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Saddlepoint Approximations in Conditional Inference

Suojin Wang

Department of Statistical Science

Southern Methodist University

Dallas, TX 75275

SUMMARY

Saddlepoint approximations are derived for the conditional cumulative distribution function and

density of X I g(X, ?), where (X, ?) is the sample mean of n lid bivariate r.ndom variab!es and

g(x, y) is a nonlinear function of x and y. The relative error of order O(n - 1) is retained. Such

approximations are useful in conditional inference, especially in the case of small or moderate sample

sizes. Generalizations to higher dimensional random vectors are also discussed. Two examples are

demonstrated and some numerical results are provided to show the extraordinary accuracy of the new

approximations.

Key tword. Asymptotic expansion; Conditional density; Conditional distribution; Conditional

inference; Nonlinear conditioning; Saddlepoint approximation.

1. INTRODUCTION

Conditional inference plays an important role in statistical inference. The conditionality principle

has been used to deal with various problerm. "Recent developments on this issue include important

contributions by Barndorff-Nielsen (1 ' Cox and Reid (1987), Fraser and Reid (1988), Diciccio,

Field and Fraser (1990) and others. One major step in the procedure of conditional inference is to

obtain the conditional distribution functions. As is often the case, the exact conditional distributions

are difficult or impossible to obtain, and conventional approximations may often fail to work. For

example, generally it is hard to calculate the moments of the conditional distributions which are
1



necessary quantities for the Edgeworth approximations. Furthermore. these approximations are often

unsatisfactory for small or moderate sample sizes. -,

On the other hand, it is well known that saddlepoint expansions lead to accurate approximations,

even for small sample sizes. "\Among other papers, Barndorff-Niesen and Cox (1979) and Reid (1988)

have discussed the importance and usefulness of the saddlepoint approximations in statistics. Davison

and Hinkley (1988) apply the saddepoint method (see Daniels (1987)) to resampling problems. Using

the saddlepoint technique twice, Skovgaard (1987) has derived an accurate approximation to the

conditional distribution of a sample mean given a p-I dimensional linear function of a p dimensional

variable which has been applied by Davison (1988) and Davison and Hinkley (1988) to generalized

linear models and resampling analysis. Wang (1990b) derives saddlepoint formulas for bivariate

distribution functions. But it is seen that most applications are limited to the sample mean and other

simple linear statistics due to the strong requirements of the saddlepoint technique on the moment

generating function of the statistics under consideration.

However, consideration of more general statistics is often desired. In particular, conditional

inference often requires a distribution function conditioning on nonlinear functions of a sample mean of

multivariate random variables. Recent work on saddlepoint expansions includes expansions for some

specific nonlinear statistics by Srivastava and Yau (1989) and Wang (1990c).

4n-Ia- this paper w* derive, accurate saddlepoint expansions for the case of nonlinear conditioning.

The results include Skovgaard's (1987) method as a special case when the distribution is continuous,

but have much broader applications. Sections 2 and 3 expand saddlepoint formulas for the conditional

density and conditional distribution function, respectively. Two examples are considered in Section 4

to illustrate the use of the new results. Extraordinary accuracy is also shown numerically.

2. SADDLEPOINT EXPANSIONS FOR THE CONDITIONAL DENSITY

We consider first the bivariate case, and generalize results in the p (> 2) dimensional case at the

end of Section 3. Assume that (XI, Yj), . • • , (Xn, Yn) are independent identically distributed
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bivariate continuous random variables with the cumulant generating function K(u, v) existing in a

neighborhood of (0, 0). Let

T = cX + C2Y

and Z = g(X, ?) be a bivariate function on the sample space, where c1 and c, are given constants, X

and 7 be the sample means of Xi's and Yi's, respectively. We wish to expand the conditional

distribution Hn(to I z) = Pr(T < to I Z = z) and the corresponding density. Without loss of generality,

let T = X and assume that the transformation from (X,?) to (T, Z) is one to one. Then the inverse

transform can be written as (%, Y) = (T, q(T, Z)) for some function q. When the transform is not one

to one, the domain should be partitioned so that in each portion the transform is one to one.

In this section we consider the conditional density. It is well known that the density pn(x, y) of

(X, /) has the following saddlepoint approximation (equation (1) of Reid (1988)):

Pn(x, y) = p(x,y) {1 + O(n-')}, (1)

where

PS = I Y) 1/2 exp {n[K(i, fi) - fx - fy]}, (2)ps~x, y) 2-{D(fi, fl))/

D(u, v) = {kuu kw - (Ruv)2 1 I (u'v) = I R(u, v) I , the determinant of the 2 x 2 matrix of the

second partial derivatives of K, and (6, i,) is the saddlepoint defined by

(8 K(f, f) = y

Here we adapt Skovgaard's notations for partial derivatives, e.g., Ruu is the second partial derivative

of K with respect to u, etc. The relative error in (1) is of order n - 1 uniformly over compact sets. In

this paper we will use "=" to denote an approximation having such an error. Letting (x, y) = (t, q(t.

z)) and still using (6, f) to denote the corresponding solution in (3), it is easily seen from (1) that the

density hn(t, z) of (T, Z) can be expressed as

hn(t, z) = pn(t, q(t, z)) I J j - hs(t, z), (4)

3



where

hs(t, z) = I J i exp n(K(fi, a) - Ct - dq(t, z)]I,

and J = 4z(t, z) = 14y(x, y)} -' is the Jacobian factor. To approximate the conditional density

hn(t I z) of T I (Z = z), it is sufficient to obtain an approximation to the marginal density ha(z) for Z.

By (4),

hn(z) = hn(t, z) dt _ hs(t, z)dt. (5)
00 -00

Let

L(t) = K(f, f) - it - q(t, z), (6)

where z is fixed so that C and depend on t only. Then by (3),

Ll(t) =-C1 -- 4 t(t, z) (7)

and

Lit(t) = {-Kvv(i, i ) + 24t(t, z) Kuv(U, a) - 4t(t, z)]2 Kuu(ii, 4)}/ D(fi, ') - 'V tt(t, z), (8)

since by taking derivative with respect to t of both sides of (3) when (x, y) = (t, q(t, z)) we have

Nt= {kvv(fi, 4) - , z) kuv(ii, ')J/ D(fi, )

t = {-:kuv(i, ') + 4t(t, z) kRuv(i, ')}/ D(fi, ').

We now assume that there exists a unique solution, t j , to

L'(t) = 0 (9)

and L"(t 1) < 0. Following the technique by Bleistein (1966), we transform t to w such that

(w - w) 2 /2 = L(t 1 ) - L(t) , (10)

where w, = sgn(ti){2(L(ti) - L(O)]}1/2 and sgn(w-wl) = sgn(t-tl). Note that w = 0 and w = w,

correspond to t = 0 and t = tj, respectively. From (4), (5) and (10), it is seen that
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hn(z) _ L exp{nL(tl)} [ exp{_n(wwi)2/2} I J I dt dw

{M_}1/2 exp~nL(t)} / dw i
2z _, 01)/2 I w =

Thin last approximation is obtained by applying Watson's lemma (Jeffreys and Jeffreys (1962)). But

by differentiating both sides of (10), we have

dt{ lir -- fI L"(tl)} - 1/  (11)T- I -- w t"*tl Le(t )  .(1

Thus,

hn (z) n IfL~ l (i,9) J11 exp {nL(tl) }  , (12)

where (u1, 01) is the solution to (3) when (x, y) = (t1 , q(t1 , z)), and J, = 4z(t1 , z) is the Jacobian

factor at t = tj. Noticing that the conditional density is given by

hnt hn(t, Z) (13)
hn(z)

from (4), (6) and (12) we have reached the following result.

Theorem 1. Let T = X, Z = g(X, Y). Assume that the general regularity conditions described at the

beginning of this section hold and that the solution t1 in (9) exists. Denote the inverse transform by

(X, Y) = (T, q(T, Z)). Then the conditional density of T given Z = z has the saddlepoint expansion

hn(- I (t,) D(Ca1 , 1) (1/2

hn(t I 1/2 exp{n(L(t)-L(tl)]}, (14)

where (6, 0) and (fil, 01) are the solutions to (3) when (x, y) = (t, q(t, z)) and (t1 , q(t1 , z)),

respectively, and J and J, are the Jacobian factor at t and t1 , respectively.
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As is seen in the next section, the technique used to derive (12) can be modified for the purpose of

approximating the conditional distribution function. Expansion (12) is useful in the derivations.

3. SADDLEPOINT EXPANSION FOR. THE CONDITIONAL DISTRIBUTION

We begin with the following lemma which will be needed in this section.

Lemma 1. Assume that a(x) is an analytic function. Then

(IL71/'2 y ax exp{ -n x 2 /2)dx -- a(O) 40(-ra y) - a)- a(O) 0({- r (15)
1 _, 'nx '
00

where 0 and 4 are the standard normal density and cumulative distribution function, respectively.

When y = 0, the expansion is a(O)/2 - cr'(O)/(2Tn)/.

This lemma is a special case of Temnme (1982); see Temnme (1982) for the proof.

By (4) and (6), the conditional distribution function in

WntIZ) = IJ- J h(t, z)dt
-00

n to exp{nL(t)) dt. (16)

Using the same transformation as in (10) and denoting by wo the transformed value of t evaluated at

to, we have

Hn~o Z)=a exp~nL(tj)} 0 Cwo ~ _2W_ I22I )~ 21r hn(z) ] w ) -~ 1
2  w

where c(w) =IJ I ./{D(,a, )}1/2 . Therefore by Lemma 1 and formulas (11) and (12), it is easily

seen that
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Hn(tgj z) = (- 1/2 expf nL(t1 )} I c *l (ao,) -c(w)) - c(w.) '1ag

= 4(a} + ; -(a4 (17

where

a = f(wo-wl) sgn(to-t) {2n [L(tl)-L(to)] 1/ 2 ,

bo=a6) c(w 1) L't it f n D(io, ' o 1/2

-c(w 0 ) I lo1 L"(tl) D(fil, ') f

and Jo and J, are the Jacobian factor at to and t1 , respectively. We summarize the above results in

the following theorem.

Theorem 2. Under the conditions in Theorem 1, the conditional distribution function Hn(tol z) = Pr(T

< to I Z = z) has the saddlepoint expansion (17). When to = tj, the expansion can be obtained by

taking the limit of (17) as t o -t 1 .

Notice that formula (17) has the same form as Lugannani and Rice's (1980) formula, as well as

those of Skovgaard (1987) and Wang (1990c). Note also that because of the special structure of the

sadlepoint technique the expansions (4), (12), (14) and (17) with relative error of order n - 1 are

sufficiently accurate for most applications. Higher order expansions could be obtained by referring to

Temme (1982), although it is algebraically complicated.

It is straightforward to generalize expansions (14) and (17) to the p (> 2) dimensional case with

an analog of Skovgaard (1987). Let (Xi, Yi), i = 1, . . . , n. be ild continuous p dimensional random

vectors. Assume that (T. Z) = (R. g(X, 7)) is a one to one transform, where Z = g(R, 7) is a p-I

dimensional vector, and that expansions for Hn(tol z) = Pr(T < t0o Z = z) amd the density hn(t 0 l z)

are desired. Then the inverse transform (Y, ) = (T, q(T, Z)) exists and the variable v in the

cumulant generating function K(u, v) of (X, Y) is p-1 dimensional. Analogously to (6), let
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L(t) = K(a, a) - Ct - Tq(t, z),
a(x. Y)

where v is the transpose of -', and let J = (t be the Jacobian factor and D(u. v) be the
8, z)

determinant of the p x p matrix of the second partial derivatives of K(u. v). Foilowing -he same

procedures. it is easily seen that (14) and (17) also hold for the general p dimensional case.

4. EXAMPLES

In this section we consider two applications. The first one is about the conditional density and

conditional distribution of X I &, where E - (Xi -) 2. It is equivalent to consider

X (EX? _ ("Z)2). LetT-X, -7 E X? and Z-- (X,Y) =2( )2. Then the problem of

approximating Hn(tol z) = Pr(T < to I Z - z) and its density hn(t I z) can be handled well by the new

results developed in this paper, provided that the general conditions in Section 2 are satisfied. In

particular, when Xi's are normally distributed, say from N(O, 1), it is easily calculated that the

saddlepoint expansions (14) and (17) are hs(t I z) =-{ 0(-'a t) and Hs(t 0j z) = 0(."n t0 ), independent

of z. That is, the approximations become exact in this case.

We shall discuss the second example in a more detailed manner. In an interesting paper, Hinkley

(1977) posed the following problem. Let W1, . . . , W n be independently N(p, c2
A

2), where c is a

known constant and ;A > 0 is the parameter of interest. For simplicity, let c = 1. We may take as an

ancillary statistic

Z = W 1/2 ,(18)
as pointed out by Hinkley. By the conditionality principle (Cox and Hinkley (1974), Sec. 2.2),

inference about a is based on the conditional distribution of T = i W? given the observed value of Z.

A major step in the problem is to obtain Hn(to Iz) and hn(tol z) or sufficiently accurate approximations

to them. Expansions (14) and (17) serve this purpose. To illustrate, let the true vajue il = I and let

Xi= W? and Yi = Wi. Thus by (18), z = g(x, y) = y/4 and y = q(t. z) = r z. It is easily obtained

that the cumulant generating function of (Xi, Yi) in

K(u. v) = u +v+ (2u +- v) Jlog (I - 2u).
2(-2u)



For (x, y) = (t, -Ft z), the solution to (3) is

(a., ) =-(_I i. (19)
- z2 t (1 -z-)t

From (6), some algebra leads to

L(t) = - + I log t + 1 log (1-z2).

Note that I z I < 1. Hence the solution tj to L'(t) = 0 is given by

tj = (z2 + 2 + z472 )/2

and the condition

L"(t) = -zt-3/ /4 - t-2/2 < 0

holds for all t in its domain (0, oo). Moreover, one can obtain that

D(fi, ,) = 2{(-,Z2) t} and I J F=

Therefore, expansion (14) reduces to

hn(t I Z) - Cn t/2-1 exp {-n(ftZ)2/21, (20)

where

= 2 1 + 1 exp {n(;t-)/2}.

Since the exact density hn(t I z) is proportional to tn-1 exp{-n(4-Z)2 /2} (see Hinkley (1977)),

(20) is viewed as "exact" if the renormailzation is allowed. Using the above calculations, expansion

(17) for Hn(tol z) is easily computed with

=o s= n(to-t{( n -- + 4t-2z) + log(ti/t o ]

o = (to-Z.t-1) {n/(z;t + 2)}

9



Table 1 compares the saddlepoint approximation (17) with the true conditional distribution

function for z = 0.5 and a = 5, 10. The extraordinary accuracy of the approximation is evident

uniformly over the domain of the statistic. Note that calculations show that the relative error is not

affected by different values of z, i.e., the numerical accuracy of the expansion (17) is stable for all I z

<1.

5. CONCLUDING REMARKS

In this paper we have derived genuine saddlepoint expansions for conditional densities and

distributions with nonlinear conditioning. The resulting fomulas are highly accurate even for small

sample sizes and are easy to use. Formula (17) reduces to Skovgaard's (1987) formula when the

conditioning variable Z = g(X, Y) is a linear function of X and '7.

Resampling methods such as bootstrap are very useful in conditional inference (see, for example,

Hinkley (1988)). However, computational difficulty is generally a major obstacle in such approaches,

evidently more so than in classical parametric problems. Besides their direct use in parametric

applications, the new approximations provide a possible remedy to overcome the difficulties in many

such cases. Further investigations are needed to draw a solid conclusion on this issue. We have

assumed continuity of the statistics in our derivations while those in the resampling schemes are

discrete, although they become smooth as the sample size increases. There is now an interesting

question as to whether the formulas derived here or their modified versions are valid for such purposes.

A detailed examination of this question is beyond the scope of this paper. Recent work by Wang

(1990a) on the validity of saddlepoint expansions in the problem of bootstrapping a sample mean is

relevant.
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Table 1. Saddlepoint approximation (17) to the conditional distribution Hu(t 0o z)

in the second example in Section 4; z - 0.5 .

n=5 1 a= 10

to saddlepoint true to saddlepoint true

0.03 .00004 .00004 0.15 .00002 .00002

0.05 .00016 .00016 0.20 .00011 .00011

0.10 .00103 .00102 0.40 .00351 .00351

0.30 .01803 .01803 0.60 .02220 .02223

0.50 .06295 .06306 0.80 .07111 .07119

0.70 .13418 .13446 1.00 .15644 .15660

1.00 .27298 .27354 1.20 .27179 .27202

1.40 .47269 .47348 1.50 .46870 .46900

1.80 .64674 .64754 1.80 .65067 .65097

2.20 .77748 .77815 2.10 .79010 .79034

2.80 .89815 .89857 2.40 .88318 .88335

3.30 .95012 .95036 2.80 .95160 .95169

4.00 .98293 .98303 3.30 .98588 .98591

5.50 .99860 .99861 4.20 .99884 .99884

6.50 .99976 .99977 4.70 .99974 .99974

7.50 .99996 .99996 5.40 .99997 .99997
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