3 include 'qsimp.f"
4 format(’ *,4710.3 include 'fnd2d.1"
5 formati 4(10.02 include 'fnd.f’
6 format{’ number of vertices = ',i5,
1 /[’ coordinates of vertices (horiz, vert) ')
7 format(/’ mean (horiz,vert) and sigma (horiz,vert) ')
8 format(/’ hit probability = ',{8.4)
read(5, lg
Feadth Gyhi=o
rea 2 x(i y i=l,n
wm.eg () l-l ,n)
read 5}7& ar ybar sigmax,sigmay
write(
write{6,4)xbar,ybar, sngma.x sigmay
p-phn(n X,y ,xbar,ybar sigmax,sigmay)
write(B, 85
END
FUNCTION PHIT(n,x,y, xbar,ybar sigmax,sigmay)
¢ Phit: Compute the probability of hm.lng an
¢ o-sided polygonal target. The coordinates of the vertices
c of the polygon are stored in the x and y arrays in
[consecutive clockwise order around the polygon. The
€ delivery error distribution is sssumed to be bivariate
¢ cormal with mean (xbar,ybar) and with standard deviations
¢ sigmax and si mny respectively.
dimension x& (1)
1 format(’ bo sigmax and sigmay must be greater than zero'/
*' sigmax ='f10.3 sigmay = ',110.3)
IF (sigmax.gt.0. .and. sigmay.gt.0.) THEN
hit=0,
0 10 l(-l ,a
+1
f—fsubu(8),y(i),x(j),y(j),xbtr,ybar,sigmax,sigmay)
phit=mphit4f
10 CONTINUE

6
write(6,1) sigmax,sigmay
STop ") emexsie

END 59

8.4 Solid: Find the Probability of Hitting an Irregular Solid

Use solid to determine the probability of hitting a three-dimensional target of arbitrary shape. This
program assumes a shot pattern that is normally distributed horizontally and vertically. It finds the
probabilities of hitting polygonal faces and sums them.

Input/Output. An input file for solid contains the following lines:

0,0, linear dispersions

lev output options

v velocity of projectile

p position of projectile

n number of corners

z,¥,2, coordinates of first corner

T Yni2a coordinates of nth corner

m number of faces

kyyvkyge kg corners clockwise around face 1
Ky ik oreikn g corners clockwise around face m

The value for lev determines the output. Input a "1" if you want the hit probability only. Input a "2" if
you want solid to echo the input as well. Input a "3" and the program will also print the new projectile and
corner positions after rotation.

Mathematics. This program finds the probabilities of hitting polygonal faces and sums them. The
faces can be one or more planar targets, or they can be the sides of one or more solid targets. The program
first rotates and translates the target and the projectile to the projectile base coordinates.

Figure 6.4 shows a box shaped target before and after transforming the coordinates of the target’s
corners. The left box is the target before transformation. It is then rotated 20 degrees counterclockwise
around the Z axis, rotated 5 degrees counterclockwise around the X axis, and translated. The right box is
the target after transformation. The projectile (not shown) undergoes a similar transformation so that it
moves to the origin and is travelling up the Y axis.

Y

Figure 6.4 Rotation and Translation of a Target

Solid then applies the same routine as the polygon program to determine the hit probability for each
face; that is, it integrates the bivariate normal density function under each directed line segment. The
program assigns a zero probability of hitting polygons that face’ away from the incoming shot. If faces
overlap after rotation, the calculated hit probabilities will be too high, so be careful with convex solids.

60

00 ~2 NN DR

2]

40

L 3 T T I I I I I

10

-
-
-

Code.

PROGRAM SOLID

Solid: Find hit probability on a polyhedral target.
dimension x{100),y(100)

parameter (NN=25

common /projec/ ¥(3), p(3), lev
real cornr2(NN, (
format(25x,'x y 7’
format{’ Projectile velocity’,3{10.3
format{’ Projectile position’,3(10.3
format{’ Positions of the',i3,’ corners:')
format(’ Corners of the',i3,’ faces:')
format{20x,3r10.3)

forma GiIO)

format{" ',4/10.3}

common /eomtsZ corner(NN,3), iface(NN,6), ncorns, nfaces
)

read *, sigmax, sigmay
read *, lev
read *, v
read *, p
read ®, ncorns
read *, ((corner(i,j),j=1,3),i=1,ncorns})
rut:l :. ?(hcu | |
read *, ((iface(i,)),j=1,6),im1,nfaces
IF {lev.gt.1) ’I!HI%N
print 8, sigmax, sigmay
print 1
print 2,v
print 3,p
print 4, ncorns
print 6, ((corner(i,j).j=1,3),i=1,ncorns)
print 5, nfaces
print 7, ((iface(i,j},j=1,6),im1,nfaces)
ENDIF

call xform(cornr2)
pcum=0.
DO 40 n=1,nfaces
Find j, the number of corners of face n
j==0
DO 20 k=1,6

if (iface(n, k).gt.0) jm=j+1
CONTINGE
Move corner coords to x,y vectors.
DO 30 l=1,j
m=iface(n,|
x&l{-cornr? m,lg
y(l)=cornr2(m,3
CONTINUE
ph=phit(j,x,y,0.,0.,sigmax,sigmay)
if {(ph.gt.0) pcum = pcum+ph
CONTI

%rriﬁ; * " Phit =’, pcum

FUNCTION PHIT(n,x,y,xbar,ybar sigmax,sigmay)

this function computes the probability of hitting an

n-sided polygonal target. the coordinates of the vertices

of the polygon are stored in the x and y arraysin
consecutive clockwise order around the potygon. the
delivery error distribution is assumed to be bivariate
normal with mean (xbu,ybu) and with standard deviations
.sigmnx and sigmay respectively.

dimension x(1),y(1)

sigmax = ',110.3," sigmay = ',(10.3)
IF (sigmax.gt.0. .and. sigmay.gt.0.) THEN
hite0.
0 10 i=l,n
jmmod(i,n)+1
f-fsubij(x i),y(1),x(j),y(i).xbar,ybar sigmax,sigmay)
phit=mphit+f
CONTINUE
ELSE
write(6,1) sigmax,sigma;
stop) smay

ENDIF
END

format(’ both sigmax and sigmay must be greater than zero'/

61

FUNCTION FUN(s)

common /fij/ 8,b,c
funw=.3989422804*exp(-.5%s*s)*fnd(a+b*(s-c))
END

include 'qsimp.I"

include 'fnd.f*

include 'fnd2d.0"

include 'xform.f’

6.5 Tank3: Find Hit Probabilities on a target.

Tank3 finds the probability of hitting a target, where the target is represented by 2 rectangles. It was
designed for tank-like targets but may be usable for other targets. The target is represented by 2 boxes,
one above the other and meeting at the turret ring. Tank3 reads the width and height of the boxes and
dispersions and bias at each desired range. At each range it finds the probability of hitting for a shot
aimed at the fully exposed tank 0.3 meters below the center of the turret ring, for a shot at a hull defilade
tank aimed at the center of the turret, and also for a shot at a standard 2.3 by 2.3 meter NATO target.
Tank3 finds the hit probability for each of these postures at any desired range.

. HD
aim poirT

. Nato tgt FE
aim point * aim point

Figure 6.5 Targets and Aim Points.

Input. The command line can be ‘tank3 -ph’, where the p option prompts for input and the h
option prints headers. Experiment using the p option to become familiar with the input. The input
consists of two lines giving the linear dimensions of the turret and hull, followed by an arbitrary number
of lines , each giving a range to target and accuracy parameters. The program stops at the end of the
input file ("D) or (“C).

Sample Input

Data File Description
2.350.75 Width, height of turret (m)
3.551.5 Width, height of hull {m)

0.25 1.3544 1.3544 0.0 0.0 | Dist to target (km), 7,, 0,, u,, #,
0.50 0.8032 0.8020 0.0 0.0
1.00 0.5747 0.5775 0.0 0.0
1.50 0.5164 0.5218 0.0 0.0
2.00 0.4957 0.5008 0.0 0.0
2.50 0.4902 0.4916 0.0 0.0
3.00 0.4919 0.4878 0.0 0.0

62

”

AN A/AA

B bt

Sample Output

PHTANK3 19 Mar 83
g dispersn (mils) bias (mils)

(km) horiz vert horiz vert
0.25 1.35 1.35 0.00 0.00
050 080 0.80 0.00 0.00
1.00 0.57 0.58 0.00 0.00
1.50 0.52 0.52 0.00 0.00
2.00 0.50 0.50 0.00 0.00
250 049 049 0.00 0.00
3.00 049 049 0.00 0.00

FE

1.00
0.99
0.94
0.81
0.66
0.52
0.40

hit prob

0.74
0.66
0.47
0.33
0.23
0.16
0.12

NATO
1.00
0.99
0.92
0.75
0.58
0.44
0.33

Code.

TANK3: Find the probability of hitting a FE or HD target.
The target is represented as two rectangles.

logical HEADER, PROMPT, is arg
format (618.2, 25.2)

PROMPT= is arg"p’)
HEADER= is arg}El}\')
IF (HEADER) T
print®*,' PHTANK3 19 Mar 83'
print®,
' rg dispersn (mils) bias {mils) hit prob’,
' (km) horiz vert horiz vert FE HD NATO'
END
if (PROMPT) print*,’ What is turret width & height (m)?'
read *, tw, th
if (PROMPT) print®,’ What is hull width & height {m)?
read *, hw, h

CONTINUE
Read and convert inputs
if (PROMPT) print*,
’ What arerg km?, disp-h, disp-v, bias-h, bias-v (mils)?’
if (PROMPT) call flush()
read(5,* END=40) r, sh, sv, bh, bv
Convert to linear error
xs = sh*r*0.9817
ys = sv*r*0.9817
xb = bh*r®0.9817
yb = bv*r*0.9817
Find probability of hitting FE target
ptur = prob(-.5*tw-xb,.5*tw-xb,0.3-yb,th+0.3-yb xs,ys
phul = prob{-.5*hw-xb,.5*hw-xb,0.3-hh-yb,0.3-yb,xs,ys
ptank= ptur+phul
Find probability of hitting HD target
pturHD = prob(-.5*tw-xb,.5*tw-xb,
~.5%h-yb,.5%h-yb,xs,ys)
Find probability of hitting NATO target
pNATO = prob(-1.15-xb,1.15-xb,
-l.ls-yb,l.ls-yh,xs,yss
print 1, r, sh, sv, bh, bv, ptank, pturHD, pNATO
GOTO 20
CONTINUE
END

FUNCTION PROB(xl,xh,yl,yh,xs,ys)

Prob: find probability of hitting box.

x! - distance from aim point to left side of box.

yl - distance from aim point to lower side of box.

xh - distance from aim point to right side of box.

yh - distaace from aim point to top side of box.

xs - linear standard deviation of shot pattern horizontally.
ys - linear standard deviation of shot pattern vertically.
resl ndtr

p) = ndtr(xh/xs)
p2 = ndtr(xl/xs)
px = pl-p

p3 = ndtr(yh/ys)

pd = ndtr(yl/ys)

py = p3-p4
prob = px*py
D

N

include "ndtr.f’
include 'isarg.f’

63

0.6 Targetl: Determines Which Faces of a Target are Pierced.

Given a target whose faces are convex polygons, the velocity vector of the projectile which travels in
a straight line, and a point along the trajectory of the projectile, this program determines which target
faces are entered and exited by the projectile. An explanation of the input and a sample run follow.

6 7

Lde e -8

Figu 6.6 Diagram of Sample Input/Output Below.

Input/Output.
% targetl
1 < - output level

1.,-1.,0. <-- velocity vector
0.,1.414,0.5<— position vector
<-- number of corners

\

~moorrop0
O~ o0 =©

.
N
. |— coordinates of the corners
N
.
-

-/
<-- number of faces

123400\

378400|

621500 corners of faces (in clockwise order)
267300|

148500|

765800/

oo

Projectile exited thru face 1
Projectile entered thru face 2

%

Mathematics.
This program determines which target faces are eatered or exited by a
projectile.
The target is modelled as a solid whose faces are convex polygons.
The path of projectile is straight line through the target.
The flight path is determined by a velocity vector and a position
vector.
The following is a sample run wherein the target is a rectangular box.

64

Code.

PROGRAM TARGET1 if (npos.eq.j .or. nneg.eq.j) hit fac w .true.
c Targetl: Find whether a projectile strikes a polyhedral target IF (lev.gt.1 .and. hit faz) N
parameter (NN=20) if (nneg.eq.j) print®,'Projectile exited thru face',n
logical hit tgt, hit if (npos.eq.j) print®,'Projectile entered thru [sce’,n
common /comtgt cornergNN,s), iface{NN,6), ncorns, nfaces ENDIF
common /projec/ v(3), p(3), lev hit tgt=hit tgt .or. hit fac
resl cornr ,3) if (lev .eq. 1 .and. hit tgt) GO TO 60
1 format(26x,'x y 3 50 CONTINUE
2 format{’ Projectile velocity’,3110.3 60 CONTINUE
3 format{’ Projectile position’,310.3 if (lev.eq.1 .and. hit tgt) print®,’Yes it was hit’
4 format{’ Positions of the',i3,’ corners:'} it {.NOT. hit tgt) print*,'No it was not hit’
5 format{’ Corners of the'i3," faces:’) E
] format{20x,310.3) include "xform.{"
7 format{6i10)
¢ Read inputs
read ¢ lev
read *,v
read *,p

read * ncorns

read * {{corner(i,j),j=1,3),i=1,ncorns)

read :,Ex(f?ces)

read *,((iface(i,j),j=1,6),i=1,nfaces
IF (lev.gt.1) T%‘E)N)

print 1

print 2,v

print 3,p

print 4, ncorns

print 6,((corner(i,j),j=1,3),i=1,ncoras)

print 5, nfaces

print 7,((iface(i,j),j=1,6),i=1,nfaces)
ENDIF

call xform(cornr2)
hit = hit tgt{cornr2)
END

LOGICAL FUNCTION HIT TGT (cornr2)
¢ Purpose: Find whether target is hit

logical hit fac

parameter (NN=20)

common /comtgt/ corner(NN,3), iface(NN.6), ncorns, nfaces

common /projec/ v(3), p(3), lev

dimension c(35, ¢(3), cornr2(NN,3
format,k' Corner vector',13," is:",3(10.3

[N

format{’ Edge vector ',i3," is:",3710.3,' cross product is:’,f10.3)
format(’ Face’,i3,’ has',i2,’ corners.’)

hit tgte=_false.
¢ Check each face to see if it was hit
DO 50 n=1,nfaces
hit facm.false.
¢ Find j, the number of corners of face n
j0
DO 20 k=1,6

IF (iface (n,k) .gt. 0) jmj+1
2 CONTINUE
if ?ev.eq._3) print 3,n,j

k=iface(n,j)
npeg =
npos = 0
3 Check each edge to see if the polygon and origin are in the
¢ same balf plane.
DO 30 I=1,j
c Load corner vector
1)m=cornr2(k,1
2)=cornr2(k,2
¢{3)mcornr2(k.3
if {lev.eq.3) print Lk, c
c Load edge vector
k=iface(n,]
e(1)mecornr2(k,1) - ¢(1
2)s=cornr2(k,2) - ¢(2
3)mcornr2(k,3) - ¢(3
y=e(1)*¢(3)-c(1)*¢(3)
if (lev.eq.3) print 2,k,e,y
if (y .It. 0) nneg = nneg + 1
i; .gt. 0) np(;e - an)s +1) GO
if {(nneg .ge. 1) .and. (npos .ge. 1)) GOTO 40
CONTINUE

40 CONTINUE 65

7. Sensor

7.1 Eye: Find Detection Rate for the Human Eye.

Eye can be used to find detection probabilities for various types of targets; however, we generally use
it for tank targets. Eye reads the sensor kind, the light level, the height of a tank turret, and the total
tank height. It then finds the probability of ever detecting the tank and the median time to detect given
that it is detectable. Eye generates these values for targets at 0.5, 1.0, ..., 4.0 km ranges.

Eye is code that was stripped from a much larger program developed by the Electro-Optical and
Night Vision Laboratory. Unfortunately, the larger program is undocumented, so we cannot provide
details of its inner workings; however, it is widely used.

Assumptions. Eye has the following built-in assumptions:

1. Acquisition is divided into the following categories:
Detection - there’s something there.
Classification - it’s tracked.
Recognition - it’s a tank.
Identification - 1t’s a T80.
The program assumes acquisition at the recognition level.
2. The size of the search field is 225 degrees squared, e.g. 5 degrees high and 45 degrees wide.
The visibility range is 7 kilometers.
4. The contrast ratio (target to background?) at the target is 0.4.

w

Input. As an example, suppose the ambient light level is 300 ft-candles, the tank turret is 0.8
meters high, and the total tank is 2.2 meters high. The single input line would then be: ‘1 300. 0.8 2.2".
The 1 means that the sensor is the human eye. If you are interested in other targets, just input the
appropriate heights. Typical light levels are:

Ft-candles Typical Day
1000 Clear day
100 Overcast day
10 Heavy overcast day
1 Sunset overcast da

Output. Figure 7.1 illustrates the output. It shows the probability of ever detecting as a function
of range, and the median time to detect given detection is possible.

1 1000
P05 T 500
0 0
0 2 4 0 2 4
Range (km) Range (km)

Figure 7.1 The Probability of Detecting a Target.

The output consists of 12 lines of input echo, then 7 lines of output proper. Line 13 is ranges in
kilometers. Lines 14-16 are median (7) times to detect given that detection is possible. The 14th line is for
s stationary, hull-defilade target; the 15th for a stationary, fully-exposed target; and the 16th for a
moving, fully-exposed target. Lines 17-19 are the corresponding probabilities that the target will ever be

66

detected. The probability of detecting in a time ¢ is then;,
Pi=Px €

The output will look like this:
Input echo:
Kind sensor=
Light level= 300. 00 (ft-candles)
Case: 1
Acquisition= 3.0 (scan lines)
Tgt height = 0.800 (meters)
Case: 2
Acquisitionm 3.0 (scan lines)
Tgt height = 2.200 (meters)
Case: 3
Acquisitions 2.0 (scan lines)
Tgt height = 2.200 (meters)
0.500 1.000 1.500 2.000 2.500 3.000 3.500 4.000
0.240 0.028 0.006 0.002 0.001 0.000 0.000 0.000
0.933 0.335 0.086 0.028 0.012 0.005 0.001 0.000
0.990 0.667 0.230 0.080 0.034 0.013 0.001 0.001
25.978 223.504 988.640 999.000 999.000 999.000 999.000
999.000
6.516 18.832 72.974 220.279 527.750 999.000 999.000
999.000
4.346 9366 27.117 77.958 185.402 473.096 999.000
999.000
Code.
real high(2), job(5,2)
common tables/r } 3), 1(8,3)
1 format (/, Input. echo V,
1 ' Kind sensor=',i10,
2 ' Light levels=' £8.2, (ft—candles))
2 format " Case: ,12/
2 Acqulsmon- 10.1,” (scan lines)',/,
3 " Tgt height =’ {10.3," (meters)')
3 format (88.3)

datar /0.5, 1.0 0
data job /10

read® kind, alumin,high(1),high(2)
print 1, kind, alumin
¢ Find values for HD stationary target.
print 2, 1, job(4,kind), high(1)
call nvl (1, alumin, hlgh(l) job(4,kind), kind)
¢ Find values for FE stationary target.
print 2, 2, job(4,kind), high(2)
call nvl (2 alumm high(2), job(4,kind), kind)
¢ Find values for FE moving target.
print 2, 3, 0.667*job(4,kind), high(2)

.5, 2.0,25,30,35,4.0/

call nvl (3 alumin, high(2), 0.667*job(4, kind), kind)

print 3, r, p, t
END

SUBROUTINE NVL (j,alumne, dim, ajob, kind)
common [tables/ r (8) p(8 3), t.(8 3)

data zone, rinfd /225, .1/

data visrg /7./

DO 20 i=1,8
¢ Find prgbsbilities and median times for 8 ranges.
rc =0.
pinf = 0
tbar = 999.
range = r(i)
attn = 3.912/visr
¢ IF (kind.eq.1 N
rc = eye (alumne, attn, range, visrg)
fov = 24.
ELSEIF (kind.eq.2) THEN
re = devic2 {attn, range)
foy = 11.98
ENDIF
rc = re®*dim/range
IF (rc.ge.rinfd) THEN
x = rc/ajob
y = 2.740.7%x
7= x*%y

N o006

0,25 30,64, 1.0,2.0, 25, 4.0,6.4/

20

67

/T

NN R

pinf = 3/(2+1.0)

pinf = aminl pmf .99)

tau = wne/ fov* amml(s [fov))

thar = 3.4* t.a)u lE)m . 6.8/

if (pinf.gt.0.9) tbar = tau®*sjob*6.8/rc
ENB[F

if (tbar.gt.999.0) tbar=999.0
p(i,j) = pinf
t(1,i) = thar

C INUE

END

FUNCTION EYE (alumnc, attn, range, visrg)

Eye: find resolvable cycles for the human eye. (Device 1)
real a(4, 7)

sunset o'cast heavy o'cast overcast day clear day

data af

1.2378091942, 1.7176916034, 1.9909928015, 2.0892716525,
0.4694720809, .4739084812, 4484081232, .2813866389,
0493317078, -.2102695514, -.4084256747,-1.0084578626,
-.0601756751, -.4161055149, -.6856409935,-1.4323484287,
-.0558327470, -.2696921300, -.4318233767, -.8450225947,
-.0174190671, -.0756229822, -.1197712507, -.2235482536,
-.0018530403, -.0077222394, -.0121729428, - 0218136690/
data acon /.4/

Find sky-to-ground ratio
sog = (visrg+1.0)/3.
sog = aminl(3.,amax1(1.,s08))
eye = 0.0
cotrst = acon/(1. 0+soghfexp (attn®range)}1.0))
IF (cntrst.ge.0.02) THE
Target/Background contrast is sufficient to detect
im m|n0(4 l+|n'.(a.log10(a.lumnc)))
ack = 10.*
j = minO(4, 1+1)
clog = alog(cntrst)
rlo = a(i,7
rhi = a{j,7
DO 20 k=6,1,-1

* clog + i,k;

* clog + a{j,k

Interpolate & compute cycles across target
ey;F- rlo+(rhi-rlo)‘(alumnc-ack/lOA)/?ack‘.Q)

ND

rio = rlo
rhi = rhi
NT.

END

7.2 Los: Approximate Line-of-Sight Distribution

The length of line-of-sight segments can be modelled using the Weibull distribution. This tool finds
the 1-(j*.05) quantiles (j=1,2,...,19) of 1-F(x), where F(x) is the Weibull distribution with shape parameter,
B and scale parameter, . The Weibull distribution and how to use it to model line-of-sight segments is

discussed, and an example of a run is shown.

The broken line in Figure 7.2 shows the probability that a target travels a given distance (or greater)
before going out of view. The statistics are based on field measurements. The smooth curve shows the
Weibull fit to the data, using the parameters a = 300 and 8 = 1.1 and illustrated in the dialog below. As
expected, the probability that a target will travel more than a given distance before going out of sight

decreases as the given distance increases.

1

LOS fit to data

Actual statistics

0)
0 500

Distance {m)

1000

Figure 7.2 Probability vs Line-of-Sight Segment Length

Input/Output. Here is a sample dialog illustrating the use of Los:

§ a.out

what are shape, scale constants? (zeros to quit)
1.1,300.

beta= 1.100000 alpha= 300.0000
8= 95 90 85 80 75 70 65 60 55 50 45 40
LY 20 38 57 76 96 117 139 162 187 214 244 277

What are shape, scale constants? (zeros to quit)
1.0,300.

beta= 1.000000 alpha= 300.0000
$= 95 90 85 80 75 70 65 60 55 S50 45 40
L> 15 31 48 66 86 107 129 153 179 207 239 274

what are shape, scale constants? (zeros to quit)
2.0,750.

beta= 2.000000 alpha= 750.0000
= 95 90 85 80 75 70 65 60 55 50 45 40
L> 169 243 302 354 402 447 492 536 579 624 670 717

63

35
313

35
314

35
768

30
355

30
361

30
822

25
403

25
415

25
883

20 15 1¢ S
462 536 640 813

20 15 10 5
482 569 690 898

20 15 10 5
951103311381298

AR

what are shape, scale constants? (zeros to quit)
0.,0.

Bye! I take shape <=0 as a signal to quit.
3

Mathematies. This software tool finds the quantiles, .05, .10, ..., .95, of F(x) = 1-W(x), where
W(x) is the Weibull distribution, given its shape and scale parameters. The Weibull distribution is given
below.

3 _ a o)
W(z) = [(a/8)" ™ Pdt = 1= x>0
0

F(z)=1-W(z) = c_('/a)’

To find the quantile of order p, ¢,, one simply sets F(gp) to the desired p and solves for ¢,.

8
s, /)
p=F(s,)=¢
1/8
s,=a(—Inp) /
To use the program, specify an a and a f. The program will calculate the ¢ s, p =1 - j/20, j=1,2,...,19.
Code.
¢ Los: given Weibull parameters, find LOS segment lengths.
¢ a - alpha, the scale parameter.
¢ b - beta, the shape parameter.
¢ 1(i) - length of segment in meters, corresponding to p2(i).
¢ p2(i) - the ith probability in percent.
¢ The shape constant should be between 0.5, 1.5.
c Typical scale constants are 300m, 750m.
integer Iglg), p2(19)
1 format ('%=',19i4
2 format ('L>’,19i4
20 CONTINUE
print *'What are shape, scale constants? (zeros to quit)’
read *, b, a
IF (b.le.0.) GOTO 99
p =0.95
DO 30 n-l‘lg
p2(n) = p*100.0+0.5
f = - alog| p)
i(n) = a***b
p = p-0.5
30 CONTINUE
print 1, p2
print 2, 1
GOTO 20
9 CONTINUE

print *,’Bye! I take shape <=0 as a signal to quit.’
END

69

8. Ballistics

8.1 Mayer: Find the Muszle Velocity Using the Mayer-Hart Equation

The muzzle velocity of a kinetic energy projectile is a function of projectile, gun, and charge
parameters. Mayer reads these parameters and finds the muzzle velocity using the Mayer-Hart!* equation.

Designing a gun system involves choosing the parameters of the projectile, gun, and charge. Figure
8.1 shows the muszzle velocity when 3 parameters are varied around the values given in the sample

input/output below.

Muzzle
Velocity
ft/s

6000

5000

4000 . +

Chamber vol

-— -
e

Tube length

Bore diam

B S— —_ Iy

Bore Diam (in) 1 2 3 4 5
Tube Length (i) 150 160 170 180 190
Chamber Vol {in”) 150 160 170 180 190

Figure 8.1 Effects of Varying 3 Parameters in the Mayer-Hart Equation

aput/Output. The following illustrates the input and output of a sample run.

INPUT

4.000,
4368000.0,
0.060,

QUTPUT
5.250, 1.300 Bore diameter
4.630, 57500.0 Charge mass

177.200, 170.000 Specific heat ratio

Specific force 4368000.0
Package mass 4.630
Maximum pressure 57500.0
Charge density 0.060
Tube length 177.200
Chamber volume 170.000
Muzzle velocity = 5729.56

4.000
5.250
1.300
Ibs/1b
lbs
lbs/sq in
Ibs/cu in
in

cu in
ft/sec

Although the equation was derived in 1943 for cannon of that era, this program is still in use, and
inputs are available from the Interior Ballistics Division of the United States Army Ballistics Research
Laboratory. The numbers are simpl= to get except for specific heat ratio and specific force, though the

former is probably constant.

14. Joseph Mayer, Simplified Equations of Interior Ballistics, BRL Report #388, Ballistic Research Laboratory, APG, MD,

1943,

70

Mathematics. The Mayer-Hart equation finds the kinetic energy of a projectile at the muzzle.
This equation can be rearranged to find the velocity of the projectile at the muzzle. The Mayer-Hart
equation is

5;7 W“..2=%{“ [.,,/.;,,,]7-l [1—'2‘(7—1) [PC/P'J] }

Solving for the muzzle velocity, «,, yields
-1 1R

.,_=[5.37%;{1—(%/0,]1_' [1—&(7—1)[&/&]] }]

A= specific force of propellant (dimensionless)
7= ratio of the specific heats (dimensionless)
C= total charge (lbs)
W=M+C/V
M= package mass (lbs)
V=8+.175C/M
v,= chamber volume minus original charge volume (in
=9,—C/p
v,= chamber volume (cu in)
p= charge density (lbs/lb)
v,,= volume behind the projectile when the projectile is at the muzzle (in3)
=y, +7rt
r= radius of the bore (in) = §,/2
b,= bore diameter (in)
t= tube length (in)

. . . i 2
P,= a constant with dimension of pressure {lbs/in”)

= C)‘/vo 2
P = another constant with di_rpension of pressure (Ibs/in”)

R
[7___1. ,7—27] L
2

F,= correction factor for high velocity rounds

c }/ 3/2 C
1+
V+M V+M

P .= maximum pressure (lbs/in2)

where

)

=Fmeu

1+

The following assumptions are imbedded in this equation:
zero starting pressures
covolume equal to charge volume
burning rate proportional to pressure
constant burning surface
no heat loss through gas or projectile friction

71

O A AHAONANAOAONDNN

[N SR

Code.

MAYER-HART: Find muzzle velocity using Mayer-Hart eq.
bd - bore diameter (inches)
¢ - charge mass (pounds)
& speciic b
- specific heat ratio (gamma
L - specific force (Iba/lﬁ? (l;ml:da)
m - package mass (Ibs)
pe-1?
Pq-!)
r - radius of the bore (in)
rho - charge density (pounds/cu inch)
pmax - max pressure (ibs/sq in)
tl - tube length (inches)
vc - chamber volume (cu inches)
vm - volume of chamber + tube (cu inches)
w - projectile weight plus '1/3’

real L, m

data PI /3.14159265/

format{' Muzzle velocity ='f10.2," ft/sec’)
format{a20,10.3,a

format(a20,f10.1,a

Read and print
read *, bd, ¢, G
read *, L, m, pmax
read *, rho, tl, ve
print 2, ' Bore diameter ',bd," in’
print 2, ' Charge mass "¢, ' Ibs’
print 2, ' Specific heat ratio',G
print 3, " Specific force 'L, " lbs/Ib’
ptint 2, ' Package mass Ym, " Ibs’
print 3, ' Maximum pressure ’'pmax,’ Ibs/jcuin’
print 2, * Charge density ‘,rho,’ Ibs/cu in’

print 2, ' Tube length 't in’
print 2, ' Chamber volume ',v¢, cuin’
r =0.5bd

v0 = ve- ¢/rho
del = 3.040.175%(¢c/m)
wem+¢/del
vm = vQ + tI*Pi*r**2
pc = ¢*L/v0
Find constant p
gl = ¢/(del+m
fb=(1.0+g1) / (1.0+1.5%g1)
g2 = (G+1.0 ‘éGH.O)
83 =G ** (-2.0°G)
g4=20"*" -(G+1.P
gs = $g2‘33 g4) ** (1.0/(G-1.0))
= {b* pmax / g5
fl = 5.37% L/ (w*(G-1.0))
2 = (v0/vm) ** (G-1.0)
f3=1.0-0.5%G-1.0)%pc/pq
vel = sqrt(f1%(1.-12/)g
print 1, vel
END

72

INTENTIONALLY LEFT BLANK.

73

8.2 Shoot: Find the Trajectory of a Bullet.

Shoot solves the differential equations of motion to determine the trajectory of a bullet fired at a
target. It asks for the launch angle, muzzle velocity, target range, and drag.

Input/Output. Execute Shoot using this syntax: shoot -phH

where, the p option prints prompts, the h option prints headings, and the H option implies a HEAT round
rather than the default KE round.

If the HEAT option is chosen, the program reads drag related input from file *heat.dat’. The last
two lines of the ’heat.dat’ file contain drag data. The Firing Tables Branch of BRL generates drag data

that is easily converted to the form used here. See section 8.4 for more details on the drag on a HEAT
round. Here is a sample heat.dat file:

Data File Description
27.1.2249992 Ambient temperature (Centigrade), air density
.105 10.2 Round diameter (m), mass (kg)
6 # drag values on next two lines.
1.21.4182.53.03.8 | mach number
.86 .8 .71 .575 .5 .39 drag coefficient

Sample Dialog. The following is a sample dialog in which Shoot generates the trajectory of a
HEAT round:

% shoot -phH
SHOOT 8 Dec 83
What are launch ang, vm, tgt rg?

0.885,1000.,2000.
Launch ang (deg) = 0.88 Muz vel (m/s) = 2000.000
Drag (m/s/km) = 0.0 Tgtrg(m)= 2000.0

time X y dx dy ddx ddy
000 40 01 999. 15. -269. -l14.
020 1985 2.9 947. 13. -252. -13.
040 3829 5.1 898 10. -236. -12.
0.60 5578 6.9 852. 8. -221. -12.
080 7240 82 809. 5 -207. -1l
1.00 8818 9.1 769. 3. -194. -l11,
1.20 1031.9 95 732 1. -181. -10.
1.40 11747 95 697. -1. -169. -10.
1.60 13108 9.2 664. -3. -158. -9.
1.80 14405 8.5 634. -5 -147. -9,
2.00 1564.3 74 605 -6. -138. -8.
2.20 1682.7 6.0 578. -8. -129. -8.
2.40 17958 4.2 553. -9. -121. -8.
260 19042 2.. 530. -11. -113. -7.
2.79 20000 ¢.» 510. -12. -106. -7.
%

Mathematics. Finding the velocity of direct fire rounds is easy, since there is little change in air
density for a flat trajectory and since the time of flight is so short that factors like the Earth’s rotation can
be ignored. For KE rounds, we assume the velocity simply decreases as a linear function of range. For

HEAT rounds, the velocity is more complex. Section 8.4 discusses the mathematics of drag on a HEAT
round.

Given the position z,, and velocity z, at time zero, we can use the relationship z = —kvz to find the
acceleration, and then use

74

T = 2o+ 25t + Fot /2
to find the position at time ¢. But this is only exact if the acceleration is constant! It is not; it is changing

monotonically in the region of interest, so let’s use z; = (z, + z,)/2 as a better approximation to the
average acceleration during the interval. There are 4 steps; step 3 is the key one.

STEP CODE EQUATION

1 ddx 1, = —kvz,
2 dx1 T, =134+ 2t
3 ddx z, = (2, + 2,)/2 = (2, — kvz;)/2
4 b I, =z,+ 2, + z,-t2/2
Code.
¢ SHOOT: Numerically generate a ballistic trajectory i=0
logical PROMPT, HEADER, HEAT, is arg v = v0
3 format(k = drag/{1000.*v)
1 ' Launch ang (deg) = ',f6.2," Muz vel (m/s) = ' 8.3,/ if (HEAT) call drag0
2 " Drag (m/s/km) = ' 6.1, Tgtrg(m)= ’f8.1) X =0
y=0
PROMPT= is argg'p') dt = .002
HEADER= is arg(’h’) t=0.
HEATwm is arg("H') dx = v*cos(theta
¢ Read icputs. dy = v*sin{theta
IF (HEADER) THEN c Find position at current time
print®," SHOOT 8 Dec 83’ 20 CONTINUE
print*,’”’ if gHEAT) call dragflk,v)
ENDIF dt2 = 2.%dt
IF (PROMPT) THEN ddx = -v*k*dx
if (HEAT) print®,’ What are launch ang, vm, tgt rg?’ dx3 = dx +ddx*dt2
if {.not.HEAT) print*, ddx = .5%(ddx-v*k*dx3)
1 ' What are launch ang, vm, tgt rg, drag?’ dx2 = dx + ddx*dt
ENDIF X =x + dx2*dt2
if HEAE%read . ang, v, tgt rg dx = dx3
if (.not HEAT) read ¥, ang, v, tgt rg, drag
IF (ER) THEN ddy = -v*kx*dy - G
print® dy3 = dy + ddy*dt2
write‘6,3) ang, v, drag, tgt rg ddy = .5*(ddy-v*k*dy3-G)
print®, dy2 = dy + ddy*dt
1 ' time x y dx dy ddx ddy’' y =y +dy2*de2
ENDIF dy - dy3
call fire(ang,v,drag,tgtrg HEAT) v = sqre(dx*dx + dy*dy)
END t = t4+dt2
¢ Print trajectory
SUBROUTINE FIRE(ang,v0,drag,tgtrg, HEAT) if (mod(i,50).eq.0) print 2, t, x, y, dx, dy, ddx, ddy
¢ ang - lsunch angle w/ respect to horizontal (deg) i=itdl
¢ ddx - borizontal ace {m/s rg = squgx‘x-fy‘y)
¢ ddy - vertical acc (m/s) t hit = 0.5%(tgt rg - rgL v
¢ drag - velocity decrease (m/s/km) if (dt .gt. ¢ hit) dt = t hit
¢ dt - time increment (sec IF (rg.it.tgtrg-.001) GOTO 20
¢ dx - horizontal vel {m/s writ,eib,2) t,x,y,dx,dy,ddx,ddy
¢ dy - vertical vel {m/s) END
e G - gravitational accelerstion (m/s**2) include 'isarg.l"
¢ k - a drag constant (1) include 'drag.f*
¢ rg - distance traveled by projectile thus far (m) include "hunt.f*
¢ t - time of Bight (sec
¢ tgt rg - range from firer to target (m)
¢ thets - launch angie (rad)
¢ t hit - time remaining to hit tgt (sec)
¢ ¥ - current velocity (m/s)
¢ v0 - muazle velocity (m/s)
[x - horizontal coord (m
¢ y - vertical coord (m
logical HEAT
real k
data G, P1 /9.80665, 3.14159265/
2 format(f8.2,218.1,418.0)
thets = PI®ang/180.

¢ Find initial conditions 75

8.3 Super: Find the Super-Elevation of a Gun.

Super finds the angle of super-elevation for an APFSDS round. Tell the program the muzzle velocity
(assumed to be supersonic), drag, and target range. It solves for the angular elevation of the gun barrel
needed to compensate for gravitational effects when engaging a target at the same altitude.

Input/Output. Super is an interactive program that prompts for three floating point values. Enter
the muzzle velocity (m/s), drag (m/s/km), and target range (m). The program calculates the super
elevation in milliradians, degrees, and mils.

Mathematics. The program solves for the super elevation angle 8 that is diagrammed in Figure
8.3. This represents the elevation of a gun barrel necessary to compensate for the effects of gravity on a
bullet’s trajectory. We assume that the firer and target are at the same altitude, the muazzle velocity is
supersonic, and the round is APFSDS and not HEAT. To determine the desired quantity, super uses this
equation:

[= 2kr — 1]

sinf =
41‘(1&‘1})2
Where,
6 = super elevation (rad),
g= gravitational acceleration = 9.8 m/52,
v= muzzle velocity (m/s),
k= drag coefficient = drag/(1000v},
r= target range (m).

Aimpoint

OOOOOOOO

Figure 8.3 The Super-elevation Angle 8

76

(LR

Code.

SUPER: find super-elevation given muzzle vel, drag factor, tgt rg
real k, MILS

data MILS DEG /1.0185916, 0.05729578/

form 810. 3)

. ! Munle vel m/s =’ 8.2,' drag (m/s/km) ='[(8.2,/,
: ' Tgt range (m) ¢)ra 2, R /

ormat(’ S.E.=",16.2,’mrad,’,8.3,'deg, or’,f6.2,'mils.")

print*,’ What is v, drag, tgt rg?’
read 1, v,drag,tgt rg

print 2, v dng,t.gt. rg

k= dug (1000

TS"‘B] ‘(t)..)
a=08/(4.0%g*(k")**2
b= 204

stheta = a®(ex: & -b- 10)
r = asin(sthet: %

rdeg = r*DEG

rmils = r*MILS

print 3,r,rdeg,rmils

END

77

8.4 Drag: Find the Deceleration of a Bullet.

Drag finds the coefficient k for these equations giving the deceleration of a bullet:
& =—kuz
y = ~kvy—g

Step 1: Find the speed of sound. We use the standard atmosphere at sea level to find the speed
of sound v, at the desired temperature ¢ in degrees Centigrade. A temperature of 15 degrees centigrade (59
degrees Fahrenheit) is customarily used for the temperature at which combat occurs.

Standard Conditions at Sea Level

Symbol Value Definition
T, 273.15 deg Kelvigl Absolute air temperature (freezing)
P 1.2249992 kg/ Alr density
g 9.80665 m/sec Gravitational acceleration
vy 331.3 m/s Speed of sound

The formula for the speed of sound at T degrees Centigrade is:

v =voV(Ty+T)/T,
Step 2: Find the Mach number. The mach number is:
n=r/y

Step 3: Find the drag coefficient (C)). C, is tabled for each round. Figure 8.4 shows a typical
curve.

l r]
]
)
I Mach # Cp
! \
: 1.2 86
1 14 .80
Cp \ 1.8 71
! 2.5 575
1 3.0 .50
t
, 3.8 .39
0 1 1
0 2 4

Mach Numoer
Figure 8.4 Drag Coefficient for a Typical 105mm HEAT Round.

79

Linear interpolation using the following formula is satisfactory:

Cp = CH{(Cipy~Ci)(n—n)/(n;y,~n;)
Step 4: Find the constant k.

k= Cpxdgp/Sm,
Where,
d = Jiameter of the round (m).
Cp = the drag ~oefficient (kg - m/sec2).
m = mass of the round (xg).

Code. To imbed this in a program, use a call to drag0 once each time the atmospheric conditions or
round parameters change. Call drag once for each step along the trajectory.

SUBROUTINE DRAGO
¢ Drag0: read atmosphenc, round, and round drag data.
real x{6), ¢(6), k, m,
data G, P1 /6. 80665 3 14159265/
data TO v0 /273. 13 331.3/
save

open(4,file='heat dat’ ,status="old’)
rewind 4

read(4,*) T, rho

read 4,' d, m

read(4,*) n
read(4,* xéi ,i=1.n)
read(4,*) (¢(i),i=1,n
vs = v sgrt T0+T)/TO)
¢l = PI*d**2 rho/(8 0‘ m})
RETURN
ENTRY DRAGEF (k,v)

¢ Drag: Find drag factor k.
n=v/vs

ca.ll hunt (x.6,v; vsx)
- c(.) + (c(i+1re(i)) * (n-x(i)} / (x(i+1}x(i}}

EN’D
include 'hunt.f*

79

9. General Utility

9.1 Calc: Calculate Little Miscellaneous Items.

Calc performs numerous small calculations that must be made from time to time. It aggregates what
would otherwise be a large number of Fortran object files into one. It demonstrates how this can be done
and is easily modified to suit your own purposes.

Since we type slowly and read quickly, Calc requires few keystrokes and ~ererzily produces more
than we need. It is then simple to spot the needed item in a list of several outputs. Calc calculates simple
mathematical functions, some statistical measures, and hit probabilities on simple targets. The program
uses the first 4 characters c! your input to determine the type of calculation you wish to make. It may
then read up to 6 numbers with decimal points, separated by commas as the data.

The following table lists the commands and results.
Table 9.1 Commands

COMMAND RESULT

q Quits the Calc program

? Anything unrecognizable prints help info

echo Toggle input echo
SIMPLE ARITHMETIC FUNCTIONS

math ab a+b, a-b, a*b, a/b, a**b, e**a, log 3, In a

root a b Va, Vb, Via*+b%), V((a2+b§)/2)

intp z z, y, , y, | Linear interpolation

vecab a, b, a+b, a~b, a'b, axb
TRIGONOMETRY

aerrer Convert from linear error (m) & range (km) to angular error (mils).

lecrar Convert angular error {mils) & range (km) to linear error (meters).

rad Shift to radians

deg Shift to degrees

mil Shift to mils (6,400 per circle)

trig a_ Sin (a), cos (a}, tan (a)
PROBABILITY

bino n p Draw w/ replacement

hypriju Draw w/o replacement

ndtrab Integrate the standard normal from a to b
HIT PROBABILITIES

circro Find hit probability on a circular target.

box z, 2z, ¥, ¥, Define edges of a rectangular target

sigo, 0, Find hit probability on a rectangular target
STATISTICS

conb Find binomial confidence interval

conn Find normal confidence interval

80

Sample dialog. Here is a sample dialog. The user typed the lines beginning at the left margin and

Calc responded with the indented lines.

math 3. 4.

a = 3000000 b = 4.000000
a+d = 7.000000 a-b = -1.000000
2%b = 12.00000 a/b = 0.7500000
2°*b= 80.00008 e**a= 20.08554
log a 0.4771210 Ina= 1.098612

root 3. 4.

sqrt= 1732051 2.000000

bypot 5.000000

rms = 3.535534

intp 3. 1. 10. 5. 20.

x]l = 1.000000 yl1 = 10.00000
x = 3000000 y = 15.00000
x2 = 5000000 y2 = 20.00000

vec 1.2.3.2.3. 1.

a = 1.000000 2.000000 3.000000

2.000000 3.000000 1.000000

hl- 3.741657 M- 3.741657

range 1.000000

err = 0.4908500
aerr 2, 2.

err = 2.000000

range 2.000000

err = 1.018590

meters

meters
km
mils

deg

DEGREES
trig 30.

ang = 30.00000 deg

sin.= 0.4999998

cos = 0.8660254

tan = 0.5773500
rad

RADIANS
trig 1.

ang = 1.000000 rad

sin = 0.8414710

cos = 0.5403023

tan = 1.557408
mil

MILS
trig 10.

ang = 10.00000 mil

sin = 9.817317E-03

cos = 0.9999519

tan = 9.817790E-03
bino 5 .5
o = 5 |#of trials|

- 0. [probability of success on 1 trial|

Probability of 0 successes = 0.03
Probability of 1 successes = 0.16
Probability of 2 successes = 0.31
Probability of 3 successes = 0.31
Probability of 4 suscesses = 0.18
Probability of 5 successes = 0.03
hypr 3 452

3 #itemsdrawn

4 # desired items in urn

52 #itemsin urn

Probability of 0 successes is 0.783
Probability of 1 successes is 0.204
Probability of 2 successes is 0.013
Probability of 3 successes is 0.000
ndtr -1. 1.

s,b = -1.000000 1.000000

prob= 0.6826805 |lntegrd of std gormal from a to b.|

denss 0.2419708 [exp(-a*a/2) /sqrt{2%pi
densb 0.2419708 |exp(-b®b/2) /sqrt(2*pi
box-1.1,-1. 1.

sig 1. 1.

phit= 0.4860850 |hit probability on box|
conv 1000 .5

n = 1000 [sample size|

= 0.5000000 {fraction of successes|
90% - 0.4735267 0.5264733
95% = 0.4685709 0.5314291
99% = 0.4589077 0.5410923
conn 1000 50. 5.

mean=50.00000 s.d.e= 5.000000
00% = 49.73814 50.26186
95% = 49.68739 50.31261
99% = 49.58714 50.41286
q

Code.

[Caic - makes a few snmple calculations.
character line*50, unit

real ndtr, h|(3g lo(3) cn(O) v1(3), v2(3), v3{3)

logical fail, ec

data echo / false./

format (ab0)

format

formaLS a='8.2,a4, sin(a)=",19.6," cos{a)='19.6,
1 ' tan{a)=",19. 62

format (4x,i5. (10.3}

format {'90% ',16.3,-'16.3," 95% °.16.3,-'(6.3," 99% °
1 16.3,"-'16.3)

8(8. 4)

~NO O R

pi = acos(-1.0)
angfac = 1.0
unit="rad’
20 CONTINUE
read 3, line
if (echo) print '(a)’, line
IFS line(1:1) .eq. 'q’) THEN

c ARITHMETIC SECTION
ELSEIF (line(1: 4) .¢q. 'math’) THEN
read (hne(S 50),) b
pnnt '‘a = 3 ="b
print * atb =’ a+b a-b =",2-b
prlnt' 'a%b =’ a%b,’ a/b- a/b
print *, 'a**b=’ a“b e*tam’ exp(a)
print ®, 'log a’ aloglc(a) In a=',alog(a)}
ELSEIF (hne(l 4) .eq. rooL) THEN
read (hnc(S 50) *)a,
print *, 'sqri=" sqrt a) sqrt(b
print . hypot. sqrt(a®*2+b**2
print * rms - ,sqrt(o 5% (a**2+b**2))
ELSEIF (llne(l 4) 'intp') THEN
read (line(5:50), x x1, y1, x2, y2
y=yl+ (y2-yl) (x xl%x? x1}
print *,'x1 ='xl ,yl
prmt.‘ 'x =X, y
priat *,'x2 -,x2 2 -
ELSEIF (line(1: 3) eq 'vec STHEN
read (line(4:50),*) v1, v2
vabsl e sqri(vi(1 1)°%2 + v1(2)**2 + v1(3)**2
vabs2 = sqrt(v2(1)**2 + v2(2)**2 + v2(3)**2
print s =y
print .)'b - v2
print * hl=", v;bsl 'ble’, vabs?2
print *,'a+b =’ vl(1)+v"s), v1(2)+v2(2), vl(3£+v2(3)
print . ,'a-b =’ ¥l {-v?(l v1{2}v2(2), v1(3}v
print *'dot =" vi{1)*v2(] +H()*v2(2)+v1(3)*v2(3)
v3(l) = vl
v%?} - vl 32 2%
v3{3) = vi{1

- v1{3)%v

- v1{1)"%r

2)- v1(2)*v
print *,'crosm’ v3

¢ TRIGONOMETRY SECTION
ELSEIF (line(1: 4) .eq. 'lerr) THEN
read gme(s 50),)
print °, 'err - 8, mllu
print . ‘rtnge b, ' km’'
£L|nt‘ ‘err -’ 09817‘ *b, ' meters’
SEIF (line(1: 4) .eq. terr)THEN
read (line(5:50),°) sx
xmil = atan2(sx, 1000‘r) * 1018.59
print ®, 'err =", sx, ' meters’
print ¢ ‘nnge 1, km'
81 print ‘, err =', xmil, ' mils’

ELSEIF (line(1: 3) .eq. 'deg’) THEN

i REES’
E{.SBII-‘ (hne(l 3) .eq. 'rad’) THEN
:nn:f- rUdl 0 20
8¢ =
print *, 'RADIANS’
ELSEIF (hne(l 3) .eq. 'mil’) THEN
unit='mil’

(hne(l 4) .eq. 'trig’) THEN
read (line(5:50),") »
s = sin ;‘tn;fu 1
cm 3 tngfac
t = tan(a ;nghc
print *, 'ang =’, a, '
print ‘, 'sin -’. s
pnnt. s 'cos =’ L€
print *, ‘tan =', t
¢ PROBABILITY SECTION 30
ELSETF (line(1: 4) .eq. ‘blno) THEN
read (hne(s 50))
print *,'n = e, # of trials|’
print ‘, p =', p, ' [probability of success on 1 trial|’
call binom(n, p)
ELSEIF (line(1: 4) .eq. 'hypr’) THEN
read (line(5:50), *)i,j,n
print b i, # items drawn’
print ‘ i # desired ; items in urn’
print ¢ # items in urn’
call hyper() i,0)
ELSEIF (lxne(l 4) .eq. ndt.r) THEN
read (line(5:50),*) a,
¢ = ndtr(b) - ndtr S
¢ = exp(-.5%a “2{ sqrtéZ‘pl
f= exP .5*b**2)/sqrt(2%pi
print 'a,b=' a, b ¢
print ', prob- » & [mtegral of std normal from atob.|

', unit

aanan

print *, 'densa’, ¢, ' [exp(-a a./2; /sart(2%pi)!’
print *, 'densb’, f, ' Jexp(- b‘b/2 Jsqre{2%pi)|’
¢ HIT PROBABILITY SECTIO

ELSETF (line(1: 4) eq. CII'C)THEN
read (line{5:50),%) r,
p=1. 0-exp§ -0. 5' “2/d“2)
print *, 'ra ' |target radius|'
print * 'S.D.-', d dlsperslou of rounds)’ 20
print . 'prob=’, hit probabmt.y on circular tgt|'
ELSEIF (Ime(l 3) eq box) THE
read (line(4:50),*) xl xh, yl, _yh
ELSETF (line(1: 3) eq sxg)THEN

read (line(5:50),* ¢
pPX = ndtrth/xsg ndcr xl/xs)) c
ndtr yi/ys

py = ndtr(yh/ys

print *,'phit=', px*py, ' [hit probability on box|’
] STATISTICS SECTION

ELSETF (line(1: 4) eq conb) THEN

read (hne(S 60

print %, 'n - g n ‘umplc size}’

print ‘, p =', p,' (fraction of successes|’

call confb{p,n,bi,lo,fail)

if {fail) print ' 'Sample too smaJl'

if (.not.fail prmt‘ 90%-' l
if (.not.fail) print *, 95%

if (.not.fail) priat *, '99%

lF(lne(l4)eq conn)T c
read (line(5:50),*) n, xbar, s 1
call confn(xbar, 8, n, cn)
pmﬂ.‘ 'n -.n
print . mean=", xbar, ' s.d.=’, s

print *, '00% =

' ca(l),cn(2
pnnt‘ '96% =',cn(3),en(4
mgnn'.' '99% =’ cn(5),cn(6

¢ OUS § ION

ELSETF (line(1: 4)eq ‘echo’) THEN
echo = .not. echo

ELSE
call help
ENDIF
GOTO 20
END

FUNCTION BICO {i,j)
Bico: find binomial coefficient.
IF (j.eq.0 .or. j.eq.i) THEN

cl

bt et st b Bt Pk ot Bt Bt Bk b P b Pt Bt et

o
L]

bico = 1
ELSE
k = min0(j,i-j)

2,k
p = p*(i-k+m)/float(m)
CONTI Y(‘J'UE /

bico = p
ENDIF
it (j.gz.i? bico = 0.0
Will fail if j<O or j>i
END

SUBROUTINE BINOM(n,p)
format (' Probability of, i3, '

DO 30 i=0,n
Il'-‘(nle20 .or. i.1t.5 .or. 0.eq.mod(i,5)) THEN
pi = bico{n,i} * p**i * (1. e;;3“(11-1)
print 1, i, pi
ENDIF

CONTINUE
END

successes =, 16.2)

SUBROUTINE CONFB (p, nr, hi, lo, fail)

Conf: Find the 90, 95, and 99% confidence intervals
on a probability p, where p is the estimated probability
and or is the sample size.

Reference: Introduction to Statistical Analysis, 3rd edition,
Dixon and Massey, p246.

real hi(3), 10(3), 2(3), n

logical fail

data z /1.645, 1.960, 2.576/

n = float(nr)
fail = (0%p.1t.5) .or. ((n-n®p).1t.5)
IF (.not.fail) THEN
Method is applicable, so apply it
DO 20 i=1,3
1‘02)

5] - n/(n+z
n)‘(x 0-p-0. S/n;

s2 = 0.5%z(i)
83 = (p+0.5
1. 0-5+0 5/

s4 = (p-0.5/n
85 = 2(i)**2/(4.0

lo(i) = s1%(p-0.5/n+s2-2(i)*sqrt(s3/n+s5))
hii | = s1*(p+0.5/n+s2+z{i)*sqrt(s4/n+s5))
CONT
ENDIF
END

SUBROUTINE CONFN(xbar, s, n, d})

CONFN: Find the 90, 95, 99% confidence intervals on 2 normal
distribution, given sample mean, sample S.D., sample size
real d(6)

factor = § aqrt(ﬂoat(ng)

call tstats{n-1,t1,12,t3

d(1) = xbar - t1®*factor

d(2) = xbar + t1*factor

3) = xbar - t2%factor

4} = xbar + t2*factor

5) = xbar - t3*factor

6) = xbar + t3*factor

mo-a o a

SUBROUTINE HELP
Help: print instructions.
format(a)

print 1,

'q Quit',

R Anything unrecognizable prints help info’,

'echo Toggle input echo’,

! SIMPLE ARITHMETIC',

‘math a b Simple arithmetic’,

‘root. 3 b Square roots of functions of a,b’,

mtp x x1 y1 x2 y2Linesr interpolation’,

vec al 22 a3 bl b2 b3Vector arithmetic’,
TRIGONOMETRY",

‘serr er Convert from linear err (m) & range (km}',

’ to sngulsr error (mllse

‘lerr at Convert angular error (mils) & range (km) to’,
’ linear error (m)’,

'rad Shilt to radians’,

'deg Shift to degrees’,

'mil Shift to mils’,

DO OOD

-

Dot put gt bt ot b et Pk put P it b bk s b s

RN IO RORWN= DN WA -

N DN =

Find sin(a), cos(a), tan(a)’

PROBABILITY",
'bino n p Draw w/ replacement’,
! n is % of draws, p is prob of success’,
‘hypr i j aDraw w/o replacement’,
' i is # draws, j is # red balls, n is # balls’,
‘ndtr a b Integrate the standard normal from a to b’,
' HIT PROBABLLITY",
‘cire r sig Find hit probability on a circular target’,
'box xa ya xb ybDefine edges of a rectangular target’,
‘sig ax sy Find hit probability on a rectangular target’,
' sx, sy are horiz, vert dispersions’,
STATISTICS’,

conb o p Find binomial confidence interval’,

n is sample size, p is estimated probability’,
conn n xbar sdFind normal confidence interval’,
n, xbar, sd is sample: size, mean, std dev’

‘trig »
?rint 1,

END

SUBROUTINE HYPER(i,j,n

Hyper: find the outcomes of draws without replacement.
i = gkof desired objects in the set from which you draw.
j = #hof draws w/o replacement

m = maximum number that can be drawn

n = number of objects in the set from which you draw.
format (* Probability of",i3," successes is',{6.3)

m=min0(i,j)
DO 20 k=0, m
al = bico(i,k)
22 = bico{n-i j-k)
a3 = bico(n,j)
p=2l®a2/a3
print 1, k, p
CONTINUE
END

REAL FUNCTION NDTR (x)
Ndtr: Integrate the Normal
Source: Adapted from ndtr in the IBM SSP pg78.

ax = abs(x)

t = 1.0/(1.0+.2316419%ax)

d =00

if{ax.1t.6.0)d = 0.3989423%exp(-x*x/2.0)

p = 1.0- d*t*((((1.330274" - 1.821256)%t + 1.781478)*t .
0.3565638)*t + 0.3193815)

if (x.1t.0.0)p=1.-p

ndtr = p

END

SUBROUTINE TSTATS (df,t1,t2,03)

Tstats: Find Student’s T-statistic for 95%, 97.5%, 99.5%
integer df, dfs(34)

real t950(34), t975(34), t995(34)

fun(a,b,c) = a + (b-a)%c

datadfs /1,2 3,4,5,

8,78, 9,10,
11,12,13,14,15,
16,17,18,19,20,
21,22,23,24,25,
26,27,28,29,30,
40,60,120,9999999{

data t950 / 6.314, 2.920, 2.353, 2.132, 2.015,
1.943, 1.995, 1.860, 1.833, 1.812,
1.796, 1.782, 1.771, 1.761, 1.753,
1.746, 1.740, 1.734, 1.729, 1.725,
1.721, 1.717, 1.714, 1.711, 1.708,
1.706, 1.703, 1.701, 1.699, 1.697,
1.684, 1.671, 1.658, 1.645

data t975 /12.706, 4.303, 3.182, 2.7786, 2.571,
2.447, 2.365, 2.306, 2.262, 2.228,
2.201, 2.179, 2.160, 2.145, 2.131,
2.120, 2.110, 2.101, 2.093, 2.086,
2.080, 2.074, 2.069, 2.064, 2.060,
2.058, 2.052, 2.048, 2.045, 2.042,
2.021, 2.000, 1.980, 1.960/

data 1995 463,657. 9.0%5, 5.841, 4.604, 4.032,
3.707, 3.499, 3.355, 3.250, 3.169,
3.108, 3.055, 3.012, 2.977, 2.047,
2.921, 2.808, 2.878, 2.861, 2.845,
2.831, 2.819, 2.807, 2.797, 2.787,
2.779, 2.771, 2.763, 2.756, 2.750,
2.704, 2.660, 2.617, 2.576

istribution from -infinity to x.

83

IF (df.le.0
print *,’
STOP

THEN
STATS: Degrees of freedom must be > 0.’

ELSEIF (df.le.30) THEN

t] = tg

df

12 = t975(df
t3 = t995(df

ELSE
j =30
if
if

df.gt.60

it df.gt.(O; j=31
df.gt.120

et

factor = float (df-dfs(j+1))*dfs(i) /
foat((dfa(j}-dfs(i+1))*dr)

t1 = fun

t2 = fun

t3 = fun
ENDIF
END

£950(j+1
t975(j+1
1995(j+1

,4950(j), factor
,L975(}),factor
,£995(j),factor

9.2 Histo: Generate Counts for a Histogram

Histo counts the number of data points that fall into each of a set of equally-sized intervals. Just
input the number of intervals desired and the lower and upper bounds of the range. The program divides
the range and displays a histogram of the data.

Input. A histo input file requires the following information in the first line, separated by blanks or
commas:
number of data points
number of intervals desired
lower bound of first interval
upper bound of last interval

If you enter the same value for both the lower and upper bounds, the program uses the lowest and
highest values of the data as the bounds. You should try to select a number of intervals that will divide
the range neatly.

Subsequent input lines contain the data in free format.

Sample Problem. Suppose you fire a tank gun 50 times and record the horizontal distance that it
hits from the target each time. With this data file as input, histo generates a table giving interval
boundaries, frequencies, and cumulative frequencies, as shown in Figure 9.2. The exhibit also demonstrates
how the frequency distribution given by the program can be converted into its graphical interpretation,
the histogram. The output for this example clearly shows that the gun is biased to the right.

Here’s the input file:

505-0.208

-0.10 0.25 0.51 0.72 0.01 0.12 0.25 0.43
0.28 0.31 0.00-0.20-0.18 0.74 0.41 0.52
0.02 0.81-0.15-0.20 0.23 0.45 0.58 0.27
062 0.01-0.12 0.38 0.39 0.80 0.80 0.32
8.21 0.77 0.15 0.05 0.31 0.41 0.16 0.19
009 0.33 0.25 0.38 0.22 0.55 0.46 0.32
0.59 0.41

15 4
Program Output:

lower higher count cum 10 4

—00 0.000 6 8 Number of
0.000 0.200 10 16 Data Points
0.200 0.400 16 32 5 4
0.400 0.600 11 43
0.600 +00 7 50 0

—-00 0 0.2 04 0.6 o0

Meters to Right of Target
Figure 9.2 Sample Output and Histogram

Mathematics. This program simply generates counts for a histogram. It includes a data point in a
specific interval if lower bound < data point < upper bound. A histogram and frequency distribution give
discrete representations of a continuous sample. Thus, histo is useful for estimating probabilities and
probability density functions.

84

LR B WL O O

[C ' YR X

Code.

PROGRAM HISTO

Histo: Make counts for a histogram.
amin - lower boundary

amax - upper boundary

ni - gpof intervals

np - Pof points

x - vector of data points

i::le;er count(50), cum(50)

r

format{’ -infinity’,110.3,2i8)
format{2{10.3,218

format{f10.3,” +infinity’,2i8)

format(" lower higher count cum’)

read *, np, ni, amin, amax
read *, (x(i),i=1,n
IF (amin.eq.sm;xf HEN
Find min & max
amin=1e35
amax=-amin
DO 20 i=1,np
if (x(i).It.amin) amin=x(i
if (x(i).gt.amax) ama.x-x?i)
CONTINUE
ENDIF
size-(ama.x-amin){ni
Tally into interval counters
DO 40 i=1,np
j=14(x(i}amin)/size
if (j.1e.0) j=1
if j.ge.ni‘j-ni
count.&j) = count{j}+1
CONTINUE
Print results
print §
alo=amin
ahi=amin+size
cum(lg-count(l)
print 2, ahi, count(1), cum(1)
DO 60 i=2,ni-1
alomahi
ahimahi+size
cum(ijmcum(i-1)+count(i)
print 3, alo, aht, count(i), cum(i}
CONTINUE
alomalo+size
ahimahi+size
cum(ni)m=cum(ni-1)+count{ni)
print 4, alo, count(ni), cum(ni)

END

85

9.3 Shell: Sort a list of numbers.

Shell sorts a list of numbers using the Shell sort method. The main routine of this program simply
exercises the shell subroutine which does the actual sorting. The shell subroutine may be cut out and
inserted in your program. With no change in the logic, integers may be sorted, and with some change,
characters may be sorted.

There are many ways to sort. The classic reference by Donald Knuth'® lists the following internal
sorting methods:

METHOD AVERAGE TIME

Insertion

Straight insertion 2N2f-25

Shell’s method 15N™
Exchange

Bubble sort O(N?)

Quicksort 11.66N In N
Selection

Heapsort 23.08N log n +
Merging
Distribution

We see that the Shell sort is faster than some; furthermore, it is reasonably simple. Its advantage
over a bubble sort is that it starts by exchanging pairs' that are far apart, so it tends to place items near
their final position quickly. :

Table 9.3 Shell Sample Input / Output

Sample 8

Input 45. 27. 82 -4, 16. 66. 31. 30.
Sample | 45. 27. 82 -4, 16. 66. 31. 30.
Qutput | 4. 16. 27. 30. 31. 45. 66. 82.

3b. Sorting end Searching;, The Art of Computer Programming, Vol. 3, Addison Wesley, Reading, Massachusetts, 1973.

86

70
71

99

Code.

SHELL: Demonstrate shell sort.
real a(0:99
formu(lo .0)

retd (l(l) i=0, - l)
print a()=0.0-1)

rint 1 (t(l) i=0,n-1)
EnD

SUBROUTINE SHELL (v g n)

Purpose: sort using Shell’s method.

Ref - The C Programming Language, p58
real v(0:99)

integer gap

gap = n/2
DO 90 igap=1,15
IF (gap.le.0) GOTO 99
DO 80 n-gap,n 1
j = i-gap
DO 70 k=1,9999
IF (j.1t.0 .or. v(j+gap).ge.v(j)) GOTO 71
temp = v(j)
V§)= VSHsap)
J+ga.p - temp
j = j-gap
CONTINUE
CONTINUE
CONTINUE
gap = gap/2
CONTIN
CONTINUE
END

INTENTIONALLY LEFT BLANK.

88

No of

s Organizati

1

Office of the Secretary of Defense
OUSD(A)

Director, Live Fire Testing
ATTN: James F. O’Bryon
Washington, DC 20301-3110

Admini
Defense Technical Info Center
ATTN: DTIC-DDA

Cameron Station

Alexandria, VA 22304-6145

HQDA (SARD-TR)
WASH DC 20310-0001

Commander

US Army Materiel Command
ATTN: AMCDRA-ST

5001 Eisenhower Avenue
Alexandria, VA 22333-0001

Commander

US Army Laboratory Command
ATTN: AMSLC-DL

Adelphi, MD 20783-1145

Commander

US Armmy, ARDEC

ATTN: SMCAR-IMI-1

Picatinny Arsenal, NJ 07806-5000

Commander

US Army, ARDEC

ATTN: SMCAR-TDC

Picatinny Arsenal, NJ 07806-5000

Director

Benet Weapons Laboratory
US Army, ARDEC

ATTN: SMCAR-CCB-TL
Watervliet, NY 121894050

Commander

US Army Armament, Munitions
and Chemical Command

ATTN: SMCAR-ESP-L

Rock Island, I 61299-5000

Commander

US Army Aviation Systems Command

ATTN: AMSAV-DACL
4300 Goodfellow Blvd.
St. Louis, MO 63120-1798

No of

“opics Organizati

1

(Class. only)]

(Unclass. only) |

89

Director

US Army Aviation Research
and Technology Activity

Ames Research Center

Moffett Field, CA 94035-1099

Commander

US Army Missile Command
ATTN: AMSMI-RD-CS-R (DOC)
Redstone Arsenal, AL 35898-5010

Commander

US Amy Tank-Automotive Command
ATIN: AMSTA-TSL (Technical Library)
Warren, Mi 48797-5000

Director

US Army TRADOC Analysis Command
ATTN: ATAA-SL

White Sands Missile Range, NM 88002-5502

Commandant

US Army Infantry School

ATTN: ATSH-CD (Security Mgr.)
Fort Benning, GA 31905-5660

Commandant

US Army Infantry School
ATTN: ATSH-CD-CSO-OR
Fort Benning, GA 31905-5660

Air Force Armament Laboratory
ATTN: AFATL/DLODL
Eglin AFB, FL 32542-5000

Aberdeen Proving Ground

Dir, USAMSAA
ATTN: AMXSY-D
AMXSY-MP, H. Cohen
Cdr, USATECOM
ATTN: AMSTE-TD
Cdr, CRDEC, AMCCOM
ATTN: SMCCR-RSP-A
SMCCR-MU
SMCCR-MSI
Dir, VLAMO
ATTN: AMSLC-VL-D

No. of
Copies Organization

1 General Dynamics
Land Systems Division
ATTN: David Strimling
PO Box 204>
Warren, M1 48090

1 LTV Aecrospace and Defense Company
ATTN: Phil Brown
Magdy Riscalla, Mailstop EM28
PO Box 225907
Dallas, TX 75265

1 Honeywell Defense Systems Division
ATTN: John Post
10400 Yellow Circle Drive
Minetonka, MN 55343

Aberdeen Proving Ground

Dir, USAMSAA
ATTN: AMXSY-G,
W. Brooks
B. Siegal
B. Goulet
R. Mezan
G. Comstock
L. Harrington
T. Ruth
M. Ritondo
P. Smyers
K. Tarquini
E. Walker
J. Graham
AMXSY-R, E. Hilkemeyer
AMXSY-A, J. Meredith
J. Hennessey
R. Mirabelle
AMXSY-C, R. Sandmeyer

