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REAL-TIME CONCENTRATION MONITORING
OF LARGE AERODYNAMIC DIAMETER FIBER AEROSOLS
USING THE GEOMETRIC OPTIC INVERSION TECHNIQUE

1. INTRODUCTION

Characterization of screening aerosol materials often requires dissemina-
tion of the material into a test chamber and measurement of its screening efficiency
at various wavelengths of radiant energy. One measure of the aerosol screening effi-
ciency is the extinction coefficient, which requires knowledge of the material concen-
tration in the chamber. This is a relatively straightforward measurement for small
aerodynamic diameter particles, involving mass aerosol sampling onto a weighed
filter. However, attempts to measure the concentration of large aerodynamic diam-
eter particles often results in a lower-than-actual concentration measurement, and
therefore, a higher-than-actual extinction coefficient. This report presents an alter-
nate method for measuring concentration based on transmissometry rather than
filter sampling. This method is especially useful with large aerodynamic diameter
particles which are monodisperse. Commercially available chopped fibers (flock)
have a relatively large aerodynamic diameter and represent the only readily avail-
able aerosol that is monodisperse.

Calculation of the extinction coefficient (a) involves determination of
three parameters: transmittance (T), pathlength (L), and concentration (C).
Transmittance is the ratio of intensity through an aerosol cloud to the intensity
when no aerosol is present. This is a straightforward, continuous, real-time meas-
urement at any wavelength of incident energy. Pathlength is the distance that the
incident beam traverses the aerosol cloud. Aerosol concentration (C) is calculated
from four measured quantities; filter weight (m;), filter plus aerosol loading weight
(my), air volume flow rate through the filter ( V), and sampling time ().

m,—mf

C = ;
Vit

(1)

Measurement of the concentration by a filter sample is not very accurate
when characterizing large particles. The difficulties involved with measuring aerosol
concentration of large aerodynamic diameter particles are twofold. One difficulty
arises in the collection of particles onto a filter when the particles are too large to
follow the streamlines into the sampling mechanism. The momentum of such parti-
cles in the aerosol cause them to avoid being sampled. The other difficulty is caused
by the particles failing to remain on the sampling filter. They either bounce off dur-
ing sampling, fall off, or are blown off after sampling is concluded. Both difficulties
result in a lower sampled mass of material, and, therefore, a lower concentration
calculation. When this low concentration is inserted into the equation for extinc-
tion coefficient, the resulting extinction calculation is erroneously high.

2. APPROACH

Fortunately, there is an alternative method to obtain aerosol concentra-
tion; however, it is limited to particles with known dimensions, which are much
greater than the radiation wavelength. Under this condition, the extinction cross
section is dependent only on the geometrical cross section of the particle and not on
the optical properties of the material. This method is known as the geometric optic




inversion (GOI) technique. Simply stated, it computes the extinction cross section
at short wavelengths using geometric optics and combines this with a measure of
transmittance at the short wavelengths and pathlengths to compute concentration,
which is then used to compute the extinction cross section at the longer
wavelengths.

There are three conditions that must be adhered to when using the
geometric optic inversion technique. First, the incident transmissometer energy
must have a wavelength that is considerably shorter than the radius of the aerosol
particle.l Second, the particles in the cloud must be randomly oriented. Finally,
the particles must be monodisperse, that is, no distribution in size of primary parti-
cles and no agglomerates. If the size, shape, and density distribution of a polydisper-
sion of primary particles and agglomerates were accurately characterized, the calcu-
lations could be adapted, but this is never the case in practice.

The first condition for using the geometric optics inversion technique can
be met by using a 0.63 u HeNe laser as the illuminating source with a mono-
disperse fiber aerosol with a diameter >3 u. This corresgonds to aerodynamic diam-
eters >15 u for materials with densities around 2 g/cm®.2 Random orientation can
be expected in a chamber that has stirring fans to create a constant and turbulent
movement of air within the chamber. Random orientation is demonstrated when
vertical and horizontal, polarized, microwave-transmittance measurements are
equal. Based on scanning electron microscope data of cloud samples, clumping of
particles can be ignored if the start of data acquisition is delayed for sufficient time
for the clumps to fall out of the cloud.

3. DERIVATION OF EQUATIONS

The equations required for this technique will now be derived. The
extinction coefficient (&) can be defined as the electromagnetic extinction cross sec-
tion (Cg) per unit mass (M) of aerosol.

a=— (2)

The extinction cross section may be written in terms of the geometric cross section
(G) and extinction efficiency factor (Q) of the particle.3

Crp = GQ (3)

Therefore,

a=<2 (1)




For a randomly oriented convex particle, the average projected area (E) depends
only on the surface area (5)

Ql
|t

()

V-

When the particle d1mensnons are much greater than the measuring wavelength,
geometric optics states ! that

Q=2 (6)

By definition, particle mass is related to particle density (p) and volume ( V) by

M=pV (7)

thus a averaged over a randomly oriented particle ensemble becomes

(8)

The surface area-to-volume ratio of a fiber having length (/) and radius

(r) is

== ()

Thus, the extinction coefficient for a monodisperse randomly oriented ensemble of
fibers in the geometric optics limit is 4

(10)

Rl
3|

If density is expressed in grams per cubic centimeter, and r in microns,
then the extinction coefficient is given in square meters per gram.




The equation relating C, L, T, and « follows:

1
In|—
T

CL

(11)
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We can now calculate C in grams per cubic meter by substitution of the & derived
earlier for the geometric optic region and by using the following set of convenient
units:

T 0.63

p{ 93] r{microns] In
g }_ )

L[m]

where T¢3 is T at 0.63 u wavelength.

This value of the concentration can now be used, along with transmis-
sometry data, to calculate the extinction coefficient at longer wavelengths outside of
the geometric optics region by substitution into the equation relating a to C, L, and

L l
0.63 1N T,

(13)

R
>
I
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0.63

where T, and L, are now the transmittance and pathlength at a longer
wavelength. The pathlengths of the laser and longer wavelength beams are
included in the above equation because it is often necessary to change pathlengths
as a function of wavelength to stay within the transissometer dynamic range. If the
pathlengths are the same, then the pathlength ratio drops out of the equation.
When we satisfy the three conditions mentioned earlier and use the geometric optic
inversion, we bypass the need for a difficult mass aerosol filter sample.

Large aerodynamic diameter fibers do not normally attenuate well in the
visible region of the spectrum. When measuring the laser transmission through an
aerosol cloud of high-aspect-ratio particles, it will help considerably if the laser
beam passes through the cloud more than once. This can be effected with mirrors.
Every pass of the beam through the cloud results in additional transmission loss but
has the effect of increasing the signal-to-noise ratio ot the laser detector output. Of
course, the additional pathlength of the beam must be taken into account when cal-
culating the concentration.

10




4. EXPERIMENTAL VERIFICATION

Attempts have been made to correlate the concentration of large aero-
dynamic diameter fibers, as calculated by the GOI method, with other means of
concentration measurement, with hopes to establish an absolute method. One series
of tests used a coated screen on top of a horizontal filter sampler. Fibers striking the
screen stuck to it, and both the screen and filter were weighed before and after the
test. Comparison of the filter data with the geometric optic inversion data showed
that the GOI concentration was about 1.3 times the coated screen/filter concentra-
tion.

Another technique for measuring the concentration was to use a thimble
filter, which is a long tubular filter that traps sampled material on it and prevents it
from falling off the filter. A comparison of the data collected is shown in Table 1.
The filter concentration (C) is calculated using Equation (1). The GOI concentra-
tion (Cgoy) is calculated by using the transmittance {T(g3) averaged over the
duration of each filter sample and Equation g12). Using T3 as a real-time indica-
tor, Cgo; was maintained around 100 mg/m*®. The filter inlet opening is 15/16 in.,
and the volumetric flow rates ( V) through the thimble filter are listed. The ratio of
Cy to Cgoy is shown for each sample flow rate.

. Table 1
| 4 (LPM) Ratio of Cf/ CGOI
30 .75
40 .84
50 .90
60 91
70 .86
80 .79
90 71

Table 1. Concentration Ratio Versus Sampling Flow Rate

The data from Table 1 is plotted below (Figure 1).
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Figure 1. Plot of Concentration Ratio Versus Sampling Flow Rate
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Table 1 and Figure 1 show that, at a sample flow rate between 50 and
60 liters per minute (LPM), the ratio of filter concentration to GOl-calculated con-
centration is around 90%. In other words, the GOI concentration is 1.1 times the
filter concentration at optimum sampling flow rates. The change in the ratio versus
flow rate shown in Table 1 and Figure 1 reflects the performance of the thimble
filter, which appears to be sampling-velocity dependent. However, the closeness of
the two concentrations at 60 LPM sampling flow rate, within 10%, indicates that
the GOI technique is a good concentration approximation. The technique appears
to be a good solution to a difficult sampling problem with the advantage of being a
real-time measurement. The GOI method is considerably faster and easier, which
combined with its close agreement to the filter technique (at optimum sampling
velocity) justifies its use for this special case of large particles. Future work will be

directed at determining the basis for the concentration offset between the two tech-
niques.
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