AD-A223 815

Maval Health Research Qenter

OTHS FLLE COPY
 MINIMAL SLEEP TO MAINTAIN PERFORMANCE: SEARCH FOR SLEEP QUANTUM IN SUSTAINED OPERATIONS

P. NAITOH

REPORT NO. 89-49

DTIC

(. . . .

Approved for public rotease: distribution unlimited.
P.O. BOX E5122

MINIMAL SLEEP TO MAINTAIN PERFORMANCE: SEARCH FOR SLEEP QUANTUM IN SUSTAINED OPERATIONS

PAUI. NAITOH

Sleep Research Department
Naval Health Research Center
P. O. Box 85122

San Diego, California 92138-.9174

Report No. $89 \ldots{ }^{\prime \prime}$, supported by the Naval Medical Research and Development Command, Department of the Navy, under Work Unit M0096.002-6002. This report is based in part on a paper presented at a session on "Shift wark: Effects on safety and productivity" of the 32 nd Annual Meeting of the Humar Factors Society, Anaheim, California, October 27, 1988. The author wishes to acknowledge Shelly Coy, Naval Hospital San Diego for the graphic illustrations used in this report. The views presented in this paper are those of the author and do not reflect the official policy or position of the Departmont of the $N{ }^{\prime} y$, the Department of Deferse, nor the U.S. Government.

EXECUTIVE SUMMARY

:
In many civilian and military occupations, personnel are required to work on a job until it is completed, even if such requirements demand continuous work for a period longer thar 24 hours and/or irregular work hours. One of the consequences of working prolonged hours and/or working under irregular schedules is that sleep becomes too disrupted and too short to allow the worker to recuperate from daily fatigue. The disruption of sleep results in the worker's reduced productivity and increased risks of error or injury at work sites. In this paper, applications of sleep management is proposed to minimize degradation in work performance and to improve job safety. The basic knowledge of sleep management is discussed in detail, supplementing a sleep management guideline previously published (Naitoh, England and Ryman, 1986). Some of the key questions of sleep management ate to determine minimal sleep duration, to evaluate impact of time of day when sleep is taken on recuperative power of sleep, and to measure individual differences in sleep habits . This paper focuses on the question of minimal sleep duration which is necessary to maintain an acceptable level of performance, i.e., "sleep quantum" in sustained operations. The sleep quantum is found to be about 5 hours ($4.5-5.5$ hours) per 24 hours, corresponding roughly to the core sleep designated by Horne (1988). There are several approaches to obtain the sleep quantum under the atound-the-clock work environments of sustained operations. Some are efficient but impractical in sustained operations, such as sleeping continuously for 5 hours during the middle of operations. Others seem to result in less efficient sleep but highly flexible regarding work scheduling, such as ultrashort sleep. In this paper, ultrashort sleep is discussed in terms of its operational advantages and disadvantages. The major advantage of ultrashort sleep is its flexibility. The major disadvantage of ultrashort sleep is its inefficiency, but adaptation to lifestyle necessitating ultrashort sleep (such as yachtsmen engaged in solo transatlantic racing), is quite feasible with resultant improvement of ditrashort sleep efficiency. The future roles of sleep managers were suggested with respect to developments of a technical database and of creating job performance models over ultrashort sleep.

1. Sleep Quantum 3
2. Core vs. Optional Sleep 4
3. Capturing Core Sleep 5
3.1 Continuous 5 Hour Sleep 5
3.2 Anchor Sleep 5
3.3 Prophylactic Sleep 6
3.4 Longish Napping 6
3.5 Ultrashort Sleep 6
4. Appraisal of Rectuperative Power of Ultrashort. Sleep 7
4.1 Fragmented Sleep 7
4.2 Sleep Apnea Model 8
4.3 Short DAY 9
5. Uluashort Sleep: Benefits 10
6. Ultrashort Sleep: Problems 11
6.1 Sleep Inertia 11
6.2 Loss of Sleep Efficiency 12
7. Sleep Management: New Mandate 12
8. The Job of Sleep Manager 13
8.1 Database for Ultrashort Sleep 13
8.2 Performance Model for Ultrashoit :ileep 15
9. Discussions and Conclusions 17
10. References ?

1. SLEEP QUANTUM

The purpose of this paper is to review some of the curret: research findings which have contributed to determining the minimal amc sut of. sleep needed to maintain a high level of task performance for days, weeks, and even months.

The least amount of sleep, "sleep quantum," which is necessary for efficiently doing a day's work, shows large differences between individuals (Kri.pke, 1979; Webb, 1985; White, 1975) and, also, varies considerably within each individual. However, the results of acute partial sleep deprivation studies by Wilkinson (1970), Wilkinson, Edwards and Haines (1966), and Haslam (1982) indicate that sleep necessary 0 prevent performance impairment of vigilance tasks is 4 or more hours of sleep daily. The results of chronic partial sleep deprivation studies have shown similarly that 4.5-5.5 hours of sleep per day are necessary if one wishes to cause no major undesirable behavioral consequences for up to 8 months (Friedmann, Globus, Huntley, Mullaney, Naitoh and Johnson, 1977; Webb and Agnew, 1974).

What is currently believed to be true is that the $4.5-5.5$ hours of sleep should be taken continuously (not be fragmented) in order to benefit. from maximal recuperation (Bonnet, 1986; Downey \& Bonnet, 1987; Levine, Roehrs, Stepanski, Zorick, \& Roth, 1987; Magee, Harsh \& Badia, 1987). This Continuity Theory of Sleep (see Bonner, 1985, 1986) implies that a sleep "quantum," the smallest fundamental quantity of sleep, is an uninterrupted 4.55 .5 houts of slece.

A search of the literature on sleep quantum reveals, however, field observations which show that short sleep of much less than $4.5 \cdot 5.5$ hours, for example, as short as a few tens of minutes, would help recuperate from fatigue and reduce sleepiness (Stampi, 1985a, 1985b, 1988, 1989). Stampi's field observations are supported by laboratory studies reporting benefits over task performance with even a very short length naps (Dinges, 1983, 1989; Dinges, Orne, \& Onne, 1985; Dinges, Orne, Orne \& Whitehouse, 1986; Haslam, 1982; Naitoh, 1981). In fact, very short naps are neten observed in daily routines. Stossel (1970) reported that about one-fourth of the fourth year medical students napped three minutes ot longer during the one-hour lecture stating at 8:30 AM. During a particularly dull lecture, over half of the students napped. Wedderburn (1987) reported on short naps, some
lasting only 5 minutes, were taken by shift workers at work sites. He suspected some qualitative diiference in these uryent short naps from a much longer sleep usially taken on a bed. Recent studies, primarily focused on modeling the effects of sleep apnea on performance, mood and sleep, suggest that a fragmented nocturnal sleep consisting of many short sleep episodes, ranging from 4 minutes to 2.5 hours, can offer as much recuperation as expected from much longer, continuous sleep (Bonnet, 1986; Magee, Harsh and Badia, 1987). These observations and studies indicate that sleep quantum could be of a magnitude of tens of minutes, not of 4.5-5.5 hours in duration.

2. CORE VS. OPTIONAL SLEEP

In determining relationship between a minimal sleep and an acceptable level of job performance, sleep stages (Rechtschaffen \& Kales, 1968) have otten been discussed. Each of the sleep stages, such as stage 2, Rapid Eye Movements (REM) sleep, or the combined sleep stages of slow wave sleep (SWS), could play significantly different roles in determining the amount of performance recuperation. Then, an appraisal of sleep quantum would become very complex, because the degree of recuperation after sleep is no longer a matter of sleep duration but the stages of sleep as well.

Fortunately, the duration of each sleep stage, especially of SWS or REM sleep, appears to be unrelated to recuperation and performance maintenance (Lubin, Moses, Johnson \& Naitoh, 1974; Johnson, Naitoh, Moses \& Lubin, 1974). Lumley, Roehrs, Zorick, Lamphere and Roth (1986) studied the effectiveness of a morning nap (starting at 09:00) of $0,15,30,60$ or 120 minutes in neutralizing increased sleepiness due to one night of total sleep deprivation prior to the nap. Changes in alertness were measured by the Multiple SLeep Latency Test (MSLT). They found that napping had alerting effects which weie stiongly related to the duration of the nap (reaching it highest level with a 60 minute nap), and oniy weakly related to the sleep stage composition. The sleep quantum is simply measured by time, and not by sleep stages or any other transient events which were observed during sleep. In discussion of a minimal sleep, little reason exists for examining sleep stages.
in discussing, sleep duration, Horne (1988; pp. 180-217) has offered a cogent argument for partitioning sleep into two kinds: core vs. optronal
sleep. Core sleep is defined as "the first three sleep cycles - the initial 4-5 hours of sleep. (P. 180)" which is necessary for humans to function properly. Optional sleep is the remaining sleep which can be eliminated without dire consequence. Horn's estimate of core sleep matches well with an estimate of the sleep quantum (4.5-5.5 hours) previously mentioned in this paper.

3. CAPTURING CORE SLEEP

There are five ways to capture core sleep, i.e., to satisfy a minimal sleep demand centering around 5 hours a day. They are:

1. To sleep for 5 unbroken hours,
2. To adopt "anchor" sleep,
3. To take "prophylactic" sleep,
4. To have longish (from 1 to 4 hour) naps, and
5. To take "ultrashort" sleep.

3.1 CONTINUOUS 5 HOUR SLEEP

The best way to capture the sleep quantum is to sleep continuously for five hours. Ordinarily, this is a sleep pattern practiced by almost everyone. However, under certain job environments which demand sustained work, a period of 5 uninterrupted luxurious sleep hours cannot be set aside as it conflicts with work schedules (Angus and Heslegrave, 1985; Dinges et al., 1986; Englund, Ryman, Naitoh and Hodgdon, 1985; Mullaney, Kripke, Fleck and Jchnson, 1983; Naitoh and Angus, 1989).

3.2. ANCHOR SLEEP

The anchor sleep was introduced by Minors and W. erhouse (1981). They have divided an 8 -hour sleep into two 4 -hour sleep pe. iods. One of the 4 -hour sleep periods was taken at the same time each day (i.e., anchored to a loral time). The fixed time should be selected to correspond to a time period that is both suitable for sleep after working days and socially acceptable during days off. For example, Minors and Waterhouse picked up anchor sleep at $0800-1200$ for night shift workers sleep after work. During days off, they would sleep during the same time period of (800-1200, leaving the entire afternoon available for social events...a socially acceptable schedule. The second 4 -hour sleep period could be taken at irregular times.

Minors and Vaterhouse have observed that, as long as one 4 -hour sleep period was anchored to a fixed time of day, the circadian rhythms became stabilized within a few days with periods indistinguishable from 24 hours. In terms of capturing core sleep, anchor sleep offers a degree of scheduling flexibility. Instead of finding a time spot which allows 5 continuous hours for capturing core sleep, only 4 hours of sleep must be scheduled to be continuous and occur at a fixed time of day. However, demands of some work schedules may not permit workers to have the luxury of sleeping for 4 unbroken hours during the fixed iime period.

3.3. PROPGYLACTIC SLEEP

Dinges and others (Dinges, 1983; Dinges, et al., 1986; see Naitoh and Angus, 1989) proposed napping in anticipation of sleep loss (i.e., prophylactic napping), or sleeping longer than norial hours so as to "store" sleep. The idea of storing sleep by sleeping longer than usual before the start of a long work period is attractive. However, independent confirmation that a significant amomnt of sleep can be stored is not yet available.

3.4. LONG1SH NAPPING

A more traditional way of getting some sleep during field work is to sleep whenever possible. In sustained operation research, 1 to 4 hour naps wete interjected during lulls in the work or whenever possible to find that these longish naps were long enough to partialiy satisfy the need for core sleep (Angus and Heslegrave, 1985; Englund, Ryman, Naitoh, and Hodgdon, 1985; Haslam, 1982; Mullaney, et al., 1983; Webb, 1985). However, even a 1 hour nap may turn out to be too long to be taken in some work environments of sustajned operations.

3.5. ULTRASHORT SIREP

A view that sieep must be continuous to be efficient and recuperative, Continuity Theory of Sleep, has been popular. Clinical observations of disrupted sleep among sleep disordered patients often strengthened the validity of this view. It is believed that the more fragmented a sleep period is (i.e., the shorter the duration of each sleep episode), the more diminished its cefreshing power.

However, in the remainder of this paper, the evidence will be offered to show a need to revise a concept of "continuity" downward from 5 hours to a few tens of minutes. Then, the differences between "fragmented sleep" and "continuous sleep" will blur, as the time requirement fa: a sleep to be continuous becomes less and less.

4. APPRAISAL OF RECUPERATIVE POUER OF ULTRASHORT SLEEP

The recuperative powers of repeated ultrashort sleeps in maintaining performance efficiency has been brought into sharp focus by Stampi's dramatic field observations of sleep patterns of yachtsmen during solo, long distance yacht races (1985a, 1985b, 1988, 1989). Taking as many ultrashort sleeps as necessary to obviate the need to sleep continuously for 5 hours or longer was shown to be possible, given that there was opportunity to adapt to the life under ultrashort sleer.

Stampi's field research was not the first to reveal that short sleep, or napping, were able to replace the major daily sleep period of 8 continuous hours. There are three kinds of research lines, each of which was initially designed to answer some specific questions unrelated to usefulness of short sleep in capluring core sleep, but demonstrated also that many periods of short sieep can capture core sleep. The researches are on:

1. Fragmented Sleep
2. Sleep Apnea Model, and
3. Day (e.g., a 90 minute day).

4.1. FRAGMENTED SLEEP

Husband (1935) tested one subject who slept 8 hours per night for one month, then 6 hours per night in two sleep episodes, one sleep period at 23:00 10 02:00 and another sleep period at 05:00 to 08:00 during the second month. The time period between two sleep episodes was spent in various activities. Husband used tests of scholastic aptitude, intelligence, and psychomotor skills to determine if interrupted sleep caused mental deterioration as compared with continuous sleep. No consistent degradation of performance was observed due to inte rupted sleep during or after experimentation of one month. Hartley (1974) showed that a group of subjects who had three 80-minute naps (at $23: 10,05: 30$ and $12: 25$ per day) over 4 consecutive days was poorer in task performance than the control subjects who slept

8 continuous hours, but a higher level of yerformance was produced than by another group of subjects who slept 4 continuous hours between 0100-0500.

4.2. SLEEP APNEA MODEL

Patients with sleep apnea experience extremely disrupted sleep marted with frequent arousals. In order to model behavioral consequences of severe sleep apneics, Bonnet (1985, 1986) conducted experiments with young, healthy, normal sleepers. In his 1986 paper, subjects experienced four kinds of sleep disruptions over two consecutive nights. The four disruption conditions were: (1) brief awakening (as defined by ability to make a verbal report of sleep/wake status or to solve an addition problem) after 1 minute of accumulated sleep, (2) brief awakening after each 10 minutes of accumulated sleep, (3) the same after 2.5 hours of accumulated sleep, and (4) no sleep. In the morning, tie subjects were given addition, vigilance, sleep latency and other tests immediacely after their awakening. The results showed that, after two nights of disrupted sleep, "periods of uninterrupted sleep in excess of 10 minutes are required for sleep to be restorative." That is, the sleep quantum is neither 1 minute nor $4.5-5.5$ hours, but perhaps about 10 plus some minutes. However, there are significant differences in sleep stages between the 1 -minute sleep and the 10 -minute sleep: the 1 -minute sleep had virtually no $S W S$ and REM sleep, whereas the 10 -minute sleep contained more than one half of SWS and REM sleep time in comparison with the baseline sleep. Thus, the restorative power of sleep of a 10 minute nap may have to be attributed also to SWS and REA sleep, in addition to duration of sleep.

Downey and Bonnet (1987) included analyses of performance of 5 subjects who did a random two-digit/two-numter addition problem given immediately upon awakening from two consecutive nights of disrupted sleep. They found that as early as night 1 , awakening subjects every 1 or 10 minutes caused verbal response to slow down. During night 2 , the 1 minute disrup.tion continued to cause additional marked slowing in verbal response to the addition t.ssk. "By night 2, response lotencies on the average were 7 times control values in the 1 -minute condition, remained at 4 times control in the 10 -minute condition, and nearly 2.5 times control in the 2.5 hours condition (p.361)." Since the duration of sleep stages were poor predictors of performance, Downey and Bonnet felt that "the data were best explained by
sleep continuity theory, which posits that a period of at least 10 minutes of uninterrupted sleep is required for restoration to take place،"

Magee, et al. (1987) conducted a study on the extent of voluntary control uf respiration during sleep. During a sleep-disrupted night, young, healthy, University students would take a deep breath to a tone presented every 1 or 4 ininutes. Magee et al. measured effects of one disrupted night on sleepiness. They found that the subjects whose sleep was disrupted every minute lost almost all SWS and one half of REM sleep, and slept only about 6 out of 8 hours of bed time. The 4 minute disruption group did not differ from the control non-interrupted sleep group in terms of sleepiness. The results of this study by Magee et al. could be interpreted to show that the sleep yuantum could be as short as 4 min , instead of 10 plus some minutes as implied by Bommet (1986).

4.3 SHORT DAY

Most sleep studies have been conducted under the constraint of a day having 24 hours; each day consisting of one sleep/wake cycle of 8 hours/ 16 hours. However, a few studies examine much shorter, artificial days (e.g., 90 minute "day") with results which appear to contribute to our understanding of sleep quantum.

Weitzman, Nogeire, Perlow, Fukushima, Sassin, McGregor, Gallagher and Hellman, (1974) studied the effects of a 3 hour "day" of a sleep/wake schedule of 60 ..minutes $/ 120$ minutes over 10 days. Total bed time under this sleep/wake schedule was 8 houns/24 hours. The polygraphic sleep records showed that the subjects slept an average of 4 hours/24 hours during the 10 day study. Sleep efficiency, as calculated by dividing the sum of stages 2 , 3, 4 and REM (i.e., total sleep time) by total bed time was 50.9%. No task performance data were collected in this study.

Carskadon and Demeni (1975, 1977) siudied a "90 minute day." A sleep/ wake schedule was 30 minutes; 60 minutes up to 6 (24 hour) days. The subjects could sleep up to 8 hours in 16 sleep episcdes, each 30 minutes long. On average, the subjects were able to sleep less than 4 hours per 24 hous across 6 days. Sleep efficiency was 47.6%. No task performance data were collected. Carskadon and Dement noticed that sleepiness increased signiticantly on the first nap day but decreased to the baseline over the next 4 days, showing a sign of adaptation to altered sleep/wake schedule.

Moses, Hord, Lubin, Johnson and Naitoh (1975) and Lubin, Hord, Tracy and Johnson (1976) examined the sleep/wake schedule of 60 minutes/160 minutes across 40 hours. This represented a total bed tine of 6.5 hours/24 hours, but the subjects were ablc to achieve sleep efficiency of only 47.5%. Unlike othe: "Shor: Day" studies, Lubin et al. (1976) used auditory vigilance, addition, word memory tests and Stanford Sleepiness Scale to measure the effects of the sleep/wake schedule which would certainly fragment sleep. The 60 minute nap sessions were beneficial and neutralized performance degradation expected from 40 -hour total sleep deprivation.

Mullaney et al. (1983) reported comparisons of performane of three groups under varying sleep/wake schedules. One group was required to work continuously for 42 hours. Another group was required to work continuously, but they were given a 1 hour sleep/rest period every 7 hours (6-and-1). The subjects in this group repeated this sleep/wake cycle 6 times during the 42 hour continuous work period. The third group was required to work for 18 hours, given chance to sleep for the next 6 hours (18 -and-6), and then repeated this sequence twice. The authors found that the 6 -and 1 group showed superior performance over the other two groups up to the first half of the 42 hour continuous work period. This was attributed te the benefits of the 1 hour naps. The 1 hour naps vere not sufficient to maintain performance at the high level as observed among the subjects in the 18-and-6 group after their 6 hour sleep. However, the subjects in tie 6 -and- 1 group performed much better than those subjects who did not sleep at all.

5. ULTRASHORT SLEEP: BENEFITS

The converging lines of evidence, as presented in the previous sections of this paper, seemed to suggest that the duration of each sleep episode must be longer than $4-10$ minutes to be recuperative.

In work envizonments which demand around-the-clock operations with a minimal number of personnel to share job responsibilities, taking a short nap at, on near, the work sito is a pagmatic solution to reduce fatigue and sleepiness of long work hours, and highly recommended. Ultrashori sleep oi 5 , 10 or 20 minutes taken by personnel right at or near the work site may provide a weicone relief. for the workers and enhance productivity and safety. Naps on a chair (Nicholson \& Stone, 1987) or on a cot placed ai a wrik site refreshes workers and is much easier for management to approve
than a one hous or longer sleep in a room somewhere far away from the work Git. during the middle of the "work" period.

Hltashoit naps may also prevent occurrence of a rare, but serious, Mohlem of behavioral freezing (Folkard \& Condon, 1987), i.e.. instead of trsponding quickly 10 an emergency, the individual lapses into temporary immobility).

6. ULTRASHORT SLEEP: PROBLEHS

The benefit of using ultrashort sleep to capture sleep quantum in a molonged work period needs to be balanced against its two major shortromings:

1. Sleep ineltia and
?. Reduced sleep efficiency.

6.1. SLEEP INERTIA

Immediately atter getting up from sleep, irrespective of the hour, nut is not at one's best, i.e., sleep inertia (Lubin, et al., 1976). Sleep inetia e epresents a reduced performance capability during a period after heing suddenly awakner from sleep. Pigeau, Heslegrave and Angus (1987) llsed electioencephalogiahic (EEG) indices to find that sleep inertia is -hatacterized hy EEGs resembling an eatly phase of sleep. Balkin and Badia (1988) tound that a period of sleep inettia is not a novel state, but merely pelsicionce of "typical" sleepiness. These aftereffects nf sleep occur from 1 's mimutes (Dinges, et al., 1985; Webb and Agnew, 1974) to 15 minutes following awakeing (Wilkinson and Stratton, 1971). Due to sleep inertia Ait Folre crews have been prohibited from napping while on the immodiate alett or standby (Hattman and Langdon, 1965; Hartman, et al., 1965; Langdon and Hartman, 1961).

Seminara \& Shavelson (1969) showed that four test subjects in a simulation study for a NASA five-day lunar mission experienced sleep aftereffects in some tasks persisting tor up to 12 minutes, although the largest peifommace decrements were observed during the first 3 minutes. Naitoh (1981) lepoted that inadequate short recovery sleep after a prolonged sleep deprivation resulted in more serious and prolonged sleep inertia.

Because of this sleep inertia, workers who are involved in jobs requising, a fully functional, alert mind instantly upon awakening (such as
aviators (Angiboust, 1970) and truck drivers) are not recommended to take any naps during work periods. The cases of infantry soldiers suffering from sleep inertia, as mentioned by Haslam (1982), should be handled differently from the aviators and truck drivers. Infantry soldiers, as well as night nurses and nighttime operators of power generation plants, will have more time for becoming sully awake before appropriate actions are demanded of them. In fact, for some shift work personnel who have less stringent requirements for speed and accuracy of responses, adopting a simple procedure of washing the face with cold water to dispel sleep inertia quickly (Labuc, 1978, 1979a, 1979b) would be highly recommended rather than fighting off wares of sleepiness.

6.2. LOSS OF SLEEP EPFICIENCY

Ultrashort sleep appears to reduce sleep efficiency in comparison with long continuous sleep. Previously, in the discussion of "short day" or non 24 hour day, an average sleep efficiency was estimated to be about 50%. This means, under ultrashort rir non 24 -hour work/day schedules, we might be given an opportunity to sieep but, on average, we can use one half of that "bed time" for actually sleeping. However, as pointed out by Stampi (1989), sleep efficiency is expected to improve once we have adapted to a new sleep/ wake schedule. Hence, the loss of sleep efficiency in ultrashort sleep appears to be lack of opportunity ard/or motivation to adapr to the work environments which demand ultrashort sleep. Suggestions have been made either to use quick acting hypnotics to induce sleep, or tc train sleepers on techniques of biofeedback and autogenic relaxation for rapid sleep onset and lor improving sleep efficiency.

7. SLEEP MANAGEMENT: NEU MANDATE

Despite the wo drawbacks in practicing ultrashort sle p at work sites, ultrashort sleep offers the management of sleep a flexible tool in capturing sleep quantum without interferring down military or industry operations. Unfortunately, much of the necessary data on ultrashort sleep are not available.

When should workers be advised to take ultrashort sleep on their work sites? Should they sleep on a chair or a cot placed right at or near the work sites, or should they sleep in a secluded area for maximal sleep
efficiency? How many minutes of ultrashort sleep should be ailowed? How long will the recuperative effects of an ultrashort sleep last?

8. THE JOB OF SLEEP MANAGER

While the science of sleep management works towards gaining nore inform. ation about the recuperative power of ultrashort sleep, sieep managers need to accomplish especially the following two objectives using currently available teclnical base:

1. To develop a technical database describiag the roles of ultrashort sleep in sustained/continuous operations, and
2. To develop a performance model for ultrashort sleep.

8.1. DA'TABASE FOR ULTRASHORT SLEEP

Figure 1 shows a flow diagram describing the role of sleep management, particularly of ultrashort sleep. The work enviroments to be discus sed in figure 1 are quite common among military personnel where they are required to work continuously with little or no sleep for a prolonged period of time until the task is completed (Sustained or Contintous Jperation, SUSOP/CONOP).

If work is completed in less than 24 hours, there would be no need to invoke counter degradation measures (CDMS) to support individual and group performance. However, if the task requires personnel to wotk longer than 24 hours continuously and the work begins to interfere with sleep, the sleep manager needs to apply as many CDMs as available to support the work forces. Figure 1 lists five CDMs.

In applying sleup logistics, the first action is to observe whether workers are presently napping. If they are not napping, then the next vital concern is to determine when they ought to start napping. If the workers are found asleep, the vital decision is to determine when they should be awaken.

The decision processes (marked with the large X in Figure :) on when tu begin or end a nap will be based on the tecinical database which is boxed in, for the sake of emphasis, at the bottom of Figure 1. The technical database for napping and ultrashort sleep still remains ancomplete, awaiting more data from future experimentations and field observations.

Figure l. A flow diagram showing sleep logistics as one of the five measures to counteract performance degradation during sustained/ contiruous operations (SUSOP/CONOP). When a work schedule (scenario) interferes with regular sleep toutine, sleep managers need to initiate one or more of counter degradation measures (CDM). Five CDMs are listed in this rigure (Stress Immunization, Work/Rest Schedule and others). The applications of Sleep logisties consists of making an observation as to whether individuals are asleep or awake. If they are awake, a decision must be made as to when a nap is recomiret.ded; if asleep, when to wake them. The decision must be based on a techmical database (boxed-in in this Figure) on napping and ultrashort sleep. $X=$ Decision point for either napping to begin or to end. d = Napping duration.

Figure 1 lists some of the known technical databases with which sleep managers must be familiar. For example, if a group of workers is not napping, its group performance indices are not up to the pre-set standard, and they show signs of persistent excessive sleepiness, then sleep managers will advise them to start napping. The sleep managers al.so should know that there are enough workers at the work site to afford letting this group ofis for a ndp. Further development of technical database is necessary just to make a simple, but critical, decision of: To nap or not to nap.

8.2. PERFORMANCE MODEL FOR ULTRASHORT SLEEP

Another responsibility of the sleep managur is to develop a performance model similar to a conceptual one given in Figure 2.

The X axis shows a 4 day peliod of sustained operation. The Y-axis is in an arbitraxy unit with an arbitrary threshold index valuc. Performance above the threshold value is regarded as being at an acceptable level of competence. Performance index below the threshold is of unacceptable quality. Tlie X-axis represents a 4 day long period of continuous work. The solid line reprosents a hypothetical performance index during a sustined operation when sleep is not allowed across 4 days. The hypothetical perfor... mance index shows a prominent circadian thythm superimposed on a linear decrease in performance index actoss 4 days. Although the solid line an Figure 2 is arbitrarily drawn, it follows very closely to a generalized performance curve based on data from studies of the effects of 72 hour total sleep depilation performance (Thorne, Genser, Sing and Hegge, 1983).

In Figure 2, six naps were allowed by a sleep manager to counter against performance impairment due to sleep loss. During day 1 , the performance index fell below the threshold due to circadian dip, and a sleep manager decided to permit a short nap, Nap 1. Expected recovery in performance index is shown in a broken linc. The duration of the nap is shaded. Early in Day 2, the performance index (the broken line) again hit the threshold, so the sleep manager decided to interject another nap, Nap 2 . During the same Day 2, the sleep manager observed another dip in performance to trigger Nap 3 which is much longer than Nap 1 or Nap 2. The nap duration depends on the sleep manager's experience with Technical Datcbase (cf. Figure 1). (Currently, very few facts are available to determine how long a nap period

Figure 2: hypothetical perfomance improvement due to adoption of 6 short nap periods during a 4 day long sustained/continuous operation. Without sleep, task performance decline in a predictable fashion down to the unacceptable level within 2 days (the solid line). With timely interjection of napping, the overall performance index remain at the acceptable level over 4 days of a continuous work period, overcoming the effects of sleep loss and circadian nadir on task performance (the broken line). Napping is imposed when the performance index fell below the arbitrarily set thres. hold value for the acceptable level. Napping ends when a sleep manager has judged that a nap was sufficiently long. See Text for details.
should be in order to achieve sufficient, enduring performance recovery. It is relatively easy to determine, using measures taken from brain waves (Pigeau, et al., (1987)) or performance indices, to conclude that sleep is needed immediately to maintain the level of performance. However, we have as yet to develop some on-line measures to indicate that a nap of sufficient duration was taken to warrant awakening.

In creating ligure 2 , it was assumed that the science of sleep management has developed a performance model for ultrashort sleep. Figure 2 shows that the performance index of the sleep deprived becomes unacceptable after 1.5 days of continuous work. This means, without the ultrashort nap, the performance over the remaining 2.5 days (60 hours) is of unacceptable quality without any counter degradation measures (CDMs). Performance was maintained throughout the experiment taking naps 2 through 4 . This means that naps totaling less than 10 hours, which are judiciously distributed during a sustained operation, regained about 50 odd hours of "useful time" towards a completion of the mission. The key utilities in developing this computerized behavioral model are how one decides when napping should start and when it should end.

The nap stop time is greatly influenced by non-psychophysiological factors such as work demands and manpower requirements. Napping will be topped when work demands require a larger number of workers on the job than are currently awake. The nap stop time also be estimated by knowing each individual's habitual sleep pattems, the duration of last sleep, the time since last sleep, the cumblative hours of sleep during the past 72 hours, the kind of jol) to be performed, and each individual's "chronotype" (norningness and eveningness). For sleep managers, a question of when to wake the sleeping workers and soldiers following a prolonged period of continuous work remaius to be a difficult one. This is an area of research in the future.

9. DISCUSSION AND CONCLUSIONS

The sleep managers' task is to create a humane work schedule for irregular or prolonged work. Sleep managers should remember that mose shift workers keep their work hours, not because it is good for them, but because it is good for the society. The least the science of sleep management can do for them is to make their wark more bearable, safe, and productive by
proper sleep management as a part of the overall shift work planning and manpower allucation. Sleep managers should create new work ethics where yawning and sleeping at work sites are looked upon favorably.

In the search for sleep quantum, there appears to be a consensus that a period of 4.5-5.5 (average of 5) hours of continuous sleep per 24 hours would satisfy the daily requirement for core sleep, hence, maintaining a high level of job performance for an indefinite period of time. However, there seems to be no agreement among sleep researchers whether the 4.5-5.5 hours of sleep can be taken as a smaller packet, for example, of 10,20 and 30 minutes of sleep. It is known that having many episodes of an extremely short 1 minute sleep all night long does not have power of recuperation. What is not resolved is a question of how long each sleep episode should be before it becomes, at least, behaviorally recuperative.

Another unresolved question is what are the mechanisms through which the ultrashort sleep loses recuperative power? As discussed previously, the sleep inefficiency of ultrashort sleep is due to the fact that one cannot fall . leep quickly during time periods which are allocated for sleeping. It is not known, however, whether the shorti.ss of sleep, in itself, has reduced recuperative power. For example, if we let sleepers accumulate a total of 5 hours of sleep in 5 separate episodes of sleep by letting them continue sleeping until they have 1 hour of sleep, is this "fragmented sleep" less recuperative than sleep of 5 continuous hours? No definitive data are available. If a fragnented 5 hour sleep has far less recuperative power than a 5 hour continuous sleep, we could certainly conclude that the continuity of sleep itself plays a vital role in determining recuperative power.

There is another unresolved question about ultrashort sleep. As Bonnet (1986) and Magee et al (1987) noted in their studies, 1 minute sleep does not include slow wave sleep and REM sleep even after accumulation of many 1 minute long sleap episodes across the entire night. It seems that sleep is too short to include SWS and REM sleep and it is also too short to be recuperative. In contrast, when each sleep episode is 10 minute long, all night sleep inludes almost one half of normal SWS and REM sleep, and sleep appears to be recuperative. Comparisons of the differences in sleep stages between 1 minute versus 10 minute sleep episodes in terms of power of recuperation might revive a familiar argument that the inclusions of SWS and REM
sleep ate responsible for recuperation. However, Bonnet (1986) argues competently against invoking the sleep stages to explain recuperation, because there were no significant correlations between amount of SWS or REM sleep and performance recovery. Bonnet feels that the fact that one sleep episode was 10 minutes, another was 1 minute is the determining factor in recuperative power of sleep. Sleep stages have nothing to do with recuperation. More experimental evidence is, however, needed to resolve this issue of sleep stages versus duration of sleep episode in terms of the recuperative power.

Finally, the role of adaptation needs to be emphasized regarding ultrashort sleep schedules. Stampi's observations showed a relative ease of adaptation to ultashort schedules, despite commonly held opinions to the contraty. The recuperative power of ultrashort sleep may partly depend on a degree of adaptation to the lifestyle involving needs for ultrashort sleep. A majority of research summarized in this paper does not provide the experimental subjects long enough adaptation time to the ultrashort sleep lifestyle. Hence, a decline of sleep efficiency under "sholl DAY" paradigm could have been reversed if the observalion periods were much longer.

We used to feel that daytime naps, especially among the elderly, were undesirable events because they tended to degrade the quality of nocturnal sleep. Almost all sleep disorder patients show fragmented noctumal sleep with daytime excessive sleepiness and poor performance; hence, fragmented sleep was regarded as poor, non-refteshing sleep to be avoided. The continuity theory of sleep predicts that only a period of minterrupter and contimous sleep is recuperative. In this paper ultrashort sleep has been presented to be recuperative from daily fatigue and sleepiness. More data are needed to establish the conditions in which ultrashort sleep would benefit us in fulfilling daily responsibilities.

10. HEFERENCES

Angiboust R (1970): General Discussion. In Aspects of human efficiency: Diurnal rnythm and loss of sleep, Colquhoun WP ed. Loudon, England: The English Universities Press.

Angus Ro, Heslegrave RJ (1985): Effects of sleep loss on sustained cognitive performance during a command and control simulation. Behav Res Methods, Instru, \& Computers 17:55-67.

Balkin TJ, Badia P (1988): Relationship between sleep inertia and sleepiness: Cumulative effects of four nights of sleep disruption/ restriction on peiformance following abrupt nocturnal awakenings. Biol Esychol 27:245 258.

Bonnet MH (1985): Effect of sleep disruption on sleep, performance and mood. Sleep 8:11..19.

Bonner Mh (1986): Performance and sleepiness as a function of frequency and placement of sleep disruption. Psychophysiol 23: 263-271.

Carskadon MA, Defrent WG (1975): Sleep studies on a 90-minute day. Electrvenceph Clin Neurophysiol 39:145.155

Catskadon MA, Dement WC (1977): Sleepiness and sleep state on a 90 min schedule. Psychophysiol 14:127.133.

Dinges DF (1983): Prophylactic napping to sustain performance and alertness in contimous operations (Contract No. N00014-80-C 0380, Plogress Report OUO1AN). Arlington, VA: Office of Naval Research.

Dinges DF (1989): Napping patterns and effects in human adults. In Sleep and Alertness, Dinges DF, Broughton RJ eds. New York: Kaven Press.

Dinges DF, Orne MT, Orne EC (1985): Assessing performance upon abrupt avakening from naps during quasi-continuous operations. Behav Res Methods, Instru, \& Computers 17:37-45.

Dinges DF, Orne MT, Orne EC, Whitehouse WG (1986): Napping to sustain performance and mood: Effects of circadian phase and sleep loss. In Studies in industrial and organizational psychology: Vol. 3. Night- and shiftwork: Longtexm effects and their prevention, Haider M, Kollar M, Cervinka R eds. (Proceedings of the VII international symposium on night and shifiwork, Igls, Austria, 1985. pp. 23-30). New York: Peter Lang.

Downcy R, Bonnet MH (1987): Performance during frequent sleep disruption. Sleep 10:354-363.

Englund C E, Ryman D H, Naitoh P, Hodgdon JA (1985): Cognitive performance during successive sustained physical work episodes. Behav Res Methods, Instru \& Computers 17:75-85.

Folkard S, Condon R (1987): Night shift paralysis in air traffic control ofticers. Ergonomics 30:1353-1363.

Friedmann J, Globus G, Huntley A, Mullaney D, Naitoh P, Johnson L (1977): Performance and mood during and after gradual sleep reduction. Psychophysiol 14:245-250.

Hartley $1, R$ (1974): A comparison of continuous and distributed reduced sleen schedules. Otr J of Exper Psychol 26:8-14.

Hartman BO, Langdon DE (1965): A second study on performance upon suddell awakening. (School of Aerospace Medicine Mcuort No. TR 6561). Brooks Air Force Base, TX: United States Air Force.

Hartman BO, Langdon DE, MCKenzie RE (1965): A third study on performance upon sudden awakening. (School of Aerospace Medicine Report No. 65-63). Brooks Air Force Base, TX: United States Air Force.

Haslam DR (1982): Sleep loss, recovery sleep, and military performancee. Ergonon 25:163-178.

Horne J (1988): Why we sleep: The functions of sleep in humans and other mammals. Oxford, England: Oxford University Press.

Husband K W (1935): The comparative value of continuous versus interrupted sleep. J Exper Psychol 18:792-796.

Johnson LC, Naitoh P, Moses JM, Lubin A (1974): Interaction of REM deprivation and stage 4 deprivation with total sleep loss: Experiment 2. Psychophysiol 11:147-:59.

Kripke D, Simons R, Garfinkel L, Hammond C. (1979): Short and long sleep and sleeping pills. Arch Gen Psychiatry 36:103-116.

Labuc S (1978): A study of pelformance upon sudden avakening. Army Petsomnel Research Establishment Report No. $1 / 78$. Farmborough, Hants, England.

Labuc S (1979a): Performance upon awakening from four hours sleep per night, Army Persomm:l Reseatch Establistment Report No. 7/78. Farnborough, Hants, Erigland.

Labuc S (1979b): The effect of a one minute alerting procedure on performance after sudden arousal from sleep. Army Personnel Research Establishment Report No. 8/78. Farnborough, Hants, England.

Langdon DE, Hartman BO (1961): Performance on sudden awakening. (School of Aerospace Medicine Report No. 62.17). Brooks Air Force Base, TX: United States Air Force.

Lavie P (1985): Ultradian rhythms: Gates of sleep and wakefulness. In: Ultradian Rhythms in Phystology and Behavior, Schulz H, Lavie P, eds. Springer-Verlag: Berlin.

Lavie P, Scherson A (1981): Ultrashort sleep-waking schedule I: Evidence of ultradian rhythmicity in "sleepability." Electroenceph Clin Neurophysiol 52:163-174.

Lavie P Gopher D, Wollman M (1987): Thirty-six hour correspondence between performance and sleepiness cycles. Psychophysiol 24: 430-438.

Levine B, Roehrs T, Stepanski E, Zorick F, Rotil T (1987): Fragmenting sleep diminishes its recuperative value. sleep 10: 590-559.

Lubin A, Moses JM, Johnson LC, Naitoh P (1974): The recuperative effects of REM sleep and stage 4 sleep on human performance after complete sleep loss: Experiment 1. Psychophysicl 11:133-146.

Lubin A, Hord D, Tracy ML, Johnson LC (1976): Effects of exercise, bedrest and napping on performance decrement during 40 hours. Psychophysiol 13:334-339

Lumley M, Roehrs T, Zorick F, Lamphere J, Roth 'I (1986): The alerting effects of naps in sleep-deprived subjects. Psychophysiol 23:403-408.

Magee J, Harsh J, Badia P (1987): Fiffects of experimentallyinduced sleep fragmentation on sleep and sleepiness. Psychophysiol 24:528-534.

Minors DS, Waterhouse JM (1981): Anchor sleep as a synchronizer of rhythms on abnormal routines, Intern J Chronobio 7:165-188.

Moses JM, Hord DJ, Lubin A, Johnson IC, Naitoh P (1975): Dynamics of nap sleep during a 40 -hour period. Electroenceph Clin Neurophysiol 39:627-633.

Mullaney DJ, Kripke DF, Fleck PA, Johnson LC (1983): Sleep loss and nap effects on sustained continuous performance. Psychophysiol 20:643-651.

Naitoh P (1981): Circadian cycles and restorative power of naps. In Biological rhythms, sleep and shift work, Juhnson LC, Tepas DI, Colquhoun WP, Colligan MJ eds. New York, NY: Spectrum.

Naitoh P, Angus B (1989): Napping and human functioning during prolonged work. In: Sleep and Alertness, Dinges DF, Broughton RJ, eds. New York: Raven Press.

Naitoh P, Englund CE, Ryman DH (1986): Sleep management in sustained operations: User's Guide. Naval Health Research Center Technical Report No. 86-22. San Diego, CA: Naval Health Research Center.

Nicholson A N, Stone BM (1987): Influence of back angle on the quality of sleep in seats. Ergonom 30:1033. 1041.

Pigeau RA, Heslegrave RJ, Angus RG (1987): Psychophysiological measures of drowsiness as estimates uf mental fatigue dild performance degradation during sleep deprivatior. In: AGARD Conference Proceedings No. 432, Electric and magnetic activity of the central nervous system: Research and clinical applications in aerospace medicine. Paris: NATO.

Webb WB (1985): Sleep in industrialized settings in the northern hemisp̣here. Psychol Rep 57:591-598.

Webb WB, Agnew HW Jr. (1974): The effects of a chronic limitation of sleep length. Psychophysiol 11:265-274.

Webb WB, Agnew HW Jr (1975): Sleep efficiency for sleep-wake cycles varied length. Psychophysiol 12:637. 544.

Wedderburn AAI (1987): Sleeping on the job: the use of anecdotes Eor recording rare but serious events. Ergonom 30:1229-1233.

Weitzman ED, Nogeire C, Perlow M, Fukushima D. Sassin J, McGregor P, Gallagher TF, Hellman L (1974): Effects of prolonged 3-hour sleep/wake rycle on sleep stage, plasma coutisol, growth hormone and body temperature in man. J Clin Endocrinol Metabol 38:10181030.

White RM (1975): The lengths of sleep. Selected documents in Psychology, American Psychological Association, MS No. 1001 (74 pages). Abstracted in Catalog of Selected Documents in Psychology 5:274.

Wilkinson RT (1970): Methods for research on sleep deprivation and sleep tunction. Int Psychiat Clin 7:369-381.

Wilkinson RT, Edwards RS, Haines E (1966) Performance following a night of reduced sleep. Psychon Sci 5:471-472.

Wilkinson RT, Stretton (1971): Performance afte:- awakening at different times of night. Psychonom Sci 23:283-285.

ia REPORT SECURITY CLASIFICA ON Unclassil leu	1b RESTRICTIVE MARKINGSN/A			
2a SECURITY CLASSIFICATION AC HORITY N/A	3 DISTRIBUTION/AVAILABILITY OF REPORT Approved for public release; distribution unlimited.			
2b DECLASSIFICATION/DOWNGRAJING SEHEDULE N/A				
4 PERFORMING ORGANIZATION REPORT NUMBER(S) NHRC Keport הio. 89-49	5 MONITORING ORGANIZATION REPORT NUMBER(S)			
Ga NAME OF PERFORMING ORGAVIZATION Naval Health Researci: Center	7a I AME OF MONITORING ORGANIZATION Chief Bureau of Medicine and Surgery			
6c. ADDRESS (City, State, and ZIP Cude) P.O. Box 85122 San Diego, CA 92138-9174	70. ADORESS (City, State, and ZIP Code) Department of the Navy Washinton, D.C. 20372			
Ba NAME OF FUNONG/SPONSOR NG OF OFICE SYMBOL URGANIZATION Naval Medical (If dpplicable) Rescarch \& Development Command	9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER			
BC ADORESS (city, Stare, and IIP (OUde) NNMC BETHESDA, MD 2081--5uit	10 SOURCE OF FUNDING NUMBERS			
	PROGRAM ELEMENT NO $6370 n \mathrm{~S}$	$\begin{aligned} & \text { PROJECT } \\ & \text { NO } \\ & \text { MOO96 } \end{aligned}$	TASK NO 002	WORK UNIT ACCESSION NO 6002

11 titile (Include Security Classification)
(U) MINMML SLEEI A MAINTAIN PERFORMANCF: SEARCH FOR SLEEP qUANTUM TN SUSTATAED OPERATIONS
12 PERSONAL AUTHOR(S)
palil Naituh, ph.d.

13a TYPE OF REPORT lnterim	136 TIME COVERED FROM ro	14 DATE OF REPORT (Year, Month, Day) 891130	15 page count

16 SUPplementary notation

17	COSATI CODE;	
FIELD	GROUP	;-B-GROUP

IB SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Core sleep; Optional sleep; Prophylactic sleep; Sleep al ea ir alel; Sleep inertia; Sleep management; Sleep quantum; Sustained operation; (iltrashort sleep
19 ABSTRACT (Continue on rrverse if necessary and sdeniffy by block , tumber)
Active sleep manage ent is proposed to minimize degradation in job performance and to improve job safecy in sustained operations. The key issues of sleep management are minimal sleep duration, time of day when the sleep is taken, the extent of prior sleep luss, the nature of jobs to be performed, and individual differences in sleep habits. This paper focuses on the questions of minimal sleep duration which is necessary to maintain an acceptable level of performance. The minimal sleep is found to be about 5 hours per 24 hours, anti can be taken piecemea. In this paper, ultrashort sleep on or near the work site is recummended as the means to maintaili the high level of periormance in sustafned operations.

20 DISTRIBUIIONIAVAILABILITV DF ABSIRAI 1 UNCLASSIFIEDUNLIMITED SAME AS RPT [] UTIC 1,SERS	21 ABSTRACT SECURITY CLASSIFILATION Vnclassilied
Pall Naitoh	226 TELEPHONE (Irclude Area Code) 22c OFFICE SYMBOL (619) $532-6114$ 20

DD FORM 1473. 84 MAR
$83 \triangle \mathrm{PR}$ edition may be used uritil exhaustod All other editions are obsolete

SECURITY CIASSIFICATION OF THIS PAGE

