
0A USER MODELLING APPROACH

4." FOR

N COMPUTER-BASED CRITIQUING

by

THOMAS WALTER MASTAGLIO

B.S., U.S. Military Academy, 1969

M.S., University of Colorado, 1978

DTIC
SELECTE

JUL201990 L
A thesis submitted to the _ ___

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

1990

rAoved tor publi_,,lea-"

Distributionl Ufljrlie

This thesis for the degree of Doctor of Philosophy by

Thomas Walter Mastaglio tc

has been approved for the Cr
6

Department of Computer Science
rhoession Forby NTIS GRA t
DTIC TAB

Inannounced 53
Justification

Clayton Lewis

STATEMENT "A" Per Major J. Whisker
total Army Personnel Coninand/TAPG-OPB-D
200 Stovall St. Alexandria, VA 22332-0411
TELEICON 7/19/90 VG

Date /

f

Mastaglio, Thomas Walter (Ph.D., Computer Science)

A User Modelling Approach for computer-based Critiquing

Thesis directed by Professor Gerhard Fischer

Theoretical studies and implementations of computer-based critiquing

systems indicate that it is desirable to enhance that approach to better support

human-computer collaborative effort. A user model will enable these systems to

individualize explanations of their advice to provide better support for cooperative

problem solving and enhance user learning. User modelling research in advice-

giving dialog and intelligent educational systems was studied together with

theoretical analyses of the limitations of human-computer interaction, and empiri-

cal observations of human-to-human collaborative effort. A framework for a user

modelling component for a critiquing system was developed and implemented in a

critic for LISP programs. The user models developed by the system were com-

pared to self-assessment questionnaires completed by subjects learning the LISP

language. The analyses indicated a favorable correlation and potential improve-

ments to the framework. The user model is based on the conceptual domain model

required for explanations; its semantic structure allows the system to implicitly en-
kL

rich the user model contents. The significance of this.,"ek is a framework for a

user modelling component that can be used for a more general class of cooperative

knowledge-based systems. -Additionally, using the structure of the conceptual

domain model as the basis for the indirect implicit inference techniques is unique.

The theoretical foundations for the work, the framework developed, and an

analysis of the implementation are presented.

To the women in my life. To my mother, Mildred, who helped me to

develop the personal dedication and self confidence to get to this point in my

education. To my daughter, Mandye, who, unwittingly, provided me an example

of what dedication and sense of purpose are all about, one that motivated me

during times of discouragement and frustration. And to my wife, Diane, who was

there for me during those times of frustration, and all too frequently had to endure

their result. I love you all.

V

ACKNOWLEDGEMENTS

It is obvious from the list of referenced publications that the foundations

for much of this dissertation rest on the theoretical ideas and concepts developed

by my advisor and committee chairman, Gerhard Fischer. My attempts to extend

those ideas to specify how one should model users of cooperative knowledge-

based systems resulted from his patient tutoring and encouragement. The support

from the members of my thesis committee: Barbara Fox, Walter Kintsch, Clayton

Lewis, Jim Martin, and Gary Nutt helped to clarify my understanding and is much

appreciated. Bob Kass, who served as an outside reader, provided me invaluable

feedback. This thesis could not have been completed without the joint study of the

critiquing paradigm accomplished together with Andreas Lernke and Anders

Morch. Although our discussions were sometimes heated, they were always help-

ful to me. My good friend and office mate, Brent Reeves, was both a major con-

tributor to the LISP-CRrITC system, and served willingly as my personal "critic"

during the last several years of this research. Others who played a role in either

refining LISP-CRMC or working on the theoretical framework include Hal Eden,

Patrick Lynn, and John Rieman. Andreas Girgensohn was always willing to

provide much appreciated assistance during system building work; his expertise is

an appreciated source of advice. The always helpful feedback from the entire

Human-Computer Communications Research Group, although at times a source of

frustration, challenged my thinking and helped me direct my efforts. I would also

like to publicly acknowledge how fortunate I am that the United States Army

provided the me the time and financial support to complete the requirements for a

Doctor of Philosophy degree; I feel honored to have been selected for such a

program. Finally, without the support of my wife and loving family this entire

effort would not have been possible.

CONTENTS

CHAPTER

1. INTRODUCTION AND CONTEXT FOR THE RESEARCH 1

1.1 Introduction and Overview 1

1.2 Cooperative Problem Solving 4

1.3 Learning Environments 12

1.3.1 Foundations for Learning Environments 13

1.3.2 Learning on Demand 16

1.3.3 Situated Action 18

1.4 Summary 19

11. CRITIQUING 21

2.1 Foundations for Critiquing.............................. 22

2.2 The Critiquing Approach 24

2.3 The Critiquing Process 27

2.4 Survey of Critiquing Systems 32

2.5 Limitations of Current Critics and Future Research Issues. 39

2.6 Summ ary 40

I. USER MODELLING 41

3.1 An Overview of User Modelling Research 43

3.1.1 Student Models in Intelligent CAI 44

3.1.2 User Modelling in Computer Advisory Systems 48

3.2 Foundations for User Models to Support Cooperative
Problem Solving 51

vii

3.2.1 Classifying the Users' Domain Knowledge 53

3.2.2 General Approaches to User Modelling 54

3.2.3 Requirements for User Models in Cooperative Problem
Solving Systems 56

3.3 A User Model Architecture 57

3.3.1 Representation 58

3.3.2 Acquisition 59

3.3.3 Access 61

3.4 Summary 62

IV . LIsP-CR rm c ... 63

4.1 Lineage of LISP-CRITIC Versions and. Research Issues
Addressed 64

4.2 Previous Research Projects to Enhance LISP-Critic 70

4.3 Description of Current Version 72

4.4 Scenario 74

4.4.1 First Dialog Episode 76

4.4.2 Second Dialog Episode 81

4.4.3 Third Dialog Episode 82

4.5 Summary 84

V. A DOMAIN MODEL FOR LISP 87

5.1 Introduction 87

5.2 Requirements for a Domain Model 88

5.3 Form of the LISP Domain Model 89

5.4 Conceptual Graph Notation For Representing the Domain
M odel .. 93

5.5 Implementation of the Domain Model 96

5.6 Extending the Approach 101

viii

5.7 Summary 102

VI. THE FRAMEWORK FOR EXPLANATION 103

6.1 Theory 106

6.1.1 The Need for Explanations 106

6.1.2 Functions for Explanations 107

6.1.3 Shortcomings of Current Approaches 109

6.1.4 Basis for Minimalist Explanations 111

6.2 Related W ork 112

6.3 An Explanation Framework to Support Critiquing 118

6.4 Role of the User Model in Explanations 120

6.5 LISP-CRIC Explanation System 122

6.6 Summary 127

VII. USER MODELLING COMPONENT 129

7.1 Design Approach 129

7.1.1 Objectives 130

7.1.2 Implementation Approaches 133

7.2 User Model Representation 135

7.3 User Model Acquisition 142

7.3.1 Direct Methods 146

7.3.2 Indirect Methods 149

7.4 Access to the User Model 153

7.5 Summary 155

VII. EVALUATION OF THE USER MODEL 156

8.1 Introduction 156

8.2 Data Collection 157

8.3 Analysis 159

ix

8.4 Results of Analysis 164

8.4.1 Efficacy of the User Model Component 164

8.4.2 Comparison of the User Models with the Questionnaires
166

8.5 Limitations 168

8.6 Shortcomings in System Pointed Out by the Evaluation 169

8.7 Implications for System Modifications and Further
Development 170

8.8 Summary 171

IX. APPLICATIONS FOR, AND EXTENSIONS TO, THE WORK 173

9.1 A Framework for User Model Acquisition Techniques . 173

9.1.1 Background 174

9.1.2 Explicit Acquisition Methods 176

9.1.3 Tutoring-based Methods 177

9.1.4 Statistical Analysis of User's Work 178

9.1.5 Implicit Acquisition 179

9.2 Employing the Approach in Other Applications 181

9.3 Support for Critiquing in Other Domains 183

9.4 Issues Warranting Further Research 184

9.5 Summary 187

X. SUMMARY AND CONCLUSIONS 189

10.1 Summary 189

10.2 Conclusions 196

REFERENCES .. 198

APPENDIX

A. USER MODELS REFERENCED IN DISSERTATION 214

B. SAMPLE USER MODEL 216

x

C. INFERENCE METHODS IN USER MODELLING
COMPONENT 217

D. ACCESS METHODS IN THE USER MODELLING
COMPONENT 221

E. QUESTIONNAIRE ON LISP 22.5

IND EX ... 227

FIGURES

Figure

1-1 A Continuum of Approaches to Learning Environments 17

2-1 The Critiquing Approach 25

2-2 The Critiquing Process 28

3-1 Levels of System Usage 54

3-2 General Architecmu for A User Modelling Component for CPSS 58

4-1 Theoretical Issues Addressed in Versions of LISP-CRIC 66

4-2 Example of a Rule in LLSP-CRPTIC 67

4-3 LISP-CRmc Interface on the Symbolics Computer 69

4-4 The Architecture of LISP-CRMIIC 74

4-5 Internal Components of LISP-CRITIC 75

4-6 Scenario-User's LISP Program 77

4-7 Scenario-User Invokes LISP-CRrrIC on Function gerop 78

4-8 Explanation For cond-to-if-else Rule 79

4-9 Modified ZMACS Buffer 80

4-10 Explanation For de-morgan Rule 82

4-11 Explanation For cond-erase-pred.t Rule 83

4-12 Scenario-User Invokes LISP-CRITIC on defun match 84

4-13 Final State of Editing Buffer 85

5-1 List of Domain Concepts 90

5-2 Grouping of Concepts 93

xii

5-3 Conceptual Graph Notation 94

5-4 Example of LISP Concept Recursion in Conceptual Graph Notation 95

5-5 CLOS Specification For LISP Domain Eitities 97

5-6 Concept Layer of Domain Model 99

5-7 CLOS Specification For Concept Recursion 100

6-1 Explanations for cond and if from the Document Examiner 105

6-2 Explanation Levels 119

6-3 U-r Decision-Making Process in LISP-CRITIC 125

7-1 User Model Component for LISP-CRITIC 135

7-2 Initial User M odel 137

7-3 Coloring of Conceptual Graph for Initial User Model 138

7-4 User Model Contents after First Dialog Episode 140

7-5 Coloring of Conceptual Graph for User Model after First Dialog
Episode .. 141

7-6 User Model Contents after Second Dialog Episode 143

7-7 Coloring of Conceptual Graph for User Model after Second Dialog
Episode .. 144

8-1 User Model Test Results 161

8-2 User MAodel Test Results 162

8-3 Summary of Test Results 163

xi

TABLES

Table

3-1 Two Orthogonal Classifications of Acquisition Techniques ... 52

8-1 Summnary of Correlation Results 167

CHAPTER I

INTRODUCTION AND CONTEXT FOR THE RESEARCH

1.1. Introduction and Overview

This thesis discusses a user modelling approach to support cooperative

problem solving. The problem investigated in this project is how to represent,

acquire and provide access to individual user models to support computer critics.

Critics are knowledge-based computer systems that use the critiquing approach to

support their users in their work. The critiquing approach theoretically enhances

the work produced by their users (these are called performance critics) and sup-

ports their learning (called educational critics) [Fischer et al. 90]. Future systems

that support users in their working environments need the capability to accomplish

both objectives. A user model will be an important component of such a system; it

will assist the system give knowledge-based advice and, when it is appropriate,

explain that advice. A framework for a user model to accomplish this was

developed, implemented, and evaluated during the course of this research. Other

user modelling research was studied as were approaches for generating explana-

tions of domain expertise. Proven techniques from other user modelling research

were incorporated, where possible, into the user model. An understanding of what

is required to generate explanations guided the development of the architecture for

the user modelling component. The user modelling component is as an extension

of an existing critic for program enhancement (LISP-CRMC).

The approach to user modelling combines methodologies developed by

2

other research with innovative acquisition techniques. This work is unique in that

it investigates enhancing the critiquing paradigm with the capability to individual-

ize the explanations of advice given by the computer critic. The major contribu-

tions in this project are a framework for a user modelling component for critics

that is also of potential use in other applications, and a set of techniques for in-

direct implicit acquisition of the user model. These techniques use the semantic

structure of the conceptual domain model, the same model required for

explanation-giving. The framework can provide support to both a broader range

of applications, and to systems that use different interaction paradigms (such as

tutoring or advising). The user model captures the expertise of individual users at

the conceptual level of the application domain. The model is a fine grained

representation of users' knowledge and therefore its contents could support other

types of human-computer interaction. Cooperative problem solving systems are a

general class of knowledge-based systems that will help futre users of computer

technology to both accomplish their vocational tasks and to enhance their under-

standing of the application domain. The approach to user modelling described

here is general enough to serve the general class of cooperative problem solving

systems.

The thesis is organized into three sections. Part 1 consists of Chapters 1

through 4; it describes the author's understanding of the theoretical foundations

and analyzes related work. The four areas discussed are: using computers to sup-

port cooperative problem solving and learning, the paradigm of critiquing, an

analysis of related user modelling research, and the implementation environment,

LISP-CRITIC. Part 2 consists of Chapters 5 through 7; it covers the instantiation of

the user modelling approach in system design and implementation. A requisite

domain model to support this work, a framework for an explanation component

3
that makes use of the user model, and the user modelling component that was

developed, are described. Part 3, Chapters 8 through 10, analyzes the effective-

ness of the implementation and the contributions of the work. Possible directions

for continuing the research are identified, and the thesis concludes with a sum-

mary.

When people use a knowledge-based system they expect that it will help

them to produce a better product. 1 As a by-product of this process, users improve

their understanding of the application domain for that product. Therefore, to un-

derstand what it means for any system to support both doing and learning, it was

necessary to examine two paradigms:

" cooperative problem solving systems, and

" user-centered computer learning environments.

The ability to explain its actions is a necessary characteristic for a system that at-

tempts cooperative interaction and also supports- learfing. To achieve this it is

necessary for these collaborative systems to employ user models to individualize

those explanations.

Creating computer systems that facilitate cooperation between a human

and a computer requires more than just developing powerful interaction tech-

nologies. We need an approach to computer support of problem solving that in-

cludes knowledge-based techniques, a computer-user dialog based on the idea of

natural communications, and support for system adaptivity. The types of systems

that achieve this will be collaborative symbiotic human-computer working en-

vironments that support user learning. A conceptual framework for systems that

use knowledge-based techniques to aid users in accomplishing their tasks is

provided by the cooperative problem solving paradigm.

IProduct is used here in a general sense; it includes both specific objects
generated by the work, such as a design, and abstract results, such as a decision.

4

1.2. Cooperative Problem Solving

There are methods and technologies in the field of Artificial Intelligence

that can help improve the productivity of computer users. A paradigm for design-

ing systems that goes beyond current autonomous expert systems to address

human needs and potential is that of Cooperative Problem Solving Systems

[Fischer 90]. These use knowledge-based techniques to work in symbiotic con-

sonance with the user. The systems are cooperative in that they operate in a

similar manner to the way a helpful person acts, and they attempt to assist their

users as best they can. The relationship between the human and the computer is

symbiotic in that there is mutual benefit; the resulting product of their collabora-

tion is better than either could produce by themselves.

In cooperative problem solving, the user and computer-based system

work on the same problem using a collaborative interaction style. Systems that

can support cooperative problem solving will have to fit lich's [Mich 73] notion

of convivial tools [Fischer 83]. Cooperative systems allow the combining of

human skills and computing power to accomplish a task which could not be done

by either the human or the computer alone; or in those cases where it could be, the

quality of the result or the speed with which a solution is obtained is significantly

improved when the two agents work together. The idea of symbiotic cooperation

between the user and the computer has also been embraced by researchers in the

related field of decision support systems [Miii, Manheim 88; Manheim, Srivas-

tava, Vlahos, Hsu, Jones 90; Hefley 90]. To achieve a cooperative system requires

some degree of adaptivity to individual users; a system can adapt successfully

when it knows something about the individual; and user modelling provides to a

system the capability to acquire and use that type of knowledge.

5
The objective of an interaction between a human and a computer

generally falls into one of two classes: problem solving or information retrieval. 2

Design might be considered as a third major class; the view here is that design is a

subset of problem solving because the design is generated to address problematic

needs of either users themselves or those of a client for whom they are working.

Information retrieval is often one part of problem solving. The computer's role is

to aid users in arriving at a solution or to help locate information that solves or

helps to solve their problems.

Autonomous expert systems have a different approach - they develop

problem solutions independent of user input, except for the problem specification

or task designation. In many problem solving and information retrieval situations,

articulation of the task is difficult and people are unsure of their objective or exact

problem. They start with a general view of what they expect to achieve and refine

their own understanding and problem specification as part of the solution process.

To put cooperative problem solving systems into the context of current artificial

intelligence technology we need to consider system designs that go beyond current

notions of expert systems and to understand when it is appropriate to use these

alternative approaches.

Feigenbaum and McCorduck state in their book on expert systems:

"Most knowledge-based systems are- intended to assist human endeavor and are

almost never intended to be autonomous agents" [Feigenbaum, McCorduck 83, p.

115]. This view, unfortunately, is not held throughout the field. Those expert

systems often cited as the major success stories of the past 10 to 15 years, for

2 Amusement is also a significant application for computers, but we focus on
applying technology in the workplace to accomplish a specific goal or task, rather
than using it to entertain.

6
example RI, MYCIN, Dipmeter Advisor, have been designed as domain experts that

are capable of solving a certain set of problems. These are problems that require

either the heuristic knowledge of a human expert with considerable experience or

problems that require excessive computation to yield to timely solutions using

standard algorithmic approaches.

The major difference between classical expert systems (such as RI or

MYCIN) and cooperative problem solving systems is that the users of cooperative

problem solving systems are active agents. They are actively engaged in reason-

ing about the problem and generating the solution rather than participating as mere

providers of information to the system. Conversely, traditional expert systems ask

users for information about the problem situation and then return a solution; from

an operational perspective they appear as a "black box." Cooperative problem

solving system are designed so that the user and the system share in the problem

solving and in the decision making. Because human-computer communication is

central, cooperative problem solving systems require better interaction facilities

than those offered by traditional expert systems.

When knowledge-based systems support decision at higher levels of

societal and organizational responsibility they should not usurp the user's respon-

sibilities for a decision. For example, a commander of a military operation should

have access to the expertise captured in a knowledge-based system that knows

strategy, combat resources, and heuristics about how to apply them to accomplish

the mission. However, this situation involves significant danger to human lives

and we would not want to turn control completely over to an expert system to run

the battle. Similar scenarios exists in natural disaster emergency planning, and the

operating of complex, potentially dangerous equipment (e.g., nuclear power sta-

tions). Autonomous expert system approaches must be replaced by a more general

knowledge-based system paradigm, such as cooperative problem solving systems.

7
Communications between a human and a computer is a fundamental

design problem for cooperative systems. Specifically, to facilitate interaction be-

tween a human and a computer it is necessary to exploit the asymmetry of the two

communication partners. Each agent or partner contributes what they can do best.

People are better than computers at applying common sense, defining goals, and

decomposing problems. Computers should be used as an external memory, to do

consistency checking, to hide but not lose irrelevant information, to capture and

summarize problem solution steps, and to help visualize concepts. In this thesis

the user model serves a system in which the user is a programmer who understands

the problem and develops the code to solve that problem. The computer does not

understand the problem and could not write a program (automatic program genera-

tion) to solve it even if it did. But the system knows more efficient ways to imple-

ment program code. The system will be described in detail in Chapter 4 but in the

context here it is important to see that the system is designed to exploit each

agent's expertise by sharing responsibility for producing a good solution. The

programmer produces code that algorithmically solves the problem and the system

reviews that code suggesting to the programmer ways to improve it.

Communicating means an agent, human or computer, has to know or

must assume something about its partner. One approach is for systems to capture

implicit assumptions about all of the users in their design (a default generic user

model). Ideal systems might adapt everything they do to each individual. A more

reasonable middle ground, is to have systems tailor their side of an interaction

based on what they are able to infer about their human partner by applying user

modelling methods. Understanding what is required to accomplish user modelling

requires an examination of the human-computer communication process.

8
When two agents are engaged in cooperative effort, a process of natural

communication takes place. Natural communication is more than natural lan-

guage; it is the ability to engage in a dialog that makes use of diectic techniques,

indexicals, graphic representation, and references to previous conversation. In

human dyads more goes on than an exchange of information, if one partner serves

as an advisor or critic they are expected to understand what the other is trying to

do and guide them correctly. Cooperative computer systems need techniques for

helping them attempt similar efforts. There is significant research into techniques

for goal and plan recognition on the part of computers and also considerable skep-

ticism whether computers will ever be able to accomplish this [Suchman 87;

Dreyfus, Dreyfus 86]. This does not restrict systems from using knowledge of

goals or plans that can be obtained by querying the users to help structure inter-

actions with them. The user model component plays a role in that it must be able

to represent users' goals and provide that-information to the system aid in the com-

munication process. Obtaining that information indirectly may eventually be part

of acquiring the user model, but it is going to require effective goal/plan recog-

nition techniques that are the subject of another direction of research in artificial

intelligence.

It is important to think in terms of natural communications so that tech-

niques in addition to natural language are integrated into system designs. Systems

that use natural language generation and recognition techniques are frequently too

brittle [Winograd, Flores 86]. They experience breakdowns in interacting with

users when the unexpected occurs, especially in situations not anticipated by the

system designer, techniques are needed to get past the breakdown. Another reason

to think about the entire spectrum of communication techniques is that techniques

for natural language generation and interpretation have matured to the point where

9
they are generally useful in systems such as LISP-CRITIC. As is discussed in Chap-

ter 4, the communication medium for LISP-C=rrC is a set of available techniques

provided in a powerful workstation environment (menus, command languages, and

hypertext). While waiting for natural language capabilities to mature to the point

of general utility, it is necessary to build systems that address real needs using

available technology, and to use them as a context for related research, such as

user modelling.

Related to natural language limitations is the idea of situated action

[Suchman 87]. Research by Suchman using the situated action perspective high-

lights some inevitable shortcomings of human-computer interaction paradigms.

The limited bandwidth across which the human and computer can communicate

preclude the machine from having access to both the quantity and quality of infor-

mation available to a human. This observation should motivate efforts that inves-

tigate how to improve the capabilities of computers. User modelling is one tech-

nique that can help the computer to improve on its ability to aid a user in the

situated context. The degree to which it will help is an open research issue that

can only be investigated after suitable user modelling techniques are developed

and implemented.

Computers can understand task domain knowledge; this knowledge can

be used as the basis for advice, and as a source for guidance about how to better

communicate that advice and explain it. The distinction between advising users

(telling them what to do) and explaining that advice (telling them the reason for it)

is not made in most research. A notable exception is the work on the EUROHELP

project [Kelleher 88]. In this thesis the distinction is significant because the sub-

ject system gives both suggestions (or advice) and we want to endow it with the

ability to explain those suggestions to the user. It is the latter process that makes

use of the content of the user model.

10
A model of the individual user can be an important component of any

system, such a model can aid in the natural communication process, assist in

managing breakdowns, and help make systems more acceptable to their users.

Modelling another agent occurs on both sides of a cooperative dyad. Users devel-

op models of the systems with which they interact and computers need to be

designed so they can develop models of human users. The work presented here

focuses on the latter class of models.

A user modelling component will not solve all human-computer inter-

action problems but it is essential to investigate its potential impact. We must first

develop system techniques for representing and building these models. But even

with good user models, cooperative problem solving systems will not always be

successful in their initial attempt to provide advice or explanation - what is

sometimes called a "one-shot" approach to the interaction. Even people do not

always "get it right" the first time; a great deal of the effort in any communica-

tions involves repairing breakdowns between the two partners. Techniques to

achieve something similar are needed in interactive systems. When users do not

understand the system's advice, critique, or explanation, followup techniques are

required [Moore 89].

Human experts model their communications partner in order to provide

the appropriate level of assistance and explanation. This motivates the require-

ment for cooperative computer systems to be designed to attempt something

similar. Reeves conducted an empirical study of collaborative problem solving

efforts where sales clerks in a large, well-stocked hardware store assist patrons in

solving their problems [Reeves 90]. When interviewed, these expert agents related

that part of the process involved modelling the client so that the advice given and

any explanations requested could be specifically designed for that individual.

11

Modelling their customers played a crucial role in identifying, for these sales

agents, the level at which to share their understanding.

Communication between cooperating agents can be viewed in terms of

two roles, that of speaker and listener. The speaker presents information and the

listener interprets it. The listener's role is usually more difficult because the lis-

tener has to understand the problem based on the speaker's description.

Knowledge-based systems that communicate with a user have to be designed to

accommodate both roles. This is especially true in cooperative problem solving

systems where users play an active role in both the problem solving and the deci-

sion making processes. In this research the interface confined users to com-

municating with the system using only available technologies; a natural language

context was not assumed. This restriction on users is necessary in order to accom-

modate the system's role as a listener. The system serves in the speaker role when

it gives suggestions and when it explains suggestions. The user model developed

here was primarily designed to accommodate the system in the speaker role. Ul-

timately, user models will have to help the system fulfilJ both roles.

In addition to helping users to solve their problems, systems should also

help them learn about the task domain. Systems that serve knowledge workers,

such as designers, authors, and programmers, must accomplish both objectives. In

normal use it is difficult to distinguish a situation or episode oriented strictly on

problem solving; learning and doing frequently intermix during human-computer

interactions. Support for user learning is also a goal of a cooperative knowledge-

based system, so the theory behind computer learning environments was also ex-

amined.

l I l l I I I II I 11

12

1.3. Learning Environments

Computer-based learning environment enable users to improve their

proficiency in a domain by providing for the knowledge communication process

[Wenger 87]. One approach to designing such learning environments is that of

building instructionally focused systems, such as intelligent tutors [Sleeman,

Brown 82]. In many situations it is desirable to provide a learning opportunity

within the context of a user's work and with the user in control of the interaction.

Here, paradigms that are more general than intelligent tutoring systems are needed.

There is interest and research that addresses the problems in developing learning

environments in several disciplines to include cognitive science [Burton, Brown,

Fischer 84; Fox 88], human-computer interaction [Fischer 88a], and computer-

based training technology [Duchastel 88; Mastaglio 90a].

The opportunity to develop computer-supported learning environments

has motivated the reexamination of existing paradigms of education and the for-

mulation of new ones. Many of these paradigms connect learning with experience,

ascribing to a philosophical view and emphasizing techniques that make this con-

nection the basis for system design [Psotka, Massey, Mutter 88a]. Because this is

an emerging discipline the learning approaches have various names, such as: col-

laborative learning, reactive learning, situated learning, learning on demand, and

incremental learning. There is some overlap between the paradigms; what is sig-

nificant is that they share a common ideal. Their goal is to provide opportunities

to learn skills by practicing them in a realistic work setting - the workplace or

system in which the skills are to be used, or a simulation of that environment. The

approach of augmenting a work environment is well suited to situations where the

computer system is that environment (for example a CAD/CAM system). Com-

puters are good for simulating in circumstances where training on the actual equip-

13
ment (for example a power plant or aircraft) is prohibitively expensive, or there are

safety considerations. In order to individualize learning opportunities, systems

need to know what knowledge their users have about the domain; idiosyncratic

models of individual domain expertise are needed. To understand what it means to

have such a model, the theories behind learning approaches for interactive en-

vironments was examined.

1.3.1. Foundations for Learning Environments

There is a need to find efficient and practical ways to improve education

using computer technology. Studies by Bloom and colleagues demonstrated that if

we can individualize instruction, significant increases in student performance can

be reasonably expected [Bloom 84]. The computer can provide an efficient

methodology for individualized learning situations and researchers concerned with

education and training want to use computer-based. training to meet educational

needs in a variety of contexts [Seidel, Weddle 87].

A shortcoming of early computer learning systems was their fundamen-

tal design philosophy; it was based on conventional ideas about programmed in-

struction used for self-paced learning material. An alternative approach using ar-

tificial intelligence techniques was first proposed by Carbonell [Carbonell 70].

During the ensuing 20 -,.-. since that work, research efforts have resulted in the

development of sev u paradigms for computer-based instruction using artificial

intelligence [Wenger 87]. The computer can provide a suitable context for learn-

ing both procedural and declarative knowledge and as reasonably priced hardware

support for graphical displays becomes a reality, these types of environments will

become more feasible. The theoretical limitation to effectiveness is not the

availability of material or simdated scenarios but incorporating, into the system, a

14
didactic agent to guide learners. For learning to occur in a computational context

in which users are involved in some action, the system must provide feedback to

its users in the form of advice, critiques, and explanations; higher quality of the

feedback results in an improved learning process.

One way to provide a system the ability to provide high quality feedback

is using knowledge-based components. Three processes in the learning

environments require the use of knowledge:

1. providing information or instruction with an expected outcome that

users' knowledge improves,

2. determining the state of users' present knowledge (user or student

modelling), and

3. motivating the user to learn.

To execute the first process, a computer agent has to know both the domain and

strategies for guiding users in the direction of learning. Methods to accomplish the

second process are the subject of this research. Cooperative problem solving

systems assume that the third process is inherent in the situation; they assume that

users are motivated because they have chosen to use the system in the first place.

After investigating the literature, I found there are three distinguishable

paradigms for computer-based education based on artificial intelligence techniques

- three different classes of intelligent learning environments [Mastaglio 90a]:

* Intelligent tutoring systems present instructional material in a manner

similar to a classroom teacher. [Sleeman, Brown 82; Psotka, Massey,

Mutter 88b; Polson, Richardson 88].

* The coaching approach does not use teaching techniques in the stric-

test sense of the lecturing classroom teacher but its metaphorical basis

is the human coach who places students into a suitable context, then

15
observes how they perform and provides advice on how to improve

[Burton, Brown 82].

* The paradigm that serves as the foundational interaction methodology

in this work is the computer-based critic [Fischer, Lemke, Mastaglio,

Morch 90]. It serves as an intelligent agent, able to evaluate user's

work on call like a human mentor or colleague. The critic is a domain

expert ready to evaluate users' actions and provide suggestions when-

ever asked.

In this research, critiquing had been emphasized over tutoring because it

holds promise as a more general approach Education and training should not be

viewed as only isolated activities that occur during set periods of a lifetime where

the focus is on the acquisition of skills and knowledge. Instead, the broader

perspective taken is that they are life long activities needed to maintain proficiency

and accommodate changes in domain theory or technology. A computer-based

critic can help users improve their skills within their working context, but besides

giving suggestions they need to be able explain their expertise, not just in a

canonical form but in a manner that is tailored to each user's current state of

knowledge. For critics to fully support the learning process they will require ex-

planation and user modelling capabilities.

Critiquing is not the only approach to designing a learning environment

but it is effective in the application domain (programming) for this research. The

user model developed should be able to serve not just critiquing but the general

class of learning environments. To achieve that goal some of the theoretical foun-

dations for learning environments were studied. The notions of situated learning

[Brown, Burton, Kleer 82], and learning on demand [Fischer 88a] provided

general guidance and understanding.

16

1.3.2. Learning on Demand

Learning on demand supports learning in the context of a user's work,

allowing people to improve their knowledge whenever a need arises [Fischer 87a].

It is based on an optimistic view that people want to know how to do their jobs

better and are willing to engage in learning activities. If computer-based working

environments, (e.g., design environments [Lemke 89]) are to provide a complete

and appealing context for working, then they need to support learning on demand.

Learning environments can be designed as extensions of existing computer-based

systems, ones that already support some types of work. Some examples of these

are design, programming, and authoring.

The need to support learning on demand requires architectures that differ

from instructionally oriented systems. Learning on demand requires that the user

retain primary control of the learning situatiori. A continuum of approaches to

designing learning environments is shown in Figure 1-1; the dimension for the

continuum is control of the interaction. At the left extreme, primary control is the

responsibility of the system; at the right, the responsibility of the user. In the cen-

ter, the system and the user share responsibility for control. Exploratory learning,

in the spirit of LOGO [Papert 80], is the type of system found at end of the con-

tinuum where the user has total control of the interaction. Exploratory learning

environments do not require domain knowledge, but they must be carefully

designed to provide opportunities for interesting exploration while at the same

time protecting users from fatal errors. Traditional computer-aided instruction

(CAI) is shown at the other end of the continuum. These systems are algorith-

mically controlled by the computer program and allow minimal, if any, student

control; traditional CAI systems also do not have knowledge in the sense of artifi-

cial intelligence.

17

CAI NO EXPLORATORYI I LEARNING

TUTORING COACHING CRITIQUING

Figure 1-1: A Continuum of Approaches to Learning Environments

In the middle of the spectrum are the three knowledge-based paradigms

for learning environments that were previously enumerated. Within the class of

intelligent tutoring systems various degrees of control may be given to the student

but, in general, problem selection, monitoring of student actions, and intervention

fall under the auspices of the intelligent tutor. Coaching, as used in the WEST

system [Burton, Brown 82], allows users to practice skills in a computer-supported

context with a computer-based intelligent mentor "watching over their shoulder."

The coach intervenes with suggestions and instruction when appropriate.

Research efforts in both exploratory learning [Miller 79] and coaching

systems [Brown, Burton, Kleer 82] recognized the need for a paradigm which is

not as intrusive as a coach but extends the power of exploratory environments by

providing the user contextual, on call, intelligent assistance in the application

domain. Computer critiquing is a paradigm which meets that requirement, it al-

lows users more control of the interaction as well as responsibility for selecting the

problem.

A system that provides for learning on demand cannot help but situate

that learning in the user's context. Because it is in this context that users will

request support for learning; for the system to coerce them into a special learning

18

microworld defeats the objective behind learning on demand. Realizing the

situatedness of the working and learning context makes it important, in this

research, to understand the theoretical studies of situated action and consider their

impact on the goals of the user modelling effort.

1.3.3. Situated Action

Suchman made an in-depth study of how people interact with machines

[Suchman 87] and argues that research approaches which attempt to explicitly

represent or infer user plans are inadequate. First we need to explore the relation-

ship of knowledge to action, keeping in mind that a machine's resources for inter-

preting the user's behavior are significantly poorer than those of a human.

A cautious attitude toward what to expect from a machine is important

because during face-to-face communication between people there are resources

that help them detect and remedy trouble when it develops, for example, facial

expression or tone of voice, among others. The same range of resources are lack-

ing, for the most part, in human-machine interaction because of the impoverished

communication channel. A pessimistic perspective would discount attempts to

make machines act intelligently. A more optimistic view is embraced here, the

philosophy that it is important to investigate whatever possibilities to support the

system do exist, while keeping the limitations of situated action in mind. Research

on natural language as a communication medium assumes understanding and ex-

pression capabilities on the part of the computer. The orientation in this project

was very different, the work looked at those communications capabilities which

are available with current technology to determine how they could best be used to

improve what the systems knows about the user, and also what knowledge about

the domain is required by the system to make best use of these capabilities. One

19
such idea considers the content of the man-machine interaction dialog as a source

of information that can aid in acquiring models of users.

An environment that provides users the opportunity to learn in the con-

text of the task domain or by using a simulation of that context, requires that the

system react so as to increase their understanding of the situated action [Brown,

Burton 86]. Critiquing can facilitate situated learning because it provides learning

opportunities in the work context. The critique exposes situations for improving

the product or the actions of users; these are learning opportunities as well. If

users do not understand the critique then there is an opportunity for an explanation

in context. They learn a set of conditions under which their knowledge can be

applied and as a result improve their understanding. This learning scenario is a

task-driven environment, providing a unique, situated context for learning to take

place. This context is the central notion in situated learning; in critiquing systems

it comes about naturally. Critiquing combined with explanation approaches can

clarify understanding and help to restructure users' knowledge [Psotka, Massey,

Mutter 88a]. Learning has been traditionally supported with instruction, but a

more likely situation, one similar to the manner in which human-to-human inter-

action occurs, is to support it with an explanation capability [Wenger 87]. Ex-

planation of the system's critique is supported by the user modelling system that

was developed in this research.

1.4. Summary

This chapter examined the context for this research in terms of

paradigms for cooperative problem solving and computer systems that support

learning. The two cannot be easily separated on either a theoretical level or in

systems designed to support users in their work. Therefore, both become con-

20

siderations in how systems should be designed and in determining the role played

by their user modelling component. To achieve true cooperativity, systems must

adapt to their users; while support for learning requires that they provide the users

feedback and explanations; explanations are best when tailored to the individual.

This means idiosyncratic models of users are required. The exact content of those

models is determined by the needs of the systems that will use the models. This

chapter has explained the theoretical concepts for designing cooperative systems

that support task accomplishment, and the motivation for having systems that sup-

port learning; both of these provide motivating goals for this dissertation research.

The critiquing paradigm, the specific system design framework within which the

user modelling work was completed, will be discussed next.

CHAPTER II

CRITIQUING

Critiquing, as a technique for building systems, is of research interest in

both artificial intelligence and human-computer interaction. It has been a major

topic of investigation for the Human-computer Communications Group at the

University of Colorado during the past several years [Fischer, Mastaglio 89; Fis-

cher et al. 90; Fischer, Mastaglio 90; Fischer, Lemke, Mastaglio, Morch 90; Mas-

taglio 89]. Critiquing is of interest because it is a way to use knowledge-based

system techniques in situations where autonomous expert systems are in-

appropriate. In studying the approach we found that in order for a critic to meet

the goals of cooperative problem solving and accommodate user learning it needs

to be able to explain system knowledge in an individualized manner. This finding

was the primary motivation for choosing to investigate user modelling in this

thesis. That research required a clear understanding of the paradigm, so an impor-

tant collaborative effort was to characterize critiquing; this chapter is an overview

of that effort. The term critiquing is intended to mean the paradigm or technique,

while we refer to systems that use critiquing as "critics".

Critics can support users in both problem solving and learning, they play

an essential role in extending applications-oriented design kits to design environ-

ments, and are an alternative to traditional expert system. The approach has been

used successfully in diverse application domains, to both aid in a cooperative

problem solving process and to provide support for learning. Ideally a single sys-

22

tern will achieve both of these goals; such a system will nee the capability to

adapt explanations of its advice to individual users.

2.1. Foundations for Critiquing

Powerful computer hardware makes it possible to use computers in an

increasing range of application areas. As technical complexity increases, the as-

sociated cognitive costs to master computers grow dramatically and limit our

ability to make full use of computer systems. Systems that offer rich functionality

to their users need to be designed to be both useful and usable. It is a way to meet

the goals developed in Chapter 1, providing support for learning and for coopera-

tive problem solving. Critiquing also plays an important role in the concept of

Design Environments; other work in our group has investigated and reported on

that line of research [Lemke 89].

Cooperative Problem Solving. Critics, by their nature, operate in a

somewhat cooperative manner; they can be further enhanced to more fuly achieve

the objective of having a cooperative problem solving system. They identify

proposed solutions or strategies that could be done using an alternative approach.

For users to accept critics as a useful feature of their working environment they

need to provide explanations and, where appropriate, suggest alternative solutions.

Some shortcomings of traditional expert systems were pointed out in

Chapter 1; another one is that these systems are inadequate when it is difficult to

capture all requisite domain knowledge. Because expert systems often leave the

human out of the process, they require comprehensive knowledge that covers all

aspects of the tasks; all "intelligent" decisions are made by the computer. Some

domains are not sufficiently well understood, and to create a complete set of prin-

ciples that capture them is not possible. Some domains require considerable effort

23
in order to acquire all relevant knowledge. Critics are suited to these situations

because they need not be complete domain experts. Critics can still offer the user

helpful guidance even when their expertise is limited to only some aspects of the

problem domain.

The traditional expert system approach is also inappropriate when the

problem is ill-defined. This is because the problem cannot be precisely specified

before a tentative solution is attempted. In contrast, critics are able to function

with only a partial task understanding. Even when the system contains only

general knowledge about the problem domain, it can provide helpful support be-

cause there exist general principles that apply.

Support for Learning. The computational power of high functionality

computer systems can provide qualitatively new learning environments; future

learning technologies will be multi-faceted and support a portion of the spectrum

of approaches that was shown in Figure 1-1. Some versions of intelligent tutoring

systems developed in research laboratories allow the student to exercise greater

control of the interaction. LISP TUTOR was reimplemented in a mode that per-

mitted students to decide when the system could assess their work [Anderson,

Conrad, Corbett 89]. Student performance on post tests were equivalent for the

immediate feedback (tutor-controlled) and the demand feedback (user-controlled)

versions. Students actually took longer to solve problems when feedback was un-

der their control rather than the systems, however, the quality of the learning ex-

perience is not degraded. This has clear implications for systems designed to sup-

port learning in situations where it is necessary for users to provide the problem

specification, such as in LISP-CRITIC. As previously mentioned, the need to

provide knowledge-based assistance in exploratory learning environments is also

24

recognized. There is a recognizable trend for designs of learning systems to move

toward the middle of that continuum - closer to the critiquing paradigm.

Critics in passive help systems may not require users to formulate a

specific query, but because they assist only when called, they allow users to retain

control, providing advice only when the products or actions are recognized as sig-

nificantly inferior. By integrating working and learning, critics offer unique op-

portunities for the user:

" to understand purpose of or use for the knowledge they are learning,

" to learn by actively applying knowledge rather than by passive ex-

posure to it, and

" to learn one condition under which that knowledge can be applied.

A strength of critiquing is that learning occurs as a natural byproduct during the

problem solving process.

2.2. The Critiquing Approach -

Human-to-human critiquing is used in many problem solving contexts:

design, authoring, student work groups, and collaborative research. People work-

ing together in these and similar areas naturally use critiquing as an interaction

style. Critiquing is a way to present a reasoned opinion about a product or action

(see Figure 2-1). The product could be a computer program, a kitchen design, a

medical treatment plan; an action could be a sequence of keystrokes that corrects a

mistake in a word processor document or a sequence of operating system com-

mands. An agent (human or machine) that is capable of critiquing in this sense

can be called a critic. Critics can be implemented on computers as a set of rules or

specialists for the different issues that may be associated with a product; some-

times critics are the term used for each individual system component that reasons

25

about a single issue. In this project we call the entire system a critic; part of its

structure is a composite rule set.

Proposed

Solution
Domain

Domain Knowledge

Expertise

C K~ Problem
Solving Critiqu.inlg

Goals CrtqeUser Model

Critique

Figure 2-1: The Critiquing Approach

This figure shows that a critiquing system has two agents, a computer and a
user, working in cooperation. Both agents contribute what they know
about the domain to help solve some problem. The human's primary role
is to generate and modify solutions, while the computer's role is to analyze
those solutions, producing a critique for the human to apply during the next
iteration of this process.

Critics do not directly solve users' problems, but they recognize

deficiencies in a product and communicate those deficiencies to the users. Critics

point out errors and suboptimal conditions that might otherwise remain un-

detected; frequently they suggest how to improve the product. Users apply this

information to fix the problems, seek additional advice or trigger requests for ex-

planations.

26
It is probably instructive to clarify the distinction between critics and

constraints. A significant aspect of critiquing is that users remains in control and

are free to accept or reject advice from the critic. Constraints are often "hard

coded" into the working environment of systems or enforced on the user by some

system process (e.g., a file name extension in MS/DOS cannot be more than 3

characters); they are narrowly focused criteria that must be adhered to in order for

something to function properly. Critiquing primarily focuses on improving the

functionality of a product that is already usable. It is possible to incorporate hard

constraints into the critiquing agent and have the ymin seWh they

trigger that the product must be changed to comply with the constraint, or that the

system already modified it to comply. The majority of the research on critiquing

has used critic expertise that is based on what might be called soft constraints or

design guidelines.

Advisors [Carroll, McKendree 87] perform a similar function, but they

are the source of the primary solution. Users describe their problem, and the com-

puter advisor proposes a solution. In contrast to critics, advisors do not require

users to generate either partial or complete solutions to the problem. Advising as

an interaction approach is best suited to situations where one-time advice is

needed. User models are not as significant in these one-shot affairs, and ones that

are used emphasize modelling users' goals rather than their domain expertise. An

important research issue is to determine the commonalities that exists between

user models in advisory systems and user models for critics.

To clarify any conflicts in terminology, note that the term "critic" was

also used in the work on planning systems. In that context they describe internal

demons that check for consistency during plan generation. For example, critics in

the HACKER system [Sussman 75] discover errors in blocks-world programs.

27
When the critics discover a problem, they notify the planner, which modifies the

plan accordingly. The NOAH system [Sacerdoti 75] contains critics that recognize

planning problems and help to modify general plans into more specific ones.

Critics in planners interact with the internal components of the planning system;

critics in the sense of this paper interact with and critique the work of human users.

2.3, The Critiquing Process

The canonical process underlying critiquing is comprised of the sub-

processes shown in Figure 2-2. Not all of these processes are present in every

critiquing system; in fact, several of these processes are only conceptual and

represent emerging research directions.

Goal Acquisition. Critiquing a product requires that the system either

infer some limited understanding of the product's intended purpose or be designed

to support standard user goals. Problem knowledge can be either domain

knowledge or goal knowledge. If a critic just has domain knowledge without un-

derstanding the user's goals, it can only reason about characteristics that pertain, in

a general sense, to all products in that domain. Such is the case for LISP-CRIC; it

analyzes programs for syntactic correcmess. For a more extensive evaluation of a

product, an understanding of the user's specific goals and situation is desirable. A

critic may be -ble to acquire an understanding of the user's goal in several ways:

* Standard goals are built into the system, in LISP-CRrTIC these goals

are to produce code that is either more readable or more efficient.

* Goals can be recognized by observing users work and the evolving

products. Findings from research on plan recognition in artificial in-

telligence [Schmidt, Sridharan, Goodson 78] would support this

method.

28

ProdutIZ--

Figure 2-2: The Critiquing Process

Users initiate the critiquing process by presenting a product to the critic.To evaluate the product the critic use a goal specification if one is avail-
able. To help analyze the product some critics generate a solution and
compare it to the user's, others analyze the user's work directly. Apresenter formulates a critique using the product analysis; it provides ad-
vice and explanations. Critiquing strategies and a user modelling may be
used to aid the presenter. From this output, the user modifies the product
and the cycle can repeat. The essential processes and components for a
system to be considered a critic are outlined in black. The objects in the
figure with grey outlines are optional and in several cases represent
research directions.

29

A critic may have access to an explicit representation of the problem

to be solved, one that encapsulates a particular goal. A simple tech-

nique is to limit the possible goals and ask to users to select one from

that set.

Product Analysis. The two general approaches to critiquing are

differential and analytical. In differential critiquing, the system generates a solu-

tion and compares it to the user's solution. Analytical critiquing checks the

product with respect to predefined features and effects. They identify suboptimal

features using techniques such as pattern matching [Fischer 87b], finite state

machines [Fischer, Lemke, Schwab 85], and expectation-based parsers [Finin 83].

Critics which use the analytical approaches do not require a complete understand-

ing of the product.

Critiquing Strategies. Critiquing strategies and the user model can aid

the presentation component. The critiquing strategies determine what aspects of a

design to critique, and when and how to interrupt users' work. Strategies differ

depending on whether the predominant use for the system is helping users to solve

problems or for an educational application.

The manner in which critics are integrated into a work environment

should be chosen so that users welcome them and find them cooperative. Like

recommendations from colleagues or co-workers, messages from a critic can be

perceived as helpful or hindering, and as aiding or interfering with the accomplish-

ment of their goals. When selecting a critiquing strategy two factors to consider

are intrusiveness and emotional impact on the user.

30

" Intrusiveness is users' perception of how much the critiquing is inter-

fering with their work. Critics have to trade-off interfering too much

with failing to provide sufficient help. Factors to consider include

how frequently feedback occurs, the complexity of the tasks, and the

sophistication of the user. Critics should intervene when it is critical,

but interventions should not occur so frequently that users are

bothered and become frustrated.

" Emotional impact refers to how users react toward the computer as an

intelligent assistant. Computer critiquing may be more tolerable than

critiquing from humans because it can is handled privately between

users and the system. When dealing with a machine, users do need

not to face the negative aspects of shortcomings in their work being

exposed to other people who might form a negative opinion.

The prime objective of educational critic: is to support learning; and for

performance critics, to improve the product. Each type of system has different

requirements for selecting appropriate strategies. A performance critic should help

users create high-quality products in the least amount of time while conserving

resources. Learning, although not the primary concern of performance systems,

occurs as a by-product of the user and critic interaction. Educational critics try to

maximize the information or skills that users acquire and retain for future use.

Most performance critics evaluate the product as a whole and determine if it can

be changed to achieve a higher quality result. Some critics selectively critique

based on a policy specified by the user. Educational critics need more complex

intervention strategies to maximize information retention and users' motivation.

For example, an educational critic may forego the opportunity to critique if it oc-

curs too soon after a previous critiquing episode. Continuous critiquing without

31
giving users a chance to explore their own ideas can become intrusive and impact

motivation.

Existing critics operate primarily in the negative mode by pointing out

suboptimal aspects of the user's product or solution. A positive critic should

recognize and point what is good about a user's solution. For performance critics,

a positive approach can help users recognize the good aspects of their work. For

educational critics, positive critiquing can reinforce desired behavior and thereby

aid learning.

Intervention strategies determine when and how a critic intercedes.

Active critics control intervention because they can critique a product or action at a

time of their choosing. They are active agents continuously monitoring user ac-

tions. Passive critics are explicitly invoked whenever users want an evaluation.

Most passive critics are able to evaluate partial products but not individual user

actions.

Adaptation Capability. To avoid repeating the same type of advice and

to accommodate different users with different preferences and skills, a critiquing

system needs an adaptation capability. A critic that persistently critiques users

using positions with which they disagree is unacceptable, especially when the

critique is intrusive. A critic that constantly repeats an explanation that the user

already knows is, similarly, unacceptable.

There are two aspects to an adaptation capability: critics can be adapt-

able or adaptive. Systems are adaptable if a user can change their behavior or

knowledge: more recent research has called these systems "end user modifiable"

[Fischer, Girgensohn 90]. On the other hand, an adaptive system is one that

automatically changes its behavior based on observed or inferred information. An

32
adaptation capability can be implemented by disabling or enabling the firing of

particular critic riles, by allowing the user to modify or add rules, or by making

the critiquing strategy depend on an explicit, dynamic individual user model.

Explanation. Explanations are desirable and necessary in most

knowledge-based systems [Swartout 81; Teach, Shortliffe 84]. Critics need to be

able to explain their rationale so users can assess the critique and decide how to

deal with the advice. Knowing why a product was critiqued helps users to learn

underlying principles and avoid similar problems in the future. In a critiquing sys-

tem, explanations can focus on the specific differences between the system's and

the user's solutions, the rationale underlying the critique, or on violations of

general guidelines.

Advisory Capability. Critics detect suboptimal aspects of a user's

work; this is the triggering condition for a critiquing episode. When an episode

stops here, the user is required to generate and implement any changes to the cur-

rent product. One improvement on the process is for the critic to suggest alter-

natives; these we call solution-generating critics. Another is to provide the critic

the ability to explain or direct users toward information that increases their under-

standing. User models play a role in facilitating this part of extending the

paradigm; it is a subject that will be discussed in detail in the remainder of this

thesis.

2.4. Survey of Critiquing Systems

This section provides an overview of critiquing systems that play an im-

portant role in the development of the paradigm or illustrate an interesting aspect

of the theory. In addition to LISP-CRMIC, the Human Computer Communications

33

Group has developed JANUS [Fischer, McCall, Morch 89a] and FRAMER [Lemnke

90] to deepen our understanding of the critiquing paradigm. LISP-CRMC will be

discussed in detail in Chapter 3. Not all systems developed by other researchers

are described by their authors using the terminology presented here, but they do fit

into the critiquing framework. Because the range of systems covers diverse ap-

plication domains, a claim can be made that critiquing has general application as a

central approach to building knowledge-based systems. During the process of

developing the user modelling framework an attempt was made to retain this

perspective of domain generality.

Critiquing is attractive because of its generality across a wide range of

domains, such as medicine; electronic circuit design; and support for education,

writing, programming, and text editing. This section briefly surveys the critiquing

systems in these domains that were studied. Most of the systems discussed here

were developed as research vehicles, but a few are successful commercial applica-

tions.

The WEST system pioneered many of the fundamental ideas behind the

critiquing paradigm. It was an early effort to build a computer coach [Burton,

Brown 82] that teaches arithmetic skill in a gaming environment (a game called

"How the West was won"). The goal was to augment an informal learning ac-

tivity with a computer coach, retaining the engagement and excitement of a stu-

dent directed activity while providing context-sensitive advice on how students

can improve.

Several important ideas were pioneered in WEST. It builds a bridge be-

tween open learning environments and tutoring in order to support what is called

guided discovery learning. A model of each user prevents the coach from being

too intrusive. The system uses diagnostic modeling strategies to infer problems

34

from students' actions. WEST determines the causes of suboptimal behavior by

comparing the solution of a built-in expert with the student's solution. In this

manner, the student model is acquired by a process called differential student

modelling. The system infers models of students in terms of the "issues" on

which they are weak (mathematical procedures and game playing strategies). In-

tervention and tutoring strategies are explicitly represented in the system and make

use of information contained in the model to enable the coach "to say the right

thing at the right time" and provide coherence to that feedback.

Medical applications. Several researchers in the domain of medicine

have embraced the critiquing approach. In general, these systems aid medical per-

sonnel in patient diagnosis and treatment. Clancey first proposed a critiquing ap-

proach to user-system interaction for expert medical consultation systems

[Clancey 84]. Miller and colleagues at Yale Medical School did the most im-

plementation work in this area, developing systems which assist medical personnel

by analyzing plans for the prescription of medication, managing its administration,

monitoring the use of a ventilator, and administration of anesthetics [Miller 86].

The most extensively developed system is ATTENDING [Miller 86]. It

uses the differential critiquing approach, parsing the physician's plan starting with

the top-level decisions and at each step trying to find alternatives that have lower

or equal patient risks. The system works from the physician's solution to a

system's solution to insure that it is as close to the physician's as possible, this

makes the critique more helpful and easier to understand.

Differential critiquing is also used in one version of ONCOCIN, an expert

system for cancer therapy [Langlotz, Shortliffe 83]. The developers' goal was to

eliminate the need to override the system when justifying minor deviations from

the therapy plan for the convenience of the patient.

35
ROUNDSMAN [Rennels 87; Rennels, Shortiliffe, Stockdale, Miller 89] is

a critic in the domain of breast cancer treatment that bases its critique on studies

from the medical literature. It is a passive critic with explicit goal specification.

Text in the literature database serves as a domain knowledge set that is not inter-

pretable by the system, but stored in a "canned" form; associated with each case

description in the database are a set of case-factors that can be used for retrieval.

ROUNDSMAN can automatically provide the case descriptions as a form of detailed

explanation. Redundancy is a problem and no facilities are available for users to

followup on the advice or textual descriptions found in the literature. The system

is successful because there is a close mapping between the current case charac-

teristics (e.g., tumor size, location, (patient age, etc) and recorded medical case

studies. It could be viewed as critiquing system that uses case-based reasoning,

except that the system does not really attempt to understand the cases, rather it

knows how to match the symptoms of the patient undergoing diagnosis with those

cases.

Circuit design. Several research and commercial systems use a critiqu-

ing approach for enhancing digital circuit designs. CRr1rER [Kelly 85] is a design

aid for digital circuits. It uses a schematic diagram and a set of specifications to

evaluate the circuit using analysis techniques and knowledge about primitive com-

ponents. The evaluation report includes information about how well the circuit

will work.

A commercial system developed at NCR is the Design AdvisorTm

[Steele 88]. It is an expert system that provides advice on application-specific

integrated circuit designs. The Design Advisor analyzes the performance, tes-

tability, manufacturability, and overall quality of CMOS semi-custom VLSI

36
designs. Its knowledge is a hierarchy of design attributes compiled from a study

of major problems in commercial VLSI designs. Critiquing is not interactive but

done using a batch mode; designers submit proposed circuits and the system

returns the analysis to them for any actual design modifications.

Discovery learning. A suite of three computer-based coaching systems

for discovery learning, developed at LRDC, University of Pittsburgh, are based on

critics. These systems each address a different domain: SM1THTOWN -

microeconomics [Raghaven, Schultz, Glaser, Schauble 90], VOLTAVILLE - direct

current electricity [Glaser, Raghaven, Schauble 88], and REFRACT - geometrical

optics [Riemann, Raghaven, Glaser 88]. These discovery environments are

designed to build scientific inquiry skills. Active critics judge the efficiency of the

processes used to build scientific theory and inform users about errors that charac-

teristically trap less successful students as well as guide them to effective

strategies.

Decision making. The DecisionLab system developed at the European

Computer Industry Research Center [Schiff, Kandler 88] applies the critiquing ap-

proach to guide users in managerial decision-making. DecisionLab provides con-

structive feedback on a user's management plan in a simulation game. The user

gets critiqued whenever they attempt a non-optimal approach. This system in-

tegrates a critic and a simulation exercise.

Mili is investigating how to apply the critiquing approach to improve the

performance of decision makers in the context of their actual work with a system

called DECAD. It has not actually been built, but is designed to watch over the

shoulder of the decision maker, interjecting advice or a critique when appropriate

[M i 88]. In the area of research into decision support systems, investigators

37

place critiquing into a class of knowledge-based systems called "active and sym-

biotic decision support systems" [Mii, Manheim 88].

An operational symbiotic decision support system to support steel mill

operations is being developed by Manheim and colleagues [Manheim, Srivastava,

Vlahos, Hsu, Jones 90]. A manager develops a plan using a commercially avail-

able production planning and scheduling system which includes a mathematical

model, heuristic, and optimization techniques, that plan is compared to a system

developed plan using differential critiquing.

Curriculum development. The Alberta Research Council (Canada)

and a company called Computer Based Training Systems developed and are

marketing a knowledge-based system which provides assistance with curriculum

and course development [Wipond, Jones 88]. An expert module monitors cur-

riculum and course development, intervening when necessary or when assistance

is requested. The expert monitor can suggest what to do next, where to find ex-

amples or how to get more help.

Authoring. Critiquing systems have been developed that help writers

make their text more readable or help writers learn more efficient text editing

strategies with which to produce that text. WANDAH [Friedman 87] is a system

that assists authors in all phases of writing; it is commercially available for per-

sonal computers as HBJ WriterTM . Text which need not be a completed document

can be subjected to one of four sets of reviewing and revising aids that go over the

written work; the system provides feedback on structural problems, and recom-

mends revisions.

ACTIVIST is an active help system for a screen-oriented text editor that

monitors users' activities. It recognizes sequences of actions that are intended to

38
achieve one of the twenty different goals known to the system; some examples are

deleting a word or moving the cursor to the end of the current line. ACTIVIST

critiques the user after three suboptimal executions of a task type. After a certain

number of correct executions, the system will no longer watch for that plan. It

ceases to critique actions when a user ignores its suggestions for those actions.

This system integrates a user model; that model plays a central role in informing

the system when to intervene, when to discontinue looking for a plan, or when to

ignore user actions. The user model represents plans or strategies that users may

be following, ones can they execute optimally, and others they prefer not to

change.

Software development. PROLOG EXPLAINING [Coombs, Alty 84] is

designed to enhance a programmer's understanding of PROLOG, thereby helping

the user to develop a better understanding of the language. Users are shown some

PROLOG code and asked to construct an explanation of that code; the system

critiques that explanation.

The GRACE system developed at the NYNEX Artificial Intelligence

Laboratory is a multi-faceted learning environment for COBOL programming that

integrates a critic, a tutor, and a hypertext information base. When the system is

functioning as a critic, it can adopt a tutoring mode to give remedial problems; and

conversely, when functioning as a tutor the student can decide to explore in the

critiquing mode. The tutor is a production rule-based system modelled after the

LISP TUTOR [Anderson, Reiser 85]. The tutor portion of the system contains a stu-

dent model that is an overlay of the productions contained in the system. That

model is not shared with the critic, nor does the critic attempt to tailor its inter-

action to the individual.

39
KATE [Fickas, Nagarajan 88] critiques software specifications (for

automated library systems) that are represented in an extended Petri net notation.

Its knowledge is represented as "cases" consisting of a pattern describing a be-

havior in a specification, links to one or more goals, simulation scenarios, and

canned text descriptions. The critic evaluates the specification with respect to

goals or policy values given by the user.

Mechanical design. Feedback Mini-Lab [Forbus 84] was built as a

follow-on to the original work on the STEAMER system. It is an environment in

which simulated devices, such as steam plant controllers, can be assembled and

operated. Students can assemble a device from the building blocks. Feedback

Mini-Lab is designed to facilitate student understanding of control components.

Mini-lab generates code specifications to produce the simulation for the device.

After constructing their device, students can ask the system for a critique.

2.5. Limitations of Current Critics and Future Research Issues.

One features that is a strength of the critiquing approach is also a poten-

tial weakness. Supporting users in their own doing means that detailed assump-

tions about what a user might do cannot be built into the system. Our systems

have a limited understanding of users' goals. This restricts the amount of assis-

tance and goal-oriented analysis that critics can provide in comparison to systems

such as PROUST [Johnson, Soloway 84], which have a deep understanding of a

limited set of problems.

Most rule-based critics do not have an explicit representation of all the

rationale for their knowledge. Therefore, to capture enough domain knowledge to

provide explanations, these systems need more abstract representations of the ap-

plication domain.

40
Critics should ideally have inspectable knowledge structures so that

users can modify and augment them. This does not mean that users will have to

possess detailed programming knowledge. As a minimum users should be able to

deactivate (and reactivate) individual rules according to their needs and goals.

With sufficient inference and user modeling capabilities, systems might be able to

do dynamic adaptation.

Currently, most critics support only a "one-shot dialog" [Aaronson,

Carroll 87]. They respond to actions taken by the user, in some cases they give

suggestions and explanations but none have the ability to adapt those explanations

to an individual user. Human critiquing is a more cooperative activity, during

which an increased understanding of the problem develops. Research on how to

incorporate more of the characteristics of human-to-human collaborative effort

into these systems is needed. This happens to be one of three directions for

research suggested for overcoming the limitations of human-machine interaction

that were suggested in the analysis of situated action [Suchman 87].

2.6. Summary

Critiquing can be used as an approach to designing knowledge-based

computer systems that support human work and learning. Critics are important

steps towards the creation of more useful as well as more usable computer sys-

tems. Some of these systems will have elaborate problem understanding; more

commonly, they will have limited yet helpful capabilities; such as modelling their

individual users. Research on user modelling in other paradigms, such as tutoring

and advisory systems, can establish ideas and techniques that might be of use in

critics. A review of that user modelling research and theory will be the subject of

the next chapter.

CHAPTER MI

USER MODELLING

This chapter examines related research in user modelling and describes a

general framework for the user modelling component of a system. Two related

research areas have attempted to integrate idiosyncratic models of users. Research

in Intelligent Computer Aided Instruction (ICAI) systems, most often referred to

as Intelligent Tutoring Systems (or ITS), use models of their studei.ts to guide the

instructional interaction [VanLehn 88]. Artificial intelligence techniques are the

basis for modelling users of advice giving dialog systems [Kobsa, Wahlster 89].

In the work on user models in these areas I found some concepts that provide

foundations for a user modelling framework to support cooperative problem solv-

ing, and some specific ideas that were adapted for a user modelling in critiquing.

Those foundations will be discussed and the conceptual architecture for a user

modelling component presented.

In the wider context of human-computer interaction the term "user

model" is over-used; it has been applied to mean three different models:

1. the conceptual model a user forms of a system (more precisely a

user's model (Norman 86]),

2. a models that represents the typical users of a system as a class and

are used to aid in designing systems, and

3. models of a specific user inferred by the system, such as the ones

investigated in this research.

42
Models in the first sense are conceptual models that provide part of a foundation

for understanding the process of human-computer interaction. The second class of

models above are psychological models developed by and for the analysis of

human behavior when interacting with computers. They play an important role in

guiding system development and research in the psychology of human-computer

interaction; important examples are the GOMS model [Card, Moran, Newell

83] and cognitive complexity theory [Kieras, Polson 85]. Research in this area

also compares these models to one another for given tasks [Moran 81; Young, Bar-

nard, Simon, Whittington 89]. In the future there is the possibility that these two

lines of research will converge to the point where psychological models can also

serve as a basis for idiosyncratic representations of the individuals using a system,

but neither research area has matured to a point where that is presently feasible.

The distinctions are clarified here- to insure- there is no confusion concerning the

interest of this research - it is user models in the sense of the third category.

An argument has been put forth that the lack of commercial systems

with user modelling is evidence for a failure in the research, perhaps an argument

for discontinuing it altogether [Willams 90]. My position is that this view is en-

tirely too pessimistic and that the reasons we do not yet find the technology in

general use are predominantly organizational and economic. Specifically, there

are four possible explanations. First, the technology is not fully mature and ad-

ditional research is needed, ergo the argument for pursuing this line of research.

Second, the paradigms for the associated systems that use such models are neither

completely understood themselves, nor fully developed to the point of being com-

mercially viable - for ICAI that means computer-based instructional methodol-

ogy, and for advisory dialog systems the ability to adequately generate natural lan-

guage. Third, the computational environments that run these systems (most Al

43

applications for that matter) are expensive and scaling the techniques to fit them to

more common platforms is a significant area for research in itself. Fourth, the

techniques are not generally understood by designers and builders of software to

support commercial applications, a not uncommon phenomena in area of computer

science and the reason we find suboptimal system design approaches in everything

from text editors to commercial databases in the marketplace. The complete story

is likely some combination of these reasons, and arguments based on personal con-

jectures of what will be successful backed primarily with observations about cur-

rent commercial computational systems, should not dissuade us from pursuing ad-

ditional understanding and new approaches to solving any problems in computer

science, to include user modelling.

3.1. An Overview of User Modelling Research

One survey of user modelling definitions together with an effort to

correlate that research in both human-computer interaction and intelligent tutoring

resulted in a useful taxonomy tVased on who owns the model and its function

[Murray 88]. It was still necessary to conduct my own. study. There was a need

to understand other research at level of their implementation methodologies in or-

der that I could determine how the models work, and then decide if the techniques

used have could be used in the user modelling component which we wanted to

build. The most widely reported examples of working techniques for user modell-

ing are those developed to support intelligent tutoring and dialog advisory systems.

This section describes the analysis of those areas; awareness of that research

provides both implementation ideas and has helped to determine the several re-

quirements for a user model able to support cooperative problem solving.

44

3.1.1. Student Models in Intelligent CAI

User Models in intelligent tutoring systems, called student models, have

been the subject of ongoing research for about a decade, there is significant litera-

ture surveying and discussing that work [Sleeman, Brown 82; Wenger 87; Poison,

Richardson 88; Psotka, Massey, Mutter 88b; VanLehn 88]. Student models are

derived from knowledge in the system such as rules, concepts, or strategies for

learning a skill. The user's knowledge state is represented as a perturbation of that

domain model - popular approaches are overlays to represent the portions of the

knowledge base that a student knows, and a bug models that represent user mis-

conceptions about the domain. Some ITS student models combine these two tech-

niques into a comprehensive representation. Differential modelling is the term of-

ten used for these techniques [Wilkins, Clancey, Buchanan 88]. Several systems

which are frequently cited as using successful approaches were studied in detail.

The WEST project was previously discussed in Chapter 2. It pioneered

the differential modelling approach [Wenger 87]. Student behavior is modelled in

terms of the issues they understand and correctly apply. Their behavior is com-

pared to an expert's under the same conditions to determine their mastery of par-

ticular issues. The system finds an issue a student does not know, then selects an

abstract explanation for that issue from prestored text. There are limitations to this

approach, when compared to the conditions under which critiquing systems must

function. The domain has a number of properties that are not characteristic of the

domains in which critics are needed. The computer expert is able to play an op-

timal game because there is a best solution, and it can interpret all alternative stu-

dent actions. In WEST it is possible to identify students' bugs, whereas in other

domains one can only speak of "suboptimal" behavior. The set of issues, on

which the methodology is based, is closed for the game, How the West Was Won,

45
while it is frequently open-ended in other domains. The user's task goal is ob-

vious; it is to win the game while obeying its rules, another simplifying assump-

tion which does not apply to many other domains. The explanation strategy in

WEST presumes that the advice given is self-explanatory because it contains a

good illustrating example. Two ideas developed in WEST are of use in this

research. One is the idea that students' actions in the ongoing dialog with the

system contain information that can be used to analyze the state of their

knowledge. Another is the notion that knowing this state provides a mechanism

for guiding presentation of new knowledge by the computer coach.

The genetic graphs approach was first developed for the WUSOR-Ii com-

puter coach as a way to overlay domain knowledge with a learner-oriented linkage

of rules [Goldstein 82]. The rules are represented as nodes in a graph model. The

domain for the WURSOR systems (three versions were developed in all) is an ex-

ploration adventure computer game called WUMPUS. In another project, the

genetic graph approach was used as a basis for modelling procedural skills in two

quite different domains, one mental, subtraction, and the other motor, ballet

[Brech, Jones 88]. That research validated the generality of the approach and en-

hanced general understanding of the paradigm. The nodes in the genetic graph

represent domain entities, such as skills, facts, rules, or concepts, all elements of

expertise. The links between nodes capture the processes by which a student can

learn those domain entities. A system component known as a psychologist inter-

rogates the user model to determine what to teach next; it is also the entrusted with

maintaining that model. Processes represented in the links, such as generalization

or analogy, indicate methods by which students can learn a new piece of

knowledge starting from one they have mastered. The system can determines a

pedagogical approach because the student model is an overlay of the graph with

46

marked nodes representing skills or knowledge that students possess. The links

between the nodes provide paths to the target knowledge; they represent possible

strategies for "teaching" that knowledge.

Genetic graphs are normative models that define in their link structure

the manner in which knowledge in a specific domain can be acquired by a student;

this is an inherent limitation. The graphs have to explicitly capture in the

representation all possible ways for a user to learn a domain entity, requiring sig-

nificant up-front analysis. To construct the graph a system designer has to deter-

mine the domain entities and, for each one, all methods by which a student could

learn one entity when they already know another. This restriction is similar that of

to traditional Computer-Aided Instruction which has to algorithmically pre-specify

the possible paths through course material. Genetic graphs permit more flexibility

in that users can traverse the graph during learning according to an arbitrary, rather

than predetermined path, but the path must be one that has been captured and

represented in the graph.

Clancey compiled survey of student models in "AI-based instructional

programs" [Clancey 86] that contained a useful framework for research. He

characterizes student mc is as qualitative models in the sense that they predict

how the modelled learner will solve selected problems, as opposed to representing

the student with numeric measures of achievement. The system runs the model as

a simulation of that student to predict and explain behavior. Inconsistencies be-

tween the prediction and actual student activities serve as a source of diagnosis to

improve the student model: in some cases capturing new knowledge (new to the

student model, that is) that the student possesses, in others identifying misconcep-

tions or bugs, and in still others doing both. User models for cooperative problem

solving systems will not (and cannot) be predictive because of the complexity of

47

the domains and because the open-ended problem solving situations in which they

operate, preclude the system from being able to generate a complete problem solu-

tion. If the system is not able to solve any problem in the domain, then it follows

that it will not be possible to use such an approach in juxtaposition with a qualita-

tive user model to predict user actions. One aspect of this study that fits with our

analysis of what is required for modelling users of cooperative knowledge-based

systems is Clancey's finding that existing instructional programs had to be en-

hanced by second-generation knowledge representation technique. As will be dis-

cussed in Chapter 5 a similar requirement for enhancing critiquing systems to

more fully support cooperative problem solving and learning precipitated the

development of a conceptual model for the domain of LISP.

The idea of student models based on the misconceptions or bugs (also

called mal-rules in some research) that students holds about the domain was a

theme in several ICAI research projects besides WEST [Brown, VanLehn 80; Van-

Lehn 88]. Those results did not play a role in this work because the needs of our

systems emphasize representing and using what users know about the domain

rather than correcting deficiencies in that knowledge.

It is is significant that ICAI systems are able to solve any problem on

which their users (the students) will work. Within their application domain they

will restrict students to those problems. This allows them to use more detailed and

specific model inferencing techniques than those available to systems serving in

more open-ended problem solving situations. The requirement for our systems to

have generality means that the techniques that are often used in student modelling

are often not robust or general enough to support real world problem solving. The

problem-space limitations that are imposed by tutoring systems are what make

them effective at teaching within those restrictions, and also what enables them to

48

compile accurate and complete models of students within the limits of their own

domain understanding. An example is PROUST, which is able to infer possible

programmer plans for solving the single problem it uses for all instructional

episodes, computing average rainfall with a PASCAL program. For LISP-CRIIC to

achieve a similar capability would require solving the plan recognition problem, a

theme of significant research interest in its own right [Schank, Abelson 77;

Schmidt, Sridharan, Goodson 78; London, Clancey 82; Carver, Lesser, McCue

84]. Related efforts in goal inferencing is important to dialog advisory systems;

the other area where important results in user modelling have been achieved.

3.1.2. User Modelling in Computer Advisory Systems

User models for advice giving systems based on natural language dialog

have approached the user modelling problem from a perspective of applying artifi-

cial intelligence and using linguistics theory. A popular approach is stereotyping;

it was first proposed by Rich in the GRUNDY system [Rich 79]. Systems that use

stereotypes need other acquisition methods to first provide some specific charac-

teristics about a user. When the system obtains sufficient information about users,

it categorizes them as fitting a prestored stereotype, and the stereotype then in-

directly provides additional possible characteristics. One techniques, used in the

work on GRUNDY, is to explicitly ask users for some of these characteristics. A

user-generated description aids the system in selecting an appropriate stereotype.

Finin and Kass extended the stereotyping approach to provide implicit

user model acquisition in a user modelling shell based on a hierarchy of prestored

stereotypes [Kass, Finin 88a]. Their systems analyzes natural language com-

munication between the user and the system using the implicature rules adapted

from Grice's Maxims for cooperative communication [Kass 87a]. An example of

49

such a rule is If a user says P, the user modelling module can assume the user

believes that P, in its entirety, was used in reasoning about the current goal or

goals of the interaction. These rules, in conjunction with the stereotypes, infer a

model of the user's goals and beliefs. Chin's work in KNOME, a user modelling

component for UNIX CONSULTANT, used a double stereotyping technique, one for

grouping domain concepts and the other for classifying a user's expertise. The

stereotyping approach is useful for one-shot advisory type systems that need some

quick approximation of the user in order to quickly generate a piece of advice; it

could be used as a way to initializing user models for critiquing systems, if a valid

set of stereotypes is available.

Wahlster and Kobsa also use the content of a dialog to acquire a model

of the user's beliefs, plans, and goals [Wahlster, Kobsa 88]. Their work attempts

to emulate in a computer the mental modelling that occurs during human-to-

human communication. Its focus is insuring the system serves the user in a

cooperative manner, as opposed to system that might be considered adversarial

(e.g., computer game-playing programs,) or that are at best ambivalent to the user

(e.g., express-teller machines.) The user models in this research predict how a

user will irerpiet an utterance the system is constructing for presentation. In this

regard, the purpose of their models are related to Clancey's qualitative model

framework for ICAI student models.

Some general characteristics of this class of systems are quite different

than those of cooperative problem solving systems:

The advice is given in a single episode and there is no notion of con-

tinuing dialogs over multiple problems and situations. The underlying

assumption is that the system will never see a user again and if it does

it will not attempt to recognize that fact or use previous information

about them.

50

" The advice is generally atomic; it solves a given problem (e.g., invest-

ing some money, locating an apartment, finding the correct train to

reach a destination, etc) with a single optimal recommendation.

" The system is an expert. It generally knows more about the advisory

domain than the user, and an implicit assumption is that what the

computer advisor recommends is accepted without question as being

appropriate and optimal.

" The system is not concerned with supporting users' learning in the ap-

plication domain. Its goal is to insure the advice is understood with an

assumption that once users understand what is being suggested they

willingly accept recommendation.

Cooperative problem solving requires that systems be prepared to deal with the

same user repeatedly, and-do so in domains where a complex product is being

produced. Furthermore, it will be the case that both parties share responsibility for

the result and each have some knowledge to contribute to the solution process.

Cooperative problem solving systems will therefore need models that are dynamic,

persistent, and idiosyncratic..

An important distinction in purposes for user models is important. User

models can help a system to generate the appropriate suggestions (for our systems

these are in the form of the critique, for advisory systems a recommended course

of action), or in a general sense help explain some facet of the domain. Specifi-

cally, for critics and advisory systems, that is an explanation of the rationale be-

hind the suggestion in terms of domain concepts. Ideally the same user model will

serve both purposes. Research in advisory system has focused on the first situa-

tion - insuring the advice is appropriate to user goals and plans, while the

research here focuses on the second purpose - explaining to the user the domain

knowledge underlying a given critique.

51

To summarize, there are several significant differences between user

modelling for critiquing and those that support advisory dialog systems. The no-

tion of a product constructed through a collaborative effort between the system and

the user is central to most critics. Advisory systems are designed as all-knowing

experts which, once they infer sufficient information about the user, will select or

generate proper advice. The user's role is passive while in critics both the system

and the user are active in solving the problem at hand. Advisory systems

predominantly exercise control of the human-computer interaction. They are less

"system controlled" than intelligent tutoring systems, but overall responsibility for

the interaction resides in the system. In critics, the system and the user share

responsibility for solving the problem at hand and for guiding the interaction. Like

in the student modelling work there are several techniques developed by research

in this area that can potentially be integrated into a framework for models that

support cooperative problem solving; they include: stereotyping approaches, the

distinction between explicit and implicit acquisition techniques, and inference

rules that use the content of the human computer dialog to enrich the user model

contents. These together with key ideas from the student modelling work guided

the articulation of some foundations for the approach followed in this dissertation

work.

3.2. Foundations for User Models to Support Cooperative Problem Solving

There are three issues that need to be addressed for user modelling in

cooperative problem solving system: how to represent the user model, how to ac-

quire it, and how to access it. The first two areas proved to be the most difficult;

access of the models is primarily determined by decision about the representation.

The acquisition problem, viewed in the ITS literature as a problem of diagnosis, is

52
the most challenging. To synthesize my review of the research literature con-

cerned with user modelling, a topology was used to summarize the work. It

categorizes specific ideas and projects into the areas of the knowledge the user

model represents, how it is acquired, and its primary purpose. Appendix A con-

tains a table showing the systems discussed throughout this dissertation. Their

characteristics in each category together with their application domains and the

purpose of the systems themselves are listed.

In the area of acquisition techniques, I found it useful to categorize them

based on the directedness of the inferencing method.

1. Direct acquisition techniques are those where a specific piece of

information is obtained by explicitly questioning users or from

implicit observations of them. Usually a single characteristic about a

user is inferred.

2. Indirect acquisition techniques are shortcuts, such as stereotypes or

classification schemes; they are always implicit.

In the literature, the more commonly used distinction for acquisition techniques,

(described best in [Kass, Finin 87a]), is implicit versus explicit acquisition ap-

proaches, the orthogonality of these two categorizations is shown in Table 3-1.

Table 3-1: Two Orthogonal Classifications of Acquisition Techniques

Categorizing User Model Acquisition Techniques
Direct Techniques Indirect Techniques

Implicit Acquisition X X

Explicit Acquisition X

The user characteristics represented in the model make a claim about

what users can do; what they know; and their goals, plans, prejudices or

53
preferences. To support the first two types of information, the representation must

be in terms of domain expertise. Users do not simply know or not know a skill or

domain entity, so representing their knowledge using a binary value is inadequate.

Research in some student models tackle this problem by attempting to rate the

knowledge of each domain entity in the user model with a linear value. A linear

coefficient used to represent the degree of proficiency would be ideal, but the dif-

ficulty is that to establish the validity of such coefficients requires extensive statis-

tical analysis of the population of users. Prevailing approaches have used ad hoc

methods for setting these values. That research usually is oriented on demonstrat-

ing how the acquisition process works rather than evaluating the validity of the

models themselves. A simple approach is to represent each user according to a

classification of domain expertise (e.g, expert, novice, beginner). This is what I

call a "classification method"; it is an approach which can be viewed as

analogous, or even derived from, the stereotyping methodology. In this project, an

alternative method for the system to categorize how well a user knows some piece

of domain knowledge was needed.

3.2.1. Classifying the Users' Domain Knowledge

In [Fischer 88a] such a schema for classifying users' knowledge was

presented, it is shown graphically in Figure 3-1. This schema provides a basis for

the user modelling component developed in this research. It provides a conceptual

model for the space of user knowledge in the application domain. In general, the

domains in the figure represent the following:
DI: The subset of concepts (and their associated commands) that users know and use
without any problems.
D2: The subset of concepts which they use only occasionally, users do not know
details about them and are, possibly, unsure of their effects.
D3: The mental models [Norman 82; Fischer 84] of the users, i.e., the set of concepts
which they think exist.
D4: This region represents the actual set of concepts in of a domain.

54
A specific interpretation of this model in terms of the domain our user model

serves, LISP, will be offered in Chapter 7.

• D2
Figure 3-1: Levels of System Usage

Using this schema as a basis for the user model representation means

that it is necessary to capture how well a user understands domain entities in ac-

cordance with these levels. The level at which users know a domain entity can, in

turn, guide explanation giving; this will be shown in Chapter 6.

3.2.2. General Approaches to User Modelling

Human-computer interaction includes many different types of systems

and interaction approaches. A common theory for how to design and apply

idiosyncratic user models across different areas is desirable because it will allow

sharing of research results and identification commonly usable features in in-

tegrated systems - system that use more than one approach to interaction.

Establishing the requirements for general user modelling can be pursued

in two different ways. One strategy is framework-driven: it defines a common

architecture that can be used by any system. The General User Modelling Facility

(GUMS) (Kass, Finin 88a] provides such a framework. It is a top-down approach

55

because the framework is conceptually predefined and can guide research as well

as development efforts for specific systems, domains, or paradigms. Another at-

tempt at developing a domain-independent modelling subsystem is the "User

Modeling Front End" (UMFE) [Sleeman 84]. A common idea with this work is

the specification of sets of inference rules based on diagnostic information about

how user's knowledge propagates through a set of concepts. These generalized

modelling approaches attempt to encapsulate a complete theory of user modelling

that could be applied to any system.

A more system-driven approach is a bottom-up strategy, studying "suc-

cessful" user modelling systems in different domains and paradigms, then reusing

appropriate techniques and ideas in the user modelling component of a specific

system. One example of this is the overlay modelling technique first proposed in

WUSOR-II, it has become a standard ITS paradigm [Wenger 87]. Another is the use

of bugs to perform student diagnosis and repair in systems such as BUGGY and

DEBUGGY [Brown, VanLehn 80], and the Leeds Modelling System (LMS)

[Sleeman 83]; then later applied to other domains such as programming [Gray,

Corbet, VanLehn 88].

Common features of successful models can be used to drive tneoretical

developments in the field; it is a case of the system implementation and testing

work driving the development of a general approach or theory. This dissertation

has primarily embraced this approach. A methodological first step toward

developing a user modelling approach for critiquing systems is to build a system

based on both what we understand to be the system's needs and integrating good

ideas from other research. Theories need to be tested by developing systems, and

system implementations need to be studied to refine the theory. The work here has

concentrated first on selecting worthy techniques from other user modelling areas

56
and integrating them into a proposed theoretical framework. That framework was

enhanced during implementation of a user modelling component for a computer-

based critic. Over the long term, that implementation should drive additional

theoretical research to provide a theory of user modelling to support not just

cooperative problem solving but a larger class of interactive systems that includes

tutoring and advising, amonr others. The requirements placed upon a user model

for systems that support of cooperative human-computer effort are discussed next.

3.2.3. Requirements for User Models in Cooperative Problem Solving Systems

Communication is at the heart of any cooperative effort. In order for a

human and computer to collaborate effectively they must communicate about the

product, perhaps the goal, and general information about the domain in the form of

computer-produced explanations. Explanations in the systems we are investigat-

ing are currently uni-directional, from the computer to the user. In the future an

application of machine learning research might be for userstoL also explain their

knowledge to the computer as a way for the system to learn more about the

domain. In either situation, dialogs between the system and user need to operate at

a level commonly understood by both agents.

The user model needs to be accessible to other system components. Its

contents will be used when presenting explanations, selecting items to analyze,

and perhaps as a record of user preferences used to tailor the system. The ultimate

objective is an integrated system which adapts to users, allows them to specify

preferences, and is still somewhat consistent in the way it treats them.

The user models in cooperative problem solving systems will have to be

more individualized than those provided in classification schemes or stereotyping

approaches. Users of a complex system are not homogeneous and the system

57
needs to treat each one differently. Having individual models alone is inadequate,

their contents have to change as the individuals knowledge improves - users

usually become more knowledgeable or proficient over time. A precept of

cooperative rroblem solving is to provide an environment that serves users not

once but on a recurring basis; this means the system adapts and changes as users

change. Achieving system adaptivity requires a representation of each user that is:

" dynamic - it changes over time,

" persistent - it is retained between problem solving episodes and

reused by the system, and

" idiosyncratic - it is unique for each individual.

Based on these requirements, several ideas from the analysis of related-

research on user and student modelling were identified for incorporation into a

user modelling framework for cooperative problem solving systems:

1. Stereotyping (GRUNDY)

2. Explicit and implicit acquisition methods (GUMS)

3. Representing user knowledge- as a perturbation of the domain

(Genetic Graphs)

4. Using the dialog content as a basis for acquisition inferencing

(GUMAC)

5. Acquisition methods based on the relationship between knowledge,

the structure of the domain model (UMFE)

The architecture for that user modelling component will be covered next.

3.3. A User Model Architecture

A conceptual architecture for the user modelling component that is

derived from the previously-discussed requirements was developed. That architec-

58
ture is designed to serve the needs of the specific system and critiquing paradigm

but with an eye toward retaining sufficient generality that it might serve as the user

modelling component for any cooperative problem solving system. There are

three major subcomponents of the architecture, the representation scheme, acquisi-

tion techniques, and access methods; they are shown in Figure 3-2.

Dialog ~RepresentationK) Scheme: 7,r

Figure 3-2: General Architecture for A User Modelling Component for CPSS

3.3.1. Representation

The representation scheme is central because it must support acquisition

and access. It must also be general, efficient, and easy to expand or modify. An

additional consideration is to make the schema understandable to a human or, at

least, able to be presented by the system in a form that humans can read and

modify. We would like for the modelling component to support either users them-

selves or a teacher in interpreting and editing individual models. User models are

at best approximate representations of some cognitive aspects of an individual and

we should allow for those situations where that individual or another human can

improve on that approximation.

59
The two ideas from other research in user modelling that contribute to

our representation scheme are: the use of a graph model for the domain, such as

the genetic graph, and representing the user as an overlay of the domain model.

The implementation we developed uses a more general approach than genetic

graphs to represent the domain and a coloring of those graphs that is based on the

schema for representing user knowledge.

3.3.2. Acquisition

Acquiring the user model is the most complex function in this

architecture. It requires knowledge on the part of the system, knowledge about

ways to infer the state of the user. Representing and accessing a user model could

be achieved using common database techniques if acquisition was not such a com-

plex problem.

The acquisition methodology will need to support various approaches

for acquiring information about a user. The collection of acquisition techniques in

the system can be conceptually viewed as a knowledge-based agent; an agent that

is able to infer what a user knows from information provided by other system com-

ponents which track the human-computer dialog; the agent also knows explicit

questions to ask that help infer the model contents, or certain stereotypes, etc.

Four categories of possible acquisition approaches were identified:

Explicit techniques directly question the user for information that is

entered into the user model. It is a suitable approach for obtaining an

initial user model as it can be implemented as a simple up-front ques-

tionnaire or testing session when a user accesses a system for the first

time. It is not as suitable during subsequent human-system interaction

episodes because users are not willing to put up with such administra-

60
tive requirements more than once. If a model so acquired is not

changed to reflect changes to users' knowledge it will become con-

tinuously less valid and useful - the approximation of the user's

knowledge state becomes progressively less approximate.

*Implicit techniques enrich the user model without interrupting the

user. Two implicit techniques are of interest: stereotyping and the

implicit implicature rules that operate on the human-computer dialog.

Stereotypes are difficult to apply in many situations mainly because,

as discussed earlier, it is hard to determine what stereotypes to use.

Organizing those stereotypes into a hierarchy presents its own

problems [Kass, Finin 87b]. Some implicature rules, as will be

described in Chapter 7, can be modified so that they apply to the

human-computer dialog present in most computer working environ-

ments rather than natural language situations alone. There are also

implicit techniques that are indirect; they use the domain model struc-

ture to leverage the information provided by implicature rules.

* Tutoring methods acquire information from instructional episodes that

can be added to or used to modify user models. These are episodes

initiated either by user request or by the system for the express pur-

pose of evaluating a user's knowledge. There are not any systems that

attempt to do the latter but this appears to be a natural combination of

ideas in tutoring and user model acquisition worthy of investigation.

Information in the model that appears to be missing or in conflict trig-

gers a tutoring episode in which the system poses a problem to the

user, one designed or selected to evaluate user understanding of the

knowledge in question. Given a comprehensive system, such as

61

GRACE [Dews 89; Atwood et al. 90] that combines both a critic and a

tutor, if a user voluntarily requests some tutoring, whatever subjects

are addressed during that tutoring can be used by the system in a

similar fashion.

e Statistical user model acquisition methods could be included in the

implicit category but they are of sufficient interest to warrant their

own separate category. The acquisition technique is one of observing

user actions, accumulating a history of those actions (usually in the

form of a count), and triggering inference methods upon reaching

predefined threshold levels in that statistical history. The thresholds

trigger an inference about the user and precipitate an offer of critiqu-

ing type advice to the user. In the ACrIVIST system models based on

statistical methods proved to be effective [Fischer, Lemke, Schwab

84]. Unfortunately, this approach has not been explored except in that

research, and only conceptually in LISP-CRiTIC.

3.3.3. Access

The access methods are the third part of the architecture. The model

contents must be accessible and usable by other components, or perhaps human

agents. Access methods provide information to other system components about

what the user does or does not know about the domain. In the model developed in

this research that access provides information to guide explanations, but the

methods are generic in nature so that they could support the needs of tutoring,

advisors and so forth. Access functions need to be general enough to support

known requirements, and flexible to accommodate extensions to the system. Ac-

cess methods are not conceptually or theoretically difficult but are most often

determined by the language or methodology used to implement the representation.

62

3.4. Summary

A general framework for a user modelling component capable of sup-

porting cooperative problem solving was developed in this chapter;, it incorporates

techniques from research on student modelling in intelligent computer-aided in-

struction and user modelling in advisory dialog systems. The initial strategy was

to select a technique from one of these areas that could be modified to meet the

needs of cooperative knowledge-based systems. However, such a direct applica-

tion was not feasible because the theoretical analyses showed that there are suf-

ficient differences in the needs of the different types of systems in terms of what

they need to know about their users, and in the control of the interaction. Alter-

natively, an architectural framework for a user model was specified; one that is

able to support cooperative human-computer effort, is based on a categorization of

users' expertise, and is general in nature. That conceptual framework has been

instantiated, in part, in a user modelling component that will be described in Chap-

ter 7. The implementation context is LIsP-CRITIC; the next Chapter provides an

overview of how LISP-CRrITC has evolved over time, how it is currently con-

figured, and how it presently operates.

CHAPTER IV

LISP-ClrTIC

LISP-CRITIC was used as the development environment in which the user

modelling framework was implemented. It is a knowledge-based system that is

designed to support programmers in the context of their work. It does not have

"automatic programming" capabilities but operates according to same principle

of "intelligent assistance" that is fundamental in the PROGRAMMER'S

APPRENTICE work [Rich, Waters 90]. 3 In the terms of that research LISP-CRIC

belongs to the class of what are called "transformation system" [Rich, Waters

88].

Comparisons between LISP-CRITIC and the work on LISP Tutor are in-

evitable. As discussed in the context of learning environments in Chapter 1, the

purposes for the two systems are actually quite diverse. LISP Tutor proposes to

teach the LISP programming by leading students through a series of predetermined

programming exercises known to the system in detail. LISP-CRITC is oriented

toward aiding programmers involved in real work by suggesting to them better

ways to implement a specific piece of code they have written. In LISP-CRITIC, like

in any critiquing system, learning will inevitably occur, but it would be best to

incorporate capabilities into the system to make that learning as effective as pos-

sible.

3The long term vision for the PROGRAMMER'S APPRENTICE is that it "act as a
software engineer's junior partner and critic (emphasis added)" [Rich, Waters 90,
p. 1]. In our view, development of LISP-CRITIC provides significant understanding
of what is involved in the critic portion of such a system.

64
LISP-CRrC provides a suitable context for investigating both user

modelling and the cooperative problem solving paradigm for several reasons:

" The rule knowledge base in LISP-CRIC was previously developed

and has been refined through several versions of the system, therefore

this research did not have to contend with acquiring and testing the

executable knowledge in the system.

* Critiquing is a paradigm that has been studied and is well understood,

as discussed in Chapter 2; therefore, we could consider extending it,

in the context of LISP-CRTC, it to integrate user models and support

cooperative human-computer work.

" The part of the process involved in giving a progranm-mer advice (the

initial critique or suggestion that we will see in the scenario) is stable

and usable. This is due, in part, to the maturity of the rule-based

knowledge.

The system was not built from scratch for this project; it has been the

focus of iterative development over several years. This chapter reviews the dif-

ferent versions of LISP-CRITIC and some specific research projects to enhance the

system that in part motivated this work. It will then describe the current version in

terms of its architecture and will use a scenario of a. user interacting with the sys-

tem to demonstrate specific points. Those portions of the current system central to

this project, the domain model, explanation giving, and the user modelling com-

ponent are described in more detail in Chapters 5, 6 and 7, respectively.

4.1. Lineage of LISP-CRrrc Versions and Research Issues Addressed

LISP-CRMCIC has evolved from a knowledge-based code-enhancement

tool to a programming-design environment. In that process, it has benefited from

65
the integration of interactive capabilities, contextual critiquing and explanation

capabilities; all help to evolve the system toward one which meets the theoretical

notions of being a cooperative problem solving system. The system has existed as

four distinct versions (see Figure 4-1,) each one using ideas and parts from the

previous version, but improving on them, and integrating new ideas. Its system

development history is similar to the series of mutation and selection steps found

in genetic evolution. It exemplifies the Simon view of evolutionary software

development [Simon 81].

Modifications made in producing each new version addressed new

research issues; these are indicated with ovals in Figure 4-1. Each version

generated an enhanced conceptual model of the system, and contained new or im-

proved parts based on what was learned in developing, using, and evaluating the

previous versions. The first three systems will be discussed briefly, followed by a

description of the current version. None of the versions discussed here was in-

tended to be a commercial product or even a full prototype for general use, rather

they are more in the spirit of what Rich & Waters call "demonstration systems".

They were developed as a context in which to investigate theoretical issues,

hypothesize solutions, and implement the solutions to demonstrate how they work

and gain additional insight that was used to refine the concepts.

CODEIMPROVER. The precursor to LISP-CRIC was the

CODEIMPROVER system [Boecker 84]. CODEDMPROVER is a knowledge-based

program transformation system. Once invoked it operates independently, not al-

lowing further user interaction. Input to CODE-IMPROVER is an executable

FRANZLISP program and the output is a version of that program that either better

supports human understanding, one that is more cognitively efficient, or a version

66

Versions of USP-Cridt

WUVersion i

The versions of LISP-CRrrIC are shown in the center of the above figure.
Each version addressed new theoretical issues shown in the ovals.

Figure 4-1: Theoretical Issues Addressed in Versions of LISP-CRITIC

that makes better use of computing resources, one that is more machine efficient.

The transformations used by the system are captured in a rule base that was

developed using traditional knowledge acquisition approaches; these rules were

elicited from expert programmers through interviews. An example of the sort of

rules contained in that knowledge-base is shown in Figure 4-2. CODE IMPROVER

operates in a batch mode in the UNIX operating-system environment, reading

programs and then writing an improved version of them into user f'iles.

67

Replace a Copying Function with a Destructive Function

(rule append/ .l-new.cons.cells-to-nconc/.1... ;;; the nwe of di rule
(?foo:{ append appendl) ;;; the original code

(restrict ?expr ;;; condition
(cons-cell-generating-expr expr)) (only apply rule

;; if ?expr" generates
;;; cons cells)

?b)

((compute-it: ;;; the replacement
(cdr (assq (get-binding foo)

'((append nconc)
(appendl nconcl)))))

?expr ?b)
safe (machine)) ;;; rule category

(append (explode word) chars)

(nconc (explode word) chars)

The rule "appendl.-new.cons.cell-to-nconc" replaces the function
APPEND, which generates a copy of its argument data structure in
memory, with the function NCONC which instead modifies the internal
representation. The latter is preferred when users want to minimize
memory use and the new data structure is not needed elsewhere in the
program.

Figure 4-2: Example of a Rule in LISP-CRMC

WLISP Version The first version actually called LISP-CRrrIC [Fischer

8"7] was designed to run in the WLISP windowing environment [Fabian, Lemke

85] on BrrGRAPH terminals. It provides some rudimentary explanation capability

of the critic's suggestions by showing what rules were fired. Users can choose the

kind of suggestions in which they are interested. This version was designed to

take advantage of advances in human-computer interaction techniques (such as

windowing environments, menus, and the mouse) and to enhance learning.

68

LISP Machine Version. In order to bring LISP-CRTIC closer to support-

ing LISP programmers in their current working situation, it was integrated into a

LISP Machine environment, the Symbolics 3600 Workstation. This version was a

direct precursor to the work reported here. Integrating LISP-CRMC with the other

functionalities of the Symbolics Genera environment provided a better understand-

ing of the capabilities and limitations of critiquing. When the system was able to

make use of an environment that provides powerful interface capabilities, like

those available on the Symbolics, this changed our view of what to expect from

the system, and how to configure its architecture. Figure 4-3 shows that second

version of LISP-CRMIC running as an activity in the Genera Environment. The

knowledge base of LISP-CRITIC. was updated to process COMMON LISP but the

form of knowledge it contains and the way it applies that knowledge did not

change from previous versions.

Several ideas were tested in this version that were designed to make the

environment more interactive. Some of capabilities that were provided to users

were:

" to view and compare the two versions of the program - their original

code and the one generated by LISP-CRITIC (shown in code pane I

and code pane 2, respectively),

* to request explanation of the differences between the two versions,

" to invoke LISP-CRITIC on source code files in any local or remote

directory, and

" to have use of the interreferential input/output features in the Genera

environment.

Explanations were provided in the form of rule-traces, like in the MYCIN

69

LISP-Critic [version 1. 21
CODE PAMg I gave F"A5 2

MOOIFIEO CODE WILL BE SHOWN IN CODE PANE 2 LISP-Critic rules a i.h flred
.nio in the roflo. ng fo-nsts

ORIGINAL VERSION OF YOUR COO IS SHOWN BELOW
"n *--'estir.. f'ron you, eas

L(IM-,,= - C..C)m l*5~aD Uses , - mane of LIS-Crltc ul. iAgrA fired
pa- Tat r - . (noni(lU

" (l'' w Yor.e :n .oaltotion fo an, of ithe

(hOe . in) r ap 1

ChOWni MeCt Meit 41)
M -IOe (Umcn

CIm.C0 Cc (mn y))) ((CC, C CCtiC 11 o)) (ofot*C)C(m Y) 1C4inol • 0))

.0t C (n (ear .s))

(pe (o , 2) M),Ch .t-)l
(~~~~*I (((o (oC &,C

(e n) (".0C mt. (.. S.))))

(OhCCfS C Co~ot (ittis iC3) hO~ (Ct (C~ C'I 5)) (1 (' Ch) C) (€oh Eo)) SC (1)))
CI~~ CS) (OhI (CI...h C.I))

(Sh etfn (hOu Cie (A s ,)))) it (--0'(* I$ e(C (I_

9))), CC, Co(a) C' CC.t1(Wi) D,1 (1t P- C ao (C) It- o)))o (h (Coi W
(55(05 ameb (0~- n)))

(c e (CC 1 (1C 1 'C C 1.t) .)

(ira (en Meet':. mm-a~m- .1 t a0
((, C(no(lCh.in .i (-I (I-) 0) 0 (C) C (l (C))- M))))

Ih t eae (EW
Ct (Oh4 (C C11)d Ct) ((-, (It C) .)))

Cih (SO SC C)- r))))))) (o (Cool) Ci C)) 11 SAPi (ItC fe h (o5 I))))
t)l)) im., n,-e** ,,-'t -,

(Oh Coil iCo i)CC'.r) hi)CC C oo.5 oh(CS8)))

itoh. tCJ C x I.. E

("",+q Con€l-To-And-3 I t W, (,-I,,
(ifC Cond-Erewse-Pred-T T Ce,,oti .h MM..

.C Corud-To- CIC
I cue,_: C)! C

Claw Oiolay Explain Rule Optim ze Show RLuus Fired Simplify File
Display Directory Help Redisplay Code Sirnplify Expresson
LCSP-.CrItL; -OC S.(dD I(C M7t AMM7CH Cth-a,o-ne' I (SD. 2

LZPCtlt "'u"'adt Sop.) Ru"Fiit

EISP-Critic coaonod: E.Plain R e.1

This is LISP-CRrrIC's screen on the Symbolics 3600. Users can request a
critique of a program code file using the menu options or can enter a LISP
expression. They receive suggestions on to how to improve that code in
CODE PANE 2, their own code is show in code pane 1. Rule tracing ex-
planations of LISP-CRIC'S suggestions are available. In the Figure, the
user submitted a program for critiquing, has seen a trace of the rules and is
about to select an explanation for one of those rules from a pop-up menu.

Figure 4-3: LISP-CRrIC Interface on the Symbolics Computer

[Buchanan, Shortliffe 841 and subsequent GUIDON [Clancey 87] research. If fur-

ther clarification is required, the system presents a pre-stored textual description of

a rule, a description that is general in nature, not specific to the suggested transfor-

mation. This generic explanation approach was one of the shortcomings in this

version.

70

During development of this version, the system was evaluated by two

different user groups. Intermediate users want to learn to produce better LIsP

code; for supporting this purpose, statistical data were gathtrcd conierning the fre-

quency of rules that fired in student programs. Another group of experienced

users want to "straighten out" their code. Instead of refining a program by hand

(which in principle they are capable of doing), they use LISP-CRITIC to cause them

to reflect on the design decisions they made and the code produced to implement

them. The critiquing approach is especially useful for improving code that is ei-

ther under development or frequently modified. In the context of these develop-

ment efforts, we investigated research issues in human-computer interaction,

knowledge-based cooperative systems, and explanation giving.

4.2. Previous Research Projects to Enhance LISP-Critic

Two previous research efforts in the context of LISP-CRMC provided

ideas and motivation for some of this work. One effort investigated linking the

knowledge contained in the rules with a representation of the user's knowledge

using an increasingly-complex-microworld (ICM) mode. [Fiischer 86; Fischer,

Lemke, Nieper-Lemke 88]. Another developed on off-line statistical analysis

component that analyzes the programmer's code.

Research surrounding the ICM approach developed a rich theoretical

model which provides a domain structure to guide users learning LISP. The

paradigm accepts the claim from work on learning environments that microworlds

are a powerful techniques for achieving computer-based education [Papert 80]. It

theorizes that one learns most efficiently when confined to a subset of the overall

domain knowledge - a microworld. Once that microworld is mastered a learner

can progress to the next more complex one and continue to learn by active ex-

71
ploration, critiquing, access to explanations, and so forth. The problem with this

approach lies in defining the microworlds for a given domain. The idea is entic-

ing, Lnd a layered, onion-like model of the domain is conceptually neat. However,

further investigations found that perhaps the microworlds were user, and not

domain, specific [Fischer, Lemke, Nieper-Lemke 88]. As individuals, our

knowledge about any one domain probably conforms better to a model that looks

like a head of iceberg lettuce, we each learn a domain according to idiosyncratic

microworlds rather than a canonical set of them.

The work in this dissertation first considered user modelling in

LISP-CRrIC based on series of microworlds representing the domain. The fun-

damental difficulty with that approach is developing the underlying microworld

structure for the domain - a domain model on which to base the user model. As

will be explained, it turned out that a more straight-forward approach was a

concept-based domain model.

The idea behind the statistical analyzer [Fischer 87b] is to process

programs written by a user before they are transformed by the system. The

analyzer collects data on structure and use of program constructs. Such infor-

mation as average nesting depth for the functions a user defines, or the use of cer-

tain types of standard functions (e.g., mapping or loop constructs), could provide

evidence about the expertise level of the user. The idea here is intuitively attrac-

tive and could be applied to a broad range of applications. What is required for the

approach to be useful is a set of inference methods triggered by specific statistical

data that can classify a user by expertise level, such as novice, intermediate, or

expert, or into a stereotype. To determine these methods requires a significant

data-collection and analysis effort on a large population of users, and the correla-

tion of those results with an a priori classification that is based on an accepted

72
measurement instrument, like a test or questionnaire. As a technique for acquiring

information about users, statistical methods are important and form a category of

acquisition methods in the framework presented in Chapter 3. For the time being,

the emphasis has been placed on dialog analysis, and the indirect implicit acquisi-

tion methods; the statistical approaches were not further investigated.

The increasingly complex nicroworld research indicated that there is a

need for a model of the domain, one that can provide a foundation for a user model

representation. The statistical analysis work indicatea the possibility for evidence-

based user model acquisition, that evidence being the contents of users' work.

Evidence acquired about the knowledge of an individual programmer can then be

used to assign them to a specific expertise classification. The problem here is

similar to the difficulty with stereotypes: both ideas have merit as methodologies

for acquiring user models, but- depend on prior knowledge about the user popula-

tion, knowledge that is not available without a significant analytical effort. The

approaches investigated and implemented in this dissertation are, in some ways,

simpler than either of these efforts; we found that a semantic network type concep-

tual domain model of LISP can support user model representation and some in-

direct acquisition techniques (see Chapter 7). Next is a description of the architec-

ture of the current LISP-CRITIC which evolved from work on the previous versions.

This version incorporates the domain and user models described in this disser-

tation.

4.3. Description of Current Version

The current LISP-CRITIC system allows interaction between the system

and the user at the level of individual transformation rather than entire files of

code; it is being enhanced to provide context-specific tailored explanations upon

73
request, and to support some adaptability by users. The objective, to investigate

user modelling, focuses on support for explanation-giving. Instead of transform-

ing, an entire LISP program, handing it back to the user, and trying to explain the

differences, the design for this version is based on an assumption that to achieve a

more collaborative style, users should be able to decide, on a transformation-by-

transformation basis, whether or not they want each portion of code changed. Fur-

thermore the system has to be able to change the code the user actually wants

modified, while leaving the rest of the program intact; the resulting program must

still compile and execute properly. Users need contextual access to explanations

of any single suggestion. These goals led to the development of a version that

enhances an existing, commonly used, program development environment, the

Symbolics ZMACS editor. Users can access the critic at any time while they are

editing LISP code in ZMACS (see Figure 4-7). The critic examines the code and

makes one suggestion at a time; the programmer can accept the recommendation,

reject it, or request an explanation. When a transformation is accepted the system

changes the code in the editing buffer.

A general overview of the system architecture is shown in Figure 4-4.

The user's code is analyzed at what is essentially the s-expression level. When an

opportunity is found to improve that expression, the systems produces an im-

proved (optimized) version and; when the user requests it, an explanation. Inside

of LISP-CRITIC are a set of engines and a set of knowledge-based components that

support this process. This architectural diagram does not capture the interaction

between the user and the system that takes place; Figure 6-3 shows the interaction

between the system and the user at the process level.

Figure 4-5 shows the internal components in greater detail, and the flow

of information between them. Work on explanation-giving, as instantiated in the

74

IJSP-Critic

iW C.d" Know ledge-based EninsZodComponents

This figure shows the architectural components of LISP-CRrIC and the
general flow of data.

Figure 4.4: The Architecture of LISP-CRrITC

explanation generator, is ongoing [Fischer, Mastaglio, Reeves, Rieman 90]. As

discussed earlier, the statistical analyzer was developed previously but has not

been integrated into the system. The critic rules and critiquing component are

derivatives of work on the initial versions of the system, and have been adapted to

the Symbolics environment. To provide a better understanding of how

LISP-CRITIC operates, and the role played by each system component, an example

interaction will be described. Portions of it will be used in other chapters.

4.4. Scenario

In this scenario a user is interacting with LISP-CRMC. The intemal ac-

tions taken to support the user's decision process and those performed by the user

modelling component are not explained in detail here but are covered in Chapter 6

and Chapter 7, respectively. The LISP code in this scenario was written by an

undergraduate Computer Science student enrolled in an introductory artificial in-

75

USP-Crtic

Know ege-ased Engines
e Components

User c o d r i CtatttIcal a
Model Analyn u d

* Copute-basd tuorin

Domain t d l-assroo Explanation.
Model 0 .-,.Okd , GM t* enerator

This figure shows the internal components of LISP-CRtC and the infor-
maion flow between them.

Figure 4-5: Internal Components of LISP-cRmTC

telligence course4 and comes-from the corpus. of programs used in the evaluation

of the the user modelling component described in Chapter 8. It is the program

developed for the student's first assignment in LISP. An initial user model (its

partial contents can be seen in Figure "7-2) was provided to the system. Theoreti-

cally, the contents of this initial model can come from a number of sources:

" Computer-based tutoring

" Explicit acquisition approaches, for instance the use of a questionnaire

" Testing of the user's knowledge level

" From a list of concepts taught during classroom instruction.

*This student, whose identity is not revealed, hap:pens to be male; therefore, in
this discussion he will be referred to using male pronouns.

76
LISP-CRITIC was not used previously by this student programmer, there-

fore the startup user model here is based on responses to a data collection ques-

tionnaire completed by him, augmented with information about concepts explained

in class. The theoretical investigations of user modelling in this research con-

centrated on methods for enhancing an existing model using the context of the

user-system dialog while assuming the existence of some sort of initial or start-up

model of each user. The rationale for this assumption is the existence of several

available techniques for providing the initial model (interactive questioning of

users, stereotyping, classification categories, etc) that could be adapted for use in

LISP-CRITIC. It was felt that rather than attempting to implement the entire range

of methods that first build a model "from scratch and then improve it over time,

that the work should concentrate on the more difficult and less well understood

problem of how to enhance that model over time (dynamically).

In the scenario the term dialog is used to mean the entire context of the

human-system interaction. The dialog notion, as applied here, will be discussed

more extensively later, for this scenario it should be- understood to encompass that

series of actions taken by either a user or a system which the other knows about.

4.4.1. First Dialog Episode

The initial screen image of the user working on his code in ZMACS is

shown in Figure 4-6. He wrote and debugged a program using the ZMACS editor

on a Symbolics LISP Machine. From the editor he invokes LISP-CRITIC using a

HYPER-S key combination. LISP-CRITIC examines a single function definition

(defun) at a time. That function definition is identified by the system as the one

within which the user has positioned the cursor. For first scenario episode it is the

defuw for getop. The figure shows the entire buffer to emphasize that LISP-CRITIC

77
recognizes the user's context (from the cursor), just as a knowledgeable human

assistant might; the programmer does not have to scroll the window to a particular

configuration or mark a section of the program to identify it to the critic.

Plop; L*- Nae USYMOsit: Comnion-1l,. Package. Usr9onSe. 19; Lowa..wteee: 1eel65-

rhi. '"e~ti on .i1 tae1 * u geants two lists each cownaed of two "~eboo
s eaoued to bewthe paint. 141.YI aid)4.Y2.
Ilt ,.ilI then find the distance betu.ato these two paints uselne the Ecol ideanW

*iE sm toot op ' ((toua onou as C 19""a"
TC S ARMT Oil (W14)^ S (OS pa a

Wa-dietane(pneat..
(pert ((-lw pone) (cowo t.. - (car pane) (car ptaa)))

(r d-(aopne) (sa pt...)) (- (Ced ona) (aod 0.))))-

The Ishe.-e function takes . Wrbol and . list of 5,'nbol.an their opposites
IIt will eesrah fa.- the 4 nbol in the second list. If faound. it will rturen

t OTHI the wor.d and it' oppose.

(defun iei- wor...d octablo)
(cond ((null oatabl)0 nill

CMnebe w.ord car *stable)) Oca, aptaole)) hcieet.a-os
(t (Iehe.'. wr Cd. oPtable)))

;The aetop function uepi the ISHERE fuonction to to first locae the w.ord
oled It115 apposite in the table of opposItes. Than it return. the opposite

J of the originel ord.

(defun vet. (od optobl.)
[fand (epoa w.ord (car. 0lheres word opteble)))

C=e. (I Share- wor.d optab 1e)))tea.tlo
it (ce.r Clon- wor.d otalM)%%htos 1)lcw

;the tet funcation tests the two str'ings against each other In the following

LI I the car of the PfiTTERli list is a -7 then It Is essuned to b a Mbte .tjfptiS
I -iebl. The pr-ogra noe on to the -t or the t= list..

12. If the owr of the PfiTlIRl I t isan : tan'than the c of the MRwTCHIST fuptUsoetn
l I., checked t om eif teo c's the ses. It this It trus than tha :,* .. ton ,I i~uii.
) prowl- -ale on to theQ v'e fboth lios.Dsiato
If ,,h. of thee rule: can 0. eisf led then the function returns IL 01*Dtinlo

lI. ret..e T othe-fie

(Se.. test Cpoterii natetlist.
coonS ((and (naIl ptt-)Cnal ntoi.t))t)

Ora. (care Cowatte.'ni(ce.- tchlilt))
Cpest.*t (caw pa ttp,-n) I) teat Cd.- oetten)(ad.' netchi ist)))

it .41)")ou

neat (1-1P) oode.1,op li-senio-useir ititl. (1) S Ellore bela..

46uh 11 Peim CB.zM coCo.oe' L WAt, Us.'_Irot

User editing LISP code in the ZN{ACS buffer.

Figure 4-6: Scenario-User's LISP Program

LISP-C=iTC examines the user's code for possible ways to simplify it.

In this case it finds that a cond special form could be replaced by an if special form

and makes that suggestion, as shown in Figure 4-7. The user has the choices in the

menu bar at the bottom of the LISP-CRITC window, of interest here are the options

to accept, or reject LISP-CRITC's suggestion, or to ask the system to explain this.

The user does not understand the suggestion, so he selects the explain this menu

78
option. The system calls the explanation component which obtains from the

domain model the concepts required to understand this rule. Then the explanation

component calls the user modelling component to determine which aspects of that

knowledge the user lacks.

-S1.: - Made. LISPi ,Svt , Conno-h, LIsp-CSVTIC

;Thtl f'notion 'I I llI to a e.ge 4n
a sesund to be the =I." X . I n Rle COM)-TO-IF-ELSE Rule set: standard

:,It wvi then find the dietM b: (.WW ((towal u (.he .1 a a)))(d

IT S OF (ilI-x2)2 *(t (car (ile word ootblel))1

Cdefw.m distane (Done otwo) (If (aqual Iwd (Cca (I shre woo optable)))
(wqt . (C- (low pons) (car ptw, (cad- (lIre . ord optable))

(' C- (tad" poe) (cap pO (ca Ihe word ootabIe)))

z The 'iohe function t es a Vnbol
It uill sch for the ynbol in h
i s THl f t ll the .,o.t d and 1 C10

Cel.... 9.'.dotb.;(defun f~.r (wold *otbl)

(corn ((nu1l ootable) nil)
((nMrer word (cW optacle))
(Ib (leho-. word (cdr optable))

1; tttttt00ttttst0t000t000ttt00t

The scoop functlion w0:I the ISRE f
I end it's OPl"te In the tpl' of
'j of .the original owrd.
;0 Accept xplain This Sit Parainters

ldefu% .o (. word opteole) Reject, Show Current Function Check Rules Staitu
(cio((equal word- (cc.r (loi.s~ otpeI(d n d -Weo wordd oot*,lle)

(' " Coed (loh.word op) I*)z)))

It Cool.- (lllllll llt.- er pebell

The ttW. ft:etlon tet te tO o.PInge against each other In the following

I . If the car Of the PATTER"I list Is a -' then it Is assosred to be a pe~~ ~~
varia oe-a. The program naimts on to then ,est of the two list. a

2. If the ca" of the PATTERi l1t is an oto the the sm" ofthe ?MRTCHLIST
4% iheclmid to e if they are the swe. if thts Ie .rije then the

1rg -0e o. n to the rest of both I lest.
:1 If either of the" rules can be satlsfled then the functoh n tweturnIl NIL oo

LISP-Cw tiTIc is acesdadsget otoipoeteue' oe

I j IIIIII!!(pattern111!t1111I

(cond ((endl (-It1 pa.tt e-l(null nat;chlist))t.)
{((or Elt4 (car aatter f)(€:lt noB {tlst))

(.wses (c a t etern))){est (cdlr oatten)(odr netchtlat)))
(t n0l)))q~~~

LISP-CRMTC is accessed and suggests how to improve the user's code.

Figure 4-7: Scenario-User Invokes ISP-CRMTIC on Function getop

The domain model begins with the cond-to-if-else rule and, using the

links between domain model entities, accumulates a concept set which consists of

all prerequisites to understanding the rule. The user modelling component filters

the concept set so the explanation component can focus on explaining only those

concepts which users do not know. The final step in the explanation process is

79
presentation of this information. The current implementation does not contain a

fully developed presentation strategy so it uses a simple strategy of choosing to

explain the first three concepts in the filtered list, in this case predicates, con-

ditionals, and tests and displaying hypertext explanations for them. To create a

more realistic scenario, mock explanations using these three concepts as a basis

are displayed in Figure 4-8. These are more in line with what we would expect a

fully competent explanation strategy to produce. In the present system a followup

capability is provided for with hypertext. Clicking on any of the terms shown in

bold causes an explanation associated with that object in the domain model or a

description from the Symbolics Document Examiner's documentation to be dis-

played. The explanation in Figure 4-8 provides access- to explanations of

s-expressions, tests, cond, if, nil, and non-nil.

Lisp-CRITIC

Rule- COMi-TO-IF-ELSE RuiSset: standard

(cond ((ecual word (car (ishere word ootable))) (cadr (Ishere word optable)))
(t (car (ishere word ootable))))

(if (equal word (car (Ishere word optable)))
(cdr (ishere word ootable))
(car (ishere ewrd optable)))

You have used a send special for where an If would make your code nor*
readable. Both see coedltieals which use testing to Implement branching
logic. If is better than cred because within the body of your runction
only one test is used. Tests exanine whether a prooerty holds for a sIngle
synbelle expresslen and return a value of either true (mseentl) or false (nil).
The snbolic expressien that performse the testing Is a predicate.

ccept Explain This Set Parameit4ro Abort
eject Show Current Function Chck Rules Status

LISP-CRITIC explains a suggestion based on the cond-to-if rule to include
those prerequisite concepts the user does not know.

Figure 4-8: Explanation For cond-to-if-else Rule

80

The user accepts this suggestion, and LISP-C=iTC automatically rewrites

the modified portion of the user's code in the editing buffer. In Figure 4-9 the

body of function getop has been changed to reflect the cond-to-if-else trnsfor-

niation. In this function definition, UsP-C=rrC found only one transformation to

suggest, therefore at this point the programmer is returned to his code editing buff-

er and LISP-CRrrC's window becomes inactive; it moves into the backgroui, out

of the programmer's view.

Mod- L e.I SP Swnt- eon-liap .eae. Use-; -,~s LS L -1e~oe. Ves; -

srqts tWs lift$ eeC,. Ceseed Of two nLbers

:!;aee.d to beltme ooite X1,1 e nd X2.12.
;twi .I then ftnd the disoe betw.. eentee tea points. ussng the CEollde.-

Ontece fwl,, *~.. to91 .s0, oi. e6elpannt. .~. oditwlH
i. TIE SOURE ROOT OF ((X1-a2)-2 *(Tl-y2)^2)

i(d~l.. Iletec(anet.)
(. ((-(o pens) (ow .o)) c- wPa-a) (w t.)))

(5 d P- onsp.,) (Codr etw.)) I-(te* oghs) (ceE, ptlus))))))

;The ee fn tla. tea. evb.l &nd . list of S...ea nd their opositee
It -11l se.ac fai the evnbol in the second list. If fo.end. it 11 ret n
0 lie of BOTH the -ed and it'. opposite. ii sdj. Suc

(del..n let,... (:.ord eatable)
(coad ((n.,l tabl).l)

((gnEier ..ed (car opteble)) (car opteole))
it (Wi..- d (to.- opoeble))

The s~top fw~tlan use, th IsIf f tiotln to to f irst locae the .. O Idt
and Vst000 o eto in thne table of Oposites. Then it ret..ne the opposite

; fthe wiginel -d

Chdef... get. (ee.d aptable) j
(If d- leue seer -,rd locns.- Io- e) elel)Vb
(ceri (ieher .a od optabi.))

The test fwntla.. tests the tao strings egeInst eock other In the fells..g Ae

I 1. I f the c- of the PATTER"I list as a *1 then it is ssawwd to be a
,; nieble. The pogren nape an to the rest of the t,,s list.

32. If the car of the PATTEPR"I (let a an eta. the., the ca. of the mATCILIST
is c heocked to see if they' .e the ene. If this is ti,,e the., the

; wogrs -a. on to the .ert of both I let.
If ether of the"e "Is can be setief led then. the fwnstis.. r-etur-ne IIIL

a t o ..t..n T thr

cgef e test Cpttr laoist)
or. (.0 (.el lo ottwrn)(Ce, ".tcinli.t))

(apeettest (Ce, Detterr))lltst lea oeatten)(Od. netclislt)))
(t .0)))

kne IPoooe.14 I ner wI- .- -e~i 1) M loe bela..

11w, IL Fee 11,21,.t onl-pe- 1.US sne

After the user accepts LISP-CRiTC's suggestions, the system modifies the
code in his buffer.

Figure 4-9: Modified ZMACS Buffer

The user's actions throughout this episode trigger changes in his user

model. Those specific changes are described in detail together with an explanation

81
of the user modelling process that precipitate them in Chapter 7. In general, any

action taken by the user, or information received by him in the form of explana-

tions, trigger those changes. The user's receipt of an explanation of the cond-to-if

rule and concepts behind it, and the fact that he made a decision to accept the

transformation trigger changes to his user model (that updated model is partially

displayed in Figure 7-4). These direct changes, in turn, aigger indirect inferences.

4.4.2. Second Dialog Episode

The second scenario episode could occur immediately, or at a later time;

the user model is saved between sessions and reused when the user subsequently

accesses LISP-CRIC. Our user now requests LISP-CRrrIC to look over the code

written for function test which causes a recommendation based on a rule

de-morgan (the rule applies DeMorgan's law from logic to combine booleans) and

again he requests an explanation. The explanation component once again consults

the domain and user models to determine what needs to be explained to this par-

ticular user. Those top three concepts selected by the simplified explanation

strategy are logical functions, internal representation, and arguments; these are

integrated into the complete text of the mock explanation shown in Figure 4-10.

The user accepts the suggestion and the system shows the user a second

suggested transformation for this piece of code; it is based on the

cond-erase-pred.t rule, and the user asks the. system to explain it; Figure 4-11

shows that explanation. Our scenario user also accepts this suggestion. A third

rule, cond-erase-t.nil, triggers; it is very similar to the previous rule therefore, the

user accepts .ISP-CXrC's recommendation without explanation. He is able to

generate his own explanation because he knows a similar rule that was previously

encountered, and is familiar with the underlying concepts. Throughout the dialog,

82

"t ft en tet h .t tig aantechohrI the fol Io.in,
I way.

1. it the owr of t he POTTEi hlit Is a *' than It In aesined to be a
lawible rh rso n~so the rest of the tw It.

2. 1, the ow of the PATIERM l1is en ct then the ow of the IAO4.IST
Is SQeked to so. if they we the same. If thi I I. trija then the
P, . w Onen o"es on to th ret Of both Iiat..

*.If neither of thes" rule con be fortified then the fun~ction returns fIlL
*gIt ret,,,. T aothe-lat

(defwn test (pattern, matotlilt)
(cWn ((end (-It D~ttrn) (m.,l II tchliet))t

I((or (iteje (Car 04tterr)(cwr Aftotliftll
coOoettest (Cer 0ettern)MTteet (ceb- Oettarm)(Cr ot ehliet)l)

It ~il~)Usp-MRTIC
The ,.etchw fw~tl on ajij
iTE6T f\,nction. Rulet OE-iIGICi Rulesatt oooi.en
It h il
1. if them oar Of the PRTl (end (null patterni)

of the HATCMJIST then (mell ..etchltst))
'O'sonmtothe resto 0...

2. It .411 now nskr . it. (not (or oettern M.tahuit)
the cW of the MATCIL
on% to thes aet of, t:he This tronefornation Is besed on Dellorgoe Laws. hwe they allots combiining

500005550555050000500 the conjuot (Oof tuj negettce logica ftfee ("11) i~th tia,I et~nof a dit,. ct. (Wn) of their wseaneats for more -deble code.
(defun natcis. (gOt n one 10,oie

boand ((nell Patte pattern)3 - (- tchlst) a -(pattern m ratchilet)
(Ceovel (Car

(Cm Logloel f-ition. in LISP owforn booleon operation. The argum.ents
(t sto mbols r.ereented es all (false) or thew ho. e eltue "n wes

thers one true.. Aill sl I Is and vauhes - ootured inter-nally in a
4e1'eceten Scheme, fw e,.oesle lists are collections of tees sells.

fleet LISP ftcclon. cake arswoentg. a function defined of
;.$to SS ...Sig. ... 11, (def.. fo ni)..

The fuctloni n&teh .III Nl hasW" wg.oto o end that we givon uclues wheon foo Is called end
lista most. the rsguir ~ then soed in the funcitlar, body.

S ftrio rules wre not net, Aceot Etolin. Mke Set Faramneters Abort
.. s TW ... io~s g ioe Reject. Shiow Cuorent Fwnct~on Check Rule.; Statue

LISP-CRITC is asked to examine another part of the user's program, a sug-
gested transformation and its explanation is shown.

Figure 4-10: Explanation For de-morgan Rule

the user model is updated each time the user receives an explanation or makes a

decision.

4.4.3. Third Dialog Episode

In a third dialog episode our programmer asks LISP-CRITC to examine

his definition for the function match. The systems recommends that an if be used

in place of a cond (see Figure 4-12). This transformation is based on the same

cond-to-if-else rule that fired in the first episode, and because the user already en-

countered this same rule and had it explained, he accepts the suggestion without

requesting explanation. UISP-CRrrc changes the user's program code. The final

83

Lisp-CRITIC

Rule: COtID-ERASE-PRED.T Ruleset: standard

(cond KInot for Pattern natclist)) t~l
((or (equal (car pattern) (car natch1lst))

(questtest (car pattern)))
(test (cdr pattern) (cdr natchllst)))

(t nil))
= 5)

(cond ((not (or pattern natc,list)))
((or (equal (car pattern) (car natchlist))

(Questtest (car pattern)))
(test (cdr pattern) (cdr natchlist)))

(t nil))

You have specified the symbol t as the return value for one clause
In a cond. This creates extra code that reduces readability. It is not
required because the value of the test, a lisp atom, will be returned
when the test is true. An aton in LISP is either the car or cdr of a
cous-cell. It can be a symbol representing a variable or value, or a
nunber. Any expression that does not evaluate to nil is considered to

be true. Mil and the enoty list () are equivalent and in testing
functions considered to be false.

ccept, Explain This Set Parameters Abort
Reject Show Current Function Check Rules Status

LISP-CRMTIC recommends a second transformation in the defun for test,
which the user asks to be explained.

Figure 4-11: Explanation For cond-erase-pred.t Rule

state of his editing buffer with is shown in Figure 4-13, the contents of his user

model is partially shown in Figure 7-6 and its complete internal representation in

Appendix B. That model has changed during the scenario and if another explana-

tion of the cond-to-if rule had, in fact, been requested, the user modelling com-

ponent can provide to the-- explanation component the fact that the rule was

previously explained together with a. new concept-set to use for presenting the ex-

planation this time.

The development of the explanation component has not progressed past

the conceptual and methodological stages. The explanations shown in this

scenario are only intended to point out the relationship between the work on the

domain and user modelling undertaken in this dissertation, and the requirements

for explanation-giving. As presented, the explanations do not constitute a finished

product and should be used primarily as a vehicle to understand how the system

make- choices of what to present during its dialogs with the user. Additional work

84

4[(cer (4~6, r d ca- t abe) m m m

he test fuctiotn Cost the two 01:1n. oeetlnt tech othem- in the following

I. f the r of the PATT RN list is a *' then it is assumed to be a
wr Ietlae. The Prog"AM house on to the rest of the twoI list.

2. If the car of th. Pt TTERI1 lI]t s an :to. 0.1i the car of the MTC14LIST
5 I i checked to ie If they are the sow'. If ths I. true then the
:)I woven nmove on to the lst of both I lots.

If nIther of the" rules an be satisfied than the function returns NIL
it rNlin• 1 othiw. Ie

IdersW test (Dettsr , matchllt
(ond ((not (e. Pottern matchli t)))(.a pattern) (car match1iat))

(Oreittiet (as, P.c e*n)))
(test (cdr pattern) Codr msatthlist)))))

LIsp-CRITIC, rhe noetoi o, functlon that
I TES ftuct Ion.

,It th n wi, -*
1. If the Cw of the PIITTIRf is Rle, CIOO4-3F-ELSE Iul.ast: Standad

of the lMRTCMLIST thi- It nat. (ond ((test patten mar hlist) (achup attern metcliset)) (t nl))
.Owi• on to th rest of the 1

2. It till now ake a list ut 0 ite
tecar of the MAlRC1.IST. (Th (if (test pattn motchlist) (mtchuo paitt matchlist) nil)

en to the rest of the lis.

(defwu n tchuP (pattern mtchlist)
(snd (C -11 P tti.-) Mil

IT towel (ew ostt n) (cer
(t (cone (apend (cdot.0.

(natoltip (Cdr pact

is The function n i wll flist ,. ept Explin This Set P'niete r Abotrt
s 14 to neet the r irletnent nnt Reject Show Current Function Check Rules Status

(funcotion to cr.eals t f .s

Ifte "leawes not ett o enT vNIL. ,In

(def.un mat h (pattern netchlltt)
P (cond ((teat petters mtcillst)(n tcmp patters matthllst))

(t nIl)))
.. asu .b.......f.... ..

(mas L .SP) de.lio ceto - Uoe i (1) 1 [More aoveJ"

11e I Feb M15:471 teyoord CL. PCL., use=_input

In the third dialog episode LISP-CRiTIC examines code for the defun match
in the user's program.

Figure 4-12: Scenario-User Invokes LISP-CRrrIC on defun match

to implement the presentation strategies for explanation-giving is required. This is

not a trivial problem; it is one of the three major issues in explanation identified in

[Chandrasekaran, Tanner, Josephson 89]; the other two being the system's under-

standing or deep model of the domain and user modelling. Recent LISP-CRiTIC

work has concentrated on these latter two problems.

4.5. Summary

Developing a marketable system is not the ultimate goal in the

LISP-CRrnc work, instead a prototyping process was followed; it is designed to

help achieve a better understanding, at a conceptual level, of what is required from

85

P (co, ii1hele ,.on optble)))

he tet fuctio tests the tw stig agains.t each other. in, the follow.ing

: I. Il the con of the PflIIERI list @s a -?- than it to asede to be a 5
;1 1e410111. hecoan oVes on to the .e.I of thetolts

2if the c f the PA TR"I lit aon te. then Cte co f the 5sATCHLIST
Is Checked to see ifthteyi Orm the lame. If this is true thean the

:; PIOnor, -o. On to .h rest or both list.

z f ,ethsr of these rules Can be satisfied then the function returns MIL
q It I tsen; I otherwisoe

Idefun test (pettorncstthllot)
(Coha(nt (Or pettern. ctchil))

(*(o (eas co pattern) (car matchlist)),
(noesttest (Ce Pattern)))

(test (coe Petter,) (Cde eatchli.0))

iThe matchup function essumes that the two liste wne leaet as defined by the

.Ifthe co of the PflTTERI list is an ate. end it is the some as the con
.3 of th iIATCi4.I&Trthe it th end is thowno awsy. The Opre

2. haoaeon to the reet of th list.
2.It "1) nill neissk 0 list ott Of the car of the ter of the PATTER"i list and

S the csr of the I 57C)4IST.* (Th. variable and the notch) It wilt thean hae
on tothe ret of the ot.

C(def,. matellup (pattern. netChilat)
(cond (c) oiltte,-m) nil)

(equal (con psttse..(ca tonstchlist)) (metCr.,p (Cdr cotton) (Cdr notchilsot)
(o.(append (odon Datte-) (cornaotchlit))

C (coe .tco.,p lcdr Petten,) (coe athi.)))

The uncionmatc wil a .. the O]ST r..notion to soi h w br

lists mest the -ecoirenento centlamed above. If so. It ..ecc the sem pp atchut
;; f,.oictlo to ce .te a list Out of th Mileelblfe end their serooriate AstCheO

3 fth te .5 -inot net, it, returnel 11L.

!(dsfun match (Pattern motchlist)
(if (test Oetter.. ..etchiist) (.&tch.0 Patts- ".tChlist) nil)

nacts L16P) coce.l1so)Occnnio-tne itihIA (1) 9 Lirecol___________
C12;Me.0 Process Screen ilodco>. wants to type out]

0-.. 11 Feb 12,19:04) teyoonwd CL. PCI. soIpo

Figure 4-13: Final State of Editing Buffer

a user model, and to inform the process of developing a general approach to ac-

complishing that. A critic was used as a context for investigating ideas and im-

plementing some of that user modelling framework because the paradigm is well

understood, and has been instantiated in at least one mature and well understood

system, LISP-C=iTC.

The ideas for how to model users of critiquing systems have their foun-

dation in theoretical notions about human-computer interaction and grew out of

studying user modelling in other domains. Those ideas served to guide implemen-

tation of the user modelling component in LISP-CRMTC. It is one of the

knowledge-based components of the system, the others are the critic rules and the

86

conceptual domain model. A related component is the explanation generator, it is

supported by the capabilities of the user modelling component.

In the past, LISP-CRiTIC has been a platform for evaluating ideas about

how computer systems should be designed. Integrating a user modelling com-

ponent is a natural extension of that previous work; the story is actually more com-

plex: LISP-CR C was not merely extended, but ported to a new computational

environment and adapted to a new interaction style in support of this research. In

the next section of this dissertation (Chapters 5, 6, and 7) the system components

which were developed in and are directly related to this work, the domain model,

the envisioned approach to explanation, and the user modelling component, are

described in that sequence.

CHAPTER V

A DOMAIN MODEL FOR LISP

5.1. Introduction

This chapter describes the domain model developed to support

explanation-giving and user modelling in LISP-CRIC. The work refines and

implements ideas developed in previous research [Fischer 88a]. In this chapter, I

cover why there is a need for a domain model, how the domain was analyzed, the

results which in turn determined the model's general form, and then the graphical

notation used to conceptualize the model. Next I discuss the implementation of

the domain model followed by the extensions and other potential uses for both the

model and the methodology.

Developing the domain model was an enabling technology that was re-

quired in order for both the explanation and user modelling research to proceed.

The development of that model and its ultimate form are described here because

development did involve significant effort and knowing how the model was

developed and then implemented in USP-CRrrIC will facilitate the reader's under-

standing when I describe its use in the explanation process in Chapter 6, and for

user model representation and acquisition in Chapter 7.

The model represents the domain of LISP in terms of three entities: the

concepts of the language, basic COMMON LISP functions, and the transformation

rules in LISP-CRTIC. The latter are represented in the conceptual domain mode,

even though they are captured in applicative form in the rule base, because a rule

is the triggering condition for an explanation.

88
5.2. Requirements for a Domain Model

As previously discussed, in order to accomplish cooperative problem

solving it is imperative that systems have the capability to explain their reasoning.

In the case of critiquing, in general, and LISP-CRMC in particular, this means ex-

plaining the reason a given transformation is being suggested - the rationale and

concepts behind a rule.

A common theme of other research in explanation is that in order to

provide an acceptable explanation capability, the system needs to represent

knowledge of the subject domain at an abstract level [Clancey 87; Kass, Finin 88b;

Paris 87; Wiener 80]; I say more about this in Chapter 6. For LISP-CRITIC, pre-

vious research determined the possibility of representing programming knowledge

in terms of concepts, programmer goals and functions [Fischer 88a]. Such a

representation can explain the improvements suggested by the rules and derive a

model of the user. The implementation of the domain model described here sup-

ports those goals.

The rule base in LISP-CRITIC represents procedural knowledge in a com-

piled or applicable form that is appropriate for efficiently analyzing code and

rapidly generating recommendations for how to improve segments of that code.

However, knowledge in this form will only support rule tracing explanation ap-

proaches [Scott, Clancey, Davis, Shortliffe 84] and these were shown to be inade-

quate [Clancey 84]; systems need the ability to explain rules at the concept level so

as to facilitate user understanding and support learning. To achieve that requires a

more abstract domain model; a model that captures the abstractions representing

the underlying domain at the level of its fundamental concepts.

A conceptual structuring of the domain should provide a way to link the

applicative rule-base knowledge with explanation strategies and with the user

89
model. In LISP-CRITIC, a rule, or set of rules, is the underlying causative

mechanism behind a single piece of advice. To understand that advice well

enough to decide whether or not to accept it, users needs to understand what con-

cepts underlie that rule. A concept-based domain representation can be configured

so that it provides that information; it can inform the system what concepts under-

lying that rule. In turn, the system needs to be able to determine which of these

concepts are not part of the user's current knowledge so it can focus on explaining

the unfamiliar concepts. The terms understanding and knowing are used

synonymously; we do not try to make the theoretical distinctions between them

that are important to some studies of cognition or philosophy.

5.3. Form of the LISP Domain Model

In order to support the explanation strategies and user modelling process

in LISP-CRTC, the information contained in the domain model consists first of the

underlying concepts for LISP. To determine those concepts we reviewed the fol-

lowing commonly used LISP texts: [Steele 84], [Winston, Horn 81], and 'Wilensky

84]. Forty-five commonly-referred-to concepts were identified in these texts. The

list does not include more fundamental concepts that exist "in the world", such as

the set of integers, but focuses on those concepts that are unique to LISP or pro-

gramming languages in general. The terms used to identify these concepts are

listed alphabetically in Figure 5-1. The term concept, as expressed in the

Philosophy of Science literature, is an abstract notion; there is a distinction be-

tween concepts themselves and the terms that stand for them [Hempel 65]. The

concepts shown in Figure 5-1 were designated using terms that seemed ap-

propriate, while recognizing that in other research, and context, they may be

described with other names. In comparing this analysis with an effort by Gray to

90
capture the underlying entities of LISP in a hypertext database [Gray 88], we found

sufficient overlap in terms and structure to provide confidence that the topology is

valid and useful. His work could not be used directly because it was never com-

pleted.

ARGUMEMT LIMT
ASSOCIATION-ISTS LrrERM.4UOTE
CAR-CDR-CONCATENATION LOGICAL-FUNCTIONS

CONDmTIONAL-ExrrS MAPPING

CONDITONALS MULTI-VALUE-RETURN

OONS-CEL NUMEIC-MRATION
DATA-TYPES OFFIONAL-PARAMEIERS

DESTRUCIVE-FUNM"IONS OUTPUr-FUNCIONS

DoTrED-PAIR PARALJ SEQUENTIALBMINDING

EMBEDED-FUNCTIONS PARAMETERS
EVALUATION PREDICATES

EVALUATION-ORDE PROPERTY-LL TS
PALSE ffY-LSTML RECURSION
FUNCION-DEFNITION SCOPE

FUNCTIONS SIDE-EFFECTS

MENTrTY-VS-EQUVALENCE STRINGS
INPUr-FUNCTIONS SYMBOLIC-EDPRESSION

INTERNAL-REPRESENTATION TAIL
TRATION TES

LAMBDA-BINDING TRUEINON-NIL

LISP-ATOM VARIABLE-INALIZATION

LIsT-rTERATION VARIABLES

Figure 5-1: List of Domain Concepts

While selecting the set of concepts for inclusion in the domain model,

two types of relationships between concepts were recognized, relationships that

are useful for explanation-giving, and one that can be used in user model acquisi-

tion:

1. The dependent-on relationship: This indicates for a particular con-

cept which other, more fundamental, concepts are prerequisites to

understanding it.

91
2. The related-concepts relationship: This is a relationship between

concepts that are similar, this information could be used by the ex-

planation component in some presentation strategies.

We also selected 103 fundamental LISP functions to be represented in

the domain model, primarily those that are found in the LISP-CRITIC rules. The

term "function" is not entirely correct, this class of domain entity might more

specifically be referred to using the term "constructs", as in [Steele 84]. 5

However, "Function" is the term used here because the it was selected at the

beginning of the domain analysis and continued to be used throughout the im-

plementation. To understand a function also depends on understanding certain un-

derlying concepts; therefore, functions are related to concepts via "dependent-on"

relationships, like the one described above. Functions may also be similar to one

another, for example, cond is similar to if. the model also captures this relation-

ship.

Part of the analysis process was a grouping of the concepts and functions

into logically related sets by several LISP programmers. We followed a methodol-

ogy that has been successfully used to structure similar domains in other research

[Doane, Pellegrino, Klatsky 89]. The 45 concepts were divided into five groups

that represent an approximate consensus of the experts' categorizations. The

groups seem to fit into a hierarchy when viewed across the "dependent-on" layer

of relationship, but this attribute was not further investigated. These groupings are

shown in Figure 5-2; the names assigned attempt to imply the commonality that

exists between the concepts in that group. Similarly the 103 functions were classi-

fied into 14 categories. The rationale for the categorization exercise was to

5Stiu more precisely, the set actually consists of special forms and standard
macros defined for COMMON LISP.

92

validate the domain entities that had been selected, and to integrate the knowledge

of other domain experts into our specification for LISP. This exercise was also a

way to reflect on and refine the concepts. The purposes for which these groupings

might be used in LISP-CRrC are not yet established, but that part of the process is

discussed here to demonstrate the depth of the analysis and the generality of the

modelling approach. The categorizations have been captured in the domain model

for possible future use.

We also capture LISP-CRrrIC rules in the domain structure because this

is the level of application knowledge used by the system and for sake of having a

complete single representation of the system knowledge. A rule has links to the

functions that occur in the rule, and the LISP concepts that underlies iL When the

system recommends a change to a program, the only thing it knows is that the

same code conformed to a pattern expressed on the left hand side of that rule and

that it could be rewritten according to the pattern on the right hand side. To model

what is involved in understanding that rule, it was necessary to capture knowledge

about the functions in the rule and any domain concepts that are behind it. Con-

cepts and functions probably exist as part of a programmer's mental model of the

domain [Gentner, Stevens 83], therefore, these parts of the domain model may be

something close to a cognitive representation, possibly representing chunks. It is

unlikely that users, with a few exceptions, retain a LISP-CRITIC rule as part of their

mental model for the domain, even after they develop an understanding of it.

In summary, the domain model needs to capture three types of entities

LISP concepts, LISP functions, and the LISP-CRrITC rules, together with the

relationships between instances of them. Relationships are often one-to-many, but

their topology, although somewhat hierarchical within certain relationships (like

the dependent-on-concepts for all concepts in the model), is highly interconnected

93

High-level Concepts LISP Externals
Symbolic Expression Atom
Functions Literal/Quote
Evaluation Parallel/Sequential Binding
Evaluation Order Optional Parameters
Tests Mapping
Conditionals Tail
Arguments Lists
Variables Property Lists
Scope Association Lists

Car-Cdr Concatenation
Intermediate Concepts Multi-Value Return
Parameters Embedded Functions
Logical Functions Lambda Binding
Predicates
Recursion LISP Internals
Iteration Dotted Pair
Side Effects Cons Cell
Function Definitions False/Empty List (nil)

Internal Representation
Implementation Concepts Destructive Functions
Strings True(non-nil)
Data Types Identity vs Equivalence
Conditional Exists
Input Functions
Output Functions
Variable Initialization
Numeric Iteration
List Iteration

Figure 5-2: Grouping of Concepts

and acyclic. Several paradigms, such as, frames and semantic networks were con-

sidered as possible representation schemes for the model.

5.4. Conceptual Graph Notation For Representing the Domain Model

An approach that provides the ability to visualize the entities and the

relationships from the analysis above was conceptual graph notation; it also helped

94
us to consider what are the needs of the explanation and user modelling ap-

proaches. Conceptual graph notation is part of the conceptual structures

framework [Sowa 84]. There may be some confusion in the discussion because of

overlapping meanings for terms in the theory with those chosen during the analysis

of LISP. The underlying cognitive entity, according to conceptual-structure theory,

is a percept; and the interpretation of a percept, a concept. Conceptual graphs

model concepts and the relationships between them. For LISP there are three types

of entities: LISP concepts, LISP functions, and, LISP-CRrIC rules; all instances of

the theoretical notion concept. In the formal notation for conceptual graphs, con-

cepts are shown as rectangles, and the relations between concepts, as circles; this

is shown graphically in Figure 5-3.

Cocp R . Concept

Conceptual graph showing concept A is related to concept B by relation
Ri.

Figure 5-3: Conceptual Graph Notation

An example of how this representation allows visualization of the

domain model for LISP is in Figure 5-4; it shows the LISP concept Recursion using

this notation. In this example, Recursion is dependent upon the LISP concepts

Tests, Conditionals, and Functions; it is related to the concept of Iteration. Recur-

sion is not a concept underlying any LISP-CRIrrC rule, but because it is one com-

monly used in most LISP texts, it has been captured in the domain model. It is

shown here to demonstrate the generality of the approach. The conceptual domain

95
model should be able to serve purposes more general than explanation-giving and

user modelling in critics. Using recursion, a domain concept not required by our

system, demonstrates generality, and should provide an intuition to the reader for

how the conceptual graph model approach might be applied to serve other

paradigms and applications.

[tetion

dependent dependent depnddpedett0

TssCondtionals Functions

Figure 5-4: Example of LISP Concept Recursion in Conceptual. Graph Notation

Conceptual graphs were a useful methodology for visualizing the

domain model, but an implementation method was required. For reasons of por-

tability, availability, and standardization, the domain model for LISP-CRIC was

implemented in the Common LISP Objects Systems (CLOS) extension to COMMON

LISP.

96

5.5. Implementation of the Domain Model

In the domain model implementation, the concepts (rectangles) from

Conceptual Graph notation were defined as classes, and relations between con-

cepts (circles), captured in slot definitions. The class hierarchy for LISP consists of

a super class, lisp-object, with three subclasses lisp-concepts, lisp-functions and

lisp-critic-rules. There are slots in each object instance for name; dependent-on-

concepts; related-concepts, related-functions, and related-rules; and the groupings

shown in Figure 5-2. Group membership for lisp-concepts is represented in the

level slot, such as recursion belonging to the category of intermediate shown in

Figure 5-7, for lisp-functions in the category slot. The CLOS code that defines

these objects is shown in Figure 5-5. The three types of entities inherent common

slots for name and dependent-on-concepts from the fundamental class lisp-object.

The complete domain model is difficult to show graphically because it is

highly interconnected. It can be considered to have three layers, one each for LISP

concepts, functions, and LISP-CRrrIC rules. Populating each layer are instances of

the entity class for that level. Links are found between instances within a level, as

well as between instances at different levels. For example the LISP-CRITIC rule

cond-to-if is found in the LISP-CRITIC rule layer, it is linked both to similar rules

(e.g. cond-to-when) within that layer, as well as to concepts (e.g., conditionals) in

the concept layer, and of course to functions (e.g., cond) in the function layer.

To give the reader a flavor for the interconnectivity of the model, again

consider the LISP concept recursion. Understanding recursion is dependent on the

user understanding the concepts of tests, conditionals, and functions. Recursion is

also related to the concept of iterations. The code to instantiate Recursion as an

instance of a lisp-concept is shown in Figure 5-7; the conceptual graph represen-

tation for that concept in Figure 5-4. Most concepts, functions, and rules in the

domain model have similar high degrees of connectivity.

97

(defclass LISP-OBJECT ()
;;; Generic Super Class for all LISP Objects
((name
:accessor name
:initarg :name)
(dependent-on-concepts
:accessor concepts-dependent-on
:initform nil
:initarg :dependent-on-concepts)))

(defclass LISP-CONCEPT (lisp-object)
((related-concepts

:accessor related-concepts
:initform nil
:initarg :related-concepts)

(level
:accessor level
:initform 'high-level
:initarg :level)))

(defclass LISP-FUNCTION (lisp-object)
((pattern

:accessor syntax-pattern
:initarg :pattern)

(related-functions
:accessor related-functions
:initform nil
:initarg :related-functions)

(category
:accessor category
:initform 'unclassified
:initarg :category)))

(defclass LISP-CRITIC-RULE (lisp-object)
((functions-in-rule

:accessor functions
:initarg :functions-in-rule)

(related-rules
:accessor related-rules
:initform nil
:initarg :related-rules

Figure 5-5: CLOS Specification For LISP Domain Entities

98
It is difficult to display the entire domain structure in a single two

dimensional graph. In Figure 5-6 we provide a feel for the complexity of the

structure when viewed across a portion of a single strata or level of the domain. It

shows graphically the lisp-concept layer together with the dependent-on-concepts

links between the 45 concepts. For simplicity and readability sake, this figure

does not use the conceptual graph notation; instead each oval represents a LISP

concept, and links are all of the same type; they represent the

dependent-on-concept relation. Different oval sizes represent each of the 5

categories shown in Figure 5-2.

The primary reason an abstract domain representation for LISP was in-

vestigated was the need to support explanation-giving and user modelling. In that

regard the the model can support both of these processes in several ways.

The explanation component uses the domain model to detennine what

concepts must be explained to a-user who, does not understand. a. particular recom-

mendation. Since all recommendations are generated from a rule firing, the user

needs to understand the concepts- a rule depends on, as well as the functions that

are part of that rule. The system must-explain to the user those concepts and func-

tions the user does not already know. Furthermore, if the user does not understand

the more fundamental concepts upon which the understanding of a given concept

is dependent, the system may want to explain those as well. For our example con-

cept, recursion, shown in Figures 5-4 and 5-7, the user must already know the

concepts: tests, conditionals and fwctions or these must be addressed as part of

the strategy for explaining recursion. The explanation system could also use the

domain model to select an explanation strategy by using the related-concepts or

related-functions relationship (slots). In the case of recursion, the domain model

indicates that iteration is a related concept so one explanation strategy would be

for the system to describe recursion as compared to iteration.

99

gEE

4m4

0
%on

100

(make-instance 'lisp-concept
:name 'recursion
:dependent-on-concepts

'(tests conditionals functions)

:related-concepts ' (iteration)
:level 'intermediate)

Figure 5-7: CLOS Specification For Concept Recursion.

The user modelling component uses the domain model for two purposes.

The model provides a representational basis for users' knowledge; the user model

overlays the domain model to capture the LISP concepts and functions that a user

already understands. The user model, as will be discussed further in Chapter 7, is

an annotation or coloring of the conceptual graph for LISP. The model presently

contains an implicit assumption that if users know two concepts then they also

know about any relationships them. We have not yet considered whether this is

something that should be explicitly represented and, if it should be, what modifica-

tions to the domain model representation might be required to accommodate it.

The user modelling component has a set of inference methods, again

described further in Chapter 7, that build up individual models representing each

user. Some of these methods use the structure of the domain model as a basis. For

example, when the system determines that a user knows about recursion, it will

annotate the user model with an assertion that the user understands recursion, and

also infer that the prerequisites are known, these are defined in the

dependent-on-concepts relation; they are concepts: tests, conditionals, and

functions.

101

5.6. Extending the Approach

The approach to modelling LISp described here is not a unique concep-

tual structuring for it or similar domains. Researchers confronting this same

problem have had to use similar formalisms and representation languages. At-

tempts to develop an explanation component for MYCIN were constrained until a

representation for the domain other than the inference rules was used. Wallis and

Shortliffe found it useful to describe the knowledge representation for their system

in terms of a semantic network [Wallis, Shortliffe 84]. Kass used the NIKL

representation language to model investment knowledge in his expert adviser so

that it could explain advice in terms appropriate to the user's goals, beliefs, and

prior domain knowledge [Kass-88]. A common theme in this research is that there

is a need for a domain representation that is more abstract than rules. The concep-

tual model approach presented here meets the requirements in the domain of LISP

for a critiquing system; it could possibly be used for a larger class of domains and

applications as well.

The ideal knowledge acquisition approach is to capture deep domain

concepts as first step in knowledge-based system development;, an idea that is used

in the explainable expert systems (EES) framework [Neches, Swartout, Moore 85].

However, it is far easier to capture procedural knowledge in rule form. The rule-

based paradigm is consistent and constrains speci-ation of knowledge; this as-

sures the knowledge engineer that the system's actions or advice will agree with

true human expertise. When we attempt to add explanation capabilities the rule-

based paradigm breaks down and second order domain representations become

necessary.

The specific concepts, functions, and their relationships included in this

implementation may not be universally accepted. We found that experts fre-

102

quently do not agree on what are the significant concepts underlying LISP, or how

they relate to one another. The model implemented here was developed as an ap-

proximate consensus of what makes up the domain of LISP, it is required so that

we can determine the effectiveness of the methods that generate explanations and

model users.

5.7. Summary

This chapter described a domain modelling approach and implemen-

tation that captures LISP knowledge in a conceptual. structure. The result was a

graphical, concept-based domain model. The motivation for having the model is a

need to link procedural knowledge already contained in LISP-CRrC rules with

explanation strategies and user models to determine how to accomplish the ex-

planation process. The types of entities in the domain model are LISP concepts,

LISP functions and LISP-CRrrIC rules, represented as nodes, and interconnected via

relationship links. Conceptual. graphs provided an. appropriate notation for

visualizing and capturing the domain structure; CLOS was used as the implemen-

tation language. The approach is a suitable representation, able to support research

on explanation-giving and user modelling. Next, we will describe a framework for

explanation supported by this domain model.

CHAPTER VI

THE FRAMEWORK FOR EXPLANATION

In the course of building cooperative knowledge-based systems one ob-

jective is take advantage of the different strengths of users and computer systems.

The system provides a source of expert domain knowledge that is used to make

suggestions to users; the system should also explain those suggestions. Current

explanation systems frequently fail to satisfy users for a variety of reasons; ex-

planations are too often based on the implicit assumption that the process of ex-

plaining is a one-shot affair, and that the system will be able to produce or retrieve

a complete and satisfying explanaion provided it is endowed with arnfical

intelligence. Our approach takes- advantage of-informatiorr and knowledge-based

system technology already available to provide the user access to explanations at

different levels of detail and complexity. Developmental efforts in this work

focused on the concepts to be explained, rather than on selecting a complete pre-

stored explanation appropriate for a given user. The domain and user models

provide to the system the capability to determine that set of concepts.

Early research on how to explain expert knowledge in computers was

done in the context of MYCIN. The approach taken was to provide a rationale by

showing users an historical trace of the rules that fired in arriving at a diagnosis.

Rule-tracing explanatory approaches, even when "syntactically sugared", to make

them more readable, are difficult to follow. Readers of that literature quickly real-

ize that anyone not familiar with medical terminology and concepts have great dif-

104

ficulty understanding them. This points up a general shortcoming of most ex-

planation approaches, they too often use domain concepts there readers do not

know. User models help systems to overcome this shortcoming. The failure of

explanations in domains more closely related to our work on LISP-CRITIC are not

difficult to locate. A standard example of unsatisfactory explanation is the UNIX

Man Page command.

In Figure 6-1 we consider a more realistic example, one from the en-

vironment in which LIsP-CRrIC is implemented, and from a system generally ac-

knowledged as being better than many similar documentation systems. If

LISP-CRITIC can only give suggestions, and not explain those suggestions, then

users might attempt to achieve an understanding of the transformation by using

other system resources, in this case the Symbolics on-line documentation. The

first such transformation in the Chapter 4 scenario recommended replacing a cond

with an if. If users consult the Document Examine " for information about these

two LisP special forms, what they get are the descriptions displayed in Figure 6-1.

The explanations shown are better than most, they contain examples; begin with

one or two sentence minimal explanation, and step-wise expand on it; they use a

hypertext display that allows followup and further exploration; and the description

for if even refers to the LISP concept which it exemplifies, conditionals. As will be

shown, the explanations still fail for a number of reasons. In general they are too

long, attempting to cover everything, are not specific to the user, and, in this case,

have to be viewed individually in sequence (they are only shown side-by-side in

this figure to make the discussion easier to follow), this makes it difficult to com-

pare the two and come up with the rationale for why they might be interchangeable

in this situation.

105

In this chapter the theoretical understanding of explanation-giving in

cooperative systems will be discussed, together with an overview of related

research. It wiUl also cover the purposes of explanations in these systems and the

implications for the user model's role. Finally, an explanation framnework for

LISP-CRrnC will be described.

Document Examiner Documenr Examiner

.3 Ca."We - 1 " ftw" .5"1 iiea.Co by oolSS5.I Li a t V.-5 A.-
-ot oa f a1 Sdle~i t m ub. "lt i Notii. fwl3 .. 6v *,o TO.-33fo.I

.. 4-.a33 too at IWA . 3 S ilda 3. 0 i-S tnO s-

= ooo~~~~~~it3
*0 """ t I~tdIflelo, m 1Kom aoo . ailaai . r5 (It .4,.5 af.Si I 5.14

3333 l .W c"f- . . t -Io

goodI 5 W1oifiN lmo Wrs cubeS r f- 1~.1 W Si9fM~ . t. MOf so, i3-i~,3Stm , .56.

3., ism h-i Ut Ilii3'.q don Ca ~ i 5.54 ra.ni siotoo -,A Pt 1. ssuii . aido It dto 51.553t nasI. 0n .(.-3A-s

. 6 an of~ 11,o I." QJ53. lsiliaid. o, 1 Si t Si.i Silolol G" of~ 5.35 d t 1I((. 4
3 sunS i . saot in caslna.. M. "iSn, I-- si .. n 3.

Sf Sstat. tinS li. If .c.. _toboi .Ill. . iMo. toid th nn *3sat i4f-n
1. olltoo tfI -.ii i 5. of li said I. Iol. Idf-

* 33 Ci ~~(I s.31 I.

I--*1 1 : *..aott is L IN, . 55(5..lyPlt;Th etok orto ii

Ofin i III ito~f wi43." YOU to S3.IY It.t Itoi ftoIn o

'tf -u 1-1l~t*i %;nw 5,A1naw .51~ , Z .. . a olill a d _ i rolSiS (l

These two sceen display show the Docmen Exx e decitions ftoifiI

and cond that are retrieved when a user searches for information on the
functions in the cond-toif rule. Both occupy the entire viewer and on a
computer screen cannot be viewed together like they are here.

Figure,6-1: Explanations for cond and if from the Document Examidner

106
6.1. Theory

6.1.1. The Need for Explanations

In order for professionals, managers, and scientists to accept knowledge-

based systems, it is essential to provide explanations of the knowledge. The need

for good explanations was identified in a study of physicians' attitudes towards

expert systems:
Explanation. The system should be able to justify its advice in terms that are under-
standable and persuasive. In addition, it is preferable that a system adapt its explana-
tion to the needs and characteristics of the user (e.g., demonstrated or assumed level
of background knowledge in the domain). A system that gives dogmatic advice is
likely to be rejected. [Teach, Shortliffe 84, p. 651]

Explanation in cognitive science can evoke two different meanings: the

process of presenting information, and an internal cognitive process that develops

a knowledge representation. Our work focused on the presentation process while

attempting to keep both meanings in mind. The internal-process view claims that

explanation is equivalent to understanding [Schank 86]. According to this

perspective, humans achieve understanding using a process that involves generat-

ing their own explanations. For our work on presenting explanations this means

that systems must provide the information that is needed to support the self-

explanation process. If systems know exactly what information is required to in-

sure understanding, can tailor that information to the individual, and then present it

in an optimal form, users might adopt it as their own. Such a goal for computer-

generated explanations (or even those produced by another human, for that matter)

is too ambitious. Rather than attempting complete, ideal explanations which each

aser can understand and integrate into their mental models, computers must in-

stead concentrate on providing users with the material required to produce their

own explanations. This means generating explanations with the computer not

merely displaying stored ones; explanations that use the domain concepts ap-

107
propriate to a particular problem solving context, so as to provide users an oppor-

tunity to produce a self-explanation, and therefore achieve understanding.

6.1.2. Functions for Explanations

We are investigating how to design systems that serve users actively

engaged in their own work - cooperative problem solving systems that provide a

task-based environment in which users work toward goal accomplishment. Sys-

tems that support users' work are more than media used for describing their

problems, and more than just tools to extract useful information from a database.

They should be active agents that provide for problem-domain communications at

the construction artifact level [Fischer, Lemke 88], can critique users work, and

are able to explain their knowledge. We analyzed the reasons users seek explana-

tions and determined that a common triggering. condition is experiencing some sort

of impasse. A similar idea motivates theory about what should happen during in-

structional episodes, there the emphasis is. on determining how to communicate

knowledge to overcome impasses- and how students formulate new procedural

knowledge [VanLehn 88]. We cataloged thesev as "task-orientediimpasses" in or-

der to develop a better understanding of where explanation fits in each situation.

There are four categories of task-oriented impasses:

1. Action impasses occur when users do not know what to do next.

Some action impasse questions are: What shouldi do next? Is action

the right thing to do next? How do I do action? What did the system

just do? What are the results of doing action? Can I do action now?

These are the types of impasses help systems should be designed to

address.

2. A communication impasse is a failure to understand a given object in

108

the environment. Representative questions are: What is object?.

Why is object) shown instead of object2? What is the rationale for

suggesting object or action? This is the category of impasse the user

experiences in the scenario when trying to decide whether to accept

or reject a suggestion.

3. Motivation impasses fall into the realm of behavioral psychology;

their basis is an anthropomorphic view of the computer system.

Representative questions are: Why did the system do action? Why

did the system just communicate with me? Why did the system just

say X. Why should I do action?

4. Curiosity impasses axe a bit different. The other categories consist of

questions that arise when users encounter a problem. Curiosity im-

passes are not necessarily impasses, in a strict sense, but rather are

diversions. They are circumstances in which users. gather infor-

mation that is interesting or helpful, but if it is missing, further work

is not actually impaired. For consistency, these are also "im-

passes". Questions that illustrate curiosity impasses are: Is object a

concept X? How do object1 and object2 differ? On occasion,

LISP-CRITIC users also experience these; it is a case where they un-

derstand the suggestion but see it as an opportunity to improve upon

their knowledge and therefore request explanations so as to engage

in active exploration.

Assisting users during problem solving requires that explanations be

designed to help them overcome impasses. Such explanations in cooperative

problem solving systems can serve four functions. We adapted these functions for

cooperative problem solving from ones that were found during investigations sur-

109
rounding MYCIN in which they studied users of knowledge-based medical infor-

mation systems [Wallis, Shortliffe 84].

1. Explanations allow users to examine the system's recommendations.

2. Users need explanations to relate recommendations to domain con-

cepts - to understand "what is suggested".

3. The explanation should help users to see the rationale for recommen-

dations - to understand "why this would be better".

4. Explanations are needed by users to learn the underlying domain

concepts.

These functions are not mutually exclusive; single explanations in a cooperative

problem solving system will have to accommodate multiple purposes.

6.1.3. Shortcomings of Current Approaches

Most attempts to provide explanations use prestored scripts in the form

of canned text. Those types- of descriptions have been criticized as difficult to

understand, incomplete, and hard to navigate [Weiss 88]. Empirical studies of

tutoring in both humans and computers determined that canned explanations are

insufficient approaches [Fox 88]. Because critiquing and tutoring are closely re-

lated, many of the problems listed there apply to critiquing as well. "Canned

text" is intended to meant pre-written text, stored in machine memory in a form

that the system cannot interpret meaningfully (most likely as character strings.)

The use of canned explanations is not inherently bad just because it is done by a

computer. Empirical studies of human explanations- found a- similar strategy is

often employed by people when- explaining something "for the sake of others"

[Schank 86]. The difference is that people understand their prestored explana-

tions - they make sense to the explainer, they represent a form of mental model.

110

When it happens that the recipient does not understanding such an explanation, the

nature of most human-to-human discourse allows them to query the explainer for

clarification or elaboration.

Canned explanations captured in computer systems are inadequate when

their content is poorly chosen or presented. There are five primary reasons for the

failure of computer explanation approaches:

1. Explanations are too long; users get lost, bored, or confused; they do

not bother reading the text just to find what they need. This is espe-

cially characteristic of many on-line help systems.

2. Too often, explanations attempt to tell the user everything they could

possibly need to know rather than determining what is specifically

required for the situation at hand, and for the individual requesting

the explanation. This creates complexity and is frequently what

makes them too long.

3. Users are not provided the capability to ask follow-up questions or

enter into a dialog with the computer. The explanations are designed

as if they could satisfy their reader with a single presentation.

4. The explanations do not provide examples to facilitate understanding

textual descriptions. Even when available, examples may be in-

appropriate for the user's particular problem.

5. The explanation text is written from an author's perspective. It is

based on that author's conceptual model of the domain, not the

readers'.

The examples from the Document Examiner shown in Figure 6-1 exhibit some of

these characteristics. They fail on the first account, being longer than most users

would want in the cond-to-if transformation-situation. The system does not, of

111

course, individualization the descriptions, therefore they also fail on the second

account. Document Examiner does provide hypertext capabilities, therefore a

limited form of follow-up is provided. Also, both documentation entries (as do

quite a few in Document Examiner) contain multiple examples to facilitate under-

standing. On the last point, the explanation of cond is particularly poor, it appears

to have been written by a LISP expert (hacker) from his or her individual perspec-

tive; the one for if is actually much better, its author attempted to direct it toward a

less sophisticated programmer.

Some systems attempt to overcome several of these problems, but none

addresses all shortcomings. Our strategy is to recognize the shortcomings while

using an interactive approach based on available, technology integrated with

domain and user modelling capabilities. We consider the limitations of canned

text but try to be realistic about current capabilities of computer systems. In

developing explanation strategies there is too often an assumed environment which

contains an intelligent computer able to generate natural language, predict users'

needs, and enter into a followup dialog. Techniques are needed now that work

within the constraints of available technology. Based on these limitations, an ex-

planation framework was developed; it considers what is possible; a part of it was

implemented to further our understanding and evaluate the role of the user model.

6.1.4. Basis for Minimalist Explanations

If a user model, such as the one described in Chapter 6, can provide a

detailed representation of users' knowledge, then it will be possible to formulate

and present an appropriate explanation. One method to achieve that is the min-

imalist approach [Fischer et al. 90]. The ideas for minimal explanations share the

underlying theoretical foundations with minimal approaches to instruction

112

[Carroll, Carrithers 84]. Both use the principle that an optimal first approach is to

provide users with the minimum amount of information required to accomplish

their task. Theoretical bases for this approach are found in related work on dis-

course comprehension:

1. Short-term memory is a fundamental limiting factor in reading and

understanding text [Dijk, Kintsch 83; Britton, Black 85]. The best

explanations are those that contain no more information than ab-

solutely necessary, since extra words increase the chances that essen-

tial facts will be lost from memory before the entire explanation is

processed.

2. It is important to relate written text to the readers' existing

knowledge [Kintsch 89; Fischer et al. 88].

Similar practical guidelines are also found in the theory of rhetoric.

Flesch developed formulae to evaluate the readability of text [Flesch 49] which are

frequently used to evaluate documentation and instruction. Computer explanation

systems should comply with similar standards; using short sentences and known

vocabulary are important criteria. Strunk and White's guide to good writing con-

tains similar advice; they tell writers "Don't explain too much" when writing ex-

planatory text [Strunk, White 57].

6.2. Related Work

Some research on explanations in knowledge-based systems assumes a

natural language interaction, such as in the dialog advisory systems discussed in

Chapter 2. Another approach also attempts to capture expertise during the

knowledge acquisition phase of building an expert system; that approach uses a

methodology which will later facilitate explaining that knowledge: the explainable

113

expert system approach (EES) developed by Swartout [Swartout 83] is one ex-

ample.

The fundamental claim behind EES is that explanation is simplified if

the knowledge acquisition process occurs at the conceptual level and a system

automatically generates the operational knowledge (i.e., rules). Then to explain a

rule, the system can trace through that portion of the conceptual domain

knowledge from which the rule was generated. That approach is appealing but has

not been enthusiastically accepted as standard knowledge-engineering practice.

LISP-CRrIC's rule base was developed using the traditional knowledge acquisition

process of querying expert LISP programmers. For systems to explain something

captured in procedural (rule-based) form requires reverse engineering of the ap-

plicative knowledge (in our case the transformation rules) in order to determine the

concepts behind each rule. The process followed in developing and refining

LISP-CRrIC, as opposed to the one proposed by EES, is more indicative of what

will be the standard approach for providing knowledge-based systems with ex-

planation capabilities, for the near-future.

Moore extended the EES work, in a program-transformation system

similar to LISP-CRIC [Neches, Swartout, Moore 85]. Her specific research ad-

dressed a situation where users need to follow-up on explanations with clarifica-

tion questions. Her "reactive" approach provides the userwith an initial explana-

tion, but accommodates the situation where it fails to satisfy the user, it provides

increasingly informative fall-back explanations [Moore 87]. Her framework ach-

ieves a fall-back capability by monitoring and recording the dialog between the

system and users, then using this dialog trace to identify and overcome difficulties.

Moore still agrees with our goal [Moore 89], that a convivial system should make

a good-faith effort to provide the right explanation the first time; it is when that

114

fails that her reactive approach or something similar is needed. Providing the best

possible initial explanation requires the system to understand the domain at a level

that supports the generation process and to be capable of modelling its users. Her

approach holds promise for future generations of knowledge-based systems but

depends too heavily on natural language generation and dialog management. Until

such capabilities are commonplace, other available techniques should be exploited.

Whether a powerful access technique, such as hypermedia, or a dialog manage-

ment approach to supporting fallback requirements is the better approach will only

be determined when both have matured to the point where they can be subjected to

comparative evaluations.

Several efforts to provide computer-based explanations generate strings

of natural language. Some rely on a user model for tailored explanations [Kass

8T] while others generate the same explanation for any user [Danlos 87; Water-

man etal. 86]. The natural language approach is complex and difficult, and the

syntactic formats are limited.

Natural language approaches, such as Kass's reliance on Grice's rules

for cooperative conversation and Moore's iterative fall-backs, use human-to-

human discourse as their model for human-computer communication. This may

be unreasonable, especially given the difficulties of reading large sections of text

from a CRT screen [Hansen, Hass 88]. Knowledge-based system designers need

to recognize the special capabilities and limitations of computers rather than trying

to coerce the natural language paradigm into a screen- and keyboard-interaction

style [Kennedy etal. 88; Fischer 88b]. Another crucial issue in explanation,

whether between humans, or between a human and a computer, is not natural lan-

guage, but using all of the available interaction facilities to insure that users are

comfortable with the concepts presented during the explanation process; the es-

sence of natural communications.

115

Paris [Paris 87; Paris 89] developed an approach to explanation based on

an assumed user model. Her work provided initial motivation for our user modell-

ing investigations [Mastaglio 90b]. She developed a theory that builds hybrid tex-

tual descriptions for devices using two strategies, a process trace and a con-

stituency scheme.

* A process trace describes how an object works (her research was in-

terested in explaining mechanical and electronic artifacts like the

telephone.)

• A constituency scheme describes an object in terms of its component

parts (like the receiver, transmitter, etc. of the telephone.)

A hybrid explanation for a. device is actually a mixture of the two methods based

on what users already know. Those constituents with which a user is familiar need

only be indicated as component parts of the device being described, but others

need to be explained in terms of how they operate (their process), or their own

constituents, and so on. The process recursively executes, capturing those portions

of the domain (objects or concepts) that an individual user needs explained to un-

derstand the device. A user model will indicate to her system which concepts and

specific items in the knowledge base the user already knows. That information

will, in turn, guide explanation-generation, combining the two strategies to insure

that the explanations are presented at a level, and in terms of concepts, that users

already understand. Her scheme can be used to generate an explanation for a

LISP-CRrIC rule in terms of the LISP concepts and functions underlying the rules

in the knowledge-base. LISP concepts are equivalent to the underlying concepts

her model uses, and LISP functions are analogous to specic items in the

btowledge base. This approach is a candidate strategy for use in the final steps of

presenting an explanation to a user.

116
Requiring a knowledge-based system to have a concept level domain

model is not a unique finding. Chandrasekaran and associates investigated the

need for deep domain models in expert systems [Chandrasekaran, Tanner, Joseph-

son 88; Chandrasekaran, Tanner, Josephson 89]. Their theoretical framework

claims that explanation involves three issues: presenting the explanation, modell-

ing the user, and endowing a system with "self-understanding". Their research

focuses on the third issue. Their solution is similar to Swartout's in that they

propose a "generic task methodology" approach to building expert systems. The

paradigm focuses at the level of the task rather than that of abstract domain con-

cepts; it makes basic explanation constructs available at a level of abstraction

closer to the user's conceptual level, it is similar to the work on human problem-

domain communications [Fischer, Lemke 88]. It also appeals to general domain

knowledge in order to justify the system's problem-solving approaches.

In a perspective of what is happening to the user cognitively, one could

consider explanations to be forms of knowledge retained in long term memory,

and later reused to provide situational understanding. This is the basis for

Anderson's work on learning by analogy [Anderson, Thompson 86], and has been

investigated by Lewis as a substitution process [Lewis 89]. This theoretical view

could be used by a system to chose a strategy for presenting explanations based on

a user model containing a record of either the exact explanations previously

received, or chunk-size domain entities (e.g., critic rules or lisp concepts) that were

the focus of explanations; either of these could be used as a starting point for an

analogical explanation. In the scenario, the user generates his own explanation for

a rule (cond-erase-tnil) using this process; this rule is similar to one previously

explained (cond-erase-pred.t), and the user can forego requesting one from the

system. The user model also needs to represent the user's possible goals: goals

117
related to improving the immediate piece of code (e.g., make it easier for other

programmers to read), or goals related to learning LISP (e.g., they want to become

proficient users of the language). This work has not explored methods for infer-

ring user goals or plans, but provides for goal representation in the user model.

Goal and plan recognition is a significant research problem in itself.

Empirical observations of problem-solving interactions between sales-

men and customers in a large hardware store, observed that explanation never took

the man page approach. When explanations were required, the approach was one

of minimizing the explanation, tiien following up on unclear concepts when neces-

sary [Reeves 90]. This is interesting if you consider the fact that the particular

store carries over 350,000 different items in over 33,000 square feet of retail space.

If salesmen took the approach found in many computer systems, the explanations

given would be extraordinarily long, to insure completeness, and complex, in order

to account for relationships to other items in the store.

Argumentation is another approach to facilitating user understanding of

the domain knowledge behind a critique or suggestion- Impressive results have

been achieved using the argumentation approach in a critic for kitchen design

[Fischer, McCall, Morch 89b]. Argumentation, as used in paradigms such as

issue-based information systems (IBIS), provides a context for exposing the issues

underlying a given suggestion. Argumentation approaches do not try to provide

information at an appropriate level. Users of these systems retain primary respon-

sibility for traversing the issue base. It is possible that they will find it difficult to

locate exactly what they need, or to understand it, when the complexity level is not

adjusted to their individual expertise.

118

6.3. An Explanation Framework to Support Critiquing

To support explanation in critics requires sufficient knowledge on the

part of the system to describe what is going on and why. Operational knowledge

in LISP-CRTC is captured in transformation rules. For users to understand a trans-

formation, they need to know the LISP functions in the rule and the concepts that

makes it valid. This was informally observed during usability testing on the

second version of LISP-CRMIC when we attempted to satisfy users with canned-

text generic explanations of the rationale for each rule.

The domain model provides a conceptual basis for an explanation in

terms of those functions and concepts that are prerequisite knowledge. Determin-

ing prerequisite knowledge is a recursive process because understanding those

domain concepts that are prerequisites for the given concept requires, in turn, un-

derstanding their prerequisites and so on. To support such an approach, the deep

structure in the domain model is queried to obtain a concept-set comprised of

those prerequisites. A satisfactory explanation approach needs to still do some-

thing more, it must identify the concepts in that set that do not require explaining

because the user already knows them. Furthermore it will reason about the best

way to explain the remaining concepts.

We investigated ways to organize explanations for a system such as

LISP-CRITIC and developed a framework that includes different levels for explana-

tions (shown in Figure 6-2). The explanation levels capture necessary and suf-

ficient conditions for adequate explanations. Each level incrementally enhances

work done at a lower level, integrating additional knowledge about the user and

the domain. A Level 0 explanation does not require knowledge about individual

users. It uses the domain model to meet a necessary condition - knowing what to

explain. The explanation component is provided the set of prerequisite concepts

119
required to understand an object needing to be explained. Level 1 brings the user

model into the process; here the prerequisite set of concepts is "filtered" through

the user model to determine the subset appropriate for a given individual. In many

cases, that filtered set is probably larger than we want to explain in a single

episode. Therefore, at Level 2 the explanation component needs to know

strategies that determine exactly which of that subset to explain and how.

4 Prioritize, sequence, link object explanations

" 3 Select "best explanation strategy for each object

2

1 Filter objects through user model

0 Show- all dependent-on objects- from domain model

Five levels of explanation are- identified. Level 0 insures all prerequisite
knowledge for a given domain object is available to the explanation com-
ponent. Level 1 builds on level 0 and so forth. The current LISP-CRITIC
system provides simplified level. 2 explanations. Level 3 and 4 will require
presentation and natural language generation techniques.

Figure 6-2: Explanation Levels

A system operating at Level 2 passes a sufficiency test: it knows what

concepts to explain to an individual user in a specific situation. However, it is still

faced with the presentation problem; explanations need to be presented in a man-

ner and style that will make them more readable. Achieving this level means the

system will need to make use of additional domain knowledge or other infor-

mation in the user model, in order to determine a "best" strategy for explaining a

concept. For example, a system could make use of the related links in the domain

120

model and the user model contents to determine candidate concepts or functions

for use in a differential description [Fischer et al. 90]; one object can be described

differentially in terms of another that the user already knows. Another example

would be to apply user goals captured in the user model to determine the strategies

that support those goals. Level 4 performs "syntactic sugaring." Here the in-

dividual explanations from Level 3 are ordered and appropriately linked, a non-

trivial process that requires the system to have knowledge of discourse as well as

natural language generation capabilities.

6.4. Role of the User Model in Explanations

The user model is discussed in the next chapter but, because its stated

purpose is to support explanation generation it is important to consider, in the con-

text here, what criteria for the user model are established by this explanation

framework. This section will summarize, and review, the insights for the user

modelling component that resulted from the analysis of the explanation process.

Cooperative systems must tailor their explanations to individuals in or-

der to accommodate adequately the four functions previously listed. The system

needs a basis for tailoring: this is the role of the user model. One simplified ap-

proach is to classify users by their expertise (e.g., novice, intermediate, expert);

but, as reported earlier, this is not a valid representation for many domains and

users. A finer grained representation that follows from Paris's work, represents

user's knowledge in terms of the domain objects and concepts.

The user model needs a representation of the user's domain knowledge

detailed enough to support each of the five "levels" of explanation shown in

Figure 6-2. It has to be based, at least in part, on the conceptual model of the

domain, so that it can filter the set of concepts that form the explanation basis.

121

The model needs to capture the user's goals in order to support Level 3 explana-

tioas. Programmers who use LISP-CRITIC have goals of either making their code

easier for others to read (such as in the scenario) or making it execute more ef-

ficiently. A subsuming goal for both is learning to produce better code, the type of

optimization goal merely determines the dimension along which they want to learn

to improve their programs. Higher level goals, such as learning how to use new

programming structures that can make programs better from the start, need to be

acquired through explicit questioning. Problem-specific goals (such as writing a

function to factorial)) are not within the scope of the current system. LISP-CRMIC

does not know how to achieve these problem specific objectives; it is neither

capable of automatic programming, nor does it have the knowledge, envisioned for

the Design Apprentice portion of the the Programmer's Apprentice. Design Ap-

prentice knows how to automatically select the low-level program cliches ap-

propriate for achieving a specified objective [Rich, Waters 90].

Supporting Level 4 explanations is more difficult because they involve

solving difficult issues on the research agenda for both explanation-giving and

natural-language generation. We will not know all requirements for user models

to support this level until that research matures. It is possible to conjecture some

important capabilities, such as, knowing the education and reading comprehension

level of users, because that knowledge could guide the generation of an ap-

propriate explanation. To make the scenario in Chapter 4 more realistic, this type

of higher level processing was manually applied to create the mock-up explana-

tions. The system cannot presently generate anything that complex, it can only

display short explanationsfor the selected concepts.

In its present form, the user model that was developed provides partial

support for explanation-giving according to the presented framework. One sup-

122
ported approach is the minimal explanation strategy; it interrogates the user model

to determine a minimal set of concepts to explain. Such strategies are possible

because the model knows which concepts are familiar to the user.

6.5. LISP-CRIC Explanation System

A conceptual overview of the explanation component shows how it con-

forms to the fiamework discussed above. One focus in this implementation is to

use information already available to the system, and to present that information

using ideas which provide the best support for users' needs.

There are several sources of information that is already available to the

system and which can be used to satisfy some explanation requirements. This in-

formation is presented using techniques that were designed to provide users access

to the information in four layers of increasing detail. These layers help to visual-

ize how the system is designed and operates; they should not be confused with the

conceptual levels shown in Figure 6-2.

1. A fundamental piece of information is the name of the rule that is the

basis for a transformation. The rule name is an abstract reference to

a chunk of domain knowledge, in the domain model that chunk is an

instance of the class 1cr-rule, and it may or may not have meaning to

users. When it does have meaning, users may be satisfied just by

knowing which rule fired and further explanations may not be re-

quired. An example of this occurred in the third scenario episode

when the user recognized the cond-to-if rule because it had

previously been explained. We are assuming that the name evoked

the appropriate conceptual understanding on his part, seeing the two

versions of the code may have also played a role.

123
2. That second piece of information is precisely those two versions of

the code. The user can compare the system-transformed code with

his own. The system displays the user's code together with the sug-

gested changes. Sometimes this also triggers an understanding of the

underlying concepts and rationale for the transformation. This is

what occurred when the cond-erase-t.nil rule fired in the second

scenario and no explanation was required. A rule based on similar

concepts had just been explained and the user can generate his own

understanding.

3. The minimal explanation layer is the point where empirical obser-

vations come into play. The useris provided with a text description

of the system's advice based on the underlying concepts in the

domain. The text description is comprised of portions. of hypertext

associated with each domain concept and rule.

4. A hypertext-based information space is also part of the underlying

computational environment. LISP-CRTIC provides access to this in-

formation as a source of additional information for users who want

to know more or who are not satisfied with the minimalist explana-

tion of the advice. Users navigate through the hypertext space only

after the system locates them within it in an appropriate context.

The explanations in Layers 3 and 4 require information from the user

model to tailor their presentations to each individual user. The user modelling

component can tell the explanation component which concepts users already un-

derstands so the system can avoid telling them what they already know.

Layer 4 explanations back up the minimal explanations with access to

more detailed information. The system uses hypermedia along with some other

124

available techniques to overcome many of the limitations of prestored text. Some

of these techniques are inter-referential input/output [Draper 861; command

completion (the user can type abbreviations and the system completes the com-

mand); and mixed initiative dialogue (either participant can take the initiative or

volunteer information) [Carbonell 70].

The approach used in the current implementation evolved from

rule-tracing and canned text explanations methods attempted in an earlier version

of LUSP-CRMC (Frank, Lynn, Mastaglio 87]. Alternative canned explanations for

each rule were provided; each designed to accommodate a particular level of ex-

pertise. To chose the correct explanation, the system had to classify a user as a

novice, intermediate or expert programmer. No user model acquisition was ac-

tually attempted because system testing using protocol studies and observations of

users pointed out that the explanation approach was inadequate. One result was

the finding that a finer grained approack to representing individual user knowledge

is required, one that can also support updates as users' expertise changes.

The explanation approach is comprehensive and supports all four layers.

An overview of the users' decision-making process, from the point the system

makes a recommendation until they decide to accept or reject the suggested trans-

formation is shown in a decision flow chart in Figure 6-3. The user, when in-

formed that LISP-CRITIC recommends a change to his or her program, can get an

explanation for that advice, or bypass it, deciding right then to accept or reject the

suggestion. In the scenario, the user followed different paths through this decision

process in different episodes; except that the user does not activate the hypertext

facilities in any of the episodes. If he had used the mouse to select either cond or

if in the text of the explanation in Figure 4-8 the descriptions shown in Figure 6-1

would have been displayed in the LISP-CRMC window.

125

faa

Figure 6-3: User Decision-Making Process in LISP-CRITIC

Explanations use the minimal approach and access the user model to

determine what to explain. If users request more detail, the system positions them

at an appropriate place in the hypertext information space; once there users have

direct control of access to other hypertext nodes to obtain additional information.

They terminate the explanation dialog when they are satisfied that they know

enough to decide whether to accept or reject the critic's suggestion.

When LISP-CRITIC is invoked, the user's code is examined for ways to

simplify it. In the first scenario, the system recommended that cond could be

replaced by the if special form Figure 4-7. Before the user decided whether to

126

accept or reject LISP-CRITIC's suggestion, he asked for an explanation. The sys-

ten then determined what was required in order to understand duis rule, and the

aspects of that knowledge that the user lacked.

The explanation component interrogated the domain model and was

provided a list of concepts underlying the cond-to-if-else rule. This list was

generated by traversing the domain model beginning at the node representing the

cond-to-if rule, and using the dependent-on links between domain model objects to

accumulate the concept set. For the cond-to-if-else rule in the first episode of the

scenario, (Figures 4-7 through 4-9) traversal of the domain generated a concept set

of 13 items: lists, symbolic-expression, evaluation, tests, variables, conditionals,

scope, predicates, lisp-atom, arguments, falselempty-list/nil, true/non-nil, and

fumctions.

That set was personalized for the user in the scenario, to determine the

subset of concepts to actually be explained. As discussed in Chapter 3, there are

three levels dl, d2, and d3 at which a user can understand a given concept. The

current implementation captures users' knowledge in terms of concepts that are

well known to the user (dl), known to the user but not well (d2), and unknown

(dO). For the concept set, the user model indicated (by their absence from the

concepts-known slot in the user model) that the user has no knowledge (level dO)

of six of them: predicates, conditionals, tests, evaluation, symbolic-expression,

and lists. It indicated, based on their madings in the concepts-known slot, some

knowledge (d2) of 6 others: true/non-nil, false/empty-list/nil, arguments, lisp-

atom, scope and variable; and good knowledge (level dl) about just one,

functions. That information was provided to the explanation component in three

sublists, one each for dO, d2, and dl.

128
simple text fragments, differential explanations, and graphical-based explanations

similar to those provided in the KAESTLE system [Nieper 83; Boecker, Fischer,

Nieper 86]. Because the current text associated with each is stored using the Con-

cordia hypermedia system, graphics can be integrated easily. Concordia is a hy-

permedia development and presentation system available on the Symbolics, the

Document Examiner uses it.

The problems with current explanation systems are recognized; most ef-

forts to improve them emulate human-to-human communication and, too fre-

quently, attempt to provide a complete explanation in one-shot. Theoretical results

in rhetoric, and discourse-comprehension together with empirical observations of

human-human collaborative problem solving, indicate that trying to emulate

human-to-human human conversational techniques may not be the best approach.

This chapter has described the: analysis behind a. proposed approach to

explanation-giving that tries- to-consider the constraints of the computer interface

while taking advantage of capabilities and resources already available in the com-

putational environment.

The suggested approach provides four layers of explanation for the ad-

vice given by a knowledge-based system. The first two layers, although they can

help users understand, are not explanations in the strictest sense; they are detailed

descriptions of what was recommended. The 3rd and 4th layers use a minimal-

explanation approach to clarify the recommendations and expose the user to the

underlying rationale for that recommendation. Minimalist explanations need a

user model to tell the system what is necessary for the user to understand a domain

entity. The highest layer, a rich hypertext space, allows users to explore details or

examine concepts which they still do not understand. The user model is central to

this proposed framework and fundamental for the explanation approach. The next

chapter describes that user model.

127
Furthermore, within each sublist, concepts were ordered according to an

implicit hierarchy within the dependent-on links in the domain model. The ex-

planation component can ultimately use this information for reasoning about how

to generate an explanation for the user, but the current implementation, using a

simplified strategy for testing purposes only, selects the first three concepts in that

filtered list predicates, conditionals, and tests. Ideally, the user finds the explana-

tion adequate; but other concepts fundamental to understanding, or related to,

these concepts are shown as mouse-sensitive objects displayed in bold. Selecting

any of them will display either an explanation associated with that object in the

domain model, or a description from the Symbolics Document Examiner (e.g.

Figure 6-1).

The explanation system will not attempt to present explanations as

though they were generated by an intelligent agent, but rather use combinations of

straightforward, concise, prewritten semence& What distinguishes this approach

from most systems that use canned-text is the role played by the user model in the

process of constructing an appropriatm explanation.. Each part of. the explanation

can be chosen using the domain model, the user model, and the explanation

strategies. The present implementation is an interim step to determine the efficacy

of the user and domain model implementations; it is.far from complete and future

work should investigate how better to determine exactly which concepts to ex-

plain, and how to link descriptions of them together with information about the

LtSP-CRMC rule of interest in a coherent discourse structure.

6.6. Summary

A number of approaches to structuring explanations could make use of

the available domain and user model information. They include: prestoring

CHAPTER VII

USER MODELLING COMPONENT

This chapter describes the user modelling component for LISP-Critic.

That component acquires the user model and represents the knowledge of each

user in an object oriented structure; it provides access to that model, and insures it

is persistent. The component was implemented in the Common LISP Objects Sys-

tems (CLOS). Access to individual models is provided via a set of generic inter-

face functions; other system components know which functions to call to obtain

whatever information from the user model- that they might require. The user

modelling component invokes -the- appropriate methods to actually access a user

model's contents; it uses the domain model structure to insure that appropriate in-

formation is provided. The acquisition subcomponent provides direct-methods

based on episodes from the user-computer dialog, and indirect methods triggered

by changes to individual user models. The primary purpose for which this model

was developed is support for explanation-giving.

7.1. Design Approach

The design objectives for the user modelling component derived from a

goal of supporting the explanation-giving framework discussed in the Chapter 6.

The specific implementation approaches selected to achieve these objectives

resulted from the analysis of other user modelling research, plus the requirements

and framework for user modelling needed to support cooperative problem solving

that were presented in Chapter 3.

130

7.1.1. Objectives

The user modelling component design had to provide support for

explanation-giving, accommodate various acquisition techniques, and be able to

represent a variety of information about the user. The model captures users'

domain knowledge and supports implicit updating. An object oriented approach

was selected for implementation in order to insure that the model is extensible, can

be adapted to accommodate other techniques (such as stereotyping), and can be

easily modified to represent new kinds of information about users (such as their

preferences). The object oriented approach allows new methods to be defined on

existing slots in the model and new slots to be added to the model class definition

if necessary.

The component supports both implicit and explicit update. In this

research the implicit update techniques were the primary focus however, the func-

tions which modify the content of the user model are general method& designec toL

support other acquisition approaches as well.

A model that we are able to use only once, or during just a. single pro-

gramming session, is not acceptable; it needs to be retained between sessions and

reused the next time a user accesses the system. Methods that save the contents of

the model at the termination of a user-system dialog and start with that model the

next time a user accesses the system are included in the component.

The model must support changes in users' knowledge over time. It is in

this sense that the model is dynamic; its contents change as a user's knowledge

improves. In this regard, the emphasis in developing inference methods was on

improvements in users' knowledge in the domain. The problem of how to modify

the model when users forget something they once knew is an important issue but

was not addressed at this point in the research. That the model is at best an ap-

131
proximation of the user implies that the modelling component must be designed to

include techniques for improving on that approximation. Whatever information is

available to enhance the model has to be used to best advantage. Specifically,

what a model represents about any specific user should get better during sub-

sequent interactions between the system and that user.

Three different approaches to representing the users of LISP-CRITIC were

considered and, in some cases, partially implemented: classification methods,

nereotyping, and an overlay of the systems domain knowledge (the LISP-CRITIC

rules). Classification categories and stereotypes are similar, but for discussion

purposes they are considered separately, as were the attempts to use them.

Initial attempts to model the user with classification methods in support

of explanation-giving [Frank, Lynn, Mastaglio 87] met with only limited success.

The problem with classification methods were two-fold. The canned-text explana-

tions directed at a particular level of expertise were found to be. unsatisfactory

during user testing. They were often too basic to satisfy the user, or too difficult,

using concepts not yet understood by a particular user. Part of the problem is how

to classify a user into one of a set of prespecified categories. The ones used

(novice, intermediate, and expert) did not appear to capture individual expertise in

a satisfactory manner. The second problem with classification methods is that

they are not fine grained enough to provide adequate fidelity in their representation

of individuals. This problem was confirmed by an informal study in which the

group of local LISP programmers, generally considered to be the experts, were

asked to respond to a questionnaire about their use of, preference for, and opinion

about teaching certain language constructs. The responses varied widely, indicat-

ing a significant difference in what these experts knew and preferred. When es-

tablishing the expertise categories in a domain one has to face the same problem as

determining the contents of appropriate stereotypes.

132
A schema for model acquisition using stereotypes of LISP programmers

was developed [Fischer, Mastaglio, Rieman 89]. It was based on Rich's approach

to stereotyping [Rich 79], and showed promise as a way to leverage analysis of the

content of users programs to stereotype them, and from that stereotype infer ad-

ditional characteristics indirectly. Part of this work was a study in which human

LISP experts were provided a program and asked to assess the expertise of the

programmer. Protocols observations in this study showed that the human experts

either looked for or noticed what we called "cues" in the code; cues triggered

inferences about the expertise level of programmers who wrote them. This idea of

identifying cues in the context of a user's work is something that was carried into

the acquisition methods finally implemented- The methods were developed and

partially implemented but this line of research had to deal with the problems of

what stereotypes to use, where they come from, and how to insure their validity.

Representing a user's knowledge- as an-overlay of the existing rule base

was also considered. It was found to be useful for guiding critiquing (e.g., making

it more efficient by enabling or disabling rules). However, a. model that only cap-

tures user knowledge in terms of the LISP-CRITIC transformations is inadequate; it

cannot provide the required support for explanation-giving. There are slots

provided in the model for representing rule level information about a user, the im-

plementation therefore does provide such an overlay of the rule base for use in

situations where it is of value.

The limitations encountered in considering these other approaches

provided a key objective for the design of the user modelling component, to imple-

ment a model that represents user knowledge of the domain at a level that is of fine

enough granularity to support the explanation of domain entities. The basis for

that representation turned out to be the same deep, domain model, as required to

accomplish explanation-giving.

133

7.1.2. Implementation Approaches

An object-oriented representation allows the model representing each in-

dividual to be idiosyncratic but for all the individual models to confirm to a com-

mon format. This requirement, coupled with the need to support easy access and

the changing of separate instances of the entire class of models, led to selecting

that object oriented representation. The structure of the individual models is

defined as a class, and communicating with the instances of that class is facilitated

through methods defined on it. The object oriented representation can also support

potentials enhancements to the overall user modelling component. The actual lan-

guage chosen for the object-oriented representation is the Common LISP Objects

Systems (CLOS).

The need to achieve a representation of users' domain knowledge in a

more abstract or conceptual form than the LISP-CRMC rules resulted in basing the

user model on the conceptual domain model described in Chapter 5. The domain

model did not pre-exist, rather the motivation, in part, for developing it was to

provide support for representing users' domain knowledge. The research process

concurrently developed both the user modelling approach and the domain model.

To support dynamic update without explicitly querying the user, the im-

plementation makes use of information available in the context of the human-

computer dialog. Dialog, in the sense used here, refers- to any action that occurs

between the system and the user. The idea that the model should be implicitly

enhanced based on the dialog led to an analysis of the content of-these interactions.

This work views the dialog as consistir , of a series of episodes. From a

hypothetical scenario of a user. interacting with a completed system, the following

kinds of episodes in LISP-CRMC were identified:

134

* user requests and receives an explanation of critic suggestion

" user decides to accept (or reject) critic suggestion

" user accesses additional on-line documentation to help clarify an ex-

planation

" user informs LISP-CRITIC to disable (enable) a rule

" user adds a personal comment to an argumentation database about the

applicability or usefulness of a transformation in the rule base

The implementation uses what takes place in those episodes as a primary source

for triggering system inferences about the users' knowledge. One basis for this

approach is the fact that users apply their knowledge in constructing their "side"

of the dialog, therefore the actions they tak provide evidence about what they

know. Just as significant is that when users act as mere receivers of information

there are cues here as to how the user's knowledge should be changing. Specifi-

cally, they should now have command of the domain concepiz explained by the

system. In this second case, users "learn" from what the system tells them - this

is the basis for the some of %ect inference methods that will be described later.

The above objectives and approach guided the manner in which the user

model is represented, acquired, and accessed. An architectural overview of the

user model component in Figure 7-1 shows the separate subcomponents and func-

tions of LISP-CRrIC's user modelling component; it corresponds to the general

architecture developed and shown in Figure 3-2 and is an internal view of the user-

model as one of knowledge-based component in the overall system diagram that

was shown in Figures 4-4 and 4-5. The representation subcomponent will be dis-

cussed next.

135

U/

'Me user modeling component is one of the knowledge-based components

of LIsP-CRmC. Data are indicated with an oval, collections of processes
with rectangles, data flow with directed arrows. The three subcomponents
are: a representation in object-oriented form (CLOS), acquisition
methods, and access methods. Acquisition methods modify the represen-
tation - information flows from them to the representation. Access
methods extracts information from the model - information flows from
the representation.

Figure 7-1: User Model Component for LISP-CRiTIC

7.2. User Model Representation

The representation is designed to capture a variety of information about

the user. An example instance of the class user model is shown in Appendix B; it

is the state of the user model at the conclusion of the three dialog episodes in the

Chapter 4 scenario. The interesting part of the model (with respect to this project)

are those slots that represent the user's expertise in the domain of LISP:

rules-known, functions-known, and concepts-known slots. Conceptually these

record the coloring of the domain model graph for the user. An approach that was

considered for the representation was an overlay of the domain model; the overlay

representing those domain entities a user knows. But the model needs to also cap-

ture the levels of the users' knowledge according to the classification framework

136

described in Chapter 3, the approach implemented is to model the user as a color-

ing of the graph representation of the domain. To demonstrate this and show how

that coloring changes over time we will use the previous interaction scenario.

According to the conceptual framework, a user's knowledge about a

given concept can be categorized into one of three levels: dl, d2, and d3. That

framework was shown in Figure 3-1; it provides a useful scheme for approximat-

ing the expertise levels of users. For this research, we adapted it to represent user

knowledge of a programming language. For LISP the regions in the graph are in-

terpreted as follows:
D1: The subset of LIsP functions and underlying language concepts which users
knows and incorporate into their programs regularly, they understand these quite
well.
D2: The subset of concepts which users know and will use, but only occasionally.
They does not know the details nor perhaps even the specific syntax of functions in
this region but are aware of their existence and have a general understanding of their
purpose. Users might refer to a LIsP text, on-line documentation (e.g. Symbolics
Document Examiner), or consult a colleague for help in coding functions in this
class. Concepts in this class are less well understood by users than those in DI but
still can be considered a part of their active knowledge.
D3: The conceptual model of LISP held by a user. The concepts and functions that
they think exist in the language; this region also includes misconceptions.
D4: The domain knowledge of LLSP.

The inference methods that were developed are only able to recognize

domain knowledge in dl and d2, so a simplified scheme was used. It conceptually

marks entities in the domain as: well known to the user (dl), known to the user but

not well (d2), and unknown (dO). Entities at level dO are not explicitly listed in the

user model but the component infers they are unknown to a user by their absence

from the appropriate slot. There is another condition that could be the reason that

a domain entity is at dO; it may be that the system has not yet encountered any-

thing to trigger an inference about the level of knowledge - it just does not know

how well the user knows the entity, if at all. Discriminating between these two

situations could be accommodated with methods that test or query the user. There

137

are situation in which this distinction would probably be beneficial, tutoring for

example, but for explanation generation, the processing required to distinguish be-

tween them does not provide enough additional information to make it worth the

effort, and the present implementation treats both situations identically.

Summary data for user model for SCENARIO-USER

Following concepts in DI

FUNCTIONS

Following concepts in D2
FINTERNAL-REPRESENTATION

SIDE-EFFECTS
CONS-CELL
VARIABLES
SCOPE
LISP-ATOM
ARGUMENTS
FALSE/EF2Y-LIST/NIL
TRUE/NON-NIL

Following functions in D1

Following functions in D2

Following cr-rules in DI

Following cr-rules in D2

Rules-fired by name and number of firings
NIL

This is the state of the user model at the beginning of the scenario. The
concepts came from user's self-ratings on the initial questionnaire.

Figure 7-2: Initial User Model

Recall that the user model is conceptually a coloring of the graphical

domain model, that the graph has concept, function, and LISP-CITIC rlAe layers,

and that determining what to explain to a user involves extracting information

from that user model, the appropriate concepts required to understand a transfor-

138

4

la

0 4 4

139
mation. Figure 7-3 shows the initial coloring of the concept layer for the scenario-

user. Concepts known to the user model are shaded appropriately, depending on

whether they are in dl or d2. Unshaded concepts are at level dO. An equivalent

representation that shows the domain knowledge slots for the user model is tex-

tually displayed in Figure 7-2.

In the scenario the system suggested a transformation based on the

cond-to-if-else rule, the situation shown in Figure 4-7. A traversal of the domain

model graph generated the 13 items for explanation discussed in Chapter 6. It is

now up to the user model to filter that set to provide assistance to the explanation

component about what should be explained and how. Most significant is how well

(at what level) the user knows each concept. That information is provided to the

explanation component in three sublists, one for each level (dO, dl, and d2), which

are then used to determine the explanation strategy and presentation approach.

During the dialog episode, the user was satisfied with the explanation

and accepted this suggestion. The content of this dialog episode was used to up-

date the user model. The cues from this episode which are important to the user

modelling component are: the receipt of explanations about certain concepts (e.g.

conditionals, predicates and tests) and the user deciding to accept the cond-to-if

transformation. Cues triggered direct inferences that changed the user model and

these changes in turn triggered indirect inferences that will be explained in the

next section. A portion of the updated model is shown textually in Figure 7-4, and

its associated graph coloring for the concepts layer in Figure 7-5. The system's

design incorporates techniques that recognize that a model has been constructed

for this user and makes use of that version of in subsequent dialogs between

LISP-CRITIC and this user.

The model was saved between sessions and reused by LISP-CRrIC when

140

Summary data for user model for SCENARIO-USER

Following concepts in D1 Following functions in DI
FUNCTIONS

Following functions in D2
Following concepts in D2 IF
SYMBOLIC-EXPRESSION COND
LISTS
EVALUATION Following Ic-rules in DI
TESTS
CONDITIONALS Following lat-rules in D2
PREDICATES USER:.COND-TO-IF-ELSE
INTERNAL-REPRESENTATION
SIDE-EFFECTS Rules-fired by name and times fired
CONS-CELL
VARIABLES USER::COND-TO-IF-ELSE
SCOPE TDMES-FIRED I
LISP-ATOM TIMES-ACCEPTED 1
ARGUMENTS TIMES-REJECTED 0
FALSE/EMVrY-LIST/NIL
TRUE/NON-NIL

The contents user of the model after the, first dialog episodes. Changes to
the content, when compared to Figure 7-2, are a result of user actions
during the episode triggering inference methods that update the model.

Figure 7-4: User Model Contents after First Dialog Episode

the user next requested critiquing. In the scenario, that next episodes occurred

when the user requested LISP-CRITIC to look over the code for function test, as

shown in (Figure 4-10). The first transformation recommended on this code is

based on a rule called de-morgan, the user requested that this rule be explained.

The user model again provided the information to guide the process of developing

and presenting that explanation.

When the user accepted the suggestion, his user model was again up-

dated. The system suggested a second transformation for this function, one based

on the cond-erase-pred.t rule; it was explained in Figure 4-11 based once again on

141

13I

00

co
>L E

W~ 0L

cc C0

142

information from the user model about how well the user knows the underlying

concepts for this rule. It happens in this case that the concepts incorporated into

the explanation belong in the user's d2 level because none of the concept set un-

derlying that nile were unknown (at level dO). A third suggestion, based on the

cond-erase-t.nil rule triggered and the user accepted it, but without an explanation

because the prerequisite concepts are similar to those already explained for the

previous rule. The user model was dynamically updated throughout the dialog.

Each time information was shown or a decision made, inference methods trig-

gered. The domain knowledge portion of the user model at the conclusion of the

scenario is shown in Figure 7-6; its associated graph coloring for the concept layer

in Figure 7-7. The final internal representation for the instance of the class user

model that represents scenario-user is shown in Appendix B.

Each individual's model is an instance of the class user model. A user's

knowledge about each category of domain object is captured in slots in that model.

For example one slot contains the LISP functions a user knows as well as their

level Other slots contain personal information and data about the user's back-

ground. The information and data slots could be filled during initial start-up of

LISP-CRrIC for a particular user (i.e., the first time it is ever invoked by them) by

several explicit acquisition techniques. Specific the methods to do this have not yet

been implemented. Instead this research concentrated on developing the implicit

inference methods that modify the content of those domain knowledge slots during

the course of using of the system.

7.3. User Model Acquisition

The user modelling component contains a collection of methods that in-

fer which domain concepts belong in the user's model, and the level of that

143

Summary data for user model for SCENARIO-USER

Following concepts in DI Following 1cr-rules: in DI
SYMBOLIC-EX PRESSION
EVALUATION Following Icr-rules in D2
TESTS USER: :COND-ERASE-T.NIL
INTERNAL-REPRESENTATION USER::COND-ERASE-PRED.T
SIDE-EFFECT USEPR:tDE-MORGAN
VARIABLES USER::COND-TO-IF-ELSE
SCOPE
LISP-ATOM Rules-fired by name arnd tumes fired
ARGUMIENTS
FALSE/EMPTY-LIST/NIL USER::COND-ERASE-T.IL
TRUE/NON-NIL TIMES-FIRED 1
FUNCTIONS TIMES-ACCEPTED 1

TIMES-REJECTED 0
Following concepts in D2
LOGICAL-FUNCTIONS USER: :COND-ERASE-PRED.T
LIST TIMES-FIRED 1
CONDITIONALS TI]MES-ACCEPTED I
PREDICATES TI1MES-REJECrED 0
CONS-CELL

USER::DE-MORGAN
Following functions in Dl TI1MES-FIRED 1

TI1MES-ACCEPTED, 1
Following functions in D2 TIMES-REJECTED 0
NULL
NOT USER::COND-TO-IF-ELSE
OR TI]MES-FIRED 1
AND TI1MES-ACCEPTED 1
IF TIMES-REJECTED 0
COND

The state of the user model after the second (final) dialog episode.

Figure 7-6: User Model Contents after Second Dialog Episode

144

ci -

0

44

>i E

145

knowledge. The information that triggers these methods is passed to the user

model by other system components using interface functions; in turn, indirect

methods are internally triggered by those changes.

This research investigated how a user model for a cooperative problem

solving system could be enhanced incrementally over multiple dialog episodes

using implicit methods. To review the point made in Table 3-1, one finding was

that the system can use two different classes of update methods:

* Direct methods that use a specific dialog item to trigger singular

changes in the user model information. They make changes to the

user model as a direct result of information the user receives from the

system, or of an action the user takes.

" Indirect methods that are triggered whenever a change to the user

model contents occurs, they cause further updates to the model, one

might view these as internal- demons.

When a dialog episode triggers direct methods that. change the user

model, these changes in turn trigger indirect methods that also change the user

model. Indirect methods are implemented as after-methods on slots in the user

model; this insures that they get. run whenever a slot change occurs. An example

of this chain of inferences happens in the first episode in the scenario. The user

received an explanation of the transformation that included a description of the

concept of conditionals. That concept is marked in the user model at level d2

based on a direct inference method - when the system explains a domain entity it

assumes the user now knows that entity. An indirect inference method is triggered

because of the change to the concepts-known slot. That indirect method inter-

rogates the domain model and determines that a prerequisite piece of knowledge

for understanding the concept conditional is symbolic-expression. This causes a

146

change to the model that adds symbolic expression to concepts-kown slot at the

d2 level.

7.3.1. Direct Methods

The direct methods are an adaptation of related work on implicit user

model acquisition in dialog advisory systems that was discussed in Chapter 3. The

implicit acquisition rules developed in [Kass 88] are based on using natural lan-

guage dialogs. Here dialog is used in a more general way. As previously

described, it means any of the different interaction episodes that occur between a

user and the system. Using this view it was possible to develop our own set of

direct implicit methods by modifying the implicature rules, these methods fall into

four major categories:

" techniques based on aser decisions,

" methods triggered by information provided to the user,

" those triggered by optional actions on the part of the-user, and

" ones activated when users access the hypertext information space.

These categories of information are available to the system through tracking its

dialogs with the user. Appendix C shows the implementation code and associated

descriptions for each specific type of direct inference method. Here we will

describe, in general terms, each category and the rationale behind them.

Dialog episodes, between the user and LISP-CRrITC, terminate with a

user decision (unless the session is aborted) to accept or reject the critic's advice.

For either decision users requires the same type of knowledge (or level of under-

standing.) In both cases the system makes the same inference. A decision to ac-

cept a suggestion made by LISP-CRMc causes the system to mark the rule behind

the transformation as known to the user at level d2. A user's decision to reject a

147

rule is handled similarly. This igares the situation where users reject a transfor-

mation because they do want to bother with it and just go on. The system im-

plementation does provide a method to abort the interaction and it is assumed that

users are sophisticated enough to use that command appropriately. If the system

served a group of users less computer-knowledgeable than programmers, that as-

sumption could be called into question.

In the dialog the system presents information to the user in the form of

explanations, an event that triggers a direct inference that users know the ex-

plained entity. When the system explains a LISP concept, the level for that concept

in the user model is marked as d2. In the first scenario explanation, this is how the

concept conditionals came, to be marked d2. If a concept just explained was al-

ready marked at level d2 then its level is improved to dl. In the second explana-

tion episode the concepts internal-representation and side-effects migrated to the

dl level in this manner. Similar direct changes occur when functions or rules get

explained.

When users encounter explanations that are: unsatisfactory they can ac-

cess a hypertext information space as a fallback technique. Their selection of a

mouse sensitive word is also information that can be used to update the user

model. The system can capture the selections and relate them to domain, model-

entities where possible. This capability was implemented but has not yet been

tested to determine how often the mouse sensitive objects selected match the en-

tities (functions or concept" in our domain model. When a match is found the

system marks the domain entity at level d2 in the user model unless it is already at

level d2, in which case its level is improved to dl. The assumption on which this

method is based is an optimistic view that users actually read and understand in-

formation provided by the document examiner, an assumption that could be sub-

148
jected to further testing. When a user gets an explanation of the selected domain

entity, there is an assumption that they are therefore now familiar with that entity.

Their user model should now show that information. The domain model is not

necessarily complete and there are may be inconsistencies in the terms used.

However, because both the domain model and the document examiner generally

use accepted terms for LISP concepts from [Steele 84], the correlation should be

high enough to make this a useful approach.

The system is being extended to allow for several optional actions

actions that are not required of users, but allow the system's behavior or the

documentation base to be modified.

" Users can change the action taken when a rule fires; they can tell sys-

tem to ignore it (always reject this transformation) or automatically to

make the suggested change to the LISP code (always accept this trans-

formation.) The claim here is that users must understand a rule before

they are able to modify what happens when that rule fires. It is

analogous to the specific decision to accept orreject a given suggested

transformation; the user decides to accept or reject it in all cases.

When users change a rule status, the level of that rule is caused to be

set to d2 in their user model.

" A recent extension to the system allows users to associate personal

comments with any rule in the documentation space. An example

might be a programmer who does not like the cond-to-if rule because

"it creates code that is less general." This argumentation can be at-

tached to the rule and associated with that programmer. These com-

ments then become available to anyone else who uses the system, who

can also add their own comments, perhaps disagreeing with the pre-

149

vious author, because "the argument misses the point that the rule is

intended to made the code easier for other programmers (ones in-

volved in maintaining it in the future) to understand." When users

involve themselves in generating such argumentation, the system

should infer that they understand the rule quite well and consequently

mark it at level dl in the user model.

Direct methods change the user model using explicit information ob-

served in the dialog. These methods alone are inadequate for developing a useful

model that becomes sufficiently complete in a reasonable amount of time. Ad-

ditional methods that leverage this information, in the spirit of stereotypes, were

needed. The structure of the domain model provides the. basis for such an ad-

ditional class of methods that do indirect implicit updating.

7.3.2. Indirect Methods

The idea for indirect methods developed while implementing the con--

ceptual domain model when it was observed that the- links in the model capturing

prerequisite knowledge for the domain. entities could provide a source for implicit

acquisition. These prerequisite were established for use in explanation, but the

idea for using them for implicit acquisition resulted from noting that they may tell

us something about what the individual knows about the domain - in the spirit of

the notion, used in the UMFE system, that user knowledge "propagates" through a

set of concepts. The prerequisite relationships indicate that if users knows a given

concept, they probably know its dependent-on concepts. Based on this obser-

vation, there are methods that trigger whenever a change occurs in the knowledge

level of an entity in a user model. Therefore the indirect methods leverage the

domain model structure, allowing the system to enrich its model of a user without

150

waiting for explicit evidence about each domain entity. The indirect implicit

methods belong to a class of model building techniques that includes stereotypes

and the short cut methods methods used in human-to-human cooperative problem

solving.

Models of communications partners are based on more than the direct

evidence provided directly from dialog. Computers, as Suchman pointed out

[Suchman 87], do not have access to the rich set of information available to

another human partner, therefore this research looked into ways to accomplish a

similar enrichment of the model by using available resources. One such resource

is the linkages between entities represented in the structure of the domain model,

these links form the basis for the. indirect update techniques in LSP-CRmC.. A

change occurring in the representation for the user's domain knowledge can be

used to trigger further changes to the domain model based on the prerequisite

knowledge for the entity just change& The indirect-methods infer how well those

prerequisites domain entities are known and put that information into the ap-

propriate slot in the user model. Indirect methods exist for each class of domain

entity: LISP-CRiHC rules, LISP functions and LISP concepts. Their implemen-

tation is shown in Appendix C.

There is a set of functions associated with each LISP-CRmC rule, these

functions are each linked to that rule via the functions-in-rule relationship in the

domain model; they are the functions used in either the left hand side or right hand

side of the rule. Often, rules are also based upon certain LISP concepts in the

domain model. When the level for a rule is changed in the user model, indirect

methods modify what the user model has to say about how well the user knows

those associated functions and concepts. If the rule has been set to level d2 our

indirect methods infer that the functions in that rule are also known at level d2, and

151
nothing is inferred about the concepts behind the rule. When the level of a nile is

set to dl, both the functions in that rule and the concepts on which it depends are

set to level d2 in the user model. A case could be made, in retrospect, that a dif-

ferent level might be inferred for the functions contained in the left hand side of a

rule; after all, programmers actually use these in their code, or perhaps that the

functions in the right hand side are not yet a part of a user's LISP knowledge and

should not be added to their model.

For a LISP-CRIC rule, the domain model provides information about

the functions in that rule and further traversal of the model beginning with those

functions provides a list of prerequisite concepts. When a direct method modifies

the rules-known slot in a model, an indirect inference is triggered by an after-

method on that slot. For example, for the cond-to-if rule in the tirst explanation

dialog in the scenario, first that rule is added to the appropriate user model slot,

then the indirect methods also add the cond and if functions to the user model and,

in turn, the concepts functions and arguments.

The prerequisite to understanding a LISP function are its dependent-on

domain concepts. When the level at which a function is known is set to d2, its

dependent-on concepts are also set to level d2. If the level of a function is set to

dl, those concepts are also set to dl.

Concepts themselves are linked to one another via the dependent-on

relationship. When the level of a concept is changed to dl in a user model, its

prerequisites in that user model are also set to dl. In the situation where the level

of a concept is changed to d2 its dependent-on concepts are marked at dl when

they were previously marked d2 in the model. If those dependent-on concepts

were not already in the model (conceptually marked dO) then they are added to it

with a d2 marking.

152
The domain model implementation also contains related links that iden-

tify functions, concepts, or rules that are similar to another function, concept, or

rule. This class of links could be used as the basis for a class of weak inference

meth,,ds, such as predicting the ease with which a new entity could be introduced

to the user. In the current implementation, the similarity relationships were not

exploited in the present user model acquisition methods. This possibility is men-

tioned here to show how the theoretical approach of using the domain model struc-

ture to infer useful information extends beyond the techniques that were actually

specified and implemented.

The implemented indirect methods were designed conservatively; they

are neither complete nor perfect. Their shortcomings, and indications about how

to improve them came out during an evaluation that is discussed discussed in

Chapter 8. There are two results from this research of general interest and utility:.-

* It is possible to define a class of implicit user model acquisition

approaches that are indirect. These are leverage techniques that use

information about users that is not directly observed, but is derived

from other knowledge (knowledge of a domain model, stereotypes, or

etc) to indirectly enrich the models of those users.

" We can use the deep conceptual domain model that is needed for

proper explanation as a source for a set of such indirect implicit user

model acquisition methods.

The methodology followed provides an approach that can be used for developing

user model acquisition techniques to serve other situations.

In summary, to show how the direct and indirect acquisition techniques

work together, let us review a portion of the scenario. The concept tests is marked

at the d2 level in the .:er model shown in Figure 7-5. This resulted from a direct

153
inference based on a method that claims when a domain entity is explained to a

user, that user is now aware of its existence and has a fundamental understanding

of it - the user knows of the concept but is not proficient in applying it in every

circumstance. The domain model also tells us that, for the concept tests, a prereq-

uisite (according to the dependent-on links in the domain model) is the concept

symbolic-expression. Therefore, an indirect inference places symbolic-expression

at level d2 for this user. Similar direct and indirect user model acquisition

methods fire for the cond-to-if-else rule, its underlying functions, and its

dependent-on concepts. More domain entities in the user model in Figures 7-4 and

7-5 get marked at the d2 or dl level as the result of indirect implicit methods than

as a result of direct methods.

7.4. Access to the User Model

In developing the architecture for the user modelling component one ob-

jective was to insure that other system components can easily access. the model.

Another consideration was to have a model that supports modification to incor-

porate additional information.. Significant theoretical issues or results were neither

addressed or discovered in this aspect of the work, but played a role in deciding to

use an object-oriented approach. Access methods support the current explanation

component framework while providing access to information likely to be of value

for other purposes.

The interface functions support the explanation strategies described in

Chapter 6. The user model can be queried to determine which of a set of domain

objects a user knows or does not know. The interface functions are shown in Ap-

pendix D; some examples are ones that determine how well a user knows a domain

entity (i.e., at what level), and whether a domain object was previously explained.

154

An attempt was made to conjecture the additional information a user

model might be asked to provide, and include in the framework functions that

might be needed in other situations. Slots in the model record all rules-fired

during previous dialog episodes and the number of times a user has invoked the

critic. Other such information includes the user's goals and previous programming

language experience. The goal can be acquired by explicit query of users during

their initial session with LiSP-CRrITC; currently it is defaulted to "simplifying"

code to make the program easier for others to read and maintain. Previous pro-

gramming experience in other languages can also be obtained through such an in-

itial information-gathering session or interactive questionnaire.

The system allows the user to modify the manner in which the system

presents information and the default action taken when a rule fires. It supports

end-user-modifiability. The user model contains slots that record such user

preferences and make them available to other system components.

A number of access requirements are internal to the user modelling com-

ponent itself, the instance-slots can only be directly updated by the modelling

component. The component receives information from other components about

user actions or explanations, and determines how to use that information. It

decides what additions or modifications to make to the user model and calls the

internal methods to make them. The user modelling component is notified when a

session terminates normally (is not aborted) and a set of cleanup actions invoked.

These functions save the user model's current contents in a file so that information

is not lost when the user logs out or the system is rebooted, and can be used during

subsequent log-ins when LISP-CRrITC gets invoked.

When UisP-CRrrIC is called, the system determines whether the user has

a model already loaded into the current environment; does not, but the system

155
saved one during a previous session; or have not previously used LISP-CRITIC. In

the first case, the system does nothing; in the second case, it loads the most recent

version of the user model; and in the third case it must initialize a model for this

programmer. It is in the last situation, when the user model is initialized, that the

system could use explicit query methods to gather start-up and background infor-

mation about the user. No explicit methods or start-up user questionnaire were

implemented in this research; such an implementation would not add to the

theoretical ideas developed here.

7.5. Summary

Specification and implementation of the user model component was a

major portion of this research effort. The design objectives were established with

a goal in mind of generating a framework ultimately able to support explanation in

any cooperative problem solving system. Based on these objectives, specific im-

plementation decisions were made for the user modelling component architecture

for LISP-CRrITC. That component uses an object-oriented representation scheme

for the user model, a set of access methods implemented as generic interface func-

tions that can be called by other components to interrogate the user model, and a

set of implicit acquisition methods. The latter are separated into direct methods

that use specific information to trigger an inference about the user's domain

knowledge and indirect methods that percolate changes through the user model

based on relationships between domain entities captured in the domain model

graph structure.

The outcome of this theoretical development and implementation is a

framework of user model acquisition techniques. That framework can be used to

analyze and design user modelling components. The update methods implemented

here were the subject of an evaluation that will discussed next.

CHAPTER VIII

EVALUATION OF THE USER MODEL

8.1. Introduction

The user model developed in this research project was evaluated in two

ways. Programs written by students learning LISP were processed using

LISP-CRrIC, and the individual user models of each programmer saved. The

models were compared to one another, attending particularly to the changes that

took place in them over time. Comparisons of the contents of the models at dif-

ferent times permitted an evaluation of the behavior of the user modelling system,

and indicated potential system improvements. The models were also compared to

questionnaires that users completed prior to each of the three progranming assign-

ments. The data collection process is first described, then the results of analyzing

those data; finally I discuss what these results imply regarding-modifications and

enhancements to the system.

This particular evaluation was not a usability study; it did not attempt to

assess either the overall effectiveness of LISP-CRrIC nor the ability of program-

mer to use it effectively. These types of studies, as discussed briefly in Chapter 2,

were done for previous systems versions and helped determine the capabilities we

want to provide in the current system under development. In this work the em-

phasis was on developing an approach to user modelling; therefore; the evaluation

focused on the effectiveness of the user modelling component. To insure consis-

tent and useful test results, it was necessary to control the test scenario conditions

157

to which the the user model acquisition subcomponent was subjected. The current

version of UisP-CRrIc does not have a fully operational explanation component

based on the framework described in Chapter 6; because the presentation strategies

have not been fully defined or implemented, a total system test was precluded.

Informal studies in which other researcher were asked to "test out" the system

were conducted, and the results integrated into the interface design during

development. That user feedback guided decisions about menu options and

names, the type of explanation, and what capabilities should be provided for users

who want to modify the system.

If the user modelling acquisition methods work properly then the con-

tents of the user models should both change over time to reflect first, improved

representation of a user, and second changes in the students' knowledge itself be-

cause they were engaged in a learning process. Controlling for or separating-out

these two phenomena was not possible under the scenario in which this evaluation

was conducted. However, over time, the user models when compared to earlier

ones should reflect a richer representation of the, student's knowledge state.

Secondly, in spite of the limitations of a self-assessment methodology, there

should be some correlation between the model contents and the actual state of stu-

dents' knowledge.

8.2. Data Collection

LISP programs written by undergraduate computer science students were

collected throughout the Spring 1989 Semester. These students were enrolled in

CS3202, Introduction to Artificial Intelligence, a survey of artificial intelligence

techniques which provides an introduction to programming in LISP. Ten students

volunteered to participate in the study. We collected the programs which were

158

submitted to fulfill three class assignments. Classroom lectures on LISP preceded

the assignments; the lectures introduced LISP syntax and functional programming

techniques.

The three assignments were spread over the course of the semester with

approximately three weeks between due dates. The total code for all three assign-

ments averaged about 250 lines per student, including comments. The subjects

also completed questionnaires, an example of which is shown in Appendix E. The

questionnaires accumulated personal and experiential background as related to

programming and asked the students to assess their own knowledge of LISP con-

cepts and functions. Three questionnaires were administered, one before each of

the programming assignments. The questionnaires asked the student to rate their

knowledge of 18 concepts from the LISP domain model (see Chapter 5) and 30

LISP functions. The rating categories were designed to approximate verbally the

levels of user knowledge that were discussed in Chapter 3. The descriptive rating

categories used on the questionnaire were:

1. the student could define the concept or write an expression using the

function (dl),

2. for a concept, this rating means they were familiar with, but could

not precisely define it; and for functions that they knew of its exist-

ence but would have a problem using correct syntax (d2), and

3. they were not aware of the concept or function (dO).

You might notice that it was possible, on the questionnaire, for students to also

classify functions into a category indicating that they had heard of the function but

were not entirely sure of its purpose and effects. Functions in this category fall

into the student's d3, these data were not used in the evaluation because the user

model has no techniques for classifying knowledge of domain entities at that level.

159
LISP-CRrC was run on each student's programs in two "test

scenarios", one using an "accept" condition and the other using an "explain"

condition. Under the "accept" condition, the simulated response to each

LISP-CRMIC recommendation was to accept it without requesting an explanation.

In the "explain" condition, the scenario called for the user to request an explana-

tion the first time a particular LISP-CRMC rule fired; in this scenario all suggested

changes were also accepted. Scenario conditions were established to control the

conditions so as to limit the types of user actions to which the user model acquisi-

tion subcomponent was exposed. For example, access of the hyptertext documen-

tation space was not called for in any test scenarios.

Programs from four of the students were run through LISP-CRITIC under

each test scenario conditions. These four were selected because they completed all

questionnaires and provided completed working programs for all three assign-

ments. Six user models for each student were captured; a set was saved after each

one of their three programs had been run through a scenario. In the test conditions,

the initial (or startup) user models were empty. The user model accumulated

during an episode under one of the scenario conditions was retained and used for

the succeeding episode under that same condition. For example, the user model

the system developed for userl in programming assignment one under the accept

condition was the model with which the system began the test scenario dialog for

userl about programming assignment two under the accept condition.

8.3. Analysis

The contents of the user models were analyzed to determine the total

number of domain objects represented at knowledge levels dl and d2 after each

assignment. Recall that any domain entity not explicitly represented in the user

160
model is, by default, considered by the system to belong in dO. The results are

smmarizedl in graphical form in Figures 8-1, 8-2, and 8-3.

The first two sets of graphs (Figures 8-1, 8-2) show how the number of

objects in the user model increase over time (from assignment 1 to 3). Userl un-

der the accept condition scenario, after completing the first assignment, knew

seven LISP fur cions, according to his user model; after completing assignment

two, eight functions; and after assignmen three, ten functions. Under the accept

condition, domain objects never get ranked higher than level d2 because collec-

tively the acquisition method will only allow a domain model object to move to

level dl once it has already been ranked d2 and either is explained explicitly

(which of course never happened under this condition) or migrates to dl because it

is linked via the dependent-on relations to another domain entity that moves to dl.

Since no explanations were included in this test scenario no entities ever got

marked dl to begin this chain of inferences. Ir is therefore impossible for any

domain entity to indirectly migrate to the dl level. A similar circumstance exists

for LISP functions even in the explain scenario, but here it is not an attribute of the

control conditions, but rather indicates a possible shortcoming in the acquisition

methods that will be discussed later.

Figure 8-3 shows cumulative results for all three types of objects for

these four students over the three- assignments. There is- only one curve for the

accept condition, the total for the number of entities ranked d2, for the reason dis-

cussed above. The shape of the curves in this graph are probably what would be

expected from programmers learning a new language. They initially learn a few

functions and concepts to get them familiar with the language and able to write

some code, and after some experience they begin to acquire new knowledge at a

faster rate. This is the type of learning curve one would expect for students learn-

161

User 1- "accept" User 1 - "explain"

30 20

20 -- C

0 0

Asinl Asg2 Assin 3 "n 1 2 Assign 3

User 2 - "accept" User 2 - "explain"

25 30

20 3-- Moln 20

10 B

rulos-d

5 -101 , ,
Assign 1 Assign 2 Assign 3 Asign I Assgn 2 Assign 3

Figure 8-1: User Model Test Results

These graphs show changes in the number of domain entities recorded in
the user models of two students under the two different test conditions.

162

User 3 - "accept" User 3 - "explain"

20, 12

-U--

0-
:3 6-

-- cn-/as.

AaulgnlAdn2Aadn3 Aaudgn 2 Aaaign 3

User 4 - "accept" User 4 - "explain"

-.-=- I

20 0

Asin 1 Assgn 2 Assin 3 Assign 1 Asign 2 AW~gn 3

10iger 4 Us- ModUls 4t suxts

120-

%10-4 C d1P

0 . . I01

Assign I Assign 2 Assign 3 Assign I Assign 2 Assign 3

Figure 8-2: User Model Test Results

Graphs similar to the ones in Figure 8-1 showing changes in the user
models for two more students.

163

Summary Data for All Users - Both Conditions

180

-~--accept -tota in d2

exlantoa I n dl
- explain-total

140

0

S120

(1)

UI)
-J 80

60

40

assign. 1 assign. 2 assign. 3

Figure 8-3: Summary of Test Results

ing LWS for the first time. It rises only slightly between assignments 1 and 2, then

more sharply between the second and third programnming assignments. The curve

for objects being ranked at level dl rises less sharply overall because students do

164

not gain complete understanding of that many concepts and functions over the

course of just three programming assignments, but they are likely to become

quickly familiar (level d2) with a greater number.

Recall that the semantics of domain entity ranked at level d2 is that users

know about such entities, but would need assistance in applying them in their

work. This situation matches both the course objective, to introduce LISP and

functional programming to the students; and reasonable expectations, students do

not become experts after three programming assignments but do gain a more

general understanding about some number of the central concepts in the domain.

In general, this analysis indicates that the contents of the user models correspond

to expectations about user knowledge under the conditions set for the evaluation.

No claim is made that this data guarantees that the model representation or the

acquisition methods are valid; instead the assessment here is that the user modell-

ing component works in a predictable and reasonable fashion.

8.4. Results of Analysis

The analysis provides two observations. The first one examines the ef-

fectiveness of the implemented user modelling component; the other one considers

the accuracy of the user model contents.

8.4.1. Efficacy of the User Model Component

As discussed in the scenario presented in Chapter 7, one way to view the

content of the user model is as a coloring of the conceptual graph representation of

the domain model. These graph colorings together with data discussed above

(shown in Figures 8-1, 8-2, and 8-3), point out some potential shortcomings in the

user model acquisition methods. The results indicate some types of refinements

that might be made to improve the inference methods.

165

" It is possible for the acquisition methods to infer (color) certain ob-

jects from the domain model as well known to the user (level dl) even

though they have never actually been explained by the system. This

inference is perhaps too optimistic. Certainly some users generate

self-explanations for some concepts or rules without ever consulting

other material, but there is no guarantee of that happening and the in-

ference methods need to be changed to wait for outside confirmation

of that knowledge.

" The previous situation is acceptable under some conditions, such as

after observations of users applying the given concept or function cor-

rectly in a subsequent program. The a priori conditions for these

types of indirect inferences should be made more stringent; for ex-

ample we might require corroborating evidence from other sources,

such as a report from the statistical analysis component of how- fre-

quently a programmer uses a function.

" LISP functions were never colored at the dl level because they do not

get explained directly under the present strategy. There presently are

no methods to infer indirectly that a user knows them at that level.

This is partially a phenomenon of test scenario conditions which did

not call for using the hypertext capability as a fallback technique. Ac-

tual users would most likely have used that facility, for example call-

ing up the Document Examiner descriptions shown in Figure 6-1 as a

fallback to the explanation for the cond-to-if rule shown in Figure 4-8.

Again, an outside source could provide corroborating evidence show-

ing application of that knowledge (e.g., using an if in a follow-on as-

signment in the situation above).

166
8.4.2. Comparison of the User Modeis witt te Questionnaires

In an attempt to validate the inferred user models, the contents of those

models were compared to the responses from the student questionnaires. Specifi-

cally, concepts appearing in the user model after each scenario episode were com-

pared to the students assessment of their own knowledge of those concepts at the

same approximate stage of learning.

Table 8-1 shows, for all users and as a total, the correlation of the con-

tents of the models after processing the first program under the two conditions,

accept and explain, with the second questionnaire. Similarly, the contents of the

models resulting after the scenario episode for assignment two were correlated

with the third questionnaire. The questionnaires were administered immediately

before the students received their programming assignments. The second ques-

tionnaire, completed in class just before assignment two was given, therefore

reflects what students learned about LIzP while completing assignment one. The

classroom lectures on LISP were formally presented at the beginning of the

semester while students worked on the first assignment, and should not effect

these correlations.

Oidy correlations for concepts were computed because, as it turned out,

the portion of the questionnaire dealing with functions was not well designed.

There was minimal overlap between the set of LISP functions on the questionnaire

and the set used by the students in their three assignments - functions acquired by

the user model acquisition methods. The questionnaire was developed and ad-

ministered before getting the studens' programs and we failed to include many of

the functions they actually used in the assigned problems. A better prior analysis

of the programming problems, and conjecture about what functions might be used

could have been done; the functions used on the questionnaire were ones that we

167

Table 8-1: Summary of Correlation Results

Correlations of User Model Contents to Questionnaires

Condition User User Model I vs Questionnaie 2 User Model 2 vs Questionnafre 3

Userl .25 .15

User2 .08 .17

Accept User3 .18 .18

User4 .92 .23

Total .38 .18

Userl .67 .77

User2 .92 .83

Explain User3 .45 .36

User4 .23 .69
Total .56 .67

This table shows correlations of the user models' contents with self-
assessment questionnaires. When the scenario call for users to receive ex-
planations of LISP-CRITIC suggestions, correlations are the best, greater
than 50% for most students and overall.

thought were fundamental. The questionnaires did not ask about all of the 45

domain concepts and 103 functions in the domain model because of a desire to

keep it within a reasonable length, in retrospect it might have been better to ask

about all of them. LISP-CRrIC rules were not asked about on the questionnaires

because they would not have had any meaning to the students in an abstract form

(e.g., by name).

The correlations under the explain condition are significantly higher.

The models acquired under this condition correspond better to the self assess-

ments. The explain scenario is probably closer to the process student program-

mers follow. They probably engage in active learning while in the process of do-

ing the assignments. They encounter and learn those concepts represented in the

user model, and on the questionnaire, through classroom instruction, or by consult-

ing additional information sources (e.g., textbooks, human advisors, or peers).

While in the process of writing their programs, they seek out "explanations" that

168

help them to build a mental model for the domain comprised of the concepts and

LISP functions. Questionnaires 2 and 3 probably should nave asked the respon-

dents the types of source materials they used (e.g., textbook, on-line documen-

tation, etc.) when writing their LISP programs.

8.5. Limitations

A criticism of the testing process is that because the students themselves

did not use LISP-CRITIC, there is not evidence that they would have learned the

transformations in our scenario. Neither do we know if students actually learned

the new functions in the right hand side of the transformation rles or the concepts

are behind them. There is evidence that they knew some of the functions (the ones

in the left hand side of the transformation rules) as these were used to complete the

assignments. The evaluation depends on the assumption that the subjects became

more knowledgeable in the domain of LISP because they completed the assign-

ments, and on the assumption that the code used in the test scenarios to infer how

their knowledge changed reflects that new knowledge.

The domain knowledge required for any single transformation requires

understanding the functions in, and concepts underlying, both the old code and the

new code from a transformation. Therefore, some of the knowledge attributed to

subjects by their user model, came from code the students wrote; other knowledge

is that captured in the LISP-CRITIC rule for each transformation. In principle, more

than half of what the system infers is based on the students' code, that half inferred

from the left hand side of the transformation rules. If the subjects had in fact ex-

perienced our test scenario episodes, one could hypothesize that the rule firings

(and explanations if requested) would have caused them to learn new functions

and concepts, those in the right hand side; they would have appeared in their ques-

169

tionnaire responses and there would be improved correlation between the user

model contents and the questionnaire dat

8.6. Shortcomings in System Pointed Out by the Evaluation

There are some shortcomings in the system pointed out by the evaluation

and some pointed out by the scenario. The scenario was presented in Chapter 3 as

a vehicle for understanding the context of t&Is work. Hnwever, because it is based

on a set of programs produced under actual circumstances, it provides insight into

how the user modelling component works in such a real scenario, and provides

another way to assess its effectiveness. The explanation strategies require ad-

ditional implementation work The user model and the LISP domain. model. can

support richer explanation strategies than simply the display of hypertext descrip-

tions for the underlying concepts. For example, the domain model also links re-

lated objects, such as similar LISP-CRRITC rules. This information could be used

for other types of explanation strategies, as previously discussed. The explanation

component could consult the domain model for the set related domain entities and

then interrogate the user model to determine-if any of the entities-in this set are

known to the user. Given this knowledge, the explanation component could

describe the new entity in terms of its differences from, and similarities to an al-

ready known entity. Examples occur both at the rule level, now that the reader

here knows the cond-to-#- rule, a reasonable strategy for explaining the

cond-to-when rule would be to use this differential approach; in a similar fashion

two related-concepts or functions can also be described.

Another observation is that domain objects migrate to the user's dl level

of understanding in the user model too easily. One can see this graphically by

comparing the graph colorings from the three scenario dialog episodes in Figures

170

7-3, 7-5, and 7-7. The user model acquisition methods should be changed, con-

straining inferences to "percolating" knowledge to the dl level through no more

than one level of dependent-on links. Another indicated modification is to the

indirect acquisition rule; instead of marking dependent-on concepts at level dl,

when the base concept is at dl use a weaker condition that marks them only at

level d2. We should consider modifying any method that allows the user model to

indirectly infer a piece of knowledge is well known (level dl) to a user.

8.7. Implications for System Modifications and Further Development

Three major findings resulted from the evaluations. The user model im-

plementation, particularly the acquisition methods, can be refined. Using a startup

or initial user model is likely to provide a more accurate evaluation, and the

domain model itself could probably be iteratively refined using analyses of ad-

ditional test cases.

Refining the user model acquisition process means that methods should

be modified to apply less optimistic inferences, as just discussed in the previous

section, and that additional methods should be added. The indirect methods need

to be modified so that LISP objects are added to the domain model at no better than

the d2 level. Presently the indirect methods can cause a domain model entity to be

ranked at level dl and that is probably too optimistic a point of view. These

methods should be modified, and the test data rerun, to see if better correlations

result.

Using a startup model rather than beginning "from scratch" would es-

tablish a more realistic test scenario. One approach would be to use stereotyping

or classification approaches to provide information about users that is likely to be

true even if not provided directly in initial questionnaires, or later through implicit

171
methods. Observations of cooperative activities between humans [Reeves

90] showed that people apply certain "leverage" techniques, such as stereotypes

or explicit questioning of their partners, to provide an initial or default model to

guide their first interactions with another person. Implementing these types of in-

itial modelling techniques was not part of this work, but some simple techniques

could probably be used to establish initial models which the implicit inference

methods could then improve upon during the test scenarios. The questionnaires

already completed by the subjects could be the source of initial information for a

startup model. A test of the system starting with models initialized from those

questionnaires would probably provide a more realistic scenario of how the stu-

dents' knowledge changed during the programming exercises.

An analysis of the graph colorings for domain concepts indicate that

some groups of concepts (a grouping being indicated by the oval size) are more

frequently colored and perhaps more fundamental. They migrate to level dl the

most quickly; they are the ones the model claims are best known to the user. A

more detailed analysis of the models generated for a larger population of users

might provide some insight into how to refine and improve the domain model to

more accurately portray programmers' mental models of the domain.

8.8. Summary

Testing the implemented user modelling component demonstrates that

the techniques work approximately as was expected. Some parts of the user model

component can be made to more accurately predict user knowledge, and any sub-

sequent evaluations should employ a startup model to make it approximate more

closely the approaches people use in similar cooperative problem solving situa-

tions.

172
To fully validate a model, such as the one proposed and implemented

here, will require significant additional iterative development together with exten-

sive testing of a complete critiquing system on actual users. No matter how well

the user modelling component worcs, it produces only an "approximation" of a

user's knowledge state. People themselves make do with similar approximations

of their communication partners. A complete user modelling system will need to

use a range of comprehensive acquisition methods that include multiple tech-

niques, as will be described in the next chapter. These, together with detailed

domain and, perhaps, task models, are needed if user modelling is to become a

mature technology.

CHAPTER IX

APPLICATIONS FOR, AND EXTENSIONS TO, THE WORK

This chapter analyzes the contributions of this work in a larger context

of research problems and application systems. Primary focus was developing a

user modelling approach for critiquing. But, the research area of user modelling is

important in a more general sense; my results can be of use in several other

paradigms: advice giving systems [Wahlister, Kobsa 88], intelligent computer-

aided instruction [Wenger 87], and human-computer interaction in general

[Murray Benyon 89]. A primary contribution of this research is a co:aceptual

framework for approaches to acquiring-user models; a fiamework that can also

guide future research. A possible extension is to apply our specific model to sup-

port applications other than critiquing. Other critiquing applications could benefit

from the addition of a user modelling component; it may be possible to develop

such a component in fashion- similar to the approach followed in this dissertation.

Lastly, there are also several interesting directions in which this approach to user

modelling can be continued and extended.

9.1. A Framework for User Model Acquisition Techniques

In the course of these investigations a comprehensive fiamework for

classifying approaches to user model acquisition was developed. It is a framework

that integrates conceptual discussions [Wenger 87] together with ideas put forth in

research attempting to identify the acquisition requirements in a general user

modelling rchitectum [Kass 88]. The framework contains four categories of ac-

174
quisition techniques. Each category is a collection of methods which may or may

not be appropriate in a specific system; this depends upon the domain and type of

application that the user model will support. The purpose for the framework is to

aid system developers and researchers in identifying appropriate techniques for a

particular application. The framework can also help us to categorize research ef-

forts and identify problems worthy of further investigation. This framework

helped guide the implementation of the user modelling component for

LISP-CRMC.

9.1.1. Background

In the process of developing the user modelling component for

LISP-CRrITC, we investigated a diverse set of acquisition strategies, but there was

no methodology that could be used easily to correlate them. A classification

scheme that helped to organize the ideas, and to understand research on user model

acquisition by others, was developed. One significant finding during this process

was that user modelling for many types of systems and applications require

abstract, conceptual domain representations, and furthermore, a number of the

techniques in the specified framework depend on that deep domain model.

A motivating factor in this work was the intuition that considerable in-

formation about the user is available within the computational environment, and a

desire to explore how to make use of that information for user model acquisition.

It was specifically observed that users demonstrate their understanding through ac-

tions that they take and by the decisions that they make. Also noted was that their

knowledge is enhanced whenever they are exposed to system provided information

in the form of explanation or advice. The central issue is how to use that infor-

mation in the acquisition process. At a general level I was interested in

175
"evidence-based" approaches. Systems have available evidence about what users

know, they need methods that tell them how use that evidence to infer models of

those users. The indirect implicit acquisition developed in this research also had to

fit into the framework.

The acquisition framework was also motivated by what was observed in

human-to-human cooperative problem solving, specifically those situations in

which one person has a greater understanding of the task itself, while a second is

more of a domain expert - knows more potential solution approaches. This role

distribution is similar to the one between users and knowledge-based computer

systems. In the study of sales agents assisting customers [Reeves 90], when inter-

viewed the experts related that they use direct, questioning-types of approaches to

acquiring a model of their clients and, more interestingly, several consciously

recognized short-cut techniques (and others, we suspect, that are not). The trig-

gering conditions for the inferences are interesting; they ranged from physical

characteristics of the customer, the way the client is dressed, to cognitive traits,

how conversant they were in expressing the problem, and even to the local wea-

ther, was there a significant winter storm likely to cause certain problems for

homeowners, automobile operators, etc. The classification framework attempts to

account for as many of these observed techniques as possible.

There are four classes of update techniques: explicit acquisition, tutor-

ing, statistical techniques, and implicit methods. With present technology it is un-

likely that a single system will be able to use methods in every class but, in build-

ing a specific user modelling component, this framework can help in the selection

of appropriate and feasible approaches. This is not meant to contradict the long

term goal of a comprehensive system which uses multiple approaches, but rather

accounts for what is possible to do in systems in the immediate future.

176

9.1.2. Explicit Acquisition Methods

Explicit user model acquisition methods are based on direct query of the

user. They acquire specific information about the user that will assist in deter-

mining an initial user model. In some cases they are i sed to clarify conflicting

information in a model, in others to add information that is missing but needed by

the system. Explicit acquisition techniques can be used in conjunction with

stereotypes to construct the initial model of a user.

Three explicit acquisition methods are a prescriptive set of questions

prestored in the system, dynamic selection of questions for the user, and free-form

descriptive user input. In the first approach, a system developer determines what

the information is needed for the initial model, then specifies and prestores ques-

tions to ask of the user. The answers provide direct information to enter into the

model, for example which LISP functions they already inc" , or can be designed to

trigger richer inferences that are represented in sets of rukl, procedures, or a deci-

sion table.

A similar approach dynamically generates the questions. It is possible to

use a decision tree, or the structure of the domain, especially if it is hierarchical, in

conjunction with previous answers to select a minimal set of queries to establish

an adequate startup model. An example from the UNIX operating system domain

is to ask users if they know the diff command; a positive. answer would allow the

system to infer they have command of concepts like the UNIX file system, types of

files, and that they probably know more basic, related commands, like car, Is, and

more. This type of approach was explored in related work where we explored

building an initial user model for a learning environmen a learning environment

designed to assist new users of a workstation [Mastagio, Turnbull 87].

The third technique was used in the stereotyping research conducted by

177

(Rich 79]. Here users describe themselves (their interests in the case of

GRUNDY); the terms they use are compared to stereotypes the systems knows, if a

favorable match is found the content of the stereotype becomes the default con-

tents for the initiai user model.

9.1.3. Tutoring-based Methods

Tutoring-based methods use instructional episodes as an information

source to inform the user model contents. An assumption here is that after in-

dividuals receive tutoring on some domain aspect, they now know it, and their

model should reflect that fact Tutoring-based methods are used, in intelligent

tutoring system, to infer student models, possibly in conjunction with additional

methods which observe a student subsequently using that knowledge correctly. It

is possible to use these same techniques to build a user model that is able to ac-

commodate a more comprehensive system, one that includes a tutoring and other

components. Student models are primarily used to determine knowledge that is

"missing", which the system can then teach; critics are interested in offering ex-

planations for similar missing knowledge, when it is required to understand a

'critique. These related needs indicate that there is a possibility to share both the

user model and the acquisition methods.

Some acquisition methods in tutoring attempt to determine the parts of a

domain that are misunderstood, these are the bug approaches. Knowing the

student's bugs is of significant value in guiding an instructional process but it is of

limited use in applications more general than tutoring, such as critiquing

An ultimate objective of some research in human-computer interaction is

to provide a comprehensive knowledge-based system, with multiple components

all supporting users in an interactive working context - an intelligent support sys-

178
tem [Fischer 86]; one that can support them with advice, help, tutoring, critiquing,

etc. The components of such a system should be able to share a common user and

domain model. Tutoring episodes provide an important source of information that

can be used to enrich the common user model; this is information that is useful to

other system components.

9.1.4. Statistical Analysis of User's Work

Statistical methods can provide a measure of the sophistication of a

user's knowledge. An analysis of work produced by the user could be accumu-

lated and reported to the system. The reported statistics provide the system trig-

gers for inferences about the sophistication of a user's knowledge. For example,

in LISP the type of functions used (destructive versus cons-generating) might

provide a system evidence about the user's overall expertise. Acquisition methods

based on statistical approaches can apply machine learning paradigms such as

learning by example [Fain-Lehman, Carbonell 87]. The examples used in the

machine learning process are the users' work. The analysis of what a user

produces could take place as a separate off-line system activity [Fischer 87b]. Al-

ternatively, it may be best accomplished, in some situations, by interpreting

cumulatively observed data about the user over time, like in the AcrIVIST system

[Fischer, Lemke, Schwab 85]. Statistical and mathematical techniques, such as

Bayesian inference and fuzzy set theory, can provide theoretical bases for methods

in this class.

In the domain model described in Chapter 5, some categories of con-

cepts (or functions) appear to require more sophisticated domain knowledge on the

part of the user. An analysis of code could inform the system about the

programmer's usage, by category, of both functions and concepts. This infor-

179

mation could be used by the system to trigger a stereotype, or select an expertise

category for the programmer, an initial user model. In the KNOME system, double

stereotypes were used in this manner [Chin 89], one set of stereotypes represents

canonical users, the other set is a categorization of UNIX concepts and commands

that is similar to the groups in the LISP domain model.

The major problems for developers is determining which statistics are

important, and how to use them. Accumulating statistical data about a user is not

difficult; the issue is the inferences to make with those data. The conditions under

which these statistical methods might work is possibly domain and application

system dependent; they may not conform to a general theory: this is certainly an

open research question. Extensive studies of user populations for specific systems

will be required. The results of the data collection have to be correlated with

known characteristics of the users to determine how to best use specific pieces of

statistical information. Statistical methods are similar to the implicit acquisition

methods, discussed next, in that both operate without specific input from the user:

they make use of information that is already available, information generated

during the course of the user's normal work. Like stereotyping, they require prior

analysis of a sample user population to determine what certain analytic results

might imply about any user. Only then can those results be used as a triggering

condition for an inference method.

9.1.5. Implicit Acquisition

Implicit acquisition methods use the contents of user-system interactions

to make inference about users. They are designed to avoid having to si iject users

explicit methods that interrupt their work. Implicit acquisition methods fall into

into two subcategories direct and indirect methods.

180
Direct methods: The direct implicit inference methods observe or note

user actions that are part of the ongoing user-system dialog, and then use that ob-

servation to add to, or change information already in the user model. The set of

implicature rules developed by Kass are an example of methods in this class [Kass,

Finin 89]. Direct methods are based on the idea that user-computer interaction is a

dialog. Depending upon the specific application, these dialogs have different

goals and formats. The dialog may seek to achieve a shared understanding be-

tween the system and the user, or to negotiate a common goal: advisory type sys-

tems are a canonical example of this. The human and the computer might also

seek agreement on whether a certain course of action is appropriate; knowledge-

based decision support systems are an architecture for achieving this type of col-

laboration [Turban, Watkins 86].

When users communicate with a system in any form, ranging from

natural language to menu selections, there is information within the context of

those interactions that the system can use to infer their user models. Conversely,

when the system explains something-to users, that information should now be

known, and it can be added to their user models. In LISP-CRITIC the direct

methods use the acceptance of critic suggestions to trigger one type of direct

method, and the request for and receipt of an explanation to trigger another. The

degree of the system's confidence in that part of the model, and the way it deter-

mines how well a user "knows" that information are open questions, the answers

to which may also turn out to be domain and application dependent.

Indirect methods: The indirect methods operate like internal demons;

they use changes to a user model to trigger further changes. In general, any in-

ference method that adds not-directly-observed information to the user model

181
belongs in this category. Stereotypes are sometimes used in this fashion. In this

work, the indirect methods depend on the support of a deep domain model. An

example of an indirect method occurs when the user model is updated to include

the fact that a user knows a certain aspect of the domain: indirect methods in

U.SP-C~rTC use that change to the user model to infer that the user also knows the

prerequisite knowledge for the aspect just added. Consider an example from

another domain that demonstrates the generality of this idea, the domain is math-

ematics and here the system observes a student summing two negative numbers

correctly. From this observation, an inference is made that the student knows how

to sum negative numbers. This direct inference changes the user model, which in

turn triggers other changes. One inference might be that the student knows the

concept negative numbers, another that he or she knows the concept addition.

That information can now be added. to the user model if it is not already present.

9.2. Employing the Approach in Other Applications

A potential application of this research is to use the approach reported on

here in other types of applications besides critiquing:. The concept-based user-

model developed here has the characteristics required to support tutoring, advisory

systems, and human-computer interaction systems in general.

Intelligent tutors frequently represent their students in terms of produc-

tions contained in a system ale base, or in terms of their misconceptions. -The

concept-based user model representation provides an alternative method for guid-

ing the tutor, the user model can provide a list of those concepts that a user does

not know. Concepts that the tutor can now focus on teaching. Concepts which a

user already knows provide a source for selecting pedagogical strategies; this is

similar to the methodology used in the genetic graph approach. Opportunities to

182

teach new concepts using analogy, generalization, or specialization, can be

selected by comparing the user and domain models. To actually accomplish this

will require the tutor to have greater understanding about the semantics of the

domain model structure, specifically the links between entities, as well as

knowledge about what didactic approaches are suitable under what conditions.

Advisory systems give advice and, in some cases, are also designed to

assist users with understanding the rationale for that advice. User modelling com-

ponents in advisory systems focus on supporting the giving of advice, they infer

user goals and plans to insure that it is appropriate. In a financial advising system,

advice would consist of suggesting to users where to invest their money (e.g., in

mutual funds or municipal bonds). A concept-based user model could assist the

system to explain such advice - answer questions such as why are municipal

bonds a good investment for me at this time. A user model that is able to support

both the advice giving and explaining roles in advisory systems will have to be

more general, capturing both situation specific conditions for users, such as their

goals, and their domain expertise.

An advisory system that will be consulted on multiple occasions by the

same user is a better candidate for such a comprehensive model, for example the

financial advisor above, than a system designed to provide one-shot advice, such

as one that suggests which train to take. A hypothetical example is an advisor for

LISP that can, in the spirit of the Programmer's Apprentice, suggest software

cliches that will accomplish a specified task (e.g., print an item). The system has

to know about the code in a program library to make an appropriate recommen-

dation and have the ability to explain that code when asked. A concept-based user

model could inform the system during the advising phase to help it select a cliche

the user is more likely to understand (e.g., one using print instead of format), and

183
during the explanation phase to help it formulate an explanation in a manner

similar to that envisioned for LISP-CRMC.

Research efforts in human-computer interaction often claim that an

idiosyncratic user model will enhance that interaction [Murray 88], but focused in-

vestigations along these lines are not reported in the literature. The fundamental

issues are determining what information those models must provide, and how that

information will be used by the system. One direction is to use a modelling ap-

proach, like the one developed here for critiquing, as a starting point for inves-

tigating how system adaptivity in the general class of human-computer interaction

systems can be supported by user models [Murray Benyon 89].

9.3. Support for Critiquing in Other Domains

In Chapter 2 we covered the application domains for which critiquing

system have been developed; it is intriguingly diverse. Enhancing the effective-

ness and utility of critics with a user modelling component is an indicated future

research direction in several of the system descriptions. A useful application of

this research would be to enhance a different existing critic system using an ap-

proach similar to the one followed for the work on LISP-CRMC.

Design environments [Lemke 89] include a critic component and some

use hypertext issue-based information systems as a source of information for help-

ing designers understand a critique, as well as to precipitate reflective practice

[Fischer, McCall, Morch 89a; McCall, Fischer, Morch 89; Fischer, McCall,

Morch 89b]. No attempt is made to adapt, or tailor, the information to the in-

dividual designer, but rather the methodology focuses on presenting it in a struc-

tured manner, and insuring it is contextually related to current work. It would be

worth "ivestigating whether user models, such as the one in LISP-CRITIC, can be

integrated with these techniques.

184

In a more general sense, systems based on critiquing have been

developed to support domains such as software engineering [Fickas, Nagarajan

88], VLSI design [Steele 87], and decision making [Mill 88]; systems that support

knowledge workers who use them repeatedly. Users expect to learn from the

critiques to perform their tasks better, this means that there exists a need for sys-

tem explanations; this is an argument similar to the one given as motivation for the

work on explanation-giving in LISP-CimC. Citiquing is also used to support

medical applications, and several of these reearh efforts suggest that having a

user model would enhance their systems [Langlotz, Shortliffe 83; Miller 86; Ren-

nels 87]. Application of the user modelling methodology followed here to en-

hance some existing critics would serve to validate and refine the techniques; it is

also sure to provide additional insight to motivate improved theory.

9.4. Issues Warranting Further Research

The other potential direction for future research is to enhance the work

accomplished thus far. Some-ideas were previously mentioned in the context of

describing the approach, the implementation, and.the evalnation One such-area is

to learn how to use statistical information that can be obtained from a computer

analysis of users' work or actions; another is to integrate tutoring with cooperative

problem solving systems to determine more specifically what-is needed iri a model

designed to serve the needs of both. One extension along these lines might be to

build a comprehensive system from scratch, or to integrate two such already exist-

ing systems. Some other potential research directions, not previously mentioned,

are investigating how to make better use of networked computing environments,

enhancing the domain modelling approach, and sharing the user model between

multiple applications, or even different domains with shared conceptual spaces, for

example different programming languages.

185

Distributed User Modelling. Present computing environments are al-

most always part of larger networks. Having other machines available on that net-

work should allow us consider how to introduce concurrency into the user modell-

ing process. Domain models will come to have greater fidelity and a richer

representation, and user models will, likewise, become more comprehensive; this

may cause them to tax the computational power in a single workstation. Also we

should consider the situation where users run applications on remote machines,

applications that might benefit from access to their user model.

One direction for research is to investigate how to provide access to the

user model stored on a "personal workstation" to applications running at remote

sites. If our goal is a truly comprehensive and complete user model, of use to

multiple systems, then it follows that they should share a single version of that

model. Some issues that must be considered are privacy, concurent updating, and

simultaneous access by more than one remote server. Research into using the ap-

proach in this manner could begin by determining which of the problems involved

can be solved using techniques already developed in other concurrent systems

research and identifying any new ones that are generated

A more futuristic idea is to consider having a user modelling machine,

either virtual or actual; one dedicated to performing implicit user model acquisi-

tion in parallel with other applications to achieve concurency. Similarly, a

machine could be dedicated to the role of domain model server. This might be a

particularly useful approach for providing reasonable access to the large models

that are growing out of research into representing general common sense

knowledge [Lenat, Prakash, Shepherd 86].

186

Generality of the Domain Model. The domain model was developed

specifically for LISP, in order to meet explanation and user modelling needs.

During this research it was observed that our domain model is an instance of what

other researchers in explanation-giving have called "deep domain models"

[Chandrasekaran, Tanner, Josephson 88]. It may be able to provide support for

more general applications. The research issue is, can it usefully serve other ap-

plications or interaction paradigms, other than critiquing, and if not, can it be

modified in some way to accomplish this?

Predominantly, past computer-based systems for instruction have been

one of three types: drill and practice computer-aided instruction that captures

domain and pedagogical knowledge directly in the course material, intelligent

tutoring approaches that capture domain and pedagogical knowledge in produc-

tions and exercises, and simulation systems that capture domain knowledge in the

behavior of the simulated devices; pedagogy is implicit in the simulation process.

This is not to say that these will be the dominant future approaches, in fact we

happen to believe critiquing [Mastaglio 89] will replace or augment all them in

certain situations; these three are just historically the most common. The concept-

based domain model allows pedagogy to be derived from a traversal of its struc-

ture, links provide the pedagogy for teaching new concepts from already familiar

ones. It would be worth investigating if the domain model could be used to help

direct a didactic computer agent, such as a coach, that knows the learning objec-

tives and has available to it a set of exercises or simulations that are linked to

domain model entities and to pedagogical knowledge.

Sharing the User Model. An ultimate goal of some work in human-

computer interaction research is a comprehensive system which supports multiple

187

interaction approaches through multiple components. In terms of user modelling,

it would be ideal if the model could be shared by these components, such as a

system incorporating a critic and a tutor like GRACE. It would be worth inves-

tigating what type of user model is needed to support a larger class of applications,

and if the approach discussed here needs to be modified to achieve this goal. As a

simple example, some of the knowledge of LISP captured in our user model (e.g.,

conditionals, scope, tests, etc) would also be useful to a critic in a related domain,

such as one for another programming language. Identifying the common domain

characteristics to capture in such a shared model wan-ants further investigation.

9.5. Summary

This chapter indicated how this specific work fits into a broader perspec-

tive of user modelling and related research. The acquisition framework can help

developers of systems that will contain a user modelling component, and it

provides a guide for future research. The methodology used in this project has

potential for use in other applications, and to support critics in other domains.

What is required to achieve a system that a user will perceive as meeting our goal

of being a cooperative problem solving system is still an open research issue: the

work done here provides a starting point for individualizing the types of environ-

ments in which we eventually hope to find these systems. One thing this disser-

tation research has shown is that user modelling is complex, perhaps one of the

more complex applications yet encountered in applied computer science and artifi-

cial intelligence research. It is not possible to provide complete approaches in a

single research effort, and solutions are neither singular nor simple. This does not

mean the effort is not important nor should it be abandoned; personalized com-

puter systems that adapt to our needs are able to give and explain meaningful ad-

188
vice, and can interpret our actions are a consistent image in science fiction and

futuristic scenarios studied by serious researchers [Skulley 88]. User modelling is

one of the important enabling technologies needed to reach that goal; but arriving

at a common, useful theory will require multiple efforts and the synthesis of results

in order to understand all the cognitive and computational issues involved.

CHAPTER X

SUMMARY AND CONCLUSIONS

This chapter is a summary of this dissertation and identifies its major

contributions. The general scheme of this research was to study user modelling

research in other areas; to develop an understanding of what is required for a user

model to support cooperative problem solving; and, from those analyses, to devel-

op an approach for supporting a computer-based critic. A user model that meets

those requirements was implemented for LISP-CRrrIC, and subjected to an evalua-

tion. The results of the system development work and analysis suggested ideas

about the generalizability of the methodology, and indicated possible extensions to

the approach as well as directions for future research.

10.1. Summary

This dissertation research was accomplished in a context of developing a

paradigm for cooperative problem solving, and in the context of knowledge-based

systems that support user learning. In principle all cooperative systems should

also support learning. Users-need access to system-provided explanations in order

for that learning to take place. Furthermore, those explanations should be tailored

to their individual expertise in the application domain. This need for individual-

ized explanations motivates a requirement for idiosyncratic user models. These

characteristics of knowledge-based computers systems, that they support col-

laborative human-computer effort, and also, that they provide learning oppor-

tunities, determine the general requirements for the user modelling approach.

190
What it means for a system to be cooperative, and the theoretical characteristics of

learning environments were discussed in Chapter 1.

Critiquing is one way to use computer knowledge bases to aid users in

their work and at the same time support their learning needs. Research investiga-

tions into critiquing by the Human-Computer Communications Research Group

has included system building efforts, the integration of cognitive and design

theories, empirical observations, and the evaluation of prototypes. That collective

experience was integrated with a study of other research to determine the theoreti-

cal foundations and characteristics of critiquing.

Chapter 2 presented those theoretical foundations and the theory behind

the present critiquing friamework. Critiquing systems, also called critics, are an

alternative to traditional experts systems. The generality of the approach is

demonstrated by a study of the literature which shows that critiquing has been suc-

cessfully used in diverse application domains. In order to enhance current critiqu-

ing approaches so that these systems move from simple "suggestors" of how to

improve a user's work, to ones which can interact with them in a collaborative

style, will require models of users. These models will help systems adapt explana-

tions for their domain knowledge to individual users. Critics are not the only ap-

proach to building better knowledge-based systems, but a growing number of such

systems will contain a critiquing component. Some of them need detailed under-

standing of users' problems, tasks and goals; but more commonly they will have

limited yet helpful capabilities, one of which is to model the knowledge of in-

dividual users.

A general approach was chosen as a result of studying related research in

user modelling. Chapter 3 discussed user modelling in other research areas and

the foundations for user modelling to support the types of cooperative systems in

191
which we are interested. The approach includes an architecture for a user modell-

ing component comprised of a representation scheme for the models, acquisition

techniques, and methods for accessing the models. An analysis of reported work

on student models to support Intelligent Computer-aided Instruction, and user

models for advice-giving dialog systems determined that both areas provide some

important concepts to help us establish the foundations for the models we want to

have. A user modelling approach for cooperative problem solving can use ideas

developed in this other work, but it was not possible to find an approach from

other research that could be adapted directly to meet the needs of collaborative

systems. Therefore, the methodology followed was to identify the requirements

for a user modelling component to support explanations based on a theoretical

model of users' expertise, a conceptual model of the domain, the need to acquire

the model using implicit methods, and all the while keeping in mind a goal of

generality. The resulting conceptual architecture was instantiated in a specific sys-

ten.

In Chapter 4 LISP-CRITIC was described: it is the environment in which

the implementation work was performed. LISP-CRMC provides a suitable context

for investigating user modelling because, in the past, it has been a development

platform for investigating various notions of how knowledge-based computer sys-

tems can be better designed to accommodate their users. Some of these ideas were

knowledge representation and application, user access to the systems actions, and

explanation of advice. Integrating a user modelling component to support ex-

planation giving was a natural extension of that previous work.

A domain model was required to support both explanation-giving and

user modelling. It links the system's operational knowledge (LISP-CRiTIC rules) to

the domain knowledge necessary for explanation-giving and representing users'

192
expertise. Chapter 5 covers the analysis of LISP that determined what to represent

in the domain model, and then selected some appropriate techniques for achieving

that representation. The implemented domain model captures knowledge of LISP

in a conceptual structure. From our analysis of the domain it was determined that

the fundamental domain entities are LISP concepts, LISP functions and

LISP-CRIC rules, they are all interconnected via semantic relationships. Concep-

tual graph notation was used to visualize the domain structure, and the domain

model in LISP-CRTC was implemented using the Common LISP Objects System

(CLOS).

Cooperative knowledge-based systems take advantage of the different

strengths of users and computer systems. Computers are potential sources of ex-

pert domain knowledge and can be used to make suggestions; their role must also

include the ability to explain those suggestions. Explanation systems often fail

because they are based on implicit assumptions that explaining is a one-shot affair,

and that artificially intelligent systems will be able to retrieve or produce complete

and individualized text. Another approacr is to take advantage of information and

present computer technology. The explanation approach discussed in Chapter 6

focuses on determining which concepts to explain to a user rather than on choos-

ing a prestored explanation. Executing that process requires a domain model that

can provide the set of concepts needed for a given explanation situation, and a user

model that can help tailor the explanation to a given individual. When explanation

follows this approach, the process is one of constructing, rather than selecting, in-

formation that will be presented to a user.

The approach used provides four layers of explanation that can be ac-

commodated in LISP-CRrrIC. The first two layers are not explanations in the stric-

test sense but rather techniques for presenting the critic's advice that facilitate user

193
understanding; they are detailed descriptions of what the system suggests.

Rhetoric principles and discourse comprehension research provide foundations for

a minimal approach that make up the 3rd layer. Such minimal explanations are

guided by a domain and user model that provide, to the system, information about

what needs to be explained in order for a user to understand a particular domain

entity. The highest layer is a rich hypertext information space that provides a

fallback capability for situations in which users need more details. In that hyper-

text space, users can investigate LISP functions or examine concepts that they still

do not understand.

The user modelling component developed for LISP-Critic is described in

Chapter 7; it represents what the system knows about each user in an object

oriented structure, acquires those user models, provides access to them and retains

them for future use. The user model is also implemented in CLOS. The design

objectives were based on what is required to support explanation-giving; these ob-

jectives guided specification of the architecture for the user modelling component.

Representation of the model is an enhancement of overlay modelling

techniques. The approach captures the domain entities a user knows,- a. subset of

those represented in the domain model, but also marks them in accordance with

how well they are known. Conceptually, there is a coloring of the domain model

graph unique to each individual.

Access to the individual models for other system components is

provided for with a set of generic interface functions. In this research, access for

the explanation component has been emphasized; but we have attempted to make

the methods general so that current system components, such as the critiquing en-

gine, or even new components that are added, like a tutor, can use them.

194

The acquisition subcomponent contains direct methods that make use of

episodes in the user-computer dialog. These are "evidence-based" methods that

resulted from the intuition that the interaction context contains useful information

for inferring the knowledge state of a user. The subcomponent also contains in-

direct methods that are triggered by changes to individual user models. One out-

come of the LISP-CRMC system development and implementation work is a

framework of user model acquisition techniques.

The development of the implicit methods is considered one of the sig-

nificant contributions of this research; an evaluation of their effectiveness and pos-

sible modifications was undertaken. That evaluation process is covered in Chapter

8. The acquisition methods were evaluated in two ways. Programs written by

students learning LISP were processed by LISP-CRMC; and the individual user

models for each programmer compared with one another, attending particularly to

the changes that took place over time. In this way the behavior of the user modell-

ing system could be analyzed to determine potential modifications. The user

models developed for each student were correlated with questionnaires assessing

the students' expertise according to the topology of the domain model; the ques-

tionnaires were completed before each programming assignment.

The evaluation demonstrated that the models conform to expectations

about how user knowledge might change under the conditions these programs

were produced. The models contents were modified by the application of the ac-

quisition methods in a manner similar to what was expected: the models became

more detailed as the system was exposed to more of the users' work; and they

captured new concepts as students learned them during the course of completing

three programming assignments. The evaluation pointed out opportunities for im-

proving the acquisition methods. It also resulted in the observation that using a

195
startup or initial model would probably improve the models' fidelity. The

availability of an initial model had been an underlying assumption in this research.

This finding confirmed the importance of having that model; regardless of the ef-

fectiveness of implicit methods, there is a need for explicit acquisition of initial

models of users.

To achieve a completely operational model will require significant ad-

ditional development and extensive testing. A linitation is that any user model is

at best an "approximation" of a user's knowledge state, therefore, it will be dif-

ficult to determine when an acquisition methodology is as complete as possible.

An outcome of this work is an awareness that a comprehensive user modelling

system will be extremely complex; the problem will not yield to singular solutions

or simple methods alone. Research efforts to date have tackled only a parts of the

problem, usually in isolation. A complete implementation will have to integrate

multiple techniques (e.g., stereotyping, explicit questioning and implicit acquisi-

tion methods) with detailed domair and perhaps task models- The work under-

taken here focused on developing a. domain model and implicit acquisition tech-

niques.

In chapter 9, I tried to demonstrate how this work contributes to a

broader scope of research. One such contribution is the acquisition framework; it

provides a pretheoretic scheme which can be used when developing user modell-

ing components for human-computer interaction systems in general, and can serve

as a guide for future research. The development methodology followed here can

be used for developing user models for applications other than critiquing; and to

extend those critics already developed in other research. In this research the ap-

proach used was specifically developed for critiquing, but it provides a starting

point for individualizing a more general class of cooperative problem solving sys-

196

tems. There are possibilities to share both the model in its current form with other

interaction approaches, like advising or tutoring, and to use the methodology as a

guide for developing new models to serve a range of applications, critiquing com-

puter programs being just one them.

10.2. Conclusions

The work in this dissertation project contributes to research in user

modelling, explanation-giving, and cooperative knowledge-based systems. The

use of a common deep conceptual domain representation for both explanation

generation and user modelling is unique. Using the inherent structure of that deep

domain model to perform implicit acquisition is a technique that enhances a

system's ability to build up more complete idiosyncratic models of users, and

should be explored for other domains, and using different relational links between

the domain entities. The explanation process begins with a single piece of

procedural system knowledge, e.g.. a rule that a user wants described- It serves as

a starting point to extract the appropriate domain concepts; these are filtered

through the user model and some oL them are eventually explained to the user.

This approach could potentially be used in a large class of human-computer inter-

action systems but depends upon domain and user models to inform the process.

This work is a first documented implementation of a model of users' domain ex-

pertise in a critiquing system. The possibilities and limitations uncovered here can

aid developers of other computer-based critics. The framework for user modelling

acquisition methods proved useful in developing a specific user modelling com-

ponent, and it can be used to guide design analysis and architectural specification

for others.

197
It would be premature to claim that a general theory of user modelling is

forthcoming, but this effort has provided a better understanding about some sig-

nificant aspects of such a theory. Specifically, we now know more about what is

required of a user model that supports explanation-giving; the sort of techniques an

interactive system can use to implicitly acquire such a model; and how a concept-

based domain model can serve as a basis for user model representation, and at the

same time support user model acquisition. These ideas expose a new range of

issues and directions for research into user modelling that may eventually provide

general methods able to accommodate a broad class of human-computer inter-

action systems.

REFERENCES

[Aaronson, Carroll 87]
A. Aaronson, J.M. Carroll, Intelligent Help in a One-Shot Dialog: A Protocol
Study, Human Factors in Computing Systems and Graphics Interface,
CHI+GI'87 Conference Proceedings (Toronto, Canada), ACM, New York,
April 1987, pp. 163-168.

[Anderson, Conrad, Corbett 89]
JLR. Anderson, F.G. Conrad, A.T. Corbett, Skill Acquisition and the LISP
Tutor, Cognitive Science, Vol. 13, 1989, pp. 467-505.

[Anderson, Reiser 85]
JXR Anderson, BJ. Reiser, The LISP Tutor, BYTE, Vol. 10, No. 4, April 1985,
pp. 159-175.

[Anderson, Thompson 86]
J.R. Anderson, R. Thompson, User of Analogy in a Production System
Architecture, 1986, Paper presented at the Illinois Workshop on Similarity and
Analogy, Champaign-Urbana, June 1986.

[Atwood et al. 90]
M.E. Atwood, W.D. Gray, B. Burns, A. Morch, B. Radlinski, Cooperative
Learning and Cooperative Problem Solving: The Case of Grace, Working
Notes, 1990 AAAI Spring Symposium on Knowledge-Based Human-
Computer Communication, AAAI, Menlo Park, CA, 1990, pp. 6-10.

[Bloom 84]
B.S. Bloom, The Search for Methods of Group Instruction as Effective as One-
to-One Tutoring, Educational Leadership, May 1984, pp. 4-17.

[Boecker 84]
H.-D. Boecker, Soft wareerstellung als wissensbasierter Kommunikations- und
Designprozess, Dissertation, Universitaet Stuttgart, Fakultaet fuer Mathematik
und Informatik, April 1984.

[Boecker, Fischer, Nieper 86]
H.-D. Boecker, G. Fischer, H. Nieper, The Enhancement of Understanding
Through Visual Representations, Human Factors in Computing Systems,
CHI'86 Conference Proceedings (Boston, MA), ACM, New York, April 1986,
pp. 44-50.

[Brech, Jones 88]
B. Brecht, M. Jones, Student Models: the Genetic Graph Approach, Inter-
national Journal of Man-Machine Studies, Vol. 28, 1988, pp. 483-503.

199

[Britton, Black 85]
Bruce K. Britton, John B. Black (eds.), Understanding Expository Text,
Lawrence Erlbaum Associates, London, 1985.

[Brown, Burton 86]
J.S. Brown, R.R. Burton, Reactive Learning Environments for Teaching
Electronic Troubleshooting, in W.B. Rouse (ed.), Advances in Man-Machine
Systems Reasearch, Vol 3, JAI Press, Inc, Greenwich, CT, 1986.

[Brown, Burton, Kleer 82]
J.S. Brown, R.R. Burton, J. de Kleer, Pedagogical, Natural Language and
Knowledge Engineering Techniques in SOPHIE I II and III, in D.H. Sleeman,
3.S. Brown (eds.), Intelligent Tutoring Systems, Academic Press, London -
New York, 1982, pp. 227-281, ch. 11.

[Brown, VanLehn 80]
3.S. Brown, K. VanLehn, Repair Theory: A Generative Theory of Bugs in
Procedural Skills, Cognitive Science, Vol. 4, 1980, pp. 379-426.

[Buchanan, Shortliffe 84]
B.G. Buchanan, E.H. Shortliffe, Rule-Based Expert Systems: The MYCIN Ex-
periments of the Stanford Heuristic Programming Project, Addison-Wesley
Publishing Company, Reading, MA, 1984.

[Burton, Brown 82]
R.R. Burton, J.S. Brown, An Investigation of Computer Coaching for Informal
Learning Activities, in D.H. Sleeman, J.S. Brown (eds.), Intelligent Tutoring
Systems, Academic Press, London - New York, 1982, pp. 79-98, ch. 4.

[Burton, Brown, Fischer 84]
R.R. Burton, J.S. Brown, G. Fischer, Analysis of Skiing as a Success Model of
Instruction: Manipulating the Learning Environment to Enhance Skill
Acquisition, in B. Rogoff, J. Lave (eds.), Everyday Cognition: Its Development
in Social Context, Harvard University Press, Cambridge, MA - London, 1984,
pp. 139-150.

[Carbonell 70]
J.R. Carbonell, Al in CA. An Artificial-Intelligence Approach to Computer-
Assisted Instruction, IEEE Transactions on Man-Machine Systems, Vol.
MMS-11, No. 4, December 1970.

[Card, Moran, Newell 83]
S.K. Card, T.P. Moran, A. Newell, The Psychology of Human-Computer
Interaction, Lawrence Erlbaum Associates, Hillsdale, NJ, 1983.

[Carroll, Canithers 84]
J.M. Carroll, C. Carrithers, Training Wheels in a User Interface, Communica-
tions of the ACM, Vol. 27, No. 8, August 1984, pp. 800-806.

200

(Carroll, McKendree 87]
J.M. Carroll, J. McKendree, Interface Design Issues for Advice-Giving Expert
Systems, Communications of the ACM, Vol. 30, No. 1, January 1987, pp.
14-31.

[Carver, Lesser, McCue 84]
N.F. Carver, VR. Lesser, D.L. McCue, Focusing in Plan Recognition,
Proceedings of AAAI-84, Forth National Conference on Artificial Intelligence
(Austin, TX), William Kaufinann, Los Altos, CA, 1984, pp. 42-48.

[Chandrasekaran, Tanner, Josephson 88]
B. Chandrasekaran, C. Tanner, J.R. Josephson, Explanation: The Role of Con-
cept Strategies and Deep Models, in J.A. Hendler (ed.), Expert Systems: The
User Interface, Ablex Publishing Corp, Norwood, NJ, 1988.

[Chandrasekaran, Tanner, Josephson 89]
B. Chandrasekaran, C. Tanner, J.R. Josephson, Explaining Control Strategies
in Problem Solving, IEEE Expert, Vol. 4, No. 1, Spring 1989, pp. 9-23.

[Chin 89]
D.N. Chin, KNOME: Modeling What the User Knows in UC, in A. Kobsa,
W. Wahlster (eds.), User Models in Dialog Systems, Springer-Verlag, New
York, 1989, pp. 74-107.

[Clancey 84]
W. Clancey, Use of MYCIN's Rules for Tutoring, in B.G. Buchanan, E.H.
Shortliffe (eds.), Rule-Based Expert Systems: The MYCIN Experiments of the
Stanford Heuristic Programming Project, Addison-Wesley Publishing Com-
pany, Reading, MA, 1984, pp. 464-489, ch. 26.

[Clancey 86]
WJ. Clancey, Qualitative Student Models, Annual Review of Computing
Science, Vol. 1, 1986, pp. 381-450.

[Clancey 87]
WJ. Clancey, Knowledge-Based Tutoring: The Guidon Program, MIT Press,
Cambridge, MA, 1987.

[Cooibs, Alty 84]
M.J. Coombs, J.L. Alty, Expert Systems: An Alternative Paradigm, Inter-
national Journal of Man-Machine Studies, Vol. 20, 1984.

[Danlos 87]
L. Danlos, The Linguistic Basis of Text Generation, University of Cambridge
Press, Cambridge, 1987.

[Dews 89]
S. Dews, Developing an ITS in a Corporate Setting, Proceedings of the 33rd
Annual Meeting of the Human Factors Society, 1989, pp. 1339-1342.

201

[Dijk, Kintsch 83]
TA. van Dijk, W. Kintsch, Strategies of Discourse Comprehension, Academic
Press, New York, 1983.

[Doane, Pellegrino, Klatsky 89]
SM. Doane, J.W. Pellegrino, R.L. Klatsky, UNIX System Mental Models and
UNIX System Expertise, Proceedings of the 22nd Annual Hawaii Conference
on System Sciences, Vol. MI Software Track, IEEE Computer Society, January
1989, pp. 457-467.

[Draper 86]
S.W. Draper, Display Managers as User Interfaces, in D.A. Norman, S.W.
Draper (eds.), User Centered System Design, New Perspectives on Human-
Computer Interaction, Lawrence Erlbaum Associates, Hillsdale, NJ, 1986, ch.
16.

[Dreyfus, Dreyfus 86]
H.L. Dreyfus, S.E. Dreyfus, Mind Over Machine, The Free Press, New York,
1986.

[Duchastel 88]
P.C. Duchastel, Models for AI in Education and Training, Artificial Intel-
ligence Tools in Education: Proceedings of the IFIP TC3 Working Conference,
IFIP, 1988, pp. 17-28.

[Fabian, Lemke 85]
F. Fabian Jr., A.C. Lemke, WLisp Manual, Technical Report CU-CS-302A-85,
Department of Computer Science, University of Colorado, Boulder, CO,
February 1985.

[Fain-Lehman, Carbonell 87]
J. Fain-Lehman, J.G. Carbonell, Learning the User's Language: A Step
Toward Automated Creation of User Models, Technical Report, Carnegie-
Mellon University, March 1987.

[Feigenbaum, McCorduck 83]
E.A. Feigenbaum, P. McCorduck, The Fifth Generation. Artificial Intelligence
and Japan's Computer Challenge to the World, Addison-Wesley Publishing
Company, Reading, MA, 1983.

[Fickas, Nagarajan 88]
S. Fickas, P. Nagarajan, Critiquing Software Specifications, IEEE Software,
Vol. 5, No. 6, November 1988, pp. 3747.

[Finin 83]
T.W. Finin, Providing Help and Advice in Task Oriented Systems, Proceedings
of the Eighth International Joint Conference on Artificial Intelligence, 1983,
pp. 176-178.

[Fischer 83]
G. Fischer, Symbiotic, Knowledge-Based Computer Support Systems,
Automatica, Vol. 19, No. 6, November 1983, pp. 627-637.

202

[Fischer 84]
G. Fischer, Formen und Funktionen von Modellen in der Mensch-Computer
Kommunikation, in H. Schauer, MJ. Tauber (eds.), Psychologie der
Computerbenutzung, R. Oldenbourg Verlag, Wien - Muenchen, Schriftenreihe
der Oesterreichischen Computer Gesellschaft, Vol. 22, 1984, pp. 328-343.

[Fischer 861
G. Fischer, Cognitive Science: Information Processing in Humans and
Computers, in H. Winter (ed.), Artificial Intelligence and Man-Machine
Systems, Springer-Verlag, Berlin - Heidelberg - New York, 1986, pp. 84-112.

[Fischer 87a]
G. Fischer, Learning on Demand: Ways to Master Systems Incrementally,
Technical Report, Department of Computer Science, University of Colorado,
Boulder, CO, 1987.

[Fischer 87b]
G. Fischer, A Critic for LISP, Proceedings of the 10th International Joint Con-
ference on Artificial Intelligence (Milan, Italy), J. McDermott (ed.), Morgan
Kaufinann Publishers, Los Altos, CA, August 1987, pp. 177-184.

Fischer 88a]
G. Fischer, Enhancing Incremental Learning Processes with Knowledge-Based
Systems, in H. Mandl, A. Lesgold (eds.), Learning Issues for Intelligent Tutor-
ing Systems, Springer-Verlag, New York, 1988, pp. 138-163, ch. 7.

[Fischer 88b]
G. Fischer, Cooperative Problem Solving Systems, Proceedings of the 1st Sim-
posium Internacional de Inteligencia Artificial (Monterrey, Mexico), October
1988, pp. 127-132.

[Fischer 90]
G. Fischer, Communications Requirements for Cooperative Problem Solving
Systems, The International Journal of Information Systems (Special Issue on
Knowledge Engineering), 1990.

[Fischer et al. 88]
G. Fischer, S.A. Weyer, W.P. Jones, A.C. Kay, W. Kintsch, R.H. Trigg, A
Critical Assessmeni of Hypertext Systems, Human Factors in Computing Sys-
tems, CHI'88 Conference Proceedings (Washington, D.C.), ACM, New York,
May 1988, pp. 223-227.

[Fischer et al. 90]
G. Fischer, A.C. Lemke, T. Mastaglio, A. Morch, Using Critics to Empower
Users, Human Factors in Computing Systems, CHI'90 Conference Proceed-
ings (Seattle, WA), ACM, New York, April 1990, pp. 337-347.

[Fischer, Girgensohn 90]
G. Fischer, A. Girgensohn, End-User Modifiability in Design Environments,
Human Factors in Computing Systems, CHI'90 Conference Proceedings (Seat-
tle, WA), ACM, New York, April 1990, pp. 183-191.

203

[Fischer, Lemke 88]
G. Fischer, A.C. Lemke, Construction Kits and Design Environments: Steps
Toward Human Problem-Domain Communication, Human-Computer Inter-
action, Vol. 3, No. 3, 1988, pp. 179-222.

[Fischer, Lemke, Mastaglio, Morch 90]
G. Fischer, A. Lenike, T. Mastaglio, A. Morch, Critics: An Emerging Ap-
proach to Knowledge-Based Human Computer Interaction, International Jour-
nal of Man-Machine Studies, 1990, to be published.

[Fischer, Lemke, Nieper-Lemke 88]
G. Fischer, A.C. Lenke, H. Nieper-Lemke, Enhancing Incremental Learning
Processes with Knowledge-Based Systems (Final Project Report), Technical
Report CU-CS-392-88, Department of Computer Science, University of
Colorado, Boulder, CO, March 1988.

[Fischer, Lemke, Schwab 84]
G. Fischer, A.C. Lemke, T. Schwab, Active Help Systems, Readings on Cog-
nitive Ergonomics - Mind and Computers, Proceedings of the 2nd European
Conference (Gmunden, Austria), G.C. van der Veer, MJ. Tauber, T.R.G.
Green, P. Gomy (eds.), Springer-Verlag, Berlin - Heidelberg - New York, Sep-
tember 1984, pp. 116-131.

[Fischer, Lemke, Schwab 85]
G. Fischer, A.C. Lemke, T. Schwab, Knowledge-Based Help Systems, Human
Factors in Computing Systems, CHI'85 Conference Proceedings (San Fran-
cisco, CA), ACM, New York, April 1985, pp. 161-167.

[Fischer, Mastaglio 89]
G. Fischer, T. Mastaglio, Computer-Based Critics, Proceedings of the 22nd
Annual Hawaii Conference on System Sciences, Vol. III: Decision Support
and Knowledge Based Systems Track, IEEE Computer Society, January 1989,
pp. 427-436.

[Fischer, Mastaglio 90]
G. Fischer, T. Mastaglio, A Conceptual Framework for Knowledge-based
Critic Systems, The International Journal of Decision Support Systems, Vol.
Special Issue on Active, Symbiotic Systems, 1990, to be published.

[Fischer, Mastaglio, Reeves, Rieman 90].
G. Fischer, T. Mastaglio, B. Reeves, J. Rieman, Minimalist Explanations in
Knowledge-Based Systems, Proceedings of the 23rd Hawaii International Con-
ference on System Sciences, Vol I3L Decision Support and Knowledge Based
Systems Track, Jay F. Nunamaker, Jr (ed.), IEEE Computer Society, 1990, pp.
309-317.

[Fischer, Mastaglio, Rieman 89]
G. Fischer, T. Mastaglio, J. Rieman, User Modeling in Critics Based on a
Study of Human Experts, Proceedings of the Fourth Annual Rocky Mountain
Conference on Artificial Intelligence, RMSAI, Denver, CO, June 1989, pp.
217-225.

204

(Fischer, McCall, Morch 89a]
G. Fischer, R. McCall, A. Morch, Design Environments for Constructive and
Argumentative Design, Human Factors in Computing Systems, CHI'89 Con-
ference Proceedings (Austin, TX), ACM, New York, May 1989, pp. 269-275.

[Fischer, McCall, Morch 89b]
G. Fischer, R. McCall, A. Morch, JANUS: Integrating Hypertext with a
Knowledge-Based Design Environment, Proceedings of Hypertext'89, ACM,
New York, November 1989, pp. 105-117.

[Flesch 49]
R. Flesch, The Art of Readable Writing, Harper & Brothers, New York, 1949.

[Forbus 84]
K. Forbus, An Interactive Laboratory for Teaching Control System Concepts,
Report 5511, BBN, Cambridge, MA, 1984.

[Fox 88]
B.A. Fox, Robust learning environments -- the issue of canned text, Technical
Report, Institute of Cognitive Science, University of Colorado, Boulder,
Colorado, 1988.

[Frank, Lynn, Mastaglio 87]
J. Frank, P. Lynn, T. Mastaglio, Using A Critic Methodology as a Computer-
aided Learning Paradigm: extending the concepts, 1987, Final Project Report
for CS659 - Fall Term 1987.

[Friedman 87]
M.P. Friedman, WANDAH - A Computerized Writer's Aid, in D.E. Berger,
IL Pezdek, W.P. Banks (eds.), Applications of Cognitive Psychology, Problem
Solving, Education and Computing, Lawrence Eribaum Associates, Hillsdale,
NJ, 1987, pp. 219-225, ch. 15.

[Gentner, Stevens 83]
D. Gentner, A.L. Stevens (eds.), Mental Models, Lawrence Erlbaum As-
sociates, Hillsdale, NJ, Cognitive Science Series, 1983.

[Glaser, Raghaven, Schauble 88]
R. Glaser, K. Raghavan, L Schauble, Voltaville: A Discovery Environment to
Explore the Laws of DC Circuits, Proceedings of the International Conference
on Intelligent Tutoring Systems (Montreal, Canada), June 1988, pp. 61-66.

[Goldstein 82]
I.P. Goldstein, The Genetic Graph: A Representation for the Evolution of
Procedural Knowledge, in D.H. Sleeman, I.S. Brown (eds.), Intelligent Tutor-
ing Systems, Academic Press, London - New York, 1982, pp. 51-77, ch. 3.

[Gray 88]
W.D. Gray, PUPS Analysis of LISP (PAL), 1988, Draft Hypercard document
available from author.

205

[Gray, Corbet, VanLehn 88]
W.D. Gray, A.T. Corbett, K. VanLehn, Planning and Implementation Errors
in Algorithm Design, Submitted to 1988 AAAI National Conference, 1988.

[Hansen, Hass 88]
WJ. Hansen, C. Haas, Reading and Writing with Computers: A Frameworks
for Explaining Differences in Performance, Communication of the ACM, Vol.
231, No. 9, September 1988, pp. 1080-1089.

[Hefley 90]
W. Hefley, Architectures for Adaptable Human-Machine Interfaces, in Kar-
wowski, Rahimi (eds.), Ergonomics of Advanced Manufacturing and Hybrid
Automation Systems H, Elsevier, N.Y., 1990, forthcoming.

[Hempel 65]
C.G. Hempel, Aspects of Scientific Explanation and Other Essays in the
Philosophy of Science, The Free Press, New York,, 1965.

[reich 73]
I. Illich, Tools for Conviviality, Harper and Row, New York, 1973.

[Johnson, Soloway 84]
W.L. Johnson, E. Soloway, PROUST: zowledge-Based Program
Understanding, Proceedings of the 7th International Conference on Software
Engineering (Orlando, FL), IEEE Computer Society, Los Angeles, CA, March
1984, pp. 369-380.

[Kass 87a]
R. Kass, Implicit Acquisition of User Models in Cooperative Advisory Systems,
Technical Report MIS-CIS-87-05, LUNC LAB 49, University of Pennsylvania,
1987.

[Kass 87b]
R. Kass, Modelling User Beliefs for Good Explanations, Technical Report
MIS-CIS-87-77, LINC LAB 82, University of Pennsylvania, 1987.

[Kass 88]
R. Kass, Acquiring c : .7del of the User's Belieffrom a Cooperative Advisory
Dialog, Unpublis a.D. Dissertation, University of Pennsylvania, 1988.

(Kass, Finin 87a]
R. Kass, T. Finin, Rules for the Implicit Acquisition of Knowledge about the
User, 6th National Conference on Artificial Intelligence, AAAI, 1987, pp.
295-300.

[Kass, Finin 87b]
R. Kass, T. Finin, Modeling the User in Natural Language Systems, Computa-
tional Linguistics, Special Issue on User Modeling, Vol. 14, 1987, pp. 5-22.

[Kass, Finin 88a]
R. Kass, T. Finin, A General User Modelling Facility, CHI '88 Conference
Proceedings, Human Factors in Computing Systems, ACM, 1988, pp. 145-150.

206

[Kass, Finin 88b]
R. Kass, T. Finin, The Need for User Models in Generating Expert System
Explanations, International Journal of Expert Systems, Vol. 4, 1988, pp.
345-375.

[Kss, Finin 89]
R. Kass, T. Finin, The Role of User Models in Cooperative Interactive
Systems, International Journal of Intelligent Systems, Vol. 4, 1989, pp. 81 -112.

[Kelleher 88]
G. Kelleher, Helping Learning through Explanation and Advice: an overview
of EUROHELP, Artificial Intelligence Tools in Education: Proceedings of the
IFIP TC3 Working Conference, IFIP, 1988, pp. 67-72.

[Kelly 85]
V.E. Kelly, The CRIITER System: Automated Critiquing of Digital Circuit
Designs, Proceedings of the 21st Design Automation Conference, 1985, pp.
419-425.

[Kennedy etal. 88]
A. Kennedy, A. Wildes, L. Elder, W.S. Murray, Dialogue with Machines, Cog-
nition, Vol. 30, 1988, pp. 37-72.

[Kieras, Poison 85]
D.E. Kieras, P.G. Poison, An Approach to the Formal Analysis of User
Complexity, International Journal of Man-Machine Studies, Vol. 22, 1985, pp.
365-394.

[Kintsch 89]
W. Kintsch, The Representation of Knowledge and the Use of Knowledge in
Discourse Comprehension, in R. Dietrich, C.F. Graumann (eds.), Language
Processing in Social Context, North Holland, Amsterdam, 1989, pp. 185-209,
also published as Technical Report No. 152, Institute of Cognitive Science,
University of Colorado, Boulder, CO.

[Kobsa, Wahister 89]
A. Kobsa, W. Wahlster (eds.), User Models in Dialog Systems, Springer-
Verlag, New York, 1989.

[Langlotz, Shortliffe 83]
C.P. Langlotz, EM. Shortliffe, Adapting a Consultation System to Critique
User Plans, Int. J. Man-Machine Studies, Vol. 19, 1983, pp. 479-496.

[Lemke 89]
A.C. Lemke, Design Environments for High-Functionality Computer Systems,
Unpublished Ph.D. Dissertation, Department of Computer Science, University
of Colorado, July 1989.

(Lenke 90]
A.C. Lemke, Framer: A Knowledge-Based Design Environment for User In-
terface Design, IEEE Software (Tools Fair Issue), May 1990.

207

[Lenat, Prakash, Shepherd 86]
D. Lenat, M. Prakash, M. Shepherd, CYC: Using Common Sense Knowledge to
Overcome Brittleness and Knowledge Acquisition Bottlenecks, Al Magazine,
Vol. 6, No. 4, Winter 1986, pp. 65-85.

[Lewis 891
C.H. Lewis, Explanation and Learning in Procedural Skills, Technical Report
CS-CU-436-89, Department of Computer Science, University of Colorado,
Boulder, CO, April 1989.

[London, Clancey 82]
B. London, W.J. Clancey, Plan Recognition Strategies in Student Modeling:
Prediction and Description, Proceedings of AAAI-82, Second National Con-
ference on Artificial Intelligence (Pittsburgh, PA), 1982, pp. 335-338.

[Manheim, Srivastava, Vlahos, Hsu, Jones 90]
M.L. Manheim, S. Srivastava, N. Vlahos, J. Hsu, P. Jones, A Symbiotic DSS
for Production Planning and Scheduling: Issues and Approaches, Proceedings
of the 23rd Annual Hawaii International Conference on System Sciences, Vol
III, J.F. Nunamaker, Jr. (ed.), Jan 1990, pp. 383-390.

[Mastaglio 89]
T. Mastaglio, Computer-based Critiquing: A Foundation for Learning
Environments, Proceedings TITE '89, 1989 Conference on Technology and In-
novations in Training and Education, March 6-9, 1989, Atlanta, GA, Linda
Wiekhorst (ed.), 1989, pp. 125-136.

[Mastaglio 90a]
T. Mastaglio, Paradigms for Intelligent Learning Environments: Tutoring,
Coaching and Critiquing, Proceedings TITE '90, 1990 Conference on Tech-
nology and Innovations in Training and Education, March 12-16, 1990,
Colorado Springs, CO, 1990, pp. 190-204.

[Mastaglio 90b]
T. Mastaglio, User Modelling in Computer-Based Critics, Proceedings of the
23rd Hawaii International Conference on System Sciences, Vol III: Decision
Support and Knowledge Based Systems Track, Jay F. Nunamaker, Jr (ed.),
IEEE Computer Society, 1990, pp. 403-412.

[Mastaglio, Turnbull 87]
T. Mastaglio, W. Turnbull, A Learning Environment for the HP Bobcats, 1987,
Final Project Report for CS614 - Spring Term 1987.

[McCall, Fischer, Morch 89]
R. McCall, G. Fischer, A. Morch, Supporting Reflection-in-Action in the Janus
Design Environment, Proceedings of the CAAD Futures '89 Conference, Har-
vard University, Cambridge, June 1989, Pre-Publication Edition.

208

[Mu 88]
F. Mill, A Framework for a Decision Critic and Advisor, Proceedings of the
21st Hawaii International Conference on System Sciences, Jan 1988, pp.
381-386.

[AWL Manhein 88]
F. Mili, M.L. Manheim, And What Did Your DSS Have to Say About That:
Intoduction to the DSS Minitrack on Active and Symbiotic Systems, Proceed-
ings of the 21st Hawaii International Conference on System Sciences, Jan
1988, pp. 1-2.

(Miller 79]
M.L. Miller, A Structured Planning and Debugging Environment for Elemen-
tary Programming, in D.H. Sleeman, J.S. Brown (eds.), International Journal
of Man-Machine Studies, Academic Press, 1979, pp. 79-95.

[Miller 86]
P. Miller, Expert Critiquing Systems: Practice-Based Medical Consultation by
Computer, Springer-Verlag, New York - Berlin, 1986.

[Moore 87]
J. Moore, Explanations in Expert Systems, Technical Report, USC/Information
Sciences Institute, 9 December 1987.

[Moore 89]
J. Moore, Responding to 'HUH': Answering Vaugely Articulated Follow-up
Questions, Human Factors in Computing Systems, CHI'89 Conference
Proceedings (Austin, TX), ACM, New York, May 1989, pp. 91-96.

[Moran 81]
T.P. Moran, An Applied Psychology of the User, ACM Computing Surveys,
Vol. 13, No. 1, March 1981, pp. 1-31.

[Murray 88]
D. Murray, A Survey of User Cognitive Modelling, Technical Report NPL
Report 92/87, DITC, National Physical Laboratory, Teddinton, Middlesex
TWII OLW, UK, 1988.

[Murray Benyon 89]
D. Murray, D. Benyon, Models and Designer's Tools for Adaptive Systems,
Technical Report, DLTC, National Physical Laboratory, Teddinton, Middlesex
TWI1 OLW, UK, 1989.

[Neches, Swartout, Moore 85]
R. Neches, W.R. Swartout, J.D. Moore, Enhanced Maintenance and Explana-
tion of Expert Systems Through Explicit Models of Their Development, IEEE
Transactions on Software Engineering, Vol. SE-11, No. 11, November 1985,
pp. 1337-1351.

[Nieper 83]
H. Nieper, KAESTLE: Ein graphischer Editor fuer LISP-Datenstrukturen,
Studienarbeit 347, Institut fuer Informatik, Universitaet Stuttgart, 1983.

209

[Norman 82]
D.A. Norman, Five Papers on Human-Machine Interaction, CHIP Report 112,
University of California, San Diego, May 1982.

[Norman 86]
D.A. Norman, Cognitive Engineering, in D.A. Norman, S.W. Draper (eds.),
User Centered System Design, New Perspectives on Human-Computer
Interaction, Lawrence Erlbaum Associates, Hillsdale, NJ, 1986, pp. 31-62, ch.
3.

[Papert 80]
S. Papert, Mindstorms: Children, Computers and Powerful Ideas, Basic Books,
New York, 1980.

[Paris 87]
C.L Paris, The Use of Explicit User Models in Text Generation: Tailoring to a
User's Level of Expertise, Unpublished Ph.D. Dissertation, Columbia Univer-
sity, 1987.

[Paris 89]
C.L. Paris, The Use of Explicit User Models in a Generation System for Tailor-
ing Answer to a User's Level of Expertise, in A. Kobsa, W. Wahlster (eds.),
User Models in Dialog Systems, Springer-Verlag, New York, 1989, pp.
200-232.

[Polson, Richardson 88]
M.C. Poison, JJ. Richardson (eds.), Foundations of Intelligent Tutoring
Systems, Lawrence Erlbanm Associates, Hillsdale, NJ, 1988.

[Psotka, Massey, Mutter 88a]
J. Psotka, L.D. Massey, S. Mutter, Intelligent Instructional Design, in
J. Psotka L.D. Massey, S. Mutter (eds.), Intelligent Tutoring Systems: Lessons
Learned, Lawrence Erlbaum Associates, Hillsdale, NJ, 1988, pp. 113-118.

[Psotka, Massey, Mutter 88b]
J. Psotka, L.D. Massey, SA. Mutter (eds.), Intelligent Tutoring Systems: Les-
sons Learned, Lawrence Erlbaum Associates, Hillsdale, NJ, 1988.

[Raghaven, Schultz, Glaser, Schauble 90]
K. Raghaven, J. Schultz, R. Glaser, L. Schauble, A Computer Coach for In-
quiry Skills, 1990, draft submission to Intelligent Learning Environments Jour-
nal.

[Reeves 90]
B. Reeves, Finding and Choosing the Right Object in a Large Hardware Store
-- An Empirical Study of Cooperative Problem Solving among Humans, Tech-
nical Report, Department of Computer Science, University of Colorado,
Boulder, CO, 1990, forthcoming.

[Rennels 87]
G.D. Rennels, A Computational Model of Reasoning from the Clinical
Literature, Springer Verlag, Lecture notes in medical infonnatics, 1987.

210

(Rennels, Shortiliffe, Stockdale, Miller 891
G.D. Rennels, E.H. Shortliffe, F.E. Stockdale, P.L Miller, A Computational
Model of Reasoning from the Clinical Literature, Al Magazine, Vol. 10, No. 1,
Spring 1989, pp. 49-56.

[Rich 79]
E. Rich, Building and Exploiting User Models, Unpublished Ph.D. Disser-
tation, Carnegie-Mellon University, 1979.

[Rich, Waters 88]
C.H. Rich, R.C. Waters, Automatic Programming: Myths and Prospects, Com-
puter, Vol. 21, No. 8, August 1988, pp. 40-51.

[Rich, Waters 90]
C. Rich, R.C. Waters, The Pogrammer's Apprentice, ACM Press, New York,
1990.

[Riemann, Raghaven, Glaser 88]
P. Riemann, K. Raghaven, R. Glaser, Refract, a Discovery Environment for
Geometrical Optics, Technical Report, Learning Research & Development
Center, University of Pittsburgh, 1988.

[Sacerdoti 75]
E.D. Sacerdoti, A Structure for Plans and Behavior, Technical Note 109, Stan-
ford Research Institiute, Stanford, CA, 1975.

[Schank 86]
R.G. Schank, Explanation Patterns: Understanding Mechanically and
Creatively, Lawrence Erlbaum Associates, Hillsdale, NJ, 1986.

(Schank, Abelson 77]
R.C. Schank, R.P. Abelson, Scripts, Plans, Goals, and Understanding,
Lawrence Erlbaum Associates, Hillsdale, NJ, 1977.

[Schiff, Kandler 88]
J. Schiff, J. Kandler, Decisionlab: A System Designed for User Coaching in
Managerial Decision Support, Proceedings of the International Conference on
Intelligent Tutoring Systems (Montreal, Canada), June 1988, pp. 154-161.

[Schmidt, Sridharan, Goodson 78]
C.F. Schmidt, N.S. Sridharan, J.L. Goodson, The Plan Recognition Problem:
An Intersection of Psychology and Artificial Intelligence, Artificial Intel-
ligence, Vol. 11, 1978, pp. 45-83.

[Scott, Clancey, Davis, Shortliffe 84]
A.C. Scott, WJ. Clancey, R. Davis, E.H. Shortliffe, Methods for Generating
Explanations, in B.G. Buchanan, E.H. Shortliffe (eds.), Rule-Based Expert
Systems: The MYCIN Experiments of the Stanford Heuristic Programming
Project, Addison-Wesley Publishing Company, Reading, MA, 1984, pp.
338-362, ch. 18.

211

(Seidel, Weddle 871
RJ. Seidel, P.D. Weddle, Computer-Based Instruction in Military
Environments, Plenum Press, New York, 1987.

[Simon 8 1]
HA. Simon, The Sciences of the Artificial, The MIT Press, Cambridge, MA,
1981.

[Skulley 88]
J. Skulley, The Relationship Between Business and Higher Education: A
Perspective on the 21st Century, CACM, Vol. 32, No. 9, September 1988, pp.
1056-1061.

[Sleeman 83]
D.H. Sleeman, Inferring Student Models for Intelligent Computer-Aided
Instruction, in R.S. Michalski, J.G. Carbonell, T.M. Mitchell (eds.), Machine
Learning: An Artficial Intelligence Approach, Morgan Kaufmann Publishers,
Los Altos, CA, 1983, pp. 483-508, ch. 16.

[Sleeman 84]
D.H. Sleeman, UMFE: A User Modeling Front End Subsystem, Working Paper
HPP-84-12, Heuristic Programming Project, Department of Computer Science,
Stanford Uaiversity, April 1984.

[Sleeman, Brown 82]
D.H. Sleeman, J.S. Brown (eds.), Intelligent Tutoring Systems, Academic
Press, London - New York, Computer and People Series, 1982.

[Sowa 84]
J.F. Sowa, Conceptual Structures: Information Processing in Mind and
Machine, Addison-Wesley, Reading, MA, 1984.

[Steele 84]
G.L Steele, Common LISP: The Language, Digital Press, Burlington, MA,
1984.

[Steele 871
R.L Steele, An Expert System Application in Semicustom VLSI Design,
Proceedings of the 24th IEEE/ACM Design Automation Conference (Miami
Beach, FL), IEEE Computer Society Press, Los Angeles, CA, 1987, pp.
679-686.

[Steele 88]
RL Steele, Cell-Based VLSI Design Advice Using Default Reasoning,
Proceedings of 3rd Annual Rocky Mountain Conference on Al, Rocky Moun-
tain Society for Artificial Intelligence, Denver, CO, 1988, pp. 66-74.

[Strunk, White 57]
W. Strunk, E.B. White, The Elements of Style, Harcourt-Brace, New York,
1957.

212

[Suchman 87]
LA. Suchman, Plans and Situated Actions, Cambridge University Press, New
York, 1987.

[Sussman 75]
GJ. Sussman, A Computer Model of Skill Acquisiion, American Elsevier,
New York, 1975.

[Swartout 81]
W.R. Swartout, Explaining and Justifying Expert Consulting Programs,
Proceedings of the Seventh Intrnational Joint Conference on Artificial Intel-
ligence, A. Drinan (ed.), 1981, pp. 815-822.

[Swartout 83]
W.R. Swartout, XPLAIN: A System for Creating and Explaining Expert Con-
sulting Programs, ISI Reprint Series ISI/RS-83-4, Information Sciences In-
stitute, University of Southern California, Marina del Rey, CA, July 1983.

[Teach, Shortliffe 84]
R.L. Teach, E.H. Shortliffe, An Analysis of Physicians' Attitudes, in B.G.
Buchanan, E.H. Shordiffe (eds.), Rule-Based Expert Systems: The MYCIN Ex-
periments of the Stanford Heuristic Programming Project, Addison-Wesley
Publishing Company, Reading, MA, 1984, pp. 635-652, ch. 34.

[Turban, Watkins 86]
E. Turban, P.R. Watkins, Integrating Expert Systems and Decision Support
Systems, MIS Quarterly, Vol. , June 1986, pp. 120-136.

[VanIehn 88]
K. VanLehn, Toward a Theory of Impasse-Driven Learning, in H. Mandl,
A. Lesgold (eds.), Learning Issues for Intelligent Tutoring Systems, Springer-
Verlag, New York, 1988, pp. 19-41, ch. 2.

(Wahlster, Kobsa 88]
W. Wahlster, A. Kobsa, User Models in Dialog Systems, Technical Report 28,
Universitaet des Saarlandes, FB 10 Informatik IV, Sonderforschungsbereich
314, Saarbruecken, FRG, 1988.

(Wallis, Shortliffe 84]
J.W. Walls, E.H. Shortliffe, Customized Explanations Using Causal
Knowledge, in B.G. Buchanan, E.H. Shortliffe (eds.), Rule-Based Expert Sys-
tems: The MYCIN Experiments of the Stanford Heuristic Programming
Project, Addison-Wesley Publishing Company, Reading, MA, 1984, pp.
371-388, ch. 20".

(Waterman etal. 86]
D.A. Waterman, J. Paul, B. Florman, JIL Kipps, An Explanation Facility for
the ROSIE Knowledge Engineering Language, RAND Corporation, Santa
Monica, Calif., 1986.

213

[Weiss 881
E.H. Weiss, Breaking the Grip of User Manuals, Asterisk -- Journal of ACM
SIGDOC, Vol. 14, Summer 1988, pp. 4-11.

[Wenger 87]
E. Wenger, Artificial Intelligence and Tutoring Systems, Morgan Kaufinann
Publishers, Los Altos, CA, 1987.

[Wiener 80]
J.L Wiener, BLAH, A System Which Explains its Reasoning, Artificial Intel-
ligence, Vol. 15, 1980, pp. 19-48.

[Wilensky 84]
R. Wilensky, LISPcraft, W.W. Norton & Company, New York - London,
1984.

[Wilkins, Clancey, Buchanan 88]
D.C. Wilkins, W.J. Clancey, B.G. Buchanan, Using and Evaluating Differen-
tial Modelling in Intelligent Tutoring and Apprentice Learning Systems, in
J. Psotka, L.D. Massey, S. Mutter (eds.), Intelligent Tutoring Systems: Lessons
Learned, Lawrence Erlbaum Associates, Hillsdale, NJ, 1988, pp. 257-277.

[Williams 901
M.D. Williams, The Pragmatics of Knowledge-based Interface Design, Work-
ing Notes of AAAI Spring Symposium Series: Knowledge-Based Human-
Computer Interaction, AAAI, 1990, pp. 132-135.

[Winograd, Flores 86]
T. Winograd, F. Flores, Understanding Computers and Cognition: A New
Foundation for Design, Ablex Publishing Corporation, Norwood, NJ, 1986.

[Winston, Horn 81]
P.H. Winston, B.K.P. Horn, LISP, Addison-Wesley Publishing Company,
Reading, MA, 1981.

[Wipond, Jones 88]
K. Wipond, M. Jones, Curriculum and Knowledge Representation in a
Knowledge-Based System for Curriculum Development, Proceedings of the In-
ternational Conference on Intelligent Tutoring Systems (Montreal, Canada),
June 1988, pp. 97-102.

(Young, Barnard, Simon, Whittington 89]
R.N. Young, P. Barnard, T. Simon, J. Whittington, How Would Your Favorite
User Model Cope with these Scenarios, SIGCFH Bulletin, Vol. 20, No. 4,
1989, pp. 51-55.

APPENDIX A

USER MODELS REFERENCED IN DISSERTATION

This is a table of the different user modelling systems discussed through-

out the dissertation that provided insight or ideas for this work.

215

8 to a

ca0

S.0 0

L0 0

ba

00b
ca 60

aL

@0> @ .@

APPENDIX B

SAMPLE USER MODEL

This appendix shows the final user model at the conclusion of the

scenario presented in Chapter 4:

#<USER-MODEL 54237715> is an instance of class #<Standard-Class USER-MODEL 263574537>:
Th. follevinq slots have :INSTANCE
SHOW-UN-SETTER? NIL
SHOW-EXPLANATZON7 T
SHOW-NZWI-GO03? NIL
SHOW-OLD-cOD27 T
PROMPT-RULES NIL
DEUAmLT-ACCEPT-RULES NIL
RULES-TURiESD-OFF NIL
RULES-EXPLhrNED (COND-ERASE-PRED .T 0ZMRTGANi COND-TO-I7-EL-
FUNCTIONS-EXPLAfINED NIL
CONCZPTS-EXPLAINED (LISTS LISP-ATO(PZLSZ/EMPTY-LIST/NIL TRUE/NON-NfL TESTS

CONDITIONALS PREDICATES)
RULES-FIRED (C OND-ERASE-T.NIL (TIMES-rIRED 1) (TIMS-ACCEPTED 1)

(TIMZS-REJBCTZD . 0))
(COND-t.RASE-PRED.T (Tfl65-FIRZD 1) (TIES-ACCEPTED 1)

(TDME-RE3ECTED .0))
(DE-NRGAN (TnES-FrED . 1) (TIMES-ACCPTED .1)

(TINES-RJ3ECTED 0))
(COND-T-rF-ELSU (TIUS-FIRED . 3) (TIES-ACCEPTED .3)

(TDUS-R3KCTED 0)))
RULES-KNOWN ((COND-ERASE-T.NIL 02) (COND-ERASE-PRED.T .02)

(03-MORGAN . 02) (COND-TO-IF-SLSE .0D))
FUNCTIONS-KNOWN ((NULL D2) (MDT . 02) (OR 0 2) (AND . 02) (IF .02)

(COND D2))
CONCEPTS-KNOWNq ((LGICAL-FUWCTIOHS .021 (SYMBOLIC-WXRESSION .0D)

(LISTS 01D) (EVALUATION 01D) (TESTS . D1)
(CONDITIONALS . 0) (PREDICATES . Dl)

(INTERSAL-REPRESENTATION .D2) (SIDE-ErFECTS 0 2)
(CONS-CELL 02) (VARIABLES 01) (SCOPE 01D)
(LISP-ATOM DI) (ARGUMENTS 01) (FALSEDMT-LIST/NIh 01)
(TRUE/NON-NMI 01D) (FUNCTIONS . 01))

PROGPAMMING-LANGUAG-EXPERIENCE
(PASCAL C)

USER--GOAL SDILIFY
TIMES-LCR-INVORED 3
DATS-LAST-UPDATED 12/23/90 13:52:271
USR-OME-IRCTORY *P"WU HCH :>SCENARIO-USER>'
NAME SCENARIO-USZR

APPENDiX C

INFERENCE MFIHODS IN USER MODELLING COMPONENT

This appendix shows some of the code that implements the acquisition

subcomponent of the user modelling component for LISP-CRMTC. The im-

plemented methods to implicitly infer information about the user's domain

knowledge are shown below.

;;s3 DIRUCT kUT3M
* 3th.. are the interface functions that other system conents oall to
* ;lat the user nodal know that a u"er has tubes cean. actions. Tha. first

S:aset of functions are the direct aathodss these infer that oartan
333 Injormation should be added to the user modal. Thee functions can be
*:;;viawed as the simmetation of a msage passing protooli between modules.

(datum TZL-5L-9ZMXe-4rUL3-CZPT (rula-nase

;;if a "ser accepts a rule we inter that they undarstand that rule at the dZ level

,add-ta-user-modael *curreat-use?.odel
5

rule-om 142)
,we also edd the fact that this rule has fired And wee accepted to rulee-fired slot of User modal
(update-rules-fired- *Lot rulo-.men ascomed)p

(dat us TU.L-QS~ktsMZ-RVA-RXJ3CT= Jrmla-amw
;;if a "ser rejects a rule we iWar that they understand that rule at the QZ level
(add-to-user-model *eurreat-seadel* rule-an *d2)
;;vs, also add the fact that this rule bas fired efd wes rejected to rulee-fized slot of user nodel
(update-rlse-fired-elat rule-nam 'rejected))P

(deg% TZus ZSZ-CNZP-V A (concept)
;;after a concep is wiplalaed we place that concept in the user model at
; sleoel d2, unless It is already provst, in that case, we upgrade its low"l to dl
;:wba the coacept Is already known at Level dl, we do nothing
(ase (adr (aass. concept

(ocsoepto-knows oauret-seodel-) p
((ail) (add-to-aur-model *urret-smmdl conept Id))
41Ml (add-to-user-model *ourzet-useodal onacept 'dIp pp

(peshme concept I(oeopts-esvlaieed *ez etme Ppp

(detua T=JL-OCMWWUrM=XT-2WL~M (function)
::after a functioe Is explained we place that function in the user model at
is level d2. unless It is already present. in that use" we upgrade its level to dl
S :who& the functioa is already knows at leowl dl# we do nothing
(oce (ode lasson function

(fusctlces-knowse *orreat-nowemodslP P)

((alil) fadd-t.-usez-nedel *ourret-usewdl
5

function 142))P
(dM (add-to-user-model *curet-sammdal functioe 141)))

(poeftsa. function (fustioe-esipla.Loed *eeet-uSemods*p pp

218

leatter a rule is eplained we Place that rule in the use" modal at
iJlMW&L dZ. USalass it is already Present, Ln thAt case Werae its level to dl

3 latn the rule is already known at level dl, WO do nboxin
(ase (ads (&&"ae rule

(rules-known acurTemt-u&sxmod&l*)))
((i)(add-to-user-nodal. *current-uemOdal* rule 'd2))

(- d2 (add-to-user-modal *ourrent-UseZMcdal* rule dl)1M
(pushnwm rule (rulee-explained *curret-saodl*)))

(delun Tz.L-U5zftZL.-WffZT-Ad (atring)
;function that informs the neer modal that the uer has aelected a mouse

: sasaitive object in the contest Of an eplanation, to request access
I tdoin~ft &amIerS LntOZMAtna& on that Object. t ats as A filter to
, :datamine if the object is sonathing that enists in oar dmain model) if

;;Gso the ner modal is informed that en update is appropriate
(let ((object (intern fstring-upo&As string)

((find-comcept-by-a object) ;;~Object is a mcacpt
(te-Lusedaool-oncspt-ypertat-ooa object))

((find-funotioo-by-uma object) ;;object is a fuaction
(tal-usdelfuncioakyprtaz-aoesaObject))

(t bll) ::Object not in domin Modal
;;for now do a~th.±ng

(datus T=LU~XZ-O -C.. C r nmIPRTf-ACCSO (Concept)
;;if a uer aecessee the dooummt eaminer doamtatin asociated with

a; particular concept thea we alSO Add that concept to their uer model
;; in a similar Smner to when the concept is eaplalned directly
(case (odr

(&*so* concept (concepts-known &curat-ae~md&L*)))
((nil) (add-to-user-model -current-usexadal- Concept 'd2))
('d2 (add-to-ner-nodal. *aurreat-uaermodial

5
copt Idl))

(datun T.L-UXUUZL-WUNfl-YPZRZT-ACCZSS (function)
;; like the previous function but the hypertext access acess is for a function
(cas (ads

fame"c function. (functions-knows *curet-&GZeodl*))
((nJ.l) (add-to-uper-model. -aret-usemmda1

5
function 'd2))

('d2 (add-to-user-nodal. *ourvent-usemode1 function 'dl))

(datuma TZtUZOZ-UI-BAU-X%0 (rule status I
;$if the user makes use of the capebility in the SWC interface to specify the
;:dafault action take& for a rule (a .q.F always-esecut., turn-off* p, f) thent
;:US inter they haVe a aOM untderstanding Of that rale, its 1evel in
ithe usme m.del is set to d2.

(edd-to-user-uodal *current-uaemoodal
5

rule 142)
(chaage-rule-status-for-usor *ourreat-useodel- rule stae status)

(datus TCLVZ~=-WL-0Mr D (rule)
:s if the uer bas sonathing to ay sbout a rule that they add to the systemn
3 :doecitatice for that rule (usingq the ft" rule comment capability in
3: SW s interface), thea we inter that they have a scp~tsticated ndarstending
;:o0f that role) its level in the User nodal is aot to d12
(add-ta-user-nodal *ourreat-usexaodal* rule 'di))

219
III; EDIRUCT W=O"00
; , Me second sat of methods are the Indirect methods. These
Mact. change. to the User Vodel and use that information to
*infer changes to other objects in the uer model. They propagate

::;any changes through the model by using that change as a
;zIou. and making use of "dspowdsat-cs link* in the domain modal.
;;;Thoe. methods are implemented as around methods on updates to the
;;kowadgem slote (rules, functions and concepts kno) in the uset model.

(detood (332? rules-known) sbefore (new-rules-known, (user user-modelI))
:Thia method impements the notion that any rule which a user knows implis
;;that they also .ow the functions &&A cocepts underlying that rule, if the
;;level of knowledge is *d1 thean the knowledge level of both underlying functions

;:&ad concepts is "426; if the rule knowledge level is 452 then only underlying functions
;;are interred to be at level ndl and nothing is inferred sboat concepts for now

(let- ((rule-oona (find-update,
(rules-knows user) new-rulee-known))

(rule (car rule-cons))
(level icdr rule-cons)
fruier-Instane (find-rule-by-nam rule))
(funtions-list (functions ruLle-instance))
(oonopts-ILit

(fid-ll-dpedent-at-ooopts rule-Lafstese)
(new-level 'd2))

(if (eq level I dl)
ichange modal to reflect 4d2a knowledge Lev"l for concepts underlying this rule

(dolist (eaoh-oaomopt oonoeopts-list)
(ads-to-user-nodal *aurrentuszodl&

("nm aoh-concept) new-level)))
;;for both knowledge levels *4l* and "d2- for this rule in the user model

s;et knowledge level for underlying functions to *d2-
(dolist (each-function functions-List)

(adit-to-user-ftodel *ourrent-usemdel. ea-funotion new-level))))

(deothtod (532? functions-known) :before (new-functions-known (user user-miodel))
;;This method is similar to the previous one, ebxept it runs after updates to the
:: functions known slot La the user model. It implts indirect methods that allow
;; us to set the knowledge level for oacepto a givea function is dependent on to
is dl if the f motion' s knowledge level has goee to 0410 and Od1 if the fuction's
;sknowledge level has gone to *d2-

(let- ((function-cons, (find-update
(funotions-kowa, user) new-functions-known))

(fun-masm (oar function-cos))
(level (odr function-cons))
(oncepts-list (find-ol-dpndeat-oa-ccncepts

(find-functIn-by-nems, fun-nom)))
(new-level. (if (eq level 'dl) 'd1 'd2)I)

(dolict (aech-concapt oomopts-list)
(ads-to-usmodal I curret-uoemdel

5

'nome eoh-ccncept! new-level)

(debmhod (EW oncempts-known) shefore (new-oncempts-known, ("oer user-modal))
;;This method is for concepts. It uses the an update to the wconompts-knowne slot in
;;the user modal to infer that dependent-on, coneps are also known at the same level

(let- (cooept-coos (find-update
(ooncempts-knws User) nwoeet-nu)

(oncept (car oopt-oonl)
(level (ode ocope-0oes)p
(omoepts-list (find-ell-depeadant-on-aeepts ;List of instances

(find-ocept-by-tme copt)))) :;;Of these oncepts
(if (eq level I dl)

:;if a oncept belongs to a user's -d1- them its dapendent-on concepts
-:also belong in this user's -d1
(dolist (each-concept oacepts-list)

(add-to-user-mo~dal *Guret-U&QeindL
t m

(non eack-copt) 'dl))
:50. the other hand it a concepts belongs to a user's -d21 then we infer tAnt
i:depeadest-ce oonoepts are know. at level *42l or better - concepts
m)already is the model at *d2-* go to *dl* the" &bost are ad at level -d2-

(delict (eech-compt ooeoepta-list)

(let ((this-concept (nomoeec-ccnceopt))
(Ut (null (how-ell-de-User-kow cerrest-umcmsdl

5
this-0opt))

(add-to-user-modal *ura-sidl

thls-coeept '42)
(add-to-user-modal*uratuedl

this-omeept '41))))

220

The following portion of the framework for the acquisition subcom-

ponent is provided so that the other three categories of acquisition techniques (as

described in Section 3-2) could be integrated into the user modelling component.

Methods implemented in this dissertation are those shown above; all are implicit

acquisition methods.

M; 6ATISTXCAZ. AI=U8
; 1bs set of methods Uses intortion that the Statistical
; ; ;:mealypis modle accamulates for the user. They use the statjtical

;;data to Lnter specific ohanges ora dditions to the user modal.
UI)Tsm are inompletend would require a signi icant effort
* : ; ".nays JIn the statistical information to see exmtly what

;;infereeo It should trigger.

(defum I"cMXa n-UXD (functioe) (Iquore functis))

; :;his set of methods is the interface with & tutorinq ocmponent
;;;for updating the model oontest@. Subjects an- which the user
;I ;hs received specific tutoring episodes either at their request
*;;oir as the result of suggestions from LIIBP-Critio will he used
;;to infer knowledge levels in the User model

Oet- 'UJ-U (concept) (ignore oaeopt)
I;sny oaept cn which a user has been tutored will. he set to level 'd2

Idu . TJm - M-NWZL-I M-T (function) (ignore function)
:;ay function cm which a user has been tutored will be met to level 'd2

;115 E:LZCZT ~N~
mlkTh£s set of methods use emplicit acquisition techniques to either

i;estsbl sh as Initial user model or to interactlvly query the user
;;;Vbl the sytQn see additional info-%Ation or ularifiatIon.
; ;regardiL the knowledge state of the user.

(datum AR-V&W-ADO?-?2ZXR-XWOWLfJCD (1
;:Iset of interactive queris that quetioa user about their empertise

APPENDEX D

ACCESS MEMhODS IN THE USER MODELLING CONPONENT

This appendix shows the set of access functions that are available for the

user modelling component itself as well as for other system components to " inter-

rogate" the contents of model instances. The scheme for implementing access is

to provide general accessor functions to other system components which when

called cause the user modelling component to invoke the appropriate CLOS method

on the user model instance representing the programmrer- presently using the sys-

tem - that instance is bound to the global. variable *cretusr oe*

IMg 1FDXiAWL AMUC
ju I bthodsf that are used to &Coesa the user model by other system

;: I ~ets and Processes. Thee are somoimme referred. to &s-
;11 the unifomsed methods - they contain an knowledge about- how

,;: to modify Or update the user model.

(defmethod U3IC-DOU-m-m ((user ue-modoUj -Lisp-oblesta)

:1 Rturn a list of those omoepts, rules or functions that a user kmown
.that are in the argument list, *lisp-objeCts-

(need
((fin-caecept-bryame (car lisp-objects)
(intersection lisp-objects (extract-aes

(ooaoopts-known user))(p
((find-funatlow-br-nmme (car lisp-objects))
(interseotloa lisp-objects leztract-me

(funotions-koWfl usor)))
it (intersection lisp-objects (extract-ae

(ruiles-nowm s, r))

(detmohod U3ZC-D2-SU-*T-T ((user use.-mde) Lisp-objeotal
;tAeturns a list of those concepts, rules, or functions that a user DOIS NOT KOW
Isthat, are ink the argument list *lisp-abjects'
(coed

((fJied-coseept-by-sme (Car lisp-objects))
(sat-differeace, lisp-objects (extract-w

(ooaopts-known user)))
((fIad-funation-by-same (car lisp-bJests))

(set-ditferesoe lisp-objects (extrect-uw
(fumotions-kom userl)))

it (set-diffeeme lisp-objects (extract-ewem
(rule-kows user)))

222
(detmethed U3Zcz-Dozm-eU't-Nwzi-wnw, ((user user-model) lisp-objeats p

;Iro the argumnt list, lisp-objects, this methods returns eny onacept, function or
:iGTitio role that the uer does a"t kaw at level dl

4 (fibd -eoaopt-b-nm (car lisp-objeacts))
(nepoen #* (labda (oncempt)

(unless (eq (hwwl-ca-srkc urrent-us&=kde* oceret) 'Ii)
(list copt)))

lisp-objectsoate)

Omepoae V' (lImmbda (function)
(unless (eq (hw.1..os.sr..nw*urrent-use~del

5
functioa) 'dl)

(list functioua))
lisp-objects))

(t omspoen V (lamboda (1cr-rule)
(unless (eq (how-wll-doe-ms-kwm -curret-usemdal* 1cr-rale) 'dl)

(list 1cr-ruleM)
lisp-objects))

(dae s TOIS9C-OSNTIS (list-of-tcpics)
;1iilterm the topics (concepts) in list-of-topics through the user moel and
ireturns those the user does aot know at aLl

(whch-cesuse-uo-knw2*amurret-Uszodel* list-of-topics))

(defun, MTpC2U1ain (a-list)
;:*lots LIs Useodels concepts, functions, en" rules-known am, s-Ilsts$ this functioa extracts
;;the bom (car of each itsm) frowt that list so comarison operations Gs he Perfomed
(agor 'oar a-list))

(defun 30-WE.-DOZ2-V5ZX-KWW-UZC (objetslist)
;;accepts a list of Lm-OmjUCfl, determnes it, ac ome is is the usemodal. and at what level
;Ithe User kbow the object. returns three lists: objects known at levels d0, dl and d2.
(let ((dl-list nil)

(di-list nil)
(do-list ail))

(dolist (object objets-List)
(case (how-wll-doe-use-kow *cretue*object)

(dl (push object dl-llst))
(d2 (push object di-list))
(dO (push object dO-list)

(list (list 'do do-list) (list 'd2 42-list) (list '4dl4-list))))

(daterthad flU~LOZ-55~(Iuse ussr-model) lisp-shiest-naes)
::returns the d. level of the exuonent *Liap-abject-

((oir (aseoc lisp-objet-nm (sopts-known user))))
I(osit (&asscls-betn (functions-known user))))
f((ir (&sees lisp-object-nam (rules-known ser))))
(t 'doM) ::-do' means not known at all

(daeth*od ADD-7O-OMM-NDXL ((user user-model) lisp-object level)
:; Adds aryinmat lisp-object to appropriate slot La this Individuals user nodal

(comd
((flai-vmcept-by-amme lisp-bject) ;;Ithin is a LX21 cncept
::if a new concept for this user thee add it to the concepts-known slot La the user modal
(if (null (&msoo* lisp-object (copts-known, user)))

(&Ott f(ooepts-kncwn User)
(ccee isp- oet level (c0opts-known user)))

ielse replace the curreat level with the new level - do this even it they are the Mss
(ualme (eq 'dl (oir (assoo lisp-object (oncepts-known user))))

(rplasi (asses lisp-object (cooos-known user)) eel)

((ftsd-funotice-by-nmea lisp-object) : :this is a ill? function
;;it a new functioas for this user, add it tc funatises-koln slot Lfn the "ser model
(it (null (55550 lisp-Object (functie-knowni User)))

(satf (fumatices-know user)

(scces Ilsp-object level (fuafticas-knwn uer))
1;else replace the curreet level With the "mlevel. - do this eve if they Are the sems
(usleae (eq 'dl (oft (&sees lisp-object (fanctiee-kowe user))))

(rplaoi (asses lisp-object functicets-knowe user)) level))

223
(tI default ase - its a rule

;:It a new rule fox this uee add It to rulasl-kaow. slat In the user model
(if (san IassoO lisp-Objeat (rules-known user))

(setf (rules-known user)
(&*on& U~sp-cbject level (rules-known user)))

;;*els replace the aurreas level with the new Level - do this even if they are the som
(unless (sq 'dl (aft (asso lisp-Object (rules-know. user)j)

(rplaod (ASSOC lis-object. (rules-known user)) level)))

(de&Wtod ALaZhDY-OLUMMI (fausr user-model) lisp-object-nem)
;t Returns true if the arguenat -Lisp-Object- has been expleined to the user
;; in the past Otherwise returns nll

f(fin~d-cassept-by-slae lip-objet-am)
ommer lsp-object-nm (comcepts-essla.ned user))
M(isifunction-by-ms Uqsp-objct-sm)
bamem lisp-objet-nmm (funoticam-42plained uer)))

(t
(emober llsp-Objet-assm (ue-uli user)))

(dtethod CIUM-RLZ-2Al-FOR-USfl ((user user-model) rule sthey state)
;; Changes the state of the arumnt OxuIe depending an the ftise Of argumnt ate'
;I by updeting the appropriate slats - probably should be using a single sllt with en a-lst
Jcose state

(salways-accept
;I enable this rule by remoing it from the List of rules turned off or promted for
(it (not (member rule (defalt-acocpt-rules user)))

(push rule (detault-mossept-rules user)))
(sett (rules-disabled user)

(delete rule (rules-disabled user))
(Dsett (proapt-ma-rules User)

(delete rule (pr t.e-ules user))))
(SaIways-reject
:1 disable this rule, edd it to the list of rules turned of fe remove it f rox Others
(if (nt (number rule (rules-disabled user))

;;but only if it is not already there
(Push rule (rules-disabled user)))

(setf (p - -es-rale user)
(delete rule (pr -me-rules user)))

(setf (defeult-asoept-rules user)
(delete rule (default-soept-rule user))))

(spromt-asi
;;dM this rule to list of those which system will ak the user abaft
(it (not (eumber rule (prmt-me-rules userl))

;;ibut only it it is not already on that list
(push rule (PVzt-$e-rUJlee user)))

(setf (ruls-disabled User)
(deleto rule (ruls-disabled user)))

(setf (default-acospt-rules user)
(delete rule (default-aocpt-rules user))))

i;r Motcds that provide a persistent capsbij~ty to the use -o33lin
;;11 connt. These allow the user model to be saved to and
1iii retrieved f rom a fle so that it oem be reused sad iteratively

;;s; eahencsed during subsequent uses of LIZIP-Critric.

(deftetbod SAWC-OBJECT ((self sae-mim) &optional strem)
I mothcd on the nisia class to se ame individual model to a file that ass

)i ice be loaded during the east seesioa with the system. This actually works
i:;;by creating code and putting it into that file so that when the fie Is loaded
gm:it will sake en instesce of the user model in the local environment.* That
;:&"lateos" osaeis the informatin sbout the user builIt-up over time.
(lot (Loatargs oil)

(other-its nil)
(cle (dinesf-of salt)))

(with-Slats (e&S) self
(delist (slot (pals oless-slats class))

(lt ((slat-ame (pal:s lotd-um slat)))
(wesa (olot-bosaft self slat-alas)

(lot ((wulee (slot-value self slat-sWm))

(isitery feer (pals sslotd-Initarge slDO))
(if initarg

(Setf Liniters ',Iaitarg ',value - V11targo))

224
(push (list slot-mama val~ue) other-inite))))j

(print ,Satz (get 1,am 'instance)
:1 type-of self) does not work properly In FM.

Use (class-urne (.1*5-of Self)) instead
(make-instace '(lss-smm Class)

*initarva))
struam)

(dolist limtit other-Laita)
(print I(setf (Olot-walue (get "nabs 'Iinstance) ',(f rt 1"t))

',sccmd isit))
strea)))))

(demthcd SAVEL-VUrn EL-to-rIL9 ((uase usar-model))
:save ant image of the user'sa model An his directory so that it stas be used the

n: ext tie that LISP-Critios is invoked - implemants the persistent msermde
(let J((peoka1 (fiad-paokaqe 'tums)))

(with-open-file (strum meg-ehue(user-directory uster) Islo-ssezindel. lisp.sevet*)
:direotiom :output
sif-done-at-enist I cresae

(faoet strum ; -- ades LISP; Syntal Cmo-isp; Bases 10i Packages TMO ~8
(Save-cbject user strum))))

(deft wAD-usa-mm-ruawma. ()
;retrieves from the user's Syuiolcas hom direotory his user model for use by LISP Critric
(load (marge-pethnms f 5 user-haaadir) souedlls eat

if-doa.-uot-ezsat nil))

:use this function to instantiate a new %seor model wham omm doe" tot already exist
:it can be expandad to use either a standard default model for .1 new Sers or-to
:initiate explicit acquisition by aing the users quasticas in order to classify kim or

I I her into a &toreotype to use aS a starting point - for now war will use ant initial
:: default model that is empty

(setf * uret.usenbdal* (make-instance 'useir-model)))

iThis tuncticat ise provided to the main critic angina to either retrieve a user model
fiCrom a file for thin User 40me that WOs craated daring previous intarMmAotiCmnA With

:the system) or create a default for a first time use.
(if (mull (odue-oeifc- i)

(create-new-user-model)
($Ott *urn-smdl

(get (intern,
(stimgupceexl :user-iA) 'two) 'instance))))

(defulk T.L-gSUINw.-CRZOIQ-5EsZ"OU-CWLJf 4)
:; Interface function that is used to info=s the semzodal, that the critiquingq ocpbot
i; has just comleted a msesio with the user and certain solean-ups processes can be run
(inof (tioms-invoked *currant-useinodel*s))

etf (data-updated *currunt-usemosdal*)
itimetsprint-currmt-tme Ail))

(let- ((slc-window (dt: find-rorm-window 'sIc%: sic-f rum :seleftad-ok t))
(program (501:seend Zic-window :progrM)))

(setf (show-old-code? urntsedl
(slot islo-frm-sost-ol-oode? progress))

(*Ott (sose-od? urrunt-usemodol
5

)

(slot ::lo-fran-tov-mav-ccd*2 progra)
(Setf (s.ho-esplanatioe) *curreat-usmmodal*)

Isloas sulc-fram-how-explanatioul program)))
(Saxw-useindal-to-fEIe cuarrest-USSENOdel))

APPENDIX E

QUESTIONNAIRE ON LISP

Name:

1. Which programming languages are you familiar with?
2. In which of the above language are you the most proficient?
3. Please provide the following information about previous ex-
perience with LISP:

a. Number of LISP programs you have written:
b. Approximate lines of LISP code written (circle answer):

* None
:10- 100

1 100-1000
• 1000-10,000
* over 10,000

c. Previous formal LISP instruction (circle those that apply):

* Took a short course on LISP.
* Introduced to LISP in a Programming Language

Course
* Have had LISP as part of an Al course
• Received individual tutoring on LISP
• Other.

d. Any Self Directed instruction on LISP:

" Computer-based instruction
" Books used on my own to study LISP (which ones)

226

4. How much do you know about the following LISP concepts?

l=could define
2= am familiar with
3= never heard of it

Symbolic Expression Quote
Functions Conditionals
Variables Side effects
Scoping Property Lists
Lists Mapping
Recursions Multi-value return
Cons cell List iteration
Evaluation True (non-nil)
Nil Atom

5. How much do you know about the following LISP functions?

1= could probably write a correct- expression using the function,
2= am aware this function exists but need help with its syntax
3= have heard of the function but not sure what it does
4= never heard of the function before

COND LAMBDA
DO APPLY
DEFUN FORMAT
MAPCAR EQUAL
LET NULL
EVAL NCONC
MEMBER SETF
SYMBOLP LET*

CAR CASE
NTH AND
CONS ELT
LIST INTERN
NCONC ASSOC
APPEND PROG
AND STRING
PRINT READ

INDEX

Acquisition methods 100 Critics, performance 30
ACTIVIST 37 Critiquing 24, 109, 183, 190
Adaptation 31 Critiquing process 27
Advisory-dialog systems 50, 182 Critiquing strategies 29
Analogy, as explanation approach CRITTER 35

116
Analytical critiquing 29 Decision making in critics 36
Argumentation 117 Decision making, knowledge-based
ATTENDING system 34 support of 6

Decision support systems 4, 37
Bug models of students 47 DecisionLab 36

Deep domain models 116
CAI 16,186 Dependent-on relationship 90
Canned text 109, 124 Design Advisor 35
Classification approaches 53 Dialog 3, 8, 19,49, 133, 146
Coaching 14, 17, 33 Differential critiquing 29
CODE IMPROVER 65 Differential descriptions 120
Collaborative problem solving in Differential modelling 34, 44

humans 10, 175 Direct acquisition 52,180
Common LISP Objects System 95 Direct methods 139, 145, 146
Communications breakdowns 8 Discourse comprehension 112
Computer advisors 26 Distributed user modelling 185
Concept-set, used for explanations Document Examiner 105, 110

118 Domain model 78, 87,133,152,
Conceptual graphs 94 186,191
Conceptual structuring of domain Domain model entities 92

88 Domain model relationships 92
Constituency scheme 115 Domain model, layers in 96
Constraints 26
Cooperative problem solving 2, 4, 6, EES 101, 113

11, 14,22,49,64, 107, 192 Emotional impact of critics 30
Correlation of user model contents Evaluation of user model 156

166, 167 Evaluation test scenarios 159
Critics 21 Expert systems 5, 6
Critics, as learning environments 15 Explanation component 98
Critics, as used in planning systems Explanation in knowledge-based sys-

26 tens 112
Critics, educational 30 Explanation levels 118, 119, 192

228
Explanation, meanings of 106 Learning environments 12, 14, 16,
Explanation, role of in learning 19 23
Explanation-giving 88 Learning on demand 16, 17
Explanations as cognitive represen- Levels of user knowledge 53, 136

tations 106 LISP concepts 89, 90, 99
Explanations in LISP-Critic 68 LISP domain model 91
Explanations, failures of 110 LISP language, as represented in
Explanations, functions for 108 domain model 89
Explanations, need for in critics 32 LISP Tutor 63, 214
Explanations, presentation of 119 LISP-Critic 63
Explicit user model acquisition 59, LISP-Critic rules, in domain model

176 92
Exploratory learning 16 LISP-Critic system architecture 73

LISP-Critic, scenario for 76
Fall-back capability 113 LISP-Critic, versions of 66

Generic task methodology 116 Medical applications for critics 34
Genetic graphs 45, 59 Mental models 92, 106
Goal and plan recognition 8, 48 Minimalist explanation 111, 123
Goal recognition, in critics 27 Modes of critics 31
GRACE 38 MYCIN 68,101,103
Groupings, in domain model 91, 93
GRUNDY 48,214 Natural communications 8
Guided discovery learning 33
GUIDON 69 Object-oriented user model represen-
GUMAC 214 tation 133

ONCOCIN 34
Hypertext 125, 147 Overlay models 59, 132

IBIS 117 Prerequisite knowledge 89, 119,
Implicature rules 48, 146 149,151
Implicit user model acquisition 60, Problem space limitations of ICAI

179, 194 systems 47
Increasingly complex microworlds Process trace 115

70 Programmer's Apprentice 63
Indirect acquisition 52,180 PROLOG Explaining 38
Indirect methods 139, 145, 149, 152 PROUST 39,48
Inferencing methods 52,130 Psychological models 42
Information retrieval 5
Intelligent tutoring systems 12, 14, Qualitative student models 46

17 Questionnaires, used in evaluation
Intervention strategies in critics 31 158
Intrusiveness, in critics 30

Reactive approach to explanation
KATE 39 113
KNOME 49, 214 Related-concepts relationship 91
Knowledge representation 47 Relationships between concepts in

domain model 90

229

Rhetoric, theory of 112 User modelling, research overview
ROUNDSMAN 35 43
Rule-tracing 103, 122, 124 User modelling, theory of 197

User models in advisory-dialog sys-
Shared user models 187 tems 48
Simulation, in computer-based learn- User models in cooperative problem

ing 12, 13, 19 solving 56
Situated action 150 User models used for explanation
Situated actions 9, 18 120
Statistical acquisition methods 61, User models, access to 61

71 User models, arguments against 42
Statistical acquistion methods 178 User models, use of term in human-
Stereotyping 48,53, 132 computer interaction 41
Student models 44,181
Symbiotic systems 4 WANDAH 37
System adaptivity 57 WEST 33,44,214

WLISP 67
Task-oriented impasses 107 WUSOR 45,214
Tutoring 109
Tutoring methods for user model ac-

quisition 60, 177

UMFE 214
UNIX Consultant 49
Update techniques 175
User model access 153
User model acquisition 59, 145
User model acquistion, conceptual

framework for 173
User model representation 58
User model representation as graph

coloring 137, 138, 171
User model representation in LISP-

Critic 131, 135
User modelling component 100, 191
User modelling component architec-

ture 57
User modelling component architec-

ture in LISP-Critic 134
User modelling component, in LISP-

Critic 193
User modelling component,

shortcomings of 169
User modelling in cooperative

problem solving 51
User modelling shell 48
User modelling, general approaches

to 54

