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Summary

Some experienced developers of hard real-.time embedded defense systems have complained about
problems with the Ada programming language. These problems are real, but resourceful appli-
cation builders and Ada language implementors are finding effective ways to work around them.
Unfortunately, these solutions are based on special features of particular Ada compilation systems.
They may involve subtle compiler-dependent application code, and expensive modifications to the
compiler or Ada runtime system to fit a particular application. Whether we can solve the problems
of programming real-time systems in Ada is therefore not so much an issue as whether we can
provide economical, and preferably standard, Ada solutions to these problems.-

Modification to the Ada standard is not a sufficient solution, especially in the short term. Despite
the benefits of commonality, it is unwise to rush to lock in solutions to problems that are not
yet well understood in standards as rigorous as the Ada language. Moreover, real-time -ystems
typically have inherent hardware-dependencies. Thus, there appears to be a need for more capa-
bility to economically adapt Ada language implementations to meet the special needs of real-time
applications, based on existing Ada compilation technology and within the current Ada standard. ()

Most of the features needed by real-time applications can be implemented within the Ada runtime
system (RTS for short). This is fortunate, since producing, validating, and maintaining custom
versions of an Ada compilers is very costly. Ada runtime systems are much smaller and simpler
than compilers. If there is a clean and well-specified interface to important RTS modules, those
modules may be customized without compiler modification.

The existence of well-defined interfaces is a key to RTS customization. This can be approached
at several levels. One of these is represented by the Model Runtime System Interface [MRTSI],
which specifies an interface between the code generated by a compiler and the RTS. If adopted by
compiler vendors, this interface could encourage the development and more widespread availability
of Ada runtime systems designed to specifically support embedded real-time applications. A second
important level of interface is within the RTS, between modules that are likely to need application-
specific tailoring and the rest of the RTS. A third level of interface that appears useful is between
the application program and modules within the RTS that are of direct use to the application.
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1 Introduction

Despite the strengths of the Ada programning language, as compared to assembly language or other
existing high-order languages, some experienced developers of real-time embedded systems do not
believe Ada meets their needs; they fear that using Ada may require sacrificing both productivity
and quality. This situation is disturbing, especially in view of the increasing reliance being placed
on software in critical defense systems, and the increasing complexity of this software. In this
report, we describe some of the problems encountered using Ada for developing real-time systems,
and attempt to describe possible solutions to some of these problems. We focus in particular on
the ways in which the development of economical solutions to these problems can be encouraged
through well-defined runtime system interface conventions.

Section 2 enumerates some general problem areas and issues related to using Ada for real-time
embedded applications. In Section 3 we outline some approaches for dealing with these problems,
including RTS extensions, and the potential benefits of standard interfaces. Section 4 we describe
work we have done toward defining one important level of RTS interface, the Model Runtime System
Interface (MRTSI). Part of this work has been development of a prototype MRTSI implementation,
to help verify the interface's feasibility, which is also described in this section. (More details of this
prototypeare provided in Appendices A and B.) Section 5 summarizes the results of our studies.

2 Real-Time Ada Problems and Issues

The effort that produced the Ada language was originally justified on the grounds that existing
high-order languages did not adequately meet the needs of real-time embedded systems. Now that
Ada is a reality, we find that it has met most of those needs, left some others unmet, and also
introduced some new problems.

2.1 Real-Time Software

Real-time computer applications are characterized by interaction with real-world (physical) events,
over whose timing they have little or no control. It is therefore a requirement of the software that
it control its own execution timing so as to synchronize with the real world. If the timing of the
software does not meet certain "hard" constraints, the entire system of which the software is a part
may fail. Where the likelihood and consequences of failure to meet a hard timing constraint are
sufficiently serious, achieving correct timing becomes a central design goal.

Besides timing constraints, real-time systems typically have a number of important secondary char-
acteristics, which derive from their typical function, which is monitoring and controlling physical
processes. These characteristics include concurrency, high reliability and fault tolerance, resource
constraints (memory, power, and weight), and low-level interactions between the software and
application-specific hardware devices. Many newer real-time systems demonstrate additional char-
acteristics, due to increasingly ambitious application goals. These include complexity, distribution
over several processors, and very long lifetimes. The latter in turn implies the application must be
extensible and adaptable to new processors and peripheral hardware.



Real-time software has traditionally been developed in a combination of assembly language and
higher-order language (e.g. FORTRAN, PASCAL, JOVIAL, CMS2). The use of higher-order
languages has been mostly limited to components for which most high order languages would
be adequate - that is, computational algorithms. Very time-critical components, interfaces to
hardware devices, and scheduling and resource management functions have been programmed in
assembly language. The latter functions are typically isolated in an "executive", which may be
partly standardized, but is ordinarily tuned to the specific requirements of each application.

There are problems with this way of developing software. Chief of these is that it requires a great
deal of highly skilled labor. Also, because of the level of detail that must be mastered, it does not
scale up well to larger projects. A third problem is that existing real-time programs tend to be
"brittle"; they break if one attempts to modify them. Nevertheless, this traditional approach does
work, and there are people who have experience with it.

2.2 Ada's Conflicting Philosophical Origins

Perhaps one of the problems with Ada as a real-time language is that the designers were out of touch
with the practice of real-time programming. One gets this feeling by reading the Ada Rationale
[Rat], the 'references it cites, and the other issues of SIGPLAN Notices around that time. The
flavor of the prevalent philosophy among programming language enthusiasts might be conveyed by
the following idealistic assertions, which were widely held at that time:

" The best way to design is top-down, working from well-defined requirements.

" The direction of progress is toward ever more use of automation, standardization, and ab-
straction.

" Reducing the use of assembly language will increase programmer productivity, reduce the
level of skill required of programmers, and make it easier to modify programs correctly.

" Standardization on one high-order language will reduce dependence on specialized program-
mers, and reduce the need for new software by allowing more code to be re-used.

" Much of the detailed design work involved in producing software, including that concerned
with scheduling to meet timing constraints, can be automated; such automation will result
in better and cheaper systems.

Enlightened believers in these principles held them in a regard that was something between ax-
iomatic and moralistic.

The requirement definition process for Ada brought in a wide variety of people, with different
philosophies and experiences. These included experienced real-time programmers. Looking at the
requirements this group produced, we can see the influence of pragmatic minds, who probably
recognized that principles like those above do not apply quite so well to real-time software as they
may in other contexts:
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" Top-down design does not work well when requirements are not well-defined or subject to
change, or when the designer does not have sufficient experience to choose decompositions
that are efficiently implementable at lower levels.

* Automation only leads to savings when applied to essentially repetitive tasks and when the
volume of production is sufficient to offset the cost of automation.

" Standard products frequently don't quite fit our requirements. (Consider, for example, shoes
and feet.) Ideally, the illness of fit is offset by the economy of using the standard, but there
are cases where insistence on using a standard that does not fit can be crippling.

" Abstraction, as traditionally applied to programming language semantics, throws away many
details that are sometimes critical in real-time systems, such as the machine representation
of data and exact execution timing.

Thus, while the Ada requiments specify a general-purpose high-order algorithmic language, they
also clearly state that programmers should have the option of taking explicit control over critical
low-level details. For example, the 1978 Ironman document RIron] says "it shall be possible to use
object machine features directly in programs". This and some other similar requirements were
honored in the language design, and are traceable forward to features in present-day Ada. On the
other hana, we see places where the idealists appear to have triumphed.

Examples of places where idealism appears to have overcome pragmatic considerations include the
Ironman requirements that "The built-in mutual exclusion and synchronization facilities shall be
sufficiently low-level to permit ... user definition of more specialized mechanisms," and "Within any
parallel control structure it shall be possible to dynamically alter the relative priorities of the the
paths." Such unmet requirements account for most of the present problems with Ada for real-time.

2.3 Early Problems with Ada

At first it seemed that Ada created more problems than it solved. There were no software tools
available, no existing body of code that could be re-used, and no experienced programmers. The
first Ada implementations were not very good, either.

The first Ada compilers were large, slow, unreliable, consumed a terrific amount of disk space, and
were awkward to use. They produced code that was grossly inefficient, in terms of both size and
speed. These compilers were designed to execute and generate code for main-frame computers run-
ning general-purpose operating systems. Because the low-level programming features of Ada were
optional, and not needed in this environment, they were not implemented. For similar reasons,
tasking operations were very slow. Because these compilers were targeted to virtual memory ma-
chines, they made no attempt to avoid linking useless runtime system components. The program
images were therefore frighteningly large.

The language-lawyers and bureaucrats did not help either. They constantly harped about validation
and full compliance with the Ada standard down to its last wart and mole (but not the optional
features needed by real-time programmers). This diverted effort from achieving better object-
program performance, and discouraged efforts to correct flaws and shortcomings of the language.

(As compared, for example, to the free evolution of Pascal and Modula2.)
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Another problem was the "bundling" of Ada with huge integrated programming environments.
The Ada implementation was viewed as a closed system, integrating all the functions traditionally
provided by separate software components, including executive, input-output (I/O) system, linker,
loader, editor, and software library manager. This seemed to raise the cost and risk of using Ada,
since proven tools would have to be replaced by new untested ones. Worse, since compiler developers
invented their own closely closely held interfaces between tools, if one of these components should
not prove adequate as provided by the compiler vendor, there appeared to be no way for the
customer to modify or replace it.

2.4 Ada Today

Fortunately, these problems axe largely past. Many people have learned and are teaching Ada. The
body of reusable Ada code is rapidly growing, as is the number of Ada software tools. Today's Ada
compilers are much better. They are faster, partly due to compiler improvements and partly due to
advances in low-cost computers and disk drives. The best Ada compilrs generate code comparable
in size and speed to that generated by compilers for other languages. Some are now supporting all
of Ada's optional features, including in-line machine-code procedures. Linkers now discard unused
code, and runtime systems are smaller and faster. The language bureaucrats have gotten their
priorities straight, so that validation no longer is a serious obstacle to producing usable compilers.
Even the problem of bundling has faded slightly, so that some of today's compilers follow object
code conventions compatible with standard operating system tools, including compilers for other
languages. In short, Ada has caught up with other languages.

Now that most of Ada's early developmental difficulties are over, we can more accurately evaluate
its suitability for writing real-time software, and focus more clearly on solutions to its remaining
problems. However, before turning to criticize Ada, we must be careful to define the standard
against which we will measure it. The first standard we should apply is established by other
available programming languages. As compared to these, we will see that Ada looks good. The
second !:+andard by which we must judge Ada is that established by existing real-time operating
systems or executives (executives, for short). This may seem unfair, especially since Ada doesn't
come out very well, but Ada forces the comparison by getting involved in concurrent programming.
Finally, we can measure Ada against directly against the characteristic requirements of real-time
systems, but remembering that we are compja,-ing a reality against an ideal. We will see that Ada
_az gotten off to a good start, but still has a long way to go.

2.5 Ada versus other Languages

Overall, as compared with other available languages, Ada looks very good. It has the best-defined
and best-enforced standard, with a stringent validation process. After a large investment, there
are now many conforming implementations, including several for machines that are well-suited for
real-time applications. Ada supports clean interfaces, through strong typing and packages. It is
extensible, through packages, generics, attributes, and pragmas. Many of the implicit dependen-
cies on specific compilers and computer hardware that make programs written in other languages
difficult to port can be eliminated or controlled, using Ada's attributes and representation clauses.

On the negative side, Ada is more complex than other standard languages. This causes several
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problems. Chief r" hese is that compared with compilers for other languages, Ada compilers are
still large, slow, and use lots of permanent file space. They are large and slow because Ada requires
more compile-time checking, and also because Ada needs more optimization. They use lots of
permanent file space because of the separate compilation library facility.

Ada's complexity is also reflected in the object code that compilers produce. There are several
language features that require complex optimizations in order to achieve acceptable performance.
These include nonstatic sized arrays and records, aggregates, recursion, runtime checks, and tasking.
Because of the complexity of the compiler code that performs these optimizations, there is more
chance of compiler bugs. There may also be performance surprises, when expected optimizations
are not applied, and errors, when a compiler applies an optimization in a context where it is unsafe.

Several Ada features, including separate compilation, overloading, ard static expression evaluation,
make the automatic processing and transformation of Ada source code difficult. This makes software
tools for Ada inherently more complex than for other languages, and therefore more expensive.
Fortunately, this extra cost has not prevented the development of Ada tools.

Reliable formal verification of Ada programs is made more difficult for Ada than some other lan-
guages by its more complex features, especially exception handling and task abortion. It is also
made unreliable by aspects of the Ada semantics that the Standard leaves unspecified, but this is
also true of other languages. Moreover, the practicality of formal verification of whole programs is
already questionable, regardless of language.

Bundling Ada compilers with other software components remains a problem, though it is perhaps
not as severe as it once was. This problem is more or less inherent in the Ada language definition,
which imposes specific requirements on the functions of the executive, I/O system, linker, loader,
and software library, and their interactions. As a consequence, Ada is often criticized for problems
that one would not ordinarily blame on a programming language.

There are several directions in which Ada reaches outside the traditional programming language
domain. First, by specifying a model of concurrent programming, Ada intrudes into the domain of
the executive. Examples of this intrusion include task priorities, delays, hardware interrupt entries,
intertask data sharing, and notification of certain exceptions. Second, by requiring compile-time
checking across all the separately compiled units of a program, Ada intrudes into the domains of
the program library manager and linker. Ada compilations systems intrude further into the domain
of the linker when they attempt optimizations that require global information. Finally, to a lesser
extent, Ada intrudes into the I/O system through the standard I/O packages and the ability to
bind hardware interrupts to task entries.

By reaching into these other domains, Ada and its implementations limit a programmer more than
do other languages. These limitations can be viewed as flaws when they stand in the way of getting
a job done. For example, if a system designer needs to use deadline-based task scheduling the Ada
priority rules get in the way. Suppose the designer wishes to load portions of his program, including
code and certain constant tables, into read-e-dy-memory. Ada provides no way of doing this, so the
linker integrated with the Ada compiler probably won't allow it. What if a programmer wants to
update a running program, without restarting the system? ... These are just a few of the problems.
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2.6 Ada versus an Executive

Because Ada intrudes into the domain of the real-time executive, by supporting features like concur-
rent execution, delays, and task priorities,it preempts the application programmer from installing
his own executive. However, since the standard Ada language does em not provide all the services
typically provided by such an executive, the application programmer is left without some needed
functionality. An Ada implementor can choose to provide additional services, but has no recognized
source of guidance as to what these additional services should be.

An example of this sort of problem is how to program a collection of periodic tasks such that
if a task misses its deadline it will be suspended immediately, regardless of its priority. Another
example is how to insure the interleaved execution of two equal-priority tasks without the possibility
of processor idle time.

Besides appropriately general scheduling primitives, Ada is missing some important abstractions
that are normally provided by an operating system or executive. Examples of such missing abstrac-
tions include the concept of interrupt (the Ada notion of an address is not adequate), interrupt
mask, storage area, data segment, timer, loadable code module, recovery unit, and processing node.
Other abstractions are provided in only a crippled form, for which needed operations are not avail-
able. These include tasks, exceptions, procedures, and addresses. For example, there is a standard
attribute to obtain the address of a task, procedure, label, or object, but there is no standard way
to convert an address back to one of these entities.

Ada implementations that are targeted to machines with standard full-function operating systems
typically provide extensions that permit access to the full capabilities of the underlying system.
However, fundamental semantic incompatibilities between the operating system's process model
and the Ada task model may still force the programmer into compromises, such as discarding Ada
tasking in favor of "multiprogramming". (In some cases this may be a good idea.)

2.7 Interaction with the Real World

For interaction with the the real world, Ada allows a programmer to bind interrupts to task entries.
The Ada implementation may map some interrupts (more properly traps) to predefined exceptions,
but the programmer canot bind interrupts to exceptions. This model is helpful, but is not entirely
adequate in several respects:

1. There is no way to disable or block interrupts, except perhaps implicitly via control structures
within the handler task.

2. The standard way of naming interrupts, via a value of type SYSTEM. ADDRESS, is not applicable
to most architectures.

3. There is no way to bind interrupts to different handlers dynamically, without creating and
destroying tasks.

4. There is no way for a hardware interrupt handler to reliably wake up another task, that may
be waiting. This appears possible using a rendezvous, but the implementation practicalities
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of interrupt handlers require that such a rendezvous be conditional on the side of the handler,
so that wakeup signals may be missed.

5. There is no way for an interrupt handler to preemptively and asynchronously signal an ex-
ecuting task to change its thread of control. This means, for example, that if an interrupt
handler detects that another task is about to miss its deadline, or detects that an external
event has occurred requires the task to change its priority and restart with new data, there
is no way for the handler to force the task to take immediate notice.

6. There is no way to specify how an interrupt is to be treated when the task with the corre-
sponding entry is not ready to accept. Specifically, is it is queued or is it lost?

7. There is no standard pragma like SHARED for array and record structures, to insure that if
access to a buffer is shared between an Ada tasks and an I/O device or interrupt handler
the compiler will insure that elements of the buffer are read from and written to memory
immediately.

2.8 Achieving Correct Timing

Ada gives very little control over execution timing. Achieving correct timing requires several things:

1. accurate estimation of processor time and other resource requirements of processes;

2. an accurate real-time dock;

3. a means of preempting the processor for certain timed events;

4. control over the scheduling of all resources needed by time-critical processes.

Ada, like virtually all high level languages, provides no information about the execution time of code
sequences. The problem is slightly aggravated by Ada's complexity. Ada aggravates this problem
further by including dynamic storage allocation features that may cause an implementation to
perform time-consuming storage allocation and reclamation operations at unpredicatable times.

Ada does provide a real-time dock (2) in the form of CALENDAR.CLOCK, but without any assurance
of accuracy, and with no specification of how or when this dock may be reset, or whether it may
occasionally jump backward. The range and precision of the type of value returned by this clock
make it inefficient for most real-time uses, since it is too long to be read and written atomically on
a machine with less than 64-bit operations.

Ada does not provide a preemptive timer, except possibly via machine-dependent linkage to an
interrupt generated by a hardware timer. This is likely not to be readily available since in many cases
the Ada RTS will already rely on having exclusive use of the only available hardware timer(s), for the
implementation of CALENDAR. CLOCK and delays. The delay statement provides a form of relative
time delay with no known accuracy, no guaranteed upper bound, and no specified relationship to
CALENDAR. CLOCK. Because the reading of the dock, calculation of delays, and execution of the delay
statement are all preemptable, there is no way of achieving an accurate absolute or periodic wakeup
event. Some sort of virtual periodic and absolute timers therefore should be provided.
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Static task priorities are provided, but they are optional, and crippled in several ways. First of all,
they are assigned to task types, rather than task objects. Second, they axe assigned statically, which
causes difficulty adapting scheduling to changing real-world requirements (e.g., modes). Third,
there are anomalies between the priority'scheme and the semantics of entry calls[CSLRTI. For
example, while the priority of a calling task is inherited by the accepting task, this does not take
place until a rendezvous begins. Thus, if the accepting task is not ready to accept, a high priority
caller and its acceptor may wait forever while middle-priority tasks execute. Similar anomalies can
arise when the FIFO entry service policy causes a high priority task to be queued behind a low
priority one, and when the incompletely specified semantics of selective waits allows a low priority
call to be accepted ahead of a high priority one.

Ideally, Ada should provide the freedom (and means) to devise and implement application-specific
scheduling policies. This means there should be at least a way to change priorities and to suspend
and resume tasks. A standard priority-based scheme for consistent cpu-scheduling and rendezvous
is also needed, with a guaranteed minimum range of priorities[CSLRT].

Ada also hides or takes away memory-related choices (as described below), that may affect timing
in a hierarchical memory system.

2.9 Control over Memory Usage

Ada provides some control over memory usage. Specifically Ada has:

1. the STORAGE-SIZE representation clause for tasks;

2. the STORAGE-SIZE representation clause for access types;

3. the pragma CONTROLLED for access types;

4. the generic subprogram UNCHECKED_.DEALLOCATION, for access objects;

5. other representation clauses for data types.

The first problem with these mechanisms is that they are optional, and in the case of pragmas
can be ignored without comment. The second problem is that the effects of these features are
imprecisely defined. For example, does the storage size of a task include storage for objects of
access types declared within the task? How about storage for local tasks within it? How about
other heap storage, for implicitly created temporary objects of dynamic size within the task? Is
this included within the storage of the task? Can this storage be relied upon to be contiguous?
How much of this storage is overhead? How efficient is the allocation and recovery mechanism; i.e.,
how much will be wasted due to fragmentation? Similar questions can be raised about storage for
access objects.

The third problem is that there are many storage management issues not addressed by any Ada
feature, no matter how imprecisely defined. For example: How can objects be assigned to read-only
memory (ROM) versas random-access memory (RAM)? How about between shared multiprocessor
memory and local memory? How can specific data be clustered within a single page, or aligned
Qn page or segment boundaries? If there is virtual memory, how can specific objects or code be
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locked into physical memory? How can specified code or data be prefetched at a scheduled time, or
locked into RAM, so that it will be resident when needed? How can certain sections of memory be
protected against accidental overwriting? Control over such choices is often provided by traditional
executives, and could be provided in Ada-via appropriate extensions.

2.10 Concurrent Programming

The reasons for including concurrent programming (tasking) in a programming language are conve
nience and commonality. By enforcing use of one standard model of concurrency, the language can
make it easier for people to understand one another's programs and save time that might otherwise
be spent on developing an application-specific executive. Were it not for these reasons, equivalent
functionality could just as well be provided via service calls to an underlying operating system or
executive (executive, for short). Moreover, if the interface to this executive is standardized, the
goal of commonality is also met. The only good reason for including tasking as part of the Ada
language is therefore the notational convenience of special syntactic forms.

An immediate negative consequence of embedding a model of concurrency into Ada is that it con-
flicts with other established models, including virtually all those used in the literature of scheduling
theory and all those used by existing standard executives. Of course, this would be true of any
attempt to impose a standard model of concurrency, including a standard executive interface, so if
we accept the need for a standard model of concurrency this is not an issue.

The question remains whether Ada's model of concurrency is adequate. The answer to this question
is "not entirely". The Ada tasking model appears to be adequate for some purposes, but inadequate
for others, including specifically many real-time applications.

Ada supports concurrent programming, via the task mechanism, but this tasking mechanism has
several flaws. The main problem is an inappropriate choice of primitives. They are inappropriate
because they are too complex to be efficiently implemented, and because they need to be used
in complex combinations to perform functions that are frequently needed in real-time systems.
The semantics of task creation and termination are especially onerous. The rendezvous is also too
complex to be the lowest-level method provided for task synchronization and mutual exclusion.
For example, coding basic operations on standard concurrent programming abstractions such as
buffers and monitors requires the introduction of intermediary tasks and multiple rendezvous. This
is gross inefficiency, as is revealed by examination of the runtime system code that implements the
Ada "primitives". This code itself makes use of more natural primitives, such as buffers, queues,
and semaphores!

Of course, one can argue that traditional primitives, such as buffers and monitors, are too low-level
- that one should design using rendezvous, eliminating the need for these other constructs. (This
does not address some other big issues: data sharing between tasks; dynamic task creation and
termination; abortion.) However, experience using Ada tasking for real-time programming has
proven that this belief is unfounded. Rendezvous rarely is useful by itself. For instance, the main
reason for separating a program into tasks is to deal with asynchronism in the real world. By
forcing such tasks to communicate through rendezvous, they are forced to synchronize, defeating
the purpose of the original separation. We are then forced to introduce another task, and another
rendezvous, where what we really wanted was a simple buffer.
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Another belief is that Ada compilers should rbcognize Ada "idioms" for frequently used concurrent
programming abstractions, and translate them into simpler constructs. Thus, a task whose only
role is to serve as a buffer can be eliminated and the rendezvous replaced by simpler read and write
operations on the buffer. This, too, is a fatlacy. First of all, the conditions under which this sort of
"optimization" can be performed safely are difficult to recognize, and easy to violate accidentally
through program modifications. Compilers (and programmers) are thus forced to choose between
safety and performance. Second, portability is lost, since correct timing is now dependent on a
compiler being able to translate a particular idiom. Finally, the Ada source code is still difficult to
comprehend, for much the same reasons as control structures constructed out of gotos are harder
to understand than standard control structures like for loops and if...then ...else statements.

An obvious solution to this problem of missing primitives is to export truly primitive operations
directly to the programmer. This can be done via predefined packages, which would start out as
implementation-dependent, but eventually might be standardized. This is simple, direct, reliable,
economical, and presents less of a portability problem than complex compiler optimizations. If
the needed predefined packages are not supported by a particular compiler, they can be written
by the application programmer (ideally, using Ada with machine-code inserts). In some cases this
may require detailed information about the Ada tasking implementation, but this is less work than
adding tasking optimizations to a compiler.

We have already discussed some other specific problems with the Ada tasking model, underIn-
teraction with the Real World" and "Controlling Execution Timing". These include: priorities,
which are presently treated inconsistently, and need to be made dynamic for some applications;
scheduling support for periodic processes; an immediate task restart capability; a way to reliably
and asynchronously forward events requiring an immediate response from interrupt handlers to
other tasks. Major deficiencies in the tasking model which we have not discussed include the need
for some way of identifying tasks of heterogeneous types via a single data type, as in the context of
schedulers and other resource managers, and the need for a non-blocking form of message-passing
between tasks.

2.11 Reliability

In many ways, Ada aids the production of reliable software, by strong type checking and by the
package mechanism, which encourages clean separation of concerns. For situations where the
standard Ada tasking model is adequate, it may contribute to reliability, by eliminating the need
for the application programmer to be concerned with the complexity of programming an executive.

The main obstacle to reliability imposed by Ada is its complexity. This increases the likelihood
of programmer errors as well as language implementation errors (as discussed in Section 2.5).
There are several interesting examples of compiler errors that have cause intermittent faults, and
programming errors that may not cause a fault until after a program has been running for a very
long time. One example is when a program uses a task access type to create a short-lived task
in response to an infrequent event. In some implementations, the small residual storage occupied
by such tasks after they terminate can eventually exhaust storage, but not until a long time has
passed.

A secondary problem is implementation-dependencies over which no mechanism is provided for
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explicit control. This is more likely to cause portability problems, but might also cause reliability
problems when going to a new version of an Ada compilation system. For example, a change in the
default processor-scheduling algorithm might cause a mltitask program to stop working correctly.

2.12 Fault Tolerance

Ada does a little to help with fault-tolerant design, through the exception-handling mechanism.
This has some weaknesses, however. Chief among these weaknesses is that no provision is made
for one task (when it detects an error, such as a timing fault) to raise an exception asynchronously
in another (to cause it to recover from the error).

2.13 Operating within Constrained Resources

The problem of designing an Ada program to operate within resource constraints has already been
discussed. Part of the problem is a consequence of language complexity. Fortunately, Ada compilers
are getting better at recognizing and optimizing the simple structures that make up the bulk of
most programs. The rest of the problem is a consequence of lack of control over time and storage
utilization, which are discussed under "Achieving Correct Timing" and "Control over Memory
Usage".

2.14 Interactions with Hardware

Ada goes a long way toward providing means for specifying interactions with hardware. These
include representations clauses for most data representation dependencies, machine-code inserts,
and interrupt entries. However, there are still quite a few hardware dependencies for which no
specification mechanism is provided.

We have already discussed problems in the realm of interrupts, under "Interaction with the Real
World".

In the real of representation clauses, there is no specification mechanism for array layout, including
direction and alignment of elements. There is no way of specifying object alignment (e.g., word,
page, segment). There is no standard for machine-code inserts, or for references within such inserts
to entities declared elsewhere in the Ada program. There is no way to get an access value that
designates a statically allocated interface object, such as a buffer. There is no way of specifying an
interface data object, and no way of specifying a separate linker-name for an interface subprogram.
There is no way of specifying a function in machine-code. Many implementations do not permit
specifying some important attributes, especially values ' sma.I attribute for fixed-point types that
are not a power of 2. (This is especially important because the input and output data, as well as
the timing periods, of many hardware devices are decimal fractions.)
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2.15 Portability

Ada does go farther to help portability than any language up to this point. Anecdotal reports
comparing experience porting programs in Ada versus other languages make Ada look very good.
This is due in large part to Ada's provision for explicit specification of data representation and
the precision of numeric types, type attributes, and especially the strict validation and subsetting
policy. It should therefore not be criticized too much for still having a few problems.

As with any language, Ada's remaining portability problems are due to implementation depen-
dencies allowed by the Standard. A few especially troublesome examples of these include: a few
arithmetic operations that require the standard type INTEGER; differences in task implementations,
such as processor scheduling and the accuracy of of the real-time clock; unimplemented optional
machine-dependent features.

2.16 Parallel and Distributed Systems

Support for parallel processing is one area where Ada is very weak. The tasking model is fairly
well adapted to a multiprocessor system with mostly shared memory. Ada does not adapt so well
to more distributed multiprocessor configurations, due to the need to support access to shared
memory between tasks. Of course, this can be virtualized, but the communication overhead is
high. Similarly, the cost of rendezvous goes up quickly across a distributed system. Worse, there
is no non-blocking alternative to rendezvous for intertask message passing. There are some con-
ceptual problems with systems of heterogeneous processors, but these disappear if the software is
decomposed into separate programs on each machine.

Like all present conventional programming languages, Ada is likely to be made obsolete by the
machines that are now on the horizon. When it comes to vector machines, Ada is probably no
better than FORTRAN. The overloading does make it convenient to define and use explicit vector
operations, but automatic vectorization is likely to run into problems with exceptions. By the time
we reach large highly-parallel networks of small processors, and neural nets, the Ada task model
is altogether inappropriate. Other problems arise from several places where the Ada standard
specifically rules out concurrent execution, by stating that execution takes place "in some order".

2.17 Defense of Ada

Having made so many criticisms, we should say in Ada's defense that one cannot realistically expect
a standard programming language to provide solutions to all these problems, since most of them
are peculiar to specific applications and processor architectures. Nevertheless, real-time application
builders will need to be able to solve these problems using Ada. The can, but not using ready-made
standard solutions. The best course may be for Ada users to evolve some standard solutions for
the most frequently occurring problems, while recognizing that there will always be special cases
that require special solutions.
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3 Approaches to Using Ada for Real-Time

3.1 Living With the Present Situation

Ada is currently being used, with some success, for real-time programming. There are complaints,
most of which we have discussed. Still, Ada seems to be at least as successful as other high
level languages before it. Where Ada is not adequate, there is still recourse to assembly-language
or machine-code inserts. It appears that Ada tasking is being abandoned for most time-critical
applications, being replaced by more traditional executives. Where the cost can be justified, Ada
language implementations are being tailored to provide needed features that are missing from the
standard language.

3.2 Language Changes

There is talk about language changes. It is likely that the "Adagx" process will help clear up
some problems. For instance, there appears to be strong support for reintroducing some form
of asynchronous exception mechanism, similar to the "raise T'failure" feature that was dropped
during the 1983 language revision. It is also likely that inconsistencies within the present priority
scheme will be eliminated. However, it would be unwise to depend on the language change process
for any solutions to really pressing problems.

Language changes are not likely to be approved until some time in the early 1990's and then they
will take more time to be implemented. They are therefore a long-term solution. Besides, even
if we could change Ada and implement the changes immediately, it is not clear what changes are
needed, or whether it is the language that needs changing at all.

Many fundamental problems of real-time software engineering are still not well solved. We can
expect that new techniques will be developed in the coming years. For example, recent research
in the areas of real-time scheduling (c.f., [LNL,LSS]) has shown that the simple static priority-
driven processor allocation model of Ada is inadequate, and opened up a wide range of potential
alternate scheduling techniques. Based on what is known, it appears that any small set of scheduling
techniques we might choose to support as standard options today are likely to prove too limiting.
For this reason, scheduling experts suggest that Ada should not specify any standard scheduling
technique, but should leave this option to the application programmer. Similar uncertainty exists
about some other hard problems of real-time systems, such as distribution, fault tolerance, and
reconfiguration. These problems are still not well enough understood to admit to uniform standard
solutions.

It is clear that we cannot expect a programming language to provide standard built-in solutions
to problems we are still learning how to solve. In the mean time, there is no reason we shouldn't
use Ada to build custom solutions to these problems, just as we would assembly language or any
other language. The key issue here is that we must provide an adequate set of primitives, and the
freedom to use these primitives to design new solutions, without imposing arbitrary restrictions.
This is the kind of change we should hope to see in Ada9x, but we cannot wait.
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3.3 Implementation-Defined Extensions

In the short term, we can only take advantage of the liberties given to implementations by the
existing Ada standard. These include the'right to define new attributes, pragmas, and packages.
This freedom is sufficient to allow the extensions we need to work around every shortcoming of
the standard language. However, the implementation of some of these extensions will need to be
integrated at a low level with the rest of the Ada language implementation.

If there is sufficient demand, the Ada compiler vendor may provide the needed extensions as part of
a standard product. This is increasingly likely as compiler vendors begin to write their own runtime
systems in Ada, since runtime systems have many of the problematic characteristics of real-time
systems. Other factors influencing vendors to provide needed extensions include special requests
from customers, and market pressure created by customer awareness. Publication of "standard"
extensions like the ARTEWG CIFO [CIFO] can contribute to this market pressure.

As time goes on, one would expect the collection of extensions to reach a point where it is adequate
to most users' needs. However, if a vendor does not provide a feature that is needed, the user has
the recourse of customization. This can be performed by the compiler vendor, if the vendor has the
manpower available and the customer can afford it. Otherwise, the application builder may need
to perform this customization.

Of course, by introducing implementation-dependent extensions we have lost some of the benefit of
a standard language, but we really had no choice. There are well-known ways to lessen this blow.
We can design so as to isolate implementation dependencies in a few modules. We should certainly
try to share solutions, so as to avoid needless divergence, and for those areas where the need for
extensions is well accepted we can establish ancillary standards.

3.4 Customization for Specific Hardware

There is another good and independent reason for wanting to customize an Ada language imple-
mentation. This has to do with application-specific hardware dependencies, and changes to these
dependencies during the life of the application system. It is a characteristic of real-time systems
that they typically include custom or special-purpose hardware, or at least that they connect a
variety of hardware components in a configuration specific to the application. The hardware con-
figuration may change between versions of one application, several versions of which may need to
be supported simultaneously. Any off-the-shelf Ada compilation system could hardly be expected
to meet all such needs. Some customization will be necessary.

3.5 Tailoring and Configuration

There are several approaches to customization. One, which we have already mentioned, is to pay
the compiler vendor to do it. In that case, the user need not be concerned with how it is done.
The chief drawback to this approach is the cost, but there are many other reasons the user may
prefer to do his own customization. Some examples of such reasons include concern that manpower
problems might prevent the vendor from meeting user deadlines, continually evolving requirements
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due to a prototyping mode of development, or a desire to keep details of the application hardware
architecture secret.

Few application developers are prepared to tackle the customization of a complete Ada compila-
tion system. (For those who are, there may be nothing further to discuss.) On the other hand,
most application developers have some expertise in building or customizing executives and smaller
software tools, such as linkers and debuggers. Thus, some of them are chosing to to buy source
licenses from compiler vendors and tackle customization of smal components of the compilation
system directly, especially the RTS.

Let us call the actual modification of the code of the Ada compilation system "tailoring", because
it is analogous to the kind of alteration a tailor does to fit a ready-made suit to a customer, which
involves cutting and stitching. Let us contrast this with a less extreme form of adjustment, which
we call "configuration" in which the user chooses options and supplies parameters within a scheme
set up by the compilation system. (This is analogous choosing the best-fitting jacket and and the
best-fitting pants from two racks containing different sizes and styles, or using a belt to adjust the
fit of clothing that is too loose, so that no alteration is necessary.)

Clearly, the division of a compilation system into modules with parameters and clearly defined
interfaces can assist in both tailoring and configuration. If tailoring is required, clean module
inte . es 11Can help Lo localize changes to a single module, and if an adequate choice of parameters
or alternate module versions are provided customization may reduce to choosing among these
options.

Most compiler vendors provide some combination options and parameters for configuring their
compilers and runtime systems, if only for their own convenience in supporting multiple host and
target combinations. This is a good starting point, and as time goes on we can expect vendors
to provide morq such configuration options, given sufficient pressure from customers. It is incon-
ceivable, however, that any set of configuration choices will be adequate to handle the needs of all
applications. Some tailoring (i.e. custom coding) will be necessary.

The RTS is the part of an Ada compilation system most likely to need tailoring. This is good news,
because it is much smaller and simpler than an Ada compiler, and can be designed so as to be
separated very cleanly from the rest of the compilation system. How difficult it is to tailor the RTS
depends on the modularity of the R.TS design, the quality of the documentation available, and how
often the compiler vendor changes key interface conventions. It can be a large and difficult job, or
very simple.

3.6 Alternate Models of Concurrency

One of the main reasons for tailoring the Ada RTS is to support an extended or entirely alternate
model of concurrency. As we have mentioned, there axe good reasons for dissatisfaction with the
minimal standard Ada tasking model.

Some real-time system developers are choosing to provide their own executives, which execute
multiple Ada procedures concurrently. This is permitted by the Ada standard on the basis that
these procedures are viewed as separate main programs. This capability can be provided alongside
Ada tasking. The Lace executive [Lace] represents one way of doing this. Lace offers, more or
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less, a stripped-down implementation of Ada tasks, so that no execution price is paid for unused
functionality. If the implementation of full Ada tasking is constructed on top of Lace, the user
has the option of executing any combination of Ada procedures as Lace threads concurrently with
normal Ada tasks. The Lace dispatcher cdntrols the allocation of the processor time to both Lace
threads and Ada tasks.

The IEEE POSIX portable operating system interface and and the IEEE MOSI microcomputer
system interface standards are examples of other program-based models of concurrency competing
with Ada tasking. Another is the Distributed Ada Real-time Kernel (DARK), currently under
development in the Software Engineering Institute at Carnegie-Mellon University.

Examples of extended task-based models of concurrency are the implementation of alternate ren-
dezvous and scheduling models based on priority inheritance at the Software Engineering Institute
and (independently) by DDC-I compiler vendors. Other tasking extensions that have been report-
edly implemented via RTS tailoring include non-waiting entry calls, task restarts, and distributed
execution. This list will grow.

3.7 Standard Interfaces

A key element in developing extended or alternate Ada runtime systems (RTS's) depends on well-
defined interfaces. There are two main reasons for having such interfaces. The first is to provide
a means for the user (i.e., application programmer) to communicate with the extended RTS. The
second reason is to permit modifications and extensions to the RTS without concern for the internals
of the Ada compiler.

Levels of Interface

In separating these concerns, it is useful to distinguish the different levels at which such interfaces
are needed:

1. application-RTS- the interface which allows a programmer to invoke RTS services explicitly.
Such a request would ordinarily be for a service not provided by standard Ada, such as to
raise an exception in some Ada task, or to execute some task periodically. This is. the level
of interface at which the user can take control directly.

2. compiler-RTS - the interface by which code generated by the compiler implicitly requests
RTS services, in order to implement primitive Ada constructs. Such requests would include
delaying the execution of a task, creating a new task, and calling an entry of a task. These
services are standard, but may involve implementation choices over which a user may desire
extra control.

The only constraints imposed on the RTS implementor by the Ada language are at this level.

3. RTS-RTS - the interface between RTS modules, by which different components of the RTS
communicate and request service from one another. Examples of such interfaces include the
mechanisms by which the tasking RTS can cause an exception to be raised in a task, and by
which the delay implementation obtains information about the passage of time.
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Constraints which the RTS imposes on itself at this level can be helpful in localizing application-
specific modifications to the RTS. This level of interface can be especially useful to the extent
that it separates functions of the RTS that are completely determined by the Ada language
from those whose functions are only partly determined, and from those that are not directly
connected with the language implementation.

4 The ARTEWG MRTSI

The Model Runtime System Interface (MRTSI) is a document describing a model compiler-RTS
interface, and some elements of an RTS-RTS interface. This interace isolates the RTS components
directly concerned with the implementation of tasking from compiler and other key RTS compo-
nents. It's intended purpose is to "serve as a model of clean delineation and explicit documentation
of the interface to an Ada runtime system", in hopes that "this can contribute to the production of
Ada runtime systems that axe better suited to the needs of diverse applications, especially real-time
embedded applications, ... provide a pedagogical service to both application builders and compiler
vendors by providing a baseline and common frame of reference, in a manner similar to that in
which the D)SI model serves the communication community", and "encourage greater commonality
in RTS interfaces, without going so far as to impose a formal standard." [MRTSI]

4.1 Status of the MRTSI

The MRTSI is still evolving. It has gone through several revisions, starting from an original draft
produced in the summer of 1987, and Version 2.3 has been submitted for publication in the ACM

SIGAda newsletter Ada Letters. All specific references to features of the MRTST in this report refer
to the current version at the time this report was written, AIfRTSI Version 1.5.1.

Input to the MRTSI has been provided by twenty-five individuals, with experience writing Ada

compilers, Ada runtime systems, operating systems, and real-time application programs. Some of
this input wa.. provided directly, at meetings, and some of it was provided in the form of written
critical reviews, received in response to a broadcast mailing of Version 1.4 to known Ada compiler
developers. The author of this report served as collator of these reviewers' comments, as well as
leader of the MRTSI Task Force within the ARTEWG. and principal editor of the MRTSI document.

Ideally an RTS interface specification like the MRTSI would be sufficiently precise to permit inter-

operability of compilers and ITS implementations; that is, any RTS implementation that adheres

to the interface would work correctly with any compiler that also conforms to the interface. The

present MRTSI draft is too loosely specified to achieve this. If it were tightened up enough to

achieve interoperability, it would probably need a specific variant for each target processor and

memory architecture.
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Another obstacle to a tighter interface specification is the compiler vendors. Most compiler vendors
seem opposed to the idea of a standard RTS interface in any form, and their opposition to even
a "model" interface seems to grow in proportion to its restrictiveness. Their first main objection
is the cost of converting their present (diSsimilar) RTS interfaces so that they conform. Another
objection is that they hope to achieve some market advantage through proprietary RTS features,
which they neither wish to disclose for inclusion in a standard interface, nor be obliged to do
without. Their third main objection is that they simply do not want to limit their future options
based on today's understanding of runtime systems.

4.2 Prototyping the MRTSI

In order to increase our level of confidence in the MRTSI, that it can indeed be implemented
efficiently and does support Ada tasking correctly, we constructed and tested prototype imple-
mentations of Version 1.5.1. This made heavy use of code from an existing implementation of
Corset[Corset], an Ada runtime system interface designed by T. P. Baker with support of the Boe-
ing Aerospace Company and the Boeing Commercial Airplane Company. (Development of the
original prototype Corset implementation was done in 1987 at the Florida State University under
contract t9 the Boeing Commercial Airplane Company under Purchase Order Y-429341-0957N) 1 .

4.3 Differences Between Corset and the MRTSI

Because Corset and the MRTSI are functionally similar (like any two Ada RTS implementations),
it was not very difficult to modify the Corset implementation to conform to the MRTSI interface
(Version 1.5.1). Of course, there were quite a few superficial changes, such as in names, data type
declarations, and parameters, but the only changes that required modification of the functional
code and internal data structures of the prototype RTS were:

1. Rendezvous. In Corset, the bodies of accept statements are compiled as procedures. The
RTS calls one of these procedures when it is time for a rendezvous to take place. Completion
of the rendezvous is implicit, through return to the RTS. In the MRTSI, accept-bodies are
compiled in-line. The RTS begins a rendezvous by returning control to the compiled code,
which executes the accept-body and then calls the RTS again at the end of the rendezvous.

This requires two new RTS service calls: one for normal end of rendezvous, and the other for
end of rendezvous due to an unhandled exception (in which the exception is propagated to
the calling task).

2. Task elaboration checks. In Corset, the compiler-generated code is entirely responsible for
checking that when a task is activated the corresponding task body declaration has been
elaborated previously. In the MRTSI, this responsibility is shared by the RTS. 2

3. Activation sets. In Corset, the compiler-generated code is entirely responsible for keeping
track of sets of tasks that are to be activated together. A set of tasks that are to be activated

'The Ada code of the modified Prototype Corset Implementation Software, as reported here, is copyrighted by
T.P. Baker and the Florida State University, and is released subject to specific provisions included in the distribution
tape. A copy of a tape containing this this Software was delivered to the U.S. Army CECOM with this report.

2Contrary to this author's preference for cleaner separation of functions.
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together is passed to the RTS via a parameter of an unconstrained array type. By contrast,
the MRTSI requires the RTS and the compiler-generated code to cooperate more closely.2 A
set of tasks that are to be activated together is identified by the ID of the last-created member
of the set. When a task is created, the compiler-generated code specifies the activation-set to
which it should be appended, via the ID of the last-created member of that set. When a set
of tasks is to be activated, the set is specified likewise.

4. Special cases. The MRTSI goes beyond Corset in distinguishing special cases of "trivial"
rendezvous. Implementing these required new code.

4.4 A Problem with Visibility

We discovered that the way in which the MRTSI is divided into several packages limits visibility
of key declarations in a way that makes implementation difficult. The problem is that the bodies
of the RTS implementation packages need to share access to information that the MRTSI tries
to hide from the compiler. This information is in declarations belonging to the bodies and the
private parts of the several MRTSI packages. For example, the type TASKID exported by package
RTS.TASKIDS is private, and should be so from the viewpoint of compiler-generated code, but the
RTS implementation packages need a way to associate attributes with task IDs. While this could
theoretically be done using table lookup, that would exact an unacceptable cost in execution time.
In our prototype, we therefore made the full declaration of type TASKID visible.

A more difficult problem is how to initialize data structures that belong to package RTSRENDEZVOUS
when a new task is created by procedure CREATE.TASK, in package RTS.STAGES. We know of only two
ways to solve this kind of problem. One is to add a new operation, that is not part of the MRTSI,
to package RTSRENDEZVOUS. The other is to put such extra operations in a hidden "twin" package,
say RTSRENDEZVOUS.IMPLEMENTATION, which would also contain duplicates of all the declarations
in RTSRENDEZVOUS. The operations exported by RTSRENDEZVOUS would then be implemented by
operations of RTS_-RENDEZVOUS-.IMPLEMENTATION, using UNCHECKED_-CONVERSION to circumvent any
type incompatibilities introduced by the duplicate declarations.

Creating twins for the MRTSI packages, as in the example above, can preserve the purity of the
MRTSI package specifications at the expense of very ugly code in the package bodies and their twins.
Moreover, at the present state of Ada compiler development, this solution is almost certain to result
in unacceptable execution-time overhead, due to extra layers of procedure calls. We therefore chose
to add what declarations we needed to the MRTSI packages, and to convert some private type
declarations into RTS-implementation dependent full type declarations. (See Appendix A for the
expanded package specifications as used in the prototype.)

4.5 Testing the MRTSI Prototype

Converting the test programs developed for Corset to conform to the MRTSI was more time-
consuming than converting the RTS implementation. Because there is no Ada compiler that com-
plies with the Corset (or the MRTSI) interface, the test programs were originally hand-translated
from programs written in full Ada (including tasking). This hand translation had to be redone to
conform to the MRTSI.
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Because we wanted this prototype to be portable, the test programs are translated into a simple
subset of Ada (without tasking). They make explicit calls to the RTS to perform tasking operations
where an Ada compiler would insert such calls implicitly when translating Ada tasking constructs.
Further, because we needed to be able to simulate concurrency (both between tasks and between
multiple processors) and other effects that normally would be achieved by machine-dependent and
compiler-dependent code, the translation is rather complex. All procedures, task bodies, and accept
statement bodies are converted to blocks of code in a single massive case statement; all variables
and parameters are converted to components of a massive variant record type; lexical nesting effects
are simulated via explicit chaining of these activation-records.

An example of the translation is sketched below. Two complete examples are given in Appendix B.

package PKG is
task T is entry E; end T;

end PKG;

with TEXTIO; use TEXTIO;

package body PIG is
task body T is

begin accept E do PUTLIE("in rendezvous on E"); end E;

end T;

end PIG;

with PIG; use PKG;
procedure test is begin T.E; end test;

This is translated into following code for the main program and body of task T:

AIN: constant PROCEDRUE:- 2;
TPROC : constant PROCEDRUE:- 5;
ACC-EPROC: constant PROCEDRUE:- 6;

begin case P is
when MAIN->

- task T;
RTSSTAGES. CREATETASK (

SIZE-> RTS-STAGES. SIZETYPE (DA'size/STORAGE.UNIT),

PRIo-> 1,
NUMENTRIES-> 1,

MASTER-> RTS_STAGES. CURRENTIASTER,
STATE-> (TPROC,COERCE(DA) ,NULLDATA_-AHE),

LASTCREATED-> NTLLTASK,
ELABORATED-> ELABORATED,

CREATEDTASI-> DA.M);
RTSSTAGES. COMPLETEACTIVATION;

RTS_.STAGES.ACTIVATE.TASKS(DA.T);

- T.E;
RTS_.RENDEZVOUS. CALLSIMPLE (ACCEPTOR->DA. T.

En> 1.
PARAMETER->(ULL_DATAAREA,0));

RTSSTAGES. COMPLETE.TASK;

when TPROC=>

RTSSTAGES. CONPLETE.ACTIVATION;
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accept E do

RTSRENDEZVOUS. ACCEPTCALL (E-> 1,
PARAIETER=> DA.PA AMTER);

begin CRECI(2);
RTSRENDEZVOUS. COHPLETERENDEZVOUS;

exception
when others-> RTSRENDEZVOUS.EXCEPTIO0ALCONPLETERENDEZVOUS

(RTSEXCEPTIONS. CURRENTEXCEPTION);
end;
RTSSTAGES. COPLETE.TASK;

when ACC-E.PROC->
PUTLINE("in rendezvous on E");

end case;

Each executable program unit corresponds to one alternative of the case statement, which is indexed
by a parameter P of type PROCEDRUE. The variable DA points to a local data area which has
been allocated for the program unit that is executing. k1 the standard Ada task structures have
been replaced by explicit MRTSI calls, such as would be generated in a translation of the program
by a compiler that conforms to the MRTSI interface. The executions of the two programs should
therefore be the same, up to allowed implementation-dependencies such as the task dispatching
policy.

Some effort was made to produce a program to perform this translation of test programs. Such a
translation tool would have allowed us to generate test programs quickly for various RTS interfaces
from any test program written in standard Ada. Specifically, we investigated the feasibility ol
modifying the FSU/AFATL Ada compiler for this purpose. This compiler was designed t) translate
from Ada to Z8002 assembly code. For a moderate investment of effort (as compared with writing
such a translator from scratch), it should be possible to convert this compiler to output simple
(non-tasking) Ada code instead of Z8002 assembly code, with the necessary calls to the MRTSI
for tasking operations. Nevertheless, it looked as if two man-months or more would be required to
complete such a program, so we were forced to be satisfied with limited hand-translation.

Because converting test programs to the MRTSI interface by hand was so labor-intensive, only a
few were converted. However, those that were converted all worked correctly without detecting any
bugs in the MRTSI implementation, beyond typos of the most trivial kind. This was expected,
since the differences between the Corset and MRTSI prototypes were superficial; i.e., limited to the
interface. After all, any two Ada RTS implementations should be semantically equivalent, so far
as can b detected by a correct Ada program.

4.6 Lessons Learned from Testing

The information gained about the MRTSI was mostly positive. It apparently works as intended.
Some simple syntax problems were discovered in the package specifications, but these were easily
ccrrected. Conversion of our RTS implementation to the MRTSI was not difficult.

On the negative side, we discovered two things of a subjective nature about the MRTSI, which will
be reported to the ARTEWG MRTSI Task Force:
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1. Performing elaboration checks for task bodies adds considerable overhead to task creation
and activation, that must be paid even in cases where it can be verified at compile that no
elaboration check is needed. This is sad because cases were runtime elaboration checks for
tasks are needed appear to be unusual.

2. Supporting an efficient implementation of the "trivial" cases of rendezvous appeared to require
adding some overhead to the normal cases.

5 Conclusions

After some early developmental difficulties, Ada seems to be maturing into a language that can
be used for real-time software. However, the minimum features required by the Ada standard are
insufficient. Producing effective real-time systems requires extended features that may be legally
provided by an Ada language implementation within the constraints of the Ada standard.

Since solutions to most of the shortcomings presently perceived in Ada as a real-time language can
be solved within the latitude permitted language implementations, it is convenient to view these as
shortcomings of implementations rather than of the language. We thus sidestep the organizational
difficulties and delays required for language changes, as well as the more serious difficulties of
anticipating the results of ongoing research in real-time systems and the special needs of future
real-time applications.

In the longer run, it appears desirable to work toward standardization of extensions which have been
implemented, tested, and found to meet requirements of a large class of applications, and which
are not yet satisfied by other standard mechanisms. 'In a few cases the standardization vehicle
might be the Ada language, but in others cases separate ancillary standards may be better. Such
an ancillary standard could define a collection of runtime-system packages with logically related
functions, analogous to the CAIS[CAIS].

We hope that a good place to begin to define such ancillary standards is with a compiler-RTS
interface specification, and in particular the MRTSI. If such a standard were even adopted by even
a few compiler vendors it could give more impetus to the development of specialized Ada runtime
environments.

The MRTSI appears to be converging to a form that will be acceptable to both the ARTEWG
members and some Ada compiler developers. Based on the experiments we performed, it seems
readily implementable. It may be sufficiently close to some existing Ada implementations that they
could be converted to adhere to it rather easily. However, most compiler vendors seem to oppose
any form of compiler-R.TS interface standard.

The present MRTSI draft is too loosely specified to support interoperability of compilers and RTS
implementations. If it were tightened up enough to achieve interoperability, it would probably
need a specific variant for each target processor and memory architecture. This may eventually
be possible. In the mean time, the MRTSI will be useful as a reference model, guideline for inter-
face separation, and basis for discussion of RTS's between compiler producers and users requiring
tailoring.
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There may be more hope for standardization of other RTS interfaces. One example would be
a standard application-RTS interface for low-level tasking operations. If such a package were
available it might be used by application programmers to implement their own scheduling policies.
This kind of interface might be more directly useful to real-time application programmers than is
the MRTSI. A standard interface would also be practical at the RTS-RTS level, between certain
key RTS functions which require user tailoring and the rest of the RTS. RTS functions that might
be isolated in this way include task scheduling, dynamic storage allocation, and real-time clock
services, and interrupt handling.
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A MRTSI Prototype Specifications

The following are the package specifications of the MRTSI, as modified to include declarations
needed by the bodies (i.e., implementatioxis) of the other MRTSI packages 3

package RTS-.TASL.IDS is
type TISK..ID is o- fined by RTS implementation

range 0. .31; -for prototype RTS implementation
NULL.TASK: constant TASK_.ID: - defined by RTS implementation

0; -for prototype RTS implementation
function SANR..TASK(LR: TASK..ID) return BOOLEAN renames '

----- end of MRTSI view---- ------
subtype NONNULL..TSI.ID is TASK-.ID range 1-.31;

end RTS_.TASKIDS;

package RTS..EXCEPTIONS is
type EXCEPTION-Inh is private;
type EVENT..ID is private;
ErL.X.EcPTIaI..I: constant EXCEPTIOE..ID;
COISTRAIITERRlR_.ID: constant EXCEPTION..ID;
NUWMC.ERRRID: constant EXCEPTION_.ID;
PRaGRAN.j RRO RJ.D: constant EXCEPTIOE..ID;
STORAGEERRL3R.ID: constant EXCEPTIaNID;
TASKfIG..EIR.ID: constant EZCEPTIOi..ID;
procedure RAISEZCEPTION(E: EXCEP1TION-.ID);
function CURRENrr.EXCEPTION return EZCEPTIOI..ID;
procedure NOTIFY_.EZCEPTION(EVEIT: EVEIT...ID);

private -- depends on compiler and machine.
type EXCEPTIONI-MI is new INTEGER;
type EVENT..ID is range 0._31;
NULL_.EXCEPTIOE..ID: constant EXCEPTION.ID:- 0;
CONSTRAINT_.ERROR_.ID: constant EXCEPTIOI..ID : 1;
NUMMICERRDR..ID: constant EXCEPTIO-irP 2;
PRL3GRAM.ERRDILID: constant EXCEPTION..ID:- 3;
STORAGE..ERIRR-ID: constant EXCEPTIOE.ID:- 4;
TASKIUG..ERROR-ID: constant EZCEPTION..ID : 5;

end RTS_.EZCEPTIOIS;

with SYSTEM;
with RTS_.EXCEPTIOIS; use RTS..EXCEPTIOIS;
with RTS_.TISK_.IDS; use RTS_.TASK..ID;
with RTSINTERRUPTS; use RtTS_.INTERRUPTS;
with MACHINE; - only for implementation view
package RTS.R END EZVOUS is

NULLEUTRY: constant:- 0;
MAX-.ENTRY: constant:- - value defined by R1!S implementation

255; - for prototype RTS implementation
type ENTRY-.INDEX is range NU.L-ETMRY .. MAX-ENTRY;
type CAI.LER..PARAMETER..DESCRIPTOR is -- achine-specific

record LOC: MACHINE. DATA_.AREA; -- for prototype RTS implementation
LEK: NATURAL;

end record;
type ACCEPTOR..PAAAETER..DESCRIPTDR is -- machine-specific

'These package specifications are copyrighted by the T.P. Baker and the Florida State University, and now are
released to the public domain.
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record LOC: MACHINE. DATA_.AREA; -- for prototype RTS implementation
end record;

-Lower index bound is 1 by convention.
procedure CALL-SIMPLE(ACCEPTOR: TASK..ID;

E: ENTRY_.INDEZ;
PARAMETER: CALLER-PARAMETER-.DESCRIPTOR);

procedure CALL-.CONDITIONAL CACCEPTOR: TASKID;
E: UNTRY..INDEX;
PARAMETER: CALLER..PARAMETER_.DESCRIPTOR;
RENDEZVOUS-.SUICCESSFUL: out BOOLEAN);

procedure CALL...? EDCACCEPTOR: TASK..ID;
E: EETRY...NDEX;
PARAMETER: CALLER_.PARAMETER.DESCRIPTOR;
D: DURATION;
RENDEZVOUS ..SUCCESSFUL: out BOOLEAN);

procedure TRIVIAL-CALL C CCEPTOR: TASK-.ID;
E: ENTRY-INDEX;
RENDEZVOUS-.SUCCESSFUL: out BOOLEAN);

typo SELECT_.IUDEI is new INTEGER;
IO-.RENDEZVOT3S: constant SELECTINDE :- 0;
type ENTRY-.LIST is array (SELECT-.INDEX range <>) of ENTRY-.INDEX;
type NODES is CSIMPLE..M002-, DELAY..MODE, ELSE_.MODE, TERNINATEIODE);
procedure SELEVCTIVE..UAITCOPEN-.ENTILIES: ENTRY..LIST;

0: DURATION;
SELECT_.MODE: NODES;
PARAMETER: out ACCEPTOR_.PARAMETER_.DESCRIPTOR;
INDEX: out SEI.ECT-.INDE);

procedure ACCEPT..CALL(E: ENTRY..INDEX;
PARAMETER: out ACCEPTOR..PARAMETER_.DESCRIPTOR);

procedure TRIVIAL..ACCEPTCE: ENTRY..fIDE);
function COUI(T: TASK..ID; E: ENfTRY-.INDEX) return NA7URAL;
function CALLABLE CT TASI..ID) return BOOLEAN;
procedure ASSOCI-ATE.fINTERRU0PTCINTERRUPT: INTERRUPT..ID;

ACCEPTOR: TASK..ID;
E: ENTRT-IUDEZ);

procedure DISSOCIATE..INTERR4UPT (INTERRUPT: INTERRUPT..ID);
procedure COMPLETE_.RENDEZVOUS;
procedure EXCEPTIOAL.COMPLEE-..RNDEZVOUS CE: EXCEPTION..ID);

package INTERRUPT-.BUFFERS is
type BUFFER-.ARRAY is array CINTEGER range <>) of INTEGER;
type BUFFER..ACCESS is access BUFPER-A..AJUT;
type COLLECTIOI..ID is private;
function IEW-.COLLECTIOU CACCEPTOR: TASK_.ID;

E: EITRY..INDEX;
NUMBER: POSITIVE;
SIZE: POSIT'IVE) return COLLECTIOI.ID;

function EEW-..UFFERCCOLLECTIOI: COLLECTIOI..ID) return BUFFER..ACCESS;
procedure ENQUEDE (BUFFER: BUFFER..ACCESS);

private
type COLLECTIOI..ID is now INTEGER;

end INTERRUPTr.BUFFERS;
- --- - -end of MRTSI view---------
function CALLING..TASK return TASK..ID;
procedure OPEI..UTRIES CT TASK..ID; UUN.ENTBIES: INTEGER);
procedure CLGSE_.ENTRIES CT: TASX..ID);
procedure CALL..OFFLINECA TASK..ID;

E: ENTRY-.INDEX;
LOC: MACI. DATA-.AREA);
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end RTS.RENDEZVOUS;

with RTS.TASKIDS; use RTSTASKIDS;
with MACHINE; -- for this prototype implementation
package RTS.STAGES is

type MASTER.ID is private;
type ACCESSBOOLEAN is access BOOLEAN;
function CURBEN.. MASTER return MASTERID;
procedure ENTER ASTER;
procedure CONPLETE_MASTER;
type INIT.STATE is -- machine-specific

new MACHINE.STATE; - for this prototype RTS implementation
type SIZE-.TYPE is - machine-specific

range 0..1023; -- for this prototype RTS implementation
UNSPECIFIED-SIZE: constant SIZE.TYPE:- SIZETYPE'first;
procedure CREATETASK(SIZE: SIZE.TYPE;

PRIG: INTEGER;
NU-UELURES: NATURAL;
MASTER: MASTERID;
STATE: IJEITSTATE;
LAST.CREATED: TASKID;
ELABORATED: ACCESS_BLOOEAN;
CREATED.TASK: out TASKID);

procedurq ACTIVATETASKS(LAST..CREATED: TASKID);
procedure COPLETE._ACTIVATION;
procedure COMPLETE.TASK;
function TERKIJATED(T: TISI_.I) return BOOLEAN;
function IS_LOCL_TASK(T: TASK.-ID;

MASTER: MASTER.ID) return BOOLEAN;
- end of HRTSI view - -

function AACESTOR(T: TASKID; LELSOUT: INTEGER) return TASK.ID;
-- used in abortion.
procedure COMPLETECT: TASKID);
-- used in abortion.
procedure TERNINATE.ALTERNATIVE;
- used in rendezvous.

private
type MASTER.ID is -- defined by the RTS implementation

new INTEGER;
and RTSSTAGES;

package RTSCLOCK is
type DAYS is range 0.. (2*-31)-1;
subtype DAY-DURATION is DURATION range 0.0 .. 86-400.0;
-- These ranges are only examples.
type TIME is

record DAY: DAYS;
SECOND: DAY.DURATION;

end record;
- TICK: constant:- 2.0*0(-14);

-- This value of TICK is only an example.
function CLOCK return TIME;
---- end of MRTSI vie-

-TICKSRSECOND: constant:- 2* 14;
TICKSPERSECOND: constant:- 2;
-- TICK set large, for prototype RTS implementation.
TICK: constant:- 1. 0/TICKS_PERSECOND;
type TICKS is private;
function CLOCK return TICKS;
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function CLOCK-.IS-.PASTCT: TICKS) return BOOLEAN;
function 1+"1(L: TICKS; R: INTEGER) return TICKS;
procedure STOP; -- abuts down simulation.
procedure INTERRUPT; -- simulates clock tick.

private
typo TICKS in range -(2ee31)..C2**31-i);

end RTS..CLOCK;

with RTS..CLOCK; use RTS..CLOCK;
with RTSTASK...IS; use RTSTASK_.IDS; -- only for implementation view
package RTS..DELAYS is

procedure DELAY..SELF CD: DURATION);
---- end of NRTSI view----------

procedure INTERNAL-.DELkY-.SELF CD: DURATION);
TfIME-.OF..NEXT-CHECK: RTS-.CLOCK. TICKS;
procedure CHECK;
procedure CLAIMRIGHT_.TO..CANCELDELAYCT: TASK-.ID; TAKEN: out BOOLEAN);
procedure OPEN..DELAYS CT: TASKID);
procedure CLOSE..DELAYS CT: TASK-ID);

end RTSDELAYS;

with SYSTEM;
with MACHfIE; - for implementation view only
package RTSSTORAOEIANAGEMENT is

type COLLECTION-.ID is private;
function UEW..COLLECTION CCOLLECTION..SIZE: NATURAL: -0;

IWJLOCK..SIZE: NATURAL: iO)
return COLLECTION..ID;

-- function NEV..BLOCKSIZE: NATURAL;
-- COLLECTION: COLLECTION...I)
-- return SYSTEM. ADDRESS;

-- procedure RELEASEBLOCK CLOCATION: SYSTEM .ADDRESS);
function NEV..BLOCK CSIZE: NATURAL;

COLLECTION: COLLECTION..ID) return KACHIKE. DATAAREA;
procedure RELEASE-BLOCK CLOCATION: MACHIKE. DATAAEA);
procedure REI.EASE..COLLECTION CCOLI.ECTION: COLLECTION-.ID);
----- end of NRTSI vie-----

NULL-.COLLECTION: constant COLLECTION..ID;
private

type COLLECTION-ID is range 0.. C2esiS)-l;
NULL-.COLLECTION: constant COLLECTION_.ID : 0;

end RTS_.STGRAGEIANAGEMEN;

with RTS_.TASK-.IDS; use RTS-.TASK-.IDS;
with MACHINE; - for prototype RTS implementation
package RTS..ABORTION in

type TASK-.LIST is array CPOSITIVE range <>) of TkSK..ID;
procedure ABORT..TASKS(TASKS: TASIJ.IST);
-- nd of NRTSI view--------
procedure CLAIlLRIGHT.TU..RELEASE CT: TASK_1D;

TAKEN: out BOOLEAN);
procedure FORESTALLABORTION;
procedure SAFE..RELEASE CT TASI..ID);
procedure SAPE_.HrLD;
procedure SAFE-.FC ACE.CALL CT: TASK-ID;

P: MACINE.PROCEDRUE);
procedure OPEN..ADORTION CT: TASI-.ID);

end RTS..ABORTION;
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with SYSTEM;
with RTS.TASK.IDS; use RTSTASKIDS;
package RT_INTERRUPTS is

type IUTERRUPTID is - achine-specific
range 0..255; -- for this prototype RTS implementation

procedure BIND.HANDLER(INTERRUPT:INTERRUPT_ID; HANDLER: SYSTEM. ADDRESS);
procedure UIBINDHANDLER(INTERRUPT:ITERRUPTID);
function EULL.HAIDLER return SYSTEK.ADDRESS;
procedure SOFTWAREIITERRUPT(IUTERRUPT: INTERMUPTID);
procedure ATEMPTPREEKPTION;

end RTS.IITERRUPTS;

package RTE_PRIORITIES is
MINPRIORITY: constant:- 1;
MAX _PRIORITY: constant:- 31;

end RTEPRIORITIES;

with RTSINTERRUPTS; use RTS_INTERAUPTS;
with RTS_RENDEZVOUS; use RTS_REDEZVOUS;
with RTSTASKIDS; use RTS.TASKIDS;
package QUEUED.INTERRUPTS is

procedure ASSOCIATEINTERRUPT(INTERRUPT: ITERRUPTID;
ACCEPTOR: TASKID;
E: EUTRY_INDEX);

proceduri DISSOCIATE.INTERRUPT(INTERRUPT: INTERRUPTID);
end QUEUED-INTERRUPTS;

B Example rest Programs

The following are tw versions each of test programs. Each program is shown before and after trans-
lation to the form required by the MRTSI prototype. Calls to procedures CHECK() and COMPLETE,
from package CHECKI, are to check that the various operations are performed in the correct order.

-- test-1: tests creation and normal termination of a collection of
-- dependent tasks.

with SYSTEM;
package PKGi is

task TI is
p'aga PRIORITY(1);

end TI;
task type TYPE2 is

pragma PRIORITY(2);
end TTPE2;
procedure P;

end PKG.I;

with CHECKS; use CHECKS;
with TXT..I0;
with TRACE. 1;
prapa ELABORATE(TRACE.i);
package body PKG_- is

1: IUTEGER:= 1;
task body T1 is
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begin CHECIC 1;
P;
CIECK(2);
COMPLETE;

end TI;
task body TYPE2 is
begin CHECK (3);

it U-i1 then X:1X+i; P; end it;
CIECK(4);
COMPLETE;

end TYPE2;
procedure P is

T2: TTPE2;
type accT is access TYPE2;

begin CHEWS();
B: declare

task T3 is
pragua PRIOR TY (3);

end T3;
task body T3 is

procedure Rt is
X: accT;
procedure 5 is

T4: TYPE2;
begin CHECK(6);

1:'une. TYPE2;
CHECK (7);

end S;
begin CHECK(S);

9;
CHECK(S);

end R;
begin CHECK (10);

It;
CHECK1I);
COMPLETE;

end T3;
begin CHECK(12);
end B;

CHECK(13);
end P;

end PKG-.1;

with SYSTEM;
with CHECKS; use CHECKS;
with PKO.1; use PKG..1;
procedure test-1 is
pragma PRIWIITYO);

begin CHECK (14); COMPLETE;
end testi1;
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-test_.1: tests normal task termination.
-- This was also useful ini checking tareatment of recovery from 21-1ning out
-of threads, before range of threads was ext ended.

with RTS_1BaRTIaU;
with LACE;
with RIGHTS;
with RTSSTAGES;
with STORAGE;
with RTS..TASK_.IDS;
with UNCHEKE..DEALLOCATION;
with UICIECKED_.CONVERSIOI;
with TRACi;
pragma. ELABORATECTRACE-.1);
separate (MACHINE)
package body PROCEDRUES is

use LACE;
use MIACHINE;
use RTS_.TASI..IDS;

subtype RIGHT is RIGHTS.RIGHT;
procedure CLAIN(R: RIGHT; B: out BOOLEAN renames RIGHTS. CLAIM;
procedurg INITCR: in out RIGHT;

AVAILABILE: BOOLEAN : TRUE) renames RIGHTS. INIT;

RIGHT-O-START-.UP: RIGHT;

-- Procedures (simulated).

-- NULL..PROCEDRUE: constant PROCEDRUE:in 0;
--STATU3P: constant PROCEDRUE : 1;

MAIN: constant PROCEDRUE:in 2;
-TERINATE..PRGC: constant PROCEDRUE : 3;
--TASKING..ERROR..PROC: constant PROCEDRUE:in 4;
P_.PRflC: constant PROCEDRUJE:in 5;
T1_PROC: constant PROCEDRUE:in 6;
Type2..PRIJC: constant PROCEDRUE :- 7;
T3.PROC: constant PROCEDRUE: 8;
R_.PRflC: constant PROCCURUE:- 9;
SPRUC: constant PROCEDIWE:in10;

IS-.TASK: PRD)CEDRUJE-B.IT-.VECTOR:-ADA..RAS.SILLY-.RESTRICTIONS (
(MAIN IT1..PRDC IType2-.PROC IT3..PRDC-> TRUE,
others-n> FALSE);

LEME: PROCEDRUE..INTEGER.VECTOR: -AA-IAS..SILLY..RESTRICTIONS C
(NULL..PROCEDRUE-> -1,

STARTUP->~ 0,
NAIl-> 1,
TER111NATE.PRDC-> 2,
TASKING..ERROI..PROC> 2,
P..FROC) 2,
TI-PRG) 2,
TYpe2..PRO~w> 2,
T3J10C->3,
R..PRGC>. 4.
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type Acc-.TASK.ID is access TASK..ID;

-- Procedure activation-record types

type PAM-RECORD)(P: PROCEDRUE);
type PARAN is access PARAM..RECORD;
type STORE..RECORD(P: PROCEDRUE);
type STORE is access STORE-.RECORD;
type STORE-.RECORD(P: PROCEDRUE) is

record
OUTER: STORE;
PROC: PROCEDRUE;
PARAIIS: PARAM;
OLD-.DATA: MACHINE. DATA..AREA;
case P is

when STARTUP>
BUSY: BOOLEAN;
MAIN-.TASK: TASK-.ID:.

when MATIN->
1: INTEGER:- 1;
Ti: TASK-ID;

when TERMINATLPRL3C-> null;
whez TASKING..ER.RORPRC> null;
when P-.PROC->

T2: TASI.ID;
ACCTMASTER: RTS..STAGES .JASTER..ID;
T3: TASK..ID; - fron block B

when TIPROC-> null;
when TYPE2..PROC-> null;
when T3..PROC)> null;
when R..PRiJC->

XX: Acc..TASI.ID :- new TASK..ID;
when S..YROC->

T4: TASK_.ID;
when others-> null;

end case;
end record;

type PARAK..RECORD(P: PROCEDRUE) is
record - add parameter declarations here.

when otes nul
canots > ull;

end case;
end record;

function COERCE is
new UNCHECED..CONVERSIOI(STORE, MACHINE. DATAAREA);

function COERCE is
new UECHECKED..CONVERSION (MACHINE.DATA..AREA, STORE);

function COERCE is
new UICEECKED..COIYERSION(PARAN, MACINE.DATA..AREA);

function COERCE is
new UNCIIECKED..CONVERSIONO(MCNINE .DATA-AREA, PARAM);

procedure OLD in
now UNCHECKED..DEALLOCATIOI (STORE..RECORD. STORE);

procedure OLD is
now UFCNECIED-.DELLOiCATIDN(PARAIRECORD .PAAA);
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-- Data for simulated tasks.

THP: PAWA;
ELABORATED: RTS-.STAGES .ACCESS-.BOOLEAI: - new BOOLEAN' (TRUE);

procedure ALLOCATE(P: PROCEDRUE; A: out RACHINE.DATA-.AREA) is

begin I: - COERCE (new STORE-.RECORD (P));
end ALLOCATE;

procedure CALL CP: PROCEDRUE; A: RACHINE.DATA-.AREA) is
PA: PAEAM renames COERCECA);
DA: STORE:- new STOIRE..RECORD(P);
ST: STATE renames CURRENT-STAT*E(RE. CURRENT...THREAD);

begin DA.OUTER:- COERCE(ST.DATA);
DA.PROC:- P;
for I in LEVEL(P)..LEVELCCOERCE(sT.DATA).PROC)
loop DA.OUTER:-DA.OUTER.GUTER; end loop;
DA. OLD_.DATA:-ST. DATA;
ST.DATA:- COERCE(DA);
DA.PARANS:- PA;
begin -- frame to insure tasks complete
case P is
when STARTUP->

5OGN.ADA (ERE.CURRENT..THREAD) :-TRUE;
CLADI(RIGHT-TO.START..UP.,DA .BUS);

if not DA.BUSY
then RTS-.STA GES -CREATE-.TASK C

SIZE-> RTS..STAGES .SIZE-.TYPE (DA 'size/STORGE .UNIT),
PRIO-> 0,
UUN...TRIES-> 0,
MASTER-> RTS-.STAGES. CURRENIT-MASTER,
STATE-> (MAIN, COERCE (DA), IULL -DATA_.AREA),
LAST..CEATED> NULL..TASI,
ELABORATED-> ELABORATED,
CRZATED-.TASK-> DA .KAIN-.TASK);

RELE.ASE(DA.MAII..TASI);
end if;
loop LACE. IDLE-.DISPATCH;
end loop;

when AI->
3OI..ADA(EE. CURRENT-.THREAD) :TRUE;
- task TI;
RTS..STAGES .CREATE..TASK(

SIZE-> RTS..STAGES. SIZE..rYPE (DA 'size/STORAGE .UNIT),
PRIO-> 1.
IUM-ENrRIES-> 0,
MASTER-> RTS-.STAGES .CURRENTWATER,

STATE-> (Tl-.PR)C ,COERCE (DA) ,NULL.DATA-.AREA),

LAST-.CREATED-> I ULL _TASX,
ELABORATED-> ELABORATED,
CREATED-TASX=> DA.Ti);
1 : INTEGER.- 1;

DA.X:o 1;
RTS_.STAGES. COMPLETE.ACTIVATIOU;
RTS-.STAGES .ACTrVATE..TASIS (PA. Ti);
CHECK(14);

when P-.P1WC->
RTS-.STAOESEi _ IE.MASTER;

-T2: TYPE2;
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RTS-.STAGES.CREATE-.TASK C
SIZE-> RTS-.STAGES. SIZE-.TYPE(DA'size/STORAGE .UNIT).
PRIG-) 2,
IUM-ENrRIES-> 0,
MASTER-'> RTS..STAGES .CURRENT-(ASTER,

STATE-> (TYPE2.PRflC COERCE (DA) ,NULL-.DATA-.AREA),

LAST-CREATED-> NULL-.TASK,
ELABORATED-> EUABORATED,
CREATED..TASK-> DA.T2);

RTS-STAGES ACTIVATE..TASKS (DA. T2);
-typo ACCT is access 7TPE2;

DA. ACCTMASTER: -FTS-STAGES. CURRENT..MASTER;
CHECK(S);
RTS..STAGES .ENTERJ(ASTER; -- f or block B
- task T3;
RTS..STAGES CREATE..TASK C

SIZE-> RTS-.STAGES .SIZE-.TYPE (DA'size/STORAGE .UNIT),
PRIG-> 3.
NUMENTRIES-> 0,
MASTER-> RTS..STAGES . CURRENTJ(ASTER,
STATE-> (T3..PRL2C,COERCE(DA) ,NULL..DATA..AREA),
LAST..CREATED-> NULL-.TASX,
ELABORATED-> ELABORATED,
CRHEATED-.TASK> DA.T3);

RTS..STAGES. ACTIVATE-.TASKS (DA. T3);
CHECK (12);
RTS-.STAGES .COMPIETE-MASTER; -- for B
CHECK(13);
RTS-.STAGES. COMPLETE..MASTER; -- for P

when Tl_.PROC->
RTS..STAGES .COMPLETEACTIVATIOI;

CHECI~i);

CALL (P-PRC,NULL..DATA..AREA);
CHECK(2);

when TYPE2..PRaC>
RTS..STAGES . COPLETE..ACTIVATION;
CHECK(3);
if DA.OUTER.X<-l
then DA.OUTER.X:-Dk.OUTER.X4i;

CALL CP-.PROC ,NULL..DATA-AJIEA);
end if;
CHECKC4);

when T3-PROC->
RTS..STAGES . CMLETE_.ACTIVATIOI;
CHECI(1O);
- R;

CALLCR..PROC ,NULL_.DATA..AREA);
CHECK(11);

when R..PROC->
CHECK(C8);
- 5;
CALL(S_.PROC ,IULL..DATA..AREA);
- if there were a paraneter:
-THP- new PARAMRECORD' C.. initial values..);
-CALL (SPR.OC ,COERCE CTMP));

-OLD(THP);
CKECK(9);
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when S-PROC->
RTS..STAGES .ENTER.,MASTER;

- 74: TYPE2;
RTS..STAGES .CREATE..TASI C

SIZE-> RTS..STAGES. SIZE-.TYPE (3M'size/STORAGE .UNIT).
PRIG-> 2,
STATE-> (TYPE2..PROCCOERCE CDA)INULL.DATA-AREA),
NUN-ENrrRIES-> 0,
MASTER-> RTS-STAGES. CURRENT..MASTER,
LAST-CREATED-> NULL..TASK,
ELABORATED-> ELABORATED,
CREATED-.TASK-> DA.T4);

RTS..STAGES .ACTIVATE..TASKS (DA. T4);
CHECK(6);
- X:unew TYPE2;
RTS-.STAGES .CREATE-.TASK C

SIZE-> RTS-.STAGES. SIZE..TYPE CDA'size/STORAGE .UNIT),
PRIO-> 2,
NuM..ENrRIES-> 0,
MASTER-.> DA. OUTER. OUTER.u UERACCTMASTER,
STATE-.> (TYPE2..PBOC ,COERCE (DA) ,NULL-.DATA..AREA),

LAST_.CREATED-> NULL-.TASK.
ELABORATED-> ELABORATED,
CREATED..TASK-> DA. OUTER. I. all);

RtTS..STAGES .ACTIVATE,,TASKS (DA. OUTERt.XX. all);
CHECK(7;
RTS..STAGES . CMPLETE..M&STER;

when TERMINATE..PROC->
RTS..STAGES .COMPLETE..TASK;

when TASKING..ERPOR-.PROC->
raise TASXING..ERROR;

when others->
ERROR(undefined PROC. )

end case;
exception when others->

ST.DATA:- DA.OLD..DATA;
OLD(DA);
raise;

end;
if IS..TASK CP) then COMPLETE; RTS..STAGES. COMPLETE..TASK; end if;
ST.DATA:- DA.OLD..DATA;
OLD(DA);

end CALL;

procedure DEALLOCATE (A in out MACNH.DATA..AREA) is
LA: STORE:- COERCECA);

-due to restriction RM 6.4.1(3) that actual of OLD zmt be a variable

-name or conversion, where COERCE is not recognized as a conversion.
begin OLD (AA); A: -NULLDATA..AREA;
end DEALLOCATE;

begin INIT(RGNT..TO..STAAT..UP AVAILABLE'.> TRUE);
end PRL3CEDRUES;
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-- test_4: simple rendezvous (no parameters), conditional entry call,
and selective wait

with SYCEXN;
package PKG_4 is

task T1 is
pragma PRIORITT(I);
entry E;
entry STOP;

end T1;
end PKG_4;

with CHECKS; use CHECKS;
with TEXTIO;
with TR&CE_4;
pragma ELABORATECTRACE_4);
package body PKG_4 is

X: INTEGER:- 1;
task body T1 is
begin CHECI1) ;

accept E do CHECK(2);
end E;
CHEC (3);
acoept E do CHEIK(4);
end E;
CHECK(S);
select

accept E do CHECK(6);
end E;
CHECK (7);

else
CHECK(8);

end select;
select

accept E do CHECK(9);
end E;
CHECK (10);

else
CHECK(I1);

end select;
accept STOP do CHECK(12);
end STOP;
COMPLETE;

end T1;
end PKG_4;

with SYSTEM;
with CHECKS; use CHECKS;
with P1G.4; use PKG_4;
procedure test.4 is

Prapa PILORITY (O);
begin CHECK(13);

T1.E;
T1.E;
select

T1.E; CHECK(14);
else

CHECK(15);
end select;
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select
T1.1; CIIECI(16);

else
CliECici?);

end select;
TI. STOP;
COMPL.ETE;

end test_4;
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- test.4: tests simple rendezvous (no parameters), conditional entry call,

-- and selective wait

with LACE;
with RTSABORTION;
with RIGHTS;
with RTSTASKIIDS;
with UNCHECKED.DEALLOCATION;
with UNCHECKED.CONVERSION;
with RTSSTAGES;
with RTSRENDEZVOUS;
with STORAGE;
with RTSEXCEPTIONS;
with TRACE_4;
pragma ELABORATE(TRACE_4);
separate (MACHINE)
package body PROCEDRUES is

use LACE;
use MACHINE;
use RTSTASK.IDS;

subtype RIGHT is RIGHTS.RIGHT;
procedure CLAIM(R: RIGHT; B: out BOOLEAN) renames RIGHTS.CLAIM;
procedure IIIT(R: in out RIGHT;

AVAILABLE: BOOLEAN:- TRUE) renames RIGHTS.INIT;

RIGHTTOSTART_..UP: RIGHT;

-- Procedures (simu.ated).

-- ULLPROCEDRUE: constant PROCEDRUE:- 0;
-- STARTUP: constant PROCEDRUE:- 1;
MAIN: constant PROCEDRUE:- 2;
-- TERMINATEPROC: constant PROCEDRUE :- 3;
-- TASKIINGERORPROC: constant PROCEDRUE:- 4;
TIPROC: constant PROCEDRUE:- 5;

IS-TASK: PROCEDRUEBITVECTOR:-ADAHAS.SILLYRESTRICTIONS (
(MAIN I TPROC-> TRUE,
others-> FALSE));

LEVEL: PROCEDRUE-.INTEGER-..VECTO:-ADA.HASSILLYItESTRICTIONS (
(N ULL..PROCEDRUE-> -1,

STARTUP-> 0,
MAIIa> 1,
TERIMNATE-PROC-> 2,
TASKING..RMOR..PROC,> 2,
T1.PROC-> 2.
others-> -0));

type Acc.TASKID is access TASK.ID;

-- Procedure activation-record types

type PARAM-RECORD(P: PROCEDRUE);
type PARM is access PARA&LRECORD;
type STORERECORD(P: PROCEDRUE);
type STORE is access STORE-RECORD;
type STORE.RECORD(P: PROCEDRUE) is
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record
OUTER: STORE;
PROC: PROCEDRX3E;
PARAMS: PARAN;
OLD-.DATA: MACINE. DATkAAEA;
case P is

when STARTUP->
BUSY: BOOLEAN;
N AIN TASK:TASK_.ID;

when MAIN->
TI: TASI..ID;
RES: BOOLEAN;

when Ti..PROC->
PARAMETE: RTS..RENIDEZVOVS ACCEPTOR..PARANETER-.DESCRIPTOR;
RES2: RTS_.RNDEZVOUS .SELECT..INDEZ;

when others-> null;
end case;

end record;

type PARAILRECORD(P: PROCEDRUE) is
record - add parameter declarations here.

case P in
whom others-> null;

I end case;
end record;

function COERCE is
new UNCHECKED_.COVERSIOI(STORE, K NCIEE. DATAAREA);

function COERCE is
new UICNECIED-.CONVERSIONOIACNINE .DATA..ABE, STORE);

function COERCE is
new UICUECKED..COXVURSIOE (PARAN, MC~H. JMDATA..AREA);

function CUEM= is
new U1CHECKED.CONVERSION (MACNINE .DATA..AREA * PAEA);

procedure OLD is
new UNCHECKED-.DELLCATIOI (STORE..RECORD, STORE);

procedure OLD is
new UICHECZED-.DEALLOCATION (PAEAI-RECORD ,PARAN);

-- Data for simulated task&.

THP: PARAN;
ELABORATED: RTS_.STAGES.ACCESSBOOLEAN:- new BOOLEAN' (TRUE);

procedure ALLOCATE(?: PROCEDRUE; A: out RACNINE.DATA-.AEEA) is
begin A: - COERCE(new STORE-RECORD (P));
end ALLOCATE;

procedure CALL(P: PROCEDRDE; A: MACNINE. DATA-AEEA) is
PA: PAEAN renames COERCE CA;
DA: STORE: - new STORE...ECORD(P);
ST: STATE renames CURENT.STATE(HEEE.CURRENT-.THREAD);

begin DA.OUU:- COERCE(ST.DATA);
DA.PROC:= P;
for I in LEVEL(P)..LEVEL(COUCECST.DATA).PRDC)
loop DA.OUTER:aDA.OUTER.OUTER; end loop;
DA. OD.DATA:5ST. DATA;
ST.DATA:- COERCE(DA);
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DA.PARAMS:- PA;
begin -- frame to insure tasks couplet.
case P is
when STARTUP-.>

MOI..ADA (ERE CURRENT-.THREAD) :-TRUE;
C.AIM(RIGT-TO-.START..J,U.DA .BUSY);

if not DA.BUSY
then RTS..STAGES. CREAT-TASI (

SIZE-> RTS-.STAGES .SIZE-.TYPE(DA 'size/STORAGE .UNIT),
PRIO-> 0.
NUMEUTRIES-> 0,
MASTER'.> RTS..STAGES .CUUREIT-[ASTER,

STATE-> (MAIN, COERCE (DA) ,NULL..DATA-.AREA),
LAST-CREATEDm> NULL-.TASK.
ELABORATED-> ELABORATED,
CREATED_.TASK> DA .MAIN..TASK);

RELEASE (DA .MAIN..TASK);

end if;
loop IDLE-.DISPATCH;
end loop;

when MIN->
NOE..ADA (H ERE. CURR ENT...THREAD) :'TRUE;
e_ task Ti;
RTS..STAGES. CREATE-TASK C

SIZE-) RTS..STAGES. SIZE..TYPE(DA 'size/STORAGE .UNIT),
PR10-> 1,
IUM-.ENTRTES-> 1.
MASTER-> RTS-.STAGES . CURRENr..MASTER,
STATE-) (Tl-PROCCOERCE (DA) ,NLL.DATAAEA),
LAST-.CREATED-> NTJLL..TASK,
ELABORATED-> ELABORATED,
CREATED..TASK-> DAMT);

RTS..STAGES .COMPLETE.,ACTIVATIOI;

RTS_.STAGES .ACTIVATE-.TSIS(DA.Ti);
CHECK(13);
- make entry call: TME; 81
RTS..RENDEZVOUS.CALL..SIMPLE(ACCEPTOR->DA. Ti,

E-> 1,
PARAIIETERu.>(IULLkDATA_AREA ,O));

-make entry call: Ti.E; 82
RTSREDEZVOUS .CALL_.SINPLE(ACCEPTOR->DA. TI,

E->~ 1,
PARAMETERu'>(NULL-.DATA..AREA));

-select Ti.E else null; end select; 83
ITS_.RENDEZ VOUS. CALL..CONDITONAL(ACCEPTtiRw>DA. Ti,

E-> 1,
PARAMETER-> (NULL..DATA.ABEA ,0).
RENDEZOUSSUCCSPUL'.) DA .RES);

-select T1.E else nu1l; end select; 84
if DA.RES
then CHECK(14); else CBECK(16); and it;
RTS ..REUEZVOUS .CALL..CONDITIOIAL(ACCEPTOR->DA. Ti,

E-.> 1.
PARAMETUE"'>(NULL..DATA..AREA.,0),
REIDEZVOUS..SUCCESSFUL'.> DA .RES);

if DA.RES
then CHEC(16); else CBECK(17); end if;

-make entry call: T1. STOP;
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RTS-.RENDEZVOJUS .CALL..SIMPLE(ACCEPTtJR->DA Ti,
E-> 2,
PARANETER->(ULL_.DATA...REA,));

when Tl-PROC->
RTS..STAGES. CGMPLETE-.ACTIVATION;

-accept E; $1
RTSRENDEZVOUS.ACCEPT..CALL(E-> 1,

PARPMETER-> DA .PARAMETER);
begin CHECK (2);

RTS-RENDEZVOUS. COMPLETE-RENDEZV0TUS;
exception

when others-> RTS..RENDEZVOUS .EXCEPTIONAL-COMPLETE-.RENDEZVOYUS
(RTS-EXCEPTIONS.CURRENT..EXCEPTIOEN);

end;
CHECK (3);
- accept E; 82
RTS..REUDEZVOUS .ACCEPT..CALL(E-> 1,

PARAMETER-> DA .PARAMETER);
begin CHECK (4);

RTS..RENDEZVOUS. CO!PLETE.R END EZVOUS;
exception
-when others-> RTS..RUDEZVUS .EXCEPTIONAL-COMPLETE..RENDEZVOUS

(ITS ..ECEPTIONS CURRET...XCTION);
end;
CHECK(S);
- select accept E; 83
- else null;
- end select;
RTS-.RENDEZVaUS .SELECTIVE-.VAIT (OPU..ENTRIES->( i. .l>

D-> 0.0,
SELECT..RDDE-> RTS..REIDEZVaUS .ELSE..MODE,
PARAMETE-> DA .PARAMETER,

INIDEX-> DA. RES2);
case DA.RES2 is
when 1->

begin
CHECK (6);
RTS..RENDEZVOUS.COMPLET-ENRDEZVOtS;

exception
when others-> RTS-.RENDEZVOUS .EXCEPTIONL-C3MPLETE..EIEEZVOUS

(RTS..EXCEPTIONS. CURP.EIIT..ECEPTIOI);
end;
CHECK(7;

when others-> CHECK(S);
end case;
- select accept E;
- else null;
- end select;
RTS-RENDEZVOUS .SELECTIVE.VAIT(OPU..ITRS>(i.. 1-' 1),

Din> 0.0
SELECT...1UDE-> 3Th RENEZTUS .ELSE_MDDE,
PARAMETER-), DA .PARAMCTE,

INDEX-> DA.RES2);
case DA.RES2 is
when 1->

begin
CHECK(S);
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RTS-.REnDEZVOUS .CONPLETE-..ENDEZVOUS;

exception
when others-> RTS..JENDEZVOJS .EXCEPTIONAL-.COIPLTE..RENEZVOUS

(RTS..EXCEPTIO)NS XCURRENT-.EXCEPTIO);
end;
CHECK(iO);

Then others-> CHECIUlI);
end case;
- accept STOP;
RTS..RENDEZVOJUS .ACCEPT-.CALL(E-> 2.

PARA1IETER-'> DA.PARAMETER);
begin CHECX(12);

RTS..RUNDEZVOUS. CO14LETE_RENDEZVOUS;
exception

when others-> RTS..RUDEZVOUS .EXCETIOAL_CoMPLETE.REDEZVaUS
(RTS-.EICEPTIONS.CURRENT..EXcEPTION);

end;
when TERNINATE..PRDC-)

RTS..STAGES .COHPIErE._TASI;

when TASKING..ERRCR_.PR13C->
raise TASIING..ERROR;

when others->

,PUT("lundetined PROC. 61);

PDT.LIEE(PROCEDRUE'image (P));
raise PROGRAILERROR;

end case;
exception when others->

ST.DATA:in DA.OLD..DATA;
OLD(DA);
raise;

end;
it IS-TASK CP) then COMPLETE; RTS..STAGES. COIIPLETETASK; end it;
ST.DATA:- DA.IJLD_.DATI;
OLD(DA);

end CALL;

procedure DEALLOCATECA in out NACHIIEOATA-.AREA) is
AA: STORE:- CGERCECA);

-due to restriction RN 6.4.1(3) that actual at OLD must be a variable
-name or conversion, where COERCE is not recognized as a conversion.

begin OWA); A:UULL..DATA_.AREA;
end DEALLOCATE;

begin INIT(RIGHT-TO..START..UP ALVAILABLE-> TRUE);
end PROCEDRUES;

42


