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PREFACE

The Fourth International Conference on Numerical Ship
Hydrodynamics was held in Washington, D.C., U.S.A., on 24-27 September
1985 at the National Academy of Sciences. The Conference was spon-
sored jointly by the David W. Taylor Naval Ship Research and
Development Center, The Naval Studies Board of the National Research
Council, and the Office of Naval Research.

As in the three previous Conferences on Numerical Ship
Hydrodynamics, the majority of the papers, presented in the first five
sessions, dealt with seakeeping or wave resistance problems. The
remaining two sessions dealt with maneuvering of submerged bodies,
body geometry and viscous flows on hulls and propeller blades. The
papers were of high quality and the opportunities for discussion, dur-
ing and outside of the formal sessions, were numerous. It was partic-
ularly gratifying to see an increase in the number of papers which
carefully investigated numerical accuracy, convergence and grid inde-
pendence of solutions.

The success of the Conference was due to the collective efforts of
many individuals. Special thanks go to Mrs. Joan McCoy of DTNSRDC, who
served as Secretary to the Conference, for her dedicated assistance
with most aspects of the Conference, and to her coworker Mrs. Ruth
McClair. In addition we wish to thank Ms. Elizabeth Lucks and Ms.
Mary Gordon of the Naval Studies Board for their invaluable and expert
help in making all arrangements for the meeting site and hotel reser-
vations for Conference participants.
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WELCOMING ADDRESS

Alan Powell

Technical Director. David Taylor Naval Ship R&D Center

On behalf of the David Taylor Naval Ship R&D Center it is a great pleasure
for me to join with the Naval Studies Board of the National Research Council and
the Office of Naval Research ",, welcoming all of you to Washington and to the
Fourth International Conference on Numerical Ship Hydrodynamics.

Thirty-five papers will be presented over the next three and one half days.
More than 150 participants are attending the Conference representing fifteen
countries: Austral'a, Canada, China, Denmark, Finland, France, Germany, Italy,
Japan, the Netherlands, Norway, the Soviet Union, Spain, the United Kingdom and the
United States. It is truly an international Conference!

This is the fourth Conference in ten years, the first two having been held in
the United States in 1975 and 1977 and the third in France in 1981. Each has
left its special mark in promoting wider communication among experts in ship
hydrodynamics and numerical mathematics. Each has been comprised of a diverse
collection of high-quality papers. As in the past Conferences, the mejority of
papers in the present Conference deal with free-surface flow problems associated
with ship wavemaking and ship motions in waves. While these topics, together
wv.h cavitation, are unique to ship hydrodynamics, other important topics repre-
se ,ted in both the present ind past conferences include boundary-layer and vor-

, lnwq and specification of geometry.

Tnese are e;'ting times for us. There are those among us who started off

with mechanical desk top calculators. The solutions we will hear about in this
Conference would have been beyond belief. Those with their career ahead of them
accept these things without question, They accept satellites and their com-
puter control just as we accepted trains and their mechanical signals. A whole
new discipline has arisen. We might give some thought to the future as far ahead
as the mechanical calculator is behind us when we simply mechanized our hand
calculations. Will the complex research program of today become transformed into
user-friendly versions for the run-of-the-mill engineer? Probably so. Will the
really tough hydrodynamics problems be solvtd? Probably so.

But more than numerical finesse will be needed. The demand far more
knowledge about the physics of fluids will become insistent, One obvious area
will be the physics of cavitation and the bubbles of breaking waves and wakes.
This emphasizes that a sophisticated numerical solution and their hypnotizing
contours do not convey an understanding of the mechanism involved. Only the
skilled interpreter will see the message. Therefore will not the need for the
type of understanding that comes from analytical methods become even greater?
And for physical experiments to match numerical ones? And for numerical experi-
ments to test new hypotheses, which express the essence of a complex phenomenon,
or to provide new insights which are fundamentally impossiule to do in the real
world, such as involve ship flow?



For the full benefits to be gleaned for the benefits of mankind, the various
communities need to have a symbiotic, synergistic relationship: the ccmputa-
tional scientist, analytical mathematician and physicist and the physical
experimenters.

The ship hydrodynamic community, which you so ably represent, is a leader in
this respect, and therefore I particularly wish you continued success and a
prosperous and technically rich future as well as a rewarding conference.

Finally I would like to express our gratitude to the National Academy of
Sciences for hostino the Conference in this lovely auditorium 3nd to the Naval
Studies Board of the National Research Council, and the Office of Neval
research for joining once again with the Center in sponsoring this Conference.
I hope that your stay in Washington will be rewarding both tcchnically and
socially. Ladies and gentlemen, welcome!
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LNEAR SEAKEEPING
AT FORWARD SPEED

Session Chairman
J.V. Wehausen
University of Cr~iifornia
Berkeley, CA, U.S.A.



THE EVALUATION OF FREE-SURFACE GREEN FUNCTIONS

By J. N. Newman
Dept. of Ocean Engineering

Mageachusetta Institute of Technology
Cambridge, MA 02139

Summary element methods, matched boundary-integral
solutions, and slender-body theories based on

Computational methods are described for matched asymptotics, utilize the sala Green
evaluating the source potential, and its functions (or closely-related potentials such
derivatives, in the presence of a linearized as "wavemaker" solutions) to describe the flow
free surface. The emphasis is on the use of in an exterior domain away from the body. The
series expansions, rational-fraction approxi- hybrid or matched boundary-integral techniques
mations, and multi-dimensional polynomial ap- can be extended to the analysis of nonlinear
proxivstions, as opposed to conventional un- numerical solutions, provided the effects of
merical integration. Appropriate nondimen- nonlinearity are confined to a finite domain;
sional source and field-point coordinates are in this case a linear free-surface Green func-
used to reduce the number of independent vari- tido may be used to close the solution in the
ables, and different algorithms are used in complementary exterior region [2).
complementary domains where they are most ef-
ficient. With sufficient effort devoted to The complexity of free-surface Green func-
the development of these algorithms, boundary- tions has impeded their use, and has encour-
integral methods can be applied to linear aged the development of alternative proce-
free-surface problems with little additional dures. Examples of the latter are finite-
computational cost compared to the analagous element methods, and boundary-integral methods
problems without a free surface, based on the elementary "Rankine" Green func-

tion, vhere the fluid domain is regarded ai
Specific examples which are treated include finite or where a nuimoricas radiation coudi-

the two-dimensional oscillatory source in in- tiod is employed. The principal drawback of
finite depth, the three-dimensional oscilla- these approaches is that a relatively large
tory source in infinite and finite depth, and computa. ional domain must be accepted in ex-
the three-ditensional transient source in in- change for the oinplicity of avoiding the
finite depth. A description is given of a free-surface Green function.
special transient Green function Gpplicable to
the axisyvi.etric exterior domain in a matching The mAthematical complexity of free-surface
approach, sod to preliminary work on the Green functions should not be regarded as A
steady-state three-dimensional Green function reavon for avoiding their use, but sa a
witb forward speed. chall"-te in the context of numerical anal-

ysis. liven an appropriate library of sub-
1. Inttoduction routines, the nuaerical ship hydrodynamicist

should be just ea willing to use a free-
The Green function, or *ource potential, is surface Green function as its sizipler Rankine

fundamental to most snalyzicsa descriptions of counterpart. In practice, thin ideal state
ileetiag or submerged bodied in an ideal requires extensive work, lut the effnrt is
fluid. Appropriate formulae for this function justified by the fundavental role of Green
are well knowm [11 in various cases involving functions and by the freqquency of their evalu-
a linearied free surface, and a fluid domain ation in practical computations.
which is othervise unbound*d except (option-
ally) by a fized horitontal bottom at a finite The development of appropriate subroutines
deptb b beneatb tbhe fret surface. for the free-trrface Greet functions is & di-

verse tork. If attention is reetricted tu the
The use of the free-,urface Green function coAventiunal point-source beneath a free our-

is associated primarily vith bournary-integral face, we must distinguish between two and
methods, ineluding th. special case of thin- three dimensions, finite and infinite depth,
ship theory, and also vith the coontruction of and various time-dependences including (1)
solutions based on multipole expaetione of oscillatory motion, (2) steady translation,
singularities locate in the interior of the (3) combined osci~latory motion with steady
body. Other tecbniques sucb as hybrid finite- tranalation, and (4ý transient motion witb the

4



source strength described by a step-function integral formulation, for example, a large

or delta-function. From this list alone there system of simultaneous equations must be

are 16 cases to be studied, solved by algebra after using the G:een
function and its derivatives to evaluate the

Nor will the list above satisfy every need. coefficient matrix and right-hand-side. Sev-

For example, in numerical techniques where the eral decimals may be lost in the solution ii

free-surface Green function is employed on a the system is large, especially in the vici-

matching boundary, maximum efficiency is nity of the irregular frequencies.

achieved by. choosing a special Green function
which satisfies an appropriate boundary condi- In using a conventional computing system

tion on that boundary. (The "wavemaker" solu- with single-precision floating-point arith-

tion for an oscillatory vertical wall, or a metic performed to six or seven decimals, it

vertical axisysmetric cylinder, is a closely may be appropriate to seek an absolute accur-

related expression.) Generally this will imply acy of 6D in computations of the Green func-

a more complicated analytic expression for the tion. It is obviously desirable to employ al-

Green function, but a restricted computational gorithms which are sufficiently well condi-

domain in which its values are required. tioned to achieve this level of accuracy with-
out special precautions which increase the

The classical representation of a free- computing time, such as the use of double-

surface Green function is in the form of a precision arithmetic. (An example will be

Fourier integral over the appropriate wave- described in Section 4 where, in the absence

number space. An obvious computational tech- of more extensive analysis, double precision

nique is to evaluate these integrals directly is required.) This concern is less important
by numerical quadrature. More efficient algo- if a subroutine is written specifically for a

rithms can be developed by combining approaches system with a more accurate single-precision

such as arithmetic, such as the CDC or Cray machines.

1. Eigenfunction expansions This paper describes several computational
2. Power-series expansions approaches for the evaluation of free-surface
3. Asymptotic expansions Green functions. Complete algorithms will be
4. Continued fractions described for four of the oixteen point

5. Multidimensional polynomial approximations sources enumerated above, and for one matching
boundary. Collectively these represent only a

This list is arranged, generally speaking, in partial solutior to the overell problem, but

increasing order of analytical effort and this subset illustrtes the ranee of ap-

decreasing order of computational effort. proaches which ultimately may make a broad

Given this conflicting state, some compromise variety of free-surface Green functions as

may be appropriate unless an "ultimate" sub- transparent to the user as the Rankine source

routine is desired. Examples in each category potential.

will be described below.
Section 2 describes algorithms for the re-

Useful analogies may De drawn with the de- latively simple Green function associated with

velopment of subroutines for the evaluation oscillatory motion in two dimensions and infi-

of special functions of a single variable, nite depth. This function is applicable to

such as the Bessel functions. There an exten- the strip theory of ship motions, and with

sive literature exist&, and a variety of cow- minor modifications also to rlte case of steady

putational methods aay be employed. The use translation with constant velocity. Roreover,

of Chebyshev expansions, economized polyno- this Green function is related directly -o the

misle, and rational-fraction approximations complex exponential integral, and thus is use-

are particularly effective. ful more generally as a constituent of three-
dimensional Greet. functions. (This connection

In developing subroutines one must consider is illustrated in Section 6.)

in advance the desired degree of accuracy, and
the generality. To illustrate the latter In Section 3 we reiew a comprehensive

point one must decide in advance if a conven- utiisate" approach for the three-dimensional

tional Btssel-function subroutine is to be oscillatory case, both in infinite Atd finite

used obly for one type of function asd order* depth; this work is described moi completely

or for several related functions to be coupu- in (3]. In Section 4 a more prqagtic approach

ted simultaueously. Similarly, in the context is described for the three-dimensional tran-

of the Green function, one must weigh the sir- sior.t point source in infinite depth, and in

plicity and efficiency of a subroutine which S-ction 5 a transient axis)metric solution is

only returns values of the function its.ef developed for effective use on a circular

against the greater utility and overall effi- matching boundary.

ciency if several derivatives are also evalu-
ated. In Section 0 preliminary studies are des-

cribed of the etealy translating tour%. in

It is especially difficult to estimate the three dimensions, i.e. the "wave-retistance"

necessary degree of accuracy, since this is Green function. The principal result is a

not easily related to the ultimate accuracy of pair of Chebyahev-polynomial expansions suit-
the overall solution. Ii the boundary- able for the 2valuation of the double integral

5



component when the source and field point have where the exponential integral is defined by
the same transverse coordinate. The latter ex-

eansions serve to illustrate the effectivenesI
of multi-dimensional polynorial approximations E (z) f e-ttdt (Jarg zI'•) (6)
in evaluating free-surface Green functions. In z
the concluding Section 7 a numerical compari-
son is shown between the steady-state moving and the complex variable z=-Y+iX has been
source and its transient counterpart set in introduced. The exponential integral is de-
motion for a finite period of time. fined with a branch-cut along the negative

real axis, and the point z lies in the second
2. Two-Dimensional Oscillatory Source quadrant of the complex plane. In the limit

where the horizontal coordinate X tends to
The Green function for oscillatory motion zero, z must approach the negative real axis

in two dimensions, with infinite depth, is from above. The product eZEl(z) is a slowly-
given by varying function, with typical magnitude of

G=[log(r/r )-2 j (k1)-1e-kY cos(kX)dk]cos(wt) order one.

o( The application of the complex exponential
-21e-cos X ain(wt) (i) integral to the two-dimensional Green function

is limited to the second quadrant of the plane

Here (r,r ) denote the radial distances from z=x+iy, since the vertical coordinates of the
the source or its image to the field point, w source and field point must be negative or
is the rad-an frequency of the motion, t is zero. However the same integral is of inter-
time, and the w.-ivenumber K= w2/g is used to est more generally, and in its application to
nondimensionalize the coordinates X,Y of the the steady translating three-dimensional
field point relative to the image source source potential, in Section 6, the complex
above the free surface. The integral in (1) exponential integral will also be required
is defined in the Cauchy piincipal-value for values of the argument z in the first qua-
sense. This expression is equivalent to drant. For this reason we consider here the
equation 13.31 of Wehausen and Laitone [1], more general case where z is in either of the
with the source strength set equal to 2 Y . first two quadrants. (Quadrants 3 and 4 may
Note that the nondimensional vertical coordi- be accommodated simply by considering the con-
nate Y is defined to be positive, or zero, and
the horizontal coordinate X may be assumed Jugate of all complex quantities.)

non-negative without loss of generality.
The simplest algorithm for evaluating, (S)

We consider only the computation of the is based on the ascending power series for F.,
integral in (1), which may be replaced by the as described in Section 2.1. However this
real part of the complex function approach is limited to small or moderate

values of the modulus of z, and it mtt be
Sy+±ix complemented by other algorithms when z is

F(X,Y) e- (k-i)- dK (2) large. Section 2.2 describes a method of
o evaluation based on the continued-fraction

expansion of EhI ; this is computationally ef-
One feature of this form is that the deriva- ficient when the modulus of z is moderate or
tives of (2) with respect to X and Y can b" large, except in a narrow domain where y is
evaluated from the same function: small and x takes on moderate negative values,

i.e. adjacent to the negative real axis. A
FX =-iF- i(Y-iX)-I (3) third expansion is derived in Section 2.3 to

cover the latter domain. The objective in each
FY= -F (Y-ixr1  case is to utilize a finite-series approxima-

(4) tion to (6) with a moderate number of tei, s,
which is not subject to serious loIs of accu-

Anticipati.ig the need for (3), both the rea1  racy due to round-off or cancellation eriorsz.
and imaginary parts of (2) will be considered Another desirable feature is to retain an
in the following analysis, arbitrary degree of accuracy in the computa-

tions, adjusting the number of terms in the
The integral (2) cau be reduced to a stan- finite series to suit the deaired precision.

dard f;zm invo'.ving the complex exponential
integral. l.or this purpose it is conv-!nient The sections which follow are abbreviated
to replace the priv:ipal-value integral first from an unpublished report (4) which also
by a cortour pussing above the poe, 4nd then contains a Table of the first term in (5), and
change the variable of integration in accord- a FORTRAN subroutine for its evaluation. (In
ance with the relation t-(k-l)(Y-iX). In this that reference z is restricted to the third
manner it follows that quadrant, and a different truncation of the

F C o ttld + nie-y+iX continued fraction is employed.)
-y+iX

"- ezE(z) + riez

6



2.1 Ascending Series 2.2 Continued-FractL.j, L . ,8iLQt.

A series expansion for the Green function The product Q, EI(z) can be exp.essed in
follows immediately from the corresponding terms of the continued fractiot. ([51, equation
series for the exponential integral ([5], 5.1.22)
equation 5.1.11): i - i 2 2 3 3

F(X,Y) =ea.yn n- nn + + IT 1 + - - (8)

(7) If this sequence is truncated ifter the term z
in the fraction with numerator N, the result

Here Y-.5 7 72 1566... is Euler's constant. This is equivalent to the following iteration:
series is absolutely convergent in the cut
z-plane, and computationally efficient when FN+1 = Z (9)
the modulus of z is small. F - z +F / (u ~~ n+FI) (

Programming of (7) ib straightforward. The
number of floating-point operations for the eZE (zI (11)
series can be reduced to one (complex) multi-
plication and one addition per term, if the Each iteration requires two additions, one
coefficients are precomputed and stored in an -multiplication, and one division with complex
array, and if nested multiplication is used to arithmetic.
evaluate the truncated series. In order to
avoid underflow the precomputed coefficients •.ii algorithm is well conditioned, with no
should be multiplied by the corre.ponding observe-I loss of significance in the domain
power of the maximum modulus of z (or a rum.er where iý can be Lseed with a moderate number of
of similar magnitude), and z divided by the iteratiors. However one should be aware of a
same number. sat of N poles '" the negative real aisu in

the truncqted form of (8), and hence in
The required number of terms for an abso- (9-11). For 1.<l these poles are dietributed

lute accuracy of 6D is shown in Table 1 for within the blank area of Table 2. Thus the
the rectangular domain -10<x<10, 0<Y<8. For entries showo "n Table 2 are safe to use, but
larger values of y, and small values of the difficulties .u,),ld be encountered close to the
&scendiT'g series suffers from a loss c- i. "egative rey. axis if an excessive number N
racy due to cartellation. For example, rt-.,re were to be employed. (For example, N-4 is
is a loo. of one significant decimal -t y-4, sufficient for 6r accuracy at (-16,0), and any
x-0. For this reason, as well as the obvsous larger value of N up to and including W-10 is
increasing number of terms required, the conservitive, but a slight loss of accuracy
asceuding series should not be used for values occurs thereafter, and when N-16 the first
of y larger than 4 or 5. quotient in (10) is zero.)

Table 2 shows the starting value N required
in (9) for 6D accuracy. This may be compared
with the corresponding entries in Table 1 to
determine an optimum partition between the do-
mains where the continued fraction and ascend-
ing series are used. Since the continued
fraction requires two complex additions, one
multiplication P.nd one division per tera, it
is desirable to locate the partition where the
number of terns in the continued fraction is
about half that of the ascending series.

The asymptotic expansion in inverse powers
x:-10 -8 -6 -4 -2 0 2 4 6 8 10 of Z ([5], equation 5.1.51) is a more familiar

alterre•tve to the continued fraction (8). The
1 asymptotic expansion is only useful for very
6 32 30 29 28 27 28 30 34 38 42 46 large values of the modulwis of z, and it
7 31 28 26 25 25 25 27 31 36 40 44 offers no apparent advantages relative to (8).
6 29 27 25 23 22 23 25 29 34 38 43 Other alternatives logically equivalent to
5 28 25 23 21 20 20 22 26 32 36 41 continued fractions are the Pade approximants
4 27 24 21 19 17 17 20 24 30 35 40 g'von by Luke ([6], Table 64.5), and the
3 26 23 20 17 15 14 17 22 29 34 39 approximation by a sue of residues given by
2 26 22 19 16 13 11 15 21 2g 33 39 Dershey [7]. Eotb of the latter results
1 25 22 18 15 11 8 13 20 27 33 38 require the storage of sets of coefficients
0 25 22 18 15 10 12 20 27 32 38 for each choice of N, and thus are less

convenient for programing. (The scheme baoed
Table 1 -- Number of terms required in tke on Pade apprcximatiou offers a small adventage
ascendaig series (7) for 61) accuracy. in computing time, since N-1 floating-point

divisions are replaced by multiplications.)



x:-20 -18 -1 6 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16

15 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
14 2 2 2 2 2 2 2 3 3 3 3 2 2 2 2 2 2 2 2
13 2 2 2 2 2 2 3 3 3 3 3 3 3 2 2 2 2 2 2
02 2 2 2 2 2 3 3 3 3 3 3 3 3 2 2 2 2 2 2
12 2 2 2 2 2 3 3 3 3 3 3 3 3 3 2 2 2 2 2
10 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2
10 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2

8 2 2 2 3 3 3 4 4 4 4 4 4 3 3 3 2 2 2 2
7 2 2 3 3 3 4- 4 5 5 5 4 4 3 3 3 3 2 2 2
6 2 2 3 3 4 4 5 6 6 6 5 4 4 3 3 3 2 2 2
5 2 2 3 3 4 5 7 7 8 7 6 5 4 3 3 3 2 2 2
4 2 2 3 3 5 7 9 11 11 10 8 6 4 4• 3 3 2 2 2
3 2 3 3 4 7 11 15 18 18 14 10 6 4 4 3 3 2 2 2
? 2 2 3 4 12 22 31 35 36 28 15 7 5 4 3 3 2 2 2
1 2 3 3 11 39 78 94 30 9 5 4 3 3 3 2 2
0 2 3 3 9 5 4 3 3 3 2 2

TablL 2 -- Number N required for 6D accuracy in the coptiaued-fraction
recursion (9-11). Blank entries indicate no convergence at N=99, or
poles encountered on the real axis before convcrgeccte.

2, A_.•.xp~anrion fgr Snall VX~x For a given accuracy, the number of terms
S.... .required in (13-14) depends primarily on the

.Anticipating the need for r. third expansion ratio y/x. The entries in Table 3 aire practi-

in the region near the regative real axis., cally independent of %, throughout the domain

when I a is not small, the integrand of (2) of interest.

can be expanded in powers of iky and, for t<O,
integrated term-by-term [41. Alternatively, Standard approximations or subroutines mey

without restriction to x<V, the product be used to evaluate the real exponential
ez Ejz a eepne vaTyo eis integrals E, (z) and Ei(-x), but it is more

about y-0. Proceeding in the latter manner we efficient to derive special approximations for
first observe that the particular ranges where (13) or (14) is to

be used. Special rat ional-f ract ions are given
d n z (ml) in (4) with minimax accuracy for the range

dzu (e E1(z)) =eZEl(Z) + E 1£<8
dzm=1 (-Z)m (12) -1<-8

It follows that for x>0 ~x : 0 1 0 . . . .

e E I(Z) n. El W E! + z m
n o M-1i (-x)m' 5 7 10 13 17

(13)

For negative values of x, in qdrt2,E() Table 3 -- Maximum value of index n required
is replaced by L (-x+i0)=- E(x I)-in, where Ei for 6D accuracy in (13-1)

denotes the principal-value exponential
integral ([51, equation 5.1.2). Combining 2/ ~¢•°9•
these results, (5) may be evrluated directly
from the expansion The three algoritaros described above can be

Sused to evaluate the function ezEl (z) and its
F(X') "• -•n [-Y ) derivatives, with siu decimals absolute accu-

F(,)-r n E E- e-E(Y racy. The tables presented permit a deterral-

n-o m-1i Y nation of the optimum domain for each algo-

(14) ritlm, and of the number of term•i required.
Partitions between the three algorithms can

The double-scriea (13-.I4) are convergent for be selected aa follows:

y<jj , If the coefficients I/n are predeter-
mine and stormd, each tam• in the au•i over n
requires two additions ,tud five multiplic*- .• t.

tions, in real arithmetic, or about the smae
nuxber of floatiug.-point operations go iu the 2U+y < 4: ascending series (7)

sicending series. 2x~y > 4: continued fraction (8-9)

9 2 2 2 3 3 3 4 4 4 3 3 3 2 2 2



Quadrant 2 singularity in (15).) The essential task is

to evaluate F(X,Y) for all possible values of
-8<x<C and - :4: ascending series the two arguments, or throughout the quadrant
y>4 or 3y>2x+32: continued fraction where X and Y are nonnegative.
-10.xý-8 and y<4: double series (14)
-16<x<-10 and 3y<2x+32: double series (14) For this particular case an alternative

integral representation exists in the form

For application specifically to the 2D F(X,Y) (X2 + y2)_ e-Y [e 0 (X)+Yo(X)]

oscillatory Green function, where both terms y
in (5) must be evaluated, a maximum of 1.2 -2 f etY(x2+ t2)-½ dt (16)
milliseconds is required or. the VAX 11/750. 0
Only the asceadiag series requires more than where o denotes the Struve function
0.7 millisecouds. Since the double-series (14) ([5], Chapter 12). Direct numerical integra-
is substanti-1ly fastat than the ascending tion of (16) is relatively easy, unless the
series, in the domain where both may be used, coordinate X is small, but this procedure is
some gain in aver'ge comp-ating time would less efficient than the algorithms described
follow by using the double series for the below.
domain where y/lxl <0.5 and -8<x<4.

For sufficiently small values of X the
The approach followed here should be con- Bessel function in (15) can be erpanded in

pared with that described below in Section 3.1 even powers of kX and integrated term-by-term.
f r the anh.ogou. three-dimensional Green The result is a double infinite series ([3],
function. In both cases analytical expansions eq. 4) with positive powers of X and negative
are used in appropriate sub-domains, and there powers of Y. This expansion was first derived
are close relationships between the respective by Hess and Wilcox [8] and subsequently by
formulae. Unlike the three-dimensional case, Noblesse [9]. The domain of convergence is
-,e coproasise here stopping short of the de- X<Y. For 6D accuracy this series can be
velopment of economized polynomial appr--ima- truncated with n<9, provided X/Y<0.5.
tions wlich ieplae or supplement t analytic The analogy with (14) should be noted.
expansions where relatively larg. numbers of
terms are requir-ed. IL. t.ie two-dimensional An alternative series expansion ([3], eq.
case polynomial approximations could be de- 5) is derived [10] by expanding the last
rive. with some additional effort, %.th a exporvintial in (16) in prwers of t, and inte-
probable improvemenf- iu the m8 imum computa- grat-ng term-by-term. This series involves
tional time on the ordar af 20-40%, but with positive power,, or both coordinates (X,Y) and
the need to store large arrays of polvnomial is uniformly convergent throughout the full
coefficients. Another advanta&e of leaving the domain of interest. A comparison may be noted
results in their present form is that the with tu~e ascending series (7) for the two-
accuracy can be controlled by mod-ifying the dimer 3ion'-l Green function. If this series is
number of terms retained in each expansion trunnated, and ecoCDmized in both variables,
and the partitions between their respective 6D accuracy can be achieved in the domain
domains. 0<X<3.7, O<Y<2 with a total of 33 terms in the

resultine polynomial.
3. Three-Dimensional Oscillatory Source

When the rat~o XVv is large, an asymptotic
The three-dimensional Green function of expansion can be derived by expanding the

oscillatory strength is especially important inverse squcre-root in (16) in even powers of
in ths analysis of offshore structurea, and a t/X ard integrating term-by-term. The re-
variety of panel and finite-element programs sulting series ([3', eq. 6) involves positive
have been developed for use in this field. power3 of Y and negative even powirs of X.
Here we present in abbreviated fim a sumnary Truncation with fofr terns givas 6D accurpci
of the algorithms which are describsd in [3]. ii the domain X>3.7 provided X/Y>4. ThM same

accuracy can be r-.. eyed throughout the domain
3.1 lufiaite-de~th case 2<X/Y<4 if the series is transformed to a

ccntinued fraction.
In three dimensions the analogue of the

integral in (2) is (M1], equation 13.17) FVn.lly, -hen both X and Y are large, the
integral 'n (1;) may be integrated repeatedly

±l JkY q by parts to yield an asymptotic expansion
F(XY) e- j kX) dk where the integrated term- are spherical

0 '15) harmonics ([3], eq. C. Truncating this

asymptotic expansion with five terms gives 6D
Here Jo denotes the Bessel function of the accuracy throughout the &main X>8, Y>20.
first kind, order zero, and X is the nondi-
mensional horizontal distance between the At this stage relatively simnle expansions
source and field points. (In addition, the have been developed for -1l but a central
total three-dimensional Green function in- domain of the X,Y quadiant. The remaining task
.ludes the Ilankiue source and an imaginary is to seek nuizical approximations more
term aqual to half of the residue from the directly, for intermediate values of the co-



ordinates. The last asymptotic expansion is
used as a guide to suggest a form ([3]. eq. 9) L(XVH) = (X2 + V2

where the residual factor R(X,Y) is slowly-
varying, throughout this domain, and can be 7 (k~l)sh(-ko
approximated by two-dimensional polynomials. + hkH -cosh kH (ke d
The numerical procedure used for this purpose o ksin 0 X0dk (17)

can be described briefly as follows. The
function R(X,Y) is evaluated with double-
precision accuracy in the manner outlined in Here X has the same meaning as in Section 3.1,
[11]. Double Chebyshev polynomial expansions H is the nondimensional depth Kh, and V is a

are then generated for this function, and nondimensional vertical parameter in the range

truncated to the desired accuracy by neglect- between 0 and 2H. Anticipating the approxima-

ing all coefficients smaller than the pre- tion of the integral in terms of multi-dimen-

scribed tolerance. Conversion of the sional polynomials, the replacement of one

Chebyohev expansions to finite double series function of four parameters by two evalua-

in ordinary powers of X and Y facilitates the tions of a function with only three parameters

subsequent routine use of the algorithm. It represents a major simplification.

has been found that subdividing the central
domain at Y-4 and again at Y-8 enables R(X,Y) The rate of convergence of the last inte-

to be approximated in each of the three sub- gral can be accelerated by adding and sub-

domains with a maximum of 37 nonzero polyno- tracting an appropriate function which is

mial coefficients. asymptotically equivalent to the integrand for
large k. A judicious choice for this function

Collectively, the algorithms described leads to the result

above serve to evaluate the infinite-depth 2 2 )-4
Green function for all relevant values of X L(X,V,H) = (X + V +

and Y. The derivatives of the source potential
can be obtained by analytic differentiation of F(X,2H-V) + F(X,2H+V)

the same algorithms. Mi 2e-kH

3.2 The finite-depth case 0 o ksinhkH -cosk kH

The oscillatory source potential in a (k+l) cosh(kV)e-kHJ (kX)dk (18)

fluid of finite depth h is expressed either by 0

an integral analogous to (15), or by an eigen-
function expansion which has certain features As k tends to infinity the integrand in (18)

in common with (16). These two alternative is of order exp(-2kH) or smaller. The two

expressions ([31, eqs. 10a,b) are given by additional functions F in this decomposition

Wehausen and Laitone ([i], eqs. 13.18-19). are the integrals of the two portions of the
function subtracted from the integrand which

The eigenfunction expansion is summed correspond to the expansion of the hyperbolic

directly, over the spectrum of real and cosine cosh(kV) in a pair of exponential

imaginary wavenumbers defined by the roots of functions, and hence are identical to the

the transcendental equation ktanh(kh)=K, infinite-depth source potential (15) with

where K is the infinite-depth wavenumber. indicated values of the vertica coordinate.
These roots can be found efficiently from a
second-order Newton-Raphson algorithm, which The regular behavior of the integral which

requires only one iteration for 6D accuracy. remains in (18) implies that it can be ex-
Each term involves the modified Bessel func- panded as a polynomial in aven powers of the

tion K0 as a factor, with its argument the coordinates X and V, multiplied by polynomials

product of the imaginary root and the hori- in H. The derivation of these approxibiations

zontal radial coordinate R. Thus the con- is described in [3]. With partitions at H=2

vorgence is exponential, for moderate or large and H-4, approximately 300 coefficients are
values or R/h. A maximum of 12 terms gives needed in each subdomain to achieve 6D ac-
6D accuracy in the domain R/h>1/2o Since the curacy. In the tisual application where many

argument of the modified Bessel function is evaluations are required with different values
greater than n/4 in this domain, a single of X,V, for the same H, the polynomials in H

rational-fraction approximation can be used to can be evaluated and stored as a total of 33

evaluate this function. nonzero coefficients for the remaining two-
parameter polynomials in X and V.

For small values of R/h the eigenfunction
expansion is not efficient, and the integral The procedure just described uses the

representation analogous to (15) must be used infinite-depth Green function to aid in the

as a starting point, A total of four nondi- computation for finite depth. The respective

mensional parameters are involved in this integrands with respect to the dumy variable

integral, by comparison to only two in the k are asymptotically identical for large
infinite-depth case. However the product for- values of k, corresponding physically to the

mula for hyperbolic cosines can be employed to fact that the finite depth is unt s3inificant

express the original integral as the sum of for very short wavelengths. In the mathemati-
two terms involving the auxiliary function cal context, the difference between the
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finite- and infinite-depth integrals is more F - e-kCOS8 (1
rapidly convergent, hence more regular, and F eA'c (21J)

therefore is more amenable to approximation o

by polynomials. The same procedure can be M
used to accelerate the convergence when the =-4 f eiwT3 (L2sine)e-w2 cosd (21b)
finite-depth integral representation is evalu- 0

ated directly by numerical quadratures; this 0

approach has been used by Boreson and If the complex exponential in (21s) is
Faltinsen [121 in the more complicated case of expanded in a Taylor series, the integral of
the oscillatory source potential moving with each term mAy be evaluated ([13], section
constant forward velocity. 13.21, eq. 3). In this manner the following

4. The Three-Dimensional Transient Source expansion is obtained in spherical harmonics:

The potential of a submerged point source F = -2 Z r ((n + 1)p (coaG) (22)

with arbitrary time dependence, in a fluid of n.0 n! (n

infinite depth, is given by Wehausen and

Laitone ([U], eq. 13.49). We shall analyse

the case where the source strength is a unit where r is the gamma function and Pn/2 is the

step function, jumping from zero to one at Legendre function of the first kind. The real
time t-0. The source with delta-function time part of (22) involves only the Legendre poly-
dependence can be obtained by differentiation, nomials, and has been derived by Terazvwa
and arbitrary time-dependent motions can be [141.
obtained by convolution.

The expansion (22) is effective for small
In its dimensional form, the step-function or moderate values of the time parameter r .

source potential can be expressed in the Only the real part is of physical relevance,
equivalent forms and since forward recursion is stable for the

Legendre polynomials it is remarkably simple

G + 2 f [l-cos(gkc)]J (kx )e-kYldk to eva~uate this component of (22). However
r= r 21  0 0 the number of terms required for a given

1 1 accuracy increases in proportion to T, and

- - for large values of T there is a loss of sig-
r r1  nificant figures due to cancellation error;

s½k½tJok e-kyd since the number of decimals lost is approxi-
-2 cos~gkW0x 1 ,edk mately equal to 0.1- 2 , double precision must

( be used for values of r greater than 3 or 4,

(19) and extended precision is required beyond

Here (r,- ) denote the distances from the C 1

source or its image above the free surface to An asymptotic analysis of (21b) reveals two

the field point, (xl,yl) denote the horizontal distinct contributions. The first is from the

and vertical components of r, , and y I is lower ismit of integration, where repeated in-

defined to be positive. If the last form of tegration by parts yields an asympotic expan-

(19) is nond'mensionalired with respect to r!, sionn inverse powers of time:

and 8 lcos (yir), it follows that tn-i

F ý -4 Z (it/) [n- -1 Jo(W2 sin0)e-w W-]0

n-1 a nr ri - 4 £ • -2n-2P(s)
-kos 4' E T P (cose) (23)2 f cos(k½)J (ksinO)e-kC°s dk (20) n 1

r1 o 0 (0
In an exponentially thin layer near the free

where the nondimenuional time T t(g/r)½ surface au additional wave-like component
exists, analogous to the more familiar Cauchy-

In the special case y1 =0 the integral in Poisson problem. This component is associaied

(20) may be expressed in a particularly simple with the contribution to (21b) near w-.-½ie-

form ijvolving products of Bessel functions of where the product of the exponential and

fractional order ([1], eq. 22.18 et seq.). Ef- Bessel functions is temporarily stationary.

fective algorithms for evaluating these Bessel 8ystematic asymptotic expansion of the Bessel
functions are given by Luke ([6], Tables 35 function, for large values of its argument,
and 39). and then of the resulting integral, yields 2

sequencc of torms with negative powers of v2.

In order to derive mere general expansions From this analysis the following result is

it is convenient to regard the integral in obtained, after adding the slowly-varying

(20) as the real part of the cumplex function component (23).
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F -= 4 E (2n+l)! T-2n-2 Pn(COSe)
n=F n1 n matching boundary. (This situation is ana-

logous to the conventional utilization of
2 ( 2 ½e _2ie Ii(0 Green's theorem, where the "dipole" term with

sns 2 density equal to the unknown potential can be
removed by the use of a source potential which

-l 9 -2 satisfies a homogenous Newmann condition on
8 the boundary. In matching interior and ex-

2  45 75 3 terior solutions the use of such a Green func-
+(-30iv2+ T v +T i)w tion serves only to eliminate one integral

inversion for the unknown potential on the

245 2_ 1575 3675)w-4 matching boundary.)

-5 
From the physical standpoint, the desired

O(w-)} (24) Green function can be interpreted as the

where v = sin~eeie solution of a cylindrical "wavemaker" problem
e -210 where the prescribed normal velocity is a

and w = i2sin~e2 i delta-function at an arbitrary position on the
wavemaker boundary; the more general solution

An equivalent expression to (24) is derived with continuous normal velocity follows by an
by Beck and Liapis [15] using an asymptotic appropriate diqtribution of this singular
analysis based on the Dawson integral, solution. For harmonic time-dependence

Havelock's [16] solution for an axisymmetric
The three expansions (22-24) can be used wavemaker is generally used in hybrid finite-

collectively to evaluate (19) and its deriv- element solutions (cf. Mei [17]).
atives, for all possible values of the co-
ordinates and time. To achieve six decimals For time-domain analyses it is necessary to
accuracy for the Green function and its first find a solution of Laplace's equation in the
derivatives, the real part of (22) is summed domain exterior to a vertical circular
in double precision, for values of T2 less cylinder, subject to the same conditions as
than 75 + 10 cos 0 , with the total number of (19) but with an additional homogeneous
terms equal to [18+0.74T2]. For larger values Neumann condition imposed on the cylinder.
of time the asymptotic expansion (24) is used, Alternatively, if the source point is on the
and the slowly-varying component (23) is used cylinder, the radial derivative on this boun-
alone when cos 0 > 0.95. Typical computing dary is given by a delta function.
times are a few milliseconds on the VAX
11/750. In hybrid matching applications the ex-

terior solution is required only on the match-
Further computational efficiency could be ing boundary, hence the source and field

achieved by deriving polynomial approximations points are both restricted to this domain.
in two nondimensioual variables, analogous to This implies a reduction in the number of in-
those developed in Section 6 for the steady dependent variables which must be accomodated
translating Green function. The asymptotic in the numerical analysis of the Green func-
form (24) provides a convenient starting point tion.
for such an extension; if the factor in braces
is expressed in double economized polynomials, Here we consider the special case where the
the validity of (24) may be extended to fluid motion is axisyumetric, and the desired

smaller values of time. This would obviate Green function has the same property. The
the summation of (22) in double precision, and radial components of the source and field
substantially reduce the maximum computing points are ultimately restricted to be equal
time. to the cylinder radius, and this radius is

used to nondimensionalize the radial and
5. The Trea1giegt Axipvym.etnic "Wavemaker" vertical coordinates (rz). If the radial

velocity on the cylinder is a delta function
In the development of a matching analysis, in time, and also in space, the Green function

such as the hybrid finite-element method, or must satisfy the boundary condition
the boundary-integral technique used in (2] to
study nonlinear forced motions of an axisym- 2G
metric body, a linear solution is constructed - 6 (Z-C)6(t)
in an exterior donain of the fluid, and con-

nected to the complementary interior solution on rwl.
on a cyli _'sal matching boundary. The free-
surface p&- - source can be used to construct Following a familiar procedure for point
the exter solution, from an appropriate sources ([1], section 13) a solution in de-
distributlon on the matching boundary. Hoy- rived in the form of an elementary "Rankine"
ever the solution is improved in efficiency singularity, a negative imare above the free
and accuracy if a more complicated Green func- surface, and a regular function which ensures
tion is employed which satisfies a delta- that the snm satisfies the free-surface condi-
function Neumann boundary condition on the tion.
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Considering the Rankine singularity first, where
we seek a harmonic function for all values of
z, regular throughout the domain r>1 and G2 dk kZ
satisfying the boundary condition (25). Ex- R2 o k2(j Y 2(
eluding the time-dependent factor, the zolu- 1 1 (30)
tiou can be obtained by separation of vari-
ables and Fourier integration, in the form and

K (kr) 4Z ½CR(r, z;•) -I cosk(z-_) k w dk G (Zt) f _ S dk ekzsn(kt)R rT 0 kR1(k) F •2 o k3/2(j 1 2+ Y12 )

(26) (31)

Here the subscript R is used to denote the In a collocation method where the Green
Rankine singularity, and K n is the modified function is integrated over vertical segments,
Bessel function of the second kind. the integrals of (30) and (31) with respect to

z may be performed analytically.

It is convenient to recast (26) in an al- For nonzero values of z, the integrals (30)
ternative form. Following the notation of Fnd (1 mye valua te nu erall In0a
151, Section 9.6, the Hankel function of ism- and (31) may be evaluated numerically. In a

ginary argument may be substituted in place of time-stepping procedure it is effective to

Kn, with the result calculate (31) simultaneously for several
U values of t. In evaluating the integrands,

( '1) for values of k larger than (say) 3, poly-
H• ) (ur) nomial or rational-fraction approximations

G Re f -R e du [18] for the modulus of the Hankel function
R o uH1  (u) should be used in preference to computing the

two Bessel functions separately. The apparent
j (ur)Y I(u)-J 1(u)Y (ur) uiz--' singularity at k-0 is cancelled by the singu-

IT fo -1 a du lar behavior of Y
T o u[J 2 (u)+ Y I2 (u)] (27) The Rankine integral (30) is a function of

only one variable, and can be approximated by
The last expression follows by deforming the conventional techniques. With the coeffi-
contour of integration, and ignoring the con- cients listed in Table 4, the following poly-
tribution from a circular quadrant at infinity nomial approximations are accurate to between
which is exponentially small if r>l. 6 and 7 significant figures, for all values

of Z:
For the solution of the free-surface boun-

dary condition, the obvious extension from the 0<g<2:
corresponding point-source solution analogous
to (19) takes the form G 7 (32)

GR Ean z+Ibn g (2
n-0 n-0

G - 6(t)[G R(r,z;ý) - GR (r,z;-C)]

2 - Jo(ur)Y (u)-J 1 (U)Y (ur)
+ uJ 2 (u)+ y 2 (u)] 8 -n-10 1 1uR Z logz + E c z (33)

R ~ n-0

e u(z+) sin(uAt)du
a a b c(28) n n

where the time t has been nondiensionalised 0 -1.4516705-01 3.183099E-01 -4.999995E-01
in terms of the cylinder radius and g. I -2.500060E-01 -5.9683101-02 -4.023183E-04

2 6.3371028-02 6.527839E-03 -2.524457E-01The limiting value of (28) on the cylinder 3 3.097314E-02 -8.198656E-04 -3.756222E+00
can be interpreted in a direct manner. Taking 4 -6.5795789-03 2.193911E+01
advantage of the Wronskian for the Dessel 5 -4.254071E-03 -5.918514E+01
functions, the final expression for the Green 6 1.3879339-03 9.6819899+01
function is given by 7 1.00850CE-04 -8.950611E+01

G(il,z;;t) - 6(t)[GR(lz-;I) - GR(1z+d)] 8 3.572895E+01

Table 4 - Coefficients for the polynomial
GF(Iz+dt) (29) approximations (32-33).
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6. The weve-resistsce Green function efficient subroutines are available for the
product e ZEI (z), then such a conclusion is

The Green function for three-dimensional naive. In a more careful analysis one must
motion with conetant horizontal velocity U note that the single integral, or last term
has been widely studied in connection with the is not only wave-like, but also singular in a
theory of wave resistance. Restricting our complicated manner along the track downstream
attention to the case of infinite depth, the of the source5 when Z-O. By comparison the
basic expression for the source potential is double integral in (36) is regular, except for
given by Wehausen and Laitone [11, equation a weak logarithmic singularity at the origin.
13.36, as the sum of a double integral and a Nevertheless, accurate evaluation of this
single integral, together with the usual integral by means of numerical quadratures re-
Rankine singularity (i/r) and its image (1/r ) quires a substantial number of ordinates to
above the free surface. If the coordinatis accomodate the singularity at the lower limit
are normalized by the wavenumber g/U 2 , and of integration.
(X,Y,Z) are the Cartesian components of r with
Z defined to be positive downwards, the 4reen We shall consider here the special case
function may be expressed in the form Y-0, where the source and field points are in

the same l',,qitudins1 vertic•i plane. In this
G _ 1 case a compa~ri•. of (34) and (36) indicazes

r ri that the respective -duble integrals are iden-
tical in value, and eithix-.form may be used as

2 -/2 a starting point in the ana-lysis. Numerical
- V f sec 2, Re {eUE (u)) dý integration can be applied to either form, but

-7- /2 a substantial computational burden is involved
to achieve even modest precision.

-a
+ 4 f sec2c Im (eu) dý (34) To provide a more effective technique for

-/ h evaluation of the double integral, we shall
where derive approximations in terms of two-

dimensional expansions involving Chebyshev
u(0) = sec 2g(-Z + iX cosO + ijYj sinO) (35) polynomials. Polar coordinates (R,8) are used

in the vertical plane, with X=Rsin(O) and
and a-tan (x/lyl)is the polar angle in the Z=Rcos(O). Note that the polar angle 0 is
horizontal plane, restricted to the interval (0,7r/2), and while

the double integral is an even function of X,
Note that in the first integral of (34) the discontinuity when X-0 precludes effective

the complex exponential integral E is used polynomial approximations involving only even
to replace the more conventional "dou]ble inte- powers of 0
gral". The latter designation ;ill be re-
tained, despite the simpler appearance of In the "near-field" domain, D<R<2, the ap-
this term in (34), to distinguish it from the proximation is sought in the form of polyno-
"single" integral in the last term. mials in R and 0, after subtracting a three-

term asymptotic approximation of the logarith-
Extensive studies of this Green function mic singularity at R-O. In the complementary

have been made by Noblesse (cf.j19) and [20]) domain, R>2, the asymptotic form of the double
and Euvrard [211. The last two references integral is used to suggest an appropriate
emphasize an alternative form for the source form for the approximation in negative powers
potential with some computational advantages: of the radius.

G 1 6.1 Near-field approximation

In the domain 0<R<2, the principal task is

2 Tr/2 to account for the singular behavior at the
- 2 f COO Im 1eVEl(V)) dý origin. Proceeding with the double integral as

S-•/2 it is expressed by (36) , this behavior is

Tr/2 associated with the logarithmic singularity of
- 4 H(-X) f sec 2$ Im {eu) dý (36) the exponential integral (cf. equation 7).

-T(/2 This leads us to consider the component

where 2 J cosa Im {(v log(v)) dý

v(O) M -Z cos 20 + y cos" siný +i1XI COO (37)

and U(z) denotes the •eaviside unit step func- 1coa* 1mU14v4hv2+ ...)loa(v)}dý
tiou. *i12

Traditionally it has been thought that the 21 1 + 2X 2 *- (22 + X1
greatest computational effort must be devoted - XZ +(38)
to the double integral in (34) or (36). but if 4, z2I + ...
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where it/2

2 cosas Im eVaE (v)) do
2 (Rex f/ -x-/

I, (e im] cosn0 log(-Z cosO + iX) de -7r/2 1

= 21 + 2XI2 - (2Z+X 2 )I3 - 2XZI1 +Z215
(evexi 3•

for n = (odd M N

Note that a factor cos(8) has been deleted + El V C T (1- R) T (l+ 4 0)
from the argument of the logarithmic function m=3 n=O mn m

in (39), to simplify the analysis. This is (0 < R < 2, 0 < 8 ) (47)justified since the co~tribution from this 20<R<2 0<e<•

factor to (39) is independent of X and Z and
hence regular in terms of (38). (One con- Here Tn(x) is the usual notation for the

\, venient feature of this type of numerical ana- Chebyshev polynomial ([5], ch. 22), and we
"-17sis is that contributions which are regular follow the convention (22] where the primed
can be ignored temporarily!) sutmation denotes that the terms m-0 or nu0

are halved (thus the term mnu-0 is multiplied
To evaluate the integrals (39) in a syste- by one-fourth).

matic manner, we first integrate the deriva-
tive of the integrand, multiplied by tan( 8), The coefficients shown in Table 5 may be
to obtain the recurrence relation used in (47) to evaluate the double integral

I. with approximately 4 decimals absolute accu-
nln (n-l)In_ A (n-2,3,4,.... racy. These coefficients have been evaluated
n n- 2 n by means of the orthogonality relations for

(40) the Chebyshev polynomials, evaluation of the
integral in (47) by Romberg quadrature, and

where subtraction of the singular terms on the right
side of this equation. As in the more conven-
tional representation of a function of one

2 sin0 covariable, the convergence and accuracy of thisA d2 (41) scheme can be confirmed by the rate at which0 o Z2 COS2 0 + X2  the coefficients in Table 5 tend to zero.

and 6.2 Far-field approximation

A2n+l (X/Z)A2n (42) To complement the results derived above, we
now consider the approximation of the double
integral for the domain 11>2. For sufficiently

Algebraic reduction of the integrand in (41) large values of the racial coordinate R, the
yields the recurrence relation asymptotic approximation of eU E (u) suggests

that the double integral in (34) can be ex-
2 1"3-...(2n-3 panded in negative powers of R. (For the de-A =-(X/z) A +2 ... (2n) tails of the corresponding asymptotic expan-2i 2n-2 2.4-... (20 sion see [19].) Thus we seek a systematic ap-

(43) proximation in tie form

Appropriate starting values for these recur- 2 11/2 vrence relations are given by the corresponding - f cosO Im fe E d(v)) do
elementary integrals, and it follows that -1/2

R+X) Z • f (O)R -m
I- lg (L2 (44) M

I M N
IR+OX E-. V V C Tm(-l+ A) 01 +R +Xl (45) m-0 n=0 mn m R nI W

.1 R-X 11

A2 = (-) (46) (2 4 R <'-, 0 ý 0 ) (48)

After proceeding in an analogous manner to
Tha coefficientsi in (38) can be evaluated that described at the end of Section 6.1, the

to an arbitrary order of approximation, using coefficients shown ir Table 6 are evaluated,
(39-46). Here ye include the second-order It should be emphasized that the asymptotic
terms displayed in (38), regard this as an expansion of the double inUL.ral has been used
approximation for the singularity of the here only to deduce an appropriate form for
double integral at the origin, and expand the the polynomial approximation, and that the
remaining "regular" function Ln a double latter has a much wider range of validity than
Chebyshev series: the formal asymptotic expansoSL.
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niO 1 2 3 4 5 6 7
U

0 -0.26491 0.53367 -0.69926 -0.22860 0.06714 0.01049 -0.00219 -0.00018
1 -0.08190 -0.52550 0.51353 0.16520 -0.04038 -0.00725 0.00154 0.00012
2 0.22182 0.28929 -0.17935 -0.05469 0.01601 0.00204 -0.00048
3 -0.00796 -0.02631 0.01490 0.00275 -0.00132
4 0.00044 -0.00360 0.00069 0.00079 -0,00017
5 0.00006 -0.00055 -0.00007 0.00019
6 -0.00011

Table 5 -- Chebyshev coefficients for 0<R<2. (Blank entries are less
than 5E-05 in magnitude.)

nU0 1 2 3 4 5

0 1.89175 -0.26534 0.02978 -0.00433 0.00011
1 0.91714 -0.16691 0.02386 -0.00410 0.00040 -0.00006
2 -0.03689 -0.02545 0.00897 -0.00229 0.00050 -0.00009
3 -0.00848 0.00984 -0.00151 0.00009 0.00005
4 0.00053 0.00014 -0.00106 0.00042 -0.00012
5 0.00080 -0.00086 0.00054 -0.00012
6 -0.00020 0.00017 -0.00002 -41.00005
7 -0.00008 0.00008 -0.00008 0.00005
8 0.0000b -0,00006

Table 6 -- Chebyshev coefficients for R>2. (Blank entries are less
than 5E-05 in magnitude.)

the ordinary polynomial form, unless the vari-
6.3 Discuosion ables R and 0 are replaced by shifted coordi-

nates with the origin at the center of the
The coefficients listed in Tables 5 and 6 domain of application.

in conjunction with equations (47-48) permit
the evaluation of the double integral in a Greater accuracy may be achieved by retain-
simýle and effective manner, for all value& of ing more coefficients in the Chebyshev expan-
tb. source and field points in the plane Y-0. sions, but two complications should be antici-
Tc emphasize the efficiency of this approach, peted in this context: first, it is necessary
w( note that a direct numerical integration of to strike a balance between the number of
the double integral in (36) using Romberg terms retained •n the expansion (38) of the
quadratures and a convergence requirement of singular component and the accuracy of the
IE-4 absolute accuracy, with the algorithms Chebyshev expansion for the "regular" remain-
described in Section 2 used to evaluate thp der, in order to retain a reasonable degree of
integrand, requires about 150 milliseconds per convergence in the latter expansion. [Indeed,
evaluation on the VAX 11/750. By -omparison, it is likely that the convergence shown in
the approximations (47-48) require about 3 Table 5 could be improved somewhat by
milliseconds per evaluation, corresponding to using an extended version of (38)]. Secondly,
a reduction in computation time between one when evaluating the coefficieuts of the
and two orders of waguitude. Chebyahev expansion, it generally is necessary

to retain substantially greater precision in
The approximations (47-48) in terms of the numerical evaluations of the function

Chebyshev polynomials may be counerted to being approximated than is ultimately required
ordinari polynomials in R and a , by multi- by the approximation in terms of a truncated
plying each set of coefficients by the appro- expansion; thus one must be prepared to evalu-
priata transformation vectors for Chebyshev ate the original integrals for the Green func-
polynomials in each variable. In addition to tion to a relatively high degree of accuracy
its more elementary form, the ordinary polyno- if the present approximations are to be re-
mial can be evaluated slightly faster since fined.
one less floating-point addition is required
for each term. On the other hand, the 7. Transient vs. 3sdy Fields
Chebysbev form offers advantages that the

improv*d accuracy (and convergence) associated As in the classical analysis of ship waves
with extra terms can be irmediately estimated by Lord Xelvin, the steady-state Green func-
fron the magnitude of the respective 'neffi- tioe analysed in Section 6 may be evaluated
cients. Finally it should be noted that can- by distributing the transient source potential
cellation errors are more likely to o~cur in of Section 4 along the ship's track. Thus
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X
Figure I - Compar-soin of oteady and transaent ship-vave fields, The
curve veich is repeated in oacb figure is the steady-ttat.t pot@tial
along a longitud.nasl tvaclt, based upon direct evaluation of (34) with
transvetse coordiratep Y-1 and Z-0.1. The second curve ahowu in e.ach
figure is the result of ivursting the transient source powatial (19)
along the I-axis betre.to T snd the origia, in accordane@ with (49).
The coordinates are nondin i*zionalixed with respect to the forward
velociqy and gravity.
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0 generally, using suitable superpositions of
GS = lim f Gt(X+r,Y,Z,-T)dT (49) the infinite-depth potential to improve the

T- T convergence and computational simplicity of
where the subscript S denotes the steady-state the finite-depth case.
translating Green function (34), and the sub-
script t denotes the time-derivative (in ac- In the context of offshore structures, the
cordance with a delta-function time-dependent most important Green functions involve oscil-
strength) of tho transient Green functioi (19) latory time dependence without a mean hori-

zontal translation. For these applications
The algorithms described in Section 4 can the results of Section 3 ate directly appli-

be used to evaluate the integrand of (49), and cable, and the relatively refined analysis of
the integral may be evaluated numerically for this Section has been motivated by the prac-
finite values of T. It is of interest to com- tical importance of such computations.
pare this approach with the more direct evalu-
ation of the steady Green function described Future research may be devoted increasingly
in Section 6. to time-domain analyses, including the possi-

bilities for matching a linear outer solution
A nuverical comparison is shown in Figure to a nonlinear inner domain. For this purpose

1, for various values of the paramettr r in the transient Green function studied in Sec-
(49). It is obvious that the steady-state tion 4 is required. Further efforts should be
limit is approached when T is increased, and X devoted to the refinements indicated at the
is fixed!. Graphical accuracy is achieved if end of Section 4, and the corresponding exten-

T ý 41X11 For large values of X the dominant sion to the finite-depth case.
error is a sinusoidal function of T with phase
T/4, which can be effectively filtered by For the analysis of ships in steady motion,
averaging successive computations of (49) with including the computation of wave resistance,
T increased over an intervil of 8r. Similar the Green function studied in Section 6 is ofoscillations are evident from the analysis of universal importance. The polynomial approxi-transient wave resistance by Wehausen 123]. mations derived here for the "double-integral"

component may be extended to the most general
One appealing aspect of (49) is that this case where the transverse coordinate is non-

integral is regular, for all finite values of zero, and this should greatly facilitate the
T, along the track of the source on the free evaluation of what has been regarded tradi-
surface. Thua (49) may be a preferable alter- tionally as the most difficult part of the
native to (34) or (36), in the vicinity of the steady-state source potential. Further anal-
singular track. (In effect, by restricting T ysis is required to provide an accurate and
to be finite in (49), the very short diverging officient scheme for evaluating the remaining
waves responsible for the singularity in the single integral in the vicinity of the ship's
last "single" integrals of (34) or (36) when track on the free surface, vnd for filtering
T-Z-O are filtered out.) The desirability of the short diverging waves which cause the
such a filter depends on the application. In singularity on this track in a manner com-
the context of continuous surface dlstribu- mensurate with the overall computations. One
tions of sources and dipole# or a surface- possible technique to provide this filtering
piercing body this approach may Se more apro- is described in Section 7.
priate than pragmatic approxizaoni ouch as
the use of a single discrete sýigularity at AclrP.opled-emen -a
the submerged mid-point of eacn ps.el adjacent
to t0o free surface.
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Discussion
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by J. -. wman

"THE EVALUATION OF FREE-SURrACE GREEN FUNCTIO ?C "

DISCUSSION s6'rfsao. 2ts l
4

ke a rigid wall. The terms

"A Method for the Rapid Evaluation of Free- [E0(h)+ ;.(h)]exp(v), where J 0 is the usual
Surface Green Functions" Bessol function and E0 is the Weber function
by F. Noblesse that is closely related tc the Struve function

H0 defined in [4], represent circular surface
I wholeheartedly support Professor waves propagating away i>.im the pulsating

Newman's comments with regard to the utility singularity. The wave functions EO J 0 and
of efficient and accurate methods for eva- the closely related functions El, J1 involved
luating the most usual Green functions for in the expression fcr VG are everywbere con-
free-surfa!ze flows, and I wish to congratulate tinuous, as is shown in figure 3 in [1], and
him on his efforts toward the development of in fact are infinitely d.fferentiable.
such a library of subroutines. I hope these Furthermore, the functions Jo, Jl, EC, El can
subroutines will he publi3hed in the open readily be evaluated numerically (5]. Our
literature so that they can be used by anyone task therefore consists in evaluating the
in the ship b-drodynamics coamucity. nonoscillatory near-field term No and the

I have also tried to work in ttie same simi1 :,r t.cm N1 involved In the expression for
direction for several years. In particular, VG. The functions No and N1 are depicted in
I would like to mention here a Fortran figures 2a,b in (1]. An essential feature of
subroutine, developed by John Telate and myself tbe near-field terms N0 and NI are that they
at DTNSRDC, for calculating the Green function, are nonoscillatory, unlike the oscillatory
and its gradient, for the car- of water wave terms
radiation and diffraction at zero forward
speed [1]. The subroutine is mostly based on Ro(h,v,=Nq6h~v)+1TE 0 (h)exp(v) and
the use of the four comaplementary series e n- R1 (hv) Nl(h,v)+nE1 (h)exp(v)
sions obtained in [2]. More precisely, th,
domain of defin. tion of the Green function is which are evaluated in the Fortran subroutine
divided into five subdomains in whicl, -. use an given in [1].
asymptotic expansion, a uniformly-co. vergent The functions No a d NI are singular at
ascending series, two complementary itaylor the origin (h2+v2)T/2 0, aR may be seen
series i.-.out the horizontal and vertical coor- from figures ?a,b in [1]. More precisely,
dinate axes, and a numerical approximation in a equations 9a,b and equations 21 and 26 in (1]
central domain where none of these four series yield the following first few terms in the
expansions is useful. this method permits the ascending series of the functions No and Nt
Green function and its gradient to be evwiuated about the origin d - 0:
with an absolute error no larger than 10-6
quite efficiently. ,pec-iically, the computing No z -(1+v)ln(d-v)+in(2)--(
time for any one subroutine call has been found NI - h(l+d)/d(d-v)-2-(h/2)(l+v)ln(d-v),
to vary between about 20 and 60 microseconds on
a CDC CGBER 176 computer. where terms O(d 2 lnd) and O'd) have been

However, it should be noted that this neglected. For large values of d, equations
method for eialuating the diffraction-radiation 9a,b and etujtic . 19a,b and 2 1a,b in (1]
Green function (or other free-surface Green yield the following first tsrits in the asymp-
functions), which is based on thie use of totic expansions of the 1unrtiona No and NI
various series expansions or polynomial about the point at infinity d = -:
approximations valid in complementary domains
as was already noted, is ill-suited to vec- No 0  -i/d+2hexp(v)/(l+h 2 ),
torization. This shortcoming is circumvented N1 v -h/d 3'2haxp(v)/(l+h 3 ).
in the alternative method outlined in [3] for
the Green function uf steady flow about a ship The method explained in (3] reiles on the
in forward motion in calm water. This alter- use of a sluple cutapopite analytical approxi-
native method is explained here for the case of manioi ased on the foregoing analytical
diffraction-iadiation in infinite depth and at approximations about the points d - 0 and
zero forward speed. d - -. More precisely, the simple analytical

Equation 10 in [1] expresses the diffrac- approximations N0 8 and N1 a defined by
tion-radiation Green function in the form

(l+d 2 )N0oa-!in(d-v)]/(l-v)+Iln(2)-yI
4uG = -(l/r+l/r')-2fN0 -2irf(Eo(h)+iJo(h)]exp(v). -dfl-2dh~ex?(v)]/(l+h

2 )}

The gradient of the Green fu;nctior. is expressed (l+d 4 )Nla- h(l+d)/d(d-v)-2-hfln(d-v)]/2(1l•v)
in equations 10a,b in [I] in a a4ir:iar form. -hd{l-2d 3h[exp(v)]/(l+h3)}
The singular terms (1/r , 1/r') correspond to
the limiting ceqe when the frequency parameter yield the previously-given approximations as
f - wL/g takes the valve zero and the free d+0 and d+-. '"ore refined analytical
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I
approximatio:!ý IýOa and Nla can obviously be
defoined The maind purpose can debnio y the the singular point at the origin and in the
defined. Th• .main purpose for defining thefr-il aymticepnonus thnb

analytical approximations NOa and Nla ,s fýr-field asymptotic expansion must then be

that the functions N(, and NI may now be obtained for the nonoscillatory near-field

expressed in the form 4isturbance, as in [7,3,2]: (ii) these few
ter.as in the series expansions for small and

No -Noa - Nor a d NI = N1 a + Nlr, large values of the arguments can then be used
for building a single composite analytical

where the remainders N nd are every- appr-Yimation to the nonoscillatory near-fieldwhr h eanesN~r lndNr teare heveryfntininte-ane

where continuous ard, in narticular vanish term Ln the Green function, in the manner
bothas dO ad asd•.Specficlly•theexpltined in the foregoing: (iv) the remainder

both as d.0 and as d--". Specific&lly, the
fc n terms must fiially be approximated, forwe hayt O(iid I) and Nare o(d) as d+w . instance by using truncated Chebyshev series,

wehae ~o =0(/d) ndNr-0,(11d 3) ad-. after ilaipping che infinite flow domain onto a
The functions Nor and N1 r may be expressed finite domain.
in the forf d

o The vqse disturbance in the expression for
N~r 3 Ajd/6n[3+d4,,50

3]+1/(l+d2), the Green function must be treated separately
ORN1 r =4Ald/6 1 [3+d4 +R/(1+d),d/ d) tfrom the nonoscillatory near-fiele term. The

where the ftrst termns on the right sides of wave disturbance for the diffraction-radiation
Green function is particularly simple, as wasthese two expressions are made to ýrovide

rough approximations to the functions Nor _n4 already noted. The wave term in the steady-

N1r by properly selecttng the f.,ncti3ns ship-wave Green function is considerably more
A0(h/d),Al(h/d),60(h/d),61ýh/d). 'n thi.s complex, although in the special case con-manner, the remainders d d (hh, ) and R)(h,v) are sidered by Professor Newman in his study

fairly smell for all values of h and v. The relatively-simple series representations have

change of variables p = (d-l)/(d+i) aud a - been obtained [9]. In the general case,

(d+2v)/d maps the infinite domain 0 < h < -, 0 however, it seems preferable to treat the wave

; v > - - into the square -1 < p < 1, -1 < a < term in the steady-ship-wave Green f'nction in

1. The remainders R0 and R1 can now be the indirect manner explained in [101.

approximated by means of a single appro'.1ma-tion within the square -1 p 1 I -i ( c 1 . J.G. Telate and F. Noblesse, "Numerical
Sw< Evaluation of the Green Function of Water Wave

for instance by using the classical Chebyshev Radiation and Diffraction," Journal of Ship
approximationr mn Cmn Tm(P)Tn(), Research, to appear.

Rwhih nr o Nwmn hm~as s n p2. F. Noblesse, "The Green unction in the
which Profesor Newman has usd iTheory of Radiation and Diffraction of Regular
The practical usefulness of the method Water Waves by a Body," Journal of Engineering
explained in the foregoing evidently depends on Mathematics, Vol. 16 1982) pp. 137-169.
the numbei of terms in the Chebyshev series 3. F. Noblesse, "Numerical Study of a Slender
that are requited for approximating the remain- Ship Theory of Wave Resistance," Journal of
ders H and R1, which c'.'early depends on how Ship Research, Vol. 29 (1985) pp. 81-93.
smooth the functions RO(p,a) and R1 (p,n) aje. 4. M. Abramowitz and I. A. Stegun, "Handbook
The smoothness of the functions RO and RI ýan of Mathematical Functions," Dover
he adjusted by properly selecting the analyti- Publications, New York (1965).
cal approximations Nos and Nla, that is by 5. J. N. Newman, "Approximations for the
retaining just the appropriate number of terms Ressel and Struve Functions," Mathematics of
in the expansions of the functions NO and N1 Computation, Vol. 43 (1984) pp. 551-556.
about the points d - 0 and d - -. In par-
ticular, it clearly is less crucial to incor- 6. F. Noblesse, "Alternative Integralpoaethe far-field behavior of the func'ti~;s Representations fot the Green Function of the
porate th into behavior of ath onr Theory of Ship Wove Resistance," Journal of
No and NI into the analytical Approximations niern MthmicV.15(3)
NO. and Nja than to incocporate their near-- Engineering Mathematics, Vol. 15 (191)
field behavior since the functionui No and Nl pp. 241-265.irel singhavor Asin buth functionas N-andsee 7. F. Noblesse, "On the Fundamenttal Function
figures 2a,b In 411). in the Theory of Steady Notion of Ships,"

The tmithod outlined in [3! for the Journal of Ship Research, Vol. 22 (1978) pp.

steady-ship-wave Grien function and explaiuuod 212-215,
8. F. Noblesse, "The Near-Field Disturbanceadiati o Gredenail function tybe pifdction- in the Centerplane Havelock Source Pctential,"other free-surface Green functions. 8Niiufdy, Proc. First International Conference on

te method consists In the following s ( Numerical Ship Hydrodynamics, (1975) pp.

.eek Integral representations in which the 481-501.

Green function is i~xpres-d as the zium of a9. F. Noblesse, "Thb Steady Wave Potential of

nonoscillatory near-field disturbance nod a ia Unit Source, at the Centerplane," Journal of

wave disturbance; it should be noted in this Ship Research, Vol. 22 (1978) pp. 80-88.
respect that various intrgril representations 10. A. Barnell and F. Noblesse, "Numerical

Evlato ofte i repreer-andnta-teidWns
can be used but that they are not all equally Evaluation of the Near- and Far-Field Wave

useful, as is discussed in (6,21: (11) the Pattern and Wave Reaietance of Arbitrary Ship
first few terms in the ascending oerier ~ Forms," Proc. Fourth International Confeirence

on Nomerical Ship Hydrodynamics, (1985).
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I
Author's Reply of the Green function near the free surface.

For example, a point source or a point doublet

Dr. Noblesse emphasizes the importance of located on the free surface in a uniform flow
distinguishing between non-radiating near- has infinite wave resistance. Therefore it
field terms and radiating wavelike terms in may be tempting to locate it slighi'ly heneath
the various free-surface Green functions. For the free surface to have a finite value.
the oscillatory stationary source (Section However, because of the singular behavior of
2-3) this is clearly the case when computa- these singularities near the free surface, one
tions are performed for field points rela- can obtain any resultant value of physical
tively far from the source; the decompusition quantities desired by adjusting the submer-
in (16) 4s an example of this strategy. For gence and the strength of singularities. This
the saae Oreen function in the near field, could give false satisfaction
however, it is preferable in my view to evalu-
ate both components together. (Indeed, when X Author's Reply
is small the decomposition in Equation (16) is
clearly undesirable due to the equal and oppo- Dr. Yim's discussion emphasizes the sin-
site logarithmic singularities of the two gularity of the wave-resistance Green function
components.) For the wave-resistance Green when the source and field points are in the
function, on the other hand, the very different free surface. TLe fundamentally correct
forms and numerical problems associated with the approach to this difficulty is to use a con-
wavelike (single) and near-field (double) tinuous distribution of singularities over the
integrals suggests that they should be treated hull surface ir: proximity to the free surface.
with relative ease, using the polynomial coef- A more common numerica, approach is to sub-
ficients in Tables 5 and 6 for points on the merge the point source and dipole beneath the
centerplane. (Genere!izations of this approach free surface, e.g. at the centroid of each
to field points off the centerplane have been panel. The proposal 4n the final paragraph of
completed, and will be submitted for publica- Section 7 is put forth as an alternative
tion in the Journal of ship Research. approach with somewhat greater rationality.
Typically, the evaluation of the double integral Two possibilities may exist to adopt the con-
for arbitrary field points with an accuracy of tinuous distribtuion: ýl) to extract the ana-
5 or 6 decimals requires about 200 floating lytical form of the singularity and integrate
point multiplications and additions). this over the relevant panels; and (2) to

integrate the Green function analytically over
DISCUSSION the panel, prior to the evaluation of the
by bi G. McKee integral representation (in effect, inter-

changing the orders of integrrtion). The
Have you considered using rational func- first possibility is more attractive, and fol-

tion approximations instead of polynomials. lows the simpler analogy of dealing with the
They are also quick to evaluate and can fundamental Rankine singularity on a panel in
approximate singularities, the manner of Hess and Smith. In zero-speed

radiation/diffraction problems we have adopted
Author's Reply the same procedure to accommodate the loga-

rithmic singularity in the oscillatory Green
In reply to the question by Dr. McKee function (Breit, ot al, 1985). However, fur-

regarding rational-fraction approximations, I ther aa.lysis is required to determine the
have found these to be very useful for func- analytic fo,:n of the singularity in the single
tions of a single variable, although somewhat integral of (36), b'efore this procedure can be
laborious to compute with minimax accuracy. implemented for the wavc-resistance problem.
An example is noted 3t the end of Section 2.3,
for the exponential integral Ei(-x), with the Additional Reference:
results tabulated in Reference 4. Reference
18 includes several approximations of this Breit, S.R., Newman, J.N. and Sclavounos,
type which are particularly efficient for com- P.D., "A new generation of panel programs for
putations of the Bessel and Struve functions radiation/ diffraction problems", Proc. 4th
in the evaluation of the infinite-depth oscil- Intl. Conf. on Behaviour of Offshore
latory source potential. The extension of Structures (BOSS 85), Delft, The Netherlands,
such methods to functions of several variables July 1-5, 1985, pp. 531-544.
is a chmllenging task, which I have not
studied. DISCUSSION

by K. Eggers
DISCUSSION
by B. Yim Entering the adventure of evaluating such

analytical experiments, one may find relief if
The numerical evalu,•'- of the Green agreement is found with alternative formula-

function is one of the moss. ,irwnrtant and use- tions not obviously equivalent. On the other
ful efforts in numerical ship hydrodynamics. hand, if there is such result from a terse
In this sense, the author should be commended (though ingenious) analysis, we may feel
for his excellent work in this area. One thing enoouraged to work out a more detailed deriva-
I would like to mention is the singular behavior tion if such agreement of numerical results

has been observed.
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It is from this aspect that I would like to

amplify on Prof. Newman's synoptical represen- Bessho, M., On the fundamental function in the

tation and to call attention to two genuine theory of wave making resistance of ships.

single-integral representations of the Green- Mem. Defense Academy, IV No 4, 1964 Yokosuka,

function wave part for the case of an oscilla- Japan.
tory source in steady advance, which should Bessho, M., On the fundamental singularity in

contain not only the steady-state case but even the theory of ship motion in a seaway. Mem.

the pure oscillation case as a limit. Thk Defense Academy, XVIII, No 3, 1977 Yokosuka,

have independently been derived by Bessho )o Japan

Japan (1964, 1977) and by Simmgen in Germany Simmgen, M., Beitrag fur linearisierten

(1966). I hope that it was inadvertently that Theorie des periodisch instationar angestrom-

so far they did not find the attention ten Unterwasser frag flugels, ZAMM 48, 1968,

deserved. pp 99-119
Eggers, K., Eine einfache Darstellung des

Simmgen derived his 3-D solution from a 2-0 dreidimensionalen Geshwindigheit felder van

analysis for dipoles of constant moment dis- Singularitoten fur periodische

tributed over straight horizontal lines of dif- Schiffbeuegungen in Vordasfahrt,

ferent orientation against the x-axis, making Schiffstechnik 23, 1976, PP 169-173

use of the fact that the 3-D Rankine source
may be representated as an integral average Author's Reply

of such potentials by the relation
YO2 Professor Eggers has corrected my over-

1/r=Im(i/n) (x cos 8 +y sin O+iz)-IdQ sight in regard to the remarkable studies by
f Bessho and Simmgen, which have been further

-1r/2 advanced by Professors Eggers and also by

From classical arguments we know that in Ursell (IMA J1. of Appl. Math., 32, 1984).

order that the Laplace and free surface equa- In addition to his derivation of expressions

tions should be satisfied for any point, the for the forward-speed Green functions in terms

integrand function should already satisfy these of single integrals alone, Bessho (1964, equa-

conditions for such simple integral. However, tion 4.2) also presents an effective Neumann

due to splitting off 1/r and h/r1 an in- series expansion for the single integril.

homogeneous free surface condition has to be
satisfied. This is taken care of by the
occurance of a variable lower limit of integra-
tion, :orresponding to
a+i= ln (x+r)-In ý+i arc tan y/t

in Bessho's notation For the steady advance
case, I would like to emphasize that for satis-
fying the Laplace equation it is not sufficient
that (A a+il3) =0 everywhere save the wake line
of tne source. If, in addition, the scalar
product of the gradient of a + ip with that of

the integrand function evaluated there would
vanish, this will be sufficient.

According to my findings (1976), the result

of Simmgen differs from that of Bessho by a
contour integral of finite extent with constant
limits of integration contributing only to the
representation of the near field.

I advocate that this issue should be attacked
by younger members of our community endowed
with the necessary capacity of brainpower. As
far as I can see, the conventional far field
integrals can easily be extracted. The near
field then is represented by contour integrals
ot "nite extent, independent from path selec-
ted; if we dipnd the integrand (an entire
function) in a Taylor series, we may
intergrate termwise and obtain a near field

expansion in the vicinity of the source which I
feel will be in accord with the pioneering fin-
dings of F. Noblesse.
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A FAST ALGORITHM FOR COMPUTATION OF 3-D SHIP MOTIONS AT MODERATE FORWARD SPEED

R.H.M. Huijsmans * and A.J. Hermans

The Netherlands

Abstract One of the first diffraction programs,
making use of source distributions over the

In this paper the problem of a ship advanc- actual hull was reported by Van Oortmersser'
ing in waves will be addressed. The mathemati- [21]. Since then several similar programs have
cal formulation of the problem will be given. been developed. Some care is needed to evalu-
The solution of the problem will be presented ate the pulsating wave source. Newman [18]
for low to moderate forward speeds. In this reported a very efficient algorithm for the
case the Green's function of an oscillating computation of the wave source at zero speed.
translating source can be approximated using The -Its are very satisfactory. The avail-
the Green's function of an oscillating source ability of the diffraction program makes it
at zero forward speed. Results are presented possible to calculate the second order low
for the comparison of the exact Green's func- frequency wave drift force, which causes low
tion at low forward speed and the zero speed frequency motions at the natural period of
Green's function. For the validation of the moored systems. Pinkster [20] shows excellent
presented algorithm a comparison was made be- agreement of the calculated wave drift forces
tween the presented procedure and the results with experiments. An unsolved problem is still
from computations made by Ecole Nationale the computation of the motion of moored ships
Sup~rieur de M6canique of Nantes using a meth- especially if the mooring is unstable. Wichers
od developed by A. Grekas et al. For the com- et al. [24] also reported that the damping at
putations a series 60 (block .70) ship was the natural periods of the mooring system has
used. From this comparison it can be concluded to be considered carefully. Careful experi-
that the correlation between these two pro- ments showed that a large part of the damping
grams is quite satisfactory. at these natural periods could be contributed

to the velocity dependent wave drift forces.
1. Introduction

In other words a version of the diffraction
In the last decades many theories have been program must be developed where the forward

developed to compute ship motions. Major at- speed effect is taken into account. This can
tention is directed towards thin and slender be done in principle by changing the wave
ships sailing at forward speed in waves. An source function into the pulsating translating
imporcant development is the slender body ap- wave source ftunction and by taking into ac-
proximation by Newman [15] and Newaan and Tuck count certain line integrals. This approach
[16] tor both zero and non-zero forward speed. has been attempted by Bougis [i], Chang [4]
Faltinsen [7] improved the formulation of and Inglis and Price [12]. Until now this ap-
Ogilvie and Tuck [19] and obtained results in proach is not generally applicable. The compu-
better agreement with experiments. The unified tations are time consuming and not very accu-
ship theory introduced by Newman [17] again rate in the general case. An approximative way
gave better results in several cases and is of incorporating forward speed into the 3-D
extended by several authors. ship motion problem has e.g. been presented by

Inglis [ii] and Huijsmans et al. [10]. For the
Meanwhile some very powerful programs have offshore application we have in mind, we have

been developed to treat the zero speed case to deal with low to moderate speeds and it is
for the ship motion, without any geometrical expected that the term linear with speed leads
simplifications. to the correct "damping" if the speed has been

taken into account in the computation of the
second order drift force.

* Scientific Officer, Maritime Research Institute Netherlands (MARIN), Wageningen.

** Professor, Delft University of Technology and MARIN.
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The total potential function will be split
in a steady and a non-steady part in a well tt -2U ý + U 2x + g O - at z=O (2.2)
known way: tt xx z

*(x,t) - -Ux + Z(x;U) + i(x,t;U) (1.1) (Vý • n) = V(x)e-iwt at xES (2.3)

The steady problem gives rise to a highly non- an appropriate radiation condition.
uniform problem in the case U tends to zero as
has been shown by among others Hermans 191, Where V(x)= nx if the ship exhibits a unit
Brandsma and Hermans [2] and Eggers [5] espe- oscillation in the x-direction. In the case of
ciaily in the case of non-thin and non-slender wave diffraction and motions in other modes
ships. On the other hand this part does not V(x) is defined accordingly.
contribute to the pulsating force directly. It
plays a role in the free surface condition. We assume 4(xt;U) to be oscillatory.
This effect is taken into account in the "par- - = U '(
abolic" approach of Nestegard and Sclavounos ID(x,t;U) = '(x;U)e- (2.4)
[13] and Nestegard [I4] in the case of slender
ships. We do not take this effect into account The free surface condition (2.2) rosults
and neglect the contribution of O(x;U) total- in:
ly. The time dependent oscillatory potential 2
4(x,t;U) will be written as a source distri- -w 2 + 2iUýx + U2 4 + g * 0 at z0
bution along the hull and the waterline and it xx Z
will be expanded with respect to small values and the condition on the hull:
of U.

(VO • n) = V(x)
Several aspects have to be regarded. First

it will be shown that the pulsating wave Brard [3] applies Green's theorem to a
source function can be split into a part which problem in Di inside S and to the problem in
can be expanded regularly in a power series De outside S where S is the ship's hull. In
with respect to the small velocity while the this way it can be shown that the problem can
remainder does not allow a regular perturba- be described by means of a source and vortex
tion series. It cannot be neglected on before- distribution.
hand. The source strength is also expanded as
a power series in the velocity parameter of We assume that a Green's function G(:c,t) is
which the first two terms can be computed with known, satisfying the Laplace equation, a
the zero speed pulsating source distribution, suitable radiation condition and the adjoint
We shall indicate that to compute higher order free surface condition.
terms one should take care of a line integral 2 2
and of the non-uniform part of the asymptotic --w G - 2iwUG + U G + gGz = 0 at z=O (2.5)
expansion of the pulsating translating wave
source. We restrict ourselves to the deep This Green's function has the form:
water case. The theory will be explained for
the unit motion potential where the motion of G(x,ý;U) + - +- (X,;U) (2.6)
the ship is oscillatory in the x-direction and r r1 I
applied to a more general case. where r Ix-ýI and r1  Ix-_'I , where C is

2. Mathematical formulation the image of ý with respect to the free sur-

face. The function '(x,t) shall be specified

later on. We define *e as the potential in x E
De and *i as the potential in x EDi and apply
Green's theorem in De on S and in Di respec-
tively. We obtain for Oe(X;U) e(

V_ 7 ,. ') i - "G(X,) n- e(ý1d S4 +

Sn Se - - Z

c c

__ G(x,4) - G(x,ý) • e(&)]dn -

Figure 1. System of axes ( 4 e ' E De

The problem for the time harmonic potential 2ir e x E S (2.7)
(,t;U) can be written as: 0 E D

Ai 0 in the fluid domain (2.1) and for *i(x;U) - (x)
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ff [ G(~) o(x_,•) - G(_x,•_) - Si(ý)]d S• + -2w U(x) + // o(0) 3 G(x,ý) d +
S e e S x

Um2
+2i- _ f + f ax(D)) G(x,))dn - 4w V(2) for xES£ 2i *Ufi(•) Gx•H g- c + cn-fao~ ~,)n Vx

g c - -

• [si•) •(2.11)
_ f~ G(xQ) - G(_x,_) (i(21dnwhile ýe is given 1y (2.10) with y(&) = 0. If

0 , x E D we wish to calculate 0e up to order U the last
Se integral in (2.10) and the second integral in

27 ýi E1 S (2.8) (2.11) can be neglected. We then obtain:

47i E Di *(x;U) = - Ia(4;U) G(x,ý;U)dS,, 2fD (2.12)0Se

where c is the waterline, and:

We consider x E D and add (2.7) and (2.8) -jo(x;U) +-S x
while we write -•i - e= we then obtain: : I
41r f f/ ( - -G(,)dS+v~x), xEs (2.13)

e S anWe consider the case where T •- UW<< 1 in

- ,fdS• + Section 4 it will be shown that a and * can be
-n expanded with respect to T as follows:S

+ 2 i f $() G(x,) din + o(x;U) -0 (x) + TO1 (x) + o(x;U)

U f a G(xt))d+(;U) A +o(X) + T•I(X) + *(x;U) (2.14)
TT2 o where and a are 0(t 2) as T+0 while G(x,ý;U)

+ f G(X (h ) dn (2.9) has to be treated less trivial as sh1all be
+ g cshown in the next section.

The potential e may be considered as a 3. The Green's function
source and dipole distribution along the hull
and the waterline: In this section we present an asymptotic

-•expansion of the Green's function G(x,ý;U) for
n= •n (-') and <- - I• < 1 and v - >> I.

together with the notations: g U2
h wThis can be obtained by means of constant

at-cos(Ox,t), aT-cos (Ox,T), an-cos(Ox,n) frequency w and constant length scale L for U
+ 0. For convenience sake we chose L-1 hence,

where n is the normal and t the tangent to the v - & >> 1.
waterline and T - t x n the binormal. We ob- U2

tain: The Green's function follows from the

ac (source function presented in Wehausen et al.
- ff Y() G (_x,Q)d S, - jf o(ý) G(x,ý) d SC + [23]. With the notation (2.6) we obtain for Y

S 
s - I

-2 L f Y(ý) G(x,) din + ;

U2 c 
r rc

cotiuint the oltinu t oE order U.

c U2

Gxtd]+ f an 0(t) G(x,t) dn. with:
G~,•) 9 +•- c n " - /2

4ve x E De (2.CU V0 f LIfd FGk

4w x D+ 2K f dO f dk F(O,k)

It is clear that with the choice Y(E) - 0 whn,/2 L2

the integral along the waterline giv'es no en

contribution to the solution up to order U.
Hence, for our purpose a sourc e distribution F(G,k)"

is the appropriate choice. The source strength .k exPtkf t+;,i(x-&) ¢osO])j c osjk•n), -ainOl

o(J.) is a solution of the integral equation: sk - (W•kU co-8)2

(3.2)
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The contours Ll and L2 are given as follows: = - 1 fd f _k

K1 K2  0 L gk-w

L 2 k(z+ý)

S K4 f= 2g f 2 J 0 (kR)dk (3.5)
K3 KL gk-w

L22 i
0 = dO f dkE(Ok) kcos,

Figure 2. Contours L, and L2 - - T 0 L* (gk-w 2 ) 2

These contours are chosen such that the 2 k2ek(z+)
radiation conditions are satisfied. The waves = 41g cosa' f 2 J 1 (kR)dk
are outgoing. The values ki are the poles of L* (gk-2)
F(O,k).

1 gk 1 , g2k1- /I - 4r cosO 
(3.6)

where: R2 = (x-ý) 2 +(y-n) 2 and 0' = arctg(-x_)
= 1 + /i - 4 1 cosO

2 -4 2 T cosO Expression (3.5) in (3.1) gives the pulsat-
ing source function, which can be calculated

For small values of T these poles behave as with the algorithm Fingreen, see Newman [18].
follows: Expression (3.6) is a correction for small

values of T. It will be clear that one should
/g, gk3  W + O(T) as r+0 (3.3) operate carefully. The second order singulari-

1 ty needs special care. With the help of Sonine
/g2' -4g-k4 T cose + 0(1) as T+0 (3.4) integrals and some analytic manipulations it

can be computed with the help of Fingreen just
The behaviour in (3.3) gives rise to a regular as well. In this way a series expansion of the
perturbation series with respect to T. In con- Green's function has been obtained. However,
trast, (3.4) originates a highly oscillating the poles at infinity cause trouble. The poles
contribution which gives rise to & non-uniform k 2 and k4 can be combined for large values of
expansion. However, the position of the last v =--. We write:
two poles moves to infinity. Therefore it can U2

be treated separately. If T+O the contours L1
and L 2 become the same. (x,ý;U) 0 (,) + •@I(x,) +

+ 9o(xO + V1 I(x,&) + ... (3.7)

K and find:
go L

0 n /2
O, -4v f explv(z+ý)sec201 *

0

Figure 3. The contours Ll 4nd L2 if +0 sin[v(x-E. secO

Wo may take L on L* if appropriate. Wa COS•e (y-1) sine sac el sec 2 0 dO (3.8)
write:

)_Expression (3.8) in (3.1) gives the
F(Ok) - E(O,k) translating source function in still water

gk - (w+kUcosO) (see equation 13.36 of Wehaunen and Lnitone

1 2kucosO 2 [231). This term is highly oscillating and the
E(O,k) - 2 _ 2k2) + O(t2), as TrO amplitude becomes infinite at first sight. In

gk--2 (gk-. )w making a perturbation expansion of (2.13) it

where: generates a Kelvin pattern related to the os-
cill&ting source strength. Because of this
oscillating b~haviour it gives contribution to

E(O,k) (2.14) of 0(0 ) as 7*0 and can be disregarded
in our analysis. In the appendix this is ex-

k e-xp~k[=+ý+i(x--)coaO]}coa~k(y--n)ain} plained for thin ships. For other ship forms
the situation is more complex and the problem

is related to the low Froude number theories,
and with O(x,k;U) - 0 (XQ + x(x,0) + .... see Brandsma and Hermans and Eggers.
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4. Expansion of the source strength Once the potentials *0 (x) and *1(x) are
known, the pressure from the linearized' Ber-

In this section an approximate solution of noulli equation can be derived:
(2.13) will be derived. Inserting (2.14) and a a
(3.7) in (2.13) one obtains: p(x,t) =-P 3 'Psxt) - PU x- (xt) (4.5)

+ To1 + ) + 1 ff (o + To1 + a) * also defining:

an - 0 - i-- -I+...)dS- = V(x) (4.1) p(x,t) - Po(Xt) + T pl(x,t) gives:

x

where Go - - -O p0 (X't) - -P _- o and
(4.6)

In the appendix it is shown, for thin (x,t) = aP L(- t) - PU L -(Xt)

ships, that in the case~that ai are regular p- a t ) p ax 0
functions the functions 'Pi do not lead to a Integration of the pressure over the mean
contribution to the source strength. Hence, we wetted surface results in the hydrodynamic
obtain for the unknown functions ai reaction force:

4 ( H + ( a )-a 'a (x,0dS.V(x)(42
- 0 (x) +4S f 0 o( • (4.2) Fk - f p• nk dsS S

and: Substitution of the pressure expansion (4.6)
-0(xLc) a G0(2,)dS - delivers:

1- f an x F(kO) -f p0 " nk ds

S (4.3)

F(1) . - f p," n dss k

where G0 (x,&) is the zero speed pulsating wave with: s

source. (0))
Fk" FkO + 'Et

This perturbation approach leads to a fast k k k
algorithm to take into account speed effects
once a fast method is available for the zero For the unit motion in the J-mode one is

speed diffraction problem. At MARIN the dif- now able to write the added mass and damping

fraction program has been extended with the coefficients:
Finngreen subroutines of Newman. The diffrac- 2 (0) (0)
tion program has been adjusted to compute the -k a kj -j
right-hand side of (4.3) just as well. (0) (0)

-j - imag Fkj

The potential functions (2.14) now become: with similar definitions for ( and (

0 41 0 to NFkis the reaction force in the k-mode due

S to a it oscillatory motion in the J-th mode.

* (x) - - - ff aO(E) Pl(X,Q)dS• + (4.4) 5. Computations

4* f o() GO(M)dS In order to evaluate the practicability ofS 1- GO' the proposed Green's function (3.5) and (3.6),
calculations have been made on the one hand

It can be shown (appendix) that the integral using an adapted varsion of the Fingreen algo-
rithm and on the other hand usi.og standard

ff 00%) io½ )dsc PIMSL subroutines. We are able to transform the

s 0'')dS expression of '[ in (3.6) into an expression
co1 which only contains derivatives of '0. TheV term ý0 in (3.5) and also 'P in (3.6) can then

H2 Hence, for small values of U the source be evaluated using Fingreen. The function 'P
has also been computed using standard IMSt

strength is hardly influenced by the Kelvin subroutines. However, care must be taken for
part, whereas the3 potential function is in- large values of R, the horizontal distance, in
fluenced in the U term. Theue U terms will the calculation of expression (3.6). A trans-
be neglected together with U , the contribu- formAtion in the complex plane gives an equi-
tion of the integral along the waterline. For valent expression for ý1, which yields:
the offshore application we have in mind the
linear correction terms suffice.
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Also computations have been performed by

-1 (- -d4 [k2ek(zC)Yl(kR)j + the Ecole Nationale Sup~rieur de M1canique of
0 0 Nantes [6] for the same ship and frequency

k K(kR) range with a program as developed by Grekas et
2 29 [2kk 0 cosk(z+0 + al. [8]. In the E.N.S.M. program also use is

0 (k 2 + k2) made of a low forward speed approximation,
2u2 however their approach is different then the

"+ (k20 - k ) sink(z+•)]dk + algorithm presented in this study.

The influence of forward speed effects is
"+ 2si-(residue of (3.6) in k=kO) (5.1) most clearly expressed by the hydrodynamic

reaction coefficients A5 3 , A3 5 , B53 and B3 5 ,
the added mass and damping coeF'ficients of

Table I displays for a few values of R in heave into pitch and pitch into heave. In Fig-

z+; the results of Fingreen and the results of ures 4 and 5 the results are presented for
IMSL subroutines for the expression (3.6) and these coupling cnefficients for Fn = 0.0 and

(5.1). The accuracy of the Fingreen results 0.05. The zero speed hydrodynamic coefficients

amount to approximately 5 significant figures. of the two programs which are not presented
The computer time needed for the evaluation here in detail, correspond up to 3 significant

(3.6) and (5.1) using IMSL subroutines was ap- figures.
proximately 100 to 500 times larger than the T

time needed using an adapted version of the A53__

Fingreen subroutine. ---- F-A3,

. * PRESEN1 STUD
GREKAS I

Table 1. Results of computations for 'i ,2E -.

.+ o -1.0, - 0.2

R 0.01 0.1 0.5 2.4C 10.0 100.0

FINREEN .7142E-2 .7100-EI .31171 .50836 -. 46203 .14721

IMSL ().6) .7142E-' 7T100E- 1 031063 .50807 -46165 - --0 E

(5.1) .31171 .50836 -. 46203 .14721 4-'-----

•. 0.1 0.5 2.0 10.0 100.0

FTNGREEN .81IE-4 .814E-3 -. 4076E-2 -. 1676E-1 -. 92)1E-1 -. 2350E-2 I
IHSL (3.6) .813E-4 .813E-) -. 40719-2 -. 1674AE- -. 9216E-1 -. 2240E-2-;

(0.)0 -. 1676t-1 -. 9231E-1 -.2357K-2 o o2 0- 4 o06{8 ,

-1-o0.6, k-o, 0.2 Figure 4. Added mass c~upling coefficients

K 0101 o1 0.0 2.0 11010 10.0 A38; A5 3  (Ns') for Fn 0.0 and
" ~0.0

FUSURESl . lI E-6 ,I18E-5 -. 515E-5 -. 122E-, -. 1097T-2 -. 1;90-.

lKSL (0.6) .1210-6 .11 00- -,7OO£-4 -.1120-4 -, 10090-2 t.i IE-.

The dashes in Table I indicate that expres-

i0on (3.6) or (5.1) does not result in accu-

rate figures. S. .. r'A08

The computer time needed for the calcu-
lotion of the forward speed influence wais
negligible compared with the zero speed corn-
putations. The total computer time increases
by approximately 5%. Once these forward speed
influence coefficients have been computed, the
calculation for other forward speeds only de-
pends on some little extra addition/multipli- OS'
cations.

At the moment very little dare is available
o01 the hydrodynamic reaction coefficients of
ship type vessels at low Froude numbers. In
order to validate the presented algorithm, "
computations have been made with a series 60 Figure 5. Damping coupling coefficients
ship (block .70) as was used by Vugts (22]. B38, B5 3 (No) for Fn - 0.() and

0.25
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From the presented coefficients one may where ( 0 ,0) are the endpoints of the ship at
conclude that the correlation of the two pro- the waterline. The integral I(x,z) in (A.4)
grams is quite reasonable. In the low frequen- consists of two parts I ±(x,z) with:
cy range the added mass terms A35 and A5 3 cor-
respond very good and in the higher frequency + 7r/2
range the damping terms B5 3 and B3 5 show a l-(x,z) i 2 f sece sinu a (•±,)
reasonable fit. -w/2

In spite of the reasonable correlation of * exp[v{z sec2e + i(x-E ±)secO}]dO
the two algorithms one still, however, feels
the need of the correlation wich model test as V + (A.6)
experiments.

The main contribution is generated by the end-
Appendix points. This is well known for low Froude num-

ber expansions. Further asymptotic expansion
In this appendix we study the influence of leads to: +

lO on the source strength and the potential. + 2 O0(-,O) Cos20
FArst it will be shown that the integral -(x,z) = c

2z + i(x- ) cosO
ff 0o(•) --- ( dSt (A.1) x2 - s
S x exp[VIz sec 0+ i(x- e + ()
is asymptotically small. We rewrite the func- -Ir/2 v
tion *0 as: = 01(2) (A.7)

Im x�,�~) V
0(-'- _ _ If we proceed with partial integration each

Tr/2 2 2 next term gives zero, even if z-0. The next
- -Im 2v f exp[vsec O(z+ý+iw)]sec2Ode term with l(2X,b) in (4.1) gives no contribu-

-a /2

(A.2) tion to oa(ý) just as well.

with w (x-Q)cosO - (y-n) sine and v - To study the influence of 0o(X,ý) on the

U 2 potential we study the integral: -/2

For thin ships the approximation an a J() - O- dS -2v f {ffao(tm )
an Dy " --w/2 -x SS

holds and the source distribution (A.1) can be 2 2

written as c distribution along the projection expjv sec20(z+ý+iw)]dý d~1 sac0 dO (A.8)

S of S on the(x,z) plane. We then obtain:

w/2 with w = (x-0) cosO - y sine.
_X 2v 2 i f see4( sine•
ZY -w/2 The integral along S can be evaluated by

2 means of partial integration. Making use of
exp[v sec e(z-K+ii)JdG (A.3) (A.5) we obtain:

where W - (x ~) cosO. i (x) a o(±0)

We therefore consider the integral w/2 2 t
r/2 2 f exp(v(z see20 + i(x-••) sece +

I(x,z)-2vi J tJf oC(Jm) exP[veec e(z+o))* -1/2
2 /2 •dO

- i y sec 20 sine)] . (A.9)Sexpliv secO(x-•)Jd~dc} sec0sinedO (A.4) sec 3

in the limit v P Z -. For arbitrary values of x a further asymptotic
U 2  expansion of J (x) is possible by means of the

First, we consider the integral along S. method of stationary phase. A Kelvin pattern
Integration by parts results in the major con- is generated at the bow and stern. The main
tribution beceuoe no stationary po!nta are term behaves like:
situated on S or its boundary. We obtain:

JJ o((,O exp[v(;Qec 0 - i OeecO)ýdt dC - 3 F2

s which mea" that i contribution at higher or-
- + + der than the linear term has been obtained in

O2 ((+ .0) exp(-i \)sec O) + the wave height. For the calculation of the
i\)2 see] pressure at the ship a similar analysis shows

- - _that higher order terms are obtained as well.
"- o0(•,0) eKp(-i•VaecO)]+03) (A.5) lIance, %.w may neglect these terms if one is

V 'Interested In linear correction terms.
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DISCUSSION

of the paper
by R.H.M. Huijsmans and A.J. Hermans

"A FAST ALGORITHM FOR COMPUTATION OF 3-0 SHIP MOTIONS OF MODERATE FORWARD SPEED"

DISCUSSION DISCUSSION
by J.H.M. Baar by R. Yeung

The authors are to be congratulated on a

The Authors have presented a very origi- very interesting paper which proposes a
nal and efficient approach to the forward forward-speed modification of the zero-speed
speed ship motion problem. In the introduc- hydrodynamic coefficient in a low-speed sense.
tion the authors make mention of the large Embedded in this approximation is also the
CPU-requirements of programs based on the fundamental restriction that the oscillation
distribution of translating, pulsating sour- frequency must be low. Thus, it is perhaps
ces. The CPU-requirements of such programs, not so surprising that one would expect a dis-
however, tend to decrease drastically at the agreement of the "genuine 3-D" results with
subcritical Strouhal numbers considered by those obtained by the authors' approximation
the authors. The required CPU is in such (Fig. 4) in the higher frequencies. It seems
cases comparable to that of zero Froude num- puzzling, however, that the opposite trend is
ber program based on pulsating source distri- observed for the case of damping (Fig. 5).
butions. The proposed algorithm formally Another peculiar feiture of the results shown
relies on expansions with respect to the on these figures is that the relatively small
Strouhal number. Specifically, quadratic and Froude-No. (Fn=O.05) calculations show no
higher order terms are neglected. However, tendency of approaching the zero-Froude No.
it seems not trivial that on this basis the calculations in the low frequency limit.
waterline contour integral may be neglected, Since the leading-order correction proposed by
as is done by the present authors. As a mat- the authors is proportional to T=Uc/g, it
ter of fact, the omission of this term appears to suggest that such a forward-speed
appears to be in contradiction with results purturbation may nor converge uniformly to the
obtained in the low Froude number theory of zero-speed limit. It will be helpful if a
wave resistance. Moreover, a simple but more extensive set of results, including the
effective approximation to the line integral diagonal values of the added-mass and damping
may easily be obtained at little extra costs, matrix, are available for comparison. Can the
as pointed out by Inglis in Ref. 11. authors comment on some of the apparent anoma-

lies raised here? Incidentally, the exact
Author's Reply definition of the abscissa in Figs. 4-5 are

missing in the oreprint.
We thank the discusser for this cotmment

on our paper. We are aware of the fact that Author's Reply
nowadays there exist efficient programs for
the calculation of the Green's function for a The results shown in our paper for. a
translating, oscillating source at subcriti- Series 60 ship concern the heave-pitch cou-
cal Strouhal numbers. However, the computer pling hydrodynamic coefficients, since for
time needed for those calculations is still these coefficients the forward speed effect is
linearly dependent on the number of forward most pronounced. The diagonal values of added
speeds used. This is not the case in our, mass and damping were not pre!ented in our
approach, where only for the first forward paper for Fn v 0 and Fn n 0.05 because they
speed calculation some computational overhead agreed up to 2 significant figures for the
is needed with respect to the zero speed translational modes. It may be misleading to
calculations, suppose from Figs. A and 5 that for the low

frequencies therd is no tendency of approach-
For other forward speed values there is ing the zero speed limit, since the lowest

no additional computee time needed. The calculated frequency amounts to 0.4 red/i.. If
remark of the discusser with respect to the the value of T 4pproarhes zero all the correc-
deletion of the .. dterline integral in our tion terms in our analysis approach tdro in a
representation for the potential and the uniform way. It is still not very clear to us
source strength can be answered by usi g the why tVe differsnces between our computations
same arguments as used in the appendix of our and those from ENSM (6) take a different form
paper. for the presented added mass and damping coef-

ficient: it seeos that more different calcula-
The waterline integral will then give tions have to be perfor"-4d to gaiYn more

terms in the order of the Strouhal number to insight in that matter.
power four or higher for the source strength
and thL potential. Therefore -his waterline
contribution can be disregarded fr-om our an-
alysis.
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DISCUSSION

by H. Wang

I wish to commend the authors for simplify-
ing the calculation of the Green's functionfo'
an oscillating, translating source by taking a
series expansion approach. I have the follow-
ing three questions:

1. The contour L* appearing in Eq. (3.6) does
not appear to be defined.
2. Does the troublesome behavior of gr as
T - 0 impose a lower limit on the values of T
for which your approach is applicable?
3. In view of your statement that the computer
time needed to calculate the forward speed
influence is small compared to the zero speed
computations, have you considered a more com-
pelex approach for the forward speed effect?

Author's Reply

The discusser raises the question regard-
ing the integration L* as displayed in for-
mula (3.5). This integration contour L* is
chosen in the complex plane away from L by
some arbitrary small parameter c. In short
L*A L + ic. In this way it is possible to use
partial integration on formula (3.6). The
remark concerning the behaviour of ý'o with
respeci to T is treated in detail in the appen-
dix of the paper. The troublesome behaviour of
T itself is not of interest to us, only its
influence potential %t (x,t) and on the source
strength afx,t). It appears from the appendix
that the influence is of order (T

3
) or higher.

Oor our purposes we are only interested in the
linear correction term of the Green's function
expansion. It is possible though to extend the
analysis up to order (T2 ).
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SEAKEEPING COMrUTATIONS USINO TIME-DOMAIN ANALYSIS

S. Liapis and R.F. Beck
The University of Michigan

Ann Arbor, Michigan

Abstract In all these models the problem is formulated
in the frequency domain leading to equations

The prob'em of a ship traveling at con- that haee meaning only if the body motions are

stant forward speed and forced to oscillate strictly sinusoidal in time. In more general

around its mean ýosition is formulated using situations, such as a ship performing a man-

linear time-domain analysis. The hydrodynamic
euver with varying speed, the frequency-domainforces acting on the body are expressed in approach is meaningless. An alternative to the

te.ms of convolution integmzals of thne arbitrary frequency-domain approach is to formulate the
motion with impulse response functions. The problem directly in the time domain. The solu-
determination of the impulse response fun~ctions tions in the frequency domain and time domain
involves solving a set uf integral equations can be related through the use of Fourier
for the velocity potential due to an impulsive transfo rme For any particular problem in-

velocity (a step change in displacement). Tne volving only zero forward speed, one formula-

integral equations are solved numerically for tin on zer far bee onentormula-

bodis o a~btray sape sin a anelmetod. tion or the other may be sore convenient., "nw-bodies of arbitrary shape using a panel method. ever, for problems involving forward speed it
One of the ihtegral .quations must be solved by appears that the time-domain approach requires
time stepping, but the kernel matrix is the much less computational effort and ran be
same at each time step and is closely releted much l es toona effral cane
to the kernel matrix used to solve the tir.e in- easily extended to sore qeneral cases.
dependent integral equations. The added mass Cummins (1962) and Ogilvie (!964) first
and damping in the frequency domain is found by discussed the use of time-domain analyais to
Fourier transforming the time-domain solution. solve unsteady ship motion problems. The zero

forward speed problem is examined in detail byNumerical results are obtained for the ad-
ded ma3s and damping coefficients in heave and is asen the 1ork of i e n a(157)

pitc ofa Seies60, B =.70 ull Comar- is based on the work of Finkelbtein (1957),
pitch of a Series b0, CB =.70 hull. Compa'- which is expanded on in both Stoker (1957) or
isons are shown between the results of the Wekauser, and Laitone (1960).
time-domain calculatio"-', the vore conventional
freqi'ency-domain calculations, and experiments. Few results using time-domain analysis are
In general, the comparisons are good. available inrd they are all for zero forward

speed. Direct solutions in two-dimennions are1. Introduction presented by Adachi and Ohmatsu (1980),
Ikebuchi (1981) and Yeunq (1982). Two-

During the last twenty years there has kbci(91anYen(932. To
Durig te lst tent yers terehasdimensional time-domain analysis was also used

been growing interest in numerical methods for d ao time5doain and Kim was as
calculating ship motions and predicting wave by Daoud (19h5) and Yoeung and Kim (198d) as
loads. The well knowii strip theory was the part of the development for slender-body

load. Te wel kow-na ti? teor wasthetheories of ships with constant forLuard speed.
first numerical method which war used as a

practical design tool. Despite i,ýs utility, Ursell (1964) and Maskell and Ursell (1970)

strip theory gives poor results at low frequan- developed solutions in the time domain for a

cles and at large ship speeds. The advent of floating semi-circle using the Fourier trann-
ciesandat arg shp speds Th adentform of the frequency-domain sutluton. The

large, Aigh-speed computers led to the develop- same te e was oed by o tik a nd Tuy
ment of three-dimensional theories that removed same technique was used by Kotik and Lurye
omen of thredefdimencesionl sthrie thatoremoved (1968) for a floating hemisphere. Lin (1966)

some of the e deficiencies of strip theory. Zcnt developed a mathematical fcrmulatlin of the
of these theories use a singularity distrnbu time-doirain problem with forward speed. Hia
tion and "educe the problem to solving a formulation leads to equations that are very

Fredholm integral equation of the second kind complated ad a o atinb to arecer

on the body surface. Several authors (Chang complicated and are not amen.ble to numerical

(1977), Inglis and Price (1982), Guevel and computation.

Bougis (1982)) have presented such models to Recently, Nawman (1985) hat used time-
compute ship motions with forward speed and
found good agreement wit~h experimental results. don anayio to ri4 e t irpula ere

ponse function 3or a r.t oircuiar cylinder.
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Beckuse of the axial symmetry hc was able to Z
use "ring sources" and reduce the problem to S + S + SF + --
solving a one-dimensional integral equation at
at each time step.

Beck and Liapis (1985) use time-domain
analysis to solve the radiation problem for ar-
bitrary bodies at zero forward speed. The SR

solution is obtained by solving a pair or inte-
gral equations using panel methods. One of the -

integral equations must be solved by time step- -

ping, but the kernel matrix is identical at
each time step and need only be inverted once.
Comparisons with other published results showed

excellent agreemen'. Fxcellent agreement with
experiment was also found for the time history SZ
of the vertical displacement of a floating
sphere released from an initial displacement.

cigure 1. Coordinate System and Control
The work presented in this paper is the Volume

next step in the continuing development of the
time-domain analysis method. The computed re-
sults presented in Beck and Liapit. (1985) for It is assumed that the fluid is incompres-
simple geometrical shapes at zero forward speed sible and inviscid and that the flow is irrota-
have been extended to a Series 60, CB = .70 tional. To set up a linearized problem it is
ship at both zero and constant forward speed. assumed that the fluid disturbances due to the

steady forward motion and the unsteady oscilla-

The computed results presented here are tions are small and can be separated. In this
not complete because, as discussed in sectioin case the total velocity potential can be writ-
7V, simplified expressions for the forward.- ten as
speed body boundary condition and Bernoulli's
equation are used. The simplified expressions OT - -Uox + *o(x,y,t) + O(x,y,z,t) (1)
are obtained by replacing the steady forward
motion potential with -he free-stream poten- where the term (-UoX + Oo(X,V,z)) is the po-
tial. The use of simplified expressions great- tential due to the steady translation of the
ly eases the computational burden but does not vessel and the potential O(x,y,z,t) contains
affect the part of the calculations dealing all the unsteady effects. In the fluid domain,
tith time-domain analysis. Demohtstration of each of the potentials must satisfy the Laplace
the viability of time-domain analysis at for- equation subject to bo-indary conditions on the
ward speed can be made just as well with the free surface, the body, at infinity and appro-
rimplified expressions as with the complete priate initial conditions.
expressions. For the Series 60 hull used in
the present calculations, Inglis and Price The free surface condition is linearized
(1982) found that this simplification has lit- on the assumption of small elevation. Further-
tle effect on the added mass and damping coef- more the interaction at the free surface be-
ficients in the frequency domain. tween the steady perturbation velocities and

the unsteady potential are neglected so that
In the paper consideration is only given the boundary condition on the radiation poten-

to the radiation problem of a ship moving at a tial reduces to
constant forward speed and forced to oscillate

about a mean position. The extension to non- a a a
constant forward speed and curved trajectories (-- - Uo.-)20 + g--6 - 0 on z - 0 (2)

is in principle straight forward. Work on the at ax
exciting force problem has just started at The

University of Michigan. 'here g - acceleration on gravity. The kine-
matic boundary condition on the hull can be

II. Mathematical Formulation linearized to give

The axis system shown in Figure 1 is used a 6
tu formulate the linearized problem in the time -- - I (nkk + kXCk) on So (3)
d&moin. The axis system is fixed to the mean an k-1
position of tha ship and travols in the posi-

tive x-direction with comqtant velocity U0 . where
The ::-axis points upward and positive x is

toward the bow. TVe x-v plane is coincident so - mean underwater hull surface
with the calm water levitl and the origin is at nk - componente of generalized unit normal
midship. The ship ig undergoing small un- out of fluid domain
steady motions around itt bm.'an poeition in (nl, 112, n 3 ) - 11
okhoet17se calm water. (n 4 , n-,, n 6 ) - r , n

r - (x, y, Z)
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tk = amplitude of unsteady motion in six The Green function represents the poten-

degrees of freedom tial at the field point P and at time t due

(CI, 42, C3) = linear translation along to an impulsive source at the point Q sud-
the x,y,z axes respectively denly created and annihilated at time T

(14, t5, t6) = rotational motions about This source acts like an underwater disturbance
the x,y,z axes respectively which generates a Cauchy-Poisson type wave

mk = gradients of the steady velocities in system as represented by the G(P,Q,t--c) term.
the normal direction The integrated form of (5) is given by Wehausen

(ei, m2, m3 ) = -(n'V)W and Laitone (1960) as the potential for a

(m4 , m5, m6) = -(n.V)(rxw) source of arbitrary strength moving below a
W = velocity vector due to steady free surface, It is easily shown that the

translation Green function satisfies the following problem:
= V(-Uox + *o) V 2

G -4r 6(P - Q) 6(t - T)

and the overdot represents differentiation
with respect to time. a- a

(-- -U--)
2 G_ +--G=0on

Since an initial value problem is being at ýx az

solved the gradient of the radiation Lotential
must vanish at infinity. In addition the ;G

initial conditions of G, -- = 0 for t < 0 (6)
at

= 0 for t < 0
Applying Green's theorem to the fluid

0o volume shown in Figure 1 and enclosed by
0 for t < 0 SzU Sr U Sf U So yields

at (4)

aG a4D
must be imposed. fff[¢V2G - GV2,] dV = ff(O-- - G--)ds (7)

V a an an

An integral equation for the potential on
the body surface can be derived using Green's Integrating both sides of (7) with respect to
theorem and a Green function for an impulsive T from 0- to t+ and using the properties
sou-ce below a free surface. The appropriate of G(P,Q,t-T) and the fact that 0 satisfies
Green function is the Laplace equation everywhere in the fluid

domain gives:

1 1
G(F,Q,t-T) ( - -- )t - T) + H(t - T) 1 t

r ro (P,t) -- f dT ff dS (Q,T) 3G(P,Q,t-T)
4 • 0 S nQ

x 2f dk /kg sin(/kgg(t - T)) ek(z+t) Jo(kR)

0 aD(Q,T)
- G(P,Q,t-T)-...... (8)i ( I •anQ

-1)6(t - ) + H(t T)G(P,Q,t-T)

r r The contribution to the right hand side

from the surfaces at infinity vanish because

(5) both G and 0 vanish at infinity.

where The contribution to (8) from the surface
integral over the free surface can be reduced

P - (x, y, s) to a line integral about the waterline of the
vessel. From equation (2) it is found that the

Q - (C, , t) free surface boundary condition gives

r
2  

- (x - C)2 + (y - n)
2 + (z - t)2 a a 1 a a

-= -- - U,--)2 onz=0

r12 (x - t)2 + (y - n)2 + (z + C)2 an at g aT a&

R2  - (x - C + Uo(t - T)) 2 + (y - n)2  Hence the contribution to (8) from the
free surface may be writtent

t- T) - delta function

H(t - T) - unit step function

-0 t<0

I t )U
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1 t 1 t

-f d ff dS [.(Q ,.) F2 g d[-
4 o s0 o F

a a Uo (OGT -0'rG)] (13)
(- - Uo--) 2 G(P,Q,t-T)
3T a where r = intersection of the mean hull

surface and the plane z = 0 . The positive
- G(P,Q,t-t)(• -- Uo-- )4Q,d] sense o. the line integral is in the counter-

clockwise direction.

(9) The final result for * at a point in the

tF may be separated into two parts which can fluid is
be reduced independently as follows: 1 t aG at]Jý(P, t) ... f dT ff dS [0-- _ G--

tF = §F1 + tF2 (10) 4r 0 SO an an

1 t I t at DG
OF1 = --- f dT ff 3S [t(Q,T) G¶T(P,Qt-T) + --- r dT dT1 (Uo2 (G-- - t--)

0 SF 41rg dt F ( -

-G(P,Q,t-T) TT(Q,T)] at aG
- Uo (--G- t--)) (14)

ff dS f dT - [(Q,T GT(P,Q,t-r)
47rg SF 0 aT Although equation (14) is derived for constant

foward speed along a straignt trajectory, it
- G(P,Q,t-T) tT(Qt)] may easily be generalized for arbitrary speed

and trajectory (see Liapis '1985)).

dS- ff as [O(Q,T) GT (P,Q,t-T) In the usual manner of potential theory
4irg SF equation (14) can be reduced to a pure source

t distribution by considering the interior flow
- G(P,Q,t-T) t4 - (Q,T)] I and subtracting it from equation (14). The

0 final result is:

(11) 1 t

O(P,t) . .-- f dr ff dS G(P,Q,t-r) a1(Q,T)

where the subscript denotes differentiation 4w 0 so
with respect to the given variable. Because of 2
the initial conditions on $ and G the last Uo t
expression equals zero. The OF2 term is --- f dT ý di1 O(Q,T) nI G(P,Q,t-T)

4sg 0  r
i t

tF2 f dT ff dS [U0
2 (4,Gtt - CO4') (15)

47rg 0  SF
For the case of steady state oscillation

- 2Uo (OGtT - GaT)] of frequency w at constant forward speed,
equation (15) can be reduced by setting

Integrating one half of the last term by parts o(Q,T) = a(Qi ei'(T . Making the substitutions
with respect to T gives: and interchanqing the orders of integration it

can be found:
1 t

fF2 f dr ff dS [Uo 2 (OGt - Gt) 1 t
47g 0  SF O(P) . ff dS o(Q) f dT eiWT G(P,Q,t-T)

- Uo ($OGT - Gt$.r + OGtT - Gt4S]

uO2 t

1 t --- dn a(Q) n1 f dT eiWT G(p,Q,t-r)
f dT ff is - [Uo 2 (MtG - OtG) 4zg r 0

47rg 0  SF 34

(16)
- Uo (OGT - OTG)] (12)

As t + e Wehausen and Laitone (1960)
Applying Stokes' theorem to the last form of show that the time integration of the Green

(12) yields function reduces to the usual Green function
for a source translating with constant forward
speed and sinusoidal strength. In this case
equation (16) is identical to the form of the
potentiai used by Chang (1977).
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An integral equation for the source 1 a 1 1

strength may be found by differentiating (15) Vik(P) + -- ff dS k.-.-(-- )
with respect to the normal on the body and 41 So an r r'

setting it equal to the body boundary
condition. Thus, we may write: 1 1

- Jf dS --)nk (22)

m(P,t) 1 t ;G 
So r

-- 2-- - f d s f -f -S -
an P vg s anp I a 1

Xk(P,t) 4' -- (4 as Xk --- (- .
UO2 t aG 2w So anQr r'

....f dT d a nj --- (17)
4ng 0 r anp

+ -- fdT ff S Xk-----------
Since the body boundary condition is 2w 0 so an

represented by the sum of six individual
components, it is useful to divide the
potential into six individual problems each of 2  t aG aXk
which satisfies: + --- f d l dn (Xk-- G---)

2rg 0  r at at

a•k
an--- +mck 1)U t aG

f- -- dT #dn Xk --'. g 0 ; T

The coefficients mk as defined in (3) contain
the influence of the steady velocity field on
the body boundary condition. -_ ff dS ink(1 -

2w 2S r r'
Similar to the method proposed by Cummins

(1962) or Ogilvie (1964) we can consider a t
ficticious case where at t = 0 the ship jumps + !- f dT (f dS Mk G(P,Q,t-T)
instantaneously from 0 to I in the kth mode. 2w 0 So

This jump is impulsive, so that the velocity is

ek = 6(t) . For this special case of motion
the body boundary condition is: + - f s S G t

a 227 So

---.. nk6(t) + mkH(t) (19) aG(P,Q,t)(an --- fif as *1k ----- (23)
21 So anQ

The body boundary condition (19) suggests that
the potential *k can be decomposed into an The 01k problem describes the fluid mo-
impulsive and a memory part such that: tion during the impulsive stage and may be

interpreted as an infinite fluid problem satis-

Wk(P,t) = 1k(P)6(t) + Xk(P,t) (20) fying

If we set *Ik 0 on z = 0

a*lk a01k
---- . nk on So (21) ---- nk on SO

an an

aXk V*1k + 0 at
--- = Mk on So
;n The Xk potential represents the motion

of the fluid subsequent to the initial impulse
then the body boundary condition (19) is and can be considered as composed of two comn-
satisfied for all time. ponents. The first results because of a change

in body orientation due to the impulse in velo-
The integral equations which must be city. After the impulse in velocity the body

solved to determine *1k and Xk are found by will have a unit displacement in the kth mode,
applying integral equation (14) on the body which, in the presence of the steady velocity
surface and substituting equations (20) and flow field, results in a change of fluid velo-
(21). Gathering terms proportional to S(t) city on the body surface. In order for the
gives an integral equation for *1k and the body boundary condition to remain satisfied
remaining terpas yield an equation for Xk this change must be cancelled out. Therefore,
The details of the derivation may be found in aXk/an must have the value mk on the body
Liapis (1985); the final results aret surface for all t ; 0

The second component is the result of the
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impulsive velocity (the 11k problem) inducing 1 a 1 1

a disturbance into the flow field which in sub- k2k(P) + -- ff dS '2k(e) n(- ---

sequent times will propogate as a wave motion 27rS an r rl

away from the body. Consequently, Xk will
satisfy the complete free surface condition for I ff ds mk(- -

t>0. At t = 0 Xk will meet the fol- s(28)

lowing initial conditions 
2  o r r

Subtracting (28) from (23) gives the fol-
Xk = 0 on z = 0 lowing integral equation for Xk(P,t)

axk a oz=0 1 a 1 1

at -g-* o Xk(P,t) + -- ff dS Xk --- (- -- ')
2t SIo an r rI

To aid in computational efficiency it is
convenient to explicitly identify the two com- 1 t aG(P,Q,t-T)
ponents of Xk as +-- f dT ff dS Xk------------2w,0 S0  anQ

Xk(P,t) = 0(P) H(t) +Xk(P,t) (24)

In equation (24) the *2kP) function repre- Uo2 t _ aG axk
1 ( 2()+ ___ f dT ý dn (Xk----------sents the value of Xk during the impulsive 27rg r r a- a•

phase of the motion. It satisfies the fol-
lowing boundary conditions:

U0 t aG(P,Q,t-t)
a*2k f-- dT ýdn -------

an mk on So wg 0  r at

1 t
*2k 0 on z = 0 (25) = f dT ff dS mk G(P,Q,t-T)

21r 0 so

V*2k + 0 at

In order for Xk to meet the proper boundary + -- dS nk G(P,Q,t)

conditions it is not difficult to show that 21r S0
Xk(P,t) satisfies the following conditions:

0 at t =0 aG(P,Qt)
- -- dS *1 n -2 rSo An Q

ax a41k
----g---. on z =0 at t =0 1 t aG(P,Q,t-T)
at az -- f dT ff dS ...... (29)

2w 0 S0  anQa)Ck
. 0 on So for t ) 0 The potential for an arbitrary forced mo-

an tion in the kth direction is found as the con-

volution of Wk(P,t) with the velocity of the

a-2 a motion. using equations (19) and (24), the ex-
((t- UO-) + g- )(Xk + *2k) - 0 on z 0 pression for tht velocity potential due to ar-

at ax bitrary motion becomes:

for t 0
t

(26) Ok(P,t) - f dT *k(P,f)lk(t-T)
0

From the boundary conditions on the free sur-
face and the integral equation for Yk it can ' fik(P)Wk(t) + 02k(P)Ck(t)

be shown that
t

a2 _k 42k, + f dT Xk(P,'r)ýkt-f) (30)
- -g.---- on z - 0 t = 0 (27) 0
at 2  aZ

where the integral equation which must be
The integral equation for *2k(P) is solved to find 11k(P) , 12k(P) and Xk(Pt)

found by taking the limit of the integral equa- are given by (22), (28) and (29) respectively.

tion for Xk (equation (23)) at t = 0 . This it is easily shown (see Cummins (1962) or
gives Liapis (1985)) that *k(P,t) satisfies the

body boundary condition, the free surface
condition, and the conditions at infinity for
all t
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The form of the general potential (30) Fjk(t) a -p ff dS p nj
can be directly compared to the formulation So
developed by Ogilvie (1964, equation (11)).
Ogilvie has four potentials 'pk , Xlk , a8k

2k , and X2k , His ýlk and ý2k are iden- = -p ff dS --- nj - p ff dS (WV"k) nj
tical to the presently defined ýlk and '2k so at so
Ogilvie's memory potentials, Xik and X2k ,
have been combined into the present Xk . in (33)
fact, it can be shown that

The second term of (33) involv-s deriva-
t tives of the Ok potential, a quantity which

Xk = Xlk + f dT X2k (31) is difficult to evaluate. This gr.dient of the
0 potential may be eliminated using the following

theorem developed by Tuck and presented i.n
After determining the hydrodynamic forces Ogilvie and Tuck (1969) "or see ogilvie
acting on the body, Ogilvie uses an integration (1977)):
by parts to combine the effects of Xlk and
X2k into a single memory function Kjk . In ff dS [mjok + nj(w.'Vk)] - d nj k (tn)-W
the present work, Xlk and X2k have just So
been combined at an earlier stage of the devel-
opment. Integral equation (29) for Xk can be (34)
obtained by combining the integral equations where t = unit vector tai ential to the
which would have to be solved to determine waterline curve r . For w•,ll-sided vessels
Ogilvie's Xik and X2k . The advantage of (_xn) = k , the unit vector in the z-direction.
the present formulation is that it saves com- Applying (34) to the second term in (33), the
putational effort, since only one integral expression for the unstea-y forces acting on
equation needs to be solved, the hull is:

The unsteady pressure in the fluid is
given by the linearized Bernoulli equation: Fjk(t) = -p f ds .nj + p ff dS Ok mj

so So
a~k

p = -p---- -- pWVk (32) + p ý di lj -k (Lxn)W (35)at r

The forces acting on the body are found by Equation f35) can be redc=ed further by using
integrating the pressure over the instantaneous the form of Ok given i' (30). The final ex-
underwater hull surface. However, it is much pression for the unsteady force acting on the
more convenient to be able to integrate the body in the jth directioa due to arbitrary mo-
pressure over the mean position of the hull. tion in the kt)I direction is
To do this, the pressure is expanded in a
Taylor series about the undisturbed hull posi- Fjk(t) .
tion and integrated. Furthermore, because of -Vik4(t) - hik(t) - cjktk(t)
the waves on the free surface and the motion of
the hull, an additional contribution is ob- t
tained from a line integral around the water- - d0 Kk(t - I) Ck{r) (36)
line of the undisturbed hull. The details of
this derivation may be found in Ogilvle (1964).
The resulting expressions for the forces in-
volve the usual pressure integral terms over
the undisturbed hull surface given in equation ujk f p If c-S Yk nj

(33) and extra terms involving products of the S0
steady perturbation velocities and gradient of
the unsteady potential. These extra term are P1k ff dS 2 nj - f 0S mj
generally assumed small and neglected. Apar- so
ently, there are no numerical results to erify
this assumption. Since the extra terms tn- dt VIk nj (Lxn).w
crease the complexity of the expressi'ns for
the hydrodynamic forces acting on the 'oody, and
because they will all equal zero wuder the sim- cik " O[ -ff dS 'Ji *j
plifying assumption made for the numerical cal-
culations presented in this paper, t e extra
term will be left off in the subaeqi.nt derive- -d P 2k nj ttxn)*]

tion, The reduced expression for the linear- r
ized foroes acting on the body is
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8Xk(Q,t) A3 k(w) = Pjk - f dr Kjk(T) sinw-r
Kjk(t) =P[ + ff dS ------ nj 0

So 3t

-ff dS Yk(Q,t) mj Bjk(W) = bjk + f dr Kjk(¶) COsWT
so 0

Cjk = Cjk (40)

- n di nj Xk(Q,t) (£xn).W ]
F As can be seen from equation (40), Pjk and

bjk are the frequency independent parts of the

Equation (36) is in a form useful for the added mass and damping respectively. All fre-
calculation of ship motions because all of the quency dependence of the added mass and damping
coefficients are independent of the past are contained in the memory function Kjk . The
history of the unsteady motion. The coefficient Cjk is a frequency independent
coefficient Pjk is a constant depending only modification to the hydrostatic restoring force
on ship geometry, bik and cjk are constants coefficient.
which depend on ship geometry and forward
speed. In the equations of motion for the The same type of decomposition, which has
vessel the cjk term adds to the hydrostatic just been developed for the potential method,
restoring force coefficient. The Pik and can also be used for the source distribution
bjk are part of the added mass and damping technique. The development exactly parallels
terms respectively. All the memory of the the potential method. Therefore, only the
fluid response is contained in the function final expressions will be given here. Similar
Kjk(t) , which is dependent on ship geometry, to (20) and (24) the source strength and
speed, and time. potential are decomposed into

The coefficients jk , bjk , cjk and Ok(P,t) ak(P)S(t) + hk(P)H(t) + Yk(P,t)
Kjk can be directly related to the more usual
frequency-domain coefficients. Consider a (41)
motion amplitude of the form and

1 1 1

Wkt) -0 t < 0 't1k0P) - ff dS czk(Q)(- -

. ei~t t ) 0 
(37)

1 1 1
Substituting the motion (37) into the force ý2k(P) . .-- ff dS ýkQ)( - -- )
equation (36) and taking the limit as ti. goes 4 S0  r r,

to infinity yields
I t

Xk(P,t) - -f dT [I dS Yk(Q,r) G(P,Q,t-T)
Fjk(t) - [w2 ujk - iwbjk - cjk 4w 0 so

- Uo2 t
- f dr iae-i• Kjk(T) ]eiwt (38) --- f/dr on n, yt(qr) G(P,Q,t-T)

0 4wg 0  r

In the frequency domain, che hydrodynamic force ¶
on the body for sinusoidal motion is given by - -- ff dS ( G(P,Q,t)4v So

Fjk - [
2 Ajk(w) - iw~jk(w) - CJk ]ehit (39)

1 t
where - -- f dt ff dS Bk(OO 6(P,Q,t-T)

Aj k (w) - ade'o, mass coet.icient in frequency (42)
doe. ,in wh ere

jk(w) ,- damping coefficient in frequency
dfcain ek(P) - part of source strength duo to

impulsive velocity in kth
Cjk - restoring force coefficient direction

Equating the real and imaginary parts of (38) 6k(P) - part of tiouroe strungth due tO
and (39) gives the following oxpressions for displacement in kth direction
Ak , Bk andCk in tormu of the tine-

do&ain coeoficients: yk(P,t) - time dependent part of source
otrenqth due to n-ion in the Ith
direction
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duces the continuous singularity distribution
k, , Xý k = same meaning as in (20) and to a finite number of unknown potential (or

(24) source) strengths. The integral equations are
satisfied at collocation points located at the

The integral equations for ak , 8 k and Yk null points of each panel. This gives a system
are found by gathering terms after substituting of algebraic equations which are solved for the
(41) into (17) and using (19). The final unknown potential (or source) strengths.
results are:

In the presentation which follows only the
ak(P) 1 1 numerical solution to the potential method will

- ff dSQ ak(Q) ---. . -?) = nk be discussed. The techniques used in the
2 S anp r source method are very similar and therefore

will be omitted.
(43)

The integral equations (22) and (28) for

Sk(P) I a 1 i 1k and *2k contain no memory terms. To
- -- ff dSQ 8k(Q)BOO (r . -- ) =-mk solve them the method of Hess and Smith (1964)

2 S r r is followed. Assuming constant values for Ik
and ý2k over each quadrilateral, equations

(44) (27) and (28) may be discretized as:

M
Yk(P,t) 1 a 1 1 1 Aim (Oqk)m = (Bq)i i = 1,2,...,M

--- ff dSQ Yk(Q,t) --- (- -.-- ) m=1 q - 1,2 (47)
2S anpr r'

where
1 t a

- -4 f dT ff dSQ Yk(Q,T) --- G(P,Q,t-t) M = number of quadrilateral elements
o0 s an, (ýqk)m = strengths of ýIk , 2k over the

U2to 3 mth element
-.-- f dT ý dil nlYk(Q,r) --- G(P,Q,t-t)
4wg 0  r an Aim = 1 i m

1 a I * 1

"S 000 ---G(PQt) - -- rf • PM .... i m4w So anp 21 SM r rt

I t a SM - surface area of mth quadrilateral
+ -- f dT ff dSQ 8 )(Q) --- G(PQt-T) (45)

41 0 SO anp n. - unit normal vector to mth
quadrilateral

The source strength at any time for a pro-
scribed *otion is found by a convolution ofir, r2 - (xi - t)2 + (yi - n)2 + (zi - C)2

and the motion velocity as fellows r 2  - (xi - C 2 + (yi - n)2 + (zi +

t
I (Pt) - f d-r Uk(P,T) j(t-T) xi,yi,zi = coordinates of the ith collocation

k 0 point

"- Qk(P)C.) + Bk(P)m(t) I M 1 1(B) - I ff dS ( .. )nk),

t 462 11 % r r-

0 1 N 1 1

(B2)i I-- ff dS (- )(k)
The hydrodynamic forces acting on the 2W M.1 SM

body, the added mass, the damping and the
hydroetatic restoring forces are found hy sub- (nk)m (mk)m are defined in eq. (3)
stituting equations (42) into (36) and (40).

The evaluation of the coefficients Aim
II1, Numerical methods and (Bq)i involves integrals of the infinite

fluid potential ( I/r ) and its derivatives
The integral equations for the potential over each panel. They are evaluated by using

method (eq. (22), (28) and (29)) or the source the numerical technique* developed by Has& and
method (eq. (43), (44) and (45)) are solved Smith (1964). For small values of r the
numerically using a panel method. The body integrals are done exactly. For intermediate
surface is approximated by an ensemble of plane values of r a cultipole axpansion is used.
quadrilateral elements of constant potential For large values of r a simple monopole ex-
(or source) * trangth. This diacretizatioa rv- pansion is used.
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1 a 1 1

To solve equation (29) for Xk(P,t) a Xk(P,tN) -- ff ds Xk(Q,ttN) -n-(r -

time stepping method must be used. A trapezoi- 2 San Qr
dal rule ±s used to evaluate the convolution
integrals with the result that: At -(P'Q,()

+ -- ff dS X(Q, tN) --------S4w So0 anQ
X(t)+ ff dS Yk(Q, t) a- Q 1S2t So anQ r r'

+ At - (0k(Q, tN) aG(P,Q,O)

At N a5(PQt-tn) 2 27rg ra
+ -- I' ff dS Xk(Q,tn)

an aXk(Q,tN)

2- (P,Q,O) --------- )N Uo 2 aG( P, Q,t-tn )

+ I' At[ -- f d( (Xk(Q,tn)
n=1 2#Tg r at Uo aG(P,Q,O)

axk(Q, tn) + -- at dn 'k(Q,tN) -

- G(P,Qt-tn) -- --g r-

1 aG(P,Q,tN)
-- ff dS (nkG(P,Q,tN) - k-----

UOa (P,Q,t-t,) 2- So anl
+ -- Y dy Xk(Q,tn) ----------- Q

ig r at

At N
, aG(P,Q,t) + -- X' ff (-k G(P,Q,tN-tn) (49)
-- ff as (nk(PQt) - lk - - 2w n=1 So

2W 3o0 an Q aG(P,Q,tN-tn)

-------------------

At N anQ
+ -- P' ff (mk 6 (P,Q.t-tn)

21 ni j So At N-i - aG(P,Q, tN-tn)

--- I ff as Xk(Q,tn)

aG(P,Q,t-tn) 
21n-1S anQ

2k ------------- ) (48)
anQ N-1 - ao(PQ2,N-tn)

where At - constant time step size and the n-1 21g r at
prime on the summation symbol dlenotes that 1/2
weights are to be used for the end points of
the trapezoidol integration rule. aX(Q,tn)

- G(P,QtN-tn) -------- )
The time stepping is started at to - 0 a

where Yk equals zero. At each subsequent
time step only Xk(P,tN) is unknownt all other Uo aa(p,Q,tN-tn)
v a l u e s ,:) f X k ( P , t ) _ ( i . e . X k ( P , t N -I ) , + - I d y' X k ( Q , t n ) ------------)
Xk(P,tN-2) ....... Xk(p,to) ) are known. "g r at
Gathering terms, equation (48) may be rewritten
to yield an equation for the unknown Xk(P,tN) Because aXkia• is difficult to evaluate
at the latest ( tN 3 time stept nuterically, the term involvin' 4 it is simpli-

fled based on a method used by GuOvOl and
Bougis (1982). The tern may be resolved into
its ccmponents !n the local L-n-s coordinate
aystem as shown in figure I and then reduced as
follouvt
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I M
ax ax Bi -- I I ((nk)m

Sdi -- a = ý dj (n. i) -- C 21 m=1 S (

ax aG(P,Q,tN)
dn (si) -- G + f d,£i) -- G (50) n('k)m fi

r as r at S an Q
At N-- [' [ (mk~)m ff dS G(P,Q,tN-tn)

The first term is zero because axan = 0 2w 2s n= Sm

on the body surface. For a wall sided ship
(s~i) - 0 and the second term equals zero.
FoFr the computed results in this paper, this aG(P,QtN-tn)
term has been neglected for all vessels based - 0#2k)m If dS
on the assumption that most bodies of interest Sm an Q
are wall sided over most of their length. The
third term can be integrated by parts to elimi-
nate aaX/aZ . Assuming the variations along
the waterline of the direction cosines of Z QtNtn)

are small, the final approximation for the 3:- f s (xk(tn))m ..----- ] }
waterline integral is: SM Q

axk (e, tn) , "
d G(PQt-tn)-- -- m* n=t -- r-kt m* f d

a G(P'Q, t-tn) -a( P, QtN-tr ) •(P ,t~n

- dfl Xk (Q,tn) ------------- (.i) (51) ,Q "
r aU X ---------------------- (.)..............)

At each time step equation (49) is solved
using the same panel discretization used to Uo _ aG(P,Q,tN-tn)
solve for ýik , .2k . The line integral is + -- (Xk(tn))m* f dn -------------
evaluated by subdividing r into a series of Ig at
straight line segments. The strength of Xk
on a line segment is assumed equal to the
strength of the panel below it. The system of Note that for Aim the line integral terms in
equations which must be solved at each time large brackets are only used for panels on the
step has the form: free surface. Furthermore, m, denotes that

only the panels on the free surface are used
N in the summation for the line integral terms.

[ Aim (Xk(tN))m - Bi i- 1,2.... (52)
M.1 In the derivation of the above, use is

made of the fact that
where

- number of quadrilateral elements G(P,Q,O) 0

N - number of time steps aG(P,Q,O)

- ---------------- 0
(Xk(tN))m - value of Xk(P,t) on the mth an

panel at the tN time step

atJto a aG(PQ,O) a a

Aim-1 , dn--- is at atr'
I at r

I I A very important property of the coeffi-
2 SU r r. (dent matrix Aim in equation (52) is that it

iw independent of time. As a result it needs

to be inverted only once at the beginning of

+ {t--o f the time stegppng. For a sufficiently large
T at r number of panels this rroperty results in a

significant computational advantage over the
frequency domain formulation.

The right-hand side term Bi involves the
integrals of the Green function and its deri-
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vatives over each quadrilateral. They are W • (-UO, 0, 0) (55)

evaluated by using coordinate mapping and Gauss
quadrature. The arbitrary quadrilateral is This assumption is consistant with neglecting

first mapped into a square. A product Gauss the steady perturbation potential in the body

rule is then used to evaluate the integral, boundary condition. The elimination of the

over most of the panels for the Series 60 ship steady perturbation velocities in equations

discussed in the next section a 2x2 Gauss rule (54) and (55) greatly eases the computational
was sxifficiently accurate. For certain panels burden but it does not affect the time-domain

a 4x4 Gause rule was required. The line analysis procedure.

integrals are evaluated by a one-
dimensional trapezoidal rule along the water The quadralateral elements into which the

line. body surface was subdivided for most of the
calculations presented in this section are

The evaluation of G(P,Q,t) with an ef- shown in figure 2. There are 108 panels on the

ficient and accurate method is one of the most half-body. The panels are smaller near the

important elements in this problem. Depending ends because they are critical for the pitch

on the values of P , Q , and t three meth- calculations. It has been found that the

ods are used to evaluate G(P,Q,t) : a power results can vary up to 5% depending on the

se..,ries expansion, an asymptotic expansion and a panel distribution for a fixed number of

Filon integration scheme. The details may be panels.

found in Beck and Liapis (1985 Appendix B). One of the major problems with time-domain

IV. Numerical Results analysis is the oscillatory tail which occ'.irs
in the memory functions, Kk(P,t) , at large

'the results presenteI in this section are time as they approach zero. Figure 3 is a plot

for a Series 60 model ferced to oscillate in of the memory function in heave at zero for-

heave and pitch. The Sexies 60 model is a par- ward speed versus time. The three curves cor-

ent form (L/B - 7.0, B/T = 2.5, LCB/L = .5% respond to the potential method of calculation

forward) for the CE = .7C series. This model (equatio.rns (22), (28) and (29)) for 76 and 108

has been tested by Gerritsma (1966) and panels respectively and the source method

Gerritsma and Beukelman (1964). In addition, (equations (42), (43) and (44)) for 75 panels.

Chang (1977), Inglis (1980) and Ingl's and The time step size, At , is shown in the

Pric= (1982) have presented numerical results nondimensional form defined as:

using frequency-domain calculations.
Atk = At v'g/L (56)

As previously mentioned, for the numerical
results presented in this paper two simplifica- For the smaller nurber of panels the oscil-

tions have been made. The first is that mj latoty tail is clearly visible,
i has been approximated by

has bhe oscillatory error at large time is ap-
( 00 , nparnnly thn, result of the inteoal NuationSmj u (0, 0, 0, 0, +Uon3, -Uon2) (54)

metnod of selution and not numerical inaccura-
The (54) is to neq- cies. Adachi and Ohmatsu (1979, 1980) examined

pleiting the effects of te steady perturbation the two-dimensional problem anrr found thait the
elcitingtheeffects o f the steaboundary p ation oscillatory error in the cime-domain is the

velocities on the body boundary condition.
This approximation was made because of the dif- equivalence of the irregular freqdencies in the

ficulty of determining 00 . The use of the frequency domain. Since irregular frequencies

complete value for mj ,as given in euation also exist in three-dimensiorm, it is assumed

(3) would not alter the time-domain computer that the oscillatory er-ors seen In figure 3

programi it would mearly require different aro also the equivalence of irrequlsr frequen-

input values. cies.

The second simplifying assumption is that Adachi and Ohmatsu show that using the

in the computation for the hydrodynamic pres- source method the oscillatory error cannot bt

sure the steady velocity vector, W , can be eliminated regardless of time step sixe or rum-

approximated by the free stream-vectort ber of panels. lovwver, using orthogonality
arguments they show analytically that the

Figure 2. Panel Diatribution

45



pitential method can have a solution which is length of 10 ft (3.048 m) was used, Note that

free of oscillatory error. Because of numeri- not all of ..he coefficients were plotted by

cal errors the computed results might not be Chang.

free of these oscillations, but at least the
potential method should converge to the proper Figure 5 shows the added mass and damping

solution given a sufficient number of panels in heave for zero forward speed. As can be

and small enough time step size. seen all the rsults agree reasonably well. For
the added mass the present calculations fall

Figure 3 shows that fo. small times all between those of Chang and Inglis. The sx;igu-

three methods give approximately the same re- larity in Inglis' results around w* = 5.0 is

sults. At large time the potential method does the irregular frequency in the frequency domain

have less oscillatory error than the source calculation. The time domain calculations .lso

method, Furthermore, when the number of panels exhibit erratic behavior in this region. Pre-

is increased to 108 and the time step size de- sumably if more panels were taken in the numer-

creased to At* = .06264 the oscillatory error ical model the curves would be smnoother as was

almost disappears. There are still slight found in Beck and Liapis (1985) for a sphere.

oscillations and flat spots in the M = 108
curve but they are small. Presumably a further Figure 6 presents the cross-coupling coef-

increase in the number of panels and a ficient between heave and pitch. At zero for-

decreased step size would eliminate them fur- ward speed A3 5 = A5 3 and B35 = B5 3 ; thus
thor. only A3 5  and B35 are plotted. The differ-

eIres in the computed values of A3 5 , B35

Figure 4 is reproduced from Beck and and A5 3 , B53 are less than 3% in all cases.

Liapis f1985) and is pres-nted to demon-trate The cross-coupling coefficients are the most

that the oscillatory error can e eliminated sensitive measures of the numerical accuracy of

given a sufficient number 'f panels and , small the program becau~e they involve taking the

enough time step size. The figure shows the differences between the two ends of the model,

memory function for a sphere in heave. It which have beer exa.igerated due to a multipli-

shoulh be noted that the memory function in cation by t!he lever arm. The reason Inglis'

Beck and Liapis is defined in terms. of the results are sr much larger than the others is

acceleration of the motion. Thus, K(t) used not known. Note that both the pr'esent results

in this paper is the time derivative of 9(t) . and the experiental results cross zero and
The solid curve is the analytic result cf become negative.
Barakat (1962) obtained by Fourier transforming
'is freq-ency-domain result. As shown in the The pitch added mass and damping is pre-

sented in figure 7. As with heave the time-
fiPure the oscillatory error has -almost disap- docain cu re 7o s ooth avehih frqe-

peared. The ag-eement between tioe present

nu,.erical computations and the aralytlc result cies due to a presumed lack of the number of

is excellent. panels arid too big a tins step size. Similar
to A3 5 , Inglis' results for A55 are too

Figurea 5-9 show the nondimrensional added large around the peak values.

mass and darping coefficients ( A k and Bjk )
for the Serle 60 ship an a fun:-•n o n-The added rkmss and damping coefficients

dimensional fr- quency. Five different sets of for the ship moving at a constant forward speed

data ate presenteK). The solid lines are the of Froude number equal to .2 are shown in fig-

r,ýsults ccmputed by time-domain analysis using ures 8 and 9. The coe.putational time for these

the potential method presented in this paper, results is almost the same as for the zero for-

For the calculations 108 panels on the half- ward spaed case. The additional calculations

body were used and the time step size vas At* whch must be made to include the line integral

- 0.6264 . The small-dash cur,'-q are the terms; has very little effect on the total com-

experimental results of Gerritsma (1966) for puter time. Arbitrarily deleting the line

zerv forward speed and Gerritsma and Beukelman integral term from the calculations alters the
(964) for d Froude number of .2 . The large- results a maxinum of 20%. mot of the altera-
dash corves are strip thootf result. The tion to the nmvor,' function curve due to the

strip theory results were computed using the effect of the lirlo intograls occurs around the

coofficibnt.s of Salvesen, Tuck And Faltensen peak of the curve and at large time.

(1970) and a source distribution technique to
solve the two-dimensional problnm. The resaults The forward speed results all suffer f.om

computed by three-dimensional methods in the oscillatkomn in the momory function at large

frequency domain u-iinq source panel techniques tloe. This is the same problem as discussed in

are shown as crosve.q xnd aot.•'•ska. Tito referenco to figure 3. The 4a., paneling was

crosses are the results of Inglts (1980) for us*4, for Nith Yn - 0 and .n - .2 . While

zero forward speed and Inglis and price (0982) the paneling va* sufficient for the zero speed

for a Froude number of .2 . 'rlhe results are case, it apparently needs further refinecent in

for their IP2 method which corr*aponda to the the forward t.eed casn. In addition the time

"method presented in this paper. The aeterisks step eire and maximum tire for the calculations

were presented by Chang (1977). changle re- has to be admusted in order to improve the pro-

ults are plotted in dimensional form and no dictions. As can be seen in figurev 8 and 9

model length or density are given in the paper. the oscillations in the tail of the memory

To aondimasional'ze Chang• ' results .- Oel functions ha" lead to oecillations in the ad-ed
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mass and damping coefficients, time. Variable time step size and/or asymp-
totic analysis will be investigated in the near

The heave added mass and damping is shown future.
in ficuire 8. For the added mass all the
results agree reasonably well; the damping Acknowledgement
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DISCUSSION
of the paper

by S. Liapis and R.F. Beck

"SEAKEEPING COMPUTATION USING TIME-DOMAIN ANALYSIS"

DISCUSSION
by H. Wang

I extend my congratulations to the
authors for successfuly completing the calcu-
lations for a three-dimensional time-domain
analysis for an oscillating ship advancing
with nonzero forward speed. It should serve
as a useful alternate calculation procedure
to the more usual frequency-domain
approaches.

At several places in your paper, you men-
tion that your approach, for the forward soeed
case, requires much less computation effort
than the frequency-domain approach. I
believe that the principal reason for this,
which is never explicitly mentioned in your
paper, is due to the fact that even for the
forward speed case, you are able to retain a
relatively simple expression for the Green
function, given in Eq. (5). It contains
unily a single integral with a regular
integrand. By contrast, the Green function
for this case in the frequency domain
approach contains double integrals, whc:e
integrands contain poles.

Author's Reply

We would like to thank H.T. Wang for his
comments. Certainly the time domain approach
has several advantages over the more conven-
tional frequency domain. First, one is not
constrained to solving sinusoidal problems.
The method can be used to solve seakeeping
problems, wave resistance problems, maneuver-
ing problems or any combination. Secondly,
there should be a computational advantage.
The time-domain Green function is computbt-
ionally far simpler than the Green function
for a pulsating and translating source It
should be noted here that the Green function
may be evaluated for both cases of zero and
non-zero forward speed in the same way.
Furthermore, the kernel matrix in equation
(52) is identical for all times, and need
only be inverted once. For a large number of
panels this is a significant advantage over
the frequency domain. The main problem of
this method is, as discussed in the paper,
related to the oscillatory behavior of the
memory functions at large time. This oscil-
latory error, which is due to the irregular
frequencies. may be reduced to any desirable
tolerance by increasing the number of panels
and time steps. Unfortunately, this greatly
increases the computer time and we are pres-
ently investigating more efficient alter-
natives.
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LINEAR HYDRODYNAMIC COEFFICIENTS OF SHIPS WITH FORWARD-SPEED

DURING HARMONIC SWAY, YAW AND ROLL OSCILLATIONS

Keiichi Yamasaki
Nippon Kokan K. K.

Tsu, Japan
and

Masataka Fujino
University of Tokyo

Tokyo, Japan

Abstract to the longitudinal axis of the body, That
is to say, the fluid motion in an arbitrary

This paper describes a numerical method space-fixed plane normal to the ship's

for calculating the lateral hydrodynamic longitudinal axis is determined by repeatedly
forces and moments acting on a ship with a calculating the fluid motion at various in-
hull of arbitrary shape during such lateral stances after the ship's bow begins to penet-
motions as sway, yaw and roll. For the rate this plane.
purpose of investigating the validity of the
present method, the linear hydrodynamic By determining the fluid motion in the
coefficients of several kinds of ship-like transverse planes, which are placed at equal
bodies such as a flat plate, Series 60 model, intervals along the ship's longitudinal axis,
and a container ship-model are calculated and the three-dimensional fluid motion around a

compared with the experimental results of ship can be obtained; then, the hydrodynamic
forced oscillating tests as well as the forces and moments acting on a ship can be
numerical values obtained by the Strip Method. evaluated by integrating the hydrodynamic
It was seen that the present method has pressure over the entire wet surface of the

excellent prediction .'-1ue regarding both the hull.
effects of forward speed and the frequency
of motion of the various hydrodynamic In the following, the two-dimensional
coefficients when compared to the Strip Method. fluid motion in the above-stated transverse

planes is obuained using the numerical method,
At the time of calculation, the two-dimensional

I. Introduction infinite region is replaced by a finite region
by introducing an artificial open boundary at

The so-called Strip Method has been a distance of sufficient distance from the

generally used to predict the lateral hydro- ship. At the boundary, it is necessary for the
dynamic forces and moments acting on a ship. waves generated by a ship's motion to pass
There remain, however, several problems to be outwardly through the boundary in a manner

resolved regarding the prediction accuracy that a boundary does not exist. For this
of the Strip Method. For example, the effects purpose, Orlanski 3 ) and Chan 4 ) imposed Sommer-
of a ship's forward speed on the lateral feld's radiation condition on the open boundary
hydrodynamic coefficients cannot be adequately and treated it by means of the finite dif-
predicted by this method. In the Strip Theory ference scheme. In this paper as wll,
synthesis, the fluid motions around a ship are Sommerfeld's radiation condition is imposed
described in an approximate manner by the on the open boundary and treated in a manner
two-dimensional fluid motion in transverse similar to the above. The radiation condition,
planes normal to the longitudinal axis of however, is-replaced by a more relaxed condi-
the ship. Consequently, tho three-dimensional tion, that is to say, a numerical error is
effects on the hydrodynamic forces cannot be positively allowed to exist in the equation
successfully identified by the Strip Method. describing Sommerfeld's radiation condition.
Therefore, it is necessary to establish i By making use of a relaxed condition instead
calculation method by which the three-dimen- of an exact radiation condition, it becomes
slonal effects, in particular, the effect of possible to have the free surface waves,

a ship's forward speed nn the hydrodynamic which are generated by ship's motion and then
coefficients can be determined in a valid propagated toward the outer region, pass

manner, smoothly through the open boundary.

According to the slender body assumption In addition to the radiaticn condition,
as indicated by Chapman 1) 2),the fluid the linearized free surface condition and
motion around a three-dimensional body may be body surface condition are demanded a&
approximately determined by unsteady two- boundary conditions to be satisfied. The two-
dimensional flow in space-fixed planes normal dimensiýnal Laplace's equation, which is the
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governing equation in the fluid, is solved by (i) The fluid is incompressible, ir-
means of the Boundary Element Method (B.E.M.). rotational and inviscid.

(ii) The ship's lateral motions are
By utilizing the present method, the infinitesimal.

hydrodynamic forces and moments acting on (iii) The ship's hull can be regarded as
a ship are calculated for an arbitrary motion a slender body,
if the ship's motions are known. In the
following, however, the linear hydrodynamic The coordinate systems used for the for-
coefficients of sway, yaw and roll motions are mulation are shown in Fig. 1. O"-x"y"z" is a
exclusively calculated and compared with the body-fixed coordinate system with its origin
experimental data. Comparisons are made for at the intersection of the ship's bow and
three cases consisting of a flat plate, Series waterline. Another system O'-x'y'z' advances
60 model, and a container ship. In particular, in a straight manner in the mean course of the
the effects of the ship's forward speed on ship at a forward speed of U. The velocity
the hydrodynamic coefficients are disccussed potential (P describing the fluid motion around
by presenting the numerical and experimental a ship is as follows:
results. Furthermore, the hydrodynamic
coefficients of the Series 60 model obtained (I) (x',y',z',t) =Ux' +-P( x',y',z',t) (1)
by the Strip Method are compared with the
numerical results obtained by the present The velocity potential TP of the right-hand
method, side denotes the fluid motion as a result of

unsteady ship motion. The three-dimensional
Laplace's equation, the kinematic and dyna-
mic conditions of the free-surface, which the
velocity potential SP satisfies, are as

Side View follows:

U

(L P, 2 +- _P + .._.-_ ' 0 in fluid, (2)
0'~~a' S 8/.. 2 aZ12

d'a• a. a , aa a'f
4 '] - - +---a x --- - on ,K = + ,. (3)

/Qx-plane
To Ve t=8"' + a? 2 aso 2 ap

Tp w "+• +u •1 ±{(-•-) +(~-T'-r•) +(-W'-r) }+o=

on z'~ (41

S(01 where ( is the elevation of the free surface.
S X':x and Y the acceleration of gravity.

Y In consideration of the above-stated asr

- / •sumptions (ii) and (iii), eqs. (2), (3) and (4)t x xG tG 0 B may be reduced to the following;

(Ualcne CL) a2 + .. (, 0 in fluid, (5)
Aft View 0

FC7G '! ~ L K] - + U-)~-- on z' 0, %6)

Ji/a , 0+ 0 on z' 0, (7)(-.3 (- + 1J8rq' o ,

Based on the assumption that lateral dis-
Fig. I Coordinate systems used in formula- placement s(t), yaw angle a(t), and roll angle

tion O(L) are sufficiently small, the coordinate
systems, 0'-x'y'z' and 0"-x"y"z", have the
following relation:

2. Formulation
X X '-ya( t),(8)

In order to calculate the hydrodynamic
lateral forces acting on the ship advancing on y = y'- a(t.)-(x.-x'))(a)-(z'-zO)0(t),
a free surface, thle following conditions (9)
are assumed to exist%
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The velocity potential 90 may be divided
z' = z'+y'0(t) (10) into two parts:

where xG is the horizontal distance from the •(YZ'0=•F(Y'zt/(Pz,t) in'x, (18)
ship's bow to the center of gravity, and ZG
the height of the center of gravity from the where YF and YL correspond to longitudinal and
surface of the water, lateral motion of a ship, respectively. By

decomposition of 9 into 9 F and (L, the body
Let the hull shape be represented by surface condition (17) may be divided into the

following equations:H(x , ,y ', Z ') = 0 ,(P a(ii)ll alOy9, 011 0t,, aH On
then the body surface condition is described by -5y T+ T- T =- t (19)

OHY . o. tnO~ l

aX"- + Y" -;T ZaZ..L-ýy-Y
on I"(x" , z' )=0 (12) -- 0 1 Oil all

+(Z-Zu WazYO i. (20)

Considering that the ship's motion is
small, the body surface condition can be satis- Moreover, TF and PL must satisfy the radiation
fied on mean ship hull surface H(x', y', z')=O condition at the open boundary. The radiation
rather than on the exact ship hull su'rface, condition may be commonly expressed as follows;
By substituting eqs. (1), (8), (9) and (10)
into eq. (12), the body surface condition at b9+ _09)
the mean hull surface may be expressed as fol- •+at @-O (21)
lows : whered/agis the differentiation 

in the normal
OaH al0 09(P Oll outward direction at the open boundary, and C

7+T= ; (t)-Oa(t) is the phase speed of the waves.ax y, y W azdy z'

'iHt ,z.oil Namely, 7OF is determined by solving the+(xo-x')a(t)+(z'-z0)5(t) -,Y 3/t) 7, eqs. (14), (15), (16), (19), and (21), and (/l,
n by solving the eqs. (14), (15), (16), (20),

on H(x',YZ)=O. (13) and (21), respectively. On the assumption that
lateral motions of a ship are sufficientlyUsing the coordinate system O-yz de- small, the free surface conditions eqs. (15)

fined in a space-fixed transverse plane a. and (16), which are satisfied by 9(L , may be
which is situated at x'=X at the instance satisfied along the streamlines on z=0 ge-
t=T (see Fig. 1), eqs. (5), (6), (7) and nerated by uniform longitudinal motion.
(13) may be newly expressed as indicated by
Chapman 2) as follows: On the other hand, the free surface con-

dition for 9F is substituted by the rigid wall
029 a291 condition.

-y +a-• =0 in fluid, (14)
__-_ = on ,=0 .(22)

o-- On z '=0 , (15)

a t )z This substitution does not seriously affect
a0 the predicted hydrodynamic lateral forces-- + 9C = 0 on z 0 (16) because 9PF has no significant effect on the

hydrodynamic lateral forces.aYOH( P al I~~ all=-l

ay ay -z z= at 3. Hydrodynamic Lateral Forces and
Moments+ [8(t) -Ua~t.) +{x0-X+O(T-t )}~t.)Moet

The hydrodynamic lateral force f(T, X)SbaI' ill and roll moment m(T, X) acting on a ship's
ay section, which is situated in the space-fixed

plane Ax at x'-X at the instance t-T, are

onli(y,zt)=O , at T-i< t <T. (17) expressed by
U

In the Qx plane, the hull surface H is f(TX)-2p• VPt nyd, (23)
a function of time t as described by the first
term on the right-hand side of eq. (17). The F O9L
remaining terms on the right-hand side of eq. nI(TX)=-2Pfý {ny(I-z0)-n4Y~da, (24)
(17) denote contributions of such lateral
nmtions as sway, yaw, and roll. where p is fluid density, n-(ny, nz) is a

normal inward unit vector of the ship's hull.
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Contour integration is performed along the motions are described as follows (see the

surface of the hull from the keel to the in- bottom of Fig. 2):
tersection of the hull and waterline. A22)?2 +1322)72 +A24?74 +fl2, • +•26)76 t•2O 6 = F2 (30)

Consequently, the hydrodynamic lateral
force Y(T), yaw moment N(T), and roll moment A44k+B44- =F 4

M(T) acting on the entire ship at the in-

stance t=T are obtained by integrating 
(31)

eqs. (23) and (24) over the ship length. A66 N+B66N +A62'2+B62'2+A647)4+B64n4 =F6 (32)

Y(T) =f f(T,X)dX (25) 772, 7?4 and N0 denote sway, roll and yaw,

0 respectively, and Aij, Bij, Cij the hydro-
S=(dynamic coefficients. F2 , F4 and F"6 re-

(26) present the external forces acting On a ship,
if any.

M(T) f=m(T,X)dX (27)
"0 In order to determine the hydrodynamic

coefficients of eqs. (28) - (32) as functions
of frequency u by experiments, the follow-

4. Determination of Hydrodynamic inq harmonic motions are imposed on the

Coefficients model of a ship.

With the body-fixed coordinate system (I) pure sway:

shown at the top of Fig. 2, the linear
equations of sway and yaw motions are des- 8(t=8i OWt , a(L)O )00 (33)

cribed by
(II) pure yaw:

m r=YQ Y+YvV+Yr+(yr-mU)r (28)Sa( 0)= sin cut , ;(t )-Ua(t) =0 , O(t)=0 ,

SIzzr¼=Nvv+Nvv+Nrr+Nrr . (29) (34)

(III) combined motion:

m is the mass of a ship, and Izz the mass

moment of inertia. Using the space-fixed a(t)=sinwt , s(t)=O(t)=O , (35)

coordinate system, on the other hand, the
linear equations of sway, yaw and roll (IV) pure roll:

0(0)=sinwt , 8(t)=B(t)=0.
Series 60

& Table 1 Nondimensionalization of hydro-

Flat Plate dynamic coefficients

Flato plate & Sorieis 60 Container ship

v,- v.({-p~d) A. A,-./(,Al.)

A -J

Container Ship ' ( 3-. ,) ii; , Bzv'd."(paL)

---- •N' 1  S NrlddU) 'B• -;• fl,,/u,.. Y'• (,pA.L)

S,,'O-pL d ) 116 114 ,/i"27-.4'./( pAi

Y•.F C ,6~ p :fluid dousity , 11 " hip'• beaw

Z A n ivolume oS d p £hipa dra/I

L di•plae!d nU)

FIq. 2 Coordinate' ryrtms ,sed in evaltul- L "4hkp'$ lOUtLb U forwird apod.

tdons of hydLAd:,namhv coefficients L __ _
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In the harmonic oscillation tests, the to the open boundary. Howeve:, undesirable
hydrodynamic forces at the instance T, when contamination of the free surface wave

the acceleration of the model (or angular occurred resulting from the presence of
acceleration) becomes zero are comprised of the open boundary. In this paper, therefore,
hydrodynamic forces dependent only on velocity the exact radiation condition (21) was re-
(or angular velocity). In a similar manner, placed by the more relaxed condition expressed
the hydrodynamic forces at the instance of as;
zero velocity (or zero angular velocity)
consist of hydrodynamic forces resulting N+L= (37)
from only acceleration (or angular accelera-

tion). Therefore, the linear hydrodynamic The non-zero value of E on the right-hand
coefficients of eqs. (28) - (32), which are side permits a numerical error for the left-
related to the acceleration and velocity of a hand side term of the exact radiation condi-
ship, are easily determined by selecting the tion (213). Fig. 3 shows the finite difference
time T of integrals (25) - (27) as the scheme of satisfying eq. (37) in t-9 plane,
instance when the velocity and acceleration where t and g denote the time and the
of the model become zero, respectively. The spatial direction normal to open boundary,
linear hydrodynamic coefficients, which are respectively, in the vicinity of the open
obtained in this manner, are "nondimensiona- boundary. Let (0(r,j) denote the velocity
lized" in the manner shown in Table 1. potential at t= r and 9=j, then eq. (37)

applied to the point I marked in Fig. 3 is
expressed as follows:

5. Numerical Method 5a(r- ,1 ) =P( r-1.2) + (1-2_2){ P(r, 1 )-lý r,2)) +2e,
In the follov-ing, the numerical method

for determining tiie two-dimensional fluid (38)
motion in the spac.--fixed transverse plane Qx where a =CL/Ae , and ;=ELt
is described.

In a similar manner, eq. (37) applied to
5-1. Radiation C)ndition at the Open the points II and III is expressed as
Bojndary

When calculating the two-dimensional PP( )'-(r-1,2)--(r-1,3)-Y(r-2,3)}

flow in the transverse plane s x, as men- +d"1('(-l,2)-9(r-1,3)} =r , (39)
tioned in the above, infinite fluid region
is replaced by a finite region, which is and
bordered by an open boundary. Sommerfeld's
radiation condition is then imposed on this -- 2,3 4, r.-
open boundary. Orlanski 3 ) and Chan 4 ) have
utilized the finite difference technique in 0-N (4,)
order to deal with Sommerfeld's radiation
condition in a numerical manner. Initially, (I and E'" in the above equations correspond
folluwinq the technique used by Orlanski to a and E of eq. (38), respectively.
and Chan, the authors applied their technique

Since the vaio:; of y' in erls. (39), and
Open Bounzo'y---_,- 40; are known in advance, (* , and f. can

be Aeter:r.ned. In order to avoid producing

a 5qniftzcnn1t numerical error. which might be

A rtcaused t zdn ahen difference -f potential values

At_ f' -, at two adjacent -,voints is significantly rimall,
~ the followine additional restrictions are

"91 : --. ) -91 -,)

__ l(,'Ior r-i .nl• ½•ti• X '6

. -

s" O or1.1 (C. d)aad then

o-e• D'- Y( 1.,2) I's•-2 ) 0Sr9(

j=4 j=3 j=2 j:1 9insx and ~';min ar,: the oxtreme values of V
on the boundaries.

In order to rtppress hc ,.t t.
propagation at thf, opef '-)'atpo a
reasonable rang,ý, ', of &q. ,301 .s dct-r

Fig. 3 Fin.tte difterence schema of the open mined by thra -ro,-..q ekfua ý'nr, whidetr x
bou ary dependen t ," 4*v,-•. 'e,
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a=0 if a<<0 (41) 5-3. Numerical Procedure

a=a if 0 <1, (42) The fluid motion in the space-fixed Qx

= if *<a (43) plane is determined by repeatedly calculatingthe fluid motion at various instances after

The ship's bow penetrates the transverse
The value of i on the other hand, is deter- plane. In order to resolve the two-dimen-
mined in the following way; in the case of sional boundary value problem, the Boundary
eq. (42), £ is equal to r'tand in the case Element Method (B.E.M.) wa employed. Fig. 4
of eq. (41) (or (43)), E is replaced by the shows a typical example of the fluid domain
mean value of E* obtained by substituting and boundaries used in the following numerical
a <=0 (or a*=l) into eq. (39) and e-1. (40). computations. The procedure of solving the
Furthermore, it is important to select A t velocity potential PL' shal. be briefly des-
and A.0 so that it is possible for the value cribed hereinafter.
of x, may exist between zero and one.

1) at t=0 ; Assume that before the
ship's bow penetrates toie Qxplane, the

5-2. Free Surface Condition fluid is at rest,' and TL is equal to
zero on the free surface ['FanO the

As previously mentioned, the free sur- open boundary [P- as well. At the boun-
face condition, which (PF must satisfy, is eq. dary under the keel, the velocity
(22). On the other hand, Y)L must satisfy potential (Ct. is constantly zero because
the more rigorous free surface conditions of the antisymmetry of the flow caused
(15) and (16). The finite difference ex- by the lateral motion.
pression of both equations is as follows: 2) at t=t ; At the time the bow

penetrates the Qx plane and thereafter,
(yN Laplace's equation is solved by B.E.ii.

~2' -t2 ~(Y 't), in order to satisfy the body surface
(44) condition on F5 . Then, the values of

)i. on I-, an6 •LA, on V are cal-0,1-, l ) <Y "LC • "A . t • " ,culated.

(45) 3) at t=t ; Obtain the values of qpt
)at the internal points adjace~it to

wsi.tre the open boundary, which is imperative

in the treatment of Sommerfeld's radia-
-NY=(yF(Y,0 t46) ticn condition. Thereafter, obtain the

value of Y• on 1o at the following
step of tut+6t.

The singularity which occures at the inter- 4) Determine the values of Y! on I' at
section of the ship's hull and free surface time step t.t+At by using the free
was avoided by imposing an additional cen- surface condition.
straint expressed as 5) In order to determine 'PI, value at

t-t+At , the free surface in the
vicinity o- the hull and hull surface

dYel " (4") are again subjected to division be-
cause the hull shape at tt+it varies
from that at t-t.

61 Determine the values of S at the
* z new nodal points on I; by the I near

interpolation of Y1 values obtained at
Free Surfoce-F , the ,step 4).

1 - 7) Return to the step 2.

By repeating the above-mentioned proei'-
d.re, the values of In the :,ace-fixed QL

\',K "\Ships .- l. , plane can 1w determin"1. Th,- the hydro-
C dv'!amic forces andt mroentr i.ctinq on the hull
o .;ction situtated in the lanel can 1e

easily obtained by eqs. (23) and (24) . In
'c order to calculate the hydrodrn.amic forces* Node W•

C and mo-,eets actingi on the entire ship, the
hull was, divided into 40 section,, and the
fluid :-otionn in 41 trannverse planes were
obtained in the followinq numerlcal clcula-

- tion procedure: the time step At, the nizo"" Open Bourndory: Fo of fluid region, anrd totol number of elementn
used for calculation are presented in Table 2.
Prior to verforming numerical calculation, thn
sectional shapes of the ship's hull, which are
not given in the body plan, are estimated
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Table 2 Time step, size of fluid region, and 6-1. Free Snrface Waves Generated by a Yawed
total number of elements on the Flat Plate
boundarijes

sI e * f fluid total number~ For the purpose of assuring that the waves
time stepsizof.lu

Bo Pdy sae____ re on of elements generated by the ship's motions completely

~t(A~NYiiaxý Izmin -on boundary pass through the open boundary without being
Flatplae N 200 4*d 4*d132subject,2d to undesirable contamination, the

SIIa_1t cre =60C* L: ~ 3 free surface pArofiles 'jere calculated for

and 1)=400 8*M _6*d •9 the yawed surface-piecn ltplt ai
J ________ draft-length ratio (=d/L) of 0.1 and a for-

ward speed eqcA. to Fn=0.1.8 . Fig. 6 iUlu-
strates the calculated free surface elevations
in the transverse planes situated at various
x (=x/L) positions. As shown in this figure,
the waves generated by a yawed flat plate

F.PA W completely pass through the open boundary,
which is situated '.t a distance equal to 4d

I from the plate. The free surface profiles
shown in Fig. 6 are in good agreement with
the calculation results of Chapman (see Fig.

// ~8 of reference 1) )

Ship~s H-ull / eries 60
fPlate/ A. L!.2/.Lpp

Container 2 3
Z- AL-3.7% Lpp U . -z175 l

Lpp
-1 2 3 1

Fig. 5 Treatment of blank space behind th~e 
I K.27

stern frame in numerical calcula- -0.2 X .7 -Present method (Y mo~x8d)
tions

a ~(Y max=i4d)

employing the spline interpolation method. A han's method (Y mux. 4d)

Furthermore, in order to carry out the nunri- .354
cal calculation in an efficient manner, the 0 __X ___375 __4_____

propeller aperture behind the stern frame was 02.

filled with a hypothetical. piece of dead woodX=.7
as illustrated in Fig. 5.

0 /

6. Numerical Results and Comparisons

with Experimental Data

X=,575 A

ý1(da) it3 -35)=4 -0 .2A

a.2

0 o~12z.675  -

0 Yid-0.2 -

r~.775

R=0.2

-0.2.-05i-2 /

Fig. 7 Comparison of free-surface profiles
Fig, 6 Free-surface profilos in various calculatc-d by the present method and

transverse planea (flat plate, Chan's method (flat plate. d/L-0.1,
d/L-0.1, Ynuaxn4d, Fn"0 .18 ) n01R
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- 0 .5,/u-- L/u

Preen mehd(2m,= d

O0 .5do)L/

Fig. 8 Free-surface alevations observed at the location y=4d (flat plate, d/L=0.j, Fn=0.l1)

In Fig. 7, the results of numerical cal- Cb=0. 7 are presented, together with the ex-
culation presented in Fig. G are compared with perimental results obtained by van Leeuwen 6 ).
a different numerical result under similar Eacn figure includes three types of numerical
circumstances, which was obtained by making results obtained by the present method, which
use of a wider fluid region, that is to say, are designated as S. 60, R. C., and F. P.. S.
Ymax=Gd as well as the results obtained by 60 denotes the prediction results for the ex-
Chan's method. Fig. 8 shows the time history act Series 60 hull shape. R. C. and F. P.,
of the free surface elevation at the position however, indicate the numerical prediction
y=4d. The results obtained by the present performed by substituting a rectangular cylin-
method have high correlation a:tiong themselves der and a flat plate, respectively, for the
regardless of the difference of che width of exact Series 60 hull shape.
the fluid region used at the time of numerical
calculation. As far as the wave profile cal- In ýeveral hydrodynamic derivatives, as
culated by the authors is concerned, on the seen in Fig. 11 to 18, there exists remarkable
contrary, undesirable defects were oeserved in difference between the predicted values oh-
the wav'e profile obtained by the method used rained by the Strip %1,2thod and experimental
by Chan. results, n particular, the agreement of the

coupling coefficients is poor. On the other
6-2. Linear Ilydrodynamic Derivatives of hand, the numerical results obtained by the
a Flat Plate present method under the flat plate approxima-

tion explain well the qualitative tendency ofThe calculated hylrodynamic derivatives the frequency dependence of the hydrodynamic
of a flat plate are shown in Figs. 9 and % derivatives. fowever, the frequency at which
toge-her wit i the experimental results ob- the hydrodynamic derivatives achieve their
tained by Kashiwag4 5 ) . Thr. draft-length ratio peak values cannot be predicted by the flat
of the plate is 0.1, and tne Froude numbers plate approximation method. Rectangular cylin-
during the experiments are 0.2 and 0.4 . The der approximation significantly improves the
non-dimensional fi ,quency used for the ab- agreement 0oi the peak frequencle, between
scissa is defined by , U/j]-. As 1pro-- numerical p:edictioti and experimental results,
seated n Figs, 9 and 10, b-oth renults are ih but the quantitative agreement of the hydro-
good agreement. in particular, it is interes- dynamic derivatives is p-'or whe, compared t)
ting to note that t;,u numerical solution is the results obtained by flat plate apprexi-
capable of predicting in an effect:e manner mation. To the contrary, the numerical re-
the forward speed effects on the hydrodynamic sults obtained for the exact Series 60 bull
deriivativcs. form shows significantly positive agreement

6-3. Series 60 Model with the experimental results. In particular,
the improvement of the prediction accuracy of

In Figs. 11 to 18, thle calcula'ter hydro- the derivatives tW ¾ , N'V , Mr and V ' are
dy nam ic s de ivaiv t o , the Se ues 0 hod ro with excellent compared with the numerical results

dynamic derivatives of the GOe iodel with obtained using the Strip Method.
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Fig. 9 Linear hydrodynamic derivatives of Fig. 10 Linear hydrodynAmic derivatives of a

a flat plate with d/L=0.l obtained flat plate with d/L=0.l obtained by
by pure sway pure yaw

6-4. Container Ship excellently predicting the forward speed de-
pendence of the roll-yaw coupling coefficients,

The predicted hydrodynamic coupling coef- with the exception of 46.
ficients of sway-yaw and roll-yaw of a model
of container ship are illustrated in Figs. 19 On the contrary, the New Strip Method
to 26, together with the experimental results7 ), does not succeed In predicting the numerical
as well as the numerical predictions of the New values of most hydrodynamic coupling coeffi-
Strip Method. The non-dimensional frequency cients at a sufficient leve~l of accuracy.
used for the abscissa of these figures is
defined by ' .(u According to the numerical calculationperformed by Troesch 8 ), it is found that the

Except for A26 In a low frequency range, forward speed effect on the coupling coeffi-
thq hydrodynamic coupling coefficients of sway- cients of sway-yaw is predicted well. Ilow-
yaw cbtained by the present method are in good ever, the forward speed effect on the roll-
agreement with the experimental results. Fur- yaw coupling coefficients does not appear to
thermore, the forward speed effects on the have been positively predicted by the cal-
hydrodynamic coefficients can be positively culation method used by Troesch (see reference
predicted by the present method. In general, 8)
however, differences between the predicted
hydrodynamic coefficients of roll-yaw coupling
and the experimental results appear to be
significant in comparison to the differences
observed among other hydrodynamic coefficients.
Nevercheless, the present method is capable of
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cribed in this paper are restricted to the
^6 radiation problem of lateral ship motions,A64

0 0.5 1.0 W 1.5 needless to say, the present methodology
0 ~may be applicable to the radiation problem of

such vertical ship motions as heave and
pitch, and to the diffraction problem of
waves.

-0.02 A 0  
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coefficients between sway, yaw, and roll
motion is significantly improved using the

present method, particularly when compared
to the so-called Strip Method. Needless to
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to improve the predicted value of hydro-
dynamic coefficients must be continuously
made since the present method is not suffi-
ciently accurate regarding the predicted
value of a smill number of hydrodynamic
coefficients.

Although the numerical calculations des-
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DISCUSSION
of the paper

by K. Yamazaki

"LINEAR HYDRODYNAMIC COEFFICIENTS OF SHIPS WITH FORWARD SPEED
DURING HARMONIC SWAY, YAW AND ROLL OSCILLATIONS"

DISCUSSION Finally, can the authors justify why the
by R. Yeung and s. Kim open boundary condition (21) is compatible

with the forward-speed steady potential PF,

The authors are to be congratulated on an which satisfies the rigid free-surface con-
extensive set of computations and comparison dition? We feel that they are inconsistent.
with experiments. The formulation used here
is what we called the "Forward-speed Transient Yeung R.W. & Kim, S.H. (1981):
Formulation" in the paper of Yeung and Kim "Radiation Forces on Ships with Forward Speed"
(1984), in which a short review of a number of Proc, 3rd Int. Conf. Numer. Ship Hydrodyn. p
modern ways of computing hydrodynamic coeffi- 499-515, Bassin d' Essais des Crenes, Paris
cients was given. The transient approach France.
appears to offer some additional potential com-
pared with the traditional "strip theory" and Yeung, R.W. & Kim, S.H. (1984)" "A New
the more recent "unified theory" that utilized Development in the Theory of Oscillating and
time-harmonic two-dimensional solutions. In a Translating Slender Ships", Proc. 15th Symp.
paper presented in the last meeting of this Naval Hydrodyn. pp195-212, Hamburg, W. Germany.
conference (Yeung & Kim, 1981), we have pro-
vided similar comparison of numerical and Author's Reply
experimental results for the heave and pitch
motions of three-dimensional hull. The authors The authors are grateful to Prof. Yeung
are apparently aware of our work since their and Dr. Kim for their discussions. Both the
fixed-and-moving frames space-time relations calculation method presented in our paper and
were initially exploited by us for conceptual the method indicated by the discussers are the
clarity. Our work also explained how, in the modifications of the method indicated initially
presence of a body of finite lateral dimension, by Chapman. Therefore, it is natural that
the solution obtained in a single transverse there are some similar points in the concep-
plane of the fixed frame of reference could be tion of both methodologies. In our method,
used to obtain the hydrodynamic coefficients the hydrodynamic forces are predicted by cal-
for time-harmonic motions. Such a procedure culating the time-histories of the fluid
ceases to be useful if the free-surface condi- motions in the various space-fixed transverse
tion is non-linear as the authors' initial for- planes, which are independent respectively.
mulation. Indeed, the nonlinear conditions This method makes it easy to impose the non-
were simply irrelevant in such a theory. These linear condition to the free surface in the
points have apparently been taken for granted two-dimensional transverse planes. Our final
by the authors in this work. aim is to predict the hydrodynamic forces and

moments acting on ships during the arbitrary
Our work in 1981 led us to think about the motions, not the time-harmonic motions.

exact role played by the presence of trans-
verse waves in such a formulation. Our 1984 The effects of the transverse waves on
paper explained how such missing transverse- the lateral hydrodynamic forces occur in the
wave effects terms can be recovered. We won- low frequency region of ship motions at the
der if the authors can comment on the low forward-speed. However, the lateral forces
importance of transverse-wave effects on their in such a frequency region are largely influ-
lateral-motion hydrodynamic calculations. enced by viscosity rather than by the

transverse waves, and then it may not be
The method used by the authors to solve thought that we can get better results than

the unsteady two-dimensional problem utilized those obtained in our paper, even if the
an open boundary condition that can only acco- transverse waves are taken into account. As
modate a single phase velocity. Such a condi- the result of comparisons between the pre-
tion breaks down when waves of various dicted hydrodynamic coefficients and
frequencies exist and is propagating through experimental results, shown in our paper, it
this boundary simultaneously. Since the only appears that the calculation method presented
test indicated in the paper was that due to a in our paper may provide considerably improved
flat plate in steady motion, we are curious how predictions of hydrodynamic coefficients,
it actually performed in situations where waves although the effects of transverse waves can-
are generated by 1dvial oscillaLiuni us well not be cmpletely neglected.
by the change in the body dimension. Can some
numerical results be included to assess the In te space-fixed transverse plane, the
effectiveness of the proposed boundary condi- waves generated by the oblique towing of a
tion in such a situation? flat plate car be regarded as the waves which

are generated by imposing the lateral velocity
with a step-like shape on the flat plate. The
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generated waves, therefore, have the compo-
nents of all frequencies as shown in Fig. 6.
Consequently, the open boundary condition (21)
can make the waves pass through the open boun-
dary in the situation as mentioned by the
discussers.

The open boundary condition (21) indi
cateI that the time-differenciation of some
physical quantity, which expresses the veloc
ity potential in our paper, relative to the
frame of reference advancing together with the
quantity is null at the instance when the quan-
tity passes through the open boundary. We
consider, therefore, that equation (21) holds
good regardless of other conditions satisfied
by the quantity.
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FREE SURFACE POTENTIAL OF A PULSATING
SINGULARITY IN HARMONIC HEAVE MOTION

A. CLEMENr. P. FERRANT
Laboratolre d'Hydrodynamlque Navale

ENSM - 1. Rue de la Noe - 44300 NANTES
FRANCE

This linear problem Is generally solved in
the frequency domain and the resulting numerical

Abstract predictions of forces and motions are sufficiently
accurate to satisfy the common engineering

Several expressions of the Green function needs. Unfortunately. the situations when the
relative to a pulsating source of strength basic assumptions of the linear theory become no
q(t) = qo cos cot, heaving harmonically at the longer valid are of critical Interest In ships and
same frequency under the free-surface of a per- offshore structures design. In particular, the ana-
feact fluid are given. The free-surfac• condition Is lysis of their safety and survivability requires a
linearized and, as we assume steady state condi- good knowledge of their response in very steep
tions. the kinematic quantities are periodical In waven or near their resonance frequency which
time. The velocity potential is then given as a are cases where nonlinear behavlours may appear
Fourier series, each term of this expansion being and must be carefully Investigated.
a function of Its proper wavenumber nzwez/g and of
the amplitude parameter a/b. The free-surface is At the present time. the simulation methods
shown to be a superposition of regular waves at based on time marching procedures seem to be
frequency nco Instead of a simple monochromatic the most powerful to modelize such phenomena
wave as In the case of the stationary pulsating [ FALTINSEN (1977), GREENHOW and al.-
source. The numerical results presented hereafter (1982). VINJE and al. (1983), LIN and al. -
show that the amplitude of the harmonic compo- (1984). . . . ]. Their major advantage Is to take
nents of the wave field are not monotonous func- simultaneously Into account the different nonlinea-
tions of the frequency. rltles of the problem. No irtheless. the lack of a

suitable radiation condition in the time domain
restricts their use to the study of transient pro-

1. introduction blems over short periods of time. Furthermore,
the large amount of computing time necessary to

The modolizatlon of the ship motions In a treate 3imple 2D geometries Indicates that one
seaway by the potential flow theory leads. at the cannot reasonably hope to modelize realistic 30
first step, to a fully nonlinear mathematical pro- cases In that way for the moment. anct even in a
blem. Even In the simpie case of a surface near future.
piercing body at zero forward speed In a regular
wave train, nonilnearities arise from the three The resolution of the complete nonlinear
following circumstances: problem in the frequency domain Is not more

- the free-surface condition includes quadratic conceivable at the moment. But we believe that
terms of the fluid velocity: such an approach could be helpful to refine our
- In the mechanical equations of motion. se- knowledge of the nonlinear phenomena Involved In

veral terms may be nonlinear as. for example. the seakeeping problem. In order to simplify that
the hydrostatic restoring forces and the mooring task. It Is essential to study uncoupled problems
forces: presenting only a single type of nonlinearity. It wIll

- the fluid domain Is bounded by moving sur- help us to clearly separate the effect of the wave
faces: the free-surface and the submerged body steepness, the body motions amplitudes, the non-
surface, linearity of the restoring forces .... on the global

result. With that point of view we began to study
The perturbation expansion techniques based thl a,3e of fully submerged bodies performing

on single or -multiple small parameters C OGILVIE forced harmonic motions of large amplitude. The
(1903), LEE (1988). POTASH (1971). PAPANI- frequency parameter and the depth of Immersion
KOLAOU & NOWACKI (1980) .... I permit to re- are chosen such that the free-surface condition
duce this complex problem Into several linear may still be linearized. For this particular kind of
problems. Considering only the first-order terms, wave radiation problems. the nonlinearities arise
we are led to the classical radiation-diffraction only from the body boundary condition. When the
problem which has received. In the last years, amplitude of the forced motion becomes at least
many solutions by various numorlal approaches, as large as a typical body dimension, the usual
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linearization based on an expansion of the poten- to the mean froe-surface plane z = 0; the gene-
tial Into Taylor series around the mean body ral solution of (2.2) is then written as follows:
position Is not longer valid. In such a situation, q.oec,•
we can Imagine to solve the problem by means of - I 1-1
Integral equations written on the actual time- ,,r IM, I1(t) I'. .I(t)J
depending boundary Instead of Its mean position.
This Implies the use of moving singularities of + 4)(Mkvt) (2.5)
pulsative strength. The new Green Wunctions rela-
tive to these singularities are formulated by some- wing problem for (2:
what complex expressions which must be trans-
formed In order to make them more suitable for 64 - 0 for X e D_
numerical compuiatlons. The study of the heaving 1
pulsating source potential is presented in this a8l) + 2s0€ + 8 !
paper at 2 at -a (2.6)

2. Mathematical formulation. g(2co.St [

tiz 
49 aO

0 Z
X This type of oroblem Is commonly solved by

-z- using a double Fourier transform over the hori-
zontal coordinates x and y.

4. ] -b+.ai With the help of the following identities:
t -41'/2 +-o

(t1 V * O ek[_(Z-,)+U11

The fluid Is of infinite depth and lateral - 4/2(2.7)

extent; It Is assumed to be Inviscid, homogeneous 1 I / M k[(4)+inJd
and Incompressible. Surface tension and free- y_-j= % i e
surface nonlinearitles are neglected. The flow Is
Irrotational and Is represented by a velocity poten-
Vtal t. which Is a function of the space coordi- valid for z=0. with a = (x-x')cose +
nates and of the time t. + (y-y')slne. the free-surface boundary condition

A source of pulsative strength q=qocoswt Is then transformed Into an ordinary differential
located under the free-surface Is subject to a equation for the Fourier transform $ of v:
forced heaving motion at the same frequency w.
Its position Is given by: a + 2e + qk] ; (e,k,t) (2.0)

N'(O.,O.,-b + a coewt) , (2.1) (t)-i(x'covy 'sii8))

with the condition a < b - - -- t) e (
2V

The velocity potential Is the solution of the i being defined by:

following mathematical problem, for M located in
the lower half-space 0- O(XX't) (2.9)

"&�.- (N., )cos (2.2.a) +ff/2 4wn
1 f f

I - ~IR* j( 8,k~t) e 3Cdk
-+ 2 + (2.2.b) 11/2 0

0 0 -Z (2.2.c) 3. Classical results

The radiation condition is Intrinsically sails- For a stationary source. z(t) Is constant

flod by the solutions of this problem. owing to the ('o = -b) and the right-hand side of (2.8) is a

additional vanishing term 2o ft/at In te tlines- slmple-hdrmonlc function of time. since we have

rized free-surface condition. A particular solution q(t) m qocosot. Considering only the steady-state

of (2, 2, a) is given by: solutions. (2.8) Is solved Immediately. and

gives:
"€ wIM ,1 I ( . )qo kiz;• - t(x .o06 e + y 'eBiAO

In order to simplify further calculations.we ;(0'~t ... '

shall rather take: a ut +iw)
Wot [ 0 [e• -": ],

eo 4 l•' I 1[ 2• k-k +-2 kA 2"-- 8- 1

K being the Image point'of M' with respect • g ' g
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where kI.=w2/ (3. 2) Near-flold

The function *P(M.M'.t) may now be obtal- G(N'H' )_ - IL 1 L.. +

ned by taking the Inverse double Fourier transform ~L ( M~
of (b according to (2.9), and at last o(M.M'.t
Is obtained .hrough (2.4).As It Is well known. 0 4K ZI~ROG
Is a simple-harmonic fun~ton of the time. and +_ Ir R ee . I(-+oS93d
may be written as: I I

-S(14M~t) - lRO[G(N,W.) e0 iWtj (3.3) K (Z-1)

where GCM. M') Is the Green function of the -277K e fH (KR)-~ i a ) (3.8)
problem. This function has been widely studied. . 1
and the most known expressions of It are given These results 8re welli-known: the details
below. C((3.5 to (3. 8) 1 and demonstrations may be found In the refe-

In the following, we shall take b as the renced papers.
reference length. and account for the fact that G
Is axisymmetric about the vertical axis passing 4. Heaving source.
through M'. The new variables are then:

b In the general case of a periodically moving
K = ~ = bksingularity of puisative strength, the same basic

9 method can be used to derive the Green function.
z .(3.4) Let us apply It to the case of the heaving source.

b The first difference from the stationary
bsource problemn lies In equation (P. 8). which

R - ((x-xl) + (y-y') I / bgives now:

( -+ 2, -ý + gk) ~(t0,k,t)
The denominations are givqn according to aat(4,1)

F. Noblesse ( 1980). gy-1coswt lc( -1 + Acoewt)

Wehausen-Laltone 2
where

1 Cl f K+ K(Z-1) M'(x', y'. z'=-b,+acoswt) - M'(0. Z'=- I+Acoswt) .
INNXi , I~ +W1 - j e )M

K-KI with cylindricaol coordinates, and b being taken as
the reference length.

K 1(2-31) The right-hand sido or (4 1) Is not longer a
+21Tr K J0 (KJ.R) (3.5) simple-harmonlc function of the time, but It Is still

Hasklnd periodical, anti m~ay ti~rofore b~o written as a
Fourier 3ermes.

G(N'W=-j~ ~ .iFrom the Identity;

X I (Z-1) {tt a 2 O~'/- Xn(z) c*Ona 42

C9 Ono may deriv;2
Y K )- J( (3.6) kA cowat

jj co1e 0 (4.

Heakind (ftniodlifed)

- ~ I ~-~;--+ (.~)-E~A)O+ > I 3(AX)>+1 (k)1 coonwt

G-%) The equation (4. 1) io sotvedJ separetoty for
~(1Z)each !arm of the Fourier expansion of Its right-

- ~ ~ thand side. and once again, we shall retain only
a ~the steady-st-ste solutions. The double Fourier

0 % 1  transform oil * is therefore:

H (r (ZY K-1)ii(XR
qO 11 Pk I H LrX k)+1 (Ak)

+n _n
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we obtain the alternative furm of HA and H2
inwt -inwt(4.4)n 

n

[e)~i0 e jJ fT1 OD________
•± " r-l -(o k( / Z-1+Acosco+iRcoso)

n- n-±(0)s cosnoa jdc {01 -K +±(o) d
where Kn =n1K, -o Jo 1o n (4.9)

0 being written as the Inverse Fourier trans- z 2 ( fe(Z 14Acosa+iRcosG)

form of ý (2. 9). the complete potential 0 Is H_--Z f0s8r coonad k-K- - kdk
then given by: Jo Jo 0o k-Kn-i(0)

S M t)- [ C.l 1 1  ] The inner integrals will be written as:

,, 41'r[ I MK' (t) Mý(t) 0,r - 0°(4.10)
qO 2 t/Z OD k(Z-l+iRcose) I=.(Ak) eckdk aeCdk + K ecokn

- IR ;RiJ~de Iek l+~ t :~~k-K n 1(0) n :e~+' k-K± ti(0)
(4.5) We have then to account for the influence of

t>J(k nwtal -inwt k the poies k'= Kn'i(0) and k"= Kn+1(O).
n-n +i k -i(O) IM (C)l =+im

where the interval of Integration over a has
been reduced, since the kernel Is an even func-
tion of e. and (0) Is a vanishing positive quantity.
The prime of In denotes the first derlvatt\e of this
function. This expression of the velocity potential
Includes higher-order harmonic terms. Further-
more, the expansion of the kernel of the Integral A"

and of the first terms of (4. 5) contains stationary 0 V k
components. The total velocity field has conse-
quently a non-zero mean value corresponding to a By considering the ciosed contour (C) Irt the

steady flow. This component will be clearly identt- complex plane K = k+lm = peiX for thp 5ec•on.
fled after a re-arrangement cf (4.5). integrals In '4. 10). we may express Hn am:. H,

-The calculation of the first part of o Is In the form:

straightforward.
-The second part. o(MM'.t). may be writ- T
ten as: I •- 2[• c[sw •w -itn a c{Oc o Z,-1+ACo0 +iEco8G

,It- (4.6) + Ka(, )M(Z-1+AOO#+iR•oO)

n M(4.11)irnwt -inwt 0

(Hn(N,N') e + H n ,'4 ) e ) (Zii)
n- K TC X• h(Z-l+Aooxq6•÷i• )

by Introducing: n n couna C _e 4- da
-o 10Mo i n

ff/ ai ( -~ ~ o O The last Integral term of H ' maey be exPresstod

d2 f 1n(Ak) ' dk In terms of standard tunclitns. and Introducing
S- - J k-K +1(O) the new notation:

(4.7)
H u~ ek(Z-1+iRco0O) Itn " 9n + H n(4.12)

H- -• h19 fn( k ( n nUn" I- k-Kn-1(0O)

o o so that:

With the holp of the Integral formulation of the CD
modified Bc~soi functions in: F~q

( (4.M) 0 .[9 + [I (4.13)

n We havp then
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i, [Note: With the-,.e new expressions, the steady

gn(A,R,Z)1- - T-1.R e 060 coOsfci flow component clearly aopears to be the mean
n 9Jvalfie of the velocity potential of two pulsative

sources heaving symetrically with respect to the
I/a {n 1 plane Z = 0, without any free-surface effect (i.e.

do K d, -- J da 'double-model' steady component). This :-esutt IsNd "M+ ix n CI; At surprising, since for permanent flows, the

-1)Pt Wfree-surface boundary condition Is reduced to:

-a (- I Z =O 0 14 .20 )
with C = Z-1 + A cosa +IR cosO I z=O

Alternative expressions more suitrd to nu-
merical computation remain to be developed. Be- Double Integral formulations.

fore doing so, let us first Identify the terms:
A look at (4. 18) and (4. 19) yields the

rT ,,, 2  following remark:
- e2 J C d do The Inner double-integral of (4. 19) is ob-

Trz e n Z-.1+AosiRcos vlously of the same kind as the basic expression

of the Green function of the stationary pulsating
0 0 (4•.15) source. Z -Z' simply becomes Z -1 + A Cosa,

For this purpose, we shall use the Identity: while each harmonic n has Its own wavenumber
Kn. The expression given In (4. 19.) Is consequent-
ly subject to the same transformations that lead to
the classical single-integral formulations (3.5)-

1 IR deJ e k(Z-1+co~st+iRcoo6k (3.8). We give thereafter the double-lntegral ex-

MMI(t) IT j pressions we have obtained In that way.
0 0

if/z 'Haskind-type' formula

2 Ie .1 (%.1i6a 2K n Kn(Zl÷-n Acosa)
-- e " Cosa co-n+sdta z (.1/Z

- gn(Z-1+Acosart) ]-(t +KnRZ)
I/ n

[(Z-1+ACOSa)z + RZ 1 2z (4.21)

It is now obvious that (4. 15) represents the X n (Z-1)r(
coefliclnt of the n-t> order term In the Fourier +2g Kne '[(AKn)[ Yo(KnR)-i Jo(K nR)

expansion of coswt/MW(t) (with a change of
sign since z 4 0 and A < 1 ), the mean value of 'Modified Haskind-type' formula

which is: IT K Z-1+AcoSa)

K n (Z-1+Aco) e t

.. {R de I(Ak) ek(Z-e+ (417) Cn e cosa coonu do -I-- 2z
Se II[t +KnR )
00 0 J, n

The complete velocity potential may now be (4.22)

expressed as follows: K (Z-1)

+ n n 0 n 0 n

q, cowNear-field type' formula

- -- -4N1(t) -Mo (tI K

n-1 K n( Z-1 )
0~ [l

with :+ 2n K ne 1n(AKI) IHo(K nR) - i Jo(K nR)JI

(4.1) with C - Z-- 1 + Acosea d o

2 Kn- - I ,e io - sa o Free-surface elevation .

-0 J 0M+ixnThe free-surfaco boundary condition being
G(R)K(Z-) lnearized the wave holght Is simply given by:

wit :• +2fn(A~n) [(A(unR[H-(KnR(K- i]Je(( 0,19

n r n Jo.19)
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OD Figure 4 shows the evolution of the far.-field
1 In(t) (4,24) wave amplitude coefficients for values of the fun-

(t) at (42damental wavenumber In the range 0., 5. ]. As
n-1 In the preceeding and In the following calcu-

where the terms 1in(t) are the harmonic lations, the total energy transmitted at inflnlty Is
componentsof the wave feldt arhithe marset to a constant ( =1. ) as the frequency Iscomponents of the wave filed, which may be varied. These coefficients are obtained by multi-

obtained through (4. 24) from the Fourier expan- varing The c o tici expressin by multi-
sion of the velocity potential. For Instance, the plying the asymptotic expression of the wave

Near-field type formula (4. 23) gives, after some t canc herailic dependancy.

manipulations; to canoe( the radial distance dependancy.

Figure 5 shows the rate of energy trans-
nwq, --K mitted by the first four rays as a function of the

in {t) - f Kn In(An) e fundamental wavenumber: the normalization rule isthe same as In the preceeding calculations.

*[Jo(KnR) cosnwt+ HO(KnR) sin nwt] (4.25) Finally, we give on figure 6 the evolution of

these energy rates for the first four harmonics

IReIT r K C when the amplitude ratio a/b Is varied from 0. toer[nen €(n) o]1sn td 0.96, and the frequency parameter K±. from 0. to

-1os e nar e Z1 (K Co osnntdN I- s 5. This representation tby distinct surfaces gives

Go 0 us a global Illustration of the phenomenon. It
The classical asymptotic expansions of J0, demonstrates that, for a given amplitude ratio,

Ho. and eZE,.z) provide the following asymptotic the variation of the rate of energy transmitted by
form the of.26: each ray Is not a monotonous function of the

f.fondamenal wavenumber. For amplitudes ratios
up to 0.7, the maxima of the curves occur for

n 1qo [2K 11/Z values of the frequency parameter around 0.5.
n [ I n (4.2)Although this unexpected behaviour has been

* cc:4(K R-nWt-w/ 4 ) + o(-) highlighted In the case of a single heaving pul-
nsating source, one may believe that a rather

The far-field is consequently a superposition simllar phenomenon would appear In the case of a
of reoular waves of celerity Cn = g/nw. Owing to submerged body performing large amplitude hea-
the linearization of the free-surface, the energy ving motions. This remains to be confirmed by the
transmitted In the far-field Is the sum of the resolution of such a problem by an integral equa-
energies transmitted by each ray of the wsve tion method Involving moving pulsatarg singular[-
spectrum. ties. This constitutes the final goal of our present

work. Anyhow, we hope that these preliminary
results wiil offer a valuable guideline In the choice

5. Nume:sical results. of the parameters when studying the nonlinearities
associated with the body boundary condition.

The free-surface patterns given In figures 2 either In the time or In the frequency domain.
and 3 have been computed from the modified-
Haskind type formula (4. 22) In most cases, and
from the Near-Field type formula (4. 23) when the
radial distance A t'as approaching zero. In both
cases, the double Integral was performed by
using two succesive eight-points Newton-Cotes
adaptative Integration schemes. The Inner Integral
being evaluated with at least 12 exact decimal
digits, the final result Is believed to be sufficiently
accurate to satisfy our present gcal. The special
functions Jo, I=, Yo. Ho, are evaluated by stan-
dard numerical schemes giving a typical accuracy
of 10-5.

The wave pattern In the vicinity of the singu-
larity (fig. 2 and 3) clearly exhibits the higher
order components generated In the near field
propagatlng outwar,'.i. For the sake of legibility,
the vertical scales are magnified. In hoth cases
(K±=0.5 and K±=l.") at t=T/2). we give as a
reference a view of the free-surface above the
"equivalent* stationary source radiating the same
amount of energy at Infln~ty.
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st I~ery surcestationary source

Figure 2: Frae surfaco elevation at time r/2 ~ Flguý,e 3: Free surface elevation at time T12
above a pulsating source - wzb/9 = 0. 5 above a pulsating source - z~big 1.0

fundamental (n 1 )tI 1.0~*

- -a/b =0.3 a/b 0. 5

a, . 2. 3. 4. 0 .4

Figure 4; Far field wave amplitude coefficientt of
the first rays

N. B : The total radiated energy Is set to a constant as the
_ - -___frequency Is varied (see _Figure 5)
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funameta I n I I F- ýO amnplitude ratio a/b
-ýnam na ( =1) 0. 0.2 OA.4 0.8 M

-. a
b =.

- -I- -- -fundamental harnmoic

second harmonic (n=2)

__~w ..... 11i. b/g wb/
.0. 0 . 2. 3. 4. 5

1.~~ 

3.b 4oo d a mo i

2. 3.

aA .5 -1.

a/bsthird harmonic

wb/9 w~ big

0. 1. 2. 3. 4.

0.5 a.

a/b futhir harmonic

u~Wb/g.
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CALCULATION OF FLUID MOTION RESULTING FROM LARGE-AMPLITUDE FORCED

HEAVE MOTION OF A TWO-DIMENSIONAL CYLINDER IN A FREE SURFACE

John G. Telste

David W. Taylor Naval Ship Research and Development Center
Bethesda, Maryland 20084

Abstract Researchers have spent much effort in
devising methods for computing large-amplitude

Progress in developing a tool to compute ship motions. Their work is usually based on
large-amplitude ship motions is reported. In the assumptions that the fluid is incompressi-
particular, a method to calculate transient ble and the fluid motion is irrotational. The
two-dimensional potential flow about a body assumptions lead to the existence of a velc-
moving in a free surface is described. The city potential, which simplifies the problem
flow problem is formulated as an initial- formulation. But, since the equations
boundary value problem in which the velocity describing the free surface are nonlinear and
potential along the free surface and the posi- cannot be linearized for large-amplitude
tions of the moving boundaries are sought as waves, great difficulties arise in the compu-
solutions of a coupled system of differential tation of solutions to free-surface potential
equations. An implicit finite-difference flow problems. When a body is present in the
method is used to advance the solution of the free surface, additional difficulties related
coupled system of equations in time. The aux- to the intersection of the free surface and
iliary problem of computing the velocity the body occur. For instance, the potential
potential inside the fluid region is solved by flow in the region is known to be singular.
a method which is based on boundary-fitted Lin et. al. [1] have recently described some
coordinates and is directly extensible to aspects of the singularity. Dagan and Tulin
three-dimensional flows. Results from calcu- [2] and Fernandez [3] discuss nonlinearities
lating the potential flow about a body in in fluid flow about blunt bodies. Because of
forced heave motion are presented. The hydro- the formidable difficulties, most of the work
dynamic force on the body has been obtained on nonlinear free-surface flows has been for
and compared with the hydrodynamic force two-dimensional flows.
predicted irom second-order perturbation
theory. Many authors have formulated the 2-D

problem as an initial-boundary value problem
whose solution is obtained from an integral

I. INTRODUCTION equation for functions defined along the boun-
daries of the fluid. Longuet-Higgins and

In recent years attention of naval archi- Cokelet (II] used such a method combined with a
tects and ocean engineers has focused on how time-stepping procedure to calculate free-
vessels and offshore structures react to surface heights with no body present. Faltin-
large-amplitude ocean waves. The attention sen £5] and Vinje and Brevig [6-8] have used
has been motivated by the capsizing of vessels the integral-equation approach in their stu-
in large breaking waves and structural failure dies of fluid motion in the presence of
due to the slamming forces associated with bodies. They make the restrictive assumption
such waves. It is therefore of interest to that the fluid domain is periodic and use
have a method available to determine the complex-variable techniques that cannot be
forces on a floating body and how the body extended to three-dimensional problems.
will react in these extreme conditions. Since Greenhow et. al. £9] have applied the method
little is known of how a ship reacts even to of Vinje and Brevig to the capsizing of a body
non-breaking waves, it would even be extremely in the free surface. Baker et. al. [10] have
valuable to have a method available for developed a generalized vortex integral-
predicting ship motions in the presence of equation technique that has been used for a
large-amplitude non-breaking waves. The body under the free surface. It is not clear
method would be of practical value in a sys- whether the generalized vortex method is suit-
tematic study of how ship design chen:es would able for numerical computations when a body
add stability in rough seas. intersects the free surface or whether it will

be computationally efficient when it is
extended to three dimensions. Thus, even for
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computing nonlinear two-dimensional free-, x' L x, y' L y, t' = t/•-

surface potential flows, full generality has
not been attained. 4' = 4L2  p= pa-L p, F1 = pa 2 L3 F,

This paper describes progress made in where (x,y) are variables representing the
developing a tool to compute large-amplitude coordinate system, t is time, p is pressure,
ship motions. The method discussed is based and F is force. The primed variables
on an initial-boundary value formulation, and represent dimensional quantities; the
it is a method that is directly extensible to nonprimed variables, nolimensional quanti-
three dimensions. The velocity potential ties.
along the free surface and the positions of
the moving boundaries are sought as solutions The fluid region is described in terms of
of a coupled system of differential equations, a fixed (x,y)-coordinate system chosen so that
An implicit finite-difference method is used the y-axis points vertically upward and the
to march the solution of the coupled system of undisturbed free surface is at y = 0 (Fig. 1).
equations forward in time. The auxiliary
problem of computing the velocity potential y
inside the fluid region is solved by a
firite-difference method based on boundary-
fitted coordinates. Haussling :113 han
presented a review of such techniques used fo-"

fluid flow problems.

Results from calculating the potential
flow about a cylinder in forced heave motion
are presented. The hydrodynamic force on the x= -w X W

body has been obtained and compared with the
hydrodynamic force predicted from second-order
perturbation theory.

y = -h

II. MATHEMATICAL FORMULATION
Figure 1 - U-Shaped Body in the Free Surface

The physical flow problem is to compute at Time t = 0.0
transient two-dimensional flow about a body
moving in a free surface. It is formulated A fluid region of infinite depth and infinite
mathematically as a potential flow problem in lateral extent is modeled by a rectangular
which the velocity potential along the free tank so deep that the effect of the bottom
surface and the position of the moving free boundary is insignificant and so wide that no
surface are sought as the solution of a non- waves reflect from the side boundaries during
linear initial-boundary value problem, the time for which the fluid motion is

modeled. The rectangular tank is bounded by
In particular, the physical problem is to the lines y = -h, x = w, and x = -w. The con-

determine the fluid motion caused by the tour of the body moving in the free surface is
prescribed movement of a body partially sub- given as a function of time t and a parameter,
merged in a fluid and the resulting hydro- a, by the equations
dynamic force on the body. The prescribed
motions are forced harmonic heave motions x = B (a,t) = A (cos(a) - 0.1 cos(3 a)) (is)
never so large that the body becomes com- x

pletely submerged in or rises out of the y = B (a,t) = A (sin(a) + 0.1 sin(3 a))
fluid. The body considered in this paper is a y
closed U-shaped cylinder. Gravity is the only - h coskt) (1b)
body force acting on the fluid which is invis- 0

cid, incompressible, and initially at rest. where A is a measure of the size of the body,
The fluid motion is irrotational and thus a a is the angle measured counterclockwise from
velocity potential 4' is assumed to exist, the direction of the positive x-axis (Fig. 2),

Surface tension is neglected, and h0 is the amplitude of the heave motion.

All variables are nondimensionalized. The position of the free surface is given in

Lengths are scaled by a length L characteriz- terms of a parameter e and the time t by

ing the size of the body. Time is scaled by x = xF(e,t) and y = YF(et). The functions
1/a where u- is the frequency of the body xF(e,t) and yF(Ct) are to be calculated.
motion in radians/seoond. Velocities are
scaled by T L; the velocity potential 01, by
2 2L 2 Since the flows considered in this paper

L ; pressure, by p- L ; and force, by po2L are symmetric about the y-axis, only the half

Here p is the fluid density. Thus, for exam- of the fluid region where x > 0 is considered
ple: (Fig. 3). The region is bounded by five

curves. Across the boundaries AE (x = 0),
CD (x = w), and ED (y = -h) there is no flow.
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body, this condition is given by

0 : 0 at x : w (3)S

Similarly, at the bottom boundary, about six
.yV) half-beams below the free surface, vanishing

normal velocity is specified by the equation

= 0 at y = -h (4)y

_ _At the boundary AE directly beneath the body,
(xO,YO) •where a symmetry condition is specified as a

[ EI "(xo+ 0.9A, yo) wall condition, the velocity potential must
O x=O 0 satisfy the equation

Y=o =-hocos(t) O = 0 at X : 0 (5)S

Along the body contour, the normal velocity is
known from the prescribed motion of the body.

x x0 + A [cos(a) -0.1 cos(3a)] In fact, the normal velocity of the body at
y =yo + A (sin(a) + 0.1sin(3a)] (B x(a,t),B y(a,t)) is

Figure 2 - Geometric Description of the Moving
Body Contour Vn(a~t) n aBx/at + ny yByat

where n(a,t) (n xn ) is the unit normal

directed into the fluid given by

0 C: (n x,n) (B y/&a,-dB /aa)

/(aBx /aa)
2 +(aB y/aa) 2]/2

The required boundary condition for p at
(a X (a,t),B y(a,t)) on the body contour is thus

aB aB
=__ = xnX +yn : =- n + -Y n (6)
an xt 3y tty

The free-surface coordinates x F(e,t) and

= -h y F(e,t) have been parameterized in terms of e.

The parameterization e is chosen such that for

Figure 3 - Fluid Region for Flow Symmetric fixed e the functions xF(e,t) and yF(ect

About the y-Axis describe the path of a fluid particle. In

other words, e is a Lagranglan va-iable. The
The curved line AB, given by Equations (Ia,b), velocity potential on the free surface is also

Is the contour of the moving body. BC is the parameterized in terms of ýhe Lagrangian vari-
free surface, whose location must be computed. able e by to : F(et). An equation to be

The velocity potential satisfies the satisfied by 4F (e,t) can be obtained from

Laplaoe equatiun Berooulli's equati,,i, which can be expressed
as

A' : 0 
(2)

in the fluid region and is subject to certain p + -- + 02 + 2 )12 + (g/a2L) y = 0 17)

boundary conditions. (Fluid velocity in the t y
x-direction is given by u = X; fluid velocity

in the y-direction, by v : .,) At a solid where p is pressure, g is the acceleration of
y gravity, a is the frequency of the forced har-

boundary, the normal velocity of the fluid monic heaving, and L is the characteristic
must equal the normal velocity of the iolid length, bernoulli's equation ia valid on the
boundary since fluid cannot pcnetratc the free sui-face and throughout lhe fluid region.
boundary and no cavities are assumed to form At the free surface, the pressuee is ussumed
in the fluid. In particular, at stationary to be zero and a particular case of
boundaries the normal velocity must vanish. Bernou)li's equation, the dyramie free-surface
At the right vertical boundary of the flow boundary condition, results:
domain, about 16 half-beams away from th•
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d__F N) where a(e) is a prescribed function.
_ (e,t) -- (x F(e,t),yF(e,t),t)

dt Dt In sumnary, we seek the solution of an
initial--boundary value problem for

2 yF(et (8) x = XF(et), y = YF(e,t), @ = F(e,t) on the

Y free surface and x = x B(e,t) y y B(e,t) on

the body contour, in which e is a Lagrangian
Here D/Dt = 4xa/ax + ,y B/3y + VBat is the variable that parameterizes the free surface

derivative following the motion of a fluid and the body contour. These five functions

particle. The kinematic free-surface boundary obey the evolution Equations (8), (9), (10),

condition, which states that no fluid particle (14), and (15) subject to the initial condi-

on the free surface can leave the free sur- tions (11), (12), (13), (16), and (17). The

face, is expressed by the two equations velocity potential in these equations must
satisfy Equation (2) subject to the Neumann

dxF Dx boundary conditions (3), (4), (5), and (6) and

-- (e,t) = -- (xF(et),yF(et),t) a Dirichlet boundary condition along the free

dt Dt surface governed by Equation (8).

= 0(xF(et),Y Fe,t),t) (9) The force on the "'ody is calculated by
integrating the pressure over the wetted sur-

dyF Dy face of the body. Because the flow problem is

-- (e,t) = -- (x F(et),yF(et),t) symmetric about x = 0, the x-component of the

dt Dt force on the body vanishes:

= y(xF(e,t),yF(e,t),t) (10) Fx = 0 (18)

At t = 0, the velocity potential on the free The y-component of the force, positive upward,

surface is given by is given by

SF (e ,t=0) = 0 11= -2 f p(a,t) ny(at) (ds/da) da (19)

and the free surface is such that where (n xn y) is the unit normal at the body

contour directed into the fluid and s,
YFCe~t=O) 0 (12) increasing in the counterclockwise direction

along the body, represents arclength. Because
The parameter e and the function xF~e~t) can of symmetry, the pressure is integrated over
be arranged so that the half the wetted length of the body given

by x = B x(a,t) and y = B y(a,t) wherexF(e,t:O) = e (13)Xy
F ~-T/2 < a < a R(t). (The function aR (t) depends

It is convenient to parameterize the on the position of the intersection of the

fluid at the body contour by a Lagrangian free surface and the body contour.)
variable e so that x = xB(e,t) and y = yB(et)

along this bc-indary. This is possible since
fluid particles along the solid boundary can III. NUMERICAL SCHEME
never leave that boundary, except possibly to
become free-surface particles at the intersec- The functions kF(e t), YF(e.t). + F(et)

tion of the body and the free surface. Thus along the free surface and xB(e,t), yB(e.t)

dxB Dx along the body contour obey five coupled first
-- (e,t) 0 -- (xB(e,t),yB(e,t),t) order differential equations in time with

dt Dt specified initial conditions. In addition,
the velocity potential must satisfy specified

:,(xB(e,t),y (e,t),t) 14) boundary conditions at all times. To solve
x B B these equations a finite-difference method is

dy Dy used.

-- (e,t) -- (XB(e ,t),yB(e,t),t)
dt Dt Boundary Functions

4y (x (e.t),y (e6t),t) (15) Each of the five boundary functions is

y B B disoretized with respect to time and space

subject to the initial conditions using a fixed time step At. The discretized
forms of the functions are denoted by

xB(e,O) = B x(a(e),O) (16)
(n) x (e, nat) (20a)

yBeO) = By (a(e),O) (17) XFJ F
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S(n)YF(eJ, nAt) (20b) (0 0 (22))YFj -

(n (0)
= -F(ej. n~t) (20c) XBk= aBek 0) (22d)

for j = 1, . N, and

(0) yBWa(ek), 0) (22e)YBk=B

(n) xB(e n t) (20d)
XBk B (' In Equations (21a-e) ard Equations (22a-e),

the subscript j runs over all po3sible free-
(n) surface grid points, and the subscript k runs

YBk YB(ek' n At) (20e) over all possible body grid points. The
intersection of the free surface and the body

for k = 1, . M... . (The subscript J will is treated as a body point obeying Equations
be used for a free surface variable and the (21d,e) subject to an initial condition given
subscript k for a variable along the body con- by Equations (22d,e).
tour.) Thus, the boundary functions are
discretized into boundary grid points that are The numerical sch~eme is implicit. An
now assumed to move as if they were associated initial estimate for the five functions at the
with fluid particles. The evolution Equations (n+1)-st time step is obtained by linearly
(8), (9), (10) for <F (e,t), xF(e,t), YF(et) extrapolating from two previous time steps.

and the evolution Equations (14), (15) for (For the first time step, the initial estimate

x (e,t), yC(e,t) are applicable to these par- is the initial condition.) The functions are
corrected iteratively by using Equations

ticles and are replaced by finite difference (21a-e). The iterative procedure is stopped
equations based on the Euler-modified method, when the x- and y-values have satisfied an
The finite-difference equations are given by absolute error criterion of the form

(n+1) X (n)A^t {o(n) + 0(n+1 1/2 (21a) :f(n+1,2 ) - f 0+1,2+1) <( (23)
Fj Fj xj xj

(n+1) (n) (n) (n+1) and the O-values along the free surface haveS(n)At o {() + 4' 1/2 (21b) satisfied the relative error criterion given
by

(n+1) ()+n)+ At U{(n) 2 +(n) 2
Fj Fj xj yj 1 - 4 (n+1'e)/ 4 6(n+1,2+1) <(

+0(n+1) 2 + ' (n+1) 2 )/2
Syj whenever ' (n+1,9+1) >E3 (24)

-(g/L a 2 ) (y() + n+l))/2 (21c)
The superscripts (n+1,J) and (n+1,2+1) in

(n+1) (n) (n) 0+1) Equations (23) and (24) refer to the 2-th and
X () AtB {0 n P 1/ 2(1d) (2+1)-st corrected solutions of the system ofXBk = Bk ÷ " xk " "k

differential equations at time step n+1. Gen-

(n+1) (n) (n) (n+1) erally, the stopping criteria for the itera-
YBk YBk + At 4'yk + *k )/2 (21e) tive procedure In the Euler-modified method at

each time step are that the maximum absolute
where change in the x- and y-values on the free sur-

face and the body is tI = C.001 and the max-

( W G (x) W m) inWtA0imum relative change in the O-values on the
X? x ¢(GV YGe' free surface is &2 = 0.001 for A-values

Wm) W(m) Cm) greater in absolute value than 0.000001.
Ye y ' YGV m' t)

for 2 = j or k, a = n or n+1, and G = B or F. Each of the five discrete evolution equa-
The initial conditions become tions has 4x or 4y on the right side. In par-

ticular, to compute the right sides of Equa-

(0) tions (21a-e), *X and p along the moving
K .:ej (22a) y
Fj (2 boundaries of the fluid region must be com-

(0) puted from the solution of the Laplace equa-

( 0 (22b) tion for 4. The solution method for this
equation is described in the next section.
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To prevent numerical instabilities on the the body below the surface. In other words,
computed free surface from arising, a linear the intersection point may not move with the
filtering scheme due to Shapiro [12] is used. fluid. Since the free-surface and hull boun-
The filtering scheme has been used 3uccess- dary conditions all involve time derivatives
fully by Ohring and Telste [13], Haussling and following the fluid motion, they cannot, in
Coleman (141, and several other researchers, general, be directly applied over a time
It has been applied at fixed intervals of interval to predict quantities at the inter-
time, and has been especially helpful near the section point. Special methods for handling
intersection of the free surface with the body this point must be developed. However, for
contour, heaving motions of an almost wall-sided body,

the intersection will be essentially a fluid
Unless some method is used to maintain a particle. Therefore for the current study,

reasonable grid spacing along the free surface the body Equations (14) and (15) are applied
and the body contour, grid points will congre- directly at this point. Inaccuracies in this
gate in some areas and become sparse in other approach will become apparent in the form of a
areas. A method is used to keep a uniform deviation from zero of the pressure at the
distribution of points along the body contour intersection point. In fact, such pressure
and a prescribed distribution of grid points deviations might be used in a method to more
along the free surface. The prescribed free- accurately follow the intersection point as
surface distribution is such that the free- would be necessary for more complicated body
surface length between the body and the j-th shapes. One such scheme has been tested but
free-surface grid point is a constant fraction has proved to be numerically unstable.
of the total free-surface length between the
body and the outer boundary. The scheme The pressure at all the grid points along
allows one to follow the movement of boundary the body including the intersection is calcu-
grid points within a time step as if they were lated from a finite-difference version of
fluid particles and to shift the grid points Bernoulli's equation:
to other flu.d particles at the end of each
time step. To shift the grid points, cubic (n+1/2) (n) 2 (n) 2
spline interpolation is used to fit the py (0 +
arclength as a function of grid point number k xk yk
along the free surface and the body contour.
The positions of the grid points along the + ÷( + 2 )/4
free surface and the hull are shifted and the xk yk
values of all pertinent functions interpo- 2
lated, using the cubic splines, to their new - (g/0 L)(y + Y (25)
values. The redistribution of grid points, of
course, affects the initial guess for the The pressure is the pressure at the k-th fluid
Euler-modified method at time step n+1. How- particle on the body at time t = (n+1/2)At.
ever, if the shifting is done every time step The force on the body at this time is calcu-
and the time step is sufficiently small, the lated by numerically integrating the pressure
redistribution scheme has been found to along the body contour. Trapezoidal quadra-
proceed smoothly. ture is used.

Because of numerical errors, grid points Laplace Solver
cannot be expected to remain exactly on the
body a6 the solution of the initial-boundary To solve the Laplace equation for 0 , a
value problem is advanced in time. Numerical finite difference method based on boundary-
errors arise from the redistribution scheme fitted coordinates, due to Thompson et. al.
and from replacing the differential equations (15), is chosen. The finite-difference method
by finite difference equations. To correct involves mapping the time-dependent fluid
for for such errors, grid points that move off region onto a fixed computational region. The
the body are shifted back to the body. This coordinates ý and n in the computational
is accomplished by computing the counterclock- region are such that they obey the Laplace
wise angle about the center of the body from equation with x and y as dependent variables:
the direction of the positive x-axis (Fig. 2).
Every body grid point at a location slightly 4 + 0 (26a)
off the body surface at a certain value of xx yy
that angle is relocated to the point on the 4 ÷ TI 0 (26b)
body having the same value of that angle. xx yy

The boundary conditions for ( and j7 along a
At the intersection of the free surface given boundary are Dirichlet if a particular

and the body contour difficulties arise. At mesh distribution along the boundary is
this point both the free-aurfaoe boundary con- prescribed. The boundary condition of one
ditions and the boundary conditions associated coordinate is Dirichlet and that of the other
with the solid boundary apply at a particular coordinate is Neumann if mesh orthogonality
instant of time. However, the fluid particle near a particular boundary is desired.
at the intersection may move to a position on
the free surface or may move to a position on
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Since all computations are to be done in replace some of the derivatives in Equations
the fixed (4,'1)-computational region, it is (27a-f). (See Coleman and Haussling [16] for
convenient to interchange the independent and more details.) The resulting system of quasi-
dependent variables. When this is done, the linear equations for x, y, and € at the grid
Equations (26a,b) for and n become points is solved by successive overrelaxation.

Ox -20 x4 + Y7n 0 (27a) Lin et. al. [1] cite the works of various
researchers who show that a logarithmic singu-
larity exists ir, the velocity potential of

y -28 y 07 + Yy' 7 0 (27b) free-surface potential flow near the intersec-
tion of the free surface with a vertical

where wavemaker in horizontal motion. But, since
2 2 the body contour for the problem considered is

S= x + yn (27c) nearly vertical at the intersection with the
free surface and since the horizontal velocity

f= x4 x 7 + yt y17 (27d) component of the body is zero, the logarithmic

2 2 singularity in the velocity potential may be
x = + y• (27e) relatively weak. Thus special numerical

treatment of the singularity may not be criti-
To obtain a mesh that wraps around the body cal. In fact, nothing special has been
and conforms to the other boundpries, the phy- included in the numerical method to accommo-
sica. fluid region is divided into several date such a singularity if it should arise.
subregions (Fig. 4).

IV. RESULTS

Several forced harmonic heave motions of
the U-shaped body in the free surface have

0 been considered. The shape of the body has
been fixed by setting the parameter A in Equa-
tions (la,b) to 0.740"Y in all cases. With A
set to this value, the half-beam of the body
and the draft of the body are brth 0.6667.
Amplitudes considered were h 0 /b = o.05, 0.3

and 0.4. in which h is the amplitude of the

motion and b is the half-beam of the body.
Most researchers consider values of the fre-

I quency parameter b 2/g that lie between 0.0
and 2.0. In this study the frequency parame-
ter is restricted to lie in tne interval from
1.5 to 2.0 since this interval contains the

Figure 4 - Subregions into which the Fluid frequencies for which nonlinear effects are
Region is Divided greater.

Each subregiot is mapped onto a rectangle of Linear theory for the problem of an
computational space. In each rectangle of oscillating body in z fluid of infinite depth
computational spare, the inverted Laplace and lateral extent predicts that the
equation is solved subject to Dirichlet boun- wavelength far from the body will approach
dary conditions, transformed Neumann boundary
conditions, or matching boundary conditions 2
where rectangles overlap. A/L =2 g2Lo,2 2. (bIL) &!be

The Laplace equation for the velocity asymptotically in time [17]. The dimensions
potential 0 transforms exactly as Equations of the rectangular tank are taken to be about

(26a,b). The transformed Laplace equation is one such wavelength deep ana four wavelengths
given by in half-length. Thus, if the frequency param-

eter bo /g is no smaller than 1, the depth h
2jO- 24n'Yqn = 0 (27f) should be about 4 and the length should be

about 16. This region is long enough that no
where a. $, Y are defined by Equations (27c- waves will reach the side boundary during the
e). first few periods of forced motion. Since the

region is more than half a wavelength deep,
Wherever possible, central differencing the effects of finite depth can be ignored.

Is used to discretize Equations (2,a,-f). At
the boundaries of the fluid region where a The fluid region has been divided into
Neumann boundary condition is specified, five time-dependent subregie.is. Each subregion
second-order one-sided finite differences has been mapped onto a fixed rectangle of
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change greatly from time step to time step and
II hence a test for the convergence of 0 suf-

86x18 fices. This convergence test is that the

square root of the sum of the squares of the
residuals at the 34 body points should be less
than 0.001. A spot check of the solution

iterates indicated that the relative change in
1 near the body was about 0.1 perzent when the
criterion vas satisfied.

IV V For the solution of the Laplace equa-

18x9 86x9 tions, an overrelaxation factor of 1.4 was
chosen for grid points inside the computa-
tional region. For grid points on the body,

Figure 5 - Mesh Size in Each Subregion of where a Neumann boundary condition is speci-
the Computational Region fied, such a large relaxation factor caused

instabilities in the solution process for 0 .

computational space (Figs. 4, 5). The size of The instabilities first appeared in areas

the mesh in each of these subregions has been where the body curvature was large. No com-
depicted in Figure 5. A total of 2916 grid pletely satisfactory explanation of the prob-

points, counting twice those points where two lem was found, but numerical experimentation
subregions overlap, has been used for the led to the use of underrelaxation factors

grids that cover the computational and fluid between 0.75 and 1.0 on the body. Such under-

regions. There are 34 equally spaced grid relaxation factors on the body eliminated the
points on the half-body contour. At the far instabilities.
right vertical boundary, at the bottom hor-
izontal boundary, and at the vertical boundary Figures 7-10 depict some results of com-

below the body, grid points position them- puting the free-surface position during the

selves in a way that makes the mesh near these first two periods of forced motion with the

boundaries orthogonal. At the far right boun- amplitude such that h /b = 0.4 and the fre-

dary there are 25 grid points; at the bottom 2 0 . h
boundary, 102 grid points; on the vertical quency such that ba /g = 2. A time step of

boundary directly beneath the body, where a At = 0.02 resolved one period of notion into
symmetry condition is specified as a wall con- about 3114 time steps. Figures 7 and 8 show

dition, 18 points. The initial distribution the free surface and the body with a fixed

of grid points on the free surface is arranged coordinate system. Figure 7, corresponding to
so that the mesh near the intersection ot' the times between 5.4 and 8.8, shows a rising body

free surface and the body is approximately and a sinking free surface near the body; Fig-

uniform in both the x- and y-direction.- (Fig. ure 8, for times between 9.0 and 11.4, shows a

6), and the mesh near the intersection of the descending body and a rislng free surface.
free surface and the far right boundary is Figures 9 and 10 show nimilar results, but the

also approximately uniform in both directions, coordinate system in these figures is fixed to
the heaving body. The time-dependent details
of the free surface near the body are clearer

S 'in this fme of reference. Figu-e 9 shows a
ri..,, .,.,sing body betwen th times 6 nd9.0:
Figure 10, a descending body between the times

. ,," , • , ,9.2 and 12.2. It is interesting to note that

"0, k. the slope of the free surface near the body is

.. largest at about the time the body has
-. ""' "\'" " " attained its maximum height. Results for com-

",. ,, puting the vertical force on the heavirg U-
Y- ' ',, shaped body are depictec in Figure 11. From

",, '' - the figlure it is seen that the force has
become periodic in lest than one period of
"forced motion. Also shown on the figure is a

"". - 1 ., -. ;.i' " A,, curve of the force vs. time predicted from the
11- ........ _- -necond-order theory of Papanikolaou and

0 0.5 1 1.5 2 25 3 35 4 Nowacki (18]. The other curve is a linear
I magnification of the results from calculating

Figure 6 - Initial Mesh Near the Body the force when the amplitude of motion is
eight times smaller (holb "0.05) but the fre-

There are 90 grid points along the free sur- 
0

face. quency of the motion is the same. Qualitative

agreement among the curves appears to be good.

The iteration for the solution to the The deviation between the computed nonlinear

Laplace equations for the changing mesh and force and either the linear or the second-

for the velocity potential is done simultane- order force represents aspects of force which

ously. It ii found that the mesh does not could not be predicted from linear or second-
order theory.
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Figure 12 - First- and Second-Order Forces Versus Frequency Number for U-Shaped Cylinder

F2k; and F 21 The computed second-order phase the computed force was less than one percen'.

angle Is. however, exc~-l•ent. Thus the error be,)ms to be quite small.

TABLE 1. FIR3T- AND SECOND-ORDER FORCE COEF- Various frequeicios of forced motion have

rICIENTS beer considered for the aiplitude co-respond-
ing to h /b r 0.3. Predictions nf the coeffi-

Papanikla Computed cients for second-order theory were made and
{Lee and Nonlinear compared with •noae of Papanikolaou and

tNowaoki Rasults dowaoki (18], Potash [19), and Lee (17). The
results are presented in Figures 12 and 13.

F 0.69 n.68 0.67 The computed first-order coefficients agree
well with the previously computed results.

350W 357" 357' The o)mputed second-order phase angle agrees
well with the results of Papanikolaou and

F -0.2 -0.19 -0.23 Nowookl. The magnitude of the sinkage (the

third ttrei in Equation (28)) agrees well with
F 0.62 0.68 0.82 thie previously computed results, but the mag-

nittde of the oacill!story part of the second-
* 107. 108* order force does not agree so well. This is a

reflection of the relative error in the non-
linear forc4 when the first-order force,

A rough estimate of the accuracy of the accounting for moat of the force, has been
force c"mputations can le obtained from two subtracted. It is doubtful that there is more
setr of computations in which only the time than about one digit of accuracy in the com-
step is different. One iuoh numerical test puted second-order results. To obtain these
was conducted for this problem with the fre- results, the fluid motior resulting from about

quenoy purameter e 2b/g 1.7 and the amplitude two periods of forced harmonic oscillation was
of the motion such that h /b r 0.3. The two computed, and the force for the last period of

0 the motion was deaomposcd into its Fourier
time steps used wereit = 0.02 and at a 0.01. onmponents.
After about t = 2. the average difference in
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Figure 13 - Phase Angle of Forces of First- and Second-Order Versus Frequenc, Number

for U-Shaped Cylinder

V. CCNCLUSION horizontal motion in the free surface are

known to have more singular fluid flow
A computer prog;*am to compute the t'luid behavior. Before such behavior van be treated

motion resulting from forced harmonic heaving properly, a more sophisticated treatment of
of a U-shaped body in a free surface has been the fltw• near the hull/wa'.er surface intersec-
produced. The program computes fo~ues in rea- tion will be reqliired. Such a treatment
sonable agreement with the results of previous should include both the ayna-'ic free-surface
researchers who used second-order perturbavian equation and the kinemztic condition associ-
theory. The forces have been computed for ated with the solid boundary of the cylinder.
c3ses of siSnificant nonlinear fluid motion,

The computer program wMll be modified to VI. ACKNOWLEDGMNTS
handle a variety of body shapes and motions.
Unlike the oomplex-vsriaatle techniques of Fal-
tinsen )5] and Vinje and Br'evig (6-8], the This work was supported 'y the Numerical
method chosen to solve the problem is extensi- Ship Hydrodynamics Program at the David 14.
ble to the pr'obleja of 3D nonlinear ship Taylor Naval Ship Rasearoh and Develnomet
motionsj, The fluid domain has not been Center. This Program is jointly sponsored by
assumed periodic, as was assumed by VYnje and the Office of Naval Research under contract
Brevig [6-3]. The location of the 'nterseo- NO0148AFOO01, NR-33'4-O01 and by DTNSRDC

tion of the frea. surface and the body has n?,t under its Independent Research Program.
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Vinje and Brevig [7].

Additional research needs to be performed
befor3 this method can bt .pplied to the gen-
eral problem of ship motio1s In two or three
dimensions. Satisfactory results have been
obtained for a heaving U-shaped cylinder, but
heaving vedge-shaped belies or blunt bodies in
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NUMERICAL SIMULATION OF NONLINEAR FREE SURFACE FLOWS
GENERATED BY WEDGE ENTRY AND WAVEMAKER MOTIONS

*Martin Greenhow and **Woei-Min Lin

*Manchester, U.K.
** O.R.I., U.S.A.

Abstract If the waves are assumed to be steady then
analytical work (see eg Longuet-Higgins and

This paper makes some progress towards the Fox (1977) and (1978)) shows that as limiting
study of the extreme motions of a ship in steepness is approached many properties of the
heavy weather which may result in two typeb of wave (eg phase speed, momentum flux, kinetic
highly-transient and dangerous behaviour - and potential energis) are ano longer monotonic
capsize in beam seas and slamming. 3oth are with steepness. Such results have relevance to
essentially two-dimensional potential flow the phenomena of intermittent whitecapping,
problems requiring treatment of fully nonlin- which dissipates energy and promotes air-sea
ear free surface and body conditions. The exchanges and pollution dispersion. Of more
method, which is based upoi. Cauchy's integral relevance to ocean engineers is the study of
theorem gas originally proposed by Longuet- the growth of instabilities of waves of less
Higgins and Cokelet (1976 and 1978) to study than limiting steepness (see Longuet-Higgins
nonlinear, time-dependent waves, especially (1978a) and (1978b)). These instabilities
when breaking and further developed by Vinje cause modulation of the wavetrain, where one
and Brevig (1981b) to include fixed or moving crest dill grow at the expense of its neigh-

bodies. For surface piercing bodies the bours. When the crest is close to limiting
intersection of the free surface with the body steepness a local and very fast growing insta-
surface causes special problems. The treat- bility arises which leads directly to breaking.
ment of these intersection points used by Lin,
Newman and Yue (1984) appears to be robust for Breaking itself is, of course, highly
the majority of flous but needs modification transient requiring treatment of the time-
for aome high speed slamming problems in order dependent free surface. Unlike the steady state
to include jet ýeparation near the intersec- case, there is no frame of reference which
tion points. Results are presented for freezes the free surface, although local models
transient motion of a wedge displaced from of the overturning crest when viewed from a
equilibrium and then released in calm water, freely falling Crane of reference have been
,id for the classical problem of wedge entry proposed (see eg Languet-iliggins (1980) and
into calm vater, for which the effect of Greenhow (1983)). The ejected jet from the
gravity if important in some respects. wave crest may travel at 2-3 times the phase

speed of the wave and is known to give large

The study of capsixe of ship-like bodies pressures upon impact with a solid surface
will be attempted in a "numerical wave tank" (see Cumberbatch (1960)).
with incideoc waves moving towards the body
being generated by a wavemaker at one end of On the numerical side there has been
the tank. As a first step, wave motionrs in considerable progress in calculating a variety
the tank caused by a vavmaker performing of 2-dimensional time-dependent free surface
siople-harmonic, constant forward velocity flows using either the point vortex method
cnd modulated motions are cumpared with (see eg Baker. Marion and Orstag (1982).
experiments. Excellent results have been Roberts (1982)) or the present approach based
obtained, and the study of the capsiaing of upon Cauchy's integral theorem (see Longuet-
floating bodies will be undertaken in the Higgins and Cokelet (1976), New (1983), Dold
light of this exptrience. and Peregrine (1984) and Vinje and Brevig

(1981a)). Vinje and Brevig's approach which
1. Introduction solves a Predholm integral equation of the

second kind with variables in the physical
Over the last decade there has been (rather than transforned) iensn, is psrticulmrly

considerable progress madc tcwvr4l urder- sukted to :ceCC4 engineering applicatious since
atanding thc nonlinear free surface effects bodies may be introduced either below the free
which *ries when ocean waves becoee steep. surface (see Brevig, Greenhou and Vinje (1982)).
Martin Greenhow, Departmcnt of Mathematics, University of Nancheaster, Hanchester M13 9PL, Uk.
Woei-Xin Lin, O.k.l., Rockville, MD. USA.



or on the free surface (see Greenhow, Vinje, The traditional approach to capsize study is

Brevig and Taylor (1982)). For this latter based on the static stability of the ship in

case a special problem arises at the inter- calm water (see Newman (1980) pp.
2 9 0

-
2 9 5 

and

section points of body and free surfaces, where the references therein). This clearly lacks

both the velocity potential * and stream justification and applicability when the ship

function p are specified by the requirement is in big waves and where hydrodynamic forces

that both free surface and body boundary con- are comparable to hydrostatic forces (see

ditions must be specified here. If, as in Lin, Greenhow (1985) for the forces on a half-

Newman and Yue (1984) and the present paper, we immersed cylinder in large waves.) Recently

do specify both 0 and ý here then flows the "Ships in Rough Seas (S.I.S)" project in

which are regular (eg a standing wave with a Norway and the "SAFESHIP" project in the U.K.

vertical wall through a node or antinode) are have tried to extend our understanding of ship

correctly treated while for flows with a capsize. On the theoretical side "S.I.S."

singularity at the intersection point the resulted in the present approach, while the

numerical scheme approximates the local behav- results of "SAFESHIP" included a study of the

iour in such a way that the global solution, stability of model equations thought to

and hence body forces and motions, remain describe the build-up of rolling of the ship

realistic. To understand these remarks we re- (see Odabasi (1982)). These two approaches

cap on previous work on the implusive start-up appear to be complimentary: for roll motion

to velocity U of a wavemaker at one end of a increasing over many wave cycles the present

long tank of finite depth h. By expanding approach is not very suitable, while sudden

the free surface displacement n and velocity capsizing events (against which the helmsman

potential in powers of time t, Peregrine can take little or no action, see Dahle and
(1972) shows that: Kjaerland (1980)) may be realistically

calculated. As a first step in this direction

section 5 presents free surface elevations
-Ut n[tanh(-) + 0(t

2
) (I) generated in a "numerical wave tank" with the

wavemaker performing various motions, and the

results are compared with experiments. The

for small t. We see that equation 1 predicts close agreement obtained encourages further

that close te the wavemaker (small x) the free work where ship-like cross sections will be

surface elevation becomes logarithmically introduced into the numerical wave tank and
infinite. (For a similar singularity in steady their motions calculated.

state linear theory see particularly
Kravtchenko (1954)). Experiments of Greenhow 2. Outline of the Mathematical/Numerical

and Lin (1983) confirm expression 1 for a Formulation
variety of depths and velocities U, except
close to the wavemaker where a jet is ejected Apart from the treatment of the intersection

almost perpendicularly to the wavemaker. IlTe points of free and body surfaces, the method
numerical results described in Lin, Newman ant' used is that of Vinje and Brevig (1981b) while

Yue (1984) also confirm equation 1 except that for the wavemaker problem reference can be made

the free surface displacement near the wave- to Lln, Newman and Yue (1984). We therefore

maker is, of necessit>, finite (see figure confine ourselves to an outline of the method
5.5). Thus although locally the fluid motion only. Under the usual assumptions of two-

is crudely resolved at the intersection point, dimensional flow of an incompressible. homo-

the validity of the results away from the geneous and irrotational fluid we have a

intersection is not significantly affected. complex velocity potentialt

For other types of wavemaker motion this
treatment of the intersection point also

appears to give realistic fluid motions (see 8(:, t) - *(x, y, t) + iV(X, y, t) (2)

section 5).

Similar coments apply to the transient where Z - X + ly, 0 1 the v0oe, .t;' 1tential
motion of a wedge, displaced from equilibrium ind %, is the stream function. - L:,., I and

and then relnaaed in calm water (peC section 3). i. satisfy the Cauchy-Riemann equation 8 is

In experiments with high speed entry of a wedge analytic antd hence Cauchy's theorem holdst

into cal, water, a narrow jet moves quickly up

the vedge side and as the wedge motion it 4 8(a)
retarded this jet leaves the wedge surface, . to _1Z " 0 (3)

particles In the Jet tip moving almost freely
under gravity. In the numerical scheme however

the intersection point particle is kept on the for to outside any closed contour C within
wedge surface: this results in negative (though the fluid. Here we take C to be the free

rather small) pressures on the wetted surface surface, wetted body aurface~the bottom and
of the wedge which is clearly unphysical. A two vertical boundaries. For the wedge entry

modification of the muserical scheae is descri- problem these vertical boundaries are distant

bed in section 4 to cope with this, hut again, and although periodicity is assumed here, this

apart from the local behaviour of the inter- is irrelevant since no significant disturbance

section point the fluid and body notions remain reaches these boundaries during the tine of
realistic. simulation. For the wavemaker and capstie
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simulations, the wavemaker forms one vertical
boundary, while for downwave a fixed vertical Z - Zj+l for z on C between
boundary is imposed. Use of equation 3, which Aj(z) = - zj+1 zj and zj+I
reduces a two-dimensional problem to a one-
dimensional problem, is extremely advantageous
since the resolution of sharply curved free z - zj_1 for z on C between

surfaces, such as occur in wave breaking or Zi - zj.I zj.l and zj
slamming, may be obtained on mainframe
computers.

= 0 otherwise (8)

On the contour C we know either * on
the free surface (designated as C ) or ý on Then equation 3 becomes
the fixed or moving solid boundartes (desig.aa-

ted as C ). On the free surface * is speci-
fied initially while on the body: (),= [ rki 8j O0for kl= to N (9)

CZ-Zk j=l

*(x,y,t) = Uc(y-yc) - vc(x-xc) - ½R2 (4)

where the integrated influence function rkj
where (xc, Yc) and (uc, vc) are the posi- is given by simple logarithmic expressions

tion and velocity of the centre of gravity of (see Vinje and Brevig (1981b)).
the body, 6 is the angular velocity and R
is the radius vector from (xs,yd) to the Taking the real or imaginary parts of equa-

point considered (x, y). A similar expression tion 9 according to equations 5 and 6 gives the
gives t, on the wavemaker while on fixed required matrix equation. The contribution
boundaries , 0. from the intersection points, where both 0

and • are known occurs only on the right hand
Taking either real or imaginary parts of side of this equation.

equation 3 with z 0 on C, we obtain the
following Fredholm equations of the second The above procedure solves the system for the
kindz initial time. To step forward in time we apply

a mixed Eulerian/Lagrangian scheme, foll~wing
particles on the free surface but not on the

ap(xO, yo, t) + Re f o-•--z 0 U (5) body surface (except at the intersection
z z0 points.) From Bernoulli's equation we have

for z0 on Co and D-.•, gy (10)

Dt
¢(xO, yo, t) +ge{t f = .0+ - 0 (6)Yf - go giving "ic new velocity potential at the new

free surface position given from the velocity
for z 0 on Ct. Here ck is the angle between w* of the particles
two tangents of C at M0 (mathematically

equal to v for any smooth part of C, but

generally different from v' numerically, Dr s*
especially in regions of sharp curvature.) - w u + iv (V (11)

The principal valued contour integrals in
equations 5 and 6 are not known explicitly
since they include unknowns (either 0 or Equations 10 and 11 are stepped forward in
€) at other points around the boundary. time using Runge-Kutta or Hammings's methods.
Discrotiving the contour into points zk along
C and assuming a linear variation of the pot- To solve for the pressures on the body
ential along C between points gives a matrix points, and hence integrate to give the body
equation for the unknown#. Explicitly me forces and accelerations, requires 30/1t on
assumes the body since

N .- 2A + ½ýw* + gy (12)
8W= A j(z) Dj (7) a t

j-l

On the free surface

with the linear influence function given byt - gy (13)

at
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whilst on the body not to mid-ship slamming.

We first look at the transient motion of a
wedge of half-angle a = 150 displaced from
equilibrium and then released in caLm water.

ay For a circular cylinder. the same problem has"= ucv'Vcu + [(uc-U)(X-xc) + been calculated using linearised hydrodynamic
-heory by Markell and Ursell (1970) essuming
that the displacement from equilibrium of tne

(vc-v)(Y-Yc)]'. + (Y'yc)axc - cylinder is small. With this restriction the
(14) results of Vinje and Brevig (1981b) show good

(x-x,)ayc ½R-; agreement at leass for the' first cycle of
oscillation after which the assumption of

see Vinje and Brevig (1981b). Here (ax , ay) periodicity of the fluid domain makes compari-
and U are the transitional and rotational son invalid. For large displacements from
accelerations of the centre of gravity. These equilibrium nonlinear effects came into play:
are unknown but may be factored out of the Yim (1971) and Chapman (1979) attempt to
equations forming four separate problems: include some of these effects for a wedge by

applying the body condition on the exact body
position, but still retaining a linearised

Dip 3l 42 3 + free surface condition. The present solution
+I- ayc 2 -L- + (15) is fully nonlinear in both conditions. Figure

at 3.1 shows the transient motion of the fluid and

wedge when the wedge, with vertex just submer-
ged, is released into calm water. The wedge

Now Cauchy's theorem, equation 3, holds oscillates vertically about tis equilibrium
for each of the four composite problems with position (vertex at y * -4.6). The free
Oi on the free surface given by equation 13 surface particle motion is also shown including
while @2 - 03 - 04 = 0 on the free surface. that of the intersection point which moves in

The full nonlinear problem is given by the an almost elllptial orbit during the first
superposition of these four unphysical problems, cycle. Whereas the calculations here could be
giving /t on the body. This gies a 3X3 continued without much trouble, figure 3.2
system of equations for (nc a ) and ý, so shows that for heavier wedges (equilibrium
that the body accelerations and Kence motion position of vertex at y = -9.2), the wave
can be obtained, travelling away from the wedge breaks. Due to

poor resolution at the wave crest we cannot
The numerical schemc appears to be remark- follow the overturning but even with better

ably stable and no explicit smoothing was used resolution the calculation would have to be
in any of the calculationq. For the slamming discontinued within a few time saeps due to
simulatione; removal or introduction of points re-entry of the jet ejected from the crest.
on the free surface waa avoided since this Also shown is a curious numerical effect caised
generally Itads to breakdown within a few time by por resolution of the f,-te surface near the
stepe. TypicaIly there was 84 points on the intersection point, which causes the fluid to
fre,: s trt -0. on the body and 180 in totLal. move too fAi up the wedge side. This effect
This degree ' - l'tUracy required about 8 soconds disappoars with better r*asolution as shown.
per time a., : --. R "(3 used as a soalar
machine, o. t - s per ti w step on a VAX
11/780.

3. Trancient Morior and Fntry of a Wedge . n
Initial) Crlm Water

The problem of alamming of shisis in largo
waves is quite complex but if tne Uavelength
is long it may be .pprtoximately correct to
conoidor the hu.lI enterinA calm water with a
velocitv equal to tho relative velocity of the
moving hull and moving free ju'rface in the real
situatLon. Even with this assumption the
nvmerical simulation -f bodies entering the
water with small deadrise ingle is difficult

because of the very large ve~ecltier encount-
ered in the splash zone. Soee preliminary
studies of cylinder entry (relevant to the
Alamming of oil rig cross members) have aleo
encountered this difficulty, and che present
study therefore corcentrateg on accurate
strulation of the entry of a wedge of large Ftguro 3.1s. Transient motion of A wedqe
dcadrise angle which is relevant to the moving down. Free surface particle& are
slammiag of the bow s;ction of some ships, but marked x,
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superpobition of the solutions of the Cauchy-
Poison Problem. but this 7equiras non-zero
?ressures to b-~ app~ied to the free surfAce,

If the body velocity or acceler-ac.on is
ccnatant and gravity i15 ignozed, ther 3ome

IN analytical prog~ess is poss!.ble since the flow
is self-similar (see Gurevich (1965) for a
discussion). For the constant vtiocity case
G~aibedian (1953) shows that the arc length
between any two free surfac~e Particles, measured
alor~g the free -urface, iemainL ronstant
throughout the motion. Mackie (1969) gives
bountds on the contact angle a between the
free surface and the ,.edge: thus 0 < 6 4 1T/4
sad also 6 / a which is stronger if the
wiedge half-angle C' > '14- Wi~natufle and
14-ckie (1973) give the exact relatiunship bet-
weon a dnd 8 and show thet in some cases

Figue 3.L. ransentmotin o a wdge(a > 79') the free burface cannot remain
Figue 311. Trnsint mtio ofa wdgeconvex to :ha fluid uxiless the pressure on the

!4oving up again. Locus ot intert.!cction wetted -idge qtrfuce becotues negati.a.e
point marked with c1O arrow. Altnough che preaent nuniuricai schome cannot

give defi'iitiv, anibw~rs concerning the rcla-
tionship betwetn ;% and pi with gravity
included, the second effecr of negative
pressure en the wedge has been observed for

a 150, see figure 3.3. 7his 13 clearl '
unphysical and the exp~eriments of Greenhow and
Lin (1963) show that a jet emerges from the
wed&c. see fi.,ure 3.4. 'the negtlvd -pressure
arises because tb-s intersectilnn poc.nt !s kp'-t
on the wedge. In the Per,, stages of entry
this is coriect, but when the jet rising upi the
wedgýe side becomes thin, the pressure gradient
within t"e fluid must become very small. The
in~.ereection point particlt then freely

t ~under- jrzvity, but the presen.z scacrue -ontinu-
ally moves thl point back onto the, wedge
surface. Section 4 seeks to re~ady this
situation.

Icifure 3.2. Transient motion of v wedge
producing a breaking wave (arrou~id).
Dot'.ed lines are frow, a simulation

with poor resolution.

For high -spocýd tntry, or alamming, of a

urdea considerable amount of experimental

thereby allotting sim~pler free surface con4P1
t ton a. This is justified for high entry
speeds since locally the fluid acceleration i
much higher than gravity. Tr,-us Wk..?nIee (1932) 11

appoxmottvwedges by flat plat,9 -moving with
the initial entry speed in an infinite fluid.

This problem .hnf an analytic solution (byI

dictributlon along the voek'e. Von lKarzat.
(1929), on the other hand, gives the forco on
the body dur:ing impact and submergence in
terms of the rate of cihamjge of fluiZ noi
which is related to the added maots of the body
in infinite fluid. More recently Doctors
(1901) ceoks to eiimulate a olwming event by a Figure 3.3s. Nigh 5S.etd Entry ot a We-Ise.

9.8



Figue 33b. ighSpee Enry o a ed1

.4A,

.1igure 3.3. Highto Speed Enfr of aWedg
shwa pressure ditibto along thearktewct

wetted aurnc fottdr TheO reio ofkawye rclnt

sialngt~e pesr ssae.Figure 3.4.WwtrEtvo CR.btcn anyt; Hlui peartaktl s hould hof ld,

(frt--cr-4ýnhw '41 IAn 141 )).*& ý 0 ajj~vxial Iv tru a t !mg rtco
near the Ite ravc t oo Isot nt vp a ou h&l
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those away from it move closer to~ether. The For moderate constatit velocity of et.tr>
splasst height predicted by the conformal mapping figure 3.6 shows that thle assumption o: self-
technique of flobrovo-l'skaya (1969) appears to aitaila-ity of the flow (based upon negelecring
be too great. This could be a gravity eh~ect, gravity) is corr-ect in the early stages of
but the comparison is somec-hat doobtful: in entry o)nly. Here we have superposed free
thi, nuimerical schieme the posit~on of the surfa's profiles fur wedge velocities of -v = 1,
intersectioni point. is strongly depenlent on the 2 and 3 when the wedge has reached two differ-
spacing between the free surface partic;les ent Positions. For the earl> stage.- of

(alth~ough the position ýA the rest of the fret itumersion self-similarity holds quite well,
surface is rot), whilst Hughes (1972) casts with sosne dkscrepancy near the intersectior.
doubt on Pobrovol'skaya's results. p.ditt possibly due to the numerical scheme.

Idhez, the wedge is will immersed selt-tsimilarity
only h~ids for the higher speeds of entry: for
mode-ate speed the jet which had risen up the

wedge side c;tarts to fell back into th~e fluid.
This effect is not thought to he numerical
(figure 3.7 shows its developm,3ot) and ýt occurs
later for higher wedgo entry velocitttes. How-
ever, althougn it is clear that gravity plays
anl importanit role hetre, the flow is not en!l irely
physical- since thie tnuerical scheme holds the
jet onto the wedge resulting in aegative
pru!ssure on the upper part of the wetted wedge

Isurface, Once aguin this Jet should be allowed
to fall off the wedxe surfa-:e, particles dithin
the jet moving almost freely urder gravity: the

next section seeus to modify the numerical

4. Modification of thle iqvoerical Sche'mIK ,1 to allow the let to leavv th!e wedge surfa:e.
I,- section I w~ showed that the assum-ption

that thle let of fluid, initially Iejected up the
wedge surface at large s~p--et romaining on the

Li / wedge.t is unphysicvl a~nd results in ngt~
Ifpir'ssures on t:he iktted vk.dgt surface. Cleatrly
I! 7in the very thin jetst Produced the i'ceo sectionl

I point pe-rticle must behave va~ry mucth aus a
tvrojacttie (sines cn* prtsas-re tradkcnt in the

Figure i.0. I-t of sltl-simiaiitty for jet is very, asmal) andi thuo mutt -ove avay from
difterenit '^On~taarst Vtlocitte5 of nvt~ry the vedge surface in a parabola. inl thio sect-
of a wedge. (U wal; a "4-; a v! i" 3.vo e prcesenZt roo prellieletary resultsa where

thisL Is a1eveitý to hpu.Tho progricm ftheA.-
the p~ea ur*a tht výtte-d wedg# surfAce at

intrseroctlpn point iv ag,-d as ao ordinary
ixstt surfaRce 4oin W a I rmev lntvrrecr inn

A ~ ~Print tois ntrC41K.ti wkhcre the pre'ssure o'n the
S ~wretted* " 4 cote 4eud*-ee iii "rare Th ve)oclrvý

ptsl±at thiv Poit it alstto neede SAId i6
lineaorly lneposc: etwvetnlhbi-m

point. Ths wehewsnev inictililtnn
U for rho Program t4Z reotart.

j. HA Th results of such a procodurz 4rit OCS\
i/I ~~~artlta-ly uscesf l, sae the Jet bekin long

Ii/ nttly the ýtllitaov ;A ths -ta tip I* nolal

'4:1xs410t =)'e jt ~c-d &off" Ao. the we tdge. VSturel

sp-teeds of wedge a-na>f what.o thle lnt~t
pois. -4ove downt 0e v'rettd t'odgA. -strfacst4

Figure 3.7. Low apec-d esary of a wvdSA (s;lD 4.1b thove thq J'ressurtz onk thre votted uvdge
viihv:Ueriilisch*6 Was-cc.16o w~ar,' eurf*Ce "t'bnw rta~io Pacitive everylwba.
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5. Nonlinear Waves Generated by a Wavemakir. _.______..._,___

As mentioned in the introduction, we now 84 a
make the first step towards numerical simula- J.8
tion of ship capsize in beam seas. Previous
theoretical and experimental work oa the .7

survival of a Salter's Duck in extreme wave.0
by Greenhow et al (1982) shows that the present
scheme is suitable for the iimulation of cap-
sizing behaviour in beam seas. In that study, 0.4
however, experimental data for the locations of 0.3
the intersection points of the body and free
surface are required, and also the choice of 0.2

initial conditions is not mathematically justi- 0.1
fied, but merely suggested by the wave profile
in the experiments. The intersection point 5'2
problem has already been discussed and this
section seeks to overcome the problems assoc-
iated with the choice of initial conditions by
setting uj a realistic two-dimensional
"?inumerical wave tank" in which to place float-

ing or fixed bodies. Waves are generated by a
wavemaker at one eno of the tank undergoing
different types of motion - simple harmonic,
constant forward velocity, and modulated
motions. The numerical results are summarised
and some of them are compared with experiments.
1Tis provides an essential prerequisite for the
detailed study of ship capsize.

In the work of Lin (1984), Lin, Neuman and
Yue (1984), the present numerical scheme is
used successfully to simulate the waves gener-
ated by simple-harmonic motion of the wavemaker. 0 3 10 15 2^0 25 30 35 48
The numerical results are confirmed by linear
wave theory when the wavemaker oscillations are Figure 5.2. Free suryace profile of an
small, aad comparisons between the numerical undular bore. Wavemaker has constant forward
calculations and the experimental measurements velocity U , 0.30, t - 0.2, 0.4, ... 20.0.
are given. The numerical simulatiou for this
case can be continued in time without apparent Further study of the wavemaker problem has
limitation. More drastic waves can be genera- been conducted when the wavemaker moves with
ted when the stroke of the wavemaker is large. constant velocity from a state of rest.
As shown in figure 5.1, a breaking -ave is Figure 5.2a shows the development of undular
generated by the wavemaker performing cosine bore with wavemaker velocity U , 0.40 (non-
motioe with full stroke A m 0.30 (nondimsensioc- dimenaionalised by /gh). The leading wave is
alised by the depth of the tank h) and travelling steadily with an approximate veloc-
frequency • 1.5539. The free surface ity of 1.0 which is the waximum group velocity
profiles are plotted at times t 3.4, 3.5 ... of the surface wave in shallow water, The
4.4. evolution of the free surface profiles is

0,5 ,-p!otted at every other time step (t - 0.2, 0.4,
.. ). For clerity each curve is shifted

1, slightly up and to the right.
0.3
2. •For the wavemaker with a higher velocity the

9 leaditg wave may break. Figure 5.3 shows free
0. surface profiles t a 0.5, 1,0 ,,. 5.0 with

large wave steepness causes breaking, The

-"." nkmerical schbme breaks down a few stops after
-. 2 the :ast curve plotted because the free surface

intereects itself..0.3

•0.4 As shown in figure 5.4, it has been found

•. L . .. that the mean water level of the undular bore
0.0 0.5 1.0 .5 2,0 2,5 3,8 above the ortginal free svrface is proportional#-us to the nc-,d'monsional forward velocity o' the

wivamaker. The transition from a nonbreaking

"Figure 5.1. Numerical Simulation of a breaking undular bore to a breaking wave occurs when U
wave, Wavemaker has cosin motioa vtth is about 0.35, and the corresponding mean water

w- 1 5539, A : 0.30, t - 3.4, 3.5. 4 4 level is about 30% higher than the origiaal
Ufrow Lin, Newman and Yue (1984.:-
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water depth. This transition is similar to for the analytic result. of Peregrine (19:- )
that which occurs when a uniform flow meets an Lin (1984)) and the compariroa of Rnplytical
area of still water in a long horizontal and numerical results shown in figure 5.5
channel. The theoretical study by Peregrine good.
(1966) and the experimental measurements by
Favre (1935) and Binnie and Orkney (1955), 1.21
indicate that undular bores form when theI
ratio of the change in water level to the 1.0 I
initial depth of water is less than 0.28. ifJ I
this ratio is greater than 0.28 but less than-
0.75 there are still undulations but the first c- .8 4,.O5
one at least is breaking. For greater differ- t*e
ences in depth there is no undulation. 0.8 - 4.3 A

4.0 4A .1

3.0 0.21

2.6 .1 .0 . . 2.8

1l.5

1.6 .fF~gure 5.5. C0mparison between Rnal.yLica1 and
numerical rcsults for the free surface

0.5 elevation. Wav(ýaker hais impulsive

motion with U) 1. The analytical solution
0 2 4 6 equation 1) is horn Peregrine (1972) or2 4 6 a Ile Un (1984). (From Lin, Newman and Yue (1984)).

In order to g,_n'-are a specific wave,
Figure 5.3. litmerical calculation of a especially a breaking wave, at a ..esired loc-
breaking wave. Wavemaker has cunstant ation ill the tank, it is necessary to let the

forw4---d veloci.ty with U u 0.90, wavemaker perform modulated motion. Comparison
t 0.5, 1.0, ... , S.O. b.,tweer the numerical calculations and experi-

mental meoasuremnents of the wave profiles, and

0.30b"Mkng %urthe fluid p~rticle velocity beneath the wave
0.30 r~aki~ QC~t$crest; is underway as a joint project between

the Dtupartment of Ocean Engineering and the
Parsons Laboratory, Department of Civil Engin-

/eering at M.I.T. Figure 5.6 shows a sample of
OJ' ,.the wavemaker motion from which a plunging

bekrcan bgeeae intemdlOfthe
.jtank. Figure 5.7 shows a comparison between/ numerical calculation and c;xperimental measure-

0, tow ment evf the ti,4e history of the wave elevation
at a point (~wave probe) I.M, away from the mean

A wavtmaker position. Three types of wave -

i nonbreaking, spilling breaker and plunging

0.00 0.1 0.0 04 0,0 U comprisns re pomiingbutfinal comparisons

Fimgure to4 t Relabionshi but ee the mre~i n f
br~enkin to anothe tpe o free surfaceanth

oIn thso tpresen context, Note thlt the the

water level in figure 5.3 is about 0.75. For
11 equal to or greater than i, therc can be no
wave in front of the we,/emakor because the
vuvemaker velocity exceeds the wave group
velocity. As shown in figure 5.5, fluid near
thle Wsvemakt pile. up and forms a singular
Jet at the wavezaker face. For small time the
stiwftv of thiis jet is logarithmic (see equation 1
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In order to atudv capsize a "numerical wovetank" has been set up and tested for variouc

4 1 wavemaker motions. With constant wavemaker
velocity, the bt-haviour of the free surface is

j dependent on the wavemsa-:ers speed: at low speed
e an undular bore is formed: at moderate speed a

Sbreaking wave is produced: at high spved-• (exceeding the gcoup. velocity of the waves) The
water sýmply piles up in front of the wavemaker.

i -2 These transitions are qualitatively aimi'.ar to
Sthose which occur in eioerimencs whrea - tlow

of water meets en area of calm water.

With small amplitvde simpie harmonic mocion
.6 5 --- 14--- the free surface agrees well witn linear theory,
5 5 10 12 2• whilst for impulsive motion the agreement with

T,. equation " is good. For modulated motion a
breaking wave may be produced in the tank which

Figure 5.6. Modulated wavemaker motion agrees well with experiments. Iý is hoped to
history in the cxperiment. Water depth 60 cm. introduce ship-like hodies into such waves a'-.

to study their capsizing in detail.
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NUMERICAL SOLUTION FOR TWO-DIMENSIONAL WEDGE SLAMMING WITH A
NONLINEAR FREE-SURFACE CONDITION

B. Yim
David W. Taylor Naval Ship Research and Development Center

Bethesda, MD 20084

Abstract pressible and inviscid fluid and irrotational flow are
made. Infinite fluid velocities may then occur at a corner

Using the Cauchy method with a semi-Lagrangian point or at the body and free-surface juncture point.
representation of flow, straight-sided and flared wedges
are considered with a nonlinear free-surface boundary Singularities at a corner point or at the juncture
condition. Singularities at the spray tip and the spray point may not pose serious problems in practice so long
root are identified, and special treatments of the as they only influence the flow locally. However, in the
singularities are investigated. Free surface elevations and present time-stepping numerical method, the singularity
pressure distributions on the wedges are obtained for half at the juncture point influences the solution at all subse-
wedge angles of less than 30 degrees for both straight.. quent time steps, and thus can have disastrous
sided and flared wedges. The numerical solutions are cumulative effects.
found to be prone to instabilities and/or inaccuracies.

Two main methods for calculating the complex
Introduction potential may be used. One method is based on an ap-

plication of the Cauchy theorem, the other makes use of
It is well known that bow slamming and deck wet- source or/and dipole distributions. The Cauchy method

ting can be serious problems. Design of bow shapes is used in the present study.
which minimize these unwanted aspects of ship motions
in a seaway indeed is an important task for naval ar- Problem Formulation
chitects. This task specifically requires prediction of the
pressure distribution on the bow and of the wave height A symmetrical two-dimensional body is supposed to
when a ship bow enters the water surface. enter, with constant speed and at right angle, the free

surface of a liquid initially at rest. The x and y axes are
The problem was first investigated by Wagner'. taken along the initial free surface and along the body

Many attempts to improve upon Wagner's original ap- centerline, respectively, Ps is shown in Figure 1. The
proximate solution have been made since. Early studies fluid is assumed incompressible and inviscid. The flow
were mostly concerned with the simplest possible body can then be represented by means of tite velocity poten-
shapes, namely two-dimensional symmetric wedges; fur- tial t, which satisfies the Laplace equation at all times:
thermore, gravity effects wc-e ignored. Both analytical
approximations2 ,',4 and numerical studies5 ,6'1 of this v2= (1)
self-similar flow may be found in the literature.

Thie problem becomes considerably more complex Fluid particles on the free surface satisfy the following

when gravity effects are included. Simplifications based kinematic and dynamic boundary conditions1t .

on linearization of the free-surface boundary condition, Dx/Dt - (2
with the body boundary condition also linearized 8 '9 or
treated exactly10, were therefore introduced. Dy/Dt = 4ty (3)

A numerical method for calculating free-surface Dt/Dt - -gil + (Vt)2/2 (4)
flows, with the exact nonlinear free-surface boundary
condition, was recently proposed by Longuet-Higgins and where g is the acceleration of gravity and Y7 the tlevation
Cokelet t 1 and subsequently used by several of the free surface. On the body surface, the following
investigators12- 15. In particular, calculation of the corn- boundary condition holds:
plex potential by using Cauchy's formula has been
demonstrated to be practical 14.

5. Nevertheless, the (Vq-.) fi 0 (5'
method presents difficulties when a solid body intersects
the free surface. where V is the velocity of the body and n is the unit out-

ward normal vector to the body surface. The initial
This .umerical technique is used here to study ihe conditions

slamming problem, with free-surface nonlinearities and
gravity effects included. Two two-dimensional body =0 • 6)
shapes, namely an infinite straight wedge and a flared
wedge, are considered. The usual assumptions of incore- hold everywhere in the fluid at time t 0.
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Only the case of a pointed body entering the free 21ip(zo)= £c fl(z)/(Z-Zo)]dz (9)
surface impulsively is examined here. Therefore, neither
the distortion of the free surface prior to the entrance of where the point zo is inside the closed contour c. If the
the body nor compressibility effects need be considered, real part or the imaginary part of P is specified on the
as would be necessary for the more-complex case of a boundary contour c, the Cauchy integral (9) yields a
flat-bottomed body. Fredholm integral equation of the second kind by taking

its real part or its imaginary part, respectively13 . The
It is convenient to reformulate the problem of a boundary contour c is divided into straight segments

body moving downward into a liquid at rest as an within which the complex potential is assumed to vary
equivalent problem in which the liquid moves upward linearly. A set of linear simultaneous equations for deter-
past the stationary body. Let F = 4> + ilk represent the mining the unknown values of the potential or the
complex potential for this equivalent flow. The stream stream function at the selected knots on the boundary
function T may be taken equal to zero on the surface of contour can then be defined and solved numerically.
the body. Furthermore, we then have * v -Vx as
y-- 0 0, where V is the upward velocity of the liquid past The complex velocity w(zo) corresponding to the in-
the body. The complex potential F may be expressed as fluence function defined by the equation
the sum of the complex potential Vy - iVx corresponding
to the uniform stream in the upward direction and of the 21riw(zo) -- c [fiiz)/(Z-Zo) 2]dz (10)
complex potential ( + i1' corresponding to the distur-
bance flow, as follows: is singular at the nodal points of the discretized contour.

However, this property has no practical effect. Indeed,
F = D + il =k + iyp + V(y-ix) (7) the values of the complex potential at the nodal points

are always finite. Finite values of the complex velocity at
The condition It = 0 on the body surface then yields the nodal points along the boundary contour are then

provided by numerical differentiation of the complex
1P = Vx (8) potential along the contour.

This body boundary condition is equivalent to condition The potentials and the positions of the nodal points
(5). The disturbance complex potential /P= + + itp is on the free surface at each time siep are determined by
identical to the complex potential of the flow due to a using a combination of the Runge Kutta method and the
body penetrating the free surface of a liquid at rest. The Hammings method for solving the simultaneous ordinary
potential ý + itp satisfies the free-surface boundary con- differential equations (2), (3), (4)13. Finally, the pressure
ditions (2), (3), (4), the body boundary condition (8) and distribution is obtained from the Bernoulli equation
the initial conditions (6).

-.... + (V•)2/2 -

The slarnming problem is only significant for small Q dt
values of the time after the initial impact. The far-field (II)
boundary is therefore not important for this problem. In
the present study, the body is assumed to enter at the The mathematical nature of the slamming problem
center of the free surface of water contained in a rec- considered in the present study is very similar to the
tangular tank. wavenmaker problem studied by Lin et a114 by using the

method of Vinje and Brevig"3. Therefore, the numerical
Nondimensional Parameters techniques used in these previous studies for calculating

the complex potential, the complex velocity, and the
The depth and width of the water tank are taken pressure distribution have been adopted here.

equal to L and 2L, respectively. Caordinates are
rendered nondimensional with respect to L. The non- Singularity at a Junction Point
dimensional depth and width of the tank thus are equal
to I and 2, respectively. The presence of a singularity at a juncture point be.

tween a solid body and a free surface may be illustrated
Time is rendered nondimensional with respect to the by considering the Initial flow due to vertical motion,

time T - L/V required for the wedge to travel from the with speed v , of a flat plate along the segment JxJ < I of
free surface to the bottom of the tank, where V is the an unbounded free surface. At the initial instant t - 0,
speed of the wedge. The nondimenslonal penetration the boundary conditions u - 0 for lxi > I and v - -V for
depth of the wedge tip below the equilibrium free surface fxJ < I hold on the free surface y - 0. Equivalently, the
therefore is equal to the nondimensional time after initial complex potential ft - + + itp satisfies the conditions +
contact. -0 for lxI > Iand m - Vx for JxJ < I. Far away from

the plate, we have u-lv - 0 + lip.
The depth L of the iank may be chosen arbitrarily.

In this study, the value of L Is adjusted to the speed V This boundary-value problem may be solved It the
of the wedge so as to satisfy the relation gL/V 2 _ 1. The nature of the solution Is specified at the points z - x +
reference tin ', -ad the reference length L are then ly - 4 !, Thus, If the complex potential Is "sumed to
relaed to on - ,her by the relaoa L - g72. be finite at z l, we hve the well-known solution

Me',iod of Complex Analytic Function _3 iVz - IV(z2 
- _)h/

This disturbance potential P - # + Itp is a complex as may be verified. The complex •elocity them is given by
analytic function, Therefore, it satUfles the Cauchy in-
tegral formuls d3/d, - u 4iv IV - iVzI(z - 1)112
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The velocity thus has a square root singularity at the singularities on the boundary, usually the smaller the size
pointsz=- 1. of interval the better the accuracy of the solution. When

the half wedge angle is large, the interval which must be
Determination of the pressure, given by the Ber- taken at t = 0 to allow a stable solution is too large to

noulli equation give an accurate solution. This is especially true when the
mass conservation is checked. That is, the area under the

PIQ -- t - (V+)2 /2 - n wave above the t = 0 flat free surface should be equal to
the area surrounded by the instantaneous position of the

requires the time derivative Pt of the potential wedge surface at time t > 0, the wedge surface at time
t = 0, the t = 0 free surface, and the y axis.

On the free surface, the pressure p vanishes and,
furthermore, we have r7 = 0 and u = 0 at the time t = 0; Because the spray tip velocity in the present problem
this then yields is infinite, the finite numerical values of velocity at the

spray tip are in a sense arbitrary because the velocity

+ - ('4 changes very rapidly with distance from the spray tip.
~ -x)2/2 The boundary values selected at the spray tip have a very

on the free surface txl > I at the initial time. Time dif- large effect on the solution. Although the free surface
ferentiation of the flat-plate boundary condition i. = Vx condition is satisfied near the spray tip the potential
while following a fixed point (x,0) of the flat plate yields should be obtained as the solution except at t = 0 where

+ = 0. At t = 0 the solution of the free surface is
alp/at = 0 = at,/at - Val/ay obtained from the Bernoulli equation which contains a

velocity squared term. Thus Vinje and Brevig t 3 obtained
We then have the location of the juncture point by interpolation from

the neighbor points and solved for the complex potential.
'pt = V~x Lin, et al 5 , directly computed the values of both the

location and the potential of the spray tip and claimed to
on the flat plate ix1 < I at the initial time. The real part have obtained a robust stable solution which matches the
+t and the imaginary part tpt of the time derivative of analytical solution for a simple wave maker problem. At
the complex potential Pit are then specified on the each time step they obtained the velocity at the spray tip
segments lxi > I and lxi < I of the real axis, respectively, by spline curve interp'olation from the potentials obtained
The solution of the classical problem, given by on the wedge, and the boundary condition on the wedge.

Using this value in the spray-tip free-surface condition,
t V l I ,dx the next time step location of the spray tip and the value

-(pt(z-) ov(z( I )2 of the potential at the new spray tip were found. Thus; 0/21 (X-.z 0)(l-x) 1/ all the physical values at the spray tip were obtained
without solving the boundary value problem. These

shows that Pt is singular at the points z = + t. values supplied the quantities required in solving the
boundary value problem for the complex potential,

A finite velocity at the points z - I I may be ob- Equation (9). The treatment of the juncture conditions
tained by displacing the singularities at z I± slightly needs more careful attention.
outside the fluid domain for instance at z - ± a with
a>l, as follows: Because of irregular boundary conditions, for dif-

ferent kinds of singularities used at the juncture points,
u-iv - iV-iVz(Z2-l)1/2/(z 2-a2) different solutions are obtained even though the boun-

dary values are identical. The methods that were in-
The singularilies at z - a may be placed close to the vestigated are as follows: Method (1), at each time step
spray root, as in the zero-gravity problemn1 6, by taking the location and the potential of the spray tip are ob-
the value of a slightly larger than I. tained from the free surface boundary conditions, equa-

tions (2), (3), and (4); Method (2), at each time step the
Thus singularities may be considered to be outside location of the spray tip is interpolated front the

of the fluid domain. This approach is familiar in neighboring free surface points and the potential is conm-
methods using source or doublet distributions on the puted by the Cauchy method; Method (3), at each time
boundary. For example, in wing theory the nose step the location of the spray tip is obtained from the
singularity may be located slightly inside the actual no.se free surface conditions, equations (2) and (3), and the
boundary of the wing. In the present case, the -stnularity potential is obtained from the Cauchy solution.
at the wedge vertex is considered to be inside the stagna-
tion point. In Figure 2 free surface elevations obtained by the

three different methods of treating the singularity are
In the wedge slamming problem singularities may be compared. Large differences in the shapes of the free

associated with the spray tip, spray root, and wedge surface near the spray tip occur between the predictions
v'ertcx. The most important singularities are the spray tip of the different methods. Sitnlte experimentsi(.'17 itt-
and root singularities. Nevertheless, when the problem is dicate that the results of niethod (I) are much more
solved numerically with discretized intervals, all the reasonable than the other two tnethods. This means that
velocity values are finite even at or near the spray tip. the present problem has the juncture point as a singular
However, It the intervals near the singularity are too point and that the singular point requires full free sur-
rmaall the stability of the solution is affected. This is face conditions in addition to the wedge boundary condi-
unlike other hydrod)'namic problens, where for a coin- tion. If it were not a singular point. the free surface
pbacly smooh M analytical solution, without shapes obtained by the thmei awtltods should bi

identical.
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In Figure 3 complex potentials obtained by twG dif- The results for flared wedges are shown in Figures
ferent methods of treating the singular point are com- 10-13. The narrow initial shape of the flared wedge does
pared: One method takes the potential + = 0 from the not help very much in providing stable solutions. If the
free surface condition and the stream function tp = Vx flare becomes large, the basic stability trouble still exists
from the wedge boundary condition at the juncture for the flared wedge. Figure II shows positive pressure
point; the complex potentials are obtained by the Cauchy over the wedge so that flow separation on the surface
method using the known boundary values including those will not occur.
of the juncture point. The other method assumes that
only the stream function is given at the juncture point As long as wedge angles are reasonably small the
and solves the complex potentials incuding that of junc- present results seem to be reasonable because the mass
ture point. The two solutions are very different. If the conservation rule is less violated and the free surface
juncture point were a regular point, the two solutions shape is close to the experimental result16,17. However, a
should be identical. basic understanding of the singularities at the spray tip

and the spray root, especially as associated with
In addition, in the wedge slamming problem for a numerical stability, is required.

large wedge angle, a serious difficulty seems to be
associated with the singularity at the spray root. When Because the Cauchy solution can be obtained with
the free surface interval near the wedge is small, this any closed boundary, where the appropriate boundary
singularity causes the solution to break down. If the in- values are known even when the boundary is submerged,
terval is large, a stable solution can be obtained but mass the spray may be cut away at the thin spray sheet. Then,
conservation is violated. The mass conservation can be the spray sheet has one boundary as a free surface and
enforced by iteration, adjusting the velocity at the spray the other as the solid surface of the wedge. When a col-
tip, because the velocity is singular at the spray tip. Then ocation point is at the free surface side of the thin spray
the wave height at the wedge is a function of the inter- sheet, by connecting this point and an arbitrary point on
val. If the interval is too large the free surface height is the wedge, a closed contour can be obtained. The
quite small. resulting solution does not include the spray tip behavior,

but since the spray tip has undesirable features, such a
Numerical Results and Discussion solution may be useful. Figure 14 is such a solution. This

is obtained by eliminating the spray tip from the next
The numerical computations are divided into two colocation point at an early time step. The elliptic shape

major parts: Part (I), solution of the Cauchy problem of the free surface resembles the experimental results of
for complex potentials and complex velocities at each wedge entry. 17

time step; Part (2), solution of simultaneous ordinary
differential equations for the locations and potentials of Although the Cauchy method with a semi-
the free surface at the next time step using solutions Lagrangian representation of the flow is an attractive
from the Part (I) computations. Therefore, the singular method for solving the slamming problem with a
behavior of even one point affects the whole solution, nonlinear free surface boundary condition, the spray tip

and spray root singularities are great hindrances. At t =
The wave heights caused by straight-sided symmetric 0, the juncture point of the wedge and the free surface

wedges with half wedge angles of cc - 158 and 300 are contains these two singularities. Since the stream function
shown in Figures 4-6. These were computed by the Vinje- on the wedge is known at any time and the potential at
Brevig-Lin method. When the wedge angle becomes large t = 0 is zero at the juncture point, tbl" value of the com-
the free surface interval has to be large to ensure stabili- plex potential can be obtained at any time from the
ty, but this leads to inaccurate results because mass con- boundary conditions without using the Cauchy formula.
servation is not preserved. When the free surface interval However, the regular Cauchy solution at t - 0+ does not
is too small, no matter how small the time step, the solu- satisfy + = 0 at the juncture point. That is, the juncture
tion breaks down with a few time steps. Tie intervals are point is not a regular point. In such a problem with a
shown as dots in Figures 4-6 and in succeeding figures. singular point normal numerical procedures do not
The corresponding pressure distributions are given in necessarily give a solution. The singular point needs to
Figures 7 and 8. Negative pressures near the spray tip are be handled separately. Because the velocity at the
noticeable. This may require the consideration of flow singular point is infinite, the location of the spray tip
separation. When larger intervals are used and the mass should be at infinity. Therefore, interpolation of the
conservation condition is enforced smaller frc.ý surface velocity at the singular point from velocities at neighbor-
elevations are predicted at the wedge, as shown in Figure ing points, or an approximate value calculated from a
9. This shape of free surface does not compare favorably neighboring point, is investigated. Because the distance
with the experimental results. from the singularity cannot be too small in order to

maintain a stable solution, and because such a stable
For the sake of simplicity we also consider flared solution cannot automatically satisfy the condition of

wedges with a shape given by: mass conservation, even if we could pick a solution
which is close to an experimental value, the basic prob-

x - a1(y-d) + ac(y-d)2 lem does not seem to be solved numerically in general.
Nevertheless, when the wedge angle Is sufficiently small

where d is the location of wedge vertex. Since the boun- the solution is relatively stable and reasonable. This
dary :ondition on the body is seemins to Indicate that the spray root singularity is wosc

than the spray tip singularity.

The solution can be obtalied without any additional
difficulty.

11
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DISCUSSION
of *". paper

NUMERICAL SOLUTION FOR TWO-DIMENSIONAL WEDGE SLAM'iý;.,G WIT) A

NONLINEAR FREE-SURFACE CC'.DITION

DISCUSSION
by S.M. Calisal

The author discusses one of the main prob-
lems associated with the Cauchy method, that
is the condition at the point common to the
free surface and the body. As figure 3 of the
paper shows a different solution seems to
exist corresponding to the method used at the
juncture points. This figure suggests that the
problem is not really well defined as Fritz
John wrote in his paper on "waves in the pres-
ence of an incl 4 ned barr;er". Additional con-
ditions can be imposed on the problem. These
conditions are related to the conservation of
energy. Following the observation by the
author that the method does not conserve mass,
I would li!'e to ask the author if the energy
of the system is monitorec or the energy of
the system is considered as a control for
numeric problem. As suggested by John the
energy conservation seems to be the ke' )r
the proper :election of the "singularity" or
the solution.

DISCUSSION
by 1. Mori

When the water is dribbli; g up along the
wedge surface, I.,- ron-nlip condition seems
important. And the development of the boundary
layer may. affect the structure ot flow at thetop. What do you thi.k about this?

Author's Reply

I thank both discussers for their interest
in the pr,ýsent problem. Both are concerned
with the flow behavior near the spray tip. I
agree with Profe~ssor Mori that the considera-
tion of viscosity would change the flow struc-
ture near the spray tip. Since the similar
problem with viscosity is considered in the
paper presented next to mine I hope that we
can compare the dlfferance there.

I also agree with Professor Calisal that
we might need another condition for the better
solution, It would be useful to think about
inclusion of both mass and energy conservation
conditions in the least mean square sense
although we recognize a singula"ity at the
juncture point in the analytical solution and
know the kind of singularity is a key to the
unique solution, the precise interpretation of
this feature in the numerical solution is not
easy.
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SLARMI0JG SIMULAVIONS: AN APPLICA' ION OF COMPUTATIONAL FLUID DYNAMICS

P. G0llagher and RC. 4icGregor

Department of Naval Architecture and Ocean Engineering
University of Glasgow

Glasgow, Scotland

Abstract Research into slamming on marine vehicles
has concentrated in the two distinct areas of

This paper describes a number :;f finite seakeeping and local hydrodynamics. For

difference time marching solution teciniques seakeeping, the main aims have been to oredict
and their application to spocific ?roblems slamming frequency and overall response whereas

associated with the slamming of ship sections. consideration of the hydrodynamic problem at

Primarily, a hydrodynamic water entry the point of contact seeks to quantify the

simulation is developed using progiam SLAM. local slam loading distribution.
This code is based on the SOLA/VOF method but
includes the use of source distributions in This paper deals with the work carrie- out

defining the dynamics of rigid bodies within in th:e Department of Naval Architecture and
the flow domain. A further feature is the Ocean Engineering at the University of Glasgow,
capability of representing the motions of into the use of computational fluid dynamics to
curved boundaries within the constraints of a model the latter of these two problems.
rectangular finite difference mesh. The results
of a number of flow modelling exercises are The hydrodynamics of slamming 1.as often been
presented. The paper also describes work studied in the past by using the concept of the
carried out to model the effect of a trapped 'idealised'water entry problem. In particular,
air layer beneath the ship section. One and two during the 1930s, Von-Karman (1) and Wagner (2)
dimensional finite difference formulations of sought to quantify the m-jor features of the
the equations of mass and nementum conservation impact of wedges. Based on this early work,
are solved in association with two and three Szebekely (3), Fabula (4) and Bisplinghoff and
dimensional representations of the fluid/freý. Doherty (5) all made cc.ntzibutions to
surface motions. Post-impact behaviour for a improvements in the computation of slam
flat plate is examined using a specialised loading. Nevertheless, the loads predicted
model of the trapped air bubble. The data tising such techniques were :onsiderably higher
obtained from these tests is used to define than those measured at sea.
future work to simulate the full, three-
dimensional ship slamming problem. It was not until Chuang (6,7) reported the

findings of a series of drop tests using flat

1. Introduction plates and wedges that the discrepancy was
explained by his finding that considerable

Whilst making a passage in heavy weather, quantities of air could be trapped beneath a
severe motions may cause hydrodynamic impact bluff body as it approached an initally flat
loadings on certain forward areas of ship free surface. This lead to a cushioning of the
hulls. This well recognised phenoinon of impact and .educed the impact pressures
slamming may give rise to two distinct forms of considerably.
loading, namely

A number of attempts to compute the
a. bow flare loadisg, and formation of this air layer were subsequently
b. bottom impacts. made by various authors. Verhagen (8), Lewison

The first of these two cases may be examined and Maclean (9) and, later, Koehler and
with regard to the local time rate of change of Kettleboroughs (10) used one-dimensional finite
added virtual mass. The seeond case may be difference models of the conservation equations
idealised by the classical water entry problem, for the air layer coupled to models of varying
though it is thought that air entrapment, degrees of sophistication to describe the fluid
surface roughness, marine growth and free surface motions. The techniques employed
'pre-wetting' serve to complicate considerably all seemed to be capable of providing good
the modelling process. numerical models of air entrapment, through no

Drs P Gallagher & R C McGregor, Dept of Naval Architecture and Ocean Engineering, University of
Glasgow, Acre Road, GLASGOW, G20 OTL, Scotland. (Gallagher now at W S Atkins, Surrey, England)
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rigorous parametric surveys of the effect of The fluid domain is alai) crnsidered to contain
impact velocity, mass loading, section free boundaries representing the contours of

deadrise/curvature or surface shape Bodies in steady or accelerated motion, The

imperfections, were carried out. Furthermore, physical constraints of mass and mc •entum

none of the techniques claimed to be capable of conservation within this arbitrarily shaped
following the impact through the complete domain may be represented by solutions to the

impact time history. continuity coupled Navier Stokes equations.

The aim of the present study was to provide Epiations of Fluii Motion

a complete water entry/air entrapment
simulation technique for ship shaped sections Tha equations ýtated in this section are for

or bodies of arbitrary shape. The section was two-dimensional flow of a viscous

not necessarily to ba moving in a direction incompressible fluid. Their derivation may be

normal to the free surface, nor was the free found in many standard text books on fluid

surface required to be initially flat or mecheics (11,12). Cartesian (x,y) co-ordinates

quiescent. It was also specified that the model are used throughout along with the standard

should not be confined to a two-dimensional convention of r'presenting the x and y

representation or inviscid flow formulaticns. components of the velocity vector by u and v,
respectively, and pressure by the letter p.

Section II of this paper deals with the
design of a finite difference time marching Mass con3ervation may be represented by the

model of the impact of an arbitrarily shaped well known continuity equation for an

body into a viscous or inviscid fluid. Section incompressible fluid:-
III briefly describes the early work involved au av
in getting up a geparate model of the air V.u -• + - = 0 (1)

entrapmo:,c problem in order to study the y

numerical simulation of this pnhenomevon in The equations for momentum conservation in a

isolation. Section IV proposes a techniqu~e to viscous flow may be stated for each co-ordinate
be used to mode) the hydrodynamics of the direction as:-
s',,sming problem in full.

au au , u = p P 2 (2)
II. Hydrodynamic Model at ax ay ax

The Computational Domain a- + vv + v ;p' 2

t-+ V gv (3)
Figure 1 illustrates the generala ax ay

computational domain to be examined. The fluid
is bounded by a free surface, solid walls (eg
the bottom boundary) and radiation boundaries. g = acceleration due to •jravity
Upstream influx conditions may also be set. V - viscosity.

These may be either steady or harmonic in
nature, the latter being an analogue of a flap
type wave maker,

Radiation, Inlet or Example of Moving

Wave Source Boundary ,'solid Boundary

Free Surface Vb RadiationrBoundary

Origin

Flu±d. Domain for the Solution of the
Continuity Coupled Navier-Stokes

Equations

Bed or Bottom Boundary

Fig I
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Primitive variables (u,v,p) were used au
throughout the work. It also proved convenient -(n n n y - nXn n "
to formulate the following Poisson equation in
pressure.- au av)

% n = r -0o

2P, 2 + u avy av•@ 22w-x + ( tn2)-
ax 'X y where nl -~ a-1 ( + ( an)21-1

x

+ a-tV.U - vV2(V.u) (4) and n ' C +
at y

This equation was the basis of mary early This was a difficult equation to satisfy
numerical solutions to free surface problems numerically at.4 so some degree of approximation
involving the Navier Stokes equations (13), eg was required. In this respect, the work of
Marker and Cell method. Hirt, Nichols and Shannon (15,16) was followed.

The details are beyond the scope of this paper
but may be found in Reference (24).

Boundary Conditions on Fluid Velocity Boundary Conditions on Fluid Pressure

When considering flow near a solid wall, For inviscid flow :he Neumann condition:-
conditions on normal and tangential velocity
components are required. In the former case, --3 = 0 (10)
the zero normal fluid-flux condition:-

was used at stationary solid boundaries. For
u.n = 0 (5) viscous flow, the condition:-

was applied. ap = I aw (11)
an R as

Two situations exist for the tangential e

velocity component. For viscous flows, the whet, Re = Reynolds number
zero-slip condition.- and w - vorticity

was applied.
u.s = 0 (6)

Owin.g to the application of the Sommerfeld
w&s used when it was considered that viscous radiation condition to the velocity field at
shear effects were negltgibla. A free-slip the edges of the computational domain, a zero
condition was applied via the equation:- normal pressure gradient condition was thought

most appropriate in these areas.
2-a(U.S) (7) The pressure was generally set to zero along

the contour of the free surface for inviscid

flows. For computations in which viscosity was
Downstream or radiation boundaries were considered to be important, the zero normal

generally modelled using the Sommerfeld stress condition was invoked using:-
radiation condition (14) given by:-

p' - 2v(--•---) 0 (12)
.. 0 c 0 (8) an

at XaX in a manner complementary to equation (9) (the

where w may be any variable. Other methods, zero tangential. stress condition).

such as matching techniques or the application Accelerating boundaries were given a normal
of high levels of viscous damping were also preleradint po pories wer ei r a of
studied. However, equation (8) and its pressure gradient proportional to their rate of
numerical analogues proved the most change of veocty, thus:-Puc ssful. ap+ab

eucceesful.- =- (ý- (u.,.n) + ý7(r wb) ()n b X -.b)} (•

The free surface boundary was defined to be wbi
the outer uontour of the fluid as opposed to wv
some mean level at which conditions upon wb - rotational velocity vector
velocity and pressure were to be applied. The
application of the continuity conditions was and rb = ((x - X ),(y - y )(z -z))
tied directly to the numerical modelling g g 9
process and, hence, will be discussed later. where (xjy,z) is the position on the body
However, in the case of viscous flow it was surface
possible to define the zero tangential stress and (xg,ygzg) is the position of the body
condition along the free surface contour as:- centre of gravity.
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The solution algorithm chosen for the with truncation error given by:-
continuity equation allowed for a different
interpolation of the way in which the 2 3 2 3
accelerating boundary affected the dynamic . -- 3u + (15)bonay12 3 12 3
pressure field. This was the resulc of a ax ay
special interpretation of the SOLA code which
is described later. As with the continuity equation, simple time

and special difference operators were used to
The Firnite Difference Method descretise the momentum conservation equations.

A folward time step:-
A number of excellent texts exist on the use

of the finite difference method in solving the n+, n 2
partial differential equations representing au u ij - uij At a u + 2
fluid motions (17,18). However, it became •t At 2 •t2t ' (16)
evident during this work that most standard
finite difference algorithms were unsuitable.
These problems generally arose as a result of was most commonly applied, though central and

the presence of the free surface end other higher order forward marching schemes were also

moving boundaries. Experimentation with the examined.

techniques showed that simple rectangular The convection terms were discretised using
finite difference meshes produced the fastest central difference schemes. None of the
numerical solutions to the descretised ceta difrne shm. oe f tenumequaionsoflmtion.st to withe ths in nd instabilities normally associated with this

choice of finite difference operator were
that a way was sought in which to represent experienced. There were two possible
moving boundavies within a fluid domain uhich explanations for this. Firstly, the nature of
had been discretised using a rectangular mesh. the dynamic simulation routine required

As a direct result of adopting this rigorous conservation of mass at each time

philosophy toward the discretisation of the step. Secondly, a variational algorithm in
energy, inspired by the work of Sasaki (20) was

fluid domain, an extremely simple computational applied. In the develonment of this by
mesh could be defined. The mesh was allowed to
extend above the initial free surface level Gallagher (21), laws of energy conservation are

forming a computational domain which contained strictly adhered to, making it difficult for

full finite difference cells, partially full numerical idstabilities to grow.

cells and empty cells. The continuity equation Thus, for the mesh given in fig. 2 the
was solved over full cell's only. The partially convection terms in equation (2) become:-
full free surface cells were subject to a
volume fluxing technique derived from the 2

Volume of Fluid Method (19) which itself Du (uij+1 - uiJ-1) uij (Ax) a3u
satisfied continuity conditions locally. A more v= Uij 6 3
detailed description of the technique is given ax
later in this section. A similar method was (17)
chosen to represent the contours of moving (
bodies within the domain and this also is + ..... 0(Ax) 4

detailed later.
A 2

A staggered nodal arrangement, fig. 2-2) was Du A (Ui+lj - ui-lj) vijAy a3u
chosen such that:- a vi. 2Ay" 6 a3

a. the horizontal component of velocity was (18)

computed at the midpoint of cell sides. .

b. the vertical component of fluid velocity A
was computed at the midpoint of the top and where vij is a mean value of v taken from
bottom of cell boundaries. surroung nodes.

c. the pressure was computed at cell Pressure gradients in equations (2) and (3)
centres. were computed using simple central difference

formulae, ie:-
This arrangement may be recognised as the

Los Alamos 'T3' grid. The continuity equation (a (P ij+ - Pij-½) Ax2 a 3 p
was, thus, descretised using the central 6 Ax 12 3
difference formula,- iJ

u)+ i+j (14) 4(
AX .. .... 12M
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order to overcome the above problem. Later, the

SOLA algorithm was found to offer the same

I facility but with the added advantage of
Sproviding the dynamic pressure field. ThisV1.2j algorithm has been well documented (23) and

U1.1 Uwill not be redefined here. However, the
uj1 tecbnique was modified in order to deal with

the moving boundaries and a review of these
changes is given below.

h- L- U1 •i ir UIN The contour of each boundary waa represented

.. . Tby simple volume source distributions. The

continuity equation was, thus, re-written for
any computational cell containing some part ofUi:j •I U::jI aAy che body contour as:.--

i-lj U ij+1 " Uij + Vi+lj - Vij
V Ax Ly

"(22)

N.B. (RDj) a, Exy I

wx~y . ij

where Qm are the m sources contained within
Fig. 2 'T3' Computational Mesh and Primary the finite difference cell

Variables (p,U,V)
and Dij is the cell divergence.

The diffusion terms were computed using This representation of cell divergence was
second order central difference formulae:- used to solve for the dynamic pressures and

continuity condition via the SOIA code. This
V2 u = (Uijk! + U 1i-1 " 2tLj ) + (Ul+ij ' • -1ý4 2 J%) algorithm computed the divergence in each

(X) 2 (Ay)• finite difference cell and equaed it to a

(20) change in pressure given by:-

+(Ax) 3 a4. + (Ay) 3 a4u + .. oA5AS pk Dk /(D

12 12 ay 4 .P - D ij•p•

The combination of the above simple 1
approximations led to straightforward explicit pt 2At(1/(Ax) 2 a IA/(Ay)2
time marching schemes in velocity. Many more
complex solution methods were examined, the
QUICK schemes of Leonard (22) being one such updated uslint-
example. However, it was found that th us

accurate solution of continuity at each step of k+I k At k
the procedure meant that little difference was u ij u - . 6pij
evident when higher order difference operators
were employed.

k+1 k At k
The Continuity Solver u ij+ I -Uj+1 + 6 6PiJ2

(24)

li'he incluusiont of the last two termsa- k+1 k At
"vJ = vi - - l

(V.) 0 (,;)%Fij 'ij - y- 'ij
-(vU) + v'Jau) (21) and

on the right hand side of equation (4), had k+1 k At #k

previously been ured as a correction factor in vi+lJ -vi+lJ + °iJ
the time marching of the discretised Navier
Stokes equations (13). Censideration of the It can be shown that this technique is
initial conditions for the water entry problem equivalent to a relaxation solution to the
showed that such a formulation would be pressure equation given by:-
S.nappropriate.

Early in the work, simple itrative j Tiptj Di(

continuity soiver was applied at each stage in
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By analogy with the pressure wave equation:- START

2
2 _ 1 ap (26) READ INITIAL DATAV P =2 t2 _

MOVE BODY EVER
the change in source strength may be directly FIRST TIMk. STEP
"related to the pressure field, given that the
time step is calculated using the formula:-

At2 2 (27)

2C (1/(IAX) + 1/(Ay) ) SOLVE CONTINUITY AND FOR

The wave phase speed was taken as that given
by the shallow water formula:- SOLVE POISSON PRESSURE

co (28)
where g = 9.81ms-2 EOUTPUT

IFILE _

and h = depth of the fluid.

MHOVE TO THE NEXT

The complete computational cycle is shown in TIME STEP
fig. 3. It is a simple explicit time marching
method which will be familiar to users of the
SOLA scheme. A Poisson pressure solver is MOVE BODY AND
included for the 'steady' pressure field given FREE SURFACE
by :-

2 /u22 2U av 2 UPDATE VELOCITY
a + Lv 9v F(EL2
WEY \a,) (2

A discret'sed form of this equation was m B
solved using successive over-relaxation. It PEFORM O00 NEEPING
will also be noted that stages are included
which over the moving of the body and
free-surface and the associated book-keeping REMOVE TIME MARCHING
routines. TRUNCATION ERRORS BY

SOLVINO CONTINUITY CON.

Book-keeping Fig. 3 Complete Computational Cycle

The major task of the book-keeping routines The computation of the fluid fractional
was to keep track of the shape of the vle at oc te thp flowd asiilar
computational domain. it has already been noted volume at e mch tlme ithp followed a similar
thAt a volume fluxing algorithm was employed to method tA trhat employed in the Vol-me ot luid
track the free surface shape and an analogous method. A transprt equation in rt-

method was used to follow the position of the
body. As with the VO? method (19), a fluid - u - + - V (30)
fractional volums was defined for each cell 3t 1-x

ast-
was discretiaed in order to supple an explicit

Ti - 1.0 - 'full' computational cell time marching formula for the fluid fractional
volume. For the control volumes ehown in

0 < ri, < 1.0 - 'surface' computational cell fig. 2, the equation wva re-written in
conservation form as -

F -0.0 - 'empty' computational cell a afu a0
•--' ÷ *-• - •.• , 0(31)

Similar body fractional volumes (re) were

defined to represent the interface between For full cells e. was equal to taro such
fluid and the (solid) moving boundary. that the ch&Ane in I could be qaeted to volume

122

I -



fluxes in and out of the cell and was The Variational Energy Balance
identically zero. For free surface cells, this
was not the case. It was found that, centrally . technique (21) which proved useful in
differenced schemes for the terms in equation bounding the total energy of the system and,
(31) resulted in a simple exchange of fluid hence, supressing numerical instabilities, was
between cells. In these cases, equation (31) derived from the work of Sasaki (20).
reduced to equation (30) without the use of the
correction term PV.-o Upwinded schemes required The variational statement for fluid kinetic
that the correction term be included in order energy:-
that the transport equation be identically
satisfied. J - Z(U(u -a)

2 + a(v -0)2)Wy

It should be noted that the form of equation (34)
(30) is similar to the free-surface kinematic 2 2
condition given by:- + A(E½p(u + v )AxAy - KI) - 0

3P an (may be made,

v-u- (32)

where u,v are the final discrete solution,
For near horizontal free surfaces, it is A A

clear that:- uv are the approximate discrete
solution,

aF Ln
W T •xa is an unknown weighting function,

The analogy also shows that a careful and A is the Laqrange multiplier
eviluation of aF/ay is required in order to
retain accuracy. The VOF technique uses a
one-sided or donor-acceptor differencing scheme KI is given originally as the initial
to overcome this problem. In this work, it was kinetic energy of the fluid but may be adjusted

found unnecessary to follow such a method. A to account for free surface potential energy
book-keeping check was employed to examine the and work done on the system.
orientation of the free surface relative to the
cell. The resulting computation dealt with the Differentiation of equation (34) allows the
discontinuous nature of the function F normal formulation of a correction factor or
to the free surface in simple and convenient fractional adjustment rate x to be made:-
manner (24).

x2 KI (35)
The updating of the body fractional volume P(12 + K2)YZ3

was a much simpler task. Owing to the use of
discrete sources to represent the motion of the Furthermore, this may be usad to compute the
body, the change in body fractional volume at final discrete solution (u~v) from the values
each time step was simply given byt- of (us,v), thual-

M - t(LQ)/&%y (3) u 20u (37

where FQ, represents the sum of source 2'ý A(
strengths within the computational cell. v P T- v v

When the body fractional volume reached a It woo not necessary to apply the corrections
value of 1.0 (to within sees fixed at every time step to avoid numerical

computational tolerance) within any finite instabIlity though the simplicity of the method

difference cell, that particular cell wao generally allowed this to be done without

excluded from any turthor computation. Mny call dramatically increasing the computational

with 7e equal to ome wea fully within the time.
fluid.

A particularly interesting situation &roe. "perimentation With fuserical Models
when bothz-

Two simple flow models were defined in order

a I<d 0 < fl <to study viscous free surface flows ani the
SOLA/Source method. From an earlier model (25)
a great deal was learned concerning the use of

For the water entry problem, this condition the free surface height convection/volume

defined the position of the spray root. fluxing routine* with this particular code.
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Figure 4 shows the typical problem of viscour where Vb is the impact velocity of the body
flow past a rectangular prism beneath a free
surface at a Reynolds namber of 800. Two bound
vortices may clearly be seen behind the box. and D is the cylinder diameter (2.0m)

The mesh size for this computation was h comparison with the timo histories deduced
&x - 0.05m and &'Y = 0.025m. A 60 x 40 mesh was experimentally by Campbell at al (28) and the
used which severely taxed the computational formulae 4iven by Kaplan and Silbert (29), with
resources available. Regretably, it wAxs -nd withoat a spray root correction, show good
conceded that this situation was unlikely to agreement.
change during the course of the research and
that most modelling would be confined to Purther compiutations were carried out using
inviscid flows, ship shaped sections, details of which may be

found in Reierance (24). It was difficult to
The SOLA/source method was applied to a find data for slam load time histories from

number of simple problems. One such example is other sources in order to form a basis for
illustrated in fig. 5. An idealised 'section comparison. However, in most cases a sepazate
through a semi-submersible is defined by a load time history was computed using a rate of
collection of rectangular prisms. Discrete change of added virtual mass approach. A Lewis
source points were d-istributed about the form three parameter mapping technique was used
contour of the body to which an harmonic to generate the added mass values at various
roll/heave motion could be applied. The draughts.
strength of each source was calculated from the
resultant local normal velocity vector. The The total slam load could then be computed
time step was chosen based on equations (27) using the well-known formula:-
and (28) (Reference (26)).

A Similar type of problem was examined using FS . 2 (39)

the code designed to simulate the water entry dr. b

problem. Figure 6 shows the initial time step where FP is the slam force
for the solution of the inviscid flow about a
heaving barge in shallow water. A series of Ma is the added virtual mass at
computations of the added mass coefficient for draught z
this barge go'metry for various beam to draught

and draught to depth ratios were made. Figure 7 The present method tended to predict higher
shows a comparison of these results with those loadings, perhaps as a result of the presence
given by Newman and Flagg (27). The comparison of the spray root.
showt, that an acceptable level of accuracy was
achieved with a tolerance on V.X of 10-3. ITI Studies on 4ir Entrapment

Finally, an example of the capabilities of Introduction
program SL&M is presented. Thiu algorithm
:ontained all the features mentioned thus far. An investigation was carried out in order
The example of the water entry of a circular that the solution procedure for the equations
cylinder is chosen in order to illustrate the of mass and mmentum conservation in the air
use of the SOLA/source algorithm in computing layer strap,"d beneath a bluf body during
the flow about a curved boundary on a impact could be studied in isolation. It was
rectanqular finite difference grid. Some 360 hoped that some insight could be gained as to
discrete sources vort placed around the contour how to treat the air layer in the post-inpact
oZ the cylinder. A fCivly coarse mash of phase of a clam. Xn particular, some knowledge
0.1 r 0. 1m was chosen on L 3.Om deaep by 6.0m concerning "he thickness of the layer and the
wide computational dosain. Th*e cylinder was of maquitude end distribution of pressure wao
Is radius. r6quired.

Figure 8 shous a number of flow OncA satisfied that a -tonvisteait nuserical
visualisations of the water entry of the =%del had been develo4d, a paremetric study
cylind6r. Only lternate velooity voctors are was •Mertaken to prduce. nressuro and load
plotted for clarity. ti" hbitorias for bodioe of varling geomtry.

A tftwher study was carared out into the effect
Figure 9 Ahove a plot of the slam of threo-dimansional flow madelling tpun 01!vs

coefficlent history wvrus the ,o-dieemsioeal load time histories for the Piir extrapownt
ime•n ion given byi- problem.

V bt P-tea.tial Flow Nodel of Free Surface 4*havVour

?iqxtre 10 shlov the ftuid dosain for thi
air entrapment probla along with tho iitAl&
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conditions for the variables in the air layer. One DWmensional Ecnations for A\,r Laytr
Laplace's equation: -

A o;a dimensional modol of the air layer aq
shown in fig. I1 wao chosen in order to rtmove=(40) the problems assoclatad with 'mesh contractioa

was to be solved over the fluid dAmain, with along the y axis.

free slip zero normal flux conditions on the
two siIs and bottom boundaries and the . - ,x) E*ft 10.314
potential at the mean free surface level found a
from Bernoulli's relationship:-

fre sufc heih (41) S-.10ol __
at Pa

where n is the free surface .height iAr Lowe

Pa is the pressurein air layer ((x)3Po k Eq, t.3I•

and p is the density of water. F-u o(x)0W,

The free surface height is found via the
linearised free surface kinematic condition:- Fig. 11 Initial Conditions for Air Entv'apment

Problem
Sv= (42)
= (y This approach .Ls well documented (8,9,1I) and

was thus considered suitable for the test
Equations (40) to (42) were introduced into program to be carried out. M4ass conservation

the time marching simulation via the following may be expressed as:-
time marching procedure. The potential on the
free turface at each time smep was computed pa h)
as:- a + ( (auah) - 0 (46)

n where Pa is the density of air layer
Pa9i~n+1 =ixn - tgn + - )j (43) h is the air gap thickness

and ua is the air velocity.
h recursive relationship for the potential

within the fluid domain was formulated using One dimensional conservation of momentum was
succevsivu over r'tlaxation, thus:- given by:-

.- I W#-- , !!ý a I +.# + (44) aa

a a u (47)
applied to I < i < ix-I ""a a (47)

I < j < jx where Pa is the pressuro in the air layer.

where ij represents the node numlerinq rystem hit any given instant the rate of chang.i of
in the x and y diractions, the tn"itknes of tbe air laysr was euprusoed
respectively. ast-

w is the SOR relaxation factor -h -,FE . % >. - ;•!. i ,o•

and is the maeh ratio Ax/dy.

Equations (46) to {49) ;providtd the meana to
A reqular 30 x 20 mesh aae used to solve fur the four unknowne kiat, ;, h and ;0. it

discratice the fluid dimAin and it va found 4 convenient ralationAhip between pressagw and
that the dislcrot* residual nt the Laplace &-aelty omUld be found. in praottoe, tha
squatSton ould be red•uced to a value of the Adiavaicorsa•latuont-

order -8 •within aie thousand itzoations.

The fret4 -urfac# hoiqht wLu~ omput*4 usingj ~ . 1  (49)
the explicit fo=mUl•i- P, 0*(J

( nInt -* )/+y 4i5) where Y - 1.4, the rati4 of AP.OVfic heatp, Vsa
i j i~ 4applied suacosfull.,

127



Many numerical schemes were experimented
with, the full details of which may be found in n
Reference (24). The most robust methods used a aj _ = C2
simple explicit time marching formulation and p-n P0 a
central differencing for the convection terms. aj

The air layer was split up into a one where Ca = 330ms"I.
dimensional finite difference mesh, The mesh
was staggered, with Ua nodes at cell sides and These pressure values were then used:-
h, pa and pa at cell centres. The pressure
nodes coincided in the vertical plane with the a. to compute the total load on the body
free surface potential nodes. b. in equation (43) to calculate the fzae

surface potential for the nixt time step.
The computational cycle proceeded as

follows. The rate of change of air gap Figure 12 shows a full flow chart for the
thickness (h) was computed first using a computational procedure. A time step of
discrete form of equation (48):- 1.25 x 10-4 was 'xsed initially, the full

Ah n n-1 simulation requiring some 100 steps in total.S= vb - (n~- n) (50)
t j Numerical experiments wer.a alsn carried out

with a model which included energy transport
The velocity field (ua) was then updated within the air layer. Few conclusions could bt

using a backward time step central difference made, however, owi.ig to tne lack of infornation
formulation, ie:- concerning disilpation nvachanism5 within the

f low.

n n-i At un-I (un-I un-I Further studies we.e carried out with a two-u.,=u - ~--u u -
aj aj 2 &x aj aJ+l aj-i dimensional air layerl model coupled to a

three-dimensional fluid d,=Ain. Figure 13 showv
51 the nodal arrangement for this model. The

-a --)r n equations of motion for the air layer wexe
-n-i aj+i aj-' identical to those already given except for the

Axpaj extra terms u.med tc ac-om.odar e tlii variablo

Vat. The numeri.ial procedure was similar to that
where Paj is the mean density at velocity previously desribed. Tha ,lesUltC of eSing thik

node J, iet- model are disc•ssed in a later sectio.

Paj - (p+1l 4 P aj-) Results Proft Simulatlons Using the
One Dimensioral Air fntraent Mod•la

Having updated the velocity field, the Having th0 aimulation for a i of
discrete density values were updated using the difet deadrise angles.. ntia! iet.
following backward tima step, cuntral v4locitiee and mass loadingg' !t vla realiaed
dif'.erence expressiont- that there w"r* fouL pooible imp4fl acenAriox

-n- 1 to be consi••rd .p vtor to invldinq airA* A F - .Lthn h n-1 entr.mnt in the h*4yii' saimn 4'.

n- I~ t~1  
2ax 1+1 1-1 ýI

h j The*e veret-

A, full -air 'Int'aPOa~t Vith presuQre pa'\.
-n- I before cootact,ue t(n-1 n-,
-U5  A1+1 &- ) b. Zull air autrspsa~nt, pvftagur.o Pea4

S/un, n- ) •~otcoeta.t,

-. ~a lit - {$)before conttAct,

d. oir zruobion onq 11Y' Prsvar. P~sk
aftor contacv.

wheire u. iP a mean velocity at prev'ure
nods 1. Vcmio 14 ahove* aplot~ of tho &v~satn of

b0-;+ icj~ * a furitý.on uf tho &dAlriae angle
un 'kswaafntuxe Pb: Unit areoY. It rAn be Seen

The pressurke field was th*i caloulate4 that plat-s with de*Criso alnls (0) tip to
directly usin the ideantityl- 0.2-5 alw;ya tr.Ipp_4 air. Above this vtluo of
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p is the density of the water The most conspicuous problem associated with
this type of impact was the way in which the

and b is the beam of the section. free surface seemed to, in the limit, match the
contour of the cylinder. Studies were carried

Figure 16 shows a plot of peak load versus out with varying mesh size in both the fluid
the square of the impact velocity, confirming domain and the air layer. However, it was
equations (54) and (55) as the basis of the impossible to come to any conclusion as to
slam coefficients for these light impactr. which category, b. or d., this type of impact

fitted, Certainly, for this type of idealised
400 * 0.0-0 model it seemed possible that simultaneous

S .s 0.25" contact could occur over a substantial portion
1000 / a -5 of the width of the section. ýn such an event,

lI , /could it also be possible for the relative
normal velocity between the body and free
surface to be zero? If this were so then the
peak loading on the cylinder would be a

I / function of the initial air cushioninq phase

600 oo and not the water entry phase.

I/ In practice, these idealised conditions
1l would never exist. Surface roughness and

-104 X imperfections caused by marine growths, etc
/ would have a significant role to play in the

00 / evolution of the load time history. However,
the phenomena described above would need to be
reconciled before any unified hydrodynamic/air

Sl / /entrapment model could be designed.

40/ Results From Two-Dimensional Air Layer Model

Running the two-dimensional air layer model
coupled to the discretised three-dimensional

300 I/fluid domain proved highly problematical owing

/ ~to the large amount of computing time required&
A 30 x 30 x 20 node mesh was used for the

200 [50 Ko potential flow solution to the fluid domain. A
typical 100 time stop simulation required
40,000 seconds CPU on the University of Glasgow

100 ICL 2988 mainframe computer. This restricted
the size of any parametric surveys.

. •Eight tests were run in total. The first

0 10 20 30 o0 so to four used a 'light' mass loading of 50kg on a
(lipt Vewty) 2  1.O0e x 1.0m square plate. Initial impact

velocities of 2, 3, 4 and 6ms"1 were used.
Fig. 16 Plots of Total Toad Versus Impact Another four tests were run with a high mass

Velocity Squared loading of 1000kg and an initial impact
velocity of 4me-1 . Various plate aspect ratios

The most likely candidates for air were used during these computations in order to
entrapment impact scenarios at sea were ascertain the effect of two-dimensionality upon
considered to be cased b. and d., both of which the quantity of air entrapped.
represent 'heavy' impacts, with pressure peaks
occurring after impact. It was thought most Figure 18 shows a plot of the free surface
profitable to orientate tho future work toward distortion at the instant of contact between
these two types of impact. tha 50kg square plat* and the fluid. The

computer generated graphics have distorted the
A further study was carried out upon the relative dimensions. However, the depth in the

etfect of section curvature. Figure 17 shown middle is 1.4sm and the height at the edges is
free surface shape and pressure distribution in some 0.5mm. Figure 19 showu the corresponding
the air layer for the impact of a circular pressura distribution over the base of the
section of radius 10.0m. The computational plate.
domain for the air layer was restricted to the
region where the modulus &2 the tangent to the Figure 20 shows the effect of the use of a
section made an anqle of loe than 300 with the two-dimensional model upon the load time
horizontal. beyond this the air layer was history for the 5Mkg plate. *,lhe peak loading is
assumed to behave as a divergent let. quite clearly reduced by so" 30%.
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Finally, fig 21 shows the effect of aspect pressure to be computed using:-
ratio on peak pressures and loads for the
1000kg plate. As expected, the peak load is n+ d
experienced on a square plate. The slam load is P pa( - 2At(-d't--hn) (60)
progressively reduced as the aspect ratio ist
increased (for constant plate area). The resulting simulation was fully interactive.

it ws cnclded hat ulimatlyany The acceleration of the body being computed

unified hydrodynamic slam code would need to usn:

include the effects of three-dimensionality. dVb

Post Contact Behaviour of Flat Plate$ f t (F h + F a M Mb + Ha("t) (61)

in ord r to further study the load time Figure 22 shows a typical impact load time
history for impact scenario b. and as a history using the above algorithm, The initial
preliminezy study prior to designing the full conditions were derived from the last few time
impact simulation model, a simplified post ateps of the equivalent air entrapment
processor for the flat plate impact vimulation simulation. it had been noted, during the
was vritten. previous work that the total kinetic energy

gained by the fluid behaved asymptotically with
The trapped air bubble was considered to increasing mass loading on the body. Using the

move with the plate such that a simple velocity of the body as a representative value,
gas-spring analogy could be used to compute the an equivalent added mass was computed which was
pressures within it. A number of further found to be nearly constant at some 12% of the
assumptions were made:- added mass of the flat plate when fully

submerged. This value was used as the initial
a. The bubble could be represented by a added mass and an effective value of wetted
half elipse with major axis b and minor axis surface/bubble width, b, could be deduced.
h, the air gap thickness along the
centreli ne. Figure 22 was derived from the results for

the post impact behaviour of a 200kg plate with
b. During compression, the ratio b/h an initial impact velocity of 7.0ms-1. Although
remained constant.* the absolute magnitudes differ, the load time

history is very similar in form to those
c. The total added mass for the plate was measured by Lewison and Maclean (9).
given by:-

It was felt that this type of model provided

H4 - Pir(B - b)'2  (56) a great deal of useful Information concerning
a pressure (load time histories), peak values,

rates of change of bubble size, etc. it was at
where b - half beam of plate. this point that it was felt that enough data

had been gathered to design an air entrapment/
d. The resulting hydrodynamic load was hydrodynamic impact model using the techniques
generated by the rate of change of added described so far.
mans:-

am d IV. Full Hydrodyaamic/Air Entrapment Model
-i-- - 2PTB- b Tt 5)The previous sections have described the

a. The total load on the body consisted of results of a number of fluid flow modelling
the ydroynamc lod:-exercises which were undertaken in order to
the ydroynamc lod:-understand, and hopefully solve, the problems

dM associated with computing the slam loading on a
F" a (5) ship section. it was noted that.. from the

Fh dt Vb experimente with the air entrapment routine,

there were two candidates for the role of the
and the load generaited by compression of the air layer within the calculation.
air bubble%-

Firstly, flat or near flat sections falling
F a - 2p ab (59) toward the free sufacs would set the fluid in

a a motions, eventually forming an entrapped air
The resureIn te ar lyer as ompted bubble at the point of impact (case b.).

Ths pesurgi the aie f er layer was cubl olmpued secondly, the air layer may serve to set tho
Cosingte rateo of thoepartcua ofhbubbe volume, free surface in motion prior to first contact

eliptical air bubble and constant b/h ratio adytfr oarbbl cs . aho

allwedthechage n ensty ndhenethese two cases were to be dealt with
alloed te cangein dnsiy en, heoeseparately.4
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Case d. was clearly the easiest to deal with It is clear that there is a promising future
first. As no air bubble was formed, the last for the work described herein. An immediate
time step from the air entrapment simulations priority is to carry out the studies suggested
could be used as a set of initial conditions in the fourth section.
for program SLAM. If confirmation that no air
bubble would form for the impact of a curved Further work should also include the
section, this case could also be dealt with in development of a three dimensional version of
this way. the hydrodynamic model described in the second

section. The addition of a 'Multigrid' solver
It was proposed that case b. would be may be required to reduce computing time

modelled using similar assumptions to that used sufficiently. Further, the study of wave slam
in the post impact processor described in the and the effect of wave goemetry on the three-
last section. In particular, a simple dimensional ship slamming problem should also
gas-spring model would be used to compute the be undertaken. Reference (26) could provide a
(initially uniform) pressure within the trapped basis for this task.
air bubble. A secondary row of sources would
cover the outer contour of the air bubble. The
velocity of the sources would be a function of Acknowledgement
the body velocity and buble dynamics.

The authors wish to acknowledge the
It would be these sources that would be used financial support given by the Science and

in equation (22) and the modified SOLA/source Engineering Research Council Marine Technology
algorithm. The pressure i-? the air layer would Directorate and by the States of Jersey which
be used as a Drichelet boundary condition on enabled this work to be carried out. They also
the Poisson pressure solver. The thickness of wish to thank Mrs Patricia Peters for typing
the bubble layer (< 5mm) dictated that the this paper.
above quasi-empirical approach was more
appropriate owing to the mesh dimensions used
in the computation.
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DISCUSSION
of the paper

by P. Gallagher and R.C. McGregor

"SLAMMING SIMULATIONS: AN APPLICATION OF COMPUTATIONAL FLUID DYNAMICS"

DISCUSSION
by B. Yim

This is a very interesting paper to me Finally we consider that this technique
because the authors treated the slamming prob- would benefit from a much finer mesh structure
lea with viscosity while I treated the same than that used thus far. The problems associ-
problem without viscosity. It seems that the ated with the stretching of surface elements
authors did not come across any instability in encountered in the alternative methods of Dr.
computation even when they were dealing with Yim and Drs. Greenhow and Lin presented at
slamming of a circular cylinder. Yet Fig- this conference do not occur in the technique
ure 8 shows the wave height near the cylinder applied in this paper.
without spray as in the case of Chapman's lin-
ear theory. As in the experimenis by Greenhow
and Lin the wave near the slamming body is
quite high and breaks. Would your computations
how this large breaking wave if your computa-
tion proceeded for a longer time? What were
the behaviors of the spray tip and the spray
root in space and time? I would like to know
whether they were singular forms.

References:

Chapman R.B. 1979 "Large-Amplitude Transient
Notion of Two-Dimensional Floating Bodies," J.
of Ship Research 23, No.1, 20-31

Greenhow, N., and W.M. Lin, 1983, "Nonlinear
Free Surface Effects: Experiments and Theory,"
Report No. 83-19 83-19 Dept. of Ocean
Engineering, MIT.

Author's Reply

The authors thank Dr. Yia for his remarks
and hope that the following reply will satisfy
his questions.

Firstly we must point out that, although
the numerical algorithms were developed with
viscous flows in mind, owing to limitations on
computational power, the impact examples pre-
sented were for ain invisid fluid, as stated in
the paper. For the sae reasons, a fairly
coarse mesh was often used and it was a result
of this that no spray jet structures are visi-
ble in Figure 8. When computations were

allowed to proceed for a longer time on a
coarse mash, there was evidence that it *)Auld
be possible to produce a spray jet. However,
these jets were of the order I to 2 mesh cells
in width, and such computations were not con-
sideread to be accurate enough for presentation
in the paper.

The position of spray tip was not impli-
citly investigated, though a time history of
the wetted beam was produced and may be
deduced from figures given in the first
author's PhD thesis (refoerece 24 in the
paper).
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INITIAL ASYMPTOTICS IN CONTACT HYDRODYNANCS PROBLEMS

A.A.Korobkin, V.V.Pukhnachov
Lavrentyev Institute of Hydrodynamics

Siberian Division of the USSR AcadelTV of Sciences
Novosibirsk 63009() USSR

Abstract I. The entry of a blunt body into

an ideal incompressible fluid
This paper investigates an initial stage

of an uinsteady motion of a liquid due to the 1. Initial a.nMptotics of the solution of
blunt body penetration into it. Initially the a three-dimensional problem
liquid is at rest, and the body touches its
free boundary at a single point. It is appro- An initial stage of unsteady motion due
priate to use the method of matched asymptotic to entry of a solid blunt body into a liquid
expansions which allows to reduce this compli- is considered. Initially (t'=O) the fluid oc-
cated problem to consideration of its simpli- cupies a semi-space z'< 0 and is at rest; a
est elements, some effects, such as nonlineari- solii body touches its free surface at one
ty, compressibility of liquid, elasticitj of a point x'=O, y'=0 (here and further dimensional
submerging structure and so on being taken variables are marked by a prime). The liquid
into account only within the domains wthere is assumed to be ideal and incompressible, the
they are most significant. This approach to gravity force arid surface tension are ignored.
solving the problem is applicable for investi- The solid body position in Eulerlan co-
gation ofawide class of problems about the ordinates is ass&ed known and is represented
interaction between a solid body and a free by
surface. z' = f(x',y') - Vt', (1.1)

Introduction where f is the strooth function of its argu-
ments; f(0,0)=O and f(x'Iy')>O when x 4 0,

In the early thirties, the water entr, y 1 0. Relatlixi (1.1) describes the body mo-
problem has been subject of intensive research tion .ilong z' with a constant velocity V. The
and development in connection with the prob- main curvatures of the surface z'=f(x' ,y') at
lems of landing of flying boats. [During the the point (0,0) are designated by k 1 , k , and
ensuing years, the problems of interaction it is ansumed that k >0, k2 )'O, k1 ~k 2 ,
between a solid body and a liquid at the pre- -1
sence of a free surface attract widespread The ctuvature rvdiiu k1 is taken as the
attention. One has to deal with these problems length scale, and (klV)'- is tak-n as the timn
in strvngth calculations of ships in ship scale. Then let us come over to diinnsionless
building (slamming problems), in the study of varS.ables which are desigmated by the above-
liquid drop iffazt with a swrface (the prob- mentioned terms without a prinm. In th!s case
lems of erosion) and so on. Eq. (1.1) is re-written In the form zaF(x,y)-t,

They are related to the problems of flows where F(x,y) - k1 f(k-x,. kf1_y). According to
with variable topology. In a iuterical inves- the above-4Tentioned osilVtions on the beha-
tigation of such problefrv, it is necessary to vicur of ftnction f(x',y'), it is appropriate
distinguish the rmrcents of time when the to lccate axes x, y o that the expansion in
flow topology changes, and to investigate ama- series of funtion F(x,y) if x -.0, y -0 is
lytically a qualitative picture of the pher0- represented by
menon with obtaining the solution a_Vmptotics.
It is appropriate to use the method of matched F(x,y1 - x2 /2 + (k 2 ,kl)y 2 /2 + O((x 2 +y2 ) 3 / 2 ),
asyrlptotic expansions wbich allows to educe
a complicated prblem to consideration of its (1.2)
siriplest elements, sams effects such as nonli-
nearity, coepressibility and so on being taken In iasrelgO coordinates , k, • the do-
into account only within tihe domains vhere ma-Inr occupied by a liquid Is pre-determined
they are aost significant. and represents a semi-space ;t < 0. A plane

g 0 being a bomxun y of this datain consists
of a fAve surftoe of tho liquid, 2>, the con-
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tact area betwe;n the liquid and the solid terin of trie flow a.ymptotics depends or. the
body, Z., and the contact line between them. body shape and the law of its motion. In so
In the Lagrange variables, the dtirerzsonless doing a zero approximation of the condl tion of
ccordinates x, , z of a liquid particle hold- the flow absence ray be written as follows:
rng aposition ,t at t=- are the un-

known functioins. However, it is mooe conve- z(O) 1 _2 k2 -2 in
nient to Jeal with the displacre.ents X, Y, Z = + ak in
of the liquid partic]es, which are determined
by t-he relation X x - , where X=(X,Y,Z), Here a= r") (n/2), (5is the free boundary
x=(x,y,z) and =(r , ,2 ). of the liquid, 4is the contact region in the

Since the e;terial J mass forces are absent, space of internal variables V i, '

and the motion starts from a rest state, ac- Pressure p is cornected with functions
cording to tihe Lagrar.ge theortem, the liquid X, Y, 7 by th]e momenitum equation J*-IX +
motion is potential 'And may be described by +V p = 0 [11. Substi+uting (1.4) into this
"the equations £1]: equation and retaining the older-order terms

for t-'0, we obtain the coistant pressure con-
detJ = 1, (*7- ) Xt = 0 ( 0), ditior; on a free surface in a zero appruoxima-

tion in the form:
to which the boJndary conditions x(O)= O, y(OY 0 in el.

pIZ, = , ti Yt. Ztl)'-nj, 0
02 0The zero approximation of equation of

and the initial ones (s.3) motion (1.3) shows that there exists a func-
tion • ( I, P, ',) harmonic in a lower semi-

X . O, Xt = 0 (t = 0) space sucn. that () ýP .he boundary-value
problem for potential is:

e to be added. HereJ= x)/ 2 (J) is 0
the Jacobian matrix, J* is the matrix conju- - Q in-,) 0
gated with J, p is the pressure, n the exter- • = (2+ k~k I ) - in

nal normal to the wetted part of the solid bo-

VV. (2t ., 2/ '2,v as . 0in (1.5)~o

Let in cylindrical cocodinatts r, t ,

the contact line F be described by r-r(G ,t), L
0= 0, where r(e ,t) is the smooth f.inction Let us find the .olution cf (1.5) in C

wAhich is to be detenrmned along with the solu- (C( K ), and a main asr.•yptotics term, of thle
tion of (1.3). Denote the value (r(T/2,t) 4 contact lire f in tne sec of ellipses withexcentricity_ e arxi laxy.e itemi-,uxis 1 11- 'in
+ r(-9r/2,t))/2 throu4g a(t). It is natural ex1treta e a, d lars set-is destrin
to suppose that a(O) = 0 and the ftinction the space (2 , this set is described by
a(t) monotonically increases with t. Since the eqLution3
for t-+O the contact area Eccnverges to one ( e - c2)-I 2+• 2  1, ' = 0.
point, in order to obtain infboawtion on the
liquid motion at the Initial stage of entry, In case of extending the ftwnctioc n to
it is conveni,.ýnt to introduce intermal varla- an uppet- s•ni-spiace in an odd manner, the oxin-
bies which are "stretcthed" as needed: dition on the fre bound-ry Is f_-fill.d ;auto-

nstically, an. for" derivative f ( •, ýf,\.
= //a(t), Q - a(t), J rb /a(t). =- 4/20 tUue Dirichlet piroblem beyonrwl e

elliptic disk 1 is obtained.
An xsyaptoticaA expansion of the tOnk)DoT Let us detemlrmin elljpsoidal coordiateo

Aunctions fbr t-0 talkes the form , \, I.W ,solvins the eqLu.ton

r ,t) - 8.(t) r(°) (0) ,&,(t)r(l)( )., with U)spect to *, , o<I. -.A <Die relation betwveen lllipsIdal and Ccartesixi
(1.4) cordinates takes the. form:.

Wieve 't aa(t). and F&4(), 8ý(t), 1-<.l ~.... eý(A~' E(g- ex 0(_.'.1
Wr asynMtoticai [20. The unkt)W. *Xruxticns

Ei(%). 8;t) we detemined In m-q.)1Inrce
with te least degenerucy principle. After, itt-
tegrotion uver t, the condition wtvn thjetv is 00 V -)' W2,) ~ )
no flow across Latakes th fonm:

Z - F( ý + X, q * Y) - t. It sImld be noted tuht th coritact reglon •
corresponds, t~o Uhe value q -1, (%nd the, fnee

&xstituting ewxmonsm (1.4) into this ex- -surface co M prcis to 4, al. It is required
prassion and using equality (1.2), we obtain to detemine the Azration 'i( U, sl ,•) wich
that only at t, l ) , Sj.(t) u-. a main Is. luu~nic whi•n >1 Iad which takes a
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£4ven va/ue1'(l,•~ • when 0 = 1 (here case (the function f(x',y') in (1.1) is inde-
,va•(9,•",(') =14 tA, N.` )). 'ie f'Acticn pendent of y').

-A ( , L,'o ) la peveloped in [31

~j _ ,2g 2. interywl expan~sions. Let us consider a

d1 sm ~all vicinity of tlhe, contact point 'ý =a(t),
= 0 (the second contact point vioinity

-'L9+~4L~2 -a~t), =0 is studied in a similar vwýr•'¢- d "'•Li-• ea &= ÷•-/ -Let us detenmine intenal variables e( . , from

the formulae (31; ý = a(t) + taL, • t .
The internal expansion of the flctions

Tne finiteness condition of a kinetic energ, X( r, •, t), Z (Yp, S, t), p ' ., ;, t) is
of the liquid motion results in the equality sought as followfs:
a02 = (2 -_2 - e2 )/6; for a small axis of theinterface b,= r(O)(o) we ave b2=6h/kl + h), , X(,, Q) tD(d, ) + tm•Ql(,•+..
,.Yeie 2 1-e)• ) Here F,4= 1-k2.•.

•,,•= (j + e2 +-.J -7z-T-)/3. ( t)=t + t *t

0 a q P(F Ot=tp'( 'L, )+s Wl()( . ...

&L, ý -t - ,,.ar'3 i, m, mj are ti"ý,tive nu-b._.'s, ,,rd
m '•.•. 4_£'• k >i, Ik) sM. , 1'<."~ for, i,>l.

It is worthy to note that, as a rule, the
It should be noted that the representa- method of matched asy•rptotic expansions [2]

tion of the function determined throughout the is used in the problems comprising a small pa-
space is possible with the help of ellipsoidal rameter. In the give.n problem its role is
coordiinates 9 , 7, W, only in case when it is played by titr& t.
even with respect to J\ , V, -). Therefore, in Let us substitute (1.6) into the equali-
order to uniquely reestablish the displacement ties (1.3) and retain main texz there at t-*Q
potential • (the function is odd with respect The condition of a nontriviality of the solu-
to .) ), it is necessary to consider V , tion of the problem obtained with respe(ct to
only for e 0 rather than th•urought the the funmticas P and Q leads to the requirement
space. Mhe fuction • ( ', p, ý ) is defined k=-m. In so doing P and Q satisfy the relatioms:
as the problem solution: -, = N( when "-) - 0:
t-- 0 when ý .-% - oo, in sod oing the ondi- PAA -1 +P1 P" -P` RO + QQ - Q`k - o
tion on the free srface ( 4 - 0 in 6.k) in ge-
nerml case is not fulfilled. The study of the Pt +Q,.FV÷F• -P&O, - 0 for 0 (1.7)
finction dp ziws that this flnetion satisfies 2 1
the conditionan tl•e free mirface if ard only P2 +Q, + 2Q, ,0 ford >O, c =0 (1.8)
if M(e, S) 0 or P~~o fA.- <,•,o (1.9)
t2 3 e 2

3 According to the principle of avntotic

I + C e+ - e2 + 1 expanmsion matching [2), it follcws f'.X)M thle
folxmla for solving the plane problem ý31 that

This farym~1a defines the intarface. excmit~rici-. ./
ty e as a tuFtidAm of excuntriclty e of the tm.!•/2  (d+ iL )-'/2 (P + IQ)- -2 for t-Q
body head. In an axisývmtrical cw (k. a k.)
te have b,-,r3, =d in a plaw cuse (kN-vO) it (v 0 ford. > 0). Hencao mrW2 + 3/4, and
is not difficult to dofine that h-- 2 and b,-*2.. ýt*n m-•k,3!2. FPom the me-ntn.vrt equation it
The obtained results are in igreeent with the follcws tdit s, --4, Thus, the vicinity of the
soluticn of axis6mmrtrical n plane pzxbleirs contuct point, kwshe the internal expasito is
[31. Hare P > e( P) for% any ,. valid, is of the order of tWg if t.0. Now

it should be noted that asve S( q) e the abmv mentlowed condAition gives en outer
(<S(1) fborpl1 andi_,7 e2 , we hctu limit of the Intexral exrx-%silon:

,, ot ,(d.. iý )-' 2 (P + %Q) + (P for L.,+it i.
It m•-nis that at suf~iictently s•ll values of
t, the liquid particles don't penetr•fte Into (1,1O)
the "forbidden" zave bouded by ttw a-.face
Z (xW + k1kly 2 )/2 - t. A a*e-sida inequality

The conatnrted asymptotics satisfies the
initial equations and bottylazy Conditians with .+ Z - (•÷ X)2 /- • t0O,
an accucy of O(ff ) 1hr•hout if t-.0, ex-
cept for a nvurow MW in thm vicinity of the Which n*wns that pa-ticles as they MnVe csn-
interfae. To verify the flow strLucture there, not enter into the "fort-idden" regioni lImited
it is necessawy to ¢costnrut an internal ex- by a 1WvUtvq 1peirqeable contow, in intOn~al
pansion. axh eontrulction was made In a plane variables is redAxed to:
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P + £ 4 0 for N 0 (1.1) tracted from the first one previously differen-
tiated with respect to The following sys-

Since thn region where the internal expansion tern is obtained:
is constructed disappears in the limit if t--.0
the initial conditions don't lead to additional A,,+ (1+)& A+ O x+Qt B•+Qý&B = 0,
limitations for the _motiorns P and Q. A

Relations (1.7)-(1.11) form a nonlinear A + (i+*)&A+ Oý,B +Of Bt+(Qt+•-l)AB = 0,
boundary-value problem with the limitation on
(Od., ý ) plane. In the study of this problem which leads to tne equation & B = 0. The equa-
the main z-lfficulty consists in that the quasi- tiors for A( A, •) are obtained by omitting
linear system (1.7) is of a combined type: for the fuinction Qq in the system (1.13).
ary solution P,Q of this system there exist Finally on the godograph plane there is
two families of complex characteristics and the boundary value problem such as:
one real fanily i = const. in order to find 2 2
characteristic features of the above mentioned ( + 2 (AB AtB,) = BI + BtA
problem, an approximate model based on lineari-
zation of (1.7) was investigated in [33. a aB 0 in S, (1.15)
nonlirnear condition on the free borzdaryj (1.8)
was invariable. B O on S,$ Now let us analyze the problem (l.7)-(lJ1 + 12
ina fuill formulation. The conditions 9 = P( (A+iB) i I if N2 + 2 0,
and t = Q,. ark- taken as the godograph plane
coordinates, and the coordinates of a physical where 6 = iL the La-
plane oL = A(2X , ý), p = F( A ,jU) are assumed place operator, 4 = .A.\ 4f 4.•2 , •
to be the required fuhctions. Then (1.7) can )j 40 is the domain of uefinition of fundions
be re-written as follows (the second equation A( ý, I ), B( ? , p). It should be noted that
is to be previously differentiated with respect fbnctionW= A + iB is not analytical in the
to OL ):exact statement of the problem (in contrast to

its approximate fomulation [3]). The problem
i-•(+ -•A+Q~y..- •=O, (1.5) should be considered as a complex of two

(1.12) problems: first the function B(2 , ) is de-
termined, then the linear partial differential
equation with variable coefficients for A(ý,k)

It is not difficult to obtain the following is solved. Let us consider B( . , k ) to be an
form.lae imrginary part of syme function analitica2 in

half-circle S, that satlsfies the required
SI g=-BI, t=-A/Z/ , •= AX/Z , conditions. Such function was constructed in

iB -, it is determir;ed uniquely and leads to
A =iBt- A 1 using them, (1.12) can be

re-ltn asB -m(1+2i/\)/ + i6.
2

Bp - A) + tB+ A A•- QB ý -IA), 0, Transfonmation z = (I+2£i/-) , z = u + Iv
comformally iýrps the domain S on the up4er

A+ BX + ~AeA + P, Bý, + Q, Bý + ? -A, 0. half-plane, V>G. Crn plnVie z the solid ýwqll
corresMonds to the positive part of real axis,

This system is of elliptic type. and the fro surface - to its negatilve pzwt.
Fromn (1.7) let us express Pf thixxou Q• In new variables u,v fJunction B wtli have the

and substitute it into the above system: foern B0(u,v) -v/4, arnd equation for A will
be.

(1 )2 A,+ 1 ) -1?(l. )BJ+(1QA+1)BVO
2(li,, )A, + (1,AvAt ,O. -73 (1-

(1.13) u-1 A ,(u,v) * -i/4 (Izl , oo),

The equatian for Qt follows from the relation we P2 U2 + V2, cs %= U/9 , B•(u,v} 1

Q • a • A,,19 . W ( ( ~ ) u v) A,,(u.V)-A(ý(u,v)4,t(u,v)).
tA It shWuld be noted Uvat tf the sewn tUarn in

Writing out the 'k derivative, we obtain the rlht-4u tx~rt of (.16) is lgno t, the
fetic, WO a A + WB is af-nalytical. Agreerment

IýQp - B•W a A,. (1.14) betmn the coordinates of the gadogrs4 plane
X. -,4 plan" z is described by the relationts:

Witth taking Mto wciu~t (1.14), the teuation
(1.13) is tramsfoned as follows The first L--2,Rd sain /2, t. -- 2d(J cos q/2 +).
equation of the Wystem is differe-ntiated with Wc + R.
,epect to t and Is aded up with the x"nd d .)-
equation dlifretntiated with respect to 7k
Then tihe firSt ecpiation is differentiat6nd with 1he pi-oblem (1.7)-(1.11) naay be solved mneri-
re~q~ct to and Ow second, equation is ex- cally by the fonn,.w (1.16). (1.17); hwooever,
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some characteristics of the flow in the vici- (1) (1)=
nity of the contact point can be calculated =+ _ ),Z
directly.

On the free surface ( =9)the equa- + (1 )
tion (1.16) gives A 0(u,O)= -u/4 when u </0. On
a solid wall ( = G) we have: where x(I, Z(l) is the first approximation of

solving the problem of a vertical contour en-

2 trance, the problem for "correction" functions
Ao(u,0) = I• l -ini n -21u- (u -,O) , takes the form:

(1.18) 1.,A = 0, @V-' =0 (ko),

Fonaila "1.18) shows that A0(u,O) when u>O t C (Q.-0 <ci),
has two branches, one being determined when
Ou< l and the other being determined when • =0 (W--O, AIA>i),
u >1. The joining condition prescribes the
choice of the second branch. It should be no- 0- o (i+t-. o ).
ted that Ao-, + o when u- 1+0, and consequently
there exists such uo>l that AO(uo,O) = 0 and Solution o" this problem is written down with
A0o(u,O)1<O when u>uo (fonrula (1.18) gives the help o1 the Keldysh-Sedov formula [4t
u 0ý--2.93). The main pressure asymptotics terim
on the wetted part of the contour is deternin- = , 1g.(z -z-1), (1.19)ed from f•q-4 formula•

o) = - ... wenuwhere z A + it , and the radical branch is(whe+ 1)2 chosen so that

[,2 2_tie jun,.. of the ftmction do) at the con- - 1 =- -I when Q=O,A - 1,
tact piint (&4-= 0) is equal to ý_C, 4r. Thus, -,FT
pressure+ in vicinity of the contact point be- Z = -i when) 0, A > 1,
haves as t-1 wh-en 1 40 and has the jump at tly
contact point (pressure on the Aetted part' of -l- I .-i I - A, when - 0, 1
the contour is of the order of t12).

For=ula (1.19) allows the following concl.o-
3. ZDltering of the bAmnt Wbot ajn attack slu ns to be made:
anajla . Let uws cohnsider an initia! stage of a) the flow pattern ceases to be sy.rmet-
werolanding of a circular cyliod-r. It is ric, and the correction for the horizontal
asaend that the cylinder gener,tri)- ;ý paral- displace.rent vector caro•nent is given by the
lel to ai •ndisturbed liquid surface (a plMte foxnula
problem) during the -#hole time. of motion. The i
angle between the b&d velocity ditvcti-xn and '(A ,O) =4tgw4l.1 C xionl1Kx;
the vert.cal i. denoted byct- The endition
of the flow absa-tce rcross the solid sarface U) if d. > 0, in front of the body, (NX-)
shows that tte zero o4)proxirntion of the prob- t-e V.ase suýface is lcvw3 rd by twhe va'uw
If)i solution depends only ., a vertical velo-
cityr vectoi- cosporent. Therefor, to determinr 1 rn-
the effect of the horizontal velcrity vector -(? 0) 'j t, OA + q A'- I),

c-aqpotvnt to tUhe flow pattern and the load
distriwution chwa*cter on the c..:itact area, it std bec.InJ the bod (I > 1) it rises
is appropriate to ccrslader tie following!
(frst) approxiftlon. T-e pr-bl-; for this g(2 .o) ,,t.((X(- )
approximation cavfot be, solved in on explicit

matr.er, however, it enawbles .epteswnw- tion of with resect tW th, fr.e surface position
the olutial in theU form of tihe "I of tun caulculated in tire prooblew of a v'rtIcal en-
tenva. OC1, Cf them is thf first npproxtnation tr-nce;
in the problem of a vertical s)muretrlc entrance c) tPre 'trctcn pr-easur Pr .0) is
of a pW'aolic contlur into G lIquid, and the calculatedl bLy the ftsrtrula
second is the correction for ,a tbic flow which
t= been condiltined by te n4-,1ant1 c-n- ( • 'u.etg%) et' Ihci.

Let in dirmreionralless varilb1.es thO ve--
Icllty vector of the boct as the fVrm (-tgo., %45id S'ws tiat p mn when )4 -P 1 -10 Tn
-1),U th4n ea cdtion w the Solid %irface pn + W VIVP.T) )ý i, -1 +O0"
In then first *pW=W•ation is written as: Ga c~urbti~ 10 a tCoM m presmL.r~e+ d-t Mike

(1) (0) t creates crw t t with respect to the contact
S* p•t, ('A. 0,X + +)- 1). ama center,, wich can be fcanl by ti formula

If X is reprented as or"0 i o
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L'(t) = 21V3R-it'tg1, (I + 0(1)0), scale, respectively, and come over to the di-
mensionless variables which are not marked by

where R is the cylinder radius, V is the ver- a prime. In the Lagrange variables ý , 2, the
tical velocity component of the body, 9 is the fUnctiorns are the liquid particle displacements
liquid density (remind that the dimensional X( -,, t, t), Y( y, Z, t) detennined by the
variables are marked by primes). It is worthy equalities X =x( v, , t) -T,, Y=y( ','•,t) -'
to note that F(t) =0(1), and L(t) =O(t) when and the elastic displacement w((),t), v(O ,t)
t-+ O, where F(t) is the resistance force act- of elements of the shell along the surfaces
irg to the submerging body as viewed from the •=const, r= 1, respectively. Here r, ( are
liquid, the polar coordinates associated with the snell

center.
II. Submergence of elastic shells into The liquid motion is describe( by the

an ideal incompressible liquid equations

The elasticity of a submergine structure X -Yyo XX+Y Y Y
has a significant effect upon the value , i ý+ - XzX +Y Y - 2 YO, (2.1)

character of distribution of hydrodynamical X ,+ Yý +XvYz -XýYý =0 ( . 0), (2.2)
loads over the contact area.The first attempts
to account for the effects of elastic defonra- the first being the vortex absence condition
tions upon the entering process characteristics and the second being the continuity equation
were made in L4, 51, where the authors were (remind that the liquid motion originates from
based on simple physical considerations within the rest state, and the outer mass forces are
the framework of the Wagner theory [61. In 1935 absent).
Povitsky A.S. suggested a "quasi-stationary" The equations describing a thin cyiindri-
method based on the consideration that for ac- cal shell deformation are in the form [8J
counting for elastic deformations, the Wagner 2
equations are used for an rigid body having 8( t6 . 2& + L6 +
the sane iomr• as a deformable elastic body has. + • - - -• ,
This mnichod gives wittingly incorrect results
if thý velocity and acceleration of an elastic 0t" 2U)
defornatii of the body achieve the same order •-2 -0 (2.3)
of .magitude as the velocity and acceleration 2
of the centre of gravity of the body. The the- Here J=(1- -)2) ,V /E, &,=hl2/ ( ),12R =

ory applicable for describing the interaction = R/ 9,h, wbere 9j is the shell material
betwe-n the shell and the liquid in this case density, ) is the Polsson's iatio, L is the
has beýn pqoosed by E.I.Grigolyu( avd A.G.Gor- elastic rodulus, h is the shell thickness, 9
shkov I7f. is the liquid density and p( ,t) the extervnl

"The aim of this Section is to estimate loading.
the effect of elastic properties of a submerg- lie equations of nmotion (2.V,-(2.3) which
ing str•xcture on the loading distribution over are to be considered in cottlination, axe added
the contact region %hen t+ O. A general up- by the bourtdary eo:.dttions
proach is used for constructing the initial
data necessary for n'zerical investigation of (t- U ")n- 0 (no ?oC.I 1 (r.(),, (2.4.)
the flow and the elastic body behavior 4".1•en
they interact u'iring the entry procesý,. X tt+X tY•Ytt (Q X ,+i>a(')) (2.15)

1. A anvite•wtic(& forttulation of th, problom. Wnd tho initial ones
WF~gec of a1 Circular cyl lnt.ricaiFT~xTT
inito om ideal incarprossibie liquid isi consi- Zw o ýW t-0 (10 (2.6)
derel. If the sell gratrix is paxlllel to
the trdlsturbeod l iqUid surface, at a tArIciont Hare t( ,1 .0 ini Ole neomial to the defw-a~tetl
cdistaUre frxom the Lxxboy etyls the prblem may bo .Airfa 'e of th' bory, u( ,t) (vzcos +
calsidered to be a plam ca. the ge'avity for- + wslnt) , 'L. qino -w c.sOJ' is U-e tsll elv-
Cos tVnd surface tension b~ingigord Tho Case MIX~t W-10CI ýV, It (XY). W - (W, V).Th e-
of a Circular shell is general in that vny ti Ona 1M 0. 1- + aot) Q escribe the o"sition
wmothi cylindrical swrfricc In a =nall vicinity of the, ~catact )-ointsq btxween the frre suIrfa~c
of s•OvO g er'tri., aontig wich the airfncn- of tht liquid and the rux'x.by u•rface
ctuvatuir diffoer fvom zero. can be aro•i)t• at- in Lagrtvý codi|tes, and the' relations r,-l,
ed by a circular cyimior. (0 •-0,( descrlbe this value In the systom

Wwlih t- 0. the liquid occupies a 5ti- of N ra: coordimtes associated with t Ce sell.
Place y I<0 and is at rMst, and, theahi Te on (x,y) planev tl-e ri~jit cotntact rcoint
tcoches its free surface at the point x'- 0 ccorxtlnanto x,, y, cma ,e r:rpzv."-d In two
and h=a a velocIty %? dtircted vertically dcun- ways Wth 3oconi.i point is ecrsiderem A-s
u-ads. It is requirei to detenrir the liquid ly):
rotio, sMell defbiratlon and pressure
distribution over Ute cawnltct area. a) xA Q(t)+X~a(t),0O.t, y.-Y(a(t),O,t),

Let us asai Utit the srýll radius R and
t& ramtIo R/V am Uie 1leth scale and ti-n0(t).(t).t)sl (t).
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iI
y=lt--t-cosG0 (t) -w(Q 0(t),t)cosO0o(t) + problem for the mair. term of an initial asymp-

totics is divided into three problems:
+ v(Q,(tj,t)sinGo(t). a) the boundary-value problem (2.9) de-

(2.7) scribes the liquid motion without taking into
account the entering body deformation;

From here the two equations for oetermining b) using the known pressure distribution
the ftunctions G,(t), a(t) follow. It is na- over the contact region (2.10), w(°0 is found
tural to suppose that a~t)-0, G(t) -,0, when from (2.11);
t-. 0. The external loading p(C 0,t) is found c) the tangential componer c of the shellfm u +xx+X tYV +p= element displacement vector v0) is fouidfrom the momentum equation X +XX +Y4YL ?+pi f=i

=0, which is to be added by the relation be- from (2.12).
tween Lagrange r, , and polar r, 0 coordinates The solution of the problem (2.9) was
S+ X( ', Q,t) =rsin 0, Y( r,, t)=l-t-r cosO. constructed in [31

2. Asymptotical solution. The problem formulat- y()+ ix() 1 2 2
ed above is analyzed for small t. Since whien
t+0, the contact spot is converged into a Integrating the equation (2.10), the initial
point, to obtain information on the initial asymptotics of the external loading is ob-
entrance stage, iL is necessary to make ten- tained, which acts to the body as viewed from
sion of space variables: ý = a(t) 2k , oZ=a(t)¶ . the liquid:
An asymptotical expansion of the required
functions when t->0 is searched as follows [111: (0) 2 '!2

( ,,t) = a2(t)L_ E a" (t)3?'( 9, (0)(•I<)
0,K-0 p((• W 0 (II>I).w(p )(tl = (K(l),

Let us consider a supplementary problem
v( t t ' (),of beam deflection under a transversal

(2.8) loading q( ,t) =a-l(t)p(0)(i/a 4(t)), wherep( , l(a(t) =2f-E . The beam motion is described indimensionless variobles by the equation 181

a(t) =tl/2 5tK/2 a

•1•t 2  t I"2V2 - + 3t 2  = q(•- ,t), (2.13)SOot)=tI/ t'bK ,mR2V mr4+"

where %£ = /0 o(t), = (X' ,Y"')
Substituting the expansions (2.8) into It is necessary to add the initial conditions

the initial relations and retaining the older- (W = Wt = 0 when t = 0) and the condition at
-order terms if t4-0, we obtain the boundary- infinity (W+0 wh*en oI- oo ) to (2.13). Here
-value problem for the zero approximation of W( r,t) is the beam deflection, £ is the elas-
the required functions: tic modulus cf the material, J6 is the cross-

-sectional nwmentum, m is the length beam mass;
"(0) +Y()=0, X 0)0 ( <) in an undisbr-bed state the beam axis coin-% cides wit hý axis. It might be well to point

(0) 1 2 -a•2  () out that for the above-mentioned functionY a. 0,i q( ,t) equation (2,13) admits the solution in
(2.9) the form W( .,t) -a5(t)W (!Vl/a(t)), therebyo3/12(- m*_ h, the equation

2 2 for Wt coincides with (2.11). Thus, instead of
0){o ( •2+ •2 + ) the solution of (2.11), it is appropriate to

find a self-similar solution of (2.13). It is
(0 more expedient to deal with the latter equa-

Y=p ('Ax0I / ~ I) tion, since its solution is wmitten down in
quadratures with the help of Fourier and La-

(2.10) place trunsfonrs. In so doing the solutiori of
a 12W0 (2.11) is of die form

i(0) 2 ~ (2.11) A

2 i s___ where A = ( 14 )4. Specifically, at the
point of an initial contact we have

(2.12)IV (0), .0 ( -4.2 o )• -

y~q zero approximation of (27) gives b,= a,
Y (1 +0, 0) = 1/2 -C2 . The boundary-value 0
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in the form of the sum of two terms (Section
1.3), one of them being the first approximation

~ in the problem of water landing of a solid cy-
I f. linder, and the other being the correction for

the basic flow caused by elastic properties of
The shell deformation character is defined the entering bod.y.
a unique parameter A_ = VRh-( (I-)-2)/E)I/I If X-' , 'Y' a repreented as X'
thenA= 12A,). It should be noted that the + i Y +
parameter Aj depends on the entering velocity + ), Aere 7(l), =(i) is the first
V, as well as on the shell material proper- approximation of the solution of the problem
ties. Consequently, this parameter can be con- apprximationte oluin of he roblem
sidered as the characteristic of a dynamical on a vertical entering of an undeformable solid
rigidity of the submerging structurt. The fol- cylinder, the problem for "correction" func-
lowing relations are valid: tions , takes the foI'n

w(O)(0) = 0(J-At), w(0) (0) =0(A3/2) (A,-,0). 4;*q.=O A '- 0  0)

In a plane case the stress asymptotics G' -( 0, J I J 1)when t -)0 at the frontal point (=0) is , 1

defined by the formula [12=1

(5 = 2,fw (0 (0) + 0(t).
E h The solution of thic oroblem is written

out accorcling to the Keldysh-Sedov fornilae [9].
If the stress at the frontal point dependent The "correetjon" (for the first approximation)
on t and entry velocity V is denoted by 6'(t,V), 1 th
for the shells with a high dynamical rigidity ed by the equality
(týý 0) the following relation is valid: ee

( ,where 4 ,

when A, +0, t -.) o0.

In conclusion let us consider the asymptotics Ahen 1 .
of function %44(k) when Ab-'pO. Let z--A-t e

W•0' (As) - wo ('t), then For( 8 )rigid (A.e< 1) shell we ve w• •) =

W(O) sn~2~ - 2 2 wT (A-() = w (o) r ohen 1.1l
w0  Wz~ Uh Asnz+) Z cos(z +14) + Hence ,( ,0)= (1- 2-1) w( (0).i [1

+ O(A4+1, )I when I '),I (1 . The expression for

+ 1- z S(Z 2 ) _C(z2 )]+F~z
3 ) P(l (),0) takes the form:2 - 2 X [3 S~z2) -0)2) +2-0 AG( [1 --CA) -

(2) ]1 -( 1 +O(A' ) ]

%here S(W), CWX) are the Frer)e integrals: where O(ý A 4 +4 A2_ 8/3) (1 _2 /2,

-W Thus, takinqg into account the elastic proper-

S .x Ctr)• ..Z -I(ties of the submgrging body leads to a move
loý uluifortm (in the first approximation) pressure

when Izloa w obtan distribution over the contact zrange (the vicl-
niLty of the contact points is not considered).

(0) 4X R sin(z2+V/14) -2 As would be exiccted, the less ?-aiiater At ,
w0 O)(z~ -(- -- ()) the l9ss an absolute value of p , more exact-

zly, li O('K,) whlen A,,+ 0.

Thus, the rigid shell deflection (p•,%-arter A., 4. Some remrnrks. As follcws f•om Sections 1.1,
is small) is described by the oscillating 1.2, the description of the initial stage of
fUnction vanishing at infinity, shell sutbelrgence into a weakly conpi-essible

liquid is divided into several pioblems. First,
3. The first approximation. To take into ac- without taking into account the body defoman-
count the effect of elastic properties of a tion, the liquid motion due. to the shell entry
subtlerging defoimeble body on the flow pat- is defined, mnd then regarding for the knami
tern and the 1bydi naomtical loading distribu- p,,e!&re? d!,'tr..4 xition ovor the cct.zt rvgion
tion charsater over the ca'.ýct region, ir i,% the defoitnation velue Is found. If the furL-
nrcessary to consider the problein for the tions w(0,t), v(@,t) are seeked in the forn of
first aXiximation. It cwot be solved in 9 expansions (a plane case)
explicit form aven for an undeforrinble body,
hoever. t allows the solution to be presented wtit)- (0 . ÷ N , , +...
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v(9,t) =M6V(0)(•,, ) +MV 1 )(, ) +7... IDV2 W + mWtt = o(],t), (2.15)
-1,( 1-2twhen 14. here (= -, •=i-2t, the func-

tions W(1), V(0) are defined as the solution describing the plate deformation under the ac-
of the following problems: tion of tp extermal loading q ( v, t) =

= aI(t)p /( T/a,(t)) admits the solution of
_4w(O) 32w(O) the form W=a 3 (t)W r(,/a.(t)), the equation

- - + ,2 = 4 q(• :), for Wj coinciding with (2.14) when D = 8 /,
m = • /•.. Here aj(t) =v•, V2 =v`T/
/IV./, , D = Eh3 /12(l - ,)2) is the

w(0) _ 2V(0) cylindrical rigidity of the plate. A self-si-
- 2 milar solution of (2.15) is written out in

4 tquadratdres throug'h the use of Hankel and La-
place transformations

Here q = Mp, p is the extenial loading. Before (0) 1 a- 4

the shock wave has gone into the free surface, w(O)i
the function is determined by the ex- 741- T hs

plicit expression 1(.12), and the displacement 2 -2
vector asymptotics w = (w,v) when MI-iO can be • sin(u A (I-W)) dw-,
nuterically calculated, at this stage. u

The problei for W(0) well coincides with
that about the beam deformation determination where parameter A has the same value as in a
at a given external loading. Consequently, at plane case. For the shells with a greater ri-
an initial stage of entering (t<< ) defonna- gidi ty (A << 1), the following relations are
tion of an arbitrary slope shell (soft shells valid:
are not considered) is asymptotically similar
to the beam deformation under an appropriate w (0) = O(A), w (0) = 0(Atý).
loading.

In the axisymmetrical case the expansion In an axisyimetrical case, as in a plane one,
of functions w(O,t), p(@,t), a(t), Qo(t) when the pressure asymptotics when t-*O is indepen-
t -> 0 is seeked in the ferm (2.8), and the ex- dent of elastic properties of the submerging
pension of functions 1-(X,Y,Z), v(9,t) is shell whose deformation character is defined
seeked in the form by a unique parameter A,.

2  at )(hen constructing the models describing
-, ,,t)a M Z), an initial stage of the elastic body entrance

ca Vý(the submergence depth is small), the majority
4 (of authors usually proceed from the assurption

V.rt concerning the effect of elastic properties of
the body on pressure distribution over the

where - = a(t)-. , functions t •, •, O ) are contact region [7]. Naturally this is valid
invariant with respect to rotation in plane within large time intervals, however, when
'A•. Substituting the representations of the t+ 0, the inertia forces of the rigid shell
required functions into the equations describ- are higher than those of the liquid, therefore
ing the liquid motion and the entering spheri- maximum loadings acting to the body at small
cal shell deformation (al as well as the boun- penetration depths can be calculated without
dary conditions and retaining the older-order taking into account elastic properties of a
terms when t-4 0, we obtain that in a zero ap- submerging structure.
proximatlon the initial problem is divided in-
to the sequence of three problems (as in a III. Entering of a blunt body into
plane case). At first the liquid motion asymp- a we;kly ¢ccressible liquid
totics t.s calculated without takirg into ac-
count elastic deformations of the shell. In so As is seen from the experiments, maximum
doing the z ro approximation of the external values of the pressure acting to a submerglng
loading p( 0U(\k) acting to the body as viewed body are achieved at an initial stage of the
from the liquid is given by the fonaila: process t131. Investigation of this stage, un-

* 2)-1/2 der the assuoption that the liquid is incoam-

(0) C(3/•)(I- , [•]l pressible, leads to an infinite pressure (in
P ) -( the case of a blunt body) at the moment of

0. >i. touching, small as the entering velocity may
be. This is due to the fact that the model of

The function w is the solution of the an incompressible liquid doesn't enable the
problen description of the important submergence stage.

2 For a blunt body there exists a moment t, such
SV . ( -4 k÷w0)) that when 0 1 t (t. the contact line interface

p(O) between a free liquid boundary and the surface
of a solid body moves with a velocity exceed-

(2.14) ing a sound velocity in the liquid. In this
w + 0 ([ 00 case the perturbation front is attached to the

interface, and the disturbed liquid is bounded
Note Utat the equation by a solid sta~ce of the body fnm one side
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and the shock front from the other side. Be- At
fore t, the free surface remains undisturbed. + i\
To describe correctly this stage of the pro- t

cess independent of a Mach number, it is ne- and the EOS which is in the Tait form 9
cessary to use the model of compressible li- =(I +nMv2p)I/n. Here M = V/c 0 is the Mach nuzn-
quid. This model enables deterii•nation of the ber, c,, is the velocity of sound in the resting
maximun pressure acting to the body as viewed liquid, n the constant characterizing the me-
from the liquid, as well as of the moment and dium properties (for water n = 7.15).
place of its application. it is worthy to note 'When the body enters the liquid, the
that when t )* t,, i.e. when the shock wave is shock wave is generated, at the front of which
far from the interface, the solution of the the equations of a strong ciscontinuity are to
problem of the blunt body entrance into an in- be valid (the liquid is at rest before tlhe
compressible liquid well describes the medium front):
motion. In this section only a plane problem
will be considered. w2= p /( - i),V . 4 = W(R - l)/9

1. Formulation of the problem. A plane tin- Vq =- O.
steady isentropic motion of an ideal compres-

sible liquid occupying a semi-plane y' <0 at Here i, is the vector of an external normal,
the moment t'=O and initially resting is con- and sw is the vector of a tangential to the
side-ed (dimensional variables are marked by a shock front, W is the dimensionless velocity
prime). Line y' = 0 at an initial moment is a of the shock wave in r., direction. If the
free surface. The velocity range is assumed shock front position is described in the form
such that the Reynolds number Re -,I what al- g(x,y,t) =0 (g <O before the front),we have
lows the liquid to be considered as an idea-. W = gt/I VgI.
one, and the Mach number M<<I. The surface The assumption that the flow is isentro-
tension and external mass forces are ignored. pic is of major importance. Entropy is conserv-

Let R and V be positive constants. At ed in the medium particle for continuous flows.
fixed t' the equation If the shock wave passes through the liquid,

the entropy behind the shock front may be al-

yl = 2 x,2 _ Vt t  (3.1) ready unconstant. Nevertheless, in the case of
2 R low-intensity shock waves the entropy conser-

vation may be considered approximately, since
determines the parabola on x', y' plane which the entropy jump is the value of the third or-
is identified with a solid indeformable con- der of smallness, as compared with the pres-
tour. When tI= 0, this conto' ir touches the sure jump value.
free boundary at point x'= 0. Relation (3.1) When t >t,, the boundary of I region
prescribes the contour motion along y' axis contains some parts of the free surface. There-
with a constant velocity V. It is required to fore, to investigate the process after the
find the arising liquid motion assuming that shock wave separation from the contact line,
some part of its boun 'ry which is not the it is convenient to re-write the problem in
part of a solid contour is free. Lagrange variables F 12. Then the dimension-

Let us take curvature radius R of parabo- less coordinates x( r, ,2 t), y( ', ,t) of the
la (3.1) when x'= 0 as the length scale, the liquid particle taking position 9, [ at the
resting liquid density 9oas the density scale, moment t = 0 will be the required functions.
9•,V for the pressure scale, R/V for the time On T-, V plane the region occupied by the li-
scale, and comre over to dimensionless varieties quid is the semi-plane 2 4 0. In new variables
(they are designated by the same letter with- the entry problem takes the form
out primes). 414.

Since the motion originates from the rest c 2 (p)D"x =t tt-xt" xtt' = Dý
state and the external mass forces are absent,
isentrcpic flow of an ideal liquid is vortex- 2 +2 2
less. Consequently, there is the velocity po- (- <r2(Q't)' -v " 0 •0)
tential qi(x,y,t) which is the solution of
the equation [15] nMp (1 - M(n 1) r , t - 12 -

C(/- ÷ Zv•'v• 1  (3.2) •t= 2xt 2  ( = 0, a(t)< i< I <r(O,t))

over the rnge ocaupied by the disturbed t2=p`/(•-I)' xt'nwW( ) t
liqul,. Here O(ol is. the locAl - '2.1/+2 ( 2, 2
sound. It is necessary to add to (3.2) the W-(li + (r 0 /r) 2 )"/ ( 2+ •2 =r 2 (9,t),
boundary (pressure p is constant on a free
surface, and the condition when there is no -
flow across a solid wall is fulfilled) and ini- 2 2
tial ( 0 when t = 0) conditiLons, the xt = 0 ( + • >r'(o,t)
Caucv-Lagawnge integral
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,(t=) p (O)( 0,t) =2([a(0)(t)]2_T 2)1_/2 (I+O(f.))
c(p) =•i~(1 + M2np)• 2,i , (14k'np) (0)

O(') = +when I (aO)(t), a (0)(t)=2-t (l+ 0(J-t))
(3.3)

(3.6)

Here J = • (X•)/ ) is t.4e Jacobian matrix,

0( .t) %9 (( .t),t), I = (x,y), = The zero approximation (3.6) satisfies the re-
D -=1V, J* is the matrix conjugated to J, lations (3.5) accurate to 0(1rt) throuiout,
nj is the normal to the wetted part of the body, except for narrow zones in the vicinity of the
vis the submerging contour velccmV vector cont,9. points, their size being of the order
(in our case n = (x(O,O,t), -1), v=(0, -1)). of tr1 when t -'0. Within these zones, the
In the case of a vertical submergence of a flow pattern is verified in Section 1.2.
symmetric contour, the contact point location As indicated abov the main tern of the
is described by the relations n = 0, Y_-=+ a(t), pressure asymptotics p when M+ 0 has a sin-
and the shock front location is described by gularity at point t=O, i.e. expansions (3.4)
the relations %Z = r(@,t)sinG, )= r(Q,t)cosG, become invalid in a small vicinity of this

= are-tg (r-/ý ) -'/2..Functions a(t),r(G,t) point. To verify the flow struct•nre within this
have to be determined along with the solution- vicinity, it is necessary to construct an in-
of (3.3). Let there exist such T >t, that when ternal expansion.
'< teT, the function y( ý_,0,t) is continuous
with respect to V (prior to the moment T there 3. Internal expansion. Let us define internal
is no spring jet). From here the equation variables , 1r from the formulae I=-K,
for a(t) is obtained; y(a(t) +0, 0, t) = • =No,, t = ,12T and find an internal expan-
= y(a(t) -0, 0, t),where the right-hand side sion of the required functions:
is the known function determined from the con-
dition on the solid surface. X( n, ,t) =,' ( ,) +

2. An asymptotical solution of the entry prob- Q = M +

leai (3.3) when M> 0 is found in the form of -+
expansions: p( W , ,t) =M-Ip 0 ( d4 , i ,') + ... , (3.7)

(0) --*ý 2 (1-)
= (t0•)M2 ( ,t)+... r a(t) =Mar(,) +

"(0 t)+Mt() t

pC(,t)=p(0)(*,t)+Mp()(#,t) + ... Tension of variables and the kind of expansionT 1 (0) + l(o) of the unknown functions are determined from
r(,t0 M (,t)+( 0+ (1 ,t .... the matching condition of the internal (3.7)

(t) +and external (3.4) expansions and the nondege-
a(t) = au0,(t) + M~a 10() neracy condition of boundary-value problems

(3.4) for each term of the internal asymptotics [21.
Substituting expansions (3.7) into (3.3)

Let us write out the problem for the main term and retaining the main terms if M+ 0, we obtain
of asymptotics (J0 =••0O))W•(•)) the boundary-value problem for potential

-1o )40) ", 0 /.jolv,(o) ) , V-(): o, 2 2

01.t•7)= O =0, j•(0) =-1 (0=) -2--. (,2,=2 %)
V t't 0IJ f a (t 0) (.2 + 2 e .2 (

4(0) 2 2 . ) (3.5) 0 ( t=0). (3.8)

Besides, we have

to (i'2ý2 2;

The problem (3,5) describing the contour enter-

.1.ng into an inoomn.-essble licsuid was invewet- ha

(ateu +( [ 'or s0 initial stae (t (<1). The

asyptoticL of the required sunctiaons if t< 0 In the zero approximation the condition of theasre given by shock wave emergence iný? the free surface
takes the form (2%.)/ = 1 (the contact

(0) , ,) =Im(F 2 (O(t)) 2  
). point velocity is equal to the velocity

sound in a resting liquid); hence %1.=M t.

+ o((1t)), " =•+ , =(i/2)(1+ o(l)). The function r,(9, 1) is re-
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presented as the solution of the problem

r, =(l+(r,,/r,)2)1/2 (-r4 0.0, 't >0) "

r,, (0,) -t ft (0. <t<1/2) ,where 6 (d , T ) is the isosceles rectangular

(3.9) t-iangle on (Z;:- plane with the top at (c(,,
r4 = 1/2 +± ( t >1/2) T ) point and the base on "C axis. Let us de-

note the region bounded by the curve =,r2-•
r (9,0) = 0 ( 0=O) by D and note that when IelI 4 2,0<t<i1/2

in the region D 0 6(c4 , ) we have !. (• ,0t)
Let o be the known function, then y, (1 ,O, Q= -1, and in the region " (aL, et )\D we have

= \• (oLOti)d' . Since • •,0,s)=0 I• (-,O,•) -0. Since p0 =-w, we have

when 1 <ol.- 1/2, d->1, the requirement of -t

continuity y. ( d. ,0, It) at the contact point ý,
leads to the equation for a 0 (>t) (I vI (2 , O% 11/2).

t/ After calculations we obtain:

•J.•V[ %>'/2)(3.10) po2• 0,'41 /2 %1/
O~t) K ______

The joint solution of (3.8) and (3.10) gives / (3.12)
the main term of the internal asymptotics of $ (/, %) = ('+ 1/2)2- eL2

potential ý o when M+ 0 (the matching of in-
ternal and external asyrptotics takes place). ( I e OI\2, 0 t l 1/2),

4. A hypersonic stage. When 0rt11/2, the where K(k) is the full elliptic first-order
contact region expands with a hypersonic velo- integral. The specific cases of this formula
city, and a shock wave is attached to the con- are:
tact line. At this stage the function a,(•%) a) let T = 0, l =0, then po(0,0,0) = 1,
is pre-determined: ao( -,i) = 2. i.e. at the moment of touching, the pressure

"The disturbance wave motion is described is equal to the water hammer pressure (p,
by the boundary-value problem (3.9), however, = 9 0oCV);
in the zero approximation the shock front is2  b) when Tf = 1/2 (the moment of shock
the envelope of the curve family ý2-+(.t - )2= wave separation from the contact line)
=(•-<2/2)2, &0, 1AI<[2%,2 , 1r<I/2, which po(d,,0,l/2)=(,k2/r)K(i/I-2)(l-C)2-1;/

4

is described parametrically in the form (J c) when cL 4r% (at the contact point)
parameter) p.(-2t O,0,) = (1 - 2t)-1/2.

Thus, with increasing b the pressure distribu-
=)(': * 1- •2/2), 2 =-( 1- •2/2)J -7, tion over the contact region becomes more and

more nonuniform, and the expansions (3.7) con-
* < J , 2 <1/2. sidered up to t = 1/2 become invalid in a

small vicinity of the point T --T,, 4= 42,t

The tangential to the shock front at the = 0.
contact point (d. =•2 , 0= ) is described by It should be noted that in the studJy of
the equation a hypersonic stage, it is possible to proceed

from the formulation of the problem in Euler-

ian variables. In this case the solution asymp-
= 2 (- , (3.11) totics has the same form as in Lagrange vari-

ables, since x -)'I + O(N)).

from here it follows that the tangential slope

to & axis increases from zero when I = 0 to 5. The flow pattern improvement when t+ t - 0
9V/2 when V = 1/2. in the vicinity of the contact points may be

It can be shown that (3.8) is equivalent realized in the Eulerian coordinates. Let us
to the following problem (0 <," / 1/2) define internal variables 2 , . , ) and new un-

known functions from the formulae•= • ( • ), . =-1 0 , ItzI<ý2t
t =t,+ FEt (M) , x = \ t+ Ex (M)ý , y=6 y(M) f ,

=o0 (•:o, 1•1>q2•), •=•0(o o

2 2 $(x,y,t) 4(M)Y( ,A , • M),

p(x,y,t) = p(M)Q( ý, t, ,M),

Without writing out the solution of this (3.13)
problem, let us find the pressure distribution gl(y,t) = • +Ex(M) F( ý, ý,M),
over the contact region po(d, 0,'V). The 1 M2 + Eboundar values ý% (d, O, 0,1 ), (&j ( d,, 0, t t* = tI
are connected by the equality

(the equation x = gl(y,t) describes the shock
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front location). It is assumed when N40 thatn+1
(i) functions *jr,Q, F and their derivatives u ~ 2--~- ~ 0, ' 0
have finite values; (ii) t1(M) -4 tljO) where (3.14)
t1(0) ý 0; (iii) 4/1,1+0, 8 eM-0, l/I,1.0, 2 2

(M 0- -. 0 11 EAE"4 , EVY . U=sf( ,s - u) = 2f-fý-s

= , ), t 1(0) =t,,,, -,I t,,= s. Functions
a -t .Is , £ '- I are defined from the mat- To the above-fonmilated problem it is necessary
ching condition of the external ( 3.7) and in- to add the matching cinditions
ternal (3.13) asymptotical expansions, as well 1/2-12 2
as from the least degeneracy condition of the S (uX - s IsQ( /s )). 0
boundary-value problem for the zero approxima-
tion %tQO,F,. (s-+.- C-~

The external asyroptotics (with respect to
the vicinity of the contact poin~t) of pressure Thus, in a snall vicinity of the contact point
distribution is given by the formuila (3.12), (t-,pt,- 0) the motion is of signiificantly non-
from here it follows that linear character. The equation describing the

---- T Iliquid flow in this zone coincides with that
M 1 ~ -~ t () of the theory of short waves [141,.

6. Pressure at the contact point when 04 t4 t.
whee Q K 2[(t ,?/2 )2_ ¶?22]1l/ 2 .The rs can be found independeant of the solution of the

suere asmttc machn is~ /2) -I'x al whe bou.ndary-value problem (3.14). For a hypersonic
sure Fsm otc machn is,, n2tva (Me stage in the problem of a liquid drop impact

LM '1F½ 7.), -~M _.C 2(), and the upon a solid plane, the method of determining
matching condition is as follows. the unknown functions at the contact point was

developed by Lesser '10]. Its modification inay
Q" S Qý/s Wbe applied to the problem of blunt body entny.

At fixed u the equation x =x,(y,t) de-
4 - ~~. - o ),fines the shock wave position on the plane of

- l4 /12l Eulerian coordinates x, y. The angle between
where Q(v M (12/i )(2v + 1) -/K [2'(1 the normal to the shock front at some point D
+ [2v + 1Y1-12)1. The shock front location and the axis Ox will -be deE!igated by oC, then
asymptotics matching leads to the cc'ridlitions cos,4= (1 + x..)Y 4, where the right-hand side

1/2 of the equality i~s c~aculated at point D. The
6' 8 = M 8X ./Z shock conditions are as follows [151:

W -o* - 0 -), 0 ) u sink -v cos ot.0,

(in an acoustic approximation the asynptotics u cost.- + v sin& =ý W( q- 1)/ (3.15)
in the vicinity of the contact point is de-
scribed by the formula (3.11)). After substi- p
tuting the representation (3.13) Into the
equation of motion (3.2), we come over to the Here u and v are respectively the horizontal
limit when M4.~ 0 (with accounting for the above- and vertica~l velocity vector compon~ents of a
rmntioned assumptions). The least degeneracy liquid particle behind the shook front, W is
cor~dýticn. of the limiting relation gives 64~(M)= the velocity of shock wave in the normal direc-
.- MW f, and the equation for '~J ,t,~)tion to its fronit at point D, 9 is the densi-
takes t-he form ty, p the pressure behind the shiock wave (it

sýhould be remdinded that the liquid is at ix-5:t
+ ( (n+ 1),Y + 2s)Y + 2",, 0 ibefore the st,_k wave front). If the function

-ý"ttx,(y,t) is knoom~, t~ho value of W Is deterrined
The conditions at the shock front in the zero rm
approximation glve 2 -1/2 (.6

tA Since betore t. the shock wave is attach-
ecl to the contact point, the function x~,(0,0)

F,')) 0) %ht'.o 0 6 t t is piv-determined (in our case
~ FX, x(o, t) .42I and the value v at the contaot

As follows thrTA the Cauchy-Lagrange Integral, point is equal to the contour suLxxrrgence ve-
in the flow region Q, Let us introduce locity (in our case v -- 1). The values of the
new fUnctions u(A ý , s) . n '( 1 gst 1  cor'~act point &re associetted by the relatiot-s

2 7- (vt('t) a X0.1(0,t))
- ýk+ Sj S) S-( ,st.4); the boun,-

daxy-vaaue prob\lem for these ±\u~tions is in W w v~oscd., W/p - sini../v (0 4 6tt),

the fo: I 'e first of them follows from (3.16), and the
U ~ ~ ' Xs+U + U it 0 < (0.1, f(ýLVs)s< t.) second follows from: (3.15). Hence,
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-2 2 2 5 Weining, F. Beridcksichtigung der Elastizitat
v, (t)p (1- 1/9 )p + v = 0 (0.6t <t.); beim Aufschlag eines gekielten Flugzeug-for the case under consideration we have schwimmers auf das Wasser (Ebenes Problem).-

2 Lnftfahrtforschung, 1936, Band 13, S. 155-
2tp - (1 - l/ )p + 1 = 0 (3.17) -159.

Equation (3.17) at sufficiently small t 6 Wagner, H. Uber Stoss- und Gleitvorg'nge an
has two positive roots, Pi , P2 , from which der 0berflache von Fluissigkeiten.- ZAX4,
the less one should be chosen, otherwise p-+ o 1932, Band 12, Heft 4, S. 193-215.
when t4 0. With increasing t the difference
p -p tends to zero and p2=p1 = p* at 7 GrigolJuk, E.I., Gorshkov, A.G. Interaction

,.. For t>t. equation 13.17) has no po- between elastic stnrctures and a liquid. -
sitive roots. If the right-harid side of (3.17) Leningrad, "Sudostroyenie", 1976, 200 pp.
is designated by F(p,t), the confluence condi-
tion of p and P2 roots has the form 2 F/ý p = 0. 8 Vlasov, V.V. A general shell theory and its
Consequenrly, to determine t%, p, we should ob- applications in engineering.- Moscow,"Gosteh-
tain the system of equations izdat", 1956, 416 pp.

(1 p) + 1 ) 0, 9 Lavrentyev, M.A., Shabae, B.V. Methods for
-2 2 1functions theory of complex variable. Moscow,

4t~p- - ? (p*) &(p.)p - 1 + -l(p.) = 0. "Nauka", 1973, 736 pp.

Hence, n+l 10 Lesser, N.V. Analytic Solutions of Liquid-
--- -Drop Impact Problems. - Proc. R. Soc. Lon-p.(l_1 [I +np.1]_/n)-2 =I1-p2(l + nhp$.) n dmn, Ser. t, 1981, vol. 377, pp. 289-308.

(3,18) 11 Korobkin, A.A. Elastic shell entry into an
ideal liquid. - In- Dinamika sploshnoi sre-

It is natural to suppose that Np-p 0 when dy, Novosibirsk, 1983, N63, pp 84-93.
M-).O, then (3.18) gives

12 Kubenko, V.D. Elastic shell entry into a
4 1/3 - 1compressible liquid. - Kiev, "Naukova dumka",

p.=£-.+)I/ 3  [1+ O(M1/3)J- (M-O). 1981, 160 pp.

13 Adler, W.F. Mechanics of shock effect of
liquid. - Tn:Erosion, "Academic Press",

t I M2 3 (fn+l )2/3M813 0(DO) (3.19) New York, .,979.

14 Christianovich, S.A. Shock wave at a signi-
ficant distance from the explosion. PR01,

This confirms that the internal expansion of 1956, vol.XX,N 5, pp. 599-606.
the unknown functions and the tension of in-
dependent variables was chosed in a correct 15 Ovsjannikov, L.V. Course of Lectures on Gas-
way. The constant tm entering the fonrulation dynamics Foundations. Moscow, "Nauka", 1981,
of the boundary-value problem (3.15) is to be 368 pp.
considered klaxvn. From (3.10 1', foltnws that

3 (n+ 1 )2/3
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A NUMERICAL SOLUYION FOR THE DIFFRACTION OF SECOND

ORDER GROUP-INDKEC-F WAVES BY A FLOATING BODY

Sun Be-Qi and Gu viao-Xiang

China Ship Scientific Research Center
Wuxi China

Abstract have worked out on 3-B theories and numerical
methods for computing second-order excitationThis paper presents a 3-D numerical BIF me- forces. However, a numerical method treatingthod for calculating the forces and moments generally the low frequency diffraction load onacting on a floating body due to diffraction of a floating body of arbitrary shape has not been

second-order group-induced waves of low fre- developed fully.
quency. The total second order wavepotential

qis decomposed into three parts: 4ýi, the At the same time, a governing factor for
potential of the second order incident wave; evaluating the amplitude of excursion and moor-

,nthe potential of the second order radiated ing load on floating structuries has been thewave and the poential of the second order fluid damping coefficient of such a system.
diffracted wave. W and * can be calculated Wichers et al ]2 , Tagaki 13 , Cao 14 , Qiby known methods, but *P) has been difficult to investigated experimentally into the damping co-evaluate either analytically or by numerical efficient of low frequency motions of mooredmethods. The method presented here avoided theeu structures and found that damping coefficientdirect calculation of *•

2 , but evaluated ffZ @ of these motions associated with first order mo-njds (j-1, 2, ... 6) using Haskind relationship tions of the structure in waves are usuallyand developing Molin's idea 11 into a numeri- higher than the calm-water damping coefficient
cal method wich integrates over the free-surface of the same low frequency oscillations executedand over the body surface with all itr non- by the moored system in calm water. The differ-linear terms taken into account of. Numerical ence is called wave damping. Cao and Qi ,results of second order diffraction loads for a found that under certain frequencies damping ofsemisubmersible drill ship are presented. An slow motions in waves are lighter than chose inapproximate concept to relate the second-order calm water, and may give rise to negative waveload in bichromatic waves to wave damping effect damping coefficient. The present report relatesis proposed and a specially designed experiment the in-phase component of second-order diffractis conducted to validate the concept. Qualita- load with the second-order incident wave hori-tive agreement between numerical and experimen- zontal velocity and touni that rhe force co-tal results are zchieved. effid•ent s.' )btaine.d is in ,eneral agreement

w.•h the wa' l ,lmpP..- e .tued ex-
1. Introduccion P. I'nt.iUy, A tentative explanation of this

effect is given in section 4.
Lrrge '..zursions ot moored structures at low

frequency witb accompanying high mooringloads The second order force consists of six parts
Lave kcnown to be important in offshore engineer- .ing. The forces that excite large low frequency
hotisontal motion are known to be of second- F' PiJ 4'il'oý + I-J ed, I
order in magnitude as compared to first order I
wave exciting forces of vormai vave frequency. ,Faltinsen, O.M. and Loken I , Papanikolaou, A 2  

+ e 'V•7jXfdS + R F
Rahman 3 , Eatock Taylor and S.M, Hung 4
Kyozuka, T. , Miao G. P. and Liu Y.Z. 6 haveworked out orn 2-D theories giving numerical me- e// t 9Y* s 0 •-L ',thads for evaluating the diffraction wave poten.-
tials and 1onds ov cyllnders. Triantafyllou 7
C.C. Nei a put forth consistent theories using + d a
perturbation method of multiple scaled fOr &ol- 4 £
ving sacond order forces that give rise to zero
order motiomn. Pinkster 9 Standing MlO Holn 11
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2. Theoretical Formulation

7 P LwL - x fl) dt + We make as usual the assumption of a perfect

and irrotational flow, which allows us to des-

2lpu P vf U) v•' ±( )Xde°)dS + PJff v'O" cribe the motion by a velocity potential 4'(x,

y, z, t), where (x, y, z) belongs to the undis-
turbed fluid domain D. We shall use a right-

x ;?ýJ') d5 + ') M +(r handed frame of coordinate'{ o - xyzl with oz

vertically upward and oxy plane corresponding
to the undisturbed free-surface, as shown in

W, x.f÷-) + q o/ V - • figure 1. The body coordinates is consistent
i2 Vwith the coordinates {o - xyz I at t=O.

S/.%/vq V5a + )e, -3
s,./ V + 15 11V - 51 /v( ) IF

(2) 0 Y

h 0

The first term is the integral of the first 17
order wave pressure over the area between the 7 7 7 7 7/// /
mean waterline on the structure and the surface
elevation. The second term is the integral of Fig I
the quardratic term in velocity over the mean Let e be a perturbation parameter, identi-

submerged area of the structure. The third fied with the wave steepness ký, where k is the
term arises from the second order part of the wave number, and ý the wave-amplitude, fmay be
integral over the mean submerged area of the written as:
first order wave pressure when that pressure
in evaluted at the position of the displaced 4i((,I, t) t.ijAY"2.t)+ es* t)( ,y. ......

body. The fourth term arises from the rotation
due to roll, pitch and yaw of the total first and the fluid force acting on the body as
order fluid force on the structure including
the hydrostatic restoring force. The fifth F = F(0) + eF(1) + E2 F() + .

term comes from second order potential. The
sixth term is second order hydrostatic restoring From (I) and (2).it is found that the se-
force. cond-order force F(1) contains the term:

When the first order potentials and motions 4/ )'n, * , i-tz. 6 (3)
have been solved, the first four terms can be

calculated without difficulty. To calculate the where nI - 11It, 112 -y' ,3 izi 11n4 yn3-zn 2 ,
fifth term and sixth term we must evaluate the
second-order potn ial 00) and second order mo- n ,=Zn =31 11 xn 1
Lion retiponse 1i2

In the case of difference frequency which is
We decompose the second order potential ý(2) of main interest to us, expression(3) becomes

into three parts, namely: 11 _AVJ)(.

1.)) ,, (2)
*(2) , )+ 4 2) + Ol For th's sake of convlnienceq, we 8110aIa here-

after omit subscripts UV of • V.

order potential 0() should satisfy the follow.-
where *42 )4ed S(2) are potential of second order ing set of conditiots:
incident waves ýuid radiated waves respectively. -oý i , .1)- o ( 4.,
They can be calculated wtih relative easae For

we have defined a relation between + - +z V#1V" +

n~s(ira ,2,...i) and nonlinear terms in tHe free
surface cttdition .=nd also in the kinematic
boundary aondition on the mean submerged surface
Z of the structure. Uain6 this relation, the (A) 7 Otsý Lrw C )X +
secoid-order wave exciting force have been ob-z 7 4,j
tained which will be distribed in deatail in the 2X(fX .%_W. ) - ,

follwaiua. 84TJ

1.55So11A8 L,



Radiation condition 4

where D is the fluid domain, EF is the undis- + ÷ ) +22 ( - ,5 ch (7÷+) -
turbed free surface minus the waterplane occu- N'M-I/'

pied by the body. E is the mean wetted sur- +t ÷ z + • O÷+ + •• •
face of the body and EB is the sea bottom.

Now, as mentioned above:+ CU;t + X Co, +

96ý + ÷ 01 +(5) Here the subscripts for wave number and fre-quency are defined as

where the 4w2) satisfies conditions
wF,+ = F,. + F , FW -. ,-F •

*2ýWV1,'" Vk) +and

(B) 0z o )< C- 4 (A - C4 2 ill Ita1,- =o,•,7 1 . (9)

I (9)

*b2) satisfies the conditions ()

(C) I ,* d j)
OL =0.-)E where aN is the amplitude of first-order inci-L •1it9. W , (;, A) < 3z dent wave, i.e.

and *2) satisfies conditions (12)

0 2 and
Two.. (13)|(. 1 . .•l =_(• -a-' -

(D) . . (13)

X , 0) f IT ,( 4 )

The sret of conditiens (C) referrVnP to"(.Zv)V & ' second order radiation poteutial o) is in
the ignme form as chat for the first order ra-

Radiation condition diation potentials. Its solution can he o0-

tained by the sqaN. method as that used for soel-*l 16 t he second order incident wave potent- ving first order radiatio, potentials.
I , 01) 15 the second order radiation potent-')

ial and €P, is the second order diffraction Now we turn to discuss the integral A
potential. it can be sten that the free wzvei "d All-ds. First up sh, al1 iuvesv'igue Che asympto-
anid raves locked to the Cirzt-order wave sys- tic behaviour of ,V).
t am are included in thl. o -).A

Expression (4) may be rewritten As

Using oz as the veritcal axis we 8elCerade
(6 4 it a circular cylnder F. of radius R enclosing
S(6) the structire. The circular cylinder rc divid-

ei the fheid domain 1) Into two parts, an shm.)

in figure 2, DIs the inner d-'rti- enctosedwhere the factor i(wp -wv) is omittedy c £, ;-md , h•. 'cF -,rB
by t TFi re vid 1, wheiv i~ *' re
free-surface and sea botrt\ a,- ,.'(For finite water-depth rit e exprassiou for Do is the outey i- n I t d-M by hc ' o

4, h" been given by BRoers Qst and infinity, , * "o -tdi v e irrrf'0Z
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and sea bottom outside of circular cylinder Ec. for first order radiation potentials:
Then, the set of conditions (D) may be trans- ;' 7Tr(0-k" Ai I
formed into two sets of conditions: 0. .797

For domain DV, l

X() 1,.E4 k .(16)

v+ T V .t•0A-') .AJT

~*= ( ~18)

S__ (j.1

(V

For domaino(X,• D0 ), .) her v,9 - jig

))4)

I o+-'-(,) ,

Radiaion condit ion
V. )S the source strength on the jth panel

where of t~e struc,•..re surface,.
5.s. is t.he areua of jth rauel on body sur'face

Mtat a radius RE can atwayr be found for any

•a, (x• •)/ arbitrary smatl positive numher t, for which

-j (4 +k

FIo r iS analI enough, thDn ¢,nd ttic'•s (?)

~cman be approximated by the following aet of

+ +y

h 79 co"ditio3s:

- a - OB""Plo ( I.yJAl)e,(0

041-42, ~~~ -0(A)A hrevw/
X-W - v~~ - k hkR-

In order to iiwestiliget the Iboha~jour of _u• ,"•).t In{lty, we need only to inveati ite ( a.
ht oi . W.hn the rrdadiu of tN; e- a( L be"f'oundfo-

c~abar cylinder sc il large eiougi., nbe hav. form

1Si7

$ ' .. +,. w o



The solution cf 2) can be expressed ds closing the structure and the circular cylin-
follows der of radius Iý . Let R >> P.. Again the

cylinder ER divides the fluid domain D into

2 _ .•, f t') two parts denoted here by Di and Do. Domain
(; ) V- + Di is enclosed by ER, EFi, EBi and Z, while

domain Do is bounded by Eir, ZFo, ZBo and
+_4 + A infinity.

N -In domain Di, using Green's third identity,

s o(+ 'L CNd o'- 4) K we have

(21)7,,S
where R= (-)+ (Y Lodf JJpi-4ds5+ fJ( 0,4 PIP+= .i),

o-c) and s-c) are the siurce strength and +J/ 8 (jx --

area of the jth panei located on the circular 2±) dS (24)
cylinder of radius PF respectively. v n

Jo is zero order Bessel function of first From free-surface conditions of (E) and (H),
kind. we may write

YO is zero order Bessel function of second ,.i,

kind. an an tti) • (25)
Ko is zero order modified Bessel function

of second kind. where

Silaý eOrmuoae can be ob ained for OW , free -2 v .i -y ve•v + o

4 d 2), Tdox•, Pdokoy) and 4doz2 using the same
method 17 as in the derivation of formulae," t 2 " + Ao, -
(16)-(20). Thus, we have

'3', (26)

-~7qg _ _)1 IOn the sea bottom, we have

"A ..C + .) Note that *c2) =•) on ER, we have

(22) jj ",0 . #.O.

Eo ession (22) is an asymptotic expansion 21r(VA•)c . .' I;,l _6) rA),,.

o at infinity, which holds approximately il )- -
as R 4ý kl . d6'#¢ ',) •C))) ( !)

Fo•mula of calculating 11r7 -is2T-- 4, ,ig o) (4)

Following Molin's idea // and using the ,,,--
asymptotic expansion (22), a relation similar
to Haskind relation is obt ii.ed. Based on this O(-L)
relation the integral ffE ý 

2 njds may be calcu-

lated. where oib), Asjb) CA) are sorucestrength,
Let area, control point of the Jth panel and Nb,

the total number of pane s on tie strqcture
112. ==Re{ [ (23) surface respectively. o~c) Asc1 0 .- are

-source strength, area, control point of the
where w - v correspond§ to the difference jth panel and Nc, the total number of panels
frequency oi potential q• 2 ) and +j satisfies on the surface of the circular cylinder of ra-
the following conditions: dius k, respectively.

7 '. =3 (Z, , ) (. Using relation of (25)-(28), expression (24)

I may be rewritten as:

as R -4 we have

-(F ,$

Using o2 as the vertical axis, we generate Using relation (30) and substit rcg in the
another circular cylinder ER of radius R en- known body Purface condition for AlLi from (E),
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we can ultimately evaluate the i*tegra Q.Q
ff njds and hence also ffE (¢o + ý1ý))njds. _L -

'.+ .. +(T"j-Q'j)
3. Numerical Results

and subscript K, ý, ij(X=l,2,..,6) denoteWe consider the first-order wave elevation respectively second-order force(moment) in the
in a regular wave group consisting of N regu- kth direction, dua to the Ith term of formula
lar waves with frequency wi, i=1,2,'.., N. (1) or (2) and due to the (i,j)th pair of bi-

" ? frequency, the superscript- denotes difference
ýj= . Cei (C t +.) frequency. (Appendix 1)

In the numerical example thirty frequencies Computation has been carried out for //toth
are used. See Tab. 1. model of a six column , two-floater semisub-

TAT.E 1 mersible, the principal particulars of which
. .are given in table land Fig.3

_Psipnation Value ,11) (1
L T7036 -i 1.41"4 4.74$ T

1 .43 9 7n 1.636. 4.970 zi
nt-. r 7 1K /.Ss9 S-q. -, I N

V. .2.t I .
3  

I.Ori S414________ __________

a ~ ~ .waetanhstefloing form S43

0.o 7, 1.1 )n 2.,4 5,1

' "'° " I ,•o• Ts.P "IF

S22 0.67 M+ 2.144 6.091

S 

"

Th eon-re foc assodccioted ffwciioh sruct
a Nwav traihhasteflulwinioor of- integral

I , th' ,haae / . I j/s

" •'"',•'"To Frol(30, it i ntehrath tlcatheatintte h suae-

L " ' ( pj / Qq) of the hull is approximated! by a total of 24

Theple facet elesnts. The facet achemnwisatioc

w,.,f a qarter of the hull ith shf o in Fig. 4.iF. " CP,,j * P,.. - : (I. + + )

,, ,�... PA.I --1 + '-- + "j.Ii i

+3 . ... +



and the integral is approximated by the summa- computer. Fig. 5 and Fig. 6 show the calculat-
tion ed results for quardratic transfer function of

S(second-order forces in surge and heave in a
II A/J. adS (31) following sea. The dotted line takes into

account of the first four terms of eq.(1) and
h (')k denotes the value of the function (2) only. The chain line includes the above

at the ceuter of the kth panel and Ask four terms and the incident wave force in ad-
is the area of kth panel. dition, i.e. the integral ffE 402)njds. The

_ _ _ _ __ •solid line fu~t~er takes into account of the
integral ff 0 n -ds, i. e. the force due to
diffraction. It is observed that the differ-

ence between them is very small for secondary

heave force response and that the force due to
incident and diffracted second order wave force
could for all nractical purpose be neglected.
However, this is not in the case of surge, the

T second order diffraction force ffE 2S n dsPPOFILE ENf VIEW seems to be important, especially for tXe fre-

quency range below 5.60. Nevertheless, the
force due to incident wave 42), i.e. the term

Sr/ h i 1 Eý (2)njds is still small and could be neg-
lected. One should bear in mind, however,
that frequencies on a model scale of less than

TOP VIEW 5.60 corresponds to a full scale of 0.8 sec- 1 ,
which is usually the energy gathering district
of a wind wave spectrum,

BOTTOM VIEW

Fig. 4

The second integral " • fftF ýjfFeeds

theoretically should be integrated over an
infinite area of free surface. This infinite
area is divided into two fields by a circle of
radius Ra. The near field free surface (i.e. 4
R Ra) is approximated by 228 plane facet ele-
ments, and I is evaluated by summation as in
(31). The far field free surface (i.e. R>R 0a)

is approxiamated by the following integral

* J,4Pj J,, dS ;:j I
"/ Wt (If fr );A (32) .~ J.-rJ -" bO--r--6.00.. ,I.,.

where Gauss approximate integral formulae OfIGA

J i(X)d~c.tP7IN ~:e Qjc Fig 5

and 4. Experimental Results

J i) A floating body executing free slow surge
oacillations (t, ) in calm water under a soft

are used. wkarz' the integrated coefficients spring is described by
and ti are integrated nodes. ,,03

Since only the lowfrequency long-scale case

is conbidered, the function ¢jfFee does not where A,-m+a, m is the body mass, and a is the
have the charactrr of high frequency oscilla- added mass at wo; Bo is the calm water damping
tion and hence is amenable to such methods of coefficient, the poteuti l part of which is
approximation, due to radiation waves ob 2 )of frequency u0 .

The cotmputation is carried out oe an 1IL43031 Dividing throughout by As, we have
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S+ 2 o, 1 as before.
00abfr = hydrodynamic force i.a

where tp,= , and Wo,=!ic (2
V V A. phas 9 with E; the hydrodynamic force being due

%o is determined experimentally by extinction to U2) and 42) of frequency Z, and 4 being
tests by CaoClJ-J for the semi-submersible con- the horizontal orbital velocity induced by
cerned and found to be 0.1025, *(2)
ii) The same mooring system and body is next 2 h ""
placed in a regular wave of frequency wi , and hydrodynamic force in
the same extincýon test per-ormed. Another phase with $; the hydrodynamic force being due

set of values vtini wo), wt I (wpo) is deter- to () and - - 2) of frequency w-, and & being
minedt In this case the mot,(ion is des bed- the iorizontal orbital acceleration induced bymined. In thi.s case the motion is described ()

by W

-- F( 2 ) second order exciting forces of fre-A o ÷ B oX + C X = F '• + F1,• + Fli? (3/) e
0  quency w, which are the sum of the first four

terms of ( ! ). These components are related
where F( 2 )is the mean drift force due to re- only to the prodixcts of first order potential,
gular wave wi motions and their derivatives, aid hence with-

F(2) is the second order force in opposite out direct bngTing to the second crder potent-
phase with , and hence a damping for~e ial 2 D(.

=(2) ..-- However, it is not easy to carry out such an
experiment accurately and besides, it is im-

F 2 ) is the second order force in opposite possible to break up the various components on
phase with , and hence an added mass the RHS experimentally.

.F(2) vX Therefore, a special case for our numerical21 model is taken, i.e. the body is restrained
Let a ,B = r be the added from second order motion - but free to executemass and dam in f 1  • t

damping coeffcient due to waves, fi-st ord rnotions - and the forces F(2),
then rearranging (2) and dropping out the mean F (2) F 2 obt d f2om

S(2) obtainedfo numerical computa-
force F for it does not contribute to the tion.
oscillai'Un motion, we have

if I The basic assumption now is:
A1X + + COX =0 (35) F F,'

where A1 =Ao + a
B1  Bo + BC i.e. the second order hydrodynamic forces ex-

Again putting it in normalized form perienced by a body in a bichromatic wave
R +2p bI +W2X 0 (36) should be approximately the same, be it be

where BC streamedpast by an oscillating current or be it
be doing the oscillation itself.

A= With this in mind the numerically calculat-

84 a,, a4ed forces due to (b and Oý2) in the present
Define 1J 0 U- o -._ 2A_ (for-example are reduced to the same form as Cao,

and plot the experimental results nondimension- viz:
ally, the points in Fig. 7 are obtained. F\ 2- ) X /000 (3P)

In the figures K V4 2",41-'L. (37) The constant 1000 converts tons into kilograms,

while all computations are based on , j of
unit amplitude, and w= 0.222 sec-I, a figure

and the abscisesa is co , L being the convenient for calculation but being near to
length of the semisubmersible and 2ýa the wave W, and w of the experiment.
height.
iii) The same mooring system and body may be Thv plot of pC' between numerical and ex-
placed in a brichromatic wave field of frequen- perimental results agree reasonably well.
cy (Wi, wJ), J > i, propagating in the +x di-
rection, and the same extinction test conduct- 5. Concluding Remarks
ed. In this case when the transient of freq.
W1 dies out, there will remain a stable forced This paper presents a numerical solution to
oscillation of frequeneyw--wj-wi. The me- the practical problem of calculating second
tion may be described by order oscillating diffraction loads on a semi-

AX +6 8, * oX-F+ F:.'+F;'+F submersible. The diffraction component is
trivial with respect to heave force, but is

where A., Bo, Cu, P( 2 ), carry the same meaning consider.,ble for certain frequencies of first
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order waves in surge force. These frequencies, superscripts(O),(I),(2) denote zeroth,
furthermore, are usually the frequencies of first and second
high energy density in a moderate wind wave order quantities
spectrum. Hence second order diffraction load
in generil should not be neglected. Reference
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Appendix

It is known that the firut-order reponse q
in an irregular wave, for example the first-
order force response or the first-order motion
reponse, has the following form:

o • where ri 4s the amplitude of the ith component
wave, qi is the first-order response correspond-
ing to the frequency wi, qi= qimelcqi, qim is

the module corresponding to the frequency owi
and eqi is the phase.

Now discuss the multiplication of two first-
order response p and q,

~mC-'6LQjt+fj +eqj) C4 Pd$jmC C

o +ti- +p~ 1PI.( t +6j +~j Pi gi.
' g . ... . ... .

1~.60 3.20 4.60 6.40 F1.00 Co (i*jt1jI XtEj o (~-0~
OME GA ej + 4 &-E) 4j Pi. gjm (~d ((f i+ cJj)t

Fig. 6
Ci+ fi(+Cc) C (e+ei)-ý" ((Wi+Wj)t + ( +.E ),- (N+E'j)

Ej).4k (ex.-elj)) f, (Pi. qit<4 Upi+ f)))

A 2 0-12on et• pFx•RPINT, CAO (4.

06 ) w~ a Co R( Pd+0 j) a (.L )Jt+ C ) .m

"of which the difference frequency

'A '
AX.y On the other hand, from (7 ) the second-order

incident waves also have the difference parts

"/ Fig. 7Therefore the second-order difference fre-
quency force can be written as

Fig. 74
t'• ~ P. = ,• (rq + P;1U ij .. + P;j O

,-4 +" +"$+
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Abstract
The finite depth occurs in many applications

This paper is concerned with the 3-D linear and it may be taken into account by various
diffraction-radiation problem in a fluid of means. When the method requires the evaluation
finite depth. An extension of the Localized of the Green function, the finite depth
Finite Element Method, derived from the assumption leads to rather expensive
two-dimensional method developed by K.J. calculations and up till now, no work is known
Bai,is presented. After a description of the where this calculation would have been
method, we shall give some results about the optimized as in the case of infinite depth
convergence properties of the numerical (Newman /!/). The Localized Finite Element
problem and a first numerical experience Method avoids the evaluation of the Green
devoted to the study of the ratio between function. On the counterpart, the number of
accuracy and computational time. Further degrees of freedom is increased. But we
possible developments will also be indicated finally expect an improvement of the
as concluding remarks. computational costs.

The method has been developed in the frame of
a 3-D diffraction-radiation code based on the
Jami-Leioir method of coupling between
integral representation and finite elements
/2/. Many tasks (discretizatiorn...) and

I. Introduction calculations are common to both methods. When
performing a complete analysis of a given

The importance of the diffraction and structure in the frequency range, this will
radiation effects of natural obstacles or avoid duplicated work, if both finite and
man-made structures on water waves is infinite depth situations must be taken into
meaningfull in ocean engineering. The account.
linearized problem has received analytical or
asymptotical solutions in particular limiting As a short review will show, a complete
cases. Numerical techniques have been three-dimensional development of the method
developed for arbitrary geometries, based on was still lacking although every element was
various methods that have already scored already known.
successes during the past decades.

A short review
Then, although research has been engaged
towards new problems with non linear boundary The Localized Finite Element Method stems from
conditions for instance, from the numerical earlier works by Bai and Yeung during the
point of view, investigations have still been years 1973-1974. But the first complete
carried on so as to reduce computational presentation is due to K.J. Bai /3/ and C.C.
times, storages and costs while increasing Mei (1974) /4/ who first used finite elements
accuracy and generality of the programs. combined with eigenfunctions expansion. They
Linear diffraction-radiation analysis must be were dealing with the "two-dimensional
now considered as a very standard calculation boundary value problem for time harmonic free
and only a first step in the complete analysis surface flow in water of arbitrary bottom
of offshore structures, which must be iterated topography". C.C. Mei /5/ gave a very
a large number of times, at various interesting review of numerical methods in
frequencies, including finite depth cases. water wave diffraction and radiation which is

(m) the GHN research team is associated with the Centre National de la Recherche Scientifique and
l'Universit6 de Paris VI. It is also sponsored by the Direction des Recherches, Etudes et
Techniques of the Ministbre de la Ddfense.
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devoted to the comparison between integral
equation methods and hybrid element methods.
In a recent paper (1981), Grilli /6/ compared
the numerical properties of the Localized
Finite Element Method to those of a pure
finite element method with the Sommerfeld
radiation condition applied at finite distance Fs
from the body. This is an example of the
persistant interest of investigating further
numerical properties of linear diffraction
radiation numerical solutions.

Several authors paid attention to some
theoretical results that ensure the validity
of the method : B

Ararha et al /7/ established the uniqueness of
the solution for the long wave problem in
shallow water and Lenoir and Tounsi /8/, more
generally, studied the convergence of the
discrete solution. The results presented below
have been derived from their work.

Instead of finite elements, iGegral equation The linear diffraction radiation problem
formulations can be combined with the settled in domainl is a boundary value
eigenfunctions expansion. This possibility has problem governed by Laplace's equation and is
been investigated by Yeung /9/ for the 2-D usually formulated as follows
time harmonic water wave problem.
A true 3-D numerical method which is to some '•denotes the velocity potential, it
extend related to the Localized Finite Element satisfies the following set of conditions
Method, has been developed by Chenot /10/. The
method consists in solving a series of Neumann
problems, the various Neumann boundary
conditions being given by the normal 0 0, in S1

derivative of each term of the series as/an = on
expansion. The various solutions are then
combined in such a way to minimize the a,/ n = 0 on B (P
discrepancy with the outer solution.
Unfortunately, numerical shortcomings al/an h on r
(eigenfrequencies) appear due to the Neumann lim D-II@/an - ioid 0, 0
boundary condition. Nevertheless a program was r
derived from this method, that probably was rl(r)

the first 3-D finite element program in this
field.

The Localized Finite Element Method has also where 3/'ndenotes the normal derivative
been extended to other problems as the w denotes the pulsation of the
two-dimensional steady ship-wave problem (Bai incident wave
/11/), the 3-D ship motions in a channel, (Bai Yo denotes the unique positive root of
/12/), the two-dimensional wave resistance the e uation : thYOH = y/y0
problem where an original extension was H is the depth at infinity
successfully attempted to match a non linear o (r) is a cylindrical surface going from
formulation in the inner domain to a linear free surface to bottom and surrounding the
one in the outer domain, by Lenoir and Cahouet body./13/.

The last condition is the so called Rellich
radiation condition which ensures that the

II. Formulation of the 3-0 problem solution has a convenient decreasing
asymptotic behaviour /14/.

We consider here a fluid domain delimited

by a free surface and a bottom at finite The uniqueness of the solution of problem (P
depth. The domain goes to infinity in the has been established by John /15/ under
horizontal direction. A rigid body is piercing restrictive geometric assumptions : the
the free surface, denotes the boundary inmiersed pirt of the body must be contained in
between the body atid the fluid, the vertical cylinder lying on the water line.

Maz'Ja /16/ gave an other set of geometric
The fluid is assumed to be inviscid and assumptions valid for immersed bodies which
incompressible. The bottom is supposed to be also ensures uniqueness. Let us also quote a
flat at least beyond a finite distance from more recent proof due to Ursell which is only
the body. devoted to the two-dimensional problems, but

is in fact a real improvement /17/.
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In the outer domain @D satisfies
From now on, we shall assume uniqueness and
existence of the solution.

The numerical methods available today for At = O,

solving this 3-D problem are based, generally /;n = on Fs
speaking, on boundary integral equations or e oe
finite element techniques. They have lead to / an 0 on B (P
various programs that work successfully now, ee e
although a few numerical difficulties may
still remain (irregular frequencies...). Most
of these methods require the use of a Green + radiation condition
function which expression is now well known
but not very easy to handle from the numerical Let us now assume that 4i and @e satisfy (Pe)
point of view (see Martin /18/ and Newman and (Pi) together with
/1/). Especially in the finite depth case, it
becomes rather expensive to compute.

The Localized Finite Element Method, valid in e a Z a
the finite depth case, is an interesting n n
alternative to these methods,as it does not then they will match analytically along E
make use of any Green function. The and respectively be equal to P/g and @/p• /s,
development of this method has been shortly to ID/ Q/n.
discussed in the introduction. As far as the
3-D diffraction radiation problem is So let us define the operator
concerned, we are not aware of any numerical
development.

Let us recall the first main principles of the T HI/ 2  (E) + H -1/2
method as K.J. Bai established them. Even if f +" ate
at first sight our formulation seems
different, we nevertheless followed his
tracks, where @)e satisfies (Pe) and the Dirichlet

The fluid domain is divided into two condition 
4)e/a= f.

subregions. The inner domain will be By 0 we denote the solution of problem
discretized into finite elements while an (P)
analytical representation of the solution will A'. 0 in
be used in the outer domain.

Let us denote by Q the inner domain 8,yn on Fs

delimited by : a4/ an h on r, (P)
Fs the free surface

B the bottom a-V a 0 on B,

" the body surface a8/,an -TD on Z
a ficticious outer boundary

Through this last matching condition, we in
./fact impose to 4 a condition which is

strictly equivalent to the radiation condition
at infinity.

So 4 is equal tot * /A and problem (P),
9 '"though settled in a bounded domain, is

strictly equivalent to (P *). The problem can
now be treated by numerical methods.

The main interest of the method lies in the
fact that we can express operator T
explicitly, by means of the so called

In domain R the restriction of the elgenfunctions of the outer problem which are
solution 4 of problem (P*) satisfies : easy to evaluate, provided E is a cylinder

0 0, in •, of vertical axis and circular basis. This, of
course, may be a drawback when the shape of

Do /an av on Fs, the body is very different from a cylinder. It
will lead to a complicated mesh.34)1 /3n "h on r' (P)

301 /an 0 Oon B
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Spectral decomposition of operator T We have

The eigenfunctions of the following problem Ilk' n'k') = k
provide a spectral decomposition of operator
T: (Kronecker symbols)

Thus :

alk (T)/ 8 A (0) Tf = I 2 (f, I ) T( @ )n=- =: k=O nk nk

We then solve Pe((Dnk ) (i.e. (Pe) with

4'nk as Dirichlet condition on E ).
The solution is of the following type

where T%= Tk 2

and 4k(Z)is defined over (-H, 0). (r)

This set of eigenfunctions can be easily nk nk nk 7)

obtained. We have
Substituting this relation in the Laplace's
equation, formulated in cylindrical

k =0 coordinates, we easily identify the

Do(z) - ch vo(Z+H)/O% functions"/ nk(r) as being the Bessel functions0 0 0/19/:
k>l

'k(Z) - cos vk (z+H)/ k n = 0 'nk 0 Ha Cvk r)
th vo H = v/v

t n > I 'nk = K, (vkr)

k H The associated functions H2 and Im have been

eliminated, because of their asymptotic
behaviour which does not satisfy the radiation

ak, k 0 0, c have been determined so condition.
that 1 1= 1 Then we have

k L2(-H, 0)

We can show, by means of the compact self
adjoint operators theory, that the h'k make T = .e (R , z)
an orthogonal basis ofH'(Q */Q) and a total (nk r nk
set inHl/2(C).
Let f be a function defined over E . We
have where

+co
0z)=. C (z)einO 

ef(e, zR) =kEC ,zz (
n... n 3r Ok zTnk )/Tfk (R) x ýA(elz)

Every coefficient Cn(z) can be expressed in and R radius of E ; consequently
terms of the eigenfunctions of (Pk) and f can +T + I 9
be expressed in the following way Tf = 2. -n(R) 4,(z)einO

n-- k=O Tnk

f . k F f4Pnk) )Dnk We then introduce this formula into proLlemn n.- k=O kP).

ine •111. Convergence with res pect to the rank of
where Onk -- ke and C ) denotes some on oat o eath nseon esTrT
scalar product iPL2 (0, 21) x I-H, OJ

For obvious numerical reasons, we must limit
0• the expansion serfeý to a finite rank. But

(f. g) " fH fgdOdz doing this, we must verify that the solution

(f '21 of the trvncated problem tends to the solution
of the real problem when the number of terms
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in the expansion series increases to infinity. The interpolation theory gives
It is also interesting to know whether this
number of terms may be small for a given
accuracy, because of the influence it will HB(-H,0) = -H,),L ý-H0'
have on tie computational costs. B B'

we are lead to characterize the difference 0 <s <4, s = , s =

betweip ý , expressed by the whole series
and ý ,denoting the truncated series to N lhe usual topology on interpolated Sobolev
Fourier coefficients and K eigenfunctions of spaces and the spectral decomposition of
(Pk), by an expression using N 4nd K. This operator T defined above, lead us to
will imply the convergence ofD IK , solution k A
of the truncated problem x C H3  (-H, 0),II x = lkx II < -___II x 113

A4NK = 0 in a 
H'12 K5)2  HB

3DN K /an = v ONK on F, where qkxdenotes the truncated expansion of

aDNK/an = h on r (pNO X to rank K.

aONK/ýn = 0 on B As far as the 3-0 problem is concerned, let us
+W +CO .nT recall a result concerning coefficient Ck of

aDNK/an - -- (R) (f, ID )'D the Fourier series expansion of a function f

n=-• k=O nk mk f € ,MM, k c N,
The various convergence properties of the
Localized Finite Element Method applied to the H
2-D sea-keeping problem have already been I Ck (f) I < n
studied by Lenoir and Tounsi /8/. We shall sum Iklm
up their arguments for the convergence of the
truncated problem relatively to K. The velocity potential that we have expended
Then, their will be very little work to do to in F urier series is C - with respect tu 0
extend the result to the 3-D problem, by means If ¶"O denotes the truncwd Fourier series
of some properties of the Fourier series as~ociateO to ( , and ¶ 4the expansion of
expansion. ¶ P over the K first eigenfunctions, we

have
Lenoir and Tounsi give an estimation of
convergence related to the rank of the
truncated series, by applying interpolation
theory between Sobolev spaces /20/, /21/, in lo-H <
relation to the weak formulation of the
eigenvalue problem (Pk) defined on the
interval (-H,O). They first studied the C , m Am
convergence of the truncated series exponsion
of . This problem is similar to tho one of Am C
the convergence of Fourier series. But here, - 11NKII < .... +
as the functions Involved are not periodic H1/2 Nm K5/2
functions with respect to z, difficulties
appear at each extremity of the interval. That
makes things more complicated and leads to
weaker results. This may be noticed in the
definition of the Sobolev spaces they used

H (-H, 0) a HS(-H, 0), 0 < s 3

dvd
H 8(H,0) ýc~tH 5(-.H)/ u (0) \0) IV. Variational formulation

dy (..H) v 0 } <s <7 The extension of Bai's method to the 3-D casea; 0has been undertaken complementary to the

Jami-lenoir finite element - integral
S2 representation method. This is the reason why

H-.0) dv problem (P) has been discretized into finite

HB • dy dy applied.

S y,-3(-H) (-H) 0 } When applied to the velocity potential D and
dy a trial function • , the Green formula

7 gives
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f AITWdw f E) 0/an Td 'dL
1 Fdw

As
as A part of the narrow banded finite element

matrix is modified by the boundary terms andfilled up as nodes of the boundary are coupled

JfVDV'dw = J'Fs@P d + .r "Ydb- frTOd• with each other.

Remark
where

An other possible discretization is obtained
H¢nk by using Lagrange multipiers as J. Bai did it

T - ,nk) .... hiise--f.
n,k r This method consists in considering that the
Let us Mal tcoefficients knk=(P @nkO of the analytical

Let us callthe shape functions of representation are supplementary unknowns. The
the discretization with M nodes. We can missing equatiors are given by the matching
write 4 =EAi, wi , where pi denotes the condition on Z
value of P at the node number i.
As trial function 1 , we must choose any 1nk - ( n) 0
shape function wl. We thus obtain equation (2) nknk
in a matrix form

Dfvwivw - v D jwiw~ +kThis formulation leads to a bigger matrix but
i ji + fkw offers the advantage of giving the

. ýPi Twiw. coefficients of the analytical representation
1 .and thus the velocity potential outside of the

We can develop the coupling term inner domain without any othpr calculation.
In this case we can give the following sketch

R -^ ) of the matrix
T - 'D n..R)wnk) (0nk' wj)

nk nk

[FE

k nk F J
M

SI"(wi1 nk)( nk'w ) + (.nk'wi)(wj4 nk)) As we said, the matrix is bigger than the
n I finite element matrix itself, but with a lot

of zeros and the part due to the finite
It follows that the matrix is synmetrical elements ( which is narrow banded ) is not
though not selfadjoint. modified by th'e boundary terms.
Strictly speaking, the shape functions wi are
x.y,z dependent. But it is more convenient to V. Numerical results
replace them in the integration over E , by
two-dimensional shape funcitions Wi(z w ) ,hich We present a few numerical results that will
lead to analytical integration, help to precise the main characteristics of
When using finite elements of seco.id order, as the Localized finite Elewent Method by meaps
it will be done below, the two fo'mulatlons of appropriate exaiples.
are consistant, and we can consider that the
discrepancy due to these different We have studied the diffraction of ar incident
interpolations is negligible, when compared to Alry wave by a circular and an elliptic
that due to all other sources of vertical cylinder -eaching the bottom and
discrepancies. This should be nevertheless piercing the free qurfoce , Radiation due to
justified, sway motions has also been calculhted.

Only a quarter of the fluid domain has toeen
The discretisation we exposed gives a matrix discretized (see scheme 1), by taking into
of the following type account symmetry and ant isymnetry properties

of the solution with respect to the plones
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x 0 and y =0. number of nodes on (s) and accuracy of 5 and 0.5 , while the maximum
the total number of elements :E. The main relative errors are 7.2 and 1.23
characteristics of the different meshes we
used are presented on table 1 numbers of
elements w'ith respect to r, a and z
(respectively I,J and L), total number of Convergence of the discretization
nodes (M), number of nodes on E Z) and
total number of elements (E) and the radius of We know that the error due to the
z (R). The table also indicates the discretization into finite elements of

characteristic size of the mesh, denoted by h. characteristic length h, satisfies
This length is the largest dimension of all I Ah
elempnts in the mesh. FIA Log (h)

In the case of diffraction by a circular This has been tested here on the diffraction
cylinder, the calculated velocity potential thy a circular cylinder for fixed values of K,
has been compared to an analytical expression, N and R.
called Mac-Camy formula /22/. The discrepancy
has been measured by evaluating As shown on figure 1, we could verify that the

Localized Finite Element Method follows this
- I law. The particular set of shape functions

& - sup l ex used on Z does not introduce significant
i=1,M 51--i discrapancy.

ex

where denotes the vilue of the ca'culated Conver:4ence with respect to N and K
velocity potenti-al at node i, and , the
exact value of the potential at the same node. We have then paid attention to the v/ariation
This comparison allowed us to test the of the accuracy with respect to the number af
validity of our code. Fourier series terms N aind elgenfunctions K.

When the exact solution is not known we We have fi-st solved the diffraction problem
replac,,-d it by calculated values with a with sever0, values of parame~er P, %'' N + K,
sufficiently fine .Aesh. This did not spoil the with N - K . This has been dine for a given
investigation we made of the influence of the fine mesh (m ),and -in fact for a given
various parameters on the solution, for we position of Z'. The error we have measured is
onlyv needed a reference. Then, the error hias plotted on figure 2.a. Although it is a rather
beer, denoted by . It is sometimes worth of rough test, we can, notice that the convergence
interest to evaluate the discrepancy only with respect to P is very fast., As a miatter of
on E . Then, the error has been denoted fact, as soon as Pý4, thle error is no longer
by Er~. due to a lack of terms ir the expansion series

but to thle roughness of the niesh.
Tet ihegoucin Of course, the velocilty potentlasl of the

diffraction by i vertc;, cylindelr is a rather
The eigenfunctions (,Pnk) are solutions of' smooth funcfinv. It i- a reasun why we needed
problem (P) with an appropriate Neumann only i. few eiqenfpctlons. buos, in order te.
condition on r . Thus , they can be used as Investigate furth,(r the soilarate influetices of
exact solutions to evaluate the acc1uracy of N and K, we hav" tolved the radiation problem
the discretization. of the swray motion of an elliptic cylinder.
This accuracy can be meas~ued in two different Edch Ocramettr 11 and K tolok the values 2, 4i,
ways. The evaluation of C , as defined above, 6, ý1' 10 while thle other one was fixed to 10.
provides local information as well as global A previmu convergence study had shown that
information, if the discrepancy is analyzed KwN-10 Vith the mesh m . give% a quite,
point to point. accuratie solution, which could replace the
But an other way is to calculate the scalar 4ao';.yti;ai solution In the eValuatiluo; of'ý
product of the elgenfunction chosen, as theý Thýz i-esults are plotted on figure 2-u. We must
test function with itself and the others. lhe flrst ooint out that it is only casual that
vector thus obtainedl cý,n be compared to the the first points are so clase. fther axamfwlts
Kronecknr symbols, would give Sep-irate ;,oints. H~iwever, it is
Such results concerning the fitrst very Interesting to notice that thle sfl-ýed of
elgenfunctilon (n'e0, ku0), are presented on convergence Is less strong 14an previously, as
table 2. Both error evaluations give The functl~on is more disturbed. We even can
significant results, but they do not have say 1That the solution is mc-re distv:-bed with
exactly th& Same mepinqn. The scalar product. respect to cl than to 2, This explialins why,
cakulatlon glves al -mean evi~luatioal -a the for a given mesh, tIte convergence with respect
discrepancy thot ton bt r-elated to the to z is fa~t,,r than that with respect to cl
evaluation %.-) global q-iantitios as efforts.
The other error calculation indicates the
greater relscrepancy -imong all nodes of
discretization. 1,i thia oarticular case. the
Kronecker symlbols are approximated with an



Size of the domain and discretizatior,
Although some care has been devoted to the

For testing the influence of the position of computation, the program used cannot be
Z , we solvwd the diffraction by a circular considered as a production computer-program.

cylinder, using different meshes Thus, time results are only to be considered
mL ,ms ,n, , ms ,ms , corresponding to relatively to others.
increasing R, for given values of N and K.
The results presented in table 3 show an An example corresponding to a "realistic" case
increasing error. This is unexpected as the is presented here. Several meshes of
radiation condition, tpken into account by increasing accuracy have been used to solve
expansion series on E , is better satisfied the diffraction by a vertical circular
when z is farther. But if we pay more cylinder. Times corresponding to tinite
attention to the meshes we used, this ', in elements ralculation, coupling terms
fact a very significant result. For increasing calculation and resolution have been evaluated
the radius of E , we only added elements on separately. All these results have been
the exterior part of the domain, without plotted on figure 4-b with respect to M and S.
changing the discretization w.t;i respect We first can notice that the expected
to 0, (except for the last mesh). It follows behaviours of the computational times are
that the characteristic length of the mesh, h, verified. But the main remark is that the
was increased very quickly. By looking at the computational costs for finite element
evaluati*on of C , also mentioned in table 3, calculation and for the solution of the linear
we can notice that such meshes are of no need system increase drastically, ohile they stay
as si is unchanged while E increases at moderate level for the coupling terms. Two
quickly. main conclusions can be drawn from this
The last mesh, m 6, has one more slice of remark
elements with respect to o . We can notice
that Is not much improved, for h has not - as expected, the calculations replacing the
been substancially improved; but CT Green function evaluation require small time
decreases significantly.
This is a good example of the relative - on the contrary, it Is worth it improving
influence of parameters R, N, K, h, for this the solution method, by taking into account
type of problem . In this case, the the fact that a large part of the matrix is
discretizatlon of the incident wave, that narrow banded, so as to make resolution times
provides the Neumann condition on r , is comparable to those of other methods.
essential. This explains that the influence of
N is very sensitive to parameter N. This Concluding remarks
suggests to introduce in the code a few simple
tests to determine these values, the results presented here are only a first

investigation of the obin characteristics of
Cjnputational times the Localized Finite Element Method.

Nevertheless, they encourage to a more
An investigation of the computatior.nl costs is complete investigation of the possibilities of
of main interest as they are expected to be the method.
small compared to those of methods requiring
the Green function evaluation. It would be very meaningfull to compare the
We already can predict the time rates with case of a very deep bottom to infinite depth
respect to the parameters involved case, so as to determine more precisely when

this assumption is valid. The method could
- we know that the finite element computation also be compared to infinite element

time increases as M , (M denotes the total techniques, that ri.ve been developed in
number of degrees of freedom), fluid-structure analysis /23/.

- the linear system Is solved by means of a Referenc__s
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E

13 %

10 %

5%

Mesh M3  I 3, J = 2, L 2

Scheme 1 2 %

0 1 2h
Figure 1 Finite element convergence
,D-Iffraction of an Airy wave by a
vertical cylinder)

Mesh I J L M S R h

m1 1 27 9 2 2

m2 2 2 2 125 25 2 1

M3 3 2 2 175 25 2.5 1

M4  4 2 2 223 25 3 1

m, 5 2 2 275 25 3.5 1

m6  5 3 2 385 30 3.5 1

Table 1 Main characteristics of the meshes used
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2-a Diffraction of an Airy wave by a vertical 2-b Sway motion of an elliptic cylinder
cylinder

Figure 2 : hifluence of the truncation of the expansion series
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Nb of nodes 125 175 225 275 385
Nb of elts 8 12 16 20 30

S2.3% 3.2% 9.1% 20.0% 18.01%

E 2.0 % 2.0 % 2.0 % 2.0 % 0.5 %

Diffraction of an Airy wave by a cylinder
Table 2 : Size of the domain and discretizetion

t (s)

30 /

20 c u i

J ;

Figure 3-a Time costs of coupling terms
calculation

Ln (t)

8

6 30

S... A . .... . . .. ... -.
4 .- -2- ' . . 20

0 o rP 
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M 27 125 38 0

S 9 25 25 30

A time of coupling terms calculation
1 time of resolution
o time of finite elements calculation
- relative error

Figure 3-b : Comparative calculation times for several meshes
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TOPICS ON BOUNDARY-ELEMENT SOLUTIONS OF
WAVE RADIATION-DIFFRACTION PROBLEMS

Paul D. Sclavounos and Chang-Ho Lee

Department of Ocean Engineering

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Abstract A distinct feature of wave boundary-
integral equations are the " irregular "

Two topics un the numeric2l solutior: of frequencies. They coincide with the eigen-
boundary-integral equations arising in linear frequencies of the interior Dirichlet or
wave-body interactions are discussed. The Neumann problerus, and are known to introduce
properties of a spectral technique for the large erroro in the predicted hydrodynamic
solution of the integral equation are analyzed forces, often over a substantial band of
and compared to the conventional collocation frequencies. A comprehensive analysis of the
method. It is shown that, using this tech- mathematical properties of boundary-integral
nique, hydrodynamic forces predicted by the equations, (with emphasis in acoustics), along
source-distribution method are identical to with a survey of techniques used for the
those obtained from the direct solution for removal of the irregular frequencies, is given
the velocity potential. The second part of the in the recent book of Colton and Kress (1983).
paper investigates the numerical properties of The numerical aspects of boundary-integral, as
a method which removes the effects of the well as finite-element, hybrid-integral and
irregular frequencies for bodies of general finite-element/boundary-integral methods in
shape at a small computational and algorithmic free-surface flows are reviewed by Mei (1978),
overhead. Its performance is illustrated in Yeung (1982) and Euvrard (1983).
the evaluation of the heave and sway hydro-
dynamic coefficients of a circle and a rectan- The first part of the paper analyzes the
gle. properties of a technique for solving bound-

ary-integral equations. It is often quoted in
1, introduction the literature as the Galerkin method. In most

implementations of the boundary-integral for-
The solution of boundary-integral equa- mulation, the body surface is approximated by

tions for the evaluation of the linear wave a collection of N plane quadrilaterals or tri-
loads on marine structures is a common task in angles. The conventional collocation method
today's practice. Its success is due to its enforces the validity of the equation at a
algorithmic simplicity, the ease of describing single point on each panel, usually the cen-
the surface of a three-dimensional body by a troid. The inethod proposed here, averages the
collection of facets and the moderate size of equation over each panel and avoids the need
--ae linear systems to be solved. These are to select a collocation point. It belongs in
illustrated by its widespread use by aero- the general category of "spectral" tech-
dynamicists [ Hess and Smith (1966) ]. niques which express the solution in terms of

N basis functions, and then pre-integrate the
In the presence of a free surface, the product of the equation to be solved with each

efficiency of the method relies on the fast function of this set. Here, the i-th basis
evaluation of the wave-source potential which function has the value one on the i-th panel
is a substantially more complex function to and zero on the rest of tIm.
compute than its counterparts in an infinite
fluid and an acoustic medium. Existing methods The Galerkin technique has a Ret of inter-
for the computation of its values and deriva- eating symmetry properties. The diagonal ele-
tives are hard to evaluate, since it is the ements in the added-mass and damping matrices
performance of the integrated radiation-dif- obtained from the source-distribution and the
fraction computer programs that is usually Green method are identical. The off-diagonal
reported. For the three-dimensional comput- coefficients A,-, B. obt a ined from one
ations reported ir the present paper, a set of method are idenicaiJto the A.., B.. coef-
very efficient algorithms developed by Newman ficients which follow from 3#he ;Aher. More-
(1985a) for water of finite and infinite depth over, the exciting forces obtained from the
and coded it heh subroutine FINGREEN have been solution of the Green integral equation for
utilited. the diffraction velocity potential, are

identical to those obtained from the Haskind
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relations with the radiation velocity poten- degrees out of phase from the velocity poten-
tial supplied by the source-distribution tial, or in phase with the pressure. Thus
method, and vice versa. Analogous results do energy may flow out of the interior domain
not bold in the collocation method. preventing the persistence of eigensolutions.

The direction of the energy flux is controlled
Computations of the hydrodynamic coef- by the sign of the constant used in the linear

ficients for a semi-submerged spheroid and a combination of the two equations.
truncated vertical circular cylinder have been
carried out by Breit, Newman and Sclavounos Euvrard, Jami, Lenoir and Martin (1981)
(1985). No substantial difference from the were the first to adapt this methodology to
predictions of the collocation method has been wave-body interaction problems. Their
observed. Near the irregular frequencies, the formulation combines a layer of finite
Galerkin method led to a reduction of the elements in the fluid domain which encloses
error and the frequency bandwidth over which the body boundary, with a boundary-integral
it occurs. In principle, it requires an representation in the exterior domain analo-
additional numerical integration for the gous to that outlined in the preceding para-
evaluation of the infuence of panel i on panel graph. Computations of the hydrodynamic coef-
j. In Section 2, an algorithm is propo.3ed ficients of three-dimensional bodies were
which r,,d,;ces substantially this overhesd, found free of the effects of irregular
while maintaining the main features of the frequencies.
Galerkin technique.

In the present paper the method of
For the Green integral equation, the ir- Burton and Miller (1971) is applied to the

regular frequencies coincide with the eigen- solution of the radiation problem. It corre-
frequencies of the interior Dirichlet problem. sponds to the limit of a finite-element layer
Both in two and three dimensions, they can be of zero thickness in the scheme of Euvrard et
suppressed by adding an artificial lid on the al. A circle and a rectangle have been anal-
interior free surface as suggested by Ohmatsu yzed. Their boundary has been approximated by
(1975) in connection with the source-distri- straight segments and the equation has been
bution method, and by Kleinman (1982) for the satisfied at their mid-point, according to the
Green integral equation. This approach is collocation method. In both the heave and sway
effective, but may lead to a substantial added mass and damping coefficients, errors
increase in the computational effort, espe- have been suppressed at and in the vicinity of
cially in three dimensions. Ogilvie and Shin the irregular frequencies.
(1977) suggested an alternative route by
adding a wave source at the origin of the The associated computational and algo-
coordinate system, assumed to lie on the rithmic overhead is small, since the effort
interior free surface, acting as an absorber involved in the computation of the second
of the energy associated with the interior derivatives of the wave source potential (they
Dirichlet eigensolutions. This approach was appear in the kernel of the equation of the
implemented in two-dimensions and was shown to first kind) is not large relative to that
successfully remove the first irregular required by itn value and first derivatives.
frequency, at a small additional computational In deep water this overhead is negligible
effort. Ursell (1982) later established that because of the exiatence of recurrence
any number of irregular frequencies can be relations which relate derivatives of high to
removed if a sufficient number of singular- those of lower order. Moreover, the size of
ities are added at the origin. No implementa- the linear system is unaffected by the
tion of this method in three dimensions is superposition of two equations over the same
known to the authors, number of panels.

Related work in acoustics predates the The method is currently being extended to
studies of marine hydrodynamicists by about a three-dimensional problems where the irregu-
decade. Refe rences to early studies can be lar-frequency effects are generally less
found in Colton and Kress (1983). Burton and pronounced, and is expected to be effective
Miller (1971) proposed a methodology which for bodies of general shape. This is believed
exploits the different location of the irregu- to be the case because the addition of the
lar frequencies of integral equations of the integral equation of the first kind to the
first and second kind. The linear combination Green cquation essentially correspondb to an
of two such equations for the exterior Neumann additional singularity distribution on the
problem has a unique solution on the entire actual body surface rather than at a selected
real frequency axis, and thus is free of ir- set of points internal to its boundary.
regular frequencies. The condition for this to
occur is that one of the two equations must be
multiplied by the imaginary unit times a
positive constant, It turns out that the asso-
ciated interior homogeneous problem is of
mixed Dirichlet and Neumann type, the two
being 90 degrees out of phase. Non-trivial
eigen s( lutions cannot exist s 4 nce on the
interior boundary the normal velocity is 90
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angles, assuming that the unknown functions
have constant values on each panel. The
equations are enforced at a set of collocation
points usually taken to be the centroids. The

2ThLe_Galerki. method Galerkin technique, proposed here, aveiages
instead the equations over each panel. In

We are interested to evaluate the hydro- discrete form, equations (2.1)-(2.2) become,
dynamic pressure on the surface of a body
interacting with regular free-surface waves. N
Linearity, and the assumption of irrotational E = j f dx f dý G(x;q)
flow, allows the reduction of the problem to i J.i S S
the evaluation of a velocity potential (x)W
which satisfies the Laplace equation in the N
fluid domain, the linear free-surface con- E GiCy (2.4)
dition, a prescribed normal gradient v(x) on Ai J= i
the body surface, the vanishing of its gradi-
ent at large depths and a radiation condition
at infinity. G f dx 5 dk G(ý;x) (2.5)

i S£ S.

Two boundary-integral formulations a.e 3
common, and both can be derived from Green's
theorem. According to the source-distribution N
method, +(x) is represented by a distribution - a Ai D+ ) oj ViAi ,
of wave sources on the body surface, 2 1 ii + (2.6)

i = 1,...,N

5(x) o(O)G(x;ý)dE (2.1)
S - dx S dS an (2.7)

where G(x; • ) is the wave-source potential at
the point x due a unit source located at the and equation (2.3),
point E . Enforcing the normal velocity on
the body boundary leads to an integral equa- (G) N ( N
tion for the strength 2 (x) of the source 1 i D( )V
distribution, jJ j 1 (2.8(2.8)

2 ( x ) + f G ( ý ) a G d • = d V ( x ) i = 1 , . ,

2 an anS x x

(2.2) (G) f dx f d. aG(n;x) (2.9)
The application of a different variant of S Sj

Green's theorem leads to an integral equation
with the velocity potential itself as the where A. is the area of the i-th panel. The
unknown, integration with respect to the x-variable

introduced by(,qie ferkin averaging, allows

I (x) + 5 W) aG( dx) = 5 IL_ G(E;x)dE the matrices D , D and G to preserve
2 an• San$ the symmetry properties of the correspondingoperators in the continuous case. In partic-

(2.3) ular, the matrix G is symmetric, thus

Equations (2.2) and (2.3) are adjoint Fredholm
integral equations of the second kind, since GIj = G j (2.10)
the kernel of (2.2) is obtained from the
transposition of the arguments of the kernel (G) (S)
of (2.3). The preference of the one versus the and the matrices D and D are the
other depends on thc application for which transpose of each other, or
they are being considered. If, for example,
the flow velocities are required then equa- (G) (5)
tions (2.1)-(2.2) appear to be at an advantage D D(S)
since the evaluation of the second derivatives
of G is not necessary. If, on the other hand,
only quantities dependent on the velocity po-
tential are needed, then (2.3) imist be prefer- The proof of (2.10) follows from the syametry
red due to the reduced otorage requirements. of the wave-source potential with respect to

its arguments, and of (2.11) by exchanging the
Their numerical solution is usually ob- role of the dummy variables under the integral

tained by approximating the body boundary by a signs in (2.7) and transposing the i and i
collection of plane quadrilaterals or tri- indices. Analogous results do not hold in the
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collocation method, where the corresponding Both H (S) and H(G) are complex scalars.

matrix elements are obtained by replacing the Three properties follow from equations (2.16)
integration with respect to the x-variable in and (2.17)
(2.4)-(2.9) by the selection of a collocation
point. 1) For the diagonal hydrodynamic coefficients

Let A = diag( A), and define, lkk- Akk- i B/kw , k =i,...,6, the
vectors u. ankv. are equal to the

S (values onJ the j-J4h panel of the unit vector
D - 2 A + (2.12) -which points out of the fluid domain.

In this case the hydrodynamic coefficients
predicted by the two methods are identical,

The solution for the velocity potential since
obtained from equations (2.4)-(2.7) in terms
of the matrices A, D and G, is given by

+ 4 -vT T÷
T v w v W v (2.18)

(S A G(O)-A v (2.13)

and the solution of (2.8) by 2) For the off-diagonal coefficients, it
follows from (2.16) and (2.17) that

;(G) = D-IG v (2.14)
(G -2.19)N£K

For an arbitrary normal-velocity vector v, a
necessary condition for the identity of the 3) For the diffraction exciting force, ;e
two solutions (2.13) fnd (2.14) is the equa- define
lily of thi matrix D G with the matrix
AC (G T) A, o r equivalently t h e (.
symmetry of the matrix V = -(

W - A D IG (2.15) where is the incident-wave velocity
potential. If Xk is the diffraction
exciting force in the I.-th direction, it

A proof that W is symmetric did not prove can be deduced from (2.16) and (2.17) that
possible. Numerical experiments for a model the force predicted by the source-distri-
problem in two dimensions in an infinite fluid bution/Green method by directly solving the
revealed that the matrix W is "almost syrme- diffraction problem, `9 identical to the
tric", meaning that elements with symmetric force obtained from the use of the Raskind
locations relative to the principal diagonal relation with the velocity potential
agreed to 2-3 significant digits. This sug- supplied by the solution of the Green/
gests the proximity of the values for the source-distribution integral equation.
velocity potential obtained from each method.

Computations of the hydrodvnamic coeffi-
The hydrodynamic forces can be obtained cients of a spheroid and a vertical circular

from the solutions (2.13) and (2.14) by multi- cylinder using both methods have been carried
plying the velocity potential by the panel out by Breit, Newu•an and Sclavounos (1985). A
area A. and the vector u. which radiation-diffraction computer program has
represents the "direction" of the force we are been written for the hydrodynamic analysis of
interested to evaluate. This operation is bodies of general shape. Their wetted surfa%;e
equivalent to a pre-multiplication of the is approximated by a collection of plane
vel city-potentlal vector by the vector quadrilaterals and triangles, as illustrated
(AW) . The resulting hydrodynamic force in Figures I and 2 for a quarter of the apher-
obtained form the source-distribution method roid and the vertical cylinder respectively.
is given by

For inter-panel distances small compared
to their characteristic dimensions, the

(S) +T T Rankine singularity (including when appropri-H) -uW v (2.16) ate its image with respect to the free surface

and the sea bottom) is subtracted from the
wave-source potential and integrated analytic-

and from the direct solution of the Green ally over the panels. For large distances
integral equation, between the panels the total wave-source

potential is integrated by quadrature. The
algorithms for the integration of the Rankine

H(G) u v (2.17) singularities on plane quadrilaterals and for
the evaluation of the wave-source potential
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have been developed by Newman (1985a & b) and
coded in the subroutines FINGREEN and RPAN
respectively. The four-node Gauss-Legendre
quadrature, adabted to a plane quadrilateral
of general shape, has been used for the
evaluation of influence coefficients in both
the collocation and Galerkin methods. Sugges-
tions on the order of the quadrature to be
used in a production radiation-diffraction
computer program are discussed at the end of
the section.

The hydrodynamic-force predictions of the
collocation and Galerkin methods did not
differ substantially away from the irregular
frequencies. Tabulated results of high
accuracy are reported in Breit, Newman and
Sclavounos. Figures 3 and 4 illustrate the
behaviour of the two methods at the first
heave irregular frequency of the spheroid and
the cylinder respectively. The solid lines
represent the predictions of an independent Figure I Discretization of a quarter of the
curvilinear-panel program for the spheroid, surface of a prolate sphepoid (B/L -

and a Fourier-transformed time-domain solution 118) by 64 panels.
for the cylinder. The Galerkin predictions
appear to be less sensitive to the irregular-
frequency errors, especially for the spheroid
coefficiLats.

The Galerkin technique requires an adf'-
tional integration for the evalurtion of each
element in the D.. and G.. matrices , [ eq.
(2,4), (2.9)] Xrelativi to the coilocation
method. It is reasonable to assume that the
accuracy in the integration over the i-th
panel needs to be no higher than that over the
j-th panel. Concerning the Rankine sourze and
dipole, analytical expressions for the double
integral over a pair of plane quadrilaterals
are not known to the authors. When the analyt-.
ical expressions are utilized for the evalu-
ation of the Rankine source and dipole inte-

grals over the J-tb panel, a four-node Gauss-
Legendre quadrature is suggested for the inte-

gration over the i-th panel. Since this result
is frequency-indepndent it may be evaluated
once and stored.

The integrals of the remaining slowly-
varying but frequency-dependent parts, can be
evaluated using a quadrature scheme of the
same order f~r the j-th and i-th panels. In
the collocation method, the use of a four-node
Gauss quadrature causes an increase by a
factor of four in the number of evaluations of
the wave-source potential, versus the single-
node centroid integration. This factor may be
as high as sixteen in the Galerkin method.
Optimality requires that errors due to qua- Figure 2 Discretization of a quarter of the
drature and the approximation of the geometry wetted surface of a truncated
by plane panels must be of comparable mag- vertical cylinder (R/T - 2) by 128

nitude. This vay be achieved by increasing the panel$.
number of panels and utilizing a siugle-uode
quadrature. This decision depends on the
efficiency in the evaluation of the wave-
source potential, the solution of the linear
system and the computing environment. If the
single-node-quadrature route is selected, the
collocation and Galerkin methods are compara-
bly expensive over a large number of fro-

queucies.
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• ° 3. Irregular frequencies

3 A kThe Green integral equation (2.3) is known

t to posscss non-vanishing homogeneous solutions
0 t ~ at a discrete set of frequencies which corre-

spond to the eigenfrequencies of the interior
S0W10catiou Dirichlet problem. Their detrimental effect in

* Callatiom the numerical predictions of the added-mass
SOu Celerkin and damping coefficients of surface-piercing

i ,bodies has been illustrated in Figures 3 and*- ___=_=n___________ 4.
A16 Although a discrete set in the continuous

case, their presence in the discrete problem
£ £ is manifested by substantial errors, often

°|% 3 over a quite wide frequency band around their
exact location. This is due to the bed "con-
ditioning" of the integral equation (2.3) not; only at, but also in the vicinity of the ir-

e; &&regular frequencies. Bad :onditioning is

KL/2 knuwn to cause large errois in the solution
when a small perturbation is imposed on the
equation. In wave-body interactions sources of

Figure 3 : Heave added-mass and damping such perturbations are:

coefficients of a prolate spheroid (B/L 1 1/8) 1) The approximation of the body boundary.
near the first irregular frequency, made non-
dimensional by the displaced volume the water 2) The approximation of the velocity poten-
density and the frequency of oscillation. The tial.

solid line is obtained from an independent
curvilinear-panel program and the tick marks
are predictions form the planu-panel program. 3) urrrorstinth alu

[From Breit, Newman and Sclavounos (1985)] source potential.

4) Quadrature errors in the evaluation of
the influence coefficients.

5) The approximate way in which the equation
is being satisfied.

6) Roundoff errors in the solution )f the
linear system.A 1 -32

* Collocatito
* Calerkin A measure of the ratio of the output

3 versus the input errors in the solution of
S____ .___• _ _ •integral equations is often supplied hy the

"condition number". Explicit definitions of it
.. "are knovw for matrix equations. Thus the

discrete form of an integral equation may be
used to obtain an estimate of it.

3£ tNumerical experiments indicate that the
errors and frequency bandwidth of the irregu-

I I lar frequencies decrease with increasing
6 AN a numbsers of panels. The associated computation-

&I cost, however, prevents this to be consid-

KL /i &A ered r viable treatment in practice. A short
survey of successful methods for the removal

. . of the irregular-frequency effects has been

Figure 4 : Heave added-wmass and damping giv•u in the itroduction.
coefficients of a truncated vertical cylinder
near the first irregular frequency, made non- The method of Burton and Miller (1971),
dimensional by tht diarlacid volume the iater duveloped for the solution of an acoustic

density and the frequency of oscilletiom. The scattering integral equation, is here adapted

solid line is cbtained from the Fourier trans- to the wave-body interaction problem. The

form of an independent tLme-domain program aso Green equation (2.3) is valid for a point x on

the tick murk# are pridictiont form the plane- the body boundary. If x lies in the fluid

panel program. [From Breit, Newm.an aid
8clavounof (1985))
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domain, the factor 1/2 which multiplies the The numerical conditioning of equation

first term needs to be replaced by unity. (3.1) is worse than that of the Green ecuation

Taking the derivative of both sides in the (2.3). ThiL is generally known to be true for

direction of the unit vector a which points integral equations of the first kind. Hence,
out of the fluid domain, and letting the point the perturbations 1-6 cause errors in the

x approach the body boundary, we obtain solution of 03.1) large relative to thoiE in
the solution of (2.3).

g- x) + f (• G ;x) dF - The effect of equation (3.1) on the solu-
nn annx X tion of (3.2) is controllod by the magnitude

of the pozitive quantity a . If a =0, (3.7)
reducef to the Green equatiou. For finite

+ d (3.1) values of a , (3.2) is expected to bv free
n n nnX of irregular frequency effects. This turns out

not to be the case in practice for very small

For a prescribed normal velocity, (3.1) is an values of a which datap excessively the

integral equation of the first kind fur the effect of equation (3.1). In this case the

velocity potential on the body boundary. Its error ig the hydrodynamic hydrudynamic coef-

irregular frequencies correspond to the eigen- ficients near the irregular frequencies of

frequencies of the interior Neumann problem. (2.3), although reduced, is still suibstantial.

Burton and Miller (1971) show that the linear For large values of a , the effects of

combination (2.3) + i 1(3.1), or equation (3.1) are dominant. The predicted
coefficients are now erroneous near its own

I irregular frequencies. Smaller, but still
- OWx + f (1). ( + ia -L )G(C;x)ci= noticeable, errors are aIso present for all

S x frequencies due to its poor conditioning. The
magnitude of both can be obviously controlled
by the selection of a sufficiently small value

i( 1_ f 4 (1 + irz-)G(x;C)dý of a which strikes a balance between the

- nx I Sn 'n x errors coming frcm the 3rregular frequencies
(3.2) of the Green equation (2.3) and those coming

from the ill-conditioning of equation (3.1).

has no real irregular frequencies for real and
positive values of the parameter a . Numeri- Computations of the hei've and sway coef-

cal experimentation suggests that for values ficients of a circle and a rectangle 'B/T=2),

of the parameter a ranging from 0.2 to 0.3, indicate that the value of a =0.2 produces

the performance of (3.2) is optimal. A satisfactory results over a wide range of fre-
discussion of the properties of equations quencies. A value of less than one is not

(2.3), (3.1) ar3 (3.2) for acoustic-wave prob- surprising. If the error in the solution of

lems, is given by Coltou anj Kress (1983). (3.2) resulting frem the presence of equations
(2.3) is to be comparable to the error due to

Apnroximating the body boundary by a equation (3.1), the value of a must be

collection of panels S., and qat isf ying comparaable to the ratio of their condition
(3.2) at collocation points located at the numbers which i6 a quantity with magnitude

panel centroids, we obtain the discrete set of lebs than one.
equat ions

A computer program has been vritten fr
I N ) the hydrodynamic analysis of sections of gene-

- i+ F f ý - (1 + in )G(•;x 1 )d• ral sbApe in deep .nter I Sclavounos (1985) ].
J 1 + x The computational effort involvpd in the set-

up and solution of the discrete equations

N (3.3), is for all ,.tactical purposes eompara-
S.v + E* V (1 + i, a ble to that required when a -0. This is due
2 1 s to the existence of recorrence relati.os

which express higher derivatives of the wave-
source potential in terms of derivatives of

i,.... N (3.3) lower order. The size of the linear systew is
unaffected by Lhe addition of (3.1) to the

The integral of the double normal deriva- Green equation.
tive of the singular part of the wave-sourca
potential needs careful interpretation ?or Figure 5 presents the heave hydrodynamic
i-j, it is equal to the normal velocity on th'- coefficients 3f the circle and the rectangle

panel due to a diatzibution of dipoles of con- near the first irregular frequency of equation
#tent strength on its surface. This value is (2.31. Predictions for a -0, 0.02 and 0,2 are
known to exist at points uot lying on its compared to those obtained from the hybrid-
edges. irtetral solution of Nestegard and Sclavounoa

(1984) vhich is known to be free 5f irregular-
frequency effects. The cotresponding resulti
for sway are presented in Figure 6 with
analogous conclusions.
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FINITE ELEMENT SOLUTION FOR THE TRANSIENT FLOW
PAST A FREELY FLOATING BODY

A. Jami and G. Pot
Ecole Nationale Sup~rieure des Techniques Avanc~es

Chemin de la Huni~re - 91120 Palaiseau (France)

Therefore general motions of small ampli-
tude of arbitrarily shaped 3-D bodies initially

Abstract at rest and subject to any external forces can
be considered. Such a general situation is not

Fully three-dimensionnal solution for the often analyzed and the bibliography, except

transient free and forced motion of a floating some theoretical studies, is not very large

(or immersed) body is given. The linear system only 2-D flows have already been considered

of equations is considered for small amplitude [3], [4], [5] where moreover, only initial dis-

motions of the body. The numerical method is placements have been given to the body and no

widely descrihed and proceeds in four steps - sustained forces. Thus in our studies, the va-

(i) reduction to a bounded domain using an in lidity oF the numerical results has to be pro-

legral representation, (ii) variational formu- ved using either general results of applied
lation in the bounded domain of the continuous mathematics when an exact transient solution

problem, (iii) second order finite-differences can be worked out, or elementary physical con-

discretization in time, (iv) second order fi- siderations.

nite element discretization in space. Many nu-
merical applications ensure the stability and Before giving any further detail on ourt

the convergence of this algorithm and the ef- fomulation and its description in this paper,

ficiency of the numerical code. Some results of let first intrvduce ti.e linear set of equations

practical interest are also given. to be Solved.

I.Introduction Consider a floating body which hull is
denoted by S at time t in a fixed frame of

With the increasing power of computers, the reference (0 ; x, y, z) where Oy is upward ver-
numerical study of real flow situations is tical as showl in figure 1 at the same time
every day nearing the goal. For mechanical sys- the moving free surface is denoted by I' with
tems, the first step in this study is the solu- equation y td(x, z 1 t) and the fluid
tion of linear approximations. In naval hydro- domain by s' . The body-fluid system is suppo-
dynamics, periodic and steady solutions are sod to be ay rest at the initial time t = C,
still in progress . nevertheless, some major its free surface being the plaine (y J -3).

contributions, during the last decade, have
al ready been devoted to the solution of unstea-
dy motions. Recently, we gave thle solution of
the irrotationnal flow past a submerged body
undergoing forced motions of small amplitude X0O
ii

Here, we present an extension in the large
of the previous paper. The case of a floating
body leads to a formulation of the problem in
terms of the velocity potential and thp free
surface elevation ; a time discretization of
the linearized free surface condition have been
introduced and the way of reducing the problem Q
to a bounded domain by an integral representa-
tion formula have been generalized following Fig.1 The Floating Body and the Free Surface
!21. Moreover the dynamical equations for the at time t.
rigid body have been added to the previous set
of fluid equations.

"The Groupe d'Hydrodynamlque Nava)e (ENSTA) is associated with the CNRS and the lniver•ilk6
Pierre et Marie Curie (PARIS VI).
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The irrotational motion of an inviscid equations for the rigid body are derived in
fluid past the body is described by the velo- § III.
city potential t(x, y, z ; t) in St ; using
the continuity equation for the incompressible A theorem of existence and uniqueness for
fluid motion, the Bernoulli and kinematic con- the problem (1)-(7) has been derived in [7]
ditions on the free surface and the slip con- in the case of a finite dEpth of the ocean
dition on the hull for forced motions, the the corresponding proof in the infinite depth
general system of equations for (t, TI) forms case, referring to the functionnal analysis of
a well known non-linear problem set in an un- problem (l)-(5) given in ll], can easily be
known unbounded domain [6]. No attempt to give perforned. The complete problem is considered
a complete solution of this problem is yet in § IV. The convergence results for the nu-
possible ; moreover, when the body is freely merical schemes, based on the knowledge of a
floating, the position of the hull S is also transient exact solution, are given in § V and
unkn:wn and it is necessary to add tý the pre- some numerical applications are presented in
vious system the fundamental equations of dy- § VI.
namics for the body. 11 - THE FLUID PROBLEM

When motiors of small amplitude are consi-
dered,it is also well knowo that the system We shall consider here the system
described above can be -inearized and reads, of equations (1)-(5). Note first that
in non-dimensional form equations (2) and (3) can be combined,

eliminating the free surface elevation
A4=O in n° for t > 0 (1) rj and thus resulting to d single free

- a 0(2) surface condition for the velocity po-
7y a - on r for t > 0 tentlal which reads

0+ u (3)

: 0 nn r and n=O at t=O (4) +t2  0y 0
a don S for t on (5 fot 0 .

0 t >0 (5) Moreover from equations (3) and (4)

t4 Al+ B + -LS ds+ C-' + (b) the initial conditions for ý become

dtZ dt ISA0 and at = 0 on -4 at t i;G (9).

+ (VO-M) .3t

k -1 and = 0 at t 0 (7) Let us now suppose

wh.re notations are as tollows v - A. on So for t > 0 (10)dt

Rc is the vector of instantaneoys posi- is a given data. We then denote P (v) the com-tion and rotation of the body with Xo the 1
location of SO at t ý 0 0plete unsteady problem for o defined by equa-tions (1), j8), (9) and (i).

. Vo and M are respectively the inviersed vo-
lume and the mass of the body For the case of a submerged body, a thee-

S= (•, O itogeneralized norml rn of existence and uniqueness for problem

pointing inside the body at point M on S0  P%(v) with regular data v is gqven in L81.

1 f4 and C are resp-ctively the generalized II Funct onal anaysi•
miss-matrix and tne matrix of hydrostatic . . .
r:orl..ng coefficients Wlie denote LO(o) the space of square Inte-

* " % and B are given data ; being the ex- grable functions defined over 0 : the lktter

citing external vector of force and moment being a bounded or undovnded set in tW or any
and 8 a matrix at damping coefficients deri- bounded or unbounded si~rface In 011. The sub-
ved from experite•etal data to take into ac- Spte Hi(O) of L0(0) th the space of element.s
Ccuunt the effect or viscosity, of L'(0) whose first derivatives are also In

L2(0). H'oc () is the space of functlons whose

P1rblem (1)-(t ) with a given I is referred restrictions to any coApact subset K of 0
to as the "fluid problem' ; genera! results bCelonf to O[(X). Note also that, for subsequent
are given in § II wiere two kinds of reduction use In the text, the traces on the boundary aO
to a bkundeJ AomAin for the continuous pro- of functions 4 n 0(o belong to the subspace
blem is detailed, namely t,,e Dlrichlet-(as in of Li(3-• denoted N (ae). In the ease where
ref, I1) and Ftrrio-Integral Boundary condi- eteftats of H (0) have their Laplacian in 0(0).
tions. Note that this formulation is fondamon-
tally different from Boundary Integral Fqua- fro= Green's identity considered In the sense
tions as used in [3] and C43. The dynamic of distributions, tte, notinal derivatives of those

elements on the boundary K0 belong to the snace
H-j30.),which is thus defined as the dual spaceof H

186
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Neglecting the lowerseript 0, let us now is a bounded operator in La(r).
return to the notations of our problem. 9 is
the unbounded domain in R3 with boundaries S, This is a well known result of [13] ; it
bounded, and r unbounded. Problem P,(v) is will be also used in the next paragraph.
split into two problems, the first of which
denoted Q(O,v) is similar to P,,(v) but has a With some additionnal results which can be
given Dirichlet condition 0 on r instead of found in [8], we can give the
(8) ; the second problem is a wave-type equa-
tion for 0 such that the solution of Q(4),v) is Theorem 1 : At each time t > 0, problem Pp (v)
also a solution of P4)(v). has a unique solution 0 E H'OC )

Lemma I : For given v c H' (S) and of bounded kinetic energy with
H/ o (r) n L2 (r), problem trace on F, 4) c H'(I). Moreover
koc the time derivative bel

Q(O,v) has a unique solution with L2 •(r). en
first derivatives in L2 (R).

The proof of coerciveness of Q(O,v) is a As existence of such a solution is a con-
consequence of general results of [9] and sequence of the construction above, only uni-
[10] ; the lemma follows then from queness has to be proved ; it is then easy to
LAX-MILGRANM theorem. Solution of Q(O,v) are see that the total energy
said of bounded kinetic energy in Q2. E(t) Igrad 012 + I 012 (16)

We now introduce solutions (D of Q(O,v) f r
and D1 of Q(4, 0) ; from the general functio- is a constant for vanishing data v. Thus the
nal notations above, it is an easy matter to only solution of the homogeneous problem P,(O)
defins the normal derivatives of o and 4P on is a constant which can only be zero.
r. We thus dafine the operators

•KovI I.2 Integral eepresentationsKo 0 v %- K v 0•(1
(y VP)W denote R2 the lewer half space (y < 0).

and For any iixed point M in fR., we define

Kt :4)-.K, ¢ :.,(P) V - (17)
3 y [(12) 4n IM PI IM'PI

K is a bounded operator in LO(S) and K, as an elementary solutioti of the Laplace opera-
is a °self-adjoint positive unbounded operator tor in R-1 ; M' being the symmetric of M withi
in L'(r) with domain H11(.). This allows, for respect to the plane y 0 0. Note that GM(P)
real s, the definition of the power Ks V113with domain HS(r), [12f t vanishes on I' and -an thus be considered as a

w i [Green function for Q(O,v),

The unsteady part of our problem is now The solution ' of 'J(v) can be, at ead,
entirely reduced to finding the proper data 4 time represented in R) by p + k wt~e'e
such that 0o 4, D, is a solution of P4)(v). 0
Using (8) we look ftr the sol'tion 4 of tte o(Nt) v(P;t)8)
wave-type equatiun 0 " t ýnp - P

7t7 + K, o Kev in L2(r) for (13)

t > 0, with zero initial data. M0f(N;t) a (PH (19)
Lemiia 2 :Tho aquativiw (13) twth •.• h,-Pa-r

aidf L (r) cvtdg, (ý' -& ot ý f 0  is harmonic in 11 and varishes on I', •,• is
and f- . if i L (r) a t t - 0 ;.a r harmonic in IR2 and A is therefore its trace on

1'. We then have an integral representation, at
wli.luv OOiUti•:4; ý!.h r (space each time, for ; in terms of its traces on S
arguments are ignored) and 1'. ,oreover *)s f can be identified to if=,

t dS1  (19) is e convolution in the horizontal (x~z)
)(t) J S1(t-.)f(t)d• + -- (t).f 0 + (14) variables and can be corwuted by Fourier trans-

d t form. But, evidently, as r is an uniou'vie
boundiary, such an Iliegral representation is

+ Sj(t).f 1  of no use for us.

wa .Consider the well-posea probltn Q(¢) set
sl( K sin(t K1 ) (15) in IR (equivai•nt to Q(O,v) but without
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obstacle) ; ýj is its unique solution anu we Moreover, all the results given in this
define the operator chapter can be extended to the case of a sur-

a@i face-piercing body witlhout any restriction.
K KO =- (20) r@ y Ir '

As K is of convolution type its Fourier
transform is a multiplication operator which r,
can be easily evaluated ; this was not the
case for the operator K1 .Namely, the Fourier
transform R of K is Isl where s is the polar
radius in the Fourier transformed plane.

Then, as po vanishes on r at any time, the
trace 0 of our solution is alsu a solution of
equation

+ K'P K ý o'r (21)

;t2

with homcgeneous initia't data. Fig. 2 The bounded domain 0

From (11) and (15) P'itn K and S replacing
K, a-id S1 respectiv.;y, we have As, thanks to (23), the solution D can be

expressed anywhere in the fluid domain P in

'Kdt)-] (22) terms of its history on the body S, a reduc-
Sdr ; (2tion of P (v) to an essentially arbitrary

domain can be performed. For the sake of sim-
the evaluation o: which, using the definition plicity we shall first details the method in
of 0) and the fact that S is a fixed boundary, the case of problem Q(O;v) and then proceed
lead9 to computing S(t).K.GM which is easily to the general unsteady case of
done by fourier transform.

Finaly, 'P can be represented as a convo- Ii.3 Problem QLO;v) set in a bounded domainlution in the time variable applied tJ Vo 0 ndl has the integral representation Let E be a regular arbitrary surface sur-
rounding S as shown in fig. 2 ; we denote 0

'P(M;t) 0(M;t) + the bounded domdin with boundaries S. E andIr'. if S is not too close to r . The solution

It (P•t-T) - v(P.r)FN(P-t-T}Ids dr of Q(O;v) has the integral representation
0(@P• S (P~tT -(23iFM~- )]d dT npP(M) f 0 [°(P)•-ýG.ý-M v(P)G M(P)]dS P" (25)

(23)S )np

where 0o belongs to H'(O) and satisfies the

N -L 
T ' /,eZ5 Jo(rS)sin(/•)ds following set of equationsFM(P;t) 'rS e" (r•inA-t

M21 0 (24) A0o 0 (26)

with (,',z) the cylindrical coordinates of () 
(is

(IM'P12 - I" + z', z < 0). A similar result 0 (28)has been given, a long time ago, although deri- 0o'ved by different arguments, by FINKELSTEIN
'14]. For computational efficiency, other ex-pressions of F. have been derived which are To complete the problem set in 0 we can usegiven in Cof (25)fot" M on Y: as a coupling condition between

S and F ; this will further be denoted as pro-

Note that, and it is of interest in the blem Q,(v), the subscript D refering to a
sequel, any space derivative of o can have an DICIi•.'T-•.yp. q',.n•z ed•,tc•'.
Integral representation similar to (23) where
only the kernels G (P) and F (P;t) are repla- Let us now introduce the boundary operator
ced by their corresponding dArivative with res- a on t. defined for positive X by
pect to their argurent x. u (u X u) (29)

1n8



for any u belonging to H1(0) with Laplacian in We now consider for a given data
L2 (O). By a preceeding remark, we know that v e L2 (S), the function
ax @o has an integral representation similar - @o { - v GM)dS1 (33)
to (25) with a G instead of G When this is SO -E(

used as a coup~ihg boundary condition on E, we w n
shall refer to problem QA(v), the subscript F which belongs to H0  (0) and coindides withFmeaning a FOURIER-type coupling condition. 0 on S. Our variational problem then reads

F oGiven v E L2 (S), find 1  : H',()From our construction, wt is trivially a 0
solution of Qn(V) and (, moreover, as S such that E H' (0),and E have no common points, the kernels G (P) s hOand D• GM(P) together with there normal deoi-I R (v r( +E{ GM d)ý
vativhs bn S (with respect to the variable P) RD- 0 do+{s n
are regular. But such a reduction to a bounded
domain could lead to problems with more than v ' ds + a(E (v G M dsl,'P) (34)
one solution. This is a well-known difficulty S
for example in the case of the sea-keeping where
problem when irregular frequencies appear.
Therefore we give a short proof of the unique- a _(
ness of the solution of QD and QX. a((,A) (grad @Pgrad ý)dw, (35)

Theorem 2 : Q (0) and Q• (0) have the only tx- is a coercive bilinear form on H0,E(). N
veal sctution. that the scalar product in H1 (O) is defined as

Let 'o be a non-zero solution of QD(O)' ('PM = a (C,) + ( 4• dw. (36)

(resp. QF(O)) ; by the third Green identity HI(O) j

applied to 'P0 and GM in 0 we can define From RIESZ representation theorem we then

MJo(P)t (P) dSp, (30) introduce the operator T defined by the

np functional relation, V *,'P E H',(0)

with 35! ( °a (T0  0 H'() •( )= " P dw + GM

w(M) = f[•1°P (P) - -P) o ( P)GM(P)] do + a(E{(S ý ds},'), (37)

aa

(and there exists an element F c H•,II(O) such

that, V ' £ H•,(0),

Thus, from (31), w is harmonic in the whole
domain F interior to E and vanishes on r ; and (F,)7.0 vt ds + a(E(( v G ds)v),(38)
from (30) wI, 1 0 (resp. w • 0). We conclude i S
that w vani ses in F; theA 'P has an analytic
continuation in the whole dombin Ql defined by From these notations, problem %(V) can be
thu integral in (30), is harmonic in $1, va- written
nishes on I'. Therefore 'o is a solution of
Q(O,O) ind must vanish In P, and a foriori (I + T )0° F in H,'ij)' , (39)
in.0

where I is the identity operator, and we have
We can then conclude that QD(v) and -Q(v)

for A N 0 are two new versions of Q(Ov) but Theorem 3 : R V0 (v M had a u,• (ezt o

are set in the bounded domain 0. whfXh id 0u'ý to 0 ofth •, e T o•y QDiv)'

11.4 Varlationnal formulat!.iatoniOrQ(v) The proof of this result, which is detai-
led in I'$) lies on the regularity of the ker-

As for classical Dirichlet-type problem, nel the continuity of the extension E
we introduce a continuous extension operator t n

E : VO() - H'S(0) -( (W( H'(O) Ws-O) and the coerciven•ess of the bilinear form a on
iS0H, 1 . (0) ; as a matter of fact, the operator

T D i s compact (completely continuous) and (39)

and we define is a Fredholm equation of second order. Theo-
real 3 is then a consequence of the Fredholm

H",(O) (w t H'(0)/wlwr 0). alternative and the uniqueness result of theo-

1.89
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rem 2. Is is the set of values of j for nodes a. be-

Slonging to S v V( for j E Is

The variational formulation RD(V) of pro- n t

blem QD(v) ensures the convergence of a clas- TkR. Gak(ai), 0 rk• = _n Ga9(a,) with ak
sical finite element method [15], and from (resp.ak) a nodal point on Eh(resp. Sh) and
[16] errors estimates are conserved, even for n denote the normal to Sh at point a• uni-
isoparametric high order finite elements in
the case of curved boundaries. tary and exterior to 0h ; summation over

11.5 Finite-element discretization of k 1 to and Z I S are undertood.

For a general introduction to the finite-
element method, we refer to 1171. Let h be a
measure of the size of the elements in a re-
gular triangulation T of the domain 0 with
N nodal points (a.) J-I N V denote a
0 0* ' h

subspace of HO (0) of finite dimension N

whose elements are generated by a polynomial
basis (w.) such that wj(ai) 6 ij(the

As Th would not, in general, cover the a half ship-like form.

whole domain 0, the discretized problem will Note that the coupling terms involve rec-
be set in the approximate domain 0h with boun- tangular full and non-symmetric matrices rkU

daries S E and P'. Our notations are then and Solution of the system (42) is per-
as follo 

Is.

formed via Gauss elimination. Once this solu-

a 1  (grd w1 Igr'd wi) dw, (40) tion is obtained the values of (o on Eh are

a h determined by using the discretized form of the
integral representation ; namely, for k = I to

and N, we have

-= wj.wi ds (41) Pok i t oj Dr kZ - vj rk' 1 j.(

for any boundary J of 0h with Nj nodal points. 11.6 Finite-element formulation for 0 X ]
F

In our formulation, the domain 0 can be The variational formulation for Q Mv) is
arbitrarily small ; we then choose only o.i, simpler than for the case of Q(v) because no
layor of )wovntwn Sh k,)d T h' Moreover extension operator is needed ; It reads

as the extension operator E is also arbitrary, !uit,,' v r La(S), !-N4 6 H (O) tri,,h
we use only the N. nodal values on rh to th: t Y H (0)

define it ; thus, we denote N; Nn - NN a ( +•,t) + I ' do
0

At " a for i and N 1 MNE (2

beginning byth14on) ds do' (44)
for a will fitted numbering of the nodes d

Then R (v) is reduced to a set of N' equa- i

tions,its discretized form being The problem P Cv) can also be expressed

.a i •o} ( -in the form of th4 functional equation

"f" I + r)0o CG in W•(n), (45)

where (*6)
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and r Theorem 4 : The problem (Q) set in () x LO,t]
(G 'X, 0)H i s v' ds - i f % v 3a GM ds do.(47) 0(t) = 0, (D(t) c H'(

T being again a compact operator in I@
H'(0), (45) is a second order Fredholm equa- (Q) -- (t)l = v(t) e L2 (S)
tion ; thus, theorem 3 holds for RX (v) with Dn s

F
any positive (or null) constant X.I

The finite-element discretization is also
nearly the same and leads, with the same nota- w~lh homogeneous initial conditions has a uni-
tions to the linear system :qu solution.

Find the nodal values (%oj) j=I,N such By considering •o a solution of the homo-

that geneous problem, the proof follows exactly the
lines of that of theorem 2 exceot that w, as

N 0 E E X defined by (30) and (31), and b& the coupling
t oj {a.ij +)X 6 ik Dk U 6j} condition does not vanish on E. On the con-

j=l trary w is harmonic in the whole domain R3 and
(48) is expressed by the convolution term in (23).

s X sThen, ýo has an analytic continuation to

= E vj S i -ik r k 6 } 0 x FO,t] which satisfies the conditions of
Jis (ij P(O) as only the null function can do ! The

same result is obtained for the Fourier-
The same remarks as for (42) hold with coupling method.

r = (-L- + X) , G (a In the case of the floating body, condi-nk 3n k tion (8) on r is added to problem (Q) ; tne

r A =(-a+ A) Ga(a same proof holds again but, for the homoge-
kz 'nk k ak neous inner problem set in E x [O,t3 associa-

ted to =Istr DFM
where nk is the unitary outer normal to Eh at w(M;t) = JJ kj) - (t-f)ds dT

ak ; note also that, contrarily to the pre- we refer to (181.

ceeding formulation, the sum over j in the
r.h.s. does contain the nodal points on E 11.8 Time discretization _ubmerdbyase

Consequently it is not necessary here, to he

evaluate the nodal values on Ih after solving In this case only the time discretization
(48). of the convolution integral is involved. We

consider a owytant• y :•r ote At and set
11.1 The couplin• method applied toP,(v). tn - n At ; upperscript n will refer to func-

tions taken at time tn. Let us denote byAgain we go on with the same notations. wn(M) the approximation of this convolution

A problem Q(v) is set in the bounded domain integra the a 2pr O n ec tis cnvol ,onO which takes advantage of th'e integral re- integral, see (23). On each time interval, we
0whichtakesadvantage (23) f uther wnte gial f assume that b and v are linear and FM is cons-presentation( ft)-(23), Further we give a time tant ; the latter taking its volue at the mid-
discretization f the covouin integral point time, thus resulting in a second order
which tranforms problem Q(v) in a set of pro collocation for evaluating wn(N) which reads
blems (Q )at each time step t . Each one of n(
the probYems (Q ) are then vp¶y similar to wn(M)a At, ,t"1- 4 F .-VF Is
o (v) or Qj(v) • therefore the same theoreti- 2 :S )n N
cl result• and the same finite-element dis-
cretization apply as above. A n (m4n--• • ' ds, (49)

We first suppose that our solution 4 is 2 m-1 is

known for all time v < t ; on the other hand
we know that Ojt) neglicting the space argu- where
Ments, is in HLoc(e). For the sake of consise- m'n , 1P- C 4. n-m*1 + C

ness we shall only give the formulation in the n

case of the Dirichlet coupling ; similar re- (50)
sults are obtained for the Fourier coupling'n-m'tA n-
and will be used in the case of a floating " vn(f. + C; vn-]
body.

with
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El = 0 ; <m m < m n (51 the matrix of Lhe linear system can therefore
m( be factorized once.z'= 0 ; c' = 1, 1 < m < n.

n m
I1.9 Time discretization ; floating body-case

The integral representation, used on E for
the Dirichlet coupling has then the form We are now concerned with the time discre-

'n(M) =[¢n a ~ n • At ! R d5� tization of the free surface condition. In or-
GM R n]ds der to formulate our problem with only first(M mn GM + 2-m=1 order derivatives in time, we go back to equa-

tions (2) and (3) conserving the free surface
(52) elevation as an unknown. We first present the

~ At ,/ numerical algorithm using only these equations
where GM GM + as if the problem were set in a bounded domain.

Let us denote K' the operator which relates"The variational formulations for (Q), inthtrc nonFatietofheslin

this submerged body case are then given by t n

to its normal derivative ; equations (2) and
- Dirichlet coupling (3) take then the form

Given v, ,vn and > ,.,n-l in L2(S), K=
find 05 H,,(0) SUCh that V E E H' (0) R (53)

n •Ga + - o
a(ýn + E{ n M ds}, ) vn dsa

n4'• -• s} n 1  • S-
RnO(v) S DNote that even for vanishing initial con-

+I Ivn U _ Lt E Amn Jds) ditions as (4), this problem is not homogene-
aL E S~ GM 2 m Sous because K' is not linear but affine unless

I. n 2~n mv(t) = 0 as it will be seen later.
where Rni mn with 4> replaced by 4'.

r iWe use a second order centered scheme ,
After solving Rn(v), (52) is used to de- namely the trapezo•dal rule to discretize the

termine the values 0 4P>. system (53) ; it is written at time tn+l using
2

- Fourier-Coupling values of 4> and q at time tin+1 and t and
reads n

G'iten v . vn a:d 0'..n1 in L2 (s) K, A In+1 2 1n+1 - K,4 n -2 .n
find (n c ( ) se uc t hot V e. H' 0O ) ( .'4 )

n h V nindo 2 n+1 +nl 2 ,nnn

Pn n D (GM)ds doM Now eliminating rn in (54) we are lead to
.\ni n dX 'he equation for t

RFG) v n 4, ds - f(M)[ vn(o ;)ds doM + 4_),n.1 (K'+ .4 )4 n-1
S ,•Atz

"fy(M) r Rn n)ds doM -(K' - )n
M'( S ismnAt I

where is R1Rn with FM replaced by which shjows that the problem set for .1n* will

F. contain a Fourier boundary condition on F'

with the positive constant tnis could
These two variational forms are evidently At

very similar to R and R0 respectively ; their not bring any spurious eigen value in our ape-
expression as a sqcond older Fredholm equation rators.
is straightforward and the corresponding com-
pact operators T and T differ fromn T0 and A discretized form for the total energy

by change f m - E(t) can be expressed at time tn+ byT F bythe single chnefrom GPto G M1 Exis- 1+ + * + +

tence and uniqueness of the solution at each En1 • • ; K 1nl + (n 1d)')dy (56)

time stap is therefore ensured.
Theorem S f K' th , t" ;•

Following the lines of § 11.5 to 11.7 the ti=,.d fell (54) cf the ,'fer 1-
finite-element discretization can be perfor- fao, ,cdt * r ,.a

mad esily. It is worth noticing that only the
r.h.s. changes from one time step to another This means that En as defined by (56) is
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independant of n ; it is easily obtained by In these cases, conservation of energy does
linear combinati'ons of equations (54). The not occur as, even for vanishing vP for
self-adjointness of K' being effective only all p < n+1, the integral representation rea-
either for a continuous original problem set lizes the correct flux of energy through the
in a bounded domain with homogeneous boundary boundary E.
conditions or for the original problem with
vanishing data v(t) and unbounded r'. 11.10 The numerical evaluation of forces and

moments.
We shall only give the definition of the

operator K' in both cases of Dirichlet and The action of the fluid on the body is
Fourier coupling boundary condition given, from the linearized Bernoulli equation,

by integration of the unsteady pressure
p(M;t) = T (M;t) on S (60)

S(K d).ýy = a(in,p) + t
fr in non dimensional form ; it discretized form

+ a(E{f -n M ds},p) - vn ds is, at time tn-
S JS n-1I n+1 n-I

n; t n --in p(M) = - (•P(M) - P(M)) on S (61)
- a(E{ EvnG t L Mn I ds}, 2p) ?At

We denote ý E c6 the generalized normal to
Fourier-coupling V Ep • H1 (O) the body which three first components are

n n ¢n~dthose of the unitary outer nor_]al Aand three
(K' dy = a(n P)+ da vnpds last components are those of GM A n at pointI' fS M on S, where G is the center of mass of theDigid body. The generalized force coefficient

- f p(M)S[nn a •M- vn akG,4]dsdom (58) is then given by

n i(t) fP(M;t)'4(M) ds (52)"fc fs' I X -M a ds doMS
Sm = A M d its discretized fort being, at time t

n-n
ýn-l I F (¢n+I_ n-1 )4 s (3

Using (54) and (57), the variational form -At i,j4I si

of Rn(v) in the case of a floating body is RD Results for the forced motion of a 3-D
'ind (n+1, n+1) . H, (0) x L'(r') auch submerged body are Ogven in rni.

0 E III - THL DYNAMIC EQUATIONS FOR THE RIGID BODYthat V%1,1) C 0 (0) x LP(r'),

0,'F We now introduce the set of equations 1o-
(Kf' +l 2 nn+l )Ody verniný the motion of the rigid body , the

Ar notations of which are given in § I and
( .K • ~G(t) (resp. C (t)) c •• is the instantaneous

(-K n . pdy position of the center of mass (resp. center
fr# Iof immersed volume), M is the total mass of
Ir(2 n1 + d the body and V the measure of the imnersed[ y n +n hi volume(' 2 cn - ..... - - -

hr' A L nn) d y 
r

where R n in + E ( f[Erv . I ds)

E(d fr 3 ds .HG 0
9 o 6t

With (54) and (58), the variational formnto.G
n

of R '(V) in the case of a floating body is S
identical to (5)btwt ~ (0) repla-
cod by4 H'0). 0 z

Fig, 4 Bodýy Geometry.
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TIMl Forces acting on the body with initial conditions *" = 1.and ý' = 0.1t
Let s rcal tht al'tems re on-is easily shown that this numerical sc'.-eme Is
Let s reallthatall erm arenonstill conservative, the discretized dynamicdimensional ized with respect to the density total energy Iteing defined by

of the fluid, the gravity constant and a dia-
meter of the body. E~ n ýn + (In_ )C (n1 (72)

The force resulting from the potential
fluid flow is given by (60 and (62) or by the IV - THE FLUID-BODY SYSTEM

time derivaiive of t(t) tl * ds. (64) Interactions between the fluid and the
4S body act as follow :the motion of the flujid

If y is th~e unit vector upward vertical is induced by the velocities of the body in
dnd y~ the vertical coordinate of a point M the Neumann boundary condition (5) and the
on ýW body, the total weight of the body is motion of the body is influenced by the fluid
- My and the Archimedian thrust is motion by tte unsteady pressure and resulting

added mass Qin (67). A global formulation
- IyM.Ný ds =V'y -C ,(65) of the problem can thus be described.

where C is the generalized matrix of hydrosta- A theoretical frame for this complete
tic restoring coefficients ; note that t may firipulation is given in [5J and [7) in the
differ according to a submerged or a float4r~g case of a bottom at finite depth ; as for the
body [191. fluid-system alone, the case of an infinite

depth is very similar modifying some of the1.et u1 denote functiona. spa ces. In the case where no sus-
df(66) tained force -ý (t) is acting on the body a

th 6eeaiedvldiso tebd h result of local decay of ena.rgy is given
tegeneral ie equat on ii for the dynami of thebd this will be ob~served in our numerical re-
thenea t qaksthen formtednmc ftebd sults where tI~e fluid energy is only evalua-

then take the formted in the bounded domain 0 and results from
IM !A + 13 + C = - + ( V-M), + . (67) the radiation of energy out of this domain.

dt d4ýSome of the possible complete discreti-
where the ~amping matrix t and the gen-rali- zation in time and space resulting from our
zed force >~are given data .study of § 11 and III are given in appendix.

Let us recall that the matrix of the linear
Equistions ý56) and (57) form a F.et of dif- system is a constant and can still be facto-

ferential equitions of first order which ýas rized once, thle numerical burden being only
crites, when Qis given, the motion of the due to the -memory effect of the free-surface
body. In the case where I~ = 0. a static ~qui- flow.
libriunt -osition of the b~dy is given by
such that

C ir'A M'Y (O) Y- NUMERICAL CONVERUCE

Numerical tests have been performepd to
Finally, the total energy of the body confirm the couvergence of our algorithm

rebds with respect to the mesh size h and ýhe time-
E ( t) H ýt + * C,ýr) C ((H9) step At. Two cases have been considered for a

whc rs coseve (ie 4 0)we sphere tf unit radlius tc~tilly ire.ilesed ('1whic is onsevedHQ. 0 whn wth centcr one diameter below the foee
dn vaih surface or h.-l f~inersed (b) . The domain

0n 6) vns,0is filled with isopi,,rafnetric prismatic fi-
1II.Z Tme discretiz t onf the dyati nite-elements of seccnd order as shown offig. S. An analytic solution is chosen using.quatpons. a somrcc Of unit amplitude from t *0 and

Refering to the previous notetioms and 1ýcated inside the body, . this solution ,s
atcording to the numerical scheo4 pre:,ented simply a Otie fiintegral of the unsteady Green
In § 11.9, we art led to the sytstem function which is performed by a S~msoon rult

2L + 1311+ + k + The P3 error norm r is the relative mean
46~t4 i ) +C u(it-)Vjqadratic orror MpOSi~red on all Zhe nodes of
2f ~ _I the space discretization at !ach time. As re-AT n+ -4 Sn) + i2(V-R)'V'+2 lkn()Stilt$ for the cases (a) and (t) are quit,ý si-

,S+ n+1 I .n L In (71) Adl~ar. otily iase (a) will be treated here.
At At
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On fig. 6, convergence with respect to the For the fluid-body system several tests
mesk-size of order h3 is shown for fixed have been worked out ; as a matter of fact,
At = .25 and t = At. On fig. 7, convergence Dirichiet and Fourier coupling formulations
with respect to the time step of order At2 is gave similar results. The first test perfor-
shown for fixed h = .8 and t = At ; we notice med was the vertical free motion of a spheri-
that for At = .5 the error is mostly due to cal balloon without free-surface effect for
the space discretization. On fig. 8 the error which the complete problem can be solved ana-
is plotted versus time for fixed h = I. and lytically ; added-mass and acceleration were
At = .25 ; this error is maximum at the first found in very good agreement with there res-
time step and decrease asymptotically to the pective theoretical values. Other tests are
space discretization error limit. We then presented in the two next paragraphs.
conclude that, for fixed h, the error at any
time cannot be worse than that plotted on fig.
7.

h:.8

..02

Fig. 5 Discretization of an eight of a 0

sphere of unit radius : h - 1.4.
7 prismatic elements, 66 nodal
value. in the domain (R) and 15
on the free wurface (W).

£o

=.26 Fig. 7 Convergeice versus time step.

.02 .. 01 hal,
At =- .25

..OOB ... ., ..i.,.... .. . . _ .
$ 1. -0. 1. - 2. 3. t

Pig. 6 Convergente versus me.h-size.
Fig. 8 Convergence versus time.
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VI - NUMERICAL RESULTS. ',iE SUBMERGED BODY
.12

We study the p.-,n motion of a sphere of --- Kinetic
unit radius with an initial pitch angle of de- Energy -Potential
,equilibrium for various values of its mass M,
vertical coordinate of its center of :ass YG - Total
and depth yC of its. center. On fig. 9 and 10,
k. u .25, YG = -3., YC -2. ; position, veloci-
ty and anouler acceleration are plotted versus
time on fig. 9 while Nig. 10 shows the kine-
tic, potential and total energies of the body.
We notice that the period of the damped oscil-
lations are greater than the period of the
corresponding dynamic system without fluid in-
teraction ("free oscillator") ; also the detay
of total energy is roughly proportional to lit. '. 20. 40 T

Some more results are given for various
values of the parameter defined above ; the
period during the transient towards a steady Fig. 10 Sphere with initial pitch angle
equilibrium position can thenl be measured and of desequilibrium ; energies of
consequently a corresponding added-mass can be the body.
evaluated. On fig, 11 these periods are plot-
ted together with those of the "free oscilla-
tor" versus the distance GC and for three va- T
lues of the body mass. The evaluated actual
periods are weakly related to the depth of fluidsoIId Systen,.
immersion of the booy considered (yc" 3 * -
and -2.). On fig. 12 the added-mass is plotted
versus GC ; its value, proportional to GC' de-
pends neither of the depth of imm.ersion nor of 0 m=4.
the mass of the body, These are the kind of O O_
practical results such a study can give to be 10. , ..
used in modelisation procedures whiCh only m=.25
solve the dynam•ic equat'ons.

~~- 0

&r O.•'-•-free osIcillator

S.5 1,GC

fig, 11 Differmi(es b•Ktwen periods of

free Osdllator and fluid botdy
5j!O vrus 6C

LoO(MA)

F9. 9 Schere with initlal pitch a--le of
desequilibria ; d~iplactuents.

fig. 12 Added-mats versus GC
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VII - NUMERICAL RESULTS - THE FLOATING BODY VIII - CONCLUSION

A half-immersed sphere of unit radius of An attempt to solve the cnmplete linear pro-
mass 1.5 is initially elevated ; a damped blem for a floating body has been made. it is
heave motion is then observed. Fig. 13 gives shown that the numerical algorithmr is stable
the positio~n, velocity and acceleration, while and gives accur~te results ; applications for
fig. 14 gives the energies of the body and more general bor'ies can now be performied. We
fig. 15 gives the various forces acting on the have shown that th'Is type of apprcach can
body versus time. The rapid decay of all already give somie information on the added -
these curves with respect to time compares mass and damping coefficient related to the
with the corresponding results in the 2-D case memory effect of the free-surface for any ini-
(see [52 for example). tial position of the bndy or any sustained ex-

ternal force applied on the body.

-V*Iocity Further developments m-iy concern the mo-
-- Accoi~rot Ion tio~is of large amplitude of the body inclu-

ding horizontal motions.

0.
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APPENDIX

kLet Vk5 Xk and N , k=1,6 be the 6 componants of •, } and 9 respectively. According to the time

and space discretization described in § II and III we have :

(a) General formulation in the case of a submerged body with a Dirichlet-type of coupling.

"For n>1, find the nodal values (ý n)j=I'N,. and the vectors- (V , X ) k = 1,6 such that"
N1 _n { D s ZJ n {6 i k n N'k
* E fa. + AD }{ 6 + kI kn S k A- ) E A0  Rmn
j+1 i 3}Nk kR. U k j + kF ml j11 = ip p

* (2_s• N ik) ýn + (2L•+B) V n+ (2__ n.)kL V n- C X n-I
jEI At iJ "t k• k + k• X6 At t

+ Je ti k O L6 N k) Zý'+ 2('4-M) D2 + 2F ~n11(73)

n n n- + n-

J-VclsX =Vk k ~ k 2(

t At k k At k

where al! the term.- are defined as in § II and § ITI, and

mn flAm.s ( .-n-m+1 + 'n-m 6 s Nk( Vk nm+1 nm

p ; i MJ + 6 ' 0 p i Nj m Vk n m, Vk)

D ij Kionecker symbol

0 n on Z is then obtained by

n Z (Dv n N k N k) + E m,n (74)
la jC t i n=1
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(b) General Formulation in the case of a Floating body with a Fourier type of counling

"For n > 1, Find the nodals values (nJn)j=1 N S (n) and the vecturs(V k nx k such

that" :" No n E Ei D~ X s 2 r' n n s E XkE n(a + x 6At ij j -TV - i 6S }N. k =

j (aij ijj 6ik tj JEIr, J6 is kn ij ik =k XJ
N0

(P {ij + XIS 6 , 6s j n n-1 + E V n-1 6s 6 EN k
j=ij ii ik kk kij E At i i j E ~ Pz k 6- kkk

NE n .E m,nX n-1 E m,ni1,x
+ E E . R.~ + E 6. R~mn)
j=1 m=l 13 i m=l 1

{L ,2 r, ,n + ijr',n I = ( 2 6..',D n-1 6, r' n-1 I
jE { At Ii i i3 1,. At 3

2 6 N + n Xn I V -

j E Is Nik) n + - )k, V~ n + =kt XZ -n-i

2 s k n-i 1 Fok
+JE (T-t 6i i j + 2(V M)DF2k + 2 n

V n + 2  Xn Vn-1 2 n-i (75)k +A-t- k k A-t k

n n
where GM. FM are replaced by D x GM a x FM"



A HIGHER-ORDER PANEL METHOD FOR SURFACE
WAVE RADIATION AND DIFFRACTION BY A SPHEROID

By Stephen R. Breit
Department of Ocean Engineering

Massachusetts Institute of Technology
Cambridge, MA 02139

U.S.A.

Abstlac. IMSL subroutine library. Roughly four times as
much effort is required for the finite-depth

Righer-order panels and a very efficient Green function.
schem.e for evaluating the free-surface source
potential are employed in a panel-method cam- The objectives of the present investiga-
putation of linear radiation and diffraction tion are: I) exploiting the FINGREEN sub-
by a floating spheroid. The method is based routine to provide bencnmara nydrodynamic

on a direct dppl"'atioa of Green's theorem. coefficients and exciting forces for a float-
Panels which conform exactly to the spheroid's ing body, and 2) determining the possible
surface are defined in terms of o-thogonal benefits of using curvilinear panels with
curvilinear coordinates. The velocity poten- higher-order descriptions of the velocity po-
Eisl is approximated on each panel by a bi- tential on each panel.
dimensional series of Chebyshei' polynomials
and the unknown coefficients arp dstermined by The spheroid has been chosen for this
collocating at a sufficient number of points study because its surface can be mathemati-
on the panel. Benchmark values of the hydro- cally defiaicd in termn of orthogonal curvi-
dynanic toefficients are established and sery linear or "spheroidal" coordinates. Sphe-
as a basis for comparing the performance o:" roidal coordinates have been previously en-

vawious higher-order panels. For comparable played by Kim (1965) who computed the hydro-
computing time, piecewise-quadratic panels dynamic coefficients of a family of spheroids
yield a significant improvement in accuracy using the Hess and Smith approach. Kim pre-
over piecewise-constant panels. The behavior sents lov-frequency results for a model with

of the numerical scheme in the vicinity of 36 panels on one quarter of the submerged
irregular frequencies is also investigated, surface. Yeung (1973) and Shin (1979) also

modeled spheroids, but with plane panels.

Green's theorem is solved directly for
Thn panel method was pianeered by Reas the velocity potential in the present work.

and Smith (1964) in the context of infinite- Within each panel the velocity potential is
fluid flv. Basing their work on a source- approximated by a bidimenusional series of
distribution formulation, they used plane Chebyshev polynomials. Keeping just the
quadrilateral panels and determined a con- lovest-order term in the series is equivalent
stant source density on each panel by col- to assuming the potential is constant on each
locating at the panel centroid. Numerous panel or "piecevise constant". Higher-order
others, ariong them Garriaon (1977), the variations ere referred to as piecevise
Netherlands Ship Model Basin and Det Norske linear, quadratic and so on. The uukncwn
Veritai of Norway, have since followed the coefficients multiplying the terms in the
same approach in computing the rodiatiou and polynomial elyanslon are determined ýy col-
diffraction of linear surface waves by It&- locatinig ot N points on each panel, .i being
tionary floating bodies. the number of terms in the polynomial revre-

sentit ion.
The main difficulty in extending the Uses

and Smith approach to free-surface problems is Higher-order panels have been previously
iv evalusting the free-surface source po- analysed by Hess (1979) for lifting or non-
tential or 'Green function". Recent york by lifting potential flow without a free surface.
Newsaa (1985) baa load to the development of a He shows, for a source-distribution formula-
very efficient subroutine for evalustiag the tion, that a consistent hlgher-ord•er panel has

Green functioa in infinite or finite depth. a polynomial **pansion of the source distribu-
Inovn as FIRQRSg•, it evaluacos tht infiuite- tion which is one order less than the polylao-
depth Gr••n function and its derivatives to rial representation of the panel Aeometry.
aix deci&al places in about the sumt time as Accordiogly, he implements a quadrilateral
four calls to a Besoei function routine io tbe panel with quadratic shape and a piectwiso



linear source distribution. Unfortunately, The bod7 boundary condition is more
this scheme is not easily extended to a psnel easily stated after making the linear decompo-
with cubic shape and a pip.cewise-quadratic sitio.
souzce .istribution.

6
The panel gecmetry is exact in the pre- A(•o + •7) + E **. (

sent work, so the algorithm is simpler than j=1 (4)

for Hess, higher-order panels. Due to expand-
ing tI'e ve)ocity potential in e aeries of where, A is the amplitudi of the free-surface
orthogonal polynomials and locating the collo- elevation due to the incident wave and
cation points on the interiors of the panels, j31,..,6 are the complex amplitudes of the
the a"Zorithm is tL• sume for tenth-order as rigid-body motions. The modes j-1,2,3 corres-
it is for second-ordar panels. This has per- pond to translation in the x,y,z directions
mitte* a s~stematic i~vestigation of the and modes j-4,5,6 to rotation about the same
scheme's convergence with respect to the num- axes respectively. The normalized velocity
ber of nanels aM tfle ,:rcer ol' the polynomial potentials *o , j ;j-l,6 and *7 govern the
representation on each panel. incident, radiated and diffracted wave flows

Throughout this work, special care has respectively.

been taken to accurately evaluate the inte- The incident waves are regular plane-
grals over the panels. Singular terms are sub- progressive waves and are described by the
tracted from the integrands under circum- velocity potential
stances to be discussed in Section 3. The re-
gu'ar &- singu,ar terms are thern integrated
by different numerical quadrature schemes, o = . e (z - ixcosB - iysinB) (5)
both of w-hcb provide results to a prescribed
accuracy. This approach is computationally
inefficient, but it virtually eliminates the where 0 is the angle between their direction
quaorature schemes from consideration as a of p-•pagation and the positive x-axis. The
possible source of error. diffraction velocity potential accounts for

interaction between the body, fixed at its
mean position, and the incident waves. Thus on

2. Boundary Va1'!e Pr)b;e the body's wetted surface SB it offsets the
inci..cet-*wave normal velocity

We consider a floating body oscillating
about its static equilibriuti positi. i. £he
body's motions are defined with respect to a o
Carteaian coordinate system oriented such that n .V07 - -P Vo on B (6)
z-O coincides with the free surface enu z it.
positive upwards. Followirg the usual ap- where the uuxt nor-al vector n is taken to
proach to linear seakeeping, the fluid is a-
sumed to be iuviscid and incompressible, and point out uf t'.e fluid domain. The -adiated
the fluid motion irrotational. After further waves are 6enerated by Ihe forced oscillation
assuming small amplitude vaves and body mo- of the body in otherwise calm water. The
tions relative to the wavelength and a char- radiation velocity notentials satisfy the
acteristic body dimension, the problem is re- inhowogeneouc -1n.Ltious
duced to a linear boundary-value problem for

the complex velocity potept al O(x,y,;). The n *•j , iwn on S 1.2,.... 6complex time depnd.ýat*e Jý , where w is the (".
circular frequency and t is time, has already
been factored out and will heniceforth be
understood, The boundary conditions ere a3tis- wacxe the normal component4 nj are defined by
flied at the nean positions of the free curface
and body boundary. n 'n ,, 42, "3) (8)

The complex potential eatifieb n o (n n5 , n
2 2 2

V 2 (--. -y. -- )O 0 in V Finally, to ensure vell-posedneas the radi-
l astion and diffraction potentials must satisfy

( " K) - 0 a radiation coadltion of outgoiti8 waves at"- nP- large Ctstanee from the body.

V4O a a a+ - .C A) Free-surface Qrce _! Acja

where V denotes the fluid domain, K is the The Green function is ao etemeatary solu-
wavenumber, and g is the gravitational con- tion of the linear bnuudary-value probiea,
dtact. The ayv number oatigfiet, the diaper- consisting of a Rankine source and a regular
sion relation " - gK for water of infinite part which satisfies the free-iutface boundary
depth. condition. Explicit expveaions of the Green
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function for finite or infinite depth are 4. Boundary-Integral Formulation
given by Wehausen and Laitone (1960). For the
present purposes it is only necessary to dis- Substituting the Green fvnction and one

tinguish between the singular and regular com- of the canonical potentials j 1,2,....7
ponents. into Green's theorem leads io the boundary-

integral equation

We introduce the vector notation x for - + a
the (x,y,z) coordinates of a field point. The 2rý.(x') + f do .(x) - G(x,x')

locations of the source point and its joage SB X

above the free surface are denoted by x' - 4. - (10)
1, - (x',y',-z') respectively. = n oX •j(x)G(x, X)

(x',y',z') andxd
Then the distances between these points and a SBfield point xitare given by

where •" coincides with the body surface.

r X Since the normal derivative of * is known
from the boundary condition (74 or (8),

r Ix equation (10) is a Fredholm integral equation
I of the second kind for which a unique solution

With these definitions, the Green function can always exists except at a set of discrete

be written in the form freqzenci,-s known as "irregular frequencies".
Henceforth, the j subscript shall be omitted

. 1 +and the prsscribed normal velocity a ./ an
G(xx';K) - + + 2K(Jog Kr'+ log(1+co5e)] denoted by V.

(9)
+ H(x,x ;K) Sloan (1980) summarizes the various nu-

merical methods for solving Fredholm equations
of the second kind. The simplest approach for

where H is a wavelike term which is regular arbitrary geometries and the most widely used

everywhere and the angle 0 is defined in in free-surface problems is the collocation

Figure 1. The Rankine source 1/r is singular method. The velocity potential is approxima-

whenever the field and source points are close ted in the form

together, but the image source 1/r' and the
first logarithmic term log Kr' are also singu- N
lar when the field and source points are close n(x) - t (x) (n1)

to each other and to the free surface. n.I

where #, are a set of basis functions and a

are unknown coefficients which are determined
by satisfying (10) at N discrete locations or

a "collocation points". Eaci" basis function is
Image defined on the domain Sn and vanisbes else-
Source where. SnUsy be either identicel to S or a

(Xo-') + )subdo-ain of it. The Oaseociatl'd wiA each
basis function can be unique, share,. by other
basis functions, or overlapping the domains of

Field Point other basis functions. Uased on these defini-

Suc(.,y,Z) tions, (10) can be rewritten in the diatreteSource 1
Point 1 form

(*Z **) + ff x)".I S " "" Gxxr

Figure 1: Definitions of r,r' and 0 - il +

SB (12)

where • are the N allocstion points. The
Since the numerical scheue requires only restriction a o the location of the col-

integrating the Green function and its normal location points is that there must be one
derivative over the body surfa&e, it is es- point for each basis function defined within a
sential to integrate the singular terms separ- particular subdomlin.
ately in the vicinity of the source point.
The FIIIGUIN subroutine facilitatas this by

optionally subtracting off some or all of the

singular term. In general, the logarithmic 5. Spheroidal CoordijAtej
terms should be subtracted whenever the image
source is subtracted. The second logarithmic We now transform the integrala in (10) to

term is not actually singular, but numerical spheroidal coordinates. The transformation

experience has shoam that it should be luved between tb* spheroidal (a,8, y) and Cartesian
with the l/' and log Kr' terms. (x.1,) coordinauea is given by

202

.. .... .. .. . .



Section 3, but is constructed from such wave
X coshy cusc sources by the method of images to satisfy

cosh Yo appropriate boundary conditions on the planes
of synmetry.

sinh Y
Sastnh sinccos$ 6. Numerical Scheme

To facilitate a numerical solution of
= o (16), the rectangular domain of integration in

sinh y 0 (13) the y - yo plane is subdivided into a grid of
rectangular panels. The grid is characterized

where Y is an arbitrary constant and E is by the numbers N , N e corresponding to the
determined from the relation e - tanh 'v . number of equal divisions of the a 8 axes
Setting y - y defines a spheroidal surface respectively. The dimensions of each panel
with halflength unity and diameter-to-length are therefore
ratio e . Of course other constant y surfaces
may be chosen, but c will lose its physical Aa= r(2N )¶significance. 

AB-7T/(2N
It is convenient to define the phyalt fac-

tors In order to define a basis-function represen-
=ax I (ia+ 200~] tation of the velocity potential within a

h a (si~aEy -o a panel, it is convenient to map the panel to a0, Y-Y 0square in the (r,s) plane with its centroid at
the origin and sides of half-length unity. The

ax coordinate transformation for a panel withh lia indices i~j is given by

a~ a (r +2i - ) L ; i=1,2,...,N

h in -ican-e

a o 2 .l 2 . .

DY ~ ~ ~ ~ ~ A Y- 0 1)/( 8 i-2N

Then an incremental element of acea on the The potential is approximated within each"surface of the y y spheroid is simply panel by a truncated bidimensional series of
d8 - h h dodo and the0 unit normal vector is Chebyahev polynomials of the form
given b$ 8

T - 5-Yo (15) T (-- T (8) T (17)

Substituting these definitions in (10), where a, - are unknown coefficients, Tse is
we have the Chebihev polynomial of order k and K0 -lH8 -1 are the order# of the highest-degree

2wo(a'. 0) polynomials in the aC 8 directions reepec-tively.

Since there are 4H1  terms in the seriesI fo * ] expansion, fH( ) collocation points must be-fI Jay YWd X chosen on eac% panel. The error in approxi-
o o•

0  mating an arbitrary function by a series of
1//2 /2- Chebyshev polynomials up to order M-i is mini-"f f dadfha hV(aO8)G(,;) (16) mited by locating tha collocation points atS0 Orthe aeros of the order H Chebyahev polynomial.We therefore locate the collocation points at

where i and P' are obts.ined by the explicit the aeron of the order HM and M.) Chebyshevtransformstious polynomials. The Cartesian coordinates of acollocation point are denoted by x , whereS. •(a,8,yo) the ij subscript. indicate the p'ei where0 ~the point is located and the k,l subscripts

•(ca,,8°.yo indicate its position on that ptsnel.

Using the above definitions, (16) may be
Here it should be recognized that the domain rewritten in the diecretized form
bas been reduced t3 oue-quarter of the sub-
merged surfae, by exploiting the spheroid's
symetry. Thus the function denoted by C is
not identically toe vave 6ource defined In
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a8 2 2 ax
27 Z . T: (r f) 12aa(a 1 f (20)
k~i Z a,. 3 ki Tk-i rkZ dad- 82(aa8I(a 1. (Dy) (20)e

Na N a 8 where I" is the singular point and (a 1, a) and
4 I I i ajkI ($ are the ranges of integration in the ai.18 'j=1 k.1 t1 ad (8 8 directions respectively. Ths ine

x~h ()[ *grals are evaluated numerically after making a
xh () ()LX- V (,X coordinate transformation. We denote byh'h
O~- Z1 ýy X k' the values of the scale factors b h

Na~ N8 ((a) and make the transformation

4 i1l j1 -1 BaVGx.i h' (t-a') = pcoso

j~1,2, .. h9 (O-8) = psino

,.. 6

5 where p , a are elliptical coordinates cen-
k,=l,2,..,M atered on the source point in the ( a , 8

z1=1,2,... ,M (a 8 plane. Substituting into (19) and (20) gives

Many combinations of Na No P H and M 27r P (a)1

are possible with this approach. if Na- N I1 ~ do PdPh [ h V (a, B)(--.
then (17) is a global representation and a aL # o p (a) 8 YX'
N must be fairly large to obtain an accurate (21)
solution. If on the other hand X N8 M 1, 2 7 p (a)
the potential is piecewise-constan't on each r o2 a
panel and N , N a must be large. Any choice I2 f o Pdp% J1(a,,) Lx V(----)
with 1- C or gogreater than unity will be re- 2 a 8 o P1 (0) y X IX-e1
ferredato as a "higher-order" representation. (22)

Equation (18) must be put in the canoni-
cal form (12) to facilitate assembling and
solving the system by standard matrix methods. where p 2v are the lower and upper limite of

This is achieved by mapping the indices i,j. integralion with respect to P and are computed
k,l and i',,',k',l' to the single indices n for each angle a. The lower limit is of cource
end w respectively. The best mapping from tere when the singular point lies within the
the standpoint of placing the largest coeffi- domain of integration. The integrals (21) and
cients close to the maim diagonal has beem (22) can be evaluated numerically because
found to be their integrands have a finite limit *as 1

vanishes. The logarithmic terws in (9) are

n - (i-1)N 0MM 8H + (j-l)M aH + (k-l)M8  more weakly singular, so the same coordinate
transformation is applicable. The contribu-
tions of all singular terms are computed to

primed indices and in. integration algorithms.

Wie now turn our attention to evaluating
the integrals or "4influence coefficients" in
the discrete equations (18). As discussed iu
Section 3. sivigular terms are subtracted from

the integrands and treated separately. All 7. 0401eriga1 Results0
remaiting terns are regular and are integrated ht ha ben esdex

*loalGaus uaratreinorder to control tensively for the case of a spheroid with

Staric&wit secnd-rde Gaus qadrture ininie deth.Thespheroid is floating such

difference between successive values is lots surface. The primary output quantities are
than a specified tolerance. *the added mass/moment and damping coefficient*

it the five nontrivial modes of motion and the
The iateo'rp1,j of the singular terms have corresponding exciting forces/90ousntO (here-

the forms after oweento shall be understood) for three

a ~wave beadings. These quantities are 4defined in
m2  2 th Appedix

-1 f f dnd~ii [I V(Ca,6)I- N1,--' (19)
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Parameters such as the quadrature toler- The same results are also plotted in
ances and the ratio N /N have been investi- Figures 3 through 7. In addition to the wave-
gated to find theij optimum _alues. Absolute numbers listed in Table 1, the following
tolerances of 5xl0 and 5xl0 have been used values were used to make the plots: 0.16,
for the Gauss and Romberg schemes respectively 0.32, 2.4, 4.0, 4.8, 5.6, 7.2, 8.0, 8.8, 9.6,
because the hydrodynamic coefficients are un- 10.4. The triangular tick marks in the plot
changed to four decimal places when more of head-seas heave exciting force and phase
stringent tolerances are imposed. (Different have been read from plots in Shin (1979) and
tolerances are required for the Gauss and Rom- provide further confirmation of the present
berg schemes because the convergence tests are results.
applied to different quantities. In the iter-
ative Gauss procedure, the integral over an We next investigate the accuracy of the
entire panel must converge, whereas the nested numerical scheme for the various combinations
Romberg procedures first check for convergence of the parameters N and M listed in Table 2.
in the p direction and then in the c direc- In all cases the total number of collocation
tion.) The ratio NiNS has only a slight ef- points is no greater than 100. The heave and
fect on the results, so all results presented pitch hydrodynamic coefficients computed with
here are for N, = N and M * " M 8" The sub- each of these combinations are plotted against
scripts will henceforth be omitted from these the reciprocal of the number of collocation
parameters, points in Figures 8 and 9. Also shown in

Figure 8 are values from the plane-panel pro-
Results have been obtained for the cases gram described in Breit, Newman and Sclavounos

N-1,2,...,9 and M-1 (piecewise-constant pan- (1985). Other than their common use of
els) over an extended frequency range. As FINGREEN, the plane-panel and spheroidal-panel
expected, the hydrodynamic coefficients a2ppear programs are completely independent. A number
to converge to their exact values as N in- of interesting observations can be made about
creases with an error which behaves roughly these plots:
like i/N 2 , where N 2 is the total number of
panels. Richardson extrapolation has been 1) In most cases the values from related
employed to improve the accuracy of the models fall nearly on a straight line.
results. For example, if P(N 2 ) and P(N 2/4) This applies especially to the piecewise-
are predictions obtained with the body geo- constant plane- and spheroidal-panel re-
metry discretized by N 2 and N2/4 panels re- sults and justifies the assumption made
spectively, the error in the extrapolated pre- when applying Richardson extrapolation
diction (4/3)P(N2 ) - (I/3)P(N2 /4) is expected that the error is linearly proportional to
to be of order 1/1N. Further reduction of the 110(12).
error is possible if the estimate P(N2/16) is
available. A more detailed explanation of 2) Values which coincide with the left axes
Richardson extrapolation is given in, for ex- of these plots have been obtained by re-
ample, Dshlquist and Bjork (1974). peated Richardson extrapolation. Although

only the piecewise-constant panel results
The hydrodynamic coefficients computed by have been extrapolated, the agreement be-

the present scheme have been compared with tween plane- and spheroidal-panel extra-
values given by Kim (1966) and Yeung (1973). polated results and the apparent conver-
The present results generally agree with Kim gence of the higher-order-panel results
to two significant digits and with Yeung to substantiate the claim made earlier re-
within one unit in the second significant gardiug the accuracy of the benchmark
digit. values in Table 1.

Table I lists the hydrodynamic coeffi- 3) Extrapolation was not as effective for
cients and exciting forces at six dimension- the plane-panel results at the highest
less wavenumbers; the dimensionless wave- wavenumber (KL/2 - 8.0). probably because
number KL/2 is based on the length L of the the coarsest plane-panel model had only
spheroid. The exciting forces have been ob- four panels. Had the results from the
tained by solving the integral equation dir- coarsest model been neglected, the extra-
etly at opposed to using the Haskind reli- polated plane-panel values would have been

tion. All values except the exciting-force much closer to the extrapolated
phases have been extrapolated from the se- spheroidal-panel values.
quince 16,36,81 panels on one quarter of the
submerged surface; the phase angles are based 4) Comparing the slopes of the lines corres-
on the 81-panel results alone. With the ex- pending to different types of panels gives
ception of the surge coefficients and the an indication of their relative perfor-
phases, all values are believed to be accurate mance. If a permissible error is specified
to within one unit in the third decimal place. and the slope associated with one type of
The surge coefficients are believed to be ac- panel is twice that of a second type, then
curate to within one unit in the fourth deci- twice as many panels of the first type
mal place. These results are regarded as will be required to achieve the same accu-
benchmarks for subsequent comparisons. racy. This is a significant difference
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because the computational effort increases tial. The accuracy of a particular model has
at least quadratically with the number of been judged by counting the number of these
panels. Considering just the piecevise- discretization errors which exceed a given
constant panels, we see that the slope for value, say .005. The percent of exceedances

plane panels is in fact considerably for each combination of N and M is given in

greater than for spheroidal panels at Table 3 which is organized so that combina-
KL/2 = .08 and 3.2 with a less marked dif- tions with the same number of collocation

ference at KL/2 - 8.0. points are listed in the same row. With three
modes of motion, two coefficients for each

The results from the higher-order sphe- mode, and eight frequencies, a maximum of 48

roidal panels have also been compared in a exceedances is possible. Therefore the resolu-

different manner. The sway, heave and roll tion of the values in Table 3 is about 2%.

coefficients at 8 dimensionless wavenumbers, From looking across the rows, we conclude that
evenly spaced between KL/2-.08 and 11.2, have for a fixed number of collocation points it is

been computed for each combination of N and M. better to use piecewise-quadratic than

Differences between these values and the piecewise-constant panels, but piecewise-
benchmarks may be regarded as the absolute linear panels provide no improvement over

error due to discretizing the velocity poten- piecewise-constant panels.

Table 1: Benchmark values for the hydrodynamic coefficients and exciting

forces/moments of s = 1/8 spheroid, based on extrapolating from the sequence

16, 36, 81 piecewise-constant panels on one quarter of the submerged surface.

The dimensionless quantities listed in this table are defined in the Appendix.

The exciting force/moment for each wave heading 8 is given as a pair of

numbers where the first number is the modulus and the second is the phase in

degrees. The waveheading a is defined in Section 2. All values are accurate

within one unit in the third decimal place except for the surge coefficients

and exciting forces which are accurate to within one unit in the fourth decimal
place.

Mode F.L/2 Added Damping Exciting force/moment
I "Mass a ' B= - 45° - 90*

Surgq 0.08 0.0298 0.0000 0.0102 90 0.0072 90

0.80 0,0360 0.0032 0.0854 90 0.0624 90

j-1 1.60 0.0381 0.0137 0.1185 94 0.0965 94

3.20 0.0242 0.0239 0.0710 119 0.1063 112

6.40 0.0135 0.0182 0.0313 306 0.0166 223

1.20 0.0090 0.0131 0.0137 241 0.0142 73

Sway 0.08 0.9543 0.0000 0.0137 90 0.0194 90

0.80 1.0564 0.0153 0.1330 90 0.1940 90

j-a 1.60 1.2027 0.1132 0.2428 87 0.3906 87

3.20 1,2565 0.5618 0.2906 76 0,7145 77

6.40 0.6847 0.8450 0.0687 257 0.8644 70

11.20 0.3121 0.6277 0.0440 59 0.7504 83

Heave 0.08 2.4067 0.1799 1.4647 0 1.4654 0 1.4660 0

0.80 2.1058 1.1113 1.1047 5 1.1510 5 1.1980 5

j-8 1.60 1.5029 1.3385 0.7332 15 0.8822 15 1.0490 15

3.20 0.8406 1.0537 0.1391 59 0.4304 35 0.9368 28

6.40 0.6240 0.5958 0.0480 263 0.1125 205 0.7203 47
1.20 0.6245 0.2965 0.0307 204 0.0579 36 0.5030 74

Pltct 0.08 1.4844 0.0002 0.1476 90 0.1044 90

0.80 1.7365 0.1303 1.2206 90 0.8865 90

j-6 1.60 1.8208 0.5572 1.7048 94 1.3492 94

3.20 1.2481 1.0337 1.2001 115 1.5036 113

6.40 0.6852 0.6652 0.3491 294 0.3373 162
11.20 0.5853 0.3681 0.1049 205 0.1283 16

Yaw 0.08 0.8477 0.0000 0.0007 360

0.80 0.8992 0.0004 0.0709 360

J-6 1.60 0.9862 0.0118 0.2631 360

3.20 1.2183 0.2285 0.7927 354

6.40 0.8600 0.7420 0.1805 328
1.20 0.4217 0.6756 0.1115 153
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Figure 3: Surge coefficients and ex citing Figure 4 . Sway co iifficie nt s and e xciti ng
force for c w 1/6 spheroid based on 61 force for c-1/8 sphieroid.
piecewise-const ant panels.

Perhaps the major ahortcomiur of boundary- a fairly refined model; each tick uark repre-
integral formulations of fraes-utftce problems, sent& an actual computed value. The first ir-
is the presence of "ir'regular frequencies" regular frequency appears to be at KL/2 1 15.

which correspond to the tigenfrequencies of Belo-4 this wavenumber the curves Are smooth,
the ut~erior homogeneous Dirichlet problem. but above it som~e minor kinks are obvervable,

The behavior of the sphero idol -parte I mdel has Of particular note is a bunp at X•L/2 a 07

been investilated in the viciaity of the first which will be referred to later in th~e context

irregular frequency. of twin spheroids.

'he heave added-meas and damping coeffi- Results, based on 9,16,36 and 81 piecewiat

cients based on 61 ritecvise-constant panels constant panels are plotted -I. Figurc !I - The
are plotted in Figure 10. T'his figure has 81-panel remults are the some at those in

been included to shoe the detailed behavior of figure 10 and art represented by a solid live
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Figure 5: leave coeffi-iente and exciting Figure 6: Pitch coefficients and exciting
force for z. 1/8 spheroid. Bean seas excit- moment for c - 1/8 spheroid.
ing force modulus) and phase fro% Shin (4979)
are sbhuwn for comparison (A)..

even thoUb there is uncertcnty as to whether Figure 12 shows the heave coefficients
the curves are continuous at the irregulat computed from 81 piccevice-constaut panels and
frequency. In the 9- an6 16-p•tne rcoults the 4 and 9 piecevise-quadratic panels. It should
apparat, location of the irregular frequency be noted that 9 piecewise-quedratic panels re-
is shifted to the rigbt. Rather than a conti- quire the same number of collocation points
nuoos shift to the lcft at the numbir at as 81 piecevise-constant panels. Although
pa-;.!ea increaeasd howaver the aioertnt irregu- pieceviae-quadratic panels performed better
ltar frequency is actually fVtrthe*r to the right than piecewise-constant panels at low to
for 16 than for 9 panels. The amplitu4e uud moderate frequencies, the quadratic-panel re-
bondvidth af ,.be irrogtilar ftequaucy distur- sults are erratic above the first irregular
banee generally wec•eaa •dith sre panels, but frequency.
the 16-panel rqsults contradict this frtid
too%
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,- ,Table 2: Number of coliocation points
S- -required for various combinations of the

parameters N and M. The parameter N is the
6 /V number of panels in a transverse ý2 longi-

> / 616tudinal strip of panels, thus N is the
.. number of panels on one quarter of the sub-

merged surface. M-i is the order of the poly-
S/"nomial representation of the velocity poten-

* / •tial within each panel. The nupber of colloca-
tion points required is N2M N. Results have

o*b /PVW been obtained for all listed combinations.

66

NM 1 2 3 4 5

1 9 16 25
•••••••••••• • .... •. '•'•••••••2 16 36 64 100

3 9 36 81
S4 16 64

""- 45* 5 25 100

6 36
0. 7 49

S8 64

S9 81C

10 100

C; • results appear to converge to the far-field
a approximation as the number of panels is in-

creased from 81 to 256. In addition to the
Q disturbance in the panel-method results at the

first irregular frequency, which coincides

with that of a single spheroid, there are also
irregularities, particularly in 'e damping

Scoefficient, at KL/2 a 17,21 and 23. The first
SI of these coincide. with the aforementtoued

bump in the single-spheroid coefficients

(Figure 10), but is certainly more prominent.

'b. 2. 4. S. s. to. Based on recent work by Wu and Price
K./2 (1985) it is likely that the irregularities

observed for single and twin spheroids at
XL/2 - 17 correspond to the second irregular

Figure 7: Yaw coefficients and exciting frequency in heave. They bave computed the
moment for e - 1/8 spheroid. hydrodynamic coefficients in all modes of a

slender horitontal cylinder with a triangular
cross section and show analytically that 'he

Figure 13 shove the heave added mass and first two irregular frequencies in heave occur
dampirg of twin spherotds in the vicinity of well below the first one in sway. Ir so ýa-
the first irregular frequency. The spheroids as this body vaguely resemhles a prolate Ophe-
are arranged in a catsaaroa configuration with roid, the locations of the irregular frequen-
a separation between their centerlines of one cies of the two bodies should be similar. Ths
quarter their length. For purposes of cotatri- qpheroid's first irregular frequency in sway
son the SI-panel results for a single spheroid occurs slightly above KL/2 - 24, so th- second
and c foar-field approximation for twin spht- heave irregular frequency muat be within the
raids (described in Brelt, 1985) are also in- range shown in Figures 10 through 13. In
cluded. The far-field approximation does not fact, Figure 13 closely resembles some numeri-
suffer free irregular frequencies, thus in an ical results presented by Vu ard Price. both
unusual turn of events it serves here as a in the relative locations of the first and
standard for judging the supposedly "exatt" second irregular frequencies and in the rela-
panel-method results. Indeed the pamel-metbod tive magnitudes of their disturbances.
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L• . • KL/i2 =.08

Symbol Piecewise variation
_ _ of velocity potential

x conastant
l linear

quadratic
U cubic

aJ

KL/2 = 3.2

o l

.44

/A

KL/2 *8.0

do 0 ... .03 is , 0 6 ,4 M0 V .1.0/(.062 .0/(.10 .12 .

N H

Figure 8: Reave odde-d-saea and -L3aping coeffici.at$ of f m 1/8 spb(roid
versus reciprocal of the number of collocation point., Ný41 , at threeAVOWwtr for five types of pattels. Actual data points are indicated by
tick marits; spheroidal- tad pen-panal results are connected by solid and
dashed 1tin reSoptively.
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V 3 Symbol Pietevise variation
C~j C;of %elocity potentiaul

.Z constant

tNOA linear
ts quadratic

a cubic

KL/2 09

30

KL/2 -3.2

K */ 8.0

'~0 00 .0 .6 .1 0.1to .12 Ot.oo 0.@* 0.04 0.01 CAS1 0,11 0.

4-4 2S 16 64 I(. :4SS

7isure 9: Pitcb odded-soeDi &ad d"Vring coeffici~ito of c- 1/8
apberoid veretj reciprocal of tp-4 ~UUb~r Of ColloCatlo Pointe, VýN2.



Table 3. Percent exceedance of permissible
error for virious combinations of the number
of panels N and the order M-I of the poly- >
nomial approximation of the velocity poten- aL

tial. For each combination, the sway, heave r' Mro .•;:xX x

and pitch added-mass and damping coefficients &
were computed at eight wavenumbers, equally
spsced between 11/2 -. 08 and 11.2, for a total X
of 48 coefficients. The absolute differences ' ___--__-----_,__________

between these coefficients and the benchmarks
were computed. The number of differenceswhich exceeded the permissible error 6 were / X Xx

counted and divided by 48 to obtain the per- 3
centage of exceedances. The benchmark values >

were obtained by Richardson extrapolation of .

the 16,36 and 81 piecewise-constant-panel
results. .Y__ _ _ __ _ _ _ _

.0212. 14. 15. AI. 20. 92. 24.

1M 21 - 3 4 5 KL/2
Figure 10: Hoage added mass and damping of

N ......... c•.- 1/3 spheroid in vicinity of first ir-

9 88 90 resulr frequency. Each mark represetsa
numerical computation based on 81 piecewise-

16 90 88 60 constant panels.

25 88 29

36 79 65 38
49 75 "

64 65 58 4 too

81 52 3 o'- 0

100 44 0 a osybo " bom t
6- .005 a

00
'• 1 2 3 4 5- 8

os

9 80 77

16 75 75 44 Ia

25 65 13 5,

36 50 50 8 0

49 31 3'0
Cme

64 23 25 0 .Z
81 2 0 *

100 19 0

12 13 14 15 16 1? a 1 210

KL/2
Figure 11: Ejave added mase and damping of

-w 1!8 spheroid in vicinity of first ir-
regular frequency; according to four models
with different numbers of piecawiae-conetant
panels.81-panel results eare sawe as FigurelO,
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AA

XXX

CL/

Figure 12: H~eave added mass and damping of
S- 1/8 spheroid in vicinity of first A_

irregular frequency; according to 81 042 14 16 18 20 22 24

piecewiso-constant panels ( ), 4
piecevisu-quadratic panels (a), and 9 KL!2
piecewise-quadratic panels (x).

Figure 13: Heave added mass and damping of
twin c- 1/8 spheroids in vicinity of first
irregular frfquency. Spheraidt are arranged in
a catamaran configuration with a separation
between their centerlines of one qu;arter their
length. Results presented are from far-fieldapproximation (panels), 81 piecewise-
constant pauels (&)and 256 piecewise-constant
panels (x). 81-panel results for one spheroid
(--g ) are shoq n for comparison.

8. Conc•lu4oas nection, Richardson extrapolation proved to
be a useful technique for improving accuracy

A very accurate algorithm for computing without increasing computeiova! effort. Bow-
the radiation and diffraction of linaa: sur- ever, c autaon is advised when eztrapolation
face waves by a floating spheroid has been frob vtry coarse ntdels at hioher frequencies.

Rmplemeuted. The peotetry is represented

eaactly and the accuracy of the influence The comparison of curvilinear and planecoefficients is carefully controlled, so psnel s both with p(ecevise-con5tant approxi-
errors in the hydrodynaiic coefficients and mptions of the ve sucity potential shows thi
exciting forces are pri-marily a consequence of curvili-ear panels to be cuperion. although

approximating the velocity p~tential and the difference is more sig~nificant at loyolvin 0 by the collocation methods frequencies. This o uggetst that even with
a piecewise-constant potentialm improved ac-

The algorithm has been used to compute curacy can be gained just by accountiog for
benchaxl w alues of the hydrodyt hasic coeffi- ctfrvaeure in the geometry.
cecients of a c r 18 spheroid. In thie con-eror i te ydodnaiccoffcint ad aton o te olciy otntalshwsthexciingfores ae pimailya coasqenc of urvlinar anel tobe uperoraltoug
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Appendix

The definitions of the added mass and
damping coefficients aijand bi, and exciting
force/moment xi are

(A)
2421 - i4Ab. -iiujp ff n%.#dS

SB

J,j- 1,2...,.

x. -iWP ff nc.i0 +0)ds

i = 1,0.,

where n is the generalizied normal component
given by equation (8). These quantities are
nondimensionalized by the geometric properties
of a spheroid having a length L and a maximum
diameter B and floating such that its longi-
tudinal axis of synmetry coincides with the
free surface. The required geometric proper-
ties are:

Displaced volume

V .- Ir L XB ) 2
3 2

Inertia of displaced volume about y axis

L L 3 B 2  B 2

15=.~) (-) 11+(V)

Waterplane area

Inertia of waterplane area about y axis

1 L 3 B
-L 4r(•) (j)

The dimensionless coefficients are denoted
here and in Section 7 by overbars and are
defined as follows:

Translational wodes:

w2pVGa - ib 4  u2a4  -~ iw I 1,2,3

2x, - jw.1,2
'ii

PgAwX3 X3

Rotational ,iodea:

G - w a - J 5,6

P~Ls

.L 2/WX

"S1 56
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A Method of Computation for Steady Ship-Waves with Non-linear Free Surface Conditicns

Hajime Maruo
Yokohama National University, Yokohama

Seikoo Ogiwara
Ishikawajima-Harima Heavy Industries, Yokohama

L Introduction Apart from the technique of linearized free
surface conditions, the possibility of the direct

The theory of ship waves is a subetantially non- solution of the boundary value problem in its original
linear problem. The method which has been corn monly non-linear form depends only on numerical methods.
used in order to solve this problem is the perturbation A typical method of this kind is the finite difference
analysis with the assumption of small beam/length technique, by which the solution is obtained by the
ratio of the ship. The Michell thin ship theory is the step by step integration of the unsteady Euler or
first approximation of the perturbation and a great Navier-Stokes equation with respect to time. Several
number of examples of wave resistance computation results of computation by the finite difference
has been published so far. Tsutsumi et al.(l) compared technique applied to hull forms have been published by
the wave resistance determined by the wave pattern Chan et al.(10) and Aoki et al.(ll). Serious
analysis of mathematically defined ship model of disadvantages of this method are that an enormous
variable breadth with corresponding computations by computer time is required before the steady state is
Michell's formula, and concluded that Michell's finally attained and that a proper treatment of the
formula could predict the wave resistance within the condition at the open boundary with which the domain
torelable accuracy in case of beam/length ratio not of computation is encompassed is hardly possible. On
greater than one fifteenth, account of these defects, it is quite unlikely for the

Since practical hull forms exceed this limitation, accuracy of computation by this method to be able to
Michell's formula Is not useful for the purpose of attain the level of practical feasibility.
prediction of wave resistance. T7he higher The method proposed here is a kind of the boundary
approximation of the thin ship perturbation has been element method with the Rankine source as the kernel
attempted by a\ veral researchers(2) (3)(4), but the function. The steady non-linear free surface flow
results are not so promising, because of the highly around a hull placed in a uniform stream is determined
singular behavior of the Relvin source which prevents by iteration so as to fulfil the non-linear free surface
the feasibility of the higher approximation. condition and the hull surface condition, starting from

Another possibility of the perturbation analysis is the solution of double model linearization such as
the low Pro'lde number approach. This method Dawson's problem. An advantage of this method is
assumes the series expansion of the selution with that the computer program for the double model
respect to the Proude number. The starting point is linearization which is now at hand, is fully utilized.
the flow at zero Froude num bet which is identical with Other points of merit is that an analytical expression
the flow around a double model in an unbounded fluid. can be given to the solution at the final stage by
The free surface condition for the disturbance means of the source distribution over the boundary and
potential Is then linearized and the solution is that the condition at infinite depth is fuifiled
simplified to a great extent. This idea was fi y automatically. It has been found on carrying cut the
suggested by Ogilvie(S) for the motion in two- computation, that the stability in computation process
dimenslona, and applications to the three-dimensional is a serious problem, and several techniques to
case have been discussed by Dabs et AL(6) and Maruo suppress the instability are indispenahle. In order to
at al(7). Dawson(S) proposed a purely numerical examine Pcoblems associated to numerical technque,
method to Sav, the boundary value problem with the computations are executed for the two-dimenmsional
free surface condition similar to the abaove motion of a submerged cylinder(l2). Then numerical
approximation by the aid of the distribution of examples of three dimensional calculation are shown
Rankine sources over the still water plane together with respect to the wave pattern, pressure distribution
with the hull surface. A computer program for ths and wave resistance of mathematically defined hull
method applicabl to arbitrary hull foars wan formis(13).
develOpod by Ogiwara(9) who calculated the wave
pofie, Pesure distribution M the hull surface and
the wave resistance and exa mined the feaslbMlV of
this method Iin the pratical fL&



2. Basic formulation

Take cartesian coordinates with axesof x and y in -- ,,+D1 (x,y)=0 (z=0)
the undisturbed free surface, and z axis in the
vertically upward direction. Consider a ship hull fixed
in a uniform flow of velocity U in the direction of x (Ul-o0,'-oov"-2•o=•is-2•o,•lu)
axis and assu me an irrotational motion of an inviscid g

and incompressible fluid around the hull. The flow +Dt(r,y) (z=O) (9)

field is then defined by a velocity potential q which
satisfied the Laplace equation in the domain occupied where
by the fluid.

@.+,@= I o2g• u-o,-o' (10)

where subscripts mean partial deLivatives. Designate
the free surface elevation by the equation D,(x. y)=•,I(C.--ox)+0,y(C,-¢0,)

+ (O0,,Z0Z + :z+ 0 ,1 ) (ii)

z=C(Xy) (2)

D1 (x, yi)- 2 1(qlg14
and the boundarl conditions on the free surface are as g

follows. - {+!
g

kinematical condition 0+=€+@€-0Z=0 (3) -01(+0 4Y+ ,. + 01 VIA)} (12)

(X=C) D1(z,y) and DI(x, y) indicate the non-linear effect. Tf

we omit the non-lineax terms, i.e. D,(x,y)=0,
.yai_ ta0codiiot-Ut)+gC=o Dz(zy)=0 we have the boundary condition for the
2 (4) double model linearized s•oution.

Qz=0

where g Is the acceleration of gravity. There is a ( ,(1o:'+( ,)#)
condition at infinity such as=P -Ux at x'.y' zx' o. 2
We have to consider generally the radiation condition +{40(00.013+00411)x
that there is no wave motion at infinite upstream, hut
results of computations have shown that this condition
is fulfiled by adoption a suitable computation 1100.1+ q)y}
algorithm. The free surface conditions, (3) and (4),
have to be satisfied on the elevated free surface +90"=0 (4=0) (13)
zrC(x,y), but trial computation has shown that the
adoption of values at the real free surface at each
step of iteration causes an unavoidable tendency of If we take the length s along the streamline on the
divergence. Therefore we employ an approximation plane x-0 of the double model flow, the above
that each value at zn €is expanded in Taylor series equation can be transformed into
around z-0 and higher order terms are omitted.

Resulting equations axe +2(..+ .+•a,6-,+t (i=0) (14)

This equation is Identical with the double model
=.€,C,-¢4.+(@..+4,,)C- (40) (- ) linearized free surface condition which was employed

by Dawson.
The boundary condition on the hull surface is the

"C(.6+~ ,+tit.-U) usual form

+9C-0 (8-0) (6) -on- 1-8" - It

Thex. equations are satisfied on the plant zoO. where n Is taken along the outward normal of the hul
The method ot solution i based on the 8urface. Since the double model flow stiLfies the hulldeco apoeition of the ve pty poential into the double surface condition, i.e. &0, the boundary

amodel flow pot.ntial 4, and the devitimo from it sumbh conditm for 0% beo a as

+ (7) (16)

The double model potential Is reqarded &2 a known
function. Subattuting (7) in (S) and (6). 0," obt& whare 01 at. Q, art directi0on ctteof the normal.
after ains reduction
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We express the double model potential by a computation. In oder to eliminate this instability, a
distribution of sources over the double hull surface relaxation factor a,<l. is mutiplied to the non-linear
such as terms D1 (x,y)and D,(x,y) .

The numerical work is carried out with
O(x. y, X) UZ-ff .(-+-Lds (17) discretization of the boundary surfaces. We make the

s.\ r0 "€ hull surface So consist of MO panels and take a finite
area S, on the plane z-0, which is divided Into m,
elements, as the domain of computation. If the

where density of source is constant in one panel, velocity of
ro=./ x-_r,) +Q/-y')'+(z-z,)1  the disturbance potential 41 are given by

95,= • ,C.o()CXo(i]) + F1U()CX1(U])

The velocity potential 0.•, on the other hand, is
expressed by sources distributed on the hull surface So 0,= 21, -40o(j)CYo(j)+'-'G,(j)CY,(i) (20)
and still water plane outside the hull S, as follows.

y0,)= -- (L+ -L d, Jo()CZoOj) 4 dujCZl(ij)
J $ YO io )

-ffi, -0 ds (18) where (CX, CY°, CZo) and (CX,, CY,,CZ,) are velocities

due to unit sources distributing on each panel and are
where given by

Now the boundary value problem is stated in such a C XO U D =ff" -t oi
manner that the source distribution densities o,, Juo
are to be determined so as to make the velocity
potentials Oo and 01 satisfy the boundary conditions 7

(8),(9) and (16). CZo(j)= ff£,. +?J+L .)ds(.0413 iote- 21)

CX1(ij=ff'f x- 'L ds3. The numerical method of old•tion (

The method of slution is an Iterative procedure -
that the free surface conditions (8) and (9) a
satisfied by assuming the non-linear terms D,(x,y)and CZ,(i j)= - d
D,(z, y) are given by the solution of preceding step of

iteration. In the ficst place, the double m odel source
distribution a,* in (17) is determined in such a way that
the hull boundary condition.

Integrals are performed in each panel on the hull
surface or on the still water plane.

Ok .0 (19) Because of the application of the relattion factor
a,, the free surface conition takes the form like

is satisfied. Then the first appro4miation is obtained (2
by determininq the source densities Jo, and v, in (n8) (22)
so a to satiy the double model linearized free
surface condition (M4 together with the hull boundary
conditiom, •)6. Next the function, D,(z, M). and D,(z. y)
are calculAted making use of the first approximation
for '$,. The first approximaetion for the free surface (3elevation is determined by substitution of 0, In (9) by -2,a,,)+a,-,t(z. y)
the first approm ation obtained above. The second
approximastion foe the source densities is# and el in
(18) Is deoer ted so a to satisfy the hull boundary Subatituting *11) in (22), one obtains
condition (16) and the free surface cowlItion (8) in
which D,cs.,,) iu determined by' the CL t (24)appcosdsation. A &iminn• proces is repeated in
further apprcoxdmation.

'The computation pmrsgrm, which has been where
developed for the solution of doubl e model
lineatsatLon, is effectivdly utilized in this Iterative A-,a+a,(¢.-, (25)
solution. Xt tI found by a sample calculation, that
Inhereont instabity results divegence in repeated

220



(i=l,2, ,.,M 1 on SI)

The free surface elevation Is calculated by (23),(12) as
follows, where

U, 2 C(,)(k)=B(i)-- J,,o(jy)-Ao(iJ) (36)U=-L ot€t20.l-(6

The source distribution thus obt&ained induces the
nor mal velocity on the hull surface given by

The boundary conditions on the free surface and on the
hull surface are written in discretized forms like v(i) { 6 (J)(I+l--g (i)()}N (ij).(=il (37)

M (tAj(ij)+ d(.)At(ij)+2rva(i)=B(i) (29) In order to compensate the above velocity, source of
- "~ density

(i 1.,2, .., M, on SO)
(38)

are added to the hull surface sources. Then the source
.,(ja)(j)Wj(ij)+ =0 (30) distribution on the hull surface is of the density

~24a(j)N(ij) zk(i)+t .The computation begins with the first

(i=,2,*....M• on So) approximation which is obtained from the double-
model-linearized solution with free surface condition
(14). The first approximation for C is obtained from

where
¢(, ) • U -€•-0.- , € (39)

A ,(ij) = CX,. (ij) A .,(t + C Y .(i.) A (it (31) • 200OO4,

+&,C(CXX,,+CYYm)

B(P AO (-a)( CWThe second approximation for the free surface source

-(3 density dj is determined by solving the simultaneous
equations (35) and the hull surface source density is
obtained from (37) and (38). The similar process is

CXX,1CX.,,(r=z)-CX,%(x z•-•)}x repeated in the further approximation untill a

CYY.= (CyA(,aY-.j)_Cy,,,(Y-t-JyA:Jy (33) stationary value is obtained, it has been found during
3 trial computations, that adjustment of interval
between each st.ep is needed during iteration in order

to keep stability. Therefore another relaxation factor

.(34) a< I., by which C in the (k+1)-th step is modified such
as

N1(iil-2x•+ Nc f,. i

•(i~'" . ¢ i)'' + , {¢(i)"" ¢(i•":(40)

Sabahcrpt ooW means the contribution of sources on
the hull surface and mol means that on the still water
plane. The equation (29) and (30) give a system of The flow diaqram of the numerical work is shown in
simultaneous equations which determine the source Fiq~l. The partial derlvigtvts, which are necesary for
densities 4, and Jet the determinatlon of coefticient in (35), ame calculated

by the following fashion.
Consider a function f(xy) in x-y plane and define a

4. A sim vpitfd method plan@ given by the equatun

The method of computation stabei In the pceeedng ,(41
&wdoti tequires long computer time because the
boundary conditions or the hull surface and thase on
the free sura-e should be gat~sf£ed Amultanoously, ,m which three point (tx,. 2•, •. are lcated.
This fact Is a serious disadvantage in vlev of the Then the partial derivatives of ftxy) ate approzimated
practical applicatin. A sih plified a ethod Is proposed by
here under ths ircaumatance. haMuae the hull surface
source Jrtk, and free surf•ce elevetion C'" at k-th a
atep to be given. Tlren the Erve sutJcte Source s• ' Ij,-7' f'•- (42)

at (k~l)-ti suop is determined by the eqat4Um
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f\tdial computation for the two-dim ensi~onal
probl~em of a submnerged eiliptic cylinder shows that
results obtainsd by the simplified method are
sufficiently accurate when compared with the results
by the more complicated method in the preceding
section.

F~ll eometry .

r iHl;Uriac9 'Panel generation

CAL of double model flow1-. .0 r .

N-N41 -IN-1Fig.2 Wave profile at aach step of iteration process
a (f/a=1.7,Fn-0.50, a, =1.0, a, .1.0)

wae conditionc Eqa.(48S0
- T -. Wave qro/4 atý Ste.e~o te a~ n r ~

Cal o wae prssre.2 ,e0 o 4o, 46O.5 1~O25

5..rhe ~ Nn nonlrot ine~aru~~eel~tcyine ELiK)2

applld to ofe wa-vie resisgloralprie m E he av

?lq.2F9- Wave~ the,'i at~~t eac ste ofato itraio eac sep .0s1.

of itoration I 
ahe 

eate f .40, 
a,.0.75, c 

1.7-25

1`19.1 Flow diag~ramd ofnuichgal, coptherait ive

at The w7Ui artil. o~r & ~me td.~ elipti Cyinder~ ha

11Otab b) resxjltn a bthVain diby oftheiomputtio
me~acthod M41itiOr id alv, the method2 of ifhtov 3n iz
aTped ~OWtoEC the tv-iesorp-tal rt~om of athbe bywave S 91 1 ~
thoe whchacoptt sb.tere ttero

Is~~~ ~ ~ ~ thveeec dept ofv inprofioftelete hn h

VOIA000 fa--W a,, cf 49* ot pr~iti ftab 22 O



Present method (to = 0,75, a2 -0.25, 6th step) Present method

(a, I= 0.75, a: 0.25, 6th step)
--------. Experiment ----- Experiment

0 Fn Ut5 -. 47.. 0.1, -/ 2.. ..00.0 h"I \ 0.
0., 1 

P/

17/90.1 f/a- 1.7~

o •.0 ,.•.. ..

0.-2 1-2 ._ li:2 . 5 8 lAcL____I SI /I X / \ /I\ / 0.0'

4 6'

_'o• _•! f/s ___ ,,

.01 - -2 0 ',i 4u 
X/30x/

.0.0.1

F 0I.5 C a p1,oI/ .epr,"e v a i u

0.0ud numbe 0.1kc.11..7

h0.o 0I•" th 'Aoeviou ,,secti on ,t o l op fe

. -a t h e o p t it h ', . ... sio d I e s n t h p e.en . c o a t on. 
. 11I

- h0.5)J ' I-I- '' _

Exprimntsareconuctd i t~e wter Thefirst eCompareo of tave huofll s atm variousdeptshi
c2i*\1-l 16ing of mah~aIcafm desione by te eqatio

Fcl.5 Camparlson of wave profiles and various
Froude number Tewa ett7(

6. pTte ahip wave pattern

As shown in the previou section, ohe simelified
w h e r e i/* ; t s , • ) a r r e a r n e e e a i n t m e t h o d m e n tio n ald in s e c tcio n i 4 p r e d i c t s t h e f l. *w i fi e l d

(k+P')-.th and kv- sepa respecak i veak y. it is shown tin with sufficient accuracy. Therefore we eeploy the
F1S.4, that the computation with sd=0.75, n0,25 simplified method in the present computation of thw
co nverge s very rapid~ly . wave pa ttern of three- dli m ernslonal hull fo r ns .

E " riLm en t are c onducted in th e c irc ula t~ n g wa ter The fi s exam p le o f the hull fjrm is a aleender sh ip

chanael Ito mesun, the wave prothe ae of m atheateal f m defined by the equati.on
appeeiu.ed with ompwtatslh eu n.5 shcws reskfis at
various l roude number, The wac e breakvng take. '1-.! (441place slightley behind the calinder ot Pn-0.57. wg.6 ( di*)sh o w s re s ult s z w ith c h a n g in g d e p th of im m e r si o n a tw t r
Pni-0.50. Tho wave breaking takes place in the ease of hr

wahel.S. he compu•ed wave pcoalia agrees voy welluit-h the measurement uniew the wxv* braakinq

appeazd oixt byg.7 botwh o al and oumputed Ieth,-s.
ve sotwea beloo the irst crteent o the wave.Agreem ent is very goo d ex e-e pt~ the cajmi of FrimO.S7 •(,;;m [ - /(45)O

where the wave breaking is cb, -rved. ••(•l(,

A simplifie method is pmpoeed in the pcev~oust|•

s e ct io ri. In o r d e r t o e x am in s It s a c c u r a c y , (0 •; S :ý1)

e o m P u t a t l o m• a t h e c a se o f Fn - O .,• C/a ,, 1 , a r e a aL/ , ,= 1 3 , o-t a , L jil =, O , Lk u wt , 6
carried out by both original anid simplifiled methols.
Piq.6 shows a goo agreement. beween rftdta of two

Otihods.
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------ Original method

1.0 1.6 2.0 2.0 3.0 3.6 4.0 45 .4 - Simolified method

0. -W 2.
yl Ww

&.175{2.0* 'L- 2.70 0.1
00 , " • ". V -- 4.0

-0.2 
/ 00 2 104

-0Q4 -0.1 V I

1oo + Aoo) /U
... e 

0.2---------------Original method -
-Simplified method

-1.0 at

V/U' (Uj 0.70 m/a. Fn - 0.50) 0.0 CaI 6
1. .0 2.0 70, Al(oet3

t.0 15-- 3.0 3.6 4.0 4.5 4;o -a 1:.....-

0.2A.
2 5 y0 ]

0.0 ..2a07

-o.4 Fig.8 Comparison of wave profle (above) and
.4 [ source distribution on the eiilpse(below)

"-0.6 - 11 (Fn0..50, f/a-1.7, a1 -0.75,axw0.25, 6th step)

001.01A0A Imol 0 1.00 al 7 1.0 1,0 1.1
V/u 1U-)5 ms. ,Fn-0.03) This is a version :)f Wigley model, with fuller entrance.

The panel division on the hull surface and on the still
water plane is sh,)wn in Fig.9. The number of pane-ls

5 0 rt -t, 4,, on the hull surface on one sid is 2740 and that on the
~ ~ still water plane is 44x9.0.2 --eja ÷ _' - a--o• -

The eff ect at the relaxation factors is studied in
G0 o - 1 -oo • 4 , . -4o the first place by computations with vad-able at and

* iT *&a. P4q10 gives the wave pvrifiles with cha*nging a-o applied. The effect of variation In a. is shown in
-FI lg.11. According bD these results, stable iteration

may be obta.ned by the &doption o. a,-0.50 anrl
SatI0.1O, but instailty stil takes place at

FnweU.4',=O.267 in. this case, . I i understood that the

.tL zone tiean both endis of the hull and the apeiec-zotton of
L0o lJai.5g4 too0 li' l at t 10I k a, i vIn needed only in the *bove rente. Theriefcte we

rpply th- i relaxatiOn factcc in two circular regionis oradumz 42p with centers at P.P. and A.P. of the hull as

P'nnjna~a~ cia, 1 -ansoaov.~~r Showntinrlg.l2. lecie AIis the vant lrNnO a:riJ'!pl
0W 0* WWi o ta v Tibution ofais by

F19,7 Comparison of velocity diaribution beneath 4, (r> 12 (46)
tree surface (f04 1.7)

We emplo~y a~aLJý, a14-31 "W0,og in (notiter
cots putationm. N-1.13 slhow the resulti of
'ot putation at each %teP Of ltnation Ixocem, Change

of vaL-ti1 Igdrilcant at both minds c& t'-., hull. The
results 0-f cor aPutation U4 Cos pared with
asteuteients In Le4 towing tank. Pi1.14 shovw the
cornpariso Oe waVe rrOftaw longaIde the mo0del (Modlu-
A), and IL .i5 shows the xrnpu-ted cr4 stanured
prtesure distribution *t tho level r.14'0.52. Much
better agreenennt vith loenur*d rn*u Ls obtatied by
the pnet Metho VIAA by Uhe MiChell tA GhP
theocy.



a.5 Y2Free surface panels

(FP) f IQ Fr (AP)

0.10. -. 0 .0 5 .1

-0. 65'
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00

*0 N

Vig-10 The effect of correction factor A I4 on V wove NJ1 The effect of correction factor A2 on wave* ~profile (Miodel A, rN4.2-1, *4 *0.1G, 4th step) Profile (Model A, Fn4..250, 4,460.SO 4th U0e1))

V ~ ~~t... .. s

Fig-12 Olwtrbutlon of Correction factor Fig 13 Wave -profilie at each step of Iteration process
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- Thin.Odlh.ory
,• ~ON>I - - P-t ,-,ý.-od Ew~•,n-nt (lid• '.-0.2)

Ija' - %0.2 6 U. 1 O, "0O"P4tO ) .... Tp.hin thoy
_ 0• t 0~., (. _-}P. f=,t~o M IO.S=,;o

0.1 .0 . 0 0..
F.0 0.5 0.1 F.. F 0.250

0 ~1-0 .0 0.0 , "L70 0-. .

:0 *f--- \ - -- - - , - - 0-. . -0-1

-00 -.5 //"-0.2

. .•-..~ 0 '- o., 0.1"00,.
- CO

0O02r0. F n-0.26 J

- ---- Flg.15 Comparison of pressure distribution for
Model A at z0d.-0.52

Fig.14 Comparison uf weve prof~iles of: Model A

0.6 ' /J:Free suijface pan els

0.201

0 0.

& -. 0. 1. 0. .5x5 .

AMd z/A Fare
0.1.0.0 0.05 CO 0.05 0.10 0.15

Hull surface panels

Fig.16 Panei division on the boundary surf:aces for Model 0

The second exampl.e is a much fuller model (Model
R) with elliptic bow wdternlino and elliptic frame linen. 7Tewaersa e
The penel divladon for the nlumerical work Is shown in
PlFg.16, and the mathematical expression for the hull The •.lud pressure is given by Bernoulli'% thsore m
surace Is given in Table i. such as

• Flg.i7 shows the comparison of the computed wavL

profile with the measurement and Firj.18 shows the

agreeminent is observed in the fore-body, but t~here are2
some d~screpandies in the aft-body. The difference -••t-•,,
lEatween the computation and the m~easurement in the _a1 (q 3,+•, ,'+•.,')47
aft-body inay be attributed to the viscosity effect.
Fig.19 gives a sohe matical Illustration of wave
patterns of both m odels.

226

0.1



-.- -Exop~ri0nvt -.--. Exp.,On~rt
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Fig.18 Comparion of pressure distribution for
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Table I Mathematical representation of half breadth y for Model R

El::ptic form Parallel part Parabolic form

. L L L L L L

z 2 3 3 86 2

2Y (L6)' 2I- (x-LI6)1
T<2<1 (-• < <T 2 <U /3)<

-(x+L1 3) (z +d/2)2 B/ -,--• (x-LI6)- l (z+-
= 2 (L/6)1 (d12) 2 2 (L13)' (d/2)1

L ; ship length B ; ship breadth d ; draft

The wave resistance is defined by the premure integral
over the hull surface. If the pressure is calculated at
each point and is assum ed uniform in each panel ds(Oi x•o •Cw-
the wave resistance is given by 7

. 4 Fn - 0.289

R (=i--, P - n,-(Is) (48) n 0.267 Fn 0.263

Though the fluid velocities are defined in the space F- 0.23q

below the still water plane z-O, the pressure integral 2

must be taken over the real wetted hull surface under .. ft - -0.20. ,,10

the elevated free surface. Therefore the pressure with WM c,•r"tion

actting on the hull surface between real free surface
and the still water plane should be taker, into account.
In the present ccmu'tation, we assume a linear 1 2 3 4 5 -7 8

variaton of pressure such as

Fig.20 Change of Cw value due to Iteration number

p-p.=Pw(1-± (49) for Model A

y 10-4

_ Wave resistance (Towing test K "0,036)
6- - Wave pattern resistance

S- -Present method IDM, linear)

------- P~rPm( mfthoo iNonllnsar, without wav correcdon)

-*.-----O-- rsnt method (Nonlinaag. with wave correction)
% •--•~Thin ship theory . /•

-..-

~414

0.10 0. 0.20 0.2 Fn U 0.30

Fig21 Comparison of waive resistence of Model A

228

S.. . .... ... . ... . .. ..



X 10"31

2.0R
CW= R•

,pu 2 L
Wave resistance

1.5 (Towing test, K 0.266)

-. Wave pattern resistance

SPresent method (D.M. linear)

1.0 - Present method
S(Nonlinear, with wave correction)

0.5-

0.0-____ ________0.15 0.20 F 4gr 0.25Fn =ULJ-•1-

Fig.22 Comparison of wave resistance of Model B

where p, is the pressure calculated at the stM water (2) The adoption of the relaxation factor at and at
surface. One can put P.=ppC(). Then the correction enables the iteration process to be stable. a, has
term to be added to equation (48) is a function of supressing non-linear instability at

excessively high wave crest by which the wave
breaking is liable to take place.

4R. =-pgf C(zx).msdz (50) (3) The computed wave prof.le, pressure distribution
and wave resistance show a plausible agreement
with measurement in both fine and full models in

Fig,20 shows the result of computation of R, of general, but some discrepancy Is observed in the
Model A at each step of iteration. It is observed that wave profile and pressure distribution at the stern
the iteration converges at above fourth step. Curves of full model where the boundary layer separation
foa the wave resistance coefficient as a function of is likely to take place
Froude number computed by different methods are (4) The non-linear effect is signiticant near the bow
compored in Fig.21, In this figure, D.MLinear means and stern ends of the hull where the wave crest is
the double model linear solution which is the first much steeper than that predicted by the double-
approximation of the iteration procedure. The model-linearized approximation.
importance of the non-linoar effect and that oC the (5) The wave resistance computed by the present

wave correction term JR, are clearly observed, method in considerably higher than that predicted
Fig.22 compares the computed and measured wave by the double-aodel-linearized approximation.

resistance of Model 8. In these figures, the results by
the present method have attained a remarkable
improvement in agreement wlth measurement. Acknowlaeu nto

The numerical work was carried out by using

9. CorXcindig rearSA RITAC 4-280H computer of the Computer Center of
University of Tokyo, through the remote station at

The aresent work has rpropoe4 a method af Yokohama National University Computer Center. The
theoretical computation for the wave pattern and authors exprem their thanks to Dr.K.Suzuki and
wave resistance by which the non-linearity ir the free NrJ.Okada for asistance in the computation.
surfe condition is taken into account. The save The experimental work was carried out at the ship
profile, premure ,Isttibution on the hull surface and model basin of Rese•.rch Institute of lshikavzlma-
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(1) The retul1t of computation by the present method

show fairly good agre*.. ent with measur*ements,
so that thLv method has a feasitility a a practical
method of ctputation tor arbitt•a•y hull for m•.

229



References;

1. Tsutsu miT.,OgiwaraS., On the principal
particulars of ship hull form and wave pattern
resistance (U), Journ. Soc.Naval Arch. Japan
Vol.137 (1975)

2. WehausenJ.V., An approach to thin ship theory,
Int.Seminar on Theoretical Wave Resistance, Ann
Arbor (1963)

3. M aruo,H., A note on the higher order theory of
thin ships, Bull. Faculty Eng. Yokohama Nat.
Univ. Vol.15 (1966)

4. Eagers,K.W.H., Second oder contribution to ship
waves and wave resistance, 6th Symp. Naval
Hydro. Washinqton D.C. (1966)

S. OqilvieT.F., Wave resistance, the low speed
limit. ReP.No.002, Dept. Naval Arch. Marine
Eng. Univ. Michigan (1968)

6. BabaE., Takekuma,K., A study on free surface
flow around bow of slowly moving full forms,
Journ. Soc. Naval Arch. Japan, VoL137 (1975)

7. Maruo,lH.,Suzuki,K., Wave resistance of a ship of
finite beam predicted by the low speed theory,
Journ. Soc. Naval Arch. Japan, VoL142 (1977)

8. Dawson,C.W., A practical computer method for
solving ship wave problem, 2nd Int. Conf.
Numerical Ship Hydro., Berkeley (1977)

9. Ogiwara,S., A method to predict free surface flow
around ship by means of Rankine sources, Journ.
Kansai Soc. Naval Arch. Japan, Vol.190 (1983)

10. Chan,R.K.C.,Chan,F.W.K., Numerical solution of
transient and steady free surface flow about a
ship of qene-Lal hull shape, 13th Symp. Naval
Hydro., Tokyo (1980)

11. Aokk., Miyata,R., NasukoA.,KajiltanlR., A
numerical analysis of nonlinear wave generated by
ships of arbitrary waterline, Journ. Soc. Naval
Arch. Japan, vol.154 (1983)

12. OgiwaraS., A numerical method of non-linear
solution for steady waves induced by two-
dimensional submerged bodies, Journ. Soc. Naval
Arch. Japan, Vol.156 (1984)

13. Oqlwara,S.,Maruo,H., A numerical mothed of non-
lineat solution for steady waves around ship,
Journ. Soc. Naval Arch. Japan Vol.57 (1985)

230



DISCUSSION
of the paper

by Maruo and Ogiwara

"A METHOD OF COMPUTATION FOR STEADY SHIP-WAVES WITH NONLINEAR FREE SURFACE CONDITIONS"

SDISCUSSION Author's Reply

by B.H. Cheng We examined the behavior of relaxation

(1) How sensitive are the values of the factors relating to the stability of the solu-

relaxation factors to ship geometry? Do you tion. Fig. A shows the criterion of the sta-

have to do a study on the relaxation factors bility for M-lel A. The region that gives a

for each new ship hull forms? stable solution is reduced as Froude number
and az increase. According to the computation

(2) The results from your paper seem to results for several kinds of ship forms, the

indicate that one of the effects of nonlin- values of relaxation factors are sensitive to

earity is to increase the wave resistance Froude number rather than to ship geometry.

coefficient. However, in the paper authored
by Lawrence K. Forbes, presented in this con- Linear solution by using Rankine source

ference, the results seem to indicate that the distribution seems to give lower values of

nonlinear effects tend to decrease the wave wave resistance than experimental values [14].

resistance coefficient. Can you comment on In the present method, the effect of nonli-

these seemingly contradictory trends? nearity appears remarkably in the bow wave as
shown in Fig. B. Increase of wave resistance
due to nonlinearity is caused by the increase
of pressure acting on the hull at the bow
wave.

(14] Dawson, C.W., "Calculation with the XYZ
Free Surface Program for Five Ship Models",
Proc. Workshop on Ship Waves Resistance
Computations, DTNSRDC, Bethesda, 1979.

1.00

tUnstable
0.75

0.50 07'0

0.25 -ae

0 , 0 1 -g . ..... . t .. .. y ' .. .. ... ... ..c t F noU T -0.2 0 a125 0.30

Fla.A Stit41y study on Weaxation factors for Model A
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DISCUSSION is usually less that that of the function
by S.M. Yen itself. For example, from my experience, I

find that an approach similar to your Equation
The first order panel method of assuming (48), where the calculated pressure is summed

constant source strength is known to be inap- over all the panels, gives values of drag (for
propriate because the solution is sensitive to a body in infinite fluid) which deviate sub-
the change in distribution of the size and stantially from the theoretical value of zero.
shape of the panels. The problem may te alle- Is your reported value of wave resistance the
viated by using either bilinear or quadratic difference between the value given by Equation
source distributions. I would like to suggest (48) and a similar calculation for the infinite
that the authors use a higher order scheme in fluid case?
the future studies.

Also, have you made comparisons of the
Author's Reply accuracy and computer time requirements of your

method with those of the commonly used
We agree with Professor Yen's opinion. The Neumann-Kelvin approach? Since only four iter-

higher order scheme will certainly improve the ations are needed to obtain convergence your
accuracy of results. Our aim is to devel-op a method appears to be quite efficient. It has,
practical method of computation which is suita- of course, the added advantage that it takes
ble to works of ship builders and ship design- better account of the free surface condition.
ers in the practical field. Therefore we have
employed the simplest method so as to minimize Author's Reply
the complexity of computation algorithm and
computer time. It is known that the method of Dr. Wang's discussion seems to have a
Hess and Smith for the computation of the common implication with the discussion by
potential flow around a body in an unbounded Professor Yen. We tried to make the computa-
fluid works well, and it employs the first tion scheme as simple as possible, because
order scheme of source distribution. This fact this kind of computation necessitates a long
may become a basis of the feasibility of the computing time even if a computer of large capa-
present method. However we will examine in the city is used. The present method is generally
future task the accuracy of our computation used in the case of computation of pressure
method including computations by a higher order distribution on a body in an unbounded fluid
scheme. Professor Yen's suggestion is very by means of the Hess-Smith method. We have
much appreciated, not yet examined the accuracy of Equation (48)

by carrying out the computation of infinite
DISCUSSION fluid case. This will become the future task
by K. Mari of our work to examine the accuracy of our

method, and we appreciate your suggestion.
The authors simply concluded that the dis- There have been several attempts of

crepancy seen in Fig. 18 is due to the neglect Neumann-Kelvin approach, but it is not applied
of viscosity. It may be true partially. But to the case of full hull forms, As far as we
in your computation, you use just five panels know it is said that the computation of the
behind the A.P. I suspect the effects of the Kelvin kernel is very difficult to attain a
downstream reflection is still existing. high accuracy level, unless a large computer

tive is consumed. The Rankine-source kernel
Author's Repl employed in our method is much easier to han-

dle in this respect.
We have thoroughly examined the effect of

truncation in the downstream boundary by the
two-dimensional computation of the submerged
cylinder, for which the effect of downstream
truncation appears more seriously than in the
three-dimensional case. The result shows that
the finite difference from upstream is able to
avoid the truncation effect including the wave
reflection at the computation boundary.
Therefore the results in the three-dimensional
case do not suffer from the wave reflection
effect.

DISCUSSION
by H. Wang

I wish to congratulate the authors on
obtaining such good agreement with experimental
results, particularly in the case of the wave
resistance. In your appropch it its necessary
to take partial derivatives of the potential *
in order to obtain the wave resistance. It is
tell known that the amcuracy of the derivatives
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NONLINEAR FLOW ABOUT A THREE-DIMENSIONAL TRANSOM STERN

Roderick M. Coleman

David W. Taylor Naval Ship Research and Development Center
Bethesda, Maryland 20084

Abstract When 3-D studies have been made, the
problem has often been simplified by lineariz-

A finite difference method is used to ing the governing equations or by making
analyze unsteady waves generated by the tran- assumptions on the shape and speed of the hull
som stern of a three-dimensional semi-infinite or both. Casling [7M and Casling & King [81
ship hull moving in the water surface. The assumed infinite Froude number in considering
flow is assumed to detach from the base of the a planing hull with a low aspect ratio. The
transom or farther upstream if the hull pres- shape of the hull was restricted to ensure
sure falls to zero. The wetted area of the that the flow detached only at the transom
hull is computed as part of the solution. A stern. Van Eseltine & Haussling [9) studied
direct mapping is used to transform the irreg- the stern flow generated by a semi-infinite,
ular physical region into a box computational 3-D transom stern hull moving at a constant
region. The mapping is chosen to ensure that speed. The location and shape of the hull
the grid lines are concentrated in the areas were fixed, and the wetted area was determined
in which accuracy is needed, such as near the as part of the linearized solution. In order
point of contact between the free surface and to treat realistic hull shapes accurately, one
the side wells. The solution is advanced in nonlinear term had to be included in the boun-
time by a marching scheme which couples the dary conditions. This indicated that con-
solution of the Laplace equation and hull sideration of nonlinear effects is crucial to
boundary condition with the dynamic and the understanding of the complicated flow
kinematic free-surface conditions. All boun- which occurs near the stern of a typical Navy
dary conditions are treated in their fully combatant ship.
nonlinear form so that the solution of the
Laplace equation is computed using values at The current work extends the numerical
the exact hull and free-surface positions, scheme used by Van Eseltine & Haussling to
Results are presented for a transom-stern hull treat the fully nonlinear 3-D problem. A sin-
and coopared with linear and experimental gle hull shape is considered for several
results. draft-based Froude numbers. Pressures, wave

elevations, and flow fields are presented and
compared with linear, nearly-linear, and

I. Introduction experimental results. Good agreement with
these data it shown. The nonlinear solution

The hydrodynamic responses of a ship are is used to study details of the flow field
determined by the deta!ls of the flow near the which cannot be obtained from the linearized
bow *nd stern. Accordingly. many experimental solution, such as the motion of the fluid
and theoretical studies have been made of about the stern but near the free-surface.
these flow fields, including the free-surface This paper demonstrates the usefulness of the
waves produzed. Because of the difficulties nonlinear solution in uoderstanding the com-
involved, researchers have often restricted plicated free-surface problem for a given hull
themselves tO semi-infinite hulls with only a and range of Froude numbers.
bow or stern. However, the complexity of the
three-dimensional (3-D) formulation has lim-
ited most nonlinear studies of even these II. Mathematical Formulation
simpler problems to only two dimensions.
Steady nonlinear flows generated by sterns of We consider the flow resulting from the
two-dimensional (2-D) semi-infinite hulls were abrupt acceleration from rest to final speed U
investigated by Dagan & Tulin (1], Vanden- of a semi-infinite ship hull moving in a free
Broeck & Tuck (2). Vanden-Broeck et al 13], water surface. The hull has no bow and for-
and Vanden-Broeck (4). Hausslina (5] and ward of a certain station has a constant cross
Coleman & Haussling 16) considered the section of beam b and draft h. We assume that
unsteady nonlinear flows caused by treasse the flow is irrotational and that the fluid is

sterAs of 2-D, semi-infinite hulls. incompressible and lacks surface tension. A
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right-handed coordinate system moving with the surface that coincides with the hull must be
hull has its origin at the intersection of the greater than zero (atmospheric), and (2) the
stern, the hull centerline, and the undis- free water surface must be below the hull,
turbed free surface as illustrated in Figure i.e. 77 < f for all (x,y) in dO where f is
1. defined.

The length variables are nond.mensional-
ized with respect to craft h, time with

respect to h/U, and ý , the velocity potential
relative to a reference frame at rest, with

Srespect to hU. The initial/boundary value

I problem in the moving frame iq as follows:

1. in the region occupied by the fluid

X xx + yy + 'Oz• o()
< Z < 0

2. at the hull (x,y in dO.)

Figure 1: Transom Stern and Coordinate System 7z = qx + 17 A + 17y , z f (2)

The fliud region is infinite in extent
with the exception that it is bounded above by )7= f(x,y) (3)
the wetted area of the hull, dOfl and the free

surface, dOF, as shown in Figure 2. p > 0 (4)

3. at the free surface (x,y in dOF)

17 47x - )7$y 'qxoA + OZ (5)

Ot a .-7/Fr 2 (6)_(o2 +6 +o=)2
X y

dOF q< f(x,y) (where f is defined) (7)

X 4. in the far field

ox = 0 X +(8)

loy 2 0 y Z _ (9)

Figure 2: Aerial View of Stern and_ 0 - (10)
Coordinate System

We assume that the water surface can be
described in parametric form at any time t by 5. and inittally (t m 0)

specifying z as a single-valued function of x
and y: z n j? (x,y;t). The hull Is described 0Z 0
by r fx,y) and thus 17 z f in dO11. We also ) f(x,y) x.y in dOIt

assume the velocities, pressures, and the (11)
water surface all to be continuous for t > 0. 0 elsewhere

We further assume that the flow detachs
at the base of the transom stern Immediately where subscripts x, y. z, and t denote partial
after the abrupt acceleration. The wetted whereupecd t ten e var -

area is uniquely determined by two oonditions: differetiation with respect to these vari-
ables and Fr =U/ 13b Fs•roude number" based

(1) the pressure on the part of the water ai e
on draft.
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The presaure on the eull cap be computed The mapping used is
ftom the Bernoulli equation

y = a /(r+1) + a 2 r + (a3/2)r2
P1 €•"x /F2• •(2 3(17)

-x- - (/F 2 + 2 + 2 (12 + (a4/3)r 3  
+ (a5 /4)r 4  + a6

x y Z and

Therefore, we consider the pressure to be com- z = (ln(s))/c + 7(x,r) (18)
posed of a hydrostatic pressure Ph and a

dyn-mio pressure p d' where These transformations are applied to map the

infinite physical region in (x,y,z)-space onto
a box computational region it, (x,r,s)-space as

Ph f/Fr (13) seen in Figure 3. The parameters o and a, to

and a6 are used to control the spacing of the grid

lines in physical space. The trarnsformation

Pd -t " - (.-x y z )/2 (14) in the y-direction is the same as that used by
Van Eseltine & Haussling E91. It, the non-
linear formulation, however, the ttansforma-
ti.vi io the z-direction w:u3t be a funztlor. of

III. Transformation and Numerical Scheme • siuce '0e free-surface boundary condition
is satisfied at z = .. This relationship

Taking advantage of the symmetry about introduces a time-dependency into the
the centerline, we need consider only one-half transformation so that the mapping adjusts
of the physical region and thus can replace automatically to changes in the shape of the
Equation (9) by free surface as the flow solution evolves.

The governing equations must then be
oy = 0 at y w-and y = 0 (15) transformed to the computational region

according to the relations

In addition, the physical region can be trun-
cated suitably far upstream and downstream (0)'yz~const (
without loss of computational accuracy. xas-ccnst

Therefore, Equation (8) is approximated by - (0//Z)(• )r
a a x trzoonst

0 at x a -LI and x = +L2 (16) OY 4r/yr (or/yr)(03/zs)

where LI and L2 are sufficiently large. To
optimize the distribution of grid points, an where subscripts r and s denote partial dif-
exact. mapping is applied in the y- and z- ferentiation.
direotions before the problem is disoretized.

00

-Li +L2
Figure 34 Computational Region and Coordinate System
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Under this transformation, the Laplaceequation becomes number. By the last time step, the transient
effects near the stern were no longer signifi-

cant, and the flow near the stern could be

A0 - B + ,0 + Dos considered almost at steady-state. The
xx 'rrssx .results presented are for these late times and

+ Er +Fs + GF= 0 (20) therefore represent steady-state solutions.
where

A 1 1 IV. Results

B = l/yr The numerical scheme was applied to a
22 2 2 2 semi-infinite hull whose cross-sectional shape

C = s a(x + 7r/Yr + 1) varied with x to simulate the stern of a typi-
cal Navy combatant ship. Figure 4 shows the

D = -2cslx (21) body plan of this hull and Table 1 gives the

2 values of the pertinent parameters used in the
E = -2csrjr/yr numerical scheme.

S2 /22
F cs[ 2c(Y fl rXYr +7 r c

/2 ,3S- 77 ÷, ryrr + yr ] r

3rr

In the computational region, x derivatives
imply that (r,s) rather than (y,z) are being
held constant.

The domain of the computational region i..
replaced by a uniformly spaced 101 x 41 x 21
grid system. The grid spacing is defined by
Adx in the x-direction, Ar in the r'-

direction, and As in the s-direction. The
parameter c of Equation (18) is chosen '..o
obtain the desired rate of expansion of z grid - _.8[

lines, while the parameters a1 through a6 are -1.7 0

used to control the spacing of the y grid Figure 4: Body Plan of Hull
lines.

TABLE I - LIST OF PARAMETERS
The time advancement of the solution of

the boundary-value problem has three basic
parts: 1) determining the wetted area of the
hull, 2) advancing in time the free-surface
elevation, ) , and the free-surface potential, Parameter I Value

and 3) solving the Laplace equation (20), { {

given the boundary conditions of Equations
(2), (10), (15), (16), and a knownof from b 3.15

f I LI 56.0
part 2. A more complete discussion of the L2 24.0
solution procedure, as applied to the linear- dx 0.8
ized problem and including numerical instabil- dr , 0.025 1
ities that were encountered, can be found in I dai 0.05
Van Eseltine & 8au3sling t9). 1 dt 0.25

i e 0.4
A computer program was written rotr a I *1 -0.1651

Cray-IS computer to implement the nonlinear a2 1 19.8348 1
numerical scheme. The calculations were vee- a a3 -414.4292
torized by using a "red-black" method of a4 I -2217.4637 t
sweeping the grid for the iterative procedure. as5 1 4710.3631 1
Each time step averaged four or five itera- 1 a6 1 0.1651 1
tions and required about 0.75 seconds of cen-
tral processor time. The solutionn present-ed
in this paper were computed for approximately The shape of the hull is the sa3e as that
800 time steps, thus taking about 10 minutes of the model tested by O'Dea (10], except that
of central prooessor time for each Froude the oross-3ectional shape at the iaximum beas
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of the model was extended infinitely far

upstream for use in the numerical scheme. A

perspective view of a portion of the stern
wave field produced by the computer program is
displayed in Figure 5 for Fr = 1.66, in Figure
6 for Fr = 2.14, and in Figure 7 for
Fr = 2.67. Also shown in these figures is the
stern of the hull used it) the experiment. As
Fr increases, the first peak behind the tran-
som moves farther downstream, and its ampli-
tude tends to increase until Fr = 2.14 is

reached, after which the amplitude decreases.

Figure 7: Computed Stern Wave Field
for Fr 2.6F

the stern flow at high" r Froude numbers due to

longer wave lengths. Therefore, some of the
disagreement between the computational and
experimental results at the higher Froude
numbers may be due to the bow wave which is
not included in the numerical scheme.

O .2
p' Fr : 2.67

Fr.gure 5: Ce.Huputed Stern Wave Field C.00
for Fr 1.66

0
00

80.02a

-0.02._.0.00 _____.. ..______

00,0

Figur'e 61 Cooputed Stern Wave Field ---------

for Pr a,1 0\1 0

Comparisois or -ao-pvted sria assured '.402 o

dyneale pressure on the hull denterlint near
the tran-som for Froude nuabers 1.66, 2.14, and
2.67 are shown in Figure B. Agreeisent Is good -0,04 _ ..... I
with tht greatest deviation occurring in the a4
region near the transom. Also, the wave pro- filure 8: Conputed (-.... ) and Reasured (0)
fIles in the report by O'Dea 10lO indicate VtJ O frtsriire Near the Trans"
that the bow wave probably has more erneat on at Var.•ous Froud* Utbors
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Figures 9 through 13 display velocity In each of these figures, a cross-section
vectors in various longitudinal planes for of the hull in the centerplane is shown andFr = 1.66. The nonlinear effects are the the mean water level is indicated. The wetted

largest while the bow wave t s aren the portion of the hult in the plane of interest
smallest at this Froude number. It should be is plotted as a solid line, and the free sur-
remembered that these velocity vectors were face is shown as a broken line. hs we move
computed using the potential relative to a out into the fluid and away from the center-
referenc e wate at rest, so that the magnw- plane, the wetted portion of the hull is
tudes and directions indicated by these vec- closer to the mean water level due to the cur-
tors are those induced, in water otherwise at vature of the hull (Figures t 0-13). The free
rest, by the movement of the hull from right surface may detayh ahee ofr the transom in
to left through the frame. It is also well to cross-nectional planes other than the center-
note that these vectors are two-dimensional plane as a result of interaction between flow
and thus do not convey information about fluid dynamics and hull shape (Figures 11-13). In
motion in the transverse direction. The velo- Figure 10, the wetted part of the hull aontin-
city vectors in the centerplane clear.l.a show ues to the transom, but the free surfacethat the water beneath the stern is drawn leaves the hull at a slightly higher point

upward to fill tablisth e than in the enterplane because of the curva-retreating hull. An even larger upward motion ture of the bottom of the transom. Figures 11

is present immediately downstream from the and 12 display transverse cross-sections instern. Here -he water has just been released which the wetted part of the hull waterline

from the restriction imposed by the presence does not extend to the transom since theof the hull and responds by rising rapidly detachment point occurs fartner upstream. The
toward the mean water level. The upward cross-sectional plane illustrated in Figure 13
motion of the water is so great that the mean does not contain any portion of the hull, and

water level is exceeded and an oscillatory therefore only the free-surface level is indi-v•ave ficl•j is established. cated.

3!.

U/4
hullI cross section

In centerplane

'P Fig~ure 9: V0locitY Vector3 for Fr 1.66 In Plane y a0.0

o z ,j ,ro surfate
, N v

Figure 10: Velocity Vectors for Fr a 1.66 in Plane y a -0.6
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U/4

hull cross sectiorSIn centerplane

z

wetted f.s. free surfa-e

-12 0 x 12

Figure 11: Velocity Vectors for Fr =1.66 in Plane y =-.

hull cross section /

in center plane
z

wettedh' ' i's. - free surface0 ean water-
Fu 1 .li1 V

,1 U/
I I I

-12 0 x 12

Figure 13: Velocity Vectors for Fr 1.66 in Plane y = -1.6

4: -1.3

hull cross section /
Z ~ in centerplane

hull fu~e ree surface
El Mean water / \ .- >,-•-'

--. ", t,

•--12 El x 12

Figure 12: Velocity Vectors for Fr =1.66 in Plane y :-1.3
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transom

-0.5

•axtsu 
xbea3.

-21. 
- i 

6

Figure 1': 
Nonlinear 

Free Surface for Fr 1.66

Three beam-wise cross-sectional views of Velocity vectors in the transverse planes

the nonlinear free surface for Fr =1.66 are of Figure 11 are sho wn in Figures 15, 16, and

plotted in Figure ill. Also sho wn are cross- 17. Figure 15 displays the velocity vectors

sectional views of the hull at the transom and at x =0.0, just as the water leaves the hull.

at the point of maximum beam. At x = 0 .0, the Here the water has a strong upward motion

end of the hull, the free surface is in con- 
to wrd the centerplane 

which will produce the

tact with the hull due to the detachment 
of wave train behind the transom. In Figure 16,

the flow at the transom. At x 
=1.6, 

just x 1.6, the velocity vectors downstream of

downstream of the transom, the free surface the transom are seen to have a similar pattern
exhibits a region of high curvature directly with the free surface approaching its maximum
behind the stern conaetuting a region of rela- height above the mean level. The velocity
tively undisturbed water away from the center- vectors in Figure 17, x = 3.2, show that the
plane with a fairly broad wave elevation water near the centerplane is no•i moving down-
behind the stern. This region of high curva- ward, indicating that the free surface has
ture has become less pronounced at x = 3.2 as reached its peak in this region and is begin-
the free surface reaches its maximum height ning to fall. This view also shows that the
behind the stern and the free-surface distur- water farther from the centerplane has an
bance caused by movement of the hull spreads upward and outward motion as the wave formed
farther from the oenterplane. behind the transom begins to spread.

0.5b .

2U 

U/4

hull at t ansom

-2 -l

Figure 15: Velocity Vectors for Fr = 1.66 in Plane x 0.0
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x :1.6U/ -
- _ _- -. ......4 ......

hull at transom

- -- - i / /-

I~ hull a
maxiMum beam j

I~ a
- A A.A ;~;;/;// /, /

-2 -. 0

Figure 16: Velocity Vectors for Fr 1.66 in Plane x = 1.6

8.5 x 3.2

- \hull at transom

-0.5 hull at
maximum boa

-2 -i

Figure 17: Velocity Vectors for Fr 1.66 in Plane x = 3.2

Computed and measured wave elevations at surface and exact ship hull boundary condition
various distances behind the stern are com- at the hull surface below the undisturbed free
pared in Figures 18, 19, and 20. Each of surface. The entire hull, including the bow,
these figures compares linear, nonlinear, XYZ is taken into account for the XYZFS caloula-
Free Surface (XYZFS), and experimental results tions. The exVerimental results come from the
at various distances behind the transom for a report by O'Dea [lO] who measured steady wave
particular Froude number. The linear results elevations downstream of the hull. All of the
were obtained using the finite-difference pro- computed results appear to be in reasonable
gram of Van Eseltine & Haussling [9). That agreement with the experimental data. Differ-
program, which also excludes bow effects, uses enoes can be attributed to inaccuracies in
a formulation of the free-surface condition both the numerical and experimental pro-
which includes a nonlinear term, q A, needed cedures. The nonlinear results tend to indi-

to handle the steep sidewalls of the hull. cate higher wave elevations than the linear

This nearly-linear boundary condition is results, although the shape of the free sur-

satisfied at the mean water level. The XYZF3 face is virtually identical. In regions of
results were caloulated with the 19811 version greatest curvature, the norlinear results are

of that program Ell), which uses a source dis- in better agreement with experimental values

tribution on both the body and free surface. than are the XYZFS results which tend to
The method satisfies the lnearized free- "smooth-out" the free surface in these areas.
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8.4[ x 4.99 8.4 x 4.89

z8 z

- 8.21 ,_ __HULL_ -_.21_ HULL
8.4 x 3.56 

8.4 X 3156

- o.2 nier--Lna ----H-U n-n.2 - - HULL
0.4/ x = 2.14 0.84/ 2.14

E nFE nF

-.21 HUL.21HU----HL
0.4 |x 0.l 

4 ui a e.71

Z hh

-8.21 HULL h 0.21 N o sigl e c UdL L h
-3 -1.5 i -3 -1.5 y e

Figure 18: Computed and Measured Figure 20: Computed and Measured
Wave Elevations for Fr s 1.66 ui.e Elevations for Fr = 2.67Nonlinear - ; Linear ---- Nonlinear - ; Linear ---- ;
Experiment 0 XYZFS- --- Experiment o ; XYZFS- ---

S = 4.99 s These comparisons indicate that a partic-
8-2- - . - -Q-of ular computational method may produce wave

- heights which are closer to experimentd uz81"-"-- ....... values than those of another method for a
S~given Froude number and distance from the

-8.2 C HULL bohull. No single method considered here is
8.4 o0 •- clearly in better agreement with experiments

X 3 for the the lof Froude numbers and flow
82 .0 regions studied. However, the fully nonlinearz D -0 .-__.._.• • scheme can provide the most complete picture

of this complex flow-field since the solution
is obtained at the exact free-8urface and hull

-0.21 f4v--- HULL boundaries. In particular, the motion of the
04fluid near the hull and the surface can be

.1 x :2Ji4 0 studied using the nonlinear approach.

z Y -• •• - 0" . V. Conclusion

-0.21 - HULL- A numerical method has been developed and
used to analyze the nonlinear waves generated

X .by the stern of a 3-0 semi-infinite hull in
0.21- the water surface. The unsteady flows

approached steady-state solutions asymptoti-
- _______ oally. The flow is assumed to detach from the

base of the transom stern or farther upstream
-- HULL if the hull pressure fell to zero. The wetted

-0.31 -area is computed as part of the solution.

Figure 19: Computed and Measured As the Froude number increases for a
Wave Elevations for Fr = 2.14 realistically shaped hull, the wetted area
Nonlinear- ; Linear --.. tends to decrease and the location of the
Experiment o ; XYZFS - - - first peak behind the transom tended to move

downstream. The amplitude of this peak
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reached a maximum at Fr = 2.14. Wave eleva- [8) Casling, E.M. and G.W. King, "Calcula-
tions compared well with experimental data, tion of the Wetted Area of a Planing
especially in regions of high free-surface Hull with a Chine," J. of Engineering
curvature. Also, the dynamic pressure was in Math., Vol. 14, No. 3, p. 191 (Jul
good agreement with experimental results. 1980).
This work demonstrates that a numerical scheme
based on fully nonlinear free-surface poten- [9) Van Eseltine, R.T. and H.J. Haussling,
tial flow can yield results useful in under- "Flow About Transom Sterns," Proc. of
standing the complex flow about transom the Third International Conf. on Numeri-
sterns. Additional work is still needed to cal Ship Hydrodynamics, Paris, France,
develop the capability of handling bow effects p. 121 (1981).
so that the entire ship hull can be included
in the computational scheme. 110) O'Dea, J. et al, "Flow Characteristics

of a Transom Stern Ship," DTNSRDC Report81/057 (Sep 1981).
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DISCUSSION
of the Paper

by R. M. Coleman

NONLINEAR FLOW

DISCUSSION
by K. Eggers

For better understanding of your approach,
could you tell me what happens if you invert
the direction of the incoming flow input.
Would you obtain a bow flow, i.e. the case of
the ship traveling stern ahead? Would there be
waves ahead of the body then?

Author's Reply

I would like to thank Prof. Eggers for
raising an interesting question. If the direc-
tion of the flow were reversed, we should
obtain a bow flow with a large bow wave but
otherwise calm water ahead of the ship.
However, this flow would be more complicated
than the stern flow considered in this paper
due to complications which arise in handling
breaking waves and the intersection of the free
surface and the hull. For the Froude numbers
studied in the current work, the water leaves
the hull smoothly with the detachment occurring
either at the bottom of the transom or farther
upstream. If we attempted to compute the flow
generated by the body moving astern, we would
be faced with the more difficult problem of
determiniing the position of the contact line
where the water surface meets the equivalent of
a blunt bow. For Froude numbers of interest,
the water surface cannot be assumed to be
smooth in this region and might well be discon-
tinuous if spray or breaking is present. In
the mathematical formulation of the bow flow
problem, we must allow for the presence of
singularities along this contact line and it is
not yet clear how to treat these singularities
accurately. The singular nature of the contact
line is a significant feature of the flow about
surface-piercing bodies and one which requires
a great deal of further study. Some of the
papers presented at this conference address
this important problem and should provide some
insight into its solution.
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NUMERICAL SOLUTION OF THE NONLINEAR SHIP WAVE PROBLEM'

R. R. Chamberlain* and S. M. Yen
Coordinated Science Laboratory, University of Illinois

Urbana, Illinois 61801

Abstract several key concepts which differ in many
importanc aspects from those previously

This work presents the development of a considered, this paper shall compare and
new finite difference computazional contrast our procedures with those of
technique for the solution of the nonlinear others.
ship wave problem. Previous computational
complexities concerning implementation of Our initial study of the nonlinear ship
the exact hull boundary condition, the open wave problem for the Wigley hull began with
boundary condition and the nonlinear free a finite difference approach in which body
surface conditions are resolved. The fitted coordinates were used throughout the
Laplace equation is solved by a fast direct computational domain so as to properly
method, while locally body fitted accommodate the hull geometry. Furthermore,
cooordinates are used to treat the exact the motion of the free surface was followed
hull geometry. The nonlinear free surface by a time dependent mesh system which
conditions are successively approximated by conformed to the boundary at each time step.
iteration, and the open boundary condition This procedure has also been described by
is found to be nonreflective. Results are Chan (1] and by Chan and Chan (2]. The
presented for the thin ship, the Neumann- matrix structure arising from the finite
Kelvin and the full nonlinear problems. The difference representation of the Laplace
nonlinear wave resistance is observed to equation in this nonorthogonal and time
behave in accordance with the thin ship dependent mesh system was found to be
results at low Froude numbers, extremely awkward. The matrix was non-

symmetric and was not diagonally dominant,
but we still applied successive line

I. Introduction overelaxation to the solution of this
problem. The convergence of this iterative

The solution of the full nonlinear ship method, if indeed it does converge under the
wave problem for arbitrary hull forms is present conditions, is generally quite
recognized as one of the ultimate challenges slow. However, in all cases using the body
of modern numerical ship hydrodynamics fitted mesh system about the Wigley hull, we
research. This paper presents the found that the iterative method did not
development of a general, time dependent converge sufficiently to give an accurate
finite difference approach to the solution prediction of wave resistance.
of the nonlinear ship wave problem and
describes how it differs from previous Another point under study was the
numerical approaches. Although we shall treatment of the downstream or open boundary
restr$-t osr immediate atte~aa.on t. che condition. When using a time dependent
Wigley hull, the method to be developed can approach for surface wave problems, it is
be applied to other geometries as well. usually thought that one must provide a
Since the present approach does contain means for the waves to cleanly pass through

t This work supported by the Office of Naval

Research under Contract N00014-80-C-0740

Present Addreoas Department of Aerospace

Engineering, University of Alabama
University, AL 35486

S. H. Yeo, Coordinated Science Laboratory, 1101 W. Springfield, Urbana, IL 61801
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the boundary of a finite computational velocity by the maximum forward speed, U,
region. Methods have been developed [1]
based on a scheme proposed by Orlanski (3] and time by L/U.. The Froude number, Fr, is
to allow the specification of the flow U.
variables at such an open boundary. We have defined Fr - We note also that the
found, however, that specifying the solution (gL) 1 2 "
at the downstream boundary drastically range for Us is 0 4 U 4 1 since the
reduces the efficiency of solving the
nonlinear ship wave problem. Furthermore, instantaneous speed of the ship changes
there is an alternative treatment which during its initial acceleration up to the
gives valid results and which is simpler in maximum speed U,.
the sense that the issue of accurately
estimating advection speeds can be avoided. The remaining boundary conditions for

O(x,y,z;t) may be summarized as follows:
The purpose of the present study is to

explore some recent developments which have -x - 0 , upstream
been designed to alleviate the previous
computational difficulties. We shall begin =x . 0 , downstream
with a review of the governing equations
followed by the development of the numerical -y - 0 , symmetry (4)
solution technique. The basic algorithm is
then applied to the linearized, the Neumann- • a 0 , lateral
Kelvin and the full nonlinear problems for y
the case of the Wigley hull. Oz = 0 , bottom.

The exact hull boundary condition, requiring
I1. Governing Rgdations and that the resultant fluid velocity relative

Boundary Conditions to the moving ship be tangent to the
surface, is stated as

The Wigley hull is placed symmetrically
within a three dimensional domain so that U f
only half of the flow field needs to bh: V* n . -- (5)
considered (Fig. 1). In cartesian YI
coordinates the governing equation is the
Laplace equation, which is written in terms where n is the unit notmal vector (positiveof the perturbation potential 0 as into the fluid) and y - f(x,z) describes the

shape of the hi li. The cartesian components

2A
V 2y e + *yy + -z 0 0 (1) of n are expressed as

f(-t/yl/y 1 , -f/ /Y) in which Y -

x P / 1
The kinematic condition at the free surface, (I + f 2 + f 2) For the present study,

stating that no fluid may cross the boundary we confider the Wigley hull which is defined
is by the equation

S+ (Ua + 4x) x + 0yny - *- (2)b 2  2

The function n(xy;t) is the free surfaze f(x~g) 0 - 4x2)(I - (z/h) (6)

height above an arbitrary reference plane
which initially coincides with the xy plane. for - ,x < i and -h t z t0 h

I ~ ~Furthermore, Us is the instantaneous speed O h
parameters b and h are defined "s b - beam

of the ship in the -x direction. 0.10 and h o draft - 0.0625.

We also have the dynamic condition The Neumann-Kelvin problem is recovered
which requires the pressure to be zero on from the full nonlinear problem by simply
the free boundary. In a reference frame neglecting the nonlinear terms in Eqe. (2)
which moves with the ship, this condition is and (3). The linearized free surface
written on a - n (xy;t) as conditions thus become

+ U, +.1{,2  2 2' + (3) t +U an
Fr2 and

In the above equations, all lengths are t + U * * - 0 (8)
noadLaseaionalisad by the ship length, L, a X Pr2
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These conditions are now applied on the the vertical direction so that the shallow
plane of the undisturbed free surface, i.e., draft of the Wigley hull can be accommodated
on z - 0. The remaining boundary without ubing an excessive number of grid
conditions, particularly the exact hull points.
condition, are unaltered in this
formulation. The fully linearized problem, We now assume that the solution and the
however, makes one further simplification right hand side can be written as
and approximates the hull boundary condition
as L

4(9) fi,j,k = I , ,kcos(t-1)Oi (12)
Oy Usx

and applies it on the hull centerplane, y-0, and
as opposed to the exact hull lecation,
y - f(x,z). L

ri,j,k - Lj= ELL r Jkcos('-l)Oi (13)

I11. Development of the Numerical Method

For any time dependent, finite where 8 i for i=1,2,...,L. The
difference approach to the nonlinear ship i (L-i)

wave problem, the most time consuming task normalizing factor Eu,j is defined as
is the numerical solution of the Laplace
equation at each time step. It is thus very
important to have an extremely efficient f1/2 if i-1 or i-j
numerical technique. The most efficient E -
algorithms belong to the class of direct 1i, otherwise.
methods, as discussed by Ohring [4]. The
present algorithm is a very general approach
based on the FFT and is described by In the x direction, the Fourier coefficients
Swartztrauber and Sweet (5]. of the solution and the right hand side are

Consider the general Poisson equation represented by Oj,k and rilk I respectively.
in cartesian coordinates, for which the
seven point difference approximation is It can be seen from Eqs. (12) and (13) that

the number of coefficients required to
Cl[1i-isJ k -2 *i,j~k + *i+ ,j,k] exactly represent the solution and the right

hand side in the x direction is Just L, the
total number of x grid points. Furthermore,

"+ C2  i,J - 2 *i,j±k + ]i,J+I,k] the cosine transform is used since it
satisfies the boundary conditions O - 0

"" k *iJ,k-l " *1,j~k exactly at both the upstream and downstream

boundaries.

"+k #i,j,k+l " rtj,k" (10) We now substitute Eqs. (12) and (13)
into Eq. (10), multiply through by Ei,L

constant C a2d C2 are and cot(m-1) 01 arid sum over the range of i.
Ax 2 by2 

1

respectively, while the variable Using the orthogonality relations
coefficilete in the a direction are defined
as L

2

,=•",kT- i (1) L-1 itA-m a I or L

"hk 1f0 if t 0 a
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we obtain the system for J=1,2,...,M and all t,k followed by

C21 JIk - J,k + J+1,k + ak'j,k-1 -1
*i,jk " i- 1 i,L *j,k cos('-l)ei (19)

- k,k + Ck J,k+l - ltJ,k= rk(14)
r 'for i-1,2,...,L and all J,k. The Fourier

sums in Eqs. (16)-(19) are efficiently

S4Csin
2 (1>) computed using an FFT routine. We note that

in which 4C si for there are no restrictions on the number of
1 2 1) grid points in any direction, and thus the

L1,2,... ,L. programmer has great flexibility in
designing the mesh system.

By applying the above procedure in the
x direction, we have uncoupled the finite
difference equations so that there is no Implementation of the Boundary Conditions
longer any x (i) dependence. We now have a
sequence of L two dimensional linear systems The boundary conditions in Eqs. (4) are
to be solved. This sequence can be further directly implemented through the use of the
reduced to LxM tridiagonal systems (one cosine transform, or, in the case of * - 0,
dimensional) by transforming in the y (J) in the tridiagonal solution of Eq. (15).
direction, which contains M unknowns per The right hand side of the Laplace equation
mesh line. A completely analogous remains zero even at these boundaries since
transformation then yields the zero gradient conditions do not

introduce any source terms. The only non-

I m X -m zero terms which appear on the right hand
+ + ,m side do so at the hull and the free surface.

+ ,m Im For the fully linearized problem, the
+ - r k (15) hull and free surface conditions are

implemented in a straightforward manner.
The hull condition of Eq. (9) simply

in hisin2 (m-l W) modifies the right side of Eq. (10) on the
in which I 42si 2- f-or centerplane grid points. The free surface

conditions, Eqs. (7) and (8), are advanced
m-1,2,...,M,. in time using the numerical scheme of Chan

[11, and the new values of 0 at the free
The procedure for the exact solution of surface are used as Dirchlet conditions for

the Poisson equation in a three dimensional the Laplace equation. Since these
region is now outlined as follows. The conditions are always applied on the plane
right hand side of Eq. (15) is obtained in z=0, the coefficients ak, bk and ck in Eq.

two steps as (10) are constant in time.

_ L The mesh system used for the
r i - EjL ri,j kcos(L-l)Oi (16) implementation of the exact hull and

nonlinear free surface conditions is shown

in Fig. 2. This system is locally body
for Lwl,2,...,L and all J,k followed by fitted so that the hull geometry is exactly

accommodated while the interior field is

-m H _ described by a cartesian grid. Furthermore,
rk i & r C°s(M-1 (17) the top grid plane, orignally representingz-0, is now allowed to move with the free

surface so that the z coefficients in Eq.
for a-1,2,..,, and all X, k (0 is (10) now vary with time. This variation,

however, is limited to the first grid plane
analogous to Oi). Once r•,m is known, Eq. below the free surface.

(15) is solved for each vertical (z) mesh The linearized and exact
implementations of the hull condition are

line to obtain ;,m The exact solution compared in Fig. 3. In both cases, the
k tofictitious quantity *iO,k is eliminated

•i ,jk is then fo~ind in two steps 8
from the finite difference system using the

SH boundary condition. This implementation
* , . K cos(U-0)0 (18) differs from that used by Ohring and Telste
JA EM Ef.i nH kj
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[6,7] in that no Taylor series or store the solution in the region below
approximations are used to simulate the the keel. This is seen to be possible upon
actual hull. This treatment, however, still consideration of Eqs. (18) and (19) where it
requires a modification of the fast Poisson is observed that the solution in the region
solver since the grid is no longer entirely of interest depends only upon the Fourier
rectangular. The capacitance matrix amplitudes in the xy planes. Thus, only the
technique is used for this purpose, and an Fourier data between the keel and the free
excellent discussion of this method is given surface are required.
by Buzbee [9]. The basic idea is that two
fast direct solutions plus the solution of a Finally, we observe that the downstream
small, dense matrix system will provide the condition 4 = 0 is necessary for the
exact solution to the finite difference storage andX computational efficiency of the
equations in this locally body fitted mesh present method. The specification of the
system. A simple test problem showing the solution for 4 at the downstream boundary
accuracy of this technique is described in would introduce non-zeros on the right hand
[8]. sides of Eqs. (10) and (15). In this case,

the solutiog would have to be computed and
With the linearized free surface stored in the entire region, and this would

conditions applied on the plane z-0, the seriously degrade the efficiency of the
modified Poisson solver may be applied present optimized solver.
directly to the solution of the Neumann-
Kelvin problem. However, since the
capacitance matrix technique requires that IV. Results
the geometry remain fixed, an additional
modification is necessary in order to apply The present time dependent, finite
the Dirichlet conditions for ý on the moving difference technique is first applied to the
free surface. We first define the matrix A linearized, thin ship problem for the
such that the linear system A4 - r describes purpose of resolving the issue of the open
the discretization of the Laplace equation boundary condition 4' 0. We consider two
in the region whose boundaries include the domain sizes, 6.6 x •.0 x 1.0 and 4.95 x 2.0
exact hull and the moving free surface. x 1.0, containing 129 x 33 x 20 and 97 x 33
Similarly, we define the matrix B to be that x 20 grid points, respectively. For these
for the Neumann-Kelvin problem, since linear cases, we note that it was only necesarry to
systems involving B are efficiently solved compute and store the solution for 4 on 7
by the modified fast Poisson solver. Now horizontal (xy) planes since this is the
consider the splitting A - B - N, where N number of z grid points used between the
represents only the time dependent part of A free surface and the keel. We compare the
due to the motion of the free surface. This surface wave patterns for these domains at
leads naturally to the following it-ration t - 7, 8 and 9 in Fig. 4. This figure shows
to solve A# = r: that the steady state solution is

independent of the domain length. This is
strong numerical evidence for the use of our

BOS+I- r + N# (20) simple open boundary treatment since any
adverse effects on the solution would
clearly be evident in this comparison.

where s denotes the iteration count. The Furthermore, we have observed that the
new right hand side of Eq. (20) is again solutions on the hull surface are identical
zero everywhere except near the hull and for both domains. Since less computational
free surfaces. Furthermore, since N work is involved in the short domain, this
involves only the time dependent equations is the one we have used throughout this
near the free surface, it allows the study.
Dirichlet conditions there to be
increasingly better approximated at each In order to validate the present method
iteration. for the linearized problem, we compare in

Fig. 5 the steady state (t - 9) hull wave
We now make some comments concerning profile for Fr - 0.266 with that from the

the optimization of the fast Poisson solver. tlassical Michell solution (n
Since the right hand aide of the Laplace nondimensionalized by U,/2g). The agreement
equation is entirely zero below the keel of is seen to be quite good. Figure 6 shows a
fhu ship, we see from Eqs. (16) and (17) similar comparison with an experiment by
that the Fourier coefficients are also zero. Shearer and Cross [10] for Fr - 0.350. The
It is thus not necessary to provide storage qualitative features for this case have also
for these quantities. In addition, since we been reproduced well by the present numerial
are only interested in the solution for * approach.
near the free surface and on the hull, *a do
Sneed to compute the Fourier amplitudes The implementation of the nonlinear
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boundary conditions at the exact location of Wave profiles, surface wave patterns
the free surface requires several and wave resistance coefficients are
iterations, according to Eq. (20). Our calculated for the Wigley hull using the
computer code uses the iteration parameter present method. The results are seen to
IC, defined so that IC-i iterations are reproduce the features of linearized theory
performed. Figure 7 shows the effect of and experiments. For low Froude numbers,
IC - 2, 4 and 6 on the hull wave profiles at the nonlinear wave resistance reduces the
t - 9 for Fr - 0.233. The differences in behavior which is predicted by the thin ship
the profiles are insignificant, and results.
typically two or three iterations are
sufficient. Three computer codes were used to

compute the present results. These codes,
We now conclude this section with a along with a detailed users manual, will be

discussion of the wave resistance. This made available upon request to those
quantity is computed at each time step by interested.
integrating the pressure obtained from
Bernoulli's equation. The wave resistance
coefficient Cw is just the resistance References
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Wleley Hull Casrplane (y 0)

Iz

J0 1-2

Exwt Wigley Hull (y f(xz))
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j. AY + ly

1-0Jul 1=2

(b) L

Figure 3. Comparison of the thin ship and exact hull mesh systems and their
relationship to the implementation of the Neumann body condition.
(a) The unknown 4 iOk is located a distance Ayr outside of the domain

and is easily eliminated from the equations by using the thin ship condition.
(b) The unknown 0iOkin the locally body fitted mesh system is no longer

located a uniform distance outsid~e of the domain. Special derivative formulas
must therefore be used in order to eliminate it from the system of equations.
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Figure 4. A time sequence of the thin ship wave profiles generated by the
translating Wigley hull for both theŽ Long Domain and the Short Domain.
t -7,6 and 9; Fr =0.266.
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Figure 5. Comparison of the Wigley hull wave profile using the thin

ship condition with the Michell solution for Fr - 0.266.
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Figure 6. Comparison of the Wigley hull wave profile using the
thin ship condition with an experiment for Fr - 0.350.
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Figure 7. Comparison of the Wigley hull wave profiles for
Fr = 0.233 and IC - 2, 4 and 6.

WIGLEY HULL WAVE RESISTANCE
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0
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Froude Number

Figure 8. Comparison of the Wigley hull wave resistance vs. Froude
number for zhe full nonlinear conditions, the exact hull
condition and the thin ship condition.
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DISCUSSION
of the Paper

by R.R. Chamberlain and S.M. Yen

NUMERICAL SOLUTION OF THE NONLINEAR SHIP WAVE PROBLEM

DISCUSSION
by S.M. Yen

I would like to encourage the colleagues in
naval hydrodynamics to accept our offer to use
our method to solve the full nonlinear ship
wave problem for hull surfaces other than the
Wigley hull. We will send anyone upon request
a copy of our computer program package as well
as a user's manual. We will also help the user
to run the program. We believe that only
through close working contact and by sharing
computer programs, the progress in numerical
ship hydrodynamics can be expedited.

DISCUSSION
by Henry T. Wang

In your paper you repeatedly refer to the
boundary conditon *x = 0 at the downstream y-z
plane as the "open boundary condition", This
would seem to imply that you are allowing the
waves to propagate through the downstream
plane, whereas, in fact, you are applying a
solid wall (or reflecting boundary) condition
on this plane.

Author's Reply

This discussion is especially significant
since it brings up one of the most important
issues which we have attempted to address. We
feel that all references to the condition
ox-O as an 'open boundary condition' are fully
justified in this case, especially after con-
sideration of the compelling numerical evidence
presented in Figure 4. The two sets of calcu-
lations shown in this figure are identical
except for the length of the domain. In par-
ticular, the so-called solid wall condition
ox-O has been employed at both downstream boun-
daries, and yet no wave disturbances are seen
to be reflected from either of these artificial
boundaries. In fact, the short domain and the
long domain solutions are essentially iden-
tical, both in phase as well as in amplitude.
This result could hardly be expected from a
reflecting boundary.

In our experience with the nonlinear ship
wave problem as well as with problems in com-
putational aerodynamics, we have encountered
similar findings many times before. Fortun-
ately the numerical solutions in many cases
seem relatively insensitive to the approxima-
tions made at the downstream boundary, espe-
cially when the disturbances there are small.
It must be remembered that 0 is the pertur-
bation potential, and we are thus allowing the
mean flow to pass uniformly out of the domain,
The errors involved in applying the condition
Ox - 0 are not significant enough to cause any
serious degradation of our solutions.
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FINITE DIFFERENCE SIMULATION OF
NON-BREAKING 3-D BOW WAVES AND

BREAKING 2-D BOW WAVES

by Hideaki Miyata*, Shinichi Nishimura**, Hisashi Ksjitani1

* Department of Naval Architecture, University of Tokyo
Hongo, Bunkyo-ku, Tokyo

** Kobe Shipyard, Mitsubishi Heavy Industries Ltd.,
Wadamisaki, Hyogo-ku, Kobe

Abstract zontal-bow-fin (HBF) and the movable bulb[ 91.

The refinement of bulb configuration, from

Two versions of the finite difference method bulbous to thin protrudent type for low and

called TUMMAC method are explained with a middle speed ships, was commenced by the

number of computed examples. The TUMMAC- recognition of the presence of wave breaking
IVvml method is developed for the purpose of phenomenon [ 10] and accelerated by the under-

simulating 3-D nonlinear ship waves. Since standing of the distinctive characteristics of
the exact inviscid free surface conditions are steep nonlinear waves called free surface shock
implemented on the fuph surface and the free- wave (FSSW) that is likely to break u 11 e [ 12)

slip body boundary conditions are fulfilled on [ 13] [ 14). The role of linear wave making
the surface of the approximated hull, the theories in the engineering problems has not
simulated wave formation shows fairly good been so significant as mathematically oriented
agreement with the measured. The difference researchers expected.
of wave geometry due to the variation of bow
configuration are exemplified with two series of
practical hull forms. The other version called The understanding of the complicated phy-
TUMMAC-Vot method is a 2-D version that can sical phenomena of water flow around a ship
simulate the wave breaking motion. The elucidated the shortcomings of the current wave
simulation of 2-D bow waves elucidates the resistance theories. This is another important
process of wave breaking, from wave role of experimental investigations. The wave
steepening, overturning, impinging to vortex contour maps computed by linear theories do
generation. not show satisfactory agreement with experi-

mental results. The claimed agreement in the
I. Introduction value of wave resistance is supposed to be

questionable when the agreement in wave
As is well known, the hull forms have formation is not demonstrated.

experienced innovative Improvement. A bow
bulb has been proved to be very effective in Excessively gross approximation of bound-
the past three decades 11] and Its application ary conditions seems to render substantial
is still continuing to extend, for instance, to difficulties In explaining the nonlinear wave
fishing boats and small cargo boats. In the motions in the near field which are the source
last decade another bulb for a stern called of subsequent complicated motions of wave
stern-end-bulb is developed [21 1 3] 14] 16] breaking, vortex generation and so forth.
and the configuration of a bow bulb is refined The exact free surface conditions must be
into a thin long-protrudent one for middle and satisfied on the exact location of the free sur-
low speed slhips 16] [7]. face. The no-slip body boundary conditions

must be fulfilled on the body surface taking
The success in hull form improvement owed Into account the wave motion. These are

much to the sound understanding of physical requested by the substantial sensitiveness of
phenomenon. The development of a gigantic wave resistance and by the nonlinear charac-
bulbous bow 1 8] was promoted not only by the teristics of ship waves. The recognition of
wave making theory but also by the wave the nonlinear aspects of ship waves obtained
pattern analysis using stereo-photographing from experimental studies led the authors to
technique which clearly showed the nonlinear the development of a MAC-type [ 15] finete
wave making in the near-field. Wave making difference method that solves the Navier-Stokes
theories have been Incompetent to explain stern (NS) equations by time-marching. It is called
wave generation and then the development of a TUMMAC method (Tokyo University Modified
stern-end-bulb was conducted through experi- Marker-And-Cell method).
ments. An Intuitive idea forwarded the hori-
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based on draft Fd is large. The steep wavesIn this paper two versions of the TUMMAC themselves show nonlinear features and themethod are explained with a lot of computed dissipative motion cause further complicatedexamples. One is the TUMMAC-IVvml (varia- fluid behavior.
ble mesh in one direction) method for 3-D ship
waves and the other is the TUMMAC-Vot The generation of FSSW directly contributes
(overturning) method for breaking 2-D waves, to wave resistance. Whether its energy is
The explanation of the TUMMAC-IVvml method dissipated into momentum loss or spread by
and computations of waves of a bulk carrier dispersion In the far field, the wave resistance
and a tanker are made and Its availability in is not influenced in the first-order approxi-
the design of hull forms is discussed in PART mation. The effect of the dissipative flow on
1. The explanation of the TUMMAC-Vot method wave making seems to be a higher-orderand the numerical experiment of breaking 2-D mechanics. The first problem to be attackedwaves are made in PART2. PARTI deals with is the theoreticalexplanation of the generation
the generation of steep nonlinear bow waves of FSSW, since it is the source of other non-before breaking, andPART2 deals with further linear free surface motions and of dispersive
complicated nonlinear motions that starts with wave propagation as well. The MAC-type
wave breaking in the framework of a 2-D flow. finite difference method seems to be most
The former study seems to have practical powerful for this problem, since it excludes

availability in hull form improvement. The any linearizing postulations,
latter fundamental study seems to be important
for the further improvement of the numerical III. TUMMAC-IVvml Method
simulation method of ship waves and for the
elucidation of the nonlinear wave mechanics. Two primitive versions of the TUMMACmethod for 3-D waves were developed. They

are the TUMMAC-I method for waves around
PART 1 a wedge-shaped bow [16] [17] [18] [19] and

NON-BREAKING 3-D BOW WAVES the TUMMAC-II method for waves around aship of arbitrary waterline ( 20] [211. Being
II. Free Surface Shock Wave based on the techniques developed in these

previous versions the TUMMAC-IV method was
Experimental studies on the complicated wave developed for waves generated by a ship of

motions in the near field of ships clarified the arbitrary configuration. Since the versiontypical characteristics of ship waves (14]. with the mesh system of equal spacing
They are as follows. (TUMMAC-IVa) is already described in Ref.1223(a) Steepness of the wave slope, and the attained accuracy of the improved
(b) Formation of lines of discontinuity. version with a variable mesh system in vertical
(c) Turbulence on the free surface on and direction (TUMMAC-IVvml) is described in Ref.

behind the wave fronts. [ 23]. The computational procedure is described
(d) Systematical change of the wave-crest-line only briefly here.

angle.
(e) Fulfillment of the Froudds law of similarity. A rectangular inflexible mesh system Is
(f) Approximate satisfaction of a kind of shock employed with variable spacing in the vertical

relation across the wave fronts, direction. The horizontal spacing DX and DY
(g) Dissipation of wave energy into momentum are common to all the cells, while DZ varies

loss far behind, with respect to the z-coordinate. Velocities
are defined on the six surfaces of a cell andFrom these distinctive characteristics, part- pressure at the center of a cell. Suppose

ly analogous to shock waves in supersonie flow (i, J, k) denote the location of the center of
and nonlinear shallow water waves, nonlinear a cell, then the NS-equations are approximated
waves in the near field of ships In deep water into a finite difference form by forward differ-
are called free surface shock wave (FSSW). encing in time and centered differencing in

space except the convective terms.How to understand these features of non- W IDX.DT
linear ship waves determines the approaches to '.+q,j~k=j+ý,jakc('(+1,jk-qj.k .
be taken. The characteristics (a),(d) and (e)
imply that it is substantially wave making -. (motion, and (a) and (d) discriminate FSSW vi+kii+l,kC (i,+1,k-•iIk)/DY.DT Cl)
from classical ship waves. Discontinuity may D
be produced by the steep wave configuration i,k,k+'=Sij,k+-(
which can form a corner on the free surface.
and furthermore it is accentuated by the wheie
occurrence of wave breaking. The character-
istics (c) and (g) are results of the dissipa-
tive process of waves which starts with break- =uijj,k"DT.UCi÷½jIk
ing as a natural consequence of the steep
wave generation. Steep waves called FSSWs +v.DT[ (ui+j,j k+Uij ,,,2u+iJk)/DX2
are usually generated in the near field and
they are usually so steep as to be liable to +(ui+J+I,k+Ui+ij~lk.2Ut+. .,
break especially when the Froude number
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INITIAL CONDITION>o •k !lktSD~kI k ik~

04.1 k#1
[ACCELE-.. ý,r/.t OF I - ik- D Zk.l
RATION MOMENTUM EQ. DZk k A

ISOURCE TERM 0---- Wilk-! ~k•
2~k D4...l

Rl~k I2

I DZk.l k-I A

[BOUNDARY SOLU T IO mOF
[CONOITIONSH POISSON Eg.

I ITERATION Fig.2 Variable spacing in vertical direction.
n'l vnl n+l 1

U V ,W

FROM MOMENTUM EQ.D
1 DZ kil=J(DZ k+DZ k•I) (5)

WAVE HEIGHT
BY MARKER MOVEMENT Eq.(3) is solved by a simultaneous iterativeM I method through the following equation.

TIME MARCHING

(STEADY SOLUTION ) m+l
'i, j, k
m m

Fig.l Block diagram of TIWM4AC-IVvml. =i,j,k- Di,jk)

1{2 DT{l/DX2 +1/DY 2+l/(DZk- 1.DZ k+,! )) (6)
+(Ui+i, j,k +1+Ui+•,4ýj, k- 1- 2u+,- , j ,k)/DZ kwhr+(lik~~2 where

m ÷ m m+ln i. J+ i :j,1 j~j kDT. VC ij+i~k+v.DT( --- (2) D 1 J. k_( U i+fj~k - U,. Ijk )/DX

-TW, +(V m ~m+ I )'DY (7)
ý.J~~j~i~j~44 ~ i~.DT[---Itwi IJ, k ."wi, j k- ½)Dk

+(wm -Wl in l )/D~Z
Here DT is time increment and UC, VC and iljk+i W1 k k
WC are the convective terms. By use of con- Hero, superscripts denote the number oftinuity equation the following Poisson equation iteration and D is divergence of a cell.
for pressure is derived.

At every time atop of the time-marehing thei, ~k pressure field is updated by the new velocity
field and the now pressure field gives a new

=1 (1/DX2+1/DYý+lI(DZ k-.D' zvelocity field by advancing one time stop by,,J+I~+ + Jt Eq.(l). The procedure is illustrated in Fig.l.

X k ' (3) For the differencing of the convective term

the combination of the centered differencing
DZ DZ - and the seeond-order upstream differencing
+ - i)Z kZ ) - . . (donor-cell method) is osoployed following Ilirtk- k /2 e al. ( 24). With this difforencing method

tile term a(wl) I1z, for exwnple. bee(wnes
where

W2C=4/(4.VDZk+4 )( wiJ)k÷4 ]wi.jk÷1)t

i.+(.r~~~ k" nl~j. { ,k)DT, DY) (4) +U ((Xqt'J'k~i'wi'j'k+8,)(8

(rij, k+iý lJ ,k'I) I (DT. DZ k)wwi.kiwij,+

1i,J. k+ i*. j. ks-
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free V,
UU

bOltOr b"unar . .... .......

Fig. 3 Domain of computation..........

Iij~kA-ij~k~~i}

The velocity points are shown in Fig. 2, in .... ...

which a black circle indicates the point atOW
which W2C is estimated. a is a combination-
factor.

By the use of a variable mesh system the
degree of accuracy of the finite differencing Fiq.4 Approximation of hull surfaae.
is lowered by order one. Eq. (3) does not have
second-order accuracy In the vertical direction.
The differencing of the convective term also
becomes less accurate as explained below. The computatiLatd domain is shown in Fig.3

for the case of bow wave computation. Proper
By Taylor series expansion of Eq. (8) about boundary conditions must be imposed and

the location z 1 JW 2C Is written as fulfilled on all the boundaries.

(2aD ((-) Wt ) Since a water-line of a ship is approximated
w~c k2 )Z+(-iDk+1 ___ by a succession of line segments and a frame-2 (DZ k +DZk+I) line by steps. the body surface becomes as

shown In Flg..Freeslip body boundary condi-
oz -noZ tions are imposed on the vertical surfaces.

I.J.k+j k+1 k In order to let the water flow along the fraino-
() lines smooth, the ratio of the portion of a

DZI+DZ3 4 horizontal plane through which water fnow
kk+ vertically Is considered in the fulfillment of-2(1) k +D k+1the zero- divergence condition of the fluid

region of at boundary coll. Tho exact inviscid
DZ D' 3W freotv surface conditions are approximatelyk~~+ k+l 0(Z)atfiUsisadofteireursar

~2Dk Dk~l' and (lie "marker porticle" techniques.

W~hen a =1.0. i.e. the ease of the donor-coll

method 3IZ +lZ k+1 W2) IV. Waves of a Wulk Carrier

w~,2;2-(-----4-) -I.- az (Z> " Two hull forms of a bulk carrier of 26000O
k k+1 deadweight tonnage is chiosen for the comlpw-

and when (I =0.0. i.e. the case of theo centered tation. The originkAl hull NMSSFO hIIs a coliven-
differonoing. tional bow4 bulb ond the Improved one I55?l it

long- protruident thin bulb. Thtv latter~ was

* w (DZ -DZ ;1__ designed by the authors and was applied to at
Wt -D +iw (D+ I)k ) full-scale ofhip equipped with sails. The length

32 i~k+-. k+ k _F1Lpp), breadth (B3) and draft (d) of the

+O(DZI)(l) models am, 3.OOLNI 0.497m and O.OO0mt~balhist
condition) or 0,20l9m (full-loed coadition),
respectively. The computations wore exocuted

However, the formal reduction of the degree with these dimnetsions of models.
of accsuray can be easily compensated by
using a very fine calls near the free surfaCe The forebodies are considered aud an
wherie high r*")utIofl is eeurdxample (if coil divison it, as shown in l'ig.5.
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Fig.? '•elocity vector field of 1455FO and Fl in ballast condition at Fn=0.lS.

Fur the case eof ballast condition the coil size neetds a little more time steps.
DX x DY x DZ is 12 x 12 x 7.5 - 40.5-m and
the computational domain is -0.276w < x <
0.540wi, 0w<y<0.420m and -0.28&n•<z< 0,076w. The velocity vector fields are compared
Then, the approximate number of cell in which between the two models in Fig.?. for ballast
pressure is computed is about 28000. For the condition and in Fig. 8 fo,' full-load condition.
case of full-load condition, DX x DY x DZ is The blunter bow of N155F0 causes greater
14 x 14 x 10.3 - 55.,4mm and the computational disturbance velocities, which is related with
domain iS -0.420w.:x< 0.546wv, 0w~y< 0. 42011 hilgher wave heigfht and consequently higher
and -0.493111< z< 0.072w. Then the oell nutmber wove resistance. The downward velocities
is about 31000. form a vortical motion beneath the hull. This

The time increament is 3.23 and 3.63 mUUll corresponds to threu-dimensional separation of
se.cond for ballast and full-load condition, forebodies. Des!pite that (ree•-slip body
r'espectively. The unilform flow is accelerated boundary conditions are imposaed, the quahta-
for 300 time stops antd the computation is tive agreement 1S goo. In a strict sense it
continued to the 600th time step when the Is safe to consider it as a consequence of
steady state in reached. The Froude number numerical error. However, th~ese figures
based on Lpp (Fn) roeahd at the steady state indicate t.hat the thrce-dilnensional separa'tion
is 0.18 and 0.20 far b~allast condition and 0.18 is initiated by boundary layer, sepiaration, the
for full-load condition. Tihe Proude number role of which• is played by numerical error In
based on d (I'd) is 1,04 end l. S for ballast these cases, and the ratatianal ilow is forined
condition end 0. 682 for fu!l-load condition, by the velocities outside a boundary lay'er.

The time sequence of wave contours is Co~mpute~l wave contour mops at the steady
shown in Fig.6 for the oae~s of MSSF0 in ballast state are shown In Fig. 9, and those measured
eonditlon. The wave height In• Contours in by a wave recorder are in Fig. 10. Porspec-
PART 1 is all made ditnensionlcess with respect tire views In the same conditions are shown in
to the head of unlforni stream 11 (=U= /2g), Figs. 11 and 12. The reduction ratio of the
The maximum wave height of' 0. 75]' sppeai's two contours is the satne, although the. coot.-
just when tiia accoleration of the hilt'ow i8 dinate is dimenaional in PIg. 9 and dimenaiora-
ceasod and the faretneat wave does not show loss in Filg. 30. The overall agfreement between
remarknble variaton afttr the 400th timc: step, computation and experiment is fairly igood.
but tite developsent of thte secod wave crest With the increase of Froudo number the forma-
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most wave extends and the second wove crest agreemoent of the maxiamim wnvo height is
disappears. The angle of wave crest de- fairly good and the difference is usually about
creimes with the Inicease of Froudo number, 0.054l.
which is one of the typical charaeteristies of
t"SSW. The difference of wave geometry Th, supe.riority of M55Fl to 5,SSt0 it
between the two load conditions Is obvioualy ballast condition ýa obviout. The maximmi
noted. Although this is partly attributable to and minimum wove height arvr both reduced
the difference of hull configuration, the most and the area of large waive height IN roduced.
dominnnt cause is the difference of Froude On full-load condition Mlight reduction of
numbOr based on draft, When It is low andlor waves t. also tb.wrv-ed biut its dgree isa not
the botwconflguration is blunt, a wavo with ,;o signifioant. The rosults of tlowing test
circular geometry called normal VSSW is •g•o- tildcAte that wave risistauci is reduced by
rated as in the cases of full-load condition. 40Ij at Fn=o. I8 in ballast candition. The
The foremost wave of a bow which is nlot computed results alto ttle•in stratc the oefte-
extromely blunt is deformed into aln oblique tivoenoss of a thin long-protrudent bulb for
VSSW when Proude number is sufficiently large such a middle-spied ship, Thus. the simu-
as in the eases of ballast condition. The lations by the TUMNIAC-IVvml method is
simulated angle of wave crest line Is to.oallor proved to be effective for the pro4xcdure of
than the measured in ballast condition but 4t hull form optimitation. The discrimination of
Is contrary in the full load eoaulition. The a better hull form will be flade morm lroaols-
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55FO n , 5F

BA18 BALLAST Fn~o. 18

BLATFn=O.20 It BALLAT F nO 2

-C m *J M * Cu I. 4.= -t.f '-w

/ f / I?

.. /. . .....
.0ft SAM~Z t4 j

hul filtifo orfI0 thto howv a yi h

computatioual doeiiin. abown in ig 1's. 14 to 10. The cell hi~tv DX x
Dy \ 1Z Ws .5 Ms x0M5 x 7.37 - ý5.Otiln12 forV. Waon of a Tanker ballastc contittion rund 16.5 x 16.5 x~ 9.21 -
44. i4mmt for full-lanid ooiidltion. The len*gh

For ~ ~ ~ ~ ~ ~ n VTohe -xo lo -5elsofte .t)" Of ther(ov~ itndomai44n Isrnorl ante exml a seie dIofNn~OI t 1. 14,ýM ýknl , .4%.49. retqeetively, Commo tomodel N15 Ljp x ot 'rho dimension ofii tho two dr~aft condition and the water depthmodel i (als ) o x 131 xfdlt-la. d)m xh O.Sfmxv U .1m for ba~llast oouidition and 0.391,n forileOm ibtlst)xpo~ of 0.16o (ithl-toad) bub mj full-oakd condition. T1hen the "pproximateseies IscmoedoWwithou R bulb and atoni ig 3 h uUber of cell is 29000 ond 33000 for thobulb configuration of MS57F3 is thAt curr-ently raet~ 80applied to low-se e~d !f~jl 1ull forms of tankers h i eI c e e tis 3 3 n .2 mliand large bulk carriers. N7F5 has Fm Ohx-eIc~eeti 333fn 42a~l
tremely long thin Witl, which ts ep~eald to socond for ballRkst and full-load conditions,reduce FS$W and its b~d-ng in balliast con- resipectively. The uniform flow Is &ccelerateeidition. &156P6 has a round hew without a bulb. f~td 300 time steps and the evimputatlln is
which may be preferabi,, when wave resisarwno oontlnu,±td to the ontli time step. F~n Is (.1.canl be sately ignored. for all the caues. and Fd is 0.978 in ballast
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M55FO M155F1

BALLAST Fn=0.18 BALLAST rn=0.18

--20-I 4 5 -2 - ~ C1 4 5

X/OF'AUGH-TFA
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TIL. 4 7 __

M55FO M55F1

/ t BALLAST Fn=0.20 IAh- r BALLAST Fn=0.20

/* -

-- 4F

FULLA FiJ -. 1

Hq1 oeaurck ~vow con~tour maps ofMS iOGtft) and F1 (r~iht.

condition and 0.616 in full-load condition. slgnflcint by the thin long- prot ruden t bulb,
although the %meond wave Orast its large.-t

Tito computed velocity vw~toa' fields tiro among the four. The IIQw-type bow confipir-
shownt in lFigs,,17 and 18. Theo rotational flow ration of M57FM will be useful at Vin-4. I or
boneath the hull is more clear than in the greater when ilhe reduction of' wave tesiatance
case of MIS5 owing to the selected s~etion ia not eompnsonatedi by the Increase ot viscous
behind W~. resistanceg cue to ilia Increase of wetted-

surfruce area. The differenco in waveac is
Wave. geometrly is compared between the very gmall between msiPro and PG. The rnuntt

four Gallas models In ballast condition in Figs. bow configuration wacms to have neglifet~le
19 and 20. The maxitmum wave height of inflhuonoct on w~ave generation.

MWO,7F0 3. 1"S sand FG Is 0.9511, 0.8511. 0.7511
and 0J.9511, respectively. whieoh implies the In 1?, tnim and sinan4gre uill
favorAble, effect of e bow bulb. The sup- restricte- -5% they arr usually free in usual

pessimi of the forempost waive crest ia tilou towing If the affect of thia rostnctloo
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BALLAST Fn=0.18

BALLAST Fn=O.20

FULL-LOAD Fn=O. 18

1F±g.11 Computed perspective views of M55FO and Fl.
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BALLAST Fn=0.18

BALLAST Fn=O.20 NM55F (

FULL-LOAD Fn=O.18

M!5~FI 7/
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Fig.12 Measur'qd perspective views of M5S5FO and Fl.
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Fig. 7 Velocity vector field at vertical sections of M57F3 in ballast condition.
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Fig.18 Velocity vector field on the center-
plane and the horizontal plane near the
free surface of M57IF3 on ballast condi- 13Z0036I

tion.

Fig.19 comparison of computed wave contour maps of M157 series models irn ballast condition.
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Fig. 20 Comparison of computed perspective view of M57 series models in ballast condition.

is significant, a particular consideration or The computed wave contour maps are corm-

modification is needed in computations. How- pared in Figs.21 to 26. All the measurements

ever, the effect is not so important for low except for the full-load condition were carried

and middle speed ships as experimentally
demonstrated in Fig.21. The difference in _ _ _ _

wave height is about 0.05H, that is, 1.5mm
which is close to the order of error in
measurement.

: • .. / -.........\

II

oi 1 
Y (M) FXPERIWNT

?i , / - 0

_03
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a 40.l W t1 02 X()0.3 (1 U Q

Fig.2I Measured contour maps of M57F0 in CUTATION

ballast condition showing the effect of FPig.22 Comparison of contour maps of M57F0 in

sinkLge and trim restriction, full-load condition.
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Fig.23 Comparison of contour maps of M57FO in Fig.24 same as Fig.23, M57F3.

ballast condition.
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Fig.27 Comparison of measured and computed wave Fig.28 same as P'ig.27, M57FO in full-load
profiles on the centerline and two condition.
tra~nsverse lines of m57F0 in ballast
condition.
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Fig.29 same as Fig.27, M57F3 in ballast condi- Fitg.30 same as Fig.27, t457PS in ballast
tion, odiin

out letting trim and sinkage free, despite the ences between the two draft conditions. The
neglect of these movement in simulations. As configuration of the contours of the foremost
is already noted in the previous cases of M55, wave Is quite different and the second wave
the wave formation shows conspicuous differ- cetdoes not appear within 'he computational
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second wave crest, to which complicated
.,.0 higher-order influences presumably due to the

wave breaking and free surfac,,e turbulence
will give effects.

In order to examine the details of agree-
ment and disagreement some wave profiles are
compared between simulation and experiment
in Figs.27 to 31. Fig.27 shows that the effect

-- -of sinkage and trim is not significant. The
-.6, XI W. measured profiles are reproduced from a

recording paper of a pen-recorder and the
recorded high-frequency fluctuation implies

"°" •" the occu-rence of free surface turbulence.
The agreement is most satisfactory in full-

* load cond'tion, in which free surface turbu-
lence is scarcely recorded. The measured
wave profiles of M57F0,F3 and F6 in ballast
conditioi show jump-like shape similar to a
turbulent bore involving high-frequency

- - fluctuation on and behind the jump. This
011 Y a C implies that this jump-like shape is formed by

1.3 .. wave breaking. The wave profile before wave
0..1 breaking is supposed to show much better

•_____________ -_ _ o agreement with the simulated result. There-
@,3 ,. •, fore, the wave breaking motion seems to play

a most significant role in the generation of the
Fig.31 same as Fig.27, M57F6 in ballast discrepancy. The remarkable discrepancy in

condition, the second wave crest, for instance at x=0.lm

in Fig. 30, is also attributable to the effect of
domain in full-load condition while it is clearly wave breaking and subsequent turbulence
generated in ballast condition. These signi- generation. The degree of accuracy of the
ficant change of waves due to the change of TUMMAC-IVvml method seems to be satisfac-
draft could not be explained by linear theories, tory unless significant wave breaking gives
Overall agreement is fairly good and it is influences, and further improvement of the
especially so in the full-load condition. The methed will be attained when breaking motion
most noticeable discrepancy appears on the is taken into account.

PART. 2
BREAKING 2-D BOW WAVES

VI. Wave Breaking, Necklace Vortex surface. When this turbulence is of signi-
ficant magnitude, its influence on the wave

It is demonstrated in the previous section motion downstream may not be ignored. The
that the steepness of waves is imtimately related understanding and theoretical explanation of
with wave breaking and that the agreement the phenomena that start with wave breaking is
attained by the TUNIMAC-IVwml method is of importance for the elucidation of the nonlinear
inadequate when noticeable breaking occurs. wave mechanics and for the design of optimal
The difference of the intensity of breaking hull form.
motion is supposed to appear in the free
surface turbulence, since wave breaking motion The nonlinear free surface flow around a
causes free surface turbulence, bow of an advancing ship has been explained

and discussed in terms of necklace vortex [ 26],
Turbulence measurements were conducted wave breaking [10] and FSSW [11] (131 [14]

with M55FO and M55F3 [25]. The latter is a since 1969. Recently similar experimental
slight modification of M55F1. The measuring studies are made by other researchers (351
points are on the line parallel to the hull [ 36) (37] 138] [39]. However, no synthetic
water-line and 10mm below the deformed free interpretation of the overall nonlinear phono-
surface as seen in Fig.32. A split-type hot- mena is attained, although the authous explain-
film anemometer is used with the sampling time ed the four developmental stages of FSSW
of I millisecond. The analysed turbulent kineina- through experimental analyses, namely, (a)
tic energy and Reynolds shear stress are shown formation of very steep nonlinear waves, (b)
in Figs.33 to 36. It is noted that the differ- breaking or damping of wave crest and occurr-
ence of turbulence intensity is extremely large once of energy deficit, (c) diffusion of energy
between the two. The difference of the non- deficit with free surface turbulence, and (d)
linear behavior of waves appears in a most formation of a momentum deficient wake far
exaggerated form in turbulence near the free behind, The most nonlinear motions of wave
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Fig.32 Points, for turbulence Measurement.

45.00

40.00-.

30.00

25.00
-0-FO

20.00 F3 -2.00

Fig.34 Longitudinal distribution of Reynolds15.00 (shear 
stress.

boundary element method, for instance, by
10.00 Longuet-Higgins et al. ( 283, Vinji et al. r 2.9].Despite the increasing number of reseatch by

a boundary element method the progress in
the elucidation of wave breaking mechanics5.00 does not seem to be very remarkable. It
seemis to be clear that the boundary element
method has substantial difficulties in the0.00, .. explanation of the wave motion after the stage

-0 of overturning. The overturning stage is onlyMtOR) the beginning of the nonlinear behavior ofbreaking waves. Subsequent stages of the
generation of wave impact load and vortices,Pig.33 Longitudinal distribution of turbulent which are full of nonlinear features, are ofkinematic energy, serious importance. Therefore, a finite differ-breaking and necklace vortex generation are once method that has broader versatility isbreakingiand necklae rtges(b) generatin ae) employed here for the simulation of 2-D break-associated with the stages (b) and (c). It Igwvsseems to be easy to understand that steep ng waves.waves maybreak and that overturndng or spill- Tlad

ing motion of breaking waves may produce
vorticity. However, it is difficult to experi- The TUMMAC-V method was developed formentally elucidate these developmental stages, the numerical study of nonlinear 2-D wavessince the fluid motion is usually very oomph- generated by an advancing floating body incated involving remarkable turbulence, deep water [ 30] [31] (32]. Since this method

could not cope with the wave breaking motion,The capability of a inite difference method It is modified into TUAI-MAC-Vot version (33]for the simulation of wave breaking was [34].
demonstrated by Harlow et al. (27] through a
numerical simulation of a breaking wave on asloping beach. However, the subsequent The block diagram is shown In Fig.37.numerical works seem to be tackled by a Since the fundamental solution algorithm and
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8.00O.

6.00•

4. O0 \ -1.50.

2.00 -2.00.

0.00 -. 0
- -- 0 '10 20 %tso60/?0

X(oM) Fig.36 same as Fig.34.

Fig.35 same as Fig.34.

the procedure are same with the TUMMAC- zero-normal-gradient.

IVvml method, the equations and description For the movement of segments a Lagrangian
of the computational procedure are not repea- manner is used and the updated segments must
ted here. The distinctive features of the have their end-points on the underlying mesh
TUMMAC-Vot method are the flagging, the system as shown in Fig.39. In the solution of
determination of free surface and pressure the Poisson equation for pressure by the SOR
cumputation, to which some explanations are method the formula of "irregular star" is
given here. employed as seen in Fig.40. Four leg lengths

for one pressure point are stored in memory.All the cells are flagged. They are either

a full-of-fluid cell (flagged F), an air cell Other particular consideration iW necessary
(flagged A), a free surfaco cell (flagged S) or for the breaking motion just when the falling
a body boundary cell (flagged B) as seen in wave front touches the free surface below.
Fig. 38. The configuration of free surface is The air region enclosed by the overturning
approximated by a succession of Ulie segments. wave is either filled with water when its area
of which end points are located on the under- is approximately smaller than that of one cell
lying rectangular mesh system as soon in Fig. or kept to be an air region to which free
39. An S-cell is defined as one that contalns surface conditions are applied when it is
a segment of free surface. Flagging is also sufficiently large.
made for velocity and pressure depending on
whether they are inside the segment or not. VIII. Breaking Bow Waves in a Uniform Flow
The use of segments instead of markers is
advantageous ft'r the expression of the free A rectangular floating body of which length
surfetce that iF a multi-valued function of x- is 200mm and draft is 100rm Is placed in a
coordinate and for the flagging procedure. computational domain which is 2m long and
The computation of pressure is carried out at 0.4m deep below the free-surface. The origin
every inside pressure points. Outside volo- of the coordinate system being at the center of
cities, which are necessary for the movement the body on the still ft-f surface, the inflow
of segments and for the computation of convec- boundary is located at x = -1.Om. The cell
tive terms, are not initially flagged and extra- length DX Is 10mm and the height DZ is 5mm,
polatod from inside velocities with approximate and then the number of cell in which pressure
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CELL FLGGING

FREE SUP,~ F
VELOCITY EXTRAPOLATIOS A

- -4A"CRLFR=ATION

OF
MOMENTUM EQ. ZII

.PRESSURE •*"- 0---0 old segmentT;;SsON EQ.
XTERA0--- H new segment

I TERATION

VELOCITY *U"*'. W"*F' Fig. 39 Movement of free surface segment.MOMENTUM EQ. [sget

FRS: SURFACE CONFIGURATION
MOVEMENT OF SEGMENT _

CELL FiAGrtGING-

FREE SURFACE I

'VELOCITY EXTRAPOLATION FC

X 0
Fig.37 Block diagram of T.MMAC-Vot. z

X 0 normally computed pressure

N 6 atmospheric pressureA ýs F s\,S_ A A A
-.... Fig.40 Presaure points and legs of "irregular

$ -- -s " A stars".A A 1S F F S"-'''

A S S F F F F F see, respectively. The actual kinomatic vis-
-.. cosity 1.14 x 10' ni /see is used. The iters-

SS F F F F F tion number and Utmo are denoted N and T.
F F F F- respectively.

SComputed velocity vector fields after the
x A: air cell S: free surface cell accelerating stage are shown in Fig. 41 for the

F: full cell case .of Fd=l.25. Wave breaking motion similar
to a spilling breaker occurs at the forwardPig.38 Cell flagging. creeping wave front. The successive breaking
motion produces vortical motion and the resul-
tant vortical layer is gradually enlarged. Theis computed is about 16000. The computations time development of vorticity is shown in

were undertaken at two Froude numbers based contour maps in Fig. 42. Significant vorticity
on draft Fd, i.e, 1.25 and 1.50. The uniform is generated when the overturning wave front
upstream Is accelerated from rest to the above with forward velocity is connected with the
Froude numbers for 978 and 1404 time steps forward face of the wave. The region with
with the time increment of 0.00162 and 0.00135 vorticity is extended both forward and back-
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x = -0. 6m with the plunging motion being
Z)" attenuated. It is worth noting that the

increase of Froude number from 1.25 to 1.ý0
gives serious variation of the breaking motion.

U- i.e. from spilling to plunging type. The
difference between the two, therefore, is not

___ ___._______ --- , supposed to be essential for the characteristics' o0- X of breakers.

Pressure contours at four instances are
"shown in Fig.45 for the case of Fd=1.50. The
high pressure region indicated by the circles

0.1- is caused by the breaking motion. In parti-
cular, the high pressure is most obvious just

--- when the falling wave front impinges the free
o .surface below at the 1600th time step. The

computed maximum pressure exceeds three
times of the head of the uniform stream, the
resolution of which is owing to the small time
increment of the order of millisecond.

Although the computed results are not
Included in this paper, breaking motions do

0 not occur in the simulation at Fd-,.00. A

noticeable breaking motion which is resolved in
the present computaion is not supposed to

__-_ J occur at Froude numbers below 1.00 in this 2-D"case. The experimental study on ship bow
waves in Section V also indicates thzit a break-

ing motion becomes conspicuous when the
Froude number based on draft exceeds a
certain value. A critical Froude number for
the occurrence of bow wave breaking seems to
exist.

The intense vorticity, high pressure and
air-entrainment which are produced as conseq-
uences of breaking motions cause further
complicated free surface mlotions as ox peinmen -

CA tally observed [31] , 34]. The free surface is
seriously turblulent with sound. The present

Ssimulation seems to be successful in the

C qualitative oxplana.ion of the generation of
vorticity. high pressure and air-entrainment.
However, quanlitative agreemaent is not satis-
factory. Further improvement is nteded for
the aehiveimant of more realistic Simulation.

C since at present tile fluid motion is inevitably
averaged in time and space and the turbulence
raodel is not incorporated.

"IX. Dreakin Bow Waves in a Shear Flow

t.- Shear flows are sometimes generated in

-.. um, .. -WO, circulating tanks and at sato with tidal
currents, and they render influences on ship
waves and consequently on wave resistance.

FL9.42 Time sequence of vorticaty contour sap Kayo and Takekuma (351 experimentallY demon-
at Pd-I.25, fro9 Tal ,745soc to 2.715 4c strated the forward and backward movement
at the interval of 0.194aec, the of wave front due tn the accelerated or decele-

contour interval is t i/se., rated free surface flow. In this section the

influence of accelerated and decelerated shear

starts from the close oroximity of the bottom flows on wave breaking is numerically

of the floating body in this simulation. The simulated. The horizontal shear layers are

details of the bow wave motion are shown in produced by modifying the velocities at the
Fig.44. The oe'erturning motion of large inflow boundary. The uppermost velocity is

magndtude forms an enclosed air region and accelerated or decelerated by 40% and other

causes a vorticat motion. The forward move- four veloclties at the velocity points below are

ment of the wave ftont ceases when it reaches continuously modified with vertical distribution
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Fig. 45 Contour maps of pressure 4 at four instances of Fd=1.50, the contour interval is0. 10A/sec2 .

they do not put stress on the role of the weak.
Froude number based on draft. Takekuma

and Eggers [38] showed the variation of wave The velocity profiles of a computed breaking
front owing to the difference of bow geometry, 2-D wave (Fig.50) is compared with measured

which is one of the typical characteristics of ones in the bow wave of a wedge model(Fig. 51).
free surface shock wave (FSSW) already The resemblance between the two is noticeable.
elu•..idated by Miyata et al. [14]. Marl [(39] The steep slope of velocity suddenly appears at
claimed the role of viscous stress on the free the wave front and it is attenuated behind it,
surface in steepening of a wave. In general, It is supposed to be generated by the steep
they do not focus the attention on the genera- wave slope and intensified by the breaking
tion of FSSW which is supposed to be the motion.
source of the succeeding nonlinear mechanics.

In terms of the bow flow two vortices are
The simulations of bow waves of practical often dsussed, they are necklace vortex and

hull forms in PART 1 indicate that the numeri- horseshoe vortex. The term of necklace
cal method that ignores viscous effects and vortex was used for vortices caused by wave
wave breaking motio•,s show fairly good agree- breaking by Taneda and Amamoto [ 28]. The
menit with the experimental results and that term of horseshoe vortex is currently used for
further improvement will be attained by taking the vcrtices generated as a result of the inter-
into account the breaking motion. The simulat- action of a bourndary layer on a solid surface
ions of 2-D breaking bow waves in PART 2 with a stagnant flow In front of a body, see
indicate that breaking waves cause further Fig. 52 for simplified 2-D illustration. Lugt
complicated motions, namely rotational flow, air- (40] did not take notice of the difterenr-•
entrainment and free surface turbulence. It between the two and called all the vortices of
seems to be clear that among the many phnen- this kind necklace vortex, since the term of
mena observed the moat dominant is the horseshoe vortex was reserved for the vortex
geraeration of FSSW and the second is the system associated with 3-D wings with tip
breaking motion as far. as bow waves at Froude vortices, However, the present simulations
numbers of ships are concerned. The viscous and experimental results show that two kinds
stress on the free surfac, should be negligibly of vortex occur in a breaking bow wave.

N=170
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Fig,4u Velocity ve..tor field at Fd-1.25 with an accelerated free surface flow.

The skematic stages of vortex generation are interauts with the flow at the stagnant region,

illustrated in rig. 53, which is drawn by and consequently a vortex similar to a horse-

simplifying the simulated 2-D velocity fields, shoe vortex is generated In the proximity of

The overturning of waves generates necklace the body. These stages are repeated. The

vortex of which intensity depends on that of generation of horseshop vortex is quite differ-

ovorturnig motion. The suuvassive occurrence otfo ~1o ekaevre asdb

of breaking produces a vortical layer and this breakers. Trhe role of boundary layer in case

layer full of vorticity of antiolockwise rotation of a body with a solid surface is played by the
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®overturning
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03 vorticity layer
Fig. 50 Computed velocity profiles at Fd=l.25. t

a d-.15m-- ----- necklace vortex,* horseshoe vortex

~~~ \YF' ~ ig.53 Vortex generation in bow waves.

parallel to ane. a draft length away ftpol lv

from the centerplane for a wadge model ltAM

of a=450 at Fd-i.O. DI~AtOJ bIPFUSIOW

necklace vortex rig.54 Evolution of ship wave.

well known' with the Kelvin's wave system.
Therfr, dissipation and dispersion are both

vortcit lo'erimportant for ship waves, The nionlinear steep
/otct ae waves called FSSW are generated by a ship in

horsshoethe close vicinity and the wave energy
horsshoeconcentrated in It Is partly dissipated inio

vortex momantum loss far behind through breaking
and turbulence generation and parily spread
to the far field by dispersion to form a

horseshoe Kelvin's wave system, as s9hown in Fig.54.
bonaylayer Vortex The difference between the wave resistance

derived from wave analysis is attributed to the
... ., . .. dissipation of wave energy. The Importance of

dispersion and dissipation in waves of fore-
bodies depends on the hull geometry and the

Fig.52 Neckclace vortex and horseshoe vortex. Froude number based on draft. A blunt bow
generates waves of large height and steepness
which are likely to break. Wave breaking
does not occul" unless the Froude number
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based on draft exceeds a certain critical value, by the LINEC group of shidpbuilders in Japan.
As already described, wave breaking is
scarcely noted in the full-load condition of The authors wish to thank Mr.Y .Tsuchiya
M57 while it is remarkable in the ballast arnd graduate students for their supports, and
condition. This is due to the difference of also Ms K.Takahashi for her typewriting.
that Froude number, since the Froude number
based on ship length is common to the two
conditions.
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DISCUSSION
of the paper
by H. Miyata

"FINITE-DIFFERENCE SIMULATION OF NON-BREAKING 3D BOW WAVES AN BREAKING 2D BOW WAVES"

DISCUSSION For all speeds considered we observed
by H.C. Raven discrete vortices of alternating sign in the

triangular dead water region behind the free-
In general your calculations appear to surface stagnation paint ahead of the bow.I

give a fairly good prediction of the wave ele- wonder if your program may be able to sitmu-

vations. The velocity fields (Fig. 7 and 17), late even such phenowanon?

iusflto realize that in fact you are Author's Reply
sliganearly potential flow problem! the

foisconsidered to be laminar, for a I thank Prof. Eggers for his valuable
Reynolds nuimber of a few' million, and free slip discussion. The present method cannot simw-
boundary conditions are imposed. Therefore :oate with satisfactory quentitative accuracy
tnere is no physical source of vorticity of the viscous flow with turbulence and vortices
any significance, except perhaps at the free which is generated by wave breaking and so on
surface partly due to the lack of turbulence model

"ad the insufficient degr-ee of accuracy.
Still the resulting flow field is full of However the stnength of the horseshoe vor-

vorticity. you find separation from a smooth tices is far weaker than that of the necklace
surface, and even at a large distance from the vortices by wave h"walkin; as seen in Fi'i. 42.
hull the flow does not resemble a pctential It will be better to note that the flow visu-

flow, moreover, the "vortex sheet" found in alization technique is not always useful fc.'
the centerplane seems to follow a very strange the understanding of the intensity of the
path. Suppose that all this is due to numer- fluid motions. Intense motions, often with
ical errors, Ooes not this make all other turbut~nce, are difficult to be visualized by
resultb (including the wave patterns) also tr~acers wndl gentle Letlor~s are some titmes
unreliable? easily visualized. Most doeinart phvinumena

seem to :)e satisfactorily simuaQted by the-
Author'Is Realy present method out the isprovement of the

aethod is ne,..essary for the res;olution of the
The vortices that &Wear in the simula- tire deteilrd1 phenomena thAt tie cliscýsev

tions by TUMMAC-IV are supposed to be due experwaentolly elucidated.
to numerical error. However, the- simulated
bilge vortices seem to be similar to physi. DI$CvsLObyCEfit
tally observed ones, although the effective _~mb .. Hr

Rleynolds n~uambr in the simulations is sitaller Professor Miynta endt 1,is cclegtaare
than the actual value due to the truncation tk tbe conwiended for their excellent .401- in
er-ror of the convecftiveo terse and the vortices cmpar i ng sx", iermt-ftl observation with
4re diffAised. It is interesting te note that dotailed numericorl tognltat irna.v Theoir use
Rizzi 4and Erikssont (J. fluid Koch. lsa, 1;86) of experikmemtal evnttence to ttvidc' 'qmirve-
successfully siauloted vortices on * 3-0 wing vents in numerical mlodes, end cohvt,ýrsely,
by. a flit.~t-differenoe method basd oin fuler's the interpretetlen of iwavd tank dat6 using,
equationts. aetai led cocputer Rimulations i% a lanciprt

in the Coupling of these two opproahes for
,ti intetractions of bew savves with bilge practi--gl ship design proble*s,

vortices M.s not been C'ýOnsdetred to be of
iw~ortance, the good agreement in wave geese- Al though the authors c~onctŽ*trated ini
try ettailnad 0Y our aethod seemts to support cootarisoais of surface nnv profiles, the
this un0"tVig.oorrence# in their siculgtlon% of large

sc~ale lrratatiooel f low patterns unde*r thea
OR U&Ls O*Ab vese,%l bulk is intriguINg4  Since* theseit flow
by K. 40ga struetuhres cn ot be redieteJ "i potesti;F 1

flowe aodd,, but are likely, to bt siqntieanýýt
I fee :OirnJ to bet unprepred fto a deep iti desijin coes;'derat:ions. I we.04 likec to

discussion as thio papr ftrtaintly deservos. know it the- tauthvors Pairs atteepfte$ ýo eonfir-a
Just (?ne pointi youir COapxst~tions for a 2-0 thcae coeputtdi fiseturte below 0th surface
ractagullar cylinder sbowed a row of di'ucret* with taattli
vertices attead of the cylinder. *s dlxpsye^d
in fig. S. Wle have p~rfored nxjnrito*ts it f; iftail repa-rkt the. niflrlcul tCtv
Hamburg in cooperationi with fir. Xkayo from nl-ques i*ts*d for tlhis Work *;-e nnt quite UP to
Mitsubishi with a Semi -sUbtaret circular "Il- xate. Use of variable lash sp*6ifl *n holsH-
inder and observed the flaw by video caere *ontai directtions would most Iik-ely rdc
after ift~tctiag tracers. coewutatiofaai tiwes by St. lent a factor of 2

adpossibly by da order of ulgtiitude. Also,



there are better methods for defining the
geometry, and more general three-dimensional,
free surface tracking methods that would
improve the resolution of the steep surface
slopes obsernd on Cie leading bow waves. I'm
sure many researchers are anxious to see fur-
ther result3 from this group.

Author's Reply

I thank Dr. Hirt for his useful discussion
and for his previous works which were useful to
the development of the TUMMAC method.

The pressure distribution on the hull sur-
face is compared with measurement and the over-
all agrement is good (see J. Soc. Nav.
Arch. Japan, vc. 157, (1985)). By use of
the coW.tetd pressure resistance derived from
the integration of pressure distribution the
hull fort improvwnet will be made with better
rnimabllity. NotwithstrnOdiag the use of free-
slip body condition the 30 vortex separation is
simulated as olaerved in Figs. 7 and 17.
Althot..•h comparison wi..h obs, rvation is nt
made for the vortical flow, it seems to be
cl*er that wore advanced techniques will be
nece•ssary to havt better agreement in viscous

The use of vearlble fesh system in longitu-
dinal and leteral directiong do•s not always
sees to me .ffective., s 4nce it may ettanuate
0o nun that proa4gste to the fsr fiteld by
dispersion. Jhe author's Partial sucess is
oue to W~e bale~co Of Stabili•ty. accuracy, sim-

4;4des, H~oever, *1 tW discusser Pointed out,
tflare or* Unmy Point% a. wO•,ch isro~t can

b made.

by Y, $on

' would tike tO cogretulate the autho•s
for th4ir ntenlve work. Out I would like to
ask 9ha "jthos a cwistlcn. Thould the areas
under the pstive wave height en- under the
negtive a height be the " in 04c tin
st*p throughout Figures 437 If itt, then the
draft of It* body Should be different in each

Thank you vsry such for your discussion.
In alI tho cOputtions in our pier. both in
one 0f 'a •ip model a in cas of a 2-0 boE.
the body is fi•ed to the coordinate system.
W0," corrspoods to the experimental coMition
it i•h!i tht•e oy Us fixed to the towing
tszWrieq. 4I thf. moineht of the body is
,t'Oltd the 40a0t chane and the trim ionent

*'i Also tae AaC*e. This correspons to the
frws~tre-mn~in.~ucondition, to which

t'*r asthod an•not co", with at present. The
"*O1oua of the fluid in the computationa1 domain
ay to pruitted to Very nProper Op boun-
daWr 9r4ition ae iWeped wmd futlfilled.
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HORIZONTAL DISPLACEMENT OF HYDROFOILS BENEATH THE FREE SURFACE

by Jean-Pierre V. Cordunnier

Ecole Nationale Supdrleure de M~canlque

NANTES FRANCE

Abstract. The theory of hydrofoils running near the
water surface is not new but all of the early

The TUMMAC wmethod Is applied to the lnvestlgat'ons wure concerned with computing the
prob~lemt of simulating 2-0 flows around hydrofoils over-all forces on the toll, namely lift and drag.
mcoving at constant speed near the free surface. A rather than the details of the local flow C 2 1
finite-difference scheme is used3 to solve Navler- Furthermore. they were Completely unable to solve
Stokes equations The pressure Is computed the problem In most cases when th~e free surface is
throughout the fluid by means of the sImultaneous %very non linoar, In order to understand these non
Iterative method which is a modification of the linear wave phenomena and to evaluate 'he forces
successive ever relaxation imethod. 0" the prattle causec; by the non- linear behav;Ior of weaves oni the
boundary. a no-slip oondition Is ensured by body. a the~orottcal too! Is elaborated which can cope
oxtr3poistlrlg velocities lk'side the t-ydrotoli. in ordor with the non-linearity of waves as far as possible, A
to let the. waves 'fre of breakir.g. i special ;reatmenl large demonstration of its ability it , solving non-
of the. tree surface condition Is emplyoyd: smtall linear tree surface flow problems has been
segments describe meo free surflace. evaty fluid cells performed. Many program codest are now available
are flaggeid. Computing Ipsts cr1i performed "i the for 20)a well as WO problems. stallonnary or
NACA4412 profille. The iosue~s show a fftlrty good unalstlonnaty. with ftn~te or Infinite depth

qultteagreement wilth experlmetts. A t'srbuieri- ( 6 to 12 1. The so-called TUMM4AC (Tokyo
00 sohmme t-, daslrabte Iin order to Increase toat University ModIfed Marker And Cell) meithod was
computatlor' scutecy. devoloped at the University of Tokyo and resolves

tNavleU-Stokas rnquallcon Qthrough a finite difference
scheme, Yenar after year. many cmuatnt

I, inroducion.tecvw'lquos *are tWited and a refined verson Is now
-avallablea. The, last Irnprovenrhtni 4n th44, iwo-

The Case* f hydi'olaftn moviftg at co:knstant Olmenslgon*i probtemn I!s the pormttblfy Of rtwting a
speeld bo..-100 t 1d thefre surface has woftn beoen non-simply conn~cted frees surfta'- atevaron fur'c-
Istodied thqCsorteltety *s WS4l as eptstfiy.Usiftg lion with respect to tMe hertzonal ccordinate.t
Pc-tr-l tlai Ulotxl'3 one cOA 0ompute tin' flow woutnd Ttwrertorro, such a progam oodi* Q4 just tu!l~abte for
suclA hydc4totts but 11w rgnt'ts #eq vwvy mot" a3 seon Solving hydrofoi grc-blemt.
a', vthe ttptrt Of subergnc M*#" smnall r. 1 3, Wttitfut (ffO~ftigagain t". gseerAl haiies of
rfi* t*ýnon of this coniOS C'hltStiy 4FoIIn lbS great 1the method. a shnonsurmmery of the computationai
infiu~n1r-iot the free focyateo 'whih ShkOWs. *8 prccedure tt foltowtd by aft intenSIpve sl4o~mofl of
*llPsrhnMnte t40"o ts!srt W 1S prtnlfllI the b*Lot'rtty treatmeants. Some OZ0Iwbon mf
ro'liffi.vt ef13bO v Occo1r~te ab to wheter the Frpude coinputlilons erip reported aiid 'tei sccttaracy is

owmt s N tglt or NIW. let the tt$,whIch Mta- t b o¶'tmfte0 throughi contpurleons wi-th prfibt
* swpeo ~t4 Yt t!b fmoisdt nuriter i.te 00%v it smroolh

O**j Athe upper su"Atac oti the 1*t) and rno dtacontitnugtv
ootmrTs on the yv" tes This was tho starling U o 7  itr~t rben
Volval 10o' neary 4Weey thsloroftcti tnnrramnt HoDw-
eve . II tinso TjM! appnraoQsj0 t" tt free surface Woo

Clonl1y. (here Will bo to0rh@ aitr nnhtlelkdn and a ftoSw
Septatdl ot ln~u~pr urfaoi C 4.5 3. In trh.O2

tOC*flr m&$or tflttns of flow. thQ free surface Is
*wtb04w b y woc; Sf- Ofavi~ty waves Or-

nuiebtr~aend othy reikult In coitldreby diffrentsi :Ztt'
conditions as Wa as forwbt and pressurv. oo the
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The fluid doinain Is arbitrarily limited In UC 111 -I 2'w
space and divided Into rectangular cells (fig. 1). - - --i• " " "'=-

Tho cell size is defind as OX. OZ respectively In the AL4" HVI. U nW k u k4J '

X and Z directions. Pressure Is defined at the center + +

of each cell an~d the velocities on the four sides 4t-U. MV4,.J-~,w lie,~ -U, )PS ,( f ig . 2 ) a a n

(2)

k Ll.€-•

""VL U I "h t1w n kn • 0e

S•.-- -14- "•W•_• -- '• -- W:.•''-'" TUsing continuity equation, the pressure is
!•/I •- •• k-I computed by means of the Polsson equation of which

I •k-I 2' " finite difference expression is:

_•BI• ~ fig. 2 Finite difference scheme. •k • X " ;''-.J "2 (3)

A finite difference form of the Navler Stokes
equations Is written using forward differencing in with
time. if (I.kI) dentots the location of any celi center,' *1.'-"k• "-).m, •DZ.,
In the fluid. DT being the time increment, at the n-il ~k( i~kpk~k ki
time step. velocities are obtained from the preceding R'k /DT

time step through the following equations:

ur)+ • "By means of a simultaneous iterative method.

SLk#1 -DT1 -W, j2/(W

-0 .. k •,. )/D this equation is solved using,

- wk 12 1 .DZ)~ 4

( IJ ) 0 m.I i n m mS-L--• - - T4

2• where W is a relaation factor and 0 Ik the

divergence of the ceii:
where n r

214k _W O W'

((31) k. 7. Iterations are stopped when the pressure

V[ ,-J difference between two consecutive approximations

2is less than a certain small quantity. chosen a priori."2 During the time marching procedure. pres-f-DT.WCig.. g.T sures are renewed throughout the fluid domain at

£k.=i • every time step and the new pressure feled givesa

new voioorty field from equations (1)S
eq.DT(a ti on on the boundary, some special conditions must be

,.,n 2 written. These conditions are approximately satisfiedtie-2.W. )/D2 J by imposing some extrapolated values to velocities

Stk-e f . outside the fulid domain. Five different boundaries

2 have to be considered: the Inflow and outflow
boundaries, the bottom, the body and the free-

The convective terms UC Icv• and surface,Wtim ep re also obtained from the velocedien at
the nm time step. In expressions (t)o the upace

- • dMfferenoing technique is sslicted using parameter Ili. Boundary treatments.

. • ~a: e .= 0 gives oe~~trel differenoing, a =1 corres-
•= ponds to the donor-coil method and 0 ' a 4 1 is 1.1Inflow boundary: ;:

•2 ' (1 M- . . . . . .. = ..

somewor hyri mehdI-e .TIs a thelxto iacft- and vDtia s ide of thefud

diegnc9fth al



domain through which the fluid is supposed to flow Assuming a no- slip condition on thMt bounds-
with a uniform horizontal velocity. The flow starts at ry and a velocity profile which ;s a %quare root
rest and is accelerated up to a predetined speed. function of the distance to the body curface.
Therefore, every U±/z. k have the same constant 'extrapolating factors' are simply obtained:
value depending on the time step and every
W-1. k÷=/z are equal to zero. These velocities are
not renewed during the pressure computation. dy.

2. Outflow boundary: ,-.._ _
This is the right-hand vertical side of the fluid QV ) - ....... ....

domain. Since the exact condition Is impossible to V

write, the purpose of the condition on that boundary i d
is to write something which should not generate L.. d
upstream perturbations. The easiest solution Is to
keep velocities as constant in passing through that fig. 4 Extrapolating scheme.
boundary. S!nce the result is not so bad. If N is the
number of horizontal cells, the -xtrapolated veloci- r d-I
ties are: v,= FE~xF_ xV with EXF

UN+3•,•.k= UN+I-/z.k • WN.k+iz-- IVN+1.k+L/z

3. Bottom boundary: d being either DX or DZ depending on the mesh line
Two cases can be studied: rigid horizontal direction.

bottom at finite depth or Infinite depth The case of a Eight different cell types can be distinguished
bottom at finite depth Is treated In writing a no-slip and, for aach. four *extrapoiatlng factors* are
boundary condition: Ul+±/ 2 " 1= 0. WI. ±/,! 0. in delined a:. sketched in figure 5.
the Infinite depth case, the bottom of the considered
fluid domain Is supposed to be connected to a (9
domain where the flow is close to be potential.
Therefore. extrapolatoar velocities are computed
using potential theory:

UI+.±Z, I= Upot . Wl.±t/ 2  P- Z

4. Booy boundary:
The body Is a completely submerged hydrofoil

of any profile whose angle of incidence and depth of
submergence are adjustable. The foil contour is
replaced by a succession of line segments of which ( A -- 4-- . ..•1 .• -. -_I
extremities are laying on the underlining rectangular (-
mesh system. Each cell containing a segment Is set
as body boundary cell and is specially treated In the
process of computing fluid characteristics (fig. 3)

'~ r--~----

-A,~

h A---,-- ---C(2)

fig. 3 Body boundary cells.,

Due to the body shape, there is not enough
space Inside the body to extrapolate valocities using 6 .i
the varlablas U(0,K) and W(O,K). (I.K) being any
cell coordinates, as In the usual CoMputing process,
It Is thus necussary to designrite for each body
boundary cell the places where velocities are J
unknown from standard computations and which from U.textropo/ated from OU
th6 computed values In the fluid are available for e fm
eotrapolation. This Is realized through 'extrapolating I
faotors'. fig. 5 Cases of body boundary cells.
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At the trailing edge of the foll, one more Every velocities and preasures are also
velocIty i extrapolated asshown In figure 6. flagged: 1 If normally computed. 0 If not and -1 If

-~~ _~ _ ~ - extrapolatod. Following the free surface contour,
- ;ý 3 velocity extrapolations are performed In order to

Body I-ý have approximately a zero normal gradient through
-- f-- W 04- W the free surface. Depending on the flagging of tha

2' 2' & neighbouring velocities, various cases are studied
- WjkL (fig. 8). Uncomputed velocities are originallyI ~ L k+ flagged 0. Once extraoolated they become -1. This

- -- - - .. ~- -any lack in extrapolated velocities In computing

~A'.jconvoctive terms and moving the tree surface
2- segments.

fig. 6 Trailing edge treatmeant. In free surface cells. pressure is computed
usring Irregular star as shown in figure 9. Everywhere

5. Free surface boundary: the pressure Is not normally computed (flagged 0).
In order to ieave the waves free of over- It Is set to the atmospheric pressure.

turning and breaking, It Is necessary to use a new
technique. +

At each time step. the free surface Is_____
approxinmated by a polygonal contour (fig. 7) and
cells are flapgad as --1:- air cell. 0: surta--e _ei or
1: full cell.

A A A A A A A A+4

A S -- _ _SA AA A
A S _FS_ A A fig. 9 Free surfacc. pressure scheme.
A 311S F A A A iePisneuto o h rsue()i

A A IS F- S _ A IA replaced by the following equation:

__ A_ F F F F2 F~ MQ2~ 6:1& , 2U -h'D+L 1
F F F F F '2*90 + 'LR[M L'R' 'U'V'U'U

F__ F I F I FI F I FA new free surface shape Is obtained, at each
-_X A: air ce/I :-1. time step, by moving free surface segments.
S: free su-face cell =0. F: full cell C 1 following sketch of figure 10. In a Lagranglan

manner.
fig, 7 Free surface cell flagging.

A--V - V

0~ DX

05 V2 0½Rx

_______________________________X o--o old segment
07- new segment

0 * -or* fig, 10 Free surface displacement.

* Since the now contour Is made of line
or 0 VZ 4 segmants, the end-polnts of which being not
4 necessarily laying on the basic rectangular mesh
W ''~.r..- ~. * system. a now polygonal contour Is approximated as

shown on figure 10. Aftor the occurence of an over-
6 turning phenomenon. partlouWa consideration is

4 to be exiropolot~d. A flagged I or -4, 0 flagged 0. necessary when the falling wave touch~es the free
surface below. The enclosed air region Is filled with

11g. 8 Free surface extrapolatlona, water if its atja is small~ or kept to be an air region to
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which free surface conditions are applied when it Is time steps during the occurrence of the wave over-
aufflllontly large. Furthermore, In the pressure turning and breaking. The foil angle of incidence Is
computations, 'he presence of two boundaries In the 100 and its depth of submergence 6 cm (measured
same cel: is troated as if there were no boundary. at the mid-cord) below the undisturbed free surface.
The two fluid regions, which are going to touch each A quasi steady-state Is reached after 1000 steps In
other. ate assumed to be connected. which some confused fluid motion takes place behind

the foil. The incident uniform flow velocity Is
1.•15 m/s which corresponds to a Froude number of

IV. Application to NACA4412 profile. 0.67.
Figure 13 Is the case of a NACA4412 at 100

The selected profile Is NACA4412, a famous angle of attack. Immersed at 12 cm, moving at
profile for Its numerous experimental and theoretical three various Froude numbers: 0.43. 0.67 and
studies. The mesh size Is DX =1 cm In the 0.923. Here again, over-turning and breaking
horixontal direction ind DZ = 5 mm In the vertical occurred except with the highest Froude number for
ono. so that a 30 cm cord length profile Is devided which a real steady-state Is reached.
Into about 60 line segments. Two angles of The over-turning wave is again provoked for
I incidence and three depths of submergence are this high Froude number In increasing the foil angle
considered: 10 and 20 degrees; 6. 12 and 30 of incidence (200), even If the depth of submergen-

* centimeters. The fluid domain Is 2,30 m long and ce Is equal to the profile cord length (30 cm) as
6Pl em huh sn that aboui 30000 cells are describing shown on figures 14 and 15.
the computing field (fig. 11). It extends from 1. 5 m
to -0. 8 m In the X-direction and from -0. 5 m to
0. 1 m in the Z-direction.

NACA4412

fig. II VI, Comparison with experiments.

The uniform stream velocity h. reached after a Fro- reference r 3 ]. lift and drag on the foil
period of acceleration, the value of which Is 8% of are evaluated from pressure measurements along
the gravitational one. The time Increment Is the hydrofoil profile.
OT = 0. 01 s and the kinematic viscosity of fresh For comparison with these results, a rou3hly
water Is: v = 1. 03x10-6 mZ/s. computed total force acting on that foll Is computed at

After test computations, the relaxation factr ench time step from the oressures obtained Inside
e Is adjusted to 1. 5 . Lue to Important pressure the body boundary celis used In t.;e TUMMAC
fluctuations when the foil aigle of Incidence Is equal simulation. Although the precisio;a could be Inorea-
to 20 degrees, this parameter Is reduced to I In sed In e.. apol3ting these p.essurea up to the body
computing pressures In the body bondary cells, surface, this gives the order of magnitude of the
Iterations In solving the Polsson equation for estimated ý.Alues. The results are as follows:
pressure are stopped If the number of Iterations is
greater than 50 (=divergence) or when the
difference between two successive approximations of NACA442. 30cm cord length LIFT ORAG
the pressure is less than: 0,0001 + O. O04*U'. -. - -

Three Froude numbers, baseJ on the profile Incidenc D (cm) FN Copupted Com'wputed 99Wm*W

nord length, are oonsidefed: 0.43, 0. 67 and 6 067 -0o15 -010 a052 9.?0
0 . 923, . .20.43 0502 0460 0160 0.135

10,
2 06? 017 0.411 0700 009S12

V. Numerical results, d23oo 0.0a2

Computed velocity vector fields are ohown on 0.923 055 0.76_020
figures 12 through 15. For olarity, not all of the ell 0. 30 1.0o 1.42
velocities are drawn: one over three In the X-
directiooi, every orne In the Z-dlrrotioi.

Figure 12 presents a time sequence of eleven

297



2.0 ( FN= 0.67Z

0.00 .................. ......... .

-0.!0-

-0.30,

-0.00

-D.SO'

-0.80 -0.60 -0.40 -0.20 -0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

PRO. NACA4412 STEP.500 I: 5.90 SEC

(") EN: 0,6"/0S2.0 (./,ec )

0.00 ............................

-0.20-

-0.30-

-0.40-

-0.50-
-0.80 -0.60 -0.40 -0.20 -0.00 0.20 0.40 0.50 0.00 3.00 1.20 1.40

PRO. NACA441Z 3 , tP5•,'1• 1- ý,.20 SEC

(.3 FR: 0.6702•.0 (.,..C 3

0.0 O0 ..................... . . . . ..- I

-0,10-

-0.,20-

-0.30-

-0,40-

.04.0 -0.60 -0.40 -0.20 .0.00 0.20 0.40 0.60 0.10 3.00 3. 0 1,40

PRO. NACA4412 STEPrS40 T; 5.40 SEC

fig, 12 (A). Computed veloolty field. 100 angle of Inoldence. o om depth of submergence,
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1mse F N= 0.670

2.0 (-sýFN .7

-0.10-

-0.20

-0.5011
-0.80 -0.00 -0.40 -0.20 -0.00 0.20o 0.40 0.00 0.80 1.005 1.20 .43

PR0. NACA4AI? STEP:5bO T, !.80 SEC

~1 2. l./:: 3FN. 0.6?0

0.00 ... .

0. 10.~0.7

0.10.

0.0

-0.0 -0.410 -0.40 -Q.ý -0,00 0.20 0.40 0.60 0.00 IM0 1.20 1.40

PRO1. NACA441ý S00P:&0O 1, 6.00 SEC

flg 12 (b). -dm
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(I) FN= 0.670S2.0 (/see,

O.00 ................... ...

-0,;10-0.100

1.4O-

-0.80 -0.60 -0.40 -0.20 -0.00 0.20 0.40 0.50 0.80 1.00 1.23 1.40

PRO. NACA4412 S1EP:62D 1: 6.20 SEC

(s) 2.0 (W/ee) FNz 0.67-

0.00

-0,30-

-0.40-

BAD-
-0.80 -0.60 -0.40 0.20 -0.00 0. 0 0.40 0.60 0.60 1.00 1.-0 1.40

PR. NACA4412 S1IP: .4(, TL t.40 SEC

(. I FN:C 0.670- 2.0 (*/tee)I

-0.40 -0.60 -0.40 -0.40 -0.00 0.20 0.40 0160 0.60 1.00 I .t. ,40

PRO, NACA4412 SCPs660 6 t' Ilr

fig. 12(o1, -Idom-
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I' I - 2.0 Fi4.II 0.670

0.002.0 (/.ec F 0.6

0.0........................

.0.I0

•0.80 -0.60 -0.40 -0.20 -0.00 1.20 0.40 '.50 0.00 1.0 . I .20 1 .40

F0 '. NACA44 1? STE P:& ,60 7. 0.B0 SEC

I. ) )FN- 0.67t2S2.0 (s/See)

0.00 -0.60..0.4.......-00 . 0 ....... . 0

0.00

-0.00 -0.60 -0.40 -0.20 -0.00 0.210 0.40 0.60 0.80 1.00 1.20 1.40

O~I.O

PRO. NACA4412 STEP.)000 li 10.00 SEC

fl.. 12 (d), -ir--
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"m 2.0 (./O.c FN= 0,430

0.00 -......... ... ..

-0.1!0-

-0,20.]

-0.30-

-0.40

-0.0

-0.80 -0.60 -0.40 -0.20 -0.00 0.20 0.40" 0.60 0.00 3.00 1.20 1.40

PRO. NACA4412 STEP:480 0= 4.80 SEC

3 2.0 (./ec F) 0,670

0.00 - ................. ......................... .. .. .... .

-0.100

-0.40-aq

-0.30- l

-0.80 -0.60 -0.40 -0.20 -0.00 0.20 0.40 0.60 0.80 .00 1.20 1.40

PRO. NACA4412 STEP-800 Tr 8.80 SEC

(.0)/ FN= 0.923

0.10o.00 ....... .. .................. .......t~l
-0.100

-0.20-

-0.30

-0.40-

-0.50

-0.80 -0.60 -0.40 -0.20 -0.00 0.40 0.40 0.60 0.00 3.00 1.20 1.40

PRO. FACA4412 STEP.I000 T 10.00 SEC

fig. 13. Computed veloolty field. 1110 angle oý Incidence. 12 om depth of submergenoe.
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'a) 20 ~FN- 0.921

0 .00 

.................................... 
.

-.0.20-
-0.30-

-0,.40-

-0.80 -0.60 -0.40 -0.20 -0.00 0.20 0.40 0.60 0.80 1.00 1.23 I. 01O

-0.50

PRO. NACA4412 StEPa920 Tz 9.20 SEC

fig. 14. Computed velocity field, 200 angle of incidence. 12 cm depth of submergence.

FN. 0.923

0.10 1
()- 

2.0 l-'/'t I

-00.00 10 

.............. ..... .....................

:

-0.30

.0.0 

0

*0.00 -.. 60 -0.40 -0.20 -0.00 0.20 v.40 0.40 a. O .00 1.70 1,0

PRO. NACA4412 STEP.860 0: 0.80 SEE

fig. 15. Computed velocity field. 200 angle of Inoldence. 30 om depth of submergence.
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The comparison shows a fairly good agree- The author wish to thank Professor H. Miyata
ment between numerical and experimental results, and his stodent team for their very efficient and
Considaring that these are obtained In the process of friendful supports.
creating a new numerical tool, a great deal of other
numerical calculations Is needed to Improve the
results. References.

£1) Y. T. Wu 'A theory for hydrofoils of finite

VII. Concluding remarks. depth'. J. of Math. Phys.. voi. 33. 1954.

Ail these numerical simulations are perfor- (21 B. R. Parkin. B. Perry and T. Yao-Tsu Wu
med on the HITAC M-280 of the Computer Center. 'Pressure distribution on a hydrofoil running near the
the University of Tokyo. One hour and half CPU time water surface'. J. of Applied Physics. vol. 27.
Is generally needed for about thousand tlme steps. 1956.
In order to reach quantitative accuracy, the cell size
can be reduced but the computing cost will rapidly [3] T. Nlshlyama 'Experimental im'estigation of the
limit the number of cells, effect of submergence depth v'pon the hydrofoil

Due to the intense vorticlty which Is developed section characteristicsV. J. Soc. Naval Arch.
inside the fluid by hydrofoils, very small eddies are Japat., voi. 105, 1959.
present near the extrados side which cannot be
simulated without appropriate turbulence scheme. C4] T. Nishlyama 'Air-drawing and ventilating flow
This will be the next Improvement of the TUMMAC characteristics of a shallowly submerged hydrofoil
method. section'. A.S.N.E. Journal. 1961.

However. this new TUMMAC version Is able to
cope with very non-linear free surface effects. Over- [5) T. Nishlyama *Similarity rule for characiorls-
turning and breaking wavGs are very frequent tics of the shallowly submerged hydrofoil section'.
phenomena in hydrodynamic problems and this A. S. N.E. Journal. 1962.
program code will be very useful in solving such
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DISCUSSION
of the Paper

by Jean.-Pierre V. Cordonnier

HORIZONTAL DISPLtACEMENT OF HYDROFOILS BENEATH THh MRE SURFACE

DISCUSSION linear phenomene such as breaking surfnce
by Kasuhiro Mori waves, This brings me to suggest, that attea-

tion should be given to the problem of
In our experiments, which may co)rrespond to separating true physical effects and effects

the present comput--ion, we e-.1parien-:,ed a dif- introduced by the numerical mcthc.As.
ferent type of breaking from overturnings, It
is a kind of free-surface turbulent flow where I would appreciate if the author could
the main stream energy is transformed intn tur- resoond to this comment.
bulent energy. in yo!cwc calculation this pyo-
cess seems to be skipped over. Authnr' a Repa

Through my rece-it study based on the stahl- The powerful ý4bility of thtis kind of

lity analysis, the pressiire gradient in the finite difference method will not be denied

role for such a turbulent fr~..;e-surface flow, we The boundiary integral method, for instance,
call it sixb-breaking wave to distinauish from can explain the over-turning motion which is
breakings with overturning. Are there auiy only the beginning of the breaking wave
indications of change of its signs before the naotion. The numerical error can be diminished
hreaking Li your calculations? to a small allowable degree by employing

higher-order differez~cing scheme, such as
Have you not experienced any problems Atcnts-Bashforth methot1 for time differencing,

during the calculation at high speed as you third-order upstree-m or fourth-order compatte
increase the speed? scheme for apace differencing etrc..., and/or

finer me'ih oystem.
Author 1,3 Reply

D ISCUSSIO14
As mentioned in the further improvements of By C.C. Hpiung

the wethod, it is highly advisabli to include a
turtiulence scheme in the process of simulating I. would Like to covament on the flow insta-
flows around hydrofoils, aince the elementary bility over the hydrofoil. In one a, my eoi-ly
cell sIz3 cannot be reduced without increasing experimento oA models with a foil-like
computing coata. Since the so-called "sub- bulbous-bov, it was obawrved that the flov
breaking" phenomenon appears as being origi- inst~bility occurred above the bulbous-bow at
qated from frean urfate turbulenco, the present a certa'.n toving spe~j. Such phenomenon has
simulation has completely ignorei it, due Zo a not happened at either greatdr or lesa than
too-large eleisentaty cell, that particular &peed. It vas, then apecleated

tloat Lhis could be due to Ote "hydratilil uv
Sinc" the Initial acceleration is kept a. et occ'ntrringq at th* critical apeed of (Sh)

coostant, the main differince be tweejn high and wht.,t h w mean 4epth of ;ie 6uib.
low speed computations is the tiee taken to
reach the steady state flow. The computational Author's Reply
domain taist ralso be in~creased At htigh spett ift
order to Include enough waves behind the foil. During the varioos corputingl tvknts

real.ised while comp).atlag the eoap,4ter
DISCUSSION program, -in hydraulic juap oocurre4p above the

VM 0. 6. Rodenhuia foil. This is mxin)ýy due to the choice of
incident velocities, away tron t10 critcal

My teamnt concerns the acuracy of the out.
differeiat achemas uoe.A in the TVBMC method Navortweabc, the present simulation

preentd ereandth wiwris!disergonan prograim is ptrfteetly abl.q to Weiterate c~utz

irrvgvlar, at the solid houndaricit extrapola- Oit LS MIe
tion Is uqud iti order to defineo a no-4lip con- by S.N. yel.
dition on the boundary outface. It appeat-ojtherefore to i*, thac it is very difficult to In the *T3MV* motl-ed, a tiigha order
obtain fprooerly balanced diffhrfirce forms at interoolatlon scheme to tisvd to itucrease the
the boundsa&- cellsa sad that twevereasl diapor- accuracy of iuplesentation of condition, at
ealcn can hardly be avoided, Accordingly, it the free $Urfa"o. Thix 1chamo had Ohe
sust be difficult with this method to predict swooht~dg eff#at which accuoulates vith tise.
flow behaviour adoquatelk, in * quantitative Iwould likw bu inug.at that the author stu-
Wanner, In the nasa Of rapidly varyirng, smm- dies this effect on the accuracy of the soin-

3051 1<



tion before any interpretation is made on the
difference between the calculations and experi-
ments.

Author's Reply

Some error is expected on the free surface
in the TUMOAC method that uses an inflexible
rectangular mesh system and a lot of efforts
have been focussed here to improve accuracy and
to minimize accumulation of error with time.
Whether this error on the free surface is
within an acceptable range or not can ba judged
by computations with various call sizes, since
the error is a function of the spacing. In the
case of the TUMMAC-IV method for ship waves,
this is studied and it is demonstrated that the
error does not show unfavorable effect when DX
is smaller than 1% of the ship length (see
MIYATA and NISHIMURA, J. Fluid Mech. 157,
1985). The same kind of study will be made in
the two-dimensional case with breaking,
although the judgement is supposed to be a
little more difficult since the flow is quite
unsteady. The comparison with experimental
results says only that the agreement is good
considering pressures on the foil. The free
surface elevation is still to be compared with
the experimental one.
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BOUNDARY I.."GRAt EQUATION METHOD

FOR THE LINEAR WAVE RESISTANCE PROBLEM

Katsuo Suzuki

The National Defense Academy
Yokosuka, Japan

Abstract problem by many authors. They make
steady progress in this field

A new boundary integral equation (2,3,4,5,6]. Their success, however,
method Lo sol-e numerically thirE:.- does not always imply that the linear
dimensional steady-state wave- resin- theory has an explicit limit and is of
tance problem with a iinearized free- no use. We can not forget the role of
surface condition is developed in this the linear theory, Michell-Havelock
paper with two aims to improve the theory, in the improvement of ship form
reliability of Neumann-Kelvin solution [8]. While the wave resistance calcu-
and to make a first stp' toward non- lated by the linear theory is known to
linear wave-making pr-..lem. After be occasionally far from the experimen-
checking the basi.c accuracy of the tal ones, it is a fact, as indicated by
method using elemen :y waves a pilot Ogilvie [9], that the effect of diffra-
study is performed for flows around a ction (sheltering effect) of the ship-
point doublet anrl Michell approximation generated waves by the ship itself, one
for a Wigley h- ;.. The discretized of the main causes of the difference,
form of the pri tent boundary equation has not been fully investigated.
is convinced to corres:.ond exactly the
linearized free-surface problem. Be- Neumann-Kelvin problem seems to be
cause the mfthod is easy to be formu- most suitable for exaiaining the role of
l-ted, dealt with and checked, the the linear theory since the solution
reliable solution nan be obtained and contains the effect of the diffraction.
the wave resistance and the amplitude The solution has been recognized as to
funct:on can be easily calculated in improve the defects of the linear theo-
high dccuracy. ry and has been thought as available.

Numerical calculations for the Neumann-
Kelvin problem were performed by va-

1.1ntroduction rious authors [10,11,12,13] and some of
.-he natures of the Neumann-Kelvin solu-

A boundary integral equation (BIB) tion were made clear by comparing with
method for the three-dimensional stea- the M'chell-Havelock theory. But the
dy-state wave-resistance problem with reported results seem not to be always
linearized free-surface condition is identical with each other [12]. One
treated in this paper. The method is of the reasons of the difference may
an expanded version to the three-dimen- result from the fact that the Neumann-
sional problem of a part of the aut- Kelvin problem is fairy difficult to be
hor's preliminary paper on the two- solved numerically, especially the wave
dimensional Neumann-Kelvin problem [(]. kernel function, Havelock source used
The present numerical techniquiý is in the almost all calculations, is a
investigated with two aims. One of floorer.
them is to develop a method to aim to
solve Neumann-Kelvin problem at las:. ')y Neumann-Kelvin solution has the
means of a new method unlike the usual other important side, the non-unique-
one usingj wave-kernel functions. The ness problem. This was fixed positi-
other one is to make a first step to- vely in two-dimensional problum [1,14],
ward the non-linear wave-making prob- that is, Neumann-Kelvin problem has
lem. infinitely many solutions. The solu-

tion ref ered as zero-vertical flux flow
The problam of wave-making resis- solution was proposed as the most rea-

tance of ships is observed recently to sonable one [1]. The eigen solution
be treated as the fully non-linear which has a weak singularity at the
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corners between the free surface and step toward the non-linear wave-resis-
the body surface was made clear to tance problem, a boundary integral
related ta the change of the sinkage equation method is adopted in this
and trim (1,15]. These theoretical paper. The BIE method, using Rankin
results were verified numer.cally in sources other from the wave kernel fun-
the two-dimensional problem (1I but not ctions, has recently paid attention to
in the three-dimensional problem except (13]. The method has a benefit that
one report E if], giving not. so suffi- the treatment, say, program coding, is
cient verification, easy and the computing time is relati-

vely short. It is also considered
The dispersion of the calculated that the method is easy to be expanded

results, in spite of the important role toward the non-linear problem. The

of the Neunarn-Kevin problem, may not method, however, has many points to be
make ones feel so much reliability on checked before applied to the actual
the numerical results nor possibility orotlems, for it is not long after
on thr Neuxaznne.elvin problem itself, developed for the water wave problem
at least we can not examine the role of and there are not a lot of accumuilation
the solution correctiy. The shortcut of knowledge on the numerical techni-
method to improve the reliability of ques. The problems are following;
Neumann-Kelvin solution is to compare which type of representation is suitab-
with the results obtained by the other le, Green's mixed form, Rankin source
methods from the usual ones. This is type or Dawson's form [4] ? ; how
one of the motivations to develop the small size of meshes are adequate to
BIE method presently for the linear subdivide the free-surface boundary ? ;
wave-making problem. how must the radiation condition (no

waves at upstream) be treated - ; what
The present method is developed effect does the truncation of the infi-

also with the intention of applying to nite flow region give on the solution ?
the non-linear wave-resistance problem.
A lot of theories, methods and numeri- The elemental parts of :hem were
cal calculations concerning the non- fixed in (1] for the two-dimennional
linear problem have been reported, in Neumann-Kelvin problem. Green's type
many of them the numerical results may of representation seems superior in
agree well. with the flow phenomenon. describing the solution in the BIE
This agreement between the calculations method, because the boundary conditions
and the phenomena is amenable to make on the free surface and the body sur-
us convinced that the theories or the face can be expressed in the repre-
formulae correctly represent the pheno- sentation itself by using partial in-
mena. Through the experience of nume- tegration and a usual technique applied
rical calculation we know that the in the potential theory. This is one
above scheme is not always justified. of the benefits of the BIE method com-
The numerical computation technique paring with the other methods, say,
(method), lying between the theories finite difference method. It admits
and the calculated results, may occa- us to use larger size of meshes than
sionally cause the unexpected results, the finite different methods.
different from what the theories de-
note. In fact, through computing Concerning the radiation condition
steady wave phenomena by mea-s of, say, an idea was shown to be successful [1],
boundary integral equation method or the condition of no-disturbance occu-
finite difference method, we know that ring in the upstream radiation region
somewhat little change of condition in is given literally (the value of the
computation may occasionally give the perturbed potential vanishes there) and
different numerical results. The the usual linear free-surface condition
above mentioned it :icates that the is in same time satisfied there in the
numerical method, especially, for com- least- squares sense.
puting oater waves, has to be checked
carefully concerning the accuracy, the Various devices have been invented
reliability and the suitability. For for treating the truncation region,
these purposes it is a shortcut way to upstream finite difference (open boun-
compare the results obtained by the dary) method (17], hibrid method of

- method on the assumption of the linear matching with the analytic solutions at
free-surface condition with the ones the ooundary [181, a method of represe-
calculated by the well-known analytic nting the effect of truncated region by
method. a integral over the truncation boundary

(19). Among them the upstream finite

For the above described two aims, difference method is used succesfully.
to prepare for calculating the Neumann- Butupstream, central and downstream
Kelvin solution by means of the other finite difference techniques are consi-
method from the usual one and to make a dered as identical in mathematical
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sense. Shortly speaking the author's / .

opinion, the success of only upstream
direction of the method shows that the
technique does not rigorously equal to
the mathematical equation and that the
open boundary technique does not hold
in mathematical sense. From the
author's experience the numerical solu- (0, -0E.Z,)(00.-)
tion obtained by the open boundary
technique depends on the position of
truncation (wave node, loop or eleew- Fig.1 Coordinate Sytem
here), which can be shown also by a
theoretical examination, plane consisting in a unperturbed free-

surface (see Fig.1). Let the velocity
The truncation trouble was circum- potential be

vented in [1] by putting the artificial M(x,y,z) = -Ux + O(x,y,z), ... (1)
singularities at a downstream position whe-e U stands for velocity of the
the strength of which was determined so uniform flow and ((x,y,z) perturbation
as to make the wave motion vanish at velocity potential. The linearized
downstream infinity. Accordingly the free-surface condition is as follows;
truncated downstream region can be OXX(x,y,0) + W6 (x,y,0) = 0,
neglected as same as the upstream re-
gion. This method has the other bene- on F (z= 0), ... (2)
fit that the forces and moments acting
on the object can be easily obtained by where (O= g/U 2 , the subscripts denotes
calculating the ones acting on the the partial derivatives.
wave-cancelling singularities while in
the usual methods the pressure integra- The solution, A(x,y,z), of the
tion has to be done. The invention is free-surface flow problem is represen-
applied in the present paper for three- ted by Green's formula in the present
dimensional problem in which the ampli- paper. The integration region of
tude functions can be also calculated Green's formula is generally expanded
easily unlike the other direct methods, as including the infinite volume be-

cause the wave motion caused by theIn the following a pilot study is disturbance propagates to the infinite
conducted by using the above mentioned downstream region (almost inside two
method. At first a study on the mesh Kelvin angles). In order to apply
size is done by using so-called elemen- Green's formula to the finite water
tary waves (sinusoidal waves propaga-- surface region, a line (refered to as
ting in each direction). 'dl') on which artificial doublets are

distributed is assumed to be put at an
Next, concerning a flow around a adequately downstream position, the

submerged dipole the basic performances axis being parallel to the y-axis.
of the method are checked by comparing The strength of the artificial doub-
with the analytic ones. At last lets are determined so as to make va-
Michell approximations are compared nish the wave motion at far downstream.
with the analytic results. It will be proven later that the line

doublets in two directions (x-, z-Neumann-Kelvin solution, one of directions) can make any wave vanish.
the main purposes, is not calculated Then the integration region of Green's
because of shortcoming of time and that formula can be limited in finite region
of the computer capacity. The present on the free-surface, of course, in
paper must remain in a basic study sense of numerical calculation not in
while the some points and the knowhow mathematics.
for these numerical method will be made
clear. O(P) - 4ffM÷F.,4,(Q)G(P;Q)

2,Formulation - O(Q)Gn(P;Q)]dS. ... (3)
o2 Boundary Integral Equation Here, n denotes normal derivative in

inner direction to water region, P
A source of disturbance (dipole, and 0 mean fieldpoint(x,y,z) and the

shiplike *. y) exits in a uniform flow boundary point (x',y',z') respectively,
with free-64:face, the condition of
which is assumed to be linearized, the G(P;Q) is Rankin source potential;
bottom is infinitely deep. The frame G(PO) - -1/r, ... (4)
of reference is fixed to the disturban-
ce, x-axis in negative direction of r2a (X-X,) 2 + (y-y#) 2 + (z.z,)2,
uniform flow, z-axis upwards, (x,y)
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H means the surface of the disturbance
object, F the free-surface (z=0) and dl 9 Hý [
the surface of cylinder of infinitesi- 0 = ' IG(P;Q)
mal radius around the artificial doub-

lets line located at (xt ,-y,&y,,zdt). - x'G,.(P;Q) ]ds, ... (9)
zdenotes the upstream, downstream and
side boundary surfaces perpendicular to where F0 stands for the free-surface
the free-surface limiting the flow inside the ship hull. Take the diffe-
field as including the object (see rence between (8) and (9) and use the
Fig.1) and in the numerical calculation boundary condition on H,
the integral over Z is neglected be-
cause the disturbance outside Z has •b,(Q) - Ux',M = 0, for Q r H. ... (10)
little effect on the solution. One of
the reasons of adopting Green's formula Then we get the following form inclu-
(3) as the representation of the solu- ding only 0-term unknowns;
tion is stated in Introduction but
there are other reasons, the treated ,(P) =-fff4 (Q)Gft(P;Q)dS
quantities (velocity potential) in the
representation has directly the physi- + •I x'G,.(P;Q)dS. ... (11)
cal meanings, the property of the H÷,
obtained results can be easily in- Here, it is noted that in numerical
quired, the weak singularity, if it computation GrdS can be estimated by
exits on the corner between the body solid angle -dO( [20]. If subdividing
surface and the free-surface, can be H into 4H4 we have the following dis-
treated. cretized formula;

Write the representation (3) as 4rt4H.= T ci .( - Ux')
the summation of the terms over H, F HiA d
and dl; - U "4F 4 x' , ... (12)

O(P) = 0(P) + 4P(P) + P(P) .... (5) where o(" is solid angle for4H4, AF*4
and diJ = 21i when Q 6 H. In

When the body is replaced by a point order to calculate the solid angle, a
doublet located at (0,0,zp), the integ- formula of spherical excess in spheric-
ration over H, A(P) is written as al trigonometry is available.
follows;

The second term of eq.(5) is writ-4(P) OD0 (P) ten as follows;

4rx![ x2 + y2 + (z-zD)2]I±, ... (6) ]O/Fi (P ý(Q)G(P;Q)

where M is strength of the doublet. - •(Q)G3 ,(P;Q)]dx'dy'. ... (13)
For Michell approximation, 4(P) is
written in the following. Substitution of the free-surface condi-

tion (2) into the right hand side
OM(P) = bH0(P) gives;

2r.,(Xz' OF (P) ' ff['OeQGPQ

x 1/[(x-x')'+ y2 + (z-z')2 ]I/2 dx'dz', - O(Q)G•,(P;Q) ]dx'dy'... (7)
Integrate by part the first term of the

where y = f(x,z) denotes the half integrand and we have;
breadth of the ship and Ho is its cen-
ter plane (y = 0). When the body is 4)t 4 F(P) - f •(Q)[-GXt•'(P;Q)
like a ship piercing the free-surface F
(this case is not calculated in the + Gz,(P;Q) ]dx'dy'
present paper), (PH (P) includes the
unknowns. -(&) GP (P; 0)

d(P) . [jf k 4(Q)G(P;-Q) - (Q)G,'(P;Q) ldy', *...04)

- ()G, 1 (P;Q) IdS. ... (8) where C stands for the intersection
between H and F the line integration

To eliminate the 4% term, consider the over the boundary Coo between Z and F is
uniform flow inside the ship hull and assumed to be neglected. The above
we have, representation thakes ur circumvent the

explicit treatment of the free-surface
condition. This is one of the bone-
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fits of using Green's type of represen- - (Y' g 9(y'
tation. The second term of the right
hand side corresponds to the so-called = U x'G(P;Q)dS - •_.G(P;Q)dy',
line integral term in Neumann-Kelvin ÷F
problem in the form, while the singular
properties are different. The line for P e F and H. ... (20)
integral term implies that the value of
bz(Q) can be given arbitrarily on C, This integral equation may be solved
but this problem related to the non- uniquely under some adequate radiation
uniqueness of Neumann-Kelvin solution condition which will be shown in the
will not be discussed here. In the later section. Discretize eq.(20) in
case of the point doublet and Michell the case of a point dipole or Michell
approximation, the line integral term approximation by using eq.(6),(7),(15)
in eq.(14) vanishes and discretization and (18) and let the point P be on F.
gives, when Q is on F, Then we have the simulutaneous equation

1 with respect to O(P) on the free-
41t = 2T4ý +- , . .. (15) surface as follows;

where . 271 LZ-Jo P. - E( -- f + Zg
4 ).6; J Id ;j d

, GXS(P•,Q)dy' 4WID0< , for a point doublet,
(I16 4 ,0 ' for Michell approximation,

Xi -1.J-2+(L --e): i4 for Pj C F. ... (21)

r -A= (x4 - x;) 2 + (Y. - Y )1 + (zx - z1 )
1. The field point Pz is assumed to be

'4 J taken as the center point of the i-th

When Q is not on F, 27C4K is to be mesh. The above formulation seems
replaced by Z ok A . more simple and easier to be coded than

the usual method, say, the finite dif-
The last term of the right hand ference method. Especially, eq.(21)

side of eq.(5) can be written by the does not need the numerical differen-
velocity potential of the line doublets ciation and the higher accuracy can be
in x- and y-directions as follows; expected to be obtained. In fact, in

[ the two-dimensional problem the size of
4,V(P) = (f(y')*i? + g(y',)L I mesh is satisfactory to be spaced by

4-T one tenth of a wave length while in the
x G(P;Q)dy', .. ,(17) finite difference method one fourtieth

is required in order to obtain the same
where f(y) and g(y) denote the stren- accuracy (1].
gth of the line doublets in x- and y-
direction respectively. Discretiza- hn additional benefit of the wave
tion gives; cancelling line doublet is that the

forces and moments acting on the object
47r Z( f + Zag.), ... (18) are evaluated by the ones acting on the

A v line doublets. That is because in the
where region outside the control region no

disturbances occur and any momentum
S= ,G,-(P;Q)dy'" flux does not flow out. This makes

the balculation of the forces and mo-
• _ments easy, especially the wave resis-

= t-.)--z-]..d(19) tance. The far downstream waves which
is caused by the object without the
wave-cancelling line doublets are equal
to the inverse of waves caused by only

Substitution of eq.(11),(14) and the later. Accordingly the amplitude
(17) into eq.(S) and let the field function in eq.(27) of the waves caused
point P be on F and H. Then we have by the object can be written by the
the boundary integral equation with strength of the line-doublets as fol-
respect to the velocity potential lows;
and the line doublets;

21ZO (P) + 4(Q)Gtt(P;Q)dS H9
exp( .ssec'O (z'+ix'cose+ iy t sinO)dy'

+ G;,'(P;Q)Idx'dym
1 K. ... (22)

where (x',y') denotes the position of
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the doublets line. The wave -rr/2
resistance can be calculated by the O(x,y,z) = Re 4!r,./H(G)
following formula; J-1½folloing ormul;•r•exp[•,sec•8 (z -ix cosO- iy sinG)

Rw = 167 IV, h.H(e)1 2  sec tOdE. ... (23) seee de,
0 sects dO,

The other forces and moments can be where Re stands for real part of and
calculated by Lagally's formula. In H(e) is complex and refered to as
the following only the results are amplitude function. The form shows
shown. Let the velocity potential be that the free waves consists of the
divided by @4 E(P) in eq.(5) and the elementary wave propagating in
other term; direction of& ;

S(P) (P) + q(p). ) 06(x,y,z) =

The drag force is; 5 C( )cos[w-0 sec'O(x cos &+ y sine) I]

X [ y) = S(O)sin[ wcsec2G(x cos0 + y sine)] I
+ •ex,,(Q)g(y')]dy', .. ,(24) exp(wKz seceG) ... (28)

where the integration region is the Let the length of the free wave
doublets line, the z-direction force; propagating in e = 0 be as 1,- 2T/lco

and we have the following relations of
Z = ZF + ZD, ... (25) the length of free waves, XG , propaga-

ting in e-direction and, x , of its
Z F fUt*,.(Q)dy', projection to x-axis, %ý, to y-axis.

Z ý"!4ý,(Q)f ) = cos'&,

+ czrF,(Q)g(y')]dy', Ax/7= cos0, for 0o( 4 C/ 2...(29)

the trim moment; V = cos'Gcosece.

M = MF + MD, ... (26) The x-component of the wave length, Xx,
is one time l•o or less, but the y-

MF=p (x'•(Q)dy' + pff + (Q)dx'dy', component, , becomes infinitely largeF as u approaches to R/2. From the view
MD =I[[,,(Q)f(y') point of the two-dimensional criterionof mesh size, the free-s.:rface may be

-,Q)g(Y')dY'" subdivided by one twentieth of 'Ao in x-
direction but must be infinitesimal in
y-direction. This point makes the

3.Error Estimation three-dimensional problem bE difficult
by Means of Elementary Waves to be solved numerically. It may

,however, be possible to get a reasona-
It is necessary to check the basic ble mesh size with a satisfactory accu-

accuracy of the numerical solutions racy from the actual point of view, for
before solving the BIE for the actual the amplitude of waves in large 9-
problem. How large size of mesh is direction is in fact suall.
reasonable for the free-surface is the
problem to be checked in this section. Now, it is necessary to estimate
For the two-dimensional steady-state the error depending on the mesh si7e as
wave-resistance problem, when using the a function of wave propagating
same method as the present paper, it is direction, 0 . The error can be
studied (1] that the mesh size is assessedLty calculating the following
desirable to be spaced by one twentieth value obtained by substitution of the
of a wave length and by one tenth if a velocity potential, 0. , of the
little error is admittable. In order elementary wave (28) into the first two
to obtain the reasonable size of mesh terms of the left hand side of eq.(21).
in three-dimensional problem the
following estimation of errors is E4  3 . 0
performed by using the elementary
waves. If the right hand side of eg.30 has a

The free waves at far downstream high accuracy and O(P) satisfies the
of wave motions are generally expressed linearized free-surface condition (2),
as the following form of velocity then EL must be zero approximately.
potential (211; Accordingly the value of eq.(30) turns
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Fig.2 Error of Free-Surface Condition -i

out the index of how the free-surface ."
condition holds true. The values are ,. 0 I 04

examined for the free-surface region, ; .0.

Ixi a , Ip y < .1/2, in two cases, (1) ,
Nx/ -o = 20, N,$1 -- 11, (2) Nx/Xk = 10,
N1/-# = 21, where Nx, Nj mean the
number of meshes per a wave length Fig.3 Wave Profiles for a Point Doublet
in x- and y-direction -respectively. without Radiation Condition (Kod = 0.5)
The values of Ez are checked near the
center of the square free-surface re-
gion because the finite region effect
can be neglected in the central region -
inside a distance of a quarter of wave ______-

length from the side boundary. The -00 . -g ,\-' 6 .b-1 0 0 -0.20 0 D0 D... 0..0

obtained results are plotted in Fig.2, -
( 0 means amplitude of 0 JP•

The figure shows that the mesh-.
size (1) is satisfactory for the waves • ....
propagating in 0 < 60', i.e., Nx/;. =
20, Ni/lto = 10, but the mesh size of N, a(_ _

> 20 has to be taken to express
accurately the waves propagating in e
750. In any case it is shown to be •
difficult to express accurately high-
frequency components ( 9> 60") of the ,
diverging waves. It is conjectured • _._____

that the more severe condition has to
be taken when using finite different i..,__.___method. At least the relation between ,T..:;,

the mesh size and the limit. of expres-
sible wave components must be taken
into account when applying such a di- Fig.4 Wave Profiles for a Point Doublet
rect numerical method as the present (4od=0.5)
one. The above mentioned nature of
the present method is not always mise-
rable and it does not seem a fatal submerged point doublet in a uniform
defect because ,as stated before, the flow are treated in this section. The
high-frequency components of the real location of the point doublet is (0,0,4
waves caused by ship are usually weak. ), z9= - d, the strength m = M/Ud'
It is noted here that the larger the EL a 8. The control free-surface region
value of eq.(30) is, the smaller ainpli- is assumed as -1.5 4 x/1.9 ( 0.25,
tude the waves obtained -by eq.(21? 1,y/ %* 1 0.5, the spacing of the
have. meshes, N•/-.o .20, NV/X, .22.

At first, the BIE (21) is tried to
4.Waves and Wave Resistance be solved without wave-cancelling line

of a Point Doublet doublets and with no radiation
conditions. The obtained wave profile

In order to get the bas:1c knowhow at )cd a 0.5 around the point doublet
of the numerical method mentioned in is shown in Pig.3. The waves are
the last section, waves caused by a observed propagating upstream, too.
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Fig.5 Wave Pattern for a Point Doublet Fig.6 Wave Pattern for a Point Doublet
(BIE, )Cod=0.5, 4o? = 0.1) (Analytic, Kod = 0.5, ,K* ; 0.05)

In fact the solution of the linearized surface condition (2). Besides the
steady-statethe wave-makingproblem is same thing occurs when upstream or
known to be analytically indefinite and downstream finite difference is used.
some adequate physical condition, If central finite difference is used,
radiation condition, is needed to get a the same results are obtained correspo-
unique solution, for example, nding to which the radiation condition
artificial viscous coefficient • +0. is imposed upstream or downstream.
The obtained result must correspond to The wave pattern of Fig.4 is shown in
the analytic property of the indefinite Fig.5, which gives fairy good agreement
solution. To analyze the indefinite with the analytically calculated con-
solution of eq.(21), the well known SVD tours in Fig.6.
method, singular value decomposition
[22], is applied to the coefficient The above good agreement is not
matrix of the left hand side of always obtained. When moving the
eq.(21). The definite eigen solutions downstream truncation point, the
of eq.(21) which must be exist are not numerical results differ from the
found in spite of the fact that in two- analytical one as the case may be. It
dimensional problem two eigen solu- is due to neglecting the following
tions, upstream and downstream propaga- effect of the truncation region;
ting waves, were obtained El]. The
reason is due to, perhaps, somewhat 4 = (G) [
numerical problem, the size of the
coefficient matrix is too large for the -(Q)Gi (P;Q)]dy'dz'. ... (32)
SVD program.

Now, add the following radiation In order to let the truncation
condition to the BIE (21) in the radia- effect be neglegible, introduce the
tion region composed of the upstream artificial wave-cancelling line
first three columns of meshes; doublets. Consider the analytic

condition of wave-free in far
O(x,y*0) : 0. ... (31) downstream before going into the

numerical calculation. The velocity
This condition is imposed in the sense potential can be written as following
of least squares in the SVD method. form at infinitely far downstream;
Then, we have the waves propagating
only downstream as shown in Fig.4, the O(P)/Ud = Re 4wei (O)
wave heights are calculated by the
derivatives of spline functions which exp(.secae(z- ix cos8- iy sinG))
are fitted to the obtained velocity
potential. A trial to impose the sec"Od , ... (33)
radiation condition (31) only on the
downstream radiation region instead of where H(O) P(M) iQ(O). The
upstream makes the waves propagate amplitude function, H (0), for the line
upstream, completely symmetric to the doublets in x- and y-directions are;
before obtained waves. These results •,- -•y• 4,•
imply to correspond to the solution of L(/ M
the artificial viscouscoefficientAM
being positive or negative in the ana- exp[ secae(z + ix CosO+ iy sine))dya
lytic theory. Accordingly it is con- V
vinced that the DIE (21) is exactly the "c, exp[K'.sec'O|zj + ix~eosO)) X
discretized form of the linear free- .
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£[y,•Jy)can be easily obtained by
x [G(G) + i cosGF(O)), *..(.ae) inverse Fourier trannforuiation;

where h{y) * i4Cy) a 2i ± i1 - i case)

-0 ta

1 ~)exp[ - Ksec'O (•de * ixd¢ coOSO4

4 Y{,o exp.iw~(y'sec&OsinOldy, iy 6in8))d8. . ... (37)

%, g(Y'As the anplitude funct~.ot for" th~e point
t(y) * f(y)/Ud', g(y) * g(y)/UdW are C1f2blet is;

non-dimensionalized strength of tha
lilne doublets. The wave free it{9)Id -i/4•.atd
condition is given bk'; exp(-w~d secbelsece, ... 138)

i(0) Com pr (O) o O, the strength of the wavo-cancellit u
Ccl aL y ~OI ~ It/z ...(36) line doublets are obtinei frot - Q.(34)

f•or(y can bet eail obtine b.y6

as foll owS;

S-, , ~~~~316 ... ",

F(G)~~~~. +,,.))e1H())

.•.) I .. (35 ,-(X S C') Z 1 * i..t o e

f+ ex+w ' e '0 i 9 d ' iy Si )W ... ;: (37
ql ') 

As th aml td fUt O f+ th Pon

i'y f•)/d 4(y)' . .:)/ 2 ardubet is
""n- im ns on li e st en t of th H'-./d - +."- vliedult. h aefe
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Fig.11 Wave Pattern for a Point Doublet Fig.12 Wave Pattern for a Point Doublet
(Kod = 0.5, x0L/lXo = -0.725) ( 0d = 0.25, xt/?.o= -0.2625)
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F(Y)) downstream radiation region a3 same as•(y) the upstream. Then the densities,
i{y), §(y), are expressed by the folio-

- - ( Z)J wing Fourier series to circumvent
cost i* Ysec'O sinO) the unnecessary oscillation;

O secoos( t X & ec a
c)I d4 ... (39)sin ( w. x• e sec e) 

i os (2 -1) X y yj . . 40
The densities, f(y), 4(y), exist whenSg ( -d and they decay exponentially
as y tends to infinity.

The calculated results of f(y),In order to obtain the strength of fly) are plotte4 in Fig.7 and 8the wave-cancelling line domblets in comparing the analytic ones. Theythe aumerical calculation, impose the show fairy good agreement, especiallyradiation condition (31) in the at Qd A 0.25. The wave profAles and
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Fig.15 Standard Control Fig.16 Comparisoa of Wave Resistance
Free-Surface Area for a Point Doublet

wave patterns in these cases are shown oscillate near the ends.
in Fig.9 to 12. We can observethe
wave motions disappear almost complete- From the previous discussion the
ly behind the wave-cancelling doublets control area of the free-surface, the
line. Fig.13 and 14 show the ampli- mesh size, the radiation region and the
tude functions obtained from eq.(34). location of the line doublets are
Comparison with the analytic curves decided as shown in Fig.15. Using
points out that the real part, P(G), this standard scheme, calculation is
which is to be zero, has a little large performed for various Froude numbers,
values and the imaginary part, Q(O), Fn = U/Vg. The coefficients of wave
oscillates unnecessarily near 0= 400. resistance, Rw/(1/2pUZdn2m), obtained
One of the reasons may by due to trun- by eq.(23) are shown inFig.16. The
cating the control free-surface area in values with the densities of line
y-direction. Then the outerpolation doublets corrected agree well with the
ofthe densities of the line doublets analytic ones.
Is performed by assuming to have the
following form in large y region;

5.Application to Michell approximation

The present BIE method is applied
where C and lare constants to be deter- to Michell approximation for a first
mined. The corrected results are step toward actual problems on the
shown in Pig.13 and the amplitude fun- basis of the knowhow previously ob-
ctions seem to approach fairly to the tained for a point doublet. Calcula-
analytic values. In the high-frequen-- tion is performed for a Wigley hull,
cy angle region (> 60*) the discrepa- the breadth length ratio, B/L = 0.1,
ncies are not improved correspondingly the draft length ratio, d/L - 0.0625,
io the discussion in section 3 on the the center plane is over IxI/L 1 0.5, y
relation between the accuracy and the - 0. The control area of free-surface
mesh size, Fig.13 shows also the is -0.95 4 x/L t 0.7, IyI/L 4 0.75.
calculations of varying the location of The mesh size is restricted by the
the cancelling doublets line. From computer capacity and it is set asax/L
the various cases of the locations it a ayL = 0.05. The subdivision number
is concluded that the wave-cancelling per a wave length are tabulated it,
doublets line can be moved near the Table I with respect to six wave num-
point doublet to a quarter of wave born. The mesh size criterion ob-
length behind. Then the effect of tained Section 3 implies that the sub-
the line doublets on the point doublet division number are not sufficient in
is sm;all, additive Lagally forca acting low speeds, KeL > 12. The location of
on the point doublet is at most 1 % of
the wave resistance. Fig.14 shows the [ N', I/
cases when the mash sizes are largei. 16 7.9
the maximum limit of mesh size is about 14 9.0
one tenth of wave length. To obtain 12 10.5
the stable solution the depth of the 10 12.6
line doublets must be near two third of a 15.7
the x-direction site of mesh. When it 6 20.9
locates too shallow or too deep, the
densities of ltne doublets tend to Table I

'• .. • 11 . "3 1
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Fig.19 Wave Prcfile for Wigley Hull Fig.20 Wave Profiles for Wigleypull
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rig.21 Comparis~on of Wave Pattern IFig.22 Comparisoh o~f Amplitude Function
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the wave-cancelling doublets line is The wave pattern seems to give fairy
set at t/L m -0.75, zt/L - -0.03, good agreement with the analytical one.
The upstream and downstream radiation Near the ship (its center planel agree-
regions consist of four end columns, ment is rinot satisfactory. This is why
respectively. the pi-esent mesh sire can riot cover the

severer chan'3a in y-direction of the
The calculated densities, i(y) a waves near th,. ship than a point doub-

f(y)/IJ, §,y) a g(y)/UL, of the wave let. Accordingly the finer subdivi-

cancelling lisne doublets are shown in sion, epecially in y-directaon, is
Fig.17 for %@L a6, 10. They are iot desirable for sqrface piercing bodies.
compared with the analytical ones but Also near the side and upstream bounda-
in low speeds they seem to oscillate ry good agreement ma na riot be shown.
unnecessarily. Wider control area of free-surface is

re oodeuirable but this is nrot so fatal

in Fig.18 the wave prof iles, Ks> problem.
obtained by the prtenent BIE method are
compared with the ones along the The amplitude fur.ction is
central plane calculated analytically calculated from the densities of the

by M/ichell theory. The plotted wave wave-cancelling thia doublets by using
prof4 le are calculated alo.ng a line of .q.t 22) and (23). The weighted
Y!L a0.025 (center of meshes). The amplitude function defined as;
wave profiles art shown In Fig.19, 20 o

i.1 w 6, 10) and Fig.21 show td r compa- o'(O) sa C e(r) * iSOg(d)
rison of wave pattern with the analytic
one. The wave-cancelling line daub- o 44Lee0)nt mae, •ot , ...(42)

lets are observed to offset the waves
caused by the ship almost completely is plotted in Fig.22, 23 (a.r 6, 10)
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with comparison to the analytic one. waves are not so strong. Forces and
The amplitude spectra 1A*(8)l1 is shown moments acting on the body can be
in Fig.24, 25. At high Froude number calculated by the strength of the line
the calculated function gives good doublets and also the amplitude
agreement with the analytic one in the function can be easily obtained. The
low frequency angles ( 0 < 658) while length of upstream and downstream
its real part has non-zero small radiation region needs about a quarter
values. At low speed the agreement is wave length. Concerning the size of
limited to the low angle region (8 < free-surface mesh, one twentieth of
55'). This defects may be improved by wave length is desirable for a point
increasing the subdivision number of doublet but for surface-piercing body
meshes. the finer meshes are needed. If no-

ting these points Neumann-Kelvin prob-
Th; wave resistance coefficient, lem may be solved in high accuracy and

defined as follows, is plotted in by making use of these features the
Fig.26; present method may be easily expanded

to non-linear wave resistance problem.
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DISCUSSION
of the paper
by K. Suzuki

"Boundary Integral Equation method for the Linear Wave Resistance Problem"

DISCUSSION Author's Reply
by R. YVt•ng

I would like to say great thanks to Prof.

The present numerical formulation of the Yeung for this essential and helpful comment.
linear wave-resistance problem is essentially In the present paper we assumed two linearized
one that I have endeavored to advocate in the systems of waves, wave system generated by a
mid 70's (Yeung & Bouger, 1977, 1979). The body and one by line doublets. Our method is
focus of our method then was to use a "simple based on the following two facts about the
source formulation" and a rational treatment above two wave systems.
of the radiation condition. The computational 1) Any body-generated wave motion (free wave)
benefits of such an approach are well can be canceled by the (free) waves which are
described again here by Dr. Suzuki. The generated by the line doublets and the distri-
problem we solved was tmo-dimensional and the bution is uniquely determined by eq. (37).
fundamental questions and solutions related to 2) It can be proved that when the total system
matching and radiation were carefully dis- has no propagating waves both upstream and
cussed in these works, which Dr. Suzuki was downstream no (wavy) eigen solution exists in
already aware of. Since my original work, thV system except each own wave-free solution.
time and (a shift of) interest had not permit-
ted me to return to complete the three- Accordingly when the total system satis-
dimensional problem. I am ext;lemely glad that fies both the upstream and downstream radia-
Dr. Suzuki has taken up the difficult chal- tion conditions it is concluded that the
lenge and is reporting success here. densities of the line doublets are uniquely

determined except its own wave-free distribu-
There are considerable similarities as tions. Then some errors due to the local wave

well as eifferences between Dr, Suzuki's terms remains on I but they cause no essential

treatment of truncation boundary and ours. results if I is put far enough from the body
Outside of the truncation region, our earlier and from the line doublets.
works used eigen-functions in finite water
depth, which includa the complete effects of
local disturbances as well as the wave-like
kind. The wave-dipoles introduced here are
the natural 3-0 infinite-depth analog of the
wave-like terms in our eigen series and is
thus accurate only in the fmr field. The
sine and cosine components of the free-wave
terms canot be determined uniquely from the
downstream end alone; an upstream condition
was necessary--an important result that we had
pointed out in our work. The uniqueness of
the IjjD dipole distribution used by Dr.
Suzuki requires some Justification. In fact,
it is not entirely apparent that the Contribu-
tions from the truncation surface I based on
Green's Theorem and from the free-surface ()I
line contour would yield the equivalence of
longitudinal and tranverse dipoles as Or.
Suzuki assumed. Perhaps Dr. Suzuki will elab-
orate on this point briefly.

I would like to conclude my discussion by
congratulsting the author on presenting a very
interesting paper.

Reference Cited
Young, R. W. and Bouger, Y.C., "A Hybrid
Integral-Equation Method for Steady Two-
dimensional Ship Waves", Int. J. Numee. Meth.
in Engrg,*14, 317-336, 1979. (See also, Proc.
2nd .nt. Conf. Numer Ship tiydrodyn. pp.
160- .5, Sept. 19-21, 1977,Berkeley, Calif.,
(USA%
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NUMERICAL EVALUATION OF THE NEAR- AND FAR-FIELD WAVE PATTERN
AND WAVE RESISTANCE OF ARBITRARY SHIP FORMS

A. Barnell and F. Noblesse
David W. Taylor N-.,,al Ship Research and Development Center

Bethesda, Maryland 20084

Abstract The equation for determining the velocity potertial
+ = 0UL takes the form

The wave resistance and the far-field wave potential of
a ship in steady forward motion in calm water are Q)•- = ip(4) + T(M,). (11
expressed as simple integrals involving the far-field wave-
amplitude function ir their integrands. The wave potential This equation expresses the disturbance potential +(j) at
at the ship hull surface and in its viciniqy likewise is any point i-on the mean wetted-hull surface or in the
expressed as a simple integral involving the near-field wave. mean flow domain as the sum of the potential W(),, which
amplitude function. These closely-related far- and near-field is defined explicitly in terms of the hull shape and the
wave-amplitude functions are given by integrals over the Froude number and thus is known a priori, and the
ircai wetted hull surface, the mean waterline and the potential T(A,), which is given by a nonlinear integro-
mean free surface in the vicinity of the ship. A numerical differential transform of +. Specifically, for a single-hull
method for accurately evaluating the wave-amplitude ship with port and starboard symmetry, the potentials Wa(l
functions is presented. In this method, the integral over the and Tft,) are defined by the expressions
upper portion of the hull is combined analytically with the 2f 2 f (
integral around the waterline, prior to numerical ( FCntydl +.hnXda' h2)
integration. This analytical treatment of the contribution of TCZ,4) = Ff! iita,/at-nzt.,,/3d)
the upper part of the hull shows that several teims in the C
hull and waterline integrals partially cancel out one -(+-.)aG/l8x]tydl (3)
another, and yields a modified waterline integral suited for -4t+-+.)aG/0nda +F2JpX(+)dxdy,
accurate numerical evaluation. This is demonstrated by with
numprical calculations for five values of the Froude
number varying between 0.5 and 0.1. The dependence of X(+) [04/ax- 4i210(2(O0az+F 2 a2+/ax 2V(Oz
the nuw'erical results upon the number of panels -3a)
approxinating the hull is investigated numerically

Equations (l).(3,) and (3a) may readily be obtained from
I. Introduction equations 124), (24a-cl and (2) in II], In equations (2) and

(3) c. h and f represent the positive halves of the mean
This study is concerned with the numerical calculation waterline, of the mean wetted-hull surface and of the

of the near. and far-field wave pittern and of the wave mean froe surface, respectively, as is indicated in figure I.
resistance of a ship advancing at constant speed in calm Furthermome, tit,, ty, 0) is the unit vector tangent to c and
water. The nunierical method is base on the nonlinear pointing towards the bow, "intri, n,. it,) is the. unit vector
integro-differential equation obtained in Ill and giveis below normal to in and pointing into the water. dl is the
for determining the disturbance velocity potential on the differential element of arc length of c. and da is the
mean wetted-hull sur-frA. and on the mean free surface in differential element of area of' h. In equations (1).(3) and
the vicinity of the ship where free-surface nontinearities are hereafter, !'represents the "calculation point", that is the
important. In this equation and hereafter in this study, point where the potential is calculated, while the
nondintensonal coortdinates and flow variables ame used, "intcgration point" in the integrals on c. h, f is denoted by
with the length L and the speed U of the ship and the T Furthemoe the notation
dentity e of the water selected for referen. Also, the
mean free surface Is taken as the plane z-0 with the z + +01 and +o !a (4a.b)
axis pointing up%,ards, and the x axis is taken in the ship
centerplati a"Wi pointig towards the bow. is used. In equation 13) 8O¥t repesents the derivative of
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+ in the direction of the tangent vector tto c, and j/L/d near-field potential +N(t):

is the derivative of + in the direction of the vector n x t,
which is tangent to h and pointing downwards as is shown = + (7)
in figure 

1.

It is shown in [5] that the value of the wave resistance

n n Z f appears to be more sensitive to the wave potential than to
SY the nonoscillatory near-field potential, for which it may be

C X sufficient in practice to use a fairly simple algebraic
approximation to the near-field term N( Fx in expression

X " h _.(6) for the Green function. The present study is concerned
with the numerical evaluation of the wave potential and
the related wave pattern, both in the vicinity of the ship

Figure 1. Definition Sketch for a Single-Hull Ship with and in its far field, and of the wave resistance. The
Port and Starboard Symmetry numerical evaluation of the nonoscillatory near-field

potential will be examined elsewhere.
The nonlinear term X(+) is associated with the

nonlinearities in the free-surface boundary condition. If this 2. The Wave Potential and the Wave Resistance
term is neglected, equation (1) becomes a linear integro-
differential equation for determining the potential on the By using expression (6) for the Green function in
mean wetted hull surface h+c. This linearized equation equations (5), (2), (3), and (1), we may express the wave
corresponds to the usual Neumann-Kelvin approximation. potential defined in equation (7) in the form
With the nonlinear free-surface term x(+), equations (1)-(3)
thus correspond to a generalized Neumann-Kelvin theory. +w(V = Pw14) + Tw( r5), (8)

Finally, CT = , is the Green function for port where the wave potentials 'w and Tw are defined as
and-starboard symmetry defined as

G Cj= x, y, z) + x,= F2kWnxt.dl+fy Wnzda, (9a)
(4'= G x, G( -(5 4nTw(Fj+) = F2f [W(tX8+/at-nzty1+/ad)

where GET) is the Green function associated with the -(+-+.)aWax]tydl (9b)
linearized free-surface condition 8 G/8 +F282G/84 2 = 0. -/.+-+_.)aW8nda+F2ffWX(+ldxdy,
The function G( ,i3 represents the velocity potential of
the linearized flow created at point CR, ??, Z 4 0) by a unit In equations (9a~b), we have
outflow at point xix, y, z 4 0), stemming from a
submerged source if z < 0 or from a flux a:ross the mean W % W(N-3 = W , XY, z) + W(Z, x. -y, zI).(10)
free surface if z = 0 as is shown in (2].

It may be seen from equations (7) and (7b) in 12] that
An iterative solution procedure, based on the the wave term W(C,3 in equations (6) and (10) is given by

recurrence relation ÷ (4+) w t(•+T('i;+n') with n )' 0 the integral

and #I1o - 0, may be used for solving equation (I1) The

first approximation in the sequence of iterative W(4,. 3 4v Hix- _ [m Ett;f E*(t;l dr, (111
approximations #w is +0) tp, The potential ip, which is 4d
a generalization of the classical Michell thin-ship potential, where Hl--) is the usual Heaviside unit-step function.
was shown in 13, 4, 5, 61 to provide a qualitatively- which is equal to I for x > 4 and to 0 for x < 4, v is the
acceptable approximation for slender ship forms. The invers of the Froude number F, that is we have
foregoing recurrence relation thus corresponds to a slender-
ship iterative solution procedure that takes advantage of v F with F
the slenderness of ship forms, v i UI(IL)I (1,b)

and E(t;!) and E*(t;7. are the exponenrital functions1'he Green function may be expressed as the sum of a

wavy term W( ,, I representing the wave field behind the E(t4" = cxp(p2{4+i(u4+vw,)} (13a)
unit singularity at point Tand a tnonoscillatory near.field
(local) term N(Q xt: E*lt;• = exp(p2 {z-i(ux+vy))j} (13b)

4 i G(i1 W(4.T) + N(it, x. (6) In equations (13a, b), and hereafter. the notation

.By using this .mpression for the Green function in p=(v2 +t2)11 2, q=l/p. u-qu, v-qt (14a(b.44)
Sequations (2) and (3), we may express, the potential L( ' as
the. stu of a wave Potential +A anti a nonosciUatry
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is used. It will be noted that we have where E,, (t;j') and q are given by equations (I18a) and
v~p~ an F~qO fr O~~co and (15~b) (14b), respectively, and the function K(t;Tj is defined as

1~ou,'O and O4v~l with u2 +v2 =1. (16a,bc) K(t;j) =K+(t;l) + K.Jt;4), with (25)
Kj(t,4 KO K(t;4) + K+ (t;T). (26)

By using equations (11) and (13a,b) in equation (10) we may
then obtain The function K:L(t;l) thus is expressed as the sum of the

function KO (t;t), which is defined explicitly in termis of
W(- ý=4vH(x-J) f0'0 lmIE,(t;fi-E_ (t;_VJ the hull shape and the Froude number by equation (20),

_(17) and the function K+ (t;T) which involves the potential and
fE~t~+E*t;~jdtis given by equation (23). We then have

where E, (t;i) and Ej(t;Z) 're defined as qK(;r *l2t,+O-z +a

E±. (t;4) = exp Ip2(e+i(u4 ±v?7)}j (I 8a) l+ ivp(+-+*lItydl (27)
El* (ti3 = exp 1p2{z-i(uX ±vy)}j (18b) + Vf4E n+ p2 (-+,)n tJda+1 r El Xl44dxdy.

By using equation (17) in equations (9a,b) and Far behind the ship, the nonoscillatory near-field
interchanging the onder of integration with respect to the potential +N0~ in equation (7) is negligible in comparison
integration variable t in the integral (17) and the integration with the wave potential +Wd(1. Furthermore, the function
point x in the line and surface integrals in equations (9a,b). K(tZ) in expression (24) for the wave potential may be
we may express the potentials tpR and Tw FI,+) in the replaced by its far-field limit K(t) =K(t; I = -- ;
form specifically. the function K~t) = K ,(t) +K _(t) is given by

equation (27) where K:,(t;t), C41 lit, f,, and +-+.~ are
TWtPW(~ =o 1" lmE +(t-.ET ;) replaced by K (t). c- h. f, and +. respectively, We then

(K9~t:~+K0 (t;)) d,(19a) have

nvTW(4T$) = fo*7 lmjE+(t;fj-iE -(i; j-) 1b ,,4CJ) ,v fo' Im(E ,(t:4l+ E _ (t:ZIjK(t)q dt as 4--o (28)
(K+ It,'C+K+(;iiIl q dt, (9) The equation of the free surface far behind the ship is

given by 4(j n) - F28+(k. n, Z 0Yak, so that we have
where the functions KO (t;4) and K44(T;) are defined as

0V El) d4U.0 Ef ýu0  Re(E + :t.4q)+ E _ u4,4.njK(t) dtq KO (t.4) - ±* n~ lvh *na (20) 0 as 1-- (29)

q K (t; -) = / E * (ta+/at-n t a+Iad) In this equation, we have E:,(tj4,,) E~;,~C=0)
A t z Y= expjip 2(u4±vn_)J. Equations (28) and (29) express the-(+--+.)aE*ltaxltydl (21) fair-field wave pattern trailing behind the ship as a

-, 2Jht (+-+.)OE*l8nda+fj, E*,x(+ldxdy. superposition of elementary plane progressive waves with
amplitude given by FPp2Kt(Whv traveling at angle 6

In equations (20) and (21), El: - El,(tx is given by ±tanl"tFt) with respect to thie x axis. The function K~t)
equation (18b), and c,, h4, f . represent the portions of Q. h, will then be referred to as the "far-field wave amplitude
f for which x ;ý 1, that is the- portions of P, Ii, f that are function', and the function Klt.'A as thle 'near-field wave.
u~treani from the plane x = 4. Equations (18b) and 114b.0 amplitude function' Thle nondimlensional wave resistance
yield aE* /Ox =-hipEu and 8E'l/On a QE* T i RI/U 2 2 explerienced by thle ship catl be determined
-P pE In ±where n.± is defined as from its far-field wave pattern by means of the Havelock

integral 171. whtich here takes thle form
nt=-n,+ilun ± vny). (22) r=~ ltl~ tCo

Equation (21) may then be exprmsed in the form"Vr f Hoilqd1.0

q M *-j) - ,j'8+ -n~t 8+/ad ~ Equation~s 130). (29). (28) and 1241 thus express the
A±tt . Y wave/O resistan~e, thle fat-field wave-patiertn and flow. and tile

+ ivp(+-+.lItydl (23) wave potential Oil thle hull surface and inl its vicinity as
+, vpf4E±n kaff * X(Wd.simple integrals involving thle far. or near'fietd wave-

+V'Pfh ~n±(~4.da+/ E~(+)ddy.amplitude functiotis Kit) or Kictl~ in their integrands. Thce

Equaion (8 an (19~b)the shw ha th wae near- and far-field wave potentials and the wave resistanceEquaions(8)and 19ab) ten how hatthe avecanl then be easily and accurately eval~uited prov~iked thepointW wa I *~i n equation (7) is given by the integral wave-amplitude functions Kwt and Kictli can be

-nw 41 E(i+j~i f~~ t (4 determitined with sufficient aocuracy. By the santc token, no
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realistic prediction of the near- and far-field wave potentials and the lower hull by 2, so that we I , h = u+2. The
and of the wave resistance is possible if the wave-amplitude depthwise variation of the upper ht' surface is
functions cannot be evaluated with sufficient accuracy, approximated by a straight (but not necessarily vertical)
Accurate numerical evaluation of the near- and far-field segment. The depthwise variation of the potential inside u
wave-amplitude functions therefore is critical to the is also assumed to be linear. The depthwise integration in
evaluation of the wave potential and the wave resistance, the integral on the upper hull surface in equation (27) can
and thus is the focus of the present study. then be performed analytically, and the surface integral on

u thus is reduced to a line integral around the mean
SIt should be noted in particular that convergence of waterline. The latter integral is combined with the

the improper integrals (24), (28), (29) and (30) is not waterline integral in equation (27), so that the contribution
obvious a priori. As a matter of fact, equation (27) of the upper hull u+c is expressed as a modified line
indicates at first glance that K+(t;j) ,, p ,- t as t -- , integral around the mean waterline c.
stemming from the term ivp(+-+.) in the waterline integral
at a point of stationary phase udx±vdy = 0. The The near-field wave-amplitude function K(tj) may
improper integrals (30) and (29), and also the integrals (28) then be expressed as the sum of three components
and (24) for C = 0, would then appear to be divergent. Klt; = KUt;• + Ktl + Kflt;l (31)

A large number of numerical calculations of the far-
field wave-amplitude function K(t), often referred to as the representing the contributions of the upper hull u+c, of
Kochin wave spectrum function, have been reported in the the lower hull R . and of the portion of the free surface f
literature on ship wave resistance. More precisely, the where nonlinearities are important. It may readily be seen
function Kit) is usually evaluated numerically and depicted from equations 125) and (271 that the contributions of the
as a function of 0 = tan-WFto for 00 4 0 M < 900. lower hull and of the free surface are given by
The truncated limit of integration Om is usually taken as
some value between 700 and 800 However, it is not always q Ktt:i = v2  lnE++E13
clear that the function K(O) is negligibly small for 0. 4 0 f • )32)
4 906 as is illustrated for instance in figures 11-15 and -n-
26-31 in 181. It is indeed plausible that the large
discrepancies that can often be observed among q K(fit =- (E* +E* _)X()dxdy, 1331
calculations of ship wave resistance by various authors on

the basis of theoretically-comparable numerical methods 131 In equation O3RR2 represents the portion of the lower hull
may partly stem from variations in the selection of the for which x ;.4. Equations (251 and 127) also readily yield
value of 0m. and more generally from the degree of the following eApression for the contribution of the upper
accuracy with which the function K(0) is evaluated hull u+c:
numerically for values of 0 close to 900.

Kuit:4i Ku lt:i + Ku it.). with (341
The main purpose of the present study is to present

an accurate method for numerically evaluating the near. q Klt: =fut E~1n;+tXO+/At-n t 8./Od
and far-field wave-amplitude functions. This method is 4 + ivp1+-+.Itydl (35)
based on a modified form of expression (27) for the a Y
function q KWt) that is well suited for numerical +V'u' Et In,+p(+-+.)n±IdW.
evaluation for large values of t, and in particular
establishes that it vanishes at t-.-. where u is the portion of u upstream fromn the plane x' J.

The far-field waveranplitude function Kit) isalso givni by
3. The Near. and Far-Field Wave-anplitude Funct"is equations (3-1351 with KWt,, Ku(t,)t, KRitT). K1(t:,l,

rc" u4. eI. ft, +-#. replaced by Kit). Ku). Kl), KWtl. c. u,
It was shown in IlI and will be demonstrated again 2 - f. 4. respectivly. An approximate form of expression

further on in this study that several terms in the integrals 135) in terms of a line integral around the mean waterline
around the mean waterline and on the mean wetted-hull is obtained below.
surface in equation (271 cancel out one another for crucial
values of t. notably for t - ::,x/y for which the phase Lei the meani waterline be defited by the parametric
p-(uxtvyl of the expotential term EOXIt is Itationary. It equatiots
therefoe is highly desirable if ntt1 ecsential that the
waterline integral and the hull integral in equation 27 be x al ant y b4•b. with A, 4 A -4 As. t361
grouped together in some appropriate manner. lit the
method proposed in this study, the mean wotted-hull where A0 and A correspond to the bow and the stern.
surface h is divided into two parts: the upper hull respectively, The upper hull is appmioxated im folaws.
correspoiding to 0 ;t z 6 - d and the lower hull for which
1 4- -d. wi•,ed d is some fraction of the ship draft d. for X - atM + O w z i A 4 A e AS.
"witstan d or d/20. Te1 upper hull is denwd by u y bibA + OWz 0 'z -d
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The notation Furthermore, we have dl - (a', -Nb')2!"/2 a,
-al[(a')2 +(b!)2j112 t =-b'-Ia')

2 +(b) 2J'/2 and
a' wda(A)MA, and similarly for b ad and ' (38) 84/at = "f'I[a')2+(b'}21/2, We. then have

will be used. Also, let t~l=-'Aadt8/t"a'+'I(a')2+(b')21. (5 1a,b)

+ (A) a +[r (A), b(A), 01 (39) Equations (45) and (46a) also yield

represent the value of the jýotential at the point with nzty = b'(atb'-i a')II(a')2 +(b1 2 1(l +,2)112. (52)
coordinates a(A) b(A) 0 on c, and

Finally, the downw..ard defivative &+/Od is approximately
' d+Yd.(40) given by [+(a -ad,h -Pd,-d6) - +kt,bO)1/(a 2 2 +p2 62 +d62)112.

Equations (39) and (4'.1) then yield
The value of the potential at the point with coordinates
a(A)- a(A)d, b(l)-p(A)d. -6 on the lower curve bounding a +/ad at (cp-+)/d(l + a2+ p2)1 /2. (53)
the upper hull is denoted by q:

Equations (49)-(S-", then yield
*q()s+ia(A)-a(A)d. b(A)-P(A)d. -dl. (41)

*Equations (18h) and (37) show that the exponential X -AX (54
E,-=E*: ~(t;Zi, with Von the upper hull. may be where A is d&fined by
expressed in the form

AI*') = Eh) 2 /b ex(b') 2/(l + e2)+a(42)
E~~~~~ exbp(-i&)1 (42 +b(b')(+-9)ld(l +a2 +I32)12(l + 2)1/2 . (55)

where Et and yare defined as By using equations (54), (42) and (47a.,b) we may

E±=exp[-ip2(ua±vb)] with a =aCA) and b b(A) (43) PI.Seqain(5intefr

Y±= ua:Lv/ with a = (I) and (3 - (A). (44) q tu(t4 : ItFA . (6

The unit outward normal n to the upper hull surface is where At is the value of A defined by the equation i
given by a(4  .sr. that we have x =4 by equation 36), E± i

45 the exponential defined by equation (43), and I ± is the
ni da dd,(5 integral

with 6ii = (6aima~x~a8z), By using equations (371 we± ~ i 0 !'fzp(-,(~~~)
may then express the normal vector -iM in the form ig id

7+iTAz where the vectofs-and -;are definzd as exp(p 2(l-iy±)zi dz, (57)

7(V, -a. IM' -ab') and 7(P' -a, pd - ff). (6a~h) For A - A e~quation (37) shows that we have x=
J+OAI4 .he variation a(A )z in the value of x for A =AA

Equations (45) and (22) then yield avid 0 ;0 z 6 is small oýorder ad. This small variation
in the valu.e of " has been neglected in equation (56), The

n~da - Wb 1-94) d.Wz and n~da - v,,+;Az) dAdlz. 1470~) potential 4 E +(X1 !s +(a+aoz, b + ft, z) -9 4(z, A) in equation
(57) is Fcpproxiniated by the linear function

where v. and jA are defined a.. *(a,b.0 ' -I4(a-ad~b-(3d,-6)-+(a,b,0)Jz/d a ++(+-p)zld
by equations (39) and (41). Equaition (57) may then be

Vt a'- a'-i~u:;va) ad (8a) expressed in the form
Ov ' ta -Pa' + i(ub'-Tva') an (48b) VP +d±q

On the mean waterlint we have z - G~, so that +L'P -J.+ -~td 1jý + (+4-s) 1d1 I Ji:

equations (47a), (45) and 146a) yield
where It are the integrals
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These integrals can easily be evaluated analytically, and it By using equations (60) and (14bc) we may express the
may be verified that we have term G± defined by equation (68) in the form

I •(I-As, 1j = -2++ (t±++)A, (59a,b) Gs = Fptuvs-ib'(l-iys) +-*)(l-iy±)

= 24-2•s(2+d•++d 2 12)A+. (59c) -tst±(+-+,)(l-iy+)-F 2a'b'÷YI(a')2+(b') 2 l.

where c± and A are defined as Equations (48a), (44) and (16c) yield

= q2/(I-iys) (60) uv+-ib'(l-iys) = -A(ua'±vb')(v;:ift).

exp[-p 2(1-iy±)61 (61) Furthermore, equation (43) readily yields

Equations (43), (61) and (44) yield (E±)' - dE+/dI = -ip 2(ua'±vb')Es.

E+As esexp(-p 2d), (62) We may then obtain

where es is defined as EsG ± ± Fq(E+)'(4-+,)vwip)I(l-iy±)

e± = expj-ip2{u(a-ad)±v(b-fd)}J (63) -&si±E+{(-*.)/(l-iys)-F 2a'b'Es+'[(a')2 +(b') 2].

By using equations (58), (59a,bc) and (621 in equation (56), An integration by parts yields
we may then obtain

q K•(t; ", V2••[E~s-~p{-~d~~as dLEsGt ± FqIE ±(+-+.)(vT:iP)/(l -if :)l'
q --±tf at4 :):Ff '4s F(.• )(vp:;:i/)/{1 -iy (64)'

where F± and a ± are defined as E+ -iys)-F 2a'bE±sV¶(a')2+Wb')2].

F±= £sIb,+p2(÷_,)rs We then have
-• 0P'+p2+-+,)Vs+p 2(+-po)v±Id] (65) EsG ± = ±Fq [Es(+-+.)(vri/)/(1 -iy+)]'

+24 p2 (4•);±/d-F 2A -F 2D±E±s'-R±E±(+-+.) (71)

a+= 'asfb'+p2(+-$v,)Us] b
_+ +),2,±+{q)l where the coefficients'Ds and Rs are given by

±+(+ &±+ d2/2) p2(q-ýP)A+/d D a'bV/[(a') 2+(b') 21-iu(p±iv)/(l-iy±), (72)

The term a+ may be expressed in the form Rs= L+±/(l-iy+)+Fq[(vT-ip)/(I-i?±)]'. (73)

at = q2 b,+c±(9o-+)/dJ+d+(p-+), (66) By using equations (60), (48b). (44), (14c) and (16c) we may

where the coefficients b±, c±L, d± are given by verify that we have

ba± =(b'-dp'-•±I')/(l-iy*) (66a) R+ a 0. (74)

c± = ( (66b) Equations (67), (71) and (74) yield

(66c) E±F± = ±Fq[Es(4-j.)(v::i/)/(l-iy)±)J'-F 2E±At (75)

By using equations (55), (60) and (14b) we may express the
term F, defined by equation (65) in the form where the term A is defined as

F± = G±-F 2(B±+C±(+-p)Id] (67) As 9B+C±(+-g#lh•D±f, (76)

"where the terms G±, B± and C± are defined as with the coefficients Bs, C and D± given by equations

(691, (70) and (72). Equation (64) then becomes

-F~a'b'+if{a') 2 +(b')2 l (68) q K (tCO -N :uE±(4-+.)(v ui/(l-iYs)l -±(tq', (77)

B (b±)3 (a)2 +(b') 21(I +-2)-u2(b-=±JY)I(I-i) (69) where I±(t4) is the integral

C•= (b')+ub'a_) 2= +(bi'±)2 I +Q0) (tA E +-vexp(- p2d) a(] dL (78)

+ Ay v±2s + p)I WO- iY )2  (70) .. ,

ij, 329.
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The first term in equation (77) vanishes at the upper limit 4. Numerical Evaluation of the Wave-Amplitude Functions
of integration A, since we have j% - +. for A = It. The
contribution of the lower limit of integration IB to the first Equation (31) expresses the near-field wave-amplitude
term in equation (77) also yields a null contribution to the function as the sum of three terms corresponding to the
function Ku(t;j defined by equation (34). Indeed, contributions of the upper hull u+c, the lower hull R and
equations (37) show that we have b = 0 and P = 0 at the the free surface f, and defined by equations (79), (32) and
bow (and also at the stern); equations (43) and (44) then (33), respectively. The far-field wave-amplitude function is
yield E+ = exp(-ivpaB) = E _ and y+ = uaB = y_ for defined by closely-related expressions. A simple approximate
A = AB. numerical method for evaluating the waterline integral in

equation (79) and the surface integrals in equations (32)
Equations (34), (77) and (79') finally yield and (33) is presented in this section.

q Ku(t;-) f - A' [A +E++A E Numerical Evaluation of the Waterline Integral

Fv2exp(-p2d)(a+e++a_e_)j dA, (79

Let I±(t;j) be the waterline integral
where E± and e± are the exponential functions defined by I±(t;: = A A±E+ ae) A, (81)
equations (43) and (63), and A+ and a ± are the amplitude -(,• ABe1
functions defined by equations (76) and (66). The
coefficients B±, C+, D± and b+, c±,.d± in expressions where A± anda are the amplitude functions defined by
(76) and (66) for the amplitudes A ± and a ± are defined by equations (76) and (66), E, is the exponential function
equations (69), (70), (72) and (66a,bc). In these equations, defined by equation (43), and e± is the exponential

+ ± +, C, v± and 1± are defined by equations (44), (60), function defined by
(50) and (48a,b). Finally, a, b, a, p are the functions
defining the shape of the upper hull, as is indicated by e± = explp2{z-i(uxd±vyd)}], (82)
equations (37). The far-field wave-amplitude function Ku(t)
is also given by equation (79) where I , becomes A, and +, as may be seen from equations (79), (63) and (371. In
is ignored in expression (66) tbr the amplitude function a b-Pe ain (d hra f w.

At a point where the phase of the exponential
function E± is stationary we have ua'±vb' = 0, as may If the waterline is divided into a number of
be seen from equation (43). Equations (16c), (14bc) and contiguous segments A.- A 4. <AjI we may express
(12a) then show that we have (b')2/1(a')2 +(b!) 21 = u2 if equation (81)in the form
ua'±vb' = 0, and equations (50) and (44) yield y± J ±. A f (83)
Equations (69), (70) and '72) then become l2(t;- = • J A dI (3

B± = ;:iu2b'V /(1 +, 2)+u2q2/3'(lei)2, (80a) j= I
where A1l = AB and AJ-. = A•, The integrals over each

C± = u2((-pb'-a)I(l+a 2+[32)1/2(l+c2)1I2 segment Aj .A ( Aj+ can easily be evaluated analytically
+u2(v+_2c±t%±)j(I~iE)2, (80b) if the arguments of the exponentials E± and e± are

approximated by linear functions of A and the amplitude

D = iu2(upvI80 functions At and a± are represented by polynomials in ,.

By expressing A in the form A = Aj+(Aj +, -A•i ); withThe two terms in expression (72) for D± thus are 0 < ;A < I and replacing a a alA) by the linearcombined into the single term shown in equation (80c) at a approximation a - a. +(a1 +1 -aj);A where a. alA1) and
point of stationary phase of the exponential function E a j i
The two terms on the right sides of equations (72) and functions b(A andstem from the terms on the right side of equation (63). xd(A), yd(A), z6 (A) in equations (43) and (82). we may obtain
These terms correspond to the term v2p(-+,)n± in the E ± --" - A)MI. (84a)
integral on the upper hull and the terms ivp(+-+,)t and E± - Eexp[ -(0j+ -
txyt •8/8t in the integral on the waterline in equation (35), e _ e Jtexp1(w•1 -w - -84b)
Equation (74) and equations (72) and (80c) then
demonstrate that the aforementioned terms in the integrals In these equations Oj, 0.± and w ý w;ý1 represent the
around the mean waterline and on the mean wetted-hull values of the functions 8± and w± at the points Aj and
surface in equation (27) partially cancel out one another A1+1, where 0± and w± are defined as
and should be properly combined, as was already noted at
the beginning of this section, In particular, it is interesting = 2(ualvb) and w± = 2[zd-i(ux--vyd)l; (85ab1
that the term ivp(+-,Xy in the integral around the mean
waterline in equation (27) does not appear In the we thus have O± _ p2(ua ±±vb) Furthermore, EA and e. •
expression for the modificd waterline integral defined by similarly represent the values of the exponential functions"
equations (79) and (76). exp (-iO±) and e,,,- xp (w±) at the point A. %

V Vr
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The coefficients Bs, Cs, D and b±, c±, d in P+ = (eh1 -e±)/I(w -wiý) (93a)
expressions (76) and (66) for the amplitude functions At pjt = (ejI -pp )/(w± -w±1) (93b)
and as are taken as constant within each segment A. 4 A b
4 A,+ The derivatives V = dO(,)kiA and ('-c•)Id of the Pj±I = ( -Ps )/(Wj-±+IWj) (93c)
potential are also taken as constant within each segment. if I ljhl-Wj-+ll01
Specifically, we have +' at (+1- +j)/(+ ' +I - and (+-9)/d
L [(+j-cp.)/dj + (+.+, -- j+l)/dj+ 1]/2 in the segment Equations (79), (81), (82), (88), (76) and (91) finally yield
14j, kj+ 1. Equation 176) then shows that the amplitude the following expression for the contribution of the upper
function At is taken as constant within each segment. hull to the near-field wave-amplitude function
However, the potential ,; in the term d,(cp-+,) in
expression (66) for the amplitude at is approximated by I
the linear function p - 9.+1tp.( -+I- within the q Ku(t;f) 2 ! (.j-Aj+ 1){(B+.)q 2b)
segment p.j, A1~]. The amplitude as is then approximated j=lby the linear function 

+ D(+j - +j + 11j - 9j4+ i)a ± l a ± + a-t;4 (86) +(C- q-c)[(+j - 9j)Idj + (+j + I - qj + l1) 6j + IY/2
-- 0 .ý + v2[d j(9~j +. ,+dj+ I(Pj + I_ ,]

where a1t and a• are defined as
where the coefficients R h. C, c, D, dj and dj+, are defined

a = q2[b±+c±býp-+)/6d+d_+(pj-+.). (87a) as
a' = d__(cpj+l-ýoj).18b

B = B+ P++ +B P, b = b+p++b_p (95ab)
C -=C+ P++C P' ,c = c +p+Cp ,95cd)

By using the foregoing approximations for the +P _95
functions E , e ., A ± and as and performing the change D = D+P+ +D P (95e)
of variable A = AXj+ j+ I - Aj) in equation (83). we may d = d+pj+ +d_ pj-, dj+1 = d+pj.+ +dpj+l (95fg)
obtain

2 iIn these equations, P± and p +, p ± IPi are given bywl+; L. (A..+I-Aj.}A P ,+v2( i±+a•:i•:), (88) ab nA±C D ad
_~(t;~) ~ ~ (AJ+ -Aj sA±P~ ao ( 8 equations (89a,b) and (92), (93a b,c) and B. C±, D± and

j-- b c ±, d ± are given by equations (69), (70). (72), (80a0b.c)
where P, and i±, with n = 0 and 1, are the integrals and (66a.bc) together with equations (44), (48ahb), (50), (60)
defined as and (37). Furthermore, we have Al = A B and Ai'+I = It in

equation (94). The contribution of the upper hull to the
P± = Ej ± f0 exp{-i(04 1 -•±)iMl dp, far-field wave-amplitude function is also given by equation

(94) where the summation is extended over all the
i-" p j 0  expl(w± , -wi);] dp. segments in the waterline and +. is replaced by 0.

These integrals can be evaluated analytically. We have Numerical Evaluation of the Hull-Surface Integral

P± = (E-±+Eý, )/2 if 6~t=± (89a) Let us now consider the integral K W(t4) occurring inj - +1 -0i (89b) equation (32) and defined asPt= i(Es -- E.±)Ot I -0.±) if 0ý11;'001 (89b)P •J+t " j ' J+ j J
it = Wt +e.V)/2 and ij'=i± /2 if ilWt-w.±-Wll=0 (90a,b) q K.(t;J = v~J Et{nx+p 2(+-+,)n+J da. (96)

S= 1 - , - t / t , - ± a n d 9 )(J+ I w+ ad c where E± E (t;) is the exponential function given by
it i. : C 1 I/(w.-+ -w.±)2 (±±_J+ J+ I w J) ( +I ej )(j+I WjM- e. )e)/ (90d)

if ljwhl -. w-)-lA0 E, = exp[Ws(t;x'j with W± = p2[z-i(ux±vy)l. (97ab)

By using equations (87a,b) we may obtain The lower hull surface R is approximated by a set of
contiguous plane triangles. On each of these elementary

•. a~i: +ajtit =q2[bs+cs(op-+)/dips plane triangles nx and n± = -nz+i(unx+±vn) are
(91) constant, so that equation (96) yields+d +l¢j /.)p;, + (9 + I- .)P•t I+

q K ( 2i v2 (nxi ±+p 2n±Jts), (98)whemre Pt ipj = l0±-ij: and A i it:. Equations

(90ad) then yield 'where the summation is carried over all the triangles thak

are upstream from the plane x = 4, and I and J, arePst W"! +eA I W2 and p.± = p /2=poA
i J+ i ± Z (92)
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the integials defined as +1 +1 +12 +013, 1108)

I± =fE, da and ., = fE+(4-+,) da. (99ab) where we have (109)

The integration in equations (99a,b) is carried over the
surface of any of the plane triangles in the lower hull. and +jk a +k-+j. By using equation (108) in equation

(107b) we may then obtain

Let r - with j = 1,2,3 - represent the position
vectors of the three vertices of any plane triangle in the a: ,Id 0o+, +o•+2+o0:+3-o•+., (110
lower hull. The location of any point T"inside that triangle where at, 0±' 0± are defined as
can be defined by the parametric equation

x= xI +Ax12+WX3 with 04A41 and 0.;-(l- - J100) 0± 2 3 (1 (ila)

and -x.K --iby definition. The vertices "1,T2, T3 are 2 Ei'oodA A exp(iW2)J 0 l-d exlpW ) (Illb1
distributed counter clockwise for an observer located inside E
the hull. The unit'outward normal F to the hull surface is 3= d (llc)

then given by-itda = (8 Z aM) x (nx-8 ),) &dj, - where equa-ion (107al wab used.
x3 x d7 d M. We then have iida = Kii d4d wit*ee - is
the vector with components mx, mY, m, given by Equations (32). (96), 1102), (110) and (lIla) finally yield

the following expression for the contribution of the lower
mx = y13z12 -z 13y12, hull to the near-field wave-amplitude function:

my = z13x12 -x1 3z12, (101)
mz = x13Y12 _Y13X12 , +pJ y V,

+ p 2 { y l 1 I ( ,+I y 2 (+ 2 --4) Y '3 4 3 - (.} ] 1 1 2 )

Equations (98) and (99a,b) then become
where the summation is carried over all the triangles

q K (t;4_L v2 E (mxo&: +p2m±), (102) upstream from the plane x = 4, (x-j) and the
whe mcoefficients y0 and yj am defined as

where m± is defined as

-o tx°O + m -) and •1 3al
M + = -m z+ilumx~tvm y) (103) 0 m w 13b1

Y i =m+oi+-;-m_oi- with Ilj43. (Il IN

as may be seen from equation (22), and o± and o± are The integrals (l07a) and (IIIbcl can be evaluated
the following integrals analytically. Ii may be verified that we have

oa& JfoIdAfoI-'d, E, and (0o = (Eý+EP+EPW/6 and oj - o o =a odtI3

o± '~"'i~E~(-. (104b) if (lWj-+ll+l~Wj~ll+(lWhjl 0, 14

By using equation (100) in equations (97a,b) we may where W ,i a Wk -W:V. as was already defined, and V
obtain and Wj are defined by equations (106a.b). If

E± =M E exp(AW C)xp(;AW ). (105) Wo ='0 but UA * 0, with U defined ajs

where we have Uj t W- (w + W ±2. tils)

E -= exp(Wh) with Wt =p21zj -ilux ± vy)j (06a.b) the coefficients o C, o(, ok and or'- are given by

and Wt W: -WA - Equations (1040~) and (10S) then oS C:tEjt-fl+Up'IFA1 . t~IN
yield oj"t C-tlEt+F,1+2Rj), 16b)

Elt fo dAecxp(AWjj)f 0 
1-Ado Cxp(u~Wj.)(4-+). (i07b) whmC~.F n i ame defined as

, V VI with V oIU ,
Variation of tIh polential 4+ vi 4(,p) within each plane I
triangle in the lower-hull surface is apprximated by a 3V~tF-F•. III1,

linear function of A and ji. as follows:,
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Finally, in the general case when W~ :2 0, W~ 0 0 and normal vector ii'(mX, MY, m.) to the plane triangle with
Finally, 0n the oeffiients asewhnd W OW� ar givn b vertices ri, - is denoted by mi. The xv,,z components

W± 0 the coefficients 0± and ( a ieof fif may3 readily be obtained from equations (101):

Go, = -iF-+ F"+ F±), ((118a) m• = Yjlzjk -zjlyjk,

S= -[Ft+Vki(F,±+F±)], (II8bmb) = ZjiXik-Xjtzjk, (121)
mri = xlj-j~k

where V , F ± and F ± are defined as I X1,yjk-yjlXjk.

where Xjk a--- -- x as was defined previously. Equation
Vj- = /WM . Fj+ = VjtV~lEj:, (19ab) (103) takes the forni

Fjk=VikV±k{E± E-j±. 0119c)k k mi = -mZ+/"'TI(umX±vmy). (122)

In equations (1151-(119), 6, k, I) represents any one of the
three cyclic permutations (1,2,31, (2,3,1). (3,1,2). Equations (113ab) then yield

4
Almost all of the plane triangular elements in the 4

ro C Iand 023a)lower hull surface 9 can be combined in groups of two i + a

contiguous triangles forming a single quadrlateral element.
Tlic lower hull surflace can then he appro;imated by a set r = ,jk+Yjl+yji with 1,j44. (123b)

of contiguous inon-plane) quadriiateral elements covering
the whole or most of 9. If necessary. thes, quzadrilateral where the coefficients yj are defined as

elements may be supplemented by a small number of
triangular elements. A quadrilateral element can be divided Yi= m e'+hinr (123c)

into two triangles in two different ways, as is shown in
figure 2. The contribution of the quadrilateral element The coefficients Li- and E£are identical to the coefficients

depicted in figure 2 to the surface integrals defining the G±0 and oin- i equations 1113a.b) for the trizngle
wave-amplitude functions may then be taken equal to half corresponding to the integer i. that is the triangle with

tu: contributions of the four triangles with vertices vertceX•. x-, -X,
identified by the integers (1.2.3), (2.3,41, (3,4.1), (4,1,2).
Equation 1112) then yields Numerival Evaluation of the Free-Surface integral

q KO );•" v! [r" + p{! (r, + .,+2_ - Comparison of equations 032) and (33) shows that tile.

+ l+ r 4  + .V ((20) contribution of the free izriace To the n-ear-ficid wave-
S3- amplitude function may be evaluated nuntri;ally by using

-Yo+P {YI(1 +-+.)+ yl+, -'.) + n(+o-+.)}l an expression similar to expression (120]. althou3h
alternative. more efficient :wumericai methods can be

where the summation is carried over all the quadrilateral devied by using the fact that the nean frie surface f is
and triangular elements upstream front the plane x - 4, flat. Mox pi~ruccly. the portion of the plane z = 0 outside
and we have + )i a ý4Z and + .= 4i4) as was defined the ship can be divided into a set of contigu-ous
iprviously. The contribution of thle lower hull to the far- quadrilateral and triangular elements and linear variatin
field wave-amplitude function is also given by equation may ke assumed ftr the funclion X(4) dtfincd by eqtiation
(120) if 4. is ignored and the summation is cxtended to all 13a1 within the triangular elements and within each or the
the quadrilateral and triangular elements in the lower hull, four triangles that may be Lns.re=( for aty quadrilateral
1T11e oefficients v,0Y. Yt, Y., v arm associated with triangular element. We may then obtaiin
elements and are defined by equatioms i 13)HI1191, The
coeffivients ra, l. , r,,. r,,. r'4, t) •eponld to quadrilateral q Kit.4i z,(rx, + r'x-, + ryX, + F4X4112
elene•ets and are defined below. 11," 1

+ tilx + 4 ~j

2 2r 1 1 where the tunniation is carieid o~vr at) thc quadrilateraland triangular ekniemnt utttrain frum• (th lim, x - 1. xcrpfVents the value of the function X(+) at the vertex V.
3C J 4 3 J and the coefficients y and r, o a-sociated -with tri-angular

and quadrilateral ecements. reectitvly. and are defincd as
Figure 2, Approximiatito of a Quadrilateral nuel by

Four Plane Tr-'asigular uinels Y txl Y1 3-Ylx•,•13o+o 3 -- wth I~$3. 1251
Iet •. x•" x-', z reptsent the powition veciO•s of the and r with I Tjhi4.

verices of a quadrilateral elerent, as in fiute 2.
Furth•crokw let (i~jAkJ) reptn any anm of the four cycic The coCf(richts oiý are gi•v• by equations (I4141191 and
pirmutations (1.2,3.4). (2.3.4.11. (3.4,1.2). 4.1.2,31. The
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the coefficients yji are defined as x = -- 1/2+k 2'A2 (l-r2l )sinfr.('-1+.2)/2A2]

2y/b cos[n(A- l+A,2)12A,2 cos(inp2)
-in I(127)1 -z/d sin(r./2)

where mi is the z component of the normal vector fit to
the triangle i given by equation (1211, and cje: is identical to where I- A2 < A ; I and 0 6 p< 1. i he beam/length

the coefficient o• for the triangle i as was already noted ratio b and the draft/length ratio d are taken eqi:al to 0.15

below equation (123c). The contribution of the free surface and 0.06. respectvely, and the constants .A 1, a a2-

to the far-field wave-amplitude function is also given by P'O are taken as 1 0.25 = 2, aO = 0.12 a

equation (124) where the summation must be extended to 0. 0 P. = 0.2.

all the quadrilateral and triangular elements in the

free-surface. _ _...._ _ _

5. Numerical Study of the Far-Field Wave-Amplitude
Function

Results of nu merical calculations of the far-field wave- /
amplitude function K(t) based on expressions 131), (94) and
(120) are piesentL I and discussed bWlow for a realistic hull
form at five Froude numuers, namelv at F = 0.5, 0.35,
0.25, 0.15, 0.1. The contribution of the free surface Ký,
giver by expression (124), was ignored in these calculations.
In order to isolate the numerical errors that are directly
associated with the calculation method of Kit) summarized
by equations (31), (94) and (120), calculations were Figure 3. Waterline. Central Buttock Line. and
perfonred for a hull form defined mathematk.ally, and Framelines of Hull Form Used for Numerical Caiculations
approximate analytical expressions were used for the value
of the velocity potential + on the mean hull surface. In The far-field wave.amplitud2 function Kai associated
other words, the numerical errors associated with hull with the above-defined hull form is depicted in figures 4a-d,
geometry approximations and velocity-potential calculations 5a.d. 6a.d, 7a-d and Sa-d corresponding to F = 0.5, 0.35.
ar el 6mnated from the calculations reperted below. 0.25. 0.15 and 0.1. respectively. Figures 4a. Sa, 6a, 7a and

8a depict the real and imaginary parts of the function qK'•
The hull form for which numerical ,alculations have corresponding to the contribution of the top waterline in

been performed has a Aharp-cnded bow region 0.25 ti x ý equations (79) or 1941. The function qK'. thus represents
0.' a cylindrical midship region -0.25 4 x 4 0.25, and a the modified waterline inregral given bý the expresions
rou,)d-c•tded steni region -0.5 4 x < -0,25. The top
waterline (plane i - 0). the central buttock line (plane 'K. 4. A.LaW
y - 0). and the frnamelines x - t0,475, .0.45, ±0.4. - E,,-A t ),8
t0.35, -0.3 and ±0.25 are depicted in fiýynre 3. More N

precisely. the sharp-ended bow region is defitnd by the qKl% . I t. - ,,i B+ 1( ..-. 1 AJA/la• -- •. 1
parauetric equations i-1

x • 112--.A-tl-,V,/ltlHo + .aFigures 4b, 5SK 6b. 7b and 8b deict the real and imnaginary

t)IA = q 1 -) 4,AI)(I ia)-/p0l1 - ,A/Ap1 11.1 pats of the function qK; cornspxinding to the sum of the
-1 ,0141)- -1 •,contributions of the bottoil waterline in equations I7Nl or

W2 A 194) and of the lo,.*r hull defined by eqaýýJn. (321 or

where 0 < A ,; A, and 0 ju , 1. 11e midship region is I120). The function 4Ký thus -;cprewnts .ne nmdifie- hull
taken af the ellipiic", cy'linde defined by the paranvrie integral giva by the xpresioiis

12nA+f E',+ 1 1+ p-44ni E*+n E lida 1120al

2l*b owxdl) N
- *A -4 iilalu 21l 1 z E - A i I b + A dJ,16p 1 +d 41 , iI

where A, 4 A I-A, and 0 1 A 4 I. Finally, the ,osrnd. -C11+1 -,0 + t14 _kW-c /d~4,V•
enod Stun region is deftned by t+, p. rquatiom4pt e 1)*I
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The sum qK',+qKj yields the far-field wave-amplitude values of t greater than about 10.5, 14, 17.5, 24 and 30 for
function qK. The real and imaginary parts of the function F = 0.5, 0.35, 0.25, 0.15 and 0.1, respectively. The values
qK(t) are depicted in figures 4c, Sc, 6c, 7c and 8c. The of 6 corresponding to these values of F and t are 79.20,
values of 0 = tan- t (Ft) are also indicated in these figures. 78.50, 77.10, 74.50 and 71.60, respectively. Figures 4c
Finally, figures 4d, 5d, 6d, 7d and 8d depict the function through 8c show that the oscillations of the far-rfeld wave-
qllK(t)l12 whose integral yields the wave resistance, as is amplitude function with respect to the variable 0 become
indicated by equation (30). A number of interesting extremely rapid as 6 increases toward 900.
features may be observed from figures 4a-d through 8a-d.

Figures 4cd through 8c,d show that the integrand
Comparisons of figures 4a to 4b through figures 8a to qI IK(t)l 12 of the Havelock wave-resistance integral (30)

8b indicate that the modified hull integral qK' vanishes vanishes appreciably faster than the function K(t, as
faster than the modified water".e integral qKc as t increases. More precisely, figures 4d through 8d indicate
increases. More precisely, figures 4u-3b show that the that the function qlKIKI2 becomes practically negligible for
function qKý appears negligibly small, on the scale of these ta 11, 13. 15, 24 and 15 for F = 0.5, 0.35, 0.25, 0.15
figures, for values of t greater than approximately 10.5, 14, and 0.1, respectively.
17.5, 24 and 30 for F = 0.5. 0.35, 0.25, 0.15 and 0.1,
respectively. The shortest waves in the wave spectrum are Figures 4a,bc through 8a.b~c show that the far-field
then contained in the modified waterline integral. This wave-amplitude function K(t) is an oscillatory function of t.
finding has fortunate practical implications since the Knowledge of the approximate value ef the pseudo period
computing time required for evaluating the hull integral of these oscillations is very useful for accurate and efficient
qKý, for a given hull form and for given values of F and t, numerical evaluation of the integrals in expressions (28)
is considerably larger than that required for evaluating the and 1301 defining the far-field wave potential and the wave
waterline integral qKc. resistance, The pseudo period At of th.e oscillations of the

functions qReIK) and qlmIK) depicted in figures 4c
through Sc is represented in figure 9 versus p = Ivw+t2)v-½,Figures 4a,b through 8a,b show that the magnitudes where v = I/F. for F = 0.5, 0,35, 0.25, 0,15 and 0.1. The

of the imaginary parts of the functions qK'c and qK• are values of the pseudo period corresponding to the real and
appreciably larger than the magnitudes of the imaginary parts of the function qKlt) are identified by the
corresponding real parts. Figures 6a and 6b also show that symbols o and x, respectively, in figure 9. Two .iolid-line
the magnitudes of the functions qlmiK') and qlmiK'l are curves representirPg the functions iO/p and 20./p are also
comparable for F = 0.25. For larger values of F. figures shown in this figure. The values of the pseudo period at
4a,b and 5a,b show that the hull-integral function qlmIK'I depicted in figure 9 were determined from figres 4c
is slightly larger in magnitude than the waterline-integral through 8& by identifying the sucvesssivc roots, t• say. of
fiunction qlrnK.l. For smaller values of F on the other the real and imaginary parts of the function qKwt). More
hand, figures 0ab and 8a,b show that the magnitude of precisely, the pseudo periods At 1  -t, and At =
the function qhlmK.l is significantly larger than that of the jII= - It, , I - t.÷tare compted from
function qlmnlKjl. More precisely, the ratio of the largest Ithe rooIs t, and assumed to hold at I om pt' ,l1 e and t,
absolutec values of the functl ns qlmtKp and WlmKil is respectively. Figure 9 show'. that zhe values of the pseudo
approxtitately equal to 0.g, 0.9, I, 1.8 and 2.5 for F -0.5. ivriod determined in this manner from figures 4c through
0.35. 0.25, 0.15 and 0.1, respxctively. The imniortance of SL are fairly wtil bounded hy the curves I%1 and 201 ",
the hull integral Ki relative to the waterline integral K' Xcaept fair , 0.5 and 0.2 for which a large number of
therefoor diminishes as the Froude number decreases.

the 1seudo peCnokLd associated with the eal1 and imaginary
Co'palirisons of ithe magnitudes of the first peaks of ptrts, respcively, of the functon qKtt are above the

tihe funtacions qlhnlKd and qlvaKl) in figures 40~h through curve 20-14 The .peudo period of the oscillations of thle
oa.h to the function qhlntK - qlmtK)l+qlnIK'; delpited function qKl may then he safcly estimated by the simpl
in figureý 4k through Se i;xlicate that the functions app10 imatind C20 ,-• t s t
qhtIK•. and qIntKIl .ially cant•l out ine atuxher for 10 and 20.
small values of t ifor large Values of t. the hull integral ti Finally :1 is intasting to compare the far-fiel wave-
much smaller than thle wA-terline integral, Zv was n1tCed
pteviolslyl. As a result of this partial cancellation of tile 01110itude fulctiort qKlt) end the modifivihult-integna
com.ixneitnt functions qK; ai•. qK., diffetco., betweett tie ftl.iton qKqIt) to the hull-integral function qKhfti

cors'ponding to tile hull integ-•al in equation 1271 andmagnitudes of the real aid imginar. parts of the sio m iul given by equationl (120). where the summation here is
areK uc les of�ofteu i�o•-t•fu io.•.acarried omvr all the quadrilateral panels in both the upper

hull u and the lower hull v. The real and imaginary, ports
Of the wloleu1hthull ilegral 4Khtr) are dected in figure 10The v,,alue..s of 0 m t(n-•lFtl c ~itt to the for F- 0.25, which should be cm•pared to figures 6b and

"values of I noted in Figures 4ab through Sa.b mre indicated 6c mpresenfinS the moified-hull integral and the
in figures 4 c through kc. it was noted prmviouasy that:tne tile f un ion ed . intea l Fig r a t
hull-integral fttion qKj appa to be neghi y smal fo , fuu•t.on qK(h restxcidy. Figure 10
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"A numerical study of the influence of the panel
.07. Fig. 10 F =.25 numbers Nx and Nyz upon the precision of the numerical

05 "'results is now presented. Figures lIla and llb show the
5percentage relative error c in the predicted values of the

.03 ,wave resistance, defined by the Havelock integral (30),

.01 * , corresponding to several values of Nx and Nyz. More
precisely, figure lla depicts the variation of & as a function

-.01 V ' ' of Nyz for a fixed, large value of Nx taken equal to 250.
Calculations have been performed for 7 values of Nyz
equal to 8, 10, 12, 16, 24, 32 and 40. The relative error z
is computed on the basis of the wave-resistance value

-.07--• Tcorresponding to Nyz = 40. Figure ilb, on the other
5 10 15 20 25 30 hand, depicts the variation of z as a function of Nx for a

fixed, large value of Nz taken equal to 40. Calculations
Figure 10. The Hull-surface Integral qKh(t) have been performed for 9 values of Nx equal to 40, 60,

80, 100, 120, 150, 200, 250 and 300. The relative error & is
shows striking differences compared with both figures 6b computed on the basis of the wave-resistance value
and 6c. In particular, figures 6bc show that the functions corresponding to Nx = 300. Both figures Ila and ilb
qKý(t) and qK(t) are negligibly small for t greater than present results for F = 0.5, 0.35, 0.25, 0.15 and 0.1.
about 17.5 and 35, respectively, whereas figure 10 indicates
that the function qKh(t) decreases very slowly as tFigure la indicates that comparable relative errors
increase. As a matter of fact, numerical evaluation of the are obtained for F = 0.35 and 0.5, on the one hand, and

function qKh(t) for 35 < t 4 60 shows that it may not be for F = 0.15 and 0.1, on the other hand, if a given value
regarded as negligibly small for t smaller than 60. The of Nyz is used. Furthermore, the relative error for F =
regarnided as tegligiby smal is also appreciably larger 0.25 is smaller than that for F = 0.35 and 0.5, which is
magnitude of the function qK.he moaiablylarger smaller than that for F = 0.15 and 0.1. For instance,
than that of the function qK. The modified-hull integral fgr l hw htw aeEa04 o .5
qKl differs from the whole-hull integral qKh in that the figure 1 Ia shows that we have a ,,, 0.4% for F = 0f25.contribution of the upper portion of the hull to the hull a ,,, 0.8% for F = 0.35 and 0.5. and, a_' 1.4% for F=
integral qKi is combined with the waterline integral in 0.15 and 0.1 if Nyz is taken equal to 24. Conversely, if a
equation (27). The difference qK-qK i between the given relative error is desired, say c = 0.8%, figure I la
equation (2K ndThe hudiffe l qK h bdepicted in figures shows that Nyz must be taken equal to 18 for F = 0.25,
function qK and the hull integral qKh eitdi iue 24 for F = 0.35 and 0.5, and 30 for F = 0.15 and 0.1. A
6c and 10, respectively, corresponds to the waterline 24alor F o 0.3 would prob b sufficient for F
integral in equation (27). Comparisons of figure 10 with smaller value of Nyz would probably be sufficient for F =

figures 6b and 6c therefore illustrate the importance of the 0.15 and 0.1 if a nonuniform subdivision of the segment

upper portion of the hull in the hull integral and of the 0 < y < I is used, with smaller panels in the vicinity of

waterline integral, respectively, in equation (27). the waterline since the lower part of the hull has a

Comparison of figures 10 and 6c also illustrates the relatively small contribution to the wave-amplitude

advantage of the analytical treatment of the upper-hull- function at small Froude numbers. The reason for the fact

surface integral and of the waterline integral in equation that the relative error & corresponding to a given value of

(27), prior to numerical integration, performed in this Nyz is larger for F = 0.35 and 0.5 than for F = 0.25
may possibly be related to the previously-noted partial

study. cancellation between the waterline integral and the hull

integral, which is most pronounced at high Froude
6. Influence of Size of Panels numbers. Figure I la indicates that it should be sufficient to

take Nyz equal to about 25, with a concentration of
The numerical results presented in figures 4a-d smaller panels close to the waterline.

through 8a-d have been obtained by dividing the hull form
defined previously in terms of separate parametric Figure 1 lb indicates that the value of Nx which must
equations for the bow region 0 4 A . 0.25, the midship be used if a given relative error is desired increases as the
r=ion 0.25 < A < 0.75 and the stern region 0.75 A•A < I Froude number decreases. For instance, figure lib shows
into quadrilateral panels. These quadrilateral elements are that Nx must be taken approximately equal to 30 for F
defined by dividing the parametric space 0 4 A 4 1 and 0.5, 48 for F = 0.35, 74 for F = 0.25, 85 for F = 015
0 < M 4 I into constant-A and constant-M lines. More and 170 for F = 0.1 if a relative error t equal to 0.8% is
precisely, the segment 0 < p < 1 is divided into Nyz equal desired. Figure lib indicates that, fur a given value of Nx,
subsegments, and each of the three qegments 0 < A < 0.25, the relative error for F = 0,1 is appreciably larger than for
0.2" <; A 0. 3 .7, 0.75 < A , 1 is uividcd into NxiZ equal F - 0.15, 0.15, PfA5 •nid 9.5. The relative error also
subsegments. The hull form is then divided into Nx Nyz appears to decrease less rapidly, as the value of Nx
quadrilateral panels. The panel numbers Nx and Nyz were increases, for F = 0.5 than for the other values of F The

taken as Nx = 250 and N~z = 40 for the calculations simple relation Nx = 17/F yields Nx = 34, 49, 68, 114

reported in figures 4a-d throiugh 8a-d. and 170 for F = 0.5, 0,35, 0.25, 0.15 and 0.1, respectively.
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Sto an integral around the mean waterline, which is2% Fig. 11a combined with the waterline integral in expression (27).

!.8 Nx = 250 This combination of the contributions of the waterline
Sand of the upper-hull surface shows that several terms in

1.2. the hull and waterline integrals partially cancel out one
l another, and yields a modified waterline integral suited for

S.8. F = .25 accurate numerical evaluation. The analytical treatment of
the contribution of the upper hull form presented in
section 3 and the numerical results presented in section 5

.4. demonstrate the paramount importance of the waterline
integral in equation (27). In particular, the role of the

0.._._..•.•.,___.,_ waterline integral is well illustrated in figures 6b, c and I0.
! 12 16 20 24 28 32 36 40 These figures also illustrate the advantage of the method

Nyz • for evaluating the wave-amplitude functions presented in
2% T- this study.

F•. 11b
1;6. = .1 The wave-amplitude functions thus are expressed as

.15 F • = 40 the sums of the modified waterline integrals Ku

1.2. coL'responding to the contribution of the upper portion of
the hull, including the waterline, the lower-hull integrals K2

Sthe contribution of the lower of
Scorresponding to portionS.8. \ the hull, and the free-surface integrals Kr accounting for

free-surface nonlinearities, as .is indicated in equation (31).
.4. • A simple method for numerically evaluating the integrals

1791 and 132) defining the functions Ku and K!,
respectively, is presented in section 4. The numerical

o ,: method is based upon approximating the hull form by an
' 80 ' 1• 200 240 280 ensemble of quadrilateral panels composed of four plane

Nx • triangles, together with linear approximation for the

Figures llab. Influence of Panel Numbers Nx and Nyz variation of the velocity potential within each component
Upon Accuracy of Wave-resistance Calculation triangle. The expressions for the f•:rctions Ku and K •

corresponding to these numerical approximations are given
by equations (94) and (120), respectively.

Figure lib indicates that this simple formula for Nx
provides a reasonable guideline. Two main conclusions may be drawn from the

numerical results presented in section 5. One conclusion is
7. Conclusions tiler it is useful to express the function qKU+qKt in the

form qK•+qK•, wh¢,e qK'€ and qK• are the modified
A method for numerically evaluating the r•ar. and waterline and hull integrals defined by equations 1128ab)

far-field wave potentials and the wave resistance of an and (129ab) for the far-field wave-amplitude function land
arbitrary ship form advancing at constant speed in calm c ,kr)sely-related expressions for the near.field wave.amplitude
water has been presented. The method is based on the function). The wave.amplitude functions thus are •xpres•d
integral representations 1241, 128) and (30), which express as the sum of the modified waterline integrals K•., the
the near. and far.field wave potentiab and the wa• modified hull integrals K[v and the free.surface integrah
resistan• respectively, in terms of the near. and far.field Kt. The major recommendation of this decomposition i5
wave•nplitude functions K(t•'and K(t), respectively, that the modified hull integral qK• vanishes appreciably

faster than the modified waterline integral qK'• as t
The clerkly.related near. and far.field wave.amplitude increa.s)• (the shortest wa•'et in the wave spectrum are

functions are defined by integrals over the mean •tt•- con•ai).•cd in tl• function qK•). A significant r•duciinn in
hull surface, the mean waterline, and t• mean f•n• smfac• computing time nmy t•n be achk:•:d since the •,•uputing
in the vicinity of the ship where free.stance nonl" -meariti• time requi•d tot •valuating tt• hull integral qK[v for a

"- may be important, as is ipdic•ted in equation 127). 'l'h• given hull form and for 8i•n valuc• of F and t, is
hull.surface integral in this equation i• split into •v,,o parts co•derably larger than that required re4- evaluating tlut
corresponding to the contribut;•ns of the up•r and lover wat•rliae integral qK'¢.
portions of the hull. The dei•hwt.• intetp'rt• in the
integral over the upIzr portion of the me.an welted hutl is Another concl•tou which may be drawn {rcnn the
performed analytically by uslrkg linear npt)mximatiom for nun•rical results ptt'•attcd in section 5 is that the p•udo
the dcpthwt• varia•ons of th• hull form and of the period, &t, of the oscillatio• of •he wave.amplitude
veJocity Ix2¢•atial. • upix•hull tntegrll ttms Is rtdu• function qK(t) may be safely estimabal by the •

,=
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DISCUSSION
of the paper

by F. Noblesse and A. Barnell

"NUMERICAL EVALUATION OF THE NEAR-AND-FAR-FIELD WAVE PATTERN AND WAVE RESISTANCE OF ARBITRARY SHIP"
FORMS"

DISCUSSION The relatively-small differences between
by J. Baar the wave-resistance values obtained by Mr.

Baar for the Wigley hull form on the basis of
Dr. Noblesse and Mr. Barnell presented the first-order slender-s, ip approximation *

yet another in a long series of fine papers and of the numerically-exact potential * in
devoted to the steady ship wave problem. In equation 1 are certainly encouraging.
particular, the careful step-by-step numeri-
cal analysis must be appreciated at its full The second term in the far-field asymp-
value. Obtaining accurate solutions to the totic expansion of the nonoscillatory
Neumann-Kelvin problem is one of of the most near-field term N in equation 6, which Mr.
difficult tasks in numerical ship hydrod- Bear has obtained, indeed ought to be useful,
ynamics (Reference 3 of the paper contains when combined with the known three terms in
some revealing statistics in this respect). the near-field ascending series, for obtaining

a fairly-simple composite approximation for N.
Recently I obtained an encouraging con-

firmation of the "slender body" wave resis-
tance theory of Noblesse (see Reference 1).
Computations for the Wigley hull showed a
very close agreement between Noblesse's
"first order" wave resistance and predictions
obtained by means of numerically "exact"
source distributions. Small deviations
occurred only at fairly high Froude numbers.
Results of my investigation will soon be
published.

Regarding the effect of the nonoscilla-
tory nearfield disturbance, Noblesse has
shown in Ref. 5 of his paper that a simple
and crude approximation to this disturbance
might surface. My experience seems to sup-
port this observation. The algebraic approx-
imation proposed by Dr. Noblesse is based on
a combination of the first terms in the
ascending and asymptotic series expansions of
the near-field disturbance. In an unpublished
note* I derived the second term in the asymp-
totie series of the near-field disturbance.
It can be expected that this result will
yield a better approximation. Eventually
such an approximation might remove all
together what has been hitherto one of the
major numerical difficulties occurring in the
solution of the Neumnn-Kelvin problm.

Author's_-eply

We wish to thank Mr. Bear for his inter-
usting and valuable discussion. Mr. Bear's
discussion is especially appreciated because
it addresses two important aspects of the
numerical solution of the Neumann-Kelvin
problem that are not examined in our paper,
namely the convergence of the slender-ship
iterative solution procedure and the calcula-
to" if the onrosilltroy neerfield potential
4..

*"Mathematical analysis of the Kelvin Wave
Source Potentiel", Brunel University,
Uxbridge. ms.
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PROGRESS IN THE CALCULATION OF
NON-LINEAR FREE-SURFACE POTENTIAL FLOWS

IN THREE DIMENSIONS*

Lawrence K. Forbes,
Department of Mathematics,
University of Queensland,

St. Lucia, Queensland 4067,
AUSTRALIA.

Abstract and serves as a check on the non-linear
results.

An efficient numerical method is presented In recent years, several two-dimensional
for computing non-linear, three-dimensional non-linear problems in free-surface hydro-
potential flow about a pressure distribution namicsnhav yeled tnumerial solmovig oer he reesurfce f aflud. ome dynamics have yielded to numerical solution,
moving over the fre e resof a fluid. Some and these studies are used to guide the in-
sample caleulations are presented, and com- vestigation of the three-dimensional problem
pared with the predictions of lnearized considered here. For example, von Kerczek and

* theory. It is found that linearized and non- Slee 11ue iiedfeec
liner rsuls ar inreaonabe areeentSalvesen [4] used a finite difference

linear results are in reasonable agreement technique to solve for flow in a stream of

over the entire range of parameters for which finite depth due to a moving pressure distri-

solutions could be obtained. However, a fini dnd to a hvn pressuredithe

maximum downstream wave height appears to bution, and Schwartz [51 has considered the
exist in the non-linear case, presumably same problem in infinitely deep water. Both
exsocisted i h the n lne se, pfwavebresumab . studies indicate that the two-dimensional wave
associated with the onset of wave breaking. resistance of the pressure distribution may

I. Introduction become zero under certain circumstances, even
when the assumptions of linear theory are no

This paper is concerned with the computa- longer valid. Unlike von Kerczek and Salvesen
tion of fully non-linear, three-dimensional, 114], howeverSchwartz ES] used a boundary

potential flow due to a distribution of int era mehod rto sov hs problmasc

pressure moving with uniform velocity over the integral method to solve his problem; such

freemethods have the obvious advantage of reducing

tion, the problem might represent flow due to by one the number of dimensions involved in
a ship, although due to the absence of aof
contour of intersection between the free sur- satisfying automatically the boundary condi-
fcntou of 'nutersetionbletwen the frepesr-y tion at infinite depth within the fluid. In
face and a hull, the problem more properlyadionShrtusdn nee-ln

corresponds to flow caused by an air-cushion addition Schiartz used an inverse-plane
vehicle. The problem has been chosen for its formulation in which the velocity potential

and streamfunction are taken as independent
numerical method which we believe will be of variables. Inverse-plane methods combined
numerical morethodm ichawed beieve wro mial bofwith boundary-integral techniques have albo
use in more complicated ship-hydrodyna.ical been used by Forbes and Schwartz [61 to
problems. solve for flow about a semi-circular obstacle

The linearized solution for flow due to an placed on the bottom of a running stream, and
arbitrary distribution of pressure is well by Vanden Broeck and Tuck [7) to investigate
known, and may be found, for example in the flow in the neighbourhood of the bow or stern
article by Wehausen and Laitone [l]. Newman of a two-dimensional, rectangular "ship".
and Poole [2) considered the case of a dis- This latter paper indicates the complexity of
tribution moving in a canal of finite width, flow caused by a body which is surface-
and Tatinclaux (31 has catalogued linearized piercing.
wave-resistance profiles for a variety of Inverse plane methods, first introduced by
pressure distributions, Tatinclaux did not Stokes [8], afford a considerable simplifica-
attempt the numerical evaluation of the free- tion for problems involving a simply-connected
surface profile, however, and in general this fluid domain, since the unknown free-surface
is a task comparable to the numerical solution location is mapped simply to a straight line
of the full non-linear problem in difficulty in the inverse plane, along which the stream-
and computer time requirements. For the function is constant. However, problems may
rectangular Gaussian distribution considered also be formulated directly in the plane of
in this study, a method is presented for the the phyiclariaes tly n loss ofthe physical variables, with no loss of numer-
evluation of the linearized surface elevation, ical efficiency when boundary-integral methods

* This research was initially • tpr•d b the ONR Special Focus Research Programme at the
University of Iowa, number NOUU8-N-83-K-U136. , -
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are used. Such an approach was adopted by
Hess [9], although the solution to his F ----
integral equation was apparently sought by an (gL)2
iterative process which cannot converge, the dimensionless half-width
since the integral operator possesses a
continuous spectrum, as has been shown by B
Forbes [10]. Successful iterative schemes L
for two-dimensional problems formulated in and dimensionless strength
the physical. plane may be found, for example, p
in articles by Forbes [ii, 12]. o

For three-dimensional potential flows, pgL

Street [13] has shown that inverse methods of the pressure distribution. Here, P de-
preclude the use of boundary-integral techni- notes the fluid density. In these dimension-
ques, so that of necessity, a physical-plane less coordinates, the pressure distribution
formulation is required. Such methods have, now has characteristic length 2 and width
of course, been in existence for some time 2a , as shown in Figure 1.
for problems not involving a free surface; of In the interior of the fluid, the velocity
these, perhaps the best known is due to Hess p ntha intisfie Llace eloctty
and Smith [14, 15], although their method has, potential V satisfies Laplace's equation
in fact,been improved somewhat by Landweber V24 - 0 , (2.1)
and Macagno [16]. since the fluid is assumed ideal. In addition,

Our aim in this paper is to demonstrate
that numerical solutions of acceptable ox ÷ 1, oy - 0, ýz ÷ 0 as z (2.2)
accuracy to the problem of three-dimensional
non-linear flow caused by a moving pressure Ib the equ ation it
distribution may be generated by a new numer- described by the equation z = f(x,y) , then
ical method which is as efficient in three the usual kinematic free-surface condition and
dimensions as Forbes' [11, 12] two-dimensional Bernoulli equation may be written
algorithms, and has the same potential for 4) x + yy C 0z on z = (2.3)
accuracy as the method of Landweber and x x y y z

Macagno [16]. Details of the problem formu- and
lation are given in section 2, and the numer- 2
ical method itself appears in section 4. The ½F2 (4) 2 +4 ) + i + cP ½F on z = z (2.4)
linearized solution is described in section 3,
and a presentation of the results of computa- respectively. The radiation condition, that
tion is given in section 5. Some possible no waves be present upstream of the pressure
extensions and improvements to the method are distribution, leads at least to the require-
indicated in section 6. ment

2. Formulation ox 0 I .y z 0, 0z 4 0, C - 0 as x

Consider a pressure distribution which is (2.5)
stationary with respect to a moving cartesian
coordinate system in which the z-axis points although these equations are not of themselves
vertically, as in Figure 1. The pressure sufficient to prevent the appearance of up-
distribution is assumed to be of the form stream waves, and a stronger statement regard-
PoP(x,y) , where P0  is a constant which ing the rates at which the above limiting
represents the maximum strength of the dis- values are approached might normally need to
tribution and has the dimensions of pressure. be made.
The distribution is assumed to be symmetric It remains to choose a suitable form for
about the plane y-O , so that the pressure distribution function P(x,y)
P(x,-y) - P(x,y) , and to have some character- An obvious choice is the piecewise constant
istic length 2L and width 2B . Relative to function
the coordinate system, the fluid flows in the
direction of the positive x-axis such that its r1, if lxi • 1 and jyj : 5
speed infinitely far upstream is c . The P(x,y) -
downward acceleration of gravity, g , acts 10, otherwise.
upon the fluid, which is assumed to be invis-
cid and incompressible, and to flow without This choice has been examined in detail by
"rotation. Tatinclaux [3], who showed that the wave

Dimensionless variables are defined forth- resistance as a function of Froude number F
with, by choosing c as a reference velocity exhibits .wid oscillations as F + 0 . Our
and L as a reference length. Since the flow own numerical results confirm this behaviour,
is irrotational, it may be described by a and also suggaet that the expression for the
velocity potential 4 , which is made dimen- linearized free-surface elevation does not
sionless by reference to the product cL . A give a bounded result everywhere. kccerdin;ly,
particular flow is thus characterised by the this case will not be considered further here.
length-based Froude number For definiteness, we shall consider the

', p,,,
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FIGURE 1: The non-dimensionalized flow configuration and
coordinate system.

simple "rectangular Gaussian" pressure dis- function l/Rpo is assumed, and this is just
tribution the potential due to a point source located

P(x,y) = e 2-x-2/22 (2.6) at P and observed from point Q . Here
Rxy -(6r(p-x)2+(c-y)2+(¶_z)2]½

although the numerical technique developed
here clearly has much wider applicability, is the distance from P to Q , measured from
The choice (2.6) leads to well-behaved point Q . Since the function 1I/Rp is
expressions for the linearized solution, singular at Q , this point is excluded from
although the wave resistance plot lacks the the volume V by the small hemispherical
customary maxima and minima at low Froude surface S. placed about point Q . The sur-
number, as will be seen presently. face ST is the entire free surface z-=(x,y)

punctured by a small circle of radius C
An integrodifferential equation for the centred at Q , and S. is a hemispherical

velocity potential at the free surface is surface of large radius centred at the origin.
derived by applying Green's third formula to When c- 0 and surface S. expands to infin-
the function 4-x in the volume V shown in ity, there results Green's third forula
Figure 2. By equations (2.1), (2.2) and (2.5),
this function is harmonic and vanishes at 2v(ý-x)
infinity. Suppose Q(x,y,z) is a fixed Q (2.7)
point on the free surface of the fluid and " 0-4 ,X)p - (.-X)p dSp
P(P,U,T) is a moveable point on any of the JJ P an, RpQ RPQ anp P
surfaces ST , SE or P. bounding volume V .

The use of Green's third formula is equivalent in which nF denotes the normal to surface
to distributing simple (Rankine) sources over ST at point P pointing into the fluid.
the entire free surface, since the Green Z,

Y

S TQ

V

FIGURE 2: The domain of definition of the
intogrodifforeatial equation.
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Surface ST is now the entire free. surface of OOthe fluid with a circle of vanishingly small
radius about Q excluded. 27r(O(Q)-x) f f J {(P)-O(Q)-p+,c}

In anticipation of the forthcoming numer-- -

ical work, the si.ngularity is removed from the
first term on the right hand side of equation
(2.7), by writing the equation in the form 

d()~Q-~x~ ()(-) P) a

= ({(O-X)P-(O-x)y)-1- dS-
TS~ +n r + P F dpdcL

J)1 Q P PP '( Q)2
+ST p 

(Z.12)

S P QpJP The kinematic condition (2.3) has been used
T in the derivation of the last term in this

A Taylor-series expansion of the first inte- expression. In view of the assumed syemetrygrand when P-'Q , as described by Hilob and of the pressure distribution function P(x,y)
Landweber C171, confirms that it is indeed the sy~mmetry conditions
non-singular.

Following Landweber and Nacagno [161, the C(X,-y) - (x'y)
last term in equation (2.8) may be evaluated in (X-) t (x.y)closed form, using the Gauss flux theorem Cx x (2.13)

§ anpRP Sf a 2.) (x.-y) u - (X.y)

S V~~*X.-Y,Z) OXYZ
in which S ST + SC+ S-. is the closed
surface to volume V shown in Figure 2. The apply, and are incorpor.~ted into equation

contibuion romthe urfce S inthe(2.12). Consequently it is only necess.iry to
limit e-.0 Is easily seen to be -2r osdrtehafssey!
similarly, because the free surface is The solution to this problem thus consists
asymptotically flat at infinity, the surface of determining the surface elevation
S. is an exact heW sphere, and its contribu- z - ý(x,y) and the velocity potentialtion is thus 2v . These two contributions (xyU.)) there, by solving the integro-
canacel. so that the remaining Integral over differential equation (2.12) combined withthe euriace Sr. Is rero, by equation (2.9). the surface conditions (2.3) and (2.4), andThe last term in equation (2.8) therefore nubject to a radiation condition of the typevanishes exactly. (2.5). Values of * at Intecior points of

Bec.&use the first term on the right hond the fluid may then be generated using Green's
side of oquatiou (2.8) Itp non~-singular, the third formula.
surface ST way be replaced by' the full f~ec The vector force ** on the pr~essure
surface z . c(x,y) , The second term has a distributior, may also be computed from the16vak, but Integrable. siogularity and the above solution according to the fornula
surface Sr nag likewise be replaced by
a (In this term also. Using the definition F af P(x,y)n dS

(240) which, in viev of equations (2.10) And (2.11),
(2.io) yields the wave resistaute

x Y½ -0 P(X.y) ~(X~y) dxdy (2.14)

of the i vrii-faclog normal vector to the sur- _

face z - C(z.y) . aad the formula

cid the weight

-kn W aa I f P(x.Y)dxdy (2. 15)

for ý:ho elemental area dS ,equatiom (2.8) is -uA

Writean Lc the form of the distribution. For the pressure 4dittri-
butimn function (2.6), equation 2.5 yields
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3. The Linearized Solution T1/2 00 e a(O)k2g(k,O)

If the pressure distribution acting on thL •(x,y) = -b(O){ - b(y) dk dO
surface is weak, then a is small and linear- 0 0

ization about uniform flow is possible. The

result is well known, and the solution for iT/2
arbitrary pressure distribution functions - fa b2(O)e-a(o)b'(O)
P(x,y) is given by Wehausen and Laitone (Fl], -

p.598). The linearized expressions for 0 and 0

Sare

O(xyz) - x + O fp(&,n)d& dn sin(xb(8)cos O)cos(yb(O)sin O)dO

21T + O(a2) ( 3.4)
[ ik cos 8 exp{krz+i(x-&)cos e+i(y-n~sin. 6FcoZ 1) ]

0 0 where the improper integrals are to be inter-
preted in the Cauchy principal-valued sense.
Here,

dk dO + O(a2) (3.1)

and a(8) - ¼(cos2 O + B2 sin 2O)

C(x,y) =- fJJP(En)d& dn b(F) - F-C•8 (.

f(k,O) - kekZsin(kx cos O)cos(ky sin 0)

2 M k exp{ikg(x-&)cos6+(y-n)sin ) &(k,8) - k cos(kx cos O)cos(ky sin 0)

f f kF'cos'G -1 Ikd
0 0 The linearized wave drag is computed from

equations (2.14) and (3.4). The final result

+ 0(al) . (3.2) is

These expressions are formally divergent, due D - •TI182 / b(O)Gcos 0 e&2a(O)b'(08 )dO
to the presence of a pole singularity in each f

integrand, and must therefore be interpreted in

a manner which leads to a bounded solution
free from upstream waves. This procedure Is + 0(01) . (3.6)
described by Havelock (181 and Wehavsen and
Lattone ([(i', p. 475), and involves deforming where the functions ,%(0) and b(O) are
the path of integration in the complex k-plane defied in equations (3.5).
to *vei• thl pole singularity at
ko 0 (F cos O) in a semi-circle of vanish- 4. Numerical Methods
ingly small radius centred at ko •

When thd pressure distribution function 4a. Evaluation of the linearized solution.
(2.6) is Oubstituted into equations (3. and This section revievs the numerical method
(3.2), the outer integrals may be evaluted at
once. After the singular integrals h~aveusd ortevauinofheleaid
oneen interp ted singuaroriaterly inhanve solution given by equations (3,3) and (3.4).
fienly bnerpetd prorltoy in t:he.k nimilrnner. f h fdeenIntesrib eed above, priatsolut in t and Both expressions require the evaluation of a
described above, the solution for 0 and f king-!r Integral of Lhe formfinally bae to it /2 " ,0 ) '_ 0 .. ..1

ONI#Z 0 X qq bOCO k,.e)
O(•,v.k -- ' b(O)o k ... ...

00

dk d0
m1/2 in which a is p*itivv.. and perhaps also

Ib(O)cos 0 eab(8)a(O)b'(0) small. This Integral may Uv rendered am-

) c( singular ay vritiu the ideautity

0

cos(xbWO)cos M)eos(yb(O)sig O)dO

+ 04:)(3)

and

3- ,



C keak2 2 The first integral is evaluated by a Hermite-
-ak ( -ak2  polynomial quadrature rule, and the second by

S bk -b a Laguerre-polynomial rule, as above.
0 0 The singular integrals in equations (3.3)

O -ak 2  and (3.4) may thus be evaluated using equations
+ f(b) k b dk , (4.4a) (4.1) - (4.3). The integrations with respect

to e in equations (3.3), (3.4) and (3.6)
0 are then performed using 96-th order Gaussian

quadrature.
where

f(k) f(b) 4b. Solution of the non-linear problem.
k - b (4.1b) The full system (2.3) - (2.5) and (2.12) of

non-linear equations is solved numerically by
adapting the methods of Forbes and Schwartz

The function h(k) in equation (4.1b) is r6) and Forbes [2I1 to three-dimensional geo-
written as the sum of an even and an odd metries. The free surface z - 4(x,y) in the
expression, half-space yý0 is represented by discrete

h(k) - fh(k)+h(-k)) + ½Fh(k)-h(-.k). values 4kX on a rectangular lattice xk ,
k - 0, ,... ,N , yt , k = 0,1,..., M distribut-
ed over some finite subset of the x-y half-

so that the first term on the righbt-hand side plane. The points xk are separated uniformly
of equation (4.1a) becomes by an amount Ax , and the values yX are
CO 00 likewise uniformly spaced with interval Ay

-ake 2 h ake The quantities x. and xN are chosen to be
h(k)e dk - h(k)e dik large negative and large positive nvibers,

o -w respectively; by the lateral symmetry of the
problem yo -0 ., and yý is chosen to be

SIh(k)_h(-k)e -ak 2 dk appropriately large and positive.

0 The kinematic condition (2.3) and the
Bernoulli equation (2.4) are combined to give

A straightforward change of variable on the
right-hand side of this equation leads to the [X+0y + (0x x4-yCy )21 + t + CaP - ½F
result

f~ ~-k dk e~th[_ on z (4.4)
f dk where the symbols 0. and denote the0functions 0.XyC~~) yn"•~~,(~)

respectively. By the chain rule of calculus,

+ Ortfhrbt aI~ dt these functions may be eliminated in favour of
) - 'a derivatives of O(x.y,C(x,y)) using the

0 results

The first Integral on the right-hand side of X•-.-•(xy>) - 11 (x'y.(X'y))
equation (4.2) -Is evaluated using a 2O-ponlot

ltrmite-polyno~ia-l quadrature rule. The + t(Xyt(x~y))C
integrand of the second term is finite at (4.5)
twO , snd tonsequently, this expresvion is
evaluated by a I-5point Laguerre-polynoiial O(X 'CK(x'y)) - 0y(X*y.4(X~y))
quadrature rule (see Abramowitz and Stguny
(193, p. 8W). + 0 (X.yC(N'y)ýý

It tetwina to evaluasd tha second integral
in equation (4.is), It is shouin in the The functions O 1 equations (4.5) are
Appendix that this may be vrltten In ww oh eliminated using te kinematic zonsd(.io) (2a )
unon-s#iular Lutegrala accordiag to tht eligine
relationship to giv

ik t 'aba dt

(4.3)

2 (4 r, t +Ia'
0 + b) j

.1
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4ý(x'y' , J(A,B,C,X,yY,Xo,XN, YM)

( T+4y) TX C(x,y,) - x (x,y,) XN_X yM_y
1+ ýx + .[ •I"1 y ds dt (4.8)

(As +Bst+Ct 2 )½

(4 .6) X -X y (-y

4Cy(x,y,4)

(1+Ck,) Ty x'yO - Xy a (x,y,f) and

1 + r y +

A(Q) = I + C'(Q)
x

Equations (4.6) are substituted into equation B(Q) 2ý (Q) (Q)
(4.4), which eventually yields the relation x Y

".2+r ,) C(Q) -1 + CI(Q)
C L + r (1+c+C') r(x vyY1 yx i a + x y (4.7)

The integral J in equation (4.8) may be
evaluated in closed form, by making use of

in which the indefinite integral

FRx,y) y - F'ý 2 F -2 dsjdt EI2 +Bstl 1- " tryj ds dtf f [As2 +Bst+Ctý

and a/Dx and l/•y are the derivatives of
the surface function ý(x,y,4(x,y)) on the
left-hand side of equations (4.5). t ' Xn{2As + Bt + 2rA(As2+Bst+Ct4)]½)

The integrodifferential equation (2.12) is 7 A

treated numerically by truncating its domain ½

of integration to the rectangle xo 5 x 5 xN , + T £n{2Ct + Bs + 2VC(As 2 +Bst+CtW)" )

-Y} 1 y : yM . Following Forbes and Schwartz
r6 1 , equation (2.12) is evaluated at the mid-
points Q(xk- 1 ,yt) , k - 1,... ,N , + hI(s) + h 2 (t)
I- 0,1,...,M , since this allows freedom to
specify conditions at the line of points
(XoyZ) , t -",,l.... ,H in accordance with where h1  and h2  are arbitrary functions of
the radiation condition (2.5). In order to Integration.
remove the singularity from tha last term in After the syrmory relations (2.13) have
equation (2.12), the Taylor-series expansion been incorporated into the truncated integro-
of the Integrand about P'NQ is identically differential equation (2.12), and the singu-
subtracted and added to the itntegrand. This larity in the last term ret•ved in the,

lust torm is thus re-written as tmanner described above, the equation takes the
Y1 xN ( form

"_YM XN Ym

4K(Q) 'I i.% f1o
-x) ( (1A(Q)+().X;(0-y)8(Q)÷W-yl C(Q) 0

+ ( , + d d do{(i(O.O)K (0,*30,Ky)

K 0
0

+ 4(x.y)J(A.B.Cxy.x.. \Y (4.9)

in Uhich X(1 K~2  and S ( r2)neiol
wa349ro + •xx~y)(ABC~xy,•e•N~y• , •.9

: in•Ic K(1 . (2) •d S2) -'a tmeio.



of the points P and Q , and also of C fa1
and its first derivatives. Equation (4.9) Predictor: + AX (4.12)
is evaluated at the half-intervals xk_.½ k+,,z k-Z lk (.2

k = 1,...,N , and the integrals are
apprc-imated Dy Simpson's rule. Values of compute by five-point different..
the dependent variables at the half-intervals iation
are interpolated onto whole-grid points by a
three-point interpolation formula consistent _ft

with the parabolae fitted by the Simpson's compute from equation (4.7)
rule integration. jk+1,X

Equations (4.7) and (4.9) are solved for
the functions C(x,y) and .(x,y,ý(x,y))
by Jewtonian iteration. Notice that, by Corrector: A k ,£Axfj =+I+(-
expressing the surface conditions in the . x kZ Fax Jk+l,k
fov= (4.7), the need to solve for ( and
0 simultaneously by Newton's method is
eliminated, resulting in an enormous (4.13)
reduction in computer storage and time
requirements. Instead, ý(x,y) is obtained
at the surface mesh points by Newton's compute I-I and I•-I as above.
method, and the values of 0 are then ay k+1, Zk+vZ
updated at each iteration of Newton'c method,
using the method of lines and a predictor-
corrector approach to integrate equation The integrodifferential equation (4.9),
(4.7). discretized and evaluated at the half-intervals

To begin, aninitial guess is made for the N k -=I *. N , yields a system of

unknown vector of length N(M+I) formed NiM+1 algebraic equations for the unknowns

from the quantities (Ox)kk , k = 1,... ,N (ýx)kt , k = 1,...,N , £ = 0,1,...,M . This

S= 0,1,...,M . These values are initially system is solved by Newton's ilathod to obtain
e an improved estimate for the unknowns. Theaet to zero. The radiation condition (2.5) iteration (4.11)-(4.13) is then repeated until

is imposed at x=xo , so as to satisfy convergence is observed. The scheme converges
equation (4.7) exactly, by specifying quadratically, and about five iterations are

reouired to satisfy equation (4.9) with a root-

(k , oC Xi -j = 0 mean-squared residual error less than 10-8.
The wave drag D is computed from equation

Sx (2.14) using straightforward Simpson's rule
(4.10) quadrature. As a check, equation (2.14) is

= 12F- 2  o,)]½ also evaluated using double cubic-spline
lax)0£ =Rxy 2 )] integration, in which the splines are integrat-

ed in closed form, and the results of the two
= 0, , .methods are in good agreement.

The free-surface elevation t is now 5. Presentation of Results
obtained by trapezoidal rule itutegration, In Figure 3, the linearized wave drag
using equations (4.10) as initial conditions, computed from equation (3.6) is shown as aaccording too etuteo formulahon saccording to the formula function of Froude number F , for the dimen-

sionless pressure strength (=0.01 . Results
k+l, =kZ + ½Ax[(• )±(x)k+1, are displayed for the chree different values

( 1 -0.1, 0.2 and 0.3 of the half-width of
(4.11) the pressure distribution. Perhaps surprising-

k - 0,1,...,N-1 , k = 0,1...,M . ly, the wave resistance fails to exhibit the
local maxima and minima normally encountered
at low Froude number, but instead approachesThe values of • thus obtained from equation aero monotonically as F-*O.

(4.11) are differentiated numerically, using
five-point Lagranglan difference formulae, To attempt to reproduce the results of
to obtain y at the surface mesh points. Figure 3 in the non-linear case would 'lace an

A predictor-corrector method is next used unreasonable demand on presently-availalle
to compute d -oat the surface, from the computing resources. Instead, a comparison of
values of •and its derivatives calculated linear and non-linear results can be made morevalus o ~ nd is drivtive caculted profitably by considering the fixed Froude
above. Initial conditions are supplied by nuibly by .nRering ther Froude

equations (4.10), so that, if 4,* denotes number F-0.7 . Results at other Froude
the prudictor value, the two steps are as numbers are expected to be qualitatively

follows-. similar. Accordingly, we present in Figure 4
a comparison of the linearized and non-linear
wave resistance as functions of pressure
strength a , when F-0.7 and 8-0.2
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0.5 to 1.5 F

FIGURE 3: Linearized wave drag as a function
of Froude number F , for three
different values of 8 , and a=0.01

The linearized drag is shown with a solid evaluation of the linearized free-surface
line in Figure 4, and is a quadratic function elevation is a difficult process, and in
of a , as indicated by equation (3.6). For spite of the care taken here, it is neverthe-
small , the linearized and non-linear less not possible to guarantee the accuracy
results are-in excellent agreement, as of the result outside the interval shown.
expected, but as a is increased, the non- The non-linear result, shown with a
linear values are seen to fall below the solid line in Figure 5, is taken from a
predictions of linearized theory. The numerical solution with N-34 , M=6 , a
difference, however, is not great, and for total of 245 surface points, which took
a=0.02 , the non-linear drag is still almost seven iterations and over three hours of com-
90% of the linearized value. puting time on an IBM 3083 E computer to

achieve convergence. Both sets of results areThe free-surface elevations at the centre- i ls gemn vrmc fteslto
plan y- gien y te liearzedandnonin close agreement over much of the solution

plane. y-0 given by the linearzed and non- domain, although the non-linear wave heights
lineat solutions are contrasted in Figure 5, are slightly less than those of the linearized

fThe linearized prof=O l is ske d wh a0 .waves, which is consistent with the results
The linearized profile is sketched with a for wave resistance in Figure 4. The last
dashedtoned in the intervalcti, te n cas half-wavelength or so downstream also appears
mentioned in the introduction, the numericaltob neorfrh o-leasouo;

to be in error for the non-linear solution;

6 linearized
W,

S5- w m non-linear
X

3-

0.005 0.01 0.015 0.02

FIGURE 4: Linearized and non-linear wave drag as a

function of a , when F=0.7 and $-0.2
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FIGURE 5: Linearized and non-linear surface elevation on
the centre-plane yf0 , for the case F=0.7

8=0.2 ,a=O.02

this is undoubtedly due to the downstream origin, due to the presence of the pressure
truncation of the domain of integration of distribution, and the first downscream wave
the integrodifferential equation (2.12), clearly forms a curved front, which opens
and has been documented in detail elsewhere towards the downstream side of the flow field.
[6,111 for two-dimensional problems. In Figure 7, a perspective plot is shown

Figure 6 shows a perspecti.re plot of the for the free surface obtained from the non-
free surface for the non-linear solution linear solution for the case F=0.7 , a-0.2
obtained with FwO.7 , ý=0.2 , a-0.01 a-0.02 . A portion of this surface has already
The surface has been extended by reflection been sketched in Figure 5. This value
about the plane y-O in accordance with a=O.02 is the largest pressure strength for
the symmetry conditions (2.13), and the which Newton's method converged, and so it is
values of y and ý have been amplified by possible that the non-linear waves in Figures
scale factors of 5 and 100 respectively. The 5 and 7 are approaching some maximum height at
surface exhibits an approximately elliptically which wave-breaking would presumably take
-shaped depression in the vicinity of the place. Of course the discretization of the

4Z

FIGURE 6: Perspective plot of the free.-surface; F-0.7
0.2 ,a-0.01 (non-linear case).
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free surface in this study involved most of the permissible values of F 8 and
relatively few surface mesh points, and the a . In practice however, the expression for
use of larger numbers of grid points might lincarized wave elevation is generally cf
enable higher waves to be obtained, although limited use, since it is difficult to evaluate
at greatly increaRed computational expense. accurately, particularly in the far field, and

for arbitrary pressure distributions requires
6. Discussion and Conclusions a computational effort comparable to the

successful numerical method hAs been solution of the full non-linear problem. By
contrast, the non-linear results do not sufferpresented for the calculation of three- loss of accuracy in the far field, except that

dimensional, steady potential flow involving due to the downstream truncation of the

a free surface, and represents a logical integrodifferentiam equation, and the run-time

extension of earlier boundary-integral methods of the method is essentially independent of

daveloped for two-dimensional flow problems the meti s essenti orythepend e

[6,11,12]. Since it is not necessary to do the particular form chosen for the pressure

so, no attempt has been made to "match" the distribution function.

numerical solution to a linearized downstream It appears that some maximum value of the
wave-field. However, it is possible that pressure strength a exists, at which incip-
better accuracy might result from employing ient wave breaking occurs. The numerical
such a procedure, similar perhaps to that results presented suggest that this value may
outlined by Lin, Newman and Yue [20]. be about ct=0.02 , although more accurate
Although the method is demanding orn computer computations would be needed to confirm this
time, it is nevertheless very efficient, and speculation.
the accurate numerical solution of many
non-linear, three-dimensional free-surface
problems reduces now merely to a question of References
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e-ak2 -a(t+b)2 e-a(t-b).
e - dt

0 -O

+ 2 dt (A.3)

b

The first term on the right-hand side of
equation (A.3) is now written

f e-a(t+b) _ e-ab dt

f e-a(t-b)2 -Jab2  
dt

and the changes of variable u - t+b and
u = t-b in the first and second of these
terms, respectively, gives

O-ak2 W-au 2  -ab 2

e -~dk -b e -2-e 2 adu
dk - b u - b d

0 -=

S_au 2

+ ý----du .(A.4)

0

Equation (4.3) may be obtained from (A.4) b
first making the change of variable t - u/a
in the first term on the right-hand side.
The second term is written

lr u~ tu au2
Jauadudu

0 0

and equation (4.3) follows upon the
change of variable t * au in this term.
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DISCUSSION
of the Paper

by Lawrence K. Forbes

PROCRESS IN THE CALCULATION OF NON-LINEAR FREE-SURFACE POTENTIAL FLOWS IN THREE DIMENSIONS

DISCUSSION Author's Reply
by V.J. Monacella

I am indebted to Mr. V.J. Monacella for
Section 4a. on the evaluation of the drawing my attention to his ingenious device

linearized solution seems to deserve comment. for evaluating Cauchy principal-valued
An analysis is provided whereby the Cauchy integrals numerically, simply by placing
principal value integral is transformed to four points symmetrically about the pole singu-
infinite integrals two of which are evaluated larity and then ignoring it.
by Hermite-polynomial quadratures and two by The discusser suggests that the integral
Laguerre-polynomial quadratures. There exist in section 4a of the paper be written in the
aany methods for evaluating Cauchy principal form
value integrals but perhaps the most straight-
forward method** is one in which the singu-
larity is ignored. G(k)dk - 1i + 12,

It was proved** that if the singularity is f 0  k-b
located at the midpoint of the range of 2
integration then any quadrature for which the in which G(k) f(k)exp(-ak2), and
abscissae and weight functions are symmetrical
about the singularity and which avoids the 1
singulartty itself can be used. The conditions I, =. G[b(k+l)]dk
on the quadrature impose no serious restric- k
tions as they are properties of all even-order -1
standard quadratures. Thus, using2 g(k) to pb
represent the author's f(k)exp(-ak ) the singu- 12 - G(k+2b) dk.
lar integral can be written f k+b

a'~kd 2 b Certainly the integral 11 can be evaluated to
I-PV JdkPV dk+ gb) dk high accuracy using Mr. Monacella's device of

J kb k V2`b k-b ignoring the singularity, and this form now

only involves two integrals, instead of the
four which appear in my analysis.

The first integral on the right hand side can My concern however is not with the eva-
be approximated as just discussed. The second luatlon of the integral I1, which as pointed
integral can be approximated by standard out by the discusser could be done efficiently
methods. It should be noted that the error In h variety of ways, but in3tead with the
term associated with the numerical integration accuracy with which the integral 12 may be
of the first integral depends only on the evaluated, especially in the case when the
quadrature chosen and the well behaved com- constant a in the exponential term is very
posits function g(k)-g(b) small, as may happen when the pressure distri-

k-b bution is narrow. As the discusser suggests,
integral 12 can be evaluated directly, effec-

In particular, writing I in the standard form tively by multiplying and dividing the inte-
to apply Gauss integration formulas, grand by exp(-k), and applying the kGauss-

Laguerre quadrature rule to the function

I - P gfbk~ll dk R~k~b) k G exp(k). When a is small and a quadra-
P1dRJ + d ture rule of moderate order is used however,

0o this can involve substantial error. To get

the first integral can be evaluated by any around this problem it would bW necessary to
even-order Gauss-Legendre quadrature, ignoring exploit 2 the fact that an exponential term
the singularity, and the latter integral by the exp(-ak ) appears In the integrand, and
Gauss-Laguerre quadrature. I would appreciate attempt to rewrite integral 12 in a form which
any insight that the author can offer regarding enablea the most effective use of Gause-
the efficiencýy of the two methods. Hermite and Gauss-Laguerre quadracures. This

would now involve at least three integrals,
aMonacella, V.J., 'On tgnoring the Singularity and a computational effort comparable with
in the Nuerical Evaluation of Cauchy Principal that required in section 4a of my paper.
Value Integrals," David Taylor Model Basin Perhaps the moat efficient method of eva-
Report 2356, Feb 1967 lusting the integral in section 4a might be to

use the math.ýd given in that section when a
is meall, and to use Hr. Monatella's suggested
form I1 + 12 when a is large.
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DISCUSSION tinuity, and hence do not correspond to thebehaviour of the exact non-linear solutioa.

MseIndeed for two-dimensional problems, Van denSMy question is how the present numerical

method deals with the case of Tatinclaux when Broeck and Tuck* show that a discontinuous
the free-surface elevation is discontinuous pressure distribution leads to a linearized
along the line of lyf'8. jxj<l as shown in the solution for which no non-linear solutionF2 y h n zexists. Three-dimensional problems areFigure S1, S2 obtained by the linearized apparently even less tolerant of discon-
theory. tinuities in the pressure distribution func-
Author's Repl tion, since the linearized free-surface

Reply..elevation becomes unbounded at the corner

I thank Dr. Suzuki for his question con- points of Tatinclaux's rectangular piecewise-
cerning the behaviour of the numerical method constant pressure distribution. Certainly we
when applied to Tatinclaux's piece-wise must expect there to be no non-linear solution
constant pressure distribution function, and for such a pressure, and as the numerical mesh-consthediantpremss e disst utpion fu on, and sizes are refined in the present algorithm,
fineort dia ed forface thevatio. then the behaviour of the present scheme mustlinearized surface elevation,.liaeyrfetti atultimately reflect this fact.

When the present numerical method is *Reference: J.-M. van den Broeck and E.O.
applied to a discontinuous surface pressure, Tuck, "Wave-less free-surface pressure
results are obtained which are qualitatively Tu tions, Mtemaca researe
similar to those presented in my paper. This, distributions," Mathematical Research Center
however, is a consequence of the fact that the
finite differences cannot represent the discon- Wisconsin, Madison, Wisconsin (1984).
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DISCUSSION the non-linear drag integral (2.14) numeri-
by K. Mori cally. As the discusser indicates, the

downstream waves certainly have not decayed to
According to my experience, the integration insignificance at the terminating downstream

over the foee-surface, eguation (2.14), depends ourface, and so the surface gradients there are
strongly on the position of the cogputing not necessarily small. This poses no dif-
domain. Significant surface gradiein ts seem ficulty in the present investigation, however,
still to exist on you50 terminating urface since the surface gradient function in the
X = 5.0. integrand of equation (2.14) is multiplied by

the pressure distribution function (2.6), which
Author's Reply decays exponentially rapidly away from the ori-

gin. For less well-behaved pressure distribu-
Dra Mora expresses concern about the tion functions, Dr. Mori's observation could be

accuracy with which it is possible to evaluate of concern, however.
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FORCES ON A SLENDER SHIP ADVANCING NEAR
CRITICAL SPEED IN A SHALLOW CHANNEL

C.C. Mei
H.S. Choi

Nassachussetts Institute of Technology
Cambridge, KA 02139

This approximation was further extended by
Abstract Tuck (1966) for slender ships, by means of

matched asymptotics. According to this kind of
In recent towing tank experiments by Huang theory, the far field equation is elliptic for

et al. (1982) it has been established that a subcritical speeds, implying no steady waves,
ship moving at a steady speed not far from the and hyperbolic for supercritical speeds, imply-
critical speed V-g, where h is the tank depth, ing waves similar to those in sunersonic aero-
radiates solitons upstream in an almost pern- dynamics. In the transcritical region, the
odic manner. On the other hand, Wu and Wu linearized theory breaks down. Steady, one-
(1982) have found similar results theoretically dimensional hydraulic approximation was also
for two dimensional disturbances such as a advanced by Kreitner (1934) who found that the
pressure band moving along the free surface, by solution became singular near the critical
solving numerically the approximate equations speed.
of Boussinesq class for long waves in shallow
water. In this paper, more recent work aimed Maruo (1948) was the first to suggest the
at the prediction of two dimensional upstream use of a nonlinear theory similar to that of
solitons by a three-dimensional strut is re- transonic aerodynamics. More calculations have
viewed and preliminary extensions for a slender been made subsequently by Lea and Feldman
ship are discussed. (1972) and by Maruo and Tachibana (1981) who

however warn of the breakdown of the continuous
1. Introduction solution at the critical speed. Unlike com-

pressible aerodynamics, waves in shallow water
In several early experiments, it was ob- are affected to some extent by dispersion, in

served that a steady state was difficult to addition to nonlinearity. Hei (1976) extended
achieve if the ship was towed at nearly the the boussinesq approximation which contains
critical speed,/7pi which is the propagation dispersion and nonlinearity to leading order,
speed of infinitesimal long waves in shallow to transcritical flow around a slender strut in
water. In addition to Thews and Landweber horizontally unbounded water. His work is a
(1935, 1936) who were the first to discover generalization of Karpman (1967) who found that
such a phenomenon. Kinoshita (1946) also a slender strut in a high supercritical flow is
noticed similar behavior. In particular, he governed by the KdV equation. All these
described the damming of water in front of the theories are for steady state motions in a
ship and the occurrence of backwater moving horizontally unbounded sea.
ahead of the ship and that "the stream around
the ship remains no longer in a steady The experiments of Huang et al. (1982) and
condition." Time-averages of the measured theory by Wu and Wu (1982) can be regarded as a
resistance, sinkage and trim vere found to vary turning point, for they have established deci-
sharply with the speed in the vicinity of the sively that either in a two dimensional flow or
criticsl speed. In similar experiments, in a channel with a finite width, the response
Izubuchi and Nagasawa (1937) also found that caused by a localized disturbance twving at a
the resistance curve shows a hump, and the trim constant speed not far fromV1g% is basically
of the ship changes abruptly, near the critical transient. Specifically, Ituang et al. towed a
speed. These observations were further sub- model ship along the center line of a tank and
"stantiated by the extensive experizents of noticed that, in addition to the expected ship
Graff,Kracht and Weitiblu (1964). waves in the wake. solitons which are uniform

across the entire tank width are radiated ahead
In earlier theories, the assumption of of the ship. If approached from below, the

steadiness was underetandably malth. Michell closer the Froude number F a U/vFgT is to unity,
(1898) and Joukowski (190a) in-Japendently Lie- the greater are the frequency and amplitude of
rived the steady-state linearized theory, the solitons. By solving auwerically a set of

C.C.Hei Dep't of Civil Engineering,Maasa.huaetts Institute of TechnologyCcahridgeja•02139, USA
H.S.Choi Dep't of Naval Architecture,Seoul National Univeraity,Seoul 151,Korea
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equations of the Boussinesq type, Wu and Wu potential of the flow, then,
investigated the waves due to a band of travel-
ling pressure and found the same phenomenon;
their response is necessarily two dimensional
everywhere. Further theories and experiments Oxx t 0yY t z = , th Oz0 <
for two dimensional disturbances travelling
either above or beneath the water layer have (2.1)

confirmed and amplified these findings jLee
et al. (1984), Akylas (1984), Ertekin et al.
(1984)]. in the fluid. On the free surface, the kine-

matic and dynamic conditions
The fact that a three-dimensional body such

as a slender ship can give rise to two dimen-
sional waves upstream is interesting. Firstly • d ( Ar -
the tank width 2W is an obviously important U 7 +

parameter, along with the length 2L and beam (2.2)
2B of the disturbance. Clearly if W is compar-
able to B and much less than L, the induced and
waves should be essentially uniform across the
tank, both up and downstream; the two-dimen-
sional theory already developed for B = W cap- + + O
tures most of the physics. At the other

extreme when W is much greater than L, the tank Z ' (2.3)
walls are effectively absent and two dimen-
sional solitons need not arise and steady waves must hold. On the horizontal channel bottom
could exist and be describable by a nonlinear we must have
theory either with or without dispersion,
depending on the slenderness of the disturbance
[Maruo (1948, 1981) and Hei (1976)]. There are Z. [
however intermediate cases which can be ofOZ !- (2.4)
interest. In the experiments by Huang et al.
and by Ertekin et al. the ship length is Let the hull of a wall-sided strut be y - Y(x).
roughly comparable to the channel width. On the hull, the flow must be tangential:
Numerical computations by solving the full
shallow water equations involving two horizon-
tal space coordinates and time have been per- (U
formed b*y Ertekin et al. (1985) for a reetanhu- Uy '- Ox ,) Y I) (2.5)
tar pressure patch on the free surface. While
there must be many canals which are so narrow On the channel bank, we require
relative to the dimensions of the ship, it is
in the much wider ones thac a ship is likely t
operated near the critical speed. Py focussing 0- y W
attention to a small neighborhood of the criti- y (2.6)
cal speed, Mci (1985) has found that, for a
certain class of wAdth-to-length and slender- Before the flow starts, all is calm.
ness ratios, the tranneritical flow due to a
thin strut is as simple as the t.o-dimensional We now normalime thuse equations by intro-
caae treated by Akylas (1984) in that the per- ducing the following transformation
turbed flow is essoentially two dimensional and A y)
deecribable by a one-dimensional, inhowogenous , - ' " )'"-•"
KdV equation. In this paper we shall outline

this theory ond present some, prolininary Z- hz, t L- t Y. BY (2.7)
re•-ults of its extenaion to slender ships. 4

Unless otherwise stat'd, all variables are
2, Approximate theory for a thin strut d~mansionleas from here on. The governing

equations now become

Figure 1 depicts the geometry of a wall-

sided strut along the axis of a channel. Vea
length and the mximm beam of the strut Are +() + 0i, i (Z(< %
21. and 2B respectively. The coordinate sysre-. '2.8)
is fixed on the ship with the origin located at
the center of the mid-ahip section. A uniforn in the fluid, where
flow of velocity U begins at tima t a 0 from
loft to right (bow to stern) of the sip.

For a potential flow, the exact governing (2.'0 )
equation and the boundary conditions are as
follow. 1At0(x,y,:.t) be the velocity and
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critical speed, in the nanner of Mei (1976)
for steady motion in an horizontally unbounded

f =A ITLt +F )+(x, x(4 y sea.

Z- • (2.10) Clearly we want the slenderness of the
strut to be

F .C + Fp2( +rF4 ) + B/L 0(6) (2.19)

+l F 0 Collecting all the twice-differentiated,
+ ( � (4 +4 " (2.11) linear terms on the left-hand side of (2.18)

we get
on the free surface, (2.20)

1 (2.12) The right-hand side of (2.20) consists of non-
linear 0(E) and dispersive O() terms. Consider

on the channel bank 
the case

3 (2.21)

We now focus our attention to the inmmediate
on the bottom, and neighborhood of the critical speed and assume:

F'+ BM Y. ( IF-+ Fz = 20( (2.22)

with 0(- 0(l). Several situations may arise.
on the strut hull. The two dimensionless Consider
parameters

S- h/L and - Aih (2.15) W/t pI ) (2.23)

are zeasures 'of dispersion and nonlinearity where 1, is of order unity and the exponent m
respectively. is still to be chosen. Let us rescale the y

coordinate
n" iow •tssume that both E and are much

less than unity. Follovina the u~ual proce-
dure of shallow water approximation. we may = y/"./-.(.24
introduce the Taylor expansion

so that the channel bank is at 1. Wheth•r
£ , .a L 4

AAthe term Oyis comparable to the nonlinear
(•m 'P. ~c+}r44 4' (2,16) and dispersive terms on the right of (2.20)

depuuds onx m. To consider the transi•nt effect
Alter a• straightforard mnipulations and to leading order it is appropriate to rettormal-
defining the depth averagea ie t1iw by

6 fAr = A2t (2.25)

(247) We theln ebtaino,,o find, whe t,,e ef,-cts of, dt,,,,o,.on 4 _nonlinearity are kept to the leading ordtr

only - - F 2 6(.6

.= o(e, jL<2.1) ThV boundary condition on the hull bacoses

i)/t tPa/a B ,(.8D e Vat + F at/x U Bv 1
This equaticn is equivalent to the Bawti•oineq (2.27)
equation in a movIng coordinate system. In 'eL yh1,' L
view of th• recent work of Ertekin et al. the It we choosa
direct numerieal solutton of (2.18) apipears
possible. but Is still an arduous .avk. Let J j i W/L 00144) (2.28)
us uisaine the i•mwekate neighborhood of the
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and a/a(• O, (2.28) is tha so-called while • represents the blockage effect since
Kadomtsev-Petviashvilli (K-P) equation. For a B/W is the blockage coafficient. It can be
compatible boundary condition on the "',ull, we solved numerically by several known algorithms,
take one of which will be described later.

S/ L O(E,) 0(A 3 ) (2.4.9) 3. Modification for a slender ship.

The boundary condition on the channel bank is We again limit our attention to the case
where W/L = 0(lLW• ) and consider a slender
ship. LeL the ship hull be described in cylin-

P 0 #-(2.30) drical polar c!oordinates by r - R(x,e). On the
ihull the kinematic conuitiop is

With zero initial data this initial-boundary
problem can be solved numerically. In the
steady limit, Mei (1976) has pointed out that ((U ) • "k•+(i/R)2j'/
(2.26) reduces to the Tricomi equation in (3.1)
transonic aerodynamics _f F_)• , i.e., if the
strut is fairly thick. Let R. be the characteristic radius of the

If we choose cross section, i.e., R is of the order of

m = 1/2, i.e., W/L - 0(/.|/2) (2.31) the maximum cross-sectional area. It is
natural to expect that when

we should then renormalize y by =u=L (3.2))

Y - (2.32)J7• the far field defined by
The boundary condition (2.21) can be rewritten 01p) (3.3)

6IA x (2.33) i1 still described by (2.38) if the blockage
coefficient is of the •ame order ae the thin

where strut with EhP slendere"s given by (2.34).

B/6:Z0) ( o P. /L D (•,a c.
Now (2.26) and (2.3j) imply that at the leading
order, ý is independent of . We now Followtog Tuck (19661. we introduce the inner
substitute the series refion

As in the atrodynAm•cs of a *lender body, the
into (2.26) and (2.31), and easil? obtain vlac-iry fI3id in the innar region ts approxi-

I •tlv tw-o dttensional in the cross-sectional
, At tbe outer limit of the inner-Ur + 0( Ux U Ux ~UxKx rgle.in, the- ffect of the body is to Lndu:e a

"" 2.3•; rt� dl flux of the otrength q(x) proportional
-% vie apatial rate of change of the cross-

accordina• to (2.11), it t01lov tha" The chhennel botton is effCetlvoly at nervtive
Infinity. The potential in tho inmer teglon

~ j t Yx(.38) is approxI*aitaly given by

wIhere 'I ,

Vittt
Eqnat lait (2.38) it an 1 nah~ow itas K4V
equation for ta leAding-order free surface
haight. It tnvalvea tvo parawetersz Ui rep- (y -) R.
seats the departure from the critlcal speed. (3.8)
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We point out that Tuck studied the case where
the lateral dimension R0 of the ship is of the exk,, a L+ CS
same order as the water depth h; the outer
limit of the inner solution can be matched to ,
the inner limit of the outer solution directly. S? J • dx - e) PYdx
In concrast, here one must go through an inter--L -L
mediate region defined by (3.16)

x = 0(L), (y,z) = 0(h) = O(QL) (3.9) where the first ter-a on the right stands for
# the wave drag and the second the lift. The

It may be easily shown that to leading order moment can be defined in physical variables
the flow in the intermediate region is still
two dimei•sional in the cross-sectiunal plane.
Its outer limit consists of two sideward flowswhich are 1',:niforma in depth. The inner limit M I + .2_1 -- dX
of the intermediate solution is represented by L (3.17)

a distribution of sources along the centerline
of the water plane. By matching with the inner
solution, it is no surprise that the source Instead of the lift and moment one can
strength of the intermediate solution must be alternatively use the sinkage and trim defined
directly related to the rate of change of the by
cross-sectional area, i.e., L

-. L* = 2e3 - (s*" + × r) Ydx (3.18)

q So. S (3.10) -1-

where SB is the blockage coefficient equal to M*-2f3 X(e - X AT) YJX (3.19)
-L

the ratio of the maximum cross-section below The dimensionless wave resistance and sinkage
the water line to the cross-nection of the can be defined as:
channel 2Wh. By comparing with the strut case,
we may conclude that to the outer field obser-
ver, the. ship can be replaced by an equivalent RW RW / (3.120)
strut whose beam is given by

BY - WSBS 3

Now the outer solution, i.e., the wave field,
can be computed immiuately from (2.38) with whore V is the diaplacefnt of the ship,
the right-hand side replaced by

4. Numerical solution

The first t4ask is to solve for C ltovenivd
The matc,hing also determines the velocity by (2.38). lie .dopt the explicit finite dif-

potential around the ship, freance vcheaw of Johnson (1972)

(3.13) AX 1~ *1 r N4

to lsuadirg order. which can be use-i to ealcu- C;~ . -gl`
late the pressure field actording to rte h
SBornoulli equation. In toneu of the Wnter _, 1- M $A r" -ScMU~aT(4.l
region variables, the normalized proatt•re it

.p/p6 for stability, the time anid spatial discrcti-
+ 'eP. :14iontwi Sat~fythefollowing inequality.

÷+ + 0.14) Ar (1n + <

AX '~ T_X__ (4.2)
To lo-ading order the prtbure is given by

Thut the w~xitum value ot tqie tn~knoun a1s>
pl.ays a role in the critwrton. Ve find

An A= " P.'t,[ .4r' D. OOS te. liv• su~f ictient.

uhich Is uaifetr in the .rri,.'sectionat! '

at any t. The tot.a; ;- Ow- a t %hip I: Virurep 2 - 6 aho• the foe surface
profiles at several s.tanices of ti" ieid•ed
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CALCULATIONS OF VISCOUS EFFECTS ON SHIP WAVE RESISTANCE
USING SIMPLIFIED BOUNDARY LAYER APPROACHES

Henry T. Wang
Naval Research Laboratory
Washington, D.C. 20375

Abstract Among indirect approaches, the simplest are those in which
the free-surface terms in the Green's function are assumed to

The paper investigates the effect of fluid viscosity on be negligible in computing the mutual influence of the hull
ship wave resistance for five ship hulls, three of which have singularities, such as the approach by Tsutsumi (7]. This
extensive experimetital data. The direct Michell thin ship and results effectively in an infinite fluid problem for the singu-
zeroth order slender ship theories are used to model the larity strengths. Finally, there are approaches, such as those
potential flow around the hull. The viscous flow is modeled by Chang [81 and Adachi and Takeshi [9), which solve the
by four relatively simple momentum integral boundary layer complete Neumann-Kelvin problem, in which all the free-
methods, which approximate the flow over the hull and in the surface effects are included. The principal difficulty in this
wake by various axisymmetric and two-dimensional models, approach is the need to calculate the influence of the trouble-
The calculated wave resistances are in generally good agree- some near field terms in the Green's function.
ment with experimental data for two of the hulls, and in poor
agreement for a third hull. The corrections due to the two- Various approaches have b•en used to improve the free
dimensional models change the wave resistance by lowering surface condition near the hull. One type of approach, used
the magnitudes of the weighted amplitude function, without by Guilloton [101 and Hong [111, has been to employ
any appreciable changes in phase. The use of the axisym- transformation techniques to transform the physical coordi-
metric model with equivalent volume changes both the mag- nate 3ystem to a new coordinate system where the perturbed
nitude and phase of the function. free surface is known. Gadd [12] and Dawson (13] use infin-

ite fluid Rankine sources to model the hull and the shape of
1. Introduction the free surface. A more recent approach has been that of

Amromin et al. (141 who alter the strengths of the singulari-
It is generally accepted that the paper by Michell [11, ties based on the local free surface elevation. It may be

using thin ship theory laid the foundation for numerical cal- noted that these upproaches are usually at least as complex as
culations of ship wave resistance. In this theory, the ship is the Neumann-Kelvin approaches since the near field free sur-
assumed to be sufficiently thin that the singularities may be face behavior must again be calculated.
placed directly on the hull centerplane, with their strengths
simply given by the longitudinal derivative of the ship width. The earliest efforts to account for the effect of viscosity
Efforts to improve the accuracy of the original Michell theory by Wigley [15] and Havelock [161 consisted of finding simple
have been largely along three lines: better satisfaction of the empirical expressions or factors for the reduction in wave
hull boundary condition, more accurate approximation of the resistance or the stern singularity strengths. Later, they (17,
nonlinear free surface condition, and consideration of the 181 concentrated on finding the effect of different mathemati-
effect of fluid viscosity on the wave resistance. cal shages simulaling the displacement effect of the boundary

layer flow in the stem-near wake region on the resultant wave
Perhaps the first notable improvement to the Michell resistance. These studies were obviously intended for ascer-

hull boundary condition, in terms of a practical calculation taining only overall trends of the viscous correction and are
procedure, Is the 'Interpolation formula" proposed by Hogner not tied to a particular ship geometry. The most recent stu-
(21, which reduces in its limiting cases to thin ship and flat dies have used high order flow theories to model the viscous
ship theories. These limiting cae nf the Hogner formula are flow in the stern and near wake, such as in (19-23]. In [19-
discussed in great detail by Weinblum (31, For conventional 211, the viscous flow Is taken to give a displacement thickness
ship hulls, Hoilter's apptoach differs frcm that ol Michell in ,hich modifies the hull shape while !n [22-231 the calculated
two principal aspects: the singularities are now placed on the viscous flow velocities are taken to interact with the potential
actual hull surface instead of on the centerplane, and their flow velocities. Often, these complex viscous flow theories
strengths are obtained by a more accurate calculation of the are used to modify a simple potential flow theory, such as
longitudinal component of the normal to the hull. More thin ship theory.
recently, Koch and Noblesse 14] atd Eggers [S], amono oth-
eas, have emphtasized the Importance of adding a line integral The present paper investigates the effect of the displace-
et the water zurface to complete flogner's oifiglnAl approach. ment thickness due to four different momentum integral
The resultant modified Hogner opproa•r, or zeroth order approximations for the hull boundary layer flow on the wave
slender ship theory, as termed by Noblesse 161, remains a resistance calculated by using the previously mentioned direct
dirm calkdalilon procedur for th siangularty .rengths, thin ship and zeroth order slender ship theories. The four
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approaches approximate the actual hull by an axisymmetric
body of equivalent volume, an axisymmetric body of
equivalent wetted area, a two-dimensional body of equivalent
thickness, and the two-dimensional body extended into the TI

wake. The use of the axisymmetric approximations was LENGTH L

introduced by the author in a previous report [24] and do not AT/ FRE SURFACE, -f' AR

appear to have been previously used in connection with wave PRPENDICLAT DRAIFT SU(FP
resistance theories. The use of these low order boundary (AP) /
layer approximations is compatible, in terms of computer STER CONT2UR

time requirements, with the simple potential flow theories. It
is emphasized, however, that the boundary layer theories Figure 1. Ship Configuration and Coordinate System
proceed entirely from first principles, without using any
empirical or ad hoc correction factors. The calculations are
performed for five ship hulls. Three of the hulls are the Wig- cr(X, y, -Z) U (2)
ley [25], Series 60 (CB - 0.60) [25], and Sharma [261 strut, 41r ,x
for which there are abundant experimental data. The fourth U[ _ _ /_x __

hull is a Series 60 hull with a straight stern contour, and the 4U af/Ox

fifth hull is a Wigley hull with its width everywhere doubled. + Oflax2+(aflazi

where f(x, z) is the local half-width of the ship.
The paper describes the potential flow wave resistance

and boundary layer approaches which are used. The geometr- Thin ship theory is obtained from the above theory if
ical characteristics of the five hulls are described, including the ship beam B is assumed to be small enough such that the
the shapes of the axisymmetric and two-dimensional shapes waterline integral is negligibly small, the integral over the hull
which are used to approximate the actual hull. The boundary surface SH may be replaced by the centerplane So. and the
layer thicknesses predicted by the various approaches are terms (Wf/Ox)2 and (Of/z)2 may be neglected. Equations
summarized. The effect of the viscous corrections on wave (1) and (2) then respectively become
resistance are discussed in terms of overall coefficients as well
as in terms of the amplitude functions, whose integral over , - o ds (3
wave direction leads to the wave resistance. -2U 6fo-2 - M (4)

2, Potential Flow Wave Resistance
Calculation Procedures where the factor of 2 in Eq. (4) indicates that the ship has

port and starboard symmetry.

The problem is usually formulated in a coordinate sys-
tem fixed to the ship. Figure 1 shows the coordinate system Various equivalent forms have been proposed for the

used in the present study, with origin at the forward perpen- Green's function G. A form which is particularly useful in

dicular, x positive from stem to bow, y positive to port, and the present study is that given by Wehausen and Laitone [27]

z positive upwards. The figure also shows the terminology G - G, + G2 + G3 (5)
used throughout the paper. In such a coordinate system, the 1 1
potential 0b for the modified Hogner or zeroth order slender G- - , (6)
ship theory is given by the sum of the following two integrals r rl

J6] f- W/
1 2 dOexp k (z + z')

bsf~I fc yI)G2 -- koJ 0  do t se2-0" fs y fGd (1)x IF ofo l k - ko sec2 o"

where a is the source strength, cos [k(x - x') cos 9] - cos [k(y - y') sin 9], (7)

6 is the Green's fuuction for the Kelvin source which G3- 0 0 f 0Wo dO sec 2 0 exp (ko (z + z') sec 2 0].
satisfies the dynamic and kinematic free surface sin [ko(x - x') sec 0] cos [k0(y - y') sine sec2 o] (8)
condition,

ds is an elemental area on the hull surface, where x', y', z' denote respectively the x, y, z values of the
U source location,

F.2 - -ý is the Froude number squared, s2 lt

A r - %I(x - x ') + (y - y ') + (Z - Z 1 2 ,

U Is the ship speed, r, - /(x - x) 2 + (y - y) 2 + (z + Z),

ko - g/U 2 Is the fundamental wave number,

k is the wave number In the direction 0, and

C is the waterline contour, 0 Is the direction of the wave component.

The terms G1, G2 , and G3 respectively represent infinite
n. is the longitudinal component of the normal to the hull, fluid, near field wave, and far field wave effects. The terms

GO and G2 are Important In computing the near field flow,
Ty Is the y-component of the tangent to the waterline such as the wave profile near the hull or the mutual influence

contour, and of the hull sources in the Neumann-Kelvin problem. In the
present case, the source strengths are directly given by Eqs.
(2) and (4), and It Is only the far field wave disturbanze 63

dl Is an element length along the waterline contour, which gives rise to the wave reisanisce. Thus, Eqs. (1) and
(3) are integrated with

The value of or is directly obtained from ship geometry, as
follows G-G 3  (9)
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The wave resistance is evaluated in terms of the dimen- flow theory to calculate the pressure distribution on the hull
sionless wave number in the y direction, ky/ko, following a surface, tracing a series of streamlines, and using a high order
procedure given in Eggers, Sharma, and Ward (281. By boundary layer theory to calculate the boundary layer flow
applying Lagally's theorem to the source distribution, the along each streamline. This would lead to a calculation pro-
wave resistance R. is given by cedure which is considerably more complex than the simple

f (1 wave resistance theories outlined in the preceding section and
R. - -4irp f thus negate the computational simplicity of these methods.

where p is the fluid density, A second reason is that there are indications that a more
fD -" + J for zeroth order slender ship (I la) accurate boundary layer calculation may not lead to better

agreement of the calculated and measured wave resistances.

" f for thin ship (I lb) In particular, Himeno [19] states that for the Series 60, Cy -
So 0.70 hull, boundary layer calculations including both cross

By further noting that for the free waves which contribute to flow and tangential flow effects give worse accuracy than cal-
wave resistance, the following relationships between wave culations considering only tangential flow. Also, Kinoshita
numbers k, k, and k,, and direction 0 apply [211 finds for the case of a .Itrut that there is relatively little

kscdifference in the wave resistance values for the case of a dis-
w - k0  see, placement thickness 8 * which is constant with d&pth and themore realistic case where 8 * varies with depth.

k, k . _u - T - T sin 0 -sec 0 tan 0,ko - 0 Finally, there is the assertion first stated by Guilloton

kx k [10] and restated by Gadd (12] that the displacement thick-
s - T- k -cos 9 - sec 6, (12) ness makes a correction in the right direction for the wrong

k0  k reason. Guilloton states that neglect of the nonlinear free

the following expression for R. in terms of u is derived [281 surface condition generally leads to stern waves which are too
1 e 1 + Jl +large. The reduction of the singularity strengths in the stern

R. -pkJ + 41 + region caused by adding the displacement thickness gives the
4,•,71 +•--•u desired reduction in the stern waves.

J[u, s(u)J jYu, s(u)] du (13)

where A~u, s(u)] is the complex Kochin funcon defined by 3.1 Equivalent Axisymmetric and Two-Dimensional Bodies

J[u,s(u)]-4wfcr(x,y,z)exp[ko(lsx+huy+wz)], (14) Thus, a simple momentum integral approach is used to
I4 model the tangential flow on three approximations of the

S(•]) - (I +5a) actual hull. Two are equivalent axisymmetric bodies which
2 [are respectively equal in cross-sectional area and perimeter, at

w(u) - -jrt2 + s2 , and (15b) a given longitudinal section x, to that of a double model of
the hull, defined as the underwater portion plus its reflection
about the free surface. The radii Rv and Rw of the equal

Sis the complex conjugate of J cross-sectional area and perimeter bodies are respectively

given by

An alternate ixpression for R, which is commonly used RV(x) - 2= (19)
is given by V V

R -- Ip U -/2 A2(#) cos3 (9) dO (16) Rp (x) - 2P(x) (20)

Written in this form, the commonly plotted wave resistance where A (x) is the cross-sectional area of the underwater hull,
weighted amplitude function A3(0) cos 38 is explicitly shown, and
Equating Eqs. (13) and (16) and noting that P(x) is the perimeter of the underwater hull.

du (see a tan e ) - I + sin2G (17) It is easy to show that the Ry and Ri bodies respectively
To To Cos 39 reproduce the volume and surface area of the double model

the dimensionless weighted amplitude function A/IL 2 It of the hull,
terms of the integrand of Eq. (13) Is given by The third approximation is a two-dimensional body

A* - ke I + 1+4ul which has half-width Y' at each section x given by the aver-

L2 - i2 L 7704"t, () age of the half-width f over the draft H of the underwater

J (u, s(u)] u, S(u)] CoOS)$ hull at that section
i n + sx) - f N f (x, Z) dr

A* A2(0) cos'O 
Yj(X) - (21)

where T - V It is easy to show that the Y2 body preserves the volume of

the underwater hull.

3. Boundary Layer Calculatlion Procedures For these bodies the tangential flow momentum integral
boundary layer equation Is calculated from the bow to the

Several reasons led to the use of low order boundary stern. The wake Is then left open. To investigate the effect
layer approaches to modify the potential flow theories. One of a narrower wake, a fourth boundary layer approximation is
reason is that an accurate boundiiry layer calculation pro- added whereby the two-dimensional flow is extended Into the
cedume would involve uwing a thre-dImeonsdoa po•ential wake until the wake flow vclabhle reach asymptotic value..
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3.2 Momentum Integral Equation ate between the free surface and keel, where the streamline

convergence is the strongest. The boundary layer is thinnest

The boundary layer formulation is first given for the in the keel area where there is streamline divergence, and of
axisymmetric bodies and modifications for the two- intermediate thickness near the free surface, where the
dimensional and wake flow cases will be indicated later. The streamlines tend to be straight. Thus, in order to emphasize
momentum integral equation for boundary layer flow along the important streamline convergence effect, calculations
an axisymmetric body may be conveniently obtained from the were made using the Ry as well as the Ri body.
tangential flow equation for a representative streamline on a
hull, assuming all cross flow terms and derivatives normal to Taking the distribution of U, to be known (this calcula-
the streamline to be negligible [291 tion will be described below), two additional equations are

required to solve for the 3 unknowns 0, C1 , and H in Eq.
d. .- - (H + 2) 0 d O . (22) (22). The two additional equations were taken to be the
ds 2 Ut ds R ds "well-known Ludwieg-Tillmann friction relation [32] and the

where entrainment equation of Head [33] and Standen [34]:

"0 o - - " ' -- df is the momentum thickness, (23a) Cn - 0.246 x 10 -O.67tH Rei' ss (25)

[ Li, ULi and

8 is the boundary layer thickness where - - 0.995, d(OG) + OG _ +" - F(G) (26a)
ds Li ds Rds

u is the velocity in the boundary layer,
U, is the velocity at the edge of the boundary layer, G - 1.535 (H - 0 .7 )-2.7t5 + 3.3, (26b)

s is the arc length measured on the body, starting and
from the bow, -. 5F(G) - 0.0306 (G - 3.0)-653 (26c)

7- ,,/!p Ui, is the skin-friction coefficient, (23b) where R, - U9ly is the Reynolds number based on momen-tum thickness and P is the fluid kinematic viscosity. Equa-
T.' is the shear stress on the body surface, tions (22) and (26) may be viewed as two equations for the

two unknowas 0 and H, with Eq. (25) furnishing an expres-

H - 80/0 is the shape parameter, (23c) sion for C1 which appears in Eq. (22).

SThe specialization to the two-dimensional case is partic-
I- -- L1 d), is the displacement thickness, and (23d) ularly simple. In this case, the streamlines are straight andfo Uthe terms involving dRids in Eqs. (22) and (26a) are set

equal to zero, resulting in the following simpler momentum
R is the radius of the body. and entrainment equations

The coordinate system used in the boundary layer calculations _ - -L (H + 2) - dU-' (27a)
has the longitudinal axis X positive from bow to stern, con- ds L, ds

trary to the sense for x for the ship hull shown in Fig. 1. d (OG) + OG 1_ - F(G) (27b)

The three terms un the right hand side of Eq. (22) show

that the boundary layer grows due to skin friction, adverse
pressure gradient (dU(/ds < 0), and streamline convergence The case for the wake requimes further changes to the

(dR/ds < 0). Granville (30] suggests that the pressure dis- above equations. The momentum eqvatlon takes a simpler

tribution ke calculated by using the Rv equivalent body, and form in that the friction coefficient C1 , 0, resulting in

that the boundary layer growth be calculated by using the R* do do dU,
equivalent body. This would tend to approximate the overall T - w W L i, dX (28a)

friction drag acting on the actual hull surface, However, It is
not clear that the Rw body gives a better approximation to The equation for the shape factor H is taken to be the comn-

the streamline convergence term than the R, body. Equs- monly used Squire-Young far wake relationship (35]
tlions (20) and (21) show that in the cae of a ship with a In (UtIV,) In (U/U,)
vertic-al stern contour of zero width, the cm,. for most of the H, I - . (28b)

ships considered In the present study, Ry and Rw take on the H, - I l,, -

following values at the stemn end where the subscripts t and w respectively denote values at
RV - 0(24a) the tall of the body and in the wake. It is of interest to note

-" 0 (2k) thet while Eq. (28b) was derived for the two-dimensional

and 4H wake behind an airfoil, Hatkno and Hotta 1361 have found
Rw,- / (24b) that it also approximates well the mean value of H in the

W three-dimensional wake flow behind a tanker.
where H is the draft of the actual ship. Consideration of the
last term In Eq. (22), and Eq. (24) shows that the Rv body Since Eq, (28b) does not hold in the near wake, E]qs.

would tend to have a significantly larger streamline conver- (28a) and (28b) were treated in the following manner, to

gence effect than the R, body. This will also be demon- ensure that the following far wake relations would hold. It is
strated by the fig1ures showing the Riv and Rw. body represen- well known, from momenturn ,onsiderations,. that the two-

tations of the various hulls. The Importance of the stream- dimensional far wake momentum thickness *c mumt be
line convergence terni In boundary layer growth hu been mlt to the drag D on the body, as follows
emphasized by Patel (31]. He basically shows that the boun- D
duoy layer is thickest for certain Stresinnes lying Intormedi- (2")
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The drag on the body was approximated by the following for- based on consideration of the pressure accuracy requirements
mula [371, which gives the increase in drag over the flat plate at both ends of the body (where slender-body and thin-airfoil
friction as a function of body thickness ratio t/L theories are most inaccurate). The approach for obtaining

initial conditions for the boundary layer calculations described
D- pU2 OFpe (1 + 2*1L) (30) above essentially makes it unnecessary to have an accurate

where 0rp is the flat plate momentum thickness at the tail of description of the pressure at the bow end. At the stern end,

the body. Substituting Eq. (30) in Eq. (29), and noting that it is well-known that the potential flow pressure distribution is

H - 1 in the far wake, the following equation results for 8; substantially modified by the viscous flow.

and OE In conventional slender-body and thin-airfoil theories,

8; - OE - 0Gp (1 + 2t/L) (31) the longitudinal axis of the body is divided into a series of

Thus, Eq. (28a) was essentially integrated backwards, starting N - I line segments of length AXI, over each of which is

with 0 - OE. Typically, the continuous wake was approxi- placed a source of uniform density qj, where AX, and q, may

mated by 3 to 5 inclined segments, for ech of which the vary from segment to segment. The potential of the source

change in 8 * was the same. for the axisymmetric and two-dimensional cases, GA and
G2D, are respectively given by

3.3 Choice of Initial Conditions I _ and (33a)GA- ______---- an 23r -X') 2 + R2

A number of procedures are available for choosing the
initial point s. and starting values for the dependent variables G2D - 103 R - log X- )2 + Y2 (33b)

0 and H. Thete include the use of available experimental where (X, R) is the axisymmetric coordinate system, and
data or an analytic procedure, such as that outlined by Garcia (U, Y) is the two-dimensional coordinate system. The
and Zazuica [38]. Here, the following, approximately uni- i )urce strengths qA, and q2D, are respectively given by
form approach was used to make the parametric runs for the U ry ]
various ship cases. The location of transition is fixed at a U da U2rRv1I 1 (34a)
value of so corresponding to X/L - 0.05, a typical location -4. " dXt' d"
for turbulence stimulators used in model tests. The initial
value of the momentum thickness 0 0 is set equal to 0.7 of the , - U d2 Y2  (

corresponding value for a flat plate with the same length Rey- q2DI 2 (34b)
nolds number, while the initial value of the shape factor H0 is
set equal to the flat plate value, usually in the 1.4 to 1.5 The resultant velocity at an arbitrary spatial point may
range. This was largely based on the results of [29, 39, 401 be obtained by taking derivatives of G with respect to X and
which show that the boundary layer thicknesses 0 and 8* in R (or X and Y), integrating over the Ith source segment,
the bow region are usually somewhat smaller than flat plate and summing over the N - I segments. For the axisym-
values, due to the favorable pressure gradient and streamline metric body, the consistent approximation for U,/U is

divergence in this region, while H is typically 1.4. Numerical obtained by evaluating the velocities on the body surface
experimentation showed that in the case of the displacement (U, R), and neglecting higher powers of the velocity in the
thickness 8"*, different choices of O0 and He led to differences X-direction, but not in the R-direction. For the two-

in the bow region which tended to propagate unchanged to dimensional body, the consistent approximation is obtained
the stern region. These differences were quite sma!I and by evaluating the velocities on the longitudinal axis (X, 0)
essentially negligible compared to values of 8* in the stem and neglecting higher powers of the velocities in both the X
region where most of the boundary layer growth takes place and Y directions. In the case of the wake flow, the values of
due to the adverse pressure gradient and streamline conver- UI U are simply obtained by evaluating the velocities for
gence. X > L.

To correct the well-known Inaccuracies of the theory at
3.4 Calculation of Pressure Distribution on Body Su~rface the ends of the body, a singularity gap correction proposed by

Moran [431 Is applied at the bow and stem ends. In this
In the present thin-boundary layer approach, where the apporach, ti.v singularity distribution does not extend all the

pressure Is assumed to be constant throughout its thickness, way to the end, but there is a gap equal in length to one half
the edge velocity U, appearing in Eqs. (22). (27a), and (28s) of the nose radius of the body.
Is simply related to the pressure p on the body by Bertoulli's
equation. A second modification Is made to account for the effect

U, - U./ -:'o (32) of viscous flow on the stem pressure distribution. It Is well-
known that U, does not approach zero at the stern end, as

where C, - (P - PO /[IP U I Is the pressure coefficient, and predicted by potentlil flow theory, The modification consists
of an Iterative procedure. For the initial boundary layer cal-

Po Is the ambient pressure far from the body. culatlon, the calculated values of U, over the last A% of the
body are discarded and are replaced by a linear extrapolation

Theme are well-known numerical procedures, such as the of the calculated values for X/L - 0.95. The calculated dis-
Hess and Smith method [411, for calculating the potential dis. placement thickness 8" Is then added to the body, resulting In
tributlon on arbitrary three-dimenisIonal bodies to any desired a somewhat larger body with i stern region which Is signifl-

delree of accuracy. While the method In (411 Is stralghtfor- cantly less blunt. For the second (and later) boundary layer
ward, a number of numerical steps are Involved, Including calculationM, the calculated U, over the entire displacement
matrix Inversion. In the present study, the simple and direct body (up to the stern ind, XIL - 1.0) is used. This is po.-
slender-body and thIna4irfoUl theories, as outlined by Karum- bie because of the much smoother variation of the shape of
cheU (421, am used to calculate the preaure distrlbutioo. the stern region or the displacement body. The above pro.
The accuacy of the method is improved by using two modifl- cedure Is repeated foI a tota of four Iterations. In most
cations which are described later. In addcition to its obvious cues, thete Is little difference In the calculated bourtary

simplicity, the preent choice of calculation methods was Also layer chacterlatcs between the third and fourh Itatkos,
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4. HULL CHARACTERISTICS Table 2 - Formulas for the Half-Width f
of Wigley, Sharma, and Wig20 Hulls

4.1 Overall Geometric Characteristics
x'- (., + L/2)/(L/2)

The ship hulls were chosen based on the availability of
experimental data to validate the theoretical calculations, the x - -I is the aft perpendicular

existence of other thin and slender ship calculations to com-
pare with the present approach, and the need to cover a 'ange x'- +1 is the forward perpendicular

of geometrical characteristics to illustrate the boundary layer
effect. I. Wialey hull

For three of the chosen hulls: Wigley [251, Series 60 A - - x'2) 1 - (0/H)
2]

(CB - 0.60) (251, and Sharma strut [26] abundant
experimental and calculated data are available for comparison 2. Snarma strut
purposes. The Series 60SC hull, which is the Series 60 hull B
with the curved stem contour replaced by a straight contour, f2 2 - x12 )

was chosen largely to investigate the effect of stern contour
shape on the differences between thin and slender ship 3. Wig20 hull
theories. The Wig20 hull, which is the Wigley hull with twice
the width, was chosen to investigate the boundary layer effect Lf3 - 2fI
on a thicker hull.

Table 1 summarizes the principal geometric characteris-
tics of the hulls: length L, beam-to-length ratio BIL, draft-
to-length ratio HIL, beam-to-twice draft ratio B/2H, block First, the figures show that the RV body for all five

coefficent CB, and wetted area coefficient Cs, where hulls goes to zero with a large slope at both ends of the body.

VD In particular, this would lead to lerge value of the streamline
CB - LB- is the block coefficient, (35a) convergence term (O/R)dR/ds in Eq. (22) and thus to a

large value of 0 at the stern. On the other hand, with the
Sw exception of the Series 60 hu!l, which has a nonvertical ste~rn

s L (2H + B) is the wetted area coefficient, (35b) contour, the RD body has only a small slope at both ends of

the hull. This leads to a resultant small streamline conver-
YD is the volume of the underwater hull, and gence effect.

Sw is the wetted surface area. Secondly, the figures show that, with the exception of

The table shows that the length L used in the calculations for the Sharma strut, the Ry and Rw 1,odies agree fairly well

all the hulls, except the Sharma strut, is 6.1 m. This is with each other, except for the above mentioned discrepan-

representative of the length used in model tests of the Wigley cies at the ends of the hull. This tends to indicate that a cir-

and Series 60 hulls. The length used for the Sharma strut cle is a reasonable approximation for these hull cross sections.
experiments was 2 m, as shown in the table. This is also verified by the fact that the ratios 8/2H for these

hulls are not far from 1, the value for a double hull with a

circular cross section. For the thin, deeply submerged
SharmN strut, which is essentially a two-dimensional body,Table 1 - Summery of Geometric Characteristics the value of B/2H is much less than I and Fig. 4 shows that

for the Five Ship Hulls the Rv and Rw bodies differ widely. Figures 8, 9, and 10

Ship Hull L m) BIL 1/1L B/2H C "Cs show the equivalent bodies for the Sharma strut for largerShip Hull L (m values of BIL: 0.1, 0,2, and 0.3, respectively. The figures
W -1ley 6.1 0. U 0.80 W41517do show a better agreement of the Rr and Rw bodies as B
Series 60 6.1 0.133 0.053 1.25 U0.60.071 approaches 2H. However, even at BIL - 0.3, where
Sharma 2.0 0.05 0,150 0.17 0.66 0.95 ./2H I L the agreement between the R1 and Rw bodies is
Wig20 6.1 0.2 0.0625 1.60 0.44 0.61 not as good as that of the other four hulls. This Is largely
Series 60SC 6.1 0.13310.0'. 1.2.0.60 0.72 due to the fact that the Sharma 3trut Is wall-sided (half-width

/ does not vary with depth), while the other four hulls are
non-wall-sid.d.

Table 2 gives the analytical formulas for tho half-width 4.3 Coompute- Modeling of the Hulls
f of the Wigley, Siharsm ard WIg20 hulls. Flgure 2 shows
the stem ind stern contours as well as the half-width section Table 3 summarlies the input geometrical data and
shapes for the Series 60 and Series 60SC hulls. Filtut 2 Froude number range for the computer runs. The table
shows thae the Series 60 has a nonvertical stem contour and a gives:
slight deviation of the stem contour from the vertical, while
the Series 60SC has a vertical stern contour, The other three NX, the number of longitudinal X-statlons at which
hulls have vertical tei and s•eru contours, tte half-width f is Input into the program

NZ, the number of vertical :-tuations at which f is
4,2 EquIvalent Bo4yi aep;cWetlationi Input

Vigures 3, 4, 5, 6, and 7 respectively ihow the fa .l the lowest Froude number Fn for which waveFilures~~rsiww are calculantedeo~l~lyshw h
equivalent R., Rw, and V) body re•preetatlons of the Wig- r ae calcutWed
lty, Series N0, Sharma, Series 60%C, and Wi.820 bulls. A 2. the highest Froude number for which wave resas-
Seo,'-s points sladu be nowlt. tces ate c.&i4attd.
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Table 3 - Summary of Computer Runs Most of the wake calculations were performed with the
for the Five Ship Hulls wake divided into 3 segmentr, each representing an equal

NZ I Tn - change in 8*. The end of the wake was chosen to be the XShip Hull MYN Z n ,F, value at which the change in 8 *from 8 * had reached 0.99 ot
Wigley 25 I5 0.16 T0.48 the required change (8'*- 8 1). Th:1 is, at the selected -.iid
Series 60 25 7 0.14 0.36 of the wake the error i in the actual value of 6 ,8L. is 0.0l,tSharna 25 16 0.21 11.00 where e is given by
Series 60SC 25 7 0.14 0.36 8

~ 88 ~(36)

The value of NX for all the hulls is 25. For the three where 81 is given in Eq. (31). In order to give an indication
hulls which are analytically defined (Wigley, Sharma, and of the wake lengths, Table 6 gives values of XE/L for
Wig20), NZ - 15 or 16. It is reduced to 7 for the Series 60 E - 0.01 to 0.10 for the Wigley hull at FA - 0.2. The table
and Series 60SC hulls, which Lorresponds to the number of shows that XEIL decreases from 3.0 at e - 0.01 to 1.4 at *
vertical stations at which f is tabulated in (251. The Froude - 0.1. Several computer runs for the Wigley hull show that
number range for the three hulls for which model test date the calculated wave resistance values show little change for e
are available (the Wigley, Series 60. and Sharma hulls) between 0.01 and 0.05. Also, there is little change when the
correspond to the experimental range. The Froude number number of wake segments is increased from 3 to 5.
ranges for the Series 60SC and Wig2O hulls respectively
correspond to those for the parent Series 60 and Wigley huIlls

Table 6 - Variation of Wake End Point
5. Boundary Layer and Wake Results Xe/L with Error e in End Value of 8,

Wigley__________________ Hull, Fn - 0.2________________

Before discussing the effect of the calculated boundaryL
layer on the wave resistance and weighted amplitude spectral X/
functions, it is of interest to note the behavior of the calcu- 0.0 2.98
lated boundary layer and wake flows. Table 4 shows 8,'/87,,, 0.02 2.35
the ratio of the calculated and flat plate displacement thick- 0.3 2,01
ness at the tail for the three equivalent bodies for all five 0.05 .7
hulls. The table shows that, except for the Series 60 hull 0,10 1.42
which has a curved sterm contour, the Ra body gives the - ____

smallest value of 6*,. ranging from 1.1 to 1.9 times the flat
plate value, This Iq due to a combination of the weaker pres.-
sure gradient on an exisymmetric body (compared to that on 6. Wave Resistance Results
a two-dimensional body) and the previously noted small
streamline convergence effect. The table shows that the The wave resistance results are presented in terms of
strong streamline convergence for the Rt- body gives the harg- the wave resistanc coefficient Ca given by
est values of a',. ranging fromt 5.21 to 8.4 timies the flat plate R
value. The Ya body gives values of 8,0 whiol lie beween Cb- - (7
tho.'t for the R., and Rw bodies. This body has no stream. (37)'S
tine convergence but a stronger pressure gradient.&

Figures It, 1 2. 13. 14, and 15 respectively show the values of
Table 4 - Ratio 8,18;h at Stern End for Rw, Rr CO for the Wigley, Series 60. Shartma. Series 605C. 4nd

and rj Bodies for the Five Ship Hulls Wlg2O hulls, Figure I I shows the thin and slender ship
FF iT T~WiglySre 0 hra W 0Series 60' values of C,. calculated by the present approach for no

viscous correction, for the Rj, body, fot the Yj body, and fur
Irw 1.111.171313 -3.79 11.3ý6-4,4110 -11 the Yj body + wake, the theoretit&l results for I.Ackenby asfRv 5,22-5.29 8.33-8.44 5,64-5.91 15.9S..981 8,33-8,4 given In 12$), the range or available experimentxl data

1,~ l75-1.75 2.96-2.97 1.49-1.50 3.363.343j 2.96.2.97 corrected for sinkage and trim 1441. and the recent measured
data 1451 tpecifically for a fixed model. Figure 11 s~lan
shows the thin and slender ship calculated vilues of C., fot

Table 5 shows tanges for JlID, and 81/8,0, which ate no viscous correction, for the X1, body. for the Y;~ body, and
requetlvtly the rtwios of the morvpcntumn and displacement rot the Y3 body + wake, the slender ship calculations of
thicknesses at the beginning and end of the two-d~imensional Scragg 1461, and the range of expetrimental data given in 1251.
wake, for the fivre hulls. The ratios are Inversely related to which are fotr a model free to sink and trim except for the
SIL of the hull, and tapg fromt 0.4 to 0.8 for Gl/9, and 0.3 four discrete points in the lower right hand corner of the fig-
to 0.A for a 1/8't ure. Figure 13 gives the thin ship calculated values for no

viscous correction, for the Rt, body, and for the Yý body, the
Table 5 - Ratio of Infitd iaad FinAl Wake Momentum calculated thin ship and measured values given in 1261. Fig.

and Displacement Thicknesses OrIG, and 6 t/8a ure 14 simply gives the ratios of tha thin and slender ship
_____________ values between the Series 60 and Series %OSC hulls, calcu.

Hull ese0, at' fated with no viscous correction, Figure 15 shows the thin
OMENN and slender ship calculated values for no viscous correction,

SWrye OWN3..5 0,33 and only the slender s"i values rot the Rv body. YJ body,
Sharma 0.7".0.2 0,53-0.54ad od+wke
Se20e 0.24.3-0560.2S The reasons for choositng the above particular sets of

Wig2O ~0.43.,5.4-0.43 data (fW exaMple. coftsWst=y omittlng the calcolated results
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6.3 Effect of Boundary Layer Corrections larger corrections due to the Y'2 + wake body bring the Cw

values appreciably closer to the experimental points for a
The reason for omitting all the results for the Ri body fixed model, although they still lie above these points.

is as follows. For four of the five hulls, with the exception of
the Series 60, the correction due to this body is extremely Overall, the Y2 + wake body makes corrections which
small and plotting these points would simply add to the are generally more consistent in bringing better agreement
clutter in the figures. This may have been inferred from the with experimental results than those due to the Rv body. In
results of Table 4 which shows that for these hulls the Rw the case of hulls with vertical stern contours, the Rw body
body gives the smallest boundary layer thickness. In the case makes corrections which are entirely too small. The Y2 body
of the Series 60 hull, the correction due to the Rw body is makes corrections which are somewhat smaller than those
large, but is generally similar to that of the Rv body. Hence, which include the wake.
the Rv results are again omitted.

In the case of the Series 60SC hull, the boundary layer
corrections due to the Re, Y2, and Y2 + wake bodies are 7. Weighted Amplitude Function Results
similar to those of the Series 60 hull, and the correction due
to the Rw body is small. Hence, Fig. 14 omits all boundary Figures 16, 17, and 18 show the dimensionless weighted
layer corrections results for this hull. amplitude function A'/L 2, defined in Eq. (18), for the fol-

lowing three cases, respectively, for which the wave resistance
The results for the Wigley and Series 60 hulls show that values exhibit various features of interest:

the viscous corrections for a given equivalent body are similar (a) Series 60, Series 60SC, Fn - 0.14
for both thin and slender ship theories. Thus, viscous correc- (b) Series 60, Fn - 0.32
tions are shown only for the Wig20 hull, tor which there are (c) Wigley, Fn - 0.24
no experimental data.

In Case G(), there is a large difference between the thin ship
As in the case with previous studies in this area. the fig- and slender ship values for C* for the Series 60 huil, and a

ures show that the addition of the displacement thickness substantially smaller difference for the Series 60SC hull. In
usuLdly, but ikot always, decresss C-k. The R,, kody usually both Cases (b) and (c), the vitcous corrections make rather
gives larger corrections to Cw for the thinner hulls, the Wig- large changes to thb C.* values. Also, experimental data
ley anC Shar'na, while tht Y2 -I- wake body getierally gives from Tsutsumi [47) are available for Case (b) and are
somewhat larger corrections for the thicker hulls, the Wig20 incloded in Fig. 17, Case (G) correwponds to a Froude
and Series 60. Apparently, for the thinner hulls, the stream- number for thu Witley hull at whbch the C* 'values for both
line convergence effect (acting on the Rb. body) which is the Rv and Y2 + wake wake bodies lie within the expetimen-
strong but extends only over a short distance near the tail, taW ringe.
dominates the adverse pressuv gradient effect (of the Y) +
wake body) which is less explosive but acts over a loncer dis- 7. Series 60 2. Series 6dSC .Fn - 0.14
tance. The reverse is true for thu thicker hulls, In the case

of the Wigley hulls, the larger corrections due to the Rv body Figure 16 shows that the high value qW CU for the 1hin
are generally somewhat more accurate thin those due to the ship casc for the Series 60 hull Is confirmed by tne fact that
Y2 +4. wake ,,d:, In bringing the Co values into better agree- this case, taken as the refrence came, has the highert ampli-
ment with the data for a fixed model 145), which lie near the tuwIos, The thin -hip cas•e for tiae Seriem 6f1C has substan-
lower limit of the corrected =cnge given In 1441. However, In tially lo-. sr amptitudes tian the rwi~'etce case with essen-
the cas of the Shatnma hull, %he L'ortections due to the R• tially no chamuge in shape. Tae slender Rhip case for the
body substantially w.rsens the agreement with the expert- Sjiies 6.0 hull has Inwet aimplitudes, with some change in
irtental results. ThWs Is not surprising in view of the fact that shape for 32' < G < 42., and 0 > 75' The use of the Y)
the flow is essentially two-dimensional on this hull, with little bd)Y iowers the amplitudes of the reference case with emsen.
sutinne vaoimcu. In the co of the Seieia 60 huUl, the tiaWy no change tn shw or shift In phase, On the other
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INFLUENCE OF WAVES ON THE BOWEDARY LAYER OF A SURFACE-PIERCING BODY

Frederick Stern
Iowa Institute of Hydraulic Research

The University of Iowa
Iowa City, Iowa 52242, USA

m the presence of a wavy free-surface and wave-
induced separation.

The special features of the influence of
waves on the boundary layer of a surface- Surface shear-stress and pressure-dis-
piercing body are discussed and an overview tribution measurements have been made in
of the complete boundary value problem for- towing tanks for various ship forms by
mulation is provided. Results are then pre- Shearer and Cross (1965), Steele (1967),
sented from three-dimensional boundary layer Steele and Pearce (1968), Tzou (1968), Huang
calculations for the Stokes-wave/flat-plate and von Kerczek (1972) and Kajitani et al
flow geometry. The results are for a single (1983). The results from these experiments
value of wave steepness but in considerable show considerable influence of Froude number
detail. Also, some preliminary experimental on the shear stress and pressure distribu-
data are provided for a qualitative assess- tions along waterlines close to the free-
ment of the calculations. Lastly, the com- surface. More recent towing-tank experiments
plications and necessary extensions that are (again for various ship forms) have included
required for calculating ship boundary layers some mean-velocity-profile measurements with-
for nonzero Froude number are discussed and in the boundary layer (0Do 1980, Nagamatsu
some preliminary results are presented for 1g81, Shahshahan 1985). Most of the data are
the Wigley hull. limited to the stern and near-wake regions.

Also, in all but the latter reference, the
1. Intrvo~ction Froude-number range is limited. Again, the

results indicate effects due to the presence
The boundary-layer development upon a of the free surface and a dependence on

body that intersects a free-surface can be Froude number. Mean-velocity and turbulence
greatly influenced by the presence of free- measurements were made in the stern and near-
surface gravity waves. In particular, waves wake region of a double-tanker model, in a
of sufficient steepness induce a region of circulating water channel, by Hotta and Hat-
flow separation near the free-surface, which ano (1983). The data were obtained for one
is otherwise absent. The occurrence of sep- value of Froude number. The measurements
aration significantly modifies both the vis- indicate a local damping of the nomal coin-
cous and the wave-resistance components, ponent of turbulence near the free-surface.
making this a problem of considerable en- This effect has al.%o been observed in open-

lneerlng importance. In spite of this, very channel flows (Rodi 1980) and in recent
ittle detailed experimental or rigorous measurements of free surface effects on the

theoretical work has been done on this prob- wake of a flat plett (Swean and Peltier
lem. 1984).

Most of the experimental data concerning Only one investluatu,; hat been con-
the influence of free-surface waves on body cerned specfically with wave-induced separa-
boundary-layer development are for ship and tion (Chow 1967). Chw demonstrated wave-
offshore-structure resistance. Wu and Land- induced separation exmerimentally with two-
weber (1963) and others have shown that, for dimensional struts mounted vertically and
ship models, the viscous resistance depends piercing the free surface in a hydraulic
on the Froude number. Present methods for flume. The struts were designed for unsepar-
predicting forces on offshore structures (for ated flow when no waves are present, that Is,
example, Salvesen et 01. 1982) require drag- at large depths. For an airfoil-like strut,
coefficient data for surface-piercing cir- Chow observed regions of separated flow oil-
cular cylinders oscillating In 8abient wave gniating Just beyond the wave trough and
fields. A compilation of such data (Sarpkaya extending to the strut trailing edge (see
and $•ason 1981) shows large effects due to figure 1). The depth of the separated-flow
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region was on the order of the wave height. earlier work) and the computational method
The length of the separated-flow region was used in making the calculations to be
shown to depend on Froude number. Chow also presented will be reviewed. Subsequently,
observed large secondary flow within the results are presented from three-dimensional
separated-flow region which he presumed was boundary layer calculations for the Stokes-
due to the curvature of the free-surface wave/flat-plate geometry. The results are
waves. He speculated that the flow separa- for a single value of wave steepness Ak but
tion was caused by the secondary flow. in considerable detail. Also, some

preliminary experimental data are provided
Very few theoretical investigations of for the purpose of a qualitative assessement

boundary-layer devel opment on surface- of the calculations. Lastly, the
piercing bodies have been performed. Fur- complications and necessary extensions that
thermore, all of these investigations have are required for calculating ship boundary
been of an approximate nature and none have layers for nonzero Froude number are dis-
properly accounted for the free-surface kine- cussed and some preliminary results are pre-
matic and dynamic boundary conditions or the sented for the Wigley hull.
local damping of turbulence near the free
surface. Most of the calculations that have II. Physical Problem
been made utilize integral methods and assume
small-cross-flow conditions (Lin and Hall Consider the development of the
1966, Webster and Huang 1968, Gadd 1971, Adee boundary-layer upon a ship-like body, moving
1972 and 1975, Sachdeva and Preston 1975, Doi steadily at velocity U and intersecting the
1980, Hinatsu and Takeshi 1985). Patel et free-surface of an encompressible viscous
al. (1983) calculated the boundary-layer fluid. This situation is depicted in figure
along the body/wave intersection for Chow's 2. In distinction from the infinite fluid
model (see figure 1) and the Wigley hull double-body problem, the present problem has
using the small-cross-flow differential equa- special features due to the presence of the
tions. These methods do indicate significant free surface and gravity waves (Patel et al.
free-surface effects on boundary-layer de- 1983):
velopment, including wave-induced separation
at certain Froude numbers. Separation is * the external-flow pressure field is
Judged to occur when the streanwise skin influenced by the body wave-making such that
friction is zero or the cross-flow becomes it is Froude-number dependent;
large. In some cases, qualitative agreement
with experimental data has been shown (Doi * at the free surface, which is itself
1980 and Patel et al. 1983). unknown and to be determined as part of the

solution, there are two nonlinear boundary
Very recently, Stern (1985) has per- conditions, a kinematic one and a dynamic

formed an analytical and numerical study one, that the solution must satisfy;
concerning the effects of waves on the
boundary layer of a surface-piercing uoO. * the characteristics of the structure
In this work, a more rigorous problem of turbulence are aodified near a free sur-
formulation is pursued in an effort towards face; and
putting the subject on a more solid founda-
tion. Also, results are presented from waves of sufficient steepness induce a
three-dimensional laminar and turbulent region of flow separation near the free sur-
boundary-layer calculatioits that demonstrate face. which is otherwise absent.
the Influence of waves on boundary layer
development, including the effects of the In order to elucidate the effects of
free-surface boundary conditions. The cal- these special features on the boundary-layer
culations are for the idealized geometry of a development it Is necessary to examine the
combination Stokes-wave/flat-plate. This flow in the neighborhood of the body-
geometry Is considered optimum for the pre- boundary-layer/free-surface juncture in de-
sent investigation, since it is simple, yet tail. As shown in figure 3, the flow field
the flow near the free surface is fully can be divided Into five regions: 1, po-
three-dimensional. Far from the free surface tential-flow region in which viscous effects
and for laminar flow, the solution is the are negligible; It, free-surface boundary-
well known Blasius one. Further details layer region at a sufficient distance from
concerning this work will be discussed sub- the body that it is not influenced by the
sequently, body boundary layer; III, body-boundary-layer

region at a sufficient depth that 'it is not
In the present paper, the special fea- influenced by the free-surface boundary cot-

tures of the influence of waves On the ditions; IV, body/free-surface boundary layer
boundary layer of a surface-piercing body in the region very close to the free surface
will be discussed. Next, the present in which the free-surface boundary conditions
approach (within UO context of the have a significant Influence; V. meniscus

boundary-layer region. The nature of the
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flow in regions I-Ill is well known and the surface. The dynamic boundary condition
flow field order-of-magnitude estimates are expresses the requirement of continuity of
well established; however, this is not the the normal and tangential stresses across the
case for regions IV and V. free surface. The free-surface boundary

conditions influence both the mean and the
In region I (potential flow), the flow turbulent velocity components. The limited

is characterized by the nondimensional wave experimental data that are available indicate
steepness parameter Ak (where A is the wave that, near a free surface, the normal compo-
amplitude and k the wave number). For small- nent of turbulence is damped and the longi-
amplitude wave theory to be valid, Ak << 1. tudinal and transverse components are in-

creased. The turbulence structure near a
Region II is the part of the free-sur- solid wall shows similar characteristics, but

face boundary layer above region I and is due there the situation is complicated by the
to the condition of zero stress on the free- influence of high strain rates due to the no-
surface in a viscous fluid (for example, slip condition. It should be recognized that
Kinsman 1965 or Mei 1983). For laminar flow, the complex effects just described cannot be
the thickness of this boundary layer is simulated with an isotropic eddy-viscosity

1 -- /2 turbulence model. As will be discussed next,
=fs lR1/ Stern (1985) has derived order-of-magnitude

estimates for region IV for laminar flow and
where Rw = C/hk is the wave Reynolds number shown that the parameter Ak/e is important in
and C = Uo is the wave celerity. 6 is of characterizing the flow. Different solution
the same order of magnitude as te bo4 boun- regimes can be identified depending on the
dary layer magnitude of Ak/e. For turbulent flow, due

-1/2 to the present uncertainties in turbulence
db a modeling especially when a free surface ispresent, it is not possible to reach such

where Rb = UJL/v is the body Reynolds number; definitive conclusions concerning the order-
since, for most circumstances, the wave of-magnitude estimates and solution regimes
length X- O(L). However, the free-surface for region IV. Note that region IV is kine-
boundary layer is ver. weak and has a negli- matically similar to the flow in a streamwise
gible influence 0(D ) on the potential corner for which it is known that two length
flow kinematics and JWamics. Evidently, the scales are important and the thin-boundary-
zero-stress condition places a much less layer equations are not applicable.
severe restriction on the flow field than the
wall-boundary-layer no-slip condition, re- The precise physics In Region V is a
sulting in only minor adjustments to the complex matter involving surface tension. It
potential-flow velocity field. The order-of- is known that the shape of the meniscus de-
magnitude estimates for region II are the pends upon the nature of the body surface
same as for region 1. finish and that it can have a very sharp

angle of contact. According to Ket (1983),
Region II1, is the body-boundary-layer this subject appears to be a poorly under-

reginn sufficiently deep below the free sur- stood part of physical chemistry.
face that it is not Influenced by the free-
su,'fw boundary conditions. liased on region . roach

c -.ýsiderations, it is expected that the
":•... th is of O(8 ) At this depth the In the present investigation, which is

• of the iree sftrface are primarily for turbulent flow only. no attempt is wade
transmitted throogh the external-flow pres- to resolve the details of the flow very near
sure field. Over a large part of a ship-like the freo surface (regions IV S V), and as
body the thin-boundary-layer equations are such. only an approximate symmetry boundary
applicable, and it Is only in the stern re- condition is applied on the mean free surface
gion that it is necessary to solve the more and a simple modification is made to a one
complete partially-parabolic Reynolds equa- equation turbulence model to account for the
tions (Patel 1982). In region III, the most influence of the free surface. However, in
Important nondimensional parameter Is order to appreciate the significance of such
c & 6/IL and, for thin-boundary-layer theory approximations, an overview of the more

to be Malid, a e< 1. complete problem is now provided (see Ster
(L985) for more details).

Region IV, Is the body/free-surface
overlap region where the effects of the free The boundary-value problem associated
surface are due both to the influences of the with the boundary layer development on a
external-flow pressure field and the kine- surface-piercing body differs from the In-
matical and dynamical requirements of the finite fluid double-body problem due to the
free-surface boundary conditions. The kine- presence of the free surface and gravity
matic boundary condition expresses the re- wives. In the latter problem, the free sur-
quirement that the free surface is a stream face is flat ad siqmly a plane of syu-

5.
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metry. In the former problem, on the free these conditions are linear in the free-sur-
surface z = ni(x,y), there are two boundary face slopes (n , n ), and thus, in principle,
conditions the solution must satisfy (see two of the cogditions can be used to elimi-
figure 4): nate (n ,n ) by expressing them in terms of

the prAsjre difference (p - po + p ), the
kinematic boundary condition: V . n 0 fluid velocity components, the rales-of-

(1) strain and the Reynolds stresses. The re-
dynamic boundary condition: Tijnj - ljnj maining two conditions, with (n ,i ) known,

can then be used to provide bou4da6y condi-
where.V = (U,V,W) is the fluid velocity vec- tions in the solution of the mean-flow momen-
tor, n = (-n ,- n 1) is the outward normal tum equations. It should be pointed out,
vector to th& freg surface and r I and ý that additional free-surface boundary condi-
are the fluid and external stre'As tensok, tions may be required in the turbulence-model
respectively*. Within the boundary layer, equations. No approximations have been made
the free surface is deformed and does not in deriving conditions (2)-(5) and, as such,
coincide with the potential-flow free sur- the formulated boundary-value problem consti-
face; consequently, within the boundary tutes a fully nonlinear free-surface prob-
layer, Just as is the case in the outer flow, lem. Presumably, conditions (2)-(5) are
the free surface must be determined as part sufficient, in conjunction with the remainder
of the solution. The external stress is of the boundary-value problem, to render a
simply given by the difference between the unique solution, including the free-surface
ambient pressure po and the surface tension itself.
pressure p. Consideration is now given to appro-

Tij 2 (po0py) Iii priate simplications of the free-surface
boundary conditions that are consistent with

where 6 is the Kronecker-delta function, small-amplitude waves. This is consistent
For tur4•flent flow, the fluid stress is given with the usual approximation for calculating
by the outer wave potential in which linearized

small-amplitude wave theory is used. To this
'Tij " P-iJ + 2ucij - uiu- end, it is neceszary to know the order-of-

magnitude estimates for region IV (see figure
where P is the fluid viscosity, p is the 3), In previous work, order-of-magnitude
fluid density, p is the fluid pressure, estimates have been derived for region IV for

laminar flow by considering both the estab-1ii (UI + UJ.0 lished order-of-mAgnitude estimates In the
surrounding regions IIl1 and the require-

is the rate-of-strain tensor and iu- are ments imposed by the free-surface boundary
the Reynolds stresses. By means of %t pre- conditions. Referring to Table 1, it Is seen
vious dpnfinitit-ý, the fret-surface boundary that different solution regimes can be I-
conditions (1) can be expressed by dentified depending on the, •magnitude

of Ak/W. Only for s=all Ak -( "•') or less
- U - n1V + W - 0 (2) are the free-surface boundary conditicns of

hiqher order. This is the all-cross-flow
reg 'et For larger values of Ak, i.e.,

P [bu -Du ' In- (u(Uy+ Y PT)y 0(l'") z Ak 4 0(fc , the role of the free-X(3) surface boundary conditioos is signtfif-nt:
+ u(U Z+ W X o - (ro" Py)nX furtheroore, a consistent formulation re-

quires the solution of higher order boundary-
fu( *nyV layer equations. In fact, for Ak - QN) the

IIIy o y( +- Y aWsV - O order of magnitude estiMates in region IV
I y x X - y y(4) become,

+ UNVZ + Wy) - 0 •(" py )ny U - 0(0); O);ax

" " p " fu(U+ w) u (v .+ Wy (Vw) - 0(c). ~ a(a' 4
Z* I - - - SPo-

-owin y i + -I w 7 (po) Pwhich are identical to Msose used by Patet

(1982) 11 deriving the p*rtially-parabolic
Conditions (M)-5) are to be applied on Reynolds equations. Thul. it is seen thot

the unknowA surface z - n(xy). Note that r"1ion IV is 4ftlogOus to the flow in 4

* In the discussiOns to follow, the x coordinate is in the streambIse direction, the y
coordinate is across the booindary layer and the z coordinate is io the vertical direc-iio.
Also, for ease of presentstion, all equations are In Cartesian for.
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sareawise corner as was indicdted in Section small-cross-flow solution along the mean free
Ii. For turbulent flow, it is not possible surface and a fully three-dimensional solu-
to reach such definitive conclusions con- tion below. Calculations were performed for
cerning the orde--of-magnitude estimates and both laminar and turbulent flow; however, the
solution regimes for region IV. This is due effects of the free-surface boundary condi-
to the uncertainty of assigning orders of tions were investigated for laminar flow
magnitude to the Reynolds stresses near a only. In this case the pressure difference
free surface. Tentatively, based on physical (p - p + p ) in (9) was neglected. Condi-
reasoning, the above conclusions are extended tions N6) Ad (8) were used to eliminate
to turbulent flow also. (N , n ) in (7) and (9) which were solved

Ufor y UY and W respectively and used as
Table 1. Body/Free-Surface Boundary Layer boundary conditions for the solution of the

Order-of-Magnitude Estimates momentum equations. The results are for
small values of Ak only and are consistent

order of order of with the order-of-magnitude analysis in
magnitude magnitude showing that the influence of the free-

surface boundary conditions is significant
U 1 n Ak only in a region very close to the free-sur-
V nx Ak face z ( Ak - . The results show interesting
4 Ak n Ak/ r trends that are explained by reference to the
a/ax 1 2 free-surface boundary conditions. It is
a)ft A v shown that, within the boundary layer, the
a/A z Ak/E2 potential-flow free surface is deformed in a

manner that correlates closely with the
cross-flow velocity (see figure 5). In fact,

The free-surface boundary conditions all the small-amplitude-wave free-surface
(2)-5) are to be applied on the unknown roperties are shown to c)rrelate with * W.
surface z -nix,y). However, using the same Mhe results presented show trends that are
technique as that used in the outer flow, very consistent with the behavior that would
conditions 12)-(5) can be expanded in a Tay- be expected based on physical reasoning.
lotr slries about the known surface z - 0 and However, these results must be viewed with
evaluated up to the desired order of approxi- some caution due to the limitations of both
mation. To the lowest order of approximation the small-amplitude-wave solution and the use
conditions (2)-1S) are retained and simply of thin-boundary-lAyer equations and
evaluated on z - G. Such a technqiue is numerics. The influence of large values of
restricted in the present application to Ak was studied through the use of the sye-
O(MAk/l) > I based on the previous order-of- metry boundary condition. In particular, it
ag9nitude analysis, since for 0Ck/i tC 1 the was shown how the boundary layer responds to

Taylor series exptrtsions are not conver- the pressure-gradient changes along the plate
gent. Consequently, for Ol/k0c) c 1 a small- length between favorable and adverse, Also,
amplitule-wae solution iq not valid and the waves of sufficient steepness induce flow
free-surface bundary conditions must be separation near the free surface In regions
applied en the exact free surfhce z F n. For of large adverse pressure gradiert px.
sallhauplitege waves, and for laminar flow
(og•- 0) the free-surfaca boundary condi- IV. Cwautional letthod
•iX (2)•5) Ccali be approxiated by

The boundary-layer equations in't be
U (6) integrated numerically to obtain the velocfty

field for specified external flow pressure
+- Ujly 0 4 (7) gradients and edge velocities. The fully

an 2 V 0 Implicit meod of Wash and Scruggs (1976),
SUyfy - '+ V• * M•. 0 (8) originally developed for aircraft applica-

Stion, has been used. This method was iwm
Ip"po*uf-Uzn-S*W].4 (9) proved by Patel et al. (1979, 193 and 1985)

and applied to bodies of revolution at faci-
The 9-%at advamteqL if this solution Is that dence bod to ship form for zero Froude num-

th•e houftr conditions can rt toplied on the ber. Below a brief rwiew of the overall
W1 jfjCe (I -0;. procedures is provided.

I(n proviout work (Stemn Mrij the The 'three-dimensional thlo-boundary-

three-di•m*('sonal thi-a-!mn~j-l Ar eva- layer equations can be written In matrit
tionS t.er stlved for the Stkes wkoiflat- ector form as
plate flow 9eetry, using b9t0 at. approxi- 2
mate and mall-Aumlitude-•ave boundry All + A rx-, A + A Asc ontditions. The "proximate b~ d~r 2odt 3.t- 4 y'

St ion uted was a symmetry (1.0., zero (101 :
• • tdieot) w•dttioa wbich c~rv~es4m to & ;

• • . . .. . . . - .38 7



where F - (U,W) and Al - A6i are coefficient The thickness of the integration domain
matrices. Consistent with thit?-boundary- is 1.26 6(x,z), where 6 is the boundary- layer
layer theory, the (x,y,z) curvilinear co- thickness. Note that 6 is determined as part
ordinate system is constructed such that the of the solution. The number of grid points
parametric curves x -aconstant and z a con- is kept constant in both the y- and z-direc-
stant forma an orthogonal grid upon the body tions. For laminar flow, a uniform distribu-
surface and the y-coordinate is normal to the tion of grid points is used Across the
body surface. Such a coordinate system is boundary layer. An expanding grid was used
only truly orthogonal on the body surface in the z-direction so as to alliow for a
itself; however, the deviation from ort~ho- higher concentration of grid pOints. near the
gonality off the body surface is prest~ied of free-surface. A diverging geometric series
higher order. By approximating each of the was used for this purpose. The step size Ax
derivatives in (1 0) by finite differences, is arbitrarily specified. The number of
equation (10) can be expressed as cross-plane grid points and the step size ax

are determined from accuracy and computer-
BiF~~in+ 2F ~ + B F'_ 4F 1  cost considerations.

+ B 0 - B. 6F'-- A6 (11) The boundary conditions imposed when5 in1 ,n solving equation (11) at each cross-plane
where U^0n~n are node-point indices in the are.
(x~y,z) directions, respectively, and 81 - 86
are coefficient matrices composed of liinear F *0 on Y 0 (14)
combinations of the A's divided by the ap-
propriate spatial difference. In obtaining a
equation (11), the x-.derivative in (10) 1,,, 0 on y -1.264 (15)
expressed as a backward dilfference, the y
first-order z- and y-derivatives are expres- 3F
sed using upwind differencing so as to pre- T- %X
serve convective stebility an lastly the z 0on Z.(6
secOnd-tirder y-derivative is expressed using aa central difference. Thus, the overall WT C 3  OR z U 0 (171
procedure is only first-order accurate. TMe
finite-difference Polecule assotiated with Co dition (14) is the no..slip condition:
(11) is shown In figure 6. Note that both , e 0. Condition (15) impaseIs the COP4i-
equations (10) and (11) are nonliftear since ti~e that the viscous-flow solution "mero
the coefficient mnatrices ane functions of smoothly with tho outer potenia flow and is
F. Equation (10) is solved by awans -of an impomented ty
1t~erwating-dimetion-iuplicit 461I) schme.

The forhard marchiag prixeduwre advances
in the positive y-dirottion fro, a r~s- where 194 Is the *40*0us nlumber of grid pOtists
Plane. 1-1. were t!he Solution ft #eSime4d to omnes the boundary likyer. The 2ero-gra3ditnt
be known, to a croes&-plane t, at. which a t& Matthing condition does ivot Otsure that th.,
SOlutionl is obultee f"~ Utfr tolution of edge iialut are41 identic..Vfy Mek
equation (11). The AUX scfem consists of an-d %"]ll di:enc h Wa cr; thus. After
sainming tW cross-plaft alternstely im t-he a converged solutfon is obtoined ot eah
nf- anld .i ns cqlvaortfft eq4WtOO (11) crol-.phite. It"e velocity. profiles tre scaled
rouoQwtively 14to the socctssiie ftrms With the -knoun taluel of (1e 1I~ (onditioa

(16) is a Sywfttyý Cott 41t~ U; is tX410-

S* a/ V- .%F4- iC2  (13? .

Ift which C and i~C2 e~ the pg5SIVe terMS whore MW Is the ftiv numbee of.rld pointt
6rfiKsmt1;,) from the left-hamd Oide- of io t~he x--direction. If W And p trre zoro on
(11). me cowiclets or e~atit4% (12) ind z theft (16) becofts similar ~*3 pa ir-M-of-
(131i"@*5 5 o1k-tridiioawl W.rix WHich Is I$~etr~y condft06n. Lastly contdIttion (17)

t llm 0 n exwtedd -Thou$s a120Htfu. Is W th e surhov boundary condition. ror
Afttr aich 6t- or a-scan, the tontinutty equ,& the Press't circumstawes. in which a lyin-
tSloe Is lateorated wOtai oltoht*- velocity gotry boundary condition4 is 'used- C: a 0.
ooCt 'eawt. The 1 ard C Waricies are updftid1 Thus., confltic (17) is simply ftolemeetd by

in tcc~s Iv tereIosns Ontit cooveroenc is
obtaine vith rs~ecs t the v loy o -

rftsit at- tith grtd powa ultilm a to&4f~d.
toaic.whey* 0 1 carSpaoads to the, man" free

sw-faVe.



If the turbulent motion is characterized as just described, with F x (U,W ! q). For
by a single length scale, then it is expected turbulent flow, a nonuniform distribution of
that this scale must decrease towards a free grid points is used across the bounda-y layer
surface due to geometrical restrictions. In in which a higher concentration of gridthe present investigation, a simple modifica- points is placed near the wall.
tion, is made to a one-equation turbulence
model to account for the influence of the It. Stokes.-Vave/Flat-Plate Doundavyf LW.avr_
free surface. This is consistent with the

use of the sy•metry-condttion boundaiy condi- Consider tie flow field in the vicinity
tion. Specifically, the Bradshaw/Rash one- of a surface-piercing vertical flat plate
equation turbulence model, which was built moving in and at the same speed as a simple
into the original program, was used here harmonic iave train. It is assumed that the
also. In this procedure, an approximate form plate is sufficiently thin that it generates
of the turbulent kinetic energy equation is no wave of its own. Such a flow can be simu-
solved in conjunction with the boundary-layer lated in a towing tank either by towing the
equotions. The turbulent-kinatic-energy plate at the same speed as a wave-maker gen-
equation is put in the form erated harmonic wave train or by towing the

U. a V a 77/ W a q plt and generating the wave train witha
a / + W- - N /2) submerged horizontal foil afixed ahead of theST÷

+3 plate leading edge. An expriment using the

W I a W I W latter arrangement is presently under way at
+ 7-I r + 7- + - D - 0 (18) The Unilversity of Iowa's Institute of Hydrbu-

eic Research. Some preliminary results from
where this experiment are presented below for core-

-- parison with tho computational results.
D j ( + Y ) (19) Outside of the plate boundary layer, the flow

is essentially inviscid (see figure 3) and
can be represented mathematically as a se-

-7 +cond-order Stokes ýmve; that is, the fluid
vE[2V u W V + W 3 (20) velocity field V for coordinates moving with

the plato/wave s~stem is simply given by:The diffvsion term 119) is represented Iby a
bulk diffusion wft4l le *U e101 , 1 U5)

where # is the vwlocity potential

YZ~ a21 # AUoe sin kx (26)
• a • =~~~ wx , a u f • t n • e • t r ,fi th th e d isp e rs ion re l a t io n sh~ p

maximum value Ot 7  in the outer 314 ~*(k~of 4 U2- ( U (Ak)2)

0 e - W and (x,r) are Cartesian coordinates with x.e e posltivt downstream and z positive downwards

.2 1.12$5 WO/1)• (see figure 7), The third coMidnate y Is
tM dssiatio Um(20)ts orosntt by norital to t~he plate and@ across the bottnda-y

Th disspatlo ter (20) Is re sented Iayer. The origin is located at the plate-
-. 3/2 Iedng-edge/u )lane intersectiom. lhe
4 0 potential-flow free-surface elevatiol n(x)

and pMeometric pressure coatficlemt cp are
where LO f tte distipation length given by

LOP .1S O * 4n 2+ S"7 (231 A~~ Acos ki x . cos 2ki (27)

ard Is the ".n$u diOtaie *f c (xz) -2 Ak e-kz cos Itx - (Ak)2e' 2 ki (28)

Steses M va., q to the turbuleat kizetic 'uth relard to calculating the boundary layer
fier by the 'Wiprial funUtt•ns on the plate, toe most iportant quantitites

are the edge velocities

- O(21Ue1UO A Ak 042 cos kx (29)
ytJ~a~ke~sin kx (0

The turW- entlinetic-enevgy 44ation s 18) atd the preertsw gradleuts
las soled In cohJunction Ulth the vea-flow
OA tam e~vAtonasing Ote A)I procedzw* Akle sin -a
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_(.)= . Ak2 e-kZcos kx + k(Ak) 2 e 2 kz (32) equations are solved implicitly using the
z Uo same difference approximations as are em-

ployed for the full boundary layer equa-
The second order terms have been included tions. The present bcandary layer calcula-
since they have a significant influence for tions were made using the latter approach.
steep waves. Figure 8 shows both the exact and the edge

velocity solution potential flow. Note that
The wave elevation, edge velocities and there are inaccuracies in the edge velocities

pressure gradients are shown to first order which are an indication of the accuracy of
in figure 7. Referring to figure 7, it is the overall numerics. Also seen from figure
seen that four potential-flow regions can be 8, is the significant influence of the second
distinguished. In region I, both p and p order terms for this steep wave Ak = .24.
are favorable, W > 0 and accelerating, and
Ue < Uo and accelerating. In region II, p Figure 9 shows the streamwise dispiace-
is favorable and p is adverse, We > 0 anA ment thickness 6 . At large depths (z<.0),
decelerating, and ie > U and accelerating. the solution asymptotically approaches the
In region III, both pz an' p are adverse, W simple-two-dimensional turbulent flat plate
< 0 and decelerating, anŽ Ue < U. anB boundary layer solution. At the greatest
decelerating. In region IV, p• is favorable depth Zmax= .75, this solution is recovered
and Px is adverse, W < 0 and accelerating, to wittii an error of only a few percent.
and Ue < U0 and deceferating. Each of these Referring to figure 9, it is seen that, for x
regions has a distinct influence on the < .1, the displacement thickness is somewhat
boundary-layer development, larger near the free surface than it is at

greater depths. This is no doubt due to the
Cowutational Results initial conditions and the decrease in local

R towards the free surface in this poten-
Results are shown below or Reynolds tJal-flow region (see figure 7). Subsequent-

number R = U L/v u- 1.65 x 100 and wave ly, for x > .1, the displacement thickness is
steepnesg Ak q 0.24. This corresponds to the reduced near the free surface as compared
experimental condition. In the discussions with greater depths. This reduction is due
to follow, the (x,y,z) coordinates are non- both to the favorable p in potential-flow
dimensionalized based on the plate length regions I and II and to "the favorable p. in
L. Both L and the wave length X = 2w/k are region I. A favorable px tends to accelerate
given the value of one. Typically, 170 x- the flow and thin the boundary layer in that
steps and 21 grid points across the boundary region. A favorable p tends to drive the
layer were used. Ar expanding grid was used cross-flow away from t&e free surface and
in the z-direction with grid points z = thin the boundary layer in that region. The
(0.,.025,.062,.12,.2,.32,.5,.75). The re- minimum displacement thickness shows about 44
sults presented below were obtained by inter- percent reduction and occurs near x - .4.
polation and are for z = (0.,.042,.084,.127, For x > .45, the displacement thickness near
.253,.38,.75) which corresponds to the loca- the free surface increases such that for x ,
tion of the exerimental data. Numerous .75 it is greater near the free surface than
checks were made to insure thac the results it is at larger depths. This increase is
were grid independent. Also, a strict con- initially due to adverse p, in potential-flow
vergence criteria was used, namely AF/Q < region II which tends to drive the cross-flow
.00005, and a minimum of three ADI sweeps towards the free surface and thickens the
were required at each zross-plane. The boundary layer in that region. This is com-
calclations were made on a Prime-750 pounded by continued adverse pz in potential-
cobputer and took about 1/2 hour of computing flow region III and adverse p in regions III
time. The calculations were begun as laminar and IV. An adverse p tencA to decelerate
flow at x = 0.001, with transition specified the flow and thicken the boundary layer in
-at x = .05 which corresponds to the location that region. The maximum displacement thick-
-of the trip studs in the experiment. The ness shows about 75 percent increase and
Blasius solution based on local Rn was used occurs near x - .99. Lastly, for x > .99,
for the initial conditions, the dispalcement thickness near the free

surface decreases until the end of the plate
In the previous work, the edge condi- is reached at x - 1. This reduction is due

tiotis (U ,W ,p epz) were specified by equa- to the favorable pz in potential flow region
ttoi~s (2g}-f32" respectively. Alternatively, IV. The other integral parameters (boundary-
c (2P) alone can be specified and the e4ge layer thickness, momentum thickness, shape
cSnditions obtaineo numerically; that is, parameter) all show similar and consistent
(pxOpz) are obtained by numerical differen- trends to those described above for the dis-
tiation and (U ,We) ,re obtained through the placement thickness.
solution of lhe -two-dimensional form of
-Euler's equations ýthe momentum equations The results for the wall-shear-stress
without the viscous and Reynolds stress magnitude T and the angle 0 are shown in
terms) at the boundary layer edge. These figures 10 and 11, respectively. Referring
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to figure 10, it is seen that the wall-shear- depthwise exponential decay of the wave
stress behavior is consistent with the prey- influence is clearly seen.
iously described displacement thickness, but
in reverse trend. Note that the shear stress Calculations were also ma-le using the
responds more quickly, and with greater in- exact potential flow edge conditions (see
tensity to changes in the potential flow than figure 8). The results ere very similar to
the displacement thickness. The maximum and those shown above. However, there are some
minimum values show about a 85 percent and a differences: the maximum percent iqcrease and
76 percent changa from the deep solution minimum percent reductioo• for 6 and r as
respectively. Referring to figure 11, it is compared to the deep solution are (110 ,W34 )
seen that the shear-stress angle and (89, 78) respectively; the maximum and

1 W minimum values of B are 42" and -•11 respec-
" tan'im • tively; and the minimum value of 6 is not at

Y*O y the free-surface itself but at the next z-can be directly correlated with Pz. In po- grid level.

tential-flow region I, where pz is favor-
able, B is positive. In regions II and III, Comarison with Preliminar. Experimmtal Data
where pz is adverse, B is negative. Finally,
in region IV, where p is again favorable, B As previously mentioned, an experiment
is positive. Note ?hat there is a lal in is presently underway using a model geometry
the B response to p such that a becomes designed specifically to simulate the Stokes-
negative at x - .4 ancW positive again at -. wave/flat-plate flow field. The objective of
.9. It should be recognized that o indicates the experimental program is to obtain de-
the direction of the cross-flow near y - 0 tailed measurements documenting the effects
and it is in this low-inertia region that W of' waves on the boundary layer of a surface-' • seqenfirst respondstoasg to changeshne in•n p.. Tha•s, sub- p! erci ng body, including the conditions

sequent to a sign change In P, so-called S- leading uo to wave-induced separation and the
type cross-flow profiles occur as will be nature and extent of the separated flow.
shown next. The maximum and minimum values Presently,, wave profile and mean-velocity
of B are 340 and -30O respectively, profile measurements are being made. Also ofInterert are turbulence measurements.

The streamwise U and crr*',flow W velo-

city p.,files and the tu, 1 . kinetic i'gaure 16 show, a sketch of tit experi-
energy q profile at various -.-- planes are mental model installed in the towing tank.
shown in figures 12 to 15 for z - (.042, The horizontal foil fully spans the towing
.084, .127, .253) respectively. Referring to tank and is mounted to sidewall end plates
figures 12a to 15a, it can be seen that the U which allow for the adjustment of the foils'
profiles show the influence of acceleration submergence. Downstream of the foil is the
and deceleration phases of the potential vertically suspended flat plate. The plate
flow. This becomes even clearer if the U is suspended such that both its lateral and
profiles are normalized by U and are plotted longitudinal position can be adjusted. The
vs. y/8. Such a plot shows that for x - .125 model configuration was designed to generate
the U profile is similar to the two-dimen- waves that are as two-dimensional as possible
sional turbulent flat plate solution. Sub- and with as little disturbance by the plate
sequently, during the acceleration phase, the as possible. Both the foil and plate are
U profile is fuller than the x a .125 pro- mounted to a trailer which is towed by the
file, and finally, during the deceleration main carriage. This allows for easy access
phase, as separation is approached, it be- and optimum viewing. The foil geometry was
comes, less full. Referring to figureý 12b designed based on the experiments of Salvesen
to 15b, it can be seen that Ve W profiles (1966). Salvesen performed similar towing-
clearly show the influence of the potential tank experiments with a submerged horizontal
flow we and pr. It is seen that initially, foil (without the downstream plate) for the
for x a .125 and .25, the crossflow is purpose of validating his higher-order wave
positive. Subsequently, beginning with the thoery for submerged two-Mimeosional bodies
inner part of the profile first, the cross- (Salvesen 1969). Of present i•terest is the
flow becmes negative Nx - .375, .5, .625. ability to control both the wave steepness Ak
.75). Lastly, for x a .875 and I., again and the wave length i by adjustment of tho
beginning with the inner part of tVe profile foil submergence d and carriage spe U
first, the cross-flow becomes pos'tive. respectively. Salvesen's results 10nocat
Referring to figures 1kc to 15c, it is seen that this would be possible with the present
"that initially, during the acceleration arrangement* however, the influenco of th
hasco, .e maximum value of the terbulent donstvae plate was not know.
inetic energy occurs very close to the

wall. Subsequently, during the deceleration Some preliminary experiments have been
phase, the maximuam value moves outwrd oerformed to determine this influence and
towrds the middle of the boundary layer. demonstrate the feasibility of the proosed
Finally, by -,omparng figurm 12 0 16 tb. model gametry. Figbre 17 shows resues from
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these experiments. Shown in figure 17 are figures 9 4nd 24 it is seen that similar
plots of Ak vs. Froude number based on the trends in 8 are exhibited in both the cal-
carriage speed Un and the foil chord culations and the experimental results. This
length c (F = U /v'gc) for various depths of is true for both the depthwise and streamwise
foil submepgencg, d. The Ak values were variation. Hoever, the magnitude of the
determined from photographic records of the experimental a is significantly larger than
wave profiles on the plate. Also shuwn on the calculations and 4e depthwise variation
figure 17 for comparison are results from of the experimental a is not as large as
Salvesen's experiments. Salvesen determined that calculated. These differences are con-
his wave profiles using a capacitance wire. sistent with the fact that the surface of the
The present experimental results indicate aluminum plate used in the preliminaty ex-
that the wave length x can be predicted very periments is rough. Also, the influence and
accurately from the results of linear wave dopthwise extent of the separation region
theory exhibited in the experiment and not the cal-

2Uo) culation is unknown. Referring to figure 18,
S(33) it is seen that experimentally for Ak - .24
g the streamwise extent of separation is

This finding is consistent with Salvesen's .71 < x < 1. In previous 6 turbulent flow
results. Referring to figure 17, it is seen calcilations for Rn = 5 x 106 and Ak - (.01,
that for fixed Uo the wave steepness Ak in- .2,.3,.35), separation only occurred for Ak =
crebses with decreasing foil submergence, as .35 and at x = .9.
expected. Note that there are differences
between the present results and Salvesem's; lhe differences between the calculated
that is, for fixed U0 and d the Ak values and measured velocity profiles, as can be
obtained with the present model are somewhat seen by comparing figures 12-15 and 20-23,
lower than Salvesen's. This is no doubt due are consistent with the previous discussion
to the damping influence of the downstream concerning the edge velocities and displace-
plate which was absent in Salvesen's expert- ment thickness. Aiso, the measured W pro-
ments. The plate used in the preliminary files show larger values then the calculated
experiments was constructed from an available ones and the measured decay rate is such that
alumi'inu sheet which required reinforcing L initially (z - .042 and .084) the rate is
beams. In the future a new plexiglss plate small and subsequently (z = .127 and .253)
will be used and it is expected that this the rate is large. The calculationp show a
will reduce the damping effect. more uniform exponential decay rate.

Some preliminary mean-velocity profile The agreement between the measurements
measurements have also been made using a and calculations is considered very satisfac.
three hole pitot tube and for U. a 4.5 fps tory, especially considering the preliminary
and d - 1.21 ft. Figure 18 shows a photo- nature of the experiments and the approxima-
graph of the wave profile for this condi- tions made in the calculations concerning thetion. Based on this photograph, it was de- free-surface boundary conditions and turbo-
termeined that Ak - .24. Note the occurrence lence modelling near a free surface. Note
of wave-induced separation for this steep that the first measurement depth is greater
wave. The measurements are for fo-jr depths z than one boundary layer thickness below the
u (.042,.084,.127,.253) and for up to seven free surface and thus such effects may not be
*.ial locations x - (.25..375,.5,.625,.75, discerneble at this depth as indicated in the.875, 1.) depending on the depth. Here, x previous work. The analogy between the pre-
and z hav been normalized using the linear sent flow and the flow in a streamwise corner
wave theory value for k (33), The axial has already been pointed out, It should also
alignment of the plate for the velocity be mentioned that for curved corner flow it
Sofile esasureMents wAs such that the is well known that the effects of lateral
eading edge of the plate was near the first curvature are likely to be an order of wagni-

wave crest. tude larger than those due to Reynolds stress
gradients (Johnston 1978). Thus for the pre-

Figure 19 shows a comparison of the sent circumstances, especially for steep
measured edge velocities (Ue, We) with the waves, pressure gradient effects may be pro-
Stokes' wave the,,rticl values. The agree- dominant.
mrnt Is good; however, the experimental data
show a phase shift Indicating that the wave VI. Exte•io•ls for Ship Bl"Midavy.Layers
trough was actually some•at downstream of x

.5. This may be due to a misallgnmnt of Two complications arise in extending the
the "xial position of thw plate. provious work to practical ship forms.

het'st, the body geometry is no longer flat;
Figures 20 - 23 show the measured velo- Conseuently, the equattons of motion and

city profiles WU,1. Figure 24 nows theM comutational grid -re more cwplex. Second,
ttrommise displacwent thickness 6 avid the and more importantly, determination of the
bow4ary layer thickness 6. Comparing exteroal nonzero Fraude number potential flow
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for an arbitrary three-Mimensional body is The present state-of-the-art of calcula-
buth a formidabie task and a topic of current tion methods for nonzero Froude number poten-
research. The present boundary-layer work in tial flow for an arbitrary three-dimensional
this area began onty very recently and the body is such that no exact method is yet
progress to date ýs not complete or fully available (Workshep on Ship Wave-Resistance
satisfactory. However, it is felt that the Computations 1979, 1980, and 1983). One of
difficulties encountarad are of interest and the more promising methods to emerge from the
for this reason some preliminary results are Workshop is that of Dawson (1977). The
presented below. The Wigley hull was se- method uses a simple Rankine source distribu-
":ectei fo. %.he initial calculations since the tion over both the body surface and a local
geometry is relatively simple and can be portion of the undisturbed free surface. The
deucr~bed analytically and some nonzero free surface boundary conditions are linear-
Froude number experimental data (pressure ized in terms of the double-model velocity.
distributiovts &Ad velocity profiles) is a- Upstream waves are prevented by use of a one-
vailable (KaJatani et al. 1983 and Shahshahan sided, upstream, finite-difference operator
1985). for the free-surface condition. The above

approximations are more accurate for low
Preliminary Results for the !ligley Hull speeds. Results from an improved version of

the XYZFS method of Dawson iCheng et al 1983)
The calculations were performed using a have been used in performinq the boundary

surface-related curvilinear coordinate system layer calculations to be presented next. The
(.,t,,.) whe.-e: s is the distance along water- hull was discretized using 192 panels (24
lines; t is the distance around the girth; axial and 8 girthwise). The velocity and
and n is the distance along the outward nor- pressure field on the hull surface obtained
mal. The metric and curvature coefficients from XYZFS was interpolated onto the boundary
are expressed in terms of the surface equa- layer computational grid using piecewise
thon Hermite splines.

;- xJcf(x,z)34-'o (34) The results shown are for Rn - 6.33 x
106 which corresponds to the experimental

where condition of Shahshahan (1985). 86 x-steps
2 z 2 and 21 grid points across the boundary layer

f .O0[1-(2x-1)]31-(-w )2 were used. A uniform grid was used in the z-direction. T4 results were found to be
by sensitive t;. the number of grid points used

in the z-direction with 8 grid poitis giving
R the best results. The calculations werehegun as lamlnar flow at x a .0125, with

transit.Ion specified at x-.05 which cor-
h3 " IRzl responds to the location of the trip studs in

the exper.nwnt, The Blasius solution based
ahl on local Rn was used for the initial condi-

V _13 " h" _Z M tions. Calculations were made for Froude
n•.iber Fie " (0.,.267,.316,.4); however, re-

K 1  h3  sults are )resenteC only for Fn - (0.,.267).
1Fl3•- Figure 25 chows both the complete XYZFS

ard the edge velocity solution potential flew
The (x,y,z) coordinates are nondimensional- for Fn-O. It is seen that the inaccuracy in
ized based on the booy length L and the the edge velocity solution is *ncreased as
origin is located at the ba4/waterplane in- compared to *revious resl.1s for the Mimple
tersection. Note that the (s,t,n) system is Stokef-wav% pressure distribution. Doundary-
not orthogonal; since, the angle between the layer calc,1"tions were made using both
s and t curves potential-flow solutions. ,Figure 26 shows

'If, fZ the displacement thickess a and figures 27
o" £.0% and 28 snow the wall-shear-stress

magnitude T and angle a obtained using the
is 90" only at ends and the midhody. The edge vt'ocNt# solution potential flow. The
maAimum deviation from irthogonalty occurs results are completely consistent with the
near Y a .2 and .8 whe-e !cl - 3,. The ttrms imposed edge conditiors; vaisely, initially on
in the boundary layer equations associated the forebody the fl*w si downward towards theWitth the nonorthogunallty of the (s,t,n) keel and subseluently on the afterbody the!
coordinates have been neglected and are pre- flow is upwdrd towards the wateplan.#. Inis
sumed small. In general, the coordinates resultU in the displaceisont thick:ass trends
have a significant influence. In particular. shown In figure 26. Note tht~the behavior
Kil attans large values IK311 2 ntdf x of , call be correlated with s and Ut

• 125 and .875. whtlI that of a with pz and W. Tre result
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obtained using the complete XYZFS potental gion .5<x(I and show that initially (x=.5)
flow are similar to those shown above. The the boundary layer is thickest near the keel
main differences are in the crossflow velo- and subsequently the trend is reversed such
city component resulting in less exaggerated that, for x>.75, the boundary layer is
trends in the depthwise direction, thickest near the waterplane. By comparing

figures 26,30, and 33, it is seen that the
Figure 29 shows both the complete XYZFS calculations for Fn=0 and for Fn=. 26 7 and

and the edge velocity solution potential flow x<,7 are in qualatative agreement with the
for Fn=.267. It is seen that the inaccuracy measurements.
in the edge velocity solution is substantial,
especially for We- In particular, the edge Wherein lies the problem? In order to
condition solution We indicates a convergence determine this, calculations were also made
of the external flow streamlines towards z = using measured and synthesized pressure dis-
.013 for x > .7 (see figure 29g) while this tributions. The measured pressure distribu-
is not indicated by the XYZFS W (see figure tion (see figure 34) was obtained from the
29e). It should be recognized-that the c wave profile and surface pressure measure-
curve along z=O is the nondimensional wavS ments of Kajatani et al (1983). By comparing
elevation within the context of linear wave figure 34 and 29 it is seen that qualitative-
theory and, as seen from figure 29, the wave ly the XYZFS and measured pressure distribu-
steepness is large over much of the wave tions are in agreement. This was also found
profile Wx<.4 and x>.9). This is also indi- to be true for Fn = .316. The results ob-
cated by the large pressure gradients Px and tained from the boundary layer calculations
P,- Note that, for a Stokes wave of similar made using the measured pressure distribution
steepness, the second-order terms are impor- showed similar tendencies as described a-,
tant and have the influence of reducing pz. bove. However, in this case, there is also a
Boundary layer calculations were made using large overgrowth of the boundary layer on the
both potential-flow solutions. Figurt 30 midbody near the keel. Finally, a pressure
shows the displacement thickness u and distribution was synthesized using the Stokes
figures 31 and 32 show the wall-shear-stress wave pressure distribution in order to simu-
magnitude T and angle B obtained using the late the Fn = .267 pressure distribution (see
edge velocity solution potential flow. It is figure 35). As might be expected, the
seen that the solution is consistent with boundary layer calculation results obtained
what might be expected based on the imposed using the synthesized pressure distribution
edge conditions; however, for x>.7 the solu- are well behaved and consistent with expecta-
tion has become unstable and diverges. tions.
Actually, for x<.7, the solution for Fn=. 2 67

is basically similar to the Fn*O solution, Based on the above investigation it is
with the differences consistent with the believed that the primary source of the dif-
differences in the edge conditions; that is, ficulty is in the specification of the exter-
the thickening of the boundary layer on the nal flow. lhe XYZFS and measured pressure
forebody near the keel is increased; on the distributions appear to provide too coarse a
midbody, for all depths, the boundary-layer description for accurate boundary-layer
thickness is increased and the shear calculations. Also higher-order effects may
stress (r and o) shows oscillations. For be important in the potential-flow solu-
x>.7, th. rapid boundary-layer growth near tion. No doubt, a part of the difficulty is
the waterplane and its subsequent divergence due to the limitations of the present
are no doubt due to the combined effects of boundary-layer computational method for large
prolonged convergence of the external flow crossflows and crossflow pressure
streamlines towards z-.013 and the large gradients. Future work will concentrate on
adverse Px and pz for x>.9. The results clarification of these issues.
obtained using the complete XYZFS potential
flow exhibit a similar solution divergence as ACKNOLWIEGVT
that shown above for x).7 only initiating
oecr the start of the calculation. The I am pleased to acknowledge and thank
results at the higher F-( .316,A4) are quite Professor Landweber and Patel for their sig-
similar to those Just descrtbed; however, as nificant contributions to this work. Not
the Fn increases, the calculation difficul- only did they suggest the present topic to
ties •gin for smaller values of x. This is the author, but they also provided many help-
contrary to expectation since the wave steep- ful discussions, I would also like to ac-
ness appears to decrease with increasing knowledge WS. Hwang for his assistance in
F However, it is consistent with the fact performing the experiments and 8.M. Cheng of
tat the\approximations used in the Dawson the Numerical Fluid Dynamics Branch of
method are more accurate for lower FV To OTNSRDC for providing the XYZFS potential-
help put the results in perspectfvg, the flow calculations for the Wiglty hull. This
measured displacement thickness for this Fn research was sponsored by the Office of Naval
by Shahshahan (1985) Is shown in figure 33. Research, Special Focus Research Program in
The measurements are for the afterbody re- Ship Hydro nmfics, under Contract =00014-83-
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K-0136. The Graduate College of The Univer-
sity of Iowa provided a large share of the Mei, C.C. 1983, "The Applied Dynamics of
computer funds. Ocean Surface Waves", John Wiley A Sons, New

York.
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DISCUSSION
of the paper
by F. Stern

"lnfluence of Waves on the Boundary Layer of a Surface-Piercing Bo'y"

DISCUSSION Author's Reply
by H. Wang

In response to Dr. Lee, the modification
I wish to commend you on your calcula- of the turbulence model to account for the

tions, which bring out the differences in boun- influenc.,• of the free surface is in the calcu-
dary layer characteristics between lation of the dissipation length equation (23)
double-model and forward speed cases. I am where n is defined as the minimum of either
specially interested in your displacement y/6 or z/6. As discussed in the paper, in
thickness results for the Wigley hull, shown the present investigation, which is for turbu-
in Figures 26 and 30. These basically show lent flow only, no attempt was made to resolve
that for x/L (0.7, the displacement thickness the details of the flow in the region very
for Fn = 0.267 are somewhat larger than those close to the free surface (region IV of figure
for the double-model case, Fn = 0, with a larger 3), and as such, only an approximate symmetry
difference at x/L = 0.8. It is, of course, boundary conditinn is applied on the mean free
unfortunate that you were not able to extend surface and the usual thin boundary layer
your calculations for Fn = 0.267 beyond equations have been used. The symmetry bound-
x/L = 0.8, where the laegest boundary layer ary condition corresponds to a small-cross-
growth takes place. Do you expect the differ- flow solution along the mean fre6 surface and
ences between the Fn=O and Fn=0.267 cases to a fully three-dimensional solution below.
monotonically increase with x/L? Do you Note that this is not equivalent to a plane-
expect these differences to increase or of-symmetry boundary condition. The laminar
decrease for thicker ship hulls? flow order-of magnitude estimates for region

IV (see Table 1) indicute that the symmetry
Author's Rnply condition solution is valid only for extremely

small wave steepness Ak. For larger values of
In response to Dr. Wang I do not Ak, the role of the free-surface boundary con-

necessarily expect the largest differences bet- ditions is significant and a consistent formu-
ween zero and nonzero Froude number boundary lation for region IV requires the solution of
layer development to occur near the stern. It the partially-parabolic Navier-Stokes
depends an the differences in the pressure equations. For turbulent flow it is not pos-
distributions between zero and nonzero Froude sible to reach such definitive conclusions due
numbers. Of course, the flow near the sterts to the uncertainty of assigning the orders of
is dependent on the 2nti-* history of the magnitude to the Reynolds stresses near a free
upstream bound,-rv ;ayer development. For the surface. The good igreement between the pro-
particular case investigated (based on Figure3 sent calculations and measurements both of
26 and 29) the largest differences may actually which do not ?esolve the flow in region IV
occur on the forebody. Since in general wave- indicate that the Table 1 order-of-magnitude
making increases with hull thickness I wuuld estimates may also be valid for turbulent
expect larger differences between zero and flow. That is, the influence of the free-
nonzero Froude number boundary layer develop- surface boundary conditions is confined to a
ment to occur for thicker hull forms. region very close to the free surface.

DISCUSSIOw
by Y. L-te

The author ought to be congratulated for
the success in solving this difficult problem.
However, I have two unclear points about the
paper. First, from Equations (18 to (24) the
one-equation turbulence modal is useo. I em
Interested to know what Is the specific mod-
ification made for the free surface. Second.
the fluctuation of streaei"se 6* if the z-
direction shown in Figures 26 and 30 along
the water 1-.o indicates the instability of
the thin bourdary-layer solution in this
region, ts the ReOion II defined in Figure 3
of the paper. -:- talidity of the thin
boundary-layer szii.ion, used by the author,
in the region of the water line is questionable.
The adopted plane-of-symetry boundary con-
dition, i.e. C3 a 0 in Equation j17), at tt*
wter line is also nonrealistic. Would the
authoir coftet on this?
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PREDICTION OF THE UNSTEADY HYDRODYNAMIC
CHARACTERISTICS OF SUBMERSIBLE VEHICLES

Michael R. Mendenhall
Stanley C. Perkins, Jr.

Nielsen Engineering & Research, Inc.
510 Clyde Avenue

Mountain View, CA 94043

Abstract

A rational flow model to predict q1 nondimensional pitching
the nonlinear hydrodynamic forces and rate, qX/V,
moments on a general submersible vehi- r yawing rate
cle undergoing steady and unsteady r' nondimensional yawing rate,
maneuvers is described. The major rx/V
physical flow phenomena over the sub- ro hull radius
mersible vehicle at high incidence R radial distance
angles are simulated, including the Re Reynolds number
lee-side separation vorticity and the Sb base area
trailing vorticity from the lifting Sr reference area
surfaces. The mutual interaction be- t time
tween the vehicle and the time- V free stream velocity
dependent flow field is considered in Vy hull volume
the prediction of the unsteady hydro- X' axial-force coefficient
dynamic characteristics at any speci- Ye side-force coefficient
fied instant in time. The hydrodynamic u,v,w, perturbation velocities
prediction method is coupled with a x,y,z coordinate system, origin at
six-degree-of-freedom equation-of- CG
motion solver to predict vehicle tra- xyz inertial coordinate system
Jectories. Comparisons of measured and XyI coordinate system, origin at
predicted results for static and steady nose
flow conditions are presented to show zo normal-force coefficient
verification of the method, and pre- angle of attack
dicted results for an unsteady maneuver angle between free stream
are presented to illustrate the use of 1C velocity vector and body axis
the method. 0 angle of yaw

r vortex strength
Nomenclature at time increment

ax axial length increment
Cn normal-force coefficient per 0 polar angle

unit length 0 free stream density
CA axial-force coefficient roll angle and velocity poten
Cf skin-friction coefficient tial
Cm pitching-moment coefficient 4 velocity potential
Cn yawing-moment coefficient stream function
CN normal-force coefficient rotation rate
C p pressure coefficient
C side-force coefficient subscripts
Dy hull diameter

,�,�r�. iit vectors in x,yoz-eystem () average
I moment of inertia C) derivative with time
I hull length (AN apparent mass
m mass )AN
N' pitching moment coefficient (p point P on hull
N' yawing-moment coefficient 4 )e steady
p rolling rate, and local eta- ( )u unsteady

tic pressure
q pitching rate Introduction
q.ee t treea dynamic pressure,

11 oV! Operational requiremente of modern
submersible vehicles, whether free-



running or towed, can involve dynamic taneous pressure distribution on the
S maneuvers which result in very high vehicle. The shed vorticity in the
angles of incidence and large angular wake of the vehicle As permitted to
rates. Under those extreme flow condi- move in this interval under the influ-
tions, the vehicle experiences non- ence of the external flow conditions,
linear hydrodynamic forces and moments the vehicle, and the wake itself. The
caused by flow separation and roll up vortex wake represents the historical
of the hull lee-side vorticity (Fig. 1) lag in the flow field which relates to
and induced effects of trailing vorti- the aft portion of the vehicle what
city from lifting surfaces. In un- happened at an earlier time on the
steady flow, the strength and position nose. The early porions of the wake
of these vortices and their induced are eventually swept downstream past
effects are dependent on the history of the base of the vehicle and their ef-
the motion of the vehicle, and con- fect on the induced loads is lost for-
versely, the motion of the vehicle in a ever.
maneuver is dependent on the vortex-
induced hydrodynamic effects. Predic- In the remainder of this paper, a
tion of vehicle motion under such con- rational flow model developed to pre-
ditions requires a different approach dict the nonlinear, unsteady hydro-
from the traditional linear hydro- dynamic forces and moments acting on
dynamic prediction methods applicable submersible vehicles undergoing large
to low angles of incidence and unsepa- unsteady maneuvers is described. The
rated flow. Unsteady nonlinear tech- motion of the vehicle is predicted as
niques are required for predicting and are the detailed loads acting on the
understanding the complex flow phe- vehicle components. The state of mo-
namena associated with submersible tion is described by the translational
vehicles in arbitrary maneuvers, velocity components u, v, w and the

angular velocity components p, q, r as
A rational flow model to simulate a function of time. The following

the major physical features of the sections include - discussion of the
complex flow near a submersible con- approach to the problem and a descrip-
fiquration undergoing steady or un- tion of the flow models and analysis
steady motions in incompressible flow required. The prediction method is
is described in this paper. The pre- evaluated through comparison of mea-
diction method, based on the rational sured and predicted results for a vari-
flow modeling technique, is directed at ety of configurations under a range of
the calculation of nonlinear hydro- flow conditions. Where data are not
dynamic forces and moments without available, results are pre4ented for
resort to empirical informationi there- general configurations and flow condi-
fore, the method is applicable to gen- tions to demonstrate the method.
eral submersible confiqurations for
which experimental data are not avail- General Approach
able. The genesis of the hydrodynamic
method described herein is the discrete The objective of this paper is to
vortex cloud model of the lee-side describe a prediction method for sub-
vorticity shed from bodies alone at mersible vehicles at high inglos of
high angles of incidence (Ref. 1). The incidence in a flow regime in which the
approach was extended to arbitrary hydrodynamic characteritstics are domi-
configurations with control surfaces nated by nonlinear effects. The ma)thod
under steady turning conditions in represents the complex physical phe-
Reference 2, and it was further ex- nomena in the flow field adjacent to
tended to unsteady flow conditions in the vehicle, including Loth steady and
Reference 3. The latter effort also unsteady hull separation vorticity and
includes the capability to predict lifting surface trailing vorticity.
vehicle trajectories for specified Submersible vehicles can have a wide
initial conditions and control inputs, range of configurations and component

arrangements, but for purposes of thisThe unsteady trajectory calcula- discussion, the rational flow model is
tion uses a direct simulation approach directed at axisyarsetric hulls with
in which the vehicle stability deriva- fore and aft lifting surfaces (rig.tives are not required a priori. Be- 2). Vehicle motion and trajectory are
ginning with a steady flow condition, predicted with a direct calculation of
the equations of motion of the vehicle the nonlinear hydrodynamic characteria-
arn integrated over a specified time tics of the vehicle without resort to
interval. This results in a new wehi-
caempirical information or prior know-
floe onditions n orttitude and modifens ledge of the vehicle stability derive-Sflow conditions. Forces and moments on tives.
the. vehicle, required in the equations

& oof otion, are obtained at each instant The major nonlinear effect on a
in time by integration of the instan- submersible vehicle at high incidence
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angles in both steady and unsteady flow moves downstream under the influence of
conditions is induced by the vortex the changing local flow during the
wake which includes hull separation interval At where it influences the
vorticity and lifting surface trailing pressure distribution )n the body and
vorticity. The hull separation vorti- subsequent separation. New vorticea
city is formed by boundary layer fluid are added to the flow field, new forces
leaving the body from separation and moments are computed, and the cal-
points. This vorticity rolls up into a culation procedure is repeated.
symmetric pair (Fig. 1) on hulls alone,
but in the presence of lifting surfaces Analysis
and its shed vorticity, the roll up is
generally asymmetric. The associated Geometry Models
induced effects become asymmetric in
this case. The vortex-induced effects The rational flow model contained
can dominate the nonlinear hydrodynamic in the prediction method is comprised
forces and moments and thus have a of three basic geometry models repre-
major influence on the vehicle motion. senting a hull, lifting surfaces, and a

propulsion system. A sketch indicating
A successful approach to modeling the major components of a generic sub-

the hull lee-side vorticity under mersible configuration is shown in
steady flow conditions is the represen- Figure 4. The flow models required to
tation of the vortex wake by a cloud of represent the configuration shown in
discrete vortices. As described by this sketch are described in this sec-
this author (Refs. 1, 4 and 5) and tion.
other investigators (Refs. 6, 7, and
8), the vortex cloud model provides a Hull. The hull is defined as a
reasonable means to predict effects of body of revolution without appen-
a complex flow phenomenon. The se- dages. The hull volume effects are
lected approach to the problem of man- represented by a series of point
euvering vehicles will start with the sources and sinks distributed on the
basic vortex cloud model and extend hull axis. A three-dimensional singu-
this model to the more complicated larity distribution provides a poten-
unsteady flows. tial flow model for calculating veloci-

ties at any point in the flow field
Calculation of the hydrodynamic outside the body surface and for cal-

characteristics of a submersible con- culating the surface pressure distribu-
figuration under steady translation and tion on the hull surface. This type of
otation is carried out using an axial three-dimensional representation is

mirching procedure in the same manner similar to that described in Reference
as the static approach (Ref. 1). This 9 for missile shapes, but with modifi-
particular flow situation arises when a cations for modeling typical closed-
model is tested on a rotating arm ex- body submersible shapes. These modifi-
perimental apparatus (Fig. 3) such that cations include the source/sink spac-
the rotation rate and onset angle of ing, a condition imposed on the solu-
incidence are con&Lant with time. The tion that the sum of all source
basic discrete vortex shedding and strengths be zero (to enaure that the
tracking model are unchangedi however, surface described by the stream func-
the surface pressure coefficient calcu- tion is a closed surface), and condi-
lation and the vortex tracking proce- tions which enforce the existence of
durea reflect the fact that the vehicle stagnation points at the body nose and
is in steady flow which is constant in the body tail.
time but changing along the body. The
strength and position of the vortex The displacement thickness of the
wake on the body are a function of the axial boundary layer can cause the
motion of the body. effective volume of the hull to in-

crease and affect the loadings. A
In unsteady flow conditions, the correlation for determining a boundary

situation is more complex. The initial layer displacement thickness as a func-
conditions, which must be steady, are tion of axial position along the hull
computed as described above for speci- has been developed for use with the
fled velocities, angles, and rates. rational flow model. The correlations
The predicted forces and moments on the are based on the assumption of a 1/7th-
vehicle are used to compute iis motion power velocity profile relation and the
over a small time interval, assuming inverse relationship between the dis-
the forces and moments and flow condi- placement thickness and the hull radius
tions are constant in the interval. (Ref. 10). The displacement thickness
The trajectory calculation produces new relation used to modify the actual hull
flow conditions and time rates of shape to account for boundary layer ef-
change of flow variablest the end of iectn abt of the maximua radius isthe time interval. The vortex wake given by.
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r=ax(V- (Xx) the direct loads on the propeller which
.04625 (X-X t r 0 V t( ) are transmitted to the hull through the

shaft and the loads induced by the

Base separation effects are ac- propeller on the hull and stern appen-
counted for using the empirical dages. Calculation of shaft loads is
'equivalent base' approach described in based on a combination of the McCarthy
Reference 11 in which the hull is as- method for nonuniform axial flow (Ref.
sumed to be at constant pressure down- 15) and the Gutsche method for uniform
stream of the axial position of separa- inclined flow (Ref. 16). To calculate
tion. The equivalent base of the hull, propeller-induced effects, the pro-
for purposes of determining loading peller is modeled as an actuator disk.
distributions, is the point at which The analytical representation is a
the base area is semi-infinite vortex cylinder of con-

stant diameter equal to the propeller
Sb = 0.117 V2/3 (2) diameter and of constant strength,

Y, having the center of its upstream
Lifting Surfaces. The prediction face located on the hull axis at the

method described herein permits two re- propeller axial station (Ref. 17).
gions containing lifting surfaces, with From the shaft loads analysis: the
each region containing up to 16 sepa- advance ratio, shaft forces, and the
rate lifting surfaces or fins. Each angle of the inflow relative to the
fin is described with four points; that shaft are known. They are used to
is, the method does not permit breaks determine the strength and the inclina-
in the leading edge and trailing tion of the axis of the vortex cylin-
edge. A fin may be attached to the der. The shaft loads analysis involves
body or to another fin as in an end- calculation of the velocity field at
plate. the propeller plane, which includes

velocities due to vorticity in the
Each surface is modeled using the field, the hull, impressed flow condi-

vortex-lattice lifting surface method tions (including angular rotation), and
described in References 12 and 13. the hull wake. For any instant in
Horseshoe vortices are distributed on time, the resulting actuator disk model
the lifting surface and are imaged is used to calculate propeller-induced
inside the constant-radius hull section velocities at any field point of inter-
(Ref. 14). The strengths of the horse- est.
shoe vortices are obtained by satis-
fying the flow tangency condition at Flow Phenomena
control points distributed over the
lifting surface. This boundary condi- The nonlinear, hydrodynamic forces
tion includes induced effects from shed and moments acting on a submersible
vorticity in the field, the presence of configuration undergoing maneuvers are
the hull, the impressed flow conditions associated with many different types of
(including angular rotation), and the flow phenomena. These phenomena are
image vortex system inside the hull. both the result of and responsible for
In addition, the boundary condition the nonlinear behavior of the vehi-
includes mutual interference from all cle. The individual components of the
lifting surfaces in the region under flow phenomena of importance are the
consideration, hull nose and afterbody vorticity, the

lifting surface trailing vorticity, and
The method has the option of rep- the propeller wake. A brief discussion

resenting each lifting surface as a of these phenomena is presented below.
fixed surface with dihedral and inci-
dence or as a control surface with First, consider the flow field of
arbitrary deflection angle. In addi- the hull alone in steady flow. At very
tion, the control surfaces may have the low angles of attack, the flow is
following three types of trailing-edge almost entirely attached to the hull
flap configurationst partial-span full- with the possible exception of a small
chord flap, partial-span partial-chort separated region near the stern. This
flap, and full-span partial-chord particular separation region does not
flap. The control surface deflection form a large wake near the hull, thus
can be varied with time for unsteady it does not have a large effect on the
flow conditions, induced flow field near the submersible

components with the exception of the
Propeller. The propulsion model propeller and possibly the aftmounted

included-Tlfhe rational flow method is lifting surfaces. As the angle of
a single, stern mounted, unshrouded attack increases, the axial-type sepa-
propeller for which open water parfor- ration region at the stern becomes a
mance data at available. The loads crosuflow-type separation and moves
induced on a submersible configuration forward on the hull. At angles of
by the propeller consist of two parts: attack between 10 and 15 degrees, the
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separation will reach the bow. Under senting the propeller disk loading
these circumstances, a strong symmetric provides the required induced flow
vortex field occurs on the lee-side of field.
the hull as illustrated in Figure 1.
This vortex field causes interference Discrete Vortex Model. A major
on the foremounted and aftmounted lift- feature of the rational flow model is
ing surfaces, propeller, and the hull. the discrete vortex wake on the lee-

side of the hull. Using a procedure
When the hull motion is unsteady, successful in similar flow model inves-

the vortex shedding described above tigations (Ref s. 1 and 18), the dis-
.will become unsteady and the vortex crete vortex wake is developed at an
wake will change with time. It is instant in time in the following man-
neces'sary to maintain the history of ner. The three-dimensional steady flow
the vortex wake by tracking the loca- problem is reduced to a two-
tion of the vorticity as a function of dimensional, unsteady, separated flow
time. The vorticity shed from the hull problem for solution. The two-
at any specified time is determined dimensional solution is carried out in
from the motion of the submersible and the crosef low plane where the flow
the influence of the wake. about a hull in the presence of dis-

crete vortices is obtained. At suc-
Appendages on the submersible ceeding intervals of length on the

contribute to the flow phenomena in the body, the body cross section is chang-
vicinity of the vehicle. The lifting ing, and a new vortex pair is shed into
surfaces, when loaded through interfer- the flow field from the separation
ence effects or direct motion of the points. The discrete vortices forming
vehicle, have a trailing vortex wake the wake are allowed to move in the
associated with their loading. This flow field under the influences of the
wake is made up of trailbtgq vorticity free stream flow, the hull, and other
representing the span load distribu- vortices.
tion, a trailing vortex associated with
side-edge separation at the tip, a The calculation procedure starts
trailing vortex due to a leading-edge at a crosaf low plane near the hull nose
separation, and shed vorticity associ- where the potential pressure distribu-
ated with the change in loading with tion on the hull is computed using the
time. These vortices must be included full Bernoulli equation. The boundary
with the hull vortex field to properly layer in the crossf low plane is exam-
model the complete wake. Interaction ined for separation using the modified
between the hull vortices and the vor- version of Stratford's laminar or tur-
tices from the foremounted fins will bulent separation criteria. At the
change the entire wake configuration, predicted separation points, the
and this wili, in turn, have an effect strength of the separation vortex is
on the wake-induced interference on the determined by the vorticity flux con-
hull aftetbody and modify its loading tained in the boundary layer. The
and subsequent shed vorticity. vorticity flux is summed Into a single

point vortex whose strength is a func-
The vortex field from the hull tion of the vorticity, the axial inte-

nose, foremounted fins, and hull after- gration interval, and the free-stream
body moves aft with the flow to ap- flow conditions. The shed vortices are
proach the aft fins. The relative placed in the outer field at such a
position of the vortex field and these position that the vortex and its image
fins depends on the motion of the con- inside the hull exactly cancel the
figuration during the time required for crosaf low plane surface velocity at the
the vortices to reach these lifting separation point.
surfaces. The unsteady loading on the
aftmounted fins produces an associated tn unsteady flow, the discrete
trailina vortex wake similar to that vortex method is virtually identical to
described for the forward fins, includ- that developed for steady flow condi-
ing the shod vorticity due to the tions. The discrete vortex cloud at
changing loading. This additional each axial station on the body is aI-
vorticity is included with the existing lowed to msove with local flow condi-
vortex field and tracked downstream to tions. Vortex tracking between time
the propeller region and beyond. steps is carried out using average

free-stream flow conditions, and sub-
The induced flow field of the pro- sequent vortex separation at a2 given

peller has an effset on the aft fins axial station Includes the effects of
and on the aft portion of the hull. free-stream flow, the motion of the
The propeller wake is also a function configuration, and the change In posi- 3
of the subm~arine motion an~d the wake- tion and strength of the Individual
induced inflow Into the propeller vortices in the field. Details of the
Plane. The actuator disk model repro- calculation procedure for the unsteady
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vortex model are given in a following where C is the instantaneous steady
section. pressurpScoefficient. This result is

obtained by a transformation of the
Trailin Vortcity. The lifting Bernoulli equation from an inertial

surfaces have a tra 1lnq vortex wake system to the body-fixed coordinate
associated with their potential, at- system (Fig. 5), where the last term in
tached-flow loading. This vortex sys- Equation (3) is the unsteady term in
tem is obtained from the vortex-lattice the inertial system caused by the mo-
method, which produces a trailing- tion of the vehicle and the associated
vortex filament from each edge of the changes in the flow field.
lattice network. Provisions are made
in the rational flow method for the The instantaneous steady pressure
system of trailing vortices from each coefficient is
lifting surface to be distributed 2 2
across the span or combined into a 2 qr 2 cos ac
single .Lailing vortex located at the C = r -d(4)

center of vorticity. Additional lift S V dX

associated with flow separation along

side edges and swept leading edges is where V is the speed in the inertial
accompanied by a separation vortex shed coordinate system of a point P fixed in
continually from these edges. The the moving body system and q is the
calculation procedure for obtaining the fluid velocit,y of the same pofnt rela-
lateral position and stiangths of sepa- tive to the body-fixed system.
ration vortices is described in Refer-
ences 19 and 20. All vortices (poten- The components of the fluid velo-
tial and separation) are modeled as city at P in the x,yz system are:
free vortices aft of the associated
lifting surfaces trailing edge, and
they are allowed to interact with other due to body motion,
vortices in the field.

In unsteady flow, changing loading
on a lifting surface requires that a (5a)
spanwise or longitudinal vortex be shed
to represent the change in bound vortex due to body rotation,
strength between time steps. In the
rational flow model, spanwise vortex W x Ap . (ry -qz) + (pt - rx)3
filaments are included as part of the + (qx py)(
total trailing vortex fiPld from each (5b)
lifting surface. The axial filaments
are free to move irn crossflow planes and due to perturbation velocities,
under the interaction of the flow
field, and the spanwise filaments 0# a ut + v1 + wk (5c)
always remain connected to the axial
filaments. The angles of attack and yaw are

Hydrodynamic Characteristics sine - sin*C cos# (6)
The singularity models described sin$ - sinC sino

in the previous sections provide a where d and # are vehicle incidence

means to calculate induced velocities and rolf angles, respectively.
duo to the flow field components at
field points on and near the submer- The perturbation velocities in
sible configuration. These velocities, Equation (5c) consist of induced velo-
in conjunction with contributions from city components due to body volume
the free-stream and angular rotations effects, shed vortices, and fins on the
of the body, are used to calculate body if present. Prom Equation (5),
pressure distributions on the hull the fluid velocity at P is
surface and loads on the lifting sur-
faces, Determination of the component - + W * (a ) (7)
and overall loads on the submersible r
configuration is discussed in this and the velocity of P with respect to
section. the inertial reference frame is

Pressure Distribution. The pres- * * (• x A) (8)
sure coeffiient at a--po-nt on a body B
undergoing unsteady motion is The last term in Equation (4)

2 30 represents the pressure due to a change
Cpu * C - -- - 13) in two-dimensional velocity potential

V from one crossflow plane to the next.
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This term, in which * is the two-
dimensional velocity potential in is satisfied. Note that C is the
crossflow planes, is required because pressure coefficient refergnced to
of the use of two-dimensional singular- ambient conditions at the minimum pres-
ities in the crossflow planes asso- sure point, and t is the boundary layer
ciated with the vortex wake shedding run length measured from a virtual
model. This term is 'unsteady' in the origin.
axial coordinate. X, but steady in
time. This concept is discussed in A laminar separation criterion
greater detail in Reference I. proposed by Stratford (Ref. 22) and

modified for three-dimensional effects
Reformulating Equation (3) using locates separation at the point where

the components defined in Equations (7) / _\

and (8), the unsteady pressure coeffi- C11/2 tCSE 0.087 sine (11)
cient on a body undergoing unsteady 0p 0ý 7• c
motion is is satisfled. The constants on the

SCos_ 2u 2u qz aright-hand sides of Equations (10) and
Cpu (W )2. cOSe_ - W - (11) are nominal values selected from a

range of values recommended in Refer-

+ 2 sino - - ) ences 21 and 22.

Forces and Moments. At a given
÷ 2- 2w sin- - W ( instant in time, the total forces and

W W V0 W W) moments on a submersible are given by
2cos 2 3the sum of the forces and moments on( V 1 X -rits various comp.nents. These compo-nents include the hull, the lifting

where 0 is the full three-dimensional surfaces, and the propeller.
velocity potential. The instantaneous forces and mo-

The singularities making up the ments on the hull are computed by inte-
rational flow model consist of both gration of the pressure distribution
two-dimensional and three-dimensional around and along the body. At a speci-
distributions. Each singularity is fied station on the hull, the normal-
changing with time and contributes to force coofficient on n. Increment of
the unsteady pressure term so long as length of the hull is
the velocity potential satisfies the
condition at infinity that it is equal I 2w
to zero or a constant in the intertial cn = J Cp ro 0c dO
reference frame. 0 U(12)

normal force or• unit_1en~t•
The unsteady terms due to the £ fLt

three-dimensional source/sink distribu-
tioi and due to the two-dimensional
doublet term are obtained analyticallyl and the total normal-force coefficient
however, because of the discrete vortex on the hull is
formulation of the wake and the numeri-
cal integration procedure us.ed in wake p fuormal force
trajectory calculation, a simple dif- N • I cndX n -(1r3)

ferencing technique is applied to eval- r o
uate the unsteady terms representing
the vortex wake. The normal-force coefficient from Rqua-

tion f13) is positiv when the force on
eprt" Line. The separation the hull is such that the hull would

lines on Be hull are required to ape- movo vertically upward. In the stan-
-. cify the 6trength and position of the dard nomencltura of Figure 6.

discrete wake iortice- forming the Sr
feeding sheets. .4 turbulent boundary- 2' a -C (14)
layer separation c:iteria proposed by
Stratford (Ref. 21) hab been modified
for three-dimenslonal effects in Refer- The pitching-moment coefficient, pool-
once 1. The modified turbulent cei- tive when the bow is moved vertically
teria locates separation at the point upward, is
where the relationahip Cm a dX (1S)

/dC .S 5

0.35 *t~ecIn the standardi nomencloture of Piguro
6.

(10)
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S-Cm - (16) Sr.-(27)
f

The remaining force and moment As described in a previous sec-
coefficients in the X, Y, Z-coordinate tion, horseshoe vortices are distri-
system are: buted on all lifting surfaces and

imaged inside the hull. The loading
side-force coefficient, acting on each lifting surface is cal-

t ( 2wculated using the Kutta-Joukowski law
Cy =---S C rosinedJ dX for a force acting on a vortex fila-

Sr o\0 Pu ment. As described in Reference 23,
(17) the force per unit length, P, acting on

vortex vector, 1, is given by the vec-
yawing-moment coefficient, tor product

x 2 w X-m X
Cn.j= -w I of rsinOd e1 x of (28)

o• r )(18)
where 6 is the total flow velocity

axial-force coefficient, excluding skin vector and P is the mass density of the
friction, fluid. The total velocity acting on a

1 xf2v dr°0  ( bound or trailing leg of a horseshoe
CA = -f( C ro0 -- de) dX (19) vortex is made up of induced velocities
In h nr o 0 o due to the free stream, the hull, the
S In the nomenclature of Figure 6, vorticity in the field, and all of the

C Sr other horseshoe vortices and their
• ' y (20) images.

Use of Equation (28) results in
Srr forces both normal to and within theNo Cn (21) plane of each lifting surface, The

normal force on a given lifting surface
represents the potential force for that

Sr surface. The inplane force coeffi-
)to -CA (22) cients are used in conjunction with aA method to determine the additional

nonlinear lift associated with flow
The circular cross section hull does separation along swept loading and side
not contribute to the rolling moment. edges. This method, which is an exten-

sion of the Polhamus leading-edge suc-
The local skin friction on the tion analogy (Ref. 24), was developed

hull in axial flow is based on the from experimental data and is used to
assumption of a 1/7th power law velo- determine the fraction of leading-edge
city profile in the boundary layer. or side-Odge sucLion converted to nor-
The resulting skin-friction coefficient mal force. This correlation method is
Sis described in detail in Reference 19.

C a .592(23)The vortex lattice lifting surface
f -X (23) method described above is an attached

flow model. Under certain flow condi-
where v is the kinematic viscosity of tions, individual surfaces can becore
the medium. The drag coefficient due very highly loaded due to large onset
to friction flows or large vortex-induced veloci-

d2,24) ties and the predicted loading obtained
C o r. Cf dX using the attached flow model may ex-

t coed the loading that could physically
As the angle of incidence Increases, be expected to occur on the surface. A
the streamlines of the flow around the teans to include stall or separation
hull tend to be inclined to the body effects on tht lifting surface load-
Saxis at the angle ings, based in part on the method of-1 Reference 25, is included in the pre-

i% as tan l(2tana C) (25) diction method.

The axial component of the friction A method for calculating axial
drag is force due to skin friction on the lift-

c% (26) ing surfaces is taken from Reference
CA CD O 26. The basis for this method is an

empirical relationship for skin fric-
tion coefficient derived from data on

and In the nomenclature of Figure, flat plates (Ref. 27). The following

expression, which includes adjustments 1

"for thickness and transition, to in-

,,' 
.-'k"
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cluded in the rational flow code to impossible or difficult to determine
estimate the skin friction on the lift- the derivatives experimentally.
ing surfaces.

The approach to the development of

2.656 A LS a trajectory prediction method based on
CA V 2 -(I + 2-1l (29) the rational flow model involves a

Af (Re) 1/2 S r C simplification of the standard sta-
L bility derivative coefficient formula-

In this expression, ALS is the lifting tion using a direct force and moment
surface planform: area and t/c is the coefficient formulation. In this ap-
maximum thickness-to-chord ratio. proach, terms in the equations of mo-

tion associated with stability deriva-
Loads on the propeller are trans- tives are replaced by the forces and

mitted to the hull through the shaft moments obtained from the rational flow
and contribute to the overall configu- code at an instant in time. The modi-
ration loads. Calculation of these fied equations of motion are shown
loads in the rational flow model is below. These equations are for a con-
carried out using a combination of two figuration with its origin at the
methods. The first, developed by center of gravity, and the positive
McCarthy (Ref. 15), predicts the thrust senses of forcea, moments, velocities,
and torque of an arbitrary propeller and rotation rates are indicated in
operating in a nonuniform but nonin- Figure 6. The angles 4, e, and * are
dlined flow. The second, developed by the Euler angles which relate to orien-
Gutsche (Ref. 16) predicts the thrust, tation of the body-fixed-coordinate
torque, inplane force, and thrust off- system to the inertial system. The Ci
set of a propeller in a uniform, in- coefficients and 'the subscript AM are
clined flow, added-mass terms. The added-mass

forces and moments have been removed
The propeller is assumed to exist from the right-hand side of the equa-

in a quasi -steady-state condition by tions of motion and the appropriate
the inistantaneous values of all flow terms included on the left-hand side to
velocities and the state of motion of remove numerical instability in the
the vehicle. The propeller inflow is solution as discu.ssed in Reference 30.
assumed to consist of an axisymmetric
contribution due to the hull and hull Axial Force:
wake, an axisymmetric self-induced flow
caused by the flow acceleration into (M-C1) * (uv-wq) + (X-XAM )-(W-B)sine
the disk, and axial and tangential
contributions due to the wakes of all (30)
upstream lifting surfaces and hull flow
separation. Tht McCarthy atialysis is Lateral Force:
first used to calculate thrust and
torque for the noninclined part of the (e-CZ)'o - C36 Y a4  0 (vp-ut)
inflov. With the axisymmetric behavior +(~Y) + (W-8~) cosesin#
known, the Gutsche method is used to A
calculate flow inclination effects. (31)
The final step consists of combining
these results with open-vater perfor- Normal Porcet
mance data for the particular propeller
attached to the vehicle to obtain the (m'C S)4 - C6 M (uq.-Vp)
components of shaft loads. + (22A + (W'-0) cosecost (32)

maneuver Analysis, A com~on ap- Rolling liomantz
proac tot peiton of submersible o IY+C
trajectoriet involves the inteqration (Ikx C7) (I Ix 4) - (I 9
of the six-degrae-of-frtedoa equations Y XX 8
of motl -, of the submersible configura- (X - I )qr+I Q-I p
tion over the tine* frame of interest, -y *a axr
The~ Standard equations of motion, such + I 1( 2- 2)+ K-AM
as those presented in Rtefe~ranges 28 and -r)*( ~
29, are urittsn in a fors, which re- - y aD ODS9 06 B cosesin#
quiros the stability derivatives for
the conflouration for tho rati.ge of flow (33)
ctonditions to be considered. Such a Pitching hoisentt
foraulation create* difficulties when
,,he -stability deriuativou Are V .- G(1 - C 10)4 - It - IY i C ' 4
knowe. Susch way be the cess for a pro- Y
liminary design configuration prior to (1 -2 1 )Lp + ( A) a'sSn
testinq, or whoa the Moigt regtimo in- x-N)4:8ie
volvos, nonlinasa aspects fthich make it + x 0~ coocoa# (34)



Yawing Moment: in this section. The calculation pro-
cedures for both steady and unsteady

(Izz - C1 2 )f-(Izx + Cl3)6-1yz -C1 4V flow conditions are applicable to gen-
eral configurations with arbitrary

y)pq + Iy I Irq arrangements of lifting surfaces in an
+ Ixx + ( yz- -zx axisymmetric hull.;+ Iy(p 2 q q2) + (N - N AM)

XY Steady Flow Conditions
SxBB coaesiný - Y sino (35) The calculation of the hydro-

A trajectory calculation is car- dynamic characteristics of a sub-
ried out in the following manner. mersible configuration undergoing
Starting with initial flow conditions, steady translational and rotational
rotation rates, time rates of change of motions is carried out with a marching
these quantities, and the initial posi- procedure starting at the nose of the

Stion and orientation of the submersible vehicle. The basic method is the
* configuration in the inertial coordi- cro;sflow plane discrete vortex shed-

nate system, a steady flow solution is ding analysis described in Reference
obtained to provide a vortex wake and 1. The calculation begins with the
hydrodynamic forces and moments with prediction of the shed vortex field and
which to begin the unsteady calcula- the loads between the nose and the
tion. The unsteady calculation begins leading edge of the first set of lift-
with the prediction of the missile Ing surface, the foremounted fins in
motion from t=O to t=at, where the time most cases. The separation vortex
interval At must satisfy the relation field at this axial station influences

the loads on these fins, and the lift-
V W Cos a ) (36) inq surfaces in turn influence the

c ts 0 loading on each other and on the hull
adjacent to the surfaces. A trailing

This interval was chosen to provide vortex system originating on the lift-
sufficient time for the changing vortex ing surfaces is released into the flow
effects to influence the calculation field at the trailing edge, and these
before being swepL past the base of the free vortices are included as part of
vehicle. For purposes of the trajec- the total shed vortex system for the
tory calculation, it is assumed that remainder of the calculation.
the flow conditions and hydrodynamic
forces and moments are constant over The path of the entire vortex
the at interval. Solution of the 6- system is tracked along the length of
DOP equations of motion results in new the hull from the trailing edge Of the
velocity components and coordinates of forward fins to the leading edge of the
the confiqurntion CG, angular rates, aft fins. The vortices influence the
and orientation of the configuration at pressure distribution on the hull,
t*. which has an effect on the separation

points, the shed vorticity from the
The vortex wake is permitted to afterbody, and the hull loads. Separa-

"move in the time interval to its new tion vortices from the afterbody ara
position as summar1ied in a previous added to the vortex field over the hull
section (and further described in the length between the forward and aft
followinq section). With the new wake fins. In addition to the vortices, the
position and the new flow conditions at propeller model influences the pressure
tl, the forces and moments on the sub- distribution on the hull aft of the
meruible configuration are computed. maximum radius position.
This Interactive process continues to
the end of the speciftod trajectory The vortex field from the nos,,
calculation. The moving vorte:a wake foremounted finQ, and afterbody Influ-
forms the historical lag in the flow ences the loads on the aftmounted
field which relates to the stern what finn. There is also an upstrema influ-
happened at an earlier tim.4 at tho ence from the propeller. The loading
bow. As the calculation progresses, on the individual fins produces a
the wake shed at an earlier time is trailing vortex system analogous to
swept downstream past the stern-, and that froo the forward fins, and these
the effect on the vehicle is lost for- vortices are included as part of the
ever. r-hed vortex system which is tracked

from the crailing edge to the propel-
Calculation Procedure lvr. Tho flow field in the vicinity of

* -the propeller (inflOw) is calculated
The qeneral steady and unsteody and the propeller loading is predicted.

flow calctlf•ttlo procadure used in the
rational flow method for a typical The total forces and moments on
submersible confiiuration is outhined the complete vehicle are the sum of the

1 +47 .
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forces and moments on the individual essence, the entire vortex field exist-
components. For a qteady flow condi- ing at to has been transported down-
tion, the calculation is complete at stream a distance AX. Under the in-
this point. fluence of the actual flow conditions
Unsteady Flow Conditions at t] and the modified vortex field,

the hull pressure distribution is pre-
The calculation procedure for the dicted and a new separation calculation

prescribed initial flow conditions for is carried out. The current situation
an unsteady flow case iz essentially at t, is shown in Figure 7(c) where the
the same as that for the steady flow new vortices are shown as an addition
case. Star.Ang at t - 0 with pre- to the previous field. This process
scribed initial flow conditions, angu- continues to the end of the specified
lar rotation rates, accelerations, trajectory calculation or to the end of
position of CG and orientation of the the prescribed maneuver.
vehicle in the inertial coordinate
system, propeller rotation rate, and Results
control surface deflections, the loads
and the shed vortex field on the con- The ultimate evaluation of the ra-
figuration are calculated as described tional flow model described in this
in the previous sectZion. This is the paper must be made by comparisons of
starting condition for the unsteady measured and predicted hydrodynamic
calculation. characteristics on a variety of con-

figurations under a wide range of flow
Separation vortex fields corres- conditions. In the absence of hydro-

ponding to the initial conditions at t dynamic data, comparisons with aero-
= 0 are shown schematicaily in Figure dynamic data on similar configurations
7(a) where only a hull is considered will suffice. Comparisons of both
for this discussion. The discrete hull steady and unsteady results are desir-
separation vortex positions are shown able to verify the methodology; how-
as dots at each X-station, and their ever, other than static character-
paths are denoted by dashed lines. The istics, only a small quantity of steady
individual vortices are identified data exists and almost no unsteady data

are available for these comparisons.as rm t where the first subscript In this section, static results at high
represents the X-station at which they angles of incidence are presented to
are shed and the second subscript further verify the discrete vortex
represents the appropriate time step. cloud approach, steady turning results

are used to examine effects of turn
An unsteady calculation Legins rate, and an arbitrary unsteady man-

with the calculation of the submarine euver is described to illustrate the
motion from t = to = 0 to tI = to use of the method.
+ At, wheru At is a specified value
that muzt satisfy Equation (36). The Static Characteristics
vehicle trajectory is calculated by
making the approximation that the flow The prediction method was applied
conditions and loads at t = 0 are con- to a body of revolution, Model 4621, a
stant over the time interval At. The configuration (Ref. 31) for which
trajectory calcolation produces new normal-force and pitching-moment coef-
flow conditions and time rates of ficients are available for a range of
change of flow variables for t. = to angles of attack. Measured and pre-
+ At. The existing vortex wake is dicted results are compared in Figure
allowed to move downstream a dis- 8. The predicted results, including
tance AX' under the influence of new significant lee-side separation vortex
local flow conditions during the inter- effects, are in good agreement over the
val At. Tae value of AX' is determined linear and nonlinear range of incidence
from the average conditions angles.
at At/2, such that

In an effort to further evaluate
4X' - At (V Cos (37) the vortex-induced characteristics on abody of revolution at high angles of

where V, and 3 are average values attack, it was necessary to consider
between'time sAeps. For the wake tra- aerodynamic data en a sharp nose
lectory calculation, the average flow body. A missile configuration consist-
conditions at At/2 are considered ap- ing of a three-diameter ogive rose and
propriate for the total interval. A a 7.7-diameter cylindrical afterbody is
new vortex field resulting from a cal- available in Reference 32 where pros-
culation for which &X' - 4X is shown in sure distributions, normal-force dis-
Figure 7(b). Comparison of parts ýa) tributions, and total normal-force
and (b) of this figure illustrate how coeffici4rits are presented for angles
individual vortice% are moved4 In up to 24 degrees. The predicted cir-
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cumferential pressure distribution 7.5 An example of the predicted vortex
diameters from the nose at a = 15 de- cloud wake near the stern of the Akron
grees is compared with experiment in airship hull is shown in Figure 14.
Figure 9. The vortex cloud has a siq- Each symbol represents a discrete vor-
nificant effect on the pressure distri- tex forming a part of the wake, and the
bution on the lee side, and the ratio- feeding sheet of vorticity from the
nal flow model successfully represents separation point on either side of the
these effects. To illustrate the mag- hull is well defined as is the major
nitude of the vortex-induced effects, rolled up portion of the wake.
the predicted potential results are
shown as a dashed curve in this-fiqure. Steady Turning Maneuver

Measured and predicted axial dis- A steady turning maneuver involvestributions of normal force are compared the vehicle at constant angles and con-

in Figure 10. The predicted results stant angular rates. Such a maneuver
for potential flow, which agree with is represented experimentally on a
slender body theory, are shown as a rotating-arm apparatus as illustrated
dashed curve. The agreement between in Figure 3. Measured pressure distri-
experiment and theory is very good over butions on a 4:1 ellipsoid body of
most of the body length; however, near revolution in a steady pitching man-
the base, some lack of agreement is euver turn are available in Reference
apparent. This may be a base effect 34. Axial pressure distributions on
which is not adequately represented in the windward and leeward meridians are
the present predictions. shown in Figure 15 for q' --. 0717 and

angles of attack of 10 and 20 de-
The total normal-force coefficient grees. The flow is such that the body

is shown in Figure 11. At lower angles is at positive angle of attack and it
of attack, the predicted results are in is pitching nose downward so that the
good agreement with the low Reynolds local angle of attack at the nose is
number experimental measurements, but greater than a and that at the stern is
at higher angles, the theory is in less. The effect of the separation
better agreement with the high Reynolds vortex is illustrated in Figure 15 (b)
number results. This phenomenon is where the potential result without
associated with the changing character separation is presented for comparison
of the separation on the body in a with the rational flow model result.
transition region; however, this effect The hull separation vorticity has a
is not considered in these predictions, significant effect on the lee-side

pressure distribution.
Results of further investigation

of the effects of the shed vortex wake Similar steady turning data on a
on the distribution of forces on an fully appended configuration are not
axisymmetric hull at angle of attack available for comparison purposes in
are shown in Figures 12 and 13. The this paperl therefore, an arbitrary
measured normal-force distribution on submersiblu vehicle was assembled to
the Akron airship hull (Ref. 33) is provide sample results to illustrate
compared in Figure 12 with a potential the capability of the rational flow
distribution and a rational flow model model. As shown in Figure 4, a body of
result including vortex-induced ef- revolution 1- appended with two sets of
fects. The presence of the vortex four fins in a fore and aft configura-
cloud improves agreement between ex- tion. Each lifting surface can be
periment and theory: however, there is deflected as a control surface. This
some disaqreement on the aft portion of configuration is similar to that used
the hull. This may be caused by addi- ia Reference 35 for illustration pur-
tional separation not included in the poses for the rational flow model with
flow model, or it may be an indication the exception that an additional for-
of an effect of the hull boundary layer ward fin is considered herein,
which is not considered in these cal-
culations. The total normal-force and Both static and steady-turning
pitchinq-moment coefficients on the predicted results are shown in Figure
Akron hull alone are shown in Figure 16 for the fully appended configura-
13. A potential result and a rational tior.. The predictions were made assum-
flow model result are compared with Ing a large-scale vehicle in a high-
experiment over the range of anqles of Reynolds number flow: therefore, the
attack. As seen previously, the vortex hull vortex separation characteristics
cloud has a significant influence on are turbulent and have lees effect on
the predicted forces and moments, and the hydrodynamic forces and momentn.
it is essential in the prediction of The solid curvats in Figure 16 illus-
nonlinear effects at high angles of trate the static forces and moments on
attack. the vehicle at a range of yaw angles.

The nonlinear effects at higher angles

....4
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are induced by the trailing vorticity Figure 16 as is expected because vor-

from the forward fins and the small tex-induced effects are small at low
amount of hull shed vorticity. incidence angles. At higher angles,

the shed vorticity from the hull is
Predicted results for the vehicle stronger than before, and the nonlinaar

in a steady turning motion (rW-.40) effects are larger. The nonlinearities
are also shown in Figure 16. The side are much larger in the turning case

force is similar in appearance to the because the local angles become large

static results, but the nonlinear ef- as do the vortex-induced forces. The

fects are slightly more pronounced. yawing moment shown in Figure 18(b)
The yawing moment is siqnificantly also reflects the larger induced ef-

different from the static results fects. The character of the moments
because of the shift in loading between changes because of the stronger vortex
the forward and aft fins as the side- wake and the larger forces on indi-
slip angle chancles. For example, the vldual components.
yawing moments at 0 = 20 and -20 de-
grees are nearly identical even though Unsteady Maneuver
the side forces are cruite different.
Detailed examination of the loadinq on Since experimental data are not
the individual components of the vehi- available for comparison purposes, an
cle can identify the reasons for this example unsteady calculation is pre-
unusual behavior. In Figure 17, the sented for the fully appended config-
side force and yawing moment contribu- uration used in the previous discus-

tion of each major component of the sion. The initial condition of the
vehicle are compared for 8 = 20 and -20 vehicle is a straight ahead mot.on with

degrees. At 8 - 20 degrees, the side all forces and moments balanced. A

force is due to the nose and 'forward schedule of control surface deflections
fin loadings. The aft fins are nearly is shown in Figure 19(a). Note that
unloaded because of the reduced local the upper and lower oft rudders are
angle of incidence due to the turning offset slightly to counter the torque
effect and the induced flow field from from the propulsion model. Over a
the vorticity in the wake from the hull short period of time, the aft rudders
and the forward fins. The net effect are deflected 20 degrees to initiate a
is that the yawing moment is determined port turn, and the rudders are held at
by the loading near the nose of the a constant deflection angle for ap-
vehicle. proximately 9 seconds. As the rudders

are returned to a neutral position, the

At B a-20 degrees, the loading on left and right forward fins are de-
the nose is reversed because of ;he flected to produce a counterclockwise
change in flow direction, as are the rolling motion (looking forward). This
loadings on the fins. Rowever, both condition ts maintained to the end of
forward and aft fins have nearly the the trajectory calculation. The objec-
same loading, and their contribution to tive of this maneuver is not to model a
the yawing moment -have opposite sign. specific motion but to demonstrate the
The cause for the similarity in loading capability of the rational flow model
of for*ward, and rft fins in this flow and trajectory prediction.
condition is that the local flow angle
at the aft fine iW h•gher thana before The three coordinates of the posi-
and the trailing vorticity from the tlon of the vehicle center of gravity
forward fins is not In position to are shown in Figure 19(b), Because of
reduce the loading. The net effect is symmetry of the vehicle and the deflec-
that the yawing moment at ý -- 20 tion schedule, the only apparent motion
degrees is dominated hy the Atf fins, is in the yi-direction as dictated by
but the sign and magnitude of- the. total the turning maneuver. The vehicle is
moment Is nearly tie. same assumed neutrally bouyants therefore,
for 0 20 degrees. the depth does not change. The orien-

tation of the vehicle is described by
.The previous cise coftiderse a high the three Culer angles #, 0,

R*ynolds number flov codtion, such * shown in Figure 19(c). Details of
that the separation from ths hull is the forces and moments on the vehicle
turbulent and the hull vortex eofects are availabl* from the method at all
tre minimal. To illust.rate the effect pints in the trajectory.

of strong hull vorticity, a lov
* Reynolds number fltow condition is con- Conclusions .

sidered such that the hull. separktion
is laminar and the vortex wake to much An engineering rational flow model
stronger. Predicted rvsults ior static t predict the hydrodynamic tharac-
and stady turing. conditions are shown teriatics and motion of a generic sub-
in Figur'e 1$. At low *idealipAngles,. " erible configuration in unsteady
the.. r.sulto are the *am as those In lneuvters has been described in this
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paper. Comparisons of measured and 6. Marshall, F. J. and Deffenbaugh, F.
predicted aerodynamic and hydrodynamic D.: Separated Flow Over Bod es of
characteristics of a range of bodies of Revolution Using an Unsteady Dis-
revolution for static flow conditions crete-Vorticity Cross Wake. Part 1
and steady turning maneuvers verify - Theory and Applications. NASA CR-
that the principal features of the flow 2414, June 1974.
phenomena are well represented for flow
conditions beyond the linear range. A 7. Wardlaw, A. B.: Multivortex Model
parametric series of calculations for of Asymmetric Shedding on Slender
generic large-scale and model-scale Bodies at High Angles of Attack,
submersible configurations in static AIAA Paper 75-123, Jan. 1975.
and steady flow conditions illustrate
the capability of the method to predict 8. Deffenbaugh, F. D. and Koerner, W.
the detailed hydrodynamic and flow G.: Asymmetric Wake Development
field characteristics. Calculations and Associated Side Force on Mis-
for a powered generic submersible vehi- siles at High Angles of Attack.
cle in which control surface deflec- Journal of Spacecraft and Rockets,
tions are varied as a function ot time Vol. 14, No. 3, pp. 155-162, Mar.
demonstrate the use of the method for 1977.
predicting unsteady maneuvers.

9. Goodwin, F. K., Nielsen, J. N., and
The unsteady prediction method de- Dillenius, M. F. E.: A Method for

scribed in this paper has demonstrated Predicting Three-Degreee-of-Freedom
the feasibility of an approach in which Store Separation Trajectories at
the nonlinear forces and moments are Speeds up to the Critical Speed.
predicted for use in a direct calcula- AFFDL-TR-71-81, Nov. 1974.
tion of the motion of a submersible
vehicle. The method has application 10. Kuhn, G. D.: Computer Program for
for the calculation of trajectories of Calculation of Separated Turbulent
submersible configurations under flow Flows on Axisymmetric Bodies In-
conditions for which stability deriva- cluding Exhaust Plume Effects.
tives are unknown. AEDC TR-79-4, Mar. 1979.
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TRAJECTORY AND MOTION

SIMULATION OF A BODY UNDER WAVES

A J Musker

Admiralty Research Establishment,
Haslar, Gosport, England

Abstract presence of the body is considered to be
negligibly small and is not included in the

A numerical model to calculate the motion model. The actual trajectory and motion of
history of a submerged body beneath waves is the body are computed using the rigid body
described. The model employs simple Rankine equations, together with certain hydrod.ynamic
sources, distributed within the body, to coefficients and derivatives (to model
generate the disturbance potential. A pro- viscous effects) and computed wave force and
liminary validation of the model is presented moment terms appearing on the right hand sides.
using both analytic and experiment data. The These coefficients are first measured
method has been used to investigate the experimentally using a planar motion mechanism
effects of run times and the method of sea (PMM) which imparts known motions to the body
spectrum discretisation on the motion (or model) at deep subeergence. These same
statistics in head seas. motions are then simulated (as a separate

exercise), using the above mentioned potential
The results support tbe hypothesis that flow program, to predict the inviscid com-

once the wave system has sufficient components ponents for each of these coefficients. By
to ensure that its lowest beat frequency is regarding each measured coefficient as a
smaller than the natural frequency (in pitch) linear superposition of a viscous and an
of the body, the standard deviation of the inviscid term, the viscous effects can be
depth signal will vary only slightly with an readily estimatei by a simple process of sub-
increase in the number of wave frequencies. traction. In practice, this is performed by a

reparate computer prv;",ran which .s designed to
1. Introduction create a master input file for a particular

body geometry. This same progrvm also inverts
This paper describes a numrical model to the matrix of influltice coefficients (arising

simulate the trajectory and motion of a sub- from the poteltLial flow analysis) ready for
merged body beneath surface waves. The waves use in the main program.
are assumed to be long-crosted and irregular.
Because the model operates in the time domain Numerical and towing-tcnk data axre cm-
and is not strictly linearised, the poosi- pared for the case of o body (with non-circular
bility oxists to simulate lar" changes in cross-section) which Can be eltbor coNjptietely
depth and speed in a deterministic sense. restrained or lightly vesttaincd using lov-

stiffness springs mounted on a carriage, TVe
Thv moel employs Rankine-type singu- experimental arrangement As briefly Ulescribed.

larities, distributed within the hull, whose
strengths at any instant in time are assigned The numerical model has beet' vsqs to assess
by the body kinematic condition that no fluid the effect of run times en the ensuitg motion
can pAss through the hull's surface. This statistic#. Because the second o•der encl-
condition is treated lexactly' in the sense tation Manifests itself &h the form of very
that both the instantaneous translational and low frequghcy com4pnentd, long* run it194 may
rotational velocity vectors of the hull are. be necessary in order to achieve statLstically
taken into account in order to calculate the reliable results, This probl"m i-% cernpunded
normal velocity components at a large number by the fact that these low frequencies can lie
of control points. The resulting disturbance near the natural pitch period of the body s1
potential is then combined with the Incident that the low frequency or:tion can be corider-
wave potential to determne the flow field. able. The effect of changing the nuabn of
This, together with the time derivative of discrete frequencies usred to def in the wave
the total velocity potential, Ir sufficient spectrum has also been stuAivd In this context.
to ccepute the pressure around the body and Ie results axe presented iL a later section.
hence the wave force and moment v*ctors. The
disturbance ou the surface caused by the

":' j'.•'• " • •' .B
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2. Methodology where uý and v are fluid velocity components

2.1 Potential Flow Equatione in Earth axes.

Two sets of orthogonal 3-axis co-ordinate The mass continuity equation is

systems are used in the analysis (Figure 1).
Earth-fixed axes, O'x'y'z', are chosen so ai . an
that the O'x'y' jlana lies on the mean free 41 ý-' as, (2)

surface with O'x' in the direction of in-
cident wave propagation (if there are no or, in terms of the velocity potential,
incident waves O'x' is arbitrary). The con-
vention adopted for the O'z' axis is positive
in the downward direction. _ ___ _.2 (ae" WT 0 , (3)

Earth-Fixed Wave Propogation
s. king Axis Body kinematics dictate that at any point

cn the body-fluid boundary there can be no
flow of fluid across the normal to the
boundary. Hence the fluid velocity component
in the direction of LhO local normal vector,

n, must equal the corresponding velocity

component, V associated with the point on the

body defined by the intersection of the local
"normal vector and the body surface. Hence

C~t~d*)A 5(4)

The convention adopted for ý is that it
should be in a direction pointing into the
fluid and away from the body interior.

Z It is convenient at this olint to define
tho val.oity pntonttAl in terms of a known

FIGURE 1. SYSTEM OF AXES. incident wave potential, OV and an unknown

Body axes, Oxyz, ar•e used in the con- body disturbance potential, B . Hence
ventional sense. These way be rra&rded as
having been rotated to assume an arbitriry
ortentation with respomt to O'x'y'=' by the o C()
thruie Suler angles 1, 0 and 4 applied conse-
cutively about the O'S', O0y' and O'x' ax For a simple regular wave tkes the
respectively,

v4l1-known forto
The origin of the body axes is choven in

accordance with the requirements of the .e*a.
singularity distribution used to mxoel the -,(6
flows this will be dealt with in a later
section. In the meantime, it should be
stressed that although the origin may hIt at
the centre of man* for a restricted class of a I cre to firte WrIs )hewaa La the wave amplitu~de, u is the wave
bodies this 11a by no riasa always the cast. froquaecy in rdiatis per eacod and A is the

The fluid in asswuod to be inviv.Id. wavlength.

irrotationmal, incompýsaible and infinitely
deep. A scoler velocity potential, 4 to • t~gulat waves. b ec

d efi d ,UCh th at •. : [.. " & " * Jte' iiKal't

•,,L. (1) where kIs the ith wave-nu•bor (w w<'lg) an/

SI is the ith phase angle. T'e SbrtscMaider
spectrum function (1) nay be conveniently

utill-sed to proscribe the waue amzpAitufts to
be asocawtd with the choseN fraquncies.

•.',- "[:..• • 43.



As discussed in the previous section, the selected as being suitable for most bodies of
effect of the body on the free surface is interest. Two singularities are positioned to
ignored. Hence, for the nurpose of calcu- correspond t- Lhe body points at x ± ± (L/2),
lating the body disturbance potential, *BI whilst the remaining singularities are

we consider only the perturbation required to distributed at the rate of 8 per Etation among
ensure tangential flow at all the chosen the other 41 stations such that at any onestation the body points are separated by
control points on the body. This constraint 45 degree intervals in e. It should be
on the solution implies that wave diffraction
and radiation effects are negligible and so pointed out that any effects due to appendages

the proposed model is '.*ikely to be in error are beyonl the scope of the present work
if the body is very close to the free surface, except ii. 3o far as they are already modelled

This is not a series drawback, however, for case
Spractical calculations. of deep submergence. The potential flow modelrelates only to the naked body.

2.2 Representation of B,'", Using Singularities 2.3 Body Kinematics

Before discussing the singularity The strengths of the singularities must be
distribution to be used to generate the body determined such that the total potentialpotential, the location and orientetion of d t ri e uh t a h o a o et a
potentbodyaxes mustfirot bed dcided. Af satisfies the kinematic condition expressed bythe body axes must first be decided . A e u t o 4 . T i p l e o a l b d o n s
degree of judgement is required here although equation (4). This applies to all body points,for most practical cases the precise location resulting in a set of equations equal in

number to the number of unknown singularities.
used is by no means critical as long as This leaves only equation (3) to be satisfied;
certain guidelines are followed. it will be seen in the next section that this

is done so automatically owing to the nature
The Ox axis for the body should be chosen of e singularity oyed.

such that it passes near the centres of area of the singularity employed.
of the body sections lying perpendicular to Attention is focussed, therefore, on
the axis. Ideally the points of intersection equation (4) which may be recast in scalar
of the axis and the body should be near to
the estimated forward and rear stagnation form, for the jth body point, as follows:

points, although this is of secondary
imnportance. The stagnation points are here
understood to correspond to pure longitudinal 'Fi .; "
translation at deep submergence. Whilst it is

unlikely that the longitudinal axis wiUi pass
through the centre of mass of the body, the iv • .
resulting inconvenience is easily overcome. (8)

Ilie origin of the body axes, a, is defined to
he the mid-point of the body length, L, where min ni. are the direction cosines
meanured along the Ox axis. h j j j

of the outward normal and U! V', W; are the3 ) , J
* nThe geometry of the body is beot tdscribed velocity component* of the body point. Allinitially using d cyl•l)w rical co-ordinate the p.ramwturs in equatioin 19) refer to
yt3 hx, r .) which can then betherfor e values which

Erto the o.1tizJgon.l bo.y axes already•ionto the orTict.al xly, Oxes a~lr tO th are dependan-. on the knowni instantaneousthont.onrd. Thn origin, 0. ifs commo to both orientation and motion of the Lody axes aind
*dtOh e fi xed po nit ion of the b o dy p oin t w ith
divided into 40 equal intervals fr theIm oso of duflainq the taction rpeozatry, rospect to the bod~y ax**.

KC r cN. 0). 'No eura ZtAeirna a Transformation to tKarth axe* involves a

x. t (79L/160) are Incluled in the neighbour- UiVie vcto" oparationi
hoo of tl.h•v &bo-"i~t ionoId atmonation pointsi
to 14riw "ae quality of• the prediction.

rvaprdotont the •bdy, vach of which is ass•ciated

with its own Uniltte 'body poInt'. A body
point is a point cm tiw body surfa•e through
which Ii v ,titd a lne which i# nor-.al to
tho loal timpani plano. The singularity whoe (i', ,)C and (I, , ar unit
atsociated with a particular body poiat Is vactors assoclated with the Earth and body
poxitlonW tnsidp the bdy ailon. the local axes resipoct.vely and T I* th* tiansforation
normal. Th. precite distance from the bW oatrix.
point was chosen after sot .xperiaaentation,
a value of 0.6 &t, war* is to radial N(ov the direction cosinet (1, m. n),

Sco-ordlnnt of the body poin', ws fisal ly r*fsrr94 to body axes, art of course constant

Sof the boy P
. ;'- .. ' 43.
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for a particular body point. Referred to Equation (8) can now be applied to any bodyEarth axes, for use in equation (8), the point, in terms of parameters referred to bodydirection cosines of the local outward normal axes, by invoking equations (10), (12) and
are 13)

2.4 Calculation of Disturbance Potential

[ ] J[iThe velocity potential at a point associatedHi H] (10) with art isolated source of strength a is
n simply a/Rs, where Rs is the distance from the

source (if a is negative the singularity
becomes a sink). For the body in question,therefore, the disturbance potential, @B'

Similarly, the co-ordinates of a body point inEarth axes are at the jtl body point is

5 "• J •=/(' • • • 2 (14). 2 N [ ;.2 . ,:

where (xo y', z') are the co-ordinates of theorigin of t1 e body axes, where x ' z' are the co-ordinates, inoiio bda .s sij
Differentiation of equation (11) provides Earth-fixed axes, of the singularity, ail

the required body point velocity components associated with the ith body point and n isin Earth axes: the number of body points. Hence equation
(8) becomes:I-L ' ýL • * LM.Y

Iw"J Lj;J [s'j [ '.J * a)[° . . 3 -{,3 . ,, ( - Z. j

Hence, using equation (9): [ - a.)
2 

. ly j ye)2 + 131 - s )2Jj

[:; . f•: . (V (;.f: (12) * • u.;v; ;.iV; V' +,• , ,r+

+ J • k w" * •L Xi - W t

where Uo, V and W° are the velocity
components of the origin, 0, in body axes. -=;.,JIX W It + 8j] (15)

The derivative term in the above equation
gives rise to rates of change of i, 0 and
W which must be relatcd to the known angular
rates Pb' qb and rb referred to body axes: This represents a system of n simultaneous

linear equations in the n unknowns, a..
For a particular body geometry, the matrix of

S0hinfluence coefficients remains constant andi 1 Ii otana coatasol Pb hence a single matrix inversion is required.
The solution vector is then found by matrix0 ,= co,, -S$ [:j e (13) multiplication at each time step in the0 a*s*6a05 osOmeO r simulation. Differentiation of equation (15)
provides the time derivative of the strength
of the ith singularity%

432
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,, Uikx -;xJ 1y - * jzi - (7r ijxj -P.3 -'~j V XSJ + (yj - Y32, [. (a -

n d .I J.i • X Sj--j J
-t - ,- -[. i in this equation U1 V1 and Wj represent

X2 V~ sj U 7~ J the instantaneous velocity components in
L Earth axes of the ith singularity. The

pressure at the jth body point then follows
from the unsteady form of Bernoulli's theorem:

= J[ %- *j~b "j4b]

2.5 Calculation of Force and Moment Vectors
+ nI.* x~b'Jb

JK o - Yb In order to quantify the force and moment
vectors, the body is represented by a large
number of su- ace panels defined by the body

* eap -kpoints (336 panels are defined by the 330 body

dl akis* - k ~a' Cos k~ Xi wit + points used in the present analysis). Each
panel is divided into six triangular sub-
panels such that their vertices are formed at
intervals in e of 15 degrees at all the

S.longitudinal stations (See Figure 2). The
-d ai p -k, Win t 8 ) panel geometry is so arranged as to be

symmetrical about the x-z plane since this is
a plane of symmetry ýor typical body shapes.

- ~ S *3-k alosi k X' - wit 81 * INDICATES A BODY POINT.

"+ k $n 1k X Axis
into page

*Xk*j Wia k Xi W t

"- ( (kix.wtit0, (16)

dl'j dn'j Z
where and andb

dt -d- are found by
differentiating equation (10). This
represents a further n simultaneous equations
which are solved in the same mwnner as a

The partial time derivative of the X
distturbance potential, associated with the AXIS
movement of the singularities through the
fluid, can now be calculatedt

J '(S -"" * V= "- ' "" ""-FIGURE 2. PANEL LAYOUT.
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The pressure at the centroid of each sub deeply submerged model. These data take the
panel is interpolated from the known pressures form of various hydrodynamic dervatives and
at the neighbouring body points and the coefficients (see, for example, Abkowitz[3]).
contributory force and moment vectors are Such data, of course, have both inviscid and
calculated. The total force and moment viscous effects embedded in them. Since the
vectora are then found by summation over the strategy thus far has been to include all
whole body. A sextic surface interpolation inviscid effects (within the context of the
procedure based on Everett's formula [2) is physical assumptions made),such contributions
used to find the pressure at the six centroids to the measured derivative data may be
contained within each panel. The procedure quantified by running the computer program
relies on a knowledge of the pressures at 24 for a series of fixed manoeuvres chosen to
surrounding body points. The interpolated simulate the PMM tests. In this way, the
pressures have been found to be in excellent calculated contributions can be subtracted
agreement with values computed directly from from the measured data to provide estimates
the velocity potential at the centroids. of the non-dimensional forces and moments
This latter method is impractical to use which are of purely viscous origin. These
routinely since it is very expensive in additional forces and moments are then added
computer time. to the expressions given in equations (19)

and (20) before being applied to the dynamic
The instantaneous force vector, F, can now model for the rigid body.

be expressed in terms of the unit vectors,

i, J and k as follows: 2.6 Motion Calculation

To compute the motion of the body, a new

33 set of body axes is chosen such that the
1 1 1 origin is at the centre of mass. The usuala I= l1..l1s 1111 equations of motion for a rigid body are then

invoked, with appropriate terms on the right
1 hand sides to model the hydrodynamic and

(PA1 liljld (19) external forces and moments.

where, for the j th panel, Pi refers to the 00 - Verb * .q ý[i - WoPb Urb%4

interpolated pressure at the centroid of the
i th sub-panel, Ai refers to the area of the * 1 Uoqb + v

i th sub-panel and (Ir1 mra ni) are the

direction cosines of the inward normal at the - (VI.. pipulaiou. Coutral. ,llzht, buoyaxay)t.,ma (21)
i th centroid. Similarly, the instantaneous

moment vector, M, about the centre of mass is:
and

(20) f i . Tspir. ofvco-qaiosrpeet

SP1 A fl a ' - '@1 - ~0}] .. ) rl .11y )'p]

* vsonuspeQ.~,ca, w~h.buo*tanY),*r(22)

* PAi. X01 Lt IN2 (1 01 k (20) + -

where F and M are given by equations (19) and
(20). This pair of vector equations represents

where (x, y, z ) are the body co-ordinates a set of six first order, ordinary
of tof 0  differential equations in UO. Vo, W ' qof the cantre of mass. 0 i '

and r . It has been found that the following
It should be pointed out that the above difference procedure (in this case for U0)

expreseions relate only to inviscid effects provides a sufficiently accurate integration
associated with the incident waves and the of the equationst
motion of the body. Viscous effects are
modelled by incorporating empirical data U (. ,(l. 3,',U.(23)
from planar motion mechanism (P$04) tests on a (23) ~I-t
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where At is the chosen step length. The latter
is not critical provided it is not signifi- 4 O.,0 ,CITY ASURE00.4- RLA71YE 10 @ODY

cantly larger than 10% of the shortest time
period used to represent the seaway. 4.

2.7 Computer Simulation 0_02 UN 0 Ut 0

The computer program has been implemented Fig 3. Fluid velocity distribution for 2: 1 prolate spheroid in
axial flow.

on a PRIME 750 machine acting as a host to a
Floating Point Systems AP120B vector processor
equipped with a dedicated disk sub-system.
The AP120B machine is a high speed peripheral 'U
floating-point arithmetic vector processor. 0, T I,.oI

The pipe-lined architecture enables array
indexing, loop counting, data fetching from----.-------------
memory and arithmetic operations in the -... i - %
separate adder and multiplier to be performed
simultaneously and at high speed (clock \---.. \
cycle 167 ns).

Of AAJILYTIC SOLUTIO LAKM

Data which are constant for a whole
simulation run (such as the inverse of the
matrix of influence coefficients) are stored
on the disk sub system for rapid retrieval by FiS 4. Pressure distribution for spinning 2:1 prolate spheroid.
the AP120B at each time step in the calcu-
lation and post-processing operations. The
program is coded using a combination of
FORTRAN IV, APFORTRAN and APAL (Array The case of a restrained, infinite
Processor Assembly Language) to achieve circular cylinder has recently been investi-
maximum speed consistent with ease of use. gated analytically by Wilmott 15] using the
The execution time is currently approximately method of matched asymptotic expansions. His
three times slower than real time, although results are nearly identical to those of
real time could easily be achieved with the Ogilvie [6]. Figures 5 and 6 show the
addition of a solid state bulk memory in place results for the first and second order heave
of the disk sub-system. force amplitude compared with the present

numerical model. It should be pointed out
3. Validation that for the purpose of this validation

exercise the first and second order components
3.1 Overview for the numerical model were computed using a

simple statistical analysis of the time history
The numerical model described in this for the total hydrodynamic force. In an

paper has been used to predict a large number actual simulation application there would of
of flows for which analytical or experimental course be no requirement to distinguish
results are available. For the purpose of between first and second order components.
the present paper, attention is focussed on
three typical validation exercises, the
results of which are broadly representative of
the overall performance of the model.

3.2 Comparions with Analytical Solutions /

Predictions for a 2:1 prolate spheroid for ,
both pure translation (along its major axis) A. ,i

Sand rotation (about its minor axis) are / n Os
compared with analytical solutions due to
Lamb [41 in Figures 3 and 4. They appear to / - , 5

WJMmC4 SKUVTIM
be in excellent agreement.

NOWs & MW~ MR0( KEAYS P05( AXPIITUUC #OR AN
1~14N1 CYLISOIS tMAT O UL WES0R 0~(
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3.3 Restrained Body Beneath Regular Waves - 100

Towing tank experiments were conducted with I
the aim of measuring both heave force and 0.
pitch moment for a restrained, non- 05 10 15 20 ),L 25
axisymmetric body undergoing self-propulsion FIGLIE 10 MEAN PITCH MOMENT
beneath regular waves.

Routine procedures were adopted to The considerable scatter in the data for
conduct these tests, the results of which the second order pitch moment is
were analysed digitally using standard time attributable to the extreme difficulty in
series analysis software. The body had a reliably extracting a small non-zero mean from
length to beam ratio of 8.7 and was submerged a finite-length record. Nevertheless, the
at a depth (to axis) to length ratio of overall agreement appears to be good.
0.16. Results for a typical run in head seas,
with forward speed, are shown in Figures 7 to 3.4 Lightly Restrained Body Beneath Regular
10. These figures also show the numerical Waves
predictions (depicted by the solid curve) for
the purpose of comparison. Modifications to the above experiment were

made to allow the body to respond to the
regular wave excitation. This was done using
linear bearings on the towing struts. Themean vertical force due to the waves was

50W. -- checked by two low-stiffness (1000 N.m-')
4000- springs and the associatedheave displacement

was measured using sliding potentiometers
0 (See Figure 11). A standard wave probe was

positioned level with the forward end of the
Prediction model and midway between the model and the

tank wall. A simple elasticity analysis was
included in the equations of motion to allow

0. I 0 for flexure of the swords - this was
I 05- 10 ¶-5 20 v4i.2

FIGURE 7 AMPITUDE OF let ORDER HEAVE FORCE- considered significant in some cases.

N *0I

05 10 15ý 240 ktt 1. 5 11
FIGURE I AhPUITUOE OF Ist ORUER PITCH MOMENT. 111 it (XIIIIAWT £MAN4NINTli
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Figure 12 shows the preliminary results The accuracy of the predicted results will
from this experiment for the amplitude of the be questionable if the run time with
oscillatory heave displacement (non- irregular waves is too short, even if the
Sdimensionalised by the wave amplitude). body motion has reached a quasi steady state

and initial transients have decayed, since
the number of low frequency depth excursions

0"09 observed in the trajectory depends on the
lengt" of run. It was thought that the

3• .I statistics for a short run might therefore
bear little resemblance to the corresponding

O3 L statistics for a long run.

Similarly, the motion statistics will be
wx•25 X sensitive to the number of wave frequencies

used to represent the spectrum. In the
Z •/program, these frequencies are equallyZ.:'_-20 spaced between zero and a user-selectable

SCL maximum. The program also employs a user-
E15 X selectable seed for a random number generator

to set the phases of the individual wave
4 W components. The use of too few frequencies

> > / -0" may be insufficient to resolve the motions
actually incurred by a submerged body in the

T heory ocean environment. This is because the
x Experiment lowest beat frequency of the wave system may

be higher than the natural frequency (in
"0I I pitch) of the body, whilst the converse
05 0-75 1'0 125 1"5 175 2"0 applies if n is large. This difference may

XIL have a severe effect on the low frequency
motion of the body and in consequence the

FIGURE 12 HEAVE RESPONSE FOR results for small n may be unrelated to thosewLIGHTLY RESTRAINED BODY for large n .

It should be pointed out that the dimen- For the purpose of the present paper,
sionless mean depth quoted in the Figure is a attention is focussed on the standard
nominal one in so far as the wave amplitudes deviation of the depth signal referred to the
used were different for each wave-length, centre of mass of the body. A body geometry
This was necessary to ensure a sufficiently broadly representative of the one used in the
large heave response consistent with waves of previous experiment was chosen for this
acceptable quality. However, because the investigation, except that in this case a
wave amplitudes were different, the s'ction form of depth control, which was identical
forces gave rise to different mean spring for all the runs, was incorporated within the
deflections and hence mean depths. Neverthe- program. The following parameters were used:
less, the data have been presented on the
one graph for convenience. Despite some z'

disparity at X/L = 1.25, the agreement appears L 0.2 g 0.12 - 21 sea-state 5
to be satisfactory, bearing in mind the
difficulty in performing such an experiment where Am is the modal wavelength. Two
and the associated paucity of the data. It different run lengths were used for tho
is planned to perform a similar but more investigation. The long runs comprised 280
comprehensive experiment in the near future. modal periods whilst the short runs

4. Preliminary Evaluation Using comprised 42 modal Periods.
Irregular Waves 4.2 Effect of run-length

4.1 Introduction Four short runs were conducted, each with

The numerical model has been evaluated for a different seed but all with nw * 150.
use with a Bretschneider sea spectrum (1]; These were then repeated using the larger run
two parameters are of importance in this lenV'*h. The results are sumoarised in
context since their values may significantly Table 1.
affect the ensuing predictions. The para-
meters are the run time, or length ofsimulation, and thd number of discrete•
frequency components used to represent the
spectrum (nv in Equation (M)).
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Depth Standard Deviation
Mean DepthSeed

Short Run Long Run 250-

0.5 0.0269 0.0296
0.6 0.0402 0.0350 20-
0.7 0.0307 0.0389
0.8 0.0400 0.0312 Hz

Mean Value 0.0345 0.0338

It can be seen that for this particular series 10[
of runs the mean values of the normalised
standard deviation are nearly identical.

50-
4.3 Effect of n

Four long runs were conducted for various 0• • .Q -12 4 46 .• *20
numbers of wave frequencies. The results are Frequency (Hz)
shown in Figure 13. The mean values measured
for 25 or fewer wave frequencies increase
rapidly with an increase in the number of FIGURE 14 DEPTH ASD FOR LONG RUN

wave frequencies. For 32 or more waves, WITH 16 WAVES.
however, the mean value changes only slightly
with an increase in the number of wave 7
frequencies. It is speculated that once the
wave system has sufficient components to
ensure that its lowest beat frequency is
smaller than the natural frequency (in pitch)
of the body, the mean depth standard deviation
will vary only slightly with an increase in 5
the number of wave frequencies. Hz

.4 4ý

I '

Frequency (Hz)

FIGURE IS OEPTH ASO FOR LONG RUN
This is upportoed in Figures 14 and 15 where WITH 150 WAVES
the depth auto spectral densities ate shown
for n% 16 and 150 respectively. In the case

of 150 wave frequencies there is a substwitial . Conclusions
amount of low frequency motion which is aisant A simple method of computing the trajectory
when w 16. and motion of a submerged body under waves has

been presented. !Me method has been tested
against both analytic and experiment data and
the agreuimnt has been found to be satisfaotory
for regular waves. Further validation is
required for the case of irregular waves. A
numerical study has shown that the method oe
syinthesis of the sea speotw•u in terms of its
discrete frequencies is eaarently more
critical than the length of each computer
simulation.

.•.:, 438 J 4.. ... ,. .... :
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DISCUSSION
of the paper

by A.J. Musker

"TRAJECTORY AND MOTION OF A BODY UNDER WAVES"

DISCUSSION
by H. Wang

You use an interesting approach whereby the
viscous terms are obtained from experimental
results for a deeply submerged model and wave
diffraction and radiation effects are neglected
in the potential low problem. I would appre-
ciate your clarification of the following
points. 1. Does the approach contain a check,
such as a calculation of the vertical veloci-
ties at the free surface, z'= 0, to estimate
the error in neglecting the effect of the
body on the free surface? 2. Why did you
choose to place the singularities inside the
body, and what were the considerations leading
to your final choice of 0.6 rc? Do you find
that this approach breaks down and/or becomes
less accurate (than, for example a method which
places the sources on the body surface) as the
body becomes blunter? 3. Figure 13 shows the
expected trend that the scatter of the results
increases with number of wave frequencies rw.
As a result, the average of all runs stays rela-
tively constant at around 0.028 for 30 < rw <
95, and then increases monotonically to 0.035
at nw a 200. Did you consider averaging over
more then 4 runs at the higher values of nw in
order to get more accurate average values?

Author's Reply

In an earlier version of the numerical
model an image system was included to generate
a rigid plane at z'a Ot this added sophistica-
tion led to changes in the pertinent forces
and moments of less than three percent typi-
clly. Accordingly, the image system was
excluded in the version described in the pre-
sent paper.

The desire to redoce computing times to a
minimum was the motivation in utilizing point
sources rather than panels with constant source
density. Physically the point sources must be
positioned inside the bod&, in order for them to
generate the boundary surface at all correctly.
The choice of 0.6r, for the location along the
inward normal was arrived at on a trial and
error basis and representa a compromise between
accuracy and numerical stability for those
geometries of moat Interest. Surpris4ngly, the

ht,od becomes slightly more accurate as the
body becomes blunter and in all cases behaves t.
better near the stagnation points than the
suce desity method.

Unfortunately, the computational effort
associated with generating Fig. 13 was such as
to preclude using more then four ponts per
value of 1%,

.V
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A COMBINATION CONFORMAL-TRANSFINITE MAPPING METHOD
FOR GRIDS ABOUT FIN-AFTERBODY COMBINATIONS*

Gilbert H. Hoffman

Applied Research Laboratory
The Pennsylvania State University

State College, PA - U.S.A.

Abstract Eriksson [2] has generated a single-block
nonorthogonal 3-D grid using transfinite

An algebraic procedure is presented for interpolation where geometric data is
the generation of a smooth computational grid specified only on the boundaries. Since
about an afterbody-fin configuration. The no internal surfaces are specified,
method makes use of a sequence of conformal grid quality is controlled, especially
transformations to upwrap the geometry and near a surface, by incorporating out-of-
remove the corner singularities at the fin surface parametric derivatives. Smith [3]
trailing edge and tail of the afterbody. A uses the patched grid approach where the
3-D grid is generated by stacking a sequence domain is divided into regions with
of 2-D grids of the C-type on predetermined, boundaries of a simplier character than
smooth tubular surfaces. Clustering is the overall region. On the interior of
accomplished by a sequence of one-dimensional each six-sided sub-region transfinite
stretching functions in physical space. interpolation is used to generate the
Examples are presented to show the character grid. His treatment extends only to the
of the resulting grid. wing tips which limits its usefulness.

A third and quite different approach has
I. Introduction been taken by Caughey and Jameson [4].

Their technique generates a boundary-
The problem treated in this paper Is the conforming coordinate system by a sequence

generation of a surface fitted grid in the of conformal and shearing transformations
stern region of an undersea vehicle, to yield a nearly orthogonal computational
specifically an axisymmetric pointed domain. The grid is then generated by
afterbody with four identical, symmetric, simple linear interpolation. Shmilovich
constant chord fins. In many respects this and Caughey (5] have recently extended
problem is similar to the airplane wing- this technique to include a tail surface.
fuselage problem. The desired grid is to be The Caughey-Jameson procedure was developed
used for either inviscid or viscid for use with the 3-D transonic PLO codes,
incompressible flow calculations and hence
must have proper clustering ablity to One of the major difficulties in
resolve regions of high flow gradients. An algebraic grid generation is preventing
algebraic approach is used which is an out- corner singularities on the boundaries
growth of earlier 3-D grid generation work from propagating into the grid. Any
on a fin-cylinder configuration (1). interpolation method will propagate such

singularities Into th3 interior.
Algebraic grid generation methods for Differential equation grid generation

three-dimensional (3-D) flow problems have schemes suffer no such problem because
the advantage over their differential of the diffusive action of the elliptic
equation counterparts in speed and ability operator. Corner singularities are
to handle high aspect ratio cells without always present in 3-D configurations at
difficulty. Where the algebraic methods wing/fin trailing edges and tail points
are sometimes at a disadvantage is in on pointed bodies. A method for removing
treating a wide variety of boundary shape& these singularities in algebraic grid
with a single code. generation has been developed by

Vinokur and Lombard (6) for 2-D geometries.
Since 1979 grids about wing-body Their method consists of patching a conformal 4

configurations have been successfully hinge point transformation in a semall region
generated by several algebraic approaches. near the corner to a grid in the remainder

"of the domain generated by tranafinite
r r ir was sponsored jointly by the interpolation. They successfully applied

Office of Naval Research and Naval sea this method in generating a patched grid

... • ! Systems Comand. in a domain consistian of a backward facing

I I 4
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step at the end of a nozzle exhausting into
a cylindrical diffuser.

The algebraic method adopted here was
originally inspired by the work of Caughey
and Jameson in unwrapping a geometry as .Z
much as possible to produce a parallelpiped
with nearly straight boundaries. This
procedure is of the stacking type where a
3-D grid is produced by a sequence of 2-D U;
grid generation operations. In the present
method stacked tubular surfaces of circular
cross-section are first determined and then Figure 1. Schematic of Geometry and

a C-type grid generated on each surface. In Computational Domain.

the process of generating these surfaces as
well as in unwrapping the airfoilý corner
singularities are removed by application
of a hinge point transformation to the UPPER Seismy pum.
entire boundary. The present approach thus #-,ri
differs from that of Vinokur and Lombard in
being global rather than local in the use

of the hinge point transformation. The
result is a smooth boundary with a slowly
varying tangent. A grid which is orthogonal
at all boundaries is then generated on the
interior by transfinite interpolation. By
using a sequence of one-dimensional
stretching functions in physical space, L0WR s KN

precise control is maintained over the
clustering at all boundaries.

Figure 2. Planes of Symmetry.
IZ. Analzsis

Geometry of Computational Domain Grid Stacking Procedure

We start by defining the geometry for The simplest grid stacking scheme, such

which a surface-fitted grid is to be as that in Ref. 14), makes use of a shearing

generated. transformation to distribute a sequence of
two-dimensionally produced grids in the

(1) The afterbody is of circular cross- third spatial direction. Unfortunately the

section and has a smooth but shearing transformation causes surface
otherwise arbitrary meridian profile corner discontinuities to propagate int,

that closes at the tail point, the grid. In the present case of a pointed
12) Four identical fine of constant unit tail body, Fig. 3 illustrates the situation

Fouridentica l finste ofn contsantuit that would exist in the meridian plane if a
chord and infinite span, cousisting shearing transformation were used. Along
of symtetric airfoil sections, are the vertical line through the tail point#
mounted 90 degrees apart with their t -erti line o u thns ta il poiate
chord planse passing through the x d xt, lines of constant . have
afterbody centerline. The trailing discontinuous alopes.
edges of the fine are located Wihat is needed is a transformation to
upstream of the tail point a produce n - constant linea that does not
distance dTL. propagate corner discontinuities. The

(3) The computational domain consists of hinge point (power law) conformal
the region interior to an outer transformation has this desired property.
cylinder of radius rTip and exterior At the tail point (corner discontinuity)
to the afterbody, bounded upstream we write
and downstream by planes normal to
the afterbody centerline (the
initial value and ouktflow planes#).

A schamatic of the geoaetry and
computational domain is shown in Fig. I and
a head-on view showing the coordinate system
in the croasflow plane appear. in Fig. 2.
Since the fins are idtatitul and equally
spaced there are four planes of symmetry a MY
at 9 a 0, v/4, v/2 and 3•/A. Thus, only
the $ection - 44/A 0 e 0 is conuidered to

generatinI a $rid Oad in the flovfleld figits 3. Crid in Mesridian Plane uiL- ,
Shearing 'fraustotmatlom.

"42
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-= (1) the transformed boundary segments will be
denoted by point-of-compass notation.

where the real axis is aligned with the axis Thus A-B-C is vs(u) and E-D is vN(u),
of symmetry, and

a =x + jy, (2) To accommodate the inflow and outflow
boundaries (lines A--E and C-D in Fig. 5)
as well as the leading and trailing edges

W u + iv (3) of the fin, vertical lines must remain
vertical in the physical plane. This
requirement acts as a constraint on the

r •transformation from the hinge to the
mn =- - (4) physical plane.

-T The simplest scheme for producing a grid
The tail angle eT is defined in the meridian in the hinge plane is a shearing trans-
plane schematic given in Fig. 4. Equation formation on the image of x - constant lines.

Thus the normalized variable r is defined as
FIN .(

x-cOnst.

At this point the distribotion of rj is
assumed known. Thus in the interior v is
given by

vii vs. r -+ , (6)

Figure 4. Meridian Plane View of Geometry where the index i is constant on x = constant

and Computational Domain. lines. Thus at point (i,j) the values of xi
and vi i are known. Then (y,u)ij are
determined by iteratively solving Sq. (1).(1) maps the sector 0 < 0 4 w - OT above

the real axis onto the upper half plane. Using the above procedure, a smooth
If Eq. (1) is applied to the entire bounding
curve in the meridian plane, A-B-C-D-S-A,
the corner at the tail point B is eliminated plane for each value of r - constant. By
in the w (hinge) plane. Then interpolating revolving yS(x) about the x-axis a tubular
a grid in the hinge plane) upon trans- coordinate surface is obtained which is
formation, will produce a smooth grid smooth and non-developable (except when it
(except at B) in the physical plane which is a cylinder). On each of these surfaces
can be used for stacking, a surface fitted grid is determined as

though the surface were developable, thean
The only difficulty iu determining w projected back onto the surface. This

(given 0), or vice-versa, arises from the means that given (x,O), r is determined by
exponent n not being an integer so that interpolation of the tubular meridian-plane
one must be careful to select the proper curve rS(x) - yS(x). For the projection
Riemann sheet. In Ref. (7) a simple test method to work properly, the foil subtended
is given on the real part of a (or w) to angle 0F(x) muat be computed to account
determine the correct Riemann sheet. for the variable rs(W) 1-mo

The image of boundary A-B-C-D-2-A in - -i* • Yp

the hinge plane is shown schematically inF
Fig. 5 and has the appearance of a water
spout. Segment BC remains straight where yF(x) is the airfoil semi-thickness
because the real axis in the a plane is distribution. Lagrange cubic interpolation
coincident with BC. For convenience, is used to dcterwitie r, given x, from the

previously de ..ermined val-es of rS.

Cluatering of r - contitnt linen o-ar
SI ,n the body surface is needed to resolve the

viscous layer whereas further away, where
mo CIF MU- flow gradient* diminish, these linti can

be further apart. A one-aided stretching
function is therefore appropriate to

It determine the grid line spacing In the
-K meridian plane.

Fipgre 5. Meridian Boundary Imae. in Vinokur (8) has determined approximate
Hinge Plane. criteria for the development of one- and
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two-sided stretching functions of one Once the coordinates of the fin airfoil
variable which give a uniform truncation (XF,8?) are spenified on an r = constant
error independent of the governing tubular spcified on an

differential equation or difference tubular surface, the first step, in
diferenth. Heunvestio t o sedvferaan a c preparation for the unwrapping transformation,algorithm. He investigates several analytic is to scale the (x,e) coordinates according to

functions but finds that only tan z, where

z is real or pure imaginary, satisfies all of Z 4
his criteria. These stretching funct.ions x 4(x - dS) + Zn (10)
were used in the predecessor grid generation a= 4escheme [1] and are also used here.

where dS is the location of the singular
Since r is already a normalized point in the unwrapping transformation and

variable, its distribution is given by is just inside the leading edge of the

I airfoil. The stretching factor 4 is
tanh AO(t - I required by the unwrapping transformationr - I + (8)

tanh At so that the upper lit-it oa 0 will be ± w(the upper and lower symmetry planes are at

where t is the normalized generating variable 0 t x/4).
given by In Refs. I and 4, x is translated but

not magnified whereas 6 is magnified as
N above. Unequal scaling ia of course not

r conformal so that orthogonality of the-

and Af is the solution of grid cannot be maintained tt the boundaries.
The resulting grid in the x - 0 plane will

sinh • (9) be highly flattened and thus highly non-
orthogonal.

and
On an r - constant surface the

SO ".0) boundaries and coordinate system in the
dr x - 8 plane are sketched in Fig. 6.

Because of symmetry, only the region

N - number of intervals in r -HAX - 1 - 4 0 ( 0 needs to be considered. The
r airfoil can be unwrapped by applying theconformal transformation,

Grid Generation on a Tubular Surface

Grid generation in the x - 0 plane is ; + Ii - An[I - coah(C + in)] (11)

accomplished in three stages. ThM first Equation (11) maps the region below the
stage involves a sequence of conformal x-axis to positive C in the band 0 4 n 4 w.
transformation$ to unwrap the airfoil, Figure 7 presents a schematic of the
symmetry linee and inltial and outflow liner boundaries in the % - n plane. The initial
into a quadrilateral with a slowly varying value line (IVL) A-B-C is seen to map into
height. The unwrApping tranoforstions are a near seai-circle.
the basis for producing a C-grid obout the
airfoil. The second ateg.o involves
translation si rotation of coordinaie. about A
the image of the airfoil trailing edge,
followed by a hinge point ttiansfor•stion to TAIL. L4

eliminate the coiner at the trailing edge. MIAU t Its
The third stage nakes use of tranafinite "
interpolation to determine the grid in the
hinge plane that ti orthogo"aI at all -
boundaries. Since ths boundarimt In the
hinge plan* are smooth and have a slowly Figure 6, Computational Domain,
varytg tangent, transfinite interpolation o- •Cotant Surface.
will proi•ca a smooth grid in which two-
orthNonplity in the interior is held to
a miniskm. The grid in the physical eplane
is obtained by taking the inverse of the ,LWAut
sequence of transfomtions. Since the Too
intee*dilate trapeformatf )n, are conforal,
the orthogon~lity at boundaries and grid
smoothnoess will be preae.rved in the
phyalial plane, Spacing of grid line% is UK kM SM-UK
determined on appropriate bounderies in
the physical plaue by use of etratchiag
fn.etlons.t ert in t- n linoý

• i , - .'' , .
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Following Ref. 1, the corners at points corner at point F. Equation (1) applies
A and C can be eliminated by applying the
conformal transformation, provided a = x + iy and

2 n -- , (14)

where go is defined in Fig. 7. Equation (12) AX - X- F • (15)
has the effect of nearly straightening out +
the IVL. The geometry of the boundaries in The resulting boundary in the hinge plane

the • - 1 plane is shown in Fig. 8. is sketched in Fig. 10. Once a grid in
the hinge plane is produced by transfinite
interpolation, the transformation sequence
is reversed to obtain the grid in the x t
plane.

F

Figure 8. Boundaries in Positive • -

Plane.

In Rsf. I a shearing transformation is

used to generate a grid in the - Ti plane.
For airfoile with non-zero trailing edge

angles this procedure produces discontinuous Figure 10. Boundaries in Hinge Plane.
metric coefficients across the line Z -"
To eliminate the effect of the corner at
the trailing edge (point F) a procedure Part of the present grid generation
similar to the generation of the smooth strategy is to force one of the coordinate
curves in the meridian plane is used. The lines normal to the airfoil to pass through

point C, the corner point. This point on- coordinates are first translated and the airfoil is denoted by letter K - see
r-otated about point F according to Fig. 10. Such a line provides a natural

S- division between those lines intersecting
,F - Z'Cos )v + 5. -j)in A. the airfoil from the IvL, B-C. and the

- lower symmetry line, C-J.

(F - Z),in A. + (;F - ;)coo, F FAn effective method of locating point K
that prevents reflexes on the connecting

(13) segment C-K is to construct a circular arc
between C and K which is normal to both

where the positive x axis points toward boundaries. Under this assumption the
point R, the airfoil leading edge, and IF relation between the coordinates at C and K

is found to be
is the trailing edge angle in the F -

plane. The translated and rotated K tan (#C + (16)
boundaries are sketched in Fig. 9. K C

The final step in producing a smooth wre

boundary is to apply a hinge point tan # du (di)

transtormation to (K,y) to eliminate the dv

Supplementing N. (16) by the equation for
the airfoil image. vw(u), gives two equations
for tbw two unknowmn uK and VK.

Equation (16). together with the airfoil
image equation, can be solved iteratively by
the following formula, derivable from
Newton's method:

(n~l) (n) (nk N UK 4 6K(18

Figute 9. Translated and Rotated Sounarisa,?

* iuK y Place.
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where grid distribution on the inflow liae and
S+ i1(n) at points F and I to resolve the flow at

Jug - " + (vCvK)tanl 4 (÷, 1 the airfoil trailing edge and tcil of the
( C X • body respectively. Since the arc length

I + tan • tan[½ (*C+ step size at points K and F should be
continuoas, not all of the parameters

(19) (So,Sj) are independent. If (S05,%) are
specified on E-K and S1 is specified on

The right-hand-side of Eq. (19) is evaluated K-F aad F-I, then S3 on these latter
from values at point K at the nth iteration segments must be calculated to satiefy

v (n) and continuity of step size at the segment
level. In the determination of junctions. The relation is

ta n), Lagrange cubic interpolation is SSy NEK* -- (24)
used. Convergence of UK is quite rapid, K Y K NK
requiring usually about four or five
iterations to reach IAUKI < 10- 6 . Once where s Jenoten arc length of the segment and

N the number of intervals on the segment.
(Iv)K are known, (,8)K are found by the A similar expression holds on segment F-I.
inverse transformation of the mapping
sequence. Normalized pseudo-computational

--ariables Z and ; are dnfined such that the
In the x - 6 plane, the two-sided interior of the quadrilateial in Fig. 10 in

stretching function of Vinokur is used to the u - v plane transformb to the interior
generate the grid point distributions on
the stagnation streamline B-E and the of the unit square in the t - n plane. The
airfoil-wake centerline E-K-F-I. For transformation from the computational domain
segment B-E a single stretching function to the hinge-plane domain is given in terms

is used whereas for segment E-K-F--I, a of the position vector r:
sequence of three stretching functions is
required.

The two-sided stretching function for rL,), (25)

the normalized variable t is given by

* . sh tanh(tAý) where 0 4 1, 0 < 1.
A snh ý +(1 - A cosh Af)t~a_,h(_CAýT

(20) Specifying the distribution of the+

position vector r and its normal derivatives
where ý is the normalized generatingA
variable of constant step tize, Aý is the c-, the four boundaries in the n - n plane
solution of the transcendental equation it equivalent to defining the grid on the

boundaries in the hinge plune and ultimately,

S(21) the x - e plane.

and The transfinite interpolation method
used here is the extension of Erikseon [2]

A (S (/S1)1/ 2  (22) as specialized by Vinokur and Lombard [6].

The relation for r, using point-of-compass
D - (S0s 1/2 (23) nocation for the boundaries, is

0 1 r)( Z,, ) ( + (rs • C)E( ; + , (r+ ( ) + r ;,

and So and S1 are dimensionless slopes rns
"defined as

- (0) + r n(&)H() + E(t)(rw(n) - rSCn)

0 dtN

s, -Pt (1) , NW rPw(n) - rnS nj'-rr."(I

which control th* clustering at t - 0 and
+ F(1. I. )[r,,( ;) - rS ( n) -

The reason for using two-sided
stretching functions on segments B-K, K-F +

and F-I is to provide clustering at all - r n EG(t) -~ r HrN))N
segment end points. it is needed at point
E because of the rapid drop in pressure +
downstream of the stagnation point, at + G(-)[+ rNE(^) N
point K to provide a more nearly uniform ..SW. NW

446 . : jV!$Z¾



+ + ]requiring continuity of Ax on either side of

SW

+ - + Computational Grid

E ~ SEE ýNE If indices i, j and k denote the

+ coordinates •, n and -r, then the compute-
- r; G(•) - r• H ~n)] (26) tional coordinates x, y ar.d z may be

SE ~conveniently defined as

where E, F, G and H are cubic blending X i -1 , 1 4 i i
functions given by =

F(u) u2(3 - 2u) Y j max (28)
'u -)2 Z =k- 1 , 1 •k k J

G(u) -uI _ u) 2 max
K (27) The advantage of this system is that the

E 2(u)u(u-1) computational step size in the three
directions is unity which simplifies the
metric coefficient calculations.

E(u) -1 -F(u)

Equation (26) thus prov.des a smooth blending III. Results and Discussion
on the interior of the given distribution of The afterbody-fin grid generation code
grid points and normal derivatives on the s called TAILGRID and consists of aboutboundaries. A typical grid in the hinge .600 FORTRAN statements. It is written in
plane obtained by transfinite interpolation double precision arithmetric and computes
S is shown in rig. 11. in terms of real variables only. To date

all grid generation has been done on a
J VAX 11/782 computer with CPU per grid point

, 7 l. ."found to be about 7 x 103 sec. Thus

computing a surface containing 1500 points
S" 'requires approximately 10 sec.

S. 'The airfoil family chosen for testing
Y I. Ia the grid generation procedure was the NACA

I. J " symmetric four digit series. The equation
L L L -for this profile is

-. /,. YF = - 5r(0.2969 x- 0.1281x - 0.3516x2

. . - : : * .... + 0.2843x3 - 0.1015x 4 ) , (29)

U

where T is the maximum thickness expressedFigur e us.Typi ding Hinge as a fraction of the chord. In the original
Plane using Transfinite equation for YF, see Eq. (6.2) of Ref. 9,

the coefficient of x is given as 0.12600

The-evaluation of the various which causes the airfoil to have a finite
derivativ(:s on the boundaries in Fq. (26) trailing edge thickness (YTE - 0.0021).
follows the prescription given by Vinokur Since the grid generation procedure requires
and Lombard end is presented in detail in zero trailing edge thickness, the coefficient
Appendix II of Ref. 7. of x was modified as shown in Eq. (29).

Interpolation is used liberally on the
The procedure described above produces airfoil in the grid generation process; thus

a C-grid in the x - 0 plane in the region an accurate definition of yy versus x is a
cpa f the tail line -J. Because necessity. Usually 100 points on the airfoilA ~are computed for this purpose with clustering

4 constant lines in the upstream grid are at the leading edge.
normal to I-J (and I--J is straight as well as
.normal to the wake centerline), a downstream Figure 12 illustrates a typical 2-D grid
grid can easily be creatcd which has produced by this method before projection
continuity through first derivatives across onto a tubular surface. In this example,
l-J. The addon grid which has these clustering is used at the foil leading and
characteristics is a Cartesian grid w.th the trailing edges as well as at point K. The
same 8 distribution at I-J as the upstream foil section is an NACA 0012. Further 2-D
grid. Di• ,ributing grid points on the exampleo which illustrate the effects of
x-direction downstream of I-J is accomplished various input parameters may be found in
by a one-siWed Vinokur stretching function Ref. 7.
with tho paý.amster So determined by
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Figure 13. Meridian Plane View of Test
Figure 12. Typical 2-D Grid Produced by Problem Geometry.

Present Method.

For a 3-D test problem the afterbody
meridian profile was represented by the
following analytic function:

rb(I() - rblF(u) - dbodtan 6TG(1I) , (30)

where Figure 14. Front View of Afterbody Grid.
x

bod

dbed - afterbody length

r - initial afterbody radius

and F and G are the cubic blending functions Figure 15. Side View of Afterbody Grid.
defined by Eq. (21). The particular values

chosen for the afterbody parameters are

rb -0.75 , de - 2.5 , tan OT - 0.50

which produce a fairly full profile with a
tail half angle of 26.6 degrees.

The meridian plane view of the test
problem geometry, computational domain and
intermediate surface is shown in Fig. 13.

Two views of each r - constant surface are
presented, the first from below and in front Figure lb. Fzont View of Interme,'iate
and the second from the side. These views Surface Grid.
are shown in Figs. 14 through 19. A
composite side view showing the position
of each surface relative to the other is
presented in Fig. 20. In this example, the
same type of clustering is used as in
Fig. 12. Figure 17. Side View of Intermediate Surface

In a grid stacking procedure each grid Grid.
on a surface is generated somewhat
independently of the other. The dependence
is indirect through the geometry and not
direct as in the case of partial
differential equation grid generation schemes
or fully 3-D algebraic schemes. Thus for
3-D grids generated by stacking one of the
primary concerns is with smoothness in the
stacki.ng direction, In the present method,
the only reason that the grid changeR in the Figure 18. Front View of Outer Surface Grid. : A4
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A POROSITY TECHNIQUE FOR THE DEFINITION
OF

OBSTACLES IN RECTANGULAR CELL MESHES

C. W. Hirt and J. M. Sicilian

Flow Science, Inc.
Los Alamos, liew Mexico

August 1985

Abstract can be used with the full Navier-
Stokes equations or for potential flow

Boundary fitted coordinates or applications. In either case, free

adaptive mesh schemes have obvious surfaces of arbitrary deformation may

advantages for the numerical solution be included using the Volume-of-Fluid

of ship hydrodynamics problems. They (VOF) technique.

also introduce a variety of numerical

difficulties. For example, special I. Introduction

generators must be devised to

construct suitable meshes that fit the A problem frequently confronting

desired boundaries while maintaining numerical analysts is how to represent

convex cells with reasonable aspect complex geometric boundaries. For

ratios. Sometimes numerical stability instance, in many fluid flow problems

requirements impose unacceptable time- the flow region is bounded by curved

step limits because of a few mesh walls, or variously-shaped obstacles

cells with exceptionally small sizes. may be embedded within the flow. In

Numerical algorithms based on these such cases the modeler is often driven

methods also tend to be more to complicated finite-element methods

complicated because of the added or to simplified approximations, such

complexity associated with the as replacing curves by stair-step

changing shapes and orientations of surfaces.

the mesh oells.
Although finite-element methods

In this paper we describe an have achieved considerable success in

alternative technique for computing many applications, their geometric

flows bounded by complicated geometric flexibility is achieved at the expense

shapes. Grid distortion problems of more complicated numerical
are eliminated by using a grid algorithms. Furthermore, these

composed of rectangular cells. methods may be subject to numerical

Geometric boundaries are defined accuracy and stability problems when

within this grid using a porosity the shapes and sizes of the elements

technique in which the porosity has a vary rapidly from one element to the

zero value within obstacles and a unit next.
value elsewhere.

Low order finite-element and

Certain consistency requirements finite-difference methods based on
are presented that guide the porosity meshes of rectangular cells are

formulation into a numerical solution logically simpler, easier to program,

algorithm that has good stability and easier to analyze for their

properties. The resulting formulation stability and accuracy properties.
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It is natural, therefore, to seek ways The idea we wish to explore here
to model curved boundaries in these is the use of a porosity that changes
schemes. abruptly from uniiy to zero across a

rigid boundary. The usual fluid
A number of noteworthy attempts dynamic equations are to hold in the

have been made to iaodel curved region where the porosity is unity.
boundaries in codes designed for Regions with zero porosity, that is,
incompressible fluid flow analysis. with zero flow volume are obstacle
Viecelli [1] used a marker particle regions. Although this is a simple
technique to represent arbitrary idea, it does not appear to have been
boundaries in a Marker-and-Cell type previously explored as a general
code. His scheme, which involved a procedure.
pressure adjustment tc prevent flow
crossing a boundary, was quite In the next section we describe
successful for a variety of free the porosity concept in more detail
surface flow calculations (2]. Hirt, and derive the modifications needed in
et al [3] and McMaster and Gong [4] the fluid dynamic equations to include
have used a somewhat simpler scheme in variable porosity effects. For
which selected velocities are adjusted simplicity, this discussion will be
in cells to satisfy a zero normal limited to two-dimensional, inviscid
velocity boundary condition. When and incompressible flow, but the basic
free surfaces are present, however, ideas can easily be extended to
this method can lead to an over compressible, viscous and three-
specification of the boundary dimensional situations. In fact, some
conditions. This method also three-dimensional examples will be
introduces some difficulties with used as illustrations. The primary
regard to fictitious fluxes of mass contribution of this paper is
and momentum across boundaries unless contained in Section III, which
precautions are taken to specify describes the special considerations
values for flow variables outside the needed to numerically approximate
boundary. equations containing a discontinuous

porosity. The numerical
Another possibility for modeling representation of a variable porosity

curved boundaries in rectangular grids is most conveniently defined in terms
is through the use of a variable of fractional areas and volumes open
porosity formulation. This concept is to flow. Thus, the method described
the subject of the present paper. in this paper is referred to as the
True porous media flow models have Fractional Area/Volume Obstacle
existed for a long time. Usually a Representation (FAVOR) Method.
porous flow is dominated by viscous Section IV contains a discussion of
stresses arising from numerous tiny such matters as numerical stability,
flow paths with a large surface-to- accuracy and the relationship of the
volume ratio. More recently the FAVOR method with other methods for
concept of a variable porosity has representing obstacle boundaries. The
been used as a means of representing question of accuracy will require a
flow regions containing distributed digression into the accuracy of
obstructions that are too small tu be nonuniform rectangular grids in
resolved by the cells in a discrete general. This is done in Section
grid. For example, codes used to IV.A, where it will be shown that
"model coolant flow in nuclear reactor approximations of conservation laws
cores [5,6,7] have employed this must lose some formal accuracy in
concept as a means of representing the variable grids. Examples illustrating
fractional flow volumes and areas the use of this new technique are
surrounding bundles of fuel rods and presented in Sectio.n V.

other structures.
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II. Formulation of Equations be analytically continued into the

obstacles in any manner for, as we

Equations describing fluid flow shall see, its value in these regions
in a region containing multiple will not be important.
obstacles can be conveniently derived
using the mathematical concept of The next step is to move the H
generalized functions. This will be function inside the time and spatial
outlined in the next section. Then a derivatives. To carry out the
brief discussion will be given of the transposition, we shall need to
methods used to reduce these equations evaluate derivatives of the step

As might be expected, there are that the gradient of a step function

several steps in this reduction where, is another generalized function - the
depending on the assumptions made, delta function,
different approximating equations may
be produced. Some attention will be
given to the most important of these VH(x) = -2Hn6(x-sx) (3)
steps and Justifications will be
presented for the selections made.

wherexs is any point on Ihe interface
A. Porous-Media Equations (surface) between the fluid and an

obstacle. The vector n is a unit
To derive the equations for normal to the interface at location xs

porous media we make use of the theory and is directed out of the fluid. A

of generalized functions (8]. With formal derivation of Eq. (3) can be
this approach, boundary conditions at made using the techniques in Ref. 18),
fluid-obstacle interfaces are but we can see that it is intuitively
automatically isolated in a convenient correct from the following argument.
way. Let us consider by way of Derivatives of H away from an
illustration the density equation, interface are zero because H is then a

constant function. For the same
reason, a derivative of H parallel to

ap/at + V'u - o (0) an interface must also be zero.
Gradients normal to an interface are
infinite when evaluated at the

where 0 is the density and u is the interface because there H undergoes a
fluid velocity. The density equation step change. On the other hand,
holds at all points occupied by fluid. integration of a normal derivative of
A generalized (Heaviside) function of H across an interface gives a result
the spatial coordinate vector x and of unity according to ita definition.
denoted by H(j) is defined such that These properties are Just those of a

delta function, and this suggests the
form of Eq. (3). The factor of 211 on

1.0, if x is in the fluid the right side of the equation is
IH() C (2) introduced for convenience, but since

0.0, if x is in an obstacle. H is discontinuous where the delta
function is nonzero, a prescription to

needed for evaluating the integral of
If we now multiply the density such a product. The rule is
equation by the step function H, the
resulting equation can be considered +1
as defined at all points in space. It
asrees with the original equation, Q(z)6(z)dz (Q+ + QJ/2 (4)

Eq. (I), in the fluid and is f
identically tero at points located in -1
obstacles. The density function can
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where subscripts refer to values of Q form
on either side of z=O. Using this
rule it is easy to see that the factor
of 2H in Eq. (3) is consistent because (apHh/t) + V.(pHu) = 0 (8a)

an integration of that equation across
x. does produce an identity. (3pau/at) + V.(pHuu) =-Hvp + HZ

If the fluid-obstacle interfaces (8b)

are time dependent, then we will also
* need the time derivative of H. This

time dependency can only arlse from a where p is the fluid pressure andL is
shifting of the boundery points with a body acceleration (e.g., gravity).

time. The time rate of change of
boundary point xs is just the velocity This is a special form of the

of the boundaryVs, i.e., porous-media equations in which the
porosity is a discontinuous function.
That is, the porosity is either 0.0 or

(dxs/dt) = v (5) 1.0. To apply this result to a
material like sand where the positions

of individual sand grains are unknown,

Therefore, using the chain rule for it is first necessary to perform an

differentiation the necessary time eneemble average on Eqs. (8). Only H
derivative is, varics in the ensemble average because

it depends implicitly on the
arrangement of the obstacles (i.e.,

al/at= -(da/dt)V.H the sand grains). Therefore, after
averaging we replace H in Eqs. (8)

= 2H~.n(x-_xa) (6) with its ensemble average, say f. The
quantity f(x) is the average porosity
(or it may be equivalently interpreted

Now, using Eq. (2) and Eq. (6) the as the probability that an obstacle
density equation multiplied by H can does not exist at location x). Por

be rewritten as our purposes we wish to keep Eqs. (8)
as they are so that we mey use H to
describe well-defined arrays of

(OpH/at) + V.(Puj) obstacles.

+ 2p11(u-vs) nd(Ax-xe) 0 (7) B. Coarse-Scale Approximations

Let us integrate the density

The last term involving the delta equation over a small volume in space,
function is identically zero. To see R, with boundary surface S. Within H
this, first note that it Is tero there will, in general, be subregions
everywhere except at a fluid-obstacle containing fluid and subregions
boundary. At such a boundary it only containing obstacles. The Interfaces
hqa meaning when it is integrated between these regions within R will be
across the boundary, but the integral denoted by I. The average of the
is proportional to (u-_)v n which is density equation ov4r region R is

zero because the fluid velocity normal
to an obstacle boundary must equal the _on
normal velocity of the boundary. •i t - * V'9u_}dR : 0 (9)

JR
A lmilar derivation can be used

to derive the corresponding inviscid where R is here used for both the
momentum equations in a porous medium, volume of the region and an an
so that the final equations have the Indicator for the limits of
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integration. Since R is independent boundary is subdivided into a set of
of time, the leading term in Eq. (9) segments S such that the coarse-scale
is approximation can be applied to each

segment. For example, for segment i,

af t 8(pH)dR pHdR) (10)
R Ru._jjnHdSi = 0u1*niA (14)

In making finite-volume i

approximations for numerical solution where
algorithms, the region R would be one
element or cell of a grid that divides
the flow region into a set of control A =f HdSi (15)
volumes. For a useful approximation, ifs

the grid cells must be chosen small i
enough so that within a cell the The quantity A is defined, for
dependent variables describing the arbitrary Si, as the fractional area
flow can be treated as constants (or open for flow across surface Si.
possibly as having some simple spatial
variation). Neglecting flow If the functions V and A are
variations over scales covered by continuous and differentiable, it can
region R compared to variations over be shown that they must be equal to
the entire region of interest is the same function. However, our goal
called the coarse-scale approximation, is the derivation of finite-volume
When this assumption is satisfied, the equations in which these quantities
density in the volume integration in may be discontinuous functions. Thus,
Eq. (10) can be replaced by its mean we see that several fractional volumes
value so that and areas must be associated with each

control volume.

of DHdR = PV C. Pressure Gradient Averages

Consider the volume averaging
where process applied to the pressure

gradient term appearing in Eq. (eb),

V = If HdR (12)

RfI HVpdR . (16)

The quantity V is defined, for
arbitrary R, as the fractional volume An alternative form is

open\ to flow.

A similar result can be obtained if V(pll - pVH~dR
for the divergence term in Eq. (9). I
First, Oauses divergence theorem is
used to reduce the volume integration
to a surface integral. I (v~pH) + 2Hpn_6(x-a))}dR (17)

ifi I pHndS + pd

The integral Is the flux of fluid out
of region R through the open portion where the last integral hes been
of its boundary S. Usually the reduced uaing Eq. (4) and I indicates

4;.



integration over all fluid-obstacle III. Finite-Volume Equations
interfaces located within R. This
alternative form is easy to interpret: A mesh of nonuniform rectangular
the first integral is the pressure cells will be used as the basis for
force acting on the fluid along the our finite-volume equations. Using a
open portion of the surface S that nonuniform mesh helps us identify some
surrounds R, the second integral is points regarding accuracy and also
the pressure force acting on the fluid allows a comparison of the FAVOR
at all interior fluid-obstacle method with more standard techniques.
interfaces. Some simplifications are in order,

however, to keep the presentation

The question is, which of these manageable. Thus, the following
forms, Eq. (16) or Eq. (17), is best development will be limited to the
suited for finite-volume case of two-dimensional,
approximations? When the pressure is incompressible fluid flow with
nearly constant within R, both constant density. The density
expressions are approximately zero and equation, Eq. (8a), with the density
neither one is preferable over the divided out is referred to as the

other. However, when there is a continuity equation. After dividing
hydrostatic equilibrium, the pressure the momentum equations by p the ratio
gradient is constant and the of pressure to constant density will
expression in Eq. (16) reduces again be denoted by p. Extensions to
immediately to VVp. three-dimensional flows or to flows

with variable density is
When there is a hydrostatic straightforward.

equilibrium, the second term on the
right side of Eq. (17) is equal to the Dependent variables are to be

* net buoyant force experienced by the placed at staggered grid locations as
obstacles within R and cannot be illustrated in Fig. IA. The staggered

*ignored. In any case, neither term on grid dates back to the Marker-and-Cell

the right side of Eq. (17) can be (MAC) method (9] and is particularly
easily approximated in this limit, well suited for approximations based
Some authors have used the coarse- on the primitive variables, pressure

scale approximation V(pV) for the and velocity.
first term, but since the second term
cannot be ignored, this is not a A simplified subscript notation,
useful or convenient approximation. Fig. IB. will be used to indicate mesh
Thus, for a coarse-scale approximation locations relative to a generic cell
it is beet to assume the pressure center at (i,j). Location (iJ) will
gradient rather than the pressure is be denoted by the subscript C. In
nearly constant. general, upper case letters N, 3, E,

and W denote shifts in the principal
In dynamic situations, when the compass directions by one integer.

pressure differa from hydrostatic, the For instance, E refers to location

approximation, Vvp, iS not exact for (i+I,J), while N refers to location
it neglects non-viscous drag effects (i,J+i). Similarly, the lower case
Imposed on the fluid by the obstacles, letters n, a, e, and v will denote
If theae drag forces are significant, corresponding shifts of half integer
it is necessary to add them separately values. Multiple Integer shifts are

j to the approximation. When doing represented by repeated letters. The
this, however, it must be remembered order of the letters is unimportant.
that buoyant forces on obstacles are Some examples should make it clear how

not to be ipeluded in the asddtion. this convenient notation works.
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u = u0  confusion since we are considering"each quantity with a different

ui+1/2,j = ue argument or at a different location as
an independent quantity.

The momentum equation for the u-

ui_3/2,j+2 := uNNWw velocity located at mesh position e is
to be averaged in space over a

6xi = 6xC rectangle that extends from location C
to location E, see Fig. 2.
Integrating over this region and over
time interval St we have

Using finite-volume and time
averages, the density and momentum
equations can be reduced to discrete -_H-•n)/It

(difference) equations. This formal

reduction, however, involves a variety + (<Huu>E - <Huu>C)/6xe
of integrated quantities at different (20)
mesh locations. These quantities must + (<Hvu>ne - <Hvu>se)/6yC
be treated as independent unless limit
properties or consistency arguments =Ve(PE-PC)/6Xe + Vegx
can be found to eliminate them as
unknowns. For instance, we will find
that consistency requires certain where Guass' theorem has been used to
quantities at one mesh location to be reduce the divergence term to surface
simple combinations of similar integrals, and where

quantities at neighboring locations. 6xe = (SxC + 6XE)/2. The overba,
indicates a volume average similar to

We begin by averaging the that in Eq. (12). For the pressure
continuity equation over a generic terms, we have used the coarse-scale
mesh cell (i,j) and over the time approximation described earlier, in

interval from t to t+St, which the pressure gradients are
roughly constant in time.

(VAl-Vn)/6t + (<Hu>e-<flu>V)/6xc The averaged equations, Eqe. (18)
(18) and (20), involve many undefined

+ (<'v>n-<Hv>e)/6y 0 . 0 quantities. To proceed further we
must either introduce ad hoo
approximations or seek some additional

where V is the volume integral defined equations that will r,•duae the number
in Eq. (12) and anglad brackets of unknowns. One possibility is to
indicate the time wid surface averages look for consistency relationehips.
defined as Per instance, in the original

differential equations. Eqs. (8), the
density equation can be subtracted

Wt4 = d f OdS . (19) frow the momentum equation to give an
equation for just the velocity, i.e.,

Strictly speaking, there are two

different angle4-bratket averages (au/at) + U.Vu a -Vp + . (21)
appearing in Eq. (18): those
containing a u-volooity are integrated
with respect to the y-direotion, while This type of equation manipulation is

those containing v-velooities are essential for deriving shook wave jump
integrated with respect to the X- conditions in compressible flow,.
direction* this will not cause Bernoulli's equation and many other
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useful relationships. It is and adding and subtracting inside the
Sreasonable, therefore, to require our parentheses, terms equal to the ue
discretized equations to have the same times each of the angled bracket
property. The goal is to separate the terms, we can rearrange Eq. (20) to
discretized continuity equation,
Eq. (18), from Eq. (20) so that the
resulting equation will be a discrete Vn÷1 (un+1_un)/6t
approximation to Eq. (21). It is
immediately obvious that this cannot +[<Hu>E(UEUe)+<Hu>c(ueuC)]/Sxe
be done unless the bar-average of the
product hu appearing in the time- +I<HV>ne(une-Ue)+<Hv>ne(ue.u*e) I/yC
derivative term in Eq. (20) is
separable into a product of bar- - -Ve(pEPC)/6Xe+Vegx - Deuen

averages. Similarly, the angled-

bracket averages, which involve a (24)
product of two velocities, must be
separable into a product of averages where De is given by the expression,
in which one factor is of the form
appearing in Eq. (18). Thus, for
consistency with the equation De = (Vn-1_Vn)/St+(<Hu>E_<Hu>c)/6xe

* separation process, we must first
require relations of the form + (<Hv>ne-<Hv> 5 e)/6y0

(25)
Hue = Veue

Equation (24) is almost the
<Huu>C M <Hu>Cuc (22) discretized version of Eq. (21),

* except that it has the extra term
<Uvu>ne <UV>neune containing De. However, De looks like

the left side of the discrete
continuity equation, Eq. (18),

The ue in the first relation is evaluated at the cell edge location e
centered at t.he cell edge where we and not at a cell center as is Eq.
started the averaging process so no (18). To complete the equation
special notation is used to mark this separation we note that DO could be
quantity. The u* velocities appearing rewritten as
in the second two relations are
located at cell positions other than
the primary, etagered mesh positions D= (xEDE+6xCDC)(6xE+xC) , (26)
so these quantitieO have the
superscript *. We shall interpret
these relations as definitions for where the D's on the right side are
these new quantities. That is, now oell-cer, tred expressions, if we
relations (22) are needed for their make the following correspondences
form, but no approximations have been
made if we consider them au
definitions. <Hu>c V (<1jU>e+Q1lu>w)/2

Using these definitions, the time (livn ( 6 xc<1vn
derivative term in Eq. (20) can be
rewritten in the form +6xE(UV>nE)/(GxClgxE)

S [(Vn,.iVeluen+ven+i( 11+1-n*•-e/6tn (23') ve =(6xCVc*,dxEVE)!(6Xc+6xE) (27)

e,,}Aanui th e ellie, (2?)2) •

Again using the definitions, Eq. (22), These relations express the way
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* n

quantities at intermediate mesh Rw = 2<Hu>nw(vn-vnw)/6xc

locations are related to similar
quantities at their primary locations. f = 1/2

Using them, the De term appearing in

Eq. (24) is identically zero when

Eq. (18) is satisfied and we have RN = 2<Hv>N(VN-Vn)IdyN
completed the desired equation

separation. fyN = 6YN/(6yC+6YN)

If we do a similar reduction on
n

the v-momentum equation, then combine RC 2<Hv>c(vn-Vc)/6yc ,
all assumptions and consistency

requirements, the momentum equations fyC = 6Yc/(6Yc+6YN)
can now be written as,

On the right side of Eq. (28a) we have
un+l un)/6t dropped the factor V /Vn+l because we

e e e. e
could just as well have used Ve+- on

xEQE+fxCQc+fxnQn +fxsQ )/Ve 1  the right side of Eq. (24). A similar
fqctor has been dropped from

-(PE-PC)/6xe+gx (28 a) Eq. (28b). Equation (28a) has the
desired form of Eq. (21) because the

(,n+- vn)/6t QE and QC terms defined in Eq. (29)
n v)n are approximations for Hu(au/ax) while

Q.and Q.are approximations of
+(fyeRe+fywRw+fyNRN+ fynRC)/VI Hv(Du/3y). The f factors sRro

weighting f&ctors depondent on the

-(pN-PC)/6yn+8y (28b) cell sises. In a uniform grid the f'a
are all equal to one half.

where To summarite, re.lations (27),
which were used to give the

0 n diacret-i;ed Oquationa the same

QE 2<Hu>B(uE-ue)/6xB separation property as the

differ-Dt.ll equations, have reduced
S - 6XE/(6XC+d) thti number of uxrknowns in -tho

diio..•,, ed ficquation,. Unfortunately,

theTe are still more unknowns than
QC 2(•uc(u-uc)/6XC eq,4,Ationr. The remalnjng unknownq

aro,

V I , Vn PC

c ,C , (Iiu>0 (30)

VC , Ve <lv0n

Quantities Ue' vn, and PC re othe

1' 1/2 primary variables at the staggered
mesh locatione we designated at the
outset. All romaining quantities are

He m 2'u)>vneVn)/6xC , secondary unknowns that must still be
specified.

f 1/2
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A coarse-scale approximation cell are reduced to infinitesimal
could be used to separate out the H- values. If the difference between the
function from the two unknowns in finite-volume and limiting forms is
which it appears. proportional to the N-th power of 6t

and M-th power of the cell size, the
* accuracy is said to be N-th order in

<Hu>e = Aeue time and M-th order in space.
(31)

<Hv>n = AnYn A typical approximation is to
identify the u* velocity in Eq. (31)

with the u velocity definad in
where Ae and An are the fractional Eq. (22). In other words, equate
areas open to flow at the sides of a surface and volume averaged quantities
mesh cell and two new velocity at the same location. If in QE we
uverages have been introduced. Now then set uE equal to an average of the
all the secondary unknowns (indicated neighboring boundary centered
by a superscript *) have a similar velocities,
form: i.e., they are all related to
surface-time averages of velocities.

S= (uO+us)/2 (32)
Up to this point the equations

derived are essentially "exact" in
that we have only made substitutions this corresponds to a centered
in terms of new unknowns, but to difference approximation. QE is then
proceed further we must now introduce a second order (in space)
approximations that relate those approximation to Hu(fu lax) at
unknowns to the primary dependent location E. A similar centered
variables. First, it should be noted approximation in QC makes tt a second
that no time levels have been assigned order approximation at location C.
to the various fluxing velocities. If Unfortunately, the combination of the
time level n+1 values are used, the two Q1s is only first order accurate
resulting equations are implicit and at location e because in a nonuniform
would require a complicated procedure mesh the f-weighting factors do not
for their sisultaneouo solution, have the correct values. A correct
Using only time level n values results second order approximation at e
in explicit equation- that are easy to requires the interpolated expression
solve, but it is well known that these fxeQg + TxSQC, while the expression
equations may be numerically unstable fXCQc + fxEQE is second order only at
unless the approximations are the midpoint between locations C and
carefully chosen (10). Before L, "ince this point does not
deciding on ouitable approximations, correspond to location c (unleos the
it vill be worthwhile to firat look mesh is uniform), V1. (28a) cannot be
into queations of accuracy and more than first order accurate at
stability, position e.

IV. Other Hattere If a donor cell or upstream

approximation is used for the uF
A. Accuracy in• aionuniform Nesh velocity, then the situation is worse.

For Instance, if the velocity is
The horizontal advection of positive, then Q, is tero and fxcqc

momentum in Bq. (28a) is contained in becomes a second order t.p)pr:ximatior,
the aum fx*QE + fxCOC. Accuracy at location C, but at e the
refers to how rapidly this finite- approximation is zeroth order accurate
volume expreoolon approaches the tscauoe the first term in a Taylor
limiting differential f, Xt.u/ax) at x;rle expansion about e will have the
location e an 6t and `1h? volume of the extra coefficient Žf,•. In a mesh 4
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witn slowly varying cell sizes 2fxc is particularly necessary if the
can be significantly different from fractional volume of a cell is allowed
"unity. For example, a 20% change in to approach zero, 4hich may
neighboring cell sizes produces a 10% occasionally happen when a curved
error in the coefficient. boundary is embedded in a mesh.

Now consider the vertical A rigorous analytical treatment
advection tsrms in Eq. (2ta). of stability is not possible because
Regardless of whether a centered or the coefficients of the advection
donor cell assumption is used for the terms are not constant. However, we
a* velocities, the Qn and Q. terms are can make a heuristic assessment based
zeroth order accurate approximations on effective advection speeds. In the
for Hv( u/ y), because only yC case of a uniform mesh with unit
appears in these expressions. That area/volume fractions the usual
is, first or higher order derivative stability conditions for an explicit
approximations require the appearance approximation are that fluid must not
of YN and yS values if the mesh is move across more than one cell in one
nonunform.A special choice step. In two dimensions this
Q's does exist, however, that will condition is usually replaced by the
produce a first order approximation restriction that fluid not move more
for these terms. than one fourth of the cell width so

that the maximum possible volume
We conclude, therefore, that fluxed out of the fovr sides of the

consistent finite-volume equations cell will not exceed the volume of the
based on a staggered mesh are formally cell.
first-order accurate in a nonuniform
mesh. A first-order approximation can Referring to Eqs. (28), (29), and
be achieved using the donor cell (31) we note that in the FAVOR method
approximation only if we give up the the advection velocities are
rigorous conservation form of the multiplied by the ratio of a
equations, for example, by modifying fractional side area to a fractional
the f-weighting factors. A simple volume. These modified velocities
choice for these factors that produces must still conform with the
a first order approximation is, require-.ent that, the maximum volume

fluxed out of a cell not exceed the
cell volu. •. Therefore, to see how

fxE=fxC=1/2 stability is influenced by FAVOR we
must investigate the values of area to

,yfxn=yC/(6yC+6YN) fxs=6yC/(6yC+6ys) volume ratios appearing in the finite-
volume equations. Only two limiting

fye=Sxc/(6xc+6xE) ,fyw=6xc/(6xc+6xw) cases need to be considered. For a
typical u velocity, say ue, suppose

fyN=fyC= 1 /2 cell C to its left is almost closed
(33) off (i.e., VC is almost zero). This

closure may be due to an obstacle
If we do not permit approximations surface oriented either vertically or
that use values separated by more than horizontally, see Fig. 3A. In the
one 6x or one Sy, the approximations vertical case Ae and VE will be unity,
can never be more than first order and An and VN will be equal to VC.
accurate. Because the fractional volume V.

appearing in the u-velocity equation
B. Stability Considerations is a weighted average of VC and VE,

Eq. (27), It can be shown that the
It is important to consider what maximum area to volume ratio appearing

numerical stability requirements must Eq. (28a) is Ae/Ve = (6xC
be imposed on the FAVOR method. This + 6XE)/6xE, which is equal to 2.0 in a
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unitorm mesh. A factor of two In the FAVOR scheme we keep a uniform
increase in the effective advection mesh, but define the wall's presence
velocities causes no serious problems by assigning fractional areas and
for stability, volumes to the cell containing the

wall. This is indicated in the bottom
The second case to consider is a sketch of Fig. 4, where the shaded

horizontal surface that is tending to area represents the region of zero
close off cell C and cell E, see Fig. porosity. Now, to evaluate the two
3B. In this instance V. is tending to approaches let us compare the
zero (with both VC and VE) and the difference equations that would be
worst case is associated with vertical used in each case for the ue velocity.
advection through the fully open top In making this comparison it must be
cell faces. It appears that the noted that Vcdx is equal to h. The
vertical flux AnvniVe is tending to reader can easily carry out the
infinity as Ve tends to zero. details so we simply state that the
However, vn is simultaneously tending two equations are identical except for
to zero in this case because the the pressure gradient terms. In the
continuity equation requires Anvn6xC FAVOR method the gradient is evaluated
to be proportional to Aeue6yC, and the as a pressure difference over a
vertical flux is then proportional to distance 6x, while in the nonuniform
ue.yC/Sxc. Therefore, the vertical mesh it is evaluated as a difference
advective flux is actually bounded and over a distance (6x+h)/2. Also, the
stability of the momentum equations is spatial locations of PC and vn are
again easily maintained, different in the two cases.

These simple considerations show A similar comparison can be made
that the FAVOR method, as formulated for the vn velocity. In this instance
in !his paper, should have no serious the two evaluations result in
stability problems, even when mesh identical difference equations,
cells are closed off to a tiny including the pressure gradients.
fraction of their original size. This Furthermore, the continuity equation
expectation has been verified in is the same in both cases.
numerous ca.lculations and will be
demonstrated in Section V. Now we note that the difference

in variable locations in the two
C. Relationship between FAVOR and approaches is less than one cell

Other Obstacle Methods width, so these approximations differ
by a term that is first order in

When the area and volume space. The pressure gradient
fractions are all set to unity, The difference noted above is also of
FAVOR scheme reduces to a standard first order. Thus, FAVOR agrees to
type of nonuniform mesh approximation, first order with a nonuniform mesh
Using this observation, we can see how approximation, but since the latter
FAVOR is related to other obstacle can only be first order accurate we
representations. Suppose we wish to conclude that the FAVOR method does
model the presence of a rigid, not reduce the accuracy of the
vertical wall in a grid of equal-sized approximations.
cells, but the wall does not coincide
with a grid line. The standard Other techniques for embedding
procedure would be to introduce one curved or diagonal boundaries in a
cell of sualler size at the wall rectangular mesh [1,2,3,4] rely on
(i.e., a nonuniform mesh) so that the first order spatial interpolation or
wall would toen lie at a grid line, as extrapolation approximations.
shown in the -uop sketch of Fig. 4. Therefore, FAVOR is also comparable in
Here the small sell has width h and accuraoy to these methods.
the wall lies at its left boundary.
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D. Boundary Conditions Fig. 5D. Here we see the flow now
remains nicely uniform, even though

The formulation of the FAVOR the calculation was further
method would make it appear that no complicated with a non-uniform mesh
special considerations are needed at spacing in the horizontal direction.
obstacle boundaries. Unfortunately,
this is true only in the differential The maximum velocity component
formulation, but not in the finite- computed in Fig. 5D is actually 1.5%
volume approximations. A simple larger than the initial horizontal
example will illustrate the problem. velocity. This smal) discrepancy
Figure 5A shows a two-dimensional duct arises because there are a few cells
with parallel walls oriented at an where the fractinnal volume open for
angle to the grid lines of a uniform fluid is less than 1%. In the code we
mesh. Fractional cell areas and somewhat arbitrarily set any cell face
volumes are used to define the duct area or cell volume that is less than
walls. Since the walls are not 1% open to be a zero area or zero
aligned with the cell diagonals, there volume. Consequently, at these
is a wide range of fractional cell locations small perturbations modify
sizes. A uniform flow of the otherwise uniform flow. The 1%
incompressible fluid, directed from cutoff on fractional areas and volumes
left to right, was initially defined has been found to be a useful
in the duct as shown in Fig. 5B. This practical limit. This example is a
velocity was held constant at the left good illustration of the stability of
side of the mesh, while at the right the FAVOR scheme when used with a wide
side a constant pressure condition was range of fractional volumes.
maintained. Under thý,se conditions
the flow should remain constant and V. Examples
uniform. In Fig. 5C we see this is
not the case. A parabolic-like All the examples described in
profile has developed after the flow this section were obtained using the
has moved approximately one duct HYDR-3D program [111. This program is
length. The dashed and vertical lines a general purpose analysis tool for
were added to emphasize this velocity compressible or incompressible flow
profile. that uses the FAVOR method to provide

a general geometric modeling
These poor results are caused by capability. For incompressible flows,

advective flux approximations that the progrim uses the Volume of Fluid
require a velocity component located (VOF) technique to track free surfaces
inside an obstacle. In Fig. 5C we and two-fluid interfaces.
used zero values for these velocities
and as a consequence an A. Potential Flow around a Cylinder
unrealistically low flux was computed
that eventually produced the As a first demonstration of the
artificial boundary layer. To correct usefulness of the Fractional
this defect a simple device is Area/Volume Obstacle Representation
required; the difference expressions method, we have computed the potential
for all fluxes are formulated in terms flow about an impulsively accelerated
of velocity derivatives. Then, all cylinder. More specifically, the
the derivatives at interfaces are set Euler equations were solved for the
to zero. In this way idl boundaries impulsive acceleration of flow from
become free-slip boundaries. (When rest to a uniform speed about a fixed
viscous shear st-resses are wanted they cylinder. Since the velocity field
can be addpd as separate force generated in one time step is
contributions.) A repeat calculation proportional to the gradient of a
of the duct problem using this scalar (the pressure) and satisfies
boundary treatment is shown in the continuity equation, the resulting
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flow is potential flow. If the fluid oases are illustrated in Fig. 7. In
starts from rest, the theoretical the middle plot, the curved boundary
(inertial.) drag ooefficient [12] actually used in the FAVOR calculation
should oe 2.0 which arises from the is not shown by the method used to plot
combined effect of an acceleration the surface perspective.
needed to set the fluid into motion
and an acceleration needed to The slosh problem consists of
establish flow about the cylinder, shaking the tank sinusoldally in a

horizontal direction and measuring the
For this calculation the mesh fluid height at the side wall.

used is illustrated in Fig. 6. The Because of symmetry on..y one half of
large mesh region minimizes influences the tank needs to be modeled. Figure
from the boundaries, but the cylinder 8 shows a comparison of the first two
is only resolved by about 4 to 5 cells methods in terms of the time histories
across its radius. A generator of the computed fluid heights. There
program, which was used to is no significant difference in the
automatically set the fractional areas results obtained with the cylindrical
and volumes, produced a volume for the mesh and with the Cartesian mesh using
cylinder that was 0.5% smaller than the FAVOR scheme. However, the
the exact volume, cylindrical mesh calculation required

about 10 times more computational time
Figure 6B shows a portion of the because the small cells near the

computed potential velocity field in central axis required a smaller time
the immediate vicinity of the step to maintain stability. Thus, the
cylinder. The computed inertial drag FAVOR method is seen to work extremely
coefficient based on the acceleration well and, for this example, required
that set the flow into motion in one an order of magnitude less CPU time.
time step was 2.05, or 2.5% larger
than the theoretical value. This is The relatively poor performance
remarkably good considering that of the third method, which used a
pressure forces on the coarsely stepped boundary approximation, is
defined cylinder were simply computed shown in Fig. 9. Finally, Fig. 10
using cell-centered pressures times shows that either of the first two
the adjacent cell face areas occupied results are in close agreement with
by the obstacle. linear theory [13]. (The time shift

between the two curves in this plot is
B. Cylindrical Tank Slosh only about one computational time

step.)
To show the effectiveness of the

FAVOR method for problems having free Total computational time on a CDC
surfaces we have investigated the 7600 computer for 588 mesh cells and
problem of fluid slosh in a right 172 time cycles was 2.87 min using the
circular cylinder. For low amplitude Cartesian mesh. (In the cylindrical
sloshing there is an analytic theory mesh 798 cells were used and the time
with which to make comparisons. This required for 677 time cycles was 31
is an ideal test case because the min.).
geometry can be modeled exactly using
cylindrical coordinates or C. Spherical Tank Slosh
approximated with the fractional
areas/volumes of the FAVOR tuchnique A problem closely related to the
in a Cartesian coordinate system. A above is slosh in a spherical tank
third possibility is to use a when it is shaken horizontally. For
Cartesian mesh with cells either fully the 50% filled case there is also a

* open or fully blocked to produce a linear theory with which to make
4,.epped-boundary that approximately comparison [14]. Using FAVOR to
defines the cylinder. These three define the spherical tank in a
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rectangular, Cartesian grid, we computed wave resistance goes almost

produced the results shown in Fig, 11. monotonically to a steady value that

Here the computed and theoretical is slightly below the experimentally

fluid heights at the side wall are observed value of 0.0044 (lower dashed

almost indistinguishable, which again line in Fig. 13). The fluctuation is

confirms the effectiveness of the probably a numerical artifact, but

FAVOR method. its exact origin has not been
determined. A second calculation at a

D. Wigley Model 1805A Froude number of 0.45, Fig. 13, did
not exhibit this problem. In this

To illustrate the use of the case the computed wave resistance lies

FAVOR method for ship-wave resistance between the thin ship prediction and

problems, we calculated the flow about the experimentally observed value.

an impulsively started Wigley Model
1805A ship. This problem has It is interesting that we do not

previously been solved numerically by see the oscillatory transients

various researchers. Dawson [153 used observed by Ohring and Telste. This

this model as a test of his panel may be due to the non-linear treatment

method, while Ohring and Telete 716] and more exact body boundary

solved the transient problem using a conditions that we have used. It is

finite-difference solution of the known, for example, that nonlinear

linearized potential flow equations. advection effects can have a smoothing
influence on wave interactions. The

Following Dawson, we define the wave profile computed along the body

body surface by in the 0.503 Froude number case is
shown in Fig. 14. Here the agreement
along the stern half of the body is

y = 0.75(1-z 2 )(1-x 2 /64)(1-O.6x 2 /64), good, but along the bow half the wave
heights are not as good as one would

(34) desire. In particular, the height of
the bow wave is under predicted. This

and have used his recommended flow could have been a consequence of using
region (3/8L wide, 1/4L upstream and the Wigley hull shape above the still
downstream of the body, and 3/16L water level (SWL). If the model tests
deep, where I is the body length). used a straight-sided model above the
Figure 12 shows a cross section of the SWL, one would expect to see a larger
mesh with the midship section drawn in bow wave. Unfortunately, no

(only one half of the problem is information was available to us
modeled because of symmetry). The regarding the actual model geometry in
mesh was chosen to roughly correspond this region.

to Dawson's resolution of 64 panels on
the body and 224 panels on the free
surface. In our case the mesh
consisted of 24x12x10 = 2880 cells in
the flow region. At time zero the
flow was impulsively accelerated to a
value corresponding to a Froude number

of u//- '= 0.503.

Figure 13 shows the computed flow
resistance, CR = R/(Pu 2 Ld), in
comparison with the results of Ohring
and Telste, where R is the computed
force and d the draft. Except for a
peculiar fluctuation observed around
0.75 body traversal times, the
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A

Fig. 7. Three models for cylindri'cal
tank slosh. (A) Cylindrical coordin-
ates. (B) FAVOR method in Cartesian

c coordinates. (C) Stepped boundary in

Cartesian coordinates.

Fig. 5. Diagonal duct problem. (A)
Duct orientation in mesh. (B) Initial
uniform flow. (C) Calculated flow "
showing wall effect. (D) Calculated Fig. 8. Comparison of FAVOR method
flow with wall boundary condition with cylindrical coordinate results

for' surface height versus time.

MESH
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Fig. 9. Comparison of FAVOR method
with stepped boundary results

------------ '"(dashed).

.0 -KW-

Fg. 6. Mesh used for flow about

cylinder (A). Calculated potential
flow in region near cylinder (B)•, -- i

Fig. 10. Comparison of FAVOR method

(dashed) with theory.
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SHIP BOUNDARY LAYER AND WAKE CALCULATION WITH A
PARABOLISED NAVIER-STOKES SOLUTION SYSTEM

M. Hoekstra and H.C. Raven

Maritime Research Institute Netherlands

The Netherlands

Abstract Nomenclature

A numerical method for the calculation Cp pressure coefficient;

of the viscous flow past a ship's stern Cp = (p-p2)/pU2

under neglection of free surface effects i,j,k grid node counters, associated

is presented. The method is based on a with the C, n, C coordinate

solution of the Parabolised Navier- directions respectively

Stokes equations in a boundary-fitted L reference length (- ship

coordinate system. The two main aspects length)

of the solution procedure are m local iteration number

a) the global iteration process, needed n sweep number

to allow for upstream pressure in- p pressure

fluences. The convergence properties Rn Reynolds number based on U and

of this process are improved by ad- L

ding to the equations a non-physical u contravariant velocity

source term, vanishing upon conver- component in &-direction

gence, as well as by applying suc- U reference velocity (= ship

cessive step size reduction. speed)

b) the local solution of the discre- v, w physical velocity components

tised equations at each step of a in n, C direction respectively

downstream marching process by a x, y, z Cartesian coordinates

"strongly implicit" or "approximate (cf. Fig. 1)

factorisation" technique, maintain- a relaxation factor of local
ing a strong coupling between the iteration

equations. an artial canceling parameter

The improvtments as compared with an t •, C boundary-fitted coordinates

earlier vermion of the method are dis- (cf. Fig. 1)

cussed. Results of application to the 0 k vector of Ujk

Wigley parabolic hull show that 10 glo- dependent variables wjk
bal iteration cycles suffice to obtain a (Pk )
converged solution. Derivatives are written in suffix

notation$ e.g. pt 3

d 0



I. Introduction side the BLW region the velocity field

can be derived from a velocity potential

Since the time of William Froude, naval satisfying a Laplace equation. For the

architects have been accustomed to se- flow in the forebody part of the BLW

parate the still-water resistance of a region thin-boundary-layer theory is a

ship into two main components, the vie- satisfactory description. But further

cous resistance and the wave resistance, aft a more sophisticated viscous flow

Over the years this decomposition has theory, something between boundary-layer
proved to be very useful, because the theory and the full Navier-Stokes equa-

interdependency of the two parts is weak tions, must be used.

under the conditions of high Reynolds
For the computation of the flow in

number and low Froude number. Indeed,

the analysis of model tests is usually this rear part of the BLW region, a

based on a complete independency. PARabolised NAvier-Stokes SOlution

System (PARNASSOS) has been developed

Numerical ship hydrodynamics has the a h aiieRsac nttt

prospect of once being able to deal with Netherlands. It is a special purpose

eintegral problem where waves and program in that its application has

sflow interact. However, at pre- deliberately been restricted to incom-

edecomposition is common prac- pressible external flows. It is there-

tice here too. On the one hand there is fore markedly different from methods

fcomputational methods for the based on general purpose flow solvers.

wave pattern generated by the ship; they

don inviscid flow theory. on The main features and first applicationspute thsed hi hydrodynamics thasry thOtteMrtmnRsac nttt

rhand efforts are made to com- of PARNASSOS were reported in /1/, early

pute the viscous flow under neglection 1985. Since then, several improvementa

of (or with prescribed) free surface have been realised. This paper gives

disturbances, again an outline of the system with

emphasis on the numerics. section II

In this paper we shell be concerned with explains the grid generation process.

a method belonging to the latter catego- The mathematical formulation is

ry. We consider a double model of the presented in Section III, followed by

a detailed discussion of the numericalsubmerged part of a ship's hull in an

unbounded uniform flow - directed from solution procedure in Section IV.

Sbow to stern - and try to compute the Results of the recalculation of the flow

steady part of the flow disturbance. At past the Wigley parabolic ship form are

the high Reynolds numbers of practical presonted and discussed in Section V.

interest, viscous effects in the flow Tha paper concludes with a summary of

are confined to a fairly narrow region the main achievements.

surrounding the hull and extending into

the wake (OLW region). This suggests a II. Grid generation
domain-decomposition approat:h in which
each subdomain has its own mathematical In accordance with the problem speci-

description of the flow. In the effecti- fication given in the introduction, the
vely inv!scid and irrotational flow out- computation domain encloses the rear
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part of the BLW region. Somewhere along physical domain are coordinate surfaces

the hull we choose an inlet plane; an & = constant. The problem of generating

outlet plane will be located at some a 3D mesh is then reduced to establish-

distance behind the hull where the ing a suitable grid in all transverse

pressure can be supposed to have resumed planes; by connecting points with ecu.d

a practically undisturbed level. nC values in successive planes we ob-

Taking advantage of the symmetry of the tain the &-lines (which will be smooth

flow with respect to the longitudinal provided the boundaries of the domain

centreplane of the hull and the plane are smooth).

corresponding with the undisturbed free

surface, we arrive at a domain as Non-orthogonality of the &,n,C system is

sketched in Fig. 1. implied by the choice & = x. But the n

and C lines in transverse sections are

PHYSICAL DOMAIN TRANSFOMEDDMAN defined by an orthogonal mapping of a

rectangle onto the section shape. The

resulting partial orthogonality of the

grid allows several simplifications in

S* the general formulation of the governing

equations and reduces the number of geo-

metric data to be stored. At the same

time we must accept the appearance of

"isolated boundary singularities in the

transformation, for it is possible that

Fig. 1 Computation domain a section of the physical domain does

not have four 90' corners. This can

happen in sections along the hull, but

Of course, the lateral extension of the it certainly will be the case in wake

BLW region (thickness of the boundary sections, which are topologically

layer) is not known a priori. By taking triangular so thAt a virtual fourth

the width of the domain about twice an corner has to be introduced (Fig. 2). We

estimated boundary layer thickness we position that fourth corner on the

are sure to include BLW. straight extension of the keel line or -

if the ship has a Hogner type stern - of

A suitable coordinate system has now to the propeller axis. But wherever posi-

be chosen for the purpose of discretisa- tioned, an awkward singularity is

tion of the flow equations. For a proper unavoidable.

resolution of the steep velocity gra-

dients near the hull surface a body- The orthogonal mapping is accomplished

fitted grid is indispensable. Besides a

Cartesian xsy,z system, ws therefore by the combination of a conformal

introduce thb coordinates , (Fig. 1) mappitng according to a generalised

Schwart-Christoffol method /2/ and a

linear transformation on the q-coor-

To keep the relation between the two dinate normal to the hull (to give all

systems simple, we postulate C a X. transformed sections the same height).

i.e. all transverse sections of the We ahall not go into the details of the
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derivatives and the physical coordinates

x, y, z (y and z being determined by

numerical integration of the transforma-

tion formula) for all grid points are

stored on a disk file. The geometrical

coefficients appearing in the flow equa-

tions are determined each time they are

needed. The question whether it is more

efficient to determine these data once

and for all (a matt3r of CP versus 10

time) is still under investigation.

. - /III. Mathematical formulation

Parabolised Navier-Sto)es equations

As a mathematical model for the flow we
need something between the full Navier-

Stokes equations and the boundary-layer

Fig. 2 Example of grid in a transverse equations, for the latter are inadequate

plane in the wake (without stretching) while the solution of the first is not
feasible in an application like ours.

procedure here. More information can be First of all timo-averaging of the
found ill /I/ and /2/. Grid stretching turbulent velocity fluctuations and
(in n-direction) is not included in the momentum fluxes is needed, which loads
transformation, but is applied in the us to the Reynolds equations, to be
transformed plane. supplemented with a turbulence model.

But even their solution is troubiesome,
The analytical transformation formula mainly because of the elliptic nature.
gives us directly the values of the This means that a Oisturbance at some
transformation coefficients y,, yC, point in the flow may influence the
zI and z for any point r,, C. The solution inl any other point (and not
choice • - x further implies x j - 1 just downstream points) via convection,

x ft xC 0. To complete the matrix of diffusion and/or pressure propagation.
transformation coefficients we determine Therefore, the Reynolds equations are
r and za numerically (2nd order central not suited for a solutionl as an
differeticing). Derivatives of the trans- initial/boundary value problem:
formation coefficients, needed for the normally, a simultaneoug solution of
evaluation of Chriatoffel symbols, are the set of four equations in - for our
also calculated by numerical differen- applications - typically 50.000 nodes is

tiation, required.

The transformation coefficients, their For flows with a predominant flow
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direction (as here the &-direction) it is that of an elliptic system.

is generally accepted that propagation

of disturbances in the direction Like the boundary-layer equations, the

opposite to the main flow via convection PNS-equations are a reduced form of the

or diffusion must be insignificant if Navier-Stokes equations. But as a mathe-

present at all. Thus we further simplify matical model, they go far beyond the

our mathematical model by neglecting reach of boundary-layer theory. There is

diffusion along &-lines. Moreover, the no singular behaviour near separation

terms associated with convective and an important feature like the vis-

momentum transport in &-direction are cous pressure resistance becomes calcul-

omitted wherever sucY transport is able. This is because the pressure is

directed upstream. (N.B.t flow separa- retained as an extra dependent variable.

tion leading to relatively weak recircu- The set of equations consists therefore

lation is not excludedl). This brings us of three (instead of two) momentum

to what we call the Parabolised Navier- equations plus the continuity equation.

Stokes (PNS) equations.
Others have used the momentum equations

Because the term "parabolised' can ir combination with a Poisson equation

easily be misunderstood uoma furtner for the pressure, solving the continuity

explanations are added. In zontrast to equation only indireutly /5, 6/. The

what its name suggests, the set of PNS- introduction of the Poisson equation may

equations is elliptic %at least in sub- be justifiable in 3D internal flow

sonic flow; /3/). Although the transfer applications, but there is no need to

of influences upstream via convection use it in velocity/prezsure formulations

and diffusion has been removed, the pos- for external flows. Un the contrary,

sibility of propagation of pressure when the PNS-equaticns are zegarded as

influences in negative k-direction is an extension of boundory-layer theory,

still there. In order Lo reproduce this it is natural to considor the extra

effect in the numerical solution, a equation (nv-momentum equation) as the

downstream grid node must be involved in prira~y equation for the extra variable

the discretisation of the pt term. Now, (the pressure). The usual hbovndAry-layer

by supposing the pressure at this down- solution procedure is then so to speak a

stream node to be "known", an eftective particular case of tie PNS-solver.

parabolisation is achieved. The &-co-

ordinate becomes timG-lika and we are Equations in curvilinear coordinateo

allowed to obtain the solution in a Tensor formalisms are helpful in writing

downstream marching process, exactly as the equations in terms of the CnC

when solving the parabolic boundazy- coordinates, but not without some

layer equations /4/. However, this down- important decisions on our part. Which

stream marching process has to be three components of the momentum

repeated several times (global itera- equation (a vector equation) are

tion) to actually allow the pressure to selected and what are the dependent

convey its influence upstream. Thus in variables?

each marching sweep w, solve a parabolic

A set of equations but the Uinal salution The equations in PARNASSOS axpress
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momentum conservation along the C,1,, ""min (hull surface) u=v=w=O
lines (contravariant formulation) but (central symmetry plane)
other plausible choices are the direc- u =w =0;v-O
tions of the reciprocal base (covariant l="max (external boundary)
formulation) or the Cartesian x,y,z u,w and p given
directions. In the contravariant form, C-Cmin (central symmetry plane)

however, it is easiest to exploit the uc=v =pC=0w=0
fairly-thin-shear-layer character of the C=Cmax (undisturbed free surface)

flow by different treatment of the uc=v =p C=Ow=O
normal, girthwise and longitudinal

momentum equations. A price to be paid

is that the attractive strong-conserva- The conditions to be prescribed at the
tion form of the Cartesian formulation external boundary are obtained from a
is not applicable, potential flow calculation. Since the

external potential flow in its t.!rn

As to the dependent variables there is depends to some extent on the flow in
a similar freedom of choice. Using the the viscous flow region, there is an
primitive variubles velocity and initeraetion effec.,t to be considered, but
pressure one has still to decide on thn having chosen the outer boundary of our

decomposition of the velocity vector. In caltuldtion dowain well away from the
/A/ the contravariant velocity compo- boundary layer edge, the interaction
nents were used but, being non-physical, will be weak. If necessary, viscous-
they exhibit excessive gradients near a inviscid interaction effects can then be
grid singularity. Therefore, we now use taken into account by incorpcrating an

the contravariant component " in ý- adjustment of rhe boundary conditione in
direction (which in our coordinate the global iteraticu przcess.
system happens rec be equal to the
Cartesian velocity in x-direction) but Tirbulence model
the physical velocity co'npoantt Let us finally turn to the turbulence
in q-direction (v) and C-direction (w). modeling. which is far from a trivial

matter in stern flow fields. For
The final equations are lengthy and com- instance, it is one thing to know that

plicated, because of the stress terms in streamline curvature has a strong effect

particular. The nature of the flow on the turbulence, but quite another to
allows us to drop the latter iii the develop a practical turbulence model in
normal momentum equation. Thus the which these effects are elegantly incor-
equations contain first but no second porated. Even two-equation models, let

n-derivatives of v and p. This is alone the zero and one-equation models,
reflected in the boundary coditions, are detective in thin respect.
summarised below.

In the development of PARNASSOS the
Boundary conditions selection of a suitable turbulence model

has not yet been given due considers-

&-&min (inlet plane) uv and w given tion, because priority was given to the
(outlet plane) peO settling of the numerical matters.

_ _ _ ii.,
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Provisionally we use an isotropic eddy- pressure and velocity field has been

viscosity model based on algebraic rela- obtained.

tions for velocity and length scales /7/

with adaptations for application in a Source term

wake /8/. Experience has shown that the global

iteration procedure described above is

only marginally stable for wavelike

IV. Solution method pressure disturbances that often

originate from regions of negative

Pressure field iteration normal velocity, e.g. reattachment

As explained in Section III the regions /1/. These pressure waves travel

parabLoiisation is acc-'mpl±shed by using upstream during the global iteration

a "known" valui tor the downstream without noticeable damping and inhibit

pressure pi+l,,.;,,, in the equations the convergence.

--or grid point (i,J,k). (Here, i, j, k

are g9id node counters in •, i, • Indeed, with the p -scheme (1), a

directions). This value is explicitly pressure disturbance that is shifted

updated after each sweep. However, upstream one step per sweep without

Picj,k is modelled implicitly in all change in magnitude has no influence

momentum equations to allow an immediate on p . Damping can only be effected

adjustment of the pressure fieldi together with the normal momentum and

otherwise singular behaviour at a continuity equations and their boundary

separation point is to be expected. conditions, but this effect may be quite
weak.

A central difference approximation
for p& would uncouple (P•)i fro Pi' Following Israeli and Lin /9/ we now

probably resulting in similar problems. modify the &-momentum equation by

Therefore we apply a two-point forward introducing a (non-physical) source term

scheme that vanishes upon convergencet

""ti ~ P ()÷1 ix, j~k Msx i_l~j,k4 plj, ~k-Pi, j,k, (2)

This defines an iterative pressure field with SXI,j,k - 0.

determination: in each sweep we calcul- The C-momentum equation (here given in

ate a new pressure p(n) which is stored Cartesian form) then becomes:
on a disk file for use in the next

sweep, Through the p(n-1) contribution Du + • ,(n-j) n ,k2=i+1 R" +•x ti+l~j,k' i', jk- "i,j~k

in pV, the influence of the previous

sweep is allowed to propagate one step + viscous terms - 0, (3)

upstream. Thus subsequent sweeps are

related through the pressure field onlyi where

previous-sweep velocities do not occur

in the iteration scheme. If everywhere Sp S , Pi(n) (n-1)

,p(n) _ p In-1) is loes than a given ifi~k i .lJtk +i.lJk-Piljk*

tolerance the converged solution for (4)
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This modified equation is easily seen to (n) (n) (n)

be sensitive to such undamped pressure i i ij+l )Pi, j

waves; the doubling of the coefficient (n) (n-l)p(n)+ = ... )
i ,Pjnk suggests an amplitude reduc-. il,j i1 i+l,j6

tion by one half in every sweep.
the right hand side being identical with

the one written out above.
To gain a better insight into the
meaning of this source term and its A stability analysis for both methods
effect on the stability we consider the can be made by assuming a pressure

Poisson-like equation for the pressure perturbation &p(n) = c(n) ei(k x+kyy).

implied in the momentum equations. From For the original scheme without sourceI the momentum equations that contain
e mterm we find an amplification factor

pi, in a 2D-case for simplicity, one ik A

c a n d e r i v e : %( n ) -i_' x_ __ A

2a(cosk yAy-l)-l+e 
k

(in) (in) •(n) y(7)
ap + aPij+i - (2a+l)pi +

•Pi, j-J

but with the source term includedP!(n-1) +P(n) + Pý n-1)
- ij + i-l, j +1, J

ik Ax
•u )iD uDu 1-1 -e • v xik (8)

-AX2 A[ (y("+2a(cosk yAy-l)-2+e

Dv Dv Taking into account the fact that
+ ()i Ay ( )i'j-] (5) according to our experience the most

persisting perturbations are smooth in
where a (Ax) I(Ay) normal direction with ky Ay < 1, we can

approximate
Sl-cosk Ax

The terms at the right are evaluated in _______x_

sweep number (n), simultaneously with 2 2' (9)

pin)' and give some feedback through a

change of the velocity field as has just 1

been mentioned. To simplify the analysis 54cOSk Ax+ky2 AX2

we neglect this weak effect and consider

the right hand side as fixed. Both amplification factors are always

less than unity, but X2 is usually much
We then observe that the discretisedSsmaller. In particular, for k ÷0 anid

Poisson equation is solved by an smax Ini p ila ady

iterative scheme that is rather unusual kXAx finite, X l and

(n-1)
because of the appearance of the -ij)

2 5-4cosk AX
term. The source teem SX modifies this x

scheme to the conventional Successive
Line Pelaxationt Therefore, for large - , pressure

waves can he present for which the
unchanged iteration scheme is marginally

wv4cnb.rsn fowhcthPs .• •'



stable unless the coupling with the curvatures. Inconsistencies may then

velocity field provides an adequate arise, e.g. between the various

damping. This sensitivity to -max partly y -values and their derivatives yTi

corresponds with experience by others So it is desirable to use the same step

/9, 10/. The sourt.ýe term stabilises the size in the geometry differencing as in

procedure in such cases. the solution sweep. Each At-reduction

then requires the preparation of a
new geometry file with modified

In fact, in all our calculations the use

of the source term was very satisfactory t-derivatives.

and led to a perfectly stable pressure

iteration. In the present version of our
Having dealt with the treatment of p

program it is, therefore, always used. A
in the •-momentum equation we now have

possible drawback is the introduction of ine an ti t equations

a non-physical term in the equations as for ui, vn , wi and sysat each station

long as the pressure field has notfo ivlw adPatecsain

converged. This may sometimes result in & =&. This will be solved by means
of an iterative procedure, denoted by

somewhat unusual velocity fields (e.g. ocal iterati on edhre (asoped to

velocity overshoot in a wake) in the t"local iteration" here (as opposed to
the global iteration described before).

first sweeps. In order to improve its stability and

convergence we aim at the strongest
Successive stepsize reductioncopigadmlctnsass

coupling and implicitness as is
Another modification that greatly
Anproter modifcatio tr geatl converpractical. In this context, implicitness
improves the pressure field convergence stbeudroda hesef

is a one-dimensional multigrid-like iurrent eration alue ise of

solution sequence /10/. The pressure prevositerates.

influence progresses only one step

At per sweeps moreover, if A& is small,
(n) - (n-l) cannot be large Therefore we apply Newton linearisation

hup uto the convective terms in the momentumwithout unduly affecting p• and, as a eutos hc rsre hi
t equations, which preserves their

result, the velocity field. Therefore it coupling. Only some und•portant viscous

is useful first to make a few sweeps
with a large AC in order to allow a

coordinate transformation are i)delled

rapid approach of the correct pressure expliitl t oimplify the morilled

level, and then to reduce At in a few
this has been found to have no effect on

stages as much as needed for accuracy.
the convergence rate.

Of course the velocities, too, are

solved with the same step sizes.
To facilitate the coupled solution we

For consistency, the t-d~3rivatives of use a nonstaggered gridt all variables
are defined at nodal points (i,j~k).

geometric data must also be adapted to

these various step sizes. If they have C-derivatives of the velocities are

been determined beforehand by central approximated by a three-point second-

differencing on the finest grid it may order backward scheme all normal
derivatives and second order

occur that the coarse-grid sweeps do not

encounter local coordinate line C-derivatives by central differences.
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First-order C-derivatives, however, are are mentioned in /12/. At present the

approximated by a 4-point quadratic implicit part is a simple two-point

scheme. For velocity derivatives this is upwind scheme (but downwind for p),

the QUICK scheme /11/ but for p the which satisfies the requirements of

orientation is changed to downstream diagonal dominance and consistency with

(referring to the transverse velocity the derivatives being modelled. This

component w). The use of this scheme modification considerably improved the

instead of the conventional central convergence and stability of the

differencing turned out to be essential iterative solution method.

to avoid oscillations in some

conditions. These difference approximations are

substituted in the momentum and

The quadratic schemes used are: continuity equations. The &- and

C-momentum equations are centered at

f• =(2fk+l + 3f-k 6 fk-l + fk. 2 )/6AO'C nodal points (i,j,k). However, both the

continuity and the n-momentum equation
PC + 6 pk+l - 3 - 2Pkl)/6A are first order differential equations

in n, the latter owing to the neglection

for w ) 0 and of viscous terms. Therefore we center
these equations at intermediate points:

fc f (-k+2 + 6fk+l - 3fk - 2fk-l)/6AA (i,j-½,k) for the continuity equation.
(i,j+½,k) for the n-momentum equation.

P4 ( 2 pk+l + 3pk - 6Pk-1 + Pk_2)/66 Accordingly we find the wall pressure
from the n-momentum equation at the

for w < 0, where f is any of the first half-point from the wall without

velocity components u, ve w. the need of prescribing a wall boundary

condition for it.

These schemes involve points outside the

"p5-point star" (consisting of the points Thus we arrive at a coupled set of

(ijk), (i,j-l,k). (ij+l,k), (i~j~k-1} linear equations in 5-point star form,

(i,j,k+l)). This is impractical unless but with an additional v-contributioni

they are split into an implicit part and

an explicit correction. Previously the PPjk'jl.lk+Ojkoj,k+Rjkoj~l~k+Sjkoj~k-l÷

splitting was defined aas ÷TXXFO v + 0 13
jk j,k+l jk jk +jk 0 (13)

I •f . (2fk~ + 2fk 4f 4• )/66C + j
k 2 - kl6 where the unknown vector o ('J).

+ +f - -2)/6 Pjk
k Due to the coupling, PP, 0, R, S and T

and oimilarly for the other derivatives, are full 303 blocks. The continuity

The overbar denotes a previous iterate. equation is written in the form

However, this introduced an instability

into the scheme, giving rite to the

occurrence of alternating solutions in

the iteration process. Similar problems

kI



vj,k= FFjkVj.l,k+AAjk(uj,k+uj-l,k)+ First

+BBjk(Wjk+W'_jl,k)+CCjk(Wj,k+l+wj l,k+l) LD = M*m + q (17)

+DD jk (W j,k-l+Wj-l,k-l) + EEjk (14) is solved for a vector D.

The right hand side is computed from

Approximate factorisation previous iterates, while the left hand

From the variety of iterative methods side involves Dj,k, Dj+l,k and Dj,k-.l

applicable to such systems of equations The latter two are known if we start at

we have chosen one that has the desir.3d the outer edge j = NY and work towards

coupling and implicitness properties# the wall for increasing k.

the Strongly Implicit Procedure (SIP)

/13, 14/, which is an approximate the solution follows from

factorisation 
technique.

U~m~ =D (18)

Apart from the term XXjkvj,k the system

(13) can be represented by which involves mjk m+l m+l
whih nvove ojk , J-l,k and ( ~+

M q 15) and is, therefore, solved for decreasing
k, starting at the wall and working

Each line of M contains the coefficient towards the outer edge. Thus the trans-

blocks Ppjks ... Tik of the equations verse plane is swept twice in each

for one grid point. Therefore M is a iteration, first from left to right and

pentadiagonal matrix. The principle of downward to find D, then from right to

approximate factorisation is to replace left and upward to find the solution 0.

M by an approximation M+N that is easily

decomposed in sparse lower and upper For the SIP variant that we use at

triangular matricest present, the only nonzero diagonals of

the error matrix N are those

M÷N-LU corresponding to the points (J+1,k+l)

and (J-l,k-l)r all other elements of LU

The solution Of (15) can then be found and M are equal. Thus the system solved

by an iterative process in each iteration differs from the

original equation (13) by explicit terms

m+l m ( in ) and Since these
LU q, (16) + tj+lk+l J-l , k-l'

relate to rather distant points this

where m is the iteration number, contribution is in general fairly small,

and a rapid convergence of the iteration

Different choices of L. U and N define may be expected. Moreover, no explicit

different factorisation methods /15/. values are used for variables in the

For the SIP the factors L and U each 5-point star nodest thus each iteration

have only three nonzero diagonals, which contains implicit derivatives in all

makes the solution of (16) particularly directions, as opposed to e.g. ADI

methods.
simple.
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A slight modification /14/ is needed 4j+l,k+1 = s +l~kdi,k+l-j) +

to account for the normal velocity

contribution XXjkVj,k in (13), which for + j+l,k+l-s Dj+l,k+0J,k+l -0ik (21)

clarity was left out in the description

above. The solution algorithm is changed Here a s is an iteration parameter that

to for smoothly varying 0 would be expected

to be unity but must in practice be

Uvm+l = D + C vm+l (19) varied between 0 and 1 /13/. Therefore

this method is called "partial canceling

where C hes only one nonzero diagonal of explicit terms".

relating to point (j-l,k). The elements

of C, and of a similar contribution in For a = 0 we obtain the method

(17), are derived by making use of the described before. Otherwise N contains

continuity equation, which is also more non-zero diagonals, so each

solved together with (19). This distinct iteration requires more work,

treatment of v and the continuity particularly if as is varied as

equation makes the algorithm a good deal recommended. A few numerical tests

simpler than what would be required for showed that in fact the partial

the 4 x 4 system obtained otherwise, canceling somewhat accelerates the

In difficult cases some underrelaxation convergencei values of 0.7 were

of (19) has turned out to be helpful. needed to give a noticeable effect.

Furthermore, before starting the The improvement in convergence rate does

iteration at a new C-station the not really seem to be worth the extra

velocities found in the previous work and complexity, at least in the

marching sweep are read in from a disk convection-dominated flows dealt with.

file to bo used as initial values. This Therefore this modification has not been

considerably improves the convergence in included in our program.

later sweeps.

Linear and nonlinear iterations

Partial ca~'cel{n; of expLlcit terms The local iteration procedure described

A further -.. v, ' NZ' is aimed at is needed because of the presence of a

by the metnod of Stone /13/. This factorisation error N. But in addition

conaists in approximating the explicit the coefficients L, U and q in (16)

variables by contain a number of explicit terms that

also require iterationt these relate to

Oj+l,k+lo 0Jk+l + DJ+lk'4jk; the nonlinear couvective terms, a few
(20) minor viscous and convective terms

Oj-l,k-l 0j ,k-l +J-i,k"4jk' resulting from the coordinate trans-
formation, and the 4-point C-difference

which is correct to O(AIAC) and has a scheme corrections.
suitable form to be included in the LU

decomposition. Now only the error in In previous calculations /l/ all these

this approximation appears in Nomr in explicit terms were updated in every

the iterative method this amounts to iteration, so the nonlinearity was
solved for in the course of the SIP

using
iteration. This has turned out to be
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inefficient. In general, far more - better convergence can be obtained
iterations are needed for the SIP than within a given computation time by

for correctly finding the other explicit making extra SIP iterations
terms; and it takes much computation without recalculating the matrix
time to evaluate the coefficients in the of coefficients;

5-point star equations each time anew, 4-derivatives of geometrical

since these are quite complicated in the quantities have been made
coordinate system used. consistent with the actual step

In the present version of the program size in the current sweep.

each "nonlinear" iteration (with new V. Application

determination of coefficients) is

followed by a number (up to 10) of The method has been applied to the

iterations with fixed L and U matrices, flow past the st...rn of the Wigley hull.
in which only the right hand side Nom is Although results for the same case were
updated. already reported in /1/, the improve-

ments in the solution procedure made us

Some more storage is needed to save decide to recalculate them.
the matrices L, U and N, but these

iterations for a linear system are more The Wigley parabolic hull is a

than 6 times as fast as full nonlinear mathematical ship form defined by the

iterations. This modification led to a offset function

reduction of the total computation time

of about 50%, depending on the degree of Y [[

nonlinearity. L

T a 4 X 4 0)

Summary of imurovements with 8 a 0.1 L and Hf 0.0625 L. For the

present calculations the inlet plane of

Let us close this section by summarising the WoMputation domain was chosen at
the improvements that have been made 2x/L * 0.04 and the outlet plane at
with respect to the earlier version of 2x/L - 2.00. Externally, the domain was

PARNASSOS preaented in /I/. boulndd by the relevant part of the
- the physical velocity components v elliptic cylinder

and w are being used instead of

their contravariant counterparts ( ÷ (2)2 l• x arbitrary

to obtain a better behaviour of

the solution near a geometrical with a f 0.07 L and b * 0.09 L. 1he
singularityl values for a and b are greater than

- the atability of the local those used in /I/ because the

iteration has been improved by a desirability of a wider computational
Aodified implicit/eKplicit domain had emerged from an analysie of

splitting of the difference w-home the results.

for C-derivative..
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The step tize in x-direction was the pressure at a grid node on the outer
constant and equal to Ax = At = 0.02L boundary to all grid nodes on the same

on the finest grid. But the first sweeps I-line, i.e. the pressure was made

were made with either a fourfold or a uniform across the boundary layer.

double step size. By the intentional

Location of the inlet plane one step aft Convergence of the SIP

of the midship section we made sure that

all sweeps included station 2x/L = 1.0, The convergence of the local iteration

where a pressure peak is expected. This process can be judged by inspection of

eliminated the shift of this peak with the residues of the four equations
each grid refinement that may have and/or the maximum changes in the

retarded the convergence of the results dependent variables between two

in /A/. successive iteration cycles. We shall

use the latter approach to illustrate
In all 50 transverse planes a 40x21 grid the behaviour of our solution.

was generated, giving a total number of

42000 grid nodes. In & C space the The convergence rate of the SIP turned
mesh was uniform in C-direction but out to depend significantly on the

stretched in n-direction. Beyond x-position and was evidently it'!ted to

2x/L = 1,0 (in the wake) the shape of the severity of the geometricai

the domain cross section did not change, singularity at the keel and its

hbince the mesh properties became extension. In the forward part of the

t-invariant there. calculation domain, where an

underrelaxation factor a u 0.5 was
The calculations were carried out at a applied, the convergence rate amounted

Reynolds number based on ship length to about ono order of magnitude

equal to Rn - 7.4 * 106. The boundary reduction of the changes in the

conditions at the inlet plane were to variables per 12 iteration cycles in the

some extent based on experimental data first sweep. It imp-.oved gradually in
for the same Rn /16/. Coles' velocity later sweeps when the iteration process

profiles were generated corresponding started with a good first guess obtained

to measured momentum thicknesses and from the preceding sweep, Typical

skin frietýin coeffieients. BuL the rusulta &re shown for 2x/L - 0.52 in the

initial value of w was set to zero (no first and seventh sweep (Pigs. 3 and 41.

croseflow). The boundary conditions for Of the non-linear iterations (Not. 0, 1.

u, w and p at the outer boundary were 7, 12, 17# 21 and 24) those precaded by

Obtained from a calculaticn of the a linear one usually gave rise to a
potential flow around the hull. The small jump in the changes of the

Ross a Smith method was applied with variables. Presumably the cýonvergsnce

1600 source panels on the complote could still have been improved by

double model. These conditions w.vre not choosing a greater value for a.

adjusted in later sweeps because the

viscous-inviscid interaction was Further downstr.am the convergence rate
eupposed to be negligible. The initial worsened and a tendency to instability

preesure field was derived by assigning
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SWEEP NO. 1 SWEEP NO. 7

2X/L = .52 0 U/UREF 2X/L .52 e U/UREF

9aW/UREF & W/UREF

t CP + CP

w u~2

to t

N-N

I TERRTION NO- fTýRWTGN N4.

Fig. 3 Convergence history of local Fig. 4 Convergence history of local
iteration procsca iteration process

was observed when the value 0.5 was SWEEP NO. m0
retained for the relaxation factor, The

results in Fig. 5 for 2x/L a 1.0 were 2X'4 z'OO . UAJREF
obtained with * reduced to G.2. Thus the * WiAEF
solution could be made to conv•rge

slowly.

We do not Otink that the SIP itself car;

be blamed for this unlavoarable

behaviour, Th. key to further

improveafnts should be found in a

detailed study of the solution near the -

grid singularity.

However this may be, the final solut ion

of the 10th &weep converged even near

the stern to within a toleaanee of 10-3 ... --- --- ,

for the nondimensional veloeity IUtRTION WO-

coapoante aid 2.e1o"4 VoC" Cp.

Fig. 5 Convergence history of locA

iteration process

4..



Convergence of global iteration process K z 11 HALL PRESSURE

The global iteration process started S W. 0
* 2

with two sweeps on a mesh with a x s

fourfould step size in x-direction 0 * S

(Ax = O.08L), followed by three sweeps 0 10

with Ax = O.04L. Subsequently, five N

sweeps were made on the finest mesh

(Ax = 0.02L). The last sweeps were

restricted to the region near the 1

stern (0.6 4 2X/L 4 1.4) because

elsewhere the pressure field had

already converged to 10-4 (C value). ý
p 

(
The convergence is illustrated in Figs. 8-1 I
6 and 7, where the wall, pressure along a 6 1

so 0 1.15 10 i-M
line C = constant has been plotted - 2- /
versus x for several rweeps. The changes

in the pressure between the 8th and the

16th sweep are hardly noticeable en the Fig. 6 Convergence of global iteration
scale of the figures. After the l1th process
sweep, everywhere the cp-convertence was

better than 10- The robustness of the

process may even better be appreciated

by examining Fig. 0, in which tw• change K 21 WALL eRES$CR9-
of the wall pressaru between successive 4 a IQ.

sweeps on the finest grid has beoo plot- -

totd Thert is a mwnotomous reduction of 40 /
the chango by approximately a factor 2 9
per svwap. Notice also the upstream 4k

shiift of the peaks by ýot stop per

swoop. I

We otnciu tO.at the performance of the 8
global iteratior proceus is quite "4
sa~isa ct~ory. •

Njiece 1laileoue on t

Lines of equal velocity in x-direction @I

are show•n for 6o"a stations in Fig. 9.

A saequenc* of vector ploti, showing the

transverse oelocity cotxponents in die

wake, is presented in Fig. 10. A Fig. 7 Convergence of global iteration

vortical notion can be obdserved, procesS

$.:4 6



C*SWEEP interaction ought not to have been

Kel l- .. neglected in /1/.

I l A comparison of the wall pressure in
viscous flow (as computed by PARNASSOS)

]\. and in potential flow (Hess & Smith

011. 0 / ,, solution) is given in Fig. 11.

"Obviously, viscosity tends to equalise
SIthe pressure. Significant viscous

I.,effects are present only very close
to the stern as may be expected for a

slender ship like the Wigley hull.
Fig. 8 Change of wall pressure in The wall pressure at 2x/L = 1.0 is

subsequent sweeps compared with experimental data at a

somewhat lower Rn /17/ in Fig. 12.

spreading gradually with increasing x. Taking into account the difference in Rn

Notice, however, that the transverse (the pressure at the stern increases

velocities are only a few per cent of with increasing Rn) the correspondence

the ship speed. The flow pattern looks a is quite good.

lot better than similar results in /1/,

which displayed false longitudinal The total computation time for this

vorticity near the outer boundary. The case, including the running time of the

difference must be attributed primarily grid generation and potential flow

to the greater width of the calculation programs, amounted to ca. 4000 CPU

domain. In other words, viscous-inviscid seconds on a Cyber 175 computer.

2X/L z .600 RN z 7.400E+06 2X/_ = 1.000 RN = 7.400E+06

.6 7
0.8

I.0

-I

S I. - . .

Fig. 9 Lines of equal axial velocity
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VI. Conclusions convergence is still not as good as

one would wish. This does not alter

In the foregoing a method has been the fact that the final solution

presented for the solution of the satisfies convergence criteria that

Parabolised Navier-Stokes equations in are amply sufficient for practical

external flow applications. The use of purposes.

a general boundary-fitted coordinate 3. The efficiency of the solution

system warrants the applicability of the procedure has been greatly improved

method to a wide range of ship forms, by updating the coefficients in only

Three momentum equations plus the a part of the cycles of the local

continuity equetion are solved in iteration process.

contravariant formulation, the pressure 4. Improvements due to Stone's partial

and the velocity components in the canceling scheme were found to be

direction of the coordinate axes of the too small tc justify its

body-fitted system being the dependent application.

variables. The solution is obtained in a 5. Further work is needed on turbulence

multiple sweep marching procedure which modeling, the solution near a grid

involves two iteration processes, viz. singularity and the overall

a global iteration process (multiple efficiency. Additional applications,

sweeps) to recapture the elliptic nature including viscous-inviscid

of the equations and a local iteration interaction, to more complicated

process at each step of the downstream ship forms are to be made.

marching procedure.

From the application of the method to
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DISCUSSION
of the paper

by M. Hoekstra, H.C. Raven

SHIP BOUNDARY LAYER AND WAKE CALCULATION WITH A PARABOLISED NAVIER-STOKES SOLUTION SYSTEM

DISCUSSION 2. The conformal mapping at each transverse
by V.C. Patel plane is determined by the shape of the frame-

line and the outer boundary. Therefore a lon-

1. In the paper, it is noted that the influ- gitudinal connection of corresponding points

ence of pressure propagates upstream one step results in a grid that is at least as smooth

per sweep. The convergence of the complete as the hull itself. Rapid changes in stern

solution in 10 global sweeps is quite surpris- geometry will require a small longitudinal

ing in view of this and the fact that the num- step size, regrdless of the grid generation

ber of streamwise steps appears be to greater procedure.

than 10 even in a coarse mesh. 3. The great advantage of using separate
solution methods for viscous and inviscid

2. The generation of the coordinates by con- flos isthe ficiecy. ane mhois

formal mapping of different sections may pre- flows is the efficiency. A panel method is

sent numerical difficulties in connecting the far more efficient in solving the inviscid

sections in the axial direction and in the flow than a finite-difference method, and it

evaluation of the geometric terms associated allows us to put the grid points where they
with the variations in that direction when the are really needed: in the viscous domain. The
method is applied to ship hulls with rapid need to make a generous guess of the thickness
methods is applied terngeomet. sof the viscous domain does not basically
changes in the stern geometry. change this. Although we have neglected the

3. The outer boundary of the solution domain viscous-inviscid interaction up to now we plan

is placed at two boundary-layer thicknesses to incorporate it in the global iteration by

from the hull and potential-flow conditions updating the inviscid flow between sweeps.

are prescribed there. There are two disadvan- This will only moderately increase the calcu-

tages to this. One is that the boundary layer lation time.
thickness is not known a priori and therefore a
rather generous allowance must be made for it 4. It is not quite clear to us why our

and the wake. The second is that the solu- treatment of the normal momentum equation

tions must be repeated several times, updating would inhibit vectorization, since it has the

the outer potential flow each time, to account same 5-point star form as the other momentum
for the viscous-inviscid interaction, equations. A greater obstacle might be the

recurrent formulation of matrix solvers (the
4. Although I fully appreciate your position SIP in our method, the tridiagonal matrix

on the use of the normal momentum equation to algorithm in yours).

update the pressure, this approach would make
future vectorization of your program rather We have already successfully applied our
difficult, if not impossible. method to a number of more critical cases

(separation bubbles, vortex separation, trail-

5. Our experience with the Wigley hull indi- ing edge flows), see our Ref. 1. Application

cates that this is a weak interaction problem. to practical hull forms will presently be

New difficulties arise when such methods are undertaken.

applied to the strong interactions present on DISCUSSION
practical hull forms. by H. Wang

Author's Reply First, I would like to express my appre-

We thank Professor Patel for his comments. ciation of your outlining the computational

Our replies are as follows f details of your approach. Calculation accu-

1. Obviously convergence always means that fur- racy and computer time requirements can vary

ther changes are less than a specified greatly among two nominally similar

tolerance. Although the upstream influence of approaches, in this case the parabolised

the pressure is strictly speaking of infinite NMvier-Stokes solution system. For example,
extent, there is only a bounded domain where it you point out that your approach of fixing the

exceeds that tolerance. In the present case L and U matrices in Eq. (16) for a number of

this bounded region can be covered in 10 iterations reduces computer time by one-half.
sweeps. Furthermore it may be noticed that the
n'imber of steps the pressure may have travelled
is 19 instead of 10: we made two sweeps with a
fourfold step size, three with a double step-
size and 5 with a single stepsize.
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I would like to know if you tried other
variations at your downstream outlet plane,
for which you set p• z 0 at x/L = 1.0, i.e.,
the wake extends O.IL aft of the ship stern.
While it seems reasonable that ptzO at this
point, viscous flow variables such as veloci-
ties and thicknesses may still be noticeably
different from asymptotic values. Did you
check the values of these variables at the
outlet plane? Also, the choice of wake length
should depend on the stern shape as well as
ship length, i.e., a blunt stern would require
a longer wake length.

Author's Reply

We did not test other downstream pressure
conditions in the present case. Less restric-
tive conditions would be e.g. PXX a 0 or
PX - (PE)X' But, because in the rear part of
our domain, Cp <0.004 and PX is about 0.3.4
of the maximum pressure gradient this is not
supposed to have any influence on the results.
We could not check the calculated velocities
against asymptotic values since the latter are
not known for general 3D flows. It may be
noticed that the PNS equations do not require
the specification of a downstream boundary con-
dition for the velocities. The choice of the
location of the down-stream boundary is not
much of a problem. In the first sweeps a long
domain can be chosen, which for later sweeps
can be truncated based on an assessment of the
intermediate results.
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NUMERICAL SOLUTIONS OF THE FLOW OVER THE STERN AND IN THE WAKE OF SHIP HULLS

by

H.C. Chen and V.C. Patel

Iowa Institute of Hydraulic Research
The University of Iowa

Iowa City, Iowa 52242 USA

ABSTRACT the relatively simple and experimentally
well-documented case of axisymmetric flow are

The numerical method for the solution of presented in [7].
the partially-parabolic Reynolds equations,
being developed by the authors (5,6,71, has The present paper is concerned with the
been extended and applied to calculate the application of the method to the three-dimen-
flow over the stern and in the wake of double sional flow on arbitrary ship hulls. The
models of ship hulls. The results are com- important features of the method are first
pared with the available water-channel and summarized and some of the major changes made
wind-tunnel data to illustrate the since the publication of (6] are described.
capabilities of the method and, at the same Two particular hulls are then selected to
time, point out the major difficulties not demonstrate the potential of the method.
only in the development of comprehensive These are the Wigley hull and the SSPA Cargo
numerical methods but also in assessing their Liner, for which extensive data are avail-
performance. Although quite encouraging able. These forms demonstrate the practical
results have been obtained for both cases, difficulties of generating numerical grids
this study indicates the need for improve- which satisfy all of the conflicting require-
ments in grid-generation techniques and ments for accurate calculations of the flow
handling of the wall boundary conditions in over ship hulls. Since such difficulties are
turbulence models in numerical methods, expected to arise in all numerical tech-

niques, this aspect of the problem is dis-
I. INTRODUCTION cussed in some detail. Finally, the results

of the calculations are compared with experi-
As evidenced by the papers presented at ments.

the two recent meetings on ship viscous re-
sistance [1,21, and those in the viscous-flow II. OUTLINE OF THE CALCULATION METHOD
sessions at the last three ONR Symposia on
Naval Hydrodynamics, considerable research It is assumed that the flow over the
effort has been devoted in recent years to stern and in the wake of a ship hull can be
the development of numerical calculation adequately described by the so-called
procedures for the complex turbulent flow partially-parabolic (or semi-elliptic, or
over ship sterns and in ship wakes. An over- parabolized) Reynolds-averaged Navier-Stokes
view of the different types of approaches can equations. Thus, viscous and turbulent diffu-
be found in the Report of the Resistance sion terms in a preselected, predominant flow
Committee of the 17th ITTC [3]. Following a direction are neglected. Although this as-
review of the then available experimental sumption is usually invoked so that marching
data, Patel [41 made several observations numerical techniques car be used, here it is
concerning the most desirable characteristics not very critical since the solution to a
of calculation methods for such flows. On steady problem is sought by a time-marching
that basis, the authors have developed a new scheme and, as demonstrated in (7], the al-
method. This was first presented in [5], gorithms of the present method can be readily
along with typical results for two-dimen- generalized to a fully-elliptic (i.e., to the
sional, . 'tsymmetric and simple three-dimen- full Reynolds equations) capability.
sional '" is. Since then, the method has
undergoi jome revisions, particularly with The independent space variables in the
respect to the calculation of the pressure complete equations are first transformed into
field, and it has been subjected to numerous a general, nonorthogonal coordinate system.
additional tests. The basic elements of the This is a partial transformation since the
method are described in some detail in (6], dependent variables, namely the velocity
and a comprehensive set of calculations for components, are left in a convenient ship-
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based orthogonal system, say xi(i 1,2,3). extends from about midships, where thin boun-
The second derivatives with respect to the dary-layer conditions are prescribed, to
transformed longitudinal coordinate are then several ship-lengths downstream of the stern,

Sneglected, making the equations parabolic in where parabolic conditions, appropriate for a
that direction. For turbulent flow, closure far wake, are enforced.
of the equations is effected by the well
known k-c model, the two differential equa- The coordinates in the solution domain
tions of which are approximated in the same are generated numerically from a solution of
manner. Thus, the problem is reduced to the three Poisson equations relating the nu-
solution of five convective-transport equa- merical coordinates (Q,n,) to the physical
tions of the form orthogonal coordinates (x ) with metrics hi:

22 33 11 i 22 i 33 i 12 i 13 igA f +g 2 f + g xn +g x +2g x + 2 g xg+D~ E~+s23 i I i f2i 3

+ D + (1) + 2g x21 + f x +fx + f x

with * = (U,V,W,k,e), and the equation of h h 1 a hlh 2 h3  = 1,2,3 (3)
continuity 1h2h3 ax hihi

+ bV + 2 U+b 2V+ b2  These equations involve the specification of
(b1U 1bV + bW)+ (bU + 2 W) the three grid-control functions fi, whichare chosen to obtain the desired concentra-

3 3 + ( tion of the grid in the neighborhood of solid
+(b1U + b 2 V + b3W). 0 (2) surfaces and in regions of large changes in

the flow properties. In order to facilitate
the application of wall boundary conditions,

in the six unknowns: * and p. where p is it is necessary to impose two further
the pressure which is contained in the source requirements on the grid. First, it is de-
terms S , (UVW) are the components of the sirable to adopt a grid that is orthogonal at
mean-vetocity vector in the orthogonal coor- the boundaries, and second, for the two-point

dinates x', k is turbulent kinetic energy, wall function approach used here it is neces-
€ is its rate of dissipation, and the coef- sary to ensure that the first two grid points

ficients involve terms arising from the near the surface lie in the law-of-the-wall
transformation of the orthogonal coordinates region. The three grid-control functions are
to the numerical coordinates (9,n,0. obviously insufficient to ensure a grid that

satisfies all of these requirements. In
As explained in [61, the first step in practical applications, therefore, certain

the calculation procedure is to select a trade-offs have to be made. These will be
solution domain in the physical plane, deter- discussed later with reference to specific
mine the appropriate boundary conditions, and hull forms.
then construct a computational grid. Here we
use a solution domain that is large enough to Once the numerical grid has been gener-
capture the entire zone of viscous-inviscid ated, the geometric coefficients in equations
interaction and therefore avoid the need to (1) and (2) are known. These equations are
perform separate viscous- and inviacid-flow solved in successive iterations. The trans-
solutions, and iterative matching between port equations (1) are solved first using the
them. Thus, in both transverse directions so-called finite-analytic method by assuming
the solution domain extends from the ship that the pressure gradients, which occur in
surface and the wake centerline to distances the source terms, are known (e.g., zero pres-
of the order of one ship length, where the sure throughout the solution domain at the
appropriate boundary conditions are simply outset). In the finite-analytic method, the
zero pressure and constant axial velocity, equations are first linearized in each local
In place of the no-slip condition on the hull rectangular numerical element (A=4-Aq. 1)
surface, we use a modified "wall-function" and solved analytically using a combination
approach which requires that the law-of-the- of linear and exponential functions for
wall (suitably extended to three-dimensional boundary conditions. The solution provides a
flows and Including stress-gradient correc- discretization formula which relates the
tions) and turbulence equilibrium conditions value of f at the center of the element to
are satisfied at two grid points adjacent to the (still unknown) values at the corner
the surface. This establishes a relationship points of the element. An assembly of these
between the wall-shear velocity U• and the results in a system of algebraic equations

Sboundary conditions required at the first for the nodal values, which is then solved by
Sgrid node for the numerical solution. In the standard techniques. The partially-parabolic

longitudinal direction, the solution domain approximations enable such a solution to be
marched from upstream to downstream.
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The pressure field assumed in the solu- we shall see, the latter feature poses rather
tion of the transport equations is next up- severe problems in grid generation. The
dated by the use of a two-step pressure- second hull is more representative of prac-
correction procedure similar to the well tical forms. It has been used extensively as
known SIMPLER algorithm. In almost all pre- a test case for boundary-layer calculation
vious applications of such procedures, the methods [11i, all of which break down some
solutions have been marched from upstream to distance ahead of the stern. Mean-flow data
downstream, in order to minimize computer on a double model of this hull were obtained
storage. However, this approach leads to by Larsson [12], and corresponding measure-
rather slow convergence of the iterations ments of the Reynolds stresses were reported
between the velocity and pressure fields, by Lofdahl and Larsson [13,14]. It should be
Since the pressure field is elliptic, it is noted, however, that the data for this case
indeed possible to solve the pressure equa- are restricted to the flow over the hull and
tions by marching upstream from the down- do not extend into the wake. Calculations
stream boundary. Although this approach for both cases will be compared with the
involves some increase in storage, the rate available data to illustrate the performance
of convergence of the overall solution is of the method and the difficulties involved.
greatly accelerated. Indeed, the pressure
information propagates throughout the domain The framelines and longitudinal sections
within the first iteration. of the two hulls are shown in Figure 1. The

Wigley hull is specified by the equation
The complete solution procedure thus

involves downstream-marching calculations of
the transport quantities, followed by a solu- -II [B/2]{I-(2X/L - 02}{1 - (Z/H) 2 (4)
tion of the pressure field. For a given
velocity and turbulence field, i.e. after
each solution of the transport equations, the where (X,Y,Z) are Cartesian coordinates, as
pressure-correction equations are solved to shown, with the origin on the waterline at
convergence by several internal iterations, the bow, L is total length, B = 0.100L is the
yielding a global pressure correction beam, and H w 0.0625L is the draft. The
scheme. In almost all cases that have been Cartesian coordinates of the SSPA liner are
calculated thus far, convergence has been available only in a tabular form [12].
achieved in less than 25 global sweeps, i.e.,
velocity and pressure updates. Further de- IV. SOLUTION DOMAINS AND NUMERICAL GRID
tails of the equations and numerical solution
procedures are contained in [6]. For both the hulls considered here, the

solution domain in the longitudinal direction
11. SHIP HULLS CONSIDERED extends from midship, X 0.5L, to far down-

stream in the wake, X - 2.302L. In the
Among the ships for which calculations cross-sectional planes, the domain extends

have been carried out with the present method from the hull surface and wake centerline to
are the Wigley parabolic ship and the SSPA a pylinjrj4Wl boundary one ship-length, R =

Cargo Liner. The former, which is among the (Y' + Z)" - L, away from the ship axis.
four hull forms selected for the ITTC Cooper- As we shall see later, this is considered
ative Experimental Program [3], has been used adequately far for the application of uni-
as a test case in many analytical and numeri- form-flow boundary conditions, i.e., U = Uo
cal studies of wave resistance and for com- and p = 0.
parisons of results obtained with the dif-
ferent approaches to this problem. Quite In order to generate the numerical co-
extensive data exist for this hull not only ordinates in the solution domain, equations
on the resistance components and wavemaking (3) are solved using an exponential scheme
(3], but also on the viscous flow on double [6] after prescribing appropriate grid-
models. Measurements of the mean-velocity control functions f3. The selection of the
field and Reynolds stresses on double models grid-control functions is by no means a
have been reported by Ratano and Hotta [8] straightforward procedure. How ver, since
and Sarda and Patel [9,10], the latter being they are independent of the x1-coordinate
particularly detailed, while other experi- system used to describe the physical domain,
ments are still in progress. Calculations it is convenient to generate the numerical
for this case are of special interest since body-fitted coordinates in terms of the Car-
the geometry is simple but the flow exhibits tesian coordinates (XYZ) specifying the
all of the basic features observed on prac- hull geometry and later transform them to the

tical forms. For example, usual boundary- cylindrical polar coordinate system (XR,8)
layer approximations are not valid all along which is used to specify the velocity compo-
the sharp keel, there is a large girthwise nents in the equations of motion.
variation in the thickness of the viscous
flow at the stern, and the wake develops from For ship-flow calculations it is con-
a sharp vertical stern of finite depth. As venient to choose C * •(X), i.e., the con-

4, 4
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stant-i stations are the transverse sec- where a, b, and c are modified control func-
tions. With this choice, equations (3) re- tions defined by

duce to

fig x• + f!2a I
g 11 X~+fl -0 (5a) 9

f
2

2b =- (8)

11 22 33 12 13 b 22
g r, + g rn + g3r + 2g2r Cn + 2g1r

23 2 3 1 f 3
+2g r + fr +fr + fr 2

~ (5b) g 3

goG + g2 2 0 + g3 3 e + 2g 1 26 + 2g 13 e In order to solve equations (7), it is neces-
3 1C 2 n 3 ; ary to prescribe the boundary conditions and

+ 2g 236 + f1 6 + f 20n + f3 6- 0 the control functions. The boundary condi-
(5c) tions are determinend by the desired number

of grid points in the axial (6), radial (n)
and circumferencial (4) directions. The

relating the numerical coordinates (ý,I,) to first station P - 1, is located at X - 0.5L,

the cylindrical coordinates (x,r,0) made di- and the last station, ý = LL, is placed at X
mensionless by L. Equivalently, equations (5) = 2.302L. Thus, there are, LL stations in
can also be written in nondimensional Carte- the axial direction. In the radial direc-
sian coordinates (x,y,z) as tion, there are MM points; n - I correspon-

ding to the hull and wake centerplane, and
11n = MM being the exterior boundary, R = L.

g gy +g gy + g y + 2g y + 2g1y• In the circumferential, or girthwise direc-
23 1 2 3 ction, NN stations are used, with g - 2 and NN

+2g 23y + flyý + f2yn + f 3y - 0 - 1 corresponding to the keel (86 00) and
(6a) the waterline (e - 90'), respectively; and

it 22 33 12 13 c- I and NN used to enforce the plane-of-
g g znn + g zc +2g z + 2g Z3 symmetry conditions. In the calculations

23 1 2 3 presented here, we have used (LLMMNN)
+ 2g zT + flz + f z, + f z; . 0 (30,19,10) for the Wigley hull and (30,19,14)

(6b) for the SSPA liner.

where y - r sin 6, z - r cos O, and 6 is the There are no general rules for the de-
circumferential or girthwise angle measured termination of the most suitable grid-control
from the keel to the waterliIe. As noted functions. Thus far, we have utilized rather
above, the control functions f are the same simple functions, based largely on previous
in both coordinate systems and, in principle, experience with more simple geometries. Since
equations (5) and (6) yield the same numeri- the choice of the distribution of points in
cal coordinates if the same control functions the axial direction is relatively easy, we
are employed. Numerically, however, the coor- choose
dinates used to specify the hull geometry x f o
influence the accuracy of the calculated 2a - fn (• only) (9)
numerical coordinates. Since the variation x
of the surface coordinates (yz) is much Thus, the function a is related to the pre-
smoother than that of (r,6) for the two hulls selected distribution of the axial stations,
considered here, it is desirable to use equa- which is chosen to concentrate points near
tions (6) instead of (5) for the generation the stern and in the near wake.
of the numerical coordinates. For the numer-
ical solutions, it is convenient to rewrite In a similar manner, the function c is
equations (6) in the form related to the grid distribution in the cir-

cumferential or girthwise direction,
1 +g

2 2  330 - tan (y/z) - O(C), on the outer boundary
g(y+-2a)yn ) + g(y -2cy at the upstream station, i.e.

+ 2g 2 +2g 1 3 +2 2 3 y - 0 (7a) 2c fn Q only) (10)

2This function also remains fixed during the
g (z,,-2az,) + g (z - 2 bz ) + g (z: -2cz) iterative solutions of the grid-generation

12 3 3 equations.
+ 2g zo + 2g 3z, +2g = 0 (7b)Zu 29 NThe specification of the function b,

which controls the grid distribution in
the n-direction, requires much greater care
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for several reasons. First, in the present Figures 2 and 3 show several partial
treatment of the wall boundary conditions, it views of the numerical coordinates generated
is necessary to require at least the first for the two hulls. It is seen that the co-
two near-wall grid points to lie in the law- ordinates are nearly orthogonal at each cross
of-the-wall region (50 < y+ < 1000, say). section. The adequacy and shortcomings of
Second, it is desirable, but not necessary, these coordinates will be discussed following
to have an orthogonal grid in the wall region the presentation of the solutions of the
to facilitate the application of these boun- partially-parabolic equations obtained with
dary conditions. Third, the grid concentra- these coordinates.
tion must be such that there is a sufficient
number of points across the viscous region V. CALCULATIONS AND RESULTS
whose thickness varies greatly in the axial
as well as in the girthwise directions. The numerical grids discussed in the
Fourth, and perhaps the most difficult, is previous section were utilized to sulve the
the problem of obtaining sufficiently ac- partially-parabolic equations (1,2) with the
curate solutions in the neighborhood of geo- method outlined in Section II. For both
metrical singularities (i.e., curvature dis- hulls, the initial conditions at midship (X -
continuities) in the hull, namely along the 0.5L) were determined from the boundary-layer
keel of the Wigley model and at the waterline thickness calculated for the appropriate
in the stern region of the double-model of Reynolds number by the method of Patel et al.
the SSPA liner. It is obvious that not all [15]. For simplicity, the longitudinal com-
of these requirements can be met by a single ponent of velocity, U, within the boundary
grid-control function. Many different ap- layer was determined from a 1/7-power law,
proaches were attempted during the course of the transverse component, W, was assumed to
the present study, but most led to unaccep- be zero (i.e. no crossflow) and, consistent
table grid behavior either at the keel or with the boundary-layer approximations, the
along the waterline. For example, requiring longitudinal derivative of the normal com-
b to satisfy the orthogonality condition on ponent, V, was set equal to zero. Outside
the hull and in the planes of symmetry resul- the boundary layir, the distribution of U was
ted in a cross-over of grid lines at the keel assumed to follow an inverse-square law with
of the Wigley hull and in a very coarse grid distance from the potential-flow velocity at
distribution through the boundary layer along the edge of the boundary layer to the uni-
the waterline of the SSPA liner. A compro- form-stream velocity, U , at the outer boun-
mise solution, which appears to be satis- dary of the solution domain. The distri-
factory in both cases, was arrived at by butions of the two turbulence parameters,
prescribing the grid distribution z - z(n) on namely k and c, were specified from standard
the keel plane, C - 2 (0-y-0), and relating flat-plate correlations within the boundary
the function b to that distribution through layer and set to zero outside.

33 The geometric coefficients associated
2b (r,1 + 2 r, - with the numerical grid and the aforemen-g tioned initial conditions are the only inputs

33 required in the flow-calculation computer
= nn + A 22 z )j fn (Q,n) (11) program. The sweeps or global Iterations in

zg, C-=2 the solution procedure are started with zero
pressure assumed throughout the solution
domain. As in the previous calculations

Thus, b is invariant in the circumferential (6,7], the solutions converge in about 20
direction. Since b depends upon the trans- sweeps. For exumple, Figure 4 shows the
verse curvature of the grid lines in the keel pressure distribution alone the waterline of
plane (through z ), which is not known ini- the SSPA hull predicted after different iter-
tially, unlike ta functions a and c, it has ations. It is seen that quite satisfactory
to be updated during the iterative solution convergence is achieved in 20 sweeps.
of the grid-generation equations until a
fully-converged control function and grid is Before presenting the results and com-
obtained. parisons with experimental data it is useful

to briefly mention some of the experimental
With the Neumann boundary conditions details which should be borne in mind in the

specified on all boundaries of the solution interpretation of the comparisons and evalua-
domain, equations (7) were solved by a tri- tion of the soluctons. Data on double models
diagonal matrix algorithm with an under- of the Wigley hull haie been obtained by
relaxation factor of 0.7. For both hulls, Hatano and Hotta 18] in a water channel and
the solutions converged within 60 iterations by Sarda and Patel 19,10) in a wind tunnel.
and required approximately 180 seconds on the The former were carried out at a rather lIw
Prima 9950 computer. Reynolds number, Re a U L/v - 8.0 x 10,

while the latter were made at Re - 4.5 x
10'. Both include measurements of velocity
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profiles and Reynolds stresses at several made of the contours of the longitudinal
longitudinal stations, along four potential- velocity component (the so-called isowake
flow streamlines in the former, and four lines) in a transverse section to provide a
waterlines in the latter. Also, the measure- picture of the three dimensionality of the
ments of [8] were made in boundary-layer stern viscous flow since the magnitude of the
coordinates, i.e., along local surface nor- longitudinal component is not greatly af-
mals, while those of [9,10] were carried out fected by the choice of coordinates. Never-
In ship-based Cartesian coordinates theless, such comparisons have to be judged
(X,Y,Z). The mean-flow measurements of Lars- with some caution since the measured contours
son [L2] on the double model of the SSPA are determined from data taken along the
hull, and the corresponding turbulence data normals to the hull at a few discrete girth-
of Lofdahl [13], are also restricted to boun- wise stations.
dary-layer traverses along a few potential-
flow streamlines. Since the calculations are All quantities in the results presented
performed in a nonorthogonal body-fitted and discussed below have been made dimension-
coordinate system, the transverse sections less using the fluid densicy, ship length L
being one set of coordinate surfaces, direct and freestream velocity Us, as appropriate.
comparisons of all quantities of interest, Also, with 20 sweeps required to achieve
e.g. the velocity components and the Reynolds convergence, the solutions for the Wigley and
stresses, at all measurement stations is not the SSPA hulls took approximately 50 and 75
possible, especially since the data stations minutes, respectively, on the Prime 9950
are too coarsely spaced to accurately carry computer.
out the extensive interpolations that are
involved. For example, in the thick boundary (a) The Wigley Hull
layer over the stern, the near-wall measure-
ments correspond to a transverse section Figure 5 shows the calculated pressure
which may be considerably upstream of that distributions along t e waterline and the
which corresponds to the data at larger nor- kael at Re - 4.5 x 10 . Also shown are the
mal distances. It is rather surprising that results of the potential-flow solutions ob-
these difficulties have not received much tained at the DTNSRDC using the XYZ pro-
careful consideration in previous work on gram. The data are due to Sarda and Patel
this subject. [9,10] and are restricted to the waterline

since no pressure taps can be placed along
In view of the aforementioned difficul- the sharp keel. The data indicate some scat-

ties, it is possible to make only limited ter. Unfortunately, pressure distributions
comparisons between the calculations and were not measured in the experiments of
experiments. As shown earlier, the surface Hatano and Hotta and therefore it is not
pressure distribution provides an excellent possible to ascertain the reasons for the
test of the convergence of the solutions. scatter. Nevertheless, it is clear from
Previous experience with a variety of itera- Figure 5 that the present results are in
tive methods has shown that this is also the agreement with the potential-flow solutions
most difficult quantity to calculate ac- in the upstream thin boundary-layer region
curately. At the same time, it is perhaps but are higher than the measurements in the
the easiest quantity that can be measured, stern region. The level of disagreement
although the data are subject to wind-tunnel between the data and both calculations over
blockage effects. If the latter can be quan- the midbody is consistent with the expected
tified, comparisons between measured and tunnel-blockage effect in this experiment but
calculated pressures provide a meaningful the reason for the disagreement at the stern
test of calculation procedures. is not clear.

The most direct and quantitative compar- The development of the boundary layer in
isons between experiment and calculations the planes nf symmetry Is shown In Figures
involving the least amount of uncertainty are 6(a) and 6(b), corresponding to the two Ray-
the velocity profiles across the boundary nolds numbers Wt the experiments of 18] and
layer along the two planes of symmetry, name- (9,10]. Perhaps the most important observa-
ly the keel and the waterline, since on both tion to be made here is that the rapid in-
hulls these lines are straight and no inter- crease in the boundary-layer thickness along
polation In the data is required. Unfortu- the waterline, and the corresponding decrease
nately, there are no data in the waterline along the keel, is captured by the calcula-
plane on the SSPA hull. tiona. The development of the girthvise

three dimensionality of the viscous domain
As noted above, the differences in the over the stern, which started with a nearly

experimental and computational coordinates uniform thickness at midship, is clearly
become particularly important in .uking com- evident. It is also important to note that
parisons between calculated and measured the keel date of (8J shown in Vtgure 6(a) are
velocity components at points off the planes those taken in the vertical centerplane and
of symmetry. Qualitative comparisons can be not along the local surface normal. The flow
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in the triangular region between the two is The calculated variation of pressure in
not accessible to thin boundary-layer theory the flow field cannot be compared with exper-
due to the curvature discontinuity. Conven- iment since such data are usually not avail-
tional boundary-layer calculations, which able. Nevertheless, this is of interest in
impose plane-of-symmetry conditions along the the study of viscous-inviscid interaction.
local surface normal simply ignore this re- Figure Ii shows the calculated pressure field
gion and therefore predict a much thicker in the vertical centerplane (i.e. the keel
boundary layer at the keel. Although the plane) at several longitudinal stations In
calculated velocity profiles are in reason- the stern region. From the near uniformity
able agreement with both sets of data, some of pressure beyond distances of the order of
systematic differences are evident, particu- 0.45L from the hull, it is concluded that the
larly in the near wake. These are associated placement of the exterior boundary of the
with the rather coarse grid (see Figure 2) computation domain at a distance of one ship-
which results from the abrupt termination of length is adequate to capture the interac-
the hull at the vertical stern. Further tion. The large variation of pressure in the
refinement of the grid is obviously needed to vertical plane is quite surprising in view of
explore this region in greater detail, the fact that the boundary layer along the

keel remains thin. This suggests that the
The calculated contours of constant U- pressure interaction is global. Similar

component of mean velocity, and projections variations of pressure are of course present
of the velocity vector in the transverse at all girthwise stations.
planes, are shown in Figures 7 and 8, respec-
tively, at a few representative sections for The development of the viscous flow in
the higher Reynolds number of (9,101. The the longitudinal direction is shown in Figure
corresponding results at the lower Reynolds 12 in the form of profiles of the longitu-

number are qualitatively similar. These dinal velocity component, U. The calcula-
again indicate the evolution of the three tions and measurements along the keel can be
dimensional shear flow over the stern. In compared without ambiguity or uncertainty.

particular, Figure 8 shows that, in the tran- However, due to the absence of data in the
sverse sections, the crosesflow is directed waterline plane, comparisons have been made
from the keel towards the waterline. This is here between calculations and experiments at
the principal reason for the thickening of somewhat different stations. At each sec-
the boundary layer along the waterline. Even tion, we have chosen the solution along a
though the data of 19,101 were obtained in numerical grid line, C - constant, which is
transverse sections, the use of Cartesian closest to a streamline station in the meas-
coordinates in the experiments, and nonortho- urementa. However, since no interpolations
gonsl coordinates in the calculations, imply have been Node, the difference between the
that a considerable amount of interpolation calculations alontg a grid line in the trans-
is required to make meaningful quantitative verse section and the data in boundary-layer
comparisons. These, and other more detailed coordinates along the local surface normal
evaluation*, are still in progress. must be borne in mind in evaluating these.

The differences are estimated to be of the
(b) Tbe-PA _1*1l order' of 32 of the longitudinal vtlocity.

Even with these uncertainties, it is clear
The pressure distribution along the from Figure 12 that the calculations ac-

waterline and the wake centerline for this curately reproduce the high level of three-
hull uae presented in Figure 4 to show the dimensionality of the flow that develops over
rate of convergence of the Iterative solu- the stern froa a thin boundary layer of near-
tions, but the lack of data along this line ly constant thickness at aidship. The rapid
precluded any comparison with expertments. thinning of the boundary layer along the keel
The corresponding results along the keel are and the equally dramatic growth closer to Cho
shown ia figure 9, along with Oe measure- weterlina is also clekrly evtdeo.,
ments. Figure 10 *hows the girthwise pret-
sure distributions at several transverse The contours of constant U are shown at
sections. As pointed out by Laroson 1121 in several transverse stations in Figure 13,
his original tapest, the data are subject tn along with those determined by Larason (I1

wind-tunnsl blockage effects. In fact, Late- froe hie measurements 1121. It it seen that
*on carried out potential-flow calculations the calculations reproduce the Xrowth of the
with aod without tunnel constralnts to eati- vi.3cous doesin In practically all important
mate this effect, TMese estimates have been respects. In particular, the region of the
used here to correct the data. Tet correct:d thin boundary layer near the keel and the
values are also shown in Figures 9 and 10. thickenit* around midglrth Ar* predicted with
It is clear fros thrse that the calculatitom reasonable accuracy. The somewhat greater
faithfully reproduce all of the trends ob- spread of the contours in the outer regions
served Ln the isparimente. •igure 10 iraci,- in the e".primatie is undoubtedly due to the
cates that the Calculations are in better fact that they do oat correspond precisely to
quantitatLve &artant with the corrected the trauvese ections, as has been noted
data. above.
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city vectors in the transverse sections, with experimental data made thua far have

shown in Figure 14, provide a picture of the been restricted to the flow over the hull in
crosaflow and normal velocities. We note spite of the fact that the solutions extend
that, at the upstream sections, the crossflow well downstream into the wake (X = 2.3L).
is directed from the keel to the waterline, While there is no data in the wake of the
as in the case of the Wigley hull. However, SSPA hull, the recent measurements of Sarda
closer to the stern, there appears to be a and Patel C9,10] on the Wigley hull extend
reversal in the direction of the crossflow upto X - 1.8L and offer an opportunity to
around midgirth, although the magnitudes are investigate the development of the wake
rather small. This reversal is responsible flow. These comparisons will be made after
for the local thickening of the boundary improving the grid resolutions in the stern
layer shown in Figure 13. Thus, the overall region. Calculations are also under way for
flow features are in agreement with the ex- other hull forms for which similar data are
perimental observations. While the present available.
calculations show the development of a weak
vortical flow, there is no evidence for the 4) Comparisons between the calculations
formation of a clearly identifiable longitu- and turbulence data which are available for
dinal vortex imbedded in the stern flow. the Wigley and the SSPA hulls need to be

examined to ascertain the performance of the
(c) Some General Observations turbulence model. This would requirt: more

careful consideration of the differences in
In addition to the specific comments the coordinates, as already mentioned.

already made concerning the results for the
two hulls, it is of interest to point out 5) Although calculations performed with
certain other features of the solutions which a coarser grid for the SSPA hull during the
are common to both hulis. These are as fol- course of the present study, and many pre-
lows: vious solutions for simpler geometries, in-

dicate that the finite-analytic numerical
1) A closer examination of the numeri- scheme is remarkably insensitive to grid

cal grids used here (Figures 2 and 3) reveals spacing, systematic studies are necessary to
that they are rather coarse at the extreme investigate the grid-dependence of the solu-
stern and in the very near wake, This prob- tions, particularly with regard to the ac-
lem is associated with the abrupt changes in curacy with which the numer tcal ct~rdinates
the hull geometries and needs further atten- describe the rapid changes in hull geometry
tion in the grid-generation technique. It ivear the stern.
appears that grid-control functlons other
than the simple ones used here may be neces- Vt. OMCWUSIONS
sary to resolve the flow in this region with-
out greatly increasing the number of grid The progreas m.4de in the development of
points. a very general nurxrical ethod for the cal-

culatlon of the complex, three-diIantQonl,
2) From Fitures 6 and 12 it to evident turbulent flov over the stero and in tht wake

that the first numerical grid point In the of arbitrtry ship forms has IK'vn described.
thick boundary layer along the waterline lite The aolutio.. o.btaioed thus far Mppear to be
at a rather large distance from the htll, quite satisfactory. This study Slso points
leaving the flow in the nlear-WlU region out two MAJor diff4%:lUt ea in dealing with
unresolved. This it the result of the re- compltx three-dimensional fl~vot o" is the
quirement that the first grid point be Iti th accurate n=erical resolution of such flowt
region of the logarithmic law-of-the-wall, y in regiono of rapid changes in geometry. and
> 0, say, and it an example of the trade th. other is the aasevatent of thi reault* by
off# that have to be mad* In the Jetermina- cowporisonS with that voot be regarded as
tion of en appropriate numerical grid. At qmite comprehensive e@perlments. The resolu-
the low Reynolds nsubere of the experiments, tion of the former lies in sore detailed
atid with the reduction in the wall ehea.- numerical Investiat~ion., Vhile that of the
stress associated with the locally thick latter should he addressed jointly in future
boundary layer, this condition is met at numerical as uell a4 physic•l experistats.
womewhat large distance. fron the surface.
Uhie this is an ulexpeuted liitation of the .
wall-functiGo approach in thre*-.'Lntional
flows, it should be trmarked that tha re- Tie research reported here ws* supported
suiting solutions ate still quite accurate lointly by the Office of Naval Research under
outside the vall layer. If the resolution of the Special Focus Research Prograsm in Ship
the wall layer is required, it say become Hydrodynamics, Contruct NOO14-63-K-0136, and
*ecessary to abandon the wall functions In th.* General Hydromechanics Research Program
favor of sore elaborate (and c.aputattonally of the Naval Sea System Command, technically
Nore expensive) treatment of the neart-wall administered by the David V. Taylor Naoal
tutrbleckc. Ship Research and Development CAater, under

Cootract VD0014-8fI-K-e200.
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DISCUSSION
of the Paper

by H.C. Chen and V.C. Patel

NUMERICAL SOLUTIONS OF THE FLOW OVER THE STERN AND IN THE WAKE OF SHIP HULLS

DISCUSSION DISCUSSION
by H.C. Raven By Yu-Tai Lee

This paper and the previous one allow an The predicted pressure distributions for
interesting comparison of two methods that the Wigley and SSPA hulls, shown in Figures 5,
solve basically the same equations but with 9t and P0, deviate from the original measured
completely different numerical treatment. Chen data with the wind-tunnel blockage. Because
and Fatel determin3 the velocity components of the flexibility of the numerical grid
from the associated momentum equations and use generation in the present approach, it may be
a Poisson-like pressure correction to satisfy worth calculating one internal flow with wind
continuity, while we derive the normal velocity tunnel wall effect as a benchwork calculation.
from continuity and the pressure from the nor-
mal momentum equation. Furthermore, they use Author's Reply
untransformed velocity components, a staggered
mesh, uncoupling of all equations and solution
by the scalar tridiagonal matrix algorithm- Yes, the present method can be used to
instead we use contravariant or physical velo- dore by a cing the ouer ound-thecity components, a regular mesh, and a •uly blcaeby placing the outer boundary of the

citycomonens, reglarmesh an a fllysolution domain to coincide with the tunnelcoupled solution by the Strongly Implicit walls and applying Zhe appropriate boundary

Procedure at each downstream step. Less essen- conditions there. We plan to conduct such an
tial differences are present in the difference investigation to clarify blockage effects.
approximations, the turbulence model, and, in
the examples shown, the grid spacings and the
extent of the physical domain. The method of
Chen and Patel thus largely follows the metho-
dology of general purpose flow solvers as TEACH
or PHOENICS, for which the application to both
internal and external flows necessitates the
use of a pressure correction method and the
wish to add other transport equations easily
(e.g. for heat transfer) prohibits the use of a
coupled algorithm. In our opinion these
features are a definite drawback in difft.cult
applications, e.g. a vortex separation calcu-
lated on a sufficiently fine mesh, and can -ake
the convergence of the iterative procedures
uncertain.

Still the method presented by the authors
works very well in the applications shown. The
convergence rate of our method may be slightly
better (10 sweeps instead of 20); on the other
hand, Chen and Patel have an advance in the
implementation of a turbulence model. It will
be interesting to make further comparisons bet-
weea chese methoda and their performance.

Author's Reply

4e are well aware of the differences and
similarities between our two methoda, and also
among othe: methods of this type. However, it
is perhaps premature to judge the relative mer-
its of theme nethods since they have not all
been applied to a wide range of hull forms.
We believe it will be useful to hold a spe-
cialty votkshop In the near future to evaluate
the status of stern- and wake-flow calculation
Smethods.

•,! 611-,. ...



NEAR-WAKE COMPUTATIONS BY SOLVING
THE VORTICITY TRANSPORT EQUATION

ON A BODY-FITTED COORDINATE SYSTEM

Kazu-hiro Mori* and Nobuki Ito**
S Hiroshima University, Saijo Higashi-Hiroshima 724 JAPAN
*s Sumitomo Heavy Industry, Hiratuka 254 JAPAN

Abstract separation and It is switched into the

A new method to predict near wake full vorticity transport equation.

flows is proposed where the time de-
pendent fully elliptic vorticity trans- Such a combined use of governing

port equation is used as governing equations makes the computing time and

equation together with the boundary memory storage less. At the same time
layer equation. The flow field Is sup- the well-developed potential flow and
posed to be simulated by a sudden move boundary layer flow calculations are
of a body to which a vorticity layer is highly appreciated as far as they work.
attached to a certain position. The
attached vorticity layer is equivalent The use of the vorticity transport
to the steady boundary layer flow. The equation together with Biot-Savart's
equation is solved by the time marching law was first applied by J. C. Wu and
method on a body-fitted coordinate et al.[7] to predict wake flows. it has
system. The two-equation model is in- several advantages over other methods
yoked for the turbulent closure. The where the velocity field is directly
wakes of 2-dimensional elliptic cyl- solved or the stream function is used.
Inder and a SSPA-120 hull form are First of all. the pressure term has
calculated. The separated flow with a disappeared from the basic equation;
recirculation is well predicted in this makes it easy to take account of
case of the elliptic cylinder. The ship viscosity-Inviscld interaction. They
wake is also predicted within a moder- are easily realized by a simple addi-
ate computing time. tion of the vorticity-induced velocity

to the potential velocity component.
1. Introduction Secondly the outer boundary conditions

!t is one 0 he -important prob- for the vorticity equation are defi-
lems ýn ship hydrodynamics to estimate nitely Qlear; the vorticity is zero.
the near wake flow of ships theoreti- And the computing domain is limited
cally. S(- far it Is carried out either only in the non-zero vorticity region
by the boundary layer approximation or which IS usually much marrayer than the
the pirtially parabolic approximation, viscous flow region. The boui.dary layer
In some cases. however, separations flow Is smoothly matched with the wake
with recirculating flows make those flow through vorticitles. Thirdly. be-
approximations invalid any more, Re- cause Biot-Savart's law l applicable
cently calculations based on the full to the 3-dimensional flow also. the
Navier-Stokes equation are carried out present method can calculate the 3-
(11.12].210. Some o! them have been dimensional field by the same manner as
applied to shir wake predictions with the 2-dimensional.
prospective successes.

In the present paper the vorticity
The present study is an exteition transport equation is solved together

and generalization of the previous with the k- C model for the turbulent
works on ship-wake calculations closure system by the time-marching
M4).($l,[61. A common feature of this method. The potential flow calculation

series Is to use more than a single is carried out by the well-developed
equation as governing equations depend- panel method while the boundary layee
ing on tho flow characteristics; the by the integral method.
boundary layer approximation is posi-
tively appreciated up to the position A body fitted coordinate system.
where flows are perfectly free from proposed by Thompson(S8. is adopted

' •'i'•" .: S~~~1* .. :.0.,,:.



here for the boundary conditions to be k;k, P =1.00 Clkl.00, C2 k~l.0 (

predicted wore accurately. The accurate rk=

description of boundary geometries is ;O;E=, Pr 1.23, C1 1.44, C (6)
still more important in the present r c 3 le 2e'1.92

scheme where the boundary values for nu. au au.
vorticities are required. Ge = --- +---ax a--/ (7)

In the present paper the near wake 1n J n

flows of a 2-dimensional elliptic
cylinder and SSPA-720 hull form are k2
calculated. Comparisons are made t=d- , Cd=0. 0 9  (8)
between the results by the body fitted
coordinates system and by the Cartesian The velocity assumed to be con-
coordinate system, and with the sisting with the two components: one is
measured. the potential component and the other

is the component due to the vorticity;2. Basic Equation and
Computational Method u.4 _•__r_)

Sax. 41r v{'C3kxk
2.1 Basic Equation r 0

In a right handed Cartesian coor- wk
dinate (x , x) the time dependent 3(x X.0 ))dV0  (9)
vorticity *raR4sprt equation is written r

in a following form: where * is the total velocity potential

w. Du. i including the uniform flow•. The second
-•_). -.. u _*2_(V ^i) term is the induced component by theat n x Xne ax vorticity and the integration is car-

n n n n red out over the non-zero vorticity
region V (see Fig.i). equatlon(9) means

v dýuk .V "v u. that once the vorticity distribution is
determined which is definitely

n k ax n2 limited the velocity field beyond V is
calculated by adding the induced veloc-

(a) aU. au Ity to the potential component. It can
_ ý (1-- - ) be smoothly matched to the inviscid

ax-ax ax 3x akx ax ax flow field. This is one of the great
n k n k n A advantages of the present method: the

computing domain is limited and the
where the summation convention is used interaction between the inviscid and
and i.J.k are in tho order of the viscid is easily taken Into ac-
12.2,.1,2; t Is the time, u and. are count.
the mean velocity components and' the
vorticity components In the x -direc- 2.2 Body-fltted coordinate system
tion respectively, The vortli•ty is
defined by, The vorticity transport equation

Is solved on a body-fitted coordinate
3Uk system to minimize numerical errors due

2 11,-- (2) to Lhe complicated hull geometry. Here
j •xk we folloW the method originally pro-

posed by Thom~so4[8).
v Is the effective kinematic viscosity

cseffltient which Is related to the The body-fitted coordinate system
Roynolds stress b). (t t. t.) can be generated by solving a

V *V*V ) partial differential equation given by.
o(t nn)

- ~ au au.
-. 'u, Uj4Nt(-4-::4 (4) *2(A1 2x i A2Sxint* A 3 1 X )

3x axt nP
where v it the kinematic viscosity * ( P P,.X P3 ).O (10)
coefficient. - I is the Reynolds
stress. The eddy ilnematIc viscosity vt witere
Is calculated from the K- E model;

3/J 3*a v 30 a X• x j Y j.

at ax 5x Prax " C - , nn .k-

n rt r n
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x• E XlX ; x2 Y ; 3=zz• (is)

Jý xn Yn Zn &I4 ; 2-n ; 33:

X 4 Yý Z By making use of equation (14), the
basic equations (1) to (9) can be re-

By equation (10) (x.y,z) can be deter- written on the body fitted coordinate
mined which is corresponding to the ( ), ,
given Ti.,(). 2.3 Computational methods

P can be arbitrarily chosen de-

pendin6 on the geometry. Either, In the present computing scheme, a

1 A /J2 = /x. (12) flow model is assumed as follows; a
PPAi , j 1body which is at rest with a vorticity

layer around it suddenly moves with a
or, constant speed. The vorticity layer on

0 0the body corresponds to the steady
P.=-a sgn(.i-&i) exp(-bl~i-•ij) boundary layer at that speed. Then a

1 11 wake develops in a downstream by the

0 convection and diffusion of vorticity.
-c sgn(4i- g) This flow model can be realized by the

1111following computational procedure.

+ P2.+(Yk_ )2 }2] In the beginning the potential
3 k Icflow calculation is carried out done

all over the flow region. Then the
i~j , j6k , k~i (13) boundary layer calculation for the

steady flow is executed up to a point
or their linear ccmbin~tion is commonly where no significant upstream effects
used, where i,j,k=l,2,3 ,And i=J,j=k, of separation are supposed to exist. The
k=!, ab,c.d are constants, integral method[9] is used for the

boundary layer calculation from which
Equation (12) is convenient to the vorticities are given by.

generate grids according to the pre- =0
scribed intervals. The first term of si
equation (13) makes the plane E =con- U H-i
stant concentrate to a given plaAe of __ LI' (H-3)/2

=• , while the second to a point of 2 6
1ý). (iveater values of the (-)2a

cotStahits a and c make the intervals Wn=-U(()(Hl I/2{KI+![f -(logX
of coordinates more concentrated. By
trial and error in equations (12) and H2 -2H-I a (16)
(13), desired grids care generated. (16)h~n

The differentiations of a function
f(x ,x ,x t) with respect to x can be where y; the normal distance, w ; the
traAsfgrmed into, streamwise vorticity, w ; the craswise

3 vorticity, w ; the norlal vorticity,
f Z h ; the metric coefficient, KA2; the

Xi n 1 n nn geodesic curvature, 6; the b undary
i n fl nlayer thickness, U : the velocity of

boundary layer edge, 0; the monentum
3 3 thickness and H; the shape facter.

f x -z E f En ýM
1j nl m-1l Entm xi Xi For the wake calculations equa-j tions (1) and (5) are expressed in the

+ r f ýn explicit time-marching finite differ-n-I 'n xi x (14) ence forms. A modified upwind differ-
encing method is used for the convec-

3 3 tion terms and the centered differ-
V f-( E Z A f + Ef p )/JZ encing method for the diffusion terms.

n-i maI nm 4ntms n-u &n n .
Calculations are carried out

thirough the following iterations. First
y k and c are determined at t=t+At which

(f t) xfY'z(ft) E'y nul Xn "t p orovide dve" and thbn w ww are"otis h velocity field it ý=t+6t

on the body-fitted coordinate system, is determined from equation (9) by
where making use of the obtained vorticity
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distribution. The calculations to solve At<Min{Z/[4(D 1 1 +D2 2 +D3 3 )-2(CI+C2 +C3 )
equations (1) to (5) are limited within
the domain V, while the velocity field
can be determined beyond it. This se- +(D 2 +D2 3 +Ds I (17)
quence, shown in Fig.2, is iterated
until a steady or quasi-steady solution where D. 2 +D +D i>0 is assumed and
is obtained. Ci.DIj arZdeTineAdas follow,

The time step At is important in 3

the explicit method. It is determined C. E Un$. 4 P.
by von Neumann's stability analysis n=1 fn ei
[i0]. Dij--tAi (18)

Input Hull Form 
13 J

2

Body Pitted Coordinate Potentill Cal. Min( ) in equation (17) means to use
is generated; eq.(10) by Panel Method the minimum At on the mesh point at

Boundary Layer Cal. that time.
by Integral Method

Because the problem is an initial-
Initial and Boundary Induced Velocity boundary value problem, initial and
Values for Wake Cal. Distribution in the
are'determined Wake by B.L. vorticities boundary values must be assigned. They

is obtained are tabulated In Table I and 2.
I B B B B are the boundaries

W So the coputing reglon V, as shown in
1 l Fig.l; B is the terminating surface

- H of the boqAdary layer calculation, B
At is determined is the hull surface B is the outeP
by Von Neumann's 

is outMethod boundary and Bx is FM terminating
tn11.1tn+,t; eq.(17)

k and a are transported U
into the wake by At.

nl l v n+lare
n-n~l determined using lp

ukn, Cnn ;eq.() Wake calculationi I. Region; V

distribution is
calculated from 0.0n n n*i,

unv 1;eq. (1)

Induced velocity X

distribution uunl
is obtained
intagrating w1  ; eq.(9B

Wall vorticity n+l
h Bwl

is determined; 4q,(19) I
l Calculation

N It t end tlime, b out

or not?

Wake Cal. END

Fig.2 Computational sequence Fig.l Coodinate system and definitions

V Bbl b h Bl Nh 5 out ex IV I be

k kbl z•1 4 . kbl 0 kle

"". O •" tl,. i 0 A , 0 0

0 151. .

U2 0A 0l w0t it, Ul -0lla 0 zla-:0 bi I ssk~a

i 0i

1 34 xU 1  01uI ;11•i~ bl

Table 1 Initial conditions Table 2 Boundary conditions 4

-16,.
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surface in the x direction (the down- ment. All the results are shown in non-
stream boundary). The subscript bl dimensionalized forms by the uniform
refers values on B which are obtained flow velocity and the half length of
by the preceding b~Indary layer calcu- models, unless otherwise stated, but
lation, the same nomenclatures are used. The

origin is at the midship.
The boundary values of vorticity

on Bh, ih at t=t+At is assumed to be As shown in Fig.5, the bounda-
provided in terias of the velocity at ries Bx. B Bout' Bh and B are mapped
t=t, into =50, =u+20, rrO =I_ respec-

tively to form a rectangle computing
ih=U _jU n (19) domain. The trailing edge (A.P.) ismapped to the point of ý=16 and n=0.

The computing domain is extended For the present transformation
at each time step so that the vor- P1 ,P2 are chosen as follows:
ticities on Bx and B are definitely
zero. After B reach8kta certain posi- Pl--KI'g(-6 x(01ý11tion, howeverý beyond which the com- l=-l.Sxi03 sgn(•'16) exp(-0"If•-16j)
puting domain is not extended anymore,
the second derivative of the vorticity -S.0×10'sgn(ý-16) exp[-0.8{(Q-16) 2

with respect to x is imposed to be zero
on B instead.

x. 1

initial values for k,e,v are
provided by the Cebeci-Smith modal on
B For the sake of prompting the (20)
difusion of the vorticity. the same =A 2 2_ A n2
distributions as those on B are ex- 2 - &
tended up to x=l.2 instead o' •zero. 2 Yn

5. Computed results and discussions "5"0xl0•sgn(q-0) exp['0.8{(•-17)a

3.1 2-Dimensional Elliptic Cylinder +(n-0)2}1]

Near wake flow of an elliptic P makes the &-axes to concentrate
cylinder is chosen for the 2-dimen- around a point (.n)=(16,O), while the
sional calculation. It has a blunt first term of P gives the basic n-grid
trailing edge and significant separated size at 4=1 ang the second term modi-
flows are likely to take place which flies it.
are hardly possible to be predicted by
methods based upon the boundary layer The grid for the actual computa-
assumption. tions is shown in Fig.4 where the

curves correspond to the & and
The ratio of the minor and major 11=constant lines,

axes of the elliptic cylinder model is
0,125. It is designated EM-125 here. The potential flow is described
The flow is parallel to the major axis by,
(in the direction of x-axis) of the
elliptic cylinder. 6 The referredReynolds a_ -__•22 -cOs.f-bsinh2FU
number Is 1.6Gx10 . corresponding to P2(id s h2
the conditions of the velocity measure-

Bout Bout

Bb'! x Bbl xH1 B-0 Ok t•

B 11

- wq--Z20 n--20

Transformed Plaao Physical Plane

Pig.3 2-dimensional grid generation
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Fig.5 Results of boundary layer
calculation for EM-125

3y b sin..__o (21) VddO0.iU sin(2nt/0.74) (23)

cosh2 &-cosa n
is added to the uniform flow forX+1?-/FrCOSh(lif), i-/'1 (22) t<0.37. This disturbance makes the flow
asymmetric, If any, within a reasonable

The results of the boundary layer computing time. The constant 0,74 is
calculation are shown in Fig.5. To Is the fluctuating period of wake flow and
non-dimensionalized by pUý, The calcu- 0.1 is the amplitude; they are aprlori
lations are quite stable up to around chosen here. It is examined that nel-
x=0.8 beyond which H starts to increase ther the period nor the amplitude af-
steeply. B is assumed at x=0.8 where fect the final solution. Fig.6 shows
reliable rgults can be assured. An the computed results of vorticity dis-
additional v-component velocity. tribution at several time steps. t is

SC .
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Fig.6 Vorticity distribution for EM-125

the non-dimensionalized time by L/2U. the recirculating region behind the
The results show almost converged at body; the flow seems to direct Into the
t=1.7. In Fig.? the calculated veloc~- hull In the Cartesian coordinate case.
ity distributions at X=i.0(A.P.) and This means that. the employment of thec
x=i.2(in wake) are compared with the body-fitted coordinate makes the hull
experimental data. The results obtained surface conditions to be satisfied more
on the Cartesian coordinate system(6] strictly not only for the velocity but
are also shown there. u and v are the for the vorticity.
velocity components in the x- and y-
directions respectively. The differ- It is disclosed that the solution
ences between the two calculations are for k, c has not converged locally In
rather little and they are in good the recirculating region. There may be
accordance with the measured. some limitations for the use of the k-E

model with the standard constants for
In F igo8 the flow patterns at such a recirculating region. Fig.9 may

the.6 are shown which are obtained on support thi's guess. It shows the
the body-fitted and the Cartesian coor- comparison of computed v with the
dinate systems. Differences are ob- measured for EM-200 whose etio of axes
served in the vicinity of hull and in show

ences ~ ~ ~ ~ ~~ i 0etween The re acltos r o ,€h s unots aovege lo= ally05
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poorer agreements with the measured expressed as follows.
than those at x=1.100 although fluctua-
tions aestill more Intensive. 1~F aH a (ta a __L I+ L-) (

We (25)eavaua
The viscous drag coefficient of a

body is placed In a uniform flow Is Substituting equation (25) Into equa-
given by the momentum theorem. tion (24), the viscous drag Is rewrit-

~ -V Idy (24) ten, in terms of w, ve and u.v:

where R is the viscous drag and H Is - *3 r ax a
the total pressure. The suffix - means 3V au
the values at the upstream. The inte- e )yd
gration is carried out at a certain a6yrxj)}yd
section in the wake. From the 2-dimen-sional Reynolds equation, the y-direc- I1fo(Uul v~y(6
tion gradient of the total pressure Is ~ ~ {U)~Y(6

r Sig
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Fig.l0 Viscous drag coefficient
distribution for EM'-125

In case of blunt bodies the use of 3.2. 3-Dimensional Ship Wake
equation (26) Is expected to be much

* more accurate than the pressure inte- SSPA-720(C 0-o675) model Is used
gration over hull, for the present computgtion. The

Reynolds number Is 6.6xi0 . All the
The viscous drag coefficient of experimental data hero showin are le-

EM-125 is calculated by equation (20). ferred from 19).
The infinite Integration appearing In

*equation t26) Is carried out only In The grid generation is carried out
the domain where the velccity is 2-dimensionally at each x=constant
smaller than the potential velocity plane to save computing tine. As shown
component. In Figill the computing domain Is

transformed into the rectangular solid;
The calculations are carried out the surrounding surfaces such as the

at several control sections whose re- downstream boundary B - the outer
sults are presented In F1ig 21 0In a non- boundary D the upsfream boundary
dimensional form by 1/2pU L. The mea- B the HEsurface 9 the free
sured result Is obtained by the wake st1ýf ace boundary 8 andh'the center
survey method at 6x=1.9, The Reynolds plane B.,~ are mappvA to &=30. 11=18.
number is I.i5XIO which dose not match E=i. 1-1. C~i and t=18 respectively. In
with that of computation. this calculation C Is the function only

of X'
It Is found that, though Ohe flow

*pattern seems almost steady L=1,7. the The generated grids at x=0.8 and
viscous drag still fluctuates with time 1.0 are shown in Fig. 12. There were not
and depends on the position of control any special difficulties to generate
section. The calculated drag coeffi- them for this case. About I minute
cients. however, seem to converge and computing time by HITAC-14200H Iis addi-
to come close to the measured. tionally required for their generation.

Through the present calculations The procedure for the wake -calcu-
we Can conclude that, the present acheme lation Is the same as the 2-dimensional
works well to yield satisfactory pre- case. Two simplifications are made to
dictions of near wake flows and the use save computing time and memory stor-
of the body-f itted coordinate system ages. One Is to skip the induced-ye-
Improve the accuracy of the bull-sur- locity calculations once for every 5
face condition. step except the vicinity of the hull.

The other Is to satisfy the bull stir-

j
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Y face condition for the lnduced-velocity
0.1 0.0 only for the normal component and the

tangential component is set free.

The potential flow is calculated
by the panel method. The boundary layercalculation is carried out up to
x=O.8(B by the integral method where
the MaBr model is invoked for the

velocity profiles. The results are

Fiq~l• shows the results of the
boundary layer calculations at x=OnT
and 0.8. The measured results -t x=O.t
are referred for comparisons. The cae-
culatlon Is carried out by the Integral
method where the Mager Velocity-profile

X-0.8 model is used (91. At x=O,7 the calcu-lated boundary layer parameters at .T

good accordance vith the expetimentalones, but H andsu have a iuttle smaller000 varuos at the hollow part of the bodycplan. The reason is that the boundary

layer approximation is gradually break-
ltg down around such a part. After some
consideration cbout the CPU timoandthe
accuracy,Bhi is determined at x-O,8.The resultt at x-0.8 are used as the
upstream boundary values for the wake

0.1 calculation.
p n Fig,14 the strearwise and cross

flow velocity profiles at the positions
B and C in the xsO.9 section are shown;
positions are ahown in Fig.iC, Veloci-
tjes and coordinates are nondat senson-
alTzed by the boundary layer edge va-
locity and the measured boundary layer

Sthickness respectively. The calculated

velocity distribution at B is in good
accordance with the measured except in

Ftf.lZ Grid generations the vicinity of the wallt while a poor

for SSPA-7Z0 model agreement is at C. This is because thepoint C Is in the wake of the bilge
vortex and the comeputed results cannot
simulate it Details on this disagree-

for SP.0 m l at I
pon C.. Is In:, the waeofte ig

"vote and the copue reut cannot/" •
simulate It.. Deal on:, this.ds...ee
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Fig.13 Boundary layer calculation results
for SSPA-720 at x-O.7 and x-O.S

ment Will be discussed later. observed. This may be due to the grid
sizes In the tangential directions

Flow vectors at xt,0.9, 1.0 and 1.1 which are not small enough compared

are shown In Fig.iS. An Intensive down- with those of the normal direction.

ward flow in the vicinity of the hull Another possible reason may be the

Is observed. Although it Is not so assumption that the source distribution

intensive, such a downward flow often on the hull is constant over A panel. A

observed in experiments as a reverse finer grid scheme may contribute more

cross flow. Contrarily to our expecta- or less to improve.
tion, the body surface condition seems
to be of little accuracy; appreciable Fig.16 shows the equi-wake con-

normal components to the hull are still tours at x=O.9. 1.0 and I.I. The mea-
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Fig.16 Wake contours for SWPA-?20

sured contour at x=o.899 is also shown much saved, the use of the boundary
for comparison, layer approximation up to x=0.8 seems

the reason for the poor skmulation of
The calculated results simulate the bulge-like equl-wake contours, for

the equl-lines of 0.6 or 0.7 rather the Hager model can not afford any
well but not so well those of 0.8 and bilge vortices. It may be suggested.
0.9. The bulges of the equl-ilnes of therefore. that the bilge vortex can
0.9 or 1.0, observed in the experimen- not be simulated even by a full equa-
tal data, are supposed to be due to the tiOn unless the upstream boundary con-
bilge vortex. As stated previously. in ditlon Is carrying it. Of course If the
the present computation, th6 flow field machine can afford, the choice of a
up to x=0,8 Is calculated by the bound- wider computing region for the vorti-
ary layer approximation with the Mager city transport equation may improve
velocity-profile model and the results further.
at x:0.8 are used as the upstream
boundary values for the wake calcula- Although there are several rooms
tion. Although the computing time is for Improvements, the wesent numerical
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scheme can be extended to practical of Velocity Distributions in Ship
uses with a certain accuracy. The voe- Wake. J. Soc. Naval Arch. Japan.
ticity distribution, which is obtained Vol.19(1975).
in the course of the present calcula- [51 Mori, K. and Doi, Y.: Approximate
tion, may provide another important Prediction of Flow Field around

information for stern flow problems. Ship Stern by Asymptotic Expansion
The computational time for the SSPA-720 Method, J3 Soc. Naval Arch. Japan,

case is about 2 hours for 100 time- Vol.144(1978).
steps by HITAC-M200H of Information [6] Mori, K. and Ito. N. : Wake Calcu-
Processing Center at Hiroshima Univer- lations around 2-Dimensional El-

sity, liptic Cylinders by Time-Dependent
Vorticity Transport Equation, J.

4. Concluding remarks Soc. Naval Arch. Japan, Vol.154

A new wake calculation method (1983).
which Is based on a combined set of (7) Wu, J. C. and Thompson, J. F.:
governing equations of the vorticity Numerical Solutions of Time-Depen-

transport equation and the boundary dent Incompressible Navler-Stokes

layer equation have been proposed. Near Equations Using An Integro-Differ-

wake flows of a 2-dimensional elliptic ential Formulation, Computer &

cylinder and SSPA-720 model are calcu- Flutds Vol.1(1973),
lated. In the case of the 2-dimensional (8' Thompson, J. F.: Numerical solu-

calculation, good results are obtained, tion of flow problems using body-

while the results of the 3-dimensional fitted coordinate systems, Compu-
calculation have still room for im- tational Fluid Dynamics,

provements. Hemisphere Publishing Corporation
(1980).

The utilization of the boundary 19] SSPA-ITTC Workshop on Ship Bound-

layer approximation contributed sig- ary Layer 1980. Edited L. Larrson.

nificwntly to save computer memories Publications of SSPA, No.90(1980).

and CPU time. (10] Roche, P. J.: Computational Fluid
Dynamics, Hermos Publishers(0976).

For the turbulent closure the k-E
model vas invoked which simulated quite
well except the far wake and the reclr-
culating flow region. For thp model to
be applied for such flow regions, a
more suitable set of empirical con-
stants may be needed.

The use of the body fitted coorS-
nate system can make the boundary con-
ditions predicted more precisely.
It does not Make significait difter-
ences In computing time from the Carte-
sian coordlnate system.

Reference
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dimensional and Axisymmetric
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DISCUSSION
of the paper

by K. Mori and N. Ito

"NEAR-WAKE CONPUTATIONS BY SOLVING THE VORTICITY TRANSPORT EQUATION ON A BODY-FITTED COORDINATE
SYSTEM"

DISCUSSION Another important merit, which may be still
by V.C. Patel more important is that the governing equation

is not carrying the pressure terms. This means
The advantage of using the vorticity- the pressure field is ilaxed. We need not

transport equation lies in the fact that the care about matching the equations from the
numerical solution is confined only to the boundary layer approximation to the full aqua-
rotational flow. However, quite extensive tion even where the pressure may not be con-
experience with this approach in laminar, and stant across the (thick) boundary layer.
principally two-dimensional, flows indiMes
that the solutions are highly sensitive to the We think the vorticity can be the important
treatment of the vorticity boundary condition physical quantity which may help sound under-
at solid walls. This suggests that for standings of the complicated stern flow.
TURBULENT FLOW one must very carefully model
the flow very close to the wall, i.e. resolve DISCUSSION by H.C. Raven
the velocity gradients in the sublayer, the
blending zone and the logarithmic layer. The It is not very clear to me hew the bound-
k-c model that you use certainly does not do ary conditions on the hull surface are
this (see the recent review of near-wall tur- satisfied. The induced velocity field is
bulence models by Patel, Rodi and Scheuerer, needed to cancel these. But according to Fig.
AIAA Jourial, Vol. 23, p. 1308, Sept 1985). 2 this potential velocity is not updated during
From the results presented in your Figure 16, the tioe stepping; so only at t=O the normal
it is evident that insufficient vorticity is boundary condition would be satisfied. The no-
being qenerated at the hull and that it is not slip condition is imposed by specifying * boun-
diffu~ini in the manner observed in the dary value wh (t + At) expressed in the
experiment. This is underscored by the velocity field at time t.
results shown in Figure 14, where we see that
the calculated velocity profiles are like Solving the vorticity equations and deryv-
those in a laminer flow, and the vorticity ing the velocity field from the Blot-Savart law
(velocity gradient) in the wall region is one should arrive at exactly the same wall vor-
grossly in error. ticity again. In other words, the vorticity at

the wall is not allowed to vary in time except
huthor's RePIX by numerical inaccuracies.

Thank you for your kind comments and useful Since I can hardly imagine that these sup-
suggestions. Careful treatments of the turbu- positions are correct, could the authors
lent flow in the very vicinity of the wall explain their implementation of the boundary
sthuld be reminded in any computations. In conditionst
this sense we admit that our numerit-Al schoee
has also a room for improvments. We think, Other comments concern the numerical
however, that the insufficient results for the accuracy. If the longitudinal momentum is
3-0 computations which you pointed out are accurately conserved, the momentum deficit at
mainly coming from the nuierical treatments of different x-positions in the wake must approach
the image systee of the vorticity. Additional the sam steamd-state limit. Fig. 10 is n~t
source and circulation distribttions on toe very convincing in this resp•ct. Pinlly.
hull or* required to cancel the induced veloc- usint 18 or 20 points through the boundary

ity there. In the 3-0 computations, we lay. in a hil,-N Reynolds number turbulent flow
neglected the letter distribution and used without employing wall functions might be
rather toarse panels for the soutc* distrib-- insufficienz.
tiOn simply to save the cooputing time. We did

, accuratetly for the 2-0 case. Auhorls Re9_ly

It is true thea the boundary value of vot- Yhamk you for your discussion (1) As you
ticity on the solid surface is rot definite, pointed out, an additional potential velocity

uFor.rately, in out sche•a, the region 10ere field is necessary to satisfy the hull surface
it is required is limited to the small part condition. As mentioned in the fourth pare-
c IOe to toe trailie n Qed ad tote vortjity. graph of section 3.2. we did so by distributing
which s proportional to the skin friction. on additive source on the hull (we, have to apo-
has not so large values. We do not think, looile for not sentioning definitely in Fig.
therefore, that it is a fatal difficulty. It 2). We think, however, th* accuracy for the
is an important •rtit that the computing domain
it much smaller that that where the velocity-
S:o ssr•Scheme is solved. a you pointe• out. '
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additive source distribution was not enough,
for we u3ed the same panel scheme as those used
for the potential component; for the induced
velocity field to be canceled, more finite mesh
or higher approximation for the source strength
on a panel may be necessary.

(2) W• cannot understand your comment that one
should have the same wall vorticity at any
time. The velocity field changes at each time
step and eventually the corresponding vortic-
ity may change. This can be easily confirmed
from the definition of the vorticity.

(3) As in Fig. 7, the flow field is still
unsteady. The momentum theorem cannot be
applied to the steady flow exactly speaking.
Another reason is that the integration in the
lateral direction is, as mentioned in the
text, carried out only in the domain where the
velocity is smaller than the potential com-
ponent.
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STUDY OF 3-D SHIP BOUNDARY LAYERS
BY MEANS OF AN INVERSE METHOD

J. Piquet and M. Vlsonneau

Computational Fluid Dynardcs Group
LHN - ENSM - 1 rue do [a NoO

44072 Nantes Cedex - FRANCE

Abstract because the !teratlve method converges very slowly.
Methods of the above type where the external flow Is

This work Is concerned with the development of prescribed for the bot. lary-layer equations are
an Inverse mode solution of the three dimensional called direct methods. It is well known that they lead

boundary layer equations. Reasons for Investigating In the two-dimensional case to a singularity at the
this problem are first discussed and rest on the point of vanishing skin-friction coefficient. Catherall
possibility of marohlng In the unaccessible zones by & Mangler[11906] were the first to use an Inverse
means of a Flare-type approximation without method In which they relaxed the pressure by

encountering any type of singularity. The method prescribing the displacement thickness. The pres-
developped Is a generallsation of Carter method sure was a result of the computation and the method
[1976] and uses either the standard or the zigzag allowed the integration past the separation point into
box scheme. the reversed flow leading to solutions in agreement

Threedimenalonal results are reported Including with solutions of the full Navler-Stokes equations, as
the prolate spheroid at Incidence (19] and the SSPA demonstrated for Instance by Briley & Mo Donald-
720 ship model E20:. E21] for which It Is shown (19751- This ability to march downstream of
that given displacement thicknesses resulting from separation Is the main reason for which Inverse
the direct mode allow successful recovery of the methods can be used profitably for a large variety of
external velocity and boundary-flow given and flow situations Including test of calculation models.
computed with the help of the direct mode. design and optimization of boundary layer charac-

teristics.
1 . -Introduction In the three-dimensional case, things appear

less clear as separation Is not clearly defined.
The development of prediction techniques for Lighthilit19631 considered the oonvergence of skin-

flow field oontalning separated regions is of friction lines onto a partlcular skin-friction line
fundamental Importance since separation influen,!ei originating from a saddle point as a necessary
the performance of engineering devices such as condition for flow separation, From experiments. It
wings. compressors. Inlets.,. : It conoarns also is now widely accepted that two different types of
heat transfer applications as the location of soparation can be distinguished: (1) an *open
separation greatly Influences the values of heat separation' characterized by a longitudinal vortex
transfer noeffioients. Prediction techniques for along a regular seaeration line resulting from a
separated flows can also lead to a better under- thickening viscous layer. (1i) a "closed se&paration
standing of trailing edge flow phenomena and their for which vottiolty Is shed away by o sudden
Influence on the configuration of flow past wings. breakaway ,rnom the surface alng a singular
Endly. thiy can be also a valuable tool of separation line. More recently. Tobak & Peaks
Investigation of ship stern flows which must be (1082) used the notions of topological structure.
accurately computed If hull-propeller inteeactlons structural stability and bifurcation to Introduce a
are considered. distinction between local and global properties of the

In the absence of separation. Invtsoll and flow: (I) when the skin-friction line, towards which
boundary-laysr flow theories can uwuaily be applied wtl streamlines coiverge. Is Issued from a saddle
in a weakly coupled procedure to yield suffiolently point. thc seperstlon Is global and the topological
accurate solution : an Initial computation of the flow struoture is altered. (11) the limiting streamline
"Invisoid velocity field gives the far field conditon for can also be local and leads to a local separation
the boundary layer calculation which In turn provides without modification of tie topological flow structure
an estimation of the displacement thickness. The as an the spheroid at low Incidence. Unfortunately.
effect of the boundary tayer on the Inviscid flrw can the parameters that control the Occurence of
be accounted for by adding the dispiasdment separation are not known,
thickness to the origlinl surface geometry and From a numerical point of view. direct boundary
repeating the lnvlsolr flow calculation. Usually the layer calouletion methods fall to describe separa-
Iteration Is terminated at this point not only because lion Numerioal solutions Indicate that a numerical

, the result appeS oftlen to be sufficient but aleo *breakdown" occurs close to en or"a whee the
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streamlines focus together onto an enveloppe. By UzVe•ia 0 ; '•,,O (2)
analyzing a system of integral boundary layer
equations. Coustelx & Houdeville[1981] have do- The solution of (1) subject to boundary
monstboted that It Is possible to avoid singularities by conditions (2) requires initial conditions on two
using an inverse formulation. For all these reasons, pianos Intersecting the body along coordinate lines.
some work has been done concerning inverse The construction of these Initial conditions for a
boundary layer solutions for threedimensional flows ship-like hull Is difficult due to the variety of bow
E13], [14]. [30]. [44]. shapes. An ad-hoc starting procedure Is given In

In this study, the development of an inverse C 2 K code and It has been supplemented by a Blottner
method Is examined for turbulent three dimensional & EIlls1975] type procedure for the prolate
flows by moans of a finite difference method. The spheroid.
selected method is an extenfion of the method of In the case of rectilinear motion of the body,
CarterE1978] along lines somewhat different from W=Pz=O on the plane of symmetry of the hull,
the extension of Formery & Delery[1981 1. This finite causing (1c) to be trivial. However, differentiation
difference method uses the general boundary layer with respect to z removes singutarities and leads to
formulation of Cebooi-Chang-Kaupst 1979] and their the so-called longitudinal attachment line equations
source code provides the basis of the Inverse which can be written:
procedure.
The paper Is outlined as following: section 1 is (khaSu)G)x t v.sina ,t (4 2s3Le :0. (3a)
concerned with basic equations which are of course
the same both for direct and inverse modes. Section
2 discusses the shortcomings of the numerical
method and describes Its application to the -- xV- K4 Uu e Uv" (Sb)

threedimensional Zigzag Box Scheme. For the sake 4
of conciseness. Standard Box Scheme which has K
also been coded Is not considered here. Section S g÷zx zy OR,=

discusses numerical results for the SSPA 720 and -ý"h24 (c) "
the prolate spheroid at Incidence. In section 4. " t÷W--A÷Y,, LWe iR. 3
advantages and disadvantages of Interactive formu- T hY

lations are examined and an attempt of generaliza- with boundary conditions:
tion of the Veldman's quasi-instantaneous formula-
tion Is sketched. 0 0; : U, z, wT , (4)

1. -Basic equations For turbulent flows, closure assumptions are
necessary for Reynolds stressea -u v and -._w

The governing boundary layer equations for three which are modelled with a newtonlan closure of
dimensional Incompressible laminar and turbulent Bousslnesq type. The turbulent viscosity vT Is
flows In a curvilinear non orthogonal coordinate specified by the two-layer algebraic model of Cebeol
system (Fig. 1) are given by: & Smith[1974].

(0 , ~ The mapping of the ship hull given by a
(DIin1 e)x+ (WN.1 sine) + (Y9 2sinh1 )y 0. (is) succession of unit circles is performed by a James

Z method as developped by Halsey[1979]. The
Th 1 -- IL~Ii 2

Lr• f A coordinate system Is completed by spline fits in the

X , A K , planes z-const. for y-y(x) and z-z(x) which yield
A ". * (1b) derivatives allowing the computation of K1, K2 . K12

X+ý ÷ = and K2 1.
h4 The boundary layer equations are solved In a

- Icr)÷ O+K•O{sc)÷.~KM o~ transformed coordinate system using Lees-Levy-
"W W W I -K() a Mangler variables:

IN(Dto- 4F CSge XW ag; ýFk (5)r M-j- X.,, ; z.z ; c au).d ,= szwjh(d

Here, hi and h2 are the metric coeffliclents: they while a two component vector potential Is Intro-
generally depend on x and z: 0 Is the anglo between duced:
x and z coordinates, KI and K2 are the geodesic
curvatures of the curves zv~oonst. and xeconat, Uunvl.w~i~4;b~i~~.x4 (a)
respectively and:

then. f and g are defined as,

so that UnUef W*Uretg' where the dot abbreviates
-(Kio)+,ew6(K•L•.4 for the il derivative. To transform the longitudinalattachment line equatlona. the # component Is

defined by W~h~sinen Oy so that Vhjh2 9lnemu-ii-*K1 " *where * and 4 are still specified by (9) so that now
WUrr•g ,cu

At the edge of the boundary layer 0lb.c) are Even if the need of such a transformed
sadtefled by UUeo(x.z); W"Wo(x.): coordinate system loses of Its evidence for coupling
while, for y"O: problems. It la felt to allow. as In the direct mode. a
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moria optimal distribution of mesh points In the The streamfunctions f and g will not be used as
boundary layer. Moreover. It permits more easily the they go to Infinity, rather streamfunction perturba-
switching from one mode to another. tions are Introduced which go to zero at the edge of

Substitution of (5) (ea) (7) In (1) gives: the boundary layer and thus allow displacement
effects to be more accurately Introduced. Several

~FU)...4II 4 (j4*) ~ *'~choices are possible and (10) has been selected:

+r KV+21 1+ (We. A~

where:fz-3, (8a) (~I~~~y~I10a. b)

so tht8b) ~ ivs

The numeica sou~tio can tenb Iba.ne by)

m~~s~U~wAuxiite vrations on the nowina taerm Untnownsuaedf:
where:.sK c4 g. j vj.u g'wj tj =v atec wnd xn k ito

(9) so that thelina rizbdg i fferecsqutos:o h
syte ca bewitnudrth olwnom

hL ýhjýAV UJAx _ji)v+t214Yjs(6&). for2ua)

2.4 -,: The nuerca methodca souto can( the ()be~ obtine bya
inW t-she direc mode theza foregoinrde eqaton (8)em wit Neto

meho Iteration in the invrs mode.r their Unnon 3re
as star ý1ting t pon fr the construction of. the inverse at eahnd (Z)u.i() xvn(' zk 111 fo

formulation~N- and theirzk) sorc cdehae ee uedas (
code.l Variousa inversey methodson can be anened:

achring sbtoithethion of t5he prescr)ibe functionds. A4 ) (x(n { +()~fz 1
trnsiato veoc Ty and ;X x adds an thttelnaie ifrneequations for the'

componentm ofn votet ofite thee extrna flowwin normlmt

Unotnaey the syte of Intgra eqain have v 4) r) fr

YcslhaatG2.Bcuetemsofn knw tAw f&\(ti% ~ for (Sb)

Thsco+ a ensont eaepoel mte for th(ae1fcnisns2Te aife)o

Inuthessdirc cmputationsfbyeusing a negralmthods wht(mlr8fr)sace(s~~4~4 uv )
for anrniie swlept wyuing, ant has OueCals engKupse for (12b)~= n W srplcdb ~ h
bFrmeth y &171 Inry the9 andes madan&Lkdi the-mnsol se, theyieedrnwete
fomlto a9n4] standar orrc cigde bove schem use used

a tatig ontfo te ostucio o heInere (4)4ýU +(jýj-+ 40 Y' (416V-6+31~jS
code Varous nvere mehodscan e Inente
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No slip conditions are (Is0): downstream the pressure minimum Implying a rapid
S, = o wthickening of the boundary layer which absorbs

Inviscid fluid. For an Incidence greater than 420, the
while outer flow conditions are written on JaN: separation Is close to the nose.

U,, -"•Q 3W2 8 % - 4WN = 0 Once the situation Is known In the plane of
,f- symmetry, the computation can be performed

The linear system to be solved is thus of the following outside of It. At low Incidence, a line of pressure
form: minimum starting close to the windalde near the nose

moves towards the leeslde downstream; before
B4 AA.÷ Ci&3*4 D• E finding this pressure minimum the circumferentialflow meets an adverse pressure gradient and Is
B,•J4+ AIN -* -K thus deflected downwards leading to an accumula-

tion of the flow on an *open' separation line Is which
be &N + D be.= Re Is responsible of the emission of longitudinal vortices

and terminates to a nodal point downstream ( Han &
where Patesi1979]). At 100 of Incidence, experiments

~ ,Wf • •Uw •l,•3 •A •* ,jT Indicate that the difference between potential flow
E[, ý-.; swi, 3,8 and experiments is quite small on the upper third partof the spheroid. Patel & Baek11981] computations

A4 CO O 0 with a ADI method show for Re=l.6 100 a
circumferential flow reversal on Cfe some degrees

B4A• C4 0 D R40 before a lateral reversal line I1 (called XFR) defined
I apparently by %w. Ve = 0. The skin friction

direction changes very abruptly, Its modulusbecomes very small while the boundary layer

A C I thickness thickens very quickly. Similar results have
553 ~been found by RagabE19823[19853.

For Re=7.2 10°, similar phenomena are found
but more downstream and less abruptly. Serious

I B AN Do SW R numerical difficulties appear In these regions whichlead to a divergence of the computation for
BI DE 01 x/L ;) .44 for Re = 1.6 10" and x/L o .88 at

This 6x6 block tridlagonal system with one column is Re = 7.2 10., Similar computations due to Cebeci
solved with an ad-hoc LU factorization wh!oh Is (19843 with his characteristic scheme at 300 exclude
realized by the subroutine SOLVOC. the possibility of marching downstream from the

The method has been coded both for the leeside plane of symmetry while the marching from
attachment line equations and for the three the windolde is limited about e = 1100. Strong
dimensional problem with a standard box scheme evidence of a A-zone accessible to the computations
and with a zigzag box scheme. The zigzag scheme Is Is therefore present In every work. The boundary $A
necessary for the ship geometries for which three which limits the *OK" of accessibility can be Identified
dimensional computations are started from the on the windslde with Is which appears to be a limiting
vertical plane of symmetry where We ( 0. streamlina In the sense that It is tangent to the skin

friction at every point.
3.-Results Interactions are not accounted for and the

solution behaves as If a singularity of Brown11965]
(I) Prolate spheroid type was present. This gives some credit to several

Numerical computations of separation round models of Interaction analogue to those proposed by
bluff bodies have been especially performed on the SmithE1982] for slender wing bodies and by
prolate spheroid at Incidence. Such a simple Riley[1979] for slender conical flows at Incidence.
geometry for which an Invisold solution is analytically When marching from the leeside. things appear less
known Isolates conveniently specific difficulties of clear: while at 60 of attack, Ia seems partly to
boundary layer computations, coincide with Is. the progression of the computation

Let us first consider the plane of symmetry which was not possible from the leeside at 300 Is
problem which Is a specific while Interesting limited at lower Incidences by the direction of the
particular case In that It differs from the two- invisold streamline so that It Is not possible to march
dimensional problem In the presence of lateral flow further than the streamline suboharacterlstlo corres-
convergence or divergence and from the twodi- ponding to the top of the arrow.
menslonal problem In the absence of a oroseflow. Even If such computations do not answer the
Moreover, It can be computed and checked question of the threedimenslonal separation and
Independently. particularly of the birth of I., strong evidence of a

Wang[1974][1976] In the laminar case. Brown singularity appears in every computation so
LeoointeE19791 In the transitional and turbulent case that an Inverse method should be useful while the
have computed this type of flow, Most recent results need of a lateral flare approximation does not seem
were provided by Osbeol et AI11980] who showed evident *a priori',
that for an angle of attack less than 420, the laminar The lateral reversal line seems to behave In
separation oooured downstream of the leeside of the such a way that V 0e a 0 If ?w' 1e becomes
spheroid (aspect ratio 1: 4) while for plane layers nogatlve In the unacoessible zone, for the Inde-
round airfoils, the separation was close to the pendence rule to be satisfied. the standard box
leading edge. Moreover a circumferential reversal scheme Is unadequate as it Is unstable for negative,
occurs so that a lateral wall divergence Is present aspect ratios and therefore a zigzag box scheme
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must be considered. and edge variables vwall, twall, Ue. We at different
Comparisons between direot and Inverse mode x-stations using both the direct and Inverse

computations around a prolate spheroid (excentricIty formulations. An excellent agreement Is observed on
4: 1; Incidence 60) are now presented. In order to the components of the edge velocity Ue. We. like on
rule out the problem of high Incidence flows, a the wall variables vwall, twall (while some slight

* special starting procedure has been Implemented oscillations surprisingly appear after V/L = 1.00 In 2
which uses the orthogonal coordinate system of a region where the crossflow component Is maximum
Blottner & EIliis[19733. Direct mode computations and positive). Until now. no attempt has been done
start in the Immediate vicinity of the stagnation point to extrapolate the displacement thicknesses an d
where Blaslus & Howarth developments provide the continue the Inverse calculations beyond the direct
initial laminar conditions on the first parallel mode unaccessible zone. Such results should be
coordinate adjacent to the pole located at the available In a near future.
stagnation point. The solution Is then marched (li)SSPA 720 ship model
"away" using the Cebeci-Chang-Kaups method Computations relative to the SSPA 720 ship
(0 ; R/L ; 0.05). Because of the divergence of model[20].[21] (Fig. 3) usually start at I/L=-
coordinate lines downstream and also because the 0.6. Initial values are generated from experiments
boundary layer does not thicken in the same way over giving 1w. u.-/qe and 8+=sur/v by the method of
and under the nose, a rezoning of the computation Coles and Thompson. Direct mode computations are
back to the "natural body system' downstream Is performed from R/L - -0.6 to V/L = 0.05 and
performed. Fig. 2 shows superpositions of the two comparisons between the direct and Inverse results
meshes which are used: one of them starts from the are carried out from R/L = 0. 05 to R/L = 0. 50 In
stagnation point and the other one from the pole of order to validate the Inverse approach.
the spheroid. As for the prolate spheroid, solutions used In

(a) Comparisons are first carried out In the the plane of symmetry result from a direct mode
forepart of the prolate spheroid (0.044G/L40.,20). method. The boundary layer grid on the surface Is
Solutions used In the plane of symmetry result only taken of equal spacing in the z direction and of
from a direct mode method and all calculations are variable spacing In the x direction In agreement with
done by marching from the windward plane of the CFL condition. 21 points girthwlse and about 50
symmetry. Although not necessary when the flow Is points through the thickness are used In the results
attached, double precision is used as It should be presented here, Fig. 5a-b show the evolution of the
useful for the Investigation of the separated zones. displacement thicknesses A ± and A'z for several x-
30 points girthwise and about 90 points through the stations. Boundary layer remains thin In the vicinity
thickness are used In the results presented here. of the keel (z = 0. ) while It grows rapidly as one goes
A*± and At z displacement thickness distributions along the hull (z = 0,50) because of the
resulting from the direct mode computations are convergence of potential streamlines. The aftart of

used as Inputs of the Inverse mode. Two types of the hull Is characterized by a large growth of A I. the
variables are considered: the wall variables existence of a second maximum which doesn't seem
vwall = au/",(rt=0). twall = aw/e¶1(tl=) and the to be corroborated by the experiments, and by a

.t edge components of the velocity Ue and We. rapid change In the A a distribution from positive to
Whereas direct computations are performed without large negative values. Fig. Sc-f show comparisons
any problem, slight girthwise oscillations appear In for Ue. We, au/ali(ii=0.), sw/atf(¶1=O,) between
the Inverse mode results which grow monotonically the direct and Inverse modes. From R/L = 0. 05 to
as one proceeds downstream, leading to a R/L = 0. 3, the agreement Is quite satisfactory: the
divergence of the Inverse mode. Various smoothing present slight discrepancies are due to the
procedures have been tested to suppress these Irregularity of the &,* and 4 distributions, From I
oscillations without any success. The Inverse /L = 0.4 to RlL = 0. 5, the agreement Is good near
formulation seems to require smaller longitudinal the keel and the waterline, where the boundary layer
and transversal steps to converge than the direct Is thin. while large discrepancies are present for
mode, especially In the nose region because of high 0.8 4z 4 0. 8. In this region, because of the rapid
curvatures and longitudinal variations of the pressure growth of the boundary layer, good predictions from
gradient. the direct computations can hardly be expected since

(b) Comparisons are now carried out In the they rest on a thin boundary layer theory.
middle part of the body (0.40 4 IlL 1 1. 28) Consequently. &a,% and Asa distributions are III
where curvatures and longitudinal variations of the predicted, this leads to Incorrect results for the
pressure are smaller. Direct mode computations Inverse mode computations.
proceed downstream without difficulty, leading to
regular girthwise distributions of vwall, twall (fig. 4.-Towards the computation of strong Interaction
4c-d), From I/L = 1,0 0. the flow Is characterized
by a rapid thickeninp of the boundary layer, the Up to now, two formulations can be used:
maxima of Ala and 6: oocuring near the windward (I) Global formulations for which the same equations
plane (e a 130o) (Fig. 4a-b). In the thick region, are used In the whole field (parabolized. partially-
vwall decreases rapidly as a circumferential flow parabolic or Navier-Stokes equations). With respect
reversal Is observed near the wall. Direct compute- to triple-deck theory. equations used are valid
tions stop at I/L a 1. 82 where the first non- through the complete triple-deck structure so that
converged point Is reached. No attempt was done to the Interaction Is Included In the model to the price of
reduce the accessible zone by starting the compu- the consideration of a-priori negligeable terms In
tations from the leeward plane. The displacement some parts of the field. The main advantages are the
thicknesses obtained from direct mode calculations following: the normal pressure variation Is correctly
were used as Inputs for the Inverse mode accounted for, the formulation should be correctly
calculations. Fig. 4o-f show the evolution of the wall veotorizable. no singularity occurs when separation
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Is passed through, the computation can be carried the experience of threedimenslonal integral methods
out downstream Into the vwake In a very easy way. suggests that, to a certain extent, thin boundary
These have to be paid by the fact that the solutions layer equations may still be used, Inverse mode
can be obtained only on quite coarse grids (with techniques allowing singularities to be suppressed;
respect to storage capabilities of available compu- but how far the computations can be carried out
ters) and, thereftre. that few points can be located remains unclear.
!n the viscous zone. Inducing a fair description of 2-Is the Inverse mode solution of boundary layer
forces. To this category belong, for instance, the equations the beat suited to rule out the problem of
works of Abdelmeguld et Al 119793. Markatos et throedimenslonal singularities? What can be ob-
AIC198Oi. MuraokaE1980]1O982], TzabirasE19853. talned from an interactive procedure. the viscous
Chert& Patel E19841, Raven & Hoekstra[1985] which kernel of which rests on the thin boundary layer
aro mainly devoted to the study of ship stern flows, approximation? Or stated equivalently: to what extent
(II) Interactive formulations for which the computa- such an Interactive procedure is able to give correct
tional zone Is splitted Into two domains, With respect results If a separation is present? The first
to the triple-deck theory, one of the domains threedimenslonal computations of separated flows on
corresponds to the lower dock alone, the other wings and prolate spheroids with integral formula-
domain Includes both the main deck and the upper tions show that the validity domain of inverse
deck. Equations differ in each domain and they are methods Is larger than that for direct methods but it
solved interactively by a coupling techniqrue simula- is not yet possible to compute a complete separated
ting the connection between the upper and the lower flow. Cebecl ot AIC19811 using a twodimensional
deck through the relationship between the pressure coupling assumption have obtained interesting
field In the boundary layer and the displacement strong Interaction results on threedimenslonal
effect, The advantages lie In the fact that the system wings. Therefore py = 0 does not seem a serious
of equations which are solved are well adapted to penalty In this case. More encouraging are the
each domain; less storage being consumed, a computations due to Huang & ChangE1985] on the
better description of the viscous zone results from aftpart of slender NSRDC bodies for which py 0 0. A
the possibility of locating more grid points there. But pressure correction together with a weak coupling
the degree of validity of the Interactive methods technique are sufficient to Improve the solution to a
depend on the degree of generality of the viscous point such that both the Interactive solutions and
model. At present, only thin boundary layer *parabolized Navier-Stokes" solutions agree cor-
equations are considered (see nevertheless rectly with experimental data. But. In these last
WhIttfleold19851. Moreover. such methods should cases, separation Is not significant,
be loss veotorlzable because of the Interaction law. 3-How is It possible to generalize the coupling
Endly, the computations downstream Into the wake techniques used in two dimensions and what will be
are more difficult to handle. especlally If thin the convergence rate of threedimensional Interaction
boundary layer theory Is retained for the viscous laws? It Is only possible to give a partial answer
domain. not only because of geometrical reasons which will now be sketched. Let us suppose that for
but also because the computation of the wake may y ) 8(x. z) the flow Is InvIscId: while, for y ( Ox. z)
Influence the convergence of the Interaction law. boundary layer equations are used to describe the

The choice of the best method remains an viscous zone. Two patching conditions are neces-
opened question and probably. as long as storage sary at yns(x.z). One Is relative to the Invisoid
memories of computers will not be considerably velocity components parallel to the wait which. as a
Increased. no universal answer to this question will first approximation, should be equal to the edge-
be given. The fiture of Interactive methods Is boundary layer velocity component parallel To the
probably conditioned by the answer to the following wall. The other is relative to the normal velocity
questions: component. It Is obtained by defining the Invisold

1- While the singularity problem seems to velocity components In the boundary layer domain by
condition the two-dimensional case. what Is the mean* of a Taylor sert* near ya.,s:
dominant effect In the three-dimensional cses?
Separation does not appear then to be a prerequisite V (X'2,•)0' Ve(xeZ,&)*(Y-S)i ly,,
for a significant thickening of the boundary layer as where Index e refers to the inviscid flow. Eliminating
Is well known from the study of the afipart of an #Veo" ye by means of the continuity equation and
axisymmetric body or of the ship stern flow. The Integrating through the boundary layer from 0 to 6.
thickening of the viscous zone and the increase of one is left with the so-called entrainment equation:
the normal velocity component appear progressively

because of the convergence of streamlines In planes
parallel to thie wall, The absence of catastrophic ,r (13)
behaviour Is a common feature of these flows v
together with the generation of a longitudinal vortiolty
component and an associated vortex motion similar where:
(but leas Intense) to that observed on slender bodies -
at high Incidence. Therefore. thin direct boundary &
layer computations can be carried out almost to the
trailing lines but numerical results are known to The patching condition for tMe condition
disagree with experiments because the thin boundary V(x. Z.6) -Ve(x. 2.0) needs now to be speclIted. A
layer assumptions are not fulifilled. In other cases, first possibility to iNven by a *disptacement effect
like the prolate spheroid at Incidence. thin direct patchlng° ot yea where tho Lighthlil surface
boundary layer equations cannot be used down- yle(N. 1) Is de~ined by the fact that the l'lvilid flow
stream of a singular line (the so-called OX of s44 on It:
accsalbt11lty OfCe4e1•tl st Ailga9811)). Nave,•thellea..
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o_ *8U.boy V(xz0 known for the wall-
hVx hX S 'aX patching case. -1

In the threedimensional case. the potential
(13) Implies that: solution at any point X of the Inviscid domain Is

given by

c~o.(x') (14)
Amost Interesting choice consists In a *wall 12s 2.

patching*: what Is now specified Is:
.j r~ ~ I where the body surface 85 supports the unknown

Vt(X 1,2,0)- io~~ Qst.OVQIA-r(nvwla souirce distribution a from which the normal velocity
'~ '~component at X on the surface results:

In this case the transpiration velooity Is defined at the
wail so that the InvIscid flow Is computed on the same n J ~
domain as that corresponding to the non interactive
case and It can be therefore obtained with the s"me where
code.
Having specified the form of the coupling, iet us K(M X1111
examine what Iterative methods can be used. The a can be computed- from a Fredhoim Integral
output of the boundary layer computation is a equation of second type:
functional relationship Ve = 5( a*) : rdt Ve = 0 f
where 8 Is a local operator corresponding to Prandti crQ() + II r(tb) K(L c.)ýo.() -V,(x,z.O)

aquations with their boundary conditions. The J
domain of 8-1 Is limited as soparation Is excluded, which traduces the non local character of P. The
The output of the Invisold computa~tion Is a second approximation of Veidman consists In the omission of
functional relationship Ve - P(S ): r~t Ve z 0 the surface Integral over 8B. Therefore.
where P Is a non local operator at y-0. P gives an a(l) =2 Vo(x.z.O) Is used In (14) and:
accurate description of the Influence of the boundary
layer on the Invisoid flow. Le SalieurElGOO3 V(,i.) cy
discusses direct ~(5

and Inverse In the twodimenslonal case, because the Green
a*(m)- P-1(94m-1)) VSM). 8 (al(m)) function Is a logarithm, one Is left with Veidman

Iterative methods for the coupling and shows that If equation:
one wants to avoid the difficult switch from the direct
to the Inverse mode. a semi-inverse iterative method &.('~ & OUO/C
should be used. In this case (Le BalleurElgSO3. X -
Carter(19793). two pressure fields and two velocity
fields are simultaneously used: one If the interaction law Is not accurate enough. an
(Vim) .p~m)Tt, obtained from an direct slution Iterative procedure
of Euler equations: the other (VIM),~m) **m -ia

t M) -g(-1)-
obtained from an Inverse solution of boundary layer Va(m) -.8(82Cm)) -0 can be used. but the
equations. The resulting edge valocIties are then surface Integral has to be computed at each
used to adjust the displacement thickness of the Iteration. Endly, the equations for 5U* end Me.

afrecomputed cycle: this Is done the most often by obtained from (15) hae" to be solved simultaneously
the following underrelaxllor, (CortE4'f19793): with the boundary layer equations. Once the

'*c~ ~discretlzation of the Interaction law has been carriedw 4,i out. the Inverse boundary layer code appears to be
well suited for a numerical coupling with the

Voidmant'198 I advocates the use of a simultaneous diacretire equations for SUo(En.Z k) and
approach In which the P operator io approximated GW*(Xr,.zk). Such a coupling procedure usually
under the form 90 a i(8') of an interaction law. In avoid& completely the need of underretaxatlon.
this Case. Ve a HeS and 9o a l(8A) are regarded 5. -Conclusion
as two equations with two unknownS which have to be
solved without Iteration. The foregoing computations on the prolate

The Interaction law should be chosen as simple spheroid and on the SSPA ship model demonstrate
as possible to allow the quaslalmultaneous numerical the feasibility of an Inverse mode solution of
treatment but It Should also give a sufficiently boundary layer equations round a complex geome-
accurate description of the Interaction. The rapid toy, although the sensitivity to the lack of smoothness
con4vergence of the method being well established In of thickness distributions appears quite high. The
two dimensional coase. we shal now discuss its Interactive coupling with the potential flow. which Is

f practical implementation In the three diensilonsl fte inal goal. remains to be perormed.
case. Let us conisider that a Ittraightfolard solution
Us of the inviscid problem has been obtained on the -Acknowledamenta
body and 1elus note 99 aUo + 094the solutionof

tecoupled viscoli-Inviecid problem at the edge of Authwor are Indebted to Pr. T. Cebeci for
the boundary layer. As Seen from the inviSCId fluid. providing us with a source listing of C2K method.
the boundary tayer acts like a transpiration velocity Psria financial support oV ORET through contract

J e nd seo a grid of so that the perurbe potntial 03-fl)6 is easo graefully acluowledged.
So "U"" M60 0 iwO s 0 at Inanity:
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DISCUSSION
of the paper

by J. Piquet and M. Visonneau

"S%.udy of 3D Ship Boundary Layers by Means of an Inverse Method"

DISCUSSION It is true that the wall transpiration
by V.C. Patel could be oscillating. There is some hope that

(15) could indeed give a more regular poten-
I appreciated your slides comparing global tial perturbation as the integral over 88 is a

and local interaction methods, and particu- convolution product.
larly your summary of the difficulties assoc-,
ated with each approach in three-dimensional It is felt that, for lifting problems, a
flows. viscous-inviscid interactive calculation could

be more hopeful than a global interaction
The oscillations observed in the method. For a "dragging" problem where the

freestream velocity components in your inverse thickening of the boundary layer is progres-
solutions (in Figures 5e and 5f, and to a sive and due to a longitudinal vorticity com-
lesser degree in figures 4e end 4f) may turn ponent and to the occurrence of a normal
out to be rather critical in determining the pressure gradient, a local internction method
eventual success of the inverse method since could be less appropriate.
the 3D boundary layer responds to the gra-
dients of these components. if these origi-
nate from a lack of smoothness of the
calculated inputs, what hope is there of damp-
ing them out in a complete interactive calcu-
lation?

Author's Reply

Some inverse computations have been done
[141 on wings without wiggles because computed
displacemert thicknesses deteriorate only close
to the separation and because of the absence
of transverse curvature terms. When transverse
curvature terms are presept, v more refined
grid along z should be tested in order to be
sure that numerical oscillations are due to
the lack of smoothness of the calculated
inputs (compare Fig. 4f with (31]). It is not
known whether such problems appear if experi-
mental thicknesses are used to provide the
inputs for the inverse calculation (these are
not easy to obtain).

The flows considered in Fig. 4 and 5, are
very different. Fig. 4 refers to the prolate
sphtroid at incidence for which direct bound-
ary layer computations terminate at the OK of
uccessibility; the failure of the computations
occurs very abruptly because the displacement
thicknesses remain satisfactory close to the
OK. For this reason, the agreement between
the direct and the inverse mode is quite
reason~able.

Fig. 5 refers to the SSPA 720 for Nhich
displacement effects appear progressively.
Although the direct boundiry layer computa-
tions converge (even very close to the stern),
the displacement thicknesses are known to be
incorrect because of normal pressure gradients
(see Fig. 6a, 5b). The found oscillations
could result from the inputs is they appear
especially in regions of strong crosswise or
longitudinal variations of the displacoment
thicknesses.
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COMPUTATION OF THE TIP VORTEX GENERATION
PROCESS FOR SHIP PROPELLER BLADES

T.R. Govindan, R. Levy and S.J. Shamroth
Scientific Research Associates, Inc.

Glastonbury, CT USA

ABSTRACT of using conventional boundary layer solution
techniques to compute the tip vortex flow
field. On the other hand, q solution of the

The tip vortex flow field has a full Navier-Stokes equations that adequately
significant influence on the performance of a resolves "- tip vortex flow field wouldS ship propeller. h ability to compute terequire i" idable computational resources.

tip vortex flow field would be a valuable aid Therefore, an approximate set of three-
in the design of ship propellers, and in the dimensional viscous flow equations which is
analysis of their performance. The proesent applicable to the tip vortex flow field b,,t
paper examines and demonstrates the feasibility which does not require the resources needed for
of computing the tip vortex generation process the solution of the full Navier-Stokes
with a forward-marching computation procedure. equations is sought. The parabolized
For the purpose of this study simple geometry Navier-Stokes equations represent such a set.
test cases were considered in laminar flow. These equations contain in then. all the
The effects of blade rotation and blade physical processes of tip vortex generation and
twist on the tip vortex generation process can be onlved economically by forward marching
were included and studied in the analysis. procedures.
While the results of the computations are

* qualitative in nature, they demonstrate the The attractive possibility of using a
capability of the forward-morching procedure forward-matrching procedure to compute the tip
to compute the flow processes In tip vortex vortex generation process is examined in this
generation. The flow field is computed from paper. With the focus being on the computation
a set of three-dimensional viscous flow of the vortex generation prozess, simplified
equations with no empiricism introduced for blade geometry was used in the test cases.
the vorticity generated and shed at the Thus, geometry consisted of a slab-type blade
propeller tip. of constant thickuess with a rounded tip.

Effects of blade leading and trailing edges
were neglected. Test cases were computed to
study the effects of blade rotation and blade

twist on the vortex generation process.
A brief outline of the forward-oarching
procedure and a discussion of the results of

1. IN'TRODUC;ION the computation of the vortex generation
process are presented in this paper.SThe tip vortex flow field plays a

significant rola in the performance of a ship 2. THE FORWARD MARCHING COMPUTATION PROCEDURE
propeller. The ivo pressuze region fouind at FOR SHIP PROPEILLER TIP FLOW FIELDS

ithe center of a tip v.oztex say lead to
cavitat'on. The presence of c-vitation In the The forward marching computation procedure.
flow field has serious consequtnnes in terms of used for the solution of the parabolic
3tructural, acouutit,, and performance Navier-Stokes equations provides an economical
considerations. A aetter understarding of the and accurate u.ehod for computing many
tip vortex generation process and a method of three-dimensionel viscous fiow fields. This
aralyaing the tip vortex flow field would procedure, initially developed for internal
provide valuable bilp in the design of ship flow fields (Rots. 1-3). has been extended to
propellers. the computatioi of the ship propeller tip flow

field. The governing equations and the
The flow field in the tip reginn is computational schewe are presented in this

complex, three-dlseustonsl, &ad viscoue with section. This procedure is capable of
large secondary veloc.,%les. The lArge coneidering both fixed and rotating coordinate
secondary vslocitiee preclude the posliblitty aystes.
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Governing equations are derived through
approximations made relative to a curvilinear U S + (po/P)Vxi
coordinate system fitted to and aligned with s Vs +n• (3)
the flow geometry under consideration. The
coordinate system is chosen such that the where V. is the surface gradient operator
streamwise or marching coordinate either defined by
coincides with or is at least approximately
aligned with a known inviscid primary flow - i -V)
direction as determined, for example, by a s n(U (4)
potential flow for the given geometry.
Transverse coordinate surfaces must be I that since in o Us 0, then
approximately perpendicular to solid walls or
bounding surfaces, since diffusion is permitted Us lies entirely within transverse coordinate
only in these transverse coordinate surfaces. surfaces. Equation (3) is a general formpermitting both rotational and irrotational

Equations governing primary flow velocity secondary flows and will lead to governing

Up, and a secondary vorticity, An, normal equations which may be solved as an
to transverse coordinate surfaces are derived initial-boundary value problem. The overall
utilizing approximations which permit solution velocity decomposition (1) can be written

of the governing equations as an initial-value
problem, provided reversal of the composite U - U + + V + (p /P)Vxi (
streamwise velocity does not occur. Terms P p s n (3)
representing diffusion normal to transverse 2.2 §urface Potential Equations
coordinate surfaces (in the streamwise
direction) are neglected. Secondary flow Equations relating * and * with U p
velocities are determined from scalar and and the secondary vorticity component can
vector surface potential calculations in b

transverse coordinate surfaces, once the

primary velocity and secondary vorticity are continuity,

known. With the computed velocity field,
the pressure field associated with the velocity V-pU = 0 - V- pU pi + V-PV s
field can be determined. (

2.1 Primary-Secondary Velocity Decomposition + PoV'Vxln(

In what follows, vectors are denoted by an and from the definition of the vorticity based
overbar, and unit vectors by a caret. The on the secondary flow within the transverse
analysis is based on decomposition of the surfaces, An
overall velocity vector field U into a primary
flow velocity U and a secondary flow
velocity UD. The overall or composite i -VxU E - i - VX U 17)
velocity is determined from the superposition P n p

U- p + + n-Vx(Po/P) Vx in + i-v xV s

The primary flow velocity is represented as
Since the last term in each of Eqs. (6 and 7)
is zero by vector identity, Eqs. (6 and 7) canU P-( pi be written as

where ip is a known inviscid primary flow V-pV -V-pU i
direction determined, for example, from an P p (8)
S Rriori potential flow solution for the
geometry under consideration. A streamwise
coordinate direction from a body fitted .Vx (p/p)Vxl• (9)
coordinate system could be uaed as an
approximation to this potential flow
direction. The primary velocity Up is Q -i -VX U i
determined from solution of a primary illow P P
momentum equation. The secondary flow velocity
Us is derived from scalar and vector surface Note that the last term in Eq. (9) is
potential denoted + and 0, respectively, identically zero in a coordinate system

If in denotes the unit vector normal to for which it and i p have the same
transverse coordinate surfaces, if p is direction, and would be small if in and
density, and if Po is an arbitrary drcin n ol esali nadiare approximately aligned, In any event, given

constant reference density, then Us is a knowledge of Up, An and p, the surface
defined by potentials * and 4 can be determined by a
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two-dimensional elliptic calculation in where PI is the imposed pressure, PC is a
transverse coordinate surfaces at viscous correction to the pressure field and
each streamvise location. In turn, Us can be
computed from Eq. (3), and the composite a
velocity U will satisfy continuity0  Equations i 2 directions, respectively. Equation (13)
for U and an are obtained from the can be solved for the pressure correction,
equatone governing momentum and vorticity, Pc, at each computational station using
respectively. Neuman boundary conditions derived from

Eq. (12). The use of Neuman boundary
The streamwise momentum equation is given conditions requires an additional parameter

by which is only a function of the normal
direction, Pv(x3), in order to set the level

i" [ (U ;V)U + (VP)/p] of the pressure field, For external flows
P (10) Pv(x3) is set to match the imposed pressure

at an appropriate far field-location.

=i *F + i R
P p 2.3 Secondary Vorticity

where P is pressure and pF is force due to The equation governing Sln is obtained by
viscous stress and terms in F cross differentiating each of the transverse
representing !treamwise diffusion are momentum equations (11). Eliminating the
neglected. 0p is the additional force pressure in the two equations results in a
due to a rotating-coordinate system; where single equation for the transport of the
R = -2; x U - wx(w x r), w is the vorticity normal to the transverse surface.
angular velocity of the coordinate system and r This equation has the form
is the radius vector from the rotation axis.
The pressure term in the streamwise momentum V o tin - VU (14)
equation (10) can be taken from a simpler n n

analysis such as a potential flow analysis. = c - c + i • (VXR)
While this results in a set of equations which n
can be solved by forward marching, the surface
pressures which are due to the pressure field where Gn is the normal component of
imposed upon the flow are the potential flow
pressures. Since the actual surface pressures - V x (15)
are often of primary interest, a new estimate
of the actual surface pressure which includes and C is a collection of curvature terms
viscous and secondary flow effects can be arising from changes in orientation of the
computed from the resulting velocity field in transverse surfaces as a function of streamwise
the following manner, coordinate.

The momentum equations in the transverse 2.4 Governing System of Equations
surfaces are:

A complete system of five coupled
Si • [(pUii -V) i + Vip - p•- pi] - 0equations governing Up, 0 n, *, n , and P is
S1 given by Eqs. (8), (9), (10), (14) and (13).
S-[(pU .V) U + VP - g' - • - 0 (11) Ancillary relations (5) is given for the
2 composite velocity. In reference 2, these

equations are given in general orthogonal
Equation (11) represents components of the coordinates and in reference 3 in nonorthogonal
momentum vector in the transverse surfaces: coordinates.

il (il [(PU V) U+ VP - pF- pR]) 2.5 Numerical Method

(12) Since techniques for obtaining the basic
+ (i - I(OU.V)U+VP- pF-0R]) potential flow solution are well known and

numerous, they need not be enumerated or
The divergence of this vector can be written as discussed here. Instead, the present
a Poisson equation for the pressure P at each development concentrates on describing the
transverse surface: numerical method used to solve the system of

2  2 governing equations. Streamwise derivative
V P V (P + F terms in the governing equations have a form

such as u,8( )/Bxl, and because the streamwise
. r. I - • velocity u! is very small in the viscous

-(U V) U OF- (13) dominated region near no-slip walls, it is
",1 ~ essential to use implicit algorithms which

are not subject to stringent stability

" d restrictions unrelated to accuracy
2 ((Pi V) U -F - ) requirements. Although it is possible to

-2 devise algorithms for solution of the governing
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equations as a fully coupled implicit system, to the tangential velocity, the slip velocity
such algorithms would require considerable vt arising from the # caIculation is
iteration for the system of equations treated caucelled, and the composite secondary flow
here, and this would detract from the overall velocity including both # and # contributions
efficiency. The present method is rill satisfy the no-slip condition exactly.
semi-implicit and seeks to reduce the amount of
iteration required and yet avoid the more A sumary of the overall algorithm used to
severe stability restrictions of explicit advance the solution a single axial step
algorithms. The method partitions the system follows. It is assumed that the solution is
of governing equations into subsystems which known at the n-level xn and is desired at
govern the primary flow, the secondary flow, n+l.
and the turbulence model. The primary-flow
subset of equations contains the streamwise (1) The imposed streamwise pressure
momentum equation. The secondary-flow subset gradient distribution is determined
of equations contains the secondary vorticity from an a priori inviocid potential
equation and the scalar and vector potential flow.
equations. These subsystems are decoupled
using an ad hoc linearization in which (2) The momentum equation is solved to
secondary velocity components and turbulent determine un+l.
viscosity are lagged, and are solved
sequentially during each axial step. (3) Using values now available for

un+l, the scalar potential
2.6 Summary of Algorithm equation (8) is solved using an

iterative scalar ADI scheme, to
The governing equations are replaced by obtain *n+l. This ensures that the

finite-difference approximations. Three-point continuity equation is satisfied.
central difference formulas are used for all
transverse spatial derivatives. Analytical (4) The equations for vorticity (15) and
coordinate transformations are employed as a vector potential (9) form a coupled
means of introducing a nonuniform grid in each system for an+l and #n9l which is
transverse coordinate direction, as appropriate solved as a coupled system using an
to concentrate grid points in the wall boundary iterative LBI scheme.
layer regions. Second-order accaracy for the
transverse directions is rigorously (5) Values for the transverse velocities
maintained. Two-point backward difference vs =d w4 are computed from
approximations are used for streamwise Eq. (3).
derivatives, although this is not essential.

(6) Using the computed velocity field,
To solve the primary flow subsystem of the transverse pressure field is

viscous equations a scalar ADI scheme is used computed from Eq. (13) by an
for the momentum equation. iterative scalar ADI scheme.

Given the solution for the primary flow, 2.7 Boundary Conditions for the Tip Vortex
the secondary flow subsystem can be solved. Flow Computations
First, the scalar potential equation
(continuity) is solved using a scalar iterative Figure 1 shows a perspective view of a
ADI scheme. Next, the secondary vorticity and constant thickness blade with a rounded tip.
vector potential equations are written as a This simplified model of a propeller blade
fully implicit couple" system and solved using neglects the effects of the leading and
an iterative linearized block implicit (LBI) trailing edges. The model, however, was not
scheme (cf. Briley and McDonald (4)). In expected to change the basic flow mechanisms of
selecting boundary conditions for the secondary tip vortex generation; the object of the
flow subsystem, care must be taken to ensure computations in this paper. Figure 2 shows a
that the final secondary velocity satisfies the cross-section of the propeller tip and the
no-slip condition accurately. Zero normal computational grid at a typical streamwise
derivatives of # are specified in the scalar station. A computational grid that wraps
potential equation, and this boundary condition around the tip was chosen to provide adequate
corresponds to zero normal velocity. It is not resolution of the tip region and a smooth grid
possible to simultaneously specify the distribution.
tangential velocity, however, and thus the
+-contribution to the secondary velocity will The cross-sectional coaputation coordinate
have a nonzero tangential (slip) component, system, shown in Figure 2, has four boundaries
denoted vt, at solid boundaries. In the where boundary conditions for the governing
coupled vorticity and vector-potential equations must be specified. Inboard are
equations, both normal and tangential velocity boundaries (1) and (2), the blade surface is
components can be specified as boundary boundary (3), and the far field is boundary (4)
conditions, since these equations are solved as Boundary conditions must be specified for the
a coupled system. By choosing (a) zero normal streamwise velocity in the streamwise momentum
velocity, and (b) -vt as the #-contribution equation, for the scalar potential in the

scalar potential equation, and for the vector
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and streamwise vorticity in the coupled vector (1) Tip vortex flow for a straight blade
potential-streamwise vorticity equations. with rounded tip,
The conditions that were specified for the tip (2) Tip vortex flow for a rotating
vortex flow computations are considered in straight blade with rounded tip, and
this section. (3) Tip vortex flow for a rotating

twisted blade with rounded tip.
The flow at the inboard boundaries (1)

and (2) was assumed to be two-dimensional These test cages were chosen to demonstrate the
(no spanwise variation) with no flow computation of the basic flow processes in tip
penetration of the secondary velocity through vortex generation, and the effects of blade
the boundaries. The normal gradient of the rotation and blade twist on the tip flow
scalar potential was set to zero and the vector field. Laminar flow was assumed in all the
potential was set to a constant (normal cases since the qualitative nature of the tip
velocity set to zero). The streamwise vortex generation process remains the same in
vorticity was set to zero as the compatible laminar and turbulent flow. Further, the
condition with the vector potential and the streamwise pressure gradient which is input to
streamwise velocity was extrapolated from the the forward-marching procedure was assumed to
interior flow field. The boundary conditions be zero for all the cases presented here.
specified on the inboard boundaries are only
approximate but were found not to affect the 3.1 Computation of the Tip Vortex Flow for a
qualitative computed behavior of the tip vortex Straight Blade with Rounded Tip
generation process. In Reference [5],
boundary conditions based on the induced A constant thickness blade with a rounded
velocity field by the blade have been tip was the first test case considered for the
developed. These conditions will be tip vortex flow computation. Figure 1 shows a
incorporated in future work on the ship perspective view of the geometry of the blade
propeller tip flow field. near the tip. Figure 2 shows the cross-section

of the blade tip and the computational grid at
The boundary condition along boundary (3), a typical streamwise station. The important

the blade, was the uo-slip condition on a solid geometric and flow parameters used in the
surface. To satisfy this condition the normal computation were the following:
gradient of the scalar potential (the normal
velocity) was set to zero. In the coupled Blade thickness (t) a 1.0
vector potential and vorticity equations the Blade chord - 20.Ot
normal component of the rotational velocity was Reynolds number (based on t) - 1000.0
set to zero and the tangential component was Initial boundary layer thickness - 0.20t
set equal and opposite to the tangential Incidence angle - 6

component of the velocity generated by the
scalar potential. These conditions allowed an A computational grid of 60 streamwise
implicit specification of the vector potential stations and a 47 x 30 cross-section grid was

* and the vorticity on the no-slip boundary (as used. Grid points were clustered in regions of
discussed in Section 2.6). -The resultant high flow gradients such as near the propeller
secondary velocity field satisfies the no-slip surface and in the tip region. The computation
conditions on the boundary. The streamwise was started on the blade (x/t - 0.0) with the

: velocity was also set to zero at the solid assumed initial boundary layer thickness.
boundary.

Figure 3 shows the development of the tip
Far field conditions were specified on vortex computed by the code. The upper half of

boundary (4). The streamwise velocity was the figure shows the development of the tip
extrapolated from the interior flow field, vortex in term of contours of the streamwise
The scalar potential was set to a constant velocity while the lower half shows the same
so that the tangential component of the development in terms of contours of streamwise
irrotational velocity was zero. This condition vorticity. Computations from five streamwise
allowed outflow through the boundary due to the stations (x/t = 2.0, 4.0, 7.0, 11.0, 20.0) were
displacement effect of the boundary layers on chosen to display the development of the tip

the blade. The angle of incidence of the flow vortex. An initial overall view of Figure 3
specified a component of the transverse shows a large scale flow process at the tip of
velocity on the boundary. The vector potential the blade in terms of both the streamwise
was obtained by integrating this component of velocity and streamwise vorticity.
the transverse velocity along the boundary.
The streamwise vorticity was set to zero& At x/t - 2.0 (Figure 3), the streamwise

velocity contours show the initial development
3. RESULTS of the flow. The boundary layer on the suction

side of the blade has thickened while the
Three test cases were chosen to boundary layer on the pressure side remains

demonstrate the capability of the thin. The thickening of the boundary layer on
forward-marching procedure to compute the tip the suction side is due to the transport
vortex generation process. The test cases of low momentum fluid from the pressure side
were: boundary layer around the tip to the auction
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side. The same flow process is seen in the 3.2 Computation of the Tip Vortex Flow for a
streamwise vorticity contours as a transport Rotating Straight Blade with Rounded Tip
of vorticity around the tip.

As the second test case in the computation
At x/t - 4.0, the tip flow field begins to of the tip vortex generation process, the

show the accumulation of low momentum fluid on straight blade described in the previous
the suction side of the tip region. This section (section 3.1) was rotated so as to
accumulation is characterized by the "bulge" in provide an advance ratio of 1.0. The remaining
the streamwise velocity contours representing flow and geometric parameters were retained
the region of the low streamwise velocity from the previous test case.
fluid. The streamwise vorticity contours
at this station show the convection of Blade Thickness (t) - 1.0
vorticity into this region. Further, the Blade Chord - 20.0t
vorticity contours also start to "peel" off the Reynolds Number (based on t) - 1000.0
suction surface indicating the initial stages Initial Boundary Layer Thickness - 0.20t
of the roll-up of the low momentum fluid. Incidence Angle a 6-
At x/t = 7.0 and x/t - 11.0, the streamwise Advance Ratio = 1.0
velocity contours show the further rapid
accumulation of the low momentum fluid in the A computational grid of 60 streamwise
tip region. The streamwise vorticity contours stations and a 47 x40 cross-section gTid was
at these stations show the roll up of the tip used in the computations. As before, \grid
flow into the tip vortex. The vorticity points were clustered in regions where high
contours emanating from the suction surface, flow gradients were anticipated.
visible clearly at x/t - 11.0, are indicative
of the outward (toward the tip) transverse Figure 5 shows the development of the tip
velocities in the region due to roll-up of the vortex computed by the PEPSIG code for the
tip vortex. The rresults at x/t - 20.0 show rotating blade. The figure is formatted in the
the completion of the tip vortex formation. same manner as Figure 3 for the stationary
The vortex has separated from the suction blade. The upper half of the figure shows the
surface as it is convected downstream by the development of the tip vortex in terms of
streamwise velocity. The vortex is sustained contours of the streamwise velocity while the
by the continued transport of vorticity from lower half shows the same development in
the pressure surface into the vortex core. terms of contours of streamwise vorticity.
Also evident from Figure 3 is the inward track A comparison of Figure 5 with Figure 3 for the
of the center of the vortex along the suction stationary case shows the same basic flow
side. That, indeed, the flow in the tip region mechanisms that result in the generation of the
has rolled up into the tip vortex is clearly tip vortex. These mechanisms are the transport
visualized by a vector plot of the transverse of low momentum fluid from the pressure side
velocity field. Figure 4 shows a vector plot boundary layer to the suction side by the
of the transverse velocity field at x/t - 7.0 transverse velocity, the accumulation of this
and x/t - 20.0. The transverse velocity field low momentum fluid on the suction side of the
at x/t - 7.0 clearly shows t.he initial roll-up tip region, and the roll-up of this accumulated
of the flow in the tip region into a vortex, fluid into the tip vortex. The differences
The large transverse velocities (about 30Z between the rotating and non-rotating cases are
of the free stream velocity) around the tip in a matter of the details of the flow
that convect the low momentum fluid from structure. These differences will be discussed
the pressure side to the suction side are in this section. A vector plot of the
also seen. The transverse velocity field at transverse velocity field at two etreauvise
x/t - 20.0 shows the strong tip vortex on the stations are shown in Figure 6. As in the
suction side. The inward track of the center stationary case, the vector plot shows a clear
of vortex along the suction side is also seen visualization of the tip vortex. The vector
In the two vector plots, plot at x/t - 7.0 shows the early developmnt

of the tip vortex while the plot at x/t - 20.0
Figures 3 and 4 clearly show the shows the developed tip vortex on the suction

development of the tip vortex generation aide of the tip region.
process. It should be noted that this process
has been calculated from a set of The differences in the tip vortex flow
three-dimensional, viscous flow equations which field between the stationary and rotating blade
have a no-slip condition at the propeller blade test cases can be seen by cosparing figures 3
surface. The vortex generation and roll-up and 5. From an overall point of view, the
is a result of the secondary flow separation, location of the tip vortex for the rotating
and the computed results obtained are in blade is higher than the stationary blade.
excellent qualitative agreement with This difference is due to the fact thet low
experimentally observed physical processes streaswies velocity regions in the vortex are
(Refs. 6 and 7). The calculations clearly show regions of higher absolute tangential velocity
that the tip vortex problem can be analyzed in the rotating blade. The corresponding
from a consideration of the basic physical Increase in the centrifugal force keeps the
phenomena without resorting to empirical models.
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vortex at a higher location for the rotating previous test cases, Figures 10 and 11 show the
blade. In a similar manner, the increase in accumulation of low momentum fluid on the
the absolute tangential velocity in the suction side of the tip region, and the roll-up
boundary layers on the suction and pressure of the fluid into the tip vortex. The outward
surfaces and the corresponding increase in the flow in the boundary layers due to rotation can
centrifugal forces that is not balanced by the also be seen in the vector plot of the
pressure forces imposed from the outer flow transverse velocity field in Figure 11.
results in outward flow in the boundary The change in the lean of the blade along the
layers. This outward flow changes the blade chord due to blade twist can be seen from
streamwise vorticity distribution in the the Figures 9, 10 and 11.
vicinity of the blade surfaces. The outward
flow in the boundary layers is clearly seen in With the solution of the velocity field at
the vector plot of the transverse velocities each streamwise station, it is possible to
near the blade surfaces (Figure 6, x/t - 20.0). compute the transverse pressure field

associated with the generated transverse
3.3 Computation of the Tip Vortex Flow for a velocity field. Figure 12 shows a contour plot

Rotating Twisted Blade wi':h Rounded Tip of the computed transverse pressure field at
x/t - 2.0 and x/t - 4.0. At x/t - 2.0, the

As a final test case to devionstrate the pressure contours show a drop in the pressure
capability of the forward marching procedure to as the flow accelerates over the rounded tip
compute the tip vortex generation process in onto the suction side. The minimum pressure
ship propellers, a computation was carried out was computed in the region of the rounded tip.
of the tip flow field for a rotating twisted At x/t - 4.0, these minimum pressure contours
blade. The twisted blade geometry was chosen move toward the suction side as the tip vortex
to demonstrate the capability of the forward begins to form. Figure 13 shows the computed
marching procedure and the geometry package to pressure field at two downstream stations, x/t
handle the complex blade shapes typical of a - 11.0 and x/t - 20.0. At x/t - 11.0, the low
ship propeller. For the purposes of the pressure region has moved to the suction side
demonstration computation, the blade twist was and a minimum pressure region has formed over
specified such that all radial sections of the the center of the tip vortex. At x/t - 20.0,
blade maintained a constant angle of incidence the pressure contours show the further
with respect to the incoming flow. The development of the pressure field with the tip
remaining flow and geometry parameters were vortex. The minimum pressure region continues
retained from the previous two test cases. to be associated with the center of the tip

vortex. These computations clearly demonstrate
Blade thickness (t) - 1.0 the ability of the PEPSIG code to compute the
Blade chord - 20.Ot pressure field associated with the tip vortex
Reynolds number (based on t) - 1000.0 and compute the low pressure region at the
Initial boundary layer thickness - 0.20t center of the vortex. This low pressure field
Incidence angle - 6V would determine the cavitation characteristics
Advance ratio - 1.0 of the propeller tip flow field. Figure 14

shows a streavwise contour plot of the computed
Geometric twist specified to maintain pressure fidd on the suction side of the
constant angle of incidence at all radial blade. Superimposed on this figure is the
blade sections track of the vortex obtained from the

computations. After an initial transient in
Perspective views of the twisted blade are tho pressure field, the formation of the low
shown in Figure 7. A computational grid of 60 pressure region along the vortex track is
streauvise stations and a 47 x 40 cross-section evident. The resulting track is qualitatively
grid was used in the computations. Figure 8 as expected.
shows the computational grid at two streautise
stations (Wit - 1.0, 20.0). The change in the Typical computer run times for the tip
lean of the blade along the chord due to vortex flow field computations were about 120
blade twist can be seen from this figure. seconds for the straight blade cases using
The geometry package adjusts the grid 84600 grid points and about 160 seconds for the
distribution automatically at each twisted blade case using 112,800 grid points.
cross-section to compensate kor the blade These computations were carried out on a CMY-1
twist. This capability in the geometry package computer system with a partially vectorized
can be seen in the computation grid generated code.
at x/t ft 1.0 and x/t - 20.0 in Fiure 8.

4. COWNCoSIONS
Figures 9, 10 and 11 show the generation

of the tip vortex computed for the rotating TM present analysis ham clearly
tviated blade. Figure 9 shows the initial demonstrsted the feasibility of uttlizing a
development of the flow field. The computation three-dimensionsl forward marching ana!ysis for
shows the iitial transport of low momentum the tip vort-n generation problem. Although
fluid from the pressure side to the suction the caluleations made to date represent an

* side as in the previous test case. initial study and have -4t yet attepted to

The transverse velocity field is a potential assess quantitative results, the folloving
flow like field around the tip. As iA the observation are evideat.
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1. The capability of the forward-marching
procedure to compute the
tip vortex generation process has been
demonstrated. The computations are
economical compared to computing
solutions of the full Navier-Stokes
equationo for tip vortex flow fields.

2. The computations show the qualitative
features of the tip vortex flow field
observed in experimental data.
The results show capability of the
procedure to compute the low pressure
region in the flow associated with the
tip vortex and help in identifying ow
regions of the flow field that may be Fl
susceptible to cavitation.

3. The effects of blade rotation on the THICKNESS

tip vortex flow field are computed
with the procedure. These are readily
seen in the radial outward flow deep
within the boundary layer on the
blade surface of the rotating blades. Fig. 1 - Perspective view of the straight

blade.
Future efforts will aim at a quantitative
assessment.
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Lot: pressure
vortex center
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Fig. 13 - Transverse pressure field for rotating twisted blade.

Vortex track

Fig. 14 -Streamnwise contours of the pressure field (auction side).
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DISCUSSION
of the paper

by T.R. Govindan, R. Levy and S.J. Shamroth

"COMPUTATION OF TIP VORTEX GENERATION PROCESS FOR SHIP PROPELLER BLADES"

DISCUSSION Authors Reply
by T.T. Huang

Figure 13 has been revised below to

It would be much more beneficial to the include computed values of the pressure coef-
readers if the authors could provide the numer- ficient (Cp) at the low pressure vortex
ical results in all the iigures presented. We center. These numerical values were computed
oalieve this requested revi3ion will improve for the particular geometry and flow condi-
the quality of your paper, which is a signifi- tions and may be typical of values that would
cant contribution in the Conference. be computed for other blade geometries and

flow conditions.

Low pressurevortex center

Cp--O. 75

Cp=-O. 68

x/t - 11.0 x/t 2 Z0.0

Figure 13 - Transverse pressure field for rotating twisted blade.
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DISCUSSION Not included in the present approximating
by V.C. Patel equations is the effect of the perturbed

streamwise pressure gradient or streaswise
1. The secondary flow and the tip vortex you momentum balance due to the computed pressure
have calculated is obviously driven by the field. This effect could be included by solv-
imposed external flow. How was this selected, ing the Navier-Stokes equations and would be
and is it representative of that existing on a included if a convergent "guess and correct"
propeller blade? multiple-sweep iteration procedure were devised

such that the (corrected) pressure field com-
2. Since the streamwise pressure gradient is puted from the transverse momentum equations
assumed to be known (equal to zero in all the converged to that assumed for the streamwise
present calculations), and the transverse momentum equation. In either case, the approx-
pressure field is calculated (as shown in imating equations being solved are elliptic and
Figures 12 and 13) by marching once in the subject to downstream boundary conditions. in
downstream direction, is it not necessary general, elliptic equations are far more costly
to make additional sweeps of the solution to solve than well-posed initial value
domain to update the longitudinal pressure problems.
gradients?

Author's Reply

1. The secondary flow and tip vortex genera-

tion that has been computed is "driven" by the
imposed free-stream boundary conditions, pri-
marily the free-stream angle of attack (6
degrees) which was chosen to be representative
of that existing on a propeller blade. As
described in the paper, a streamwise pressure
gradient field (obtained, for example, from
solution of elliptic governing equations sub-
ject to downstream boundary conditions) can be
imposed in the forward-marching procedure to
include in the computation effects of down-
stream boundary conditions. Such an imposed
streamwise pressure gradient field was not
included in the present computations and was
not necessary for the demonstration computa-
tions of the tip vortex generation process.

2. The treatment of the stremwise pressure
gradient as known, in the streamwise momentum
equation, is viewed as a physical approximation
rather than a trial guess to be removed by
interation. The present approximating euations
determine a new 3D pressure field, consistent
with the transverse momentum equations (Figure
12 and 13). Multiple streamwise sweeps of the
flow domain are not needed to solve the set of
approximate flow equations, since this set is a
well posed initial-value problem, and con-
sequently, these appoximations lead to consid-
erable economy in the solution procedure.

The set of approximate equations solved
by the forward-marching procedure contain in
them the flow features of tip vortex genera-
tion. These are the generation and roll-up of
the tip vortex, the large secondary velocities
associated with the tip vortex, and the distor-
tion of the primary velocity field and pressure
field by the tip vortex1 all mi which are pre-
sent in the flow predictions given in the
paper.
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