Notes on the NOARL Nowcast for the '89-'90 "El Niño" Forced by FNOC Winds

H. E. Hurlburt
J. C. Kindle
E. J. Metzger
Ocean Sensing and Prediction Division
Ocean Science Directorate

A. J. Wallcraft
JAYCOR
Stennis Space Center, Mississippi

Approved for public release; distribution is unlimited. Naval Oceanographic and Atmospheric Research Laboratory, Stennis Space Center, Mississippi 39529-5004.
These working papers were prepared for the timely dissemination of information; this document does not represent the official position of NOARL.
Abstract

The Naval Oceanographic and Atmospheric Research Laboratory (NOARL) one active layer reduced gravity global ocean model is running in real time at the Fleet Numerical Oceanography Center (FNOC) forced by the Navy Operational Global Atmospheric Prediction System (NOGAPS) wind fields. The model has a resolution of 0.5° x 0.7° (lat., long.) and depicts a few eddies but it is basically non eddy-resolving; it does depict most of the major current systems and large-scale fronts. In addition, the model clearly shows evidence of an El Niño-like event in the equatorial Pacific Ocean during 1989-1990.
Acknowledgments

This technical note is a joint contribution to the NOARL 6.2 program in global and regional modeling sponsored by the Office of Naval Technology (Program Element 62435N, Program Manager CDR Lee Bounds) and the 6.1 program on the dynamics of coupled oceanic and atmospheric models sponsored by the Office of Naval Research (Program Element 61153N, Program Manager Halcyon Morris). Computations were performed on the VAX 8800 at the Institute of Naval Oceanography and the CYBER 205 at FNOC.
Notes on the NOARL Global Nowcast for the '89-'90 "El Niño" Forced by the FNOC Winds

The NOARL global ocean model is running in real time at FNOC forced by FNOC's operational wind fields. It is designed to nowcast wind forced anomalies in the depth of the pycnocline. No real-time oceanic data is input. The model is reduced gravity with an active upper layer and a lower layer that is infinitely deep and at rest. It has .5$^\circ$ x .7$^\circ$ resolution (lat., long.) and includes thermodynamics. The model does depict a few eddies such as the Mindanao eddy but is basically non eddy-resolving. It depicts most of the major current systems and large-scale frontal locations quite successfully.

The recent El Niño-like event in the Pacific Ocean is depicted very clearly in the accompanying viewgraphs. This is also a credit to FNOC's NOGAPS atmospheric forecast model as the tropics are a relatively difficult region for operational atmospheric models. They had some difficulty representing the major '82-'83 El Niño, so it is clear that major progress has been made in that area as well.

Sea surface height (SSH) or free surface deviation is the quantity mapped on the viewgraphs. It is more closely related to the upper ocean thermal structure (depth of the thermocline) than sea surface temperature and it can be measured by satellite altimetry, by sea level gauges at many island and coastal stations and by hydrography.

The SSH is shown two different ways, total SSH and the difference between the most recent year and the previous year.

TOTAL SSH

A prismatic color scheme is used with high sea level and deep thermocline at the red end of the spectrum and low sea level and a shallow thermocline at the purple end.

3 Aug 1989: Prior to the onset of the mini El Niño. The normal minimum in the sea level (shallow thermocline) is seen along the equator with extreme values in the eastern equatorial Pacific. This is commonly referred to as a cold tongue.

1 Jan 1990: Near the peak of the mini El Niño. The sea level has increased (thermocline deepened) in the eastern equatorial Pacific and decreased slightly (thermocline shallowed) in the west. This is commonly referred to as a warm tongue and is a characteristic signature of El Niño. The tongue continued up the coast of Mexico as a Kelvin wave (narrow blue strip). This is seen less dramatically in the southern hemisphere.
2 Mar 1990: The normal cool tongue has begun to reappear in the eastern
equatorial Pacific, but the sea level continues to fall in the western
equatorial Pacific. The coastal warm tongue has continued past Baja
California while a cool tongue (low sea level) is propagating northward along
Central America.

4 Apr 1990: A second, weaker warm pulse has reached the American coast.

SSH, Latest year – Previous year

The boundary between yellow/green and green is the boundary between
increases and decreases in SSH from the previous year. Changes in thermocline
depth would closely correspond. We will refer to these differences as warm
anomalies (deeper pool of warm water) and cool anomalies (region of
upwelling). However, anomalies in the thermocline depth and the sea surface
temperature don’t always correspond. Anomaly fields with respect to a
previous year are harder to interpret than anomalies with respect to
climatology. However, in this case the mini '89-'90 El Niño is clear.

3 Aug '89 - 4 Aug '88: Relative to Aug '88 there is a cool anomaly in the
east and a warm anomaly in the west along the equator.

2 Nov '89 - 3 Nov '88: By November this has changed to a warm anomaly in
the eastern equatorial Pacific. This is partly a warm anomaly in '89 and a
cool one in '88. Warm tongues are beginning to appear along the coasts of
Central and South America, but a cool anomaly remains along the coast of
Mexico.

1 Jan '90 - 3 Jan '89: By January a well-developed warm anomaly has
appeared in the eastern equatorial Pacific and extends along the coast of the
Americas. A cool anomaly has developed in the western equatorial Pacific.
This is a classic signature of El Niño.

2 Mar '90 - 4 Mar '89: By March, upwelling and cool water have reappeared
along the coasts of South and Central America and extend westward along the
equator. However, the warm anomaly is found along Baja California and off the
equator. The cool anomaly in the western equatorial Pacific has increased.

4 Apr '90 - 4 Apr '89: A second, weaker warm pulse has reached the
American coast and a new warm anomaly is seen within 10° of the equator. Just
to the west this is separated from the previous warm pool by a band of cooler
water. Along the coast the cooler water has reached Baja California.

The features described are consistent with observations reported on the
OMNET/Telemail El Niño-Southern Oscillation (ENSO) Bulletin Board. They
represent the classic signature of an internal Kelvin wave excited by an
eastward anomaly in the wind field. The Kelvin wave propagates eastward along
the equator then poleward along the coasts of the Americas. This is followed by reflection of internal Rossby waves from the American coast which propagate westward with speeds decreasing sharply away from the equator. Whether the '89-'90 event is a true developing El Niño has been a matter of much controversy and speculation on the ENSO Bulletin Board.

Other features mentioned on the ENSO Bulletin Board are also found in the wind-driven model. These include a cool anomaly in the vicinity of Hawaii and a warm anomaly in the region of New Caledonia (20° S, 164° E). The time dependent evolution of these anomalies is seen on all of the viewgraphs.
2 MARCH 1990
FREE SURFACE DEVIATION

MIN = -28.20 MAX = 127.54

DF = 10.0 CM
DATE = 06/1/1990

EQ PACIFIC 11521:1 18.8
Distribution List

Commanding Officer
NOARL, Code 100
SSC, MS 39529

Chief Staff Officer
NOARL, Code 101
SSC, MS 39529

Technical Director
NOARL, Code 110
SSC, MS 39529

Associate Technical Director
NOARL, Code 111
SSC, MS 39529

Exploratory Development Program Group
NOARL, Code 113
SSC, MS 39529

Basic Research Management Office
NOARL, Code 114
SSC, MS 39529

Classified Library
NOARL, Code 125L (10)
SSC, MS 39529

Technical Information Branch
NOARL, Code 125P
SSC, MS 39529

Ocean Science Directorate
NOARL, Code 300
SSC, MS 39529

Ocean Sensing & Prediction Division
NOARL, Code 320
SSC, MS 39529

Ocean Dynamics & Prediction Branch
NOARL, Code 323 (30)
SSC, MS 39529

Atmospheric Directorate
NOARL West, Code 400 (4)
Monterey, CA 93943-5006

Robert A. Peloquin
Office of Naval Research
Code 120M
Room 922, 800 N. Quincy
Arlington, VA 22217

Dr. Mel Briscoe
Office of Naval Research
ONR Code 12
800 N. Quincy
Arlington, VA 22217

Dr. Alan Weinstein
Office of Naval Research
ONR Code 12
800 N. Quincy
Arlington, VA 22217

Technical Director
Office of Naval Research
Code 10
800 N. Quincy
Arlington, VA 22217

Technical Director
Office of Naval Technology
Code 20
800 N. Quincy
Arlington, VA 22217

SPAWARS
LCDR Cook
Washington, DC 20363

Dr. Warren White
University of California,
San Diego
Scripps Institution of
Oceanography
La Jolla, CA 92093

Robert W. Winokur
U.S. Naval Observatory (OP-096)
34th & Massachusetts Ave. NW
Washington, DC 20392-1800

Commanding Officer
FNOC, Code 00 (2)
Monterey, CA 93943-5005
Distribution List

Webb DeVitt
FNO, Code 42
Monterey, CA 93943-5005

Director
Institute for Naval Oceanography
Attn: Dr. John Leese
SSC, MS 39529

Commanding Officer
NAVOCEANO, Code CO
SSC, MS 39529

Technical/Deputy Director
CNOC, Code OOT
SSC, MS 39529

Professor James J. O’Brien
Dept. of Oceanography
Oceanography & Statistics Bldg.
Tallahassee, FL 32306

Mr. Bill Schmitz
Woods Hole Oceanographic Institution
Woods Hole, MA 02543
The Naval Oceanographic and Atmospheric Research Laboratory (NOARL) one active layer reduced gravity global ocean model is running in real time at the Fleet Numerical Oceanography Center (FNOC) forced by the Navy Operational Global Atmospheric Prediction System (NOGAPS) wind fields. The model has a resolution of \(0.5^\circ \times 0.7^\circ\) (lat., long.) and depicts a few eddies but it is basically non- eddy-resolving; it does depict most of the major current systems and large-scale fronts. In addition, the model clearly shows evidence of an El Niño-like event in the equatorial Pacific Ocean during 1989-1990.