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e" Ada Tasking Performance Issues -Final Report

1. Introduction

Ts document reports on the findings of the task titled "Ada Tasking Performance Issues".

The work was sponsored by the U.S. Army HQ CECOM, Center for Software Engineering,

Ft. Monmouth, NJ, through the U.S. Army Research Office, Scientific Services Program.

The objectives of this task were to determine, for both uni-processor and distributed

real-time applications, the sufficiency of the Ada tasking model in relation to the

performance needed and to recommend ways of improving the efficiency of the Ada tasking

model to obtain the needed performance.'
/

1.1 Project Scope . -

The project scope was as follows:

1) Determine the performance issues involved with using the Ada tasking model for

uni-processor applications,

2) Determine the performance issues involved with using the Ada tasking model for

distributed applications'-J

3) Analyze the strengths and weaknesses of the Ada tasking model and recommend

methods to overcome any lack of performance

4) Determine how to best utilize the Ada tasking model for both uni-processor and

distributed applicationsj ,, p>

5) Propose experiments to test the conclusions reached in this research.

1.2 Report Organization

The report is organized as follows:

The "Approach" taken to this task is described in section 2.0.
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Section 3.0 begins the "Technical Discussion". It begins with background and

definition material (section 3.1), which may be read as necessary or skipped entirely.

Section 3.2 describes the "Performance Issues in a Uni-processor Application" and

provides a taxonomy of the tasking services for a uni-processor application. It reports

on example instruction counts for each tasking service for the studied runtimes.

Section 3.3 describes the "Performance Issues in a Distributed Application" and

expands on the taxonomy of section 32 to provide a taxonomy of the tasking services

for a for a distributed system.

Section 3.4 describes the "Strengths & Weaknesses of the Ada Tasking Model" and

describes several optimizations which could be used with an evaluation of each one.

Section 3.5 describes the "Best Utilization of the Ada Tasking Model for

Uni-Processor Applications".

Section 3.6 describes the "Best Utilization of the Ada Tasking Model for Distributed

Applications".

Section 4.0 provides a "Summary of the Results, Recommendations and Conclusions"

reached in this report.

Section 5.0 describes "Further Experiments" which could be undertaken to test the

conclusions of this report.

Section 6.0 lists the "References" used in this report.

Appendix A is a description of the "Ada Tasking Model" and can be consulted as

necessary.
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2. Approach

The approach taken for the steps outlined in the project scope (section 1.1) is detailed

below.

A taxonomy of processes required to implement the semantics of the Ada tasking model for

a uni-processor application was produced. A description of what is entailed with each

component of the taxonomy is provided. A runtime was selected and studied to assess the

execution time expended (typical case) for each of the elements of the taxonomy. These

execution times were compared against the corresponding execution time for what is

considered (by experienced users) to be a high performance runtime.

The taxonomy produced above was then extended to include the processes required to

implement distributed rendezvous. Special attention must be taken to isolate

communication overhead due to software protocols, hardware delays, and Ada semantics.

Issues such as reliable communication, hardware message acknowledgement, and shared

network resources are discussed.

The strengths of the Ada tasking model are interspersed throughout the document where

relevant. The weaknesses of the Ada tasking model are discussed in detail in section 3.4. A

discussion and evaluation of Optimization Techniques is presented there.

Finally, a discussion of how to best utilize the Ada tasking model for both uni-processor and

distributed applications is presented.

A method for evaluating the conclusions reached in this report is described in section 5.0,

along with a test environment and appropriate benchmarks to assess the capabilities and

relative merit of the recommended solution.
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3. Technical Discussion

3.1 Background Definitions

3.1.1 Concurrency

This section introduces the fundamentals of concurrency, including common methods of

supporting it in programming languages.

A task is a program unit that may run simultaneously with other program units. Execution

of a program containing two or more tasks can be physically concurrent or logically

concurrent. Physically concurrent means that each task runs on its own processor. Each

task is said to have its own distinct thread of controL (Programs that do not contain tasks

are sequential, and have a single thread of controL) Logically concurrent means that there

are fewer processors than tasks, and programs are executed by means of some form of

processor sharing, such as time slicing. The threads of control of these tasks are interleaved.

In most of this paper, there is no distinction between logical and physical concurrency.

When the distinction is required, it is clearly stated. A disjoint task is one that carries out its

execution without interaction with any other program units. The only language support

mechanisms required of a disjoint task are those to specify its computation, initiate that

computation, and terminate execution. Few of the valuable applications of concurrent

programming are able to use only disjoint tasks. When tasks must interact with other tasks,

the required support mechanisms, both in the language design and in the runtime system,

are complex.
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3.1.2 Task Interaction

Task interaction can take two different forms, data communication and synchronization.

Data communication among tasks can be accomplished by two methods, shared variables

and message passing. Message passing can also be used as a form of synchronization.

Synchronization interaction between two tasks is usually required for data communication,

but is also required in situations where no data is shared. In simple terms, synchronization

means that the two synchronizing tasks must be at particular respective spots in their

executions at the same point in time. To achieve synchronization, the task that reaches its

synchronization point first must wait there for the other task to arrive at its corresponding

synchronization point. Generally speaking, synchronization is required if two or more tasks

are to work together toward a common computational goal.

3.1.2.1 Data Communication

3.1.2.1.1 Shared Variables

Shared variables provide an indirect method of communication among tasks. These

variables reside in a program unit outside the tasks that wish to share the data. All

communication is through the outside program unit, which is usually another task. At this

point, a classical and yet common problem for tasks, the producer-consumer problem, is

introduced. It is solved by use of a shared storage area called a buffer. Two tasks, the

producer and the consumer, must access the buffer. The producer places data in the buffer

and the consumer removes data from the buffer. The buffer is usually implemented as a

data structure consisting of a circular queue, a variable for the number of filled positions in

the buffer, and includes indices to the next empty position and the position from which the

next element to be removed should be taken. While the simple case of a single producer
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and a single consumer is often considered, all of the following discussion applies to the more

general problem of multiple producers and multiple consumers all sharing the same data

buffer.

To illustrate one form of synchronization required between a producer and a consumer,

suppose that both are simultaneously accessing the buffer. Suppose further that the

producer is slightly ahead of the consumer, and has already placed its data in the buffer and

is in the process of incrementing the variable that records the number of elements currently

in the buffer. Assume the name of this variable is FILLED. Suppose that the process, at the

machine level, of incrementing FILLED is to fetch the value from its memory location and

place it in a register, add one to the register's value, and place the new value back in

memory. Suppose that the value of FILLED has been fetched from memory into the

register by the producer, and at that point in time the consumer task begins its process of

decrementing FILLED. It, of course, first fetches the value from the memory location of

FILLED, which at that time is the same value that was fetched by the producer task. Both

tasks continue their computation of FILLED, with the consumer's value being the last stored

in FILLED. Because both began with the same value, the resulting value is one less than

the original value (before either modified it). The correct value is the same as the original,

so an error has occurred. This error is due to a lack of competition synchronization. The two

tasks compete for access to the shared variable, FI.LED, and these accesses must be

synchronized. Competition synchronization is provided by forcing mutually exclusive access

to shared data, usually by some form of locks or guards on the shared data. A second kind of

error can occur with the shared buffer. This is a simple matter of buffer overflow or

underflow. These are errors due to the lack of cooperation synchronization. The producer

task must be prevented from inserting a value into a full buffer, and the consumer task must

be prevented from removing a value from an empty buffer. Cooperation synchronization is
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provided by some form of guard, which prevents access to shared data by tasks that would

destroy the integrity of the data. Note that cooperation synchronization is a problem that is

not limited to concurrent programs.

3.1.2.1.2 Message Passing

Message passing is a direct, explicit form of data communication. Data is transmitted

directly from one task to another, or possibly in both directions. No intermediate program

unit is needed. A different kind of synchronization is required for a task to send another

task a message. This synchronization is explained in Section 3.1.22.3. Message passing is

clearly a more natural method than data sharing when the tasks are distributed over a

network of processors that do not share memory. On the other hand, message passing

requires more runtime overhead than data sharing, although both methods require

synchronization among the involved tasks.

3.1.2.2 Methods of Providing Synchronization

There are three distinct methods of providing the kinds of synchronization required for the

effective use of concurrency: semaphores, monitors, and message passing. Message passing,

therefore, is a process that can provide both data communication and synchronization

among tasks.

3.1.2.2.1 Semaphores

Semaphores were developed by Dijkstra (1968) as a method of providing both competition

and cooperation synchronization. They are primitive devices consisting of a non-negative

integer and a queue capable of storing task identifiers. Semaphores are abstract data types

that can be changed only by two predefined operations, WAIT and SIGNAL (WAIT was
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originally called P after a Dutch word, and SIGNAL was similarly called V. Some people

use the name SEND instead of SIGNAL) Assuming semaphore variables are defined as

records with the fields COUNT and QUEUE, the operations of WAIT and SIGNAL can be

defined as:

WAIT (SEN) : If SEN.CUNT > 0 then
SEN.COUNT : SEMCGUNT - I

else suspe l Wier ad place It in SENA.tEUE
and if

SIGNAL (S1N) : if SEN.QUEUE is empty then
SEN.C NUT :* SEN.COINT + I

else move a process frm SE0.OIUE to ready
end if

Note that "ready" in the SIGNAL definition means the queue of tasks that are available for

execution when a processor becomes available. Semaphores can be used to provide both

competition and cooperation synchronization for the shared buffer of the

producer-consumer problem. Let the producer use a routine named INSERT to place its

data in the buffer and let the consumer use a routine named REMOVE to remove data.

The calls to INSERT and REMOVE must be synchronized, as they provide the access to the

shared buffer. These calls are called the critical regions of the producer and consumer tasks.

Three semaphores can be used to protect the critical regions: ACCESS, to provide mutually

exclusive access for competition synchronization; FULLSPOTS, to guard against underflow;

EMPTYSPOTS, to guard against overflow. For example, in the producer task access to the

buffer couldappear as:

MIT CEPTYISPOS); -- mit for en aty spot in buffer
wAIT (ACCISS); -- wit for estelsve access to the buffer

INSERT (OATA); -- go ahead with the acces
SIGNAL (ACCESS); -- retlem controt of the buffer
SIGNAL (FULLSPOTS); -- increase the nimer of futt spots
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Note the two distinct uses of semaphores here. EMPTYSPOTS is used to count the empty

spots in the buffer and also to delay the producer when there are no empty spots available.

This provides cooperation synchronization. ACCESS, on the other hand, is used to provide

niutually exclusive access to the buffer. Its counter counts the number of waiting tasks,

rather than a parameter of the buffer. Semaphores are an adequate method of supporting

concurrency. However, they are low-level devices that can be easily misused in ways that

neither the compiler nor the runtime system can detect. For example, if the user simply

forgets to include the SIGNAL(ACCESS) statement in the above code, no further access to

the buffer will occur. This is deadlock caused by the failure of competition synchronization.

3.1.2.2.2 Monitors

A monitor is a syntactic device to encapsulate the accesses to a shared data structure. A

monitor is, in fact, an abstract data type whose objects are to be shared by tasks. A monitor

for the shared buffer of the producer-consumer problem would contain the buffer as local

data, along with the INSERT and REMOVE procedures for accessing the buffer. The key

point of the semantics of a monitor is that the procedures contained in the monitor are, by

definition, executed in mutual exclusion. The implementation is required to provide this

mutually exclusive execution. Therefore, the user need not be concerned with competition

synchronization when using a monitor to control access to shared data. This is far more

convenient and clearly more reliable than using semaphores. Use of a monitor for the

shared buffer of the producer-consumer still requires user action to provide cooperation

synchronization. Rather than semaphores, languages that provide monitors, such as

Concurrent Pascal (Brinch Hansen, 1975), also provide operations for cooperation

synchronization. In Concurrent Pascal, these are called delay and continue, which block and

release the execution of the tasks which call them. For example, delay (clientq) suspends
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the calling task and places it in a task queue named clientq, which is used to store waiting

client tasks. The critical region of the entry procedure has the form:

If buffer Is futL then

delay (elientq);
end if;
-- put the date iti in the buffer
continue (serverq); -- aLLow a server task to run

In this code, serverq is a queue for storing waiting server tasks. As stated above, monitors

are more reliable than semaphores, because of the implicit mutual exclusion. That is only

half of the need for semaphores in synchronizing access to shared data, however, and a

language with monitors still requires the use of some sort of guards to provide cooperation

synchronization. In the case of Concurrent Pascal, these guards are very similar to

semaphores, and share their reliability problems. Monitors first appeared in the literature in

the early 1970s (Brinch Hansen, 1973).

3.122.3 Message Passing

Message passing as a technique for supporting concurrent programs originated in papers by

Brinch Hansen (1978) and Hoare (1978). A message with parameters communicates data,

and a message without parameters can be used for simple synchronization. The basic process

of sending a message between a client task and a server task is as follows. The client task

attempts to send the message. If the server is already waiting for the message, the message

transmission takes place. If the server is busy when the message is sent, the client must wait

until the server is willing to accept the message. Both the client and the server must be

ready before the message transmission takes place. The time period during which the two

tasks communicate is called a rendezvous. A rendezvous may involve two-way data transfer,

with the server also transmitting information back to the client. Messages are sent to specific

-10-



Ada Tasking Performance Issues - Final Report

locations in the receiving task, which can be thought of as message sockets. A task can have

any number of message sockets. There can be contention when multiple messages have

been sent to a task and are waiting to be accepted. The question of how this situation is

handled is answered in Appendix A for the Ada version of message passing. Message passing

is a more general technique than monitors. In fact, monitors can be constructed with

message passing. Semaphores can also be implemented with message passing. However,

this generality is not without its cost. There is more overhead associated with message

passing systems than with either semaphores or monitors, both in the compiled code and in

the runtime support system.

3.1.3 Deadlock

There is one more condition that can occur in concurrent programs that must be mentioned

here, deadlock. Deadlock is an event in a concurrent program that prevents further progress

in its execution. To illustrate deadlock, suppose that there exists a program with two shared

data structures, A and B, and two tasks, X and Y, both of which need A and B. Assume that

some kind of locks are used to provide competition synchronization for A and B. Now, if

task X requests and locks A and, simultaneously, task Y requests and locks B (before X

requests it) then deadlock occurs. Task X waits indefinitely for B and task Y waits

indefinitely for A. All progress stops, permanently, in both tasks. Deadlock is obviously a

serious threat to the reliability of a program, and therefore concern must be given to its

prevention by language designers, language implementers, and users.
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3.2 Performance Issues In a Uni-Processor Application

The Ada tasking model (as described in Appendix A) contains a variety of concurrency

control features. These include: selective wait, guarded accept statements, else, delay

alternatives, terminate alternatives, conditional entry calls, timed entry calls, abort,

priorities, and task allocators.

The runtime for Ada tasking includes routines which support these language features. They

can be broken into a taxonomy as follows:

Task Initiation - Performed whenever the declarative region containing a task object is

elaborated, or when an allocator of a task type is evaluated. Task initiation creates a new

thread of control and elaborates the task body. It may vary slightly depending on whether

the task has been statically declared at the library level, declared within a subprogram, or

created because of the execution of an allocator for a task type. Runtime support for task

initiation includes:

- Establishing the task type.
- Establishing the Master of the task and maintaining a data structure to associate the
Master with its dependents.

- Creating a task control block, and initializing it for use.

- Entering a task into the activation list for a particular declarative region or allocator.

- Activation of the tasks in the activation list. This implies elaborating the task body
and placing the task on the ready queue.

- Finally, setting the task status to callable and not terminated.

If an exception occurs during the above steps, the exception is changed to

TASKING ERROR and it is raised in the master.

-12-
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Task Termination - Ends the execution and reclaims the resources of a task. Task

termination is invoked by:.

- Normal completion of the task body by reaching the last "end" statement.

- Completion due to an unhandled exception.

- Completion due to servicing an abort request.

Abort requires making a task abnormal, and depending upon the implementation, possibly

waiting before actually terminating task execution. An abnormal task reaching a

synchionization point requires that it be terminated. Since possibly several tasks can appear

in an abort statement, an abort list may be generated prior to commencing with the

destruction of the tasks.

Runtime support for task termination includes:

- Support for each of the termination methods.

- Waiting for dependent tasks to become completed.

- Reclaiming storage used for dynamic task objects.

- Checking for completion of the master, which allows the master to be exited.

- Settins status information so that 'Callable and 'Terminated are FALSE and TRUE,
respectively.

Delay and Time Services - Provide the ability to access and manipulate date and time

information as well as suspend execution of a task for a specified duration. Delay

statements and references to the predefined package Calendar invoke these services.

Runtime support for delay and time services include:

- Hardware support (as a minimum) for interrupts at a specified time.

- Ability to service clock interrupts to resume tasks suspended because of delay. (This
includes timed entries and delay alternatives too.) Frequently interrupts occur at a
fixed interval which are counted to result in delay expirations after the correct period.

-13-
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Advanced Synchronization and Communication is supported by:

- conditional entry calls;
- timed entry calls;
- simple selective wait;
- selective wait with else;
- selective wait with delay; and
- selective wait with terminate.

These typically have unique runtime routines to support their particular behavior. In

addition to the same services required by the basic rendezvous, they also require complex

intertask coordination capabilities. For example, there is a need to maintain a list of open

accept alternatives so that only entry calls to those alternatives are considered. Obviously,

the timed entry calls and delay alternatives depend on the delay services specified in the

delay and time services above. Guard evaluation is done by the generated code, however,

the final set of open alternatives must be conveyed to the runtime.

Scheduling - Provides the ability to choose which task should execute at the proper time.

The only language structure for user control over scheduling is use of the priority pragma,

however implementation defined pragmas and compilation system options often permit

additional capabilities. Runtime support for scheduling is generally considered to include:

- "Ready" queue support which maintains a list of tasks available to execute, usually
prioritized to provide fast selection of the highest priority ready task.

- Preemption support which allows a task execution to be suspended at a (nearly)
arbitrary poin t , and allow a higher priority task to run. The suspended task is later
resumed at the point of preemption. This feature imposes several requirements on the
design for much of the runtime since it implies reentrancy and the mutual exclusion
primitives necessary to guard access to shared data structures.

- Custom scheduling services are often provided to support features such as
time-slicing, or biased scheduling (providing a task with a percentage of CPU
utilization).

- In a sense, the support for interrupt entries is part of the scheduling services, since
interrupt entries are treated as very hi priority entry calls. Therefore interrupt
handling is placed under scheduling withn the taxonomy and requires support for
preemption as indicated above.
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Attribute Evaluation - Supports the determination of task characteristics at execution time.

Three task attributes are supported which generally have runtime routines specifically to

support them. These are:

- COUNT - provides the number of tasks currently trying to call an entry.

- CALLABLE - provides a boolean response indicating if a task can be called, (that is,
it has been activated and has not termiated).

- TERMINATED -provides a boolean response indicating if a task has terminated.

3.2.1 Performance Assessment of an Example Runtime System

The following table provides instruction counts for an example runtime system as exercised

with a set of example programs. Many of the programs were selected from the Performance

Issues Working Group (PIWG) test suite so as to study those cases perceived to be of

greatest interest. Note that the first runtime shown was not considered a high performance.

runtime. For comparison, selected tasking services from one of the highest performance

runtimes were also measured. The chart below indicates a wide range of performance for

similar functions. However, no two runtimes appear to divide the processing up exactly the

same way. Variations can occur in what is done as generated code and what is left to the

runtime. Also differences can be found in what is done by partners in a rendezvous and how

task creation, initialization, activation, and elaboration are handled. The primary

differences between these two examples are that the low performance version was coded

largely in Ada, sometimes required a context switch to a supervisor state, and was not

optimized. rhe high performance runtime was written entirely in assembly language and

special cases used separate routines rather than calling common subroutines. It was highly

optimized and required no additional context switches to a supervisor task state.
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Low Performnce ExampLe High Performance Example

Tasking Services Instruction Count Instruction Count

Task creation 3.389 233

Establishing a task master 284 not available

Compteta Actvatfon 757 not available

Task Activation 931 481

Nster.Complete 623 not available

Abort Statemant (singLe task) 1,423 not available

calling an Entry 1,135 143

Open accept alternativa 194 not available

wait for alternative to be selected 489 150

Completion of Rendezvous 820 not available

Exception within accept body 159 not available

Delay Statement 1,607 not avail able

Etlbrate the body of a Task 141 not available

EvLinte 'callable attribute 139 not avalable

Evaluate 'terminated attribute 133 not available

Evaluate 'count attribute 215 not available

Initialize Entry Family 163 not available

Establish a task type 212 not available

Enter an abort list 221 not available
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3.3 Performance Issues in a Distributed Application

Support for distributed Ada adds several additional functions to the taxonomy described

above. These include:

Communication Subsystem - Consists of the underlying networking mechanisms that allow

the distributed system to synchronize and transfer information. This implies one or more

communication channels such as Ethernet, or 1553 bus, as well as the software necessary to

provide reliable communications across the channel(s). If acknowledgements are used, this

involves additional overhead (see below under Acknowledgement Control). Priority

observance and time stamp support are very important characteristics of the subsystem, but

are frequently only marginally supported.

Message Transmission - Involves the collection of information necessary in the message,

such as entry parameters; locating the destination address by using a task directory; and

delivering the packetized message to the communication subsystem. Overhead for each

message transmission primarily consists of copying data and processing the interrupt

generated when the message has been sent. Time stamping of the transmission time is

beneficial for time synchronization, but is ideally done by the communication subsystem.

Message Reception - Refers to the allocation of a buffer to receive the message data and

identifying the task to get the message. The semaphore used to indicate arrival of the

message must be signaled and the message enqueued. It may be necessary to time stamp

received messages so as to reduce the uncertainty during time synchronization, however this

is ideally done by the communication subsystem.

limed Message Transfer - To accurately synchronize independent clocks within a

distributed system, message transmission and reception times must be determined precisely.
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Typically, the actual transport time across the communication medium is deterministic

within some small uncertainty. To prevent this uncertainty from becoming large, the times

at which the message is sent and received must be recorded (time stamped) with respect to

the clocks in the nodes performing the operations.

Acknowledgement Control - Each regular message that is sent must be acknowledged to

insure reliable arrival. If either the message or its acknowledgement is lost, retransmission

is invoked to try to recover from the loss. A list of outstanding acknowledgements is

maintained and as acknowledgements arrive, they are removed from the list. If one is

outstanding beyond an allowable limit, this would be an error condition (see timeout

detection below).

Timeout Detection - To detect the loss of a message, a timer must be (effectively) set for

each normal message transmission. If no acknowledgement is received before the timer

expires, error recovery must be initiated. Error recovery is handled by the retransmission

mechanism to retry the message. In addition to normal message acknowledgements,

"heartbeat" messages may be sent simply to insure that the other system nodes are "alive".

These heartbeats are designed to detect node failures even when no normal traffic exists

between nodes and are acknowledged like regular messages. They may be sent continuously

at some rate, or only when other traffic is not present.

Retransmission - Error recovery typically involves retransmission of "lost" messages.

Retransmissions for a particular message are typically counted, and after a specified number

of failures the second stage error recovery routines are invoked to take more aggressive

action. This is usually the invocation of a runtime routine to raise an exception or even

begin system reconfiguration.
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Message Sequencing/Buffer Control - When acknowledgements are lost because of network

transient errors, the sending node will timeout and retransmit the message. To prevent the

same message from being replicated during this type of failure, each message is sequenced.

When a sequence number is received that has already arrived, that message is acknowledged

and simply discarded. Additionally, due to errors or network topologies that have multiple

store-and-forward points, it may be possible for messages to arrive in a different order than

the transmitted order. The sequencing insures that the messages are processed in the order

of transmission from source nodes independent of any exchanges that occur. This implies a

buffering mechanism that can maintain out of order reception and deliver them in the

proper order. Finally, special buffer control may be necessary to prevent overrun on some

systems.

Communication Failure Detection and Propagation (firm failures) - Some network

architectures allow for the positive determination of hardware failure. In these cases, the

distributed runtime should make available this additional information for the benefit of

application level recovery routines. Since the failure has been isolated to the

communication system, the possibility of the other processors continued operation is more

likely than a known processor failure or an unclassified error type. An example of this is the

collision detection circuitry used for packet collisions on Ethernet. If a very long sequence

of collisions occur, this is an indication of network failure. Other networks provide remote

loopback which insures that communications are operational to a remote node, even if the

processor is not responding.

Global Time Synchronization and Maintenance - The time at which a periodic

synchronization message is sent can be recorded at the point it is sent and at the point that it

is received (see d Message Transfer, above). These are taken with respect to different
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clocks and compared. The skew in clock values can be determined within a small error limit

and eliminated by adjusting the designated clock(s). Since the clocks will run at different

rates, the synchronization will need to be done periodically, depending on the allowable

error. Clock synchronization is often necessary to make meaningfil use of time sensitive

data that is shared among the nodes in the system. Also, the Ada semantics for timed entry

calls and selective waits with delay alternatives can be implemented if effective

synchronization can be achieved.

The execution time for distributed Ada support can be divided into three areas:

- Ada semantics,
- protocol overhead,
- hardware overhead (transmission time, interrupt latency, etc.).

All of the standard uni-processor tasking semantics must be supported on the distributed

system and for the most part can be optimized in the same way as uni-processor Ada.

However, to preserve the Ada semantics for timed rendezvous additional actions are

required. The normal, "ready for rendezvous check" can become a series of messages and

context switches. Also, support of failure semantics can require additional overhead to

support the ability to raise an exception within an accept body at any arbitrary point because

of a communication failure.

A substantial overhead can be consumed in supporting the protocols necessary for insuring

that messages are generated, packetized, sequenced, delivered, received, and acknowledged.

Typically, this aspect of the distributed system is the most time consuming, but this is largely

dependent on the underlying network system. A dedicated system may have very simplistic

protocols (basically Destination/Source information only) and provide hardware for

message acknowledgement or failure indications and guaranteed order-of-arrival. In these

cases, the overhead can be minimized using efficient buffer control mechanisms which make
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packet construction very fast. Other cases may require various operations to be performed

for each message transferred, such as:

- checksums to be computed,
- conversion of data to a standard format,
- setting and cancelling of timeouts for message acknowledgement,
- switching to privileged mode,
- copying of data several times,
- complex algorithms to prevent destination buffer overrun,
- dividing messages into small packets,
- and resequencing packets that could be out of order due to transmission failures
and resends.

Often the time synchronization must be supported as well by the protocol mechanism by

using various time-stamping techniques and periodic resynchronizing based on the accuracy

of the independent clocks. By computing drift rates between the clocks individual

processors can adjust their clocks and therefore ret nchronization is required much less

frequently.

The hardware component of the overhead can be substantial if the amount of data to be

transmitted is large or latencies in obtaining network access are potentially large.

Communication subsystems in typical use vary from 10K bits/second to 1OOM bits/second.

Access latencies can vary widely as well, with most real-time networks currently focusing on

token passing schemes to make the latency predictable. Essentially none of the popular

networks provide support for mair a, ing accurate time, access to global memory, or good

support for gaining access base in priority. Transport times for networks such as Ethernet

are a minimmrn of approximately 60us for the smallest possible message and increase by 800

ns per byte transferred. However, access to the network may take tens of milliseconds or

longer depending on network loading. This unpredictability makes contention networks

such as Ethernet unsuitable for serious real-time work unless network loading is well

understood and controlled.
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The performance concerns for Ada tasking in uni-processors (or even tightly coupled

multi-processors) are compounded by distribution. Since the tasking model for Ada uses

only synchronous communication, it requires a substantial amount of interaction among

tasks. This is exactly the type of activity that is difficult to achieve in a distributed system.

The ability to have buffers which receive data and provide elasticity in the synchronization of

concurrent processes is especially necessary in distributed systems. Ada can provide this

utilizing "buffer tasks" but unless the buffer's thread of control is optimized away, the

overhead is usually unacceptable.

Conventional distributed systems use mailbox communication mechanisms where the

transfer of the message is acknowledged in hardware, but the destination task need not be

involved in the transfer. Generally the mailbox buffer is designed to be large enough to

handle worst case requirements, otherwise the communicating tasks can throttle their

messages or compensate for lost messages.

Ada "high level" task communication structures complicate the messaging system further.

Timed and conditional enty calls, selective waits with delay or terminate alternatives all

pose serious problems with the distribution of Ada programs. Conventional network based

distributed systems generally provide only simple packet transfer services, often with little or

no timing services. These networks are ill-suited to support Ada because they lack

capabilities upon which Ada runtimes fundamentally depend. These services include:

- Prioritization of services
- Guaranteed worst case response times
- Time synchronization support (stamping)
- Fast access to global state information (availability to rendezvous).

Although conventional networks will be suitable for distributed Ada in environments that

are not time-critical, use for real-time systems will be restricted to very high performance
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networks such as the 100 Mbps Fiber Distributed Data Interface (FDDI). Only these

networks provide sufficient performance so that the communication overhead and

uncertainty can be tolerated. Ideally, an Ada specific network could be developed that

would provide efficient services for Ada tasking. Unfortunately, it is unclear if such a

network would be commercially viable. Obviously, it would have to make use of the same

components utilized in networks such as FDDI, but utilize a different protocol interface.

Work done previously [22] on this issue described a star topology network with an active

hub. This hub would contain system-wide memory and clocks, as well as atomic primitives

for manipulating those objects. This study on improving tasking performance has reinforced

the conclusions drawn regarding the need for a custom network architecture. Essentially,

Ada tasking is extremely complex when compared to other forms of concurrency controls; it

will need hardware cooperation to achieve good performance.

To illuminate the complexity associated with distributed tasking, an example is useful. A

good case to study is a case where a timed entry call is made to a task which is executing a

selective wait with a delay alternative. In this case, a message must be sent by the caller to

the server to initiate its part of the rendezvous. A message must be sent back to

acknowledge receipt of the message. When the server is ready for a rendezvous it sends a

message back to the caller indicating its willingness to commit, this message must also be

acknowledged. Finally, the caller must agree to the commitment or send back a denial. As

usual this must be acknowledged as well. Therefore, it generally takes six (6) messages just

to initiate a complex rendezvous. It is possible in some cases to reduce the count by

combining acknowledgments with other data, but this results in other problems such as the

need to acknowledge acknowledgements, which complicates the protocol. As usual, the end

of rendezvous will also result in a message and acknowledgement bringing the total up to

eight(8). At 200us per message this requires 1.6 milliseconds of overhead as compared to
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the equivalent lus test and set operation on a system where some memory is shared by both

tasks. The problems that arise are largely due to the uncertainties in communication delays,

and that interaction with the timeouts in the conditional rendezvous from both ends of the

transaction. If the clocks can be sufficiently synchronized, it may be desirable to have the

both delays measured by the server. Since the underlying communication system must issue

"heartbeat" transfers to detect failures during a rendezvous, there is no additional overhead

for using this mechanism as the failure detection mechanism prior to the entry being

accepted.

3.4 Weaknesses of the Ada Tasking Model

3.4.1 The Cost of Ada Task Execution

The cost of Ada task execution has been the cause of a great deal of concern about the

viability of the language for real-time applications, which are exactly the applications for

which Ada was intended.

A real-time performance benchmark study [27] was performed from which the cost of

various operations of task execution, relative to procedure calls can be illustrated. The

hardware used for benchmarking was a Sun 1 3/60 CPU running Sun UNIX 2 4.2 Release

3.5, linked to a single 12.5 Mhz Motorola 68020 single board computer enclosed in a

multibus chassis. The compiler was the Verdix Ada Development System 3 targeted to

Motorola M 68020 4 targets, release 5.41.

1Sun is a registered trademark of Sun Microsystems, Inc.
2UNIX is a registered trademark of AT&T.

3Verdix is a registered trademark of Verdix
4MC68020 is a registered trademarks of Motorola.
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The subprogram overhead benchmark passed an Integer parameter: mode in out.

The task elaboration, activation, termination benchmark had a task type and task object

defined in a procedure which was declared in a package. The procedure was called from the

main program. Entry into the procedure activated the task object and the procedure exited

when the task terminated.

The complex rendezvous benchmark had a main program calling an entry in another task

with one Integer parameter: mode in out.

The times represented below are in microseconds.

Proca&re caLl tim ..................... 9.7
Task activation and termination tim.... 4800.0
Pariterizad rendezvous tim ........... 355.4
Ratio of rendezvos to procedure call... 36.6

The ratios of parameterized rendezvous and procedure calls are strikingly high. The obvious

question, particularly for a user who is not knowledgeable in compilation problems for tasks,

is: How can a rendezvous possibly take between one and two orders of magnitude more time

than a procedure calL After all, they should be quite similar: Both require some sort of

switch of referencing environment and some register and status saving. Studies indicated

that the vast majority of work being performed during a rendezvous is not associated with

register save and restore, but rather in implementing the complex semantics of the

rendezvous.

3.4. Sources of Task Overhead

The rendezvous is probably the most important part of Ada tasking to consider when one is

concerned with overhead, because it can happen many times during the execution of a

program, as opposed to task creation, which occurs only a relatively small number of times.
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The primary overhead events of rendezvous are context switches and message selection. A

state switch is a change of control between two program units. It requires saving and

restoring machine status and registers, parameter transmission, and the saving and

formation of a referencing environment. State switches are required for procedure calls. A

context switch is a state switch plus actions for transfer to a different thread of controL

Message selection, or more directly, the execution of the select statement, can incur a

significant cost, particularly when the number of alternatives is large and a significant

proportion of them have guards. The presence of terminate and delay alternatives are also

significant contributors to the cost of message selection. For example, before a terminate

alternative can be selected, the status of the task's master and all its dependent tasks must

be checked. To accommodate this process, a "master" list of other tasks, which includes the

task's master, along with all of the other tasks dependent on the master task, must be

maintained. The status of the tasks on the list determine whether the terminate alternative

can be selected. Because tasks can be dynamically created and can also terminate during

execution, this list is dynamic. Every task creation and every task termination require

modification to the list. Complex programs require a complex master list, whose

maintenance requires a significant amount of computational overhead. Programs that

contain tasks must be run with a stack that is, at least logically, tree-shaped. These are

usually called cactus stacks. The cactus stack is required because each task needs an area of

stack for any data it allocates from the stack, and also for the activation records of

subprograms it calls. Management of the cactus stack may not require a great deal of

computation, but it can certainly require significant amounts of memory. The primary

additional costs, then, of a task call over a subprogram call is in blocking the caller,

scheduling the called task, and in message selection.

3.4.3 Proposals for Increasing the Speed of Rendezvous
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3.4.3.1 Operational Assumptions

The definition of Ada suggests that the code in an accept statement in a task is executed

under the control of that task. This report refers to this implementation technique as the

"normal" technique. The normal method is outlined in the Ada design rationale (Ichbiah, et

al., 1979). In the following section several alternative approaches are discussed. In the

remainder of this report, the possibility of time slicing which adds context switches to task

execution, is ignored. It is assumed that tasks always run as long as they can, which means

until they are blocked or preempted by a newly available task with higher priority.

There have been several significant investigations of alternative techniques for

implementing Ada tasks, with the common goal of achieving faster rendezvous. In this

section the results of these efforts are reviewed and evaluated. Note that there may have

been other related studies, but, if so, a literature search failed to produce them. Any study

of the kind reflected in the remainder of this report faces certain difficulties. The most

significant of these has its source in the competitiveness of the Ada compiler business.

While there undoubtedly has been a great deal of effort expended in optimization of the

rendezvous, no compiler vendor is likely to publish its best ideas on the subject. The

problem with this for the Ada community is that work on optimizations is duplicated over

and over among different vendors, rather than researchers advancing the work of others.

Another problem with this kind of study is the difficulty of evaluating various optimization

approaches." Two of the most effective means of evaluation, prototype construction and

simulation, are obviously beyond the scope of this work.

3.4.3.2 A Normal Implementation
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First, the number of context switches required by a normal implementation, as described in

Section 3.4.2.2 are examined. A very simple execution scenario is assumed, in which there

are only two tasks, a client task and a server task. The client task is assumed to repeatedly

call the server. Finally, it is assumed that there are no interruptions of the process; that is,

no input or output interrupts occur. Such interrupts can greatly complicate the analysis.

Consider a single rendezvous between the client and the server task. If the client arrives

first at the entry call possibly two context switches are required to complete the rendezvous.

As soon as the client attempts the call, it is blocked, requiring a context switch. Then, when

the server completes the execution of the rendezvous, the client is moved to the ready

queue, and is scheduled for execution, possibly requiring another context switch. This is only

required if the priority of the client is greater than the server. If the server task arrives at

the accept statement first, it is blocked, causing a context switch. When the client arrives, it

is blocked, causing a second context switch. The server is put in the ready queue to allow it

to eventually execute the accept statement statements. When the rendezvous is completed,

the client must be put in the ready queue. Once again, if its priority is higher than that of

the server another context switch is required. This analysis of a single rendezvous indicates

that two context switches may be required if the client arrives first and three may be

required if the server arrives first.

3.4.33 Habermann and Nassi

An early sudy of techniques for increasing the speed of the rendezvous was done by

Habermann and Nassi (1980). This work includes proposals for two different

implementation methods.

3.43.3.1 Letting the Caller Execute the Rendezvous
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The first proposal of Habermann and Nassi is an implementation method for simple

rendezvous. In this case, the support for the technique could easily be written for the

runtime, because the situations in which it can be applied are simple to detect. The idea is

simply to attempt to reduce the number of context switches required for a rendezvous by

letting the calling task execute the accept statement. Habermann and Nassi believed that by

allowing the client to execute the rendezvous, rather than the server, fewer context switches

could be required. Based on this belief, they then developed a method of having code for

rendezvous that operates that way.

3.4.3.32 Conversion of a Server to a Monitor

The second proposal in the Habermann and Nassi paper is a process whereby a server task

is implemented as a monitor. This transformation removes all context switches, effectively

eliminating some of the blocking and scheduling. In fact, the only remaining blocking is

caused by the remaining need for mutually exclusive execution in server tasks. The process

of transforming the server task to a monitor is outlined, but no method of automating the

conversion is offered. To convert the server task to a monitor, all code to implement the

select statement operation is logically moved into each accept statement. The process is

designed to work only if there is no code outside accept statements, except for the possible

code that precedes the outermost select statement. Logically, then, when a client task

executes an entry call on the server task, the client task not only executes the rendezvous,

but also the .erver code for the select, thereby setting up for the next entry call. The client is

still required to state switch to and from the server for each rendezvous.

3.4.3.3.3 Evaluation

-30-



Ada Tasking Performance Issues - Final Report

In this section the performance of the two Habermann and Nassi proposals are compared

with the performance of a normal implementation. The assumption is that the client task is

higher priority than the server and therefore must run after completion of the rendezvous.

The results of the client executing the rendezvous are analyzed first. For a single rendezvous,

the following occurs: If the client arrives first, it is still blocked. A context switch transfers

control to the server, which then executes down to the accept statement. At that point, the

client is moved to the ready queue and a context switch is made to the client, who then

executes the rendezvous code and then continues in its own code. Therefore, letting the

client execute the rendezvous results in exactly the same number of context switches (two) as

when the rendezvous is executed by the server. So, there are no savings in this situation.

Next, consider the scenario of the server arriving at the accept first. When the server arrives

at the accept, it is blocked. The client is then scheduled and executes down to the entry call.

This requires a context switch. When the client arrives at the entry call, instead of blocking,

it simply executes the rendezvous and continues in its own code after the entry calL No

additional context switches are required. Therefore, instead of three context switches, as is

the case with having the server execute a single rendezvous, only one is required. In

summary, for a single rendezvous, letting the client task execute the server's rendezvous

code saves two of the three context switches when the server arrives at the accept fr, but

saves none when the client arrives first. There is also some additional overhead involved in

letting the client task execute the rendezvous. For one thing, some sort of guards must be

used to insue that only mutually exclusive access to the server task is allowed. In the case of

the Habermann and Nassi technique, this is done with semaphores. Also, some of the

actions of the context switch are still required for the rendezvous. At first glance, it may

appear that no switch of any kind is required in this situation. That is, however, not true.

Registers and machine status may need to be saved during the execution of the rendezvous.
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Furthermore, the existing referencing environment (scope) of the client must be saved, and

it must be temporarily replaced with that of the server. When the rendezvous is complete,

the client's environment must be reestablished. In essence, this alternative implementation

replaces two context switches, from the client to the server and back, with two state switches.

One of the positive aspects about the Habermann and Nassi work is that they concerned

themselves with most of the details of the tasking model in their implementation. For

example, they show how their procedure can handle delay alternatives, else parts, nested

accept statements, and exception handling during rendezvous (which requires that the

exception be handled by both the client and the server). After this examination, at least in

the simple environment of execution considered here, it is concluded that there is little

advantage to letting the client execute all rendezvous.

The second proposal of Habermann and Nassi, (to convert, when possible, server tasks to

monitors) deserves close examination. First, recall that the method was not automatic. It

was a hand modification, at least partially because they developed no automatic method of

detecting situations where it could be done. Second, although there seems to be strong

intuitive evidence that a monitor is consistently more efficient than a server task

implemented by the normal method, that is not always the case. Eventoff, et al. (1980) do

an extensive comparison of the relative efficiency of the monitor and the rendezvous. Their

comparisons were done in a number of different situations. The most interesting cases at

this point are those where contention was present for both producer and consumer tasks.

Contention occurs when one or more tasks are blocked by the mutual exclusion mechanisms.

In the presence of a high degree of contention, the study shows that, at least by the measures

used in the study, the benefits of the monitor are reduced. This is because the monitor will

be blocking both clients sending and receiving data. Another additional overhead of the

monitor in situations of contention is that client tasks may be blocked twice before the
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communication takes place, once at the mutual exclusion mechanism and once if the shared

data structure is empty or full. There can be just one block of an Ada task before the

communication takes place. The conclusion of this discussion is that although monitors can

be very beneficial, their benefit is somewhat dependent on the application. There is a subtle

form of serialization in the Habermann and Nassi monitor proposal, which forces all code to

be executed as part of the rendezvous. Normally, the code after the accept statement is

executed concurrently with the resumed caller. This has no effect on uni-processor

machines, but can cause slightly slower execution on a multiprocessor or distributed

processor system.

3.4.3.4 The Hilfinger Proposal

Hilfinger (1982) proposed a method of implementing collections of tasks called monitor

clusters, which he claimed would result in significantly faster execution of these tasks than if

they were implemented in the normal method.

3.4.3.4.1 Technique

Hilfinger defines a monitor cluster to be a collection of tasks with the following properties:

1. Tasks in the monitor cluster call only other tasks in the cluster.
2. There are no delay alternatives in tasks in the cluster.
3. There are no explicit priorities stated for any task in the cluster, but all cluster

tasks run at a pnority that is higher than any task in the program outside the
cluster.

Calls from outside tasks are accepted only if there are no pending internal calls. Because all

tasks in a monitor cluster run at the same priority, which is higher than that of any task

outside the cluster, cluster tasks can control their own execution using a separate (from the

RTS) and trivial scheduling process. In fact, a simple stack is used for storage of and

scheduling of ready tasks in the cluster. Cluster tasks are executed as if they were coroutines,
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thus replacing concurrency with serial execution. Full context switches are never necessary,

although state changes are needed each time execution flows from one task to another. As

is the case with most current implementations, execution stays in a task as long as possible.

Execution flows from a client to a server by a simple jump instruction, and there are no

automatic returns from such transfers. The client is put in the cluster ready queue before

the jump, so its execution is resumed only when the cluster scheduler chooses it from the

task ready queue. Note that while Hilfinger specifies a stack as the cluster ready queue,

there is no reason a FIFO queue could not be used, which would result in a slightly higher

level of "fairness" of scheduling of cluster tasks.

3.4.3.4.2 Evaluation

This method effectively removes all context switches from changes in control within the

monitor cluster. Furthermore, the number of state switches is minimized because the

number of scheduling points is minimized. The end result is that running tasks as coroutines

should be faster than running them as tasks in a normal implementation, at least on a

uni-processor system. Actually, the difference between the context switches of a normal

implementation and the state switches of the cluster tasks is that the scheduling is simplified.

So that is the source of the time savings. The Hilfinger proposal effectively serializes

execution of a supposedly concurrent program. The questions naturally arise: Are there

useful applications of such a restricted form of tasking? Presumably, such a program could

have been developed as a set of procedures since there appears to be no benefit in using

tasks for such an application. Obviously, this approach would need substantial modification

for use on a multiprocessor.

3.4.3.5 The Shauer Proposal
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Shauer (1982) proposed a method of increasing the speed of rendezvous that is closely

related to the second proposal of Habermann and Nassi.

3.4.3.5.1 The Technique

The Shauer proposal is to effectively convert the accept statements of server tasks to

subprograms. If this could be done, it would reduce all context switches to state switches,

and also remove the need for the cactus stack, because subprogram activations can run on a

single runtime stack. The following description of Shauer's work is taken from Burns (1985),

because Shauer's paper was inaccessible. The Shauer implementation of a server task

requires the following conversions:

1. Move all extended accept statement code into the preceding accept statement and
structure each accept statement as aprocedure.

2. Encapsulate all code preceding the first accept statement in a special "start"
procedure.

3. Replace each guard with a conditional WAIT operation on a semaphore, which
includes a queue for storing suspended callers.
4. Treat all entry calls to the converted server as procedure calls.
5. Replace the server task initialization by a call to the start procedure.

The whole server task could be converted to a package, because having it remain a task

seems to serve no purpose. Then the initialization code could be placed in the body of the

package. Mechanisms to provide mutually exclusive access to the subprograms would, of

course, still be necessary, as would code to handle selection choice. It may be necessary to

restrict the servers on which this transformation could be done to those without delay

and/or terminate alternatives. Nested accept statements may also be difficult to handle.

Calls to other tasks from the package, however, should pose no problems.

3.4.3.5.2 Evaluation
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Shauer's technique is very similar to the second Habermann and Nassi proposal. It is a

more complete serialization because it applies to servers capable of a higher level of

concurrency (those with extended accept statements). Therefore, a Shauer implementation

would be a greater deterrent to physical concurrency than the Habermann and Nassi

technique. On uni-processor systems, however, it would be an efficient method of

implementation.

3.4.3.6 The Stevenson Proposals

Stevenson (1980) proposed several ideas for efficient implementations of Ada tasks.

3.4.3.6.1 The Techniques

Stevenson suggested that a variety of methods of implementing Ada tasking be tried and

compared. To do this, a target language was designed that would clearly illustrate the

various algorithms for implementation. This target language, named Ada-M, is similar to

Ada in its sequential parts, but uses a lower-level method of specifying concurrency. Much

of Stevenson's paper describes how the translation to Ada-M could be done, using one of the

two proposed implementation techniques as an example. The focus here is on the

implementation methods, and Ada-M is largely ignored. The first implementation method

proposed by Stevenson is called the "procedure call" method. This is essentially the same as

the first technique proposed by Habermann and Nassi. The client always executes the

rendezvous pode, but the server still executes the select control code. Stevenson's second

proposed implementation method is called "order of arrival" and its name exactly describes

its technique. The basis for the method is that the context switch at the beginning of a

rendezvous can always be avoided by letting the last task to arrive execute the rendezvous.

Stevenson does not specify whether control shifts to the caller after completion of the
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rendezvous, although there is little justification for that. It makes more sense to leave

control in a task as long as possible.

3.4.3.6.2 Evaluation

The result of this approach is that each rendezvous requires only a single context switch

(assuming equal priorities). This is half as many as any of the other methods we have

investigated here. Every other rendezvous, specifically those that are executed by the caller,

require two state switches. So, this method saves one context switch per rendezvous, at a

cost of an average of one state switch per rendezvous. Stevenson's order-of-arrival method is

clearly the best software method we have found to implement rendezvous when serialization

is undesirable.

3.4.4 Other Optimizations

Several other optimizations of task implementation have been suggested, primarily by

Frankel (1987). In the following, we explain and evaluate these.

3.4.4.1 accept Statements Without Bodies

An accept statement that has no body does not require a state switch at the point of the

rendezvous. The rendezvous, in this case, is merely a signal from one task to another, stating

that execution has reached the point of interest (as marked by the entry call in the client and

the accept statement in the server). Such accept statements should require very little

overhead. If the client arrives first, it is blocked. When the server arrives, the client must be

moved to the ready queue. If the server arrives first, it is blocked. When the client arrives,

the scrver must be moved to the ready queue. It appears to be a simple matter to have the

compiler recognize accept statements without bodies and avoid generating code to do
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anything except the blocking and unblocking of the first task to arrive at such an accept.

Obviously when placing a task on the ready queue, priorities must be observed and

preemption may occur.
.

3.4.4.2 Asynchronous Messengers

An asynchronous messenger task is an intermediate, or agent, task whose only job is to

transfer messages one way to a server task, without forcing the client to wait for a response

from the server. Their actions explain their purpose: They are meant to allow a client to

asynchronously send a message to a server task. (A synchronous message is one that

requires the client to wait for a reply from the server before continuing. An asynchronous

message is one that allows the client to continue its execution as soon as its sends the

message.) The parameters of an asynchronous message must be in mode only, because no

information can flow backwards through such a message if the client is free to leave the

entry call immediately. Asynchronous messages using messenger tasks are expensive because

one rendezvous is replaced by two rendezvous. Given the high cost of even a simple

rendezvous, any optimization of this action would be helpfuL The somewhat obvious

optimization would be to have the compiler simply remove the agent task, replacing it with a

message queue attached to the server. The client could place its messages in the message

queue whenever it wishes, and the server could accept the messages whenever it wishes.

The only problem with this optimization is that it would be very difficult for the compiler to

recognize situations in which the optimization could be applied. User programs can use

different forms of such agent tasks (Burns, 1985), which need not appear in any standard,

easy to recognize form (e.g., they may or may not be encapsulated in packages). One

solution to this problem is for th. implementation to provide a pragma that the user could

use to indicate when a task is an agent that could be optimized away. That would allow the

user to specify legal Ada code, but still allow an efficient implementation.
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3.4.4.3 Replacement of Entry Families Used for Prioritized Calls

Families of entries can be used to achieve the effect of prioritized calls on a single entry.

The different family member entries are associated with different priorities, so that calls

with different indices refer to entries with different priorities. Burns (1987) recommends two

different methods of using entry families to specify prioritized calls. For situations requiring

a relatively small number of different priorities, the COUNT attribute of entries is used in

guards of accept statements to control cccess. Entries with low priority are guarded until

there are no waiting messages at any higher priority entries. When the number of different

priorities is large, a different technique must be used, because the guards quickly become

excessively large, making them tedious to write and costly to repeatedly evaluate. An

alternative method for this situation, as advocated by Burns, is more efficient, but also more

complex. This technique requires a client to call twice to complete the message

transmission. The first call is used to announce that the caller wants to communicate and

also to deliver the priority of the imminent message. The second call actually sends the

message to the server task. There is significant overhead to this process. For one thing, it

requires twice as many rendezvous. It also requires another agent task, which manages a

storage structure to store announcement calls. The obvious optimization for an entry family

used to achieve priority order in an entry queue is simply to convert it to what the user

wanted to begin with: a single prioritized queue on a single entry. Although this would

certainly result in a significant improvement in performance, it is difficult to see how the

circumstances under which this conversion is applicable could be recognized by the

compiler. While the Burns suggestions above are good ones, there is no reason to believe all

Ada programs will use those techniques exactly. Therefore, there is simply no standard way

of using entry families for these purposes that would allow easy compiler recognition.

3.4.5 Arhitecture
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All of the approaches to increasing the speed of Ada task interaction that have been

discussed thus far have dealt with software. In this section machine architectures that have

the potential for increasing the speed of task execution and interaction are investigated. In

the following subsections, two architectural approaches, special instructions and

coprocessors are discussed.

3.4.5.1 Special Instructions

Complex but often used operations can be implemented in three distinct ways. They can be

constructed as hardware instructions, using electronic circuitry, which makes them very fast

but very expensive to construct. Floating point arithmetic operations on larger machines, for

example, are implemented with hardware. Such operations can also be coded as machine

instruction sequences (software), which makes them far less expensive to build, but much

slower. Floating point arithmetic operations on very small machines are often implemented

this way. The third method, firmware, is a compromise between hardware and software,

with the result being between the other two, in both cost of construction and in execution

speed. (Firmware is similar to software, except that microcode instructions are used instead

of machine instructions, and the microcode resides, permanently, in read-only memory.

Microcode is a lower level language than machine language.) Many relatively inexpensive

computers of the 1970s used firmware to implement floating point arithmetic operations.

Likewise, many of the most complex instructions of contemporary computers are

implemented in firmware. Considering the cost of hardware, firmware would appear to be a

good method to provide instructions specifically to support Ada task interaction. We discuss

research in the next section that includes special hardware instructions for tasking primitives,

but in the context of a coprocessor environm ,. That work defines a set of such primitives

that would be the best candidates for firm .mplementation. Firmware implementations
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of task interaction processes would be significantly faster than software, which is now used in

the majority of implementations. The Rational R1000 computer system, which was designed

specifically to implement Ada efficiently, uses some special instructions in firmware for task

iiteraction. Unfortunately, because the design of this system is proprietary, it is difficult to

determine the extent and impact of its use of firmware. There have been several efforts to

design processors (in hardware) that were general in nature, but more supportive of Ada in

particular (Nokia, 1983) (Biswas and Dasgupta, 1985) (Ibsen, et al, 1983). As reported in

Roos (1989), these had the goal of improving the average performance of an entire Ada

program. However, these particular efforts produced little speedup of rendezvous.

3.4.5.2 Coprocessors

The idea of adding a coprocessor to a computer to support Ada tasking is relatively obvious.

There are, however, several ways in which such a coprocessor could be used. As in every

other environment, one would like to achieve the highest performance while requiring the

minimum cost and complexity.

3.4.52.1 Tasking Coprocessor Method

The first, and the most important, coprocessor usage method discussed is the tasking

coprocessor method. It is most important because it is perhaps the most effective method,

and also because it has been actively investigated and reported in the literature, whereas the

other methods discussed here are only preliminary ideas. In the following, the work done at

Lund University in Sweden is described, as reported by Roos (1989). The approach of the

tasking coprocessor method is as follows: A special purpose processor is designed

specifically to execute primitive operations that implement task scheduling and interaction.

It is therefore a coprocessor implementation of special instructions, as discussed briefly in
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Section 3.4.5.L The coprocessor used (in the Lund project) is a 2 micron CMOS chip with a

20 MHz clock rate, which results in a typical operation time of about 1 microsecond.

Teamed with a 1 mip CPU, the tasking primitives are done in one or just a few CPU

instruction cycles. The coprocessor's relationship with the CPU is similar to that of a floating

point coprocessor: When a tasking primitive operation is required, the CPU sends

commands and the required operands to the coprocessor, which executes them and the CPU

reads the results. The coprocessor has on chip RAM that is used to store task control blocks

and queue headers. Three kinds of queues are maintained: entry, delay, and ready.

Because these queues reside on the coprocessor chip RAM, only coprocessor operations can

access them. This implicitly ensures mutually exclusive access. Communication between the

CPU and the coprocessor is based on memory-mapped read and write instructions. The set

of operations for the coprocessor were determined by use of three criteria:

1. The operation must require a significant amount of code.
2. The amount of data communication between the CPU and the coprocessor must
be small.
3.It must be possible to implement the operation efficiently using current VLSI
technology.

A sampling of the operations implemented on the coprocessor include the following:

- CreateTask,
- ActTask (activate task),
- TimedECall (make a timed or conditional call),
- SelectRes (choose an alternative),
- Switch (perform a scheduling),
- Terminated (Tterminated),
- and Suspend.

Performance of the coprocessor was checked using a simulator provided with the tool used

to design the coprocessor. The results are very impressive. A simple rendezvous requires

8.4 microseconds, which is sixty times faster than when run in software on a VAX8600 (see

Section 3.4.1). The most complex rendezvous investigated, a timed call to a selective wait
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with two accept alternatives and a terminate alternative, took only 14.8 microseconds.

Because of the dramatic speed increase that results from the use of this method, it must be

considered the most promising technique for using a coprocessor to implement tasking. The

most serious concern is the very high cost of a custom VLSI circuit considering the low

volume that would be expected.

3.4.5.22 Twin Processor Method

A coprocessor that was identical to the CPU could be added as a second, equal processor.

This is called a twin processor method. The two processors would be treated as equals and

scheduled accordingly. This would clearly provide a boost in overall performance to

programs that contained multiple active tasks, because it would, at least theoretically,

double the capacity of the system for physical concurrency. With a normal implementation.

of tasking, programs with a single active task would, of course, be only lightly affected by the

coprocessor. The costs of a twin processor system include both hardware and software

needs. Contention for memory, which is shared by the two processors, is usually not a severe

problem with only two processors, because each uses less than a fraction of the available

bandwidth to memory. If the two processors have cache memories, which is becoming more

and more likely with advances in technology, then additional hardware is required to

maintain the integrity of cache contents. When one processor changes the contents of a

memory location that is currently resident in the other processor's cache, that cache location

must be eithor invalidated or implicitly reloaded from memory.

3.4-5.2.3 Background Coprocessor Method

One more use for a coprocessor in a system meant to run Ada programs is the following. A

coprocessor could be used to do some background kinds of processing, concurrently with the
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CPU (or multiple CPUs), which could be multiple. The background processing could

include maintaining the ready queue. When explicit priorities are specified for tasks, the

ready queue must always be ordered by priority. All of the ordering process could be

off-loaded from the CPU. When the RTS schedules a task, it can simply take it off the end

of the sorted list of tasks maintained by the coprocessor. Maintenance of the master list is

another candidate for background processing. In this case, the coprocessor could be simpler

and slower, and therefore cheaper than the CPU. It could have a small memory of its own,

in which it could store the data structures upon which it operates.

3.5 Best Utilization of Ada Tasking Model for Uni-processor Applications

This section assumes that the target system will only have a single processor per Ada

program. For these systems, the main benefit of tasking is to allow the continued processing

of other activities while waiting for inputs: Although this can be done using polling in a

non-tasking solution, often the overhead and interference of polling to the application is so

severe that it is not practical. The general recommendation is to avoid unnecessary use of

tasking. Cases where activities can be serialized should be handled using procedures rather

than tasks. Special effort should be taken to avoid reliance on "abort" or dynamic task

creation. Analyze the interaction of tasks and determine the number of context switches

that could occur. If the context switch rate is excessive, measures should be taken to lower

the rate. In some cases, careful use of shared variables can reduce the need for rendezvous,

but these mu'st be thoroughly studied since they are frequently the source of programming

errors.

These recommendations should be considered as guidelines only, and with an understanding

that there are ca- acre tasking is desirable. Tasks which service I/O requests,

particularly interrupts, are extremely useful because they provide fast response to sporadic

-44-



Ada Tasking Performance Issues - Final Report

events. Of course, the efficient use of Ada interrupt entries depends on the

implementation's support for optimized interrupt handling. Althovgh task abortion and

creation are time consuming activities, there may be some good uses of these features. Any

use of these features should be justified as reasonable in terms of the application

requirements and the available CPU utilization. Performance of Ada tasking is adequate if

these guidelines are followed along with the use of a high performance runtime and

discretionary use of task interaction.

3.6 Best Utilization of Ada Tasking Model for Distributed Applications

Multiprocessor use of tasking increases the potential to take advantage of the concurrency

within applications. For this reason, systems that are candidates for multiprocessors where

the Ada tasks can be allocated to different CPUs should take a different approach then the

one described for uni-processors. In particular, the natural codlcurrency in an application

should be expressed in the form of tasks. Where the concurrency is great (e.g. target

tracking) the use of task arrays should be used with the task type being able to handle a

configurable number of operations per rendezvous. This allows the program to be

configured so as to expand the number of tasks and to take advantage of the available

CPUS. When the number of available CPUs is small, then only a small number of tracking

tasks need be configured and the number of rendezvous will be kept low. This is because

the workload is distributed to the available tasks as lists of operations rather than as a single

operation per rendezvous. Although this complicates the design somewhat, the benefits of

increasing throughput outweigh the additional complexity. The communication to task

arrays does have the unfortunate side effect of forcing a particular order on the rendezvous.

This could cause substantial delays in cases where the individual tasks in the array are not

available at nearly the same time. In these cases, conditioned calls may be appropriate until
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all of the tasks have rendezvous. However, the cost of the additional conditional calls may

also be high in a distributed system. The tradeoffs of this approach must be evaluated for

the typical application behavior.
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4. Summary of Results, Recommendations and Conclusions

Proposals for increasing the speed of implementations of task scheduling and interaction

have been examined and reported. These include suggestions that all rendezvous be

executed by the calling task, that all rendezvous be executed by the last task to arrive, that

server tasks be converted to monitors, that tasks in a cluster monitor be run as coroutines,

and that servers be effectively converted to packages of guarded subprograms that provide

the actions of the rendezvous of the server. The software optimizations fall into two distinct

categories: those that serialize task execution and those that do not. Serialization is a valid

means of increasing performance on uni-processor systems, but because it limits or disallows

physical concurrency, it has a negative impact on the performance of multiprocessor systems.

Note that the serialization came as a by-product of the action of bypassing the complexity of

the Ada tasking model. Complex operations are replaced by lower-level operations;

rendezvous by subprogram call and semaphores. The best serialization technique is the use

of monitors which provide substantial benefits for applications where contention is likely to

be low. When serialization is undesirable, Stevenson's order-of-arrival method is clearly the

most efficient software method of implementing rendezvous, at least in the execution

environment in which the methods were evaluated.

The Ada tasking model is complex and defined at a high level of abstraction. The price of

this is that implementations that are complete are going to be relatively slow. Concurrency

can be far more efficient when the mechanisms are primitive, as in the case of semaphores.

The price of this primitiveness is that the primitives are easier to misuse. The key question

is whether the user community is willing to trade the decrease in performance for the ease of

use. It is clear that a concise analysis of the costs and benefits of the software optimization

techniques investigated in this report would be difficult and costly. In some cases a

simulation could be used. In others, prototype implementations would be more appropriate.
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Ways in which a coprocessor can be added to a system and used to increase the performance

of rendezvous were discussed. The tasking coprocessor is clearly the most technically

appealing of these, both because it so effectively reduces rendezvous time and because it is

the most studied method. The best alternative to the tasking coprocessor system is the

background coprocessor system, because of its simplicity and projected low cost, in spite of

its potential significant positive impact on performance. Any use of a coprocessor carries

with it the negative of disallowing off-the-shelf processing systems, as many embedded

systems are now configured. In most cases, the use of coprocessors require the modification

of the compiler and/or RTS. This is not a simple or inexpensive matter in the case of Ada.

The overall conclusion is that Ada tasking performance is unlikely to improve substantially

beyond what is currently available in the high performance runtimes unless hardware

support is provided. Most of the optimizations reported publicly have been implemented to

some degree in these runtimes which are written in assembly language. The remaining 150

microseconds involved in an actual rendezvous on a 25MHz 80386 is the result of the

complexity of Ada and is unlikely to be eliminated without hardware support. Many

questions remain as to the commercial viability of specialized hardware support due to the

limited market for its use. This question is the focus of the experiment proposed in the next

section.
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5. Further Experiments

The conclusions of this study indicate that little or no performance enhancements are likely

to be forthcoming in Ada tasking without special hardware support. The Ada tasking model

is very complex and requires certain activities to be done during task communication. Some

runtime vendors have been able to achieve relatively high performance runtimes

(rendezvous under 200us) for simple cases and provide additional synchronization

mechanisms (semaphores) for applications where this is too slow. These performances have

been achieved largely by hand optimization of assembly language runtimes. Other

optimizations, such as fast interrupt pragmas take advantage of special cases where the need

to use the runtime can be substantially reduced. Although several runtime vendors still have

much lower performance tasking, this is largely due to the lack of emphasis placed on

optimization. To some degree the marketplace has been biased towards sequential

programs for non-embedded applications which is largely unconcerned with the

performance of a context switch.

The hardware approach can take on several forms. Obviously, any enhancement to speed

up the average performance of a processor (such as Reduced Instruction Set Computer

(RISC) technology) will benefit tasking services as well. Other than this, the highest

performance and probably least flexible approach would be to incorporate full Ada tasking

semantics in hardware as part of a standard microprocessor. The closest example of this

approach is the Intel 80960MC architecture which incorporates a prioritized scheduler and

delay services in on-chip microcode. However, this is a small portion of supporting the Ada

semantics and therefore the expected improvement is small.

Another approach is to have a custom hardware chip developed to provide tasking

primitives The University of Lund work described in this report is an example of this
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technique. The major problem with this approach is cost. It now appears that it is not

commercially viable for such an approach to succeed. Integrated Circuits (ICs) typically sell

in quantities of 1000's to 100,000 per month. A typical Ada compiler for embedded use

normally sells at the rate of a few per month. The complexity of the IC (and therefore the

IC size) insures that the price will never reach commodity prices (under $100/IC). This

precludes large volume applications. Instead, the likely market is low volume, extremely

high performance systems. However, the benefit of the IC is relatively small as a total part

of CPU processing, and therefore adding another CPU is a much more cost effective

solution than going to a custom IC.

Finally, an approach which could be tried is the use of an extremely low cost (under $10 in

volume) single chip MicroProcessor Unit (MPU) as a background coprocessor. This

approach would have the tasking services and data structures maintained on-chip as in the

custom IC approach, but would provide the customizing via software. The major question

regarding this approach is the degree to which the tasking services can be parallelized with

respect to Ada tasking semantics. For example, it must be possible to issue a "create task"

request and then immediately issue a "select next task to run" request. If the MPU has to

execute all of the instructions in the create task primitive prior to servicing the scheduling

request, it would be better to have the main CPU perform the operations since it is likely to

be considerably faster. However, the presumption is that much of the MPU work can be

overlapped and therefore response to nearly all CPU requests will be prompt, with the MPU

doing the work at its earliest convenience. Obvious areas of contention are with task

creation, but this is probably not a serious problem due to the low frequency of use. The

primary emphasis should be with support for the rendezvous and timing services.
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This experiment will design and implement the tasking support for an Ada runtime using the

MPU coprocessor approach. An equivalent instruction set to the one implemented by the

University of Lund coprocessor shall be used. A prototype system will be designed using

nemory mapped access to the MPU. Instruction counts for each of the services listed in the

taxonomy will be collected as well as PIWG performance benchmarks. These will be a

"paper count" generated by counting the instructions necessary to implement the MPU

functions. That is, no hardware need be developed, however the software must be produced

to support the tasking primitives. The times required to execute the MPU instructions

should be characterized for the parameters so that benchmarks can be evaluated.

The critical aspect of this experiment is the design of the background coprocessor software.

The most sensitive area is the degree to which the results required by the main processor

can be "precomputed" and quickly provided when needed. To some degree, the order in

which the main processor issues requests can be optimized to increase the overlap. For

example, the main CPU may issue a suspension request for the current task to the MPU,

save its own registers, then request the next task to run from the MPU. The time used to

save its registers may only be a few microseconds, but it is completely overlapped with the

MPU execution.

Another real benefit is the ability to provide extremely accurate delays without the overhead

of frequent interrupts or complex timer manipulation. This can be very important for many

applications,- For example, to achieve 1ms resolution often requires in excess of 10%

overhead to process an interrupt every millisecond and determine which, if any, tasks must

be resumed. Since Calendar.CLOCK is also updated during these interrupts, the interrupt

overhead and service routine can easily exceed 100us resulting in a loss of 10% of the CPU

utilization. This is true even if the delay that needs the lms resolution is executed very

infrequently.
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These issues will be investigated and a report describing the benefits and limitations of the

resulting implementation, as well as difficulties of the project shall be produced.
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7. Appendix A: The Ada Tasking Model

Ada is the first widely used programming language to implement message passing as a

method of providing support for concurrency. This design and its implementation is,

therefore, somewhat of an experiment. In the following we briefly describe the Ada model

of message passing. Note that this description of Ada tasking facilities is not meant to be a

programmer's guide; rather, it is intended to inform the reader from the implementer's point

of view. For a complete semantic definition of the Ada tasking model refer to Chapter 9 of

the Reference Manual for the Ada Programming Language [26].

7.1 Basic Task Structure

An Ada task is a program unit that consists of two parts, the specification and the body. The

specification usually contains only a single kind of declaration, which is used to describe the

form of message sockets the corresponding task body contains. In the specification these are

called entry statements. Task bodies contain declarations of local variables and a statement

sequence that can include accept statements, which correspond to the entry declarations in

the associated task specification. The ac ?t statements describe the entry points for

incoming messages and also the sequence of statements that are to be executed when a

message is accepted. The general form of an accept statement is

actept n trynms tentry imii (forimtarste) (do
sWs" of ststmin~ts

id Centrymin];

The bracketed items are optionaL An accept statement can contain almost any other

statements, including calls to other tasks and nested accept statements. The statement

sequence of an accept statement defines the actions of the rendezvous. Rendezvous begins

when the message is passed into the accept statement and execution of the statement
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sequence begins. It terminates when the end of the accept statement is reached. Each entry

has an associated queue, which is used to store pending entry calls that have been made but

not yet accepted. The accept body, consisting of the reserved word do, the statement

sequence, and end, is optional. An accept statement without a body is used for

synchronization, without any data communication or rendezvous actions.

7.2 Selective Wait

Sometimes an accept statement is used repeatedly, and is placed in a loop construct. In

many cases, multiple accept statements are collected into a structure and used repeatedly.

The syntactic structure for collections of related accept statements is a form of the select

statement called a selective wait, which can have the form:

select

Or

or

end seLect;

The selective wait is usually placed in a loop structure, which causes its repeated execution.

The semantics of a simple selective wait, such as the one above, is that each time the

beginning of the select is reached, the entry queues referenced in each of the accept

alternatives are examined. If exactly one of the queues is nonempty, the next message in

that queue is chosen for acceptance. This causes the statement sequence in the associated

accept alternative to be executed. When the rendezvous is completed, the select statement

is exited. If more than one accept alternative have nonempty entry queues, one of them is

chosen, according to the implementation defined approach. If none of the accept statements

have a nonempty queue, execution is suspended until a message arrives. Note that messages

in a given entry queue are always accepted in FIFO order.
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7.3 Guarded accept Alternatives

Accept alternatives in select statements can have guards, in the form of Boolean expressions,

to limit their ability to accept messages. The general form of a guard is:

when Boolean-expression = > accept

When the Boolean expression in a guard is true, the accept alternative is said to be open;

otherwise it is closed. An accept alternative without a guard is always open. An open accept

alternative can rendezvous; a closed accept alternative cannot. A select statement with one

or more guarded accept alternatives has the following semantics. When control reaches the

select, all guards are evaluated and a list of open accept alternative is formed. If none of the

accept alternatives is open, the PROGRAM-ERROR exception is raised (see else below).

If more than one open accept alternative has a nonempty queue, one of them is

nondeterministically chosen for message acceptance. If exactly one open accept statement

has a nonempty queue, the next message in its queue is chosen for acceptance. If none of

the open accept statements has a nonempty queue, execution is suspended until a message

arrives at one of the open accept alternatives.

7.4 else Parts

To continue execution when there are no open accept alternatives, or when all the open

alternatives have no corresponding entry calls, an else part may be included at the end of the

select. The else part is executed when the select is executed and all of its open accept

alternatives have empty queues. The else part allows the task to carry out some background

computation when no entry calls which can be accepted are waiting.

7.5 A Shared Buffer. An Example
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A task body that controls access to a shared buffer that stores INTEGER type values and

provides INSERT and REMOVE operations is shown below.

task IUFTASK Is
BUFSIZE : constant INTEGER := 00;
PJF : array (1..UUFSIZE) of INTEGER;
FILLED : INTEGER range O..WFSIZE :a 0;

NExIN*
NEXT MIT : INTEGER range I..IUFSIZE :a 1
begin

loop
select

,Aen FILLED - UFSIZE

accept INSERT (ITEM : in INTEGER) do

EUF (NEXT-IN) := ITEM;

MEXT_IN := (NEXTIN mod BUFSIZE) + 1;

FILLED :a FILLED + 1;

end INSERT;
or

when FILLED v 0 a'

accept REMOVE (ITEM : out INTEGER) do

ITEM := IUF (NEXTOUT);
NEXTPUT := (NEXT (UT mod BUFSIZE) * 1;

FILLED :* FILLED - 1;
end REMOVE;

end select;
end Loop;

end BUF TASK;

Producer and consumer tasks can use the buffer controlled by this task by calling its

operations when needed.

7.6 Rendezvous

A message send operation is called an entry call, and in its simplest form has syntax that is

similar to a procedure calL Entry calls name their intended entries with the names of the

called task and the entry, catenated with a period. For example, BUFTASK.INSERT is

used to call the INSERT entry of BUFTASK We describe the more complex form of entry

calls later in this section. The semantics of rendezvous is that the caling task is blocked

(suspended) from the time the message is sent until after the last statement of the accept
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statement is executed. At that time the caller is placed back in the ready queue, which

makes it available for execution.

7.7 Extended accept Alternatives

When it is desirable to increase the level of concurrency of a program, it is possible to move

the statements at the end of the accept statement that do not reference the parameters to a

position below the end of the accept, but before the following or. This will allow the client

task will be placed in the ready queue sooner, thus potentially increasing the level of

concurrency. As an example, consider the modified version of the first part of the select

statement of the task BUF TASK

dn FILLED 4 lIFSIZE .
accept INSERT (ITEM : in INTEGER) do

UF (NEXT-IN) := ITEM;
and INSERT;
NEXTIN :a (NEXT1N and NUF.SIZE) + 1;
FILLED :u FILLED + 1;

or

The code after an accept alternative that appears before the following or in a select

statement is called an extended accept alternative. As stated above, the code in an extended

accept alternative can be executed concurrently with the calling task. Another aspect of Ada

semantics of tasks is that only one accept alternative can be active at a given time. This

provides implicit mutual exclusion for the buffer task above. This part of task semantics is

taken dirictly from the design of a monitor. There are several more complications that can

occur with the select statement.

7.8 terminate Alternatives

-59-



4 °

Ada Tasking Performance Issues - Final Report

Briefly, an explanation of the initiation and termination of tasks is necessary. Tasks that are

created by declarations begin execution when the specification part in which they are

declared is completely elaborated. As is discussed in Section 7.15, tasks can also be

dynamically created using allocators. Such tasks begin their execution at the time they are

allocated. Every Ada task has a master, which is the block, subprogram library package, or

task whose execution created the task objector in the case of allocated tasks, the master that

declared the access type definition. A task is said to depend on its master. The importance

of this is that the master cannot conclude its execution until all of its dependent tasks have

terminated. A task can terminate simply by reaching the end of its statement sequence.

Another possible way to terminate is to reach a terminate alternative in a select statement.

But the only way a terminate alternative can be selected for execution is if the master and all

of its other dependent tasks have either terminated or are waiting in a select statement that

contains a terminate alternative. The task BUF TASK could use a terminate alternative,

which would allow it to terminate if its master and all of its client tasks had either

terminated or were waiting at terminate alternatives. BUFTASK, as written earlier in this

section, does not terminate until the main program terminates.

7.9 delay Alternatives

The delay statement in Ada has the form:

dckay expmafan;

The expression specifies a value that is interpreted to be a measure of time in seconds. The

semantics are that the delay statement causes the task to be - fpended for at least the

amount of time specified in the expression. Delay statements can also appear in select wait

alternatives, as a delay alternative, taking the place of accept alternatives. The semantics of

-W0



Ada Tasking Performance Issues - Final Report

such a delay are different than for the same statement outside a select. Consider the

following example.

select
accept WNATEE;

or

Way 0.0;
end select;

The semantics of this select is that if no entry call is queued for WHATEVER, then a clock

is started. If no message appears for the entry WHATEVER by the time the select clock

reaches 10 seconds, the delay alternative is selected, which in this case causes the select to

be exited. This provides a means of specifying that if a message is not received within a time

limit, the task should stop waiting for one. A delay alternative can be followed by a

statement sequence. These statements are executed when the delay is selected. As is

described in Section 7.11, delay has another use in task interaction.

7.10 Conditional entry Calls

There are three different forms of entry calls. The simplest of these has the form of a

procedure call. The other two use special forms of the select statement to specify different

semantics.

The conditional entry call has the form:

select
entry cat Lstut;

seqmmnceof.statementsl
et

erd select;

Note that the square brackets above mean that what is enclosed is optional. The semantics

of the conditional entry call is as follows: An attempt is made to call the specified entry. If
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the associated task can immediately accept, the rendezvous takes place. If the rendezvous

cannot take place immediately, the attempt at rendezvous is abandoned and the sequence of

statements in the else part is executed.

7.11 limed entry Calls

The general form of the timed entry call is

"tect
entry nsm ( ctcmtus rmseters));

[sequmce.ofutamts]
or

delay ezpression;
Ese omce..f..statewntsl

O select;

The semantics of the timed entry call are as follows: A timer is started when the select is

reached. A rendezvous with the specified entry is attempted, and if immediate rendezvous is

poss'ble, it is carried out. If immediate rendezvous is not possible, then the calling task waits

until either the select timer reaches the value specified in the delay statement or rendezvous

occurs. f the timer runs out before the rendezvous occurs, the sequence of statements

immediately following the delay statement is executed and any attempts at rendezvous with

the specified entry are abandoned. If the rendezvous occurs, the sequence of statements

following the entry call is executed after completion of the rendezvous.

7.12 entry Families

Entries can appear in families. For example, we could have a task specification such as:

tnk DOIT is
entry WNATEUW (1..5) (PARN : INTIEGER);

end DOLT;
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DO IT is a task with five entries, named WHATEVER (1), WHATEVER (2), and so forth.

The body of DOlT may contain an accept statement for any of the five entries, and they

may be all represented by a single accept statement form. For example, DOITs body could

' take either of the two following forms:

task bo* DO1T Is

accept WHATEVER (1) (PARM) do

end WHATEVER (1);
accept IHATEVER (2) (PARN) do

end WHATEVER (2);

end DO1T;

task body DOIT fs

for iiEX In 1..5 toop
setect

accept IATEVER (INDEX) (PARN);

end UHATEVER;
or

nuttl;

end setect;
end to");

-n D _lT;

The index expression on the accept statement is evaluated only when the accept statement

is reached. A stand-alone indexed accept (one outside a select) has its index evaluated, and

then it waits for a call to that particular family member. Entry families can be used to specify

priorities among entry calls to closely related entries.

7.13 The abort Statement

One final statement that must be described with regard to Ada tasks is the abort statement.

Although this statement is probably used only on rare occasions, implementers must always

implement it. Abort statements specify the names of tasks whose execution is to be made
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"abnormal." The rules that describe what abnormal means are complex. Essentially the task

immediately becomes uncallable, and must become terminated no later than the next

synchronization point.

7.14 The PRIORITY pragma

The Ada language uses the priority pragma to specify how a task is chosen for execution

from the ready queue. That is, when one task relinquishes a processor, the ready task of

highest priority is chosen to get it. This pragma is placed in the task specification. It

statically assigns the specified priority level to the task in whose specification it appears. If

the specification is a type statement, then all objects of that type have the same priority.

Larger values of priority indicate higher levels of urgency. It is important to note that the

priority of a task has no impact on the order in which entry calls are taken from a given entry

queue. These are always taken in FIFO order. Furthermore, the priority of tasks need not

effect the choice among open accept alternatives within a select statement. One final note

on priorities of tasks is this: Ada semantics dictate preemptive scheduling of tasks. This

means that if a task is executing and a task with a higher priority becomes available for

execution (e.g., its delay has expired), the running task must be suspended and the task with

higher priority must be given the processor.

7.15 Allocated Tasks

Tasks can-be created by an object declaration or via use of an allocator for an access type

variatwe whose object is a task type. The use of the new allocator with such a variable causes

the dynamic allocation of a task object.


