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Abstract

The major issues of modern software are its size and complexity, and its major problems involve
finding effective techniques and tools for organization and maintenance. This paper traces the
important ideas of modern programming languages to their roots in the problems and languages of
the past decade and shows how these modern languages respond to contemporary problems in
software development. Modern programming's key concept for controlling complexity is abstraction
-- that is. selective emphasis on detail; new developments in programming languages provide ways to
support and exploit abstraction techniques.
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1. Issues of Modern Software
The major issues of modern software development sten from the costs of software development,

use, and maintenance -- which are too high -- and the quality of the resulting systems -- which is too

low. These problems are particularly severe for the large complex programs with long useful lifetimes

that characterize modern software. Such programs typically involve many programmers, not only

during their development but also for maintenance and enhancement after they are initially released.

As a result, the cost and quality of software are influenced by both management and software

engineering considerations [5 [23].

This paper examines one of the themes that run through the history of attempts to solve the

problems of high cost and low quality: the effect of abstraction techniques and their associated

specification and verification issues on the evolution of modern programming languages and

methods. This theme places a strong emphasis on engineering concerns, including design,

specilication. correctness, and reliability.

The paper begins with a review of the ideas about program development and analysis that heavily

influenced the development of current techniques (Section 2). Many of these ideas are of current

interest as well as of historical importance. This review provides a setting for a survey of the ideas

from current research projects that are influencing modern language design and software

methodology (Section 3). Section 4 illustrates the changes in program organization that have been

stimulated by this work by developing an example in two different languages intended for production

use, Ada and Pascal. Although Sections 2 and 3 present a certain amount of technical detail, Section

4 illustrates the concepts with an example that should be accessible to all readers. An assessment of

the current status and the potential of current abstraction techniques (Section 5) concludes the

paper.

2. Historical Review of Abstraction Techniques
Controlling software development and maintenance has always involved managing the intellectual

complexity of programs and systems of programs. Not only must the systems be created, they must

be tested, maintained, and extended. As a result, many different people must understand and modify

them at various times during their lifetimes. This section identifies one set of ideas about managing

program complexity and shows how those ideas have shaped programming languages and

methodologies over the past ten to fifteen years.

A dominant theme in the evolution of methodologies and languages is the development of tools for

dealing with abstractions. An abstraction is a simplified description, or specification, of a system that

emphasizes some of the system's details or properties while suppressing others. A good abstraction
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is one in which information that is significant to the reader (i.e., the user) is emphasized while details

that are immaterial or diversionary, at least for the moment, are suppressed.

What we call "abstraction" in programming systems corresponds closely to what is called "analytic

modelling" in many other fields. It shares many of the same problems: deciding which characteristics

of the system are important, what variability (i.e., parameters) should be included, which descriptive

formalism to use, how the model can be validated, and so on. As in many other fields, we often define

hierarchies of models in which lower-level models provide more detailed explanations for the

phenomena that appear in higher-level models. Our models also share the property that the

description is sufficiently different from the underlying system to require explicit validation. We refer

to the abstract description of a model as its specification and to the next lower-level model in the

hierarchy as its implementation. The validation that the specification is consistent with the

implementation is called verification. The abstractions we use for software tend to emphasize

functional properties of the software, emphasizing what results are to be obtained and suppressing

details about how this is to be achieved.

Many important techniques for program and language organization have been based on the

principle of abstraction. These techniques have evolved in step not only with our understanding of

programming issues. but also with our ability to use the abstractions as formal specifications of the

systems they describe. In the 1960's, for example, the important developments in methodology and

languages were centered around functions and procedures, which summarize a program segment in

terms of a name and a parameter list. At that time, we only knew how to perform syntactic validity

checks, and specification techniques reflected this: "specification" meant little more than "procedure

header" until late in the decade. By the late 1970's. developments were centered on the design of

data structures. specification techniques drew on quite sophisticated techniques of mathematical

logic, and programming language semantics were well enough understood to permit formal

verification that these programs and specifications were consistent.

Programming languages and methodologies often develop in response to new ideas about how to

cope with complexity in programs and systems of programs. As languages evolve to meet these

ideas, we reshape our perceptions of the problems and solutions in response to the new experiences.

Our sharpened perceptions in turn generate new ideas which feed the evolutionary cycle. This paper

explores the routes by which these cyclic advances in methodology and specification have led to

current concepts and principles of programming languages.

2.1. Early Abstraction Techniques

Prior to the late 1960's, the set of programming topics regarded as important was dominated by the

syntax of programming languages. translation techniques, and solutions to specific implementation
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problems. Thus we saw many papers on solutions to specific problems such as parsing, storage

allocation, and data representation. Procedures were well-understood, and libraries of procedures

were set up. These libraries met with mixed success, often because the documentation (informal

specification) was inadequate or because the parameterization of the procedures did not support the

cases of interest. Basic data structures such as stacks and linked lists were just beginning to be

understood, but they were sufficiently unfamiliar that it was difficult to separate the concepts from the

particular implementations. Perhaps it was too early in the history of the field for generalization and

synthesis to take place, but in any event abstraction played only a minor role.

Abstraction was first treated consciously as a program organization technique in the late 1960's.

Earlier languages supported built-in data types including at least integers, real numbers, and arrays,

and sometimes booleans, high-precision reals, etc. Data structures were first treated systematically in

1968 (the first edition of [431), and the notion that a programmer might define data types tailored to a

particular problem first appeared in 1967 (e.g., 671). Although discussions of programming

techniques date back to the beginning of the field, the notion that programming is an activity that

should be studied and subjected to some sort of discipline dates to the NATO Software Engineering

conferences of 1968 [53] and 1969 [7].

2.2. Extensible Languages

The late 1960's also saw efforts to abstract from the built-in notations of programming languages in

such a way that any programmer could add new notation and new data types to a base language. The

objectives of the extensible language work included allowing individual programmers to extend the

syntax of the programming language, to define new data structures, to add new operators (including

infix operators as well as ordinary functions) for both old and new data structures, and to add new

coittrjl 'trlucturets to the baise language. This wogk on extenisibility (GO LfiOl OtI. iI pdrt 0CMaIse it

underestimated the difficulty of defining interesting extensions. The problems included difficulty with

keeping independent extensions compatible when all of them modify the syntax of the base language,

with organizing definitions so that related information was grouped in common locations, and with

finding techniques for describing an extension accurately (other than by exhibiting the code for the

extension). However. it left a legacy in its influence on the abstract data types and generic definitions

of the 1970's.

2.3. Structured Programming

By the early 1970's. a methodology emerged for constructing programs by progressing from a

statement of the objective through successively more precise intermediate stages to final code 1711

1171. Called "stepwise refinement" or "top-down programming", this methodology involves

approaching a problem by writing a program that is free to assume the existence of any data

.......... . -- ===m = meme m Ilm i ! =i r iI
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structures and operations that can be directly applied to the problem at hand, even if those structures

and operations are quite sophisticated and difficult to implement. Thus the initial program is

presumably small, clear, directly problem-related, and "obviously" correct, Although the assumed

structures and operations may be specified only informally, the programmer's intuitions about them

should make it possible to concentrate on the overall organization of the program and defer concerns

about the implementations of the assumed definitions. When each of the latter definitions is

addressed, the same technique is applied again, and the implementations of the high-level operations

are substituted for the corresponding invocations. The result is a new, more detailed program that is

convincingly like tie previous one. but (lepenuls 0i1 fhwer or siml ,lei lihoiols (and hetInce is closer to

being compilable). Successive steps of the program development add details of the sort more

relevant to the programming language than to the problem domain until the program is completely

expressed using the operations and data types of the base language, for which a compiler is

available.

This separation of concerns between the structures that are used to solve a problem and the way

those structures are implemented provides a methodology for decomposing complex problems into

smaller, fairly independent segments. The key to the success of the methodology is the degree of

abstraction imposed by selecting high-level data structures and operations. The chief limitation of the

methodology, which was not appreciated until the methodology had been in use for some time, is that

the final program does not preserve the series of abstractions through which it was created, and so

the task of modifying the program after it is completed is not necessarily simpler than it would be for a

program developed in any other way. Another limitation of the methodology is that informal

descriptions of operations do not conveyprecise information. Misunderstandings about exactly what

an operation is supposed to do can complicate the program development process, and informal

descriptions of procedures may not be adequate to assure true independence of mohiles. The

development of techniques for formal program specification helps to alleviate this set of problems.

At about the same time as this methodology was emerging, we also began to be concerned about

how people understand programs and how programs can be organized to make them easier to

understand. and hence to modify. We realized that it is of primary importance to be able to determine

what assumptions about the program state are being made at any point in the program. Further,

arbitrary transfers of control that span large amounts of program text interfere with this goal. The

control flow patterns that lend themselves to understandable programs are the ones that have a single

entry point (at the beginning of the text) and, at least conceptually, a single exit point (at the end of the

text). Examples of statements that satisfy this rule are the it...then...else and the for and while

loops. The chief violator of the rule is the go to statement.

The first discussion of this question appeared in 1968 [16], and we converged on a common set of
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"ideal" control constructs a few years later [17] [35]. Although true consensus on this set of

constructs has still not been achieved, the question is no longer regarded as an issue.

2.4. Program Verification

In parallel with the development of "ideal" control constructs -- in fact, as part of their motivation --

computer scientists became interested in finding ways to make precise, mathematically manipulatable

statements about what a program computes. The ability to make such statements is essential to the

development of techniques for reasoning about programs, particularly for techniques that rely on

abstract specifications of effects. New teclhiques were required because procedure headers, even

accompanied by prose commentary, provide inadequate information for reasoning precisely about

programs, and imprecise statements lead to ambiguities about responsibilities and inadequate

separation of modules.

The notion that it is possible to make formal statements about values of variables (a set of values

for the variables of a program is called the program state) and to reason rigorously about the effect of

executing a statement on the program's state first appeared in the late 1960's [191 [321. The formal

statements are expressed as formulas in the predicate calculus, such as

y>x r, (x>0 z = X 2).

A programming language is described by a set of rules that define the effect each statement has on

the logical formula that describes the program state. The rules for the language are applied to the

assertions in the program in order to obtain theorems whose proofs assure that the program matches

the specification.' By the early 1970's the basic concepts of verifying assertions about simple

programs and describing a language in such a way that this is possible were tinder control 1351 (481.

When applied by hand, verification techniques tend to be error-prone. and formal specifications, like

informal ones, are susceptible to errors of omission [201. In response to this problem, systems for

performing the verification steps automatically have been developed [211. Verification requires

converting a program annotated with logical assertions to logical theorems with the property that the

program is correct if and only if the theorems are true. This conversion process, called verification

condition generation, is well-understood, but considerable work remains to be done on the problem of

proving those theorems.

When the emphasis in programming methodology shifted to using data structures as a basis for

program organization. corresponding problems arose for specification and verification techniques.

The initial efforts addressed the question of what information is useful in a specification (551.
Subsequent attention concentrated on making those specifications more formal and dealing with the

I A suvey of these ideas appears in [471; inlroductions to the methods appear in Chapter 3 of [491 and Chnpler 5 of [751.
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verification problems [33]. From this basis, work on verification for abstract data types proceeded as

described in Section 3.

2.5. Abstract Data Types

In the 1970's we recognized the importance of organizing programs into modules in such a way

that knowledge about implementation details was localized as much as possible. This led to language

support for data types 1341, for specifications that are organized using the same structure as data [28)

[44] [741, and for generic definitions [611. The language facilities are based on the class construct of

Simula 181 191, ideas about strategies for defining modules [5411561, and concerns over the impact of

locality on program organization [731. The corresponding specification techniques include strong

typing and verification of assertions about functional correctness.

Over the past five years, most research activity in abstraction techniques has been focussed on the

language and specification issues raised by these considerations; much of the work is identified with

the concept of abstract data types. Like structured programming, the methodology of abstract data

types emphasizes locality of related collections of information. In this case, attention is focussed on

data rather than on control. and the strategy is to form modules consisting of a data structure and its

associated operations. The objective is to treat these modules in the same way as ordinary types

such as integers and reals are treated; this requires support for declarations, infix operators,

specification of routine parameters, and so on. The result, called an abstract data type, effectively

extends the set of types available to a program -- it explains the properties of a new group of variables

by specifying the values one of these variables may have, and it explains the operations that will be

permitted on the variables of the new type by giving the effects these operations have on the values of

the variables.

In a data type abstraction, we specify the functional properties of a data structure and its

operations. then we implement them in terms of existing language constructs (and other data types)

and show that the specification is accurate. When we subsequently use the abstraction, we deal with

the new type solely in terms of its specification. (This techmiqu. Iil", ,i . l d(I htiel in ';, cli oll 3.)

This philosophy was developed in several recent language research and development projects,

including Ada 1371, Alphard [741, CLU [461, Concurrent Pascal [41, Euclid [441. Gypsy [1]. Mesa [221,

and Modula [72].

The specification techniques used for abstract data types evolved from the predicates used in

simple sequential programs. Additional expressive power was incorporated to deal with the way

information is packaged into modules and with the problem of abstracting from an implementation to

a data type [291. One class of specification techniques draws on the similarity between a data type

and the mathematical structure called an algebra [281 [45]. Another class of techniq',ies explicitly
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models a newly-defined type by defining its properties in terms of the properties of common,

well-understood types [741.

In conjunction with the work on abstract data types and formal specifications, the generic

definitions that originated in extensible languages have been developed to a level of expressiveness

and precision far beyond the anticipation of their originators. These definitions, discussed in detail in

:t:clion 3.3. are parameterized not only in terms of variables that can be manipulated during program

execution, but also in terms of data types. They can now describe restrictions on which types are

acceptable parameters in considerable detail, as in [2].

2.6. Interactions Between Abstraction and Specification Techniques

As this review shows, programming languages and methodologies evolve in response to the needs

that are perceived by software designers and implementors. However, these perceived needs

themselves evolve in response to experience gained with past solutions. The original abstraction

techniques of structured programming were procedures or macros;2 these have evolved to abstract

types and generic definitions. Methodologies for program development emerge when we find

common useful patterns and try to use them as models; languages evolve to support these

methodologies when the models become so common and stable that they are regarded as standard.

A more extensive review of the development of software abstractions appears in [261. As abstraction

techniques have become capable of addressing a wider range of program organizations, formal

specification techniques have become more precise and have played a more crucial role in the

programming process.

For an abstraction to be used effectively, its specification must express all the information needed

by the programmer who uses it. Initial attempts at specification used the notation of the programming

language to express things that could be checked by the compiler: the name of a routine and the

number and types of its parameters. Other facts, such as the description of what the routine

computed and under what conditions it should be used, were expressed informally [761. We have now

progressed to the point that we can write precise descriptions of many important relations among

routines, including their assumptions about the values of their inputs and the effects they have on the

program state. However, many other properties of abstractions are still specified only informally.

These include time and space consumption, interactions with special-purpose devices, very complex

aggregate behavior, reliability in the face of hardware malfunctions, and many aspects of concurrent

processing. It is reasonable to expect future developments in specification techniques and

programming languages to respond to those issues.

2 Althotgh procedures were oiiginally viewed as devices to save code space, they soon came to be regarded. like macros, as
absti action tools.
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The history of programming languages shows a balance between language ideas and formal

.echniques; in each methodology, the properties we specify are matched to our current ability to

validate (verify) the consistency of a specification and its implementation. Thus, since we can rely on

formal specifications only to the extent that we are certain that they match their implementations, the

development of abstraction techniques, specification techniques, and methods of verifying the

consistency of a specification and an implementation must surely proceed hand in hand. In the

future, we should expect to see more diversity in the programs that are used as a basis for

modularization; we should also expect to see specifications that are concerned with aspects of

programs other than the purely functional properties we now consider.

3. Abstraction Facilities in Modern Programming Languages
With the historical background of Section 2, we now turn to the abstraction methodologies and

.sp~rilication techniques that are currently under development in the programming language research

community. Some of the ideas are well enough worked out to be ready for transfer to practical

languages. but others are still under development.

Although the ideas behind modern abstraction techniques can be explored independently of

programming languages, the instantiation of these ideas in actual languages is also important.

Programming languages are our primary notational vehicle for expressing a class of very complex

ideas: the concepts we must deal with include not only the functional relations of mathematics, but

also constructs that deal with relations over time. such as sequentiality and synchronization.

Language designs influence the ways we think about algorithms by making some program structures

easier to describe than others. In addition, programming languages are used for conmmunication

among people as well as for controlling machines. This role is particularly important in long-lived

programs, because a program is in many ways the most practical medium for expressing the structure

imposed by the designer -- and for maintaining the accuracy of this documentation over time. Thus,

even though most programming languages technically have the same expressive power. differences

among languages can significantly affect their practical utility.

3.1. The New Ideas

Current activity in programming languages is driven by three sets of global concerns: simplicity of

design, the potential for applying precise analytic techniques to formal specifications, and the need to

control costs over the entire lifetime of a long-lived program.

Simplicity has emerged as a major criterion for evaluating programming language designs. We see

a certain tension between the need for "just the right construct" for a task and the need for a

language small enough to understand thoroughly. This is an example of a tradeoff between
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specialization and generality: if highly specialized constructs are provided, individual programs will

be smaller, but at the expense of complexity (and feature-by-feature interactions) in the system as a

whole. The current trend is to provide a relatively small base language that provides facilities for

defining special facilities in a regular way [65]. An emphasis on simplicity underlies a number of

design criteria that are now commonly used. When programs are organized to localize information,

for example, assumptions shared among program parts and module interfaces can be significantly

simplified. The introduction of support for abstract data types in programming languages allowb

programmers to design special-purpose structures and deal with them in a simple way; it does so by

providing a ri-finition facility that allows the extensions to be made in a regular, predictable fashion.

The regularity introduced by using these facilities can substantially reduce maintenance problems by

making it easier for a programmer who is unfamiliar with the code to understand tile assumptions

about the program state that are made at a given point in the program -- thereby increasing the odds

that he or she can make a change without introducing new errors.

Our understanding of the principles underlying programming languages has improved to the point

that formal and quantitative techniques are both feasible and useful. Current methods for specifying

properties of abstract data types and for verifying that those specifications are consistent with the

implementation are discussed in Section 3.2. Critical studies of testing methods are being performed

1361, and interest in quantitative methods for evaluating programs is increasing [581. It is interesting

to note that there seems to be a strong correlation between the ease with which proof rules for

language constructs can be written and the ease with which programmers can use those constructs

correctly and understand programs that use them.

The 1970's mark the beginning of a real appreciation that the cost of software includes the costs

over the lifetime of the program, not just the costs of initial development or of execution. For large,

long-lived programs. the cost of enhancement and maintenance usually dominate design,

development, and execution costs. often by large factors. Two classes of issues arise (151. First. in

order to modify a program successfully, a programmer must be able to determine what other portions

of the program depend on the section about to be modified. The problem of making this

determination is simplified if the information is localized and if the design structure is retained in the

structure of the program. Off-line design notes or other documents are not an adequate substitute

except in the unlikely case that they are meticulously (and correctly) updated. Second, large

programs rarely exist in only one version. The majcr issues concerning the control of large-scale

program development are problems of management. not of programming. Nevertheless,

language-related tools can significantly ease the problems. Tools are becoming available for

managing the interactions among many versions of a program.
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3.2. Language Support for Abstract Data Types

Over the past five years, the major thrust of research activity in programming languages and

methodology has been to explore the issues related to abstract data types. The current state has

emerged directly from the historical roots described in Section 2.5. The methodological concerns

included the need for information hiding [541 [56] and locality of data access [731, a systematic view of

data structures [34], a program organization strategy exemplified by the Simula class construct [81

[9], and the notion of generic definition 1611. The formal roots included a proposal for abstracting

properties from an implementation [33] and a debate on the philosophy of types, which finally led to

the view that types share the formal characteristics of abstract algebras [27] [28] [45] [51].

Whereas structured programming involves progressive development of a program by adding detail

to its control structure, programming with abstract data types involves partitioning the program in

advance into modules that correspond to the major data structures of the final system. The two

methodologies are complementary. because the techniques of structured programming may be used

within type definition modules, and conversely. An example of the interaction of the two design styles

appears in [6).

In most languages that provide the facility, the definition of an abstract data type consists of a

program unit that includes the following information:

visible outside the type definition: the name of the type and the names and routine
headers of all operations (procedures and functions) that are permitted to use the
representation of the type; some languages also include formal specifications of the
values that variables of this type may assume and of the properties of the operations.

- nft vis'l'- outside fite type definition: the representation of the type in terms of built-in
data types or other defined types, the bodies of the visible routines, and hidden routines
that may be called only from within the module.

An example of a module that defines an abstract data type appears in Figure 4-5.

The general question of abstract data types has been addressed in a number of research projects.

These include Alphard [741. CLU [46], Gypsy [1], Russell [121. Concurrent Pascal [4], and Modula

[72]. Although they differ in detail. they share the goal of providing language support adequate to the

task of abstracting from data structures to abstract data types and allowing those abstract definitions

to hold the same status as built-in data types. Detailed descriptions of the differences among these

projects are best obtained by studying them in more detail than is appropriate here. As with many

research projects. the impact they have is likely to take the form of influence on other languages

rather than complete adoption. Indeed. the influence of several of the research projects on Ada [37)

and Euclid [441 is apparent.

Programming with abstract data types requires support from the programming language, not
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simply managerial exhortations about program organization. Suitable language support requires

solutions to a number of technical issues involving both design and implementation. These include:

- Naming: Scope rules are required to ensure the appropriate visibility of names. In
addition, protection mechanisms [41] [521 should be considered in order to guarantee
that hidden information remains private. Further. programmers must be prevented from
naming the same data in more than one way ("aliasing") if current verification technology
is to be relied upon.

- Iype checking: It is necessary to check actual parameters to routines, preferably during
compilation, to be sure they will be acceptable to the routines. The problem is more
complex than the type checking problem for conventional languages because new types
may be added during the compilation process and the parameterization of types requires
subtle decisions in the definition of a useful type checking rule.

- Specification notation: The formal specifications of an abstract data type should convey
all information needed by the programmer. This is not yet possible, but current progress
is described below. As for any specification formalism, it is also necessary to develop a
method for verifying that a specification is consistent with its implementation.

- Distributed properties: In addition to providing operations that are called as routines or
infix operators, abstract data types must often supply definitions to support type-specific
interpretation of various constructs of the programming language. These constructs
include storage allocation, loops that operate on the elements of a data structure without
knowledge of the representation, and synchronization. Some of these have been
explored, but many open questions remain [46116211651.

- Separate compilation: Abstract data types introduce two new problems to the process of
separate compilation. First, type checking should be done across compilation units as
welt as within units. Second, generic definitions offer significant potential for optimization
(or for inefficient implementation).

Specification techniques for abstract data types are the topic of a number of current research

projects. Techniques that have been proposed include informal but precise and stylized English [311,

models that relate the new type to previously defined types [741, and algebraic axioms that specify

new types independently of other types [271. Many problems remain. The emphasis to date has been

on the specification of properties of the code; the correspondence of these specification to informally

understood requirements is also important [111. Further, the work to date has concentrated almost

exclusively on the functional properties of the definition without attending, for example, to the

performance or reliability.

Not all the language developments include formal specifications as part of the code. For example,

Alphard includes language constructs that associate a specification with the implementation of a

module; Ada and Mesa expect interface definitions that contain at least enough information to

support separate compilation. All the work. however, is based on the premise that the specification

must include all information that should be available to a user of the abstract data type. When it has
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been verified that the implementation performs in accordance with its public specification [331, the

abstract specification may safely be used as the definitive source of information about how

higher-level programs may correctly use the module. In one sense we build up "bigger" definitions

out of "smaller" ones; but because a specification alone suffices for understanding, the new

definition is in another sense no bigger than the pre-existing components. It is this regimentation of

detail that gives the technique its power.

3.3. Generic Definitions

A particularly rich kind of abstract data type definition allows one abstraction to take another

abstraction (e.g., a data type) as a parameter. These generic definitions provide a dimension of

modelling flexibility that conventionally-parameterized definitions lack.

For example, consider the problem of defining data types for an application that uses three kinds of

unordered sets: sets of integers, sets of reals, and sets of a user-defined type for points in

3-dimensional space. One alternative would be to write a separate definition for each of these three

types. However, that would involve a great deal of duplicated text, since both the specifications and

the code will be very similar for all the definitions. In fact. the programs would probably differ only

where specific references to the types of set elements are made, and the machine code would

probably differ only where operations on set elements (such as the assignment used to store a new

value into the data structure) are performed. The obvious drawbacks of this situation include

duplicated code, redundant programming effort, and complicated maintenance (since bugs must be

fixed and improvements must be made in all versions).

Another alternative would be to separate the properties of unordered sets from the properties of

their elements. This is possible because the definition of the sets relies on very few specific

properties of the elements -- it probably assumes only that ordinary assignment and equality

operations for the element type are defined. Under that assumption, it is possible to write a single

definition, say

type UnOrdeiredSet(T: type) is

that can be used to declare sets with several different types of elements, as in

var
Counters: UniOrdeiedSet( integer):
T ineis: UnOr'deo'edSet( integer):
Si ,es: Uin-OiderecSet( real);
Places: UnOi-dei-,rSeL(Pu iintfn3Space):

using a syntax appropriate to the language that supports the generic definition facility. The definition

of UnOrderedSet would provide operations such as inset, t. T estmbei's i1), and so on; the

declarations of the variables would instantiate versions of these operations for all relevant element
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types, and the compiler would determine which of the operations to use at any particular time by

inspecting the parameters to the routines.

The flexibility provided by generic definitions is demonstrated by the algorithmic transformation of

[21, which automatically converts any solution of one class of problems to a solution of the

corresponding problem in a somewhat larger class. This generic definition is notable for the detail

and precision with which the assumptions about the generic parameter can be specified.

4. Practical Realizations
A number of programming languages provide some or all of the facilities required to support

abstract data types. In addition to implementations of research projects, several language efforts

have been directed primarily at providing practical implementations. These include Ada [371, Mesa

[22], Pascal [40], and Simula [8]. Of these. Pascal currently has the largest user community, and the

objective of the Ada development has been to make available a language to support most of the

modern ideas about programming. Because of the major roles they play in the programming

language community, Pascal and Ada will be discussed in some detail.

4.1. A Small Example Program

In order to illustrate the effects that modern languages have on program organization and

programming style, we will carry a small example through the discussion. This section presents a

Fortran program for the example; Pascal and Ada versions are developed in Section 4.2 and 4.3.

The purpose of the program is to produce the data needed to print an internal telephone list for a

division of a small company. A data base containing information about all employees, including their

names, divisions, telephone numbers, and salaries is assumed to be available. The program must

produce a data structure containing a sorted list of the employees in a selected division and their

telephone extensions.

Suitable declarations of the employee data base and the divisional telephone list for the Fortran

implementation are given in Figure 4-1. A program fragment for constructing the telephone list is

given in Figure 4-2.

The employee data base is represented as a set of vectors, one for each unit of information about

the employee. The vectors are used "in parallel" as a single data structure -- that is. part of the

information about the I 1' employee is stored in the i th element of each vector. Similarly, the

telephone list is constructed in two arrays, ) i v N am for names and r) i v r on for telephone numbers.

The telephone list is constructed in two stages. First, the data base is scanned for employees
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c Vectors that contain Employee information
c Name is in FmpNam (24 chars). Phone is in EmpFun (integer)
c Salary in in FmpSal (real), Division is in EmpDiv (4 chars)

integer EmpFon(1000), Fmnpfiv(1000)
real FmpSal( 1000)
double precision EmpNam(3,1000)

c Vectors that contain Phone list information
c Name is in DivNam (24 chars), Phone is in DivFon (integer)

integer DivFon(1000)
double precision DivNam(3.1000)

C declarations of scalars used in program
integer StafSz. DivSz, i, j
intcger WhichO
double precision q

Figure 4-1: Declarations for Fortran Version of Telephone List Program

whose division (Fmpf i v ( i)) matches the division desired (Wit i chD). When a match is found, the

name and phone number of the employee are added to the telephone list. Second, the telephone list

is sorted using an insertion sort.3

There are several important things to notice about this program. First. the data about employees is

stored in four arrays, and the relation among these arrays is shown only by the similar naming and the

comment with their declarations. Second, the character string for each employee's name must be

handled in eight-character segments, and there is no clear indication in either the declarations or the

code that character strings are involved. 4 The six-line test that determines whether

DivNam(* .i)<DivNam(.j) could be reduced to three tests if it were changed to a test for

less-than-or-equal, but this would make the sort unstable. Third, all the data about employees,

including salaries, is easily accessible and modifiable; this is undesirable from an administrative

standpoint.

4.2. Pascal

Pascal [40] is a simple algebraic language that was designed with three primary objectives. It was

to support modern programming development methodology; it was to be a simple enough language to

teach to students; and it was to be easy to implement reliably, even on small computers. It has, in

3This selection is nota ( eloosement of insertion sorting in general. Howevei. most readets will tecognize the algorithm.
and the topic of this pnpew is the evoltion of poogramnisig languages, not sorting techniques.

41n(dee. the implemenlatlims of floating point in some versions of Fortran intesere with this type violation. Character strings
ar' dealt with mote ap. owttintely in the Fo, tonn7l standard.
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c Get data for division WhichD only

DivSz = 0
do 200 i = 1,StafSz

if (FmpDiv(i) .ne. WhichD) go to 200
DivSz = DivSz + I
DivNam(1.DivSz) = FinpNam(l,i-)
DivNai(2.DivSz) = FinpNain(2.i)
D ivNan(3.DivS7) = FmpNain(3,i)
DivFon(DivSz) = FmpFon(i)

200 continue

c Sort telephone 1ist

if (DivSz .eq. 0) go to 210
do 220 i = t.DivSz

do 230 j = i+t,DivSz
if (DivNan(l1.i) .gt. DivNam(tj)) go to 240
if (DivNam(t,i) .lt. DivNajn(1,j)) go to 230
if (DivNam(2,i) .gt. DivNain(2.j)) go to 240
if (DivNain(2.i) .lt. DivNnmi(2.j)) go to 230
if (DivNain(3,i) .gt. DivNam(3.j)) go to 240
go to 230

240 do 250 k = 1.3
q = DivNain(k.i)
DivNam(ki) = Divnain(kj)

250 DivNain(k.j) = q
k = DivFon(i)
DivFon(i) = DivFon(j)
DivFon(j) = k

230 continue
220 continue
210 continue

Figure 4-2: Code for Fortran Version of Telephone List Program

general. succeeded in all three respects.

Pascal provides a number of.facilities for supporting structured programming. It provides the

standard control constructs of structured programming, and a formal definition [351 facilitates

verification of Pascal programs. It supports a set of data organization constructs that are suitable for

defining abstractions. These include the ability to define a list of arbitrary constants as an

enumerated lype, the ability to define heterogeneous records with individually named fields, data

types that can be dynamically allocated and referred to by pointers, and the ability to name a data

structure as a type (though not to bundle up the data structure with a set of operations).

The language has become quite widely used. In addition to serving as a teaching language for
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undergraduates, it is used as an implementation language for micro-computers [3) and it has been

extended to deal with parallel programming [4]. An international standardization effort is currently

under way [39].

Pascal is not without its disadvantages. It provides limited support for large programs, lacking

separate compilation facilities and block structure other than nested procedures. Type checking

does not provide quite as much control over parameter passing as one might wish, and there is no

support for the encapsulation of related definitions in such a way that they can be isolated from the

remainder of the program. Many of the disadvantages are addressed in extensions, derivative

languages, and the standardization effort.

type
String = array [1. .24] of char;
ShortString = array [1. .8] of char;
FinpRec = record

Name:String;
Phone: integer;
Salary: real;
Divis ion:ShortString;
end;

PhoneRec = record Naine:String; Phone:integer; end;

var
Staff: array [1..1000] of FmpRec;
Phones: array [1..1000] of PhoneRec;
Staff'Siie. OivSi7e,i.j: integer;
Whiclhl)iv: char;
q: PhoneRec;

Figure 4-3: Declarations for Pascal Version of Telephone List Program

We can illustrate some of Pascal's characteristics by returning to the program for creating

telephone lists. Suitable data structures, including both type definitions and data declarations, are

shown in Figure 4-3. A program fragment for constructing the telephone list is given in Figure 4-4.

The declarations open with definitions of four types which are not predefined in Pascal. Two

(St r iig and ShortS ti- iig) are generally useful, and the other two (FmpRe(: and Ph onolloc) were

designed for this particular problem.

The definition of S Lri tg and Short tS tr i n g as types permits named variables to be treated as

single units: operations are performed on an entire string variable, not on individual groups of

characters. This abstraction simplifies the program. but more importantly. it allows the programmer to

concentrate on the algorithm that uses the strings as names, rather than on keeping track of the
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individual fragments of a name. The difference between the complexity of the code in Figures 4-2 and

4-4 may not seem large, but when it is compounded over many individual composite structures with

different representations, the difference can be large indeed. If Pascal allowed programmer-defined

types to accept parameters, a single definition of strings that took the string length as a parameter

could replace S tri ng and Shor tS t r i ng; Ada does allow this, and the change is made in the Ada

program of Section 4.3.

( Get data For division WhicliDiv only }

DivSiue := 0;
for i := I to Staff'Size do

if Staff[i].Division = WhichDiv then
begin
DivSize := DivSize + 1;
Phones[DivSize].Name := Staff[i].Name;
Phones[DivSie].Plione := Staff[i].Phone;
end;

( Sort telephone list }

for i := 1 to DivSize do
for j := i+l to DivSize do

if Phones[i].Name > Phones[j].Name then
begin
q := Phones[i];
Phones[i] Phones[j];
Pliones[j] q;
end;

Figure 4-4: Code for Pascal Version of Telephone List Program

The type definitions for FimpRec and PhoneRec abstract from specific data items to the notions

"record of information about an employee" and "record of information for a telephone list". Both the

employee data base and the telephone list can thus be represented as vectors whose elements are

records of the appropriate types.

The declarations of S t a f f and Phones have the effect of indicating that all the components are

related to the same information structure. In addition, the definition is organized as a collection of

records, one for each employee -- so the primary organization of the data structure is by employee.

On the other hand. the data organization of the Fortran program was dominated by the arrays that

correspond to the fields, and the employees were secondary.

Just as in the Fortran program. the telephone list is constructed in two stages (Figure 4-4). Note

that Pascal's ability to operate on strings and records as single units has substantially simplified the
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manipulation of names and the interchange step of the sort. Another notable difference between the

two programs is in the use of conditional statements. In the Pascal program, the use of if ... then

statements emphasizes the conditions that will cause the bodies of the if statements to be executed.

The Fortran if statements with go to's, however, describe conditions in which code is not to be

executed, leaving the reader of the program to compute the conditions that actually correspond to the

actions.

It is also worth mentioning that the Pascal program will not execute the body of the sort loop at all if

no employees work in division Wh i chl i v (that is, if D ivSi7e is 0). The body of the corresponding

Fortran loop would be executed once in that situation if the loop had not been protected by an explicit

test for an empty list. While it would do no harm to execute this particular loop once on an empty list,

in general it is necessary to guard Fortran loops against the possibility that the upper bound is less

than the lower bound.

4.3. Ada

The Ada language is currently being developed under the auspices of the Department of Defense

in an attempt to reduce the software costs of embedded computer systems. The project includes

components for both a language and a programming support environment. The specific objectives of

the Ada development include significantly reducing the number of programming languages that must

be learned, supported, and maintained within the Department of Defense. The language design

emphasized the goals of high program reliability, low maintenance costs, support for modern

programming methodology, and efficiency of compilers and object programs [371 [38).

The language developed through competitive designs constrained by a set of requirements [ 13]. It

is undergoing final revisions and will be frozen in mid-1980. Development of the programming

environment will continue over the next two years [14]. Since compilers for the language are not yet

available, it is too soon to evaluate how well the language meets its goals. However. it is possible to

describe the way various features of the language are intended to respond to the abstraction issues

raised here.

Although Ada grew out of the Pascal language philosophy, extensive syntactic changes and

semantic extensions make it a very different language from Pascal. The major additions include

module structures and interface specifications to large-program organizations and separate

compilation, encapsulation facilities and generic definitions to support abstract data types, support

for parallel processing. and control over low-level implementalion issues related to the architecture of

object machines.

There are three major abstraction tools in Ada. The package is used for encapsulating a set of
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package Fmployee is
restricted type PrivStuff is private;
type EmpRec is

record
Name: string(l..24);
Phone: integer;
PrivPart: PrivStuff;

end record;
procedure SetSalary(Who: inout EmpRec; Sal: float);
function GetSalary(Who: FmipRec) return float;
procedure SetDiv(Who: inout FmpRec; Div: string( 1..8)):
function GeLDiv(Who: FinpRec) return string(l..8);

private
type PrivStuff is

record
Salary: float;
Division: string(1..8);

end record;
end Employee;

Figure 4-5: Ada Package Definition for Employee Records

related definitions and isolating them from the rest of the program. The type determines the values a

variable (or data structure) may take on and how it can be manipulated. The generic definition

allows many similar abstractions to be generated from a single template, as described in Section 3.3.

The incorporation of many of these ideas into Ada can be illustrated through the example of

Section 4.1. The data organization of the Pascal program (Figures 4-3 and 4-4) could be carried over

almost directly to the Ada program, and the result would use Ada reasonably well. However, Ada

provides additional facilities that can be applied to this problem. Recall that neither the Fortran

program nor the Pascal program can allow a programmer to access names, telephone numbers, and

divisions without also allowing him to access private information, here illustrated by salaries. Ada

programs can provide such selected access, and we will extend the previous example to do so.5

We now organize the program in three components: a definition of the record for each employee

(Figure 4-5), declarations of the data needed by the program (Figure 4-6), and code for construction

of the telephone list (Figure 4-7).

The package of information about employees whose specification is shown in Figure 4-5

illustrates one of Ada's major additions to our tool kit of abstraction facilities. This definition

establishes I inplec as a data type with a small set of privileged operations. Only the specification of

5This Ada 1rogram is written in the preliminary version of Ads (371. Revisions are currently (Aptil 1980) being made. so this
Wogrm may Ihve become invali wben this paper 81)pefls.
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the package is presented here. Ada does not require the module body to accompany the

specification (though it must be defined before the program can be executed); moreover,

programmers are permitted to rely only on the specifications, not on the body of a package. The

specification itself is divided into a visible part (everything from package to private) and a private

part (from private to end). The private part is intended only to provide information for separate

compilation.

declare
use Fmployee;

type PhoneRec is
record

Name: string(1..24);
Phone: integer;

end record:

Staff : array (1. .1000) of FinpRec:
Phones: array (I. .1000) of PhoneRec;
StaffSize. DivSize. i. j: integer range 1..1000;
WhichDiv: string(t..8);

q: PhoneRec;

Figure 4-6: Declarations for Ada Version of Telephone List Program

Assume that the policy for using FmpRec's is that the Name and Phone fields are accessible to

anyone, that it is permissible for anyone to read but not to write the D i v i s i on field, and that access

to the Salary field and modification of the Division field are supposed to be done only be

authorized programs. Two characteristics of Ada make it possible to establish this policy. First, the

scope rules prevent any portion of the program outside a package from accessing any names except

the ones listed in the visible part of the specification. In the particular case of the Fnip 1 oyee package,

this means that the Salary and Division fields of an FmpRec cannot be directly read or written

outside the package. Therefore the integrity of the data can be controlled by verifying that the

routines that are exported from the package are correct. Presumably the routines SetSalary,

Ge t.S a 1 a ry, Se tD iv, and Ge L iv perform reads and writes as their names suggest; they might also

keep records showing who made changes and when. Second. Ada provides ways to control the

visibility of each routine and variable name. As a result, unauthorized portions of the program may be

discouraged from calling routines SetSa I ary, GetSa I ary, and SetD i v; at the same time. the field

names of I'npnec and routine Ge tr) i v may be freely available everywhere.6

6 Afternatively. a password could be added as a parameter to the sensitive routines.
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Although the field name Pri vPart is exported from the EInp I oyee package along with Name and

Phone, there is no danger in doing so. An auxiliary type was defined to protect the salary and division

information; the declaration

restricted type PrivStuff is private

indicates not only that the content and organization of the data structure are hidden from the user

(private), but also that all operations on data of type Pr ivStuf f are forbidden except for calls on the

routines exported from the package. For restricted types, even assignment and comparison for

equality are forbidden. Naturally, the code inside the body of the Fmnp 1 oyee package may manipulate

these hidden fields; the purpose of the packaging is to guarantee that only the code inside the

package body can do so.

Get data for division WhichDiv only

DivSize := 0;
for i in 1. StaffSize loop

if Getfiv(Staff(i)) = WhichDiv then
DivSize := DivSize + 1;
Pliones(DivSize) := (Staff(i).Name, Staff(i).Phone);

end if:
end loop;

Sort telephone list

for i in 1..DivSize loop
for j in i+l. .ivSize loop

if Phones(i).Name > Phones(j).Name then
q := Phones(l):
Phones(i) Phones(j);
Phones(j) :q;

end If:
end loop;

end loop;

Figure 4-7: Code for Ada Version of Telephone List Program

The ability to force manipulation of a data structure to be carried out only through a known set of

routines is central to the support of abstract data types. It is useful not only in examples such as the

one given here, but also for cases in which the representation may change radically from time to time

and for cases in which some kind of internal consistency aniong fields, such as checksums, must be

maintained. Support for secure computation is not among Ada's goals. It can be achieved in this

case, but only through a combination of an extra level of packaging and some management control.

Even without guarantees about security, however, the packaging of information about how employee

data is handled provides a useful structure for the development and maintenance of the program.
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The declarations of Figure 4-6 are much like the declarations of the Pascal program. The

Finpl oyee package is used instead of a simple record, and there are minor syntactic differences

between the languages. The clause

use Enployee;

says that all the visible names of the Emp 1 oyee package are available in the current block. (The

names of the routines for manipulating Sal ary and changing D i v i s i on must be hidden at a different

point in the program.) Since Ada. unlike Pascal, allows nonprimitive types to take parameters, Name's

and D i v i s i on's are declared as S tr i ng's of specified length.

In the code of the Ada program itself (Figure 4-7), we assume that visibility rules allow the

non-private field names of FmpRecs and the GetDiv function to be used. Ada provides a way to

create a complete record value and assign it with a single statement: thus the assignment

Phones(I)ivSi~e) := (Staff(i).Name. Staff(i).Phone):

sets both fields of the PhoneRec at once. Aside from this and minor syntactic distinctions, this

program fragment is very much like to the Pascal fragment of Figure 4-4.

5. Status and Potential
It is clear that methodologies and analytic techniques based on the principle of abstraction have

played a major role in the development of software engineering and that they will continue to do so. In

this section we describe the ways our current programming habits are changing to respond to those

ideas. We also note some of the limitations of current techniques and how future work may deal with

them, and we conclude with some suggestions for further reading on abstraction techniques.

5.1. How New Ideas Affect Programming

As techniques such as abstract data types have emerged, they have affected both the overall

organization of programs and the style of writing small segments of code.

The new languages will have the most sweeping effects on the techniques we use for the high-level

organization of program systems. and hence on Ihe management of de ign atul imipleiiltatlion

projects. Modularization features that impose controls on the distribution of variable, routine, and

type names can profoundly shape the strategies for decomposing a program into modules. Further,

the availability of precise (and enforceable) specifications for module interfaces will influence

management of software projects 1761. For example, the requirements document for a large avionics

system has already been converted to a precise, if informal, specification 1311. Project organization

will also be influenced by the growing availability of support tools for managing multiple modules in

multiple versions [681.
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The organization and style of the code within modules will also be affected. Section 4 shows how

the treatment of both control and data changes within a module as the same problem is solved in

languages with increasingly powerful abstraction techniques.

The ideas behind the abstract data type methodology are still not entirely validated. Projects using

various portions of the methodology -- such as design based on data types, but no formal

specification, or conversely specification and verification without modularity -- have been successful,

but a complete demonstration on a large project has not yet been completed 163). Although complete

validation experiments have not been done, some of the initial trials are encouraging. A large,

interesting program using data-type organization in a language without encapsulation facilities has

been written and largely verified [211, and abstract data types specified via algebraic axioms have

proved useful as a design tool (30].

5.2. Limitations of Current Abstraction Techniques

Efforts to use abstract data types have also revealed some limitations of the technique. In some

cases problems are not comfortably cast as data types, or the necessary functionality is not readily

expressed using the specification techniques now available. In other cases, the problem requires a

set of definitions that are clearly very similar but cannot be expressed by systematic instantiation or

invocation of a data type definition, even using generic definitions.

A number of familiar, well-structured program organizations do not fit well into precisely the

abstract data type paradigm. These include, for example, filters and shells in the Unix spirit (42] and

interactive programs in which the command syntax dominates the specification. These organizations

are unquestionably useful and potentially as well-understood as abstract data types, and there is

every reason to believe that similarly precise formal models can be developed. Some of these

alternative points of view are already represented in high-level design systems for software [251 [57].

Although facilities for defining routines and modules whose parameters may be generic (i.e., of

types that cannot be manipulated in the language) have been developed over the past five years,

there has been little exploration of the generality of generic definitions. Part of the problem has been

lack of facilities for specifying the precise dependence of the definition on its generic parameters. A

specific example of a complex generic definition, giving an algorithmic transformation that can be

applied to a wide variety of problems, has been written and verified [2].

The language investigations described above, together with other research projects (211 (281 (301

[331 [451 (561, have addressed questions of functional specification in considerable detail. That is,

they provide formal notations such as input-output predicates. abstract models, and algebraic axioms

for making assertions about the effects that operators have on program values. In many cases, the
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specifications of a system cannot be reduced to formal assertions, in these cases we resort to testing

in order to increase our confidence in the program [25]. In other situations, moreover, a programmer

is concerned with properties other than pure functional correctness. Such properties include time

and space requirements, memory access patterns, reliability, synchronization. and process

independence; these have not been addressed by the data type research. A specification

methodology that addresses these properties must have two important characteristics. Firbt, it must

be possible for the programmer to make and verify assertions about the properties rather than simply

analyzing the program text to derive exact values or complete specifications. This is analogous to our

approach to functional specifications -- we don't attempt to formally derive the mathematical function

defined by a program; rather, we specify certain properties of the computation that are important and

must be preserved. Further, it is important to avoid adding a new conceptual framework for each new

class of properties. This implies that mechanisms for dealing with new properties should be

compatible with the mechanisms already used for functional correctness.

A certain amount of work on formal specifications and verification of extra-functional properties

has already been done. Most of it is directed at specific properties rather than at techniques that can

be applied to a variety of properties; the results are, nonetheless, interesting. The need to address a

variety of requirements in practical real-time systems was vividly demonstrated at the conference on

Specifications of Reliable Software [66], most notably by Heninger [311. Other work includes

specifications of security properties [50], [18], [69], reliability [70], performance [59] [641, and

communication protocols (241.

5.3. Further Reading

This paper has included extensive citations in order to make further information about

briefly-discussed topics easy to obtain. The purpose of this section is to identify the books and

papers that will be most helpful for general or background reading.

General issues of software development, including both management and implementation issues.

are discussed in Brook's very readable book [5]. The philosophy of structured programming and the

principles of data organization that underlie the representation issues of abstract data types receive

carelul technical treatment in [101. The proceedings of the conference on Specifications of Reliable

Software [66] contain papers on both prose descriptions of requirements and mathematical

specification of abstractions.

More specific (and more deeply technical) readings include Parnas' seminal paper on information

hiding [561, Guttag and Horning's discussion of the use of algebraic axioms as a design tool [30),

London's survey of verification techniques [471, and papers on specification techniques including

algebraic axioms [27) and abstract models 174].
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