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Justificatio

Chapter 1 B

Avail_ abil ity CodesAvail anid/or'

Introduction Dist special

This thesis implements an "optimal" Wald sequential hypothesis testing scheme

for the general diffusion model,

dx, = f'(x,)dt + g(x,)dW' (1.1)

dyt = h'(xt)dt + -ydVt (1.2)

where i = 0, 1. Under hypothesis i;

xt is an n' dimensional state vector;

W' is an nz' dimensional Brownian motion vcctor:

y, is a p dimensional observation vector;

V, is a p dimensional Brownian motion vector;

identical under both hypothesis;

f', g, h' are known functions of the respective state vectors.

So f'(x,) is an n' vector, gy(xj) is an n' x m' matrix, and h'(x,) is a p vector.

Equation 1.1 is called the state equation and equation 1.2 is the observation

equation. When necessary, we will drop the time subscript and use subscripts

to denote elements in vectors or matrices.

Given observation data from one of the hypotheses, we wish to determine

from which hypothesis the data came. Quoting results from [LS78] we will

Manuacup approved May 15, 1990.
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present an --optimal" sequential detection scheme and then formulate a solution

with several possible numerical implementations of the detector. We will give

some numerical results and compare several of these numerical schemes through

computer simulation.

To begin, let us review some results from chapter 17 of [LS78). Consider

the following pair of stochastic differential equations

H0  dyt = dV

H, dyt = h(xt)dt + dVt Yo = 0

These correspond to scalar observation equations for a single hypothesis versus

noise case. Let (.Q,.FP) be a given probability space with a nondecreasing

family of a-algebras Yt where t > 0 with F' C F. Furthermore, let TV =

(Wt,.F') be a Wiener process. Assume h(xj) = (h(xt),.Yt) is an unobservable

process independent of W. We make the following definitions which describe

the sequential detection scheme.

Definition : A sequential hypothesis testing scheme is denoted by A = A(r, 3).

r(y) signifies the decision time and 6(y) E {0, 1 } the decision with 6 = 1 signify-

ing the observed data came from the model corresponding to hypothesis 1 and

S = 0 from hypothesis 0.

Definition : We define an error of the first kind as a(A) = PI(6(y) = 0)

which in radar terminology is called the probability of miss and denoted by P 1 .

We define an error of the second kind as O(A) = Po(b(y) = 1) which in radar

terminology this is called the probability of false alarm and denoted by PF.

Definition : We define Aaa as the class of schemes A = A(r, 6) with a(A) <5 a

and O(A) < 13 where a,/3 are constants with a + 0 < 1.

Definition : Define hi = El (h(xt)IFYt)

We make the following assumptions required for the proof of the following

theorem,
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Al E [lIh(x,)I] < c t<oo i=O., 1

A2 P,{ jhs2 ds= c}=1 i=O,1

A3 E[ f ds]< t < 0,1

Theorem 1 Given assumptions Al to A3 then in the class , there exists

a scheme Z\ = A(i-, 6) optimal in the sense that for any other scheme , =

E, [f0' ,dt] : E, 0j dt] i= 0, 1

The scheme .A = A(- , 6)can be defined by the relationship

"(y) = infimum {t > 0 : A,(y) .(A, B)}

6(y) = { 0 Aj(y)(y) _ B
1 1 Af(y)(y) _ A

where

A,(y) = xp {j hdy, - ' JI' h2 ds}

and
a 1-a

At is known as the likelihood ratio and ln(AI) is the log likelihood ratio. In this

case

E, h2dt] < 0 i = 0, 1

Lemma 1 For the scheme = (

Po(f(y) < co)= P1(f(y) < 0)= 1

and ct(£) = aO(Z) = /.

The proofs for the above theorem and lemma are given in Chapter 17 of [LS78]

for the scalar case.

The proofs for the equivalent theorem and lemma for the vector case are

given in [LaV86]. For the vector case assumptions Al through A3 become:
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B1 E[llh(xt)jl] < o t < oo, i = 0,1

B2 P, {f' 1' 3112ds =o} = 1 i=0,1

B3 E[$llh1,'2ds] < o t<co , i-0, 1
and then

At(y) = exp {jf hdy.- f J Q hsII ds}

where T in hT denotes vector transpose.

For the general hypothesis testing problem between two hypotheses, corre-

sponding to eqs. 1.1 and 1.2, the likelihood ratio is given by

A,(y) = cxp jt (14 - i)dy I fJ' (11h1412 1i12 s1 ,) _y 12 1O1 ds}

With the additional assumption

P{ 0 I1h h IIlds = oo} = 1 i =0, 1

we guarantee a finite decision time.

In order to calculate A,(y) it is necessary to determine h', the conditional

expectation of ht(xt) given the observation y, s < t. Under appropriate condi-

tions, the conditional density of xt conditioned on the observation dy, which we

will denote as u,(x, t), satisfies the linear parabolic partial differential equation

known as the Zakai equation [BBH83]. In the next chapter we present the Zakai

equation and the necessary conditions for existence of a unique solution which

in turn will yield A,(y). We also derive several approximation schemes which

are implemented and we make comparisons of the results.
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Chapter 2

Solution and Numerical

Approximation of the Zakai

Equation

2.1 Solution of the Zakai equation

The Zakai equation is given by ( 2.1). When -1 (the observation noise scaling

factor) is equal to one the conditional density u(x,t) of the underlying state x

conditioned on the observations dy is known to satisfy the Zakai equation. We

will drop the hypothesis superscripts and the time subscripts, instead using sub-

scripts to denote vector and matrix elements. So the functions h(x,), hi, Yt, and

xt will not have explicit time dependence. The following assumptions guarantee

existence and uniqueness of the solution to the Zakai equation [BBH83] and are

assumed to hold throughout the chapter.

C1 L" is uniformly elliptic

C2 f (x),a(x),h(x), ~-fLaj 92 ~O'ij(X), -hk(X) , and

hk(x) for i, j = 1 .... n and k p 1..., pare uniformly bounded and Lipschitz

continuous.



Then the unormalized conditional density u(x, t)satisfies ( 2.1),

du(x,t) -Lu(x,t)dt - -IjhII2u(x,t)dt +hTdyu(xt) (2.1)

L ~ ~ .O U !] )()UX )
Luiaxt a(iuj - fi(x)u(x, "I

a(x) = 9g(x)gT(x)
2

where ai,(x) is the i, j element of the the matrix a(x). To determine the partial

differential equation that u(x,t)satisfies for -y # 1 it is simply neccesary to

renormalize the output equation, so h(x) becomes 1h(x) and the observation

dy becomes dy.

We wish to solve ( 2.1) for u(x,t). Ve factor the term L'u(x, t) as A'a(x, t)+

C(x)u(x, t) where .4 contains the terms which have derivatives of the density

u(x,t). This is done based on numerical implementation considerations which

will be expanded upon later. Then ( 2.1) can be written as

du(x,t) = A'u(x,t)dt + [C(x) - 1I1h[I2] u(x,t)dt + I1T dyu(x,t) . (2.2)

Defining

dO(x, y, t) = hTdy + [C(x) - 1hIII112] dt

we will use a Gauge Transformation with

r(x, t) = exp - OX{ Yx 't) u(x, t)

so

u(x, t) = expOXY 0 r(x, t)

Now u(x,t) mu.,t satisfy ( 2.2) so

dr(x, t) expO(x.Y'y = A'r(x, t) expO(x 'Y '0 dt + (de(x, y, t)) r(x, t) expOx y' . )

exp o xY 't) = dr(x, t) + r(x, t)d expO(x 'Y ' ) = A'r(x, t) expOx 'Yt) dt

+ (db(x, y, t)) r(v, t) exp(xYt)
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dr(x,t) = exp - Ox 'y.Yl A'r(x,t)expO xyt) dt + (d0(x,y,t)) i,(x.t)exQ(x 'y.t)

-,'(x' t) (d expo x'y")) I

dr(x,t) = exp-*x.Y, [ A'r(x,t)exp '(XYt ) dt + (dO(x,y,t)) r(x,t)cxpQ(xYI)

- (die(x, y, t)) r(x, t) exp (x'Yt)]

dr(x,t) = exp-XYt) [A'r(x, t) expX-Y"'0] dt

or

dr(x, t) = exp - O(xYt) A* expoxyt) r(x, t)dt

This is a classic parabolic partial differential equation. Using results from semi-

group theory and differential equations the solution is given by

r(x, t) = exp- Ox'Y't) expA-t expP x'Yt) u(x, 0)

so

u(x,t) = expx 'Y't) r(x,t) = exp"' exp Ox 'Y't) u(x,0)

= exp . t cxphrdy- 1h112 +c(x)* u(x, 0) (2.3)

2.2 Calculation of Likelihood Ratio A

From the introduction we have for the single hypothesis versus noise case

At(y) = exp, {j hdy 1 - I' 1h.I12ds}

and for the general hypothesis case

A,(y) = exp {j (hI.- ,l°)T dy.- I jt (ihdiis - Iii OII2)

To calculate A, from the above formulas it is necessary to find I, the conditional

expectation of )I. \Ve will solve the Zakai equation for u,(x, t) the unnormalized

conditional density assuming hypothesis i, then taking the expectation of h' with

7



respect to the normalized conditional density we can calculate At. However, we

will show that
At(y) =n- ul(x,t)dx

iii the single hypothesis case and

At(y) -- fIR u I(x, t) dx
fR. u0(x, t)dx

in the general hypothesis case. By using the above formulas to calculate At we

avoid the additional approximation in calculating ht.

Lemma 2
t 1ldy j' j ]l"-ds}

A(y) = exp {j h0dy5 - 2 f ih }

(for the single hypothesis versus noise case) satisfies the stochastic differential

equation

dAt(y) = At (Y)hT dy

proof: Changing notation let At(y) be denoted by A(y, t). We use' to denote

differentiation and the corresponding subscripts will denote the variable with

respect to which the differentiation is performed. Let

z(t) = fhTdy, - fI'[I,12 ds

then

dz(t) = hTdy - 1lihII2dt

Using the fact

dy = h(x)dt + dV

= h(x)dt + dA

where d r is a Brownian motion vector independant of dV but with the same

distribution and is obtained by taking expectations, we get

dz(t) = lllhII2dt +

8



So Z(t)satisfies a stochastic differentail equation. Applying Ito's formula to

A (z (t), t) = exp I{:(t)}

we get

±hT A'( Z(t), t) dW

[' 11j,112 A(z(t), t) + 1 1j,112 A(z(t), t)] dt + !A(:-(t), t)dW'/

11I,1I2 A(:(t), t)dt + IT A(z(t), t)dV'1

=A(z(t), t) [I1hII2 dt + jLTdW.]

= (z (t), t) [t hdt +hTdWI

=A(z(t), t)hjT hdt + dV]

Substituting dy back in for lidt + dW we get

dA(y, t) = A (y, t) hT dy

Consider the inner product defined by

<gY(x), hL(X) >= Jg(x)h(x)dx
For the Zakai equation we have

L' =x t) 02 (~,X)u(x, t)1 - ff(x)u(x, 0)1
i,j=I x~j ' t=l

with adjoint operator L given by

Lu(x, t) = '.()-[ux )2 1 () ux ~

x 1 u(xO ix 1x u,0

So < L'g(x), h(x) >=< g(x), Lh(x) >.

From ( 2.1) we have

9



Then

d < u(x, t), I > = <u(x, t), LI > dt+ < u(x, t)hT, 1 > (ly

= < u(x, t), 1 x ) > dy
< u(x, t), 1 >

= < u(x,t),I > hT dy

with < u(x,O), 1 >= 1. So At and < u(x,t), 1 > satisfy the same stochastic

differential equation and are equal P-a.s. So

A = <u(x,t),1 >

= fu(xt)dx

For the genaral hypothesis case we get

At < u (x, t), >

< uo(X, t),1 >
ffiz u I (x, t) dx
fI. u0(x, t)dx

2.3 Numerical approximation of the Zakai equa-

tion

Discretizing ( 2.3) in time as

t7I

U(x, t) = ]7 expA'At exp hr ayty - IIhllI2 t+c(xat u(x, 0) (2.4)
1=0

LaVigna shows lima_oU(x, t) - u(x, t). Similarly, he shows the approximation

U(x, t) = 1J exph AYIIAt-I lhI2 At+(x)At exp ' u(x, 0) (2.5)
1=0

also converges to u(x, t) as At - 0.

We will discretize ( 2.4) and ( 2.5) in space (ic. with respect to the underlying

state x). We will replace the differential operator A* by matrix operations.
We will use boldface capital letters to denote matricies. We discretize the

density u(x,t) as a matrix

10



U(xo, t) u(xo + Ax2,t) ... u(xo + kx 2 ,t)

u(xo + -Ix1,t) U(xo +-- AX I-+-IX 2 ,t) ... u(xo + Axi + kAx 2 ,t)

u(Xo +j:: 1 t) (x 0 +jxI + Ax 2 ,t) ... u(xO +jAxI + kx 2,t)

which we will denote by U(x, t) where xo is the left endpoint of the discretization

space.

Consider the first and second order approximations

a u(x + Axi,t) - II(x,t)-u(x,t) = =
ax, Ax,

0 u(x,t) - u(X + Axi,.t)- (x, t) -=_________

Oxi AXj
02 u(x + Axi, t) - 2u(x, t) + i,(x - Axi, t)
axu(xit) = AX?

where Ax, is the discretization increment of the ith component of the state vector

and is scalar and Ax, is an n dimension vector with Axi in the Vth position and

zero elsewhere. So 2ru(x, t)and -u(x, t)are the second and first derivatives of

the density with respect to the ith component of the state. Define

-At t [a_ IDi (X) = -- Atai,,(X) _ at -f(x) + 2- C9Or~(x)A X?, ~ j I-ax,
UDi(x) = At.a.,(x) + A max 0, -fi(x) + 2 ai,1(x)

AX At. I a 1
LD,(x) = -:-Laj, (x) - min 0, -fi(x) + 2 ai'i(x)

where the functions max[.,.] and min[.,.] take the maximum or minimum of

their respective arguments. We define the tridiagonal matrices Al and A!
respectively by

DI(Xo) -D 1 (Xo)
LD(Xo + &X) DI(Xo + AXI) UDi(Xo + AXI)

LD,(Xo + (j - I)AXi) D,(Xo + (j - l),Xi) UD(Xo + (j - )AXI)
-Da(Xo + j4X) DO(Xo + j4X,)

11



D2 (xo,t) -DI(xo)

LD 2 (xo + 4x 2 ) D2 (xo +Ax 2 ) UD 2 (xo + aX2)

LD 2 (xo+(j- l)Ax 2 ) D(xo+(j- 1)Ax2) UD(xo +(j'- l)ax2)

-D 2 (xo +jAx 2 ) D 2 (xo + jax2)

With the further assumption that fi(x) only depends on the iZh component

of the state vector we can rewrite ( 2.4) and ( 2.5) as

tSJ

U(x, t) J1) U(x, t) expA2 +  (2.6)
I=0

and

U(x, t) =I E(lAt) ® expA1At U(x, lAt) expA2 a t (2.7)
I=O

respectively. The symbol 0 is pointwise matrix multiplication and I is either an

j x j or a k x k identity matrix. E(t) is defined as

O(XO) a(xo + x2) ... o(xo + kAx 2 )

ex hTAyJ (xo+ xI) (Xo+ AX+AX2) ... ,I(xo+ ,AxI + ,x2)exp::"-.

O(xo+j&xi) G(xo+jAx, +AX2) ... o(xo+jAx, +kAx?)

where a(x, t) = exp [-il 1hll2 t + C(x)At]. Note that in discretizing the equa-

tions in space the operation A" for i = 1 became matrix multiplication on the

left and for i = 2 matrix multiplication on the right. If fi(x) is not assumed to

depend only on the ithcomponent of the state vector then ( 2.4) and ( 2.5) can

still be implemented using matrices, however, Al changes for each column of

the discretized density and A; changes for each row of the discretized density.

We know

expAlAt = £ (Ant)n

n=0

We are interested in approximating the exponential of a matrix by a truncated

sum. If the elements of AiAt < 1, which we can guarantee by choosing At

small enough, then

expApat I + AiAt

12



By using only first and second order approximations for the first and second

order derivatives of the density with respect to the state we have the row of Ai

summing to zero. Additionally, choosing At such that the elements of AiAt < 1

we have ensured the matrix I + AiAt is well conditioned and invertible. \Ve can

implement several different schemes for ( 2.6) and ( 2.7). We can rewrite one

step of ( 2.6) as

U(x, t + At) = (I + AtA) [E(t) 0 U(x, t)] (I + AtA;) (2.8)

which we will denote as the explicit discretization. We can implement a two

step approximation of ( 2.6) by

(I - tA.) U(x, t + At) -[E(t) & U(x, t)] (I + AtA) (2.9)

U(x, t + 2At) (I - AtA;) - (I + AtAj) [E(t) 0 U(x, t)] (2.10)

which we will denote as the mixed scheme. Finally, we can implement the

approximation

(I - AtAj) U(x,t + At) (I - AtAj) = JE(t) & U(x,t)] (2.11)

which we denote as the implicit scheme. ( 2.8) is called explicit because the

density U(x, t+At) is explicitly defined interms of the density U(x, t). ( 2.11) is

called implicit because each point in the density U(x, t+At) is defined implicitly

by one or more points in the density U(x, t + At) as well as U(x, t) and a set

of simultaneous equations must be solved to obtain U(x, t + At). The scheme

corresponding to ( 2.9) and ( 2.10) having components of both the explicit and

implicit schemes is denoted as the mixed scheme. For implementing ( 2.7) we

again get similar result with the pointwise multiplication by E(t) done after

matrix multiplication of I + AtA* and U(x, t).

Several approximations were used, in arriving at a discretization scheme for

(2.4) or ( 2.5), which warrant further discussion. We approximated the expo-

nential of a matrix by using only two terms of the Taylor expansion. In order

13



for the approximation to be accurate it is necessary that the elements of the

matrix be small. The only term which is free to be set is At but making At

small requires more computations to process a fixed time block of data. Al-

ternately, a better approximation for the exponential can be used by including

more terms of the expansion but for each additional term the matrices A! have

an additional nonzero upper and lower diagonal which again increases computa-

tional complexity and A! can nolonger be guaranteed to be a well conditioned

matrix. Another approximation used was the first and second order approxi-

mations for the first and second order derivatives of the density u(x, t). Higher

order approximations can be used but result in additional nonzero upper and

lower diagonals in Ar which again increases computational complexity and the

matrix I + AiAt can not be guaranteed to be well conditioned. There is also

a question of which scheme to implement to approximate the conditional den-

sity u(x, t). The implicit schemes require more computations than the explicit

schemes but the implicit schemes exhibit better numerical properties as At be-

comes large. However, since we require At to be small the implicit, explicit and

mixed schemes arc essentially equivalent with respect to numerical stability.

There is also the approximation of the conditional density u(x, t)by the matrix

U(x. t). If the discretization is very coarse U(x, t) will be a poor approximation

of the density u(x, t)but the more fine it becomes the more calculations per step

in time are needed. Finally, there is a question as to which aproximation, ( 2.6)

or ( 2.7), is better to implement. Some of these considerations have been stud-

ied for particular cases of interest to the Navy. These cases impose additional

constraints on the implementation scheme used and are discussed in Chapter 3

and Chapter 4.
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2.4 Implementation

The discretized schemes were implemented using MACSYMA and FORTRAN.

MACSYMkIA is a symbolic math manipulation package written by the MIT Lab-

oratory for Computer Science. It is able to generate legal FORTRAN code

which was used to implement the actual numerical calculations. The use of

MACSYMA gave significant flexibility in entering models by allowing symbolic

calculations including differentiation required to implement the numerical solu-

tion. It also allowed for easy changes to the discretization of the state space.

After specifying the models and state space discretization, FORTRAN code is

automatically generated which simulates the diffusion (using first order differ-

ence equations) and solves the Zakai equation. The code makes use of routines

from LINPACK, a set of FORTRAN subroutines for doing linear algebra. The

FORTRAN allows entry of any constant parameters at the time of execution.

Presently the MACSYMA code is running on a Texas Instruments Explorer

and the FORTRAN code is then transferred to a VMS or Unix machine and

executed.

2.5 Comparison of discretization schemes

We presented five possible discretization schemes for the solution to the Zakai

equation. For ( 2.4) there are the implicit, mixed, and explicit schemes. For

( 2.5) there are the mixed, and explicit schemes. Note that the implicit scheme

for ( 2.5) would be the same as for ( 2.4). This section gives results comparing

the numerical approximation of the Zakai equation by ( 2.6) or ( 2.7) and the use

of the implicit, mixed of explicit scheme. A comparison for one particular case

is shown in figures 2.1 to 2.8. These figures correspond to a lognormal model

versus a Rayleigh model with the Rayleigh decorrelation time one tenth that

of the lognormal, (reference tables 4.1 and 4.2). The use of these particular

models are discussed in Chapter 3. In figures 2.1 to 2.4 we show the log
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likelihood ratios given hypothesis 0 data and in figures 2.5 to 2.8 we show the

log likelihood ratio given hypothesis I data for one particular set of parameters.

We see that in all cases the log likelihood ratios are very similar. Again, this

is partly clue to the small time discretization steps which was necessary for the

approximation to the exponential of a matrix to be accurate. All the plots of the

log likelihood ratio are compared with the implicit discretization of ( 2.4) which

is given by ( 2.11). From Monte Carlo simulations presented in Chapter 5, using

the implicit discretization and the mixed discretization of ( 2.4), we conclude

that the results are nearly identical in the number of correct decisions and the

decision times which supports the conclusion suggested by figures 2.1 to 2.8

that for the given models the approximation scheme behave nearly identically.
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distribution.

The typical radar system is composed of an IF amplifier followed by a second

detector and a video amplifier. The second detector and the video amplifier form

an envelope detector. If the inphase and quadrature components of the signal

entering the second detector are independent and have a Gaussian distribution

then Rice has shown the density of the envelope to be Rayleigh (amplitude) and

the power will be distributed exponentially (Rayleigh Power).

The Rayleigh distribution has also been shown to model sea clutter when the

resolution cell (ic. the area illuminated by the radar pulse) is large relative to

the water wavelength. It has also been seen that sea clutter with high resolution

radar will often have heavier tails which can better be represented by a lognormal

density function.

In addition to the amplitude distribution of the chaff and clutter returns,

the power spectrum is also very important. It gives information as to the rate

at which the radar cross section changes. Early models of the spectrum were

assumed to be Gaussian which gives an autocovariance that is also Gaussian.

More recent measurements performed in the 1960's and 1970's showed power

spectrums of the form
A

to be more appropriate, where

A is the mean value of the power density

f, is the clutter spectrum half-power frequency

f is frequency

n is a positive real number.

According to Barton, the actual spectrum can generally be fitted with a "band-

limited white noise spectrum, extending from zero to infinity, but with steadily

decreasing amplitude above (a) given frequency" (Bar64,p.82], which we denote

by f, (the half-power frequency). Then the actual spectrum can be well approx-
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imated by
A

The autocovariance function is given by

R(t) = Arfexp {-2rflIt}

which results in exponential decorrelation with time constant 2-'f"

In the case of a ship the scattering elements are much more complex and most

of the modelling has been based on empirical considerations. "The lognormal

distribution has been used to model scattering from highly directive reflectors

when viewed from random aspects" [Bla86,p.77], such as randomly oriented flat

plates. corner reflectors, and antennas. "It has become popular to use the lognor-

mal model to describe large metal objects of irregular shape, especially ocean

vessels with complex superstructures" [MM73,p.67]. We do not wish to imply,

however, that the lognormal distribution can model all RCS returns from ships.

In addition to the lognormal distribution, radar cross section (RCS) returns have

also been observed to be distributed Rayleigh power, Rayleigh amplitude, chi-

square with two and four degrees of freedom, and Rician. Lognormal statistics

tend to appear at major aspects of ships with dominant scatterers, especially

on the larger ships such as carriers and battleships.

As in the case of chaff and clutter, it has been observed "that the )ower

spectral density of the ship RCS fluctuation due to deterministic and random

azimuth(aspect), pitch, and roll motion can be very well approximated by a

power spectral density of the form" [Bar80,p.30]

A
1+ (_L)2

which yields the autocovariance function

R(t) = Arfb exp {-2?rfbltl}

which is exponential decorrelation with time constant - It has been observed

that the decorrelation time for a ship tends to be larger than for chaff or clutter
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Chapter 3

Model Definition and

Parameter Estimation

3.1 Specification of model

We are interested in the performance of the detector for the previously described

discretization schemes and as such we need specific models. The Navy is inter-

ested in the application of the resulting detector to radar problems. Based on

these radar problems we choose specific signal and noise models. We will look

at the ship versus decoy problem.

One common decoy used is chaff. Chaff is the code name used during W II

to refer to metallic dipoles (strips of light metal foil) dropped or launched into the

air to confuse enemy radar by presenting a large radar return. If these dipoles

are half the length of the radar wavelength they will resonate and give large

radar returns. Since the chaff cloud consists of a large number of scatterers

of which no single one dominates, the phase and amplitude variations of the

individual scattering elements can be considered independent. By application of

the Central Limit theorem to the phasor summation of the RF voltages induced

in the receiving antenna by the reflection of the individual scatterers it leads to

the conclusion that the inphase and quadrature components have a Gaussian
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which is supported by the fact that the individual scattering elements of a ship

are fixed relative to each other and the azimuth, pitch, and roll motion is slow

relative the orientation changes of the dipoles in the falling chaff or the sea

surface.

The Rayleigh and lognormal radar returns can be modeled using diffusions

which are given by

dxt = f'(xt)dt + g'(xt)dW,

dyt = h'(xi)dt + -ydVt

We will drop the time subscript and use subscripts to denote elements in vectors

or matrices. Under hypothesis 0 we will assume that

fO(x) - a Hx~x

hf(x) a

then h°(.) has Rayleigh amplitude statistics. As for hypothesis 1, we assume

that

f'(x) = [qxi]

9'(x) = [r]

h'(x) = [sexp{xi}],

then hl(x) is distributed according to a lognormal density. The parameters a,

b, c, q ,r, s, and -y are constants. The term -,dV, models thermal noise in the

receiver. The constant -y must be nonzero or else the likelihood ratio N, becomes

undefined which results in numerical problems in the discretization.

We will wish to test the detector with known parameter values and with

estimated values. The parameters we need to estimate are the constants a, b, c,

-y in the Rayleigh case and q, r, s, -y in the lognormal case. In the case -y 1,
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as explained earlier, the term y becomes a renormalizing term. When a and b

(q and 7') are independent of time the underlying state is a correlated Gaussian

path. For the discretized version of the differential equation the parameters a

and b (q and r) can then be related to the parameters PG the correlation and

UG stationary variance of the underlying Gaussian (appendix D) by

PG - 1
At

b =-G (I + aAt))

-- At

where PG = exp ('-) and tG is the decorrelation time constant for the under-

lying Gaussian.

3.2 Parameter estimation: lognormal

One very common estimator is the maximum likelilood estimator (MLE). To

calculate the MLE of the parameters for the discretized version of the solution

to the Zakai equation we need to find the distribution of the output data. To

generate the lognormal or Rayleigh distribution given the form of the models we

first look at the distribution for the underlying Gaussian. With the requirement

that < a < 0 (or q respectively), where At is the time discretization used,

then the underlying Gaussian has a stationary distribution with zero mean,

variance denoted 0 , and exponential decorrelation ic. R(k)= exp ,a = p.

We can write the distribution for the underlying Gaussian in closed form for

both the lognormal and the Rayleigh cases, refer to appendix A.

For the lognormal case h'(x) is an invertible transformation, so ive can use

the Jacobian change of variables formula to determine the distribution for hI (x).

Denote yj = It (x,) then we can write the distibution for y = [Yl, Y2, ..., y.] as

(y) (2r)(n/ 2)()
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2r 2... r[-.12 2 1
exp 2a(1 -,) i]J - 2po [i][i + 1Pc] [' -]

where

[i] = In (p)i- = ln(y) - (In(s) + M)

To calculate the distribution of the observation (hi(x) plus additive noise)

in closed form is not possible so one cannot find the MLE, however, if the signal

to noise ration (SNR) is very large the ML estimator derived assuming no noise

may be a good estimator. The ML estimators ,assuming no noise,for a2 and

In(s) - /i with respect to PG are given by

In(s) In(y 1 ) + ln(y.) + (1 - Pc) M2 ln(y)

2 + (n - 2)(1 - PG)

rn n-i
or -n(1 - Z [i]2 - 2pG [ii + 1 + [i]

1 i=1

where

[i] - ln(yi) - (In(s) + p)

The ML estimator for PG cannot be solved for explicitly, however, we are

only interested in solutions in the interval (-1, 1) and can easily implement an

algorithm to find the roots of the derivative of the density with respect to pG

in this intcrval. Differentiating the lognormal density with respect to Pc and

setting it equal to zero we get

0 = (i - 1)aGpc(1 - Z PG [T - 2pGT2 +(p1T3 ] +(1 pT3(

with

n ft

T, = Fin2(y,) - 27l In(yj) + n 2

n-i "- n

.2 = F, li(yi)l,,(y,+,) - 1 n(y,) + ln1(,)j (m) - 1)1-
i=l Li=1 i=2

n-I n-i

T3 = In 2(y1)- 2 in(y,) + (n - 2)172

i='2 i=2
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which depend on PG thru 7, the ML estimate for In(s) + o for a particular value

of PG. By finding the root of ( 3.1) we obtain an estimate for PG and in turn al

estimate for In(s) + p and a. Note that the ML estimator for aG can also be

written as

' [Ti -2pGT 2 + P& 3J?I:-- (' - p21)

These estimates are not very good when any significant amount of additive

white noise in the output equation is present, particularly for PG. As will be

seen later the detector becomes numerically unstable if the SNR is too large,

ie. small noise power relative to signal power, so the ML estimates assuming no

noise are not useful ini this case. An alternate estimation scheme would be to

estimate PG and then use the ML estimator for correlated lognormal data or the

ML estimators for independent data which are

1 n

n i=1

aG E - n(yi) - (In(s) + p)
n i=-

We can estimate PG from the covariance function of the output data. If the

underlying state is Gaussian with an exponential covariance function then the

lognormal sample path has a covariance function which is approximately expo-

nential [Bar80]. Assuming an exponential covariance function for the lognormal

signal we match an exponential to Ro(k) ,k > 0(o denoting observation data).

From this we get an estimate for the decorrelation time of the lognormal data

which we will denote as ti. Then we use the approximation

1t =l 1 In(a) -In [In (1 + exp(1)

tG t( I exp()

from [Bar80] to get an estimate for tG and thus PG. We justify the estimate

for t1 by the fact that the lognormal data without additive white noise has a

covariance function which is approximately exponential, the white noise covari-

ance function is a Delta function, and since the lognormal data and the white
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noise are independent the covariance function of the observation is the sum of

the covariance function of the lognormal signal and the covariance function of

the noise. Figures 3.1. 3.3 and 3.5 are plots of lognormal model sample paths

without noise and with additive noise for SNR of 20, 5 and 2. Figures 3.2, 3.4

and 3.0 are plots of the normalized covariance functions of the signal without

noise (solid), the signal plus noise (short and long dash) Ro(k), k > 0, signal

plus noise with the first term removed(short dash) R.(k), k > 0, and an expo-

nential function (long dash). In figures 3.10 to 3.15 we have similar plots for

the Rayleigh model for SNR=5 and decorrelation times t, = -!, I, ti. We see

that the covariance function does exhibit the desired behavior of a 6 function

at zero for the additive noise plus an approximately exponential function for

Ro(k),k > 0. An additional observation is that as the SNR becomes smaller

(more noise) the exponential behavior of the covariance function, RJ?(k), k > 0,

becomes more corrupted due to the noise covariance function not being a true

6 function, esnecially for the lognormal case where the stationary variance is

smaller than for the Rayleigh case and the signal begins to look like a mean

wlhich is removed by the covariance function.

Another possible estimator for In(s)+p and aG would be the mean to median

ratio of i.i.d. data (reference appendix B). If we assume the underlying state

has zero mean then
mean a2

median 2

median = s expu = s

Finally, from Huber we have a robust estimator for independent identically

distributed Gaussian data known as the Median Absolute Deviation (MAD)

estimator [Hub81]. By taking the logarithm of independent noisy data values

(rejecting any negative observations) we have corrupted iid Gaussian data. Let

zi = In y then

In(s) + p = median{zi}

OG = [median{Iz i - median{z,}Il}]
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We again estimate PG from the covariance function.

3.3 Parameter estimation: Rayleigh

For the Rayleigh case if we set yj = h0(x,) we have the distribution of y =

[Yi, Y2,..Yn] 'L

rjr!1
(Y)= o-p -(j p )(2--) exp y i 10 [O13iY.+i]

i=1

where -(i+p ) --2 n-1

a, - 20 (1-p-)
-' i =1.n

ai 2a~c~ 0 -p

PC
2 c2(1 - p

and 1o is the modified zero order Bessel function. It is not possible to estimate

c and OG independently since c and aG away appear together. We can only

estimate the product CaG . Since we can only estimate the product of c and aG

we arbitrarily set the stationary variance of the Rayleigh model to the stationary

variance of the lognormal model when we implement the detector.

The ML estimator for caG and PC is the solution to the equations

n-1o~ ~ =2 2-,ca. 2 ~)-Y ; + (I1 + p2)  y,
0=2nc a Y(+-Y E-

i=2

0 =2o(i-l)(1 -I, )- ( +1Y+2 i
+P E DIyili (

j=i Ii c \Cd) IP

+(1 + p) - PG!/YY,-+ t=2 ,7,-, I,0C .r Y~+

where I, is the modified first order Bessel function. Because of the poor results

for the ML estimator for the lognormal case when noise is presen'. and the fact
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that the detector becomes numerically unstable for large SNR (ic. small additive

noise power) this estimator was not implemented.

An alternate method of estimating the Rayleigh parameters is to estimate

PG from the covariance function of the output data similar to what we did in

the lognormal case. If y is correlated Rayleigh (amplitude) data and we define

= yi then z is correlated Rayleigh power data. If the underlying state is

Gaussian with exponential decorrelation and time constant tG then zi will have

exponential decorrelation with time constant t. = L [Bar80]. Figures 3.7 to2

3.9 show the normalized covariance functions of a Rayleigh amplitude signal, the

square of the Rayleigh amplitude signal and a matched exponential function. We

see that the decorrelation time t, - t... We note that as the decorrelation time

increases,pG - 1. and the covariance function does not go smoothly to zero. The

oscillatory behavior is due to numerical instabilities in the discretization scheme

as PG - 1 and is known as ringing. Figures 3.10, 3.12 and 3.14 are plots of

Rayleigh (amplitude) model sample paths without noise and with additive noise

for SNR 5. Figures 3.11, 3.13 and 3.15 are plots of the normalized covariance

functions of the signal without noise, the signal plus noise Ro(k), k > 0, signal

plus noise with the first term removed R.(k), k > 0, and an exponential function.

As noted earlier we have the desired behavior that the covariance function of

the observation is approximately the sum of an exponential function, due to the

signal, and a 6 function due to the additive noise.

We can estimate cor from the ML estimator for c-a2 for i.i.d. observations

which is given by

2n i=1

Alternately, we could use the power to median or the power to mean ratios for

i.i.d. observations given by (reference appendix C)

power _ 2
median 1 -n(4)
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power

mean

3.4 Estimation of noise scaling -

We will estimate y from the covariance function of the observations. The noise

in the output equation is white zero mean Gaussian so its covariance function

is a 6 function. Since the noise is independent of the signal h(x) the covariance

function of the observation data is the sum of the covariance functions of the

noise and the signal. We use R(k) to denote the covariance function, with

subscripts s.n,o to denote signal, noise, and observation respectively. Under

the model assumptions made the signal covariance function is approximately

exponential so R,(O) is approximately R,(1) provided the decorrelation time

constant of the signal is not on the order of the time discretization At. With

the noise covariance function assumed to be a 6 R,(1) =z Ro(1). So we have

R,(O) =R , (O)+ R,(O)

or

R =(O) R0 (O) - R,(O)

So 1,.(0) - R,(1) and substituting we get

R,(O) R(O) - R.(1)

In figures 3.11 to 3.15 as the decorrelation time approaches the time discretiza-

tion step size At the 6 function, due to the noise, becomes less distinct because

the covariance function of the signal is approaching a 6 function with respect

to the time step size At. Additionally, if the signal to noise ratio is large, ic.

the noise covariance function has a 6 function with magnitude on the order of

R,(O) - R,(1), then R,,(O) - R.(O) - Ro(1) is clearly a poor approximation which

could cause significant numerical problems and errors since the observations are
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renormalized byv where R,(O) = 37 after discretizing. Again, for the models

we use. figures 3.11, 3.13 and 3.15 exhibit the desired behavior of a 6 function

plus an exponential function. This estimate could be improved by extrapolating

back to Ro(O) after matching the exponential to Ro(k) k > 0. This would help

remove variations of Ro(k) from R,(k) for k > 0 due to the additive noise not

being an exact 6 function as seen most significantly in figures 3.2, 3.4,and 3.6.
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Chapter 4

Results

4.1 Model specification

We choose the Rayleigh and lognormal models based on NRL data. Tables 4.1

and 4.2 summarize the parameter values chosen to test the detectors perfor-

mance. Results from Chapter 3 and the appendices were used to determine

parameter values and signal and noise statistics. The Rayleigh model with pa-

rameters A = -24.06,B = 1.038 and C = .2117 corresponds to the Chaff/decoy.

We will denote the hypothesis test between this particular Rayleigh model and

the lognormal model as the ship versus decoy case. The other set bf parame-

ters are to test the effect of different characteristics of the signal and noise on

the detector performance. The decorrelation time and the stationary mean are

investigated. The second set of five parameters for the Rayleigh have the sta-

tionary mean shifted by 5 percent and the powers moved closer. In addition to

Lognormal parameters stationary statistics

Q R S/a 2  power tj

-4.800 .4646 .03935 .02251 .03980 .00003605 .001620 .2066

Table 4.1: Lognormal model parameters
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Rayleigh parameters stationary statistics

A B C 01 2 power tr

-.04840 .04668 .2117 .02251 .03980 .0004330 .002018 100tci

-.2420 .1044 .2117 .02251 .03980 .0004330 .002018 lOtct

-2.419 .3299 .2117 .02251 .03980 .0004330 .002018 tcl

-24.06 1.038 .2117 .02251 .03980 .0004330 .002018 tcI/10

-227.9 3.111 .2117 .02251 .03980 .0004330 .002018 tcI/l00

-.04840 .04668 .2011 .02251 .03781 .0004330 .001821 100tct

-.2420 .1044 .2011 .02251 .03781 .0004330 .001821 lOtc

-2.419 .3299 .2011 .02251 .03781 .0004330 .001821 tc

-24.06 1.038 .2011 .02251 .03781 .0004330 .001821 tc,/10

-227.9 3.111 .2011 .02251 .03781 .0004330 .001821 tc,100

Table 4.2: Rayleigh model parameters

looking at different values for a, b, c, q, i" and s we also investigate the detec-

tors behavior for diffcrent SNR. Table 4.3 summarizes the values of - and the

corresponding SNR. We also tested the detectors behavior for different values

of PF and Pil though for most simulations PF = PIl = .001 . Ve made a more

indepth comparison of the implicit and the mixed schemes implementing ( 2.4)

than it was done in Chapter 1. The probability of detection, the probability of

7 power SNR w.r.t stationary

Lognormal power

.0006364 .000810 2

.0004025 .000324 5

.00020125 .000081 20

Table 4.3: Noise scale
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miss and the average detection time are calculated from 1000 simulation runs.

4.2 Simulations

The following section summarizes results of simulations for the models specified

in tables 4.1 and 4.2 for the SNR given in table 4.3. For these simulations

PF = P1t = .001. Effects of the decorrelation time, SNR, stationary mean and

implicit versus mixed scheme on the percentage of correct decisions and average

decision time are given. The results are based on 1000 runs. Figures 4.1 to 4.8

give results for the percentage of correct decisions versus the decorrelation time

(of the Rayleigh relative to the lognormal) under hypothesis 0 and 1. The plots

are for SNR of 20, 5 and 2, with the (stationary) means matched and shifted by

5 percent, and for the implicit and mixed scheme implementing ( 2.4). Figures

4.9 to 4.16 give the corresponding plots for the average detection time versus

decorrelation time. These plots correspond to tables E.1 to E.6 in appendix E.

4.2.1 Effects of decorrelation time, SNR, mean, and

scheme on percentage of correct decisions

Under hypothesis I (lognormal) the detector performs well with respect to the

percentage of correct decisions except for the case tr t1/100 . In this case

the detector performs best for SNR=20, and progressively worse for SNR=5

and 2. One possible reason for this behavior has already been mentioned in

chapter 3; that is as the SNR decreases (more noise) the covariance function of

the observation for the lognormal tends toward a 6 function with the lognormal

signal behaving like a mean for the noise and being removed. In the cases t, -

t/100 and t1/10 the theoretical decorrelation time of the Rayleigh is approaching

the time step size At and the covariance function of the signal is becoming a 6

function. So we see that the covariance function of the lognormal plus noise is

approaching' the covariance function of the Rayleigh. This behavior is shown in
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figures 3.1 to 3.6 and figures 3.10 to 3.15.

Under hypothesis 0. since this is a binary hypothesis test, as expected we see

the detector works well for t, t-/100 and t1/10 and does poorly for t, - t1.10t

and 100t,. We also have the SNR effecting the percentage of correct decisions

opposite its effect under hypothesis 1. This may be due to the fact that for a

higher SNR (less noise, smaller -) the observations, which are renormalized by

are weighted more in the solution to the Zakai equation and cause a quicker

decision but for these longer decorrelation times fewer uncorrelated blocks of

data are observed. The smaller SNR allows a longer observation.

Under both hypothesis we see that shifting the mean had only a small effect.

Under hypothesis 1 there was a decrease in performance with respect to the

percentage of correct decisions while under hypothesis 0 there was a slightly

more significant increase in performance. Several runs were made when the

means were significantly different (a factor of 10) and one could easily distinguish

the two hypothesis. In this case the detector made correct decisions very quickly.

However, when the means are so different these cases are not of interest since

much simpler detectors could be implemented. With regards to the two scheme

implemented, the implicit and mixed, for ( 2.4), we see that the percentage of

correct decisions is nearly identical.

4.2.2 Effects of decorrelation time, SNR, mean, and

scheme on average detection time

Under both hypothesis I and hypothesis 0 we see that for small SNR (more

noise) the detector takes longer to make a decision which one would expect.

This is due to the renormalization of the observations by A. As -y increases

(smaller SNR, more noise) the observations are weighted less in the solution to

the Zakai equation.

We also see that the mean has a small effect on the average detection time.

Under both hypothesis the shifted mean usually increase detection time slightly.
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Again, the implicit and mixed scheme give nearly identical results.

It is the decorrelation time that has the most significant effect on the average

detection time. Under hypothesis 1 for t, - t,1100 we had no detections for
SNR=5 and 2 so no average detection times are plotted. Except for hypothesis

I with SNR=2 we see the detection time is peaked at t, tj and decreases as t,

increases or decreases. This implies the decorrelatiou time is a very significant

feature of the signal for the detector. When the decorrelation times are matched

the detector takes the longest to reach a decision. We also see that for the

"symmetric" cases, ie. t, , t/1O0 and t, -- 100t, or t, :,z t/10 and t, -- 10t,

that the detection time for the longer deeorrelation times is longer.

4.3 Performance varying PF and P

In figure 4.17 we have a plot of the average detection time for different values

of PR and PAs for the ship versus decoy ease with the SNR=5. The figure

corresponds to tables E 7 and E.8 in appendix E. We see that as the Pt or
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Lognormal (Hypothesis 1)

q r s

actual -4.80 .4646 .03935 .000403

estimated -6.06 .4181 .03933 .000403

Rayleigh (Hypothesis 0)

a b c

actual -24.06 1.038 .2117 .000403

estimated -24.06 2.098 .1203 .000410

Table 4.4: Estimated parameters for the ship versus decoy case, SNR=5

the P, increases, for fixed P,% and PF respectivly, the detection time decreases.

This is as one would expect since increasing PF or PM allows greater error. We

see in tables E.7 and E.8 that the actual percentage of correct decisions is

usually better than the theoretical values used to set the thresholds. For the

cases where PF = .0001 and PM = .0001 the percentage of correct decisions is

not significant since it is base on only 1000 runs, however, the average detection

time still is.

4.4 Performance with estimated parameters

In chapter 3 we gave some justification for the models we chose to study the

detector, as well as some techniques for estimating the parameters for these

models. We applied some of these techniques to the ship versus decoy case

and ran the detector with estimated parameters to determine what degradation

would occur. For a better comparison of the results, the sample paths of the

runs were the same as those used for the ship versus decoy case with SNR=5

and implicit scheme.

To estimate the parameters for the lognormal case we generated a correlated

55



Hypothesis 0

avg. det. avg. det. avg. det.% correct % wrong
time correct time wrong time

known 100.0 68.2 0 68.2

estimated 100.0 75.8 0 75.8

Hypothesis 1

avg. det. avg. det. avg. det.% correct % wrong
time correct time wrong time

known 99.5 393.0 0.5 164.4 391.9

estimated 99.6 294.1 0.4 159.5 293.5

Table 4.5: Comparison of ship versus decoy case with known and estimated

parameters for the implicit scheme, SNR=5

sample path with SNR=5. We match an exponential function to the covari-

ance function of the observation, 1?.(k) k > 0, and estimated the lognormal

decorrelation time constant to be .16 seconds. We used the approximation

tG it [I~~ I - I[~ (~ exp() -A1

to estimate the decorrelation time of the underlying Gaussian. We related the

decorrelation time constant of the underlying gaussian to the diffusion parameter

q using results from Appendix D to arrive at the estimate q = -6.06. From

independent identically distributed data we used the median to estimate the

scale parameter s to be .03933 . Using the mean to median ratio we estimated

ao to be .01444 whcih we related to the parameter r, using results in appendix

D, to get the estimate .4181 for r.

To estimate the Rayleigh parameters we again generate a correlated sample

path with SNR=5. We matched an exponential function to the covariance func-

tion of the observation, R.(k) k > 0, and estimated the Rayleigh decorrelation

time constant to be .019 seconds. So the underlying Gaussian has an approx-
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imate decorrelation time constant of .038 seconds. Using appendix D we got

an estimate of -24.056 for a. From independent identically distributed data we

used the average of the power to mean ratio which yielded an estimated ca of

.03773 and the power to median ratio which resulted in an estimate of .03645

to arrive at the estimate caG = .03709. As noted in chapter 3 since c and aG

always appear together in the density we can only estimate there product so we

arbitrarily set a2 for the Rayleigh model equal to that of the lognormal model.

Thus using appendix D we estimated b to be 2.098 and the scale parameter c

to be .1202. To get a better idea of the performance of the estimates for the

Rayleigh model if we set the scale parameter c to its actual value of .2117 then

the estimated value of b becomes 1.2122 which appears to be a much better esti-

mate. Clearly, since CaG appears together in the correlated Rayleigh density the

signal statistics are unchanged regardless of how one assigns the values of c and

aG provided their product remains the same. Clearly the conditional density

u(x, t)which is the solution to the Zakai equation would be different though the

statistics of the signal are theoretically the same. However, due to the number

of different approximations used to implement a numerical solution it may be

there is an advantageous way of assigning c and aG so as to minimize numerical

errors. The effects of different values of c and a were not studied in this thesis.

To estimate the noise scaling parameter -y we used the approximation

R°(0) - R°(1) 1at

From the lognormal sample path -y was estimated to be .000403 and from the

Rayleigh sample path .000410 which we averaged (.000407) to estimate -.

We see from table 4.5 that the percentage of correct decisions are nearly

identical for the detector with correct parameter values and for the detector

with estimated parameter values. Under hypothesis 1 there is a slight increase

for the average detection time of 11 percent while under hypothesis 0 there is

a decrease in detection time of 25 percent for the estimated parameter values

compared with the solution with correct parameter values.
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4.5 Additional observations of the Zakai de-

tector

In addition to the results already presented, we give some observations made

in implementing this detector which one should be aware of. We have already

commented on the fact that one must be careful in the choice of the time dis-

cretization step size At but one must also take care in the choice of the space

(state) discretization. Numerical instabilities can occur for explicit schemes if

the state discretization step size is to small relative to the time discetization

size. Additionally, the computational complexity increases as the space dis-

cretization becomes more fine. However, if the discretization is too coarse then

the discrctized density cannot adequately represent the actual conditional den-

sity. As well as the necessity for appropriate choices of the space discretization

and time discretization, the range over which the density is discretized must be

chosen. If the range is too small the density will be truncated. If the range is

too large then for a reasonable number of points in the discretization the den-

sity will again bc too coarse. In figure 4.18 we have the plot of a signal and

the conditional expectation of the signal generated from a discretization that

was to course. One can see that the conditional density could not adequately

represent the conditional density and the conditional expectation of the signal

tended to have distinct values around which it fluctuated. In figure 4.19 we see

the actual signal and the conditional expectation of the signal with a density

discretized over too small a range. Note how the conditional expectation of

the signal cannot track the signal beyond a certain point. This is because the

discretization range truncated the density, not allowing nonzero values for the

conditional density outside of the discretized range. The initialization of

the underlying Gaussian state densities is another factor one should be aware

of. In our simulations the densities are set to Gaussian distributions using the

stationary variance and mean (which is zero). However, the actual sample path
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need not begin at the expected value and it may take several iterations before

the conditional expectation of the signal yields a conditional expectation of the

signal which approximates the actual signal as seen in figure 4.20. This can

also cause initial errors in the log likelihood ratio as seen in figure 4.21 , where

hypothesis 1 was initialized incorrectly. We see a general downward trend for

.01 seconds (20 sample points) which corresponds to the approximate time it

takes for the conditional density to yield a conditional expectation of the signal

which tracks the signal.

4.6 The signal estimation problem

The detection and estimation problem are often related. In this case we are

solving the Zakai equation for the unnormalized conditional density under two

hypothesis conditioned on observation data. From the densities we can generate

the log likelihood ratio and implement the sequential Wald formulation which is

optimal in the previously defined sense. However, given the conditional densities

an obvious estimator for the signal is the conditional expectation of the signal

conditioned on the observations. In figure 4.22 to 4.25 we give the conditional

expectation of the Rayleigh and lognormal signals under both hypothesis for

the implicit scheme and SNR=5. We see that the Rayleigh model, which has

a larger stationary variance, is better able to follow the more rapid variations

of the signal while the lognormal model is slower and has more of a smoothing

effect. WVe see that the solution of the Zakai equation not only yields a sequential

detection scheme but a signal estimation scheme as well. We do not, however,

make any evaluation of the perform:-:' of this estimator here.
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Chapter 5

Conclusions

\Ve have presented an "optimal" sequential detector for the Wald formulation

for diffusion processes for binary hypothesis testing. We gave several numerical

schemes for implementing the detector for underlying states of dimension one

and two which were studied to varying degrees. Different characteristics of the

signal and discretization scheme were studied to determine their effects on the

detector performance. It is clear that the performance varies significantly, de-

pending on many factors including the relative decorrelation time of the signals,

the SNR, the time discretization, and space discretization though not exclusively

these factors. Because of the significant range of performance and the numerous

parameters that gave rise to this range of performance, it is obvious that one

must be an "expert" in order to make the detector useful. Also, the diffusion

model represents a very large class of signals beyond the lognormal and Rayleigh

models studied here for which the detector has not been tested. Additionally.

the effect of many features of the signal where only partially studied. Clearly,

much more work could be done in evaluating the detector's performance. In

order to get a scheme that is computationally reasonable and performs well ,

which may not be possible, there will be a need for a number of simulations

with different parameters. These facts point to a need for automating the gen-

eration of the detector with "expert" supervision for those not familiar in the
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theory behind the Zakai detector. The MACSYMA code is an initial step in

automating the process. The software system DEsign Laboratory for Process-

ing Hidden Information (DELPHI) is under development which combines an AI

engine, symbolic algebra, and numerical schemes as an "expert" system that not

only generates and implements the Zakai detector but other detection schemes

and model verification capabilities as well.

We also noted that the Zakai detector for hypothesis testing suggests a signal

estimation scheme, namely the conditional expectation of the signal conditioned

on the observations. We presented some results pertaining to signal estimation,

however, no performance measure or comparison to other estimation schemes

was performed.

65



ACKNOWLEDGEMENT

I would like to acknowledge the help and direction my advisor Dr. -John

Baras provided as well as the support from members of NRL code 5750. Also,

I would like to thank friends and colleagues for their helpful comments and

suggestions, in particular Dave MacEnany and Anthony LaVigna. Finally, I

would like to thank John Bartusek, Kim.Potter, Anthony Tse and especially my

family for their support and encouragement.

This research was supported in part by the Naval Research Laboratory Fel-

lowship Program: N00014-S8J2003P3 and the National Science Foundation's

Engineering Research Centers Program: NSFD CDR 8803012.

66



Appendix A

This appendix contails derivation of correlated lognormal and correlated Rayleigh

densities.

Consider the vector

[ fx 1 '1 2 ..... Xlm] IX121 X22 .. X2m) ... 2 vz2 n- Xnm]}

where xj are independent with respect to j and have exponential decorrelation

with respect to i ie. E [xijxi+k Jl = R (k) = a2p1. Then the covariance matrix

is symmetric with constant diagonals and m - 1 zero diagonals between each

uonzcro onc. The covariance matrix is given by

1 0 ... 0 p 0 ... 0 ...... pn-I

0

Q =a 2  0

P

0

0

1

Then Q- 1 is symmetric and tridiagonal with m - 1 zero diagonals between the
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main diagonal and the off diagonals and m - 1 ones on each end of the main

diagonal. and is given by

-p

1

-p 1 +p 2

=-1 a _2 ( p2)

+p 2  -p

-p

This result was obtained using MACSYMA, More general results are given in

[GL891 Finally, the determinant of Q is

IQI = o2nm( i - p?)m(?-l)

So for the lognormal case we have

1 p ". p,

p

-PP 1

1 -p

-p l+p 2 ",
1

a2 o:(1 p)"' ""

1 p 2 -p

-p

IQ I = o2 (1 - p )(,-1)
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and for the Rayleigh we have

1 0 p .. p nI

IQ,. =a 2  •

0

1

1 0 -p

0 1 0

-p 0 1-+p 2

1 +p 2 0 -p

0 1 0

-p 0 1

IQTI = n(
1 - p 2 )2 (t-l)

The distribution for jointly Gaussian random variables is given by
1 exp [(x-/,)rQ-I(x_ .))

Po(x) =(2') I exp"

Lognormal:

Now in the lognormal case we have

(x I .[X211 ...(Xn~

and the 1 to 1 transformation y, = s exp(xl). Applying the Jacobian change of

variables formula we get
1iIi = i

so

P (yi;i- 1 ...n) = P(ln( );i- 1,...,n) 1
S

1

(27r)(-/ 2)O-(1 - p2)I "21) riu1 Yi

epq,& [In(~- S ,j] [In() -69j= k=
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where q(k is the jkth element of Q 1 1 which can be rewritten as

P2(yn;i = 1(....n) 1

-In Pn-l-2a( [pi2 - 2p[i[i + 11 + P, i12

i=1 i=2

where

[iJ =

= In(y,) - (In(s) + p).

Rayleigh:

Now for the Rayleigh case we have

and the transformation y = cX2I + xi2. Then we have

Py(I, < yi;i = 1,...,n) = V Po(x)dx

introducing the variable 9 and using the transformation

z. = Yi cOs(A,)

xi2 = yi sin(Oi)

Then the Jacobian is given by

n
i=l 

c 
2

Defining the vector v as

then

Py(I, <,v;i= n) = 0 (lL) I ( i) dl'd 1
0 i= ,. ., C2
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Assuming-p =(),expanding the exponent and using the identity cos(0 ) cos(O62 )+

sin(01 ) sin(O-) = cos(O1 -02) Ave get

P.( <y; == l~O (27r)(/) nj 2) -1

n-1-

lexp 0411+~cs6,-O+)] TI(13;d6i

where

2uc 2 1- 2  2 ,n

a 2C2(l - p2)

Using the identit'%

]~<~~ ~-exp [A cos(O - 00)] dO = 1(A)

Io the modified zero order Bessel function. Then we get

l- (I' < yi; z=1.. n) = JY<.:1.. 2 c~1=1p2(n

and so

Py (y1;i '=...n
oncn - P2)(n-1)

exp E~ aii :r ' Il3iY+'J
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Appendix B

Mean, median, power, and variance of marginal lognormal and Rayleigh densi-

ties.

Lognormal:

y = s exp(x); x - N(p,a 2)

1 __________12_

f(y) = 727,-2a2

inean

2a2  dE [y] = f0  exp [il()

= s exp {I + .

median

I r 1 (.X { - 1i"))- A]2 } , = jIn(O) / 1-, exp { - I 2 } dv 1

The second integral looks like a Gaussian distribution and the median occurs at

the mean so In (r) = i

median = sexp{i}

power

E[y2] (c J y llx { [n(L) -p]2 }d~exp 2 dy

Ss2 exp {2(u + a2)}
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variance

E [(3- -.E[3,1)2] = Ely 2] - E[3,12

= s2 exp{f2p +ar2} [expfou2} i

Rayleigh:

I x, ild N(O,u 2

f () 2-exp 2c1 yE[O, 00]

mnean.

Elyi = j0LYexp{.Y... dY7

median

frY xp Y y I- exp { 7-

median = V~()o

power

Efyj = J0 ;2 exp I2a21dy

Nvarialicc

E [y- Ely] )2] =E~y 2j - Ely]2

(4- w)C2C2

2
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Appendix C

Dctermination of stationary distribution of the underlying state equation

dx = Axdt + BdW

where A and B are constants. After discretizing we have

Xn+I = (1 +.4At)xn + BAI,' ; AW, iid N(O, At)

Denote .4 = I + AAt then

n-i

x, = Axo + E A--BAV ; xO N(O, o2 )
i=0

Considering the scalar case which easily extends to the vector case for diagonal

matrices we have

E[x°] = 0

Denoting

yi ;in - - iB A I'l

then

y, - N(0, ;2n-I-')B 2At)

and

;jnXo , N (O, 42,,C2)

so

Xn N(O, A2na 2 + A2(.-I-)B2At)
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Now. for a stationary distribution to exist j2na"2 + A2(n-l-i)B2/t must con-

verge. So -1 < A < 1 or < A < 0. If we wish x0 to be initialized to the

stationary distribution then

i=O

Assuming e(uiality in the limit then

B 2At n-_
- A=

1 A2 n i=O

or

B 2At -.

1 n -

\Vith the prior restriction -1 < .4 < 1 the sum converges to and ,-2n

converoges to zero, so

o2_ B2 A t  B B2t
I - A2 - - (1 + AWt

I?2 At

So the diffusion equation has a stationary distribution of N(0, 1-(I+At))

provided < .4 < 0.
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Appendix D

We relate the underlying stationary distribution to underlying state diffusion

parameters for the stochastic differential equation

dx = Axdt + BdIV

where .4 aind 3 are constants. After discretizing we have

x"+1 = (1 + At) x,, + BAT47 ; AW,, iid N(O, At)

Denoting . = 1 + AAt then

x= .4"x 0 + .4"-I-iBA, ; x0 -,, N(O,a 2 )
i=O

From AI)pendic C we have E[x,] = 0 so for the scalar case

k-i
R(k) = E[x,+kX.] k Xn + 1. A2BAW,+k±i.J Xn

j=O
= .k,i Ex]

= iko,2

If we set C. = xp {- .L} then x, has exponential decorrelation with time con-

stant t, ind

p= exp A= =1- AAt

01"

exp{-'l -1i
7t
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anld from Appendix C
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Appendix E

The following tables summarize the simulation results predominantly discussed

in Cha pter 4. W\here unspecified Pp = P.jj = .001.
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Hypothesis 0

avg. det. avg. dct. avg. det.St,. % correct % wrong

time correct time wrong time

stat. lOOt 63.4 190.7 36.6 1341.3 611.4

means lOtl 31.5 327.0 68.5 1129.6 877.2

match t1  94.9 761.1 5.1 994.1 773.0

t1/10 100.0 114.2 0 - 114.2

tll00 100.0 29.9 0 - 29.9

loot/ 74.9 284.8 25.1 1341.8 549.9

lOt, 36.8 430.8 63.2 1301.4 981.4

tj 96.8 781.2 3.2 1099.6 791.5

t1/10 100.0 123.9 0 - 123.9

t,/100 100.0 30.2 0 - 30.2

Hypothesis 1

;z: t % correct avg. det. % wrong avg. det. avg. det.

time correct time wrong time

stat. lOOt, 100.0 700.4 0 700.4

mcans lOt, 100.0 780.9 0 780.9

match tj 100.0 936.9 0 - 936.9

t,/lO 96.4 1317.2 3.6 788.6 1298.4

t1 ll00 0 - 100.0 43.8 48.8

lOOt, 100.0 776.4 0 - 776.4

lott 100.0 915.0 0 915.0

tj 100.0 1091.2 0 - 1091.2

t1/10 93.7 1616.4 6.3 1241.2 1592.7

t/100 0 - 100.0 47.8 47.8

Table E.1: Implicit scheme, SNR=2 P, = PF = .001
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Hypothesis 0

avg. det. avg. det. avg. det.
t % correct % wrong

time correct time wrong time

stat. lOOt1  63.4 190.7 36.6 1341.7 611.6

means lOtt 31.4 320.3 68.6 1135.6 880.0

match t1  95.5 762.8 5.5 981.8 774.8

tilO 100.0 113.0 0 - 113.0

t/l100 100.0 29.1 0 - 29.1

lOOt, 79.4 284.7 25.1 1342.3 549.9

lot 37.2 434.7 62.8 1302.5 979.7

tj 96.7 800.3 3.3 1088.2 809.8

t,/lO 100.0 122.4 0 - 122.4

tlI00 100.0 29.4 0 29.4

Hypothesis 1

avg. det. avg. det. avg. det.St,. % correct %wrong

time correct time wrong time

stat. lOOt 100.0 699.3 0 699.3

means lot, 100.0 781.9 0 781.9

match tj 100.0 932.1 0 - 932.1

t1/lO 96.3 1263.6 3.7 758.7 1244.7

ti/l00 0 - 100.0 48.3 48.3

lOOtt 100.0 775.0 0 - 775.0

lot 100.0 915.7 0 915.7

tj 100.0 1085.0 0 - 1085.0

tt/lO 94.0 1574.6 ^.0 1185.9 1551.4

tll00 0 - 100.0 47.0 47.0

Table E.2: Mixed scheme, SNR=2 Pf = PF = .001
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Hypothesis 0

avg. det. avg. det. avg. det.St? % correct % wrong

time correct time wrong time

stat. lOOt, 63.0 72.7 37.0 658.6 289.7

means lott 25.5 113.3 74.5 576.6 458.5

match tj 79.5 487.2 20.5 664.7 523.5

t1/1O 100.0 68.2 0 - 68.2

t,/100 100.0 22.4 0 - 22.4

100t, 70.1 75.8 29.9 824.3 299.3

lOt, 35.6 133.9 64.4 637.0 457.9

t, 83.3 493.7 16.7 741.4 535.1

t,/lO 100.0 72.2 0 - 72.0

tl/100 100.0 21.4 0 21.4

Hypothesis 1

avg. det. avg. det. avg. det.t 4 % correct tiecret % wrong

time correct time wrong time

stat. lOOt, 100.0 419.7 0 419.7

incans 10t, 100.0 468.9 0 468.9

,hatch tj 100.0 500.6 0 - 500.6

t1110 99.5 393.0 0.5 164.4 391.9

t11100 0 - 100.0 78.5 78.5

lOOt, 100.0 488.5 0 - 488.5

lOt 100.0 508.0 0 508.0

t, 100.0 597.0 0 - 597.0

t1/lO 99.8 456.1 0.2 400.0 456.0

t,/100 0 - 100.0 73.9 73.9

Table E.3: Implicit Scheme, SNR=5 PM = Pr = .001
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Hypothesis 0

avg. det. avg. det. avg. det.St,. %T correct % wrong
time correct time wrong time

stat. 100t 63.0 72.7 37.0 658.6 289.7

means lOt, 25.8 117.0 74.2 576.4 457.9

match t1  79.3 498.5 20.7 681.2 536.4

t,/lO 100.0 67.0 0 - 67.0

t1/100 100.0 22.1 0 - 22.1

100t, 70.1 75.8 29.9 824.3 299.3

lott 35.2 135.5 64.3 637.6 461.0

tj 83.9 502.6 16.1 731.8 539.4

t1/10 100.0 71.2 0 - 71.2

t,/100 100.0 21.0 0 21.0

Hypothesis 1

t. % correct avg. det. % wrong avg. det. avg. det.

time correct time wrong time

stat. 100it 100.0 419.3 0 419.3

means lOtt 100.0 468.6 0 468.6

match tj 100.0 499.4 0 - 499.4

t1/1 99.6 380.0 0.4 153.0 380.0

t1/100 0 - 100.0 84.7 84.7

100t, 100.0 489.1 0 - 489.1

lOt, 100.0 508.1 0 - 508.1

tj 99.9 595.1 0.1 341.0 594.9

tlO 99.9 439.5 0.1 309.0 439.4

t1/100 0 - 100.0 79.2 79.2

Table E.1: Mixed scheme, SNR=5 P = PF = .001
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Hypothesis 0

avg. det. avg. det. avg. det.St,. % correct % wrong

time correct time wrong time

stat. 100t 72.7 16.3 27.3 219.2 71.7

means lot 31.8 22.7 68.2 209.5 150.1

match t1  40.6 94.6 59.4 207.0 161.3

t1/10 99.1 28.4 0.9 52.0 28.6

t/100 100.0 10.1 0 - 10.1

100t 91.3 15.0 8.7 431.0 51.2

lOtt 44.6 17.3 55.4 240.9 141.1

tj 50.0 71.7 50.0 238.0 154.8

t1/lO 99.5 36.3 0.5 43.5 36.4

t,/100 100.0 10.9 0 - 10.9

Hypothesis 1

t'- % correct avg. det. % wrong avg. det. avg. det.

time correct time wrong time

stat. lOOt, 99.8 180.6 0.2 584.0 180.4

means 1ott 100.0 199.9 0 - 199.9

match t1  100.0 233.5 0 233.5

t1/10 100.0 144.9 0 - 144.9

t11100 92.5 132.6 7.5 85.0 129.1

100t 100.0 206.7 0 - 206.7

lOtt 100.0 224.7 0 - 224.7

t1 100.0 237.5 0 - 237.5

t1/10 100.0 181.0 0 181.0

t/lO00 91.7 224.8 8.3 248.0 226.8

Table E.2: Implicit scheme, SNR=20 PM = PF = .001
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Hypothesis 0

t % corct avg. det. % wrong avg. det. avg. dct.

time correct time wrong time

stat. lOOt 72.7 16.3 27.3 219.2 71.7

means lot 32.1 25.6 67.9 217.3 155.8

match t1  41.3 93.9 58.7 204.2 158.7

t,/1o 99.1 27.9 0.9 52.0 28.1

t/l0 100.0 9.9 0 - 9.9

lOOtt 99.1 14.7 8.1 518.8 55.5

lOtl 44.6 17.3 55.4 240.9 141.1

tj 50.0 72.0 50.0 237.8 154.9

t1/10 99.5 35.9 0.5 43.5 35.9

tt/0 100.0 10.8 0 - 10.8

Hypothesis 1

: t % correct avg. det. % wrong avg. det. avg. det.

time correct time wrong time

stat. lOOt 99.8 180.5 0.2 584.0 181.3

mcans lOtt 100.0 203.3 0 - 203.3

match t1  100.0 233.3 0 - 233.3

t,/lO 100.0 136.9 0 - 136.9

ti/l00 95.5 87.6 4.5 56.7 86.2

loot[ 100.0 202.0 0 - 202.7

lOtt 100.0 224.7 0 - 224.7

tj 100.0 274.2 0 - 274.2

ti/10 100.0 175.0 0 - 175.0

t1/100 98.6 118.7 1.4 37.0 117.5

Table E.3: Mixed scheme, SNR=20 PM = PF = .001
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Hypothesis 0

P 1  P, % correct avg. det. avg. det. avg. det.

time correct time wrong time

.001 .0001 100.0 85.5 0 - 85.5

.001 (01 100.0 G8.2 0 - G8.2

.001 .01 100.0 49.4 0 - 49.4

.001 .1 100.0 26.3 0 - 26.3

.001 .5 100.0 14.9 0 - 14.9

.001 .75 100.0 9.8 0 - 9.8

Hypothesis 1

P Pm. % correct avg. det. % wrong avg. det. avg. det.

time correct time wrong time

.001 .0001 100.0 392.9 0 392.9

.001 .001 99.5 393.0 .5 164.4 391.9

.001 .01 98.0 371.6 2.0 137.5 367.0

.001 .1 88.8 357.8 11.2 101.0 329.0

.001 .5 53.1 281.1 46.9 34.7 165.6

.001 .75 41.0 226.1 59.0 22.1 105.7

Table E.7: Implicit scheme, SNR=5, varying the probability of a miss
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Hypothesis 0

avg. det. avg. det. avg. det.P1  ",n % correct ag e. % wrong

time correct time wrong time

.0001 .001 100.0 69.9 0 69.9

.001 .001 100.0 68.2 0 68.2

.01 .001 100.0 66.1 0 - 66.1

.1 .001 98.1 66.0 1.9 51.4 65.7

.5 .001 63.9 47.8 36.1 10.8 34.5

.75 .001 36.4 38.8 63.6 3.6 16.4

Hypothesis 1

avg. det. avg. det. avg. dot.P1  Pmn % correct % wrong

time correct time wrong time

.0001 .001 99.8 506.2 .2 332.0 505.8

.001 .001 99.5 393.0 .5 164.4 391.9

.01 .001 99.7 264.4 .3 109.3 263.9

.1 .001 99.9 129.4 .1 222.0 129.5

.5 .001 99.9 26.2 .1 370.0 26.5

.75 .001 99.8 6.8 .2 86.5 7.0

Table E.8: Implicit scheme, SNR=5, varying the probability of false alarm
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