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Saddlepoint Approximations in Conditional Inference

Suojin Wang
Department of Statistical Science
Southern Methodist University
Dallas, TX 75275

SUMMARY
Saddlepoint approximations are derived for the conditional cumulative distribution function and
density of X | g(X, Y), where (X, ¥) is the sample mean of n iid bivariate rardom variables and
g(x, y) is a nonlinear function of x and y. The relative error of order O(n"}) is retained. Such
approximations are useful in conditional inference, especially in the case of small or moderate sample
sizes. Generalizations to higher dimensional random vectors are also discussed. Two examples are
demonstrated and some numerical results are provided to show the extraordinary accuracy of the new

approximations.

Key words: Asymptotic expansion; Conditional density; Conditional distribution; Conditional

inference; Nonlinear conditioning; Saddlepoint approximation.

N 1. INTRODUCTION
\_B Conditional inference plays an important role in statistical inference. The conditionality principle
has been used to deal with various problems. * Recent developments on this issue include important
contributions by Barndorff-Nielsen (1988);7 Cox and Reid (1987), Fraser and Reid (1988), Diciccio,
Field and Fraser (1990) and others. One major step in the procedure of conditional inference is to
obtain the conditional distribution functions. As is often the case, the exact conditional distributions
are difficult or impossible to obtain, and conventional approximations may often fail to work. For

example, generally it is hard to calculate the moments of the conditional distributions which are
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necessary quantities for the Edgeworth approximations. Furthermore, these approximations are often

unsatisfactory for small or moderate sample sizes. ™,

e e e —
-— —

-
———

On the other hand, it is weil known that saddlepoint expansions lead to accurate approximations,
even for small sample sizes. \\flmong other papers, Barndorf-Nieisen and Cox (1979) and Reid (1988)
have discussed the importa.ncg! and usefulness of the saddlepoint approximations in statistics. Davison
and Hinkley (1988) apply ﬁ;e saddlepoint method (see Daniels (1987)) to resampling problems. Using
the saddlepoint technique twice, Skovgaard (1987) has derived an accurate approximation to the
conditional distribution of a samplie mean given a p—1 dimensional linear function of a p dimensional
variable which has been applied by Davison (1988) and Davison and Hinkley (1988) to generalized

linear models and resampling analysis. Wang (1990b) derives saddlepoint formulas for bivariate

distribution functions. But it is seen that most applications are limited to the sample mean and other

simple linear statistics due to the strong requirements of the saddlepoint technique on the moment
generating function of the statistics under consideration.

However, consideration of more general statistics is often desired. In particular, conditional
inference often requires a distribution function conditioning on nonlinear functions of a sample mean of
multivariate random variables. Recent work on saddlepoint expansions includes expansions for some

specific nonlinear statistics by Srivastava and Yau (1989) and Wang (1990¢c).

<:,—ln- this paper w¢ t;lerive?"accurate saddlepoint expansions for the case of nonlinear conditioning.
The results include Skovgaard’s (1987) method as a special case when the distribution is continuous,
but have much broader applications. Sections 2 and 3 expand saddlepoint formulas for the conditional
density and conditional distribution function, respectively. Two examples are considered in /Section 4

to illustrate the use of the new results. Extraordinary accuracy is also shown numericaily. C ( .

2. SADDLEPOINT EXPANSIONS FOR THE CONDITIONAL DENSITY
We consider first the bivariate case, and generalize results in the p (> 2) dimensional case at the

end of Section 3. Assume that (X,, Y,), . . ., (Xp, Yn) are independent identically distributed
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bivariate continuous random variables with the cumulant generating function K(u, v) existing in a
neighborhood of (0, 0). Let
T=¢,X +¢,Y
and Z = g(X, ¥) be a bivariate function on the sample space, where ¢, and c, are given constants, X
and Y be the sample means of Xi’s and Yi’s, respectively. We wish to expand the conditional
distribution Hy(tg | 2) = Pr(T < ty | Z = z) and the corresponding density. Without loss of generality,
let T = X and assume that the transformation from (X, Y) to (T, Z) is one to one. Then the inverse
transform can be written as (X, Y¥) = (T, q(T, 2)) for some function q. When the transform is not one
to one, the domain should be partitioned so that in each portion the transform is one to one.
In this section we consider the conditional density. It is well known that the density py(x, y) of
(X, Y) has the following saddleéoint approximation (equation (1) of Reid (1988)):
Pu(x, ¥) = ps(x.y) {1 + O(a™H)}, 1
where
Ps(x y) = ——D——r exp {n(K(3, &) — ix — ay]}, (2)
2x{D(4, d)}
D(u, v) = {Kyu Kvv = (Kuv)?} | (av) = | K(u, v) | , the determinant of the 2 x 2 matrix of the

second partial derivatives of K, and (i, v) is the saddlepoint defined by

£ K@, ) =x -
d K(a,v) =
5 ’ Yy .

Here we adapt Skovgaard’s notations for partial derivatives, e.g., Kyy is the second partial derivative
of K with respect to u, etc. The relative error in (1) is of order n ™! uniformly over compact sets. In
this paper we will use “~" to denote an approximation having such an error. Letting (x, y) = (t, q(t.
z)) and still using (G, V) to denote the corresponding solution in (3), it is easily seen from (1) that the
density hy(t, z) of (T, Z) can be expressed as

bn(t, 2) = pn(t, q(t, 2)) | 3 | = hs(t, 2), (4)
3



where
nl|d|

hs(t, Z) = T
2x{D(i, v)}

7 exp {nlK(3, ) - at — dq(t, )]},

and J = qz(t, 3) = {qy(x, y)} ~' is the Jacobian factor. To approximate the conditional density

ha(t | 2) of T | (Z = 2), it is sufficient to obtain an approximation to the marginal density hy(z) for Z.

By (4),

o0 0
ha(2) =_/°° ha(t, 3) dt =_/°° ha(t, 2)dt .
Let
L(t) = K(d, ¥) — it — vq(t, 2),
where z is fixed so that i and ¥ depend on t only. Then by (3),
L'(t) = =& — ¥ §4,(t, 3)
and
L"(t) = {=Ruv(8, 9) + 24,(t, 2) Ruv(8, 9) — [4,(t, 2)]? Ruu(d, )}/ D@, ) = ¢ Gyt 3),

since by taking derivative with respect to t of both sides of (3) whea (x, y) = (t, q(t, 3)) we have

{% = {Kw(ﬁ, ¥) ~ 4,(t, 2) Kuv(, v)}/ D(&, ¥)
%—‘;’ = —Kuv(ﬁ, V) + 4t 2) K“v(ﬁ, 0)}/ D(a, ¥) .

We now assume that there exists a unique solution, t,, to
L'it)=0
and L"(t,) < 0. Following the technique by Bleistein (1966), we transform t to w such that

(w — w)?/2 = L(t,) = L(t),

(8)

(6)

()

®

(9)

(10)

where w, = sgn(tl){2[L(t1) - L(O)]}‘/ ? and sgn(w—w,) = sgn(t—t,). Note that w = 0 and w = w,

correspond to ¢ = 0 and t = t,, respectively. From (4), (5) and (10), it is seen that




oo
b(z) = ig;. exp{nL(t,)} / GXP{—"("—"Oz/z} #lm adé dw
—o0 {D(a, v)}

|J]
= {27} exp{nL(tl)} {{D(' .)}1/2 gvtv}

This last approximation is obtained by applying Watson’s lemma (Jeffreys and Jeffreys (1962)). But

w=Ww,

-

by differentiating both sides of (10), we have

d = Em
a;'t—l w=w, B t—-tl {-L”(tl)} n
Thus, "
~ J_ n
hn(z) - { 27 L”(tl) D(ﬁl, 91)} l Jll exp {nL(tl)} ’ (12)

where (d,, ¥,) is the solution to (3) when (x, ¥) = (t,, q(t;, 2)), and J; = qz(t;, z) is the Jacobian

factor at t = t,. Noticing that the conditional density is given by

hyn(t, 2)
hp(t =-2 . 13 !
n(t | 23) —5:(:)- (13) |

from (4), (6) and (12) we have reached the following result.

Theorem 1. Let T = X, Z = g(X, ¥). Assume that the general regularity conditions described at the
beginning of this section hold and that the solution t, in (9) exists. Denote the inverse transform by

(X, ¥) =(T, q(T, Z)). Then the conditional density of T given Z = z has the saddlepoint expansion

- o 1/2
hy(t | 2) ={ anitg(g,(l;S' 1)}

JJ;‘ exp{alL(t)— L(t)]}, (1)

where (4, v) and (dQ,, V,) are the solutions to (3) when (x, y) = (t, q(t, 2)) and (t,, q(t,, 2)),

respectively, and J and J, are the Jacobian factor at t and t,, respectively.
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As is seen in the next section, the technique used to derive (12) can be modified for the purpose of

approximating the conditional distribution function. Expansion (12) is useful in the derivations.

3. SADDLEPOINT EXPANSION FOR THE CONDITIONAL DISTRIBUTION

We begin with the foilowing lemma which will be needed in this section.

Lemma 1. Assume that a(x) is an analytic function. Then

(%)1/2 /y a(x) exp{—n x2/2}dx ~ a(0) &(Na y) — %—@ ¢(ﬁ }'), (15)

-0

where ¢ and ® are the standard normal density and cumulative distribution function, respectively.

When y = 0, the expansion is a(0)/2 — a'(O)/(ern)l/z.

This lemma is a special case of Temme (1982); see Temme (1982) for the proof.

By (4) and (8), the conditional distribution function is

t
Ha(tal9) = b [ bafe, e
~ / U3 eotar) e 16
= 2ﬂ’hn(2) {D(ﬁy 9)}1/2 e'xp n ( ) . ( )

Using the same transformation as in (10) and denoting by w, the transformed value of t evaluated at

tq, We have

Wo
Ha(te |2) = 23R [ (o) exp {—a(w = w))?/2) aw,
o0

where c¢(w) = | J | g:—v /{D(a, \'r)}l/2 . Therefore by Lemma 1 and formulas (11) and (12), it is easily

seen that




Hp(te) 2) = (23,;)1/2 % {c(wl) B(ag) — ﬂ'z),‘r"(‘l_) @'(%)}

= ®(aq) + {:%9 - blo} #(a), (17)

where

3g = ¥O(wo—w;) = sgn(to—ty) {2n [L(tl)-r'(t")]}vz’

1/2
34 _ n D(iy, ¥o)
Tol{ L"(t,) D(ay, m} ’

and J, and J, are the Jacobian factor at t, and t,, respectively. We summarize the above results in

bo = ?‘L(CT(;')I) — L'(to)

the following theorem.

Theorem 2. Under the conditions in Theorem 1, the conditional distribution function Hp(te| z) = Px(T
< tg | Z = 1) has the saddiepcint expansion (17). When t, = t,, the expansion can be obtained by

taking the limit of (17) as ty—t,.

Notice that formula (17) has the same form as Lugannani and Rice’s (1980) formula, as well as
those of Skovgaard (1987) and Wang (1990c). Note also that because of the special structure of the
saldlepoint technique the expansions (4), (12), (14) and (17) with relative error of order n ™! are
sufficiently accurate for most applications. Higher order expansions could be obtained by referring to
Temme (1982), although it is algebraicallv complicated.

It is straightforward to generalize expansions (14) and (17) to the p (> 2) dimensional case with
an analog of Skovgaard (1987). Let (X-l, Yi)' i=1,..., n, beiid continuous p dimensional random
vectors. Assume that (T, Z) = (X. g(X, Y)) is a one to one transform. where Z = g(X, Y) is a p—1
dimensional vector, and that expansions for Hy(te]| z) = Pr(T < ty] Z = z) and the density hp(ty] z)
are desired. Then the inverse transform (X, ¥) = (T, q(T, Z)) exists and the variable v in the

cumulant generating function K(u, v) of (X, ¥) is p—~1 dimensional. Analogously to (6), let

7




L(t) = K(d, ¥) = 4t — v Xq(t, 2),

a(x. v)
a, z)

determinant of the p X p matrix of the second partial derivatives of K(u. v). Foilowing the same

where v: is the transpose of v, and let ] = be the Jacobian factor and D(u. v) be the

procedures, it is easily seen that (14) and (17) also hold for the general p dimensional case.

4. EXAMPLES

In this section we consider two applications. The first one is about the conditional density and
conditional distribution of X | &, where &° = n_l_i E(Xi—X)z. It is equivalent to consider
X (k= x} - (X)’). Lt T=X, ¥ = }T X? and Z = g(&, ¥) = Y—(KX)?. Then the problem of
approximating Hyp(te] z) = Pr(T < to | Z = z) and its density hn(t | z) can be handled well by the new
results developed in this paper, provided that the general conditions in Section 2 are satisfied. In
particular, when Xi's are normally distributed, say from N(0, 1), it is easily calculated that the
saddlepoint expansions (14) and (17) are hg(t | 2) = 0 #(¥n t) and Hg(ty] z) = ®(V1 t,), independent
of 2. That is, the approximations become exact in this case.

We shall discuss the second example in a more detailed manner. In ao interesting paper, Hinkiey
(1977) posed the following problem. Let W,, ..., Wy be independently N(u, c?u?), where c is a
known constant and g > 0 is the parameter of interest. For simplicity, let ¢ = 1. We may take as an
ancillary statistic

2=W/{kzc wi’}‘/’, (18)
as pointed out by Hinkley. By the conditionality principle (Cox and Hinkley (1974), Sec. 2.2),
inference about u is based on the conditional distribution of T = %S Wiz given the observed vaiue of Z.
A major step in the problem is to obtain Hy(t,|z) and hy(t,]2z) or sufficiently accurate approximations
to them. Expansions (14) and (17) serve this purpose. To illustrate, let the true vaiue u = 1 and let
X;= Wiz and Y; = W,. Thus by (18),z = g(x, y) = y/vX and y = q(t. z) = vt z. It is easily obtained

that the cumulant generating function of (Xi, Y,) is

(2u + v)?

2(1-2u)
8

Ku vi=u+v+ —%log(l-2u).




For (x, y) = (t, ¥t 2), the solution to (3) is

o1 1 Stz _

(8, 9) = (2 A=) ¢ (T2 ) ' (19)
From (6), some algebra leads to

L(t) =2t — § + } log & + } log (1—2%).
Note that | z | < 1. Hence the solution t, to L(t) = 0 is given by

by = (zz +2+ szz-H)/2 ,
and the condition
L''t) = —zt_3/2/4 -t7%2<0
holds for all ¢ in its domain (0, cc). Moreover, one can obtain that
3
D(a, ¥) = 2{(1—z2) z} and |3 |=4¢.

Therefore, expansion (14) reduces to

ha(t | 2) = ca /7" exp {—n(¥i-2)?/2}, (20)

where

1/2
am 3 (Frrr)) P oo o)

Since the exact density hy(t | 2) is proportional to tn/z—lexp{—n(q'-t—z)zﬁ} (see Hinkley (1977)),
(20) is viewed as “exact” if the renormalization is allowed. Using the above calculations, expansion

(17) for Hy(te| 2) is easily computed with

1/2
3 = ssn(eo-m{n[(m—m)(m +{H-2)+ los(tl/eo)]} ,

by = (to—2{To—1) {n/(zJT1 + 2)}1/2 :




Table 1 compares the saddlepoint approximation (17) with the true conditional distribution
function for z = 0.5 and n = 5, 10. The extraordinary accuracy of the approximation is evident
uniformly over the domain of the statistic. Note that calculations show that the relative error is not
affected by different values of z, i.e., the numerical accuracy of the expansion (17) is stabie for ail | z |

<l

5. CONCLUDING REMARKS

In this paper we have derived genuine saddlepoint expansions for conditional densities and
distributions with nonlinear conditioning. The resulting fomulas are highly accurate even for small
sample sizes and are easy to use. Formula (17) reduces to Skovgaard’s (1987) formula when the
conditioning variable Z = g(X, Y) is a linear function of X and Y.

Resampling methods such as bootstrap are very useful in conditional inference (see, for example,
Hinkley (1988)). However, computational difficulty is generally a major obstacle in such approaches,
evidently more so than in classical parametric problems. Besides their direct use in parametric
applications, the new approximations provide a possible remedy to overcome the difficulties in many
such cases. Further investigations are needed to draw a solid conclusion on this issue. We have
assumed continuity of the statistics in our derivations while those in the resampling schemes are
discrete, although they become smooth as the sample size increases. There is now an interesting
question as to whether the formulas derived here or their modified versions are valid for such purposes.
A detailed examination of this question is beyond the scope of this paper. Recent work by Wang
(1990a) on the validity of saddlepoint expansions in the problem of bootstrapping a sample mean is

relevaat.
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Table 1. Saddlepoint approximation (17) to the conditional distribution Hp(to| 2)

in the second example in Section 4; z = 0.5 .

n=3 | n=10
tg saddlepoint true to saddlepoint true
0.03 .00004 .00004 0.15 .00002 .00002
0.05 .00016 .00016 0.20 .00011 .00011
0.10 .00103 .00102 0.40 00351 .00351
0.30 .01803 .01803 0.60 .02220 .02223
0.50 .06295 .06306 0.80 07111 .07119
0.70 .13418 .13446 1.00 .15644 .15660
1.00 27298 27354 1.20 27179 27202
1.40 .47269 47348 1.50 .46870 .46900
1.80 .64674 .64754 1.80 .65067 .65097
2.20 77748 77815 2.10 .79010 79034
2.80 .89815 89857 2.40 .88318 .88335
3.30 95012 95036 2.80 95160 .95169
4.00 .98293 98303 3.30 .98588 .98591
5.50 .99860 .99861 4.20 .99884 .99884
6.50 .99976 99977 4.70 99974 .99974
7.50 .99996 .99996 5.40 .99997 .99997
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