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ABSTRACT: Using the kicked rotator as an example, we show how to apply the

formalism of Wigner symbols to the study of quantum dynairdcs. This approach

provides a simple and direct method of comparing quantum and classical dynamics.

We investigate in detail the leading quantum effects for small values of h and discuss

the time scales at which quantum effects appear.

PACS Indices: 0.3.65.-w, 0.3.65.Sq, 0.5.45.+b, 0.2.90.+p



I. INTRODUCTION

Progress in understanding nonintegrable classical dynamical systems1 has, in recent

years, stimulated considerable interest in the corresponding quantum systems. In par-

ticular, much work has been devoted to investigating relationships between the classical

and quantum dynamics of such systems. Important subjects of investigation include the

qualitative differences between a system's classical and quantum behaviors-, the time scale

at which quantum effects become significant, and how quantum effects can be calculated

for small values of h.2

Insight into these issues may be found by using a formulation of quantum mechan-

ics that resembles, as much as possible, the usual formulation of classical mechanics. A

conventional method of doing this is to construct wave packets that are initially localized

around a particular position and momentum. 3 The evolution of such a wave packet is then

compared to the classical trajectory beginning at the same position and momentum. While

this approach has proved useful for many applications, we advocate, in this paper, an al-

ternative approach that we believe can give a simpler and clearer comparison of quantum

and classical dynamics.

The central idea is to directly calculate the time dependence of quantum operators,

using the phase space representation associated with the works of Wigner and Weyl. 4' 5

For very small h, quantum operators represented in this manner (sometimes referred to as

Wiguer symbols) reduce precisely to their classical counterparts plus corrections, which are

typically of O(t2). Wigner symbols thus provide a quantum generalization for any classi-

cal quantity that has an associated quantun operator. The differences between quantum

and classical dynamics may be distinguished by, for example, comparing the Wigner sym-

bols for the position and momentum operators with the classical position and momentum

trajectories.
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The use of Wigner symbols has three principle advantages over the use of wave packets.

First, in using Wigner symbols the only parameter added to the classical parameters is h.

In contrast, with wave packets one must also specify, at least, their initial widths. Second,

wave packets usually spread out and eventually are no longer sharply localized around

a particular position and inomnetum, making dubious a comparison with an individual

classical trajectory. With Wigner symbols, this spreading problem does not exist. Third,

by employing a phase space representation for quantum operators the difference between

quantum and classical mechanics may be separated into two parts. One part arises from the

the difference in the phase space distribution functions allowed for quantum and classical

systems and is not essentially related to the dynamics. The other part, that which is

obtained by calculating Wigner symbols, contains all the dynamical information. Making

this separation can clarify the origin of quantum effects.

While the basic formalism of Wigner symbols is well-established, 6 it has not, to our

knowledge, been previousiy applied to the calculation of dynamical properties for nonin-

tegrable quantum systems. In this paper, we demonstrate how to do this, using as an

example the kicked rotator, a model frequently employed in the investigation of noninte-

grable dynamics.7 This model consists of a particle that is periodically "kicked" and is

governed by the Hamiltonian

2
H + Kcos(x) 6 6(t - n), (1.1)

n = -x

where x is the particle's position, p is the particle's momentum, and K is the kicking

strength. 8

For the kicked rotator, we show explicitly how to calculate Wigner symbols, and we

study in detail the leading deviation for small h of symbols from their classical limits. We

find that the asymptotic time dependence of the leading deviation depends only on general

features of the classical trajectory. We also discuss how to estimate the time scale at which
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quantum effects begin to be important and present a calculation of a so-,alled quantum

crossover time. The object of this paper is to demonstrate the utility of Wigner symbols for

studying quantum dynamics. as well as to give new results for the kicked rotator relevant

for small values of h.

We review, in Section II. the basic formalism of Wigner symbols. In Section III, we

give, for the kicked rotator. a practical method for calculating Wigner symbols and present

typical numerical results. which we compare to the corresponding classical ones. We then,

in Section IV, consider in detail the leading quantum correction to a classical trajectory

and discuss the time scales at which quantum effects become significant.

II. THE WIGNER SYMBOL FORMALISM

For a system consisting of a single particle, a dynamical quantity A F(x,p) (e.g.,

the particle's energy) can classically be regarded as a function, A(x 0 , p0 , t) = F(x(t), p(t)),

of the particle's initial position x0, initial momentum Po, and thD time t. Similarly, a

quantum operator A = F(i, P) can be regarded as a function, A(.oP0,t) = F(i(t),P(t)),

of the initial position operator = 2 (10). the initial momentum operator P0, and time.

We assume that .4 is Hermitian, that the function F(x,p) does not have an explicit h

dependence, and that [ip] = ili.

Since the position and momentum operators do not commute, the function A is well-

defined only if an operator ordering is specified. Weyl ordering is obtained from the

prescription

A(t) Jdxodp0 A(x.r0pO.t) J di0-z1i-Ldy-P1 (2.1)
(92d

where d is the dimension of the system. Defined in this manner, we refer to A as the
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Wigner symbol for A.6 To find A, one takes the Wigner transform of A:

A(xo,po, t) = f da e--QPO (xo+a/21 A(t) Ixo-a/2), (2.2)

where the state Ix) is an eigenstate of the initial position operator. The Wigner symbol of

any Hermitian operator is real.

This way of representing a quantum operator is useful because the Wigner symbol

A(xO,pO, t) is a natural generalization of the classical A(xo,po,t). For small h, one can

show9

A(x0 , P0 , t) = A(xo, po, t) 4- O(h2 ). (2.3)

Furthermore, the average of A over an initial state lVo) may be expressed as

t)) / dxdx'( ox) (x I A(t) x')(x'l¢o)
,I (2.4)

SJdxodpo .4(o , po, t) 1 (xo, po),

where t3 is the Wigner function of 00), given by 4

da I-'a
X(xoPO) = (2h )d eCQ (.rO+a/210 )(O Ixo-a/2).  (2.5)

Equation (2.4) is very analogous to the classical expression for the average value of A over

a distribution of initial conditions.

In Eq. (2.4), the h-dependence of A's expectation value has been divided into two parts,

one due to the Wigner function, fi, and one due to the Wigner symbol, A. The Wigner

function, as we have defined it, is independent of time and has no connection to the system's

Hamiltonian. It merely represents choice of initial state. Its h-dependence arises from the

basic rules of quantum mechanics that constrain the possible forms of . For example, ,

cannot be choosen to be a delta function in both the position and momentum variables, as

this would violate the Heisenberg uncertainty relation. The Wigner symbol, on the other

hand, depends essentially on the Hamiltonian and contains dynamical information intrinsic

5



to the system. By comparing Wigner symbols directly with their classical limits, one may

distinguish quantum effects particular to a system's dynamics from ones due solely to the

general restrictions quantum mechanics places on phase space distributions.

The phase space formulation of quantum mechanics developed here is distinct, but

complementary to, one which uses time dependent Wigner functions as the central dy-

namical objects. 10 Our approach corresponds to the Heisenberg picture of quantum me-

chanics, while the use of time dependent ,Vigner functions corresponds to the Schr6dinger

picture. In previous studies of quantum dynamics, the Schr6dinger viewpoint has predom-

inated. In the following sections, we show how practical calculations can be done within

the Heisenberg framework.

III. CALCULATING WIGNER SYMBOLS

FOR THE KICKED ROTATOR

The essential features of the kicked rotator's dynamics are contained in a map that

gives the position and momentum just before a kick in terms of the position and momen-

tum before the previous kick. This map is found by integrating the equations of motion

corresponding to the Hamiltonian (1.1) over one kicking period, leading to the so-called

standard map I I
Xt+i = Xn + Pn+1

(3.1)

P11I - Pn t+ K sin(xii),

with x, being the position and pn the momentum before the nth kick.

The dependence of a dynamical quantity, A, = F(x,,pn), on the initial position and

momentum can be obtained from the recurrence relation

A,+ I(.r0.0)= An(x0 + po + Ksin(xo),po + K sin(xo)), (3.2)

which follows from (3.1) and the fact that an (n + 1)-step evolution from (xo,po) is the
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same as an ri-step evolution from (x 1 , pl). Moreover, by applying (3.2) to the cases with

A. = Xn and An = Pn, (3.1) can be derived from (3.2). Thus (3.1) and (3.2) provide

equivalent representations of the kicked rotator's classical dynamics.

Quantum mechanically, the evolution of an operator over one kicking period is given

byi0.12

,,+= tU, (3.3)

where U is an evolution operator defined

(p2

/ e(po/2)e-LKcos('O) (3.4)

Using Eq. (2.2) to express (3.3) in terms of Wigner symbols, one finds, after seine

algebra,

A n+I(XOPO)= Z J[2Ksi i(.O)/h] (o (xO + PO + M/2, po + h/2), (3.5)

where Ji(x) is a Bessel function. The recurrence relation (3.5) is a quantum generalization

of (3.2), reducing to (3.2) in the h -- 0 limit. For large 1, the Bessel functions decrease

rapidly and only about 4K/h terms contribute substantially the sum in (3.5).

The numerical evaluation of (3.5) is especially simple for quantities with the symmetry

An(XO,PO) = .n(xO + 27r,p0) = An(xo,PO + 2r), (3.6)

which is preserved by the dynamics. This symmetry can be exploited by choosing h equal

to a *'resonant" value of 4ra/b, where a and b are positive integers. 7 ,12 Any other value of

h may be approximated to arbitrary accuracy by using sufficiently large a and b. 3

For these resonant values of h, (3.5) becomes

b-I

A"n+l(x0 = Z Ql(xo)4n(xo + po + h/2,po + h1/2), (3.7)
1=0
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with
cb-i [2,lm K 2n2rm

Qi(Xo) = 4 cos -- -(cos(Xo + - cos(x 0  )) (3.8)b ,b=h b 'o( 0 - _

which now contains a finite number of terms. Further simplification occurs if p0 is ap-

proximated by a number 2-j/b. where j is an integer. The recurrence relation (3.7) is

then equivalent to a map of a b x b matrix and is straightforward to evaluate numerically.

The symmetry (3.6) applies in particular to the momentum step, Pn+l(xo,P0 )- Pn(x0 ,P0 ),

from which the momentum symbol can be obtained. In fact, the Wigner symbol for any

operator that is a polynomial in x and j3 can be found by iterating b x b matrices.

In Fig. 1, we show the time dependence of a typical momentum synrbol for two values

of h, as well as the corresponding classical trajectory (K = 2.5, x 0 = 1.0, p0 - 0.94). The

symbols were calculated by using (3.7) with b = 67. The classical trajectory, Fig. la, is

chaotic. For small b, the momentum symbol also appears irregular, as in Fig. lb, but as

h is increased it becomes more regular as suggested by Fig. 1c.

A Fourier transform in time of the momentum symbol consists of sharp peaks, indicat-

ing quasiperiodic dynamical behavior. For small h. many peaks have a substantial weight,

while for large t, only a few are significant. In the h -+ 0 limit, the number of important

Fourier peaks may diverge, leading to chaotic classical motion. The suppression of the

chaotic behavior of the kicked rotator by quantum effects can be understood in terms of a

localization argument due to Grempel. et al. 14

IV. QUANTUM CORRECTIONS FOR SMALL h

We now consider the leading deviation of a Wigner symbol for the kicked rotator from

its classical limit. These deviations, generally of 0(h 2 ), represent the first quantum cor-

rections to the classical motion. Here we restrict ourselves to the position and momentum

symbols, although the method we use may be extended to other Wigner symbols.
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The position and momentum synmbols have the expansions

in(xo.pO) = x,,.ro. pO) + h2 an (x 0 ,PO) + OW),
(4.1)

It'd'u.pO) = p,,) zo.po) + hA2 n(xoPO) + O(h4),

where an and i3n are the coefficients of the leading quantum corrections. These coefficients

may be obtained by iterating the map

(Ii-+-I = 'In + In+lI
(4.2)

3n+1 = 3 , - V( 2)(xn)an + Wn,

with the initial condition a 0 = 3 0 = 0. In (4.2),

K 1 1
Wn - ik fjxn,.ij { sin(n)Znk + 3 cos(xn)xnkxn'l}, (4.3)

where we use the notations

Of(xo, po)
I l(XOPO) =Of(O )

OXO

f2x P)=Of (Xo PO ) (4.4)

OPO

f .ij( zOPO ) -[fi(X.o • PO )],j.

for any function f(xo.pO). In (4.3), the indices i,j. k. I are summed from 1 to 2, and eij is an

antisymmetric matrix with ell = E22 = 0 and e12 = -e2 1 = 1. Wn can be calculated from

the classical map (3.1). While (4.2) may be derived from (3.3). a more direct derivation is

given in the Appendix.

For short times, the quantum corrections obtained from (4.2) are small. and the quan-

tum and classical trajectories nearly coincide. However. as time increases, the quantum

corrections tend to grow and eventually become important (see Fig. 2). For small h, it is

the asymptotic behavior for large time of the corrections which is of interest. 15 Numerical

study of (4.2) indicates the asymptotic form of the corrections depends only on the general

character of the classical trajectory. Specifically, we find for a generic quasiperiodic clas-

sical trajectory that, on the average, IanI and 10,11 increase proportionally to n , while for
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a chaotic classical trajectory they increase proportionally to e3 a n , where a is the largest

Liapunov exponent for the classical trajectory. Equations (4.1) then suggest that the time

at which the Wigner symbols begin to deviate significantly from the corresponding classical

trajectories scales as h- 2 / 3 , for quasiperiodic trajectories, and as -(2/3a) ln(h) for chaotic

trajectories. 16 Clearly, the quantum corrections to a chaotic classical trajectory increase

much more rapidly than those for a quasiperiodic trajectory.

Figure 3 gives a comparison of the quantum corrections computed from (4.2) with exact

results obtained from Eq. (3.7) for two trajectories with K = 1.5 and h = 47r/250 - 0.05.

We define the quantum deviation An (Pn - pn)/h 2 . For small n, An is approximately

equal to 3n, but as n increases the deviation grows and can no longer be obtained from

(4.2). The deviation for the chaotic trajectory (squares) initially grows much faster tian

the deviation for the quasiperiodic trajectory (circles).

As an illustration of how to apply these results, we consider a wave packet that initially

has the Gaussian form

= 1/4 exp (-7- + x- O)2), (4.5)

where A is a real parameter. From Eq. (2.5), one finds the corresponding Wigner function

to be

/)(-,p)= 1) exp (x _ 0)2  - p )2 . (4.6)

The average position of this wave packet as it evolves in time is, as follows from (2.4),

= f dx'dp'i(x',p', t)3(x'.p'). (4.7)

We now ask how this average position differs, for small h, from the average position

found from the classical evolution of a phase space distribution that is initially set equal

to the Wigner function (4.6). In other words, we compare the wave packet's average

position with that obtained from Eq. (4.7) when i is replaced by the classical position

10



x. Using (4.1) one finds that the difference between these quantum and classical average

positions is simply h2 an(xO, PO) plus terms of higher order in h. Hence, the time at which

the average position of the Gaussian wave packet begins to deviate substantially from the

classical average is the same as the time at which -in(xo, po) begins to deviate substantially

from xn(xO,PO). We note that this time cannot be obtained from the usual semiclassical

treatment of Gaussian wave packets. since the average position in this approximation is

just the classical xn(xO. PO). 17

As a further example, we apply Wigner symbols to estimate the so-called quantum

crossover time for the kicked rotator. The crossover time may be defined, somev .lat loosely,

as the time at which there appears a significant qualitative difference between the kicked

rotator's classical and quantum behavior. For values of K greater than K =- 0.9716...,

this is conventionally taken as the time at which the average momentum of a quantum

wave packet ceases to exhibit the diffusive behavior observed classically.7 (If K is less than

K, classical KA.M trajectories bound the momentum and this criterion does not apply. 11)

The classical diffusion rate for K > K, is determined essentially by the dynamics in the

vicinity of the cantorus remnant of the last bounding IKAI trajectory to disappear (which

it does at K = K,). Since this last KAI trajectory plays a central role in determining

the kicked rotator's qualitative behavior, it is reasonable to postulate that the time at

which quantum corrections to this trajectory become significant should correspond to the

quantum crossover time. Numerical calculations obtained from Eq. (4.2) for the leading

quantum corrections to the position and momentum symbols indicate that these grow

proportionally to ne'. where v = 6.2 ± 0.1 (see Fig. 4).18 Equations (4.1) then imply a

crossover time proportional to h- (2 /,), which is consistent with both numerical simulations

and with the result of Fishman, et al., 19 who use a renormalization argument to find a

crossover time scaling as I - (2/v'), with v' - 6.1.
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V. CONCLUDING REMARKS

Both classically and quantum mechanically, there are two complementary perspectives

from which one may discuss dynamics. The usual classical approach is to calculate trajec-

tories for individual particles. Alternatively, one may study the evolution of a distribution

function of phase space points, by solving, for example, Liouville's equation. In quantum

mechanics, the viewpoint analogous to the classical trajectory approach is the Heisenberg

picture, while the Schr6dinger picture is analogous to the classical distribution function

approach.

Since many of the important concepts pertaining to nonintegrable classical dynamical

systems (e.g., the distinction between regular and chaotic dynamics) are most easily'un-

derstood from the trajectory viewpoint, it seems natural to employ the Heisenberg picture

in comparing quantum and classical dynamics. Nevertheless, this is rarely done, perhaps

because of a lack of practical techniques for applying the Heisenberg approach. In this

paper, we have sought to develop such techniques, using the model of the kicked rotator.

Our basic method is to calculate directly the time dependence of the Wigner symbols

corresponding to quantum observables. When quantum mechanics is formulated in this

way, its relationship to classical mechanics is very clear. Each Wigner symbol corresponds

to a unique classical quantity, allowing the comparison between quantum and classical

dynamics to be made simply and unambiguously. For example, the Wigner symbol cor-

responding to the derivative of a classical trajectory with respect to its initial position,

Ox(t )/0x 0 . which is relevant to the calculation of Liapunov exponents, is simply the deriva-

tive of the position symbol, 0i(t)/Oxo. How to make such a connection in the language of

Schr6dinger wave functions is less obvious.

In addition to giving a practical algorithm for calculating Wigner symbols for the kicked

rotator, we have also studied the behavior of the position and momentum symbols for small
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values of h. We find that the asymptotic behavior of the leading quantum corrections for

these Wigner symbols depends only on the general character of the corresponding classical

trajectory. and we have shown that these corrections can be used to find the time at which

quantum effects become significant. In particular, the quantum crossover time for the

kicked rotator with K > K, can be estimated from the deviations to the last bounding

KAM trajectory.

While in this paper we have r, icted ourselves to the kicked rotator, the Wigner

symbol approach can be applied to many other systems. This method is especially useful

when a comparison of classical and quantum dynamics is desired. We anticipate applica-

tions both to questions concerning the qualitative dynamical behavior of simple quantum

systems and to the development of practical quantitative calculational techniques.
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APPENDIX

Here we present a derivation of map (4.2), which gives the leading quantum corrections

for the position and momentum symbols. We begin with some general considerations

pertaining to the h expansions of Wigner symbols. In developing such expansions, it is

convenient to have a relation between the Wigner symbols for two individual operators, A

and b, and the Wigner symbol for their product, A3A= C. This is given by the so-called

13



"*-product:"

((o,po) ---[((oP)exp ih - Op px b(XOPO)  (A4.1)

-A(x 0 .p0 ) * B(x 0 ,p0 ),

with the arrows indicating on which sides the derivatives act. 6 ,20 The *-product, like the

operator product, is associative but not commutative. Note that the *-product reduces to

an ordinary product for h = 0.

Expanding the exponential in Eq. (A.1), we obtain the h expansion

A(oo B(o, bo) = 0 1  h) {A,b}n, (A.2)
n=O

where

{, B} - Z (-)m (nn) (A.3)
E,,=m a(n-m)zoampO 8nXO8(n-m)p.

{A, B}1 is simply the conventional Poisson bracket. Evaluating a *-product of two Wigner

symbols to order n in h requires derivatives up to order n.

We now consider tile h e.xpansion for the Wigner symbol of some analytic function of

an operator, F(A). The Wigner symbol for F(.4) may be written F[*A(xo,pO)], where

F[*A(xO,pO)] is defined in terms of F's Taylor expansion and the rules

*A(x 0 .p0 ) =.4(xo,po).

[*A(xo,p 0 )]2 -.,(xO. PO) * .4(x O.PO), (A.4)

[*A(xo.po)]3 .4(ro,pO) * .4 (xo,po) * A(xopO), etc.

We may expand F[*A(x O , pO)] as

F[*.-(i.r o P0 )] =F[.4(.xo, po) + (* A(xo, po) - A(xo, p0 ))

E3 -F(")[A(x.,po)][*A(x o,Po) - A(xo,p 0 )] ' , (A.5)

where F(n)(A) is the nth derivative of F(A). The n = ± term vanishes identically. Using

(A.2), each term of the right hand side of (A.5) can be further expanded in powers of h.

14



To 0(h2), one finds that only the first tlirce nontrivial terms (i.e., n = 0, 2, 3) contribute,

with the higher order terms being of O h4 ) or smaller. Evaluating these gives

F[*A(xo,po)] =Ff.4(x0 . P0 )

- h2 Eike~j.'..O'PO){ -F(2)[A(xO' po)]Akl(zO'pO) (A.6)

+ 3F , [.l --O-PO)J-4Ak(xO,PO)AI(xo,PO)} + 0(h 4 ),

where we have used the notations of (4.4).

The dynamics of the quantized kicked rotator follows from the operator map

Xin+l = -in + Pn+

(A.7)
= n + K sin(in),

which is the quantized form of (3.1) and is equivalent to (3.3). Taking the Wigner transform

of this map gives
"n+I =.Cf1 + PnIl

(A.8)
/),,+ 1 bu + K sin(*.i).

Applying (A.6) and (4.1) to (A.S) and extracting the terms of 0(h 2 ), leads directly to

(4.2).
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FIGURE CAPTIONS

1) A classical momentum trajectory and its corresponding momentum symbol for K =

2.5, x0 = 1.0, and Po = 20,/67: (a) is the classical trajectory, (b) is the momentum symbol

with h = 8-r/67 - 0.38. and (c) is the symbol with h = 2127r/67 = 9.9. As h is increased

the momentum symbol's time dependence evolves from chaotic, in the classical limit, to

simple and quasiperiodic, for large values of h.

2) Momentum symbol (h = 4r/250: solid line) with the corresponding classical trajec-

tory (dashed line) for K = 1.5, x0 = 3.0, and po = ir. The momentum symbol follows the

classical trajectory for several iterations, but then begins to deviate.

3) Logarithm of the deviation An -- (Pn - Pn)/h 2 for a quasiperiodic trajectory (K =

1.5. x0 = 3.0. and Po = ir: circles) and a chaotic trajectory (K = 1.5, x 0 = 2.0. and po = ,r;

squares). The solid lines are exact calculations with h = 47r/250, and the dashed lines are

the approximations obtained by using the h expansion coefficient /3n.

4) Logarithm of the quantum correction an for the last bounding KAM trajectory

(K = 0.971635.... x0 = r, and P0 = 3.737998.. .). Only points from the curve's upper

envelope are plotted (solid line). The dashed line is a least squares fit of slope 6.2, showing

that the correction increases approximately as n6 "2 .
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