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1. INTRODUCTION

Ada is designed for real-time and hard real-time concurrent

applications. Real-time systems usually exhibit traits such as

intelligence, adaptability, and a highly dynamic behavior. They

frequently contain periodic, time-critical processes which have

hard deadlines for completion. Other real-time systems consist

of a set of prioritized processes where the priority of the

process dictates the execution sequence. Therefore, a real-time

computing system depends not only on the correctness of results

but also on the timeliness of the results. For example, a missed

deadline in a hard real-time system means failure. So the

objective of real-time programming is to meet the timing

requirement imposed upon each task. And yet other highly

adaptable real-time systems must react to their external

environment to determine the execution sequence by monitoring

data, through acquisition or analysis, and communications.

Therefore, another objective of real-time programming is to adapt

external environment requirements upon the execution of each

task. - These objectives are achieved through the use of a

scheduler which controls and resolves task execution and

intertask communication conflicts. Schedulers must be preemptive

and priority driven to react to the real-time system's highly

dynamic and adaptive nature. These system characteristics also

encourage the use of dynamic scheduling policies as or.osed to

the use of static scheduling policies commonly found in today's

real-time systems. The constraints imposed by real-time



applications require that scheduling be accomplished in such a

way that the system is understandable, maintainable, predictable

and adaptable.

The Explicit Comprehensive Set of Race Controls represent

scheduling controls that are essential for the design and

implementation of predictable, understandable, maintainable and

adaptable real-time systems. These controls are language

constructs that allow for the natural expression of scheduling

controls consistently across the range of all possible controls

on indeterminate behavior.

Ada represents a rich and powerful tasking model which

offers an alternative design to the cyclical executive model.

Ada's tasking model consists of tasks which are competing with

other tasks for execution and intertask communication. However,

nondeterministic constructs such as the selective wait apply

fairness semantics over predictability semantics and; therefore,

are not sufficiently predictable. Hence, the major concern of

real-time programming using the Ada tasking model is the

controlling of the high degree of nondeterminism. To achieve

more predictable real-time programs, the scheduling of

alternative events assumes a major role. The scheduler performs

the important function of resolving these conflicts. The Ada

tasking model is a natural model for applications which must

adhere to an indeterminate environment. The opposing position is

that the Ada tasking model is inadequate for real-time

applicati .ause hard deadline constraints can not be
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guaranteed for systems exhibiting indeterminate behavior. This

situation occurs for two reasons. One is the inconsistency in

the application of scheduling contrcls across the range of

possible controls within the Ada environment. The other is due

to an incompleteness of the Ada language to express the control

of indeterminate behavior. The Explicit Comprehensive Set of

Race Controls are consistently defined and have the capability to

express controls on indeterminate behavior. Ada could be further

enriched by adding these controls to the language. This could be

done because the Explicit Comprehensive Set of Race Controls

conforms to the Ada design philosophy.

Tasking models should be conducive to the design and

implementation of concurrent real-time applications. However,

there exists a lack in design methodologies for real-time

systems. Research (8, 13] in this area is currently in progress

but has not been extended to the tasking model. Most real-time

system design today is ad hoc using design methods that result

from the cyclical executive model. There is a need for real-time

system design methodologies that incorporate the timing and

reactive constraints of a system as a system specification from

the beginning of the design process. To satisfy real-time

system specifications, scheduling policies should be designed

into an application so that the system is not less predictable

than the environment in which they are embedded. In addition,

the indeterminate behavior characteristic to the problem domain

must be simply and naturally expressed in the solution domain of
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the tasking model. Ada is characterized as a "design language"

suitable for expressing a solution throughout the entire life

cycle of a software project [2]. The Explicit Comprehensive Set

of Race Controls conforms to these requirements. They can be

incorporated into the specification phase of a project and then

can be easily translated into the program development phase.

The Explicit Comprehensive Set of Race Controls exhibit

qualities that are recommended in the Ada 9X revision process [1,

12]. Language Issue 62 (LI62) formulated by the Ada Language

Issues Working Group (ALIWG) states that Ada 9X should allow for

"increased control over task scheduling." The specific

requirement is that the user should be able to control the method

by which tasks are scheduled. The Parallel/Distributed Systems

Working Group of the Ada 9X Project Requirement Workshop

developed the requirement for adaptive scheduling that the Ada

language shall:

1. Not prohibit scheduling by context, which may
be dynamic,

2. Provide mechanisms for scheduling by multiple
characteristics, including user defined
characteristics, and

3. Support different paradigms in different parts
of the system.

The Explicit Comprehensive Set of Race Controls gives dynamic

scheduling control to the user and is flexible enough to

represent many different scheduling paradigms distributed

thro-ghout the system.

This report presents the framework for nondeterminism,

scneduling and its control with respect to a general tasking

4



model in sections II, III and IV. Section V applies these

notions to the Ada tasking model. Section VI discusses a

scheduling anomaly that occurs in Ada due to conflicts caused by

the inconsistency in the application of race controls. Section

VII outlines a current research proposal from the SEI for race

control. Section VIII presents the Comprehensive Set of Race

Controls including applications and a comparison with the SEI

proposal.
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II. NONDETERMINISM WITHIN A GENERAL TASKING MODEL

Nondeterminism exists within a general tasking model at the

program level, the task level and the entry level. At the

program level, a new task must be scheduled whenever a task is

suspended or terminated. The scheduler selects one task out of

eligible tasks. At the task level, the semantics of the language

usually requires that one of the open alternatives of the

selective wait construct be chosen. At the entry level, a number

of calls may be pending for that particular entry. A choice has

to be made.

A method for implementing some control of indeterminate

behavior is through the use of FIFO scheduling: tasks will be

scheduled in the order in which they become ready, the

alternative selected will be the first open alternative

encountered and entry calls will be accepted in the order that

they occur. FIFO queues are simple, fair and efficient to

implement and are adequate for many concurrent applications.

However, they are inadequate for real-time and hard real-time

applications that require tight deadlines and changing

environmental conditions. FIFO scheduling does not respond to

the urgency of certain events whether they be tasks, services or

communications. In order to design real-time systems that

reflect real-time constraints, scheduling controls are required

at each level to create more deterministic programs which are

suitable for a real-time environment.

Nondeterminism has been identified within and associated

6



with the level at whicr it occurs within the general tasking

model. This association enabled us to classify the scheduling

controls as to the level at which they function.

7



III. TEN CLASSIFICATION OF SCHEDULING CONTROLS

The set of all possible scheduling controls used by a

language is termed the Comprehensive Scheduling Controls. Figure

1 illustrates the Comprehensive Scheduling Controls hierarchy.

The Comprehensive Scheduling Controls are split into two classes:

Availability Controls and Race Controls.

Availability Controls are those controls which enable or

disable a nondeterministic choice within the alternative

construct of a concurrent language. They determine which

alternatives will be available for selection. Or, alternatively,

availability controls are used to bar events for which the

decision making unit is not ready yet. The availability of any

of the alternatives for selection is derived from certain

constraints applied to each alternative, such as Boolean

expressions, communication readiness or any combination of such

constraints. Those alternatives in which all the constraints are

satisfied are said to be open and available for selection,

otherwise the alternatives are said to be closed and unavailable

Comprehensive Scheduling Controls/\
/\

/\
Availability Controls Race Controls

Consensus Control Priority Control
Private Control Preference Control
Mutual Control Forerunner Control
Hybrid Control

Figure 1. Scheduling Control Classifications



for selection. Availability Controls are subclassified as

Consensus Control, Private Control, Mutual Control and Hybrid

Control to reflect the different constraints that may be applied

to an alternative and are defined as follows.

Consensus Control: The capacity to enable or
disable an alternative based on pending
communication requests.

Private Control: The capacity to enable or
disable an alternative based on a Boolean
expression determined by the local state
of the task.

Mutual Control: The capacity to enable or
disable an alternative based on a Boolean
expression determined by both the local state
of the task and the caller state.

Hybrid Control: is the capacity to enable or
disable an alternative based upon any combination
of consensus, private, or mutual controls.

Availability controls are not the focus of this report and are

included here for completeness only.

Race Controls are those which control the scheduling of

task, alternative or entry call wh.;ri ver a choice situation

occurs for that type in a concurrent program. Tasks are racing

to be scheduled when a resource becomes free, open alternatives

are racing to be selected when an alternative construct is

executed and entry calls are racing to be accepted when an

intertask communication occurs. To reflect each of these races,

race controls are subclassified as Priority Control, Preference

Control and Forerunner Control and are defined as follows:

Priority Control: The prioritization of tasks
for program level scheduling.

Preference Control: The prioritization of alternatives
for task level scheduling.

Forerunner Control: The prioritization of entry calls
for entry level scheduling.

9



In describing the difference between Availability Controls

and Race Controls, it is helpful to note that Availability

Controls determine what could be done next whereas Race Controls

determine what should be done next.

Race controls are primarily used to select an event from

available choices and to prioritize the events. The necessity

for race controls is crucial within real-time systems as real-

time systems rely heavily on the prioritization of events.

10



IV. THE TYPES OF RACE CONTROLS

1. Lack of Control

Lack of control means no control over the races. Control is

implemented as part of the compiler or runtime system. There

exists no language specification to control a race. A rule in

which an alternative is selected arbitrarily in a selective wait

is an example of lack of control.

Lack of control stands alone as a characteristic because it

in itself represents one complete type of scheduling possibility.

The characteristics to be discussed in the following subsections

imply some type of control and can be combined to form many

scheduling possibilities.

2. Implicit vs. Explicit Control

Race controls that are implicit are language specifications

that are handled exclusively by the scheduler. The language

specifies rules on how each race will be resolved and the

scheduler must conform to these rules to resolve each race. For

example, the language may specify that the entry queues must be

ordered on a FIFO basis. The scheduler must then be implemented

to satisfy this rule.

Race controls that are explicit are programmer

specifications. An explicit race control is handled exclusively

by the programmer through a mechanism that generates the desired

control. This simplifies the scheduler since any race control

handled explicitly does not need to be incorporated into the

scheduler. An example of explicit control is the implementation

11



of Priority Control in Ada. The pragma priority statement acts

as a directive to the compiler to set the priority of a task at a

fixed value.

There is a hierarchy of control from a lack of control to

implicit control to explicit control. Figure 2 illustrates this

with respect to the entry queue. As one moves through the

hierarchy, one gains more control over the environment producing

more predictable systems by transferring the responsibility of

control closer and closer to the user.

3. Static vs. Dynamic Control

Rac.. controls can be either static or dynamic. A static

race control fixes the priority of its entity (task, alternative,

or entry) at compile time and no change in the entity's priority

may occur at runtime. A dynamic race control allows the priority

of an entity to be modified at runtime.

Statically controlled races are easy to implement but they

Explicit Control
Programmer Specification

Example: Entry queue controlled by "by"
C construct in Concurrent C

M o
o n Implicit Control
r t Language Specification
e r Example: Entry queue handled in FIFO

0 order in Ada
1
Lack of Control

Compiler or Run-time system implementation
Example: Entry queue handled by an

arbitrary selection

Figure 2. Hierarchy of Control
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are not satisfactory for applications that must reflect volatile

or adaptable environments where priorities need to be constantly

changed. Therefore, static controls result in non-adaptive

scheduling policies whereas dynamic controls result in adaptive

scheduling policies. Real-time and hard-real time systems would

benefit from dynamic race controls.

4. Centralized vs. Distributed Control

Control may be characterized by being centralized or

distributed. The difference between these two forms of control

is the point at which the decision is made, in the scheduler or

in the program. Centralized control refers to the situation in

which the program has no control over what should be scheduled

next. There is no capability to directly resolve the races at

the program level. In this case a scheduler exists that

maintains exclusive control over all the races. The scheduler

resolves the races using known scheduling policies which may be

modified by monitoring events occurring in the system's

environment. Distributed control refers to the situation in

which the program has the capability to make decisions over what

should be scheduled next. The programmer has the means to embed

directives within the code to control the various races. Real-

time systems could benefit from distributed control since the

decision is made at the point of the race instead of passing

information on to the centralized scheduler as to how to resolve

the race.
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5. An Analysis of tho Control Types

The types of control discussed in the previous subsections

can now be combined to characterize various schedulers. First,

note that lack of control stands alone as a scheduling

possibility. All control decisions are left completely to the

compiler or runtime environment. This then leaves the eight

scheduler possibilities listed in Figure 3. For each

possibility, an example is given for its use in current

languages.

As mentioned above static control leads to non-adaptive

scheduling whereas dynamic control leads to adaptive scheduling.

Combining this property with centralized or distributed control,

schedulers are obtained with interesting characterizations. A

static (non-adaptive) centralized scheduler has its scheduling

policies fixed at runtime and races would be resolved by the

scheduler, whereas a static (non-adaptive) distributed scheduler

SCHWDULER TYPZS EXAMPLES

Implicit - Static - Centralized FIFO entry queues in Ada
Implicit - Static - Distributed Ordered Alternative (PRI ALT)

in Occam
Implicit - Dynamic - Centralized No Language Equivalent
Implicit - Dynamic - Distributed No Language Equivalent
Explicit - Static - Centralized Task Priority in Ada
Explicit - Static - Distributed Forerunner Control in

Concurrent C (by)
Explicit - Dynamic - Centralized Task Priority in Concurrent C
Explicit - Dynamic - Distributed No Language Equivalent*

Can be represented by the Explicit

Comprehensive Set of Race Controls

Figure 3. Eight Scheduler Possibilities
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allows the programmer to control the races but without any means

of modifying that control at runtime. A dynamic (adaptive)

centralized scheduler has the ability to change its scheduling

policies during execution. The dynamic centralized scheduler

would receive scheduling information from the executing program

through the runtime system. The scheduler would then adapt its

scheduling strategy to reflect the current state of the

environment. On the other hand a dynamic (adaptive) distributed

scheduler not only gives the programmer complete control of the

races but also allows the programmer to adapt to the scheduling

policy of the situation. Real-time reactive systems are enhanced

with the ability to adapt to the environment. The Explicit

Comprehensive Set of Race Controls is an example of a set of

language constructs that supports dynamic distributed control.

15



V. TRE CURRENT STATE OF RACE CONTROLS IN ADA

The current state of the race controls in Ada is as follows:

Priority Control
Ada has an explicit static priority control. Priority
is implemented as a pragma; that is, as a suggestion to
the compiler. Depending upon the compiler priority
control may or may not be implemented. When a task
type is defined and assigned a priority through the
PRIORITY pragma, every task created of the same type
will have the same priority. The scheduler schedules
tasks in the order of their priority. There is no
control for tasks that have equal priority.

Preference Control
Ada has no preference control. An arbitrary selection
is made among open alternatives in the selective wait.

Forerunner Control
Ada has an implicit static forerunner control. Entry
calls are serviced in a strictly FIFO manner.

Ada can be characterized as being weak and seriously lacking

in the area of race controls. The concept of priority is not

integrated consistently across all controls and there is no

flexibility in the use of race controls. Control is performed by

a static (non-adaptive) centralized scheduler. The result is

that real-time control is virtually impossible.

The classification of controls by levels (program, task, and

entry) in Section II gives a framework for understanding the

dynamics of trne Ada tasking model. Many of the problems and

deficiencies that occur in the tasking model can be directly

explained through the function of an individual race control or

through the interaction between the various race controls. This

classification scheme allows us to focus on each control as a

separate entity wi properties that affect the entire system in

which it exists.

16



Due to the need for more sophisticated race controls,

researchers and programmers have created Ada code workarounds to

simulate the race controls necessary for their applications.

Appendix B discusses methods for implementing dynamic priority

control, static preference control and forerunner control. All

of these simulations of the race controls have the common

property that the programmer ends up fighting the language

instead of taking advantage of it. The simulations of the race

controls in Ada demonstrates a need for a more consistent,

integrated approach to controlling races within Ada for real-time

applications. Two proposals that respond to these needs are

discussed in Sections VII and VIII.

17



VI. AN ANOMALY IN SCHEDULING ADA TASKS

One of the implications of scheduling real-time applications

is that a high priority task is in more risk to meet its deadline

than a low priority task E5]. One desires that the time that the

high priority task is blocked from execution be minimized.

Otherwise, urgent tasks may experience an unbounded delay at the

expense of a less urgent tasks. A phenomenon has surfaced in the

Ada tasking model whereby a low priority task is scheduled in

lieu of a high priority task and has been termed priority

inversion [4].

The intent here is not to claim that priority inversion has

been rediscovered but to identify the deficiencies in the Ada

tasking model design that caused the anomaly. Priority inversion

occurs as a result of conflicts between the race controls. The

interaction between race controls cause conflicts that cannot be

resolved by the scheduler. This is due to the inconsistent

definition of race controls in Ada: an explicit priority

control, a lack of preference control and an implicit forerunner

control. The Ada programmer should have the capacity to avoid

priority inversion. Priority inversion is minimized by

incorporating more deterministic race controls within the

scheduler. Solutions to limit priority inversion must include

scheduling controls that consider the interrelationships of the

individual race controls and are consistent in their application.

The Priority Inheritance Scheduler and the Explicit Comprehensive

Set of Race Controls offer two viable solutions to minimize the

18



effects of priority inversion. The main intent of the Priority

Inheritance Scheduler is to minimize priority inversion; whereas

the Explicit Comprehensive Set of Race Controls not only can

minimize priority inversion but also can be used to implement a

wide range of scheduling policies. Sections VII and VIII outline

these control proposals and their application to the control of

priority inversion. The following sections illustrate priority

inversion resulting from priority control conflicts, priority-

preference control conflicts, and priority-forerunner control

conflicts.

1. Priority Control Conflicts

Program level scheduling produces a conflict in control in

the following situation. Let three tasks TI, T2 and T3 have

priorities P1, P2 and P3; respectively, where P1 > P2 > P3. If

task Ti calls task T3 and T3 is not ready to accept the call,

then T1 is delayed while T3 executes at a lower priority. This

is acceptable since T1 requires T3's service. However, T1 can

now be further delayed if task T2 gains the processor since its

priority is higher than T3. Therefore, a lower priority task,

T2, is executing in favor of the higher priority task, Ti. This

is a conflict in the intent of priority control. In Ada, there

are no scheduling controls to prevent this situation. However,

by identifying the problem within the context of priority

control, it is clear that to resolve this anomaly, the system

must be able to change the priority of its communication partner

implicitly or explicitly. In this case, the priority of T3 needs

19



to be raised higher than T2 to prevent T2 from gaining the

processor.

2. The Priority Control - Preference Control Conflict

In Ada priority control is accomplished by the priority of

the tasks; whereas there is no preference control. This conflict

between program level scheduling and task level scheduling

mechanisms causes priority inversion to occur at the task level.

This results when an alternative with a lower priority entry call

is selected over an alternative with a higher priority entry

call. For example, suppose two tasks TI and T2, where T1 has

higher priority than T2, have called different entries of a task

T3 within the same selective wait construct. If the alternative

for which T2 is waiting gets selected first, then a lower

priority task is scheduled in favor of a higher priority task.

To eliminate this conflict, preference control must be consistent

in nature with priority control; that is, preference control must

exist at least in some form (static or dynamic) such that Ti is

selected over T2.

3. The Priority Control - Forerunner Control Conflict

In Ada forerunner control is a static mechanism implemented

by FIFO queues. The conflict between program level scheduling

and entry level scheduling causes priority inversion at the entry

level. lais occurs when a lower priority entry call is accepted

ove- a higher priority entry call to the same entry. Let task TI

h, a righer priority than task 2 and both are calling the same

20



entry of a task T3. If T2 has called the entry first, then it

precedes Ti in the entry queue. T2 will be selected for

rendezvous before Ti; therefore, a lower priority task is

scheduled in favor of a higher priority task. To eliminate this

conflict, forerunner control must be implemented in such a way as

to consider the priorities of the tasks waiting on the entry

queue.
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VII. TEZ SZI RACE CONTROL PROPOSAL FOR ADA

1. The Priority Inheritance Scheduler

Locke et al. (11] propose a Priority Inheritance Scheduler

for Ada which controls all races through the use of a non-

adaptive centralized scheduler. The Priority Inheritance

Scheduler is characterized by the notion that Ada task priorities

must be used whenever a choice is to be made within the tasking

model. The components of a priority inheritance scheduler are:

1. an explicit priority control,

2. an implicit preference control, and

3. an implicit forerunner control.

Priority control is effected through the implementation of

the priority inheritance protocol. The priority inheritance

protocol [151 specifies that the priority of a task will be

modified dynamically and implicitly to the greater of its own

priority or the priority of the highest priority task waiting for

it. The highest priority task is then selected for execution.

Note that priority in the priority inheritance protocol is

explicitly static but implicitly dynamic. The Ada 9X Working

Group requirement (LI62) [12] for scheduling control is stronger

since it requires a dynamic explicit priority control.

Preference control is accomplished implicitly by selecting

the alternative with the highest priority entry call in its

queue.

Forerunner control is accomplished implicitly by handling

22



entry queues in the order of the caller's priority.

The Priority Inheritance Scheduler exhibited an average

performance enhancement of about 33-50% over a standard Ada

runtime scheduler in meeting deadlines. This integrated approach

to race controls creates systems which are more predictable,

portable and allow for reuse and easier maintenance.

The advantage of the Priority Inheritance Scheduler is that

the user does not have to know about the detailed internal

implementation. It is a simple tool to use. If the runtime

systems supplies both the standard Ada scheduler and the Priority

Inheritance Scheduler, the programmer has to decide which

scheduler to enable. When the Priority Inheritance Scheduler is

enabled, race controls are resolved as described above. When the

standard Ada scheduler is enabled, race controls are resolved in

accordance with the existing Ada rules.

The priority inheritance protocol is characterized as

supportive of implicit control which is too rigid and not

flexible enough for ongoing changing environments. There are

limitations to the use of a Priority Inheritance Scheduler. It

is tailored to a very restricted and specific need and thus is

not general enough or versatile enough to deal with other

scheduling algorithms. For example, the scheduler will only

account for the relative priority of a task which does not always

correlate to its criticality. When using the classic Rate

Monotonic Scheduling Algorithm [10], the priorities are assigned

with respect to the length of the task period and not with
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respect to task criticality to ensure that each task meets its

deadline. The priority inheritance protocol can only be

successfully implemented on a uniprocessor system. Hence

programs written under the assumption of a uniprocessor are not

portable to multiprocessors. In addition the priority

inheritance protocol only accounts for modifying the priorities

of called tasks. Therefore, priority inheritance could not be

enforced when a high priority task is waiting for an entry call.

In languages such as Ada that have an asymmetric naming

convention, it is impossible to determine the identity of a

potential caller.

2. Controlling Priority Inversion Via

The Priority Inheritance Scheduler

The Priority Inheritance Scheduler implicitly controls all

races through non-adaptive centralized scheduling. This

integrated approach to race controls solves the problem of

priority inversion.

Consider the control conflicts of Section VI using the

Priority Inheritance Scheduler. For the priority control

conflict (VI.l.), the priority inheritance protocol solves the

problem. Task T3 would inherit the priority of task T1 and

execute at that priority. T1 would only be delayed for the time

of executing T3. Task T2 would not be scheduled since its

priority would be less than T3's inherited priority. The

priority inversion caused by the priority-preference control

conflict (VI.2.) is eliminated due to the fact that the implicit
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preference control will select the alternative with the highest

priority pending entry call. The priority-forerunner control

conflict is resolved by the implicit forerunner control

specifying that the entry call of the highest priority is

selected.
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VIII. A RACE CONTROL PROPOSAL FOR ADA

1. The Explicit Comprehensive Set of Race Controls

The Explicit Comprehensive Set of Race Controls [6] ic the

most versatile integrated set of race controls that can be

applied to scheduling control. They represent a scheduling

mechanism that is explicit, dynamic and distributed, well-suited

for real-time reactive systems. This proposal is characterized

by the notion that there should be a mechanism to explicitly

control the choice whenever a choice is to be made within the Ada

tasking model. The components of the Explicit Comprehensive Set

of Race Controls are:

1. an explicit priority control, that includes
the ability to assign and modify task
priorities at runtime,

2. an explicit preference control, that allows
the programmer to prioritize alternatives and
alter the preference of alternatives at run
time, and

3. an explicit forerunner control, that allows
the programmer to prioritize entry calls not
only by the priority of the caller but also by
other parameters supplied by the caller.

These controls exist in the form of language constructs that can

be applied anywhere within a program system. The Explicit

Comprehensive Set of Race Controls provides an integrated,

consistent approach to the resolution of all races.

Possible Ada language constructs expressing explicit

preference control and explicit forerunner control are shown in

Figure 4. riority, preference and forerunner control are

incorpot as part of task specification to enforce the issue
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type PRIORITIES is (TRIVIAL, IMPORTANT, CRUCIAL);
type PREFERENCES is (LOW, MEDIUM, HIGH);
type FORERUNNER is (SHORTRANGE, MEDIUMRANGE, LONGRANGE);

task STRATEGIC DEFENSE priority CRUCIAL is
prefer HIGH: entry ATTACK(DISTANCE: in FORERUNNER)

by (DISTANCE);
prefer MEDIUM: entry OFFENSE(...);
prefer LOW: entry DANGER(...) by (priority);

end STRATEGICDEFENSE;

Figure 4. Possible Priority, Preference and Forerunner Controls

that scheduling should be designed into an application. Task

STRATEGICDEFENSE is assigned CRUCIAL priority for priority

control. Other tasks within the program would be assigned a

priority with respect to the desired scheduling policy at the

program level. The key words "prefer" and "by" are used to

implement preference control and forerunner control respectively.

Within the task STRATEGICDEFENSE, an ATTACK message is accepted

before any other messages regardless of the priority of callers

to entry OFFENSE and entry DANGER. Calls to entry DANGER are

accepted with the least preference. From all pending calls to

entry ATTACK the call with the shortest distance is accepted

first. DISTANCE is a parameter passed by the callers. Calls to

the entry DANGER are accepted by the priority of the callers.

Calls to the entry OFFENSE are accepted in standard FIFO order.

The Explicit Comprehensive Set of Race Controls represents a

powerful scheduling mechanism that provides expressiveness,

generality and portability (reusability) for real-time software

development. Software system designers desire programs that

accurately represent the problem domain. Programs can be

27



developed more effectively when language structures are available

that facilitate the transformation from the problem domain to the

solution domain. This conforms to the software design principle

[9] that minimizing the linguistic difference between the

specification of the problem and the computer language not only

minimizes the economics of the programming process, it also

increases the reliability of the software that is written. The

resultant programs are portable and independent of the runtime

system since the controls are language features. In addition the

Explicit Comprehensive Set of Race Controls shield the programmer

from implementation details.

The Explicit Comprehensive Set of Race Controls can De used

to realize a wide range of scheduling algorithms. Systems

programmed in a language equipped with these controls are as

predictable as the external environment. Control can be tailored

to the specification of the application. The programmer may

either choose to control a specific occurrence of a race or

allow the scheduler to control the race.

Implicit centralized scheduling mechanisms, such as the

Priority Inheritance Scheduler, can be built within the runtime

system based upon scheduling rules dependent upon the type of

system desired. The problem with these scheduling mechanisms is

that programs can only be produced to conform with the targeted

execution environment. The scope of application is limited since

the application is dependent upon the execution environment.
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2. Controlling Priority Inversion Via

the Explicit Comprehensive Set of Race Controls

The Explicit Comprehensive Set of Race Controls have the

power to avoid the problem of priority inversion and can be used

to realize any scheduling algorithm. The effects of priority

inversion can be limited satisfactorily by applying the Explicit

Comprehensive Set of Race Controls according to the following

procedures:

(1) A high priority task waiting for a rendezvous should
explicitly request that a potential partner inherit its priority.
This is a stronger than the priority inheritance scheduler as a
high priority task waiting on an entry call may explicitly assign
its priority to a potential caller. Due to the asymmetric naming
convention in Ada, a potential caller is unknown to a priority
inheritance scheduler. The capacity for explicit priority
controls enables the inheritance of priority and eliminates
control conflicts at the program level.

(2) The preference of an alternative must correlate to the
priority of the pending call: the higher the priority of the
pending call, the higher the preference of the alternative. As a
result the alternative selected will be the one on which the
waiting caller has the highest priority. The capacity for
explicit preference control eliminates priority-preference
conflicts at the task level.

(3) The forerunner control must select from the entry queue
the task with the highest priority. The capacity for explicit
forerunner control eliminates priority-forerunner conflicts at
the entry level.
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X. CONCLUSION

Ada represents a rich and powerful tasking model. However,

nondeterminism exists within this model at the program level, the

task level and the entry level creating an environment which is

not conducive for real-time concurrent applications. Identifying

nondeterminism by level suggests a classification scheme for

scheduling controls of which Race Controls are the focus of this

report. Race controls are important since their proper

application enhances real-time programming. Race controls have

been classified as Priority Control, Preference Control and

Forerunner Control. Ada is weak and seriously lacking in the

area of race controls. Simulations of the race controls in Ada

demonstrate that the race controls are cumbersome for the

programmer to apply within Ada applications. In addition, the

phenomenon of priority inversion in Ada is shown to exist due to

a conflict between the race controls.

Proposals to improve race controls in Ada include a priority

inheritance scheduler and the Explicit Comprehensive Set of Race

Controls. The Explicit Comprehensive Set of Race Controls

include language constructs to explicitly control each race.

This proposal is characterized by the notion that there should be

a mechanism to explicitly control the choice whenever a choice is

to be made. Possible language constructs for expressing

preference control and forerunner control are demonstrated. The

explicit set of race controls provides an integrated, consistent

approach to resolution of all races. They are powerful enough to

30



realize a wide range of scheduling algorithms and to avoid the

problem of priority inversion.
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XIII. APPENDIX B: IMPLEMENTING THE RACE CONTROLS IN ADA

The following subsections give methods programmers and

researchers have used to simulate race controls in Ada.

1. Priority Control

- Ada lacks a dynamic priority control. Ted Baker in a memo

to Tzilla Elrad outlined two methods to obtain dynamic priority

control. One method involves the modification of the runtime

system since priorities are already modified internally during

rendezvous. One finds where the priority is stored in the task

control block and allow it to be modified. This may involve the

deletion of the task from the queue and reinserting it. The

other method accomplishes dynamic priority control by creating a

collection of enabling tasks of different priority levels. Tasks

obtain their priority by rendezvousing with the appropriate

enabling task. To change priority, the task must leave the

accept statement and accept a call from another enabling task of

a different priority. Neither solutions provide priority control

that is useful and flexible enough for real-time applications.

It is his opinion that anyone who desires dynamic priority in Ada

either has the compiler vendor provide it or goes around Ada

tasking completely.

2. Preference Control

Two methods are commonly used to simulate static preference

control in Ada as illustrated in Figure 5. The first (Figure 5A)

uses the attribute COUNT to prefer the entry calls in the order:
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SERVICE1 (highest), SERVICE2, SERVICE3, and SERVICE4 (lowest).

This preference simulation could fail when a calling task is

aborted or the call timed out after the attribute COUNT is

evaluated but before the rendezvous has started. The result

would be an indefinite waiting period until another call of the

same type occurs thus blocking all other calls. The second

method (Figure 5B) makes use of nested select statements to

enforce preference. The preference of entry calls is the same as

in the previous case but in this case the preference simulation

could result in costly and inefficient busy waiting if no current

entry call exists. Preference also may not be given if a call to

a higher preference alternative occurs after the alternative has

been bypassed. Both solutions fail from a software engineering

standpoint. They are unreadable and not easily modifiable if the

preferences were to be changed.

3. Forerunner Control

Forerunner control can be simulated by using a family of

entries (3] if the values within the range of priorities on which

the entry calls are ordered are discrete and finite. For very

small ranges, preference control using the attribute COUNT

prioritizes the entry calls (Figure 6). This method suffers

from the same drawbacks as discussed for the preference control

solution using COUNT. As the size of the range increases, this

technique quickly becomes unmanageable. For larger ranges, a

loop can be used to run through all possible values within the

family. This method could result in wasteful polling if the
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(A) select

when Bi
==> accept SERVICE1(..) do S1 end SERVICE1;

or
when B2 and (not(Bl) or SERVICE1'COUNT = 0)
==> accept SERVICE2(..) do S2 end SERVICE2;

or
when B3 and (not(Bi) or SERVICE1'COUNT = 0)

and (not(B2) or SERVICE2'COUNT = 0)
-=> accept SERVICE3(..) do S3 end SERVICE3;

or
when B4 and (not(BI) or SERVICE1'COUNT = 0)

and (not(B2) or SERVICE2'COUNT = 0)
and (not(B3) or SERVICE3'COUNT = 0)

==> accept SERVICE4(..) do S4 end SERVICE4;
end select;

(B) loop
select
when B1

==> accept SERVICE1(..) do Si end SERVICE1;
exit;

else
select

when B2
==> accept SERVICE2(..) do S2 end SERVICE2;

exit;
else

select
when B3 ==>

accept SERVICE3(..) do S3 end SERVICE3;
exit;

else
select
when B4 ==> accept SERVICE4(..)

do S4 end SERVICE4;
exit;

else
null;

end select;
end select;

end select;
end select;

end loop;

Figure 5. Simulation of Preference Control in Ada.
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entry queues are all empty. A reliable method that can be used

for large ranges requires the use of two rendezvous (Figure 7).

The first rendezvous (a call to ANNOUNCE) records that a task

desires the service, passing its priority. The second rendezvous

(a call to REQUIRE) initiates the service in priority order among

the calling task requesting that service. This method also

requires preference control so that a call to announce is

preferred over a call for the service. Gehani and Roome offer a

similar solution in [7].

There are assorted problems with this method. If there is

an abortion of a client task between the call to ANNOUNCE and the

acceptance of REQUIRE, the program could be delayed

indefinitely. To avoid this, an anonymous agent task should be

type APRIORITY is (HIGH, MEDIUM, LOW);

task SERVER is
entry REQUEST (APRIORITY) (...);

end SERVER;

task body SERVER is
begin

loop
select

accept REQUEST (HIGH) (...) do ... end REQUEST;
or
when REQUEST(HIGH)'COUNT = 0 =>

accept REQUEST (MEDIUM) (...) do ... end REQUEST;
or
when REQUEST(HIGH)'COUNT = 0 and

REQUEST(MEDIUM)'COUNT = 0 =>
accept REQUEST(LOW) (...) do ... end REQUEST;

end select;
end loop;

end SERVER;

Figure 6. Simulation of Forerunner Control in Ada
using Preference Control (Very Small Ranges)
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created by the interface procedure for each client task to make

the calls to ANNOUNCE and REQUIRE on behalf of the client

process. This method also requires a double rendezvous which

leads to additional rendezvous overhead.

Sha and Goodenough (14] propose a method to handle entry

calls in priority order by using a coding style that prevents

queues from having more than one task. To accomplish this,

though, a runtime system is needed that suspends tasks that call

a server task already in a rendezvous. When the rendezvous is

complete, the highest priority suspended task is activated and

the entry call for that task is initiated.
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generic
type ELEMENT is (<>);

a. package TUPLE is
function HIGHEST return ELEMENT;
procedure ADD(E: ELEMENT);
procedure REMOVE (E: ELEMENT);
function NOTEMPTY return BOOLEAN;

end TUPLE;

with TUPLE;
package RESOURCE is

type SOME PRIORITY is new INTEGER range 0..999;
procedure--REQUEST(P: SOMEPRIORITY; ...

end RESOURCE;

package body RESOURCE is
task SERVER is

entry ANNOUNCE(P: SOME PRIORITY);
entry REQUIRE(SOMEPRIORITY) (...);

end SERVER;

procedure REQUEST(P: SOMEPRIORITY; ...
begin

SERVER.ANNOUNCE (P);
SERVER.REQUIRE(P) ( ...

end REQUEST;

package BIN is new TUPLE(ELEMENT => SOMEPRIORITY);

task body SERVER is
Po: SOMEPRIORITY;

begin
loop
select

ANNOUNCE(P: SOMEPRIORITY) do
BIN.ADD (P);

end ANNOUNCE;
or
terminat%

end select;
while BIN.NOT EMPTY loop

Po := BIN.HIGHEST;
select
accept ANNOUNCE(P: SOME-PRIORITY) do

BIN.ADD (P);
end ANNOUNCE;

or
when ANNOUNCE'COUNT = 0 =>

accept REQUIRE(Po) ( ... ) do

end REQUIRE;
BIN.REMOVE (Po);

end select;
end loop;

end loop;
end SERVER;

end RESOURCE;

Figure 7. Simulation of Forerunner Control in Ada.
(Very Large Ranges)


