
I FILE Copy

3 AD-A224 067

UI INSTITUTE FOR COMPUTATIONAL

I .MATHEMATICS AND APPLICATIONS
I
I
I
I
I
I
I
m Department of Mathematics and Statistics

i University of Pittsburgh

I
ELECTE

SJUL 2 0 1

I '54"
N TOO= A-



I
I
I
iI

I Technical Report ICMA-90-151 June 1990

A POSTERIORI ERROR ESTIMATES FOR

PARAMETRIZED NONLINEAR EQUATIONS

I by

Werner C. Rheinboldt and Jinn-Lian Liu
Institute for Computational Mathematics and Applications

University of Pittsburgh
Pittsburgh, PA 15260

I
I
I
I

This work was supported in part by ONR-grant N-00014-90-J-1025 and

NSF-grant CCR-8907654.I

IDTIC
__ELECTEUTI ON STA E -- JUL 20 10

I --- 2 D
U '2I I II IJL D



I

I A Posteriori Error Estimates for

Parametrized Nonlinear Equations*

Werner C. Rheinboldt and Jinn-Liang Liu
Institute for Computational Mathematics and Applications

University of Pittsburgh, Pittsburgh, PA 15260

Abstract: A new approach to the construction of a pos-
terori error estimates for finite element solutions of multi-
parameter nonlinear problems is presented. The esti-
mates are derived from local, element-by-element solu-
tions of linearizations of the problems; they turn out to be
very effective, computationally rather inexpensive, and
insensitive to the choice of the local coordinate system
on the solution manifold.

1. Introduction

Frequently, in practical computations in engineering and science, the aim is
to obtain results which are sufficiently accurate and reliable to allow for a
decision about the physical system under study. A posteriori error estimates
play a very important role in achieving this aim. Such estimates are needed
not only for judging the reliability of the computed results but also for
controlling adaptive processes designed to achieve desired error tolerances
at minimal cost or best possible solutions within allowable cost ranges. ( ).12 )

Many structural mechanics problems are modelled by parameter depen-
dent nonlinear equations. The parameters may characterize, for instance,

Sload points and load directions, material properties, geometrical data, etc.
In general, the set of all solutions forms a differentiable manifold in the space
of the state variables and parameters. This is often called the equilibrium
surface of the structure and its form and characteristic features can provide
considerable insight into the behavior and stability properties of the struc-
ture. Not surprisingly, the quality assessment and control of approximate
solutions of such parameterized nonlinear problems is much more difficult
and expensive than that of linear problems. In particular, the parameter-
dependence causes the discretization error to become a local concept which
depends on the choice of the local coordinate system on the equilibrium
manifold, [17].

In this paper, we present a new approach for computing a posteriori
error estimates of finite element solutions of nonlinear equations involving

* This work was supported in part by ONR-grant N-00014-90-J-1025 and

NSF-grant CCR-8907654.
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several real parameters. The approach is insensitive to the choice of the
local coordinate system on the solution manifold. Moreover, it has already
shown itself to be highly effective and computationally inexpensive.

Many error estimations for nonlinear problems work with linearizations
of the given equations (see e.g. [16] [19]) and apply known a posteriori
error estimators for linear problems to approximate the solution-norms of
these linearizations. So far, these techniques have been very limited in the
permissible choices of the local coordinate systems on the solution manifold.
Another approach consists in the defect-based estimations proposed, for
instance, in [10], [11], [12], [13]. However, their widespread applications
appears to have been prevented by a rather high computational cost.

Our approach here combines both approaches. It is based on the use
of linearizations of the original problem, but determines the required norms
of their solution by solving the linearized equations only locally, element-
by-element. In essence, the defect-correction is performed locally on the
linearized problem. As a result, the computational cost is reduced to very
acceptable levels that are comparable to the cost of typical a posteriori esti-
mates for linear problems. Moreover, the resulting estimates vary smoothly
on the solution manifold of the given problem and apply to large classes of
discretizations and error norms.

In Section 2, we discuss briefly some properties of solution manifolds of
parameterized nonlinear problems and their discretizations. Then Section
3 presents the general construction of the error estimates and Section 4
concerns algorithmic aspects. Finally, some results of numerical experiments
for a model problem are given in Section 5.

2. Solution Manifolds and Their Discretizations

As noted before, equilibrium problems for many physical systems are mod-
elled by parameter dependent nonlinear equations

F(x) = 0, z = (z, A) (2.1)

where z represents a state variable and A a vector of parameters. More
specifically, suppose that the nonlinear mapping F satisfies the condition

(Fcon) : F: S C X -4 Y is a Fedolm mapping of class C", r >
1 and index p 1 from an open subset S C X of a realBanach
space X into another such space Y.

Then it is well-known that the set of all regular solutions,

M = {x; X E S, F(z) = 0, DF(z)X = Y} (2.2)

is either empty or a p-dimensional Cr-manifold in X without boundary. We
assume always that M # 0
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For the numerical analysis of the solution manifold (2.2), we need a
computationally feasible scheme for fixing local coordinate systems at a
given point z0 E M. For this suppose that a splitting

X = TE W, dimT = p (2.3)

of X has been chosen such that

W n kerDF(xo) {0). (2.4)

Evidently (Fcon) and (2.4) together imply that the partial derivative
DwF(xo) is an isomorphism between W and Y. Now the following result
(see [17]) shows some neighborhood of the origin of T to be diffeomorphic
to a (relative) neighborhood of x0 in M:

Theorem 2.1: Under the condition (Fcon), suppose that at x0 E M, a
splitting (2.3), (2.4) has been given. Then there exist an open ball B -

B(O,r) C T centered at 0 E T, an open neighborhood U C X of xo, and a
unique Cr-function 77: B --- W such that 77(0) = 0 and the local coordinate
mapping

: B CT i-+ X, 4 (x)--z(t)-= 0+ t + 77t), Vt EB (2.5)

is a Cr-diffeomorphism from B onto M n U.

A point xo E M is called a foldpoint with respect to the splitting
(2.3) if the condition (2.4) is violated; that is, if (2.3) does not induce a
local coordinate system. Note that the finite-dimensional subspace T -

kerDF(xo) always admits a splitting (2.3) for which (2.4) holds.
In applications the equation (2.1) usually represents some boundary

value problem and, as indicated in (2.1), we have a natural parameter split-
ting X = Z E A, dimA = p of X into a state space Z and p-dimensional
parameter space A. Evidently, this natural parameter splitting may be con-
sidered for the definition of a local coordinate system. We will assume that
there is at least one point X E M where this is possible; that is, where
Z n kerDF(x) = {0}. Then, as noted earlier, Z and Y are isomorphic, and
accordingly there exists an operator Q E L(X, Y) such that kerQ = A and
the restriction Qo = QI z E L(Z, Y) is an isomorphism.

For the computation, it is necessary to replace (2.1) by some finite di- o'
mensional approximating equation. Since the parameter space A is already t
finite dimensional, only the state space Z has to be discretized. We follow
the approach in [17] in defining a discretization of (2.1). lo .

Let {lIhI be a family of finite-rank projections hli E L(Z) with range
spaces Zh = 11hZ, indexed by a positive real number h > 0. Correspond-
ingly we introduce the extensions IIh E L(X) defined by flhx = 11hz + A Ion/

.lity Codes
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for x = z + A E X which have the ranges Xh = Zh E A. With the earlier
isomorphism Qo between Z and Y define now the projections Ph E L(Y),
Ph = QoIIh(Qo)- ' with the ranges Yh = PhY = QoZh. Then the desired
approximate equations are given by

Fh(xh) = O, Xh = zh + X E Xh (2.6)

where

Fh : Sh C Xh -* Yh, Fh(x) = PhF(x), Vx E Sh = SnXh. (2.7)

Hence, the corresponding discrete solution manifold is

Mh = f{X;x E Sh, Fh(z) = 0, DFh(z)Xh = Yh}. (2.8)

For the convergence theory additional assumptions about these dis-
cretizations are needed the first of which will be the following consistency
condition:

lim Phy = y, Vy E Y. (2.9)
h-O

Clearly, any comparison of the solution manifolds M and Mh must
be done locally. Conceptually, we expect that for sufficiently small h the
local coordinate system at a point zo E M established by Theorem 2.1
also constitutes a local coordinate system at the corresponding approximate
solution Xh E Mh. For this to be correct we require some stability condition.

For the analysis of the approximate problems, the discrete operator
(2.7) can be extended to all of S C X as follows:

Ph : S 1-4 Y, Ph(x) = (Iy - Ph)Qx + PhF(z), x E S. (2.10)

Then the mentioned stability condition at zo E M assumes the form:

IID h(zo)wIy _> -yJlwJJw, Vw E W, and sufficiently small h > 0, (2.11)

where, > 0 is a positive constant independent of w and h. As shown in [17]
this condition is relatively easy to verify in many practical situations. The
existence and convergence of solutions of the approximate problems (2.6)
and the a priori error estimates between M and Mh can now be summarized
in the form of the following theorem which was proved in [17].

Theorem 2.2: (i) Under the condition (Fcon) consider the discretized
problem (2.6) and assume that the consistency condition (2.9) holds. At
a given point zo E M, suppose that the splitting (2.3), (2.4) induces the
local C?-coordinate-mapping (2.5) and that the stability condition (2.11) is
satisfied. Then for all sufficiently smallh > 0 there exists a unique point
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Ih E Mh and we have limh-O Xh = X0. Moreover, the splitting Xh = TEEWh
with Wh = W n Xh defines at Xh E Mh a local C?-coordinate-mapping
44 : B C T '-* Xh. (ii) If, in addition, DF is Lipschitz continuous on
bounded sets, then there exists a closed ball B(O,ro) C B, such that for all
sufficiently small h > 0 the estimate

IIXO(t)- Xh(t)IIx _< CI(IY - Ph)QXO(t)lly, Vt E D(0,ro),

holds with a constant C that is independent of h.

3. A Posteriori Error Estimates

For finite element discretizations of various linear problems the theory and
application of reliable a posteriori error estimates has advanced considerably
in recent years, we refer only to [3] and the two proceedings [1], [5] where
many other references are given. These results are now also being extended
to nonlinear problems, see e.g. [2], [4], [16], [8], [19].

In [2] and [4] it has been shown that effective a posteriori error estimates
and adaptive procedures can be constructed and incorporated into a general
continuation process for tracing paths on the equilibrium surface. But the
applicability of these results is somewhat restricted due to the relatively high
computational cost of the estimates. In [16] the estimates use a linearized
form of the problem and hence can be computed about as rapidly as in the
case of linear problems. However, these estimates were based on a fixed local
coordinate system, such as that induced by the natural coordinate splitting
X = Z E A. Hence, by definition they are not valid at any foldpoint of that
local coordinate system, and in fact, as already simple examples indicate,
the estimates may become unduly large near any such point.

As noted earlier, our new construction of a posteriori error estimates is
also utilizes local linearizations of the given nonlinear mapping. For the re-
lation between the solutions of the nonlinear and these linearized problems,
we present first a simple result based on tools from the theory of Newton's

method (see e.g.[14], [15])

Theorem 3.1: Let X, X be real Banach spaces and G : S '-. X a C?-map,
r > 1, on the open subset S C X such that DG is Lipschitz continuous on
bounded subsets. Consider any zo E S where G(zo) = 0 and DG(xo) E
Isom(X, ±). Then there exists a dosed ball . = D(zo, r) C S, r > 0, such
that for any X E A the linearized problem

G(x) + DC(x)w = 0 (3.1)

has a unique solution w = w(z) E X and

I zo - zll = (1 + O(I, - ,o11))I1w()j, as T -- xo, X E 8. (3.2)
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Proof. There exists ro > 0 such that B(xo,ro) C S and DG(x) is an
isomorphism for each x in this ball. Let -y be the Lipschitz constant of DG
on the ball and with 3 -IIDG(o)-l[ and a = O3-y set r = min(ro, 1/(2a)).
Then for all x E P = B(xo, r) the standard perturbation lemma ensures
that DG(x) E Isom(X,X) and

IDG(x [I < 1- < 23, Vx E B.1 - elx - zoll -

Hence, w(x) = -DG(x)-XG(x) is uniquely defined for x E B and with
x = x + w(x) we have

IJxI - xoI < [IDG(x)-lJIG(xo) - G(x) - DG(x)(xo - x)II :_ Q[IX- oI2,

Thus

I]w(X)ii -< tI - zol + IIXo - xIII :S (1 + alix - Xoll[i - Xo11

together with

11 - ol < I1 - XII + IixI - Xoll _< IIW(X)II + aIIX - o 2

shows that

1 1

1 + i! oII i IX()I < il - Xoll < ! (X)i[1- - - - aJIl - Xoii

which proves (3.2).
Now suppose that we are in the setting of both parts of Theorem 2.2. In

other words, consider the problem (2.1) where the mapping F satisfies the
condition (Fcon) and DF is Lipschitz continous on bounded sets. Suppose
that a discretization has been introduced for which the consistency condition
(2.9) holds. At the currently given point xo E M we choose a splitting
X = T E W, dimT = p for which z0 is not a foldpoint; that is, for which
(2.4) is satisfied. Let r E L(X) denote the natural projection of X onto T
along W. For the mapping

G : S CX -4Y xT, G(z) = (f(),r(x - x)), V E S, (3.3)

DG(zo)v = 0 is equivalent with v E kerDF(o) n W and thus v = 0 and
DG(:o) is injective. By (Fcon) the mapping is also surjective, and hence
we find that DG(xo) E Isom(X, Y x T) which means that Theorem 3.1 is
applicable to G.

Since zo E M represents here the desired solution of the original equa-
tions (2.1), we assume accordingly that z is the corresponding solution zh of
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I the discretized equations (2.6) for which, by definition XO-xh E W. Thus by
Theorem 3.1, the problem of estimating the error X0 - Xh is asymptotically
equivalent to solving the constrained linearized problem

F(Xh) + DF(xh)w = 0, r(w) = 0. (3.4)

Of course, (3.4) is still an infinite dimensional problem which can only
be solved approximately. For this we use the same discretization as in the
computation of Xh. In other words, we approximate (3.4) by the constrained
discretized problem

I Fh(Xh) + DFh(xh)wh = 0, r(fIhwh) = 0, (3.5)

where the second equation evidently requires that Wh E Wh with Wh =

Xh n W. Because of Fk(Xh) = 0, the solution of (3.5) is wh = 0. Hence
the norm 11w l of the solution w of (3.4) is exactly the error arising in the
discretization (3.5) of (3.4). In other words, by applying one of the known,
linear a posteriori error estimates to (3.5) we obtain asymptotically valid
estimates of the discretization error 11w l and therefore, by Theorem 3.1,Ialso of the error IkXO - Xh 11

This was the approach taken in [16] and [17]. However, note that (3.4)
and (3.5) incorporate constraints involving the complement W of the local
coordinate space T. The available a posteriori error estimates cannot handle
arbitrary choices of such spaces W; in fact, many of them work only when
W is Lhe given state space Z. Clearly, it is important to allow for a flexible
choice of the local coordinate system during the computation of points on
the solution manifold of (2.1). In other words, this approach is severely
limitated by that requirement.

Since the discretized problems (3.5) only produce the trivial approxima-
tion Wh = 0 of the solution w of the infinite-dimensional linearized problem
(3.4), the question arises how to obtain better approximations of w. Evi-
dently, the difficulty arises when we construct (3.5) by means of the same
discretization used in the computation of zh. In other words, we should
work with more accurate discretizations of (3.4). This is the basic concept
of the defect correction principle. For matrix equations that principle is
also called the method of iterative improvements and was first described
by Wilkinson [21]. Extensions to ordinary differential equations were pro-
posed in [20] and since then the principle has been used extensively in many
settings, see e.g., [6], [7], [9], [10], [11], [12], [13].

I We shall not use the full iterative form of the defect correction principle,
but work instead only with one specific improved discretization of (3.4):

I F () + DFE(xh)w, = 0, wE E W1j, (3.6)

I 7
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where Wh C Wh C W. In other words, the system (3.6) has more degrees
of freedom than used in the computation of Xh.

For ease of notation we assume that the spaces Wh increase monoton-
ically when h decreases. Then the convergence of the solutions wh of (3.6)
to that of (3.4) for h --- 0 may be formulated in the form of the following
result:

Theorem 3.2: Suppose that all conditions of Theorem 2.2 hold. Then
there is some sufficiently small c such that for all 0 < h < h < c, the
solutions w and wh of (3.4) and (3.6), respectively, exist and that

lir wh = w. (3.7)R-0

Proof. Since W and Y are isomorphic, we may choose some A c Isom(Y, W).
Then, by construction of the local coordinate system, DF(z)A is an iso-
morphism in some ball B. = B(zo, p) C S. Moreover, by the Lipschitz
continuity of DF on bounded sets, we may choose p > 0 small enough such
that the stability condition (2.11) holds for all z E B,, and 0 < h < r with
a suitably small c > 0; in other words, that

IIDPh(x)Ayjjy > -yollylly, Vy E Y (3.8)

with some -yo > 0 that is independent of x and h. Finally, by shrinking,
if necessary, p and e further, we may assume that for all 0 < h < e the
approximate solution Zh E Mh of Theorem 2.2 exists and that Xh E BP.

Clearly (3.8) implies that D.Ph()A E Isom(Y) whence for any Yi E Y
there is a unique Y2 E Y for which DFh(x)Ay2 = yI. For Yj E Yh it follows
that

QAy 2 = PhQAY2 - PhDF(x)Ay2 + Yi E Yh

and therefore AY2 E Xh and (Iy-Ph)QAy2 = 0; that is, Ph DF(z)Ay2 = yi.
Hence we obtain from (3.8) that

IIDFh(x)Aylly : ollylly, Vy E Yh.

In other words, (DFh(x)A)- l E L(Yh) exists and is uniformly bounded by
b = 1/0yo for all x E B,, and 0 < h < c.

Now let h with 0 < h < cbe fixed and choose any h such that 0 < h < h.
By construction of B. we know that DF(Z,)A is an isomorphism and hence
that (3.4) has a unique solution w = Ay E W. Moreover, the inverse
(DFh(z,)A) - 1 E L(Y) exists and thus also (3.6) has a unique solution
wTv = Ay ,y & E Yh. By subtraction we find from (3.4) and (3.6) that

Iwh - witl < ,(II(Iy - :PL)DF(Xh)wll + jj(IY -

8



which by the consistency condition (2.9) implies that (3.7) holds.

4. Algorithm
As shown in the previous section, for the a posteriori estimation of the
discretization error of the computed point Xh E Mh we should solve the
more accurate equation (3.6). Obviously, if Xh = Xh then the solution
is wh = 0; hence for any reasonable approximation of the discretization
error w, we require Xh to be a sufficiently larger subspace than Xh. In
practice, the dimension of Xa is already expected to be large and thus a full
solution of the equation (3.6) will be more expensive than the computation
of Xh itself. This constitutes a severe restriction for the applicability of the
defect-correction approach.

Without any further assumptions about the discretization process for
(2.1) there appears to be little chance of resolving this problem. However,
if we suppose that (2.1) is a differential equation to which a finite element
approximation can be applied, then it turns out that an estimate of 11whlf
can be obtained by solving (3.6) locally on each element. A detailed theory
of this approximation process would exceed the space limitations for this
paper and will be given elsewhere. Instead, we shall sketch here only the
general computational procedure.

We consider a nonlinear problem in a generic weak form requiring the
determination of z E Z such that for given \ E A

b(z,\, v) = g(A,v), Vv E V (4.1)

where Z and V are real Hilbert spaces and A is a p-dimensional inner-
product parameter-space. In (4.1), b stands for a form on Z x A x V which
is nonlinear in the first two variables but linear in the third one, and 9 is
a functional on A x V which is linear in v but may be nonlinear in the
parameter-variable. We introduce also the Hilbert space X = Z x A with
the usual inner product for product spaces denoted by (., .).

The discretizations are now specified by the choice of finite dimensional
linear subspaces Zh C Z and Vh C V and the corresponding orthogonal
projections IIh E L(Z) onto Zh. In other words, the resulting (Galerkin-
type) discretization (2.6) becomes the problem

determine Zh E Zh such that

b(zh,A,Vh))=g(A,Vh), VhEVh. (4.2)

If4, j= 1,2,...,mh and v j-1,2,...,ml denote bases of Zh and Vh,
respectively, then (4.2) assumes the usual form

b(ZCjzhAvh)=g(Xvh), k= 1,2,...,mh (4.3)
j=1

9



of a system of mh nonlinear equations in rnh + p variables.
At any solution x = (z, \) of (4.1) consider now a local coordinate sys-

tem defined by a p-dimensional subspace T C X together with its orthog-
onal complement W - T' in X. Under appropriate smoothness assump-
tions on b and g the linearized problem (3.4) at a computed approximation
xa E Xh = Zh ( A of x then becomes

determine u E Z, p E A such that
ah(u,/I,v) =f(v), Vv EV, (4.4)

(tk,(u,p)) =0, k= 1,...,p

where tk E X, k = 1,2,... ,p represents a basis of T and

ah(U, p, v) = DZb(zh, Ah, v)u + Dxb(zh, Ah, v)g - Dxg(Ah, v)p (4.5)

f(v) = -b(zhAhv) - (\h,v)

As we saw, we have to solve (4.4) with a discretization induced by some
larger subspaces ZR = Zh E) Zc and Vh = Vh E Vh where Zc and Vh denote
here certain complements of Zh and Vh in ZE and Vk,resp ectively. Hence,
the resulting discretization is

determine uh E Zh, uc E Zh, p E A such that

ah(uh,A,vh) = f(vh), VVh EVh, (4.6a)

ah(u,., v,)=0, VvhEVh, (4.6b)

ah(uh + uh, A,vh)= f(vc), Vvh E Vh, (4.6c)

(tk,(uh,A))=O, k=l,...,p (4.6d)

(tk,(u, A)) = 0, k = 1,... ,p (4.6e)

But (4.6a) and (4.6d) constitute exactly the discretization of (4.4) defined
by the restriction uh E Zh and vh E Vh, for which we found the solution to
be zero. Hence, it remains only to solve the reduced problem

determine uc E Zh, t E A such that
ah(uhi,4,vh)= f(Vhc), Vvc E Vhc, (4.7a)

ah(uh,i,vh)=0, VVhEVh, (4.7b)

(tk,(U4,/A))=0, k= 1,...,p (4.7c)

where (4.7b) represents a boundary condition for u'.
For the practical application we have to choose a suitable space T.

Since the computed point xh belongs to the manifold Mh of the discretized
problem (4.3) it is natural to select T as the null-space of the Jacobian

10
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I of(4.2); that is, as the subspace of Xh corresponding to the tangent vector
of Mh at Xh. If A is one-dimensional and Mh is computed by a standard
continuation process then a normalized basis vector of T is usually available
at each computed point. Analogously, in the multi-parameter case, if a
triangulation of Mh is being computed (see e.g. [18]) then again orthonormal
"tangent-bases" th, j = 1,.. ., p are readily available at the computed points
on the manifold.

Let 114 be a typical element of the mesh on the underlying domain 11
of the original problem (4.1) corresponding to the finite element space Zh.
In order to obtain ZA D Zh, we may subdivide fl into sub-elements or

increase the order of the element or both, in other words we may use either
a local h-version, p-version, or h-p-version of the finite element method.
This has the advantage of being applicable to large classes of error norms
for u. Of course, for the solution of (4.7a,b,c) it now will become necessary
to "extend" the computed point Xh and its corresponding "tangent"-basis
tjh, j = 1,... ,p to XR by suitable interpolation. The norm of the computed3 local solution on fl is called the local error indicator on that element; that
is,

=j - IuIlf , (4.8)

and the error estimate for the computed point zh is the sum

*77j ( 2  1  (4.9)

over the error-indicators of all elements of f.
Altogether, for the computation of the error estimate at any computed

point of the solution manifold Mh of the discreterized problem we have now
the following algorithm:

1. Let xh E Xh on Mh be the current solution of (4.2). Select the tangent
space Th = span{t,... ,te} of Mh at X h to define the local coordinate
system.

2. Loop over all elements fl of the domain fl
2.1 Subdivide the element 114 into sub-elements corresponding to the

desired choice of a finite dimensional subspace Zj on IV.
2.2 On the refined element solve the local linearized finite element

problem (4.7a,b,c) for (ucjp) E Xk = Z A A. This involves the
interpolation of z and 1..., i from Xh into X.

2.3 Compute the local error indicator (4.8) for the element.
3. Compute the desired a posteriori estimate (4.9) for the current point

Xh E Mh.

I 5. Numerical Example

I 11
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As a model problem for numerical experiments we consider the two-dimen-
sional nonlinear boundary value problem

-Az = Aez, z = z(x,y), V(x,,y) E 1 = (0,1) X (0,1), (5.1)

z=O on 1I.

A weak formulation is

J (zzv, + z - AeZv) dx dy = 0, Vv E H'(11). (5.2)

and we assume that A E R 1 which means that the solutions of (5.2) are
cxpected to form a one-dimensional manifold M.

For the discretization we use a uniform mesh of sixteen bi-quadratic
elements on 11. For the computation of the one-dimensional solution man-
ifold Mh of the discretized problem a continuation process (PITOON) is
applied starting from (z ° A 0\O)-- (0, 0) and our aim is to determine a pos-
teriori estimates of the error between M and Mh at all computed solutions
(zh, Ah) E Mh.

In line with (4.4), the linearized problem at (z, A) has the form

f U'VX + U11vy - (A\u + 1s)e'v] dx dy

= j(zv, + zyv, - Aev)dx dy, vE HJ(11). (5.3)

As before the point (z, A) stands here always for one of the computed points
(zh, Ah) E Mh. We apply now the algorithm of Section 4. and approximate
the error Iull by solving (5.3) locally on a larger finite element subspace ZlI
of H2 (11) together with the auxiliary condition

(t,u) = 0, (5.4)

Here, as noted in Section 4., we choose t h as a normalized tangent vector on
Mh at (zh, Ah). Such a tangent vector is available at each step of the con-
tinuation process and hence the equation (5.4) will involve little additional
computational cost.

For the local solution each one of the 16 elements of fl were divided into
(k + 1)2 biquadratic sub-elements with k = 1,2,3,4. The resulting error
estimates are shown in Table 5.1 where Ijuj. I denotes the computed error
norms for the four cases of k. The computations are very cost-effective,
since each local problem involves only a fixed number of degrees of freedom
depending on the value of k. If lu, 11 is taken as the exact error then
the effectivity index of the estimates is surprisingly good even for k = 1.

12



I

I The table also shows that, as expected, the estimated errors vary smoothly
along the solution path Mh and show no sudden increases near the limit
point \ = 6.804524.

As mentioned earlier, if the natural coordinate system induced by the
parameter space A is chosen then we expect the resulting error estimates
to become unduly large near the limit point. This is indeed the case as the
last column of Table 5.2 shows. At the same time, it should be noted that
the computational cost of the two approaches are practically identical.

II
I
I
I
I
I
I
U
I
I
I
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Table 5.1

step A I1uh II , lluh 11 Iu 11. Iu 4

1 0.118710 0.000516 0.000538 0.000542 0.000544
2 0.473781 0.002040 0.002128 0.002146 0.002152
3 0.946226 0.004010 0.004184 0.004220 0.004231
4 1.415882 0.005898 0.006155 0.006208 0.006225
5 1.882269 0.007695 0.008031 0.008101 0.008123
6 2.344791 0.009389 0.009801 0.009887 0.009914
7 2.785973 0.010913 0.011395 0.011495 0.011527
8 3.220584 0.012313 0.012861 0.012976 0.013011
9 3.647333 0.013578 0.014188 0.014315 0.014355

10 4.064580 0.014694 0.015361 0.015500 0.015544
11 4.470212 0.015648 0.016368 0.016519 0.016555
12 4.861489 0.016433 0.017200 0.017362 0.017413
13 5.234830 0.017050 0.017861 0.018032 0.018087
14 5.585562 0.017522 0.018373 0.018554 0.018611
15 5.907655 0.017914 0.018805 0.018994 0.019054
16 6.193552 0.018368 0.019300 0.019499 0.019562
17 6.434373 0.019144 0.020128 0.020337 0.020404
18 6.620862 0.020640 0.021692 0.021916 0.021986
19 6.745397 0.023317 0.024468 0.024710 0.024787
20 6.804524 0.027539 0.028832 0.029100 0.029185
21 6.800451 0.033461 0.034945 0.035250 0.035345
22 6.740221 0.041066 0.042795 0.043146 0.043255
23 6.633252 0.050283 0.052305 0.052712 0.052838
24 6.489009 0.061065 0.063424 0.063896 0.064041
25 6.328924 0.072480 0.075190 0.075729 0.075894
26 6.144920 0.085598 0.088703 0.089318 0.089506
27 5.941748 0.100500 0.104046 0.104745 0.104959
28 5.723487 0.117289 0.121324 0.122117 0.122359
29 5.493577 0.136117 0.140694 0.141591 0.141865
30 5.254879 0.157154 0.162338 0.163350 0.163659
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I Table 5.2

I step A 1 lulI Hull
15 5.907655 0.019054 0.022905
16 6.193552 0.019562 0.024439

17 6.434373 0.020404 0.027792
18 6.620862 0.021986 0.041992
19 6.745397 0.024787 0.159595

20 6.804524 0.029185 0.176171
21 6.800451 0.035345 0.086353

22 6.740221 0.043255 0.069906
23 6.633252 0.052838 0.065171
24 6.489009 0.064041 0.065099

25 6.328924 0.075894 0.067672

I 6. References

[1] Babuika, I.; Chandra, J. ; Flaherty, J. E. eds.: Adaptive Computa-
tional Methods for Partial Differential Equations. SIAM Publications,
Philadelphia (1983)

[2] Babuika, I.; Rheinboldt, W. C.: Computational error estimates and
adaptive processes for some nonlinear structural problems. Comp.
Meth. in Appl. Meth. and Eng. 34 (1982) 895-937

[3] Babuika, I.; Rheinboldt, W. C.: A survey of a posteriori error estimates
and adaptive approaches in the finite element method. Proc. China-
France Symposium on Finite Element Methods, F. Kang and J.L.
Lions, eds., Gordon & Breach Inc., New York (1983) 895-937

[4] Babuika, I.; Rheinboldt, W. C.: Adaptive finite element processes in
structural mechanics. Elliptic Problem Solvers II, G. Birkhoff and A.
Schoenstadt, eds., Academic Press, New York (1984) 345-378

[5] Babuika, I.; Zienkiewicz, 0. C.; Gago, J.; Oliviera, E. IL eds.: Accu-
racy Estimates and Adaptive Refinements in Finite Elements Compu-
tations. 3. Wiley & Sons, New York (1986)

[6] B6hmer, K.: Discrete Newton method and iterated defect corrections.
Numer. Math. 37 (1981) 167-192

[7] B6hmer, K.; Hemker, P.; Stetter, H. J.: The defect correction approach.
Defect correction methods: theory and applications, K. B6hmer and
H.J. Steller, eds., Computing Suppl. 5, Wien (1984) 1-32

[8] Demkowicz, L.; Oden, J. T.: An adaptive characteristic Petrov-
Galerkin finite element method for convection-dominated linear and
nonlinear parabolic problems in one space variable. J. Comp. Phys.

67 (1986) 188-213

* 15



[9] Kaucher, E. W.; Miranker, W. L.: Self-Validating Numerics for Func-
tion Space Problems. Academic Press, Orlando (1984)

[10] Lippold, G.: Diskretisierungsfehler und Defektkorrekturen bei der LZ-
sung von Gleichungen in Banach-Riumen. ZAMM 60 (1980) 459-468

[11] Lippold, G.: Schiitzung von Diskretisierungsfehler bei der iasung von
Gleichungen in Banach-Riumen. ZAMM 61 (1981) 487-493

[12] Lippold, G.: Fehlerschitzung und Nachiteration bei Galerkin-
Verfahren. ZAMM 62 (1982) 435-440

[13] Lippold, G.: Error estimates for the approximate solution of linear
fixed point equations. ZAMM 69 (1989) 8564-8572

[14] Ortega, J. M.; Rheinboldt, W. C.: Iterative Solution of Nonlinear Equa-
tions in Several Variables. Academic Press, New York (1970)

[15] Rheinboldt, W. C.: An adaptive continuation process for solving sys-
tems of nonlinear equations. Proc. of the Semester on Mathematical
Models and Numerical Methods, Stefan Banach Center Publ. Vol. 3,
Polish Academy of Science, Warsaw, Poland (1977) 129-142

[16] Rheinboldt, W. C.: Error estimates for nonlinear finite element com-
putations. Computers and Structures 20 (1985) 91-98

[17] Rheinboldt, W. C.: Numerical Analysis of Parametrized Nonlinear
Equations. J. Wiley & Sons, New York (1986)

[18] Rheinboldt, W. C.: On the computation of multi-dimensional solution
manifolds of parametrized equations. Num. Math. 53 (1988) 165-181

[19] Rank, E.; Werner, H.: An adaptive finite-element approach to a non-
linear seepage problem. Int. J. for Num. Meth. in Engng.

[20] Stetter, H. J.: The defect correction principle and discretization meth-
ods. Numer. Math. 29 (1978) 425-443

[21] Wilkinson, J. H.: Rounding Errors in Algebraic Processes. Prentice
Hall, Englewood Cliffs, NJ (1963)

16


