o GOPY
N
<<
o A USER MODELLING APPROACH
< FOR
(&I COMPUTER-BASED CRITIQUING
- §
) o
<

THOMAS WALTER MASTAGLIO
B.S., U.S. Military Academy, 1969
M.S., University of Colorado, 1978

DTIC

ELECTE
s JuL201990

A thesis submitted to the ‘_”_-_ Mo
Faculty of the Graduate School of the
University of Colorado in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy

Department of Computer Science

1990

- lease;
roved tor public re
AppDinmbuhon Unlimited

This thesis for the degree of Doctor of Philosophy by

Thomas Walter Mastaglio
has been approved for the

pfit

cer¥

-

Department of Computer Science

by

AL F

Acocession Pop

NTIS GRA:I
DTIC TAB

Distribution/

/ Gerhard Fischer

Availability Codes

Avail and/or
Dist Special

é::ézéy/Z/_ C:"—“’”

Clayton Lewis

ad |

STATEMENT "A" Per Major J. Vhisker
total Army Personnel Command/TAPC-OPB-D
200 Stovall St. Alexandria, VA 22332-0411

TELECON

7/19/90

Date /ZVLL"g /7f&

VG

Mastaglio, Thomas Waiter (Ph.D., Computer Science)
A User Modelling Approach for computer-based Critiquing
Thesis directed by Professor Gerhard Fischer

Theoretical studies and implementations of computer-based critiquing
systems indicate that it is desirable to enhance that approach to better support
human-computer collaborative effort. A user model will enable these systems to
individualize explanations of their advice to provide better support for cooperative
problem solving and enhance user leaming. User modelling research in advice-
giving dialog and intelligent educational systems was studied together with
theoretical analyses of the limitations of human-computer interaction, and empiri-
cal observations of human-to-human collaborative effort. A framework for a user
modelling component for a critiquing system was developed and implemented in a
critic for LISP programs. The user models developed by the system were com-
pared to self-assessment questionnaires completed by subjects leaming the LISP
language. The analyses indicated a favorable correlation and potential improve-
ments to the framework. The user model is based on the conceptual domain model
required for explanations; its semantic structure allows t}le §ystcm to implicitly en-
rich the user model contents. The significance of this-werk is a framework for a
user modeiling component that can be used for a more general class of cooperative
knowledge-based systems. - Additionally, using the structure of the conceptual
domain model as the basis for the indirect implicit inference techniques is unique.
The theoretical foundations for the work, the framework developed, and an

analysis of the implementation are presented.

To the women in my life. To my mother, Mildred, who helped me to
develop the personal dedication and self confidence to get to this point in my
education. To my daughter, Mandye, who, unwittingly, provided me an example
of what dedication and sense of purpose are all about, one that motivated me
during times of discouragement and frustration. And to my wife, Diane, who was
there for me during those times of frustration, and all too frequently had to endure

their result. Ilove you all.

ACKNOWLEDGEMENTS

It is obvious from the list of referenced publications that the foundations
for much of this dissertation rest on the theoretical ideas and concepts developed
by my advisor and committee chairman, Gerhard Fischer. My attempts to extend
those ideas to specify how one should model users of cooperative knowledge-
based systems resulted from his patient tutoring and encouragement. The support
from the members of my thesis committee: Barbara Fox, Walter Kintsch, Clayton
Lewis, Jim Martin, and Gary Nutt helped to clarify my understanding and is much
appreciated. Bob Kass, who served as an outside reader, provided me invaluable
feedback. This thesis could not have been completed without the joint study of the
critiquing paradigm accomplished together with Andreas Lemke and Anders
Morch. Although our discussions were sometimes heated, they were always help-
ful to me. My good friend and office mate, Brent Reeves, was both a major con-
tributor to the LISP-CRITIC system, and served willingly as my personal *‘critic’’
during the last several years of this research. Others who played a role in either
refining LISP-CRITIC or working on the theoretical framework include Hal Eden,
Patrick Lynn, and John Rieman. Andreas Girgensohn was always willing to
provide much appreciated assistance during system building work; his expertise is
an appreciated source of advice. The always helpful feedback from the entire
Human-Computer Communications Research Group, although at times a source of
frustration, challenged my thinking and helped me direct my efforts. I would also
like to publicly acknowledge how fortunate I am that the United States Army
provided the me the time and financial support to complete the requirements for a
Doctor of Philosophy degree; I feel honored to have been selected for such a
program. Finally, without the support of my wife and loving family this entire
effort would not have been possible.

CONTENTS
CHAPTER

I. INTRODUCTION AND CONTEXT FOR THE RESEARCH .. 1
1.1 IntroductionandOverview 1
1.2 Cooperative Problem Solving 4
1.3 Leaming Environmentsc. ..., 12
1.3.1 Foundations for Learning Environments 13
132 ILeamingonDemand 16
133 Situated Actioncciiiiiiiiiieinn.n. 18
14 Summary i it 19
I CRITIQUINGiiiiiiiriieiinriinennanneennn, 21
2.1 Foundations for Crtiquing.eceveveeeunanennann, 22
2.2 The Critiquing Approach et 24
23 TheCritiquingProcessc.coviiiiiiint, 27
24 Survey of Critiquing Systems 32
25 Limitations of Current Critics and Future Research Issues. 39
26 SUMMATYiiieienineenenencnanncnnasannas 40
OI. USERMODELLINGccciiiiiiiiinninnneennnn. 41
3.1 An Overview of User Modelling Research 43
3.1.1 Student Models in Intelligent CAI 44

3.1.2 User Modelling in Computer Advisory Systems 48

3.2 Foundations for User Models to Support Cooperative
ProblemSolving i, 51

3.2.1 Classifying the Users’ Domain Knowledge
3.2.2 General Approaches to User Modelling

3.23 Requirements for User Models in Cooperative Problem
Solving Systems iiiiiiiieiiaaaaan

33 A UserModel Architecturecooeinnn....
331 Representationcieiiiiiiniieneans
332 Acguisitioniiiiiiiiiiiiiieeeia...
333 ACCESS ...ttt

4.1 Lineage of LISP-CRITIC Versions and Research Issues
Addressedcoiiiiiiiiiii i

4.2 Previous Research Projects to Enhance LISP-Critic
4.3 Description of Current Version
44 Scenarioiiiiiiiiiieiii i
4.4.1 FirstDialog Episode
442 SecondDialogEpisodec.eiiien..
443 ThirdDialogEpisode,

45 Summary ...l

5.1 Imtroductionciiiiiiiiiiiiiienn.
5.2 Requirements fora DomainModel
53 Formofthe LISP DomainModel

54 Conceptual Graph Notation For Representing the Domain
Model

5.5 Implementation of the DomainModel
5.6 Extendingthe Approach

53
54

56
57
58
59
61
62
63

70
72
74
76
81
82
84
87
87
88
89

93
96

viii

57 Summary ...t 102
THE FRAMEWORK FOR EXPLANATION 103
6.1 Theoryc.iniiiiiiiiiiiiiiinnneinnncennas 106
6.1.1 The Need for Explanations 106
6.1.2 Functions for Explanations 107
6.1.3 Shortcomings of Current Approaches 109
6.14 Basis for Minimalist Explanations 111
62 RelatedWorkcciiiiiiiiiiiiiiii, 112
6.3 An Explanation Framework to Support Critiquing 118
6.4 Role of the User Model in Explanations 120
6.5 LISP-CRITIC Explanation System 122
6.6 SUMMAIYciiniruninnenrncenonsacnones 127
USER MODELLING COMPONENTc...... 129
7.1 DesignApproachiiiiiiaa.. 129
7.1.1 Objectivesccciiiiiiiiiiiiiiiiiiaenn 130
7.1.2 Implementation Approaches 133
7.2 User Model Representationcccovune... 135
73 User Model Acquisition 142
7.3.1 DirectMethodsciciiiiuiiinnn., 146
732 IndirectMethodsccoivvunnnn. 149
74 Accesstothe UserModel Ceereeea. 153
7.5 Summaryiiiiiiiiiiii it 155
EVALUATION OF THE USER MODEL 156
81 Introductionciiiiiiiiiiiiiiiiann., 156
82 DataCollectioncoviiviinieneuinnnnnnns 157

83 ANAYSIS ...t 159

84 ResultsofAnalysiscovvuinl.. 164
8.4.1 Efficacy of the User Model Component 164
8.4.2 Comparison of the User Models with the Questionnaires 166
85 Limitationsi it 168
8.6 Shortcomings in System Pointed Out by the Evaluation 169
8.7 Implications for System Modifications and Further
Developmentcciiiiiiiiiiinnt, 170
88 Summary i 171
IX. APPLICATIONS FOR, AND EXTENSIONS TO, THE WORK 173
9.1 A Framework for User Model Acquisition Techniques . 173
9.11 Background i, 174
9.1.2 Explicit Acquisition Methods 176
913 Tutoring-based Methods 177
9.14 Statistical Analysis of User’s Work 178
9.1.5 Implicit Acquisitionc..coiiennn.n 179
9.2 Employing the Approach in Other Applications 181
9.3 Support for Critiquing in Other Domains 183
94 Issues Warranting Further Research 184
95 Summary ...t 187
X. SUMMARY AND CONCLUSIONSc...... 189
101 Summaryt 189
102 Conclusionsot 196
REFERENCES ittt iiiiiin s 198
APPENDIX
A. USER MODELS REFERENCED IN DISSERTATION 214

B. SAMPLEUSERMODELccociiiiiinnnnn, 216

INFERENCE METHODS IN USER MODELLING
COMPONENTciiiiiiiiiiiiitrenetieneeneenns

ACCESS METHODS IN THE USER MODELLING
COMPONENT ...ttt iineinnenness

217

221
225
227

Figure
1-1

2-2
3-1
3-2

4-2
4-3

4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
5-1
5-2

FIGURES

A Continuum of Approaches to Learning Environments

The Critiquing Approach,

The Critiquing Process
Levels of System Usage

................................

General Architectuce for A User Modelling Component for CPSS
Theoretical Issues Addressed in Versions of LISP-CRITIC
Example of aRule in LISP-CRITICc0cuvunen..
LISP-CRITIC Interface on the Symbolics Computer
The Architecture of LISP-CRITICcccoieennnvennn..

Internal Components of

LISP-CRITICvviiivnnnnnenn

Scenario-User’s LISPProgram

Scenario-User Invokes LISP-CRITIC on Function getop
Explanation For cond-to-if-elseRule
Modified ZMACSBuffercciiviiiiiiinnn..

Explanation For de-morganRule

Explanation For cond-erase-pred.tRule
Scenario-User Invokes LISP-CRITIC on defun match
Final State of EditingBuffer

List of Domain Conceptsoovvviinnnierennnnn..

Grouping of Concepts

17

28
54

66
67
69
74
75
77
78
79
80
82
83
84
85

93

7-6
7-7

8-1
8-2
8-3

Conceptual GraphNotationcovniinn. ..
Example of LISP Concept Recursion in Conczptual Graph Notation
CLOS Specification For LISP Domain Eatities
Concept Layerof DomainModel
CLOS Specification For Concept Recursion.
Explanations for cond and if from the Document Examiner
ExplanationLevels,
U-=er Decision-Making Process in LISP-CRITIC
User Model Component for LISP-CRITIC
Initial UserModel i,
Coloring of Conceptual Graph for Initial User Model
User Model Contents after First Dialog Episode

Coloring of Conceptual Graph for User Model after First Dialog
Bpisode i e

User Model Contents after Second Dialog Episode

Coloring of Conceptual Graph for User Model after Second Dialog
Episode i i

UserModel TestResultsccvviiniiiiiin e nnnnns
User.Model TestResultsccovviiriininnninnnnenns
Summary of TestResultscoiiiiiiiiiennn.

94
95

100
105
119
125
135
137
138
140

141
143

144
161
162
163

Table
3-1
8-1

TABLES

Two Orthogonal Classifications of Acquisition Techniques

Summary of CorrelationResults

¢« v e

CHAPTER1

INTRODUCTION AND CONTEXT FOR THE RESEARCH

1.1. Introduction and Overview

This thesis discusses a user modelling approach to support cooperative
problem solving. The problem investigated in this project is how to represent,
acquire and provide access to individual user models to support computer critics.
Critics are knowledge-based computer systems that use the critiquing approach to
support their users in their work. The critiquing approach theoretically enhances
the work produced by their users (these are called performance critics) and sup-
ports their leaming (called educational critics) [Fischer et al. 90]. Future systems
that support users in their working environments need the capability to accomplish
both objectives. A user model will be an important component of such a system,; it
will assist the system give knowledge-based advice and, when it is appropriate,
explain that advice. A framework for a user model to accomplish this was
developed, implemented, and evaluated during the course of this research. Other
user modelling research was studied as were approaches for generating explana-
tions of domain expertise. Proven techniques from other user modelling research
were incorporated, where possible, into the user model. An understanding of what
is required to generate explanations guided the development of the architecture for
the user modelling component. The user modelling component is as an extension
of an existing critic for program enhancement (LISP-CRITIC).

The approach to user modelling combines methodologies developed by

2
other research with innovative acquisition techniques. This work is unique in that

it investigates enhancing the critiquing paradigm with the capability to individual-
ize the explanations of advice given by the computer critic. The major contribu-
tions in this project are a framework for a user modelling component for critics
that is also of potential use in other applications, and a set of techniques for in-
direct implicit acquisition of the user model. These techniques use the semantic
structure of the conceptual domain model, the same model required for
explanation-giving. The framework can provide support to both a broader range
of applications, and to systems that use different interaction paradigms (such as
tutoring or advising). The user model captures the expertise of individual users at
the conceptual level of the application domain. The model is a fine grained
representation of users’ knowledge and therefore its contents could support other
types of human-computer interaction. Cooperative problem solving systems are a
general class of knowledge-based systems that will help future users of computer
technology to both accomplish their vocational tasks and to enhance their under-
standing of the application domain. The approach to user modelling described
here is general enough to serve the general class of cooperative problem solving
systems.

The thesis is organized into three sections. Part 1 consists of Chapters 1
through 4; it describes the author’s understanding of the theoretical foundations
and analyzes related work. The four areas discussed are: using computers to sup-
port cooperative problem solving and learning, the paradigm of critiquing, an
analysis of related user modelling research, and the implementation environment,
LISP-CRITIC. Part 2 consists of Chapters S through 7; it covers the instantiation of
the user modelling approach in systemn design and implementation. A requisite

domain model to support this work, a framework for an explanation component

3
that makes use of the user model, and the user modelling component that was

developed, are described. Part 3, Chapters 8 through 10, analyzes the effective-
ness of the implementation and the contributions of the work. Possible directions
for continuing the research are identified, and the thesis concludes with a sum-
mary.

When people use a knowledge-based system they expect that it will help
them to produce a better product.! As a by-product of this process, users improve
their understanding of the application domain for that product. Therefore, to un-
derstand what it means for any system to support both doing and learning, it was
necessary to examine two paradigms:

e cooperative problem solving systems, and

e user-centered computer leaming environments.
The ability to explain its actions is a necessary characteristic for a system that at-
tempts cooperative interaction and also supports learming: To achieve this it is
necessary for these collaborative systems to employ user models to individualize
those explanations.

Creating computer systems that facilitate cooperation between a human
and a computer requires more than just developing powerful interaction tech-
nologies. We need an approach to computer support of problem solving that in-
cludes knowledge-based techniques, a computer-user dialog based on the idea of
natural communications, and support for system adaptivity. The types of systems
that achieve this will be collaborative symbiotic human-computer working en-
vironments that support user leaming. A conceptual framework for systems that
use knowledge-based techniques to aid users in accomplishing their tasks is
provided by the cooperative problem solving paradigm.

product is used here in a general sense; it includes both specific objects
generated by the work, such as a design, and abstract results, such as a decision.

1.2. Cooperative Problem Solving

There are methods and technologies in the field of Artificial Intelligence
that can help improve the productivity of computer users. A paradigm for design-
ing systems that goes beyond current autonomous expert systems to address
human needs and potential is that of Cooperative Problem Solving Systems

[Fischer 90]. These use knowledge-based techniques to work in symbiotic con-
sonance with the user. The systems are cooperative in that they operate in a
similar manner to the way a helpful person acts, and they attempt to assist their
users as best they can. The relationship between the human and the computer is
symbiotic in that there is mutual benefit; the resulting product of their collabora-
tion is better than either could produce by themselves.

In cooperative problem solving, the user and computer-based system
work on the same problem using a collaborative interaction style. Systems that
can support cooperative problem solving will have to fit lllich’s {Illich 73] notion
of convivial tools [Fischer 83]. Cooperative systems allow the combining of
human skills and computing power to accomplish a task which could not be done
by either the human or the computer alone; or in those cases where it could be, the
quality of the result or the speed with which a solution is obtained is significantly
improved when the two agents work together. The idea of symbiotic cooperation
between the user and the computer has also been embraced by researchers in the
related field of decision support systems [Mili, Manheim 88; Manheim, Srivas-
tava, Vlahos, Hsu, Jones 90; Hefley 90]. To achieve a cooperative system requires
some degree of adaptivity to individual users; a system can adapt successfully
when it knows something about the individual; and user modelling provides to a
system the capability to acquire and use that type of knowledge.

S
The objective of an interaction between a human and a computer

generally falls into one of two classes: problem solving or information retrieval.2
Design might be considered as a third major class; the view here is that design is a
subset of problem solving because the design is generated to address problematic
needs of either users themselves or those of a client for whom they are working.
Information retrieval is often one part of problem solving. The computer’s role is
to aid users in arriving at a solution or to help locate information that solves or
helps to solve their problems.

Autonomous expert systems have a different approach — they develop
problem solutions independent of user input, except for the problem specification
or task designation. In many problem solving and information retrieval situations,
articulation of the task is difficult and people are unsure of their objective or exact
problem. They start with a general view of what they expect to achieve and refine
their own understanding and problem specification as part of the solution process.
To put cooperative problem solving systems into the context of current artificial
intelligence technology we need to consider system designs that go beyond current
notions of expert systems and to understand when it is appropriate to use these
alternative approaches.

Feigenbaum and McCorduck state in their book on expert systems:
‘‘Most knowledge-based systems are intended to assist human endeavor and are
almost never intended to be autonomous agents’’ [Feigenbaum, McCorduck 83, p.
115]. This view, unfortunately, is not held throughout the field. Those expert

systems often cited as the major success stories of the past 10 to 15 years, for

2Amusement is also a significant application for computers, but we focus on
applying technology in the workplace to accomplish a specific goal or task, rather
than using it to entertain.

6
example R1, MYCIN, Dipmeter Advisor, have been designed as domain experts that

are capable of solving a certain set of problems. These are problems that require
either the heuristic knowledge of a human expert with considerable experience or
problems that require excessive computation to yield to timely solutions using
standard algorithmic approaches.

The major difference between classical expert systems (such as Rl or
MYCIN) and cooperative problem solving systems is that the users of cooperative
problem solving systems are active agents. They are actively engaged in reason-
ing about the problem and generating the solution rather than participating as mere
providers of information to the system. Conversely, traditional expert systems ask
users for information about the problem situation and then return a solution; from
an operational perspective they appear as a ‘‘black box.”” Cooperative problem
solving system are designed so that the user and the system share in the problem
solving and in the decision making. Because human-computer communication is
central, cooperative problem solving systems require better interaction facilities
than those offered by traditional expert systems.

When knowledge-based systems support decision at higher levels of
societal and organizational responsibility they should not usurp the user’s respon-
sibilities for a decision. For example, a commander of a military operation should
have access to the expertise captured in a knowledge-based system that knows
strategy, combat resources, and heuristics about how to apply them to accomplish
the mission. However, this situation involves significant danger to human lives
and we would not want to tum control completely over to an expert system to run
the battle. Similar scenarios exists in natural disaster emergency planning, and the
operating of complex, potentially dangerous equipment (e.g., nuclear power sta-
tions). Autonomous expert system approaches must be replaced by a more general

knowledge-based system paradigm, such as cooperative problem solving systems.

7
Communications between a human and a computer is a fundamental

design problem for cooperative systems. Specifically, to facilitate interaction be-
tween a human and a computer it is necessary to exploit the asymmetry of the two
communication partners. Each agent or partner contributes what they can do best.
People are better than computers at applying common sense, defining goals, and
decomposing problems. Computers should be used as an external memory, to do
consistency checking, to hide but not lose irrelevant information, to capture and
summarize problem solution steps, and to help visualize concepts. In this thesis
the user model serves a system in which the user is a programmer who understands
the problem and develops the code to solve that problem. The computer does not
understand the problem and could not write a program (automatic program genera-
tion) to solve it even if it did. But the system knows more efficient ways to imple-
ment program code. The system will be described in detail in Chapter 4 but in the
context here it is important to see that the system is designed to exploit each
agent’s expertise by sharing responsibility for producing a good solution. The
programmer produces code that algorithmically solves the problem and the system
reviews that code suggesting to the programmer ways to improve it.
Communicating means an agent, human or computer, has to know or
must assume something about its partner. One approach is for systems to capture
implicit assumptions about all of the users in their design (a default generic user
model). Ideal systems might adapt everything they do to each individual. A more
reasonable middle ground, is to have systems tailor their side of an interaction
based on what they are able to infer about their human partner by applying user
modelling methods. Understanding what is required to accomplish user modelling

requires an examination of the human-computer communication process.

8
When two agents are engaged in cooperative effort, a process of natural

communication takes place. Natural communication is more than natural lan-
guage; it is the ability to engage in a dialog that makes use of diectic techniques,
indexicals, graphic representation, and references to previous conversation. In
human dyads more goes on than an exchange of information, if one partner serves
as an advisor or critic they are expected to understand what the other is trying to
do and guide them correctly. Cooperative computer systems need techniques for
helping them attempt similar efforts. There is significant research into techniques
for goal and plan recognition on the part of computers and also considerable skep-
ticism whether computers will ever be able to accomplish this [Suchman 87;
Dreyfus, Dreyfus 86]. This does not restrict systems from using knowledge of
goals or plans that can be obtained by querying the users to help structure inter-
actions with them. The user model component plays a role in that it must be able
to represent users’ goals and provide thatinformation to the system aid in the com-
munication process. Obtaining that information indirectly may eventunally be part
of acquiring the user model, but it is going to require effective goal/plan recog-
nition techniques that are the subject of another direction of research in artificial
intelligence.

It is important to think in terms of natural communications so that tech-
niques in addition to natural language are integrated into system designs. Systems
that use natural language generation and recognition techniques are frequently too
brittle [Winograd, Flores 86]. They experience breakdowns in interacting with
users when the unexpected occurs, especially in situations not anticipated by the
system designer; techniques are needed to get past the breakdown. Another reason
to think about the entire spectrum of communication techniques is that techniques

for natural language generation and interpretation have matured to the point where

9
they are generally useful in systems such as LISP-CRITIC. As is discussed in Chap-

ter 4, the communication medium for LISP-CRITIC is a set of available techniques
provided in a powerful workstation environment (menus, command languages, and
hypertext). While waiting for natural language capabilities to mature to the point
of general utility, it is necessary to build systems that address real needs using
available technology, and to use them as a context for related research, such as
user modelling.

Related to natural language limitations is the idea of situated action

[Suchman 87]. Research by Suchman using the situated action perspective high-
lights some inevitable shortcomings of human-computer interaction paradigms.
The limited bandwidth across which the human and computer can communicate
preclude the machine from having access to both the quantity and quality of infor-
mation available to a human. This observation should motivate efforts that inves-
tigate how to improve the capabilities of computers. User modelling is one tech-
nique that can help the computer to improve on its ability to aid a user in the
situated context. The degree to which it will help is an open research issue that
can only be investigated after suitable user modelling techniques are developed
and implemented.

Computers can understand task domain knowledge; this knowledge can
be used as the basis for advice, and as a source for guidance about how to better
communicate that advice and explain it. The distinction between advising users
(telling them what to do) and explaining that advice (telling them the reason for it)
is not made in most research. A notable exception is the work on the EUROHELP
project [Kelleher 88]. In this thesis the distinction is significant because the sub-
ject system gives both suggestions (or advice) and we want to endow it with the
ability to explain those suggestions to the user. It is the latter process that makes

use of the content of the user model.

10
A model of the individual user can be an important component of any

system, such a model can aid in the natural communication process, assist in
managing breakdowns, and help make systems more acceptable to their users.
Modelling another agent occurs on both sides of a cooperative dyad. Users devel-
op models of the systems with which they interact and computers need to be
designed so they can develop models of human users. The work presented here
focuses on the latter class of models.

A user modelling component will not solve all human-computer inter-
action problems but it is essential to investigate its potential impact. We must first
develop system techniques for representing and building these models. But even
with good user models, cooperative problem solving systems will not always be
successful in their initial attempt to provide advice or explanation — what is
sometimes called a ‘‘one-shot’’ approach to-the interaction. Even people do not
always ‘‘get it right’’ the first time; a great deal of the effort in any communica-
tions involves repairing breakdowns between the two partners. Techniques to
achieve something similar are needed in interactive systems. When users do not
understand the system’s advice, critique, or explanation, followup techniques are
required [Moore 89].

Human experts model their communications partner in order to provide.
the appropriate level of assistance and explanation. This motivates the require-
ment for cooperative computer systems to be designed to attempt something
similar. Reeves conducted an empirical study of collaborative problem solving
efforts where sales clerks in a large, well-stocked hardware store assist patrons in
solving their problems [Reeves 90]. When interviewed, these expert agents related
that part of the process involved modelling the client so that the advice given and
any explanations requested could be specifically designed for that individual.

11
Modelling their customers played a crucial role in identifying, for these sales

agents, the level at which to share their understanding.

Communication between cooperating agents can be viewed in terms of
two roles, that of speaker and listener. The speaker presents information and the
listener interprets it. The listener’s role is usually more difficuit because the lis-
tener has to understand the problem based on the speaker’s description.
Knowledge-based systems that communicate with a user have to be designed to
accommodate both roles. This is especially true in cooperative problem solving
systems where users play an active role in both the problem solving and the deci-
sion making processes. In this research the interface confined users to com-
municating with the system using only available technologies; a natural language
context was not assumed. This restriction on users is necessary in order to accom-
modate the system’s role as a listener. The system serves in the speaker role when
it gives suggestions and when it explains suggestions. The user model developed
here was primarily designed to accommodate the system in the speaker role. Ul-
timately, user models will have to help the system fulfill both roles.

In addition to helping users to solve their problems, systems should also
help them leamn about the task domain. Systems that serve knowledge workers,
such as designers, authors, and programmers, must accomplish both objectives. In
normal use it is difficult to distinguish a situation or episode oriented strictly on
problem solving; leaming and doing frequently intermix during human-computer
interactions. Support for user leaming is also a goal of a cooperative knowledge-

based system, so the theory behind computer learning environments was also ex-

amined.

12
1.3. Learning Environments

Computer-based leaming environment enable users to improve their
proficiency in a domain by providiné for the knowledge communication process
[Wenger 87]. One approach to designing such leaming environments is that of
building instructionally focused systems, such as intelligent tutors [Sleeman,
Brown 82]. In many situations it is desirable to provide a learning opportunity
within the context of a user’s work and with the user in control of the interaction.
Here, paradigms that are more general than intelligent tutoring systems are needed.
There is interest and research that addresses the problems in developing leaming |
environments in several disciplines to include cognitive science [Burton, Brown,
Fischer 84; Fox 88], human-computer interaction [Fischer 88a], and computer-

based training technology [Duchastel 88; Mastaglio 90a).

The opportunity to develop computer-supported leamning environments
has motivated the reexamination of existing paradigms of education and the for-
mulation of new ones. Many of these paradigms connect learning with experience,
ascribing to a philosophical view and emphasizing techniques that make this con-
nection the basis for system design [Psotka, Massey, Mutter 88a]. Because this is
an emerging discipline the learning approaches have various names, such as: col-
laborative learning, reactive leaming, situated learning, leaming on demand, and
incremental leamning. There is some overlap between the paradigms; what is sig-
nificant is that they share a common ideal. Their goal is to provide opportunities
to leamn skills by practicing them in a realistic work setting — the workplace or
system in which the skills are to be used, or a simulation of that environment. The
approach of augmenting a work environment is well suited to situations where the
computer system is that environment (for example a CAD/CAM system). Com-

puters are good for simulating in circumstances where training on the actual equip-

13
ment (for example a power plant or aircraft) is prohibitively expensive, or there are

safety considerations. In order to individualize leaming opportunities, systems
need to know what knowledge their users have about the domain; idiosyncratic
models of individual domain expertise are needed. To understand what it means to
have such a model, the theories behind leaming approaches for interactive en-

vironments was examined.

1.3.1. Foundations for Learning Environments

There is a need to find efficient and practical ways to improve education
using computer technology. Studies by Bloom and colleagues demonstrated that if
we can individualize instruction, significant increases in student performance can
be reasonably expected [Bloom 84]. The computer can provide an efficient
methodology for individualized leaming situations and researchers concerned with
education and training want to use computer-based. training to meet educational
needs in a variety of contexts.[Seidel, Weddle 87].

A shortcoming of early computer leaming systems was their fundamen-
tal design philosophy; it was based on conventional ideas about programmed in-
struction used for self-paced learning material. An alternative approach using ar-
tificial intelligence techniques was first proposed by Carbonell [Carbonell 70].
During the ensuing 20 v .- . since that work, research efforts have resulted in the
development of sev .. paradigms for computer-based instruction using artificial
intelligence [Wenger 87]. The computer can provide a suitable context for learn-
ing both procedural and declarative knowledge and as reasonably priced hardware
support for graphical displays becomes a reality, these types of environments will

" become more feasible. The theoretical limitation to effectiveness is not the

availability of material or simulated scenarios but incorporating, into the system, a

14
didactic agent to guide leamers. For learning to occur in a computational context

in which users are involved in some action, the system must provide feedback to
its users in the form of advice, critiques, and explanations; higher quality of the
feedback results in an improved leaming process.

One way to provide a system the ability to provide high quality feedback
is using knowledge-based components. Three processes in the learning
environments require the use of knowledge:

1. providing information or instruction with an expected outcome that
users’ knowledge improves,
2. determining the state of users’ present knowledge (user or student
modelling), and
3. motivating the user to leam.
To execute the first process, a computer agent has to know both the domain and
strategies for guiding users in the direction of leaming. Methods to accomplish the
second process are the subject of this research. Cooperative problem solving
systems assume that the third process is inherent in the situation; they assume that
users are motivated because they have chosen to use the system in the first place.

After investigating the literature, I found there are three distinguishable
paradigms for computer-based education based on artificial intelligence techniques
— three different classes of intelligent leamning environments [Mastaglio 90a]:

¢ Intelligent tutoring systems present instructional material in a manner
similar to a classroom teacher. [Sleeman, Brown 82; Psotka, Massey,
Mutter 88b; Polson, Richardson 88].

¢ The coaching approach does not use teaching techniques in the stric-
test sense of the lecturing classroom teacher but its metaphorical basis

is the human coach who places students into a suitable context, then

15
observes how they perform and provides advice on how to improve

[Burton, Brown 82].
¢ The paradigm that serves as the foundational interaction methodology
in this work is the computer-based critic [Fischer, Lemke, Mastaglio,
Morch 90]. It serves as an intelligent agent, able to evaluate user’s
work on call like a human mentor or colleague. The critic is a domain
expert ready to evaluate users’ actions and provide suggestions when-
ever asked.

In this research, critiquing had been emphasized over tutoring because it
holds promise as a more general approach. Education and training should not be
viewed as only isolated activities that occur during set periods of a lifetime where
the focus is on the acquisition of skills and knowledge. Instead, the broader
perspective taken is that they are life long activities needed to maintain proficiency
and accommodate changes in domain theory or technology. A computer-based
critic can help users improve their skills within their working context, but besides
giving suggestions they need to be able explain their expertise, not just in a
canonical form but in a manner that is tailored to each user’s current state of
knowledge. For critics to fully support the leaming process they will require ex-
planation and user modelling capabilities.

Critiquing is not the only approach to designing a learning environment
but it is effective in the application domain (programming) for this research. The
user model developed should be able to serve not just critiquing but the general
class of learning environments. To achieve that goal some of the theoretical foun-
dations for leaming environments were studied. The notions of situated leaming

{(Brown, Burton, Kleer 82], and leaming on demand [Fischer 88a] provided

general guidance and understanding.

16
1.3.2. Learning on Demand

Learmning on demand supports learning in the context of a user’s work,
allowing people to improve their knowledge whenever a need arises [Fischer 87a).
It is based on an optimistic view that people want to know how to do their jobs
better and are willing to engage in leaming activities. If computer-based working
environments, (e.g., design environments [Lemke 89]) are to provide a complete
and appealing context for working, then they need to support leaming on demand.
Learning environments can be designed as extensions of existing computer-based
systems, ones that already support some types of work. Some examples of these
are design, programming, and authoring.

The need to support leaming on demand requires architectures that differ
from instructionally oriented systems. Leaming on demand requires that the user
retain primary control of the leaming situatioi. A continuum of approaches to
designing leaming environments is shown in Figure 1-1; the dimension for the
continuum is control of the interaction. At the left extreme, primary control is the
responsibility of the system; at the right, the responsibility of the user. In the cen-
ter, the system and the user share responsibility for control. Exploratory leaming,
in the spirit of LOGO [Papert 80], is the type of system found at end of the con-
tinuum where the user has total control of the interaction. Exploratory learning
environments do not require domain knowledge, but they must be carefully
designed to provide opportunities for interesting exploration while at the same
time protecting users from fatal errors. Traditional computer-aided instruction
(CAI) is shown at the other end of the continuum. These systems are algorith-
mically controlled by the computer program and allow minimal, if any, student
control; traditional CAI systems also do not have knowledge in the sense of artifi-

cial intelligence.

17

| | | EXPLORATORY
CAl = > LEARNING

TUTORING COACHING CRITIQUING

Figure 1-1: A Continuum of Approaches to Leaming Environments

In the middle of the spectrum are the three knowledge-based paradigms
for leaming environments that were previously enumerated. Within the class of
intelligent tutoring systems various degrees of control may be given to the student
but, in general, problem selection, monitoring of student actions, and intervention
fall under the auspices of the intelligent tutor. Coaching, as used in the WEST
system [Burton, Brown 82], allows users to practice skills in a computer-supported
context with a computer-based intelligent mentor ‘‘watching over their shoulder.”’
The coach intervenes with suggestions and instruction when appropriate.

Research efforts in both exploratory leaming [Miller 79] and coaching
systems [Brown, Burton, Kleer 82] recognized the need for a paradigm which is
not as intrusive as a coach but extends the power of exploratory environments by
providing the user contextual, on call, intelligent assistance in the application
domain. Computer critiquing is a paradigm which meets that requirement, it al-
lows users more control of the interaction as well as responsibility for selecting the
problem.

A system that provides for leaming on demand cannot help but situate
that learning in the user’s context. Because it is in this context that users will

request support for learning; for the system to coerce them into a special leaming

18
microworld defeats the objective behind leaming on demand. Realizing the

situatedness of the working and leaming context makes it important, in this
research, to understand the theoretical studies of situated action and consider their

impact on the goals of the user modelling effort.

1.3.3. Situated Action

Suchman made an in-depth study of how people interact with machines

[Suchman 87] and argues that research approaches which attempt to explicitly

represent or infer user plans are inadequate. First we need to explore the relation-
ship of knowledge to action, keeping in mind that a machine’s resources for inter-
preting the user’s behavior are significantly poorer than those of a human.

A cautious attitude toward what to expect from a machine is important
because during face-to-face communication between people there are resources
that help them detect and remedy trouble when it develops, for example, facial
expression or tone of voice, among others. The same range of resources are lack-
ing, for the most part, in human-machine interaction because of the impoverished
communication channel. A pessimistic perspective would discount attempts to
make machines act intelligently. A more optimistic view is embraced here, the
philosophy that it is important to investigate whatever possibilities to support the
system do exist, while keeping the limitations of situated action in mind. Research
on natural language as a communication medium assumes understanding and ex-
pression capabilities on the part of the computer. The orientation in this project
was very different, the work looked at those communications capabilities which
are available with current technology to determine how they could best be used to
improve what the systems knows about the user, and also what knowledge about

the domain is required by the system to make best use of these capabilities. One

19
such idea considers the content of the man-machine interaction dialog as a source

of information that can aid in acquiring models of users.

An environment that provides users the opportunity to leamn in the con-
text of the task domain or by using a simulation of that context, requires that the
system react so as to increase their understanding of the situated action [Brown,
Burton 86]. Critiquing can facilitate situated learning because it provides learning
opportunities in the work context. The critique exposes situations for improving
the product or the actions of users; these are leaming opportunities as well. If
users do not understand the critique then there is an opportunity for an explanation
in context. They learn a set of conditions under which their knowledge can be
applied and as a result improve their understanding. This learning scenario is a
task-driven environment, providing a unique, situated context for learning to take
place. This context is the central notion in situated leamning; in critiquing systems
it comes about naturally. Critiquing combined with explanation approaches can
clarify understanding and help to restructure users’ knowledge [Psotka, Massey,
Mutter 88a). Leaming has been traditionally supported with instruction, but a
more likely situation, one similar to the manner in which human-to-human inter-
action occurs, is to support it with an explanation capability [Wenger 87]. Ex-
planation of the system’s critique is supported by the user modelling system that
was developed in this research.

1.4. Summary

This chapter examined the context for this research in terms of
paradigms for cooperative problem solving and computer systems that support
learning. The two cannot be easily separated on either a theoretical level or in

systems designed to support users in their work. Therefore, both become con-

20
siderations in how systems should be designed and in determining the role played

by their user modelling component. To achieve true cooperativity, systems must
adapt to their users; while support for learning requires that they provide the users
feedback and explanations; explanations are best when tailored to the individual.
This means idiosyncratic models of users are required. The exact content of those
models is determined by the needs of the systems that will use the models. This
chapter has explained the theoretical concepts for designing cooperative systems
that support task accomplishment, and the motivation for having systems that sup-
port learning; both of these provide motivating goals for this dissertation research.
The critiquing paradigm, the specific system design framework within which the
user modelling work was completed, will be discussed next.

CHAPTER I

CRITIQUING

Critiquing, as a technique for building systems, is of research interest in
both artificial intelligence and human-computer interaction. It has been a major
topic of investigation for the Human-computer Communications Group at the
University of Colorado during the past several years [Fischer, Mastaglio 89; Fis-
cher et al. 90; Fischer, Mastaglio 90; Fischer, Lemke, Mastaglio, Morch 90; Mas-
taglio 89]. Critiquing is of interest because it is a way to use knowledge-based
system techniques in situations where autonomous expert systems are in-
appropriate. In studying the approach we found that in order for a critic to meet
the goals of cooperative problem solving and accommodate user learning it needs
to be able to explain system knowledge in an individvalized manner. This finding
was the primary motivation for choosing to investigate user modelling in this
thesis. That research required a clear understanding of the paradigm, so an impor-
tant collaborative effort was to characterize critiquing; this chapter is an overview
of that effort. The term critiquing is intended to mean the paradigm or technique,
while we refer to systems that use critiquing as ‘“critics”’.

Critics can support users in both problem solving and leaming, they play
an essential role in extending applications-oriented design kits to design environ-
ments, and are an alternative to traditional expert system. The approach has been
used successfully in diverse application domains, to both aid in a cooperative

problem solving process and to provide support for learning. Ideally a single sys-

22
tem will achieve both of these goals; such a system will need the capability to

adapt explanations of its advice to individual users.

2.1. Foundations for Critiquing

Powerful computer hardware makes it possible to use computers in an
increasing range of application areas. As technical complexity increases, the as-
sociated cognitive costs to master computers grow dramatically and limit our
ability to make full use of computer systems. Systems that offer rich functionality
to their users need to be designed to be both useful and usable. It is a way to meet
the goals developed in Chapter 1, providing support for learning and for coopera-
tive problem solving. Critiquing also plays an important role in the concept of
Design Environments; other work in our group has investigated and reported on
that line of research [Lemke 89].

Cooperative Problem Solving. Critics, by their nature, operate in a
somewhat cooperative manner; they can be further enhanced to more fully achieve
the objective of having a cooperative problem solving system. They identify
proposed solutions or strategies that could be done using an alternative approach.
For users to accept critics as a useful feature of their working environment they
need to provide explanations and, where appropriate, suggest alternative solutions.

Some shortcomings of traditional expert systems were pointed out in
Chapter 1; another one is that these systems are inadequate when it is difficult to
capture all requisite domain knowledge. Because expert systems often leave the
human out of the process, they require comprehensive knowledge that covers all
aspects of the tasks; all ‘‘intelligent’’ decisions are made by the computer. Some
domains are not sufficiently well understood, and to create a complete set of prin-

ciples that capture them is not possible. Some domains require considerable effort

23
in order to acquire all relevant knowledge. Critics are suited to these situations

because they need not be complete domain experts. Critics can still offer the user
helpful guidance even when their expertise is limited to only some aspects of the
problem domain.

The traditional expert system approach is also inappropriate when the
problem is ill-defined. This is because the problem cannot be precisely specified
before a tentative solution is attempted. In contrast, critics are able to function
with only a partial task understanding. Even when the system contains only
general knowledge about the problem domain, it can provide helpful support be-

cause there exist general principles that apply.

Support for Learning. The computational power of high functionality
computer systems can provide qualitatively new learning environments; future
leaming technologies will be multi-faceted and support a portion of the spectrum
of approaches that was shown in Figure 1-1. Some versions of intelligent tutoring
systems developed in research laboratories allow the student to exercise greater
control of the interaction. LISP TUTOR was reimplemented in a mode that per-
mitted students to decide when the system could assess their work [Anderson,
Conrad, Corbett 89]. Student performance on post tests were equivalent for the
immediate feedback (tutor-controlled) and the demand feedback (user-controlled)
versions. Students actually took longer to solve problems when feedback was un-
der their control rather than the systems, however, the quality of the learning ex-
perience is not degraded. This has clear implications for systems designed to sup-
port leaming in situations where it is necessary for users to provide the problem
specification, such as in LISP-CRITIC. As previously mentioned, the need to

provide knowledge-based assistance in exploratory learning environments is also

24
recognized. There is a recognizable trend for designs of learning systems to move

toward the middle of that continuum — closer to the critiquing paradigm.

Critics in passive help systems may not require users to formulate a
specific query, but because they assist only when called, they allow users to retain
control, providing advice only when the products or actions are recognized as sig-
nificantly inferior. By integrating working and learning, critics offer unique op-
portunities for the user:

¢ to understand purpose of or use for the knowledge they are learning,
¢ to learn by actively applying knowledge rather than by passive ex-
posure to it, and
¢ to learn one condition under which that knowledge can be applied.
A strength of critiquing is that leaming occurs as a natural byproduct during the

problem solving process.

2.2, The Critiquing Approach

Human-to-human critiquing is used in many problem solving contexts:
design, authoring, student work groups, and collaborative research. People work-
ing together in these and similar areas naturally use critiquing as an interaction
style. Critiquing is a way to present a reasoned opinion about a product or action
(see Figure 2-1). The product could be a computer program, a kitchen design, a
medical treatment plan; an action could be a sequence of keystrokes that corrects a
mistake in a word processor document or a sequence of operating system com-
mands. An agent (human or machine) that is capable of critiquing in this sense
can be called a critic. Critics can be implemented on computers as a set of rules or
specialists for the different issues that may be associated with a product; some-

times critics are the term used for each individual system component that reasons

25
about a single issue. In this project we call the entire system a critic; part of its

structure is a composite rule set.

Proposed
Solution
Domain
_ Knowiedge
Domain
Expertise ‘/
\ Problem
Solving
Goals User Model
Critique

Figure 2-1: The Critiquing Approach

This figure shows that a critiquing system has two agents, a computer and a
user, working in cooperation. Both agents contribute what they know
about the domain to help solve some problem. The human’s primary role
is to generate and modify solutions, while the computer’s role is to analyze
those solutions, producing a critique for the human to apply during the next
iteration of this process.

Critics do not directly solve users’ problems, but they recognize
deficiencies in a product and communicate those deficiencies to the users. Critics
point out errors and suboptimal conditions that might otherwise remain un-
detected; frequently they suggest how to improve the product. Users apply this
information to fix the problems, seek additional advice or trigger requests for ex-

planations.

26
It is probably instructive to clarify the distinction between critics and

constraints. A significant aspect of critiquing is that users remains in control and

are free to accept or reject advice from the critic. Constraints are often ‘‘hard

coded’’ into the working environment of systems or enforced on the user by some

system process (e.g., a file name extension in MS/DOS cannot be more than 3

characters); they are narrowly focused criteria that must be adhered to in order for

something to function properly. Critiquing primarily focuses on improving the

functibnality of a product that is already usable. It is possible to incorporate hard

S

—______ constraints into the critiquing agent and have the system inform-users When they

trigger that the product must be changed to comply with the constraint, or that the
system already modified it to comply. The majority of the research on critiquing
has used critic expertise that is based on what might be called soft constraints or
design guidelines.

Adbvisors [Carroll, McKendree 87] perform a similar function, but they
are the source of the primary solution. Users describe their problem, and the com-
puter advisor proposes a solution. In contrast to critics, advisors do not require
users to generate either partial or complete solutions to the problem. Advising as
an interaction approach is best suited to situations where one-time advice is
needed. User models are not as significant in these one-shot affairs, and ones that
are used emphasize modelling users’ goals rather than their domain expertise. An
important research issue is to determine the commonalities that exists between
user models in advisory systems and user models for critics.

To clarify any conflicts in terminology, note that the term *‘critic’’ was
also used in the work on planning systems. In that context they describe internal
demons that check for consistency during plan generation. For example, critics in

the HACKER system [Sussman 75] discover errors in blocks-world programs.

27
When the critics discover a problem, they notify the planner, which modifies the

plan accordingly. The NOAH system [Sacerdoti 75] contains critics that recognize
planning problems and help to modify general plans into more specific ones.
Critics in planners interact with the internal components of the planning system;

critics in the sense of this paper interact with and critique the work of human users.

2.3. The Critiquing Process

The canonical process underlying critiquing is comprised of the sub-
processes shown in Figure 2-2. Not all of these processes are present in every
critiquing system; in fact, several of these processes are only conceptual and

represent emerging research directions.

Goal Acquisition. Critiquing a product requires that the system either
infer some limited understanding of the product’s intended purpose or be designed
to support standard user goals. Problem knowledge can be either domain
knowledge or goal knowledge. If a critic just has domain knowledge without un-
derstanding the user’s goals, it can only reason about characteristics that pertain, in
a general sense, to all products in that domain. Such is the case for LISP-CRITIC; it
analyzes programs for syntactic correctness. For a more extensive evaluation of a
product, an understanding of the user’s specific goals and situation is desirable. A
critic may be zble to acquire an understanding of the user’s goal in several ways:

e Standard goals are built into the system, in LISP-CRITIC these goals
are to produce code that is either more readable or more efficient.

¢ Goals can be recognized by observing users work and the evolving
products. Findings from research on plan recognition in artificial in-
telligence [Schmidt, Sridharan, Goodson 78] would support this
method.

28

Critiquing

Strategies Model KEY
-

Product

Advice Critique 'Explanauon

Figure 2-2: The Critiquing Process

Users initiate the critiquing process by presenting a product to the critic.
To evaluate the product the critic use a goal specification if one is avail-
able. To help analyze the product some critics generate a solution and
compare it to the user’s, others analyze the user’s work directly. A
presenter formulates a critique using the product analysis; it provides ad-
vice and explanations. Critiquing strategies and a user modelling may be
used to aid the presenter. From this output, the user modifies the product
and the cycle can repeat. The essential processes and components for a
system to be considered a critic are outlined in black. The objects in the
figure with grey outlines are optional and in several cases represent
research directions.

29
e A critic may have access to an explicit representation of the problem

to be solved, one that encapsulates a particular goal. A simple tech-
nique is to limit the possible goals and ask to users to select one from

that set.

Product Analysis. The two general approaches to critiquing are :
differential and analytical. In differential critiquing, the system generates a solu-
tion and compares it to the user’s solution. Analytical critiquing checks the
product with respect to predefined features and effects. They identify suboptimal
features using techniques such as pattern matching [Fischer 87b], finite state
machines [Fischer, Lemke, Schwab 85], and expectation-based parsers [Finin 83].
Critics which use the analytical approaches do not reauire a complete understand-

ing of the product.

Critiquing Strategies. Critiquing strategies and the user model can aid
the presentation component. The critiquing strategies determine what aspects of a
design to critique, and when and how to interrupt users’ work. Strategies differ
depending on whether the predominant use for the system is helping users to solve
problems or for an educational application.

The manner in which critics are integrated into a work environment
should be chosen so that users welcome them and find them cooperative. Like
recommendations from colleagues or co-workers, messages from a critic can be
perceived as helpful or hindering, and as aiding or interfering with the accomplish-
ment of their goals. When selecting a critiquing strategy two factors to consider

are intrusiveness and emotional impact on the user.

30

¢ Intrusiveness is users’ perception of how much the critiquing is inter-
fering with their work. Critics have to trade-off interfering too much
with failing to provide sufficient help. Factors to consider include
how frequently feedback occurs, the complexity of the tasks, and the
sophistication of the user. Critics should intervene when it is critical,
but interventions should not occur so frequently that users are
bothered and become frustrated.

¢ Emotional impact refers to how users react toward the computer as an
intelligent assistant. Computer critiquing may be more tolerable than
critiquing from humans because it can is handled privately between
users and the system. When dealing with a machine, users do need
not to face the negative aspects of shortcomings in their work being
exposed to other people who might form a negative opinion.

The prime objective of educational critics is to support learning; and for
performance critics, to improve the product. Each type of system has different
requirements for selecting appropriate strategies. A performance critic should help .
users create high-quality products in the least amount of time while conserving
resources. Learning, although not the primary concem of performance systems,
occurs as a by-product of the user and critic interaction. Educational critics try to
maximize the information or skills that users acquire and retain for future use.
Most performance critics evaluate the product as a whole and determine if it can
be changed to achieve a higher quality result. Some critics selectively critique
based on a policy specified by the user. Educational critics need more complex
intervention strategies to maximize information retention and users’ motivation.
For example, an educational critic may forego the opportunity to critique if it oc-

curs too soon after a previous critiquing episode. Continuous critiquing without

31
giving users a chance to explore their own ideas can become intrusive and impact

motivation.

Existing critics operate primarily in the negative mode by pointing out
suboptimal aspects of the user’s product or solution. A positive critic should
recognize and point what is good about a user’s solution. For performance critics,
a positive approach can help users recognize the good aspects of their work. For
educational critics, positive critiquing can reinforce desired behavior and thereby
aid learning.

Intervention strategies determine when and how a critic intercedes.
Active critics control intervention because they can critique a product or action at a
time of their choosing. They are active agents continuously monitoring user ac-
tions. Passive critics are explicitly invoked whenever users want an evaluation.
Most passive critics are able to evaluate partial products but not individual user

actions.

Adaptation Capability. To avoid repeating the same type of advice and
to accommodate different users with different preferences-and skills, a critiquing
system needs an adaptation capability. A critic that persistently critiques users
using positions with which they disagree is unacceptable, especially when the
critique is intrusive. A critic that constantly repeats an explanation that the user
already knows is, similarly, unacceptable.

There are two aspects to an adaptation capability: critics can be adapt-
able or adaptive. Systems are adaptable if a user can change their behavior or
knowledge: more recent research has called these systems *‘end user modifiable’’
[Fischer, Girgensohn 90]. On the other hand, an adaptive system is one that

automatically changes its behavior based on observed or inferred information. An

32
adaptation capability can be implemented by disabling or enabling the firing of

particular critic rules, by allowing the user to modify or add rules, or by making
the critiquing strategy depend on an explicit, dynamic individual user model.

Explanation. Explanations are desirable and necessary in most
knowledge-based systems [Swartout 81; Teach, Shortliffe 84]. Critics need to be
able to explain their rationale so users can assess the critique and decide how to
deal with the advice. Knowing why a product was critiqued helps users to learn
underlying principles and avoid similar problems in the future. In a critiquing sys-
tem, explanations can focus on the specific differences between the system'’s and
the user’s solutions, the rationale underlying the critique, or on violations of

general guidelines.

Advisory Capability. Critics detect suboptimal aspects of a user’s
work; this is the triggering condition for a critiquing episode. When an episode
stops here, the user is required to generate and implement any changes to the cur-
rent product. One improvement on the process is for the critic to suggest alter-
natives; these we call solution-generating critics. Another is to provide the critic
the ability to explain or direct users toward information that increases their under-
standing. User models play a role in facilitating this part of extending the
paradigm,; it is a subject that will be discussed in detail in the remainder of this

thesis.

2.4. Survey of Critiquing Systems
This section provides an overview of critiquing systems that play an im-
portant role in the development of the paradigm or illustrate an interesting aspect

of the theory. In addition to LISP-CRITIC, the Human Computer Communications

33
Group has developed JANUS [Fischer, McCall, Morch 89a] and FRAMER [Lemke

90] to deepen our understanding of the critiquing paradigm. LISP-CRITIC will be
discussed in detail in Chapter 3. Not all systems developed by other researchers
are described by their authors using the terminology presented here, but they do fit
into the critiquing framework. Because the range of systems covers diverse ap-
plication domains, a claim can be made that critiquing has general application as a
central approach to building knowledge-based systems. During the process of
developing the user modelling framework an attempt was made to retain this
perspective of domain generality.

Critiquing is attractive because of its generality across a wide range of
domains, such as medicine; electronic circuit design; and support for education,
writing, programming, and text editing. This section briefly surveys the critiquing
systems in these domains that were studied. Most of the systems discussed here
were developed as research vehicles, but a few are successful commercial applica-
tions.

The WEST system pioneered many of the fundamental ideas behind the
critiquing paradigm. It was an early effort to build a computer coach [Burton,
Brown 82] that teaches arithmetic skill in a gaming environment (a game called
‘“‘How the West was won’’). The goal was to augment an informal leamning ac-
tivity with a computer coach, retaining the engagement and excitement of a stu-
dent directed activity while providing context-sensitive advice on how students
can improve.

Several important ideas were pioneered in WEST. It builds a bridge be-
tween open learning environments and tutoring in order to support what is called
guided discovery leaming. A model of each user prevents the coach from being

too intrusive. The systemn uses diagnostic modeling strategies to infer problems

34
from students’ actions. WEST determines the causes of suboptimal behavior by

comparing the solution of a built-in expert with the student’s solution. In this
manner, the student model is acquired by a process called differential student
modelling. The system infers models of students in terms of the ‘‘issues’’ on
which they are weak (mathematical procedures and game playing strategies). In-
tervention and tutoring strategies are explicitly represented in the system and make
use of information contained in the model to enable the coach ‘‘to say the right
thing at the right time’’ and provide coherence to that feedback.

Medical applications. Several researchers in the domain of medicine
have embraced the critiquing approach. In general, these systems aid medical per-
sonnel in patient diagnosis and treatment. Clancey first proposed a critiquing ap-
proach to user-systemn interaction for expert medical consultation systems

[Clancey 84). Miller and colleagues at Yale Medical School did the most im-
plementation work in this area, developing systems which assist medical personnel
by analyzing plans for the prescription of medication, managing its administration,
monitoring the use of a ventilator, and administration of anesthetics [Miller 86].

The most extensively developed system is ATTENDING [Miller 86]. It
uses the differential critiquing approach, parsing the physician’s plan starting with
the top-level decisions and at each step trying to find altematives that have lower
or equal patient risks. The system works from the physician’s solution to a
system’s solution to insure that it is as close to the physician’s as possible, this
makes the critique more helpful and easier to understand.

Differential critiquing is also used in one version of ONCOCIN, an expert
system for cancer therapy [Langlotz, Shortliffe 83]). The developers’ goal was to
eliminate the need to override the system when justifying minor deviations from

the therapy plan for the convenience of the patient.

35
ROUNDSMAN [Rennels 87; Rennels, Shortiliffe, Stockdale, Miller 89] is

a critic in the domain of breast cancer treatment that bases its critique on studies
from the medical literature. It is a passive critic with explicit goal specification.
Text in the literature database serves as a domain knowledge set that is not inter-
pretable by the system, but stored in a ‘‘canned’’ form; associated with each case
description in the database are a set of case-factors that can be used for retrieval.
ROUNDSMAN can automatically provide the case descriptions as a form of detailed
explanation. Redundancy is a problem and no facilities are available for users to
followup on the advice or textual descriptions found in the literature. The system
is successful because there is a close mapping between the current case charac-
teristics (e.g., tumor size, location, (patient age, etc) and recorded medical case
studies. It could be viewed as critiquing system that uses case-based reasoning,
except that the system does not really attempt to understand the cases, rather it
knows how to match the symptoms of the patient undergoing diagnosis with those

cases.

Circuit design. Several research and commercial systems use a critiqu-
ing approach for enhancing digital circuit designs. CRITTER [Kelly 85] is a design
aid for digital circuits. It uses a schematic diagram and a set of specifications to
evaluate the circuit using analysis techniques and knowledge about primitive com-
ponents. The evaluation report includes information about how well the circuit
will work.

A commercial system developed at NCR is the Design AdvisorT™

[Steele 88]. It is an expert system that provides advice on application-specific
integrated circuit designs. The Design Advisor analyzes the performance, tes-
tability, manufacturability, and overall quality of CMOS semi-custom VLSI

36
designs. Its knowledge is a hierarchy of design attributes compiled from a study

of major problems in commercial VLSI designs. Critiquing is not interactive but
done using a batch mode; designers submit proposed circuits and the system

retumns the analysis to them for any actual design modifications.

Discovery learning. A suite of three computer-based coaching systems
for discovery leaming, developed at LRDC, University of Pittsburgh, are based on
critics. These systems each address a different domain: SMITHTOWN —
microeconomics [Raghaven, Schultz, Glaser, Schauble 90], VOLTAVILLE — direct
current electricity {Glaser, Raghaven, Schauble 88], and REFRACT — geometrical
optics [Riemann, Raghaven, Glaser 88]. These discovery environments are
designed to build scientific inquiry skills. Active critics judge the efficiency of the
processes used to build scientific theory and inform users about errors that charac-
teristically trap less successful students as well as guide them to effective

strategies.

Decision making. The Decisionl.ab system developed at the European
Computer Industry Research Center [Schiff, Kandler 88] applies the critiquing ap-
proach to guide users in managerial decision-making. DecisionLab provides con-
structive feedback on a user’s management plan in a simulation game. The user
gets critiqued whenever they attempt a non-optimal approach. This system in-
tegrates a critic and a simulation exercise.

Mili is investigating how to apply the critiquing approach to improve the
performance of decision makers in the context of their actual work with a system
called DECAD. It has not actually been built, but is designed to watch over the
shoulder of the decision maker, interjecting advice or a critique when appropriate

[Mili 88]. In the area of research into decision support systems, investigators

37
place critiquing into a class of knowledge-based systems called *‘active and sym-

biotic decision support systems’’ [Mili, Manheim 88].

An operational symbiotic decision support system to support steel mill
operations is being developed by Manheim and colleagues [Manheim, Srivastava,
Vlahos, Hsu, Jones 90]. A manager develops a plan using a commercially avail-
able production planning and scheduling system which includes a mathematical
model, heuristic, and optimization techniques, that plan is compared to a system

developed plan using differential critiquing.

Curriculum development. The Alberta Research Council (Canada)
and a company called Computer Based Training Systems developed and are
marketing a knowledge-based system which provides assistance with curriculum
and course development [Wipond, Jones 88]. An expert module monitors cur-
riculum and course development, intervening when necessary or when assistance
is requested. The expert monitor can suggest what to do next, where to find ex-

amples or how to get more help.

Authoring. Critiquing systems have been developed that help writers
make their text more readable or help writers leamm more efficient text editing
strategies with which to produce that text. WANDAH [Friedman 87] is a system
that assists authors in all phases of writing; it is commercially available for per-
sonal computers as HBJ Writer '™, Text which need not be a completed document
can be subjected to one of four sets of reviewing and revising aids that go over the
written work; the system provides feedback on structural problems, and recom-
mends revisions.

ACTIVIST is an active help system for a screen-oriented text editor that

monitors users’ activities. It recognizes sequences of actions that are intended to

38
achieve one of the twenty different goals known to the system; some examples are

deleting a word or moving the cursor to the end of the current line. ACTIVIST
critiques the user after three suboptimal executions of a task type. After a certain
number of correct executions, the system will no longer watch for that plan. It
ceases to critique actions when a user ignores its suggestions for those actions.
This system integrates a user model; that model plays a central role in informing
the system when to intervene, when to discontinue looking for a plan, or when to
ignore user actions. The user model represents plans or strategies that users may
be following, ones can they execute optimally, and others they prefer not to

change.

Software development. PROLOG EXPLAINING [Coombs, Alty 84] is
designed to enhance a programmer’s understanding of PROLOG, thereby helping
the user to develop a better understanding of the language. Users are shown some
PROLOG code and asked to construct an: explanation of that code; the system
critiques that explanation.

The GRACE system developed at the NYNEX Artificial Intelligence
Laboratory is a multi-faceted leaming environment for COBOL programming that
integrates a critic, a tutor, and a hypertext information base. When the system is
functioning as a critic, it can adopt a tutoring mode to give remedial problems; and
conversely, when functioning as a tutor the student can decide to explore in the
critiquing mode. The tutor is a production rule-based system modelled after the
LISP TUTOR [Anderson, Reiser 85]. The tutor portion of the system contains a stu-
dent model that is an overlay of the productions contained in the system. That
model is not shared with the critic, nor does the critic attempt to tailor its inter-

action to the individual.

39
KATE [Fickas, Nagarajan 88] critiques software specifications (for

automated library systems) that are represented in an extended Petri net notation.
Its knowledge is represented as ‘‘cases’’ consisting of: a pattern describing a be-
havior in a specification, links to one or more goals, simulation scenarios, and
canned text descriptions. The critic evaluates the specification with respect to

goals or policy values given by the user.

Mechanical design. Feedback Mini-Lab [Forbus 84] was built as a
follow-on to the original work on the STEAMER system. It is an environment in
which simulated devices, such as steam plant controllers, can be assembled and
operated. Students can assemble a device from the building blocks. Feedback
Mini-Lab is designed to facilitate student understanding of control components.
Mini-lab generates code specifications to produce the simulation for the device.

After constructing their device, students can ask the system for a critique.

2.5. Limitations of Current Critics and Future Research Issues.

One features that is a strength of the critiquing approach is also a poten-
tial weakness. Supporting users in their own doing means that detailed assump-
tions about what a user might do cannot be built into the system. Our systems
have a limited understanding of users’ goals. This restricts the amount of assis-
tance and goal-oriented analysis that critics can provide in comparison to systems
such as PROUST [Johnson, Soloway 84], which have a deep understanding of a
limited set of problems.

Most rule-based critics do not have an explicit representation of all the
rationale for their knowledge. Therefore, to capture enough domain knowledge to
provide explanations, these systems need more abstract representations of the ap-

plication domain.

40
Critics should ideally have inspectable knowledge structures so that

users can modify and augment them. This does not mean that users will have to
possess detailed programming knowledge. As a minimum users should be able to
deactivate (and reactivate) individual rules according to their needs and goals.
With sufficient inference and user modeling capabilities, systems might be able to
do dynamic adaptation.

Currently, most critics support only a ‘‘one-shot dialog’’ [Aaronson,
Carroll 87]. They respond to actions taken by the user; in some cases they give
suggestions and explanations but none have the ability to adapt those explanations
to an individual user. Human critiquing is a more cooperative activity, during
which an increased understanding of the problem develops. Research on how to
incorporate more of the characteristics of human-to-human collaborative effort
into these systems is needed. This happens to be one of three directions for
research suggested for overcoming the limitations of human-machine interaction

that were suggested in the analysis of situated action [Suchman 87].

2.6. Summary .
Critiquing can be used as an approach to designing knowledge-based
computer systems that support human work and learning. Critics are important
steps towards the creation of more useful as well as more usable computer sys-
tems. Some of these systems will have elaborate problem understanding; more
commonly, they will have limited yet helpful capabilities; such as modelling their
individual users. Research on user modelling in other paradigms, such as tutoring
and advisory systems, can establish ideas and techniques that might be of use in
critics. A review of that user modelling research and theory will be the subject of

the next chapter.

CHAPTER IIT

USER MODELLING

This chapter examines related research in user modelling and describes a
general framework for the user modelling component of a system. Two related
research areas have attempted to integrate idiosyncratic models of users. Research
in Intelligent Computer Aided Instruction (ICAI) systems, most often referred to
as Intelligent Tutoring Systems (or ITS), use models of their studewts to guide the
instructional interaction [VanLehn 88]. Artificial intelligence techniques are the
basis for modelling users of advice giving dialog systems [Kobsa, Wahlster 89].
In the work on user models in these areas I found some concepts that provide
foundations for a user modelling framework to support cooperative problem solv-
ing, and some specific ideas that were adapted for a user modelling in critiquing .
Those foundations will be discussed and the conceptual architecture for a user
modelling component presented.

In the wider context of human-computer interaction the term ‘‘user
model’’ is over-used,; it has been applied to mean three different models:

1. the conceptual model a user forms of a system (more precisely a
user’s model [Norman 86]),

2. a models that represents the typical users of a system as a class and
are used to aid in designing systems, and

3. models of a specific user inferred by the system, such as the ones

investigated in this research.

42
Models in the first sense are conceptual models that provide part of a foundation

for understanding the process of human-computer interaction. The second class of
models above are psychological models developed by and for the analysis of
human behavior when interacting with computers. They play an important role in
guiding system development and research in the psychology of human-computer
interaction; important examples are the GOMS model [Card, Moran, Newell
83] and cognitive complexity theory [Kieras, Polson 85]. Research in this area
also compares these models to one another for given tasks [Moran 81; Young, Bar-
nard, Simon, Whittington 89]. In the future there is the possibility that these two
lines of research will converge to the point where psychological models can also
serve as a basis for idiosyncratic representations of the individuals using a system,
but neither research area has matured to a point where that is presently feasible.
The distinctions are clarified here-to insure there is no confusion conceming the
interest of this research — it is user models in the sense of the third category.

An argument has been put forth that the lack of commercial systems
with user modelling is evidence for a failure in the research, perhaps an argument
for discontinuing it altogether [Williams 90]. My position is that this view is en-
tirely too pessimistic and that the reasons we do not yet find the technology in
general use are predominantly organizational and economic. Specifically, there
are four possible explanations. First, the technology is not fully mature and ad-
ditional research is needed, ergo the argument for pursuing this line of research.
Second, the paradigms for the associated systems that use such models are neither
completely understood themselves, nor fully developed to the point of being com-
mercially viable — for ICAI that means computer-based instructional methodol-
ogy, and for advisory dialog systems the ability to adequately generate natural lan-

guage. Third, the computational environments that run these systems (most Al

43
applications for that matter) are expensive and scaling the techniques to fit them to

more common platforms is a significant area for research in itself. Fourth, the
techniques are not generally understood by designers and builders of software to
support commercial applications, a not uncommon phenomena in area of computer
science and the reason we find suboptimal system design approaches in everything
from text editors to commercial databases in the marketplace. The complete story
is likely some combination of these reasons, and arguments based on personal con-
jectures of what will be successful backed primarily with observations about cur-
rent commercial computational systems, should not dissuade us from pursuing ad-
ditional understanding and new approaches to solving any problems in computer

science, to include user modelling.

3.1. An Overview of User Modelling Research
One survey of user modelling definitions together with an effort to
correlate that research in both human-computer interaction and .intelligent tutoring
resulted in a useful taxonomy Uased on who owns the model and its function
[Murray 88]. It was still necessary to conduct my own.study. There was a need
to understand other research at level of their implementation methodologies in or-
der that I could determine how the models work, and then decide if the techniques
used have could be used in the user modelling component which we wanted to
build. The most widely reported examples of working techniques for user modell-
ing are those developed to support intelligent tutoring and dialog advisory systems.
This section describes the analysis of those areas; awareness of that research
provides both implementation ideas and has helped to determine the several re-

quirements for a user model able to support cooperative problem solving.

4
3.1.1. Student Models in Intelligent CAI

User Models in intelligent tutoring systems, called student models, have
been the subject of ongoing research for about a decade, there is significant litera-
ture surveying and discussing that work [Sleeman, Brown 82; Wenger 87; Polson,
Richardson 88; Psotka, Massey, Mutter 88b; VanLehn 88]. Student models are
derived from knowledge in the system such as rules, concepts, or strategies for
learning a skill. The user’s knowledge state is represented as a perturbation of that
domain model — popular approaches are overlays to represent the portions of the
knowledge base that a student knows, and a bug models that represent user mis-
conceptions about the domain. Some ITS student models combine these two tech-
niques into a comprehensive representation. Differential modelling is the term of-
ten used for these techniques [Wilkins, Clancey, Buchanan 88]. Several systems
which are frequently cited as using successful approaches were studied in detail.

The WEST project was previously discussed in Chapter 2. It pioneered
the differential modelling approach [Wenger 87]. Student behavior is modelled in
terms of the issues they understand and correctly apply. Their behavior is com-
pared to an expert’s under the same conditions to determine their mastery of par-
ticular issues. The system finds an issue a student does not know, then selects an
abstract explanation for that issue from prestored text. There are limitations to this
approach, when compared to the conditions under which critiquing systems must
function. The domain has a number of properties that are not characteristic of the
domains in which critics are needed. The computer expert is able to play an op-
timal game because there is a best solution, and it can interpret all alternative stu-
dent actions. In WEST it is possible to identify students’ bugs, whereas in other
domains one can only speak of ‘‘suboptimal’’ behavior. The set of issues, on

which the methodology is based, is closed for the game, How the West Was Won,

45
while it is frequently open-ended in other domains. The user’s task goal is ob-

vious; it is to win the game while obeying its rules, another simplifying assump-
tion which does not apply to many other domains. The explanation strategy in
WEST presumes that the advice given is self-explanatory because it contains a
good illustrating example. Two ideas developed in WEST are of use in this
research. One is the idea that students’ actions in the ongoing dialog with the
system contain information that can be used to analyze the state of their
knowledge. Another is the notion that knowing this state provides a mechanism
for guiding presentation of new knowledge by the computer coach.

The genetic graphs approach was first developed for the WUSOR-II com-
puter coach as a way to overlay domain knowledge with a leamer-oriented linkage
of rules [Goldstein 82]. The rules are represented as nodes in a graph model. The
domain for the WURSOR systems (three versions were developed in all) is an ex-
ploration adventure computer game called WUMPUS. In another project, the
genetic graph approach was used as a basis for modelling procedural skills in two
quite different domains, one mental, subtraction, and the other motor, ballet

[Brech, Jones 88]. That research validated the generality of the approach and en-
hanced general understanding of the paradigm. The nodes in the genetic graph
represent domain entities, such as skills, facts, rules, or concepts, all elements of
expertise. The links between nodes capture the processes by which a student can
learn those domain entities. A system component known as a psychologist inter-
rogates the user model to determine what to teach next; it is also the entrusted with
maintaining that model. Processes represented in the links, such as generalization
or analogy, indicate methods by which students can learn a new piece of
knowledge starting from one they have mastered. The system can determines a

pedagogical approach because the student model is an overlay of the graph with

46
marked nodes representing skills or knowledge that students possess. The links

between the nodes provide paths to the target knowledge; they represent possible
strategies for ‘‘teaching’’ that knowledge.

Genetic graphs are normative models that define in their link structure
the manner in which knowledge in a specific domain can be acquired by a student;
this is an inherent limitation. The graphs have to explicitly capture in the
representation all possible ways for a user to learn a domain entity, requiring sig-
nificant up-front analysis. To construct the graph a system designer has to deter-
mine the domain entities and, for each one, all methods by which a student could
learn one entity when they already know another. This restriction is similar that of
to traditional Computer-Aided Instruction which has to algorithmically pre-specify
the possible paths through course material. Genetic graphs permit more flexibility
in that users can traverse the graph during learning according to an arbitrary, rather
than predetermined path, but the path must be one that has been captured and
represented in the graph.

Clancey compiled survey of student models in ‘‘Al-based instructional
programs’’ [Clancey 86] that contained a useful framework for research. He
characterizes student mc s as qualitative models in the sense that they predict
how the modelled leamer will solve selected problems, as opposed to representing
the student with numeric measures of achievement. The system runs the model as
a simulation of that student to predict and explain behavior. Inconsistencies be-
tween the prediction and actual student activities serve as a source of diagnosis to
improve the student model: in some cases capturing new knowledge (new to the
student model, that is) that the student possesses, in others identifying misconcep-
tions or bugs, and in still others doing both. User models for cooperative problem

solving systems will not (and cannot) be predictive because of the complexity cf

47
the domains and because the open-ended problem solving situations in which they

operate, preclude the system from being able to generate a complete problem solu-
tion. If the system is not able to solve any problem in the domain, then it follows
that it will not be possible to use such an approach in juxtaposition with a qualita-
tive user model to predict user actions. One aspect of this study that fits with our
analysis of what is required for modelling users of cooperative knowledge-based
systems is Clancey’s finding that existing instructional programs had to be en-
hanced by second-generation knowledge representation technique. As will be dis-
cussed in Chapter 5 a similar requirement for enhancing critiquing systems to
more fully support cooperative problem solving and leamning precipitated the
development of a conceptual model for the domain of LISP.

The idea of student models based on the misconceptions or bugs (also
called mal-rules in some research) that students- holds about the domain was a
theme in several ICAI research projects besides WEST [Brown, VanLehn 80; Van-
Lehn 88]. Those results did not play a role in this work because the needs of our
systems emphasize representing and using what users know about the domain
rather than correcting deficiencies in that knowledge.

It is is significant that ICAI systems are able to solve any problem on
which their users (the students) will work. Within their application domain they
will restrict students to those problems. This allows them to use more detailed and
specific model inferencing techniques than those available to systems serving in
more open-ended problem solving situations. The requirement for our systems to
have generality means that the techniques that are often used in student modelling
are often not robust or general enough to support real world problem solving. The
problem-space limitations that are imposed by tutoring systems are what make

them effective at teaching within those restrictions, and also what enables them to

48
compile accurate and complete models of students within the limits of their own

domain understanding. An example is PROUST, which is able to infer possible
programmer plans for solving the single problem it uses for all instructional
episodes, computing average rainfall with a PASCAL program. For LISP-CRITIC to
achieve a similar capability would require solving the plan recognition problem, a
theme of significant research interest in its own right [Schank, Abelson 77;
Schmidt, Sridharan, Goodson 78; London, Clancey 82; Carver, Lesser, McCue
84). Related efforts in goal inferencing is important to dialog advisory systems;

the other area where important results in user modeliling have been achieved.

3.1.2. User Modelling in Computer Advisory Systems

User models for advice giving systems based on natural language dialog
have approached the user modelling problem from a perspective of applying artifi-
cial intelligence and using linguistics theory. A popular approach is stereotyping;
it was first proposed by Rich in the GRUNDY system [Rich 79]. Systems that use
stereotypes need other acquisition methods to first provide some specific charac-
teristics about a user. When the system obtains sufficient information about users,
it categorizes them as fitting a prestored stereotype, and the stereotype then in-
directly provides additional possible characteristics. One techniques, used in the
work on GRUNDY, is to explicitly ask users for some of these characteristics. A
user-generated description aids the system in selecting an appropriate stereotype.

Finin and Kass extended the stereotyping approach to provide implicit
user model acquisition in a user modelling shell based on a hierarchy of prestored
stereotypes [Kass, Finin 88a]. Their systems analyzes natural language com-
munication between the user and the system using the implicature rules adapted

from Grice’s Maxims for cooperative communication [Kass 87a). An example of

49
such a rule is If a user says P, the user modelling module can assume the user

believes that P, in its entirety, was used in reasoning about the current goal or
goals of the interaction. These rules, in conjunction with the stereotypes, infer a
model of the user’s goals and beliefs. Chin’s work in KNOME, a user modelling
component for UNIX CONSULTANT, used a double stereotyping technique, one for
grouping domain concepts and the other for classifying a user’s expertise. The
stereotyping approach is useful for one-shot advisory type systems that need some
quick approximation of the user in order to quickly generate a piece of advice; it
could be used as a way to initializing user models for critiquing systems, if a valid
set of stereotypes is available.

Wahlster and Kobsa also use the content of a dialog to acquire a model
of the user’s beliefs, plans, and goals [Wahlster, Kobsa 88]. Their work attempts
to emulate in a computer the mental modelling that occurs during human-to-
human communication. Its focus is insuring the system serves the user in a
cooperative manner, as opposed to system that might be considered adversarial
(e.g., computer game-playing programs,) or that are at best ambivalent to the user
(e.g., express-teller machines.) The user models in this research predict how a
user will inierpret an utterance the system is constructing for presentation. In this
regard, the purpose of their models are related to Clancey’s qualitative model
framework for ICAI student models.

Some general characteristics of this class of systems are quite different
than those of cooperative problem solving systems:

e The advice is given in a single episode and there is no notion of con-
tinuing dialogs over multiple problems and situations. The underlying
assumption is that the system will never see a user again and if it does
it will not attempt to recognize that fact or use previous information

about them.

50

o The advice is generally atomic; it solves a given problem (e.g., invest-
ing some money, locating an apartment, finding the correct train to
reach a destination, etc) with a single optimal recommendation.

o The system is an expert. It generally knows more about the advisory
domain than the user; and an implicit assumption is that what the
computer advisor recommends is accepted without question as being
appropriate and optimal.

e The system is not concerned with supporting users’ leaming in the ap-
plication domain. Its goal is to insure the advice is understood with an
assumption that once users understand what is being suggested they
willingly accept recommendation.

Cooperative problem solving requires that systems be prepared to deal with the
same user repeatedly, and-do so in domains where a complex product is being
produced. Furthermore, it will be the case that both parties share responsibility for
the result and each have some knowledge to contribute to the solution process.
Cooperative problem solving systems will therefore need models that are dynamic,
persistent, and idiosyncratic. .

An important distinction in purposes for user models is important. User
models can help a system to generate the appropriate suggestions (for our systems
these are in the form of the critique, for advisory systems a recommended course
of action), or in a general sense help explain some facet of the domain. Specifi-
cally, for critics and advisory systems, that is an explanation of the rationale be-
hind the suggestion in terms of domain concepts. Ideally the same user model will
serve both purposes. Research in advisory system has focused on the first situa-
tion — insuring the advice is appropriate to user goals and plans, while the
research here focuses on the second purpose — explaining to the user the domain

knowledge underlying a given critique.

51
To summarize, there are several significant differences between user

modelling for critiquing and those that support advisory dialog systems. The no-
tion of a product constructed through a collaborative effort between the system and
the user is central to most critics. Advisory systems are designed as all-knowing
experts which, once they infer sufficient information about the user, will select or
generate proper advice. The user’s role is passive while in critics both the system
and the user are active in solving the problem at hand. Advisory systems
predominantly exercise control of the human-computer interaction. They are less
"system controlled" than intelligent tutoring systems, but overall responsibility for
the interaction resides in the system. In critics, the system and the user share
responsibility for solving the problem at hand and for guiding the interaction. Like
in the student modelling work there are several techniques developed by research
in this area that can potentially be integrated into a framework for models that
support cooperative problem solving; they include: stereotyping approaches, the
distinction between explicit and implicit acquisition techniques, and inference
rules that use the content of the human computer dialog to enrich the user model
contents. These together with key ideas from the student modelling work guided
the articulation of some foundations for the approach followed in this dissertation
work.

3.2. Foundations for User Models to Support Cooperative Problem Solving
There are three issues that need to be addressed for user modelling in
cooperative problem solving system: how to represent the user model, how to ac-
quire it, and how to access it. The first two areas proved to be the most difficult;
access of the models is primarily determined by decision about the representation.

The acquisition problem, viewed in the ITS literature as a problem of diagnosis, is

52
the most challenging. To synthesize my review of the research literature con-

cemed with user modelling, a topology was used to summarize the work. It
categorizes specific ideas and projects into the areas of: the knowledge the user
model represents, how it is acquired, and its primary purpose. Appendix A con-
tains a table showing the systems discussed throughout this dissertation. Their
characteristics in each category together with their application domains and the
purpose of the systems themselves are listed.

In the area of acquisition techniques, I found it useful to categorize them
based on the directedness of the inferencing method.

1. Direct acquisition techniques are those where a specific piece of
information is obtained by explicitly questioning users or from
implicit observations of them. Usually a single characteristic about a
user is inferred.

2. Indirect acquisition techniques are shortcuts, such as stereotypes or
classification schemes; they are always implicit.

In the literature, the more commonly used distinction for acquisition techniques,
(described best in [Kass, Finin 87a]), is implicit versus explicit acquisition ap-

proaches, the orthogonality of these two categorizations is shown in Table 3-1.

Table 3-1: Two Orthogonal Classifications of Acquisition Techniques

Categorizing User Model Acquisition Techniques
Direct Techniques | Indirect Techniques
Implicit Acquisition X X

Explicit Acquisition X

The user characteristics represented in the model make a claim about

what users can do; what they know; and their goals, plans, prejudices or

53
preferences. To support the first two types of information, the representation must

be in terms of domain expertise. Users do not simply know or not know a skill or
domain entity, so representing their knowledge using a binary value is inadequate.
Research in some student models tackle this problem by attempting to rate the
knowledge of each domain entity in the user model with a linear value. A linear
coefficient used to represent the degree of proficiency would be ideal, but the dif-
ficulty is that to establish the validity of such coefficients requires extensive statis-
tical analysis of the population of users. Prevailing approaches have used ad hoc
methods for setting these values. That research usually is oriented on demonstrat-
ing how the acquisition process works rather than evaluating the validity of the
models themselves. A simple approach is to represent each user according to a
classification of domain expertise (e.g, expert, novice, beginner). This is what I
call a ‘‘classification method’’; it is an approach which can be viewed as
analogous, or even derived from, the stereotyping methodology. In this project, an
alternative method for the system to categorize how well a user knows some piece

of domain knowledge was needed.

3.2.1. Classifying the Users’ Domain Knowledge

In [Fischer 88a] such a schema for classifying users’ knowledge was
presented, it is shown graphically in Figure 3-1. This schema provides a basis for
the user modelling component developed in this research. It provides a conceptual
model for the space of user knowledge in the application domain. In general, the

domains in the figure represent the following:

D,: The subset of concepts (and their associated commands) that users know and use
without any problems.

D,: The subset of concepts which they use only occasionally, users do not know
details about them and are, possibly, unsure of their effects.

D;: The mental models [Norman 82; Fischer 84] of the users, i.e., the set of concepts
which they think exist.

D: This region represents the actual set of concepts in of a domain.

54
A specific interpretation of this model in terms of the domain our user model

serves, LISP, will be offered in Chapter 7.

Figure 3-1: Levels of System Usage

Using this schema as a basis for the user model representation means
that it is necessary to capture how well a user understands domain entities in ac-
cordance with these levels. The level at which users know a domain entity can, in

turn, guide explanation giving; this will be shown in Chapter 6.

3.2.2. General Approaches to User Modelling:

Human-computer interaction includes many different types of systems
and interaction approaches. A common theory for how to design and apply
idiosyncratic user models across different areas is desirable because it will allow
sharing of research results and identification commonly usable features in in-
tegrated systems — system that use more than one approach to interaction.

Establishing the requirements for general user modelling can be pursued
in two different ways. One strategy is framework-driven: it defines a common
architecture that can be used by any system. The General User Modelling Facility
(GUMS) [Kass, Finin 88a] provides such a framework. It is a top-down approach

55
because the framework is conceptually predefined and can guide research as well

as development efforts for specific systems, domains, or paradigms. Another at-
tempt at developing a domain-independent modelling subsystem is the ‘‘User
Modeling Front End’’ (UMFE) [Sleeman 84]. A common idea with this work is
the specification of sets of inference rules based on diagnostic information about
how user’s knowledge propagates through a set of concepts. These generalized
modelling approaches attempt to encapsulate a complete theory of user modelling
that could be applied to any system.

A more system-driven approach is a bottom-up strategy, studying ‘‘suc-
cessful’’ user modelling systems in different domains and paradigms, then reusing
appropriate techniques and ideas in the user modelling component of a specific
system. One example of this is the overlay modelling technique first proposed in
WUSOR-T, it has become a standard ITS paradigm [Wenger 87]. Another is the use
of bugs to perform student diagnosis and repair in systems such as BUGGY and
DEBUGGY [Brown, Vanlehn 80], and the Leeds Modelling System (LMS)

[Sleeman 83]; then later applied to other domains such as programming [Gray,
Corbet, VanLehn 88].

Common features of successful models can be used to drive theoretical
developments in the field; it is a case of the system implementation and testing
work driving the development of a general approach or theory. This dissertation
has primarily embraced this approach. A methodological first step toward
developing a user modelling approach for critiquing systems is to build a system
based on both what we understand to be the system’s needs and integrating good
ideas from other research. Theories need to be tested by developing systems, and
system implementations need to be studied to refine the theory. The work here has

concentrated first on selecting worthy techniques from other user modelling areas

L

56
and integrating them into a proposed theoretical framework. That framework was

enhanced during implementation of a user modelling component for a computer-
based critic. Over the long term, that implementation should drive additional
theoretical research to provide a theory of user modelling to support not just
cooperative problem solving but a larger class of interactive systems that includes
tutoring and advising, amonys others. The requirements placed upon a user model

for systems that support of cooperative human-computer effort are discussed next.

3.2.3. Requirements for User Models in Cooperative Problem Solving Systems

Communication is at the heart of any cooperative effort. In order for a
human and computer to collaborate effectively they must communicate about the
product, perhaps the goal, and general information about the domain in the form of
computer-produced explanations. Explanations in the systems we are investigat-
ing are currently uni-directional, from the computer to the user. In the future an
application of machine learning research might be.for users.to also explain their
knowledge to the computer as a way for the system to learn more about the
domain. In either situation, dialogs between the system and user need to operate at
a level commonly understood by both agents.

The user model needs to be accessible to other system components. Its
contents will be used when presenting explanations, selecting items to analyze,
and perhaps as a record of user preferences used to tailor the system. The ultimate
objective is an integrated system which adapts to users, allows then: to specify
preferences, and is still somewhat consistent in the way it treats them.

The user models in cooperative problem solving systems will have to be
more individualized than those provided in classification schemes or stereotyping

approaches. Users of a complex system are not homogeneous and the system

57
needs to treat each one differently. Having individual models alone is inadequate,

their contents have to change as the individuals knowledge improves — users
usually become more knowledgeable or proficient over time. A precept of
cooperative problem solving is to provide an environment that serves users not
once but on a recurring basis; this means the system adapts and changes as users
change. Achieving system adaptivity requires a representation of each user that is:
e dynamic — it changes over time,
e persistent — it is retained between problem solving episodes and
reused by the system, and
¢ idiosyncratic — it is unique for each individual.
Based on these requirements, several ideas from the analysis of related
research on user and student modelling were identified for incorporation into a
user modelling framework for cooperative problem solving systems:
1. Stereotyping (GRUNDY)
2. Explicit and implicit acquisition methods (GUMS)
3. Representing user knowledge as a perturbation of the domain
(Genetic Graphs)
4. Using the dialog content as a basis for acquisition inferencing
(GUMAC)
5. Acquisition methods based on the relationship between knowledge,
the structure of the domain model (UMFE)

The architecture for that user modelling component will be covered next.

3.3. A User Model Architecture
A conceptual architecture for the user modelling component that is

derived from the previously-discussed requirements was developed. That architec-

58
ture is designed to serve the needs of the specific system and critiquing paradigm

but with an eye toward retaining sufficient generality that it might serve as the user
modelling component for any cooperative problem solving system. There are
three major subcomponents of the architecture, the representation scheme, acquisi-

tion techniques, and access methods; they are shown in Figure 3-2.

HC! Dialog

Other System
Context

Components

Figure 3-2: General Architecture for A User Modelling Component for CPSS

3.3.1. Representation

The representation scheme is central because it must support acquisition
and access. It must also be general, efficient, and easy to expand or modify. An
additional consideration is to make the schema understandable to a human or, at
least, able to be presented by the system in a form that humans can read and
modify. We would like for the modelling component to support either users them-
selves or a teacher in interpreting and editing individual models. User models are
at best approximate representations of some cognitive aspects of an individual and
we should allow for those situations where that individual or another human can

improve on that approximation.

59
The two ideas from other research in user modelling that contribute to

our representation scheme are: the use of a graph model for the domain, such as
the genetic graph, and representing the user as an overlay of the domain model.
The implementation we developed uses a more general approach than genetic
graphs to represent the domain and a coloring of those graphs that is based on the

schema for representing user knowledge.

3.3.2. Acquisition

Acquiring the user model is the most complex function in this
architecture. It requires knowledge on the part of the system, knowledge about
ways to infer the state of the user. Representing and accessing a user model could
be achieved using common database techniques if acquisition was not such a com-
plex problem.

The acquisition methodology will need to support various approaches
for acquiring information about a user. The collection of acquisition techniques in
the system can be conceptually viewed as a knowledge-based agent; an agent that
is able to infer what a user knows from information provided by other system com-
ponents which track the human-computer dialog; the agent also knows explicit
questions to ask that help infer the model contents, or certain stereotypes, etc.
Four categories of possible acquisition approaches were identified:

e Explicit techniques directly question the user for information that is
entered into the user model. It is a suitable approach for obtaining an
initial user model as it can be implemented as a simple up-front ques-
tionnaire or testing session when a user accesses a system for the first
time. It is not as suitable during subsequent human-system interaction

episodes because users are not willing to put up with such administra-

tive requirements more than once. If a model so acquired is not
changed to reflect changes to users’ knowledge it will become con-
tinuously less valid and useful — the approximation of the user’s
knowledge state becomes progressively less approximate.

e Implicit techniques enrich the user model without interrupting the
user. Two implicit techniques are of interest: stereotyping and the
implicit implicature rules that operate on the human-computer dialog.
Stereotypes are difficult to apply in many situations mainly because,
as discussed earlier, it is hard to determine what stereotypes to use.
Organizing those stereotypes into a hierarchy presents its own
problems [Kass, Finin 87b]. Some implicature rules, as will be
described in Chapter 7, can be modified so that they apply to the
human-computer dialog present in most computer working environ-
ments rather than natural language situations alone. There are also
implicit techniques that are indirect; they use the domain model struc-
ture to leverage the information provided by implicatnre rules.

e Tutoring methods acquire information from instructional episodes that
can be added to or used to modify user models. These are episodes
initiated either by user request or by the system for the express pur-
pose of evaluating a user’s knowledge. There are not any systems that-
attempt to do the latter but this appears to be a natural combination of
ideas in tutoring and user model acquisition worthy of investigation.
Information in the model that appears to be missing or in conflict trig-
gers a tutoring episode in which the system poses a problem to the
user, one designed or selected to evaluate user understanding of the

knowledge in question. Given a comprehensive system, such as

61
GRACE [Dews 89; Atwood et al. 90] that combines both a critic and a

tutor, if a user voluntarily requests some tutoring, whatever subjects
are addressed during that tutoring can be used by the system in a
similar fashion.

e Statistical user model acquisition methods could be included in the
implicit category but they are of sufficient interest to warrant their
own separate category. The acquisition technique is one of observing
user actions, accumulating a history of those actions (usually in the
form of a count), and triggering inference methods upon reaching
predefined threshold levels in that statistical history. The thresholds
trigger an inference about the user and precipitate an offer of critiqu-
ing type advice to the user. In the ACTIVIST system models based on
statistical methods proved to be- effective [Fischer, Lemke, Schwab
84). Unfortunately, this approach has not been explored except in that
research, and only conceptually in LISP-CRITIC.

3.3.3. Access

The access methods are the third part of the architecture. The model
contents must be accessible and usable by other components, or perhaps human
agents. Access methods provide information to other system components about
what the user does or does not know about the domain. In the model developed in
this research that access provides information to guide explanations, but the
methods are generic in nature so that they could support the needs of tutoring,
advisors and so forth. Access functions need to be general enough to support
known requirements, and flexible to accommodate extensions to the system. Ac-
cess methods are not conceptually or theoretically difficult but are most often

determined by the ianguage or methodology used to implement the representation.

62
3.4. Summary

A general framework for a user modelling component capable of sup-
porting cooperative problem solving was developed in this chapter; it incorporates
techniques from research on student modelling in intelligent computer-aided in-
struction and user modelling in advisory dialog systems. The initial strategy was
to select a technique from one of these areas that could be modified to meet the
needs of cooperative knowledge-based systems. However, such a direct applica-
tion was not feasible because the theoretical analyses showed that there are suf-
ficient differences in the needs of the different types of systems in terms of what
they need to know about their users, and in the control of the interaction. Alter-
natively, an architectural framework for a user model was specified; one that is
able to support cooperative human-computer effort, is based on a categorization of
users’ expertise, and is general in nature. That conceptual framework has been
instantiated, in part, in a user modelling component that will be described in Chap-
ter 7. The implementation context is LISP-CRITIC; the next Chapter provides an
overview of how LISP-CRITIC has evolved over time, how it is currently con-

figured, and how it presently operates.

CHAPTER IV

LISP-CRITIC

LISP-CRITIC was used as the development environment in which the user
modelling framework was implemented. It is a knowledge-based system that is
designed to support programmers in the context of their work. It does not have
‘‘automatic programming’’ capabilities but operates according to same principle
of ‘‘intelligent assistance’’ that is fundamental in the PROGRAMMER’S
APPRENTICE work [Rich, Waters 90].3 In the terms of that research LISP-CRITIC
belongs to the class of what are called ‘‘transformation system’’ [Rich, Waters
88].

Comparisons between LISP-CRITIC and the work on LISP Tutor are in-
evitable. As discussed in the context of learning environments in Chapter 1, the
purposes for the two systems are actually quite diverse. LISP Tutor proposes to
teach the LISP programming by leading students through a series of predetermined
programming exercises known to the system in detail. LISP-CRITIC is oriented
toward aiding programmers involved in real work by suggesting to them better
ways to implement a specific piece of code they have written. In LISP-CRITIC, like
in any critiquing system, learning will inevitably occur, but it would be best to
incorporate capabilities into the system to make that leamning as effective as pos-

sible.

3The long term vision for the PROGRAMMER'’S APPRENTICE is that it ‘“‘act as a
software engineer’s junior partner and critic (emphasis added)’’ [Rich, Waters 90,
p. 1]. In our view, development of LISP-CRITIC provides significant understanding
of what is involved in the critic portion of such a system.

64
LISP-CRITIC provides a suitable context for investigating both user

modelling and the cooperative problem solving paradigm for several reasons:

¢ The rule knowledge base in LISP-CRITIC was previously developed

and has been refined through several versions of the system, therefore

this research did not have to contend with acquiring and testing the
executable knowledge in the system.

¢ Critiquing is a paradigm that has been studied and is well understood,
as discussed in Chapter 2; therefore, we could consider extending it,
in the context of LISP-CRITIC, it to integrate user models and support
cooperative human-computer work.

o The part of the process involved in giving a programmer advice (the
initial critique or suggestion that we will see in the scenario) is stable
and usable. This is due, in part, to the maturity of the rule-based
knowledge.

The system was not built from scratch for this project; it has been the
focus of iterative development over several years. This chapter reviews the dif-
ferent versions of LISP-CRITIC and some specific research projects to enhance the
system that in part motivated this work. It will then describe the current version in
terms of its architecture and will use a scenario of a user interacting with the sys-
tem to demonstrate specific points. Those portions of the current system central to
this project, the domain model, explanation giving, and the user modelling com-

ponent are described in more detail in Chapters S, 6 and 7, respectively.

4.1. Lineage of LISP-CRITIC Versions and Research Issues Addressed
LISP-CRITIC has evolved from a knowledge-based code-enhancement

tool to a programming-design environment. In that process, it has benefited from

65
the integration of interactive capabilities, contextual critiquing and explanation

capabilities; all help to evolve the system toward one which meets the theoretical
notions of being a cooperative problem solving system. The system has existed as
four distinct versions (see Figure 4-1,) each one using ideas and parts from the
previous version, but improving on them, and integrating new ideas. Its system
development history is similar to the series of mutation and selection steps found
in genetic evolution. It exemplifies the Simon view of evolutionary software
development [Simon 81].

Modifications made in producing each new version addressed new
research issues; these are indicated with ovals in Figure 4-1. Each version
generated an enhanced conceptual model of the system, and contained new or im-
proved parts based on what was learned in developing, using, and evaluating the
previous versions. The first three systems will be discussed briefly, followed by a
description of the current version. None of the versions discussed here was in-
tended to be a commercial product or even a full prototype for general use, rather
they are more in the spirit of what Rich & Waters call ‘‘demonstration systems’’.
They were developed as a context in which to investigate theoretical issues,
hypothesize solutions, and implement the solutions to demonstrate how they work

and gain additional insight that was used to refine the concepts.

CODEIMPROVER. The precursor to LISP-CRITIC was the
CODEIMPROVER system [Boecker 84]). CODEIMPROVER is a knowledge-based
program transformation system. Once invoked it operates independently, not al-
lowing further user interaction. Input to CODE-IMPROVER is an executable
FRANZLISP program and the output is a version of that program that either better

supports human understanding, one that is more cognitively efficient, or a version

Versions of LISP-Critic

Program
OS>

The versions of LISP-CRITIC are shown in the center of the above figure.
Each version addressed new theoretical issues shown in the ovals.

Figure 4-1: Theoretical Issues Addressed in Versions of LISP-CRITIC

that makes better use of computing resources, one that is more machine efficient.
The transformations used by the system are captured in a rule base that was
developed using traditional knowledge acquisition approaches; these rules were
elicited from expert programmers through interviews. An example of the sort of
rules contained in that knowledge-base is shown in Figure 4-2. CODE IMPROVER
operates in a batch mode in the UNIX operating-system environment, reading

programs and then writing an improved version of them into user files.

67

Replace a Copying Function with a Destructive Function

(rule append/.l-new.cons.cells-to-nconc/.1..

(?foo: {append appendl}
(restrict ?expr
(cons-cell-generating—expr expr))

?b)
—>
((compute-it:

{cdr (assq (get-binding foo)

’ ({(append . nconc)
(appendl . nconcl)))))

?expr ?b)
safe (machine))

(append (explode woxrd) chars)

——

(nconc (explode word) chars)

ivs the name of the rule
;s the original code
;o2 condition

/7 (only apply rule

s50 if "?expr”generates
;5 cons cells)

;s the replacement

iss rule category

The rule ‘‘append/.l-new.cons.cell-to-nconc’’ replaces the function
APPEND, which generates a copy of its argument data structure in
memory, with the function NCONC which instead modifies the internal
representation. The latter is preferred when users want to minimize
memory use and the new data structure is not needed elsewhere in the

program.

Figure 4-2: Example of a Rule in LISP-CRITIC

WLISP Version The first version actually called LISP-CRITIC [Fischer

87b] was designed to run in the WLISP windowing environment [Fabian, Lemke

85] on BITGRAPH terminals. It provides some rudimentary explanation capability

of the critic’s suggestions by showing what rules were fired. Users can choose the

kind of suggestions in which they are interested. This version was designed to

take advantage of advances in human-computer interaction techniques (such as

windowing environments, menus, and the mouse) and to enhance learning.

68

L1SP Machine Version. In order to bring LISP-CRITIC closer to support-
ing LISP programmers in their current working situation, it was integrated into a
LISP Machine environment, the Symbolics 3600 Workstation. This version was a
direct precursor to the work reported here. Integrating LISP-CRITIC with the other
functionalities of the Symbolics Genera environment provided a better understand-
ing of the capabilities and limitations of critiquing. When the system was able to
make use of an environment that provides powerful interface capabilities, like
those available on the Symbolics, this changed our view of what to expect from
the system, and how to configure its architecture. Figure 4-3 shows that second
version of LISP-CRITIC running as an activity in the Genera Environment. The
knowledge base of LISP-CRITIC. was updated to process COMMON LISP but the
form of knowledge it contains and the way it applies that knowledge did not
change from previous versions.

Several ideas were tested in this version that were designed to make the
environment more interactive. Some of capabilities that were provided to users
were:

e to view and compare the two versions of the program — their original
code and the one generated by LISP-CRITIC (shown in code pane 1
and code pane 2, respectively),

* to request explanation of the differences between the two versions,

¢ to invoke LISP-CRITIC on source code files in any local or remote
directory, and

e to have use of the interreferential input/output features in the Genera
environment.

Explanations were provided in the form of rule-traces, like in the MYCIN

69

LISRP-Critic [version 1.2]
CODZ PIAT 2

LISP-Critic rules which flred
shown in the fallouing faormat:

& PANE T
MODIFIED CODE WILL BE SHOWN IN CODE PANE 2
ORIGINAL VERSION OF YOUR CODE 1S SHOWN BELOW

an s=expression from your code

35 -=- Moder LISP; Swatext Commoriimp) Packege! USER; Saser 1€ -»- name of LISP-Critic rule vhich fired

513 power set of 5 (wrwil mb)

the transformed s-expression

To see an explanstion for any of the
(laross (x v rules, use nenu ootion explain rule
(wpwns (11t (st 2
(napaar (functien
otmsa () (coms x ¥))) ©

(Clontge (n v) (apoend (Viot (1182 3)) (nepaar ¢’ (Jardea (y) (Cons % ¥)) %) V)
“w?r @s 0 (pouer (cor ©))
(ear v)
(ponwe (cde 3333))
(@rfwn perm (5)
(cars ((ouuml 7 1) (mapode (Amction 1180) N
(t (mepman (fumtion
(lasooe (0
(nepoar (funation (lemtxde (V) (care x ¥)))
(herm (rensus x ¥) (M0l r)))))

101 1anouie=to=lot s
Clot ((x (car)
(v (pover (cir 2)))
(ampend (11ot (Ligt 3)) (nascar 3°Clomie (v) (oarw x v)) v} W)}

Ccomd C(¢ (lovgth W r) w 1)
(& (nepear §°(lonbas (v) (cond (cor L))} (comd Casr W (1= £)))))
101 cond-to= a3 e
CHF (Aull (4 Clongar W #)) (namear §'(lanbda (y) (0ons (eor W) y)) (oo (cor W)
= mn

9}

(eatun cond ¢y v)

(eord ((® ¢ 1) (napcar (Pretion 1ist) 1)

(t (nepoon (fumction
Cadgn (V)
(eand ((¢ (length L)) AlD)
(X (mapcar (function (leeds (y) (cens (car v y)))
(comd (oar w3 (1= r)))3))

(cond ((» ¢ © #1) (t (cone (car O (seq (cor) (1~ P)))
le1 oendeta-mnd=) =)
CIf (ol (o ¢ B) (eons Coar 0) (Peq (0or) (1= rI))

Coond C((Awil 13 M)} (st sul) B (¢ (ulrsmarch Bl (adr 1))
ie1 cong-erase—prea-t wemms)
(oo ¢Cral) 13 m 1) (Umuid o)) (¢ (sb-sesrch mb (adr 1))))

101 Care-to—er=3 ey
Connd ((mAl 1) m)
@t (or () mm)
(morsearch b (civ 112}))

Lambda-To-let
1 Cond-To-And-3

Cond-Erase-Pred~T
Cond-To-0r-3
Cond-To-And-2
Quit

(or (it mm)

Clear Disolay Explain Rule Optimize Show Rulss Fired Simplify File
Display Oirectory Help Redisplay Code Simplify Expression

~Erit1C connand: B1rG11Ty NUNCH:) Lhonaan) power - 1159, 2
LISP-Critic connand:t Show Rutes Fires

LISP-Critic command: Explain Rule

LISP—Critic command: Explain Rule

LIGP-Critic commend: Explain Rule

This is LISP-CRITIC’s screen on the Symbolics 3600. Users can request a
critique of a program code file using the menu options or can enter a LISP
expression. They receive suggestions on to how to improve that code in
CODE PANE 2, their own code is show in code pane I. Rule tracing ex-
planations of LISP-CRITIC'S suggestions are available. In the Figure, the
user submitted a program for critiquing, has seen a trace of the rules and is
about to select an explanation for one of those rules from a pop-up menu.

Figure 4-3: LISP-CRITIC Interface on the Symbolics Computer

[Buchanan, Shortliffe 84] and subsequent GUIDON [Clancey 87] research. If fur-
ther clarification is required, the system presents a pre-stored textual description of
a rule, a description that is general in nature, not specific to the suggested transfor-
mation. This generic explanation approach was one of the shortcomings in this

version.

70
During development of this version, the system was evaluated by two

different user groups. Intermediate users want to learn to produce better LISP
code; for supporting this purpose, statistical data were gathercd concerning the fre-
quency of rules that fired in student programs. Another group of experienced
users want to ‘‘straighten out’’ their code. Instead of refining a program by hand
(which in principle they are capable of doing), they use LISP-CRITIC to cause them
to reflect on the design decisions they made and the code produced to implement
them. The critiquing approach is especially useful for improving code that is ei-
ther under development or frequently modified. In the context of these develop-
ment efforts, we investigated research issues in human-computer interaction,

knowledge-based cooperative systems, and explanation giving.

4.2. Previous Research Projects to Enhance LISP-Critic

Two previous research efforts in the context of LISP-CRITIC provided
ideas and motivation for some of this work. One effort investigated linking the
knowledge contained in the rules with a representation of the user’s knowledge
using an increasingly-complex-microworld (ICM) mode. {Fischer 86; Fischer,
Lemke, Nieper-Lemke 88]. Another developed on off-line statistical analysis
component that analyzes the programmer’s code.

Research surrounding the ICM approach developed a rich theoretical
model which provides a domain structure to guide users leaming LISP. The
paradigm accepts the claim from work on leamning environments that microworlds
are a powerful techniques for achieving computer-based education [Papert 80]. It
theorizes that one learns most efficiently when confined to a subset of the overall
domain knowledge — a microworld. Once that microworld is mastered a leamer

can progress to the next more complex one and continue to learn by active ex-

71
ploration, critiquing, access to explanations, and so forth. The problem with this

approach lies in defining the microworlds for a given domain. The idea is entic-
ing, and a layered, onion-like model of the domain is conceptually neat. However,
further investigations found that perhaps the microworlds were user, and not
domain, specific [Fischer, Lemke, Nieper-Lemke 88]. As individuals, our
knowledge about any one domain probably conforms better to a model that looks
like a head of iceberg lettuce, we each learn a domain according to idiosyncratic
microworlds rather than a canonical set of them.

The work in this dissertation first considered user modelling in
LISP-CRITIC based on series of microworlds representing the domain. The fun-
damental difficulty with that approach is developing the underlying microworld
structure for the domain — a domain model on which to base the user model. As
will be explained, it turned out that a more straight-forward approach was a
concept-based domain model.

The idea behind the statistical analyzer [Fischer 87b] is to process
programs written by a user before they are transformed by the system. The
analyzer collects data on structure and use of program constructs. Such infor-
mation as average nesting depth for the functions a user defines, or the use of cer-
tain types of standard functions (e.g., mapping or loop constructs), could provide
evidence about the expertise level of the user. The idea here is intuitively attrac-
tive and could be applied to a broad range of applications. What is required for the
approach to be useful is a set of inference methods triggered by specific statistical
data that can classify a user by expertise level, such as novice, intermediate, or
expert, or into a stereotype. To determine these methods requires a significant
data-collection and analysis effort on a large population of users, and the correla-

tion of those results with an a priori classification that is based on an accepted

72
measurement instrument, like a test or questionnaire. As a technique for acquiring

information about users, statistical methods are important and form a category of
acquisition methods in the framework presented in Chapter 3. For the time being,
the emphasis has been placed on dialog analysis, and the indirect implicit acquisi-
tion methods; the statistical approaches were not further investigated.

The increasingly complex microworld research indicated that there is a
need for a model of the domain, one that can provide a foundation for a user model
representation. The statistical analysis work indicatea the possibility for evidence-
based user model acquisition, that evidence being the contents of users’ work.
Evidence acquired about the knowledge of an individual programmer can then be
used to assign them to a specific expertise classification. The problem here is
similar to the difficulty with stereotypes: both ideas have merit as methodologies
for acquiring user models, but depend on prior knowledge about the user popula-
tion, knowledge that is not available without a significant analytical effort. The
approaches investigated and implemented in this dissertation are, in some ways,
simpler than either of these efforts; we found that a semantic network type concep-
tual domain model of LISP can support user model representation and some in-
direct acquisition techniques (see Chapter 7). Next is a description of the architec-
ture of the current LISP-CRITIC which evolved from work on the previous versions.
This version incorporates the domain and user models described in this disser-

tation.

4.3. Description of Current Version
The current LISP-CRITIC system allows interaction between the system
and the user at the level of individual transformation rather than entire files of

code; it is being enhanced to provide context-specific tailored explanations upon

73
request, and to support some adaptability by users. The objective, to investigate

user modelling, focuses on support for explanation-giving. Instead of transform-
ing an entire LISP program, handing it back to the user, and trying to explain the
differences, the design for this version is based on an assumption that to achieve a
more collaborative style, users should be able to decide, on a transformation-by-
transformation basis, whether or not they want each portion of code changed. Fur-
thermore the system has to be able to change the code the user actually wants
modified, while leaving the rest of the program intact; the resulting program must
still compile and execute properly. Users need contextual access to explanations
of any single suggestion. These goals led to the development of a version that
enhances an existing, commonly used, program development environment, the
Symbolics ZMACS editor. Users can access the critic at any time while they are
editing LISP code in ZMACS (see Figure 4-7). The critic examines the code and
makes one suggestion at a time; the programmer can accept the recommendation,
reject it, or request an explanation. When a transformation is accepted the system
changes the code in the editing buffer.

A general overview of the system architecture is shown in Figure 4-4.
The user’s code is analyzed at what is essentially the s-expression level. When an
opportunity is found to improve that expression, the systems produces an im-
proved (optimized) version and, when the user requests it, an explanation. Inside
of LISP-CRITIC are a set of engines and a set of knowledge-based components that
support this process. This architectural diagram does not capture the interaction
between the user and the system that takes place; Figure 6-3 shows the interaction
between the system and the user at the process level.

Figure 4-5 shows the intemal components in greater detail, and the flow

of information between them. Work on explanation-giving, as instantiated in the

74

LISP-Critic
e N\ (——\
— -G
Knowledge-based Engmes Code
Components o]

lanation
oo i?&luo

This figure shows the architectural components of LISP-CRITIC and the
general flow of data.

Figure 4-4: The Architecture of LISP-CRITIC

explanation generator, is ongoing [Fischer, Mastaglio, Reeves, Rieman 90]. As
discussed earlier, the statistical analyzer was developed previously but has not
been integrated into the system. The critic rules and critiquing component are
derivatives of work on the initial versions of the system, and have been adapted to
the Symbolics environment. To provide a better understanding of how
LISP-CRITIC operates, and the role played by each system component, an example

interaction will be described. Portions of it will be used in other chapters.

4.4. Scenario

In this scenario a user is interacting with LISP-CRITIC. The internal ac-
tions taken to support the user’s decision process and those performed by the user
modelling component are not explained in detail here but are covered in Chapter 6
and Chapter 7, respectively. The LISP code in this scenario was written by an

undergraduate Computer Science student enrolled in an introductory artificial in-

75

LISP-Critic
s) (—ﬁ
Know ledge-based Engines
Components
User ... Statistical
Model Analyzer
s b be
'3_______1———»
| Critiquing H
Critic red
Rules ottt
Lisp
Domain Vs LBP Wneniage o | Explanation
Modei Nomms cmmriveodboessomn.o o | Generator
\. J

This figure shows the intenal components of LISP-CRITIC and the infor-
mation flow between them. '

Figure 4-5: Internal Components of LISP-CRITIC

telligence course? and comes.from the corpus. of programs used in the evaluation

of the the user modelling component described in Chapter 8. It is the program

developed for the student’s first assignment in LISP. An initial user model (its

partial contents can be seen in Figure 7-2) was provided to the system. Theoreti-

cally, the contents of this initial model can come from a number of sources:

¢ Computer-based tutoring

¢ Explicit acquisition approaches, for instance the use of a questionnaire

¢ Testing of the user’s knowledge level

¢ From a list of concepts taught during classroom instruction.

4This student, whose identity is not revealed, happens to be male; therefore, in

this discussion he will be referred to using male pronouns.

76
LISP-CRITIC was not used previously by this student programmer, there-

fore the startup user model here is based on responses to a data collection ques-
tionnaire completed by him, augmented with information about concepts explained
in class. The theoretical investigations of user modelling in this research con-
centrated on methods for enhancing an existing model using the context of the
user-system dialog while assuming the existence of some sort of initial or start-up
model of each user. The rationale for this assumption is the existence of several
available techniques for providing the initial model (interactive questioning of
users, stereotyping, classification categories, etc) that could be adapted for use in
LISP-CRITIC. It was felt that rather than attempting to implement the entire range
of methods that first build a model "from scratch” and then improve it over time,
that the work should concentrate on the more difficult and less well understood
problem of how to enhance that model over time (dynamically).

In the scenario the term dialog is used to mean the entire context of the
human-system interaction. The dialog notion, as applied here, will be discussed
more extensively later, for this scenario it should be understood to encompass that

series of actions taken by either a user or a system which the other knows about.

4.4.1. First Dialog Episode

The initial screen image of the user working on his code in ZMACS is
shown in Figure 4-6. He wrote and debugged a program using the ZMACS editor
on a Symbolics LISP Machine. From the editor he invokes LISP-CRITIC using a
HYPER-S key combination. LISP-CRITIC examines a single function definition
(defun) at a time. That function definition is identified by the system as the one
within which the user has positioned the cursor. For first scenario episode it is the

defun for getop. The figure shows the entire buffer to emphasize that LISP-CRITIC

77
recognizes the user’s context (from the cursor), just as a knowledgeable human

assistant might; the programmer does not have to scroll the window to a particular

configuration or mark a section of the program to identify it to the critic.

55; -%- Mode: i Syntax: Common-lisp; Peckage: User; Uesa: 1§; Lowvercsse: Yes; -4-

,!ll"ll!lt'llll(lll'!lllt
I’M. function will take, a3 argunents tuo 1ists each compsed of tuc numbers
sesuned % be the points X1,Yl and X2,Y2,
|!t will then find the auzw- betuesn these two points useing the Euc)ideen
3 distance function given to us on our as3ignnent.
3 THE SOUARE ROOY OF ((Xt-%2)°2 +» (Y1-Y2)"2)
JERASSAEIBRERALRLIRE23SL
{defun distance (pone otuo)
(sare (+ (* (- (cor pone) (car ptua)) (- (car pone) (cer ptwe)))
(¢ (= (cadr pona) (ceor ptwo)) (- (cadr pone) (cadr ptwo))))))

882334220 8820848222883038220

31 The ishere function takes & synbol and a 1ist of synbols and their opoosites
3 It will search for the syrbol in the second list. 1f found, it will recturn
;i @ list of BOIM the uord and 1t’'s coposite.

;EEIITTETRSLEINLELITIITIILICRSY

(defun ishere (uord cotable)
(cond ((mull cotable) m1 1)
({nerber vord (car cotadle)) (car cotadle))
(¢ (ishere word (cdr optable))))})

ssesss
3 The nu» function uses the ISHERE function to to first locate the vord

3 and 1t°s opposite in the table of opposites. (hen it returns the opocsite
3 of the original word.

;822986858 32822888038882 02223

(word optable)

((equal word (car (ishere uord optadte)))
(caor (ishere word optable)))

(car (13nere vord optanie’})))

{defun getoo

Crona

i (
)
:}'ll'll"'l"'l'll’l'llll'lll

13 The test function tests the tuo strings against each other in the follouing
'3 uayt
1 1. If the cer of the PATTERN Tist 13 o °7°
i3 varisble. The program moves on to the rest of the tuwo lists.

'3 2. If the car of the PATTERN list 15 an aton then the car of the MATCHLIST
(; is checked to ses 1P they are the sane. IE this (s true then the

'; progran moves on to the rest of both lista.

l; IP neither of these rules can be satisfied then the function returns NIL

then it {5 assumed to be o

i

It returns | othervise

o‘ defun test
{cond

((and

(e nt1)})

';‘I!'I'Ilillllllllll'l'l!l!"

{pateern n.:cnlht)
(mll pattern)(null matchlist))t)
{equal (car pattern)(cer matchlist))

(questtest (car pettern)))(test (cdr pattern){cor natchlist)))

, t{or
!
|

Iéam TLIGPY cooe

fove point

e
.1i3p >scenario-user NUNCH: (1) ¢ [Nore belowi

Housa-L: tove point; House-M: Mark word; Mouse-K: Editaor menu.

To wee other cormmands, press Shift, Controt, Meta, Meta=Shift, Soner. or Super=Meta

User editing LISP code in the ZMACS buffer.
Figure 4-6: Scenario-User’s LISP Program

P-CRITIC examines the user’s code for possible ways to simplify it.
In this case it finds that a cond special form could be replaced by an if special form
and makes that suggestion, as shown in Figure 4-7. The user has the choices in the
menu bar at the bottom of the LISP-CRITIC window, of interest here are the options
to accept, or reject LISP-CRITIC’s suggestion, or to ask the system to explain this.

The user does not understand the suggestion, so he selects the explain this menu

78
option. The system calls the explanation component which obtains from the

domain model the concepts required to understand this rule. Then the explanation
component calls the user modelling component to determine which aspects of that
knowledge the user lacks.

33; -t~ Mode: LI35; Syntan: Connen-h{ thm

:'j'l'"lllllllll'll'li.llI’l

1:This functton uill teke, as argument
1; sssumed to be the pointas X1,Y1 and
131t will then find the distence betue
Ix distance function given o us on
; THE SOUARE ROOT OF ((X1-%2)"2 + (Y1
:;Illtl‘lllllll.lIllll.llll

t{defun distance {(cone ptwo)

) (sart (+ (% (- {car pone) (car ptwe
i (s {~ (casr pone) (caor pt
'

I eSESESSIESERASEERARLLLALLEIR

Rule: COND~TO-TIF-ELSE Ruleset: standard

(cond ((equsl word (car (ishere word ooteble))) (cade (ishere word optable)))
(¢t (car (ishere word ocotable))))
=)
(17 (equel uord (car (ishers uord optable)))
(cede ({shere word optable))
(car (ishere word cotable)))

:;IlI"(ll'l'llltl'Iill"'l'll'
|

H{defun ishere (word cotable)

| tcond ({m11 cotable) nil}

i ((nenber vord (cer cotadle)) {
' (e (ishere word (cdr opteble))
'

138323882332 ER223L52I 2522822

i The getop function uses the ISHERE
13 and 1t's opposite in the table of
'3 of the original word.

:; BESISSE2AEERE2482BREEND2ESD kccﬂ': &DI."‘ 1h‘. 5‘ Pymw‘ M
H Reject Show Current Function Check Rules Statue

(defun getoo (uord optadle)
. (cond ((equal word (car (ishere vord optable)))

) {cadr {ishere vord optsble)})
| (e {cer (ishere vord optablel})))
'

I‘j'l"'lll‘ll"llll'I‘l'.l"l'
13 The test function tests the tuo strings against each other in tha following

eyt
15 1. If the car of the PATTERM 1ist 1s & "?" then it is essuned to be o

i3 varisble. The progren moves on to the reat of the two lists.

:1 2. 1f the car of the PRITERN list is an stom then the car of the MATCHLIST
1 s chacked t0 see if they are the same. If this is true then the

] progran moves on to the rest of both lists.

is If nefther of these rules cen be 3atisfied then the funetion returns NIL
13 It returns | othervwise

:;lIlllllI'Il""ll"ll'lll'll

1(dafun test (pattern matcniist)
(cond ((and {(ruil pattern)(null matchlige))e)
((or (equel (car oattern){cer natchlist))

)
]
1
1 (questtest (car pattern)))(test (cdr pattern)(cdr matchiet)))
| (e nil)))

Em TUIGP) cace. 130 >scenar io-user MUNCH: (17 & (Nore below)

Housa-L: Lalect window; House-H: System menu.

LIsP-CRITIC is accessed and suggests how to improve the user’s code.
Figure 4-7: Scenario-User Invokes LISP-CRITIC on Function getop

The domain model begins with the cond-to-if-else rule and, using the
links between domain model entities, accumnulates a concept set which consists of
all prerequisites to understanding the rule. The user modelling component filters
the concept set so the explanation component can focus on explaining only those

concepts which users do not know. The final step in the explanation process is

79
presentation of this information. The current implementation does not contain a

fully developed presentation strategy so it uses a simple strategy of choosing to
explain the first three concepts in the filtered list, in this case predicates, con-
ditionals, and tests and displaying hypertext explanations for them. To create a
more realistic scenario, mock explanations using these three concepts as a basis
are displayed in Figure 4-8. These are more in line with what we would expect a
fully competent explanation strategy to produce. In the present system a followup
capability is provided for with hypertext. Clicking on any of the terms shown in
bold causes an explanation associated with that object in the domain model or a
description from the Symbolics Document Examiner’s documentation to be dis-
played. The explanation in Figure 4-8 provides access to explanations of

s-expressions, tests, cond, if, nil, and non-nil.

Lisp-CRITIC

[RuTe: COMD-TO-~IF-ELSE Ruleset: standard

{cond ({equal word (car (ishere word ootable))}) (cadr (ishere word optable)))
(t (car (ishere word optsble)))) :

(1f {equa) vord (car (ishere word cptable)))
{cadr (ishere uord aptable))}
(car (ishere vord optsble)))

You have used a cend special form uhere an {f would nake your code more
readadle. Both are conditienals uhich use testing to implement branching
togic. If is better than cend because within the body of your function

only one test is used. Tests exanine whether a procerty hoids for a single
synbelic expression and return a value of either true (now-nil) or false (nil).
The symbolfc expressian that perforns the testing s a predicata.

Accapt Txolain This Set Parametars Abort
eject Show Lurrent Function Check Rules Status

LISP-CRITIC explains a suggestion based on the cond-to-if rule to include
those prerequisite concepts the user does not know.

Figure 4-8: Explanation For cond-to-if-else Rule

80
The user accepts this suggestion, and LISP-CRITIC automatically rewrites

the modified portion of the user’s code in the editing buffer. In Figure 4-9 the
body of function getop has been changed to reflect the cond-to-if-else transfor-
mation. In this function definition, LISP-CRITIC found only one transformation to
suggest, therefore at this point the programmer is returned to his code editing buff-
er and LISP-CRITIC’s window becomes inactive; it moves into the backgrourid, vut

of the programmer’s view.

533 ~1- Mode: LISP; Syntax: Commor—|18p; Fackage: Usar; Saset LU; Lowercese! Ves; -&=

!].."l“lll.llll.lllllilll

1}This function uill take, as argunents tuo lists eech compsed of tug numbers
13 aseuned to be the points X1,Yl and X2,Y2.

1t will then find the distance betusen these two points useing the Euclidean
., distance function given to us on our sssignmant.

l; THE SQUARE ROOT OF ((X1-x#2)72 « (Y1-v2)"2)

it lIllllllllllllllllll'llll

1{defun aistance (pone otwo)

‘ (sgre (¢ (s (- (car pone) (car ptuwo)}) (- (car pore) (car ptuo)))

i {a (-~ (codr pone) (cedr ptwo)) (- (cadr pona) (cedr ptwo))))))

'

"'ll"l""ll'llll"l‘l'l(llll

,; The ishere function takes 4 syrdol and & 113t of Symbols and thasr opposites
13 It w11 search for the syabol in the second list. If found, it uill return
s @ 1ot of BOTH the word end it's ocoposite.

lx'Il.l.l!l'.l!'lllllt.ll.lltll

(defun ishere (vord optable)
(cond ({mu1] cotable) n11)
{{marber word (cer cptable)) {(car optable))
(¢t (ishere word (cor ooteble)))))

)
]
.ll:llllzllll:lltlx)lltlttllxll

,; The getop function uses the ISHERE function to to first locata the word
and 12’3 coposite in the table of cpposites. Than it returns the opposite

ix of the originel word.

lxllll“"lllill'ttl'lllll'l'l

'(avun 9etop (word optsble)

1 (if (equal vord (cer (ishera word cotable)))
' (cedr (ishere word optabie))

:. {car (ishere word optable))))

')l"l'll"lll'llllil'!!!ltll!
u TM nu function tests the two strings sgainst euch other in the following

W ot xruncu-ermmnmuu 8 8 °?" then 1t (s assuned to De &
I verisble. The progran moves on to the rest of the tuo l1sts,
'3 2. If the car of the PATTERN lisc ‘s an stom then the car of the MTCHLIST
e i3 checked to ses if they are the sene. IFf thig is true then the
3 progran moves on to the rest of both lists.
i 1f netther of thess rules can be settefied then the fumction returns NIL
13 1t returns T othervise
‘ "’llll!l"lllllllltlll"ll!
'{defun tast {pattern natchlist)
{cond ((end (ms)) pattern)(ms)) matchlist))e)
({or (eaual (cer Dattern){car natchlise))
p ”)gcnnnu (cer pattern)))(tase (cdr pattern){cdr natchlist)))
t ™

inecs (LISF) cudw.|13p >3Cenar lo-usar MUNCH: (1) ¢ [Hore D€10w)

Heauee-l 2 Hova to end of this lina; Housa-M: Hairk {lne; Moura-R: Fditor meani.
T see othar cormunands, press Stott, Control, Meta=Statt, or Super
Sun 11 Ffed 11:29:32) scenerto-user CL USER: User_lrput

After the user accepts LISP-CRITIC’s suggestions, the system modifies the
code in his buffer.

Figure 4-9: Modified ZMACS Buffer

The user’s actions throughout this episode trigger changes in his user
model. Those specific changes are described in detail together with an explanation

81
of the user modelling process that precipitate them in Chapter 7. In general, any

action taken by the user, or information received by him in the form of explana-
tions, trigger those changes. The user’s receipt of an explanation of the cond-to-if
rule and concepts behind it, and the fact that he made a decision to accept the
transformation trigger changes to his user model (that updated model is partiaily

displayed in Figure 7-4). These direct changes, in turn, uigger indirect inferences.

4.4.2. Second Dialog Episode

The second scenario episode could occur immediately, or at a later time;
the user model is saved between sessions and reused when the user subsequently
accesses LISP-CRITIC. Our user now requests LISP-CRITIC to look over the code
written for function test which causes a recommendation based on a rule
de-morgan (the rule applies DeMorgan’s law from logic to combine booleans) and
again he requests an explanation. The explanation component once again consults
the domain and user models to determine what needs to be explained to this par-
ticular user. Those top three concepts selected by the simplified explanation
strategy are logical functions, internal representation, and arguments; these are
integrated into the complete text of the mock explanation shown in Figure 4-10.

The user accepts the suggestion and the system shows the user a second
suggested transformation for this piece of code; it is based on the
cond-erase-pred.t rule, and the user asks the. system to explain it; Figure 4-11
shows that explanation. Our scenario user also accepts this suggestion. A third
rule, cond-erase-t.nil, triggers; it is very similar to the previous rule therefore, the
user accepts LISP-CRITIC’s recommendation without explanation. He is able to
generate his own explanation because he knows a similar rule that was previously
encountered, and is familiar with the underlying concepts. Throughout the dialog,

82

;lll"l"'("l('llllllllill'l
The test function tasts the tuo strings #nainet sach other in the foliowing

i

] Gyt

s 1. If the cer of tha PATTERN 1ist is & *?" then it i3 assuned to be o

3 wariable. The program moves on to the rest of the tuo lists.

3 2. If the car of the PATTERN liet is sn atom then the cer of the MATCHLIST
] is chacked to see if thay are tha sane. If this 15 true then the

H orogram moves on to the rest of both lists.

: If neither of these rules cen be searisfied then the function returns NIL

;1 It returns T otheruise
jFSISEITIURTSISETICELNPESERSS
{dafun test (pattern aatchltst)
(cond ({and (rul) pattarn)(nuil astchlist})e)
(questtest ‘°f' pattern))}{test (cdr pettern){cdr astchiist)))
(e nil)))
r Tisp-CRITIC

JISTETNITRESEESEIITETIILANNS

The natchup function as.

TEET function.

It then will:

1. If the car of the PRTT
of the MATCHLIST chen
noves on to the rest o

2. It will now moke a lis

Rule: DE-MORGAN Ruieset: Dooiean

(end (null pattern)
(sl matchliat))

)
{not (or pattern natchitst))

the cor of the MATCHLE
on to the rest of the
; IFEETAICESERTIXINELTATECTST

Cxa

This transformnation 13 besed on DeMlorgens Lawvs, hers they allou combining
the conjuct (end) of tuo negetive lugicel fumctisns (nel)) with the
negation of 8 disiunct (er) of their srgesents for more readable code.
In logical symbols:

(~ pattern) =~ (~ matchlist) « ~(patteam - matchiist)

b
1
\
\
\
|
\
N
\
i3
i
s
"
I
\
)
1 [] ((or {aqual (car pattern)(caer natchiist))
.
1
s
|
1
o
i
i
1
s
)
\
\
\
\
\
|
1
3
\

(defun natchun (pat

X (cond ((null patte
((equal (car

Logical functions in LISP perforn boolean operations. The arguments
are syabols represented as all (false) or they have ¢ velue and ere
therefore true. A1) symbels and values are cactured internally in &
representation schane, for exanple 1i3ts sre collections of coms ceils,
i Host LI?F func:?eﬂ: td)a ar?unenu. 2 function Jefined as
g defun foo (x y) ...
i }; The function Adtch will I} 1oy argunents x end v that are given values vhen foo is called and
i |3 1iats neet the requirenent then used in the function body.
i]i function to creste & list
t1i LIf the rules are not nat, [Accept txolain This Se¢ Farameters
|
I
i
-
t
\
\
N
o

[£4 (con

FEETIBTETISITLICICTITTENTTY

jssrvTIIsEsIITRERIRITISIRRINOOIY {Reject Show Current Function Check Rules Status
1 1{dafun metch (pattern natchlist)

{cand z(u::);uwn natchlise) (netchup pattern astchlist))
t ntl)
IZSTSTACITIISTTIISTELTIFENTISSS

Znacs rev) code.lisp >scenario~user MUNCH: (1) » [More sbovel
Jlove potne
Tue 5 Jun 4:37:17 Keyboard CL USER: User_Input

LISP-CRITIC is asked to examine another part of the user’s program, a sug-
gested transformation and its explanation is shown.

Figure 4-10: Explanation For de-morgan Rule

the user model is updated each time the user receives an explanation or makes a

decision.

4.4.3. Third Dialog Episode

In a third dialog episode our programmer asks LISP-CRITIC to examine
his definition for the function match. The systems recommends that an if be used
in place of a cond (see Figure 4-12). This transformation is based on the same
cond-to-if-else rule that fired in the first episode, and because the user already en-
countered this same rule and had it explained, he accepts the suggestion without
requesting explanation. LISP-CRITIC changes the user’s program code. The final

]

83

Lisp-CRITIC

Rule: COND-ERRSE~PRED.T Ruleset: standard

(cond Q§noc Tor pattern natchTise]) t}
or (equal (car pattern) (car natchlist))
(questtest (car pattern)))

(test {cdr pattern) (cdr matchlist)))
(t nil))

z=xz)
(cond ((not (or pattern matcnlist)))
({or (equa) (car pattern) (car matchlist))
(questtest (car pattern)))
((tesc)gcdr pattern) (cdr matchlist)))
t nil

You have specified the symbol t as the return value for one clause

in a cond. This creates extra code that reduces readability. It is not
required because the value of the test, a lisp atom, uwill be returned
when the test is true. An aton in LISP is either the caer or cdr of a
cons-cell. It can be a symbol representing a variable or value, or a
nunber. Any expression that does not evaluate to nil is considered to
be true. MNil and the empty list () are equivalent and in testing
functions considered to be false.

ccept txplain This Set Parameters Abort
Reject Show Current Function Check Ruies Status

LISP-CRITIC recommends a second transformation in the defun for test,
which the user asks to be explained.

Figure 4-11: Explanation For cond-erase-pred.t Rule

state of his editing buffer with is shown in Figure 4-13, the contents of his user
model is partially shown in Figure 7-6 and its complete internal representation in
Appendix B. That model has changed during the scenario and if another explana-
tion of the cond-to-if rule had, in fact, been requested, the user modelling com-
ponent can provide to the explanation component the fact that the rule was
previously explained together with a. new concept-set to use for presenting the ex-
planation this time.

The development of the explanation component has not progressed past
the conceptual and methodological stages. The explanations shown in this
scenario are only intended to point out the relationship between the work on the
domain and user modelling undertaken in this dissertation, and the requirements
for explanation-giving. As presented, the explanations do not constitute a finished
product and should be used primarily as a vehicle to understand how the system

makes choices of what to present during its dialogs with the user. Additional work

(cor ({shers worg opteblel)))

!;lll'i‘ll'.lllll(l'll(.lll!t'
1; The test function tests the two trings ageinst each other 1n the following

way't
15 Lo If the cer of the PATTERM list is & *?° then it is sssuned o be &
i variable, The progrsn moves on to the rest of the two lists.
!5 2. If the cer of the PATTERN 1ist is an ston then the car of the MATCHLIST
“ 19 checked to see If they sre the sene. If this i3 true then the
3 progren noves on to the rest of both lista.
13 If neither of thase rules can be satisfied then the function returns NIL
3 It returne 1 otheruise
:x'Il"ll"ll‘l'i'll'll'l"'l'
|(defun test (pettern natchlist)
! (com ((nat (or pattern mstchiist)))
! ({or (equal (car pattern) (car netchlist))
' (quasttest (car pactern}))
| (tast (cdr pattern) (cdr wetchliet))}))

!,uunnuuuu:uuunn- [Lisp-GRITIC

4 The matchuo function that

i3 TEET function.

13 It then willy -70-TF-

L T1.If the car of the PATTERN 1is Rule: COND-TO-IF-ELSE Rulesat: standerd

; of the MATCMLIET then {t natc

:‘ ;‘m'l?n to the rest of the) -"()cuvd {(test pattern natchlist) (matchup pattarn matchlist)) (¢t mi1))
13 2. Ic W now neke & 13t out o

t’ the cer of the MATCHLIST. (Th (1f (test pattern matchlist) (metchup pattern aatchlist) nil)
Is on to the rest of the 1{sc.

YL PPOPP

(defun natchup (pattern natchiist)

} (cond ({nul) pattern) nt1)

{ ({egua) {car pattern) {cer

¢ (t (cona (append (cdar patt
i (netchup (cdr patt
'
I

138S293EEABEER2RECARIANRISRASS

i; The function natch will firat usefAccent txplain This] Set Parameters Abort.
13 liste mest the requirenents mentiReject Show Current Function Check Rules Status
13 function to create a f1st out of

13 1If the rules sre not net, it returns NIL.
|;lllllllll!‘ll'llllllllllllllll

1

\{defun natch (pattern natchliise)

B (cona ((:nt)?unrn matcnlist) (nacchup pattern matchlist))
! {t nil)

|
13ESIISLRESRESASRINANQUTITESRS
i

Znacs (LIBP) code.lisp >scenario-user MUNCH: (1) ¢ [flore above)
point

1l Feb 12:15:47] Xeyboard CL PCL: User Inpuc

In the third dialog episode LISP-CRITIC examines code for the defun match
in the user’s program.

Figure 4-12: Scenario-User Invokes LISP-CRITIC on defun match
to implement the presentation strategies for explanation-giving is required. This is
not a trivial problem,; it is one of the three major issues in explanation identified in
[Chandrasekaran, Tanner, Josephson 89]; the other two being the system’s under-
standing or deep model of the domain and user modelling. Recent LISP-CRITIC

work has concentrated on these latter two problems.

4.5. Summary
Developing a marketable system is not the ultimate goal in the
LISP-CRITIC work, instead a prototyping process was followed; it is designed to

help achieve a better understanding, at a conceptual level, of what is required from

85

{cer (ishers wora opteble))))

'
:; STIITTTTNEEATDUSTISEEETTCHTN

1 The test function tests the tuo strings against etch other in the following

3 way:

13 L. IF the cer of the PATTERN lisc in & "?° then it {s sssumed to be o

i1 variable. The program moves on to the rest of the two lists.

13 2. If the car of the PATTERN Yist is an ston then the cer of the PATCHLIST
N is checked to see i{f they are the sere. If this iy true then the

H progran moves on to the rest of both lists.

13 If neither of these rules can be satisfied then the function returne NIL
13 It returns T otherwise

:;Illl'll""'llll!l"l"ll"l

(defun test {pettern matchlist!}

! ({not (or pattern matchlist)))

! ({or (equal (car pettern) (cer matchlist))

' (questtese (car pattern)))

' (tent (coar pettern) (cdr matchiise)))))

I78R38SEETIIEEILELEIICTRILESLS

« The matchup function assures that the tuo lists are legsl a8 defined by the
i3 TEST functton.

13 Ir them will:

s 1. 1f the car of the PATTERN 1{st {3 en atomn and it is the sane ss the car

[} of the MATCHLIET then it aatches end is thrown auey. The progren

:; moves on to the rest of the list.

13 2. 1t wil) now nake a 113t out of the cdr of the cer of the PATTERM list and
i the cer of the PATCHLIST. (The varisble snd the match) It w11l then nove

0 on to the rest of the list,
lIsuasseasssELsTLIISSRIIT ALY

i(defun natchup (pattern matchliat)

‘ (cond ((nu)) pattern) nid)

H ((equal (car pattern) {(cer netchlist)) (matchup (cdr pettern) (cdr natehlist)))
(t (cons (append (cdar pattern) (car natchlist))

i (natchup (cdr pattern) (cdr natchlise)}))))

'

‘

:; CXZISEASSLEALRELLNRLAR2RLRAD

13 The function natch will First use the EEET Function to see if the two

13 1ists neet the requiremants sentioned adove. If so, It uses the netchup
1} function to create a list out of the variblas and their apropriate matches
'3 If the rules sre not net, it returns NIL.

[;esssssesastaansenansasrrasnass

I}

:(ﬂ:fun natch (pattern rmatchlist)

1 (1f (test pattern matchlist) (matchup pactern natchlist) nil))
.Flliitiillll!,ltt"ltllllli‘l

[
'
1
!

nacs (LIBP) code. 1130 sacener fo-user MUNGH: (1) & lMore acove]
[(12:10:58 Process Screen Hardcopy wants to type out]

ouse-L: Move point; Mouse-HM: Mark word; Mouse-K: tditor menu.
o vee other commuands, press Shift, Control, Moty Netu=Staft, Super, o Supur=Mety
Sun i1l Feb 12:19:84] Keyboard CL PCL: User [nput

Figure 4-13: Final State of Editing Buffer

a user model, and to inform the process of developing a general approach to ac-
complishing that. A critic was used as a context for investigating ideas and im-
plementing some of that user modelling framework because the paradigm is well
understood, and has been instantiated in at least one mature and well understood
system, LISP-CRITIC.

The ideas for how to model users of critiquing systems have their foun-
dation in theoretical notions about human-computer interaction and grew out of
studying user modelling in other domains. Those ideas served to guide implemen-
tation of the user modelling component in LISP-CRITIC. It is one of the

knowledge-based components of the system, the others are the critic rules and the

86
conceptual domain model. A related component is the explanation generator; it is

supported by the capabilities of the user modelling component.

In the past, LISP-CRITIC has been a platform for evaluating ideas about
how computer systems should be designed. Integrating a user modelling com-
ponent is a natural extension of that previous work; the story is actually more com-
plex: LISP-CRITIC was not merely extended, but ported to a new computational
environment and adapted to a new interaction style in support of this research. In
the next section of this dissertation (Chapters 5, 6, and 7) the system components
which were developed in and are directly related to this work, the domain model,
the envisioned approach te explanation, and the user modelling component, are
described in that sequence.

CHAPTER V

A DOMAIN MODEL FOR LISP

5.1. Introduction

This chapter describes the domain model developed to support
explanation-giving and user modelling in LISP-CRITIC. The work refines and
implements ideas developed in previous research [Fischer 88a]. In this chapter, I
cover why there is a need for a domain model, how the domain was analyzed, the
results which in turn determined the model’s general form, and then the graphical
notation used to conceptualize the model. Next I discuss the implementation of
the domain model followed by the extensions and other potential uses for both the
model and the methodology.

Developing the domain model was an enabling technology that was re-
quired in order for both the explanation and user modelling research to proceed.
The development of that model and its ultimate form are described here because
development did involve significant effort and knowing how the model was
developed and then implemented in LISP-CRITIC will facilitate the reader’s under-
standing when I describe its use in the explanation process in Chapter 6, and for
user model representation and acquisition in Chapter 7.

The model represents the domain of LISP in terms of three entities: the
concepts of the language, basic COMMON LISP functions, and the transformation
rules in LISP-CRITIC. The latter are represented in the conceptual domain mode,
even though they are captured in applicative form in the rule base, because a rule

is the triggering condition for an explanation.

88
5.2. Requirements for a Domain Model

As previously discussed, in order to accomplish cooperative problem
solving it is imperative that systems have the capability to explain their reasoning.
In the case of critiquing, in general, and LISP-CRITIC in particular, this means ex-
plaining the reason a given transformation is being suggested — the rationale and
concepts behind a rule.

A common theme of other research in explanation is that in order to
provide an acceptable explanation capability, the system needs to represent
knowledge of the subject domain at an abstract level [Clancey 87; Kass, Finin 88b;
Paris 87; Wiener 80]; I say more about this in Chapter 6. For LISP-CRITIC, pre-
vious research determined the possibility of representing programming knowledge
in terms of concepts, programmer goals and functions [Fischer 88a]. Such a
representation can explain the improvements suggested by the rules and derive a
model of the user. The implementation of the domain model described here sup-
ports those goals.

The rule base in LISP-CRITIC represents procedural knowledge in a com-
piled or applicable form that is appropriate for efficiently analyzing code and
rapidly generating recommendations for how to improve segments of that code.
However, knowledge in this form will only support rule tracing explanation ap-
proaches [Scott, Clancey, Davis, Shortliffe 84] and these were shown to be inade-
quate [Clancey 84]; systems need the ability to explain rules at the concept level so
as to facilitate user understanding and support learning. To achieve that requires a
more abstract domain model; a model that captures the abstractions representing
the underlying domain at the level of its fundamental concepts.

A conceptual structuring of the domain should provide a way to link the

applicative rule-base knowledge with explanation strategies and with the user

89
model. In LISP-CRITIC, a rule, or set of rules, is the underlying causative

mechanism behind a single piece of advice. To understand that advice well
enough to decide whether or not to accept it, users needs to understand what con-
cepts underlie that rule. A concept-based domain representation can be configured
so that it provides that information; it can inform the system what concepts under-
lying that rule. In tumn, the system needs to be able to determine which of these
concepts are not part of the user’s current knowledge so it can focus on explaining
the unfamiliar concepts. The terms understanding and knowing are used
synonymously; we do not try to make the theoretical distinctions between them

that are important to some studies of cognition or philosophy.

5.3. Form of the LISP Domain Model

In order to support the explanation strategies and user modelling process
in LISP-CRITIC, the information contained in the domain model consists first of the
underlying concepts for LISP. To determine those concepts we reviewed the fol-
lowing commonly used LISP texts: [Steele 84], [Winston, Hom 81], and [Wilensky
84]. Forty-five commonly-referred-to concepts were identified in these texts. The
list does not include more fundamental concepts that exist "in the world", such as
the set of integers, but focuses on those concepts that are unique to LISP or pro-
gramming languages in general. The terms used to identify these concepts are
listed alphabetically in Figure 5-1. The term concept, as expressed in the
Philosophy of Science literature, is an abstract notion; there is a distinction be-
tween concepts themselves and the terms that stand for them [Hempel 65]. The
concepts shown in Figure 5-1 were designated using terms that seemed ap-
propriate, while recognizing that in other research, and context, they may be
described with other names. In comparing this analysis with an effort by Gray to

90

capture the underlying entities of LISP in a hypertext database [Gray 88], we found

sufficient overlap in terms and structure to provide confidence that the topology is

valid and useful. His work could not be used directly because it was never com-

pleted.
ARGUMENTS LISTS
ASSOCIATION-LISTS LITERAL/QUOTE
CAR-CDR-CONCATENATION LOGICAL-FUNCTIONS
CONDITIONAL-EXITS MAPPING
CONDITIONALS MULTI-VALUE-RETURN
CONS-CELL NUMERIC-ITERATION
DATA-TYPES OPTIONAL-PARAMETERS
DESTRUCTIVE-FUNCTIONS OUTPUT-FUNCTIONS
DOTTED-PAIR PARALLEL/SEQUENTIAL-BINDING
EMBEDDED-FUNCTIONS PARAMETERS
EVALUATION PREDICATES
EVALUATION-ORDER PROPERTY-LI§TS
FALSE/EMPTY-LIST/NIL RECURSION °
FUNCTION-DEFINITION SCOPE
FUNCTIONS SIDE-EFFECTS
IDENTITY-VS-EQUIVALENCE STRINGS
INPUT-FUNCTIONS SYMBOLIC-EXPRESSION
INTERNAL-REPRESENTATION TAIL
ITERATION TESTS
LAMBDA-BINDING TRUE/NON-NIL
LISP-ATOM VARIABLE-INITIALIZATION
LIST-ITERATION VARIABLES

Figure 5-1: List of Domain Concepts

While selecting the set of concepts for inclusion in the domain model,

two types of relationships between concepts were recognized, relationships that

are useful for explanation-giving, and one that can be used in user model acquisi-

tion:

1. The dependent-on relationship: This indicates for a particular con-

cept which other, more fundamental, concepts are prerequisites to

understanding it.

91
2. The related-concepts relationship: This is a relationship between

concepts that are similar, this information could be used by the ex-
planation component in some presentation strategies.

We also selected 103 fundamental LISP functions to be represented in
the domain model, primarily those that are found in the LISP-CRITIC rules. The
term ‘‘function’’ is not entirely correct, this class of domain entity might more
specifically be referred to using the term ‘‘constructs’’, as in [Steele 84].5
However, ‘‘Function’’ is the term used here because the it was selected at the
beginning of the domain analysis and continued to be used throughout the im-
plementation. To understand a function also depends on understanding certain un-
derlying concepts; therefore, functions are related to concepts via "dependent-on"
relationships, like the one described above. Functions may also be similar to one
another, for example, cond is similar to if: the model also captures this relation-
ship.

Part of the analysis process was a grouping of the concepts and functions
into logically related sets by several LISP programmers. We followed a methodol-
ogy that has been successfully used to structure similar domains in other research
[Doane, Pellegrino, Klatsky 89]. The 45 concepts were divided into five groups
that represent an approximate consensus of the experts’ categorizations. The
groups seem to fit into a hierarchy when viewed across the "dependent-on" layer
of relationship, but this attribute was not further investigated. These groupings are
shown in Figure 5-2; the names assigned attempt to imply the commonality that
exists between the concepts in that group. Similarly the 103 functions were classi-

fied into 14 categories. The rationale for the categorization exercise was to

5Still more precisely, the set actually consists of special forms and standard
macros defined for COMMON LISP.

92
validate the domain entities that had been selected, and to integrate the knowledge

of other domain experts into our specification for LISP. This exercise was also a
way to reflect on and refine the concepts. The purposes for which these groupings
might be used in LISP-CRITIC are not yet established, but that part of the process is
discussed here to demonstrate the depth of the analysis and the generality of the
modelling approach. The categorizations have been captured in the domain model
for possible future use.

We also capture LISP-CRITIC rules in the domain structure because this
is the level of application knowledge used by the system and for sake of having a
complete single representation of the system knowledge. A rule has links to the
functions that occur in the rule, and the LISP concepts that underlies it. When the
system recommends a change to a program, the only thing it knows is that the
same code conformed to a pattern expressed on the left hand side of that rule and
that it could be rewritten according to the pattern on the right hand side. To model
what is involved in understanding that rule, it was necessary to capture knowledge
about the functions in the rule and any domain concepts that are behind it. Con-
cepts and functions probably exist as part of a programmer’s mental model of the
domain [Gentner, Stevens 83], therefore, these parts of the domain model may be
something close to a cognitive representation, possibly representing chunks. It is
unlikely that users, with a few exceptions, retain a LISP-CRITIC rule as part of their
mental model for the domain, even after they develop an understanding of it.

In summary, the domain model needs to capture three types of entities
LISP concepts, LISP functions, and the LISP-CRITIC rules, together with the
relationships between instances of them. Relationships are often one-to-many, but
their topology, although somewhat hierarchical within certain relationships (like
the dependent-on-concepts for all concepts in the model), is highly interconnected

High-level Concepts

LISP Externals

Symbolic Expression Atom

Functions Literal/Quote

Evaluation Parallel/Sequential Binding

Evaluation Order Optional Parameters

Tests Mapping

Conditionals Tail

Arguments Lists

Variables Property Lists

Scope Association Lists
Car-Cdr Concatenation

Intermediate Concepts Multi-Value Return

Parameters Embedded Functions

Logical Functions Lambda Binding

Predicates

Recursion LISP Internals

Iteration Dotted Pair

Side Effects Cons Cell

Function Definitions False/Empty List (nil)
Internal Representation

Implementation Concepts Destructive Functions

Strings True(non-nil)

Data Types Identity vs Equivalence

Conditional Exists

Input Functions

Output Functions

Variable Initialization

Numeric Iteration

List Iteration

Figure 5-2: Grouping of Concepts

and acyclic. Several paradigms, such as, frames and semantic networks were con-

sidered as possible representation schemes for the model.

5.4. Conceptual Graph Notation For Representing the Domain Model
An approach that provides the ability to visualize the entities and the
relationships from the analysis above was conceptual graph notation; it also helped

94
us to consider what are the needs of the explanation and user modelling ap-

proaches. Conceptual graph notation is part of the conceptual structures
framework [Sowa 84]. There may be some confusion in the discussion because of
overlapping meanings for terms in the theory with those chosen during the analysis
of LISP. The underlying cognitive entity, according to conceptual-structure theory,
is a percept; and the interpretation of a percept, a concept. Conceptual graphs
model concepts and the relationships between them. For LISP there are three types
of entities: LISP concepts, LISP functions, and, LISP-CRITIC rules; all instances of
the theoretical notion concept. In the formal notation for conceptual graphs, con-
cepts are shown as rectangles, and the relations between concepts, as circles; this

is shown graphically in Figure 5-3.

Concept Concept
A B

Conceptual graph showing concept A is related to concept B by relation
RI1.

Figure 5-3: Conceptual Graph Notation

An example of how this representation allows visualization of the
domain model for LISP is in Figure 5-4; it shows the LISP concept Recursion using
this notation. In this example, Recursion is dependent upon the LISP concepts
Tests, Conditionals, and Functions; it is related to the concept of lteration. Recur-
sion is not a concept underlying any LISP-CRITIC rule, but because it is one com-
monly used in most LISP texts, it has been captured in the domain model. It is
shown here to demonstrate the generality of the approach. The conceptual domain

95

model should be able to serve purposes more general than explanation-giving and

user modelling in critics. Using recursion, a domain concept not required by our

system, demonstrates generality, and should provide an intuition to the reader for

how the conceptual graph model approach might be applied to serve other

paradigms and applications.
Recursion
Related
\ lteration
dependent dependent dependent / \
on on on dependent

on © O O

Tests Condtionals Functions

Figure §-4: Example of LISP Concept Recursion in Conceptual Graph Notation

Conceptual graphs were a useful methodology for visualizing the

domain model, but an implementation method was required. For reasons of por-

tability, availability, and standardization, the domain model for LISP-CRITIC was

implemented in the Common LISP Objects Systems (CLOS) extension to COMMON

LISP.

96
5.5. Implementation of the Domain Model

In the domain model implementation, the concepts (rectangles) from
Conceptual Graph notation were defined as classes, and relations between con-
cepts (circles), captured in slot definitions. The class hierarchy for LISP consists of
a super class, lisp-object, with three subclasses lisp-concepts, lisp-functions and
lisp-critic-rules. There are slots in each object instance for name; dependent-on-
concepts; related-concepts, related-functions, and related-rules; and the groupings
shown in Figure 5-2. Group membership for lisp-concepts is represented in the
level slot, such as recursion belonging to the category of intermediate shown in
Rigure 5-7, for lisp-functions in the category slot. The CLOS code that defines
these objects is shown in Figure 5-5. The three types of entities inherent common
slots for name and dependent-on-concepts from the fundamental class lisp-object.

The complete domain model is difficult to show graphically because it is
highly interconnected. It can be considered to have three layers, one each for LISP
concepts, functions, and LISP-CRITIC rules. Populating each layer are instances of
the entity class for that level. Links are found between instances within a level, as
well as between instances at different levels. For example the LISP-CRITIC rule
cond-to-if is found in the LISP-CRITIC rule layer; it is linked both to similar rules
(e.g. cond-to-when) within that layer, as well as to concepts (e.g., conditionals) in
the concept layer, and of course to functions (e.g., cond) in the function layer.

To give the reader a flavor for the interconnectivity of the model, again
consider the LISP concept recursion. Understanding recursion is dependent on the
user understanding the concepts of tests, conditionals, and functions. Recursion is
also related to the concept of iterations. The code to instantiate Recursion as an
instance of a lisp-concept is shown in Figure 5-7; the conceptual graph represen-
tation for that concept in Figure 5-4. Most concepts, functions, and rules in the

domain model have similar high degrees of connectivity.

97

(defclass LISP-OBJECT ()
;7; Generic Super Class for all LISP Objects
((name
taccessor name
:initarg :name)
(dependent-on-concepts
raccessor concepts-dependent-on
tinitform nil
tinitarg :dependent-on-concepts)))

(defclass LISP-CONCEPT (lisp-ocbject)
((related—-concepts
:accessor related-concepts
tinitform nil
tinitarg :related-concepts)
(level
saccessor level
tinitform ‘high-level
tinitarg :level)))

(defclass LISP-FUNCTION (lisp-object)
((pattern
taccessor syntax-pattern
:initarg :pattern)
(related-functions
:accessor related-functions
tinitform nil
:initarg :related-functions)
{(category
taccessor category
:initform ’‘unclassified
:initarg :category)))

(defclass LISP-CRITIC-RULE (lisp-object)
((functions~-in-rule
:accessor functions
tinitarg :functions-in-rule) .
(related-rules -
taccessor related-rules
tinitform nil
tinitarg :related-rules

)))

Figure 5-5: CLOS Specification For LISP Domain Entities

98
It is difficult to display the entire domain structure in a single two

dimensional graph. In Figure 5-6 we provide a feel for the complexity of the
structure when viewed across a portion of a single strata or level of the domain. It
shows graphically the lisp-concept layer together with the dependent-on-concepts
links between the 45 concepts. For simplicity and readability sake, this figure
does not use the conceptual graph notation; instead each oval represents a LISP
concept, and links are all of the same type; they represent the
dependent-on-concept relation. Different oval sizes represent each of the §
categories shown in Figure 5-2.

The primary reason an abstract domain representation for LISP was in-
vestigated was the need to support explanation-giving and user modelling. In that
regard the the model can support both of these processes in several ways.

The explanation component uses the domain model to determine what
concepts must be explained to a user who does not understand a particular recom-
mendation. Since all recommendations are generated from a rule firing, the user
needs to understand the concepts. a rule depends on, as well as the functions that
are part of that rule. The systern mustexplain to the user those concepts and func-
tions the user does not already know. Furthermore, if the user does not understand
the more fundamental concepts upon which the understanding of a given concept
is dependent, the system may want to explain those as well. For our example con-
cept, recursion, shown in Figures 54 and 5-7, the user must already know the
concepts: fests, conditionals and functions or these must be addressed as part of
the strategy for explaining recursion. The explanation system could also use the
domain model to select an explanation strategy by using the related-concepts or
related-functions relationship (slots). In the case of recursion, the domain model
indicates that iteration is a related concept so one explanation strategy would be

for the system to describe recursion as compared to iteration.

This graph shows the dependent-on-concepts relationships for the LISP concepts in the Domain Model

Figure 5-6: Concept Layer of Domain Model

100

(make-instance ’lisp-concept
:name ’‘recursion
:dependent-on-concepts
! (tests conditionals functions)
:related-concepts ’ (iteration)
:level ‘intermediate)

Figure 5-7: CLOS Specification For Concept Recursion.

The user modelling component uses the domain model for two purposes.
The model provides a representational basis for users’ knowledge; the user model
overlays the domain model to capture the LISP concepts and functions that a user
already understands. The user model, as will be discussed further in Chapter 7, is
an annotation or coloring of the conceptual graph for LISP. The model presently
contains an implicit assumption that if users know two concepts then they also
know about any relationships them. We have not yet considered whether this is
something that should be explicitly represented and, if it should be, what modifica-
tions to the domain model representation might be required to accommodate it.

The user modelling component has a set of inference methods, again
described further in Chapter 7, that build up individual models representing each
user. Some of these methods use the structure of the domain model as a basis. For
example, when the system determines that a user knows about recursion, it will
annotate the user model with an assertion that the user understands recursion, and
also infer that the prerequisites are known, these are defined in the

dependent-on-concepts relation; they are concepts: tests, conditionals, and

Sunctions.

101
5.6. Extending the Approach

The approach to modelling LISP described here is not a unique concep-
tual structuring for it or similar domains. Researchers confronting this same
problem have had to use similar formalisms and representation languages. At-
tempts to develop an explanation component for MYCIN were constrained until a
representation for the domain other than the inference rules was used. Wallis and
Shortliffe found it useful to describe the knowledge representation for their system
in terms of a semantic network [Wallis, Shortliffe 84]. Kass used the NIKL
representation language to model investment knowledge in his expert adviser so
that it could explain advice in terms appropriate to the user’s goals, beliefs, and
prior domain knowledge [Kass-88]. A common theme in this research is that there
is a need for a domain representation that is more abstract than rules. The concep-
tual model approach presented here meets the requirements in the domain of LISP
for a critiquing system; it could possibly be used for a larger class of domains and
applications as well.

The ideal knowledge acquisition approach. is to capture. deep domain
concepts as first step in knowledge-based systenr development; an idea that is used
in the explainable expert systems (EES) framework [Neches, Swartout, Moore 85].
However, it is far easier to capture procedural knowledge in rule form. The rule-
based paradigm is consistent and constrains specification of knowledge; this as-
sures the knowledge engineer that the system’s actions or advice will agree with
true human expertise. When we attempt to add explanation capabilities the rule-
based paradigm breaks down and second order domain representations become
necessary.

The specific concepts, functions, and their relationships included in this
implementation may not be universally accepted. We found that experts fre-

102
quently do not agree on what are the significant concepts underlying LISP, or how

they relate to one another. The model implemented here was developed as an ap-
proximate consensus of what makes up the domain of LISP, it is required so that
we can determine the effectiveness of the methods that generate explanations and

model users.

5.7. Summary

This chapter described a domain modelling approach and implemen-
tation that captures LISP knowledge in a conceptual structure. The result was a
graphical, concept-based domain model. The motivation for having the model is a
need to link procedural knowledge already contained in LISP-CRITIC rules with
explanation strategies and user models to determine how to accomplish the ex-
planation process. The types of entities in the domain model are LISP concepts,
LISP functions and LISP-CRITIC rules, represented as nodes, and interconnected via
relationship links. Conceptual graphs provided an appropriate . notation for
visualizing and capturing the domain structure; CLOS was used as the implemen-
tation language. The approach is a suitable representation, able to support research
on explanation-giving and user modelling. Next, we will describe a framework for
explanation supported by this domain model.

CHAPTER VI
THE FRAMEWORK FOR EXPLANATION

In the course of building cooperative knowledge-based systems one ob-
jective is take advantage of the different strengths of users and computer systems.
The system provides a source of expert domain knowledge that is used to make
suggestions to users; the system should also explain those suggestions. Current
explanation systems frequently fail to satisfy users for a variety of reasons; ex-
planations are too often based on the implicit assumption that the process of ex-
plaining is a one-shot affair, and that the system will be able to produce or retrieve
a complete and satisfying explanation provided it is endowed with artificial
intelligence. Our approach takes advantage of informatiorr and knowledge-based
system technology already available to provide the user access to explanations at
different levels of detail and complexity. Developmental efforts in this work
focused on the concepts to be explained, rather than on selecting a.complete pre-
stored explanation appropriate for a given user. The domain and user models
provide to the system the capability to determine that set of concepts.

Early research on how to explain expert knowledge in computers was
done in the context of MYCIN. The approach taken was to provide a rationale by
showing users an historical trace of the rules that fired in arriving at a diagnosis.
Rule-tracing explanatory approaches, even when *‘syntactically sugared’’, to make
them more readable, are difficult to follow. Readers of that literature quickly real-
ize that anyone not familiar with medical terminology and concepts have great dif-

104
ficulty understanding them. This points up a general shortcoming of most ex-

planation approaches, they too often use domain concepts there readers do not
know. User models help systems to overcome this shortcoming. The failure of
explanations in domains more closely related to our work on LISP-CRITIC are not
difficult to locate. A standard example of unsatisfactory explanation is the UNIX
Man Page command.

In Figure 6-1 we consider a more realistic example, one from the en-
vironment in which LISP-CRITIC is implemented, and from a system generally ac-
knowledged as being better than many similar documentation systems. If
LISP-CRITIC can only give suggestions, and not explain those suggestions, then
users might attempt to achieve an understanding of the transformation by using
other system resources, in this case the Symbolics on-line documentation. The
first such transformation in the Chapter 4 scenario recommended replacing a cond
with an if. If users consult the Document Examincr for information about these
two LISP special forms, what they get are the descriptions displayed in Figure 6-1.
The explanations shown are better than most, they contain examples; begin with-
one or two sentence minimal explanation, and step-wise expand on it; they use a
hypertext display that allows followup and further exploration; and the description
for if even refers to the LISP concept which it exemplifies, conditionals. As will be
shown, the explanations still fail for a number of reasons. In general they are too
long, attempting to cover everything, are not specific to the user, and, in this case,
have to be viewed individually in sequence (they are only shown side-by-side in
this figure to make the discussion easier to follow), this makes it difficult to com-
pare the two and come up with the rationale for why they might be interchangeable

in this situation.

.

105
In this chapter the theoretical understanding of explanation-giving in

cooperative systems will be discussed, together with an overview of related
research. It will also cover the purposes of explanations in these systems and the
implications for the user model’s role. Finally, an explanation framework for

LISP-CRITIC will be described.

Document Exarminer

Documaent Examiner

T

cand Srom Claames Speciai Form
Conaiete of the symbel cond follewed by severa! cisuses. Each clause
comaiots of & predicate torm. called the entecesint. foilowed by tero
of more conesquant forme.
{eore |]

{antasecurt)

(e ecodert cormequent ...)

wee)
ESCh clouse represents 3 cave that ie ssiected If Ite anteceden Iy

he ') Claunes were net eat-

isfied. When 8 cimme i "s forrns are uat
od,

CoOnd PIOCONNES IT5 CIIUSAS i Order fram left te right, Firet, the s
tecedent of Bve CUITARE clause (8 evaluated. it the result is il, cond
advances to the next clause. Otherese, the cdr of the clause is
treated ou o list of forme tat are n order from
teft to rigm. After evaiuating the CoRSeqUns, Cond rensms without
INDECTing By reMBINng cisusss. The veius of Ihe send spesial form

congition trus brest feies
Spwcial Form
The simpiast conditional form, The “H-then” form looks ike:
(if sredigase-fern then-fern)

re-form ie evaiutted. and If the resst fa non-nil, the thm-famw
8 avalusted and its resull 18 returned. Otharwise, nit is retumed.

Exampioe:
(1P (runbere "o) "rever resctws tMs peimt®) o MIL

(17 (rat A11) °R Uare') 52 "N Ure®

(47 "net-nil ‘resotus thie savat") © ‘reectus Uhia petm®
In the if-then-eise’ form, it tooks like:

01¢ pr
predicate«orm s evakated, and il the result s nonenil, the then-fam
is avaiuated Wg It result |0 [etwrned. Otrwise, the Sise-form jo

ovaimted and ite result |s rensnad.

:uc-n“m-"-nzmhhtunuﬁmm Exawpless
clumen, thet is, if every satecedent svelumtes to ail, and thus no D -
caee Is selac 1ed, the vaise of the cond s all. (4F {omval ..7 :-r" sane’ ‘diffaraw®) = ‘differem’
£x (if (rea nit) "N °8) = &
(if 'umrd ‘resschus this pe1m” “never reashes thiv sevm’)
(eong) o> ML s ‘remches this peim®

(eand ({v 2 3} (print °2 sguele 3, new nesh’))
10633 (orine °3 ¢ 3, rut yet 1°))) o RIL

(owret ((emual 'Sucwy “Besky) “Cir1®)

({omva) “Ten ‘Ten} “Bey’)) @ Gtrel°
{oord ((omuel ‘Sover ‘fad) “dog’)

(Comsal *Pumghin ‘Slokizs) ‘cos’)

[£3 ‘rm)) = ‘ram’

(oond ((sares =) IFiree elevons

Viewar: Defauit Viewer

| C————————

Lisp Noto: The 9 Us
versian of If Iy extended 10 8ilow you 10 Swpoly MOre than tivee ar~
QUMEMS] e CLEL voreion reguites two oF thrae WoWnenty, snd olg~
Neie an orror it aaditiens! argUITANTS 870 BBpiled.

Zetaitap Note: Zetaling mubports muitiple ete clawmen: if thave are
more than twee subforrma, If sesunes you wam more 1han one efee~
G (e T8 SVENELEd SSqUentially ST the resuit Of the et ORe
e retumad, it the predicats rasmns all.

Multiple elae clauses are with the languag

prasanted in Guy Stesie's Common Liur the Languege.

"~ Viewer: Defauit Viewsr

- >

These two screen displays show the Document Examiner descriptions for if
and cond that are retrieved when a user searches for information on the
functions in the cond-to-if rule. Both occupy the entire viewer and on a
computer screen cannot be viewed together like they are here.

Figure 6-1: Explanations for cond and if from the Document Examiner

106
6.1. Theory

6.1.1. The Need for Explanations

In order for professionals, managers, and scientists to accept knowledge-
based systems, it is essential to provide explanations of the knowledge. The need
for good explanations was identified in a study of physicians’ attitudes towards

expert systems:
Explanation. The system should be able to justify its advice in terms that are under-

standable and persuasive. In addition, it is preferable that a system adapt its explana-
tion to the needs and characteristics of the user (e.g., demonstrated or assumed level
of background knowledge in the domain). A system that gives dogmatic advice is
likely to be rejected. [Teach, Shortliffe 84, p. 651]

Explanation in cognitive science can evoke two different meanings: the
process of presenting informatiom, and an internal cognitive process that develops
a knowledge representation. Our work focused on the presentation process while
attempting to keep both meanings in mind. The intemal-process view claims that
explanation is equivalent to understanding [Schank 86). According to this
perspective, humans achieve understanding using a process that involves generat-
ing their own explanations. For our work on presenting explanations this means
that systems must provide the information that is needed to support the self-
explanation process. If systems know exactly what information is required to in-
sure understanding, can tailor that information to the individual, and then present it
in an optimal form, users might adopt it as their own. Such a goal for computer-
generated explanations (or even those produced by another human, for that matter)
is too ambitious. Rather than attempting complete, ideal explanations which each
aser can understand and integrate into their mental models, computers must in-
stead concentrate on providing users with the material required to produce their

own explanations. This means generating explanations with the computer not

merely displaying stored ones; explanations that use the domain concepts ap-

107
propriate to a particular problem solving context, so as to provide users an oppor-

tunity to produce a self-explanation, and therefore achieve understanding.

6.1.2. Functions for Explanations
We are investigating how to design systems that serve users actively
engaged in their own work — cooperative problem solving systems that provide a
task-based environment in which users work toward goal accomplishment. Sys-
tems that support users’ work are more than media used for describing their
problems, and more than just tools to extract useful information from a database.
They should be active agents that provide for problem-domain communications at
the construction artifact level [Fischer, Lemke 88], can critique users work, and
are able to explain their knowledge. We analyzed the reasons users seek explana-
tions and determined that a common triggering condition is experiencing some sort
of impasse. A similar idea motivates theory about what should happen during in-
structional episodes, there the emphasis is. on determining how to communicate
knowledge to overcome impasses-and how students formulate new procedural
knowledge [VanLehn 88]. We cataloged these as ‘‘task-oriented impasses’’ in or-
der to develop a better understanding of where explanation fits in each situation.
There are four categories of task-oriented impasses:
1. Action impasses occur when users do not know what to do next.
Some action impasse questions are: What should I do next? Is action
the right thing to do next? How do I do action? What did the system
just do? What are the results of doing action? Can I do action now?
These are the types of impasses help systems should be designed to
address.

2. A communication impasse is a failure to understand a given object in

108
the environment. Representative questions are: What is object?

Why is object! shown instead of object2? What is the rationale for
suggesting object or action? This is the category of impasse the user
experiences in the scenario when trying to decide whether to accept
or reject a suggestion.

3. Motivation impasses fall into the realm of behavioral psychology;
their basis is an anthropomorphic view of the computer system.
Representative questions are: Why did the system do action? Why
did the system just communicate with me? Why did the system just
say X? Why should I do action?

4. Curiosity impasses are a bit different. The other categories consist of
questions that arise when users encounter a problem. Curiosity im-
passes are not necessarily impasses, in a strict sense, but rather are
diversions. They are circumstances in which users. gather infor-
mation that is interesting or helpful, but if it is missing, further work

[X 34

is not actually impaired. For consistency, these are also ‘‘im-
passes’’. Questions that illustrate curiosity impasses are: Is object a
concept X? How do object; and object, differ? On occasion,
LISP-CRITIC users also experience these; it is a case where they un-
derstand the suggestion but see it as an opportunity to improve upon
their knowledge and therefore request explanations so as to engage
in active exploration.
Assisting users during probiem solving requires that explanations be
designed to help them overcome impasses. Such explanations in cooperative

problem solving systems can serve four functions. We adapted these functions for

cooperative problem solving from ones that were found during investigations sur-

109
rounding MYCIN in which they studied users of knowledge-based medical infor-

mation systems [Wallis, Shortliffe 84].
1. Explanations allow users to examine the system’s recommendations.
2. Users need explanations to relate recommendations to domain con-
cepts — to understand ‘‘what is suggested’’.
3. The explanation should help users to see the rationale for recommen-
dations — to understand "why this would be better".
4. Explanations are needed by users to learn the underlying domain
concepts.
These functions are not mutually exclusive; single explanations in a cooperative

problem solving system will have to accommodate multiple purposes.

6.1.3. Shortcomings of Current Approaches

Most attempts to providé explanations use prestored scripts in the form
of canned text. Those types.of descriptions have been criticized as difficult to
understand, incomplete, and hard to navigate [Weiss 88]. Empirical studies of
tutoring in both humans and computers determined that canned explanations are
insufficient approaches [Fox 88]. Because critiquing and tutoring are closely re-
lated, many of the problems listed there apply to critiquing as well. ‘‘Canned
text’’ is intended to meant pre-written text, stored in machine memory in a form
that the system cannot interpret meaningfully (most likely as character strings.)
The use of canned explanations is not inherently bad just because it is done by a
computer. Empirical studies of human explanations. found a. similar strategy is
often employed by people when explaining something ‘‘for the sake of others’’
[Schank 86]. The difference is that people understand their prestored explana-

tions — they make sense to the explainer; they represent a form of mental model.

110
When it happens that the recipient does not understanding such an explanation, the

nature of most human-to-human discourse allows them to query the explainer for
clarification or elaboration.

Canned explanations captured in computer systems are inadequate when
their content is poorly chosen or presented. There are five primary reasons for the
failure of computer explanation approaches:

1. Explanations are too long; users get lost, bored, or confused; they do
not bother reading the text just to find what they need. This is espe-
cially characteristic of many on-line help systems.

2. Too often, explanations attempt to tell the user everything they could
possibly need to know rather than determining what is specifically
required for the situation at hand, and for the individual requesting
the explanation. This creates complexity and is frequently what
makes them too long.

3. Users are not provided the capability to ask follow-up questions or
enter into a dialog with the computer. The explanations are designed
as if they could satisfy their reader with a single presentation.

4, The explanations do not provide examples to facilitate understanding
textual descriptions. Even when available, examples may be in-
appropriate for the user’s particular problem.

5. The explanation text is written from an aunthor’s perspective. It is
based on that author’s conceptual model of the domain, not the
readers’.

The examples from the Document Examiner shown in Figure 6-1 exhibit some of
these characteristics. They fail on the first account, being longer than most users

would want in the cond-to-if transformation-situation. The system does not, of

111
course, individualization the descriptions, therefore they also fail on the second

account. Document Examiner does provide hypertext capabilities, therefore a
limited form of follow-up is provided. Also, both documentation entries (as do
quite a few in Document Examiner) contain multiple examples to facilitate under-
standing. On the last point, the explanation of cond is particularly poor, it appears
to have been written by a LISP expert (hacker) from his or her individual perspec-
tive; the one for if is actually much better; its author attempted to direct it toward a
less sophisticated programmer.

Some systems attempt to overcome several of these problems, but none
addresses all shortcomings. Qur strategy is to recognize the shortcomings while
using an interactive approach based on available. technology integrated with
domain and user modelling capabilities. We consider the limitations of canned
text but try to be realistic about current capabilities of computer systems. In
developing explanation strategies there is too often an assumed environment which
contains an intelligent computer able to generate natural language, predict users’
needs, and enter into a followup dialog. Techniques. are needed now that work
within the constraints of available technology. Based on these limitations, an ex-
planation framework was developed; it considers what is possible; a part of it was

implemented to further our understanding and evaluate the role of the user model.

6.1.4. Basis for Minimalist Explanations

If a user model, such as the one described in Chapter 6, can provide a
detailed representation of users’ knowledge, then it will be possible to formulate
and present an appropriate explanation. One method to achieve that is the min-
imalist approach [Fischer et al. 90]. The ideas for minimal explanations share the
underlying theoretical foundations with minimal approaches to instruction

112
[Carroll, Carrithers 84]. Both use the principle that an optimal first approach is to

provide users with the minimum amount of information required to accomplish
their task. Theoretical bases for this approach are found in related work on dis-
course comprehension:

1. Short-term memory is a fundamental limiting factor in reading and
understanding text [Dijk, Kintsch 83; Britton, Black 85]. The best
explanations are those that contain no more information than ab-
solutely necessary, since extra words increase the chances that essen-
tial facts will be lost from memory before the entire explanation is
processed.

2.1t is important to relate written text to the readers’ existing
knowledge [Kintsch 89; Fischer et al. 88].

Similar practical guidelines are also found in the theory of rhetoric.
Flesch developed formulae to evaluate the readability of text [Flesch 49] which are
frequently used to evaluate documentation and instruction. Computer explanation
systems should comply with similar standards; using short sentences and known
vocabulary are important criteria. Strunk and White’s guide to good writing con-
tains similar advice; they tell writers ‘‘Don’t explain too much’’ when writing ex-

planatory text [Strunk, White 57].

6.2. Related Work

Some research on explanations in knowledge-based systems assumes a
natural language interaction, such as in the dialog advisory systems discussed in
Chapter 2. Another approach also attempts to capture expertise during the
knowledge acquisition phase of building an expert system; that approach uses a
methodology which will later facilitate explaining that knowledge: the explainable

113
expert system approach (EES) developed by Swartout [Swartout 83] is one ex-

ample.

The fundamental claim behind EES is that explanation is simplified if
the knowledge acquisition process occurs at the conceptual level and a system
automatically generates the operational knowledge (i.e., rules). Then to explain a
rule, the system can trace through that portion of the conceptual domain
knowledge from which the rule was generated. That approach is appealing but has
not been enthusiastically accepted as standard knowledge-engineering practice.
LISP-CRITIC’s rule base was developed using the traditional knowledge acquisition
process of querying expert LISP programmers. For systems to explain something
captured in procedural (rule-based) form requires reverse engineering of the ap-
plicative knowledge (in our case the transformation rules) in order to determine the
concepts behind each rule. The process followed in developing and refining
LISP-CRITIC, as opposed to the one proposed by EES, is more indicative of what
will be the standard approach for providing knowledge-based systems with ex-
planation capabilities, for the near future.

Moore extended the EES work, in a program-transformation system
similar to LISP-CRITIC [Neches, Swartout, Moore 85]. Her specific research ad-
dressed a situation where users need to follow-up on explanations with clarifica-
tion questions. Her *‘reactive’’ approach provides the user with an initial explana-
tion, but accommodates the situation where it fails to satisfy the user; it provides
increasingly informative fall-back explanations [Moore 87]. Her framework ach-
ieves a fall-back capability by monitoring and recording the dialog between the
system and users, then using this dialog trace to identify and overcome difficulties.
Moore still agrees with our goal [Moore 89], that a convivial system should make

a good-faith effort to provide the right explanation the first time; it is when that

114
fails that her reactive approach or something similar is needed. Providing the best

possible initial explanation requires the system to understand the domain at a level
that supports the generation process and to be capable of modelling its users. Her
approach holds promise for future generations of knowledge-based systems but
depends too heavily on natural language generation and dialog management. Until
such capabilities are commonplace, other available techniques should be exploited.
Whether a powerful access technique, such as hypermedia, or a dialog manage-
ment approach to supporting fallback requirements is the better approach will only
be determined when both have matured to the point where they can be subjected to
comparative evaluations.

Several efforts to provide computer-based explanations generate strings
of natural language. Some rely on a user model for tailored explanations [Kass
87b] while others generate the same explanation for any user [Danlos 87; Water-
man etal. 86]. The natural language approach is complex and difficult, and the
syntactic formats are limited.

Natural language approaches, such as Kass’s reliance on Grice’s rules
for cooperative conversation and Moore’s iterative fall-backs, use human-to-
human discourse as their model for human-computer communication. This may
be unreasonable, especially given the difficulties of reading large sections of text
from a CRT screen [Hansen, Hass 88]. Knowledge-based system designers need
to recognize the special capabilities and limitations of computers rather than trying
to coerce the natural language paradigm into a screen- and keyboard-interaction
style [Kennedy etal. 88; Fischer 88b]. Another crucial issue in explanation,
whether between humans, or between a human and a computer, is not natural lan-
guage, but using all of the available interaction facilities to insure that users are
comfortable with the concepts presented during the explanation process; the es-

sence of natural communications.

115
Paris [Paris 87; Paris 89] developed an approach to explanation based on

an assumed user model. Her work provided initial motivation for our user modell-
ing investigations [Mastaglio 90b]. She developed a theory that builds hybrid tex-
tual descriptions for devices using two strategies, a process trace and a con-
stituency scheme.
® A process trace describes how an object works (her research was in-
terested in explaining mechanical and electronic artifacts like the
telephone.)
® A constituency scheme describes an object in terms of its component

parts (like the receiver, transmitter, etc. of the telephone.)
A hybrid explanation for a device is actually a mixture of the two methods based
on what users already know. Those constituents with which a user is familiar need
only be indicated as component parts of the device being described, but others
need to be explained in terms of how they operate (their process), or their own
constituents, and so on. The process recursively executes, capturing those portions
of the domain (objects or concepts) that an individual user needs explained to un-
derstand the device. A user model will indicate to her system which concepts and
specific items in the knowledge base the user already knows. That information
will, in tum, guide explanation-generation, combining the two strategies to insure
that the explanations are presented at a level, and in terms of concepts, that users
already understand. Her scheme can be used to generate an explanation for a
LISP-CRITIC rule in terms of the LISP concepts and functions underlying the rules
in the knowledge-base. LISP concepts are equivalent to the underlying concepts
her model uses, and LISP functions are analogous to specific items in the
knowledge base. This approach is a candidate strategy for use in the final steps of

presenting an explanation to a user.

116
Requiring a knowledge-based system to have a concept level domain

model is not a unique finding. Chandrasekaran and associates investigated the
need for deep domain models in expert systems [Chandrasekaran, Tanner, Joseph-
son 88; Chandrasekaran, Tanner, Josephson 89]. Their theoretical framework
claims that explanation involves three issues: presenting the explanation, modell-
ing the user, and endowing a system with ‘‘self-understanding’’. Their research
focuses on the third issue. Their solution is similar to Swartout’s in that they
propose a ‘‘generic task methodology’’ approach to building expert systems. The
paradigm focuses at the level of the task rather than that of abstract domain con-
cepts; it makes basic explanation constructs available at a level of abstraction
closer to the user’s conceptual level, it is similar to the work on human problem-
domain communications [Fischer, Lemke 88]. It also appeals to general domain
knowledge in order to justify the system’s problem-solving approaches.

In a perspective of what is happening to the user cognitively, one could -
consider explanations to be forms of knowledge retained in long term memory,
and later reused to provide situational understanding. This is the basis for
Anderson’s work on leamning by analogy [Anderson, Thompson 86], and has been
investigated by Lewis as a substitution process [Lewis 89]. This theoretical view
could be used by a system to chose a strategy for presenting explanations based on
a user model containing a record of either the exact explanations previously
received, or chunk-size domain entities (e.g., critic rules or lisp concepts) that were
the focus of explanations; either of these could be used as a starting point for an
analogical explanation. In the scenario, the user generates his own explanation for
a rule (cond-erase-t.nil) using this process; this rule is similar to one previously
explained (cond-erase-pred.t), and the user can forego requestinrg one from the

system. The user model also needs to represent the user’s possible goals: goals

117
related to improving the immediate piece of code (e.g., make it easier for other

programmers to read), or goals related to learning LISP (e.g., they want to become
proficient users of the language). This work has not explored methods for infer-
ring user goals or plans, but provides for goal representation in the user model.
Goal and plan recognition is a significant research problem in itself.

Empirical observations of problem-solving interactions between sales-
men and customers in a large hardware store, observed that explanation never took
the man page approach. When explanations were required, the approach was one
of minimizing the explanation, tuen following up on unclear concepts when neces-
sary [Reeves 90]. This is interesting if you consider the fact that the particular
store carries over 350,000 different items in over 33,000 square feet of retail space.
If salesmen took the approach found in many computer systems, the explanations
given would be extraordinarily long, to insure completeness, and complex, ir order
to account for relationships to other items in the store.

Argumentation is another approach to facilitating user understanding of
the domain knowledge behind a critique or suggestion. Impressive results have
been achieved using the argumentation approach in a critic for kitchen design

[Fischer, McCall, Morch 89b]. Argumentation, as used in paradigms such as
issue-based information systems (IBIS), provides a context for exposing the issues
underlying a given suggestion. Argumentation approaches do not try to provide
information at an appropriate level. Users of these systems retain primary respon-
sibility for traversing the issue base. It is possible that they will find it difficult to
locate exactly what they need, or to understand it, when the complexity level is not

adjusted to their individual expertise.

118
6.3. An Explanation Framework to Support Critiquing

To support explanation in critics requires sufficient knowledge on the
part of the system to describe what is going on and why. Operational knowledge
in LISP-CRITIC is captured in transformation rules. For users to understand a trans-
formation, they need to know the LISP functions in the rule and the concepts that
makes it valid. This was informally observed during usability testing on the
second version of LISP-CRITIC when we attempted to satisfy users with canned-
text generic explanations of the rationale for each rule.

The domain model provides a conceptual basis for an explanation in
terms of those functions and concepts that are prerequisite knowledge. Determin-
ing prerequisite knowledge is a recursive process because understanding those
domain concepts that are prerequisites for the given concept requires, in turn, un-
derstanding their prerequisites and so on. To support such an approach, the deep
structure in the domain model is queried to obtain a concept-set comprised of
those prerequisites. A satisfactory explanation approach needs to still do some-
thing more, it must identify the concepts in that set that do not require explaining
because the user already knows them. Furthermore it will reason about the best
way to explain the remaining concepts.

We investigated ways to organize explanations for a system such as
LISP-CRITIC and developed a framework that includes different levels for explana-
tions (shown in Figure 6-2). The explanation levels capture necessary and suf-
ficient conditions for adequate explanations. Each level incrementally enhances
work done at a lower level, integrating additional knowledge about the user and
the domain. A Level 0 explanation does not require knowledge about individual
users. It uses the domain model to meet a necessary condition — knowing what to

explain. The explanation component is provided the set of prerequisite concepts

119
required to understand an object needing to be explained. Level 1 brings the user

model into the process; here the prerequisite set of concepts is ‘‘filtered’’ through
the user model to determine the subset appropriate for a given individual. In many
cases, that filtered set is probably larger than we want to explain in a single
episode. Therefore, at Level 2 the explanation component needs to know

strategies that determine exactly which of that subset to explain and how.

4 Prioritize, sequence, link object explanations

@‘;0 3| Select "best" explanation strategy for each object
N

2

1 Filter objects through user model

0] Show all dependent-on objects from domain model

Five levels of explanation are identified. Level 0 insures all prerequisite

knowledge for a given domain object is available to the explanation com-

ponent. Level 1 builds on level 0 and so forth. The current LISP-CRITIC

system provides simplified level 2 explanations. Level 3 and 4 will require-
presentation and natural language generation techniques.

Figure 6-2: Explanation Levels

A system operating at Level 2 passes a sufficiency test: it knows what
concepts to explain to an individual user in a specific situation. However, it is still
faced with the presentation problem; explanations need to be presented in a man-
ner and style that will make them more readable. Achieving this level means the
system will need to make use of additional domain knowledge or other infor-
mation in the user model, in order to determine a ‘‘best’’ strategy for explaining a

concept. For example, a system could make use of the related links in the domain

120
model and the user model contents to determine candidate concepts or functions

for use in a differential description [Fischer et al. 90]; one object can be described
differentially in terms of another that the user already knows. Another example
would be to apply user goals captured in the user model to determine the strategies
that support those goals. Level 4 performs ‘‘syntactic sugaring.”” Here the in-
dividual explanations from Level 3 are ordered and appropriately linked, a non-
trivial process that requires the system to have knowledge of discourse as well as
natural language generation capabilities.

6.4. Role of the User Model in Explanations

The user model is discussed in the next chapter but, because its stated
purpose is to support explanation generation it is important to consider, in the con-
text here, what criteria for the user model are established by this explanation
framework. This section will summarize, and review, the insights for the user
modelling component that resulted from the analysis of the explanation process.

Cooperative systems must tailor their explanations to individuals in or-
der to accommodate adequately the four functions previously listed. The system
needs a basis for tailoring: this is the role of the user model. One simplified ap-
proach is to classify users by their expertise (e.g., novice, intermediate, expert);
but, as reported earlier, this is not a valid representation for many domains and
users. A finer grained representation that follows from Paris’s work, represents
user’s knowledge in terms of the domain objects and concepts.

The user model needs a representation of the user’s domain knowledge
detailed enough to support each of the five ‘‘levels’’ of explanation shown in
Figure 6-2. It has to be based, at least in part, on the conceptual model of the

domain, so that it can filter the set of concepts that form the explanation basis.

121
The model needs to capture the user’s goals in order to support Level 3 explana-

tio.is. Programmers who use LISP-CRITIC have goals of either making their code
easier for others to read (such as in the scenario) or making it execute more ef-
ficiently. A subsuming goal for both is leamning to produce better code, the type of
optimization goal merely determines the dimension along which they want to leamn
to improve their programs. Higher level goals, such as learning how to use new
programming structures that can make programs better from the start, need to be
acquired through explicit questioning. Problem-specific goals (such as writing a
function to factorial)) are not within the scope of the current system. LISP-CRITIC
does not know how to achieve these problem specific objectives; it is neither
capable of automatic programming, nor does it have the knowledge, envisioned for
the Design Apprentice portion of the the Programmer’s Apprentice. Design Ap-
prentice knows how to automatically select the low-level program cliches ap-
propriate for achieving a specified objective: [Rich, Waters 90]. -

Supporting Level 4 explanations is more difficult because they involve
solving difficult issues on.the research agenda for both explanation-giving and
natural-language generation. We will not know all requirements for user models
to support this level until that research matures. It is possible to conjecture some
important capabilities, such as, knowing the education and reading comprehension
level of users, because that knowledge could guide the generation of an ap-
propriate explanation. To make the scenario in Chapter 4 more realistic, this type
of higher level processing was manually applied to create the mock-up explana-
tions. The system cannot presently generate anything that complex, it can only
display short explanations.for the selected concepts.

In its present form, the user model that was developed provides partial
support for explanation-giving according to the presented framework. One sup-

122
ported approach is the minimal explanation strategy; it interrogates the user model

to determine a minimal set of concepts to explain. Such strategies are possible
because the model knows which concepts are familiar to the user.

6.5. LISP-CRITIC Explanation System

A conceptual overview of the explanation component shows how it con-
forms to the framework discussed above. One focus in this implementation is to
use information already available to the system, and to present that information
using ideas which provide the best support for users’ needs.

There are several sources of information that is already available to the
system and which can be used to satisfy some explanation requirements. This in-
formation is presented using techniques that were designed to provide users access
to the information in four layers of increasing detail. These layers help to visual-
ize how the system is designed and operates; they should not be confused with the
conceptual levels shown in Figure 6-2.

1. A fundamental piece of information is the name of the rule that is the
basis for a transformation. The rule name is an abstract reference to
a chunk of domain knowledge, in the domain model that chunk is an
instance of the class lcr-rule, and it may or may not have meaning to
users. When it does have meaning, users may be satisfied just by
knowing which rule fired and further explanations may not be re-
quired. An example of this occurred in the third scenario episode
when the user recognized the cond-to-if rule because it had
previously been explained. We are assuming that the name evoked
the appropriate conceptual understanding on his part, seeing the two

versions of the code may have also played a role.

123
2. That second piece of information is precisely those two versions of

the code. The user can compare the system-transformed code with
his own. The system displays the user’s code together with the sug-
gested changes. Sometimes this also triggers an understanding of the
underlying concepts and rationale for the transformation. This is
what occurred when the cond-erase-t.nil rule fired in the second
scenario and no explanation was required. A rule based on similar
concepts had just been explained and the user can generate his own
understanding.

3. The minimal explanation layer is the point where empirical obser-
vations come into play. The useris provided with a text description
of the system’s advice based on the underlying concepts in the
domain. The text description is. comprised of portions. of hypertext
associated with each domain concept and rule.

4. A hypertext-based information space is also part of the underlying
computational environment. LISP-CRITIC provides access to this in-
formation as a source of additional information for users who want
to know more or who are not satisfied with the minimalist explana-
tion of the advice. Users navigate through the hypertext space only
after the system locates them within it in an appropriate context.

The explanations in Layers 3 and 4 require information from the user
model to tailor their presentations to each individual user. The user modelling
component can tell the explanation component which concepts users already un-
derstands so the system can avoid telling them what they already know.

Layer 4 explanations back up the minimal explanations with access to
more detailed information. The system uses hypermedia along with some other

124
available techniques to overcome many of the limitations of prestored text. Some

of these techniques are inter-referential input/output (Draper 86]; command
completion (the user can type abbreviations and the system completes the com-
mand); and mixed initiative dialogue (either participant can take the initiative or
volunteer information) [Carbonell 70].

The approach used in the curmrent implementation evolved from
rule-tracing and canned text explanations methods attempted in an earlier version
of LISP-CRITIC (Frank, Lynn, Mastaglio 87]. Alternative canned explanations for
each rule were provided; each designed to accommodate a particular level of ex-
pertise. To chose the correct explanation, the system had to classify a user as a
novice, intermediate or expert programmer. No user model acquisition was ac-
tually attempted because system testing using protocol studies and observations of
users pointed out that the explanation approach was inadequate. One result was
the finding that a finer grained approach to representing individual user knowledge
is required, one that can also support updates as users’ expertise changes.

The explanation approach is comprehensive and supports all four layers.
An overview of the users’ decision-making process, from the point the system
makes a recommendation until they decide to accept or reject the suggested trans-
formation is shown in a decision flow chart in Figure 6-3. The user, when in-
formed that LISP-CRITIC recommends a change to his or her program, can get an
explanation for that advice, or bypass it, deciding right then to accept or reject the
suggestion. In the scenario, the user followed different paths through this decision
process in different episodes; except that the user does not activate the hypertext
facilities in any of the episodes. If he had used the mouse to select either cond or
if in the text of the explanation in Figure 4-8 the descriptions shown in Figure 6-1
would have been displayed in the LISP-CRITIC window.

125

Figure 6-3: User Decision-Making Process in LISP-CRITIC

Explanations use the minimal approach and access the user model to
determine what to explain. If users request more detail, the system positions them
at an appropriate place in the hypertext information space; once there users have
direct control of access to other hypertext nodes to obtain additional information.
They terminate the explanation dialog when they are satisfied that they know
enough to decide whether to accept or reject the critic’s suggestion.

When LISP-CRITIC is invoked, the user’s code is examined for ways to
simplify it. In the first scenario, the system recommended that cond could be
replaced by the if special form Figure 4-7. Before the user decided whether to

126
accept or reject LISP-CRITIC's suggestion, he asked for an explanation. The sys-

tem then determined what was required in order to understand ihis rule, and the
aspects of that knowledge that the user lacked.

The explanation component interrogated the domain model and was
provided a list of concepts underlying the cond-to-if-else rule. This list was
generated by traversing the domain model beginning at the node representing the
cond-to-if rule, and using the dependent-on links between domain model objects to
accumulate the concept set. For the cond-to-if-else rule in the first episode of the
scenario, (Figures 4-7 through 4-9) traversal of the domain generated a concept set
of 13 items: lists, symbolic-expression, evaluation, tests, variables, conditionals,
scope, predicates, lisp-atom, arguments, false/empty-list/nil, true/non-nil, and
functions.

That set was personalized for the user in the scenario, to. determine the
subset of concepts to actually be explained. As discussed in Chapter 3, there are
three levels d1, d2, and d3 at which a user can understand a given concept. The
current implementation captures users’ knowledge in terms of concepts that are
well known to the user (d1), known to the user but not well (d2), and unknown
(d0). For the concept set, the user model indicated (by their absence from the
concepts-known slot in the user model) that the user has no knowledge (level d0)
of six of them: predicates, conditionals, tests, evaluation, symbolic-expression,
and lists. 1t indicated, based on their markings in the concepts-known slot, some
knowledge (d2) of 6 others: true/non-nil, false/lempty-list/nil, arguments, lisp-
atom, scope and variable; and good knowledge (level dl) about just one,
functions. That information was provided to the explanation component in three
sublists, one each for d0, d2, and d1.

128
simple text fragments, differential explanations, and graphical-based explanations

similar to those provided in the KAESTLE system [Nieper 83; Boecker, Fischer,
Nieper 86]. Because the current text associated with each is stored using the Con-
cordia hypermedia system, graphics can be integrated easily. Concordia is a hy-
permedia development and presentation system available on the Symbolics, the
Document Examiner uses it.

The problems with current explanation systems are recognized; most ef-
forts to improve them emulate human-to-human communication and, too fre-
quently, attempt to provide a complete explanation in one-shot. Theoretical results
in rhetoric, and discourse-comprehension together with empirical observations of
human-human collaborative problem solving, indicate that trying to emulate
human-to-human human conversational techniques may not be the best approach.
This chapter has described - the: analysis. behind. a proposed approach to
explanation-giving that tries- to-consider the constraints of the computer interface
while taking advantage of capabilities and resources already available in the com-
putational environment.

The suggested approach provides four layers of explanation for the ad-
vice given by a knowledge-based system. The first two layers, although they can
help users understand, are not explanations in the strictest sense; they are detailed
descriptions of what was recommended. The 3rd and 4th layers use a minimal-
explanation approach to clarify the recommendations and expose the user to the
underlying rationale for that recommendation. Minimalist explanations need a
user model to tell the system what is necessary for the user to understand a domain
entity. The highest layer, a rich hypertext space, allows users to explore details or
examine concepts which they still do not understand. The user model is central to
this proposed framework and fundamental for the explanation approach. The next
chapter describes that user model.

127
Furthermore, within each sublist, concepts were ordered according to an

implicit hierarchy within the dependent-on links in the domain model. The ex-
planation component can ultimately use this information for reasoning about how
to generate an explanation for the user, but the current implementation, using a
simplified strategy for testing purposes only, selects the first three concepts in that
filtered list predicates, conditionals, and tests. 1deally, the user finds the explana-
tion adequate; but other concepts fundamental to understanding, or related to,
these concepts are shown as mouse-sensitive objects displayed in bold. Selecting
any of them will display either an explanation associated with that object in the
domain model, or a description from the Symbolics Document Examiner (e.g.
Figure 6-1).

The explanation system will not attempt to present explanations as
though they were generated by an intelligent agent, but rather use combinations of
straightforward, concise, prewritten sentences: What distinguishes this approach
from most systems that use canned-text is the role played by the user model in the
process of constructing an appropriate explanation.. Each part of the explanation
can be chosen using the domain model, the user model, and the explanation
strategies. The present implementation is an interim step to.determine the efficacy
of the user and domain model implementations; it is.far from complete and future
work should investigate how better to determine exactly which concepts to ex-
plain, and how to link descriptions of them together with information about the

LISP-CRITIC rule of interest in a coherent discourse structure.

6.6. Summary
A number of approaches to structuring explanations could make use of

the available domain and user model information. They include: prestoring

CHAPTER VII

USER MODELLING COMPONENT

This chapter describes the user modelling component for LISP-Critic.
That component acquires the user model and represents the knowledge of each
user in an object oriented structure; it provides access to that model, and insures it
is persistent. The component was implemented in the Common LISP Objects Sys-
tems (CLOS). Access to individual models is provided via a set of generic inter-
face functions; other system components know which functions. to call to obtain
whatever information from the user model- that they might require. The user
modelling component invokes the. appropriate methods. to actually access. a user
model’s contents; it uses the domain model structure to insure that appropriate in-
formation is provided. The acquisition subcomponent provides direct.methods
based on episodes from the user-computer dialog, and indirect methods triggered
by changes to individual user models. The primary purpose for which this model

was developed is support for explanation-giving.

7.1. Design Approach

The design objectives for the user modelling component derived from a
goal of supporting the explanation-giving framework discussed in the Chapter 6.
The specific implementation approaches selected to achieve these objectives
resulted from the analysis of other user modelling research, plus the requirements
and framework for user modelling needed to support cooperative problem solving
that were presented in Chapter 3.

130
7.1.1. Objectives

The user modelling component design had to provide support for
explanation-giving, accommodate various acquisition techniques, and be able to
represent a variety of information about the user. The model captures users’
domain knowledge and supports implicit updating. An object oriented approach
was selected for implementation in order to insure that the model is extensible, can
be adapted to accommodate other techniques (such as stereotyping), and can be
easily modified to represent new kinds of information about users (such as their
preferences). The object oriented approach allows new methods to be defined on
existing slots in the model and new slots to be added to the model class definition
if necessary.

The component supports both implicit and explicit update. In this
research the implicit update techniques were the primary focus however, the func-

tions which modify the content of the user model are general methods designed to - .

support other acquisition approaches as well.

A model that we are able to use only once, or during just a.single pro-
gramming session, is not acceptable; it needs to be retained between sessions and
reused the next time a user accesses the system. Methods that save the contents of
the model at the termination of a user-system dialog and start with that model the
next time a user accesses the system are included in the component.

The model must support changes in users’ knowledge over time. It is in
this sense that the model is dynamic; its contents change as a user’s knowledge
improves. In this regard, the emphasis in developing inference methods was on
improvements in users’ knowledge in the domain. The problem of how to modify
the model when users forget something they once knew is an important issue but

was not addressed at this point in the research. That the model is at best an ap-

131
proximation of the user implies that the modelling component must be designed to

include techniques for improving on that approximation. Whatever information is
available to enhance the model has to be used to best advantage. Specifically,
what a model represents about any specific user should get better during sub-
sequent interactions between the system and that user.

Three different approaches to representing the users of LISP-CRITIC were
considered and, in some cases, partially implemented: classification methods,
stereotyping, and an overlay of the systems domain knowledge (the LISP-CRITIC
rules). Classification categories and stereotypes are similar, but for discussion
purposes they are considered separately, as were the attempts to use them.

Initial attempts to model the user with classification methods in support
of explanation-giving [Frank, Lynn, Mastaglio 87] met with only limited success.
The problem with classification methods were two-fold. The canned-text explana-
tions directed at a particular level of expertise were found to be- unsatisfactory
during user testing. They were often too basic to satisfy the user, or too difficult,
using concepts not yet understood by a particular user. Part of the problem is how
to classify a user into one of a set of prespecified categories. The ones used
(novice, intermediate, and expert) did not appear to capture individual expertise in
a satisfactory manner. The second problem with classification methods is that
they are not fine grained enough to provide adequate fidelity in their representation
of individuals. This problem was confirmed by an informal study in which the
group of local 1ISP programmers, generally considered to be the experts, were
asked to respond to a questionnaire about their use of, preference for, and opinion
about teaching certain language constructs. The responses varied widely, indicat-
ing a significant difference in what these experts knew and preferred. When es-
tablishing the expertise categories in a domain one has to face the same problem as

determining the contents of appropriate stereotypes.

132
A schema for model acquisition using stereotypes of LISP programmers

was developed [Fischer, Mastaglio, Rieman 89]. It was based on Rich’s approach
to stereotyping [Rich 79], and showed promise as a way to leverage analysis of the
content of users programs to stereotype them, and from that stereotype infer ad-
ditional characteristics indirectly. Part of this work was a study in which human
LISP experts were provided a program and asked to assess the expertise of the
programmer. Protocols observations in this study showed that the human experts
either looked for or noticed what we called ‘‘cues’’ in the code; cues triggered
inferences about the expertise level of programmers who wrote them. This idea of
identifying cues in the context of a user’s work is something that was carried into
the acquisition methods finally implemented. The methods were developed and
partially implemented but this line of research had to deal with the problems of
what stereotypes to use, where they come from, and how to insure their validity.

Representing a user’s knowledge as an overlay of the existing rule base
was also considered. It was found to be useful for guiding critiquing (e.g., making
it more efficient by enabling or disabling rules). However, a model that only cap-
tures user knowledge in terms of the LISP-CRITIC transformations is inadequate; it
cannot provide the required support for explanation-giving. There are slots
provided in the model for representing rule level information about a user; the im-
plementation therefore does provide such an overlay of the rule base for use in
situations where it is of value.

The limitations encountered in considering these other approaches
provided a key objective for the design of the user modelling component, to imple-
ment a model that represents user knowledge of the domain at a level that is of fine
enough granularity to support the explanation of domain entities. The basis for
that representation tummed out to be the same deep, domain model, as required to

accomplish explanation-giving.

133
7.1.2. Implementation Approaches

An object-oriented representation allows the model representing each in-
dividual to be idiosyncratic but for all the individual models to confirm to a com-
mon format. This requirement, coupled with the need to support easy access and
the changing of separate instances of the entire class of models, led to selecting
that object oriented representation. The structure of the individual models is
defined as a class, and communicating with the instances of that class is facilitated
through methods defined on it. The object oriented representation can also support
potentials enhancements to the overall user modelling component. The actual lan-
guage chosen for the object-oriented representation is the Common LISP Objects
Systems (CLOS).

The need to achieve a representation of users’ domain knowledge in a
more abstract or conceptual form than the LISP-CRITIC rules resulted in basing the
user model on the conceptual domain model described in Chapter 5. The domain
model did not pre-exist, rather the motivation, in part, for developing it was to
provide support for representing users’ domain knowledge. The research process
concurrently developed both the user modelling approach and the domain model.

To support dynamic update without explicitly querying the user, the im-
plementation makes use of information available in the context of the human-
computer dialog. Dialog, in the sense used here, refers to any action that occurs
between the system and the user. The idea that the model should be implicitly
enhanced based on the dialog led to an analysis of the content of these interactions.
This work views the dialog as consistirz of a series of episodes. From a
hypothetical scenario of a user interacting with a completed system, the following
kinds of episodes in LISP-CRITIC were identified:

134

¢ user requests and receives an explanation of critic suggestion

e user decides to accept (or reject) critic suggestion

e user accesses additional on-line documentation to help clarify an ex-

planation
e user informs LISP-CRITIC to disable (enable) a rule
e user adds a personal comment to an argumentation database about the
applicability or usefulness of a transformation in the rule base
The implementation uses what takes place in those episodes as a primary source
for triggering system inferences about the users’ knowledge. One basis for this
approach is the fact that users apply their knowledge in constructing their ‘‘side’’
of the dialog, therefore the actions they take. provide evidence about what they
know. Just as significant is that when users act as mere receivers of information
there are cues here as to how the user’s knowledge should be changing. Specifi-
cally, they should now have command of the- domain concepi: explained by the
system. In this second case, users ‘‘leamn’’ from what the system tells them -— this
is the basis for the some of {fjgect inference methods that will be described later.
The above objectives and approach guided the manner in which the user

model is represented, acquired, and accessed. An architectural overview of the
user model component in Figure 7-1 shows the separate subcomponents and func-
tions of LISP-CRITIC’s user modelling component; it corresponds to the general
architecture developed and shown in Figure 3-2 and is an internal view of the user-
model as one of knowledge-based component in the overall system diagram that
was shown in Figures 4-4 and 4-5. The representation subcomponent will be dis-

cussed next.

135

REPRESENTATION
Components

[f)omaitj CriﬁcJ \
Model Rules \
e J \

\)
The user modelling component is one of the knowledge-based components
of LISP-CRITIC. Data are indicated with an oval, collections of processes
with rectangles, data flow with directed arrows. The three subcomponents
are: a representation in object-oriented form (CLOS), acquisition
methods, and access methods. Acquisition methods modify the represen-
tation — information flows from them to the representation. Access
methods extracts information from the model — information flows from
the representation.

Figure 7-1: User Model Component for LISP-CRITIC

7.2. User Model Representation

The representation is designed to capture a variety of information about
the user. An example instance of the class user model is shown in Appendix B; it
is the state of the user model at the conclusion of the three dialog episodes.in the
Chapter 4 scenario. The interesting part of the model (with respect to this project)
are those slots that represent the user’s expertise in the domain of LISP:
rules-known, functions-known, and concepts-known slots. Conceptually these
record the coloring of the domain model graph for the user. An approach that was
considered for the representation was an overlay of the domain model; the overlay
representing those domain entities a user knows. But the model needs to also cap-

ture the levels of the users’ knowledge according to the classification framework

136
described in Chapter 3, the approach implemented is to model the user as a color-

ing of the graph representation of the domain. To demonstrate this and show how
that coloring changes over time we will use the previous interaction scenario.
According to the conceptual framework, a user’s knowledge about a
given concept can be categorized into one of three levels: d1, d2, and d3. That
framework was shown in Figure 3-1; it provides a useful scheme for approximat-
ing the expertise levels of users. For this research, we adapted it to represent user
knowledge of a programming ianguage. For LISP the regions in the graph are in-

terpreted as follows:

D,: The subset of LISP functions and underlying language concepts which users
knows and incorporate into their programs regularly, they understand these quite
well,

D,: The subset of concepts which users know and will use, but only occasionally.
They does not know the details nor perhaps even the specific syntax of functions in
this region but are aware of their existence and have a general understanding of their
purpose. Users might refer to a LISP text, on-line documentation (e.g. Symbolics
Document Examiner), or consuit a colleague for help in coding functions in this
class. Concepts in this class are less well understood by users than those in D; but
still can be considered a part of their active knowledge.

D;: The conceptual model of LISP held by a user. The concepts and functions that
they think exist in the language; this region also includes misconceptions.

D,: The domain knowiedge of LISP.

The inference methods that were developed are only able to recognize
domain knowledge in d1 and d2, so a simplified scheme was used. It conceptually
marks entities in the domain as: well known to the user (d1), known to the user but
not well (d2), and unknown (d0). Entities at level dO are not explicitly listed in the
user model but the component infers they are unknown to a user by their absence
from the appropriate slot. There is another condition that could be the reason that
a domain entity is at d0; it may be that the system has not yet encountered any-
thing to trigger an inference about the level of knowledge — it just does not know
how well the user knows the entity, if at all. Discriminating between these two

situations could be accommodated with methods that test or query the user. There

137
are situation in which this distinction would probably be beneficial, tutoring for

example, but for explanation generation, the processing required to distinguish be-
tween them does not provide enough additional information to make it worth the

effort, and the present implementation treats both situations identically.

Summary data for user model for SCENARIO-USER
Following concepts in D1
FUNCTIONS

Following concepts in D2
INTERNAL-REPRESENTATION
SIDE-EFFECTS

CONS-CELL

VARIABLES

SCOPE

LISP-ATOM

ARGUMENTS
FALSE/EMPTY-LIST/NIL
TRUE/NON-NIL

Following functions in D1
Following functions in D2
Following lcr-rules in D1
Following Icr-rules in D2

Rules-fired by name and number of firings
NIL

This is the state of the user model at the beginning of the scenario.. The
concepts came from user’s self-ratings on the initial questionnaire.

Figure 7-2: Initial User Model
Recall that the user model is conceptually a coloring of the graphical
domain model, that the graph has concept, function, and LISP-CRITIC rzle layers,
and that determining what to explain to a user involves extracting information

from that user model, the appropriate concepts required to understand a transfor-

11.\.\\\\\

:¢-£ 343
mdoouoy) jo Suuojo) €-L !
1opON = - o frat S Josn Ay} juasaidor o3 pIoiod ydesn
Fpajmou TeUIUL S,
@ . UMOYS OSTe ‘9rels 2
= g-L oISt Ul umoy
eyond
fesovy
sBumns
sis
sedh) fedoid
ered
el
uoneIPoSsY
vopsnoey
..1& " 53 nd 7
penea enponaseq
(L]
wopoy
m suopound
..l. ppequ3
usniey
enfeA- NN

139
mation. Figure 7-3 shows the initial coloring of the concept layer for the scenario-

user. Concepts known to the user model are shaded appropriately, depending on
whether they are in d1 or d2. Unshaded concepts are at level d0. An equivalent
representation that shows the domain knowledge slots for the user model is tex-
tually displayed in Figure 7-2.

In the scenario the system suggested a transformation based on the
cond-to-if-else rule, the situation shown in Figure 4-7. A traversal of the domain
model graph generated the 13 items for explanation discussed in Chapter 6. It is
now up to the user model to filter that set to provide assistance to the explanation
component about what should be explained and how. Most significant is how well
(at what level) the user knows each concept. That information is provided to the
explanation component in three sublists, one for each level (d0, d1, and d2), which
are then used to determine the explanation strategy and presentation approach.

During the dialog episode, the user was satisfied with the explanation
and accepted this suggestion. The content of this dialog episode was used to up-
date the user model. The cues from this episode which are important to the user
modelling component are: the receipt of explanations about certain concepts (e.g.
conditionals, predicates and tests) and the user deciding to accept the cond-to-if
transformation. Cues triggered direct inferences that changed the user model and
these changes in tum triggered indirect inferences that will be explained in the
next section. A portion of the updated model is shown textually in Figure 7-4, and
its associated graph coloring for the concepts layer in Figure 7-5. The system’s
design incorporates techniques that recognize that a model has been constructed
for this user and makes use of that version of in subsequent dialogs between
LISP-CRITIC and this user.

The model was saved between sessions and reused by LISP-CRITIC when

140

Summary data for user model for SCENARIO-USER

Following concepts in D1 Following functions in D1
FUNCTIONS

Following functions in D2
Following concepts in D2 IF
SYMBOLIC-EXPRESSION COND
LISTS
EVALUATION Following lcr-rules in D1
TESTS
CONDITIONALS Following lcr-rules in D2
PREDICATES USER::COND-TO-IF-ELSE
INTERNAL-REPRESENTATION
SIDE-EFFECTS Rules-fired by name and times fired
CONS-CELL
VARIABLES USER::COND-TO-IF-ELSE
SCOPE TIMES-FIRED 1
LISP-ATOM TIMES-ACCEPTED 1
ARGUMENTS : TIMES-REJECTED 0
FALSE/EMPTY-LIST/NIL
TRUE/NON-NIL

The contents user of the model after the first dialog episodes. Changes to
the content, when compared to Figure 7-2, are a result of user actions
during the episode triggering inference methods that update the model.

Figure 7-4: User Model Contents after First Dialog Episode

the user next requested critiquing. In the scenario, that next episodes occurred
when the user requested LISP-CRITIC to look over the code for function rest, as
shown in (Figure 4-10). The first transformation recommended on this code is
based on a rule called de-morgan, the user requested that this rule be explained.
The user model again provided the information to guide the process of developing
and presenting that explanation.

When the user accepted the suggestion, his user model was again up-
dated. The system suggested a second transformation for this function, one based

on the cond-erase-pred.t rule; it was explained in Figure 4-11 based once again on

opostdyg Sofer(q 1SIT Jo1ye [9PoN 1981 Y03 ydern) rerudoouo)) jo Suuojo) :g-£ 3undiy
-1 om31] ur umoys ospe ‘aposida 1s11y 10938 93pojmouy 1doouod §,19sn 103 Jurojoo ydein

Uogwey Uoiey olono
2@ o
souins
2 00&».—.

U U

uo 8

141

neierd

Buiddeyy @ wrion
bujpuig ONEA-{liNN
slejeurnsied [epuenbeg
feuondo

142
information from the user model about how well the user knows the underlying

concepts for this rule. It happens in this case that the concepts incorporated into
the explanation belong in the user’s d2 level because none of the concept set un-
derlying that rule were unknown (at level d0). A third suggestion, based on the
cond-erase-t.nil rule triggered and the user accepted it, but without an explanation
because the prerequisite concepts are similar to those already explained for the
previous rule. The user model was dynamically updated throughout the dialog.
Each time information was shown or a decision made, inference methods trig-
gered. The domain knowledge portion of the user model at the conclusion of the
scenario is shown in Figure 7-6; its associated graph coloring for the concept layer
in Figure 7-7. The final intemal representation for the instance of the class user
model that represents scenario-user is shown in Appendix B.

Each individual’s model is an instance of the class user model. A user’s
knowledge about each category of domain object is captured in slots in that model.
For example one slot contains the LISP functions a user knows as well as their
level: Other slots contain personal information and data about the user’s back-
ground. The information and data slots could be filled during initial start-up of
LISP-CRITIC for a particular user (i.e., the first time it is ever invoked by them) by
several explicit acquisition techniques. Specific the methods to do this have not yet
been implemented. Instead this research concentrated on developing the implicit
inference methods that modify the content of those domain knowledge slots during

the course of using of the system.

7.3. User Model Acquisition
The user modelling component contains a collection of methods that in-

fer which domain concepts belong in the user’s model, and the level of that

143

Summary data for user model for SCENARIO-USER

Following concepts in D1
SYMBOLIC-EXPRESSION
EVALUATION

TESTS
INTERNAL-REPRESENTATION
SIDE-EFFECTS
VARIABLES

SCOPE

LISP-ATOM
ARGUMENTS
FALSE/EMPTY-LIST/NIL
TRUE/NON-NIL
FUNCTIONS

Following concepts in D2
LOGICAL-FUNCTIONS
LISTS

CONDITIONALS
PREDICATES
CONS-CELL

Following functions in D1

Following functions in D2
NULL

NOT

OR

AND

IF

COND

The state of the user model after the second (final) dialog episode.

Following lcr-rules in D1

Following Icr-rules in D2
USER::COND-ERASE-T.NIL
USER::COND-ERASE-PRED.T
USER::DE-MORGAN
USER::COND-TO-IF-ELSE

Rules-fired by name and times fired

USER::COND-ERASE-T.NIL
TIMES-FIRED 1
TIMES-ACCEPTED 1
TIMES-REJECTED 0

USER::COND-ERASE-PRED.T
TIMES-FIRED 1
TIMES-ACCEPTED 1
TIMES-REJECTED 0

USER::.DE-MORGAN
TIMES-FIRED 1
TIMES-ACCEPTED 1
TIMES-REJECTED 0

USER::COND-TO-IF-ELSE
TIMES-FIRED 1
TIMES-ACCEPTED 1
TIMES-REJECTED 0

Figure 7-6: User Model Contents after Second Dialog Episode

144

aposidg Sofei puodag J31ye [SPOA 195(] 10§ ydein rerydaouo)) Jo JuLojo) :L-L aandiy
-9~/ I31,] UT UMOYS OSTE ‘OLIeUS0S Y} JO PUS Y} I8 SFpa[Mmoury §,1951 3o JULIO[0d ydein

ojeue|eoU0D)
|ao

»0
Buiddepy
el

145
knowledge. The information that triggers these methods is passed to the user

model by other system components using interface functions; in tum, indirect
methods are internally triggered by those changes.

This research investigated how a user model for a cooperative problem
solving system could be enhanced incrementally over multiple dialog episodes
using implicit methods. To review the point made in Table 3-1, one finding was
that the system can use two different classes of update methods:

¢ Direct methods that use a specific dialog item to trigger singular
changes in the user model information. They make changes to the
user model as a direct result of information the user receives from the
system, or of an action the user takes.

¢ Indirect methods that are triggered whenever a change to the user
model contents occurs, they cause further updates to the model, one
might view these as internal demons.

When a dialog episode triggers direct methods that change the user
model, these changes in turn trigger indirect methods that also change the user
model. Indirect methods are implemented as after-methods on slots in the user
model; this insures that they get run whenever a slot change occurs. An example.
of this chain of inferences happens in the first episode in the scenario. The user
received an explanation of the transformation that included a description of the
concept of conditionals. That concept is marked in the user model at level d2
based on a direct inference method — when the system explains a domain entity it
assumes the user now knows that entity. An indirect inference method is triggered
because of the change to the concepts-known slot. That indirect method inter-
rogates the domain model and determines that a prerequisite piece of knowledge

for understanding the concept conditional is symbolic-expression. This causes a

146
change to the model that adds symbolic expression to concepts-known slot at the
d2 level.

7.3.1. Direct Methods

The direct methods are an adaptation of related work on implicit user
model acquisition in dialog advisory systems that was discussed in Chapter 3. The
implicit acquisition rules developed in [Kass 88] are based on using natural lan-
guage dialogs. Here dialog is used in a more general way. As previously
described, it means any of the different interaction episodes that occur between a
user and the system. Using this view it was possible to develop our own set of
direct implicit methods by modifying the implicature rules, these methods fall into
four major categories:

e techniques based on aser decisions,

e methods triggered by information provided to the user,

o those triggered by optional actions on the part of the user, and:

e ones activated when users access the hypertext information space.
These categories of information are. available to the system through tracking its
dialogs with the user. Appendix C shows the implementation code and associated
descriptions for each specific type of direct inference method. Here we will
describe, in general terms, each category and the rationale behind them.

Dialog episodes, between the user and LISP-CRITIC, terminate with a
user decision (unless the session is aborted) to accept or reject the critic’s advice.
For either decision users requires the same type of knowledge (or level of under-
standing.) In both cases the system makes the same inference. A decision to ac-
cept a suggestion made by LISP-CRITIC causes the system to mark the rule behind

the transformation as known to the user at level d2. A user’s decision to reject a

147
rule is handled similarly. This igiiores the situation where users reject a transfor-

mation because they do want to bother with it and just go on. The system im-
plementation does provide a method to abort the interaction and it is assumed that
users are sophisticated enough to use that command appropriately. If the system
served a group of users less computer-knowledgeable than programmers, that as-
sumption could be called into question.

In the dialog the system presents information to the user in the form of
explanations, an event that triggers a direct inference that users know the ex-
plained entity. When the system explains a LISP concept, the level for that concept
in the user model is marked as d2. In the first scenario explanation, this is how the
concept conditionals came. to be marked d2. If a concept just explained was al-
ready marked at level d2 then its level is improved to d1. In the second explana-
tion episode the concepts internal-representation and side-effects migrated to the
dl level in this manner. Similar direct changes occur when functions or rules get
explained.

When users encounter explanations that are unsatisfactory they can ac-
cess a hypertext information space as a fallback technique. Their selection of a
mouse sensitive word is also information that can be used to update the user
model. The system can capture the selections and relate them to domain model
entities where possible. This capability was implemented but has not yet been
tested to determine how often the mouse sensitive objects selected match the en-
tities (functions or concepts® in our domain model. When a match is found the
system marks the domain entity at level d2 in the user model unless it is already at
level d2, in which case its level is improved to d1. The assumption on which this
method is based is an optimistic view that users actually read and understand in-

formation provided by the document examiner; an assumption that could be sub-

148
jected to further testing. When a user gets an explanation of the selected domain

entity, there is an assumption that they are therefore now familiar with that entity.
Their user model should now show that information. The domain model is not
necessarily complete and there are may be inconsistencies in the terms used.
However, because both the domain model and the document examiner generally
use accepted terms for LISP concepts from [Steele 84], the correlation should be
high enough to make this a useful approach.

The system is being extended to allow for several optional actions —
actions that are not required of users, but allow the system’s behavior or the
documentation base to be modified.

e Users can change the action taken when a rule fires; they can tell sys-
tem to ignore it (always reject this transformation) or automatically to
make the suggested change to the LISP code (always accept this trans-
formation.) The claim here is that users must understand a rule before
they are able to modify what happens when that rule fires. It is
analogous to the specific decision to accept or reject a given suggested
transformation; the user decides to accept or reject it in all cases.
When users change a rule status, the level of that rule is caused to be
set to d2 in their user model.

¢ A recent extension to the system allows users to associate personal
comments with any rule in the documentation space. An example
might be a programmer who does not like the cond-to-if rule because
‘it creates code that is less general.”” This argumentation can be at-
tached to the rule and associated with that programmer. These com-
ments then become available to anyone else who uses the system, who

can also add their own comments, perhaps disagreeing with the pre-

149
vious author, because ‘‘the argument misses the point that the rule is

intended to made the code easier for other programmers (ones in-
volved in maintaining it in the future) to understand.”” When users
involve themselves in generating such argumentation, the system
should infer that they understand the rule quite well and consequently
mark it at level d1 in the user model.

Direct methods change the user model using explicit information ob-
served in the dialog. These methods alone are inadequate for developing a useful
model that becomes sufficiently complete in a reasonable amount of time. Ad-
ditional methods that leverage this information, in the spirit of stereotypes, were
needed. The structure of the domain model provides the. basis for such. an ad-
ditional class of methods that do indirect implicit updating.

7.3.2. Indirect Methods

The idea for indirect methods' developed while implementing the con--
ceptual domain model when it was observed that the links in the- model capturing
prerequisite knowledge for the domain entities could provide a source for implicit
acquisition. These prerequisite were established for use in explanation, but the
idea for using them for implicit acquisition resulted from noting that they may tell
us something about what the individual knows about the domain — in the spirit of
the notion, used in the UMFE system, that user knowledge ‘‘propagates’’ through a
set of concepts. The prerequisite relationships indicate that if users knows a given
concept, they probably know its dependent-on concepts. Based on this obser-
vation, there are methods that trigger whenever a change occurs in the knowledge
level of an entity in a user model. Therefore the indirect methods leverage the

domain model structure, allowing the system to enrich its model of a user without

150
waiting for explicit evidence about each domain entity. The indirect implicit

methods belong to a class of model building techniques that includes stereotypes
and the short cut methods methods used in human-to-human cooperative problem
solving.

Models of communications partners are based on more than the direct

evidence provided directly from dialog. Computers, as Suchman pointed out
[Suchman 87], do not have access to the rich set of information available 10
another human partner, therefore this research looked into ways to accomplish a
similar enrichment of the model by using available resources. One such resource
is the linkages between entities represented in the structure of the domain model,
these links form the basis for the indirect update techniques in LISP-CRITIC. A
change occurring in the representation for the user’s domain knowledge can be
used to trigger further changes to the domain model based on the prerequisite
knowledge for the entity just changed. The indirect methods infer how well those
prerequisites domain entities are known and put that information into the ap-
propriate slot in the user model. Indirect methods exist for each class of domain
entity: LISP-CRITIC rules, LISP functions and LISP concepts. Their implemen-
tation is shown in Appendix C.

There is a set of functions associated with each LISP-CRITIC rule, these
functions are each linked to that rule via the functions-in-rule relationship in the
domain model; they are the functions used in either the left hand side or right hand
side of the rule. Often, rules are also based upon certain LISP concepts in the
domain model. When the level for a rule is changed in the user model, indirect
methods modify what the user model has to say about how well the user knows
those associated functions and concepts. If the rule has been set to level d2 our
indirect methods infer that the functions in that rule are also known at level d2, and

151
nothing is inferred about the concepts behind the rule. When the level of a rule is

set to d1, both the functions in that rule and the concepts on which it depends are
set to level d2 in the user model. A case could be made, in retrospect, that a dif-
ferent level might be inferred for the functions contained in the left hand side of a
rule; after all, programmers actually use these in their code, or perhaps that the
functions in the right hand side are not yet a part of a user’s LISP knowledge and
should not be added to their model.

For a LISP-CRITIC rule, the domain model provides information about
the functions in that rule and further traversal of the model beginning with those
functions provides a list of prerequisite concepts. When a direct method modifies
the rules-known slot in a model, an indirect inference is triggered by an after-
method on that slot. For example, for the cond-to-if rule in the first explanation
dialog in the scenario, first that rule is added to the appropriate user model slot,
then the indirect methods also add the cond and if functions to the user model and,
in turn, the concepts functions and arguments.

The prerequisite to understanding a LISP function are its dependent-on
domain concepts. When the level at which a function is known is set to d2, its
dependent-on concepts are also set to level d2. If the level of a function is set to
d1, those concepts are also set to d1.

Concepts themselves are linked to one another via the dependent-on
relationship. When the level of a concept is changed to d1 in a user model, its
prerequisites in that user model are also set to d1. In the situation where the level
of a concept is changed to d2 its dependent-on concepts are marked at d1 when
they were previously marked d2 in the model. If those dependent-on concepts
were not already in the model (conceptually marked d0) then they are added to it
with a d2 marking.

152
The domain model implementation also contains relared links that iden-

tify functions, concepts, or rules that are similar to another function, concept, or
rule. This class of links could be used as the basis for a class of weak inference
methnrds, such as predicting the ease with which a new entity could be introduced
to the user. In the current implementation, the similarity relationships were not
exploited in the present user model acquisition methods. This possibility is men-
tioned here to show how the theoretical approach of using the domain model struc-
ture to infer useful information extends beyond the techniques that were actually
specified and implemented.

The implemented indirect methods were designed conservatively; they
are neither complete nor perfect. Their shortcomings, and indications about how
to improve them came out during an evaluation that is discussed discussed in
Chapter 8. There are two results from this research of general interest and utility:

e It is possible to define a class of implicit user model acquisition
approaches that are indirect. These are leverage techniques that use
information about users that is not directly observed, but is derived
from other knowledge (knowledge of a domain model, stereotypes, or
etc) to indirectly enrich the models of those users.

¢ We can use the deep conceptual domain model that is needed for
proper explanation as a source for a set of such indirect implicit user
model acquisition methods.

The methodology followed provides an approach that can be used for developing
user model acquisition techniques to serve other situations.

In summary, to show how the direct and indirect acquisition techniques
work together, let us review a portion of the scenario. The concept fests is marked

at the d2 level in the .-er model shown in Figure 7-5. This resulted from a direct

153
inference based on a method that claims when a domain entity is explained to a

user, that user is now aware of its existence and has a fundamental understanding
of it — the user knows of the concept but is not proficient in applying it in every
circumstance. The domain model also tells us that, for the concept fests, a prereq-
uisite (according to the dependent-on links in the domain model) is the concept
symbolic-expression. Therefore, an indirect inference places symbolic-expression
at level d2 for this user. Similar direct and indirect user model acquisition
methods fire for the cond-to-if-else rule, its underlying functions, and its
dependent-on concepts. More domain entities in the user model in Figures 7-4 and
7-5 get marked at the d2 or d1 level as the result of indirect implicit methods than
as a result of direct methods.

7.4. Access to the User Model

In developing the architecture for the user modelling component one ob-
jective was to insure that other system components can easily access.the model..
Another consideration was to have a model that supports modification to incor-
porate additional information.. Significant theoretical issues or results were neither
addressed or discovered in this aspect of the work, but played a role in deciding to
use an object-oriented approach. Access methods support the current explanation
component framework while providing access to information likely to be of value.
for other purposes.

The interface functions support the explanation strategies described in
Chapter 6. The user model can be gueried to determine which of a set of domain
objects a user knows or does not know. The interface functions are shown in Ap-
pendix D; some examples are ones that determine how well a user knows a domain

entity (i.e., at what level), and whether a domain object was previously explained.

154
An attempt was made to conjecture the additional information a user

model might be asked to provide, and include in the framework functions that
might be needed in other situations. Slots in the model record all rules-fired
during previous dialog episodes and the number of times a user has invoked the
critic. Other such information includes the user’s goals and previous programming
language experience. The goal can be acquired by explicit query of users during
their initial session with LISP-CRITIC; currently it is defaulted to ‘‘simplifying’’
code to make the program easier for others to read and maintain. Previous pro-
gramming experience in other languages can also be obtained through such an in-
itial information-gathering session or interactive questionnaire.

The system allows the user to modify the manner in which the system
presents information and the default action taken when a rule fires. It supports
end-user-modifiability. The user model contains slots that record such user
preferences and make them available to other system components.

A number of access requirements are internal to the user modelling com-
ponent itself, the instance-slots can only be directly updated by the modelling
component. The component receives information from other components about
user actions or explanations, and determines how to use that information. It
decides what additions or modifications to make to the user model and calls the
internal methods to make them. The user modelling component is notified when a
session terminates normally (is not aborted) and a set of cleanup actions invoked.
These functions save the user model’s current contents in a file so that information
is not lost when the user logs out or the system is rebooted, and can be used during
subsequent log-ins when LISP-CRITIC gets invoked.

When LISP-CRITIC is called, the system determines whether the user has

a model already loaded into the current environment; does not, but the system

155
saved one during a previous session; or have not previously used LISP-CRITIC. In

the first case, the system does nothing; in the second case, it loads the most recent
version of the user model; and in the third case it must initialize a model for this
programmer. It is in the last situation, when the user model is initialized, that the
system could use explicit query methods to gather start-up and background infor-
mation about the user. No explicit methods or start-up user questionnaire were
implemented in this research; such an implementation would not add to the
theoretical ideas developed here.

7.5. Summary

Specification and implementation of the user model component was a
major portion of this research effort. The design objectives were established with
a goal in mind of generating a framework ultimately able to support explanation in
any cooperative problem solving system. Based on these objectives, specific im-
plementation decisions were made for the user modelling component architecture
for LISP-CRITIC. That component uses an object-oriented representation scheme
for the user model, a set of access methods implemented as generic interface func-
tions that can be called by other components to interrogate the user model, and a
set of implicit acquisition methods. The latter are separated into direct methods
that use specific information to trigger an inference about the user’s domain
knowledge and indirect methods that percolate changes through the user model
based on relationships between domain entities captured in the domain model
graph structure.

The outcome of this theoretical development and implementation is a
framework of user model acquisition techniques. That framework can be used to
analyze and design user modeiling components. The update methods implemented
here were the subject of an evaluation that will discussed next.

CHAPTER VIII

EVALUATION OF THE USER MODEL

8.1. Introduction

The user model developed in this research project was evaluated in two
ways. Programs written by students learning LISP were processed using
LISP-CRITIC, and the individual user models of each programmer saved. The
models were compared to one another, attending particularly to the changes that
took place in them over time. Comparisons of the contents of the models at dif-
ferent times permitted an evaluation of the behavior of the user modelling system,
and indicated potential system improvements. The models were also compared to
questionnaires that users completed prior to each of the three programming assign-
ments. The data collection process is first described, then the results of analyzing
those data; finally I discuss what these results imply regarding modifications and
enhancements to the system.

This particular evaluation was not a usability study; it did not attempt to
assess either the overall effectiveness of LISP-CRITIC nor the ability of program-
mers to use it effectively. These types of studies, as discussed briefly in Chapter 2,
were done for previous systems versions and helped determine the capabilities we
want to provide in the current system under development. In this work the em-
phasis was on developing an approach to user modelling; therefore; the evaluation
focused on the effectiveness of the user modelling component. To insure consis-

tent and useful test results, it was necessary to control the test scenario conditions

157
to which the the user model acquisition subcomponent was subjected. The current

version of LISP-CRITIC does not have a fully operational explanation component
based on the framework described in Chapter 6; because the presentation strategies
have not been fully defined or implemented, a total system test was precluded.
Informal studies in which other researcher were asked to ‘‘test out’’ the system
were conducted, and the results integrated into the interface design during
development. That user feedback guided decisions about menu options and
names, the type of explanation, and what capabilities should be provided for users
who want to modify the system.

If the user modelling acquisition methods work properly then the con-
tents of the user models should both change over time to reflect first, improved
representation of a user, and second changes in the students’ knowledge itself be-
cause they were engaged in a leaming process. Controlling: for or separating-out
these two phenomena was not possible under the scenario in which this evaluation
was conducted. However, over time, the user models when compared to earlier
ones should reflect a richer representation of the student’s knowledge state..
Secondly, in spite of the limitations of a self-assessment methodology, there
should be some correlation between the model contents and the actual state of stu-
dents’ knowledge.

8.2. Data Collection

LISP programs written by undergraduate computer science students were
collected throughout the Spring 1989 Semester. These students were enrolled in
CS3202, Introduction to Artificial Intelligence, a survey of artificial intelligence
techniques which provides an introduction to programming in LISP. Ten students

volunteered to participate in the study. We collected the programs which were

158
submitted to fulfill three class assignments. Classroom lectures on LISP preceded

the assignments; the lectures introduced LISP syntax and functional programming
techniques.

The three assignments were spread over the course of the semester with
approximately three weeks between due dates. The total code for all three assign-
ments averaged about 250 lines per student, including comments. The subjects
also completed questionnaires, an example of which is shown in Appendix E. The
questionnaires accumulated personal and experiential background as related to
programming and asked the students to assess their own knowledge of LISP con-
cepts and functions. Three questionnaires were administered, one before each of
the programming assignments. The questionnaires asked the student to rate their
knowledge of 18 concepts from the LISP domain model (see Chapter 5) and 30
LISP functions. The rating categories were designed to approximate verbally the
levels of user knowledge that were discussed in Chapter 3. The descriptive rating
categories used on the questionnaire were:

1. the student could define the concept or write an expression using the
function (d1),
2. for a concept, this rating means they were familiar with, but could
not precisely define it; and for functions that they knew of its exist-
ence but would have a problem using correct syntax (d2), and
3. they were not aware of the concept or function (d0).
You might notice that it was possible, on the questionnaire, for students to also
classify functions into a category indicating that they had heard of the function but
were not entirely sure of its purpose and effects. Functions in this category fall
into the student’s d3, these data were not used in the evaluation because the user

model has no techniques for classifying knowledge of domain entities at that level.

159
LISP-CRITIC was run on each student’s programs in two ‘‘test

scenarios’’, one using an ‘‘accept’’ condition and the other using an ‘‘explain’’
condition. Under the ‘‘accept’’ condition, the simulated response to each
LISP-CRITIC recommendation was to accept it without requesting an explanation.
In the “‘explain’’ condition, the scenario called for the user to request an explana-
tion the first time a particular LISP-CRITIC rule fired; in this scenario all suggested
changes were also accepted. Scenario conditions were established to control the
conditions so as to limit the types of user actions to which the user model acquisi-
tion subcomponent was exposed. For example, access of the hyptertext documen-
tation space was not called for in any test scenarios.

Programs from four of the students were run through LISP-CRITIC under
each test scenario conditions. These four were selected because they completed all
questionnaires and provided completed working programs for all three assign-
ments. Six user models for each student were captured; a set was saved after each
one of their three programs had been run through a scenario. In the test conditions,
the initial (or startup) user models were empty. The user model accumulated
during an episode under one of the scenario conditions was retained and used for
the succeeding episode under that same condition. For example, the user model
the system developed for userl in programming assignment one under the accept
condition was the model with which the system began the test scenario dialog for

userl about programming assignment two under the accept condition.

8.3. Analysis

The contents of the user models were analyzed to determine the total
number of domain objects represented at knowledge levels d1 and d2 after each
assignment. Recall that any domain entity not explicitly represented in the user

160
model is, by default, considered by the system to belong in d0. The results are

summarized in graphical form in Figures 8-1, 8-2, and 8-3.

The first two sets of graphs (Figures 8-1, 8-2) show how the number of
objects in the user model increase over time (froin assignment 1 to 3). Userl un-
der the accept condition scenario, after completing the first assignment, knew
seven LISP furctions, according to his user model; after completing assignment
two, eight functions; and after assignment three, ten functions. Under the accept
condition, domain objects never get ranked higher than level d2 because collec-
tively the acquisition method will only allow a2 domain model object to move to
level dl once it has already been ranked d2 and either is explained explicitly
(which of course never happened under this condition) or migrates to d1 because it
is linked via the dependent-on relations to another domain entity that moves to dl.
Since no explanations were included in this test scenario no entities ever got
marked dl to begin this chaimr of inferences: It is therefore impossible for any
domain entity to indirectly migrate to the d1 level. A similar circumstance exists
for LISP functions even in the explain scenario, but here it is not an attribute of the
control conditions, but rather indicates a possible shortcoming in the acquisition
methods that will be discussed later.

Figure 8-3 shows cumulative results for all three types of objects for
these four students over the three assignments. There is only one curve for the
accept condition, the total for the number of entities ranked d2, for the reason dis-
cussed above. The shape of the curves in this graph are probably what would be
expected from programmers leaming a new language. They initially leamn a few
functions and concepts to get them familiar with the language and able to write
some code, and after some experience they begin to acquire new knowledge at a

faster rate. This is the type of leaming curve one would expect for students leam-

LISP Objects In User Model

LISP Concepts In User Model

161
User 1- "accept” User 1 - "explain”
30 =] - 20
—&— oconcepts-d2 §
J = functions-d2 5
7 / §
8
] a 109
7]
3
101 =8~ concepts-di
—— concepts-d2
—#— functions-d2
W —— ruleedi
—8— les-d2
0 T T T o+ : g : v T
Assign 1 Assign 2 Assign 3 Assign 1 Assign 2 Assign 3
User 2 - "accept” User 2 - "explain”
25 1 30
| B
: H
- @ concepts-d2 =]
20 —— fncione-d2 s 2°T n-——c//m
8 ies-d2 ~§
L g 9 ._/
15 % 10 4
) 3
] - j
1 —— concepts-dl R _ o
10 A ¢ oconcepts-2 ¢ 2 -
4 —8— functions-2
= rules-d!
) —— rules-d2
5 1§ v R M '10 4‘ X v T M T
Assign 1 Assign 2 Assign 3 Assign 1 Assign 2 Assign 3

Figure 8-1: User Model Test Results

These graphs show changes in the number of domain entities recorded in
the user models of two students under the two different test conditions.

162

User 3 - "accept” User 3 - "explain”

S

I

++ {+ # LISP Objects in User Model
il

v T T v T
Assign 1 Assign 2 Assign 3 Assign 1 Assign 2 Assign 3

User 4 - “ampt" User 4 - "explall'l"

n
o

\ Kg
11t
! "

|
|

0+

LB | § ¥
Assign 1 Assign 2 Assign 3

Figure 8-2: User Model Test Results

Graphs similar to the ones in Figure 8-1 showing changes in the user
models for two more students.

163

Summary Data for All Users - Both Conditions

180
==d== accept -total in d2
neengeee gxplain-total in d1
160 [|*"~®="' explain-total in d2
L |=—o=explain-total
[
140 |
3 |
°
Q
=
" L
o 120 5
(72}
>
=
g L R
(4
.2 100 :' ""0
S
a [o
-l 80 - 'o"
* r o
3 .----I.-""----..
[/
60 |-
40 i 1 L §
assign. 1 assign. 2 assign. 3

Figure 8-3: Summary of Test Results

ing LISP for the first time. It rises only slightly between assignments 1 and 2, then
more sharply between the second and third programming assignments. The curve
for objects being ranked at level d1 rises less sharply overall because students do

164
not gain complete understanding of that many concepts and functions over the

course of just three programming assignments, but they are likely to become
quickly familiar (level d2) with a greater number.

Recall that the semantics of domain entity ranked at level d2 is that users
know about such entities, but would need assistance in applying them in their
work. This situation matches both the course objective, to introduce LISP and
functional programming to the students; and reasonable expectations, students do
not become experts after three programming assignments but do gain a more
general understanding about some number of the central concepts in the domain.
In general, this analysis indicates that the contents of the user models correspond
to expectations about user knowledge under the conditions set for the evaluation.
No claim is made that this data guarantees that the model representation or the
acquisition methods are valid, instead the assessment here is that the user modell-
ing component works in a predictable and reasonable fashion.

8.4. Results of Analysis
The analysis provides two observations. The first one examines the ef-
fectiveness of the implemented user modelling component; the other one considers

the accuracy of the user model contents.

8.4.1. Efficacy of the User Model Component

As discussed in the scenario presented in Chapter 7, one way to view the
content of the user model is as a coloring of the conceptual graph representation of
the domain model. These graph colorings together with data discussed above
(shown in Figures 8-1, 8-2, and 8-3), point out some potential shortcomings in the
user model acquisition methods. The results indicate some types of refinements
that might be made to improve the inference methods.

165
e It is possible for the acquisition methods to infer (color) certain ob-

jects from the domain model as well known to the user (level d1) even
though they have never actually been explained by the system. This
inference is perhaps too optimistic. Certainly some users generate
self-explanations for some concepts or rules without ever consulting
other material, but there is no guarantee of that happening and the in-
ference methods need to be changed to wait for outside confirmation
of that knowledge.

¢ The previous situation is acceptable under some conditions, such as
after observations of users applying the given concept or function cor-
rectly in a subsequent program. The a priori conditions for these
types of indirect inferences should be made more stringent; for ex-
ample we might require corroborating evidence from other sources,
such as a report from the statistical analysis component of how fre-
quently a programmer uses a function.

¢ LISP functions were never colored at the d1 level because they do not
get explained directly under the present strategy. There presently are
no methods to infer indirectly that a user knows them at that level.
This is partially a phenomenon of test scenario conditions which did
not call for using the hypertext capability as a fallback technique. Ac-
tual users would most likely have used that facility, for example call-
ing up the Document Examiner descriptions shown in Figure 6-1 as a
fallback to the explanation for the cond-to-if rule shown in Figure 4-8.
Again, an outside source could provide corroborating evidence show-
ing application of that knowledge (e.g., using an if in a follow-on as-
signment in the situation above).

166
8.4.2. Comparison of the User Modeis with the Questionnaires

In an attempt to validate the inferred user models, the contents of those
models were compared to the responses from the student questionnaires. Specifi-
cally, concepts appearing in the user model after each scenario episode were com-
pared to the students assessment of their own knowledge of those concepts at the
same approximate stage of learning.

Table 8-1 shows, for all users and as a total, the correlation of the con-
tents of the models after processing the first program under the two conditions,
accept and explain, with the second questionnaire. Similarly, the contents of the
models resulting after the scenario episode for assignment two were correlated
with the third questionnaire. The questionnaires were administered immediately
before the students received their programming assignments. The second ques-
tionnaire, completed in class just before assignment two was given, therefore
reflects what students leamed about LISP while completing assignment one. The
classroom lectures on LISP were formally presented at the beginning of the
semester while students worked on the first assignment, and should not effect
these correlations.

Ouly correlations for concepts were computed because, as it tumed out,
the portion of the questionnaire dealing with functions was not well designed.
There was minimal overlap between the set of LISP functions on the questionnaire
and the set used by the students in their three assignments — functions acquired by
the user model acquisition methods. The questionnaire was developed and ad-
ministered before getting the studenis’ programs and we failed to include many of
the functions they actually used in the assigned problems. A better prior analysis
of the programming problems, and conjecture about what functions might be used

could have been done; the functions used on the questionnaire were ones that we

167
Table 8-1: Summary of Correlation Results

Correlations of User Model Contents to Questionnaires
Condition | User | User Model 1 vs Questionnaire 2 | User Model 2 vs Questionnaire 3
Userl .25 15
User2 .08 17
Accept | User3 A8 18
User4 92 23
Total 38 .18
Userl .67 77
User2 92 .83
Explain | User3 45 .36
Userd 23 .69
Total .56 .67

This table shows correlations of the user models’ contents with self-

assessment questionnaires. When the scenario call for users to receive ex-

planations of LISP-CRITIC suggestions, correlations are the best, greater

than 50% for most students and overall.
thought were fundamental. The questionnaires did not ask about all of the 45
domain concepts and 103 functions in the domain model because of a desire to
keep it within a reasonable length, in retrospect it might have been better to ask
about all of them. LISP-CRITIC rules were not asked about on the questionnaires
because they would not have had any meaning to the students in an abstract form
(e.g., by name).

The correlations under the explain condition are significantly higher.

The models acquired under this condition correspond better to the self assess-
ments. The explain scenario is probably closer to the process student program-
mers follow. They probably engage in active learning while in the process of do-
ing the assignments. They encounter and leam those concepts represented in the
user model, and on the questionnaire, through classroom instruction, or by consult-
ing additional information sources (e.g., textbooks, human advisors, or peers).

While in the process of writing their programs, they seek out ‘‘explanations’’ that

168
help them to build a mental model for the domain comprised of the concepts and

LISP functions. Questionnaires 2 and 3 probably should nave asked the respon-
dents the types of source materials they used (e.g., textbook, on-line documen-

tation, etc.) when writing their LISP programs.

8.5. Limitations

A criticism of the testing process is that because the students themselves
did not use LISP-CRITIC, there is not evidence that they would have learned the
transformations in our scenario. Neither do we know if students actually leamed
the new functions in the right hand side of the transformation rules or the concepts
are behind them. There is evidence that they knew some of the functions (the ones
in the left hand side of the transformation rules) as these were used to complete the
assignments. The evaluation depends on the assumption that the subjects became
more knowledgeable in the domain of LISP because they completed the assign-
ments, and on the assumption that the code used in the test scenarios to infer how
their knowledge changed reflects that new knowledge.

The domain knowledge required for any single transformation requircs
understanding the functions in, and concepts underlying, both the old code and the
new code from a transformation. Therefore, some of the knowledge attributed to
subjects by their user model, came from code the students wrote; other knowledge
is that captured in the LISP-CRITIC rule for each transformation. In principle, more
than half of what the system infers is based on the students’ code, that half inferred
from the left hand side of the transformation rules. If the subjects had in fact ex-
perienced our test scenario episodes, one could hypothesize that the rule firings
(and explanations if requested) would have caused them to learn new functions
and concepts, those in the right hand side; they would have appeared in their ques-

169
tionnaire responses and there would be improved correlation between the user

model contents and the questionnaire data.

8.6. Shortcomings in System Pointed Out by the Evaluation

There are some shortcomings in the system pointed out by the evaluation
and some pointed out by the scenario. The scenario was presented in Chapter 3 as
a vehicle for understanding the context of this work. However, because it is based
on a set of programs produced under actual circumstances, it provides insight into
how the user modelling component works in such a real scenario, and provides
another way to assess its effectiveness. The explanation strategies require ad-
ditional implementation work. The.user model and the LISP domain model can
support richer explanation strategies than simply the display of hypertext descrip-
tions for the underlying concepts. For example, the domain model also links re-
lated objects, such as similar LISP-CRITIC rules. This information could be used
for other types of explanation strategies, as previously discussed. The explanation
component could consult the domain model for the set related domain entities and
then interrogate the user model to determine if any of the entities in this set are.
known to the user. Given this knowledge, the explanation component could
describe the new entity in terms of its differences from, and similarities to an al-
ready known entity. Examples occur both at the rule level, now that the reader
here knows the cond-to-if rule, a reasonable strategy for explaining the
cond-to-when rule would be to use this differential approach; in a similar fashion
two related-concepts or functions can also be described.

Another observation is that domain objects migrate to the user’s d1 level
of understanding in the user model toc easily. One can see this graphically by

comparing the graph colorings from the three scenario dialog episodes in Figures

170
7-3, 7-5, and 7-7. The user model acquisition methods should be changed, con-

straining inferences to ‘‘percolating’’ knowledge to the d1 level through no more
than one level of dependent-on links. Another indicated modification is to the
indirect acquisition rule; instead of marking dependent-on concepts at level dl,
when the base concept is at d1 use a weaker condition that marks them only at
level d2. We should consider modifying any method that allows the user model to
indirectly infer a piece of knowledge is well known (level d1) to a user.

8.7. Implications for System Modifications and Further Development

Three major findings resuited from the evaluations. The user model im-
plementation, particularly the acquisition methods, can be refined. Using a startup
or initial user model is likely to provide a more accurate evaluation, and the
domain model itself could probably be iteratively refined using analyses of ad-
ditional test cases.

Refining the user model acquisition process means that methods should
be modified to apply less optimistic inferences, as just discussed in the previous
section, and that additional methods should be added. The indirect methods need
to be modified so that LISP objects are added to the domain model at no better than
the d2 level. Presently the indirect methods can cause a domain model entity to be
ranked at level d1 and that is probably too optimistic a point of view. These
methods should be modified, and the test data rerun, to see if better correlations
result.

Using a startup model rather than beginning *‘from scratch’’ would es-
tablish a more realistic test scenario. One approach would be to use stereotyping
or classification approaches to provide information about users that is likely to be
true even if not provided directly in initial questionnaires, or later through implicit

171
methods. Observations of cooperative activities between humans [Reeves

90] showed that people apply certain ‘‘leverage’” techniques, such as stereotypes
or explicit questioning of their partners, to provide an initial or default model to
guide their first interactions with another person. Implementing these types of in-
itial modelling techniques was not part of this work, but some simple techniques
could probably be used to establish initial models which the implicit inference
methods could then improve upon during the test scenarios. The questionnaires
already completed by the subjects could be the source of initial information for a
startup model. A test of the system starting with models initialized from those
questionnaires would probably provide a more realistic scenario of how the stu-
dents’ knowledge changed during the programming exercises.

An analysis of the graph colorings for domain concepts indicate that
some groups of concepts (a grouping being indicated by the oval size) are more
frequently colored and perhaps more fundamental. They migrate to level d1 the
most quickly; they are the ones the model claims are best known to the user. A
more detailed analysis of the models generated for a larger population of users
might provide some insight into how to refine and improve the domain model to

more accurately portray programmers’ mental models of the domain.

8.8. Summary

Testing the implemented user modelling component demonstrates that
the techniques work approximately as was expected. Some parts of the user model
component can be made to more accurately predict user knowledge, and any sub-
sequent evaluations should employ a startup model to make it approximate more
closely the approaches people use in similar cooperative problem solving situa-

tions.

172
To fully validate a model, such as the one proposed and implemented

here, will require significant additional iterative development together with exten-
sive testing of a complete critiquing system on actual users. No matter how well
the user modelling component works, it produces only an ‘‘approximation’’ of a
user’s knowledge state. People themselves make do with similar approximations
of their communication partners. A complete user modelling system will need to
use a range of comprehensive acquisition methods that include multiple tech-
niques, as will be described in the next chapter. These, together with detailed
domain and, perhaps, task models, are needed if user modelling is to become a

mature technology.

CHAPTER IX

APPLICATIONS FOR, AND EXTENSIONS TO, THE WORK

This chapter analyzes the contributions of this work in a larger context
of research problems and application systems. Primary focus was developing a
user modelling approach for critiquing. But, the research area of user modelling is
important in a more general sense; my results can be of use in several other
paradigms: advice giving systems [Wahister, Kobsa 88], intelligent computer-
aided instruction [Wenger 87], and human-computer interaction in general
[Murray Benyon 89]. A primary contribution of this research is a co:iceptual
framework for approaches to acquiring user models; a framework that can also
guide future research. A possible extension is to apply our specific model to sup-
port applications other than critiquing. Other critiquing applications could benefit
from the addition of a user modelling component; it may be possible to develop
such a component in fashionr similar to the approactr followed in this dissertation.
Lastly, there are also several interesting directions in which this approach to user
modelling can be continued and extended.

9.1. A Framework for User Model Acquisition Techniques

In the course of these investigations a comprehensive framework for
classifying approaches to user model acquisition was developed. It is a framework
that integrates conceptual discussions [Wenger 87] together with ideas put forth in
research attempting to identify the acquisition requirements in a general user
modelling rchitecture [Kass 88]. The framework contains four categories of ac-

174
quisition techniques. Each category is a collection of methods which may or may

not be appropriate in a specific system; this depends upon the domain and type of
application that the user model will support. The purpose for the framework is to
aid system developers and researchers in identifying appropriate techniques for a
particular application. The framework can also help us to categorize research ef-
forts and identify problems worthy of further investigation. This framework
helped guide the implementation of the user modelling component for
LISP-CRITIC.

9.1.1. Background

In the process of developing the user modelling component for
LISP-CRITIC, we investigated a diverse set of acquisition strategies, but there was
no methodology that could be used easily to correlate them. A classification
scheme that helped to organize the ideas, and to understand research on user model
acquisition by others, was developed. One significant finding during this process
was that user modelling for many types of systems and applications require
abstract, conceptual domain representations, and furthermore, a number of the
techniques in the specified framework depend on that deep domain model.

A motivating factor in this work was the intuition that considerable in-
formation about the user is available within the computational environment, and a
desire to explore how to make use of that information for user model acquisition.
It was specifically observed that users demonstrate their understanding through ac-
tions that they take and by the decisions that they make. Also noted was that their
knowledge is enhanced whenever they are exposed to system provided information
in the form of explanation or advice. The central issue is how to use that infor-

mation in the acquisition process. At a general level I was interested in

175
‘‘evidence-based’” approaches. Systems have available evidence about what users

know, they need methods that tell them how use that evidence to infer models of
those users. The indirect implicit acquisition developed in this research also had to
fit into the framework.

The acquisition framework was also motivated by what was observed in
human-to-human cooperative problem solving, specifically those situations in
which one person has a greater understanding of the task itself, while a second is
more of a domain expert — knows more potential solution approaches. This role
distribution is similar to the one between users and knowledge-based computer
systems. In the study of sales agents assisting customers [Reeves 90], when inter-
viewed the experts related that they use direct, questioning-types of approaches to
acquiring a model of their clients and, more interestingly, several consciously
recognized short-cut techniques (and others, we suspect, that are not). The trig-
gering conditions for the inferences are interesting; they ranged from physical
characteristics of the customer, the way the client is dressed, to cognitive traits,
how conversant they were in expressing the problem, and even to the local wea-
ther, was there a significant winter storm likely to cause certain problems for
homeowners, automobile operators, etc. The classification framework attempts to
account for as many of these observed techniques as possible.

There are four classes of update techniques: explicit acquisition, tutor-
ing, statistical techniques, and implicit methods. With present technology it is un-
likely that a single system will be able to use methods in every class but, in build-
ing a specific user modelling component, this framework can help in the selection
of appropriate and feasible approaches. This is not meant to contradict the long

term goal of a comprehensive system which uses multiple approaches, but rather

accounts for what is possible to do in systems in the immediate future.

176
9.1.2. Explicit Acquisition Methods

Explicit user model acquisition methods are based on direct query of the
user. They acquire specific information about the user that will assist in deter-
mining an initial user model. In some cases they are wsed to clarify cozflicting
information in a model, in others to add information that is missing but needed by
the system. Explicit acquisition techniques can be used in conjunction with
stereotypes to construct the initial model of a user.

Three explicit acquisition methods are a prescriptive set of questions
prestored in the system, dynamic selection of questions for the user, and free-form
descriptive user input. In the first approach, a system developer determines what
the information is needed for the initial model, then specifies and prestores ques-
tions to ask of the user. The answers provide direct information to enter into the
model, for example which LISP functions they already knc -, or can be designed to
trigger richer inferences that are represented in sets of rulcs, procedures, or a deci-
sion table.

A similar approach dynamically generates the questions. It is possible to
use a decision tree, or the structure of the domain, especially if it is hierarchical, in
conjunction with previous answers to select a minimal set of queries to establish
an adequate startup model. An example from the UNIX operating system domain
is to ask users if they know the diff command; a positive answer would allow the
system to infer they have command of concepts like the UNIX file system, types of
files, and that they probably know more basic, related commands, like cat, Is, and
more. This type of approach was explored in related work where we explored
building an initial user model for a learning environment, a learning environment
designed to assist new users of a workstation [Mastaglio, Turnbull 87].

The third technique was used in the stereotyping research conducted by

177
[Rich 79]. Here users describe themselves (their interests in the case of

GRUNDY); the terms they use are compared to stereotypes the systems knows, if a
favorable match is found the content of the stereotype becomes the default con-

tents for the initiai user modei.

9.1.3. Tutoring-based Methods

Tutoring-based methods use instructional episodes as an information
source to inform the user model contents. An assumption here is that after in-
dividuals receive tutoring on some domain aspect, they now know it, and their
model should reflect that fact. Tutoring-based methods are used, in intelligent
tutoring system, to infer student models, possibly in conjunction with additional
methods which observe a student subsequently using that knowledge comectly. It
is possible to use these same techniques to build a user model that is able to ac-
commodate a more comprehensive system, one that includes a tutoring and other
components. Student models are primarily used to determinc knowledge that is
“‘missing’’, which the system can then teach; critics are-interested in offering ex-
planations for similar missing knowledge, when it is required to understand a

“critique. These related needs indicate that there is a possibility to share both the
user model and the acquisition methods.

Some acquisition methods in tutoring attempt to determine the parts of a
domain that are misunderstood, these are the bug approaches. Knowing the
student’s bugs is of significant value in guiding an instructional process but it is of
limited use in applications more general than tutoring, such as critiquing

An ultimate objective of some research in human-computer interaction is
to provide a comprehensive knowledge-based system, with multiple components

all supporting users in an interactive working context — an intelligent support sys-

178
tem [Fischer 86]; one that can support them with advice, help, tutoring, critiquing,

etc. The components of such a system should be able to share a common user and
domain model. Tutoring episodes provide an important source of information that
can be used to enrich the common user model; this is information that is useful to

other system components. ,

9.1.4. Statistical Analysis of User’s Work

Statistical methods can provide a measure of the sophistication of a
user’s knowledge. An analysis of work produced by the user could be accumu-
lated and reported to the system. The reported statistics provide the system trig-
gers for inferences about the sophistication of a user’s knowledge. For example,
in LISP the type of functions used (destructive versus cons-generating) might
provide a system evidence about the user’s overall expertise. Acquisition methods
based on statistical approaches can apply machine leaming paradigms such as
leamning by example [Fain-Lehman, Carbonell 87]. The examples used in the
machine learning process are the users’ work. The analysis of what a user
produces could take place as a separate off-line system activity [Fischer 87b]. Al-
ternatively, it may be best accomplished, in some situations, by interpreting
cumulatively observed data about the user over time, like in the ACTIVIST system
[Fischer, Lemke, Schwab 85]. Statistical and mathematical techniques, such as
Bayesian inference and fuzzy set theory, can provide theoretical bases for methods
in this class.

In the domain model described in Chapter 5, some categories of con-
cepts (or functions) appear to require more sophisticated domain knowledge on the
part of the user. An analysis of code could inform the system about the

programmer’s usage, by category, of both functions and concepts. This infor-

179
mation could be used by the system to trigger a stereotype, or select an expertise

category for the programmer, an initial user model. In the KNOME system, double
stereotypes were used in this manner [Chin 89}, one set of stereotypes represents
canonical users, the other set is a categorization of UNIX concepts and commands
that is similar to the groups in the LISP domain model.

The major problems for developers is determining which statistics are
important, and how to use them. Accumulating statistical data about a user is not
difficult; the issue is the inferences to make with those data. The conditions under
which these statistical methods might work is possibly domain and application
system dependent; they may not conform to a general theory: this is certainly an
open research question. Extensive studies of user populations for specific systems
will be required. The results of the data collection have to be correlated with
known characteristics of the users to determine how to best use specific pieces of
statistical information. Statistical methods are similar to the implicit acquisition
methods, discussed next, in that both operate without specific input from the user:
they make use of information that is already available, information generated
during the course of the user’s normal work. Like stereotyping, they require prior
analysis of a sample user population to determine what certain analytic results
might imply about any user. Only then can those results be used as a triggering

condition for an inference method.

9.1.5. Implicit Acquisition

Implicit acquisition methods use the contents of user-system interactions
to make inference about users. They are designed to avoid having to st yject users
explicit methods that interrupt their work. Implicit acquisition methods fall into
into two subcategories direct and indirect methods.

180
Direct methods: The direct implicit inference methods observe or note

user actions that are part of the ongoing user-system dialog, and then use that ob-
servation to add to, or change information already in the user model. The set of
implicature rules developed by Kass are an example of methods in this class [Kass,
Finin 89]. Direct methods are based on the idea that user-computer interaction is a
dialog. Depending upon the specific application, these dialogs have different
goals and formats. The dialog may seek to achieve a shared understanding be-
tween the system and the user, or to negotiate a common goal: advisory type sys-
tems are a canonical example of this. The human and the computer might also
seek agreement on whether a certain course of action is appropriate; knowledge-
based decision support systems are an architecture for achieving this type of col-
laboration [Turban, Watkins 86].

When users communicate with a system in any form, ranging from
natural language to menu selections, there is information within the context of
those interactions that the system can use to infer their user models. Conversely,
when the system explains something-to users, that information should now be
known, and it can be added to their user models. In LISP-CRITIC the direct
methods use the acceptance of critic suggestions to trigger one type of direct
method, and the request for and receipt of an explanation to trigger another. The
degree of the system’s confidence in that part of the model, and the way it deter-
mines how well a user ‘‘knows’’ that information are open questions, the answers

to which may also tum out to be domain and application dependent.

Indirect methods: The indirect methods operate like internal demons;
they use changes to a user model to trigger further changes. In general, any in-
ference method that adds not-directly-observed information to the user model

181
belongs in this category. Stereotypes are sometimes used in this fashion. In this

work, the indirect methods depend on the support of a deep domain model. An
example of an indirect method occurs when the user model is updated to include
the fact that a user knows a certain aspect of the domain: indirect methods in
LISP-CRITIC use that change to the user model to infer that the user also knows the
prerequisite knowledge for the aspect just added. Consider an example from
another domain that demonstrates the generality of this idea, the domain is math-
ematics and here the system observes a student summing two negative numbers
correctly. From this observation, an inference is made that the student knows how
to sum negative numbers. This direct inference changes the user model, which in
turn triggers other changes. One inference might be that the student knows the
concept negative numbers, another that he or she knows the concept addition.
That information can now be added to the user model if it is not already present.

9.2. Employing the Approach in Other Applications

A potential application of this research is to use the approach reported on
here in other types of applications. besides critiquing= The: concept-based user-
model developed here has the characteristics required to support tutoring, advisory
systems, and human-computer interaction systems in general.

Intelligent tutors frequently represent their students in terms of produc-
tions contained in a system rule base, or in terms of their misconceptions. -The
concept-based user model representation provides an alternative method for guid-
ing the tutor; the user model can provide a list of those concepts that a user does
not know. Concepts that the tutor can now focus on teaching. Concepts which a
user already knows provide a source for selecting pedagogical strategies; this is
similar to the methodology used in the genetic graph approach. Opportunities to

182
teach new concepts using analogy, generalization, or specialization, can be

selected by comparing the user and domain models. To actually accomplish this
will require the tutor to have greater understanding about the semantics of the
domain model structure, specifically the links between entities, as well as
knowledge about what didactic approaches are suitable under what conditions.

Advisory systems give advice and, in some cases, are also designed to
assist users with understanding the rationale for that advice. User modelling com-
ponents in advisory systems focus on supporting the giving of advice, they infer
user goals and plans to insure that it is appropriate. In a financial advising system,
advice would consist of suggesting to users where to invest their money (e.g., in
mutual funds or municipal bonds). A concept-based user model could assist the
system to explain such advice — answer questions such as why are municipal
bonds a good investment for me at this time. A user model that is able to support
both the advice giving and explaining roles in advisory systems will have to be
more general, capturing both situation specific conditions for users, such as their
goals, and their domain expertise.

An advisory system that will be consulted on multiple occasions by the
same user is a better candidate for such a comprehensive model, for example the
financial advisor above, than a system designed to provide one-shot advice, such
as one that suggests which train to take. A hypothetical example is an advisor for
LISP that can, in the spirit of the Programmer’s Apprentice, suggest software
cliches that will accomplish a specified task (e.g., print an item). The system has
to know about the code in a program library to make an appropriate recommen-
dation and have the ability to explain that code when asked. A concept-based user
model could inform the system during the advising phase to help it select a cliche

the user is more likely to understand (e.g., one using print instead of format), and

183
during the explanation phase to help it formulate an explanation in a manner

similar to that envisioned for LISP-CRITIC.

Research efforts in human-computer interaction often claim that an
idiosyncratic user model will enhance that interaction [Murray 88}, but focused in-
vestigations along these lines are not reported in the literature. The fundamental
issues are determining what information those models must provide, and how that
information will be used by the system. One direction is to use a modelling ap-
proach, like the one developed here for critiquing, as a starting point for inves-
tigating how system adaptivity in the general class of human-computer interaction

systems can be supported by user models [Murray Benyon 89].

9.3. Support for Critiquing in Other Domains

In Chapter 2 we covered the application domains for which critiquing
system have been developed; it is intriguingly diverse. Enhancing the effective-
ness and utility of critics with a user modelling component is an indicated future
research direction in several of the system descriptions. A useful application of
this research would be to enhance a different existing critic system using an ap-
proach similar to the one followed for the work on LISP-CRITIC.

Design environments [Lemke 89] include a critic component and some
use hypertext issue-based information systems as a source of information for help-
ing designers understand a critique, as well as to precipitate reflective practice
[Fischer, McCall, Morch 89a; McCall, Fischer, Morch 89; Fischer, McCall,
Morch 89b]. No attempt is made to adapt, or tailor, the information to the in-
dividual designer, but rather the methodology focuses on presenting it in a struc-
tured manner, and insuring it is contextually related to current work. It would be
worth investigating whether user models. such as the one in LISP-CRITIC, can be

integrated with these techniques.

184
In a more general sense, systems based on critiquing have been

developed to support domains such as software engineering [Fickas, Nagarajan
88], VLSI design [Steele 87], and decision making {Mili 88]; systems that support
knowledge workers who use them repeatedly. Users expect to leam from the
critiques to perform their tasks better, this means that there exists a need for sys-
temn explanations; this is an argument similar to the one given as motivation for the
work on explanation-giving in LISP-CRITIC. Critiquing is also used to support
medical applications, and several of these research efforts suggest that having a
user model would enhance their systems [Langlotz, Shortliffe 83; Miller 86; Ren-
nels 87]. Application of the user modelling methodology followed here to en-
hance some existing critics would serve to validate and refine the techniques; it is

also sure to provide additional insight to motivate improved theory.

9.4. Issues Warranting Further Research

The other potential direction for future research is to enhance the work
accomplished thus far. Some-ideas were previously mentioned in the context of
describing the approach, the implementation, and.the evaluation. One such area is
to learn how to use statistical information that can be obtained from a computer
analysis of users’ work or actions; another is to integrate tutoring with cooperative
problem solving systems to determine more specifically what is needed inr a model
designed to serve the needs of both. One extension along these lines might be to
build a comprehensive system from scratch, or to integrate two such already exist-
ing systems. Some other potential research directions, not previously mentioned,
are investigating how to make- better use of networked computing environments,
enhancing the domain modelling approach, and sharing the user model between
multiple applications, or even different domains with shared conceptual spaces, for

example different programming languages.

185

Distributed User Modelling. Present computing environments are al-
most always part of larger networks. Having other machines available on that net-
work should allow us consider how to introduce concurrency into the user modell-
ing process. Domain models will come to have greater fidelity and a richer
representation, and user models will, likewise, become more comprehensive; this
may cause them to tax the computational power in a single workstation. Also we
should consider the situation where users run applications on remote machines,
applications that might benefit from access to their user model.

One direction for research is to investigate how to provide access to the
user model stored on a ‘‘personal workstation’’ to applications running at remote
sites. If our goal is a truly comprehensive and complete user model, of use to
multiple systems, then it follows that they should share a single version of that
model. Some issues that must be considered are privacy, concurrent updating, and
simultaneous access by more than one remote server. Research into using the ap-
proach in this manner could begin by determining which of the problems involved
can be solved using techniques already developed in other concurrent systems
research and identifying any new ones that are generated.

A more futuristic idea is to consider having a user modelling machine,
either virtual or actual; one dedicated to performing implicit user model acquisi-
tion in parallel with other applications to achieve concurrency. Similardy, a
machine could be dedicated to the role of domain model server. This might be a
particularly useful approach for providing reasonable access to the large models
that are growing out of research into representing general common sense

knowledge [Lenat, Prakash, Shepherd 86].

186
Generality of the Domain Model. The domain model was developed

specifically for LISP, in order to meet explanation and user modelling needs.
During this research it was observed that our domain model is an instance of what
other researchers in explanation-giving have called ‘‘deep domain models’’
[Chandrasekaran, Tanner, Josephson 88]. It may be able to provide support for
more general applications. The research issue is, can it usefully serve other ap-
plications or interaction paradigms, other than critiquing, and if not, can it be
modified in some way to accomplish this?

Predominantly, past computer-based systems for instruction have been
one of three types: drill and practice computer-aided instruction that captures
domain and pedagogical knowledge directly in the course material, intelligent
tutoring approaches that capture domain and pedagogical knowledge in produc-
tions and exercises, and simulation systems that capture domain knowledge in the
behavior of the simulated devices; pedagogy is implicit in the simulation process.
This is not to say that these will be the dominant future approaches, in fact we
happen to believe critiquing [Mastaglio 89] will replace or augment all them in
certain situations; these three are just historically the most common. The concept-
based domain model allows pedagogy to be derived from a traversal of its struc-
ture, links provide the pedagogy for teaching new concepts from already familiar
ones. It would be worth investigating if the domain model could be used to help
direct a didactic computer agent, such as a coach, that knows the learning objec-
tives and has available to it a set of exercises or simulations that are linked to

domain model entities and to pedagogical knowledge.

Sharing the User Model. An ultimate goal of some work in human-

computer interaction research is a comprehensive system which supports multiple

187
interaction approaches through multiple components. In terms of user modelling,

it would be ideal if the model could be shared by these components, such as a
system incorporating a critic and a tutor like GRACE. It would be worth inves-
tigating what type of user model is needed to support a larger class of applications,
and if the approach discussed here needs to be modified to achieve this goal. As a
simple example, some of the knowledge of LISP captured in our user model (e.g.,
conditionals, scope, tests, etc) would also be useful to a critic in a related domain,
such as one for another programming language. Identifying the common domain

characteristics to capture in such a shared model warrants further investigation.

9.5. Summary

This chapter indicated how this specific work fits into a broader perspec-
tive of user modelling and related research. The acquisition framework can help
developers of systems that will contain a user modelling component, and it
provides a guide for future research. The methodology used in this project has
potential for use in other applications, and to support critics in other domains.
What is required to achieve a system that a user will perceive as meeting our goal
of being a cooperative problem solving system is still an open research issue: the
work done here provides a starting point for individualizing the types of environ-
ments in which we eventually hope to find these systems. One thing this disser-
tation research has shown is that user modelling is complex, perhaps one of the
more complex applications yet encountered in applied computer science and artifi-
cial intelligence research. It is not possible to provide complete approaches in a
single research effort, and solutions are neither singular nor simple. This does not
mean the effort is not important nor should it be abandoned; personalized com-

puter systems that adapt to our needs are able to give and explain meaningful ad-

188
vice, and can interpret our actions are a consistent image in science fiction and

futuristic scenarios studied by serious researchers [Skulley 88]. User modelling is
one of the important enabling technologies needed to reach that goal; but arriving
at a common, useful theory will require multiple efforts and the synthesis of results
in order to understand all the cognitive and computational issues involved.

CHAPTER X

SUMMARY AND CONCLUSIONS

This chapter is a summary of this dissertation and identifies its major
contributions. The general scheme of this research was to study user modelling
research in other areas; to develop an understanding of what is required for a user
model to support cooperative problem solving; and, from those analyses, to devel-
op an approach for supporting a computer-based critic. A user model that meets
those requirements was implemented for LISP-CRITIC, and subjected to an evalua-
tion. The results of the system development work and analysis suggested ideas
about the generalizability of the methodology, and indicated possible extensions to
the approach as well as directions for future research.

10.1. Summary

This dissertation research was accomplished in a context of developing a
paradigm for cooperative problem solving, and in the context of knowledge-based
systems that support user leaming. In principle all cooperative systems should
also support leaming. Users need.access to system-provided explanations in order
for that leaming to take place. Furthermore, those explanations should be tailored
to their individual expertise in the application domain. This need for individual-
ized explanations motivates a.requirement for idiosyncratic user models. These
characteristics of knowledge-based computers systems, that they support col-
laborative human-computer effort, and also, that they provide leaming oppor-
tunities, determine the general requirements for the user modelling approach.

190
What it means for a system to be cooperative, and the theoretical characteristics of

leamning environments were discussed in Chapter 1.

Critiquing is one way to use computer knowledge bases to aid users in
their work and at the same time support their leaming needs. Research investiga-
tions into critiquing by the Human-Computer Communications Research Group
has included system building efforts, the integration of cognitive and design
theories, empirical observations, and the evaluation of prototypes. That collective
experience was integrated with a study of other research to determine the theoreti-
cal foundations and characteristics of critiquing.

Chapter 2 presented those theoretical foundations and the theory behind
the present critiquing framework. Critiquing systems, also called critics, are an
alternative to traditional experts systems. The generality of the approach is
demonstrated by a study of the literature which shows that critiquing has been suc-
cessfully used in diverse application domains. In order to enhance current critiqu-
ing approaches so that these systems move from simple ‘‘suggestors’’ of how to
improve a user’s work, to ones which can interact with them in a collaborative
style, will require models of users. These models will help systems adapt explana-
tions for their domain knowledge to individual users. Critics are not the only ap-
proach to building better knowledge-based systems, but a growing number of such
systems will contain a critiquing component. Some of them need detailed under-
standing of users’ problems, tasks and goals; but more commonly they will have
limited yet helpful capabilities, one of which is to model the knowledge of in-
dividual users.

A general approach was chosen as a result of studying related research in
user modelling. Chapter 3 discussed user modelling in other research areas and
the foundations for user modelling to support the types of cooperative systems in

191
which we are interested. The approach includes an architecture for a user modell-

ing component comprised of a representation scheine for the models, acquisition
techniques, and methods for accessing the models. An analysis of reported work
on student models to support Intelligent Computer-aided Instruction, and user
models for advice-giving dialog systems determined that both areas providc some
important concepts to help us establish the foundations for the models we want to
have. A user modelling approach for cooperative problem solving can use ideas
developed in this other work, but it was not possible to find an approach from
other research that could be adapted directly to meet the needs of collaborative
systems. Therefore, the methodology followed was to identify the requirements
for a user modelling component to support explanations based on a theoretical
model of users’ expertise, a conceptual model of the domain, the need to acquire
the model using implicit methods, and all the while keeping in mind a goal of
generality. The resulting conceptual architecture was instantiated in a specific sys-
tem.

In Chapter 4 LISP-CRITIC was described: it is the environment in which
the implementation work was performed. LISP-CRITIC provides a suitable context
for investigating user modelling because, in the past, it has been a development
platform for investigating various notions of how knowledge-based computer sys-
tems can be better designed to accommodate their users. Some of these ideas were
knowledge representation and application, user access to the systems actions, and
explanation of advice. Integrating a user modelling component to support ex-
planation giving was a natural extension of that previous work.

A domain model was required to support both explanation-giving and
user modelling. It links the system'’s operational knowledge (LISP-CRITIC rules) to
the domain knowledge necessary for explanation-giving and representing users’

192
expertise. Chapter 5 covers the analysis of LISP that determined what to represent

in the domain model, and then selected some appropriate techniques for achieving
that representation. The implemented domain model captures knowledge of LISP
in a conceptual structure. From our analysis of the domain it was determined that
the fundamental domain entities are LISP concepts, LISP functions and
LISP-CRITIC rules, they are all interconnected via semantic relationships. Concep-
tual graph notation was used to visualize the domain structure, and the domain
model in LISP-CRITIC was implemented using the Common LISP Objects System
(CLOS).

Cooperative knowledge-based systems take advantage of the different
strengths of users and computer systems. Computers are potential sources of ex-
pert domain knowledge and can be used to make suggestions; their role must also
include the ability to explain those suggestions. Explanation systems often- fail
because they are based on implicit assumptions that explaining is a one-shot affair,
and that artificially intelligent systems will be able to retrieve or produce complete
and individualized text. Another approach is to take advantage of information and
present computer technology. The explanation approach discussed in Chapter 6
focuses on determining which concepts to explain to a user rather than on choos-
ing a prestored explanation. Executing that process requires a domain model that
can provide the set of concepts needed for a given explanation situation, and a user
model that can help tailor the explanation to a given individual. When explanation
follows this approach, the process is one of constructing, rather than selecting, in-
formation that will be presented to a user.

The approach used provides four layers of explanation that can be ac-
commodated in LISP-CRITIC. The first two layers are not explanations in the stric-

test sense but rather techniques for presenting the critic’s advice that facilitate user

193
understanding; they are detailed descriptions of what the system suggests.

Rhetoric principles and discourse comprehension research provide foundations for
a minimal approach that make up the 3rd layer. Such minimal explanations are
guided by a domain and user model that provide, to the system, information about
what needs to be explained in order for a user to understand a particular domain
entity. The highest layer is a rich hypertext information space that provides a
fallback capability for situations in which users need more details. In that hyper-
text space, users can investigate LISP functions or examine concepts that they still
do not understand.

The user modelling component developed for LISP-Critic is described in
Chapter 7; it represents what the system knows about each user in an object
oriented structure, acquires those user models, provides access to them and retains
them for future use. The user model is also implemented in CLOS. The design
objectives were based on what is required to support explanation-giving; these ob-
Jjectives guided specification of the architecture for the user modelling component.

Representation of the model is an enhancement of overlay modelling
techniques. The approach captures the domain entities a user knows, a subset of
those represented in the domain model, but also marks them in accordance with
how well they are known. Conceptually, there is a coloring of the domain model
graph unique to each individual.

Access to the individual models for other system components is
provided for with a set of generic interface functions. In this research, access for
the explanation component has been emphasized; but we have attempted to make
the methods general so that current system components, such as the critiquing en-

gine, or even new components that are added, like a tutor, can use them.

194
The acquisition subcomponent contains direct methods that make use of

episodes in the user-computer dialog. These are ‘‘evidence-based’’ methods that
resulted from the intuition that the interaction context contains useful information
for inferring the knowledge state of a user. The subcomponent also contains in-
direct methods that are triggered by changes to individual user models. One out-
come of the LISP-CRITIC system development and implementation work is a
framework of user model acquisition techniques.

The development of the implicit methods is considered one of the sig-
nificant contributions of this research; an evaluation of their effectiveness and pos-
sible modifications was undertaken. That evaluation process is covered in Chapter
8. The acquisition methods were evaluated in two ways. Programs written by
students leamning LISP were processed by LISP-CRITIC; and the individual user
models for each programmer compared with one another, attending particularly to
the changes that took place over time. In this way the behavior of the user modell-
ing system could be analyzed to determine potential modifications. The user
models developed for each student were correlated with questionnaires assessing
the students’ expertise according to the topology of the domain model; the ques-
tionnaires were completed before each programming assignment.

The evaluation demonstrated that the models conform to expectations
about how user knowledge might change under the conditions these programs
were produced. The models contents were modified by the application of the ac-
quisition methods in a manner similar to what was expected: the models became
more detailed as the system was exposed to more of the users’ work; and they
captured new concepts as students leamed them during the course of completing
three programming assignments. The evaluation pointed out opportunities for im-
proving the acquisition methods. It also resulted in the observation that using a

195
startup or initial model would probably improve the models’ fidelity. The

availability of an initial model had been an underlying assumption in this research.
This finding confirmed the importance of having that model; regardless of the ef-
fectiveness of implicit methods, there is a need for explicit acquisition of initial
models of users.

To achieve a completely operational model will require significant ad-
ditional development and extensive testing. A limitation is that any user model is
at best an ‘‘approximation’’ of a user’s knowledge state, therefore, it will be dif-
ficult to determine when an acquisition methodology is as complete as possible.
An outcome of this work is an awareness that a comprehensive user modelling
system will be extremely complex; the problem will not yield to singular solutions
or simple methods alone. Research efforts to date have tackled only a parts of the
problem, usually in isolation. A-complete implementation will have to integrate
multiple techniques (e.g., stereotyping, explicit questioning and implicit acquisi-
tion methods) with detailed domain and perhaps task models. The work under-
taken here focused on developing a.domain model and implicit acquisition tech-
niques.

In chapter 9, I tried to demonstrate how this work contributes to a
broader scope of research. One such contribution is the acquisition framework; it
provides a pretheoretic scheme which can be used when developing user modell-
ing components for human-computer interaction systems in general, and can serve
as a guide for future research. The development methodology followed here can
be used for developing user models for applications other than critiquing; and to
extend those critics already developed in other research. In this research the ap-
proach used was specifically developed for critiquing, but it provides a starting
point for individualizing a more general class of cooperative problem solving sys-

196
tems. There are possibilities to share both the model in its current form with other

interaction approaches, like advising or tutoring, and to use the methodology as a
guide for developing new models to serve a range of applications, critiquing com-

puter programs being just one them.

10.2. Conclusions

The work in this dissertation project contributes to research in user
modelling, explanation-giving, and cooperative knowledge-based systems. The
use of a common deep conceptual domain representation for both explanation
generation and user modelling is unique. Using the inherent structure of that deep
domain model to perform implicit ‘acquisition is a technique that enhances a
system’s ability to build up more complete idiosyncratic models of users, and
should be explored for other domains, and using different relational links between
the domain entities. The explanation process begins with a single piece of
procedural system knowledge, e.g..a rule that a user wants described. It serves as
a starting point to extract the appropriate domain concepts; these are filtered
through the user model and some of them are eventually explained to the user.
This approach could potentially be used in a large class of human-computer inter-
action systems but depends upon domain and user models to inform the process.
This work is a first documented implementation of a model of users’ domain ex-
pertise in a critiquing system. The possibilities and limitations uncovered here can
aid developers of other computer-based critics. The framework for user modelling
acquisition methods proved useful in developing a specific user modelling com-
ponent, and it can be used to guide design analysis and architectural specification
for others.

197
It would be premature to claim that a general theory of user modelling is

forthcoming, but this effort has provided a better understanding about some sig-
nificant aspects of such a theory. Specifically, we now know more about what is
required of a user model that supports explanation-giving; the sort of techniques an
interactive system can use to implicitly acquire such a model; and how a concept-
based domain model can serve as a basis for user model representation, and at the
same time support user model acquisition. These ideas expose 2 new range of
issues and directions for research into user modelling that may eventually provide
general methods able to accommodate a broad class of human-computer inter-

action systems.

REFERENCES

[Aaronson, Carroll 87]
A. Aaronson, J M. Carroll, Intelligent Help in a One-Shot Dialog: A Protocol
Study, Human Factors in Computing Systems and Graphics Interface,
CHI+GI’87 Conference Proceedings (Toronto, Canada), ACM, New York,
April 1987, pp. 163-168.

[Anderson, Conrad, Corbett 89]
J.R. Anderson, F.G. Conrad, A.T. Corbett, Skill Acquisition and the LISP
Tutor, Cognitive Science, Vol. 13, 1989, pp. 467-505.

[Anderson, Reiser 85]
JR. Anderson, B.J. Reiser, The LISP Tutor, BYTE, Vol. 10, No. 4, April 1985,
pp. 159-175.

[Anderson, Thompson 86]
J.R. Anderson, R. Thompson, User of Analogy in a Production System
Architecture, 1986, Paper presented at the Illinois Workshop on Similarity and
Analogy, Champaign-Urbana, June 1986.

[Atwood et al. 90]
M.E. Atwood, W.D. Gray, B. Burns, A.I. Morch, B. Radlinski, Cooperative
Learning and Cooperative Problem Solving: The Case of Grace, Working
Notes, 1990 AAAI Spring Symposium on Knowledge-Based Human-
Computer Communication, AAAI, Menlo Park, CA, 1990, pp. 6-10.

[Bloom 84]
B.S. Bloom, The Search for Methods of Group Instruction as Effective as One-
to-One Tutoring, Educational Leadership, May 1984, pp. 4-17.

[Boecker 84]
H.-D. Boecker, Softwareerstellung als wissensbasierter Kommunikations- und
Designprozess, Dissertation, Universitaet Stuttgart, Fakultaet fuer Mathematik
und Informatik, April 1984.

[Boecker, Fischer, Nieper 86]
H.-D. Boecker, G. Fischer, H. Nieper, The Enhancement of Understanding
Through Visual Representations, Human Factors in Computing Systems,
CHI’86 Conference Proceedings (Boston, MA), ACM, New York, April 1986,
Pp. 44-50.

[Brech, Jones 88])
B. Brecht, M. Jones, Student Models: the Genetic Graph Approach, Inter-
national Journal of Man-Machine Studies, Vol. 28, 1988, pp. 483-503.

199

[Britton, Black 85]
Bruce K. Britton, John B. Black (eds.), Understanding Expository Text,
Lawrence Erlbaum Associates, London, 1985.

[Brown, Burton 86)
J.S. Brown, R.R. Burton, Reactive Learning Environments for Teaching
Electronic Troubleshooting, in W.B. Rouse (ed.), Advances in Man-Machine
Systems Reasearch, Vol 3, JAI Press, Inc, Greenwich, CT, 1986.

[Brown, Burton, Kleer 82]
J.S. Brown, R.R. Burton, J. de Kleer, Pedagogical, Natural Language and
Knowledge Engineering Techniques in SOPHIE I, II and III, in D.H. Sleeman,
J.S. Brown (eds.), Intelligent Tutoring Systems, Academic Press, London -
New York, 1982, pp. 227-281, ch. 11.

[Brown, VanLehn 80]
J.S. Brown, K. VanLehn, Repair Theory: A Generative Theory of Bugs in
Procedural Skills, Cognitive Science, Vol. 4, 1980, pp. 379-426.

[Buchanan, Shortliffe 84]
B.G. Buchanan, E.H. Shortliffe, Rule-Based Expert Systems: The MYCIN Ex-
periments of the Stanford Heuristic Programming Project, Addison-Wesley
Publishing Company, Reading, MA, 1984.

[Burton, Brown 82]
R.R. Burton, J.S. Brown, An Investigation of Computer Coaching for Informal
Learning Activities, in D.H. Sleeman, J.S. Brown (eds.), Intelligent Tutoring
Systems, Academic Press, London - New York, 1982, pp. 79-98, ch. 4.

[Burton, Brown, Fischer 84]
R.R. Burton, J.S. Brown, G. Fischer, Analysis of Skiing as a Success Model of
Instruction: Manipulating the Learning Environment to Enhance Skill
Acquisition, in B. Rogoff, J. Lave (eds.), Everyday Cognition: Its Development
in Social Context, Harvard University Press, Cambridge, MA - London, 1984,
pp. 139-150.

[Carbonell 70]
J.R. Carbonell, Al in CAI: An Artificial-Intelligence Approach to Computer-
Assisted Instruction, IEEE Transactions on Man-Machine Systems, Vol.
MMS-11, No. 4, December 1970.

[Card, Moran, Newell 83]
SXK. Card, T.P. Moran, A. Newell, The Psychology of Human-Computer
Interaction, Lawrence Erlbaum Associates, Hillsdale, NJ, 1983.

[Carroll, Carrithers 84]
J.M. Carroll, C. Carrithers, Training Wheels in a User Interface, Communica-
tions of the ACM, Vol. 27, No. 8, August 1984, pp. 800-806.

200

[Carroll, McKendree 87]
JM. Carroll, J. McKendree, Interface Design Issues for Advice-Giving Expert
Systems, Communications of the ACM, Vol. 30, No. 1, January 1987, pp.
14-31.

[Carver, Lesser, McCue 84]
N.F. Carver, V.R. Lesser, D.L. McCue, Focusing in Plan Recognition,
Proceedings of AAAI-84, Forth National Conference on Artificial Intelligence

(Austin, TX), William Kaufmann, Los Altos, CA, 1984, pp. 42-48.

[Chandrasekaran, Tanner, Josephson 88]
B. Chandrasekaran, C. Tanner, J.R. Josephson, Explanation: The Role of Con-
cept Strategies and Deep Models, in J.A. Hendler (ed.), Expert Systems: The
User Interface, Ablex Publishing Corp, Norwood, NJ, 1988.

[Chandrasekaran, Tanner, Josephson 89]
B. Chandrasekaran, C. Tanner, J.R. Josephson, Explaining Control Strategies
in Problem Solving, IEEE Expert, Vol. 4, No. 1, Spring 1989, pp. 9-23.

[Chin 89]
D.N. Chin, KNOME: Modeling What the User Knows in UC, in A. Kobsa,
W. Wahister (eds.), User Models in Dialog Systems, Springer-Verlag, New
York, 1989, pp. 74-107.

[Clancey 84]
W. Clancey, Use of MYCIN' s Rules for Tutoring, in B.G. Buchanan, E.H.
Shortliffe (eds.), Rule-Based Expert Systems: The MYCIN Experiments of the
Stanford Heuristic Programming Project, Addison-Wesley Publishing Com-
pany, Reading, MA, 1984, pp. 464489, ch. 26.

[Clancey 86]
W .J. Clancey, Qualitative Student Models, Annual Review of Computing
Science, Vol. 1, 1986, pp. 381-450.

[Clancey 87]
W.J. Clancey, Knowledge-Based Tutoring: The Guidon Program, MIT Press,
Cambridge, MA, 1987.

[Coombs, Alty 84]
M.J. Coombs, J.L. Alty, Expert Systems: An Alternative Paradigm, Inter-
national Journal of Man-Machine Studies, Vol. 20, 1984.

[Danlos 87]
L. Danlos, The Linguistic Basis of Text Generation, University of Cambridge
Press, Cambridge, 1987.

[Dews 89]
S. Dews, Developing an ITS in a Corporate Setting, Proceedings of the 33rd

Annual Meeting of the Human Factors Society, 1989, pp. 1339-1342.

201

[Dijk, Kintsch 83]
T.A. van Dijk, W. Kintsch, Strategies of Discourse Comprehension, Academic
Press, New York, 1983.

[Doane, Pellegrino, Klatsky 89]
SM. Doane, J.W. Pellegrino, R.L. Klatsky, UNIX System Mental Models and
UNIX System Expertise, Proceedings of the 22nd Annual Hawaii Conference
on System Sciences, Vol. II: Software Track, IEEE Computer Society, January
1989, pp. 457-467.

[Draper 86] .
S.W. Draper, Display Managers as User Interfaces, in D.A. Norman, S.W.

Draper (eds.), User Centered System Design, New Perspectives on Human-
Computer Interaction, Lawrence Erlbaum Associates, Hillsdale, NJ, 1986, ch.
16.

[Dreyfus, Dreyfus 86]
H.L. Dreyfus, S.E. Dreyfus, Mind Over Machine, The Free Press, New York,
1986.

[Duchastel 88]
P.C. Duchastel, Models for Al in Education and Training, Artificial Intel-
ligence Tools in Education: Proceedings of the IFIP TC3 Working Conference,
IFIP, 1988, pp. 17-28.

[Fabian, Lemke 85]
F. Fabian Jr., A.C. Lemke, WLisp Manual, Technical Report CU-CS-302A-85,
Department of Computer Science, University of Coloradec, Boulder, CO,
February 198S.

[Fain-Lehman, Carbonell 87]
J. Fain-Lehman, J.G. Carbonell, Learning the User’s Language: A Step
Toward Automated Creation of User Models, Technical Report, Camnegie-
Mellon University, March 1987.

[Feigenbaum, McCorduck 83]
E.A. Feigenbaum, P. McCorduck, The Fifth Generation. Artificial Intelligence
and Japan's Computer Challenge to the World, Addison-Wesley Publishing
Company, Reading, MA, 1983.

[Fickas, Nagarajan 88]
S. Fickas, P. Nagarajan, Critiquing Sofitware Specifications, IEEE Software,
Vol. 5, No. 6, November 1988, pp. 3747.

[Finin 83]
T.W. Finin, Providing Help and Advice in Task Oriented Systems, Proceedings
of the Eighth International Joint Conference on Artificial Intelligence, 1983,
Pp. 176-178.

[Fischer 83]
G. Fischer, Symbiotic, Knowledge-Based Computer Support Systems,
Automatica, Vol. 19, No. 6, November 1983, pp. 627-637.

202
[Fischer 84]
G. Fischer, Formen und Funktionen von Modellen in der Mensch-Computer
Kommunikation, in H. Schauer, M.J. Tauber (eds.), Psychologie der
Computerbenutzung, R. Oldenbourg Verlag, Wien - Muenchen, Schriftenreihe
der Oesterreichischen Computer Gesellschaft, Vol. 22, 1984, pp. 328-343.

[Fischer 86]
G. Fischer, Cognitive Science: Information Processing in Humans and
Computers, in H. Winter (ed.), Artificial Intelligence and Man-Machine
Systems, Springer-Verlag, Berlin - Heidelberg - New York, 1986, pp. 84-112.

[Fischer 87a]
G. Fischer, Learning on Demand: Ways to Master Systems Incrementally,
Technical Report, Department of Computer Science, University of Colorado,
Boulder, CO, 1987.

{Fischer 87b]
G. Fischer, A Critic for LISP, Proceedings of the 10th Intemnational Joint Con-
ference on Artificial Intelligence (Milan, Italy), J. McDermott (ed.), Morgan
Kaufmann Publishers, Los Altos, CA, August 1987, pp. 177-184.

[Fischer 88a]
G. Fischer, Enhancing Incremental Learning Processes with Knowledge-Based
Systems, in H. Mandl, A. Lesgold (eds.), Learning Issues for Intelligent Tutor-
ing Systems, Springer-Verlag, New York, 1988, pp. 138-163, ch. 7.

{Fischer 88b]
G. Fischer, Cooperative Problem Solving Systems, Proceedings of the 1st Sim-
posium Internacional de Inteligencia Artificial (Monterrey, Mexico), October
1988, pp. 127-132.

[Fischer 90]
G. Fischer, Communications Requirements for Cooperative Problem Solving
Systems, The International Journal of Information Systems (Special Issue on
Knowledge Engineering), 1990.

[Fischer et al. 88]
G. Fischer, S.A. Weyer, W.P. Jones, A.C. Kay, W. Kintsch, R.H. Trigg, A
Critical Assessment of Hypertext Systems, Hauman Factors in Computing Sys-
tems, CHI’88 Conference Proceedings (Washington, D.C.), ACM, New York,
May 1988, pp. 223-227.

[Fischer et al. 90]
G. Fischer, A.C. Lemke, T. Mastaglio, A. Morch, Using Critics to Empower
Users, Human Factors in Computing Systems, CHI’90 Conference Proceed-
ings (Seattle, WA), ACM, New York, April 1990, pp. 337-347.

[Fischer, Girgensohn 90]
G. Fischer, A. Girgensohn, End-User Modifiability in Design Environments,
Human Factors in Computing Systems, CHI’90 Conference Proceedings (Seat-
tle, WA), ACM, New York, April 1990, pp. 183-191.

203

[Fischer, Lemke 88]
G. Fischer, A.C. Lemke, Construction Kits and Design Environments: Steps
Toward Human Problem-Domain Communication, Human-Computer Inter-
action, Vol. 3, No. 3, 1988, pp. 179-222.

[Fischer, Lemke, Mastaglio, Morch 90]
G. Fischer, A. Lemke, T. Mastaglio, A. Morch, Critics: An Emerging Ap-
proach to Knowledge-Based Human Computer Interaction, International Jour-
nal of Man-Machine Studies, 1990, to be published.

[Fischer, Lemke, Nieper-Lemke 88]
G. Fischer, A.C. Lemke, H. Nieper-Lemke, Enhancing Incremental Learning
Processes with Knowledge-Based Systems (Final Project Report), Technical
Report CU-CS-392-88, Department of Computer Science, University of
Colorado, Boulder, CO, March 1988.

[Fischer, Lemke, Schwab 84]
G. Fischer, A.C. Lemke, T. Schwab, Active Help Systems, Readings on Cog-
nitive Ergonomics - Mind and Computers, Proceedings of the 2nd European
Conference (Gmunden, Austria), G.C. van der Veer, M.J. Tauber, T.R.G.
Green, P. Gomy (eds.), Springer-Verlag, Berlin - Heidelberg - New York, Sep-
tember 1984, pp. 116-131.

[Fischer, Lemke, Schwab 85]
G. Fischer, A.C. Lemke, T. Schwab, Knowledge-Based Help Systems, Human
Factors in Computing Systems, CHI’85 Conference Proceedings (San Fran-
cisco, CA), ACM, New York, April 1985, pp. 161-167.

[Fischer, Mastaglio 89]
G. Fischer, T. Mastaglio, Computer-Based Critics, Proceedings of the 22nd
Annual Hawaii Conference on System Sciences, Vol. III: Decision Support
and Knowledge Based Systems Track, IEEE Computer Society, January 1989,
Pp- 427-436.

[Fischer, Mastaglio 90]
G. Fischer, T. Mastaglio, A Conceptual Framework for Knowledge-based
Critic Systems, The International Journal of Decision Support Systems, Vol.
Special Issue on Active, Symbiotic Systems, 1990, to be published.

[Fischer, Mastaglio, Reeves, Rieman 90].
G. Fischer, T. Mastaglio, B. Reeves, J. Rieman, Minimalist Explanations in
Knowledge-Based Systems, Proceedings of the 23rd Hawaii International Con-
ference on System Sciences, Vol III: Decision Support and Knowledge Based
Systems Track, Jay F. Nunamaker, Jr (ed.), IEEE Computer Society, 1990, pp.
309-317.

[Fischer, Mastaglio, Rieman 89]
G. Fischer, T. Mastaglio, J. Rieman, User Modeling in Critics Based on a
Study of Human Experts, Proceedings of the Fourth Annual Rocky Mountain
Conference on Artificial Intelligence, RMSAI, Denver, CO, June 1989, pp.
217-225.

204

[Fischer, McCall, Morch 89a]
G. Fischer, R. McCall, A. Morch, Design Environments for Constructive and
Argumenzative Design, Human Factors in Computing Systems, CHI’89 Con-
ference Proceedings (Austin, TX), ACM, New York, May 1989, pp. 269-275.

[Fischer, McCall, Morch 89b]
G. Fischer, R. McCall, A. Morch, JANUS: Integrating Hypertext with a
Knowledge-Based Design Environment, Proceedings of Hypertext’89, ACM,
New York, November 1989, pp. 105-117.

[Flesch 49]
R. Flesch, The Art of Readable Writing, Harper & Brothers, New York, 1949.

[Forbus 84]
K. Forbus, An Interactive Laboratory for Teaching Control System Concepts,
Report 5511, BBN, Cambridge, MA, 1984.

[Fox 88]
B.A. Fox, Robust learning environments -- the issue of canned text, Technical
Report, Institute of Cognitive Science, University of Colorado, Boulder,
Colorado, 1988.

[Frank, Lynn, Mastaglio 87]
J. Frank, P. Lynn, T. Mastaglio, Using A Critic Methodology as a Computer-
aided Learning Paradigm: extending the concepts, 1987, Final Project Report
for CS659 - Fall Term 1987.

{Friedman 87]
M.P. Friedman, WANDAH - A Computerized Writer’s Aid, in D.E. Berger,
K. Pezdek, W.P. Banks (eds.), Applications of Cognitive Psychology, Problem
Solving, Education and Computing, Lawrence Erlbaum Associates, Hillsdale,
NI, 1987, pp. 219-225, ch. 15.

[Gentner, Stevens 83]
D. Gentner, A L. Stevens (eds.), Mental Models, Lawrence Erlbaum As-
sociates, Hillsdale, NJ, Cognitive Science Series, 1983.

[Glaser, Raghaven, Schauble 88]
R. Glaser, K. Raghavan, L. Schauble, Voltaville: A Discovery Environment to
Explore the Laws of DC Circuits, Proceedings of the International Conference
on Intelligent Tutoring Systems (Montreal, Canada), June 1988, pp. 61-66.

[Goldstein 82]
L.P. Goldstein, The Genetic Graph: A Representation for the Evolution of
Procedural Knowledge, in D.H. Sleeman, J.S. Brown (eds.), Intelligent Tutor-
ing Systems, Academic Press, London - New York, 1982, pp. 51-77, ch. 3.

[Gray 88]
W.D. Gray, PUPS Analysis of LISP (PAL), 1988, Draft Hypercard document
available from author.

205

[Gray, Corbet, VanLehn 88]
W.D. Gray, A.T. Corbett, K. VanLehn, Planning and Implementation Errors
in Algorithm Design, Submitted to 1988 AAAI National Conference, 1988.

[Hansen, Hass 88]
W.J. Hansen, C. Haas, Reading and Writing with Computers: A Frameworks
for Explaining Differences in Performance, Communication of the ACM, Vol.
231, No. 9, September 1988, pp. 1080-1089.

[Hefley 90]
W. Hefley, Architectures for Adaptable Human-Machine Interfaces, in Kar-
wowski, Rahimi (eds.), Ergonomics of Advanced Manufacturing and Hybrid
Automation Systems II, Elsevier, N.Y., 1990, forthcoming.

[Hempel 65]
C.G. Hempel, Aspects of Scientific Explanation and Other Essays in the
Philosophy of Science, The Free Press, New York,, 1965.

[Mlich 73]
L. Mlich, Tools for Conviviality, Harper and Row, New York, 1973.

[Johnson, Soloway 84]
W.L. Johnson, E. Soloway, PROUST: K :.owledge-Based Program
Understanding, Proceedings of the 7th Intemational Conference on Software
Engineering (Orlando, FL), IEEE Computer Society, Los Angeles, CA, March
1984, pp. 369-380.

[Kass 87a]
R. Kass, Implicit Acquisition of User Models in Cooperative Advisory Systems,
Technical Report MIS-CIS-87-05, LINC LAB 49, University of Pennsylvania,
1987.

[Kass 87b]
R. Kass, Modelling User Beliefs for Good Explanations, Technical Report
MIS-CIS-87-77, LINC LAB 82, University of Pennsylvania, 1987.

[Kass 88]
R. Kass, Acquiring ¢ ".>del of the User’s Belief from a Cooperative Advisory
Dialog, Unpublist n.D. Dissertation, University of Pennsylvania, 1988.

{(Kass, Finin 87a}
R. Kass, T. Finin, Rules for the Implicit Acquisition of Knowledge about the
User, 6th National Conference on Artificial Intelligence, AAAI, 1987, pp.
295-300.

[Kass, Finin 87b]}
R. Kass, T. Finin, Modeling the User in Natural Language Systems, Computa-
tional Linguistics, Special Issue on User Modeling, Vol. 14, 1987, pp. 5-22.

[Kass, Finin 88a]
R. Kass, T. Finin, A General User Modelling Facility, CHI *88 Conference

Proceedings, Human Factors in Computing Systems, ACM, 1988, pp. 145-150.

206

[Kass, Finin 88b]
R. Kass, T. Finin, The Need for User Models in Generating Expert System
Explanations, Intemational Journal of Expert Systems, Vol. 4, 1988, pp.
345-37S.

{Kass, Finin 89]
R. Kass, T. Finin, The Role of User Models in Cooperative Interactive
Systems, International Joumal of Intelligent Systems, Vol. 4, 1989, pp. 81-112.

[Kelleher 88]
G. Kelleher, Helping Learning through Explanation and Advice: an overview
of EUROHELP., Artificial Intelligence Tools in Education: Proceedings of the
IFIP TC3 Working Conference, IFIP, 1988, pp. 67-72.

[Kelly 85]
V.E. Kelly, The CRITTER System: Automated Critiquing of Digital Circuit
Designs, Proceedings of the 21st Design Automation Conference, 1985, pp.
419-425S.

[Kennedy etal. 88]
A. Kennedy, A. Wildes, L. Elder, W.S. Murray, Dialogue with Machines, Cog-

nition, Vol. 30, 1988, pp. 37-72.

[Kieras, Polson 85]
D.E. Kieras, P.G. Polson, An Approach to the Formal Analysis of User
Complexity, International Journal of Man-Machine Studies, Vol. 22, 1985, pp.
365-394.

[Kintsch 89]
W. Kintsch, The Representation of Knowledge and the Use of Knowledge in
Discourse Comprehension, in R. Dietrich, C.F. Graumann (eds.), Language
Processing in Social Context, North Holland, Amsterdam, 1989, pp. 185-209,
also published as Technical Report No. 152, Institute of Cognitive Science,
University of Colorado, Boulder, CO.

[Kobsa, Wahister 89]
A. Kobsa, W. Wahlster (eds.), User Models in Dialog Systems, Springer-
Verlag, New York, 1989.

[Langlotz, Shortliffe 83]
C.P. Langlotz, E.H. Shortliffe, Adapting a Consultation System to Critique
User Plans, Int. J. Man-Machine Studies, Vol. 19, 1983, pp. 479-496.

[Lemke 89]
A.C. Lemke, Design Environments for High-Functionality Computer Systems,
Unpublished Ph.D. Dissertation, Department of Computer Science, University
of Colorado, July 1989.

[Lemke 90}
A.C. Lemke, Framer: A Knowledge-Based Design Environment for User In-
terface Design, IEEE Software (Tools Fair Issue), May 1990.

207

[Lenat, Prakash, Shepherd 86]
D. Lenat, M. Prakash, M. Shepherd, CYC': Using Common Sense Knowledge to
Overcome Brittleness and Knowledge Acquisition Bottlenecks, Al Magazine,
Vol. 6, No. 4, Winter 1986, pp. 65-85.

(Lewis 89]
C.H. Lewis, Explanation and Learning in Procedural Skills, Technical Report
CS-CU-436-89, Department of Computer Science, University of Colorado,
Boulder, CO, April 1989.

[London, Clancey 82]
B. London, W.J. Clancey, Plan Recognition Strategies in Student Modeling :
Prediction and Description, Proceedings of AAAI-82, Second National Con-
ference on Artificial Intelligence (Pittsburgh, PA), 1982, pp. 335-338.

[Manheim, Srivastava, Vlahos, Hsu, Jones 90]
M.L. Manheim, S. Srivastava, N. Vlahos, J. Hsu, P. Jones, A Symbiotic DSS
for Production Planning and Scheduling: Issues and Approaches, Proceedings
of the 23rd Annual Hawaii International Conference on System Sciences, Vol
I, J.F. Nunamaker, Jr. (ed.), Jan 1990, pp. 383-390.

[Mastaglio 89]
T. Mastaglio, Computer-based Critiquing: A Foundation for Learning
Environments, Proceedings TITE ’89, 1989 Conference on Technology and In-
novations in Training and Education, March 6-9, 1989, Atlanta, GA, Linda
Wiekhorst (ed.), 1989, pp. 125-136.

[Mastaglio 90a]
T. Mastaglio, Paradigms for Intelligent Learning Environments: Tutoring,
Coaching and Critiquing, Proceedings TITE 90, 1990 Conference on Tech-
nology and Innovations in Training and Education, March 12-16, 1990,
Colorado Springs, CO, 1990, pp. 190-204.

[Mastaglio 90b]
T. Mastaglio, User Modelling in Computer-Based Critics, Proceedings of the
23rd Hawaii Intemational Conference on System Sciences, Vol III: Decision
Support and Knowledge Based Systems Track, Jay F. Nunamaker, Jr (ed.),
IEEE Computer Society, 1990, pp. 403412.

[Mastaglio, Turnbull 87]
T. Mastaglio, W. Tumbull, A Learning Environment for the HP Bobcats, 1987,
Final Project Report for CS614 - Spring Term 1987.

[McCall, Fischer, Morch 89]
R. McCall, G. Fischer, A. Morch, Supporting Reflection-in-Action in the Janus
Design Environment, Proceedings of the CAAD Futures '89 Conference, Har-
vard University, Cambridge, June 1989, Pre-Publication Edition.

208
[Mili 88]
F. Mili, A Framework for a Decision Critic and Advisor, Proceedings of the

21st Hawaii Intemnational Conference on System Sciences, Jan 1988, pp.
381-386.

[Mili, Manheim 88]
F. Mili, M.L. Manheim, And What Did Your DSS Have to Say About That:
Intoduction to the DSS Minitrack on Active and Symbiotic Systems, Proceed-
ings of the 21st Hawaii International Conference on System Sciences, Jan
1988, pp. 1-2.

[Miller 79]
M.L. Miller, A Structured Planning and Debugging Environment for Elemen-
tary Programming, in D.H. Sleeman, J.S. Brown (eds.), International Journal
of Man-Machine Studies, Academic Press, 1979, pp. 79-95.

[Miller 86]
P. Miller, Expert Critiquing Systems: Practice-Based Medical Consultation by
Computer, Springer-Verlag, New York - Bezlin, 1986.

[Moore 87]
J. Moore, Explanations in Expert Systems, Technical Report, USC/Information
Sciences Institute, 9 December 1987.

[Moore 89]
J. Moore, Responding to ‘HUH’ : Answering Vaugely Articulated Follow-up
Questions, Human Factors in Computing Systems, CHI'89 Conference
Proceedings (Austin, TX), ACM, New York, May 1989, pp. 91-96.

[Moran 81]
T.P. Moran, An Applied Psychology of the User, ACM Computing Surveys,
Vol. 13, No. 1, March 1981, pp. 1-31.

[Murray 88]
D. Murray, A Survey of User Cognitive Modelling, Technical Report NPL
Report 92/87, DITC, National Physical Laboratory, Teddinton, Middlesex
TW11 OLW, UK, 1988.

[Murray Benyon 89]
D. Murray, D. Benyon, Models and Designer’ s Tools for Adaptive Systems,
Technical Report, DITC, National Physical Laboratory, Teddinton, Middlesex
TW11 OLW, UK, 1989.

[Neches, Swartout, Moore 85]
R. Neches, W.R. Swartout, J.D. Moore, Enhanced Maintenance and Explana-
tion of Expert Systems Through Explicit Models of Their Development, IEEE
Transactions on Software Engineering, Vol. SE-11, No. 11, November 1985,
pp. 1337-1351.

[Nieper 83]
H. Nieper, KAESTLE: Ein graphischer Editor fuer LISP-Datenstrukturen,
Studienarbeit 347, Institut fuer Informatik, Universitaet Stuttgart, 1983.

209

[Noman 82]
D.A. Nomman, Five Papers on Human-Machine Interaction, CHIP Report 112,
University of California, San Diego, May 1982.

[Norman 86]
D.A. Nomman, Cognitive Engineering, in D.A. Norman, S.W. Draper (eds.),
User Centered System Design, New Perspectives on Human-Computer
Interaction, Lawrence Erlbaum Associates, Hillsdale, NJ, 1986, pp. 31-62, ch.
3.

[Papert 80]
S. Papert, Mindstorms: Children, Computers and Powerful Ideas, Basic Books,

New York, 1980.

[Paris 87]
C.L. Paris, The Use of Explicit User Models in Text Generation: Tailoring to a
User’s Level of Expertise, Unpublished Ph.D. Dissertation, Columbia Univer-
sity, 1987.

[Paris 89]
C.L. Paris, The Use of Explicit User Models in a Generation System for Tailor-
ing Answer to a User's Level of Expertise, in A. Kobsa, W. Wahlster (eds.),
User Models in Dialog Systems, Springer-Verlag, New York, 1989, pp.
200-232.

[Polson, Richardson 88]
M.C. Polson, JJ. Richardson (eds.), Foundations of Intelligent Tutoring
Systems, Lawrence Erlbanm Associates, Hillsdale, NJ, 1988.

[Psotka, Massey, Mutter 88a]
J. Psotka, L.D. Massey, S. Mutter, Intelligent Instructional Design, in
J. Psotka, L.D. Massey, S. Mutter (eds.), Intelligent Tutoring Systems: Lessons
Learned, Lawrence Erlbaum Associates, Hillsdale, NJ , 1988, pp. 113-118.

[Psotka, Massey, Mutter 88b]
J. Psotka, L.D. Massey, S.A. Mutter (eds.), Intelligent Tutoring Systems: Les-
sons Learned, Lawrence Erlbaum Associates, Hillsdale, NJ, 1988.

[Raghaven, Schultz, Glaser, Schanble 90]
K. Raghaven, J. Schultz, R. Glaser, L. Schauble, A Computer Coach for In-
quiry Skills, 1990, draft submission to Intelligent Leaming Environments Jour-
nal.

[Reeves 90]
B. Reeves, Finding and Choosing the Right Object in a Large Hardware Store

-- An Empirical Study of Cooperative Problem Solving among Humans, Tech-
nical Report, Department of Computer Science, University of Colorado,
Boulder, CO, 1990, forthcoming.

[Rennels 87]
G.D. Rennels, A Computational Model of Reasoning from the Clinical
Literature, Springer Verlag, Lecture notes in medical informatics, 1987.

210

[Rennels, Shortiliffe, Stockdale, Miller 89]
G.D. Rennels, E.H. Shortliffe, F.E. Stockdale, P.L. Miller, A Computational
Model of Reasoning from the Clinical Literature, Al Magazine, Vol. 10, No. 1,
Spring 1989, pp. 49-56.

[Rich 79]
E. Rich, Building and Exploiting User Models, Unpublished Ph.D. Disser-
tation, Carnegic-Mellon University, 1979.

[Rich, Waters 88]
C.H. Rich, R.C. Waters, Automatic Programming: Myths and Prospects, Com-
puter, Vol. 21, No. 8, August 1988, pp. 40-51.

[Rich, Waters 90]
C. Rich, R.C. Waters, The Pogrammer’s Apprentice, ACM Press, New York,
1990.

[Riemann, Raghaven, Glaser 88]
P. Riemann, K. Raghaven, R. Glaser, Refract, a Discovery Environment for
Geometrical Optics, Technical Report, Leaming Research & Development
Center, University of Pittsburgh, 1988.

[Sacerdoti 75]
B.D. Sacerdoti, A Structure for Plans and Behavior, Technical Note 109, Stan-
ford Research Institiute, Stanford, CA, 1975.

[Schank 86]
R.G. Schank, Explanation Patterns: Understanding Mechanically and
Creanively, Lawrence Erlbaum Associates, Hillsdale, NJ, 1986.

[Schank, Abelson 77]
R.C. Schank, R.P. Abelson, Scripts, Plans, Goals, and Understanding,
Lawrence Erlbaum Associates, Hillsdale, NJ, 1977.

[Schiff, Kandler 88]
J. Schiff, J. Kandler, Decisionlab: A System Designed for User Coaching in
Managerial Decision Support, Proceedings of the Intemnational Conference on
Intelligent Tutoring Systems (Montreal, Canada), June 1988, pp. 154-161.

[Schmidt, Sridharan, Goodson 78]
C.F. Schmidt, N.S. Sridharan, J.L. Goodson, The Plan Recognition Problem:
An Intersection of Psychology and Artificial Intelligence, Artificial Intel-
ligence, Vol. 11, 1978, pp. 45-83.

[Scott, Clancey, Davis, Shortliffe 84]
A.C. Scott, WJ. Clancey, R. Davis, E.H. Shortliffe, Methods for Generating
Explanations, in B.G. Buchanan, E.H. Shortliffe (eds.), Rule-Based Expert
Systems: The MYCIN Experiments of the Stanford Heuristic Programming
Project, Addison-Wesley Publishing Company, Reading, MA, 1984, pp.
338-362, ch. 18.

211

[Seidel, Weddle 87]
R.J. Seidel, P.D. Weddle, Computer-Based Instruction in Military
Environments, Plenum Press, New York, 1987.

[Simon 81]
H.A. Simon, The Sciences of the Artificial, The MIT Press, Cambridge, MA,
1981.

(Skulley 88]
J. Skulley, The Relationship Between Business and Higher Education: A
Perspective on the 21st Century, CACM, Vol. 32, No. 9, September 1988, pp.
1056-1061.

[Sleeman 83]
D.H. Sleeman, Inferring Student Models for Intelligent Computer-Aided
Instruction, in R.S. Michalski, J.G. Carbonell, T.M. Mitchell (eds.), Machine
Learning: An Artificial Intelligence Approach, Morgan Kaufmann Publishers,
Los Altos, CA, 1983, pp. 483-508, ch. 16.

[Sleeman 84]
D.H. Sleeman, UMFE: A User Modeling Front End Subsystem, Working Paper
HPP-84-12, Heuristic Programming Project, Department of Computer Science,
Stanford University, April 1984.

[Sleeman, Brown 82]
D.H. Sleeman, J.S. Brown (eds.), Intelligent Tutoring Systems, Academic
Press, London - New York, Computer and People Series, 1982.

[Sowa 84]
J.F. Sowa, Conceptual Structures: Information Processing in Mind and
Machine, Addison-Wesley, Reading, MA, 1984.

[Steele 84]
G.L. Steele, Common LISP: The Language, Digital Press, Burlington, MA,
1984.

[Steele 87]
R.L. Steele, An Expert System Application in Semicustom VLSI Design,
Proceedings of the 24th IEEE/ACM Design Automation Conference (Miami
Beach, FL), IEEE Computer Society Press, Los Angeles, CA, 1987, pp.
679-686.

[Steele 88]
R.L. Steele, Cell-Based VLSI Design Advice Using Default Reasoning,
Proceedings of 3rd Annual Rocky Mountain Conference on Al, Rocky Moun-
tain Society for Artificial Intelligence, Denver, CO, 1988, pp. 66-74.

[Strunk, White 57]
W. Strunk, E.B. White, The Elements of Style, Harcourt-Brace, New York,
1957.

212

[Suchman 87]
L.A. Suchman, Plans and Situated Actions, Cambridge University Press, New
York, 1987.

[Sussman 75]
GJ. Sussman, A Computer Model of Skill Acquisition, American Elsevier,
New York, 1975.

[Swartout 81]
W.R. Swartout, Explaining and Justifying Expert Consulting Programs,
Proceedings of the Seventh International Joint Conference on Artificial Intel-
ligence, A. Drinan (ed.), 1981, pp. 815-822.

[Swartout 83]
W.R. Swartout, XPLAIN: A System for Creating and Explaining Expert Con-
sulting Programs, ISI Reprint Series ISI/RS-83-4, Information Sciences In-
stitute, University of Southern California, Marina del Rey, CA, July 1983.

[Teach, Shortliffe 84]
R.L. Teach, E.H. Shortliffe, An Analysis of Physicians’ Attitudes, in B.G.
Buchanan, E.H. Shortliffe (eds.), Rule-Based Expert Systems: The MYCIN Ex-
periments of the Stanford Heuristic Programming Project, Addison-Wesley
Publishing Company, Reading, MA, 1984, pp. 635-652, ch. 34.

[Turban, Watkins 86] _
E. Turban, P.R. Watkins, Integrating Expert Systems and Decision Support
Systems, MIS Quarterly, Vol. , June 1986, pp. 120-136.

[VanLehn 88]
K. VanLehn, Toward a Theory of Impasse-Driven Learning, in H. Mandl,
A. Lesgold (eds.), Learning Issues for Intelligent Tutoring Systems, Springer-
Verlag, New York, 1988, pp. 1941, ch. 2.

[Wahister, Kobsa 88]
W. Wahlster, A. Kobsa, User Models in Dialog Systems, Technical Report 28,
Universitaet des Saarlandes, FB 10 Informatik IV, Sonderforschungsbereich
314, Saarbruecken, FRG, 1988.

{Wallis, Shortliffe 84]
J.W. Wallis, E.H. Shortliffe, Customized Explanations Using Causal
Knowledge, in B.G. Buchanan, E.H. Shortliffe (eds.), Rule-Based Expert Sys-
tems: The MYCIN Experiments of the Stanford Heuristic Programming
Project, Addison-Wesley Publishing Company, Reading, MA, 1984, pp.
371-388, ch. 20".

[Waterman etal. 86]
D.A. Waterman, J. Paul, B. Florman, JR. Kipps, An Explanation Facility for
the ROSIE Knowledge Engineering Language, RAND Corporation, Santa
Monica, Calif., 1986.

213

[Weiss 88]
E.H. Weiss, Breaking the Grip of User Manuals, Asterisk -- Journal of ACM
SIGDOC, Vol. 14, Summer 1988, pp. 4-11.

[Wenger 87]
E. Wenger, Artificial Intelligence and Tutoring Systems, Morgan Kaufmann
Publishers, Los Altos, CA, 1987.

[Wiener 80]
J.L. Wiener, BLAH, A System Which Explains its Reasoning, Artificial Intel-
ligence, Vol. 15, 1980, pp. 19-48.

[Wilensky 84]
R. Wilensky, LISPcraft, W.W. Norton & Company, New York - London,
1984.

[Wilkins, Clancey, Buchanan 88]
D.C. Wilkins, W.J. Clancey, B.G. Buchanan, Using and Evaluating Differen-
tial Modelling in Intelligent Tutoring and Apprentice Learning Systems, in
J. Psotka, L.D. Massey, S. Mutter (eds.), Intelligent Tutoring Systems: Lessons
Learned, Lawrence Eribaum Associates, Hillsdale, NJ , 1988, pp. 257-277.

[Williams 90]
M.D. Williams, The Pragmatics of Knowledge-based Interface Design, Work-
ing Notes of AAAI Spring Symposium Series: Knowledge-Based Human-
Computer Interaction, AAAI, 1990, pp. 132-135. '

[Winograd, Flores 86]
T. Winograd, F. Flores, Understanding Computers and Cognition: A New
Foundation for Design, Ablex Publishing Corporation, Norwood, NJ, 1986.

[Winston, Horn 81]
P.H. Winston, B.K.P. Homn, LISP, Addison-Wesley Publishing Company,
Reading, MA, 1981.

[Wipond, Jones 88]
K. Wipond, M. Jones, Curriculum and Knowledge Representation in a
Knowledge-Based System for Curricuium Development, Proceedings of the In-
ternational Conference on Intelligent Tutoring Systems (Montreal, Canada),
June 1988, pp. 97-102.

[Young, Bamard, Simon, Whittington 89]
R.N. Young, P. Bamard, T. Simon, J. Whittington, How Would Your Favorite
User Model Cope with these Scenarios, SIGCHI Bulletin, Vol. 20, No. 4,
1989, pp. 51-55.

APPENDIX A

USER MODELS REFERENCED IN DISSERTATION

This is a table of the different user modelling systems discussed through-
out the dissertation that provided insight or ideas for this work.

215

wondun swex3ord Bunwwresdord
Rarpat 3 VAP sonnud urewop | uoneaeidxd apind Sombnin aaaidun dSTT | JLnD-dsty
wANskg
SudKyoarns 1oA91 astuadxa sosuodsaz aping Kios1ape dioqisafmaim{ Sonesadg XINND AWONY
so[ru sordoens Sonwurexford
ondun uononpoxd Fuuon 159198 Supom Surures) dST1| ¥oinidsii
nondxs S9N JO noneueydx? sured sandwoo
% yondun gdes8 onoaald 2% OIpe Samgoeos Surarey SNINNM -30SNM
01ApE
ondun so[29 UOnUIAINTY Sumpeod Surorey sonewAew 1sam
woydun s1daouod urewop | uopeweidxo opn3 Souoim uoneuedxd ououd SN
Sopep sjoneq Surpesunod
Jo osred yoydun %% sfeof zosn | uwonesouad N pre Soterp-Kios1ape WIUNSIAT erdouEUy JYAND
SmdGoaras
29 Aronb nogdxo syen A)euosiog sowmpe opmnd Jorerp-Kios1ape $00q 5152330s ameaANy XANN¥D
ADOTOGOHIAN QALNA STIda HSONNd WoIavivd Fsoddnd NIVHNOQ HNVN
NOLISISINDOY NOLLVINNOdNI THAOW ¥HSN WHLSAS WHLSXS NOLLYOI'[dY WHLSAS

UOPELISSIQ Y} U} PIOTAIOY SPPO J36() JO PPSLRIIEIEY)

APPENDIX B

SAMPLE USER MODEL

This appendix shows the final user model at the conclusion of the

scenario presented in Chapter 4:

$<USER-MODEL 542377135> is an instance of class #<Standard-Class USER-MODEL 263574537>:
The following slots have :INSTANCE

SHOW-WHY~-BETTER?
SHOW-EXPLANATION?
SHOW-NEW-CODE?
SHON-OLD-CODE?
PROMPT-RULES
DEFAULT-ACCEPT-RULES
RULES-TURNED-OFY
RULES-EXPLAINED
FUNCTIONS-EXPLAINED
CONCEPTS-EXPLAINED

RULES-FIRED

RULES~KNOWN

FUNCTIONS~KNOWN

CONCEPTS~-KNOWN

NIL
T
NIL
T
NIL
NIL
NIL
(COND-ERASE~PRED.T DEMORTGAN COND-TO-IF-ELSE)
NIL
(LISTS LISP-ATOM FALSE/EMPTY-LIST/NIL TRUE/NON-NIL TESTS
CONDITIONALS PREDICATES)
((COND-ERASE~T.NIL (TIMES-FIRED . 1) (TIMES-ACCEPTED . 1)
(TIMES-REJECTED . 0})
(COMD-ERASE-PRED.T (TIMES-FIRED . 1) (TIMES-ACCEPTED . 1)
(TIMES-REJECTED . 0))
(DE-MORGAN (TIMES-FIRED . 1) (TIMES-ACCEPTED . 1)
{TIMES-REJECTED . 0}))
(COND-TO-IF-ELSE (TIMES-FIRED . 3) (TIMES~-ACCEPTED . 3)
(TIMES-REJECTED . 0)))
({COND~RRASE-T .NIL . D2) (COND~ERASE-PRED.T . D2)
(DE-MORGAN . D2) (COND-TO-IF-ELSE . D1))
((NULL . D2) (NOT . D2) (OR . D2) (AND . D2) (IF . D2}
(COND . D2))
((LOGICAL-FUNCTIONS . D2) (SYMBOLIC-EXPRESSION . D1)
(LISTS . D1) (EVALUATION . D1) (TESTS . D1)
(CONDITIONALS . D1) (PREDICATES . D1)
(INTERNAL-REPRESENTATION . D2) (SIDE-EFFECTS . D2)
(CONS—CELL . D2) (VARIABLES . D1l) (SCOPE . D1)
(LISP-ATOM . D1) (ARGUMENTS . D1) (FALSE/EMPTY-LIST/NIL . D1)
(TRUE/NON-NIL . D1) (FUNCTIONS . D1})

PROGRAMMING ~LANGUAGE-EXPERIENCE

USER-GOAL

TIMES ~LCR-INVOKED
DATE-~LAST-UPDATED
USER-HOME-DIRECTORY
NAME

(PASCAL C)

SIMPLIFY

3

®2/23/90 13:52:271*

#° "MUNCH : >SCENARIO~USER>"
SCENARIO-USER

APPENDIX C
INFERENCE METHODS IN USER MODELLING COMPONENT

This appendix shows some of the code that implements the acquisition
subcomponent of the user modelling component for LISP-CRITIC. The im-
plemented methods to implicitly infer information about the user’s domain
knowledge are shown below.

v DIRECT METECODS

;1:These are the interface functions that othasf system oamponents call to
;i;let the user model know that & User has taken cartain actioms. Tbe.first
;;iaet of functions are the direct methods; thase infer that certain
ii1information should be added to the user modal. Thase functions caa be
;2:viewved as the implemsntation of a ge passing p 1 bet modulss.

{dafun TELL~USERMODEL~RULE-ACCEPTED (rule-name)
$24f & user accepts a rule we infer that they undarstand that rule at the 42 lavel
{add~to~user del *currest: del* rule~name ’d2)
7:ve also add the fact that this rule has fired and was acoespted to rules~fired slot of user acdel
(update~rules-fired-slot rule-nmme ‘acowpted))

{defun TELL~USERMODEL~RULL~REJECTED (rule-nsme)
J14f & user rejects a rule we infer that they understand that rule at the d2 level
{sad-to~user 1 * ruleoname ‘d2)
7iwe also add the fact that this rule has fired and was rejectead to rules~fired slot of user modal
(update~Tulss~fired—slot rule-amme ’'rejected))

{defun TELL~USERMODEL~CONCEPT-EXPLAINED (conoept)
J;after a concept is explained we place that oconcept ia the user model at
;1level d2, unless it iz already pressat, ia that case we upgrade its lewvel to di
Jivhem the oconocept is already knowa at lavel di, we do notiing
(case (odr (assoc oomocept
{concepts~knova *curresat-usermodal®)))
{{nil) (add~to~user-model 8 ’d42))

{‘d2 (add~to-user 1 dal* rd1yy)

-

{pushnew conoept (ccacepts—explained *currest-—wsetmodal®)))

(defun TELL~USERMODEL~FONCTION=-EXFLADNED (fuaction)
sjafter a function is explained we place that function in the user model at
11level d2, unless it is already preseat, ia that case we upgrade its level to dl
jiwhea the functiom is already knows at level dl, we do nothing
{oase {(odr (sssco fuactioa
{fuacticas-xnowa *currsat-usermodslt)))

{(nil) (add~to~user del dal®* funoctioa ’d42))

{(*d2 (add-to~-user-model *curreat-wsermodal* fuadgtioa ‘dl)})
{pushnev function (fumoti lained dele)))

218

{defun TELL~USEFMODEL~RULE~EXPLAINED (ruls)
Jiafter a ruls is explained we place that rule ia the user model at
tileval d2, unless it is alresdy presaat, in that case we upgrais its level to di
Jivhen the rule is alresdy kaown at level dl, we do nothiag
(case (odr (assoc rule
{rules—known tcurreat-usermodel®)))

({nil) (add~to~user del 1* rule ’d4d2))

{d2 (add-to—user del del* rule ’dl)))
{pushnew rule (rules~axplained *curreat-usermodal®)))

(dafun TELL-USERMCDEL~IYPERTEXT-ACCESS (string)
7ifuaction that informs the user model that the user has selactad a mouse
lisensitive object in the coatext of aa explanatioa tO request accass
} jdocumant ezaniner informatios on that object. It acts as a filter to
}jdetermine if the cbject is sametbing that exists is our domaia model; if
71780 the user model is informed that an update is appropriste
{let ((cbject (interm (string—upcase etring))))

(oond
{ (find=-concept-by-name object) s;object is a comocept
{tall. 1 pPL-hypertext-acosss cbject))

{{(fiad-function~by~name object) ;jobject is a fuactioa
{tall-usemodel-functica-hypertaxt-acoess cbject))

{t ail) ;jobject not ia domaia model

) ;1foT now do aothing

(defun TELL~USERNCDEL~CONCEPT-RYPERTEXT-ACCLES (ocanoept)
;11f a user the exaniner documeatatica asssociated with
/ia particular concept then we also add that concept to their user modsl
3sin a similax manner to when the concept is explained directly

{case (odr
{asson ept (ept s-known 1*)))
{(ail) (add~to~user del delt ept. ’d2))
(d2 (asdd-to-user del 1 ocoacept ‘dl))

1]

{defun TELL~USERMODRL-FONCTION-EYPERTEXT-ACCESS (functiom)
;:1ike the previous function but the hypertext access acoass is for a fuactice

{oase (odr
{assos function (functions-known tourrsat-usermodel®)))
{(ail) (add~to—user del 1* fuactiom ‘d2))
(*d2 (add del 1l* functioa ‘dl))

n

(defun TELL~USERMODEL~-RULE~STATUS-CIANGED (rule status)
;34f the user makes use of the capability in the ILC iaterface to specify the
;:defanlt actioca takea for a rule {(e.g., always—exacute, tura-off, prampt) thea
iiwe infer they bave a some understanding of that rule; its level ia
7 1thae sser model is set to d2.
(add~to~user del * del* rule ’d42)
(change~rule-status-for-user *curreat-usezmodsel® ruls :state statms))

(defun TELL-USERMODEL~RULE-COMMENT-ADORED (rula)
;34f the user has samething to say about a rule that they add to the system
J ;documaatation for that rule (using the "add rule commeat® capability in
11381579 intarface), thea we infer that they have a sophistiocated understanding
1i0f that rule; its level in the user model 1is set to d1
{(add~to~user 1 dal* rule ’dl))

219

1133 IMOIRECT METEODS

i1:The second set of methods are the indirect methods. These

31:note changes to the user model and use thst informatiom to

:7:iofer changes to other objects in the user model. They propagate

Jsjany changes through the model by using that changs as o

/17cue and making use of “"dependent-on® links in the damais model.

;1:These mathods are implemented as around methods on updates to the
1171°xnovwledge” slots (rules, functions and oolCepts known) in the user nodsl.

(defmathod (SETT rules—-known) :before (new-rulas-known (user user~model))
;This method implements the notion that any rule vhich a user knows impliaes
;ithat they also s.ow the functions and oconcepts underlying thbat rule, if the
i1lavel of knowladge is "dl® then the knowladge level of both underlying functions
t1and concepts is "d2®; if the rule knowledge level is *d2* thea oaly underlying functions
1:are inferred to be at level *d2”" and nothing is inf about s for now
(let* ((rule—coas (find-update
(rules=known user) new-rules-iknown))
(rule (car rule~aons))
{(level (odr rule-ocoms))
{rale=instance (find-rule=Dy—oame rule))
{functions=1ist (functions rule~instanocs))
{oonocepts—list
(find~all-dep on: pts rule-i)
(new=level ‘d2))
(1f (eoq lewvel "dl)
; robange model to reflect "d2*® knowladge lawvel for oconcepts underlying tiis rule
{dolist (each-concept concepts-list)
{add-to~user 1l *curreat del*
(name each-concapt) new-level)))
;;for both knowledge levels "dl” and "d2" for this rule in the user model
2:set Xnowledge level for underlying functioas to °d2*
{dolist (each-function functions—-list)
{add-to~user-nodel * del* each-function new~level))))

(dafmathod (SEIT funotions-known) :befors (new-functiocas—known (user user-model))
;3This method is similar to the previous one, except it runs after updates to the
?sfunctions known slot in the user model. It implemants indirect msthods that allow
jius to set the knowlaedge level for concepts a givea functiom is dependent on to
13°d1" if the functioa’s knoviedge level has goms to “dl® aad "d2” if the functioca’s
1:knowledge lavel bhas gooes to "d2*

{let* ((funotlon=-cons (find-update
{functions—-known user) new-functions~knowm))
{fun-name (car functioan-cons))
(level (odr function—-cons))
{coacepts-1ist (find-all pend on: apts
(find-functioca~by~nzas fun—nams)))
{pew=lavel (1if (eq level ’dl) ’dl ’d2)})
(dolist (ea opt pts-list)
{asdd—to~user—modal *current-usermodal*
Dame each~concept' new-lewvel))})

(detmethod (SETY P k! { {ne ept.s~kaown (user user-model))
177This method is for ocondepts. It uses the an update to the ®concepts-known® slot in
Jithe user model to infer that depesnd on Pts are also known at the same level

{lst* ({concept-cons (find-update
{concepts~Rnowa user) hew-coacepts—known))
{oomoept (car concept-oons))
{lavel (odr cotcept-~-aoas))
{concepts=list (find-all-depandedt-co~concepts ;71ist of instances
{find-occacept-by=name coacept)))) ;;of these conoepts
(1 (eq lewel ‘d1)
3:if a concept belongs to a user’s "dl® thea its dependant-on apts
::als0 belong in this usex’s “d1*
{dolist (each-concept conoepts-list)
(sdd~to~user-wodel *current-usermodel®
(aame each~comcept) ‘dl))
;iom the other hand if a coacepts balomgs to & user’s °d2" thea we infer taat
7 1depeadent-on CONOCepts are knowa at level “dl® or better ~— conocepts
Jialready in the model at °d2® go to "di1® those abseat sre added at level °d2°®
{dolist (each-comaept ovacepts-list)
(lat ((this-concept (name emch-oonospt)))
(i (oull (bow-well-doas-usar—kaov i+ this opt})
(add~to~user-modal *curreat~usermodal*
this~concept ‘d42)
{add-to=user-modsl *curreat~usermodel*
this-comocapt ‘dl)))))))

220

The following portion of the framework for the acquisition subcom-
ponent is provided so that the other three categories of acquisition techniques (as
described in Section 3-2) could be integrated into the user modelling component.
Methods implemented in this dissertation are those shown above; all are implicit
acquisition methods.

itz STATISTICAL METICDS
;1:7Tbis set of methods uses infommation that the statistical
71lanalysis module accumulates for the user. They use the statistical

;1:data to infer specific changes or additiocans to the usar model.
723These are incomplete and would require a significant effort
;5:"analysing® the statistical information to ses exactly what
7137inference it should trigger.

{(dafua FUNCTION-USED (functiom) (ignore fumctiom))

1112 TUTCRING METECDS

31:7This set of methods is the interface with a tutoring ocomponeat
;3ifor updating the model coantents. Subjects on which the user
;1:bas Teceived specific tutoring episodas either at their request
77;0rC as the result of suggestions from LISP-Critic will be used
;731to infer knowledge levels in the user model

(dafun TELL~OSER-MODEL-COMCEPT-TUTORED (concept) (ignore comoept)
J:any concept on which a user bas beem tutored will be set to level ‘d2
)

{dafun TELL~-USER-MODEL~-TUNCTIN-TUTORED (function) (igmnore functiom)
Jjany function on which a user bas been tutored will be set to level ‘d2
)

2i: EXPLICIT METHCDS

21)This set of methods uses axplicit aocquisition techniques to either
137establish am initial user model or to intersctively query the user
11ivban the system needs additional information or clarification
/3iTegarding the kaowladge state of the user.

{dafun ASK~USER~ABOUT-TERIR-EXNOWLEDGE ()
ji1set of interactive queriss that questioa usar about their expertise
)

APPENDIX D

ACCESS METHODS IN THE USER MODELLING COMPONENT

This appendix shows the set of access functions that are available for the
user modelling component itself as well as for other system components to ‘‘inter-
rogate’’ the contents of model instances. The scheme for implementing access is
to provide general accessor functions to other system components which when
called cause the user modelling component to invoke the appropriate CLOS method
on the user model instance representing the programmer presently using the sys-
tem — that instance is bound to the global variable *cwrrent-usermodel*.

1212 TUNDAMENTAL METRODS

3333 Methods that are used to acoess the user modal by othar system
i3 P ts and p . These are samstimes referred to as-
23:1; the uniformed methods -- they contain oo knowledge about- bow
1111 to modify or update tha user wmodel.

(defnethod WEICR-DOES~USER-KNOW? ((user usez—model). lisp-objects)
17 Returns a list of those ocomcepts, rules or functicas that a user knows
;3 that are in the argumant list “lisp~objescts®
(ocond

{ (find~concept-by~name (oar lisp-cbjects))
{intersection lisp-objects (extract~names.
(concepts~known user))))
{ (find=functicn-by-name (car lisp-cbjects))
{intarsection lisp-objects (extract~nsmes
(funotions=known user))))
{t (intersectioca lisp—chjects (extract-names
(rules=known user))))))

(defmethod WEICE-DOES-USER-NOT-KNOW? ((user user-model) lisp-objects)
s;Returns & list of those conoepts, rules, or fumnoticas that s user DORS NOT KNOW
7:that are in the argument list "lisp-ubjecta®
{ooad

{ {(find—oconcept-Dy-name (car lisp—objects))
{set=difference lisp-objects (extract-names
(concepts-knowa usar))))
((fiad=function-Dy-name (car lisp—abjects))
(set-difference lisp~cbjects (extract-names
{funotioas-knowa user))))
{t (set-difference lisp~cbjects (axtract-nanes
(rules~known user))))))

222

(defmathod WRICE-DORS-USER-MOT-KNOW-WELL? ((user user-model) lisp—abjects)
;JFrom the argumaat list, lisp-objects, this methods returns any concept, fuactiom or
storitic rule that the user dosa not kaow at level dl1
{coad
{ (find—-ccacept-by-name (car lisp-objects))
(mapoan ¢’ (lambda {oconoept)
{(unless (eq (how-wall-doss-user-know * - odel * ept) ‘dl)
(1ist oomoept)))
lisp-cbjects))
{(tind-function-by-name (car lisp~objects))
{mapoan #’ (lambda (functioms)
(unless (eq (bow~wall-dose-user—know *curreat-usermodel*® fumctiom) ‘dl)
{1ist functioa)))
1isp-obiects))
(t (mapcan ¢’ (Lambda (lor—-rule)
(unlass (eq (how-well-does—user-knov *curreat-usermcdsl*® lor-ruls) ‘dl)
(1ist loxr-rule)))
lisp~obiects))

”

{dafun TOPICS~USER-DOES~-NOT-KNOW (list-of-topies)
2:TFiltezs the topics {oconocepts) in list-of-topics through the user model and
Jiveturns those the user does not know at all
{vhloh-doss-user~not-know? *ourrsat-usemodel® list-of-topics))

{dafun EXTRACT-MAMES (a-list)
;18lots in usermodel: conoepts, functiocns, and ruleas~known are a~lists; this function extrasots
ti3the names (car of each item) from that list so comparisom opersticas caa de performed
{(mapoar ‘ocar a-list))

(defun BROW-WELL-DORS~USIR-KMOW-TAESE (objects-list)
jjacoepts a list of Liw~-OBJECTS, determines if each oae is in the usermodel and at vhat level
;ithe user knows the objact. returns three lists: objects known at levels 40, dl and d2.
(let ((d1l-list =nil)
(d2=-14ist ail)
(d0-1ist nil))
(dolist (object objects-list)
{case (bhow-vell-doss-user—know fcuzrreat-usermodal® object)
(41 (push object di-1ist))
{42 (push object d2~-list))
{80 (push object d0-1ist))))
(List (list ’d0 dO-1list) (list ’d2 d2-1list) (list 'dl dAl-1ist))))

{detaethod BOW-WELL~-DOES~USER-KNOW ({user user-modal) lisp~object-name)
23returns the °d" lawvel of the argumeant “lisp~object®
{cond
((odr (assoc lisp—cbject-name (concepts—knows user))})
{{odr (assoc lisp—cbject-name (functioms-known user))))
{{odr (assoc lisp—object-name (rules—known user))))
(t 7d0))) :3%40° means not known at all

{datmethod ADD-TO-USER-MODEL ((user user-model) lisp-ocbject level)
17 Mds argumeat lisp-cbject to appropriate slot in this individuals user modal
{oond
{ (find=concept-by-name lisp—cbject) ;1thia is a LISP coscept
714f a new concept for this user them add it to the concepta-known slot in the user modal
(1f (null (assos lisp-cbject (concepts-knowa user)))
{setf {comoepts—-knows user)
{ascons lisp~cbject level (comcepts~known user)))
;1else replace the curreat level with the new lewval ~ do this even if they are the same
{unless (eq 'Al (odr (assoo lisp-object (Conospts—-knowa user))))
{rplacd (assoc lisp-cbiect (concepts-knowa user)) lewvel)))
)
{ {find-funct ica=by-neme lisp~object) :sthia is a LISP functiom
734 a nev functiocas for this user, add it to fuacticas~knows slot in the usexr modal
{12 (null (mssou lisp~object (fuactioms—known user)))
{setf (functioas=knowa user)
(acons lisp~cbject level (fuactiocas-known user)))
1jelse replace the current lewel vwith the new level - do this evem if they are the same
{unless (eq ‘dl (adr (assoc lisp—cbject (fuactiocms-knowa user))))
(rplacd (assoa lisp-object (fuactiocas-knowam user)) level)))

[;idafault csse - its a rule
113f » new rule for this user, add it to rules-knowa slot ian the user model
(if (aull (asscc lisp~object (rules—known user)))

(setf (rules-known user)

(acons lisp-cbject level (rules-known user)))
jjelse replace the currea. lavel vitd the nev level - do tdis even if they are the same
{(unless (eq ‘dl (odr (assoc lisp-abject (rules—known user))))
(rplacd (assoc lisp-object (rules-known user)) level)))

)
))

(defmethod ALREADY-ZXPLAINED? ((user user-model) lisp-cbject-name)
77 Returns true if the argument ®lisp—cbject® has beea explaimed to tbhe user
22 in the past othervise returas nil
{oond

{ {(fAnd=concept.-Dy-namne lisp~ocbject-name)

(member lisp-ocbject~name (concepts—-explained user)))
{{find~function-by-name lisp—object-name)

(mamber iisp-object-nsme (functions—explained user)))
{t

{(membar lisp-cbiect-name (rulses-explained user)))
»n

{(dafaetbod CRANGE-~RULE-STATUS-FOR-USER ((user user-model) rule ikey state)
;3 Changes the state of the argumeat “rule® depsnding on the value of argument ®stata®
3: by updating the appropriate slots =— probably should be using a single slot with an a~list
{oase state

{tslways=acoept
37 apable this rule by removing it from the list of rules turned off or prampted for
(1 (Dot b ule (default pt-rules user)))

(push rule (derfault-agoept-rules userj))
{setf (rules~disabled user)
{delste rule (rules—-disabled user)))
(setf (prompt-me—rules user)
{delete rule (prompt-me—rules userx))))
{talways-reject
;1 disable this rule, add it to the list of rules turned off, remove it fram others
{1f (not (mamber rule (rules~disabled user)))
;ibut only if it is not already thexe
{push ruls (rules-disabled user)))
{setf (prompt-me~rules user)
{dalete rule (prampt-me-tules user)))
{setf (dafault~acoept-tules user)
{dalete rule (default-scoept-rules user})))

{iprompt-me
77add this rule to list of those vhich systam will ask the user abouwt
{1 (pot rule capt-me—-rules user)))

sibut omly if it is not slready on that list
{pusk rule (prompt-me—rulee user)))
{setf (rules~disabled user)
({delete rule (rules-disabled user)))
{setf (defaulit-acoept~rTules user)
{(delete rule (default—-accept-~rules user))))
»

3332 Methods that provide a persisteat capability to the user mcdelliag
3111 oompooent. These allov the user modsl to be saved to and

71113 retrieved from a fille so that it can be reused and iteratively
::3; enbanced during subsequast uses of LISP-Critria.

{defmethod SAVE-OBJECT ((self save~mixin) (optional stream)
22imethod on the mixin class to save an individual model to a file that caa
23;08m Do loaded during tha aext sessica with the system. This actually wvorks
173:by creating code and putting it into that file so that vhem the file is loaded
1374t will maks an instance of the user model in the local eavircameat. That
71:4instance coutains the informatiom about the user bullt-up over time.
{let ((initargs nil)
(othaz~iaits nil)
{class (olass—of self)))
(with~slots (name) self
{dolist (slot (poliiclass~=slats class))
{lat ({slot-name (pol:islotd-name slot)))
{vhea (slot-bDoundp self slot-name)
(let ((value (slot-valwe self slot-name))
(initarg (oaxr (peliislotd~initargs slot))))
{Af iaitarg
(setf initargs ‘(’,iaitarg ’,value . ,initargs))

223

224

(push (list slot-name wvalus) other-inits))))))

{priat ‘(setf (get ‘,name ’iastance)
;1 (type—of self) doess not woxrk proparly ia rCL
75 use (olass-name {alass~of self)) iastesad
(make~instance ’, (class-name class)

($iaitarge))
stream)
(dolist (init other-inits)
{print ‘{setf (slot-value (get ’,name ’instance) ’, (first iai%))
*, (second init))
stream)))))

(defmethod SAVE-USERMODEL~-TO-FILE ((user user-model))
13 save an image of the uUser’s model in his directory so that it caa be used the

73 taxt time that LISP=Critia is 4 ked == impl the persistent user model
{(let ((*package* (find-package 'tums)))
{with=open~file (stream (merge-path {user—directory user) “szlo 1.lisp)

idirection :output

1if-does~not-exist :creates)
{format stream ";;; =*= Mode: LISP; Syntax: Commca~Lisp; Base: 10; Package: TUMS -2=5)
{save~cbject user stream))))

{defun LOAD~-USER-MODEL~FROM-FILE ()
23 retrisves from the user’s Symbolics home directory his user model for use by LISP Critric
{load (merge—pathnames (fs:user~homedir) ®zle 1.lisp)
1if-doas~-not~exist nil))

(defun CREATE-NEW-USER~NCOEL ()
:; use this funotion to instantiate a new user model whea one does not already exist
77 it can be expanded to use either s standard dafenlt modal for all new users or to
72 initiate explicit aoquisitiom by asking the users questicans in order to classify bhim or
77 her into a stereotype to use as a starting poiat == for now we will use an iaitial
;7 default modal tdat is empty
(setf *curreat-usermodel* (make—-instance ‘user-wmodel)))

{defun ACTIVATE~USER-MODEL ()

77 This funoctioa 1is provided to the main critic angine to eitbar retrieve a user model
72 from a file for this user (ons that was creatad during previous interactioms with
}i the system) or create a default for a first time user.
{if (null (load~user-model-from-file))

(del)

(setf *curreat-usermodal*

(get (intera
{string-upcase 3liuser—id) ‘tums) ‘instance))))

(defun TELL~USERMODEL~CRIZTIQUET~SESSIOM-COMPLETE ()
;17 Iaterface functiom that is used to inform tie usermodel that the critiquing ocomponeat
1; has just oompleted a session with the user and certain "olean=-up® processes can be rua
(inof (times—-in d 1¢})
(setf (date—updated *ourrent-usermodel®)
{time:print-current-tine nil))
(lst* ((zlo-window (dw::find-program—-window ‘zlc::zlo~frame :selected~ok t))
{(progran (sclisend zloc-window :progzrsm)))
(satf (show-old~code? *current-usermodel?)
{slot1zlo-frame~show-old-ocode? program))
{setf (sbow-new-code? *current-usermodel*)
{3loi:xlo~frame~show-nev-code? program))
(setf (show-explanation? *curreat-usermodel®)
{slo::xlo=frane-show-explanation? program)))
(save~ l-to~file *curreat 1))

Name:

APPENDIX E

QUESTIONNAIRE ON LISP

1. Which programming languages are you familiar with?
2. In which of the above language are you the most proficient?
3. Please provide the following information about previous ex-

perience with LISP:

a. Number of LISP programs you have written:
b. Approximate lines of LISP code written (circle answer):

e None

¢ 10-100

¢ 100-1000

¢ 1000-10,000
e over 10,000

c. Previous formal LISP instruction (circle those that apply):

¢ Took a short course on LISP.

e Introduced to LISP in a Programming Language
Course

¢ Have had LISP as part of an Al course

¢ Received individual tutoring on LISP

e Other:

d. Any Self Directed instruction on LISP:

e Computer-based instruction
¢ Books used on my own to study LISP (which ones)

4. How much do you know about the following LISP concepts?

1=could define
2= am familiar with
3= never heard of it

Symbolic Expression
Functions

Variables

Scoping

Lists

Recursions

Cons cell

Evaluation

Nil

Quote
Conditionals

Side effects
Property Lists
Mapping
Multi-value return
List iteration

True (non-nil)
Atom

S. How much do you know about the following LISP functions?

1= could probably write a correct expression using the function,
2= am aware this function exists but need help with its syntax
3= have heard of the function but not sure what it does

4= never heard of the function before

COND
DO
DEFUN
MAPCAR
LET
EVAL
MEMBER
SYMBOLP
CAR
NTH
CONS
LIST
NCONC
APPEND

PRINT

LAMBDA
APPLY
FORMAT
EQUAL

NCONC
SETF
LET*
CASE

ELT
ASSOC

PROG
STRING

226

INDEX

Acquisition methods 100

ACTIVIST 37

Adaptation 31

Advisory-dialog systems 50, 182

Analogy, as explanation approach
116

Analytical critiquing 29

Argumentation 117

ATTENDING system 34

Bug models of students 47

CAI 16, 186

Canned text 109, 124

Classification approaches 53

Coaching 14,17, 33

CODE IMPROVER 65

Collaborative problem solving in
humans 10, 175

Common LISP Objects System. 95

Communications breakdowns 8

Computer advisors 26

Concept-set, used for explanations
118

Conceptual graphs 94

Conceptual structuring of domain
88

Constituency scheme 115

Constraints 26

Cooperative problem solving 2,4, 6,
11, 14, 22, 49, 64, 107, 192

Correlation of user model contents
166, 167

Critics 21

Critics, as leaming environments 15

Critics, as used in planning systems
26

Critics, educational 30

Critics, performance 30
Critiquing 24, 109, 183, 190

Critiquing process 27
Critiquing strategies 29
CRITTER 35

Decision making in critics 36
Decision making, knowledge-based
support of 6
Decision support systems 4, 37
DecisionLab 36
Deep domain models 116
Dependent-on relationship 90
Design Advisor 35
Dialog 3, 8, 19, 49, 133, 146
Differential critiquing 29
Differential descriptions 120
Differential modelling 34, 44
Direct acquisition 52, 180
Direct methods 139, 145, 146
Discourse comprehension 112
Distributed user modelling 185
Document Examiner 105, 110
Domain model 78, 87, 133, 152,
186, 191
Domain model entities 92
Domain model relationships 92
Domain model, layers in 96

EES 101,113

Emotional impact of critics 30

Evaluation of user model 156

Evaluation test scenarios 159

Expert systems 5,6

Explanation component 98

Explanation in knowledge-based sys-
tems 112

Explanation levels 118, 119, 192

Explanation, meanings of 106
Explanation, role of in leaming 19
Explanation-giving 88
Explanations as cognitive represen-
tations 106
Explanations in LISP-Critic 68
Explanations, failures of 110
Explanations, functions for 108
Explanations, need for in critics 32
Explanations, presentation of 119
Explicit user model acquisition 59,
176
Exploratory leaming 16

Fall-back capability 113

Generic task methodology 116
Genetic graphs 45, 59

Goal and plan recognition 8, 48
Goal recognition, in critics 27
GRACE 38

Groupings, in domain model 91, 93
GRUNDY 48,214

Guided discovery leamning 33
GUIDON 69

GUMAC 214

Hypertext 125, 147

IBIS 117

Implicature rules 48, 146

Implicit user model acquisition 60,
179, 194

Increasingly complex microworlds

Indirect acquisition 52, 180

Indirect methods 139, 145, 149, 152

Inferencing methods 52, 130

Information retrieval 5

Intelligent tutoring systems 12, 14,
17

Intervention strategies in critics 31
Intrusiveness, in critics 30

KATE 39
KNOME 49, 214
Knowledge representation 47

228

Learning environments 12, 14, 16,
23

Leaming on demand 16, 17

Levels of user knowledge 53, 136

LISP concepts 89, 90, 99

LISP domain model 91

LISP language, as represented in
domain model 89

LISP Tutor 63, 214

LISP-Critic 63

LISP-Critic rules, in domain model
92

LISP-Critic system architecture 73

LISP-Critic, scenario for 76

LISP-Critic, versions of 66

Medical applications for critics 34
Mental models 92, 106
Minimalist explanation 111, 123
Modes of critics 31

MYCIN 68, 101, 103

Natural communications 8§

Object-oriented user model represen-
tation 133

ONCOCIN 34

Overlay models 59, 132

Prerequisite knowledge 89, 119,
149, 151

Problem space limitations of ICAI
systems 47

Process trace 115

Programmer’s Apprentice 63

PROLOG Explaining 38

PROUST 39, 48

Psychological models 42

Qualitative student models 46
Questionnaires, used in evaluation
158

Reactive approach to explanation
113

Related-concepts relationship 91

Relationships between concepts in
domain model 90

Rhetoric, theory of 112
ROUNDSMAN 35
Rule-tracing 103, 122, 124

Shared user models 187

Simulation, in computer-based leam-
ing 12,13,19

Situated action 150

Situated actions 9, 18

Statistical acquisition methods 61,
71

Statistical acquistion methods 178

Stereotyping 48, 53, 132

Student models 44, 181

Symbiotic systems 4

System adaptivity 57

Task-oriented impasses 107

Tutoring 109

Tutoring methods for user model ac-
quisition 60, 177

UMFE 214

UNIX Consultant 49

Update techniques 175

User model access 153

User model acquisition 59, 145

User model acquistion, conceptual
framework for 173

User model representation 58

User mode! representation as graph
coloring 137,138,171

User model representation in LISP-
Critic 131, 135

User modelling component 100, 191

User modelling component architec-
ture 57

User modelling component architec-
ture in LISP-Critic 134

User modelling component, in LISP-
Critic 193

User modelling component,
shortcomings of 169

User modelling in cooperative
problem solving 51

User modelling shell 48

User modelling, general approaches
to 54

User modelling, research overview
43

User modelling, theory of 197

User models in advisory-dialog sys-
tems 48

User models in cooperative problem
solving 56

User models used for explanation
120

User models, access to 61

User models, arguments against 42

User models, use of term in human-
computer interaction 41

WANDAH 37
WEST 33,4214
WLISP 67
WUSOR 45, 214

229

