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I. INTRODUCTION

The XM216 Propelling Charge, developed by the Armament Research, Develop-
ment, and Engineering Center (ARDEC), was recently type classified to provide
the Zones 2-4 range coverage in the 155-mm, M198 Howitzer, but will be pro-
duced only if the US Army does not either pursue the universal-increment
charge for this howitzer or field the Advanced Field Artillery System (AFAS).
If produced, the XH216 would become part of the family that includes the also
recently type-classified, stand-alone, Zone 1, XM215 Propelling Charge and the
standard, top-zone, M203AI Propelling Charge.

A schematic of the XM216 is shown in Figure 1. The charge consists of
individual modules: Zone 2, Module A; Zone 3, Module A plus one Module B; and
Zone 4, Module A plus two Module Bs. A basepad consisting of 28 g of CBI with
a 20-g black powder spot is placed only on the A Module. The propellant is
M31Al slotted-stick propellant, with the webs and lengths of the sticks being
different between the A and B Modules. One of the main advantages of modular
charge configurations is a rigid package consisting of interlocking
components, thus facilitating automatic loading in future weapon systems.
Furthermore, since the modular charge system will consist of a small number of
discrete module types, the propelling charge corresponding to a desired per-
formance level can be built up from the increments at firing time, rather than
by discarding bags of propellant as is currently done with multizone artillery
charges, resulting in a propellant and cost savings and a reduced logistics
burden. New processing techniques allow for the use of additives, and the
increased strength of loaded, rigidized combustible cartridge cases, as com-
pared to bag charges, minimizes handling and transportation problems.

Let us now examine, with reference to Figure 2, some of the potential
events in the early portion of the interior ballistic cycle with a
combustible-cased, modular propelling charge. The output of a primer impinges
on a basepad, and the burning basepad ignites the rear case wall of the
module. Upon burn through of the rear case wall, the rear of the propellant
bed is exposed to hot igniter gases and is 'heated to ignition. These hot
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Figure 1. Schematic of 155-mm, XH216 Propelling Charge
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Figure 2. Phenomenology, Modular, Combustible-Case,
Stick Propelling Charge

gases then join those from the igniter to produce flamespread through the
charge. In the situation of granular propellant, resistance to the gas flow
may lead to the formation of a pressure gradient in the propellant bed, and
perhaps even movement of the solid phase, as we have previously discussed for
bagged granular charges. However, with the use of stick propellant yielding a
much smaller resistance to gas flow, essentially no pressure gradient is
formed in the propellant bed, and we would not expect the solid phase to
experience much movement. Yet, even with stick propellant, there will be
substantial resistance to flow of the gases offered by the relatively imper-
meable interzone barriers presented by the case end walls, possibly leading to
the propulsion of entire packages of propellant toward the projectile base.
Complicating characterization of these phenomena, but perhaps leading to
better ignition of the charge, the igniter gases may take the path of least
resistance and flow into the annular ullage surrounding the charge, which
almost certainly will be present in order to facilitate loading. We have
noted such behavior in other combustible-cased charges employing stick propel-
lant. 1  In this manner, the case may begin to burn along its entire length,
and if the case collapses due to pressurization of the ullage, the propellant
bed itself may be exposed to ignition gases along a substantial portion of its
axial extent, promoting uniform ignition of the charge. Lastly, we cannot
overlook the potential for fracture of the propellant. Such fracture may
occur not only as a result of impact of a package of propellant on the projec-
tile base but also due to attack of an overly brissant igniter on the rear of
the charge. Furthermore, stick propellant may rupture due to a pressure
differential established between the interior and exterior of the long grain.
All of these processes serve to create additional, unprogrammed burning sur-
faces, which may lead to high local pressurization and the formation of pres-
sure waves, should the natural flow channels presented by the stick propellant
be obstructed.

1T.C. Minor and A.W. Horst, "Ignition Phenomena in Developmental, Stick-
Propellant, Combustible-Cased, 155-mm, M203E2 Propelling Charges," ARBRL-TR-
02568, Ballistic Research Laboratory, USA ARRADCOM, Aberdeen Proving Ground,
MD, July 1984.
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Several previous experimental studies also helped to motivate this study.
In an earlier test in the BRL 155-mm howitzer simulator with a granular,
bagged, multizone charge with a relatively brissant base increment and slow-
burning forward increments, it was found that the forward fncrement could be
propelled toward the base of the projectile at a high speed. While the XM216
Charge employs stick propellant, as noted above the barriers presented by the
combustible case may present sufficient resistance to gas flow to result in
propulsion of substantial quantities of propellant. In another study, it was
seen that the method of ignition of the charge is often not as intended. In
fact, rather than the igniter gases entering the propellant bed as desired,
they have been seen to flow into the ullage, sometimes pressurizing it and
severely compressing the case and propellant bed radially. Alteration of the
ignition system to remove some of the blockages to igniter gas flow may
correct the magnitude of the problem, but igniter gases still may not easily
penetrate the end of the stick bundle.

Earlier ARDEC testing with a candidate for the XM216 in which the forward
modules were full of propellant showed the fopmation of pressure waves, while
a candidate that was partially empty did not. Testing of these two configu-
rations in the BRL 155-mm Simulator showed that the full load of propellant
supported the the combustible case wall such that it did not collapse during
pressurization of the ullage surrounding the charge, keeping igniter gases
away from the stick propellant bed. However, the partial propellant load
provided no support to the combustible case, permitting it to collapse,
allowing access of the ignition gases to the stick propellant, thus promoting
more uniform ignition of the propellant bed.

History has shown us that problems with ammunition malfunctions, such as
breech blows, originate in the early, ignition and flamespread portion of the
interior ballistic cycle. The charge developer, ARDEC, naturally wished a
complete characterization of the phenomenology of the charge before completing
the charge development. ARDEC thus requested that the BRL fire a matrix of
these charges in the simulator to characterize the early portion of the
interior ballistic cycle.

2T.C. Minor, "Characterization of Ignition Systems for Bagged Artillery

Charges," ARBRL-TR-02377, Ballistic Research Laboratory, USA ARRADCOM, Aber-
deen Proving Ground, MD, October 1981.

3T.C. Minor and A.W. Horst, "Theoretical and Experimental Investigation of
Flamespreading Processes in Combustible-Cased, Stick Propellant Charges,"
BRL-TR-2710, Ballistic Research Laboratory, USA LABCOM, Aberdeen Proving
Ground, MD, February, 1986.

4Private communication, R.S. Westley, ARDEC, Dover, NJ.
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II. EXPERIMENTAL TECHNIQUES

Figure 3 depicts the apparatus used at the Ballistic Research Laboratory
to conduct the experimental investigation. The illustration shows the mount
with a clear plastic simulator for the 155-mm chamber in place. Although the
mount also accepts higher-pressure, filament-wound fiberglass chambers, the
plastic chambers were used in this study to a permit better view of the events
transpiring within. The muzzle end of the chamber was closed by a projectile
seated in a section of gun tube machined to the dimensions of the M199 Cannon.
The breech end of the cbamber was closed by a spindle similar to the mushroom
configuration of the M185 Cannon with the centrally venting primer spithole,
housing three piezoelectric pressure transducers. An instrumented baseplate
(Figur- 4) was attached to the base of the projectile; it permitted two gas
pressure, three total force, and two acceleration measurements at the projec-
tile base.

Photographic data were recorded with two high-speed, 16-mm cameras. For
each shot, one camera was mounted with a wide angle lens to record the overall
aspects of the event and another used a telephoto lens to allow detailed
examination of the critical base region of the charge. With all of the
cameras, data were recorded at a framing rate of approximately 5000 pictures
per second. One-kHz timing signals were placed on the films by electronic
circuits internal to the cameras, and the firing fiducial (time at which the
firing voltage is applied to the gun) was also placed on the films to aid in
correlation of the film data with other data.

Flash radiography was used to monitor the behavior of the solid phase
during the interior ballistic cycle. Two 300-kV X-ray heads were employed,
aligned perpendicular to the chamber axis and sufficiently separated from each
other to allow coverage of the entire chamber length. One image (a "static"

Figure 3. 155-mm Howitzer Simulator
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Figure 4. Instrumented Projectile Baseplate

shot) was taken of the charge in the chamber before firing, and a second, on a
separate film, was recorded during the event by X-rays triggered at a pre-
determined spindle pressure (a "dynamic" shot). The X-ray film was protected
from the blast of the disposable chamber by a wooden cassette, with the
forward face composed of layers of air spaces and sacrificial wooden plates.

III. RESULTS AND DISCUSSION

Test firings were done in the BRL 155-mm howitzer simulator using XM216
Charges sent to us by the ARDEC, Dover, NJ. To maximize the amount of infor-
mation from the limited number of charges available, firings were done at
three different temperature and zone levels and in the order as indicated in
Table 1. The matrix was weighted to provide more data at the upper-zone
level while at the same time giving some indication of the behavior of the
charge at the lower zones..

The measured maximum breech (spindle) pressure, P1, and forward chamber
(projectile base) pressure, P2, the calculated pressure difference (P1 - P2),
and the measured maximum charge motion before chamber rupture, from both film
and X-ray records, are listed in Table 2. Also listed are the times when
pertinent events occurred.

13



Table 1. Test Matrix

Charge Zone Temperature Number of
(°C) Rounds

XM216 4 21 2
3 1
2 1

XM216 4 63 2
3 1
2 1

XM216 4 -53 2
3 1
2 1

Figures 5, 6, and 7 are plots, respectively, of all the pressure-time
traces for ambient (21 °C), hot (63 °C) and cold (-53 °C) firings at the Zone
2 (Module A), the Zone 3 (Modules A and B) and the Zone 4 (Modules A, B, and
B) levels. For clarity in discussing module movement in the Zone 4 charge,
the Module B closest to the projectile will be referred to as Module B', thus
making the Zone 4 charge consist of a Module A, B, and B'. In all the plots
of pressure, P1 is a solid line and P2 is a dotted line. In order to better
clarify the events occurring during the ignition and early combustion process,
one of the Zone 4 charges fired at 21 C and 63 °C and both of the Zone 4
charges fired at -53 °C will be examined in detail. Ignition and combustion
characteristics of the Zone 3 and 2 will be related to the Zone 4 firings.
All times on the plots and events described from film and X-rays are related
to the same zero time when the firing voltage was applied to the M52A3BI
electric detonating cap. For all firings there was approximately a 1-ms delay
from the application of firing voltage until the M82 percussion primer
functioned.

A. Firings at 21 °C

The pressure-time plot of Round 40913, Zone 4, ambient, with details
obtained from the film record are shown in Figure 8 and Table 2; no X-rays
were obtained for any of the ambient rounds. A schematic of the events taking
place during flamespread is shown in Figure 9. At approximately 1 ms, the M82
primer ignited the basepad producing a 0.5-MPa pressure rise lasting for 4 ms.
During this time interval, the rear cylindrical section of nitrocellulose (NC)
contained within the basecap of Module A and the endcap enclosing the basepad
were distorted (Figure 5). The gray ignition gases from the M82 and basepad
pushed the rear of Module A to the top of the chamber breaking the rear top
portion of the NC cylinder. Within 2 ms, the rear portion of Module A was
well-ignited with bright orange-red gas covering the rear 3 cm of the chamber.
By 8 ms, Module A was fully illuminated with luminous gases advancing forward
into and around Modules B and B'. The rear upper portion of Module A broke
off and burned separately. Parts of the Module A were pushed against the
walls of the plastic chamber and continued to burn as the luminous front
advanced forward into and around Modules B and B'. Within 11 ms, the entire
Zone 4 charge was well-ignited even though the breech and forward chamber
pressures were only 0.5 MPa. As the burning progressed, the forward

14



C-)C- 0

Cl)i

o 4)
0 00

N. C.)

a) o)
- 0

1.4

-4

(t)4W) 36nSS36d d3BlWUH 06UM80J V H0l33dS (UdW) 38flSS38d 838WUHO OdM803 V H0Y33d1

d)

U)

0

o Uo

0

CL ) c a

zz

NN

flu C
0 M

*UW NbSS8 83WH 8M0 338SUW d(S3d4OUJOUSJVIZ3

.. .. ..



C-, C-,

00

(0 0

All L)

00

'0

U)

Q4)

ca

L'Li

0))

0

- dH

otdW 38Lid di~tH 0SM0 03 ~ UW dSRd89UDOt~O_ 33

-- ~ r.16



C) - C)
0

(V) Mn

-z~I

2' 00

ac

0.

04

LLi

00

,(udw) 3ar)sS3d 83WUiHO OdM83 I H333d~8 .(dW 3uS3dd3I)UM0 333t8

17i



x ooo'o - in
q_4 e C14

N ~ ~ o ~f n .00% w x n

E--46I

Ern

t~f- '00 O~ClO LA~1A11 :
44. S!~

00000 0000 0?

Nr

-Ell N N l iHH(4 Nr V

'-44

N N N4

o 0 N CN t- Ol V r0r4n
Aw 4t: 8a U O4f0

H r4 V -4

184
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Figure 8. Annotated Breech and Forward Chamber Pressures,
XM216 Propelling Charge, Zone 4, 21 0C, Round 40913

ullage in the chamber became illuminated (15 ins) as burning gases swirled into
this region. This caused a 0.5-MPa pressure difference to develop from 18 mns
to 25 ms after which the two pressures became coincident until the chamber
broke at approximately 29 ins. During the entire combustion cycle, there was
no indication of large movement of the charge. Just before the slight
pressure gradient developed at 18 ins, Modules B and B' moved away slightly
from the Module A component. Without X-rays, it was impossible to determine
if the movement near chamber breakup was significant. With the exceptions
that the peak chamber pressure was less and the corresponding event time
shorter for the second Zone 4 shot, Round 40917, the events described above
accurately reflect both Zone 4 firings.

The ignition and early combustion for the Zone 3, ambient charge, Round
40926, was as described for the Zone 4 round. Primer and basepad ignition
times were essentially the same. As the ignition front and early combustion
gases proceeded axially into and around the charge, pieces of the NC case were
pushed against the chamber wall and proceeded to burn just as in the Zone 4
tests. As the gases flowed into the forward ullage, illuminating it with
intense white, hot gas, no pressure gradient developed and no indication of
module or charge motion was observed. The total event time was longer than for

19
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Figure 9. Schematic of Flamespread, XM216 Propelling Charge,
Zone 4, 21 0C, Round 40913
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the Zone 4 round previously described because, with the reduced density of
loading, hot gases swirling into the larger forward ullage had less propellant
and more ambient gas to heat during the combustion process.

For the ambient Zone 2 shot, Round 40927, ignition and early combustion
were the same as the three previously described rounds. At approximately 8
ms, a small 0.25-MPa gradient developed corresponding to the charge moving
forward 2-4 cm in the chamber. From 12 ms to 17 ms, the pressure traces
indicated no gradient in the chamber. During this time, the charge moved
forward approximately 15 cm. By 20 ms, a pressure gradient developed wherein
the forward chamber gage became 0.5 MPa higher than the breech gage. This
condition continued until the chamber ruptured. It is possible that the
charge continued to move toward the projectile, but since the film was washed
out by intense, white gases and X-rays were not obtained, further charge
movement could not be verified. Since the force gages in the projectile base
showed only gas response and not propellant impact, the extent of the charge
movement was probably less than the space available in the forward axial
ullage. The event time was the same as the Zone 3 firing because the chamber
ruptured at a low 8 MPa rather than at the expected 11-12 MPa.

B. Firings at 63 °C

The pressure-time plots of Round 41002, Zone 4, hot, with details
obtained both from film and X-ray are shown in Figure 10 and the data in Table
2. All four rounds in this series obtained, approximately, the same peak
pressure before chamber rupture and X-rays recorded the charge motion just
prior to rupture. At I ms, the M82 primer functioned. Within 2 ms, the
basepad was well ignited causing a pressure rise of 0.50 MPa. Unlike the
ambient rounds, the initial ignition pressure (Figure 10) did not decay to
nothing before ignition of the main charge, but only decayed to 0.25 MPa.
Then very quickly the pressure increased as the main charge ignited. By 9 ms,
Module A was fully ignited and there was intense yellow light in the ullage at
the rear of the charge. During the same time, the breech pressure increased
rapidly from 0.5 MPa at 9 ms to 1 MPa at 12 ms. The ullage between the charge
and projectile became very bright as combustion gases flowed into this region.
Ignition proceeded so rapidly that a forward pressure gradient developed as
soon as the charge ignited at 5 ms until near chamber rupture at 19 ms. Just
prior to chamber rupture, there was no indication of charge motion from the
film record. By this time, the film was almost completely washed out from the
hot combustion gases in the ullage surrounding the charge.

The X-ray was triggered at 8.9 MPa just prior to chamber rupture. It
showed large axial movement for the propellant and the NC case (Figure 11).
The propellant in Module A was propelled forward &n masse through the front of
the module, thus punching out a disc of NC. As the propellant moved forward,
it moved Modules B and B' and their propellant forward as a unit into the
chamber 6 cm. Parts of the NC case were visible throughout the chamber.

The ignition and early combustion for both the second Zone 4 charge,
Round 41005, and the Zone 3 charge, Round 41004, as observed from the films
were the same as just described. There was some indication, from the film
records, of minimal charge motion for the second Zone 4 round, but none for
the Zone 3 round. X-rays for these two rounds were triggered at 8.9 MPa as in
the previous test. For the Zone 4 firing, the propellant again moved =n masse
through the front of the NC module. Most of the module remained at its

21
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initial location in the chamber throughout the burning cycle. The force of
the Module A propellant against Module B completely collapsed the 2-cm space
between Modules B and B' and pushed the modules forward 6 cm in the chamber.
This was larger than that noted on film; however, the X-ray event occurred at
a time after events on film were washed out from the burning gases. The Zone
3 charge configuratio, when the X-ray triggered was similar to that of Round
41002, except that Module B moved 10 cm instead of 6 cm. In addition, the
front of Module A and the front of Module B were also punched out by the force
of the propellants from Modules A and propellant moving forward. In both
tests, pieces of NC container could be seen throughout the chamber prior to
rupture.

For Round 41010, Zone 2, hot, ignition and early combustion were similar
to that described in the ambient Zone 2 round, albeit at a faster time. At 4
ms, the base region was well lit with gases starting to stream into the
forward ullage. By 5 ms, the NC case had developed several radial cracks, hot
gases were moving axially and radially forward through and around the charge
lighting up the forward ullage, and there was some forward movement of NC.
Unlike the previous three rounds, there was no pressure gradient. By 5 ms,
the spindle and forward pressure gages were coincident which continued until
the chamber ruptured. At 9 ms charge motion began, with a total movement of 16
cm before the chamber broke. One could see the Zone 2 module moving forward
into the intense white light of the forward ullage. As before, the X-ray
triggered at 8.9 MPa, recording the same charge motion as the film. Although
the X-ray showed that the propellant moved forward approximately 16 cm, the
detail was such that the condition of the NC module and parts could not be
determined.

C. FLrings At -53 op

The pressure-time plot from Round 41017, Zone 4, cold, is given in Figure
12; other firing data are presented in Table 2. X-rays were not obtained
because the chamber ruptured at a very low 6 MPa. At 1 ms, the basepad was
ignited and dark smoke could be seen streaming forward along the radial ullage
into the forward axial ullage. By 10 ms, the base region was very bright from
ignition of Module A. As burning gases streamed around the charge into the
forward ullage, the charge began to move forward at 13 ms. At 27 ms, the
charge was still moving forward with the rear ullage becoming very luminous
from the hot combustion gases. By 29 ms, the charge was completely forward
against the projectile with all the ullage located between the spindle and the
charge. Burning continued in this manner until the chamber ruptured at 38 ms.
The forward chamber gage initially was slightly less than breech pressure, but
after the charge moved forward against the projectile at approximately 30 ms,
the two pressure gages reversed with the forward chamber gage being higher
than the breech gage.

For the second Zone 4, Round 41018, the initial ignition sequence was
completely different from any other round in all three series. The pzessure-
time plot is shown in Figure 13 with both high-speed film and X-ray events
indicated. At 2 ms, the spindle pressure rose to 0.25 MPa, indicating that
the basepad had been ignited, even though the film record showed no smoke or
flame present. As the rear of Module A broke circumferentially, it ballooned
into the chamber, channeling all the igniter gases forward through the charge.
No ignition gases were visible in the radial ullage. The pressure remained
constant until 12 ma when it slowly began to increase. The forward chamber
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Figure 12. Annotated Breech and Forward Chamber Pressures,
XM216 Propelling Charge, Zone 4, -53 0C, Round 41017

pressure gage showed no response until 16 ms. At 18 ms into the event, flame
was present at the interface of Modules A and B. The flame began to spread
axially both toward the projectile and the spindle. By 25 ms, when the
forward chamber pressure was coincident with breech pressure, all three
modules were burning. At 35 ms, the charge started moving forward into the
projectile base and was still moving at 37 ms when the intense white flame
washed out the film. At 35 ms, the forward chamber pressure-time trace
indicated a sharp pressure pulse, suggesting that the charge moved forward at
high velocity. This pulse, which was also noted by the force gage (not
shown), damped out rapidly with the two chamber pressure traces being
coincident before chamber rupture. That the gas-pressure gage responded
similarly to the force gage is likely an artifact of the design of the gage
block, in that a column of gas was trapped between the front of the charge and
the recessed gas-pressure gage face. Although the film record of the ignition
sequence appeared to be different from the first, Zone 4, cold firing, neither
the total event time nor the time to pressurize the chamber to 1 MPa were
different. Apparently, the ignition gases from the basepad were transmitted
internally through the Module A component to the interface of Modules A and B
with propellant burning inside the NC containers hidden from the view of the
camera.

24



41018 ZONE '4. -53 C
CE
CL

X-RAY TRIGGERED AT A

wF BASEPAD IGNITION PRESSURE OF 5.1 10A

2FLAME PRESENT AT MODULE A/B
() --INTERFACE

CL ZONE 4 IGNITION I

W
8" CIARGE MOVING FORWARD IMPACTING03 ON PROJECTILE BASE CAUSING[

(PRESSURE PULSECK

O 6- CHARGE COMPLETELY FORWARD NIN
UtACER/ REAR AXIALULLAGE
COMPLETELY ILLUMINATED

cr

0
IL

C) 2-

W
i 0 S 19 Is 20 30 35 40 Its

co'TIME (MS)

Figure 13. Annotated Breech and Forward Chamber Pressures,

XM216 Propelling Charge, Zone 4, -53 °C, Round 41018

The X-ray for this Zone 4 firing, which was triggered fortuitously at 5
MPa when the pressure pulse occurred on the pressure trace, showed substantial
charge motion. Module A propellant was propelled forward through the front of
its NC enclosure with sufficient velocity to push both Modules B and B'
forward into the projectile base. The 2-cm spaces at both of -he interfaces
were eliminated, the propellant from Module B' was tightly foi ited around the
projectile base, and propellant from all three modules was axially compressed
and radially expanded, so that no radial ullage existed around the forward
portion of the charge. Most of the Module A container remained in its
original location in the chamber.

The Zone 3 firing, Round 41019, was similar to the first cold Zone 4
firing in that the chamber broke early at 5 MPa. No film record was obtained
for the firing. From the pressure-time traces, ignition of the basepad
occurred at 2-3 ms after which both the breech and forward chamber pressures
increased with minimal difference. By 30 ms, the forward chamber gage started
to show a larger pressure than the breech gage and continued to do so until
the chamber broke at 47 ms. Just prior to chamber rupture, the X-ray
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triggered at 5.1 MPa. The X-ray indicated that Module B was propelled forward
by Module A about 7 cm. The charge, burning in the forward section of the
chamber, could account for the shift in the pressure traces.

The Zone 2 firing, Round 41016, was similar to the Zone 3 firing. After
basepad ignition at 1-3 ms, the two coincident pressure traces remained at a
low 0.1 MPa until 15 ms after which they both increased together. At 35 ms,
the forward chamber pressure became slightly higher than the breech pressure
and remained so until the chamber ruptured. During the 15 ms when the
pressure was less than 0.1 MPa, most of the ignition and early charge motion
occurred. At 7 ms, the rear portion of the module holding the basepad was
burning rapidly with an intense flame and the charge was beginning to move
forward. By 10 ms, the charge was well-lit with gases swirling around the
radial ullage into the forward portion of the chamber. By 17 ms, the forward
ullage was well-lit and the charge was continuing to move forward; this
movement continued until the chamber broke at 65 ms. The X-ray triggered at
1.7 MPa, which occurred at about the time when the forward chamber pressure
became larger than the breech pressure. The X-ray showed that the Module
A propellant had moved 25 cm forward into the chamber as a mass. Unlike the
other rounds, the propellant did not punch through the NC container, leaving
the container in its original position in the chamber. In this firing, the NC
cylinder was propelled into the forward section of the chamber well ahead of
the propellant while parts of the basecap and endcap were left in the rear of
the chamber.

IV. CONCLUSIONS

Within the constraints of a limited number of firings, -,- have examined
the effects of conditioning temperature and charge zone levels on the
flamespread portion of the interior ballistic cycle in the 155-mm, XM216
Charge. To answer tbs question posed by the charge designer, ARDEC, no
obvious detrimental effects on the ignition and early combustion processes
were observed for any of the three zones comprising the XM216 Charge at any of
the three temperatures tested even though there was substantial separation
between modules and between propellant and case at very low chamber pressures.
The observed rapid pressurization and coincident breech and projectile base
pressures just prior to chamber rupture suggest no propensity for the
development of large pressure waves later in the ignition cycle. A cautionary
note must be raised however, by the impact of the bundle of stick propellant
on the base of the projectile at the cold conditioning temperature. While we
saw no evidence of gross grain breakup in the high-speed films or flash X-
rays, the possibility exists that some microscopic damage was imparted to the
propellant, which might result in unprogrammed burning surface, leading to
higher pressures that were beyond the range of the simulator tests performed.

Consistent with earlier tests with combustible-cased, stick propellant
charges, we have seen that ignition and flamespread processes are probably not
those which the charge designer, or even the charge design community, might
expect. Once again, we have noted the great influence of the relative
impermeability and mechanical strength of the packaging containers on the
flamespreading path. We have noted the preferential flow of igniter gases
into the ullage surrounding the charge rather than into the charge itself, the
lack of well-defined flamespread within the stick propellant bed, and the
movement of entire packages of propellant. We should emphasize, however, that
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not all the resistance to gas entry into the main charge results from the
barrier imposed by the combustible case. While natural flow channels within
the bundle of sticks offer little resistance to the axial flow of gases,
entrance conditions at the end of a stick bundle can provide quite an
impediment to the entering gases, as evidenced by the movement of whole
increments of the stick propellant outside of the modular case. The challenge
to the charge design community is to exploit these perhaps non-intuitive
aspects of the flamespread process to produce safe and reliable propelling
charges.
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