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EXECUTIVE SUMMARY

The objective of this study was to provide software developers with

guidance in the selection of Runtime Environments (RTEs) to ensure that all

timing and storage requirements of real-time embedded systems can be met.

Because there is no 'universal best' runtime environment (RTE), the

selection of an RTE is domain specific. This study developed a step-by-step

process that a developer can use to evaluate RTEs. This process was applied

to one class of systems, Communication and Electronic Intelligence

(COMINT/ELINT) systems.-

A process was developed to determine which Ada runtime features were

important for real-time embedded systems. This process involved

prioritizing Ada RTE elements by the implementation of a prioritization

matrix. The prioritization matrix was demonstrated by prioritizing RTE

elements for COMINT/ELINT systems. The prioritization matrix was designed

so it could be applied to any class of real-time embedded systems with only

slight modifications.>

The prioritized RTE elements were used to prioritize groups of

benchmarks. This provided software developers with a prioritized list of

groups of benchmarks that measure the critical areas of candidate RTEs being

considered for COMINT/ELINT systems. /

The concept of a composite benchmark was developed as another means to

test candidate RTEs. Unlike most existing benchmarks, a composite benchmark

takes into account the interactions and interfaces that go on within a

system. A preliminary composite benchmark description was developed for

COMINT/ELINT systems.

When selecting an RTE, the composite benchmark would be used to test

the minimum threshold of RTEs. Then, the prioritized groups of benchmarks

would be used to test the critical RTE elements to determine which RTEs

perform best in the critical areas.



TABLE OF CONTENTS

1.0 INTRODUCTION .................................................. 1
1.1 BACKGROUND ............................................... 1
1.2 PURPOSES OF THIS STUDY ................................... 1
1.3 ORGANIZATION OF THIS REPORT .............................. 2

2.0 SELECTION PROCESS OVERVIEW .................................... 3
2.1 REAL-TIME SYSTEMS IDENTIFICATION ........................... 4
2.2 CLASS SELECTION ..... ........................................ 5
2.3 SYSTEM SELECTION ............................................ 6

3.0 MAPPING SYSTEM CAPABILITIES TO ADA CONSTRUCTS ................. 8
3.1 SYSTEM CAPABILITIES ...................................... 8
3.2 ADA CONSTRUCT DEFINITION ................................. 9
3.3 ADVANTAGES AND DISADVANTAGES OF MICRO AND

MACRO CONSTRUCTS ..... ....................................... 9
3.4 SYSTEM CAPABILITIES VS. ADA CONSTRUCT MATRIX ............. 9

4.0 MAPPING ADA CONSTRUCTS TO RTE ELEMENTS ........................ 13
4.1 ADA CONSTRUCT VS. ADA RTE ELEMENTS MATRIX ................ 13
4.2 THE REASONING FOR MAPPING A PARTICULAR ADA

CONSTRUCT TO A PARTICULAR RTE ELEMENT .................... 13
4.2.1 Dynamic Memory Management ......................... 13
4.2.2 Processor Management .............................. 16
4.2.3 Interrupt Management .............................. 16
4.2.4 Time Management ................................... 16
4.2.5 Exception Management .............................. 17
4.2.6 Rendezvous Management Task Activation

Task Termination .................................. 17
4.2.7 Input/Output (I/O) Management Function ............ 17
4.2.8 Commonly Called Code Sequences .................... 17
4.2.9 Target Housekeeping Functions ..................... 18

5.0 STRUCTURE OF THE RTE ELEMENT PRIORITIZATION MATRIX ............ 19
5.1 THE SIX EMBEDDED COMPUTER SYSTEM (ECS)

FEATURES ................................................. 19
5.2 THE RTE ELEMENTS ......................................... 21
5.3 APPLICATION OF THE RTE PRIORITIZATION MATRIX ............. 22
5.4 THE MATRIX APPLIED TO THE COMINT/ELINT CLASS ............. 22

6.0 PRIORITIZATION OF GROUPS OF BENCHMARKS ........................ 25
6.1 MAPPING BENCHMARKS TO RTE ELEMENTS ....................... 25
6.2 TYPES OF BENCHMARKS -M BENCHMARK

DISTRIBUTION ............................................. 26
6.2.1 TIME MANAGEMENT VS. TIMING BENCHMARKS .............. 26
6.2.2 THE FREQUENCY OF COMMONLY CALLED CODE

SEQUENCE BENCHMARKS .............................
6.3 BENCHMARKS THAT NEED TO BE DEVELOPED ..................... 27

• • • • i



7.0 COMPOSITE BENCHMARK ........................................... 29
7.1 PURPOSE OF A COMPOSITE BENCHMARK ......................... 29
7.2 HOW TO DEVELOP A COMPOSITE BENCHMARK ...................... 29
7.3 COMPOSITE BENCHMARK FOR COMINT/ELINT SYSTEMS ............. 30
7.4 COMPOSITE BENCHMARK DESCRIPTION FOR

COMINT/ELINT SYSTEMS ..................................... 30
7.4.1 The Intercept Capability .......................... 31

7.4.1.1 General Search ............................. 31
7.4.1.2 Directed Search ............................ 31

7.4.2 Direction Finding ................................. 32
7.4.3 Emitter Location .................................. 33
7.4.4 Analysis .......................................... 34
7.4.5 Reporting ......................................... 34

8.0 COMPILER AND RTE SELECTION PROCESS ............................ 35

9.0 SUMMARY AND CONCLUSIONS ....................................... 36

10.0 BIBLIOGRAPHY .................................................. 40

APPENDIX A REAL-TIME FUNCTION DESCRIPTION ........................... A-1

APPENDIX B HOW ADA CONSTRUCTS WERE IDENTIFIED ....................... B-I

APPENDIX C ADA RUNTIME ENVIRONMENT DEFINITION ....................... C-1

APPENDIX D WEIGHTING OF ECS FEATURES ................................ D-1

APPENDIX E RATING EACH RTE ELEMENT .................................. E-1

APPENDIX F PRIORITIZED BENCHMARK LIST .............................. F-i

APPENDIX G GLOSSARY ............................................... G-1

APPENDIX H GLOSSARY OF ACRONYMS ...................................... H-I

Ii



LIST OF FIGURES

Figure 2-1 The Classification Scheme ............................... 3

Figure 3-1 System Capabilities Vs. Macro Construct
Matrix ............................. ..... ... ............. 11

Figure 3-2 System Capabilities Vs. Micro Construct
Matrix ................................................. 12

Figure 4-1 Ada Macro Constructs Vs. Ada Runtime
Environment Elements ................................... 14

Figure 4-2 Ada Micro Constructs Vs. Ada Runtime
Environment Elements ................................... 15

Figure 5-1 Prioritization Matrix for
COMINT/ELINT Systems .................................... 23

Figure 9-1 Mapping System Capabilities to Benchmarks .............. 38

iii



LIST OF TABLES

TABLE PAGE

TABLE 241 System Functions By the High-Level Functions
They Implement ......................................... 5

TABLE 2-2 Number of Real-Time Systems in Each BFA .................... 5

TABLE 5-1 The Final Weights Assigned to the Features.................20

TABLE 6-1 Priority of Benchmarkcs....................................26

Lv



1.0 INTRODUhION

Since the early implementation of the Ada language, Ada compilers were

required to pass a validation test. Thus, the primary goal of compiler

vendors was to'have their compiler pass this validation test. This left

performance as a secondary issue. In addition, the Department of Defense

(DOD) mandates the use of Ada in the development of real-time embedded

systems. With 206 validated compilers (and the list continues to grow),

software developers must be able to obtain guidance in the selection of a

compiler and its runtime environment (RTE) to ensure all the strict timing

and storage requirements of real-time embedded systems are met.

To provide this guidance requires the identification of Ada RTE

features of interest for real-time embedded systems. This involves two

steps: first, the Ada runtime features that are important for real-time

systems need to be established; second, evaluation criteria to evaluate

these features need to be determined. To establish the important Ada

runtime features, the Ada RTE elements need to be prioritized. To evaluate

the Ada runtime features, current benchmarks must be prioritized and new

benchmarks developed.

1.2 PURPOSES OF THIS STUDY

The primary purpose of this study was to assist software developers in

seleccing an RTE that meets the performance requirements of their

application. This study provides a process that a developer can use to

prioritize RTE elements for a particular application domain. The

prioritization of RTE elements provides the means to prioritize benchmarks.

Sfnce it might not be possible for a developer to run all possible

benchmarks, a listing of prioritized groups of benchmarks allows developers

to focus on the most critical areas of a specific application domain.

- '. n n " " m1



In this study RTE elements were prioritized for one class of systems

supported by U.S. Army Communications-Electronics Command (CECOM) Ft.

Monmouth, NJ. That class is Communication and Electronic Intelligence

(COMINT/ELINT) systems.

Most existing benchmarks test one RTE element in isolation, without

consideration of the effect of RTE elements interfacing. To measure both

the specific elements of interest in an RTE, as well as any interaction

effects, required a new type of benchmark.

One major result of this study was tl;e formulation of a composite

benchmark that tests RTE elements and their interactions. A composite

benchmark is defined as a prototype of the capabilities of a particular

class of-system. The goal of a composite benchmark is to test the minimum

threshold of all candidate RTEs. This study developed preliminary guidelines

for developing a composite benchmark and a preliminary description for a

composite benchmark for COMINT/ELINT systems.

1.3 ORGANIZATION OF THIS REPORT

The organization of this report reflects the order in which the

research was done. In the first step (Section 2.0) a class of systems,

COMINT/ELINT, were chosen to be studied and the capabilities common to

COMINT/ELINT systems were identified. The second step (Section 3.0)

identified what Ada constructs would be used to implement each capability.

The third step (Section 4.0) identified which RTE element would be used to

support the implementation of each identified Ada construct. The forth step

(Section 5.0) prioritized the Ada RTE elements by applying a prioritization

matrix to the RTE elements. The fifth step (Section 6.0) used the

prioritized RTE elements to prioritize groups of benchmarks. In the sixth

step (Section 7.0) the purpose of a composite benchmark, the development

process of a composite benchmark, and a preliminary description of a

composite benchmark are given. The last step (Section 8.0) recommends how

benchmarks are to be used in the RTE selection process.

2



2.0 SELECTION PROCESS OVERVIEW

The first step in this research was to select specific real-time

systems to study. The goal of the selection process was to identify a class

of systems supported by CECOM that are the most challenging to develop and

maintain and then to select representative systems from that class. The

most challenging class of systems was the class with the greatest number of

large, real-time systems. Once the class was identified, sample systems

were chosen. It would have been impractical to study all of the systems

because of the system diversity and the number of systems.

At the time the research was performed for this report, CECOM supported

140 systems. CECOM classified their systems into five Battlefield

Functional Areas (BFA), and each BFA was divided into its own set of

categories. Individual systems were placed into categories within each

BFA. Figure 2-1 shows a diagram of the classification scheme.

Battlefield Functional Area (BFA) -.------ - - - - I

System .. . . . . . . . .6-1-------- 6

Figure 2-1. The Classification Scheme.

CECOM supports the following BFAs.

1. Intelligence Electronic Warfare (IEW)

2. Fire Support (FS)

3. Maneuver Control (MC)

4. Communications (COMM)

5. Air Defense (AD).

The initial data set contained information on 136 systems; however,

only 56 of the systems have enough information on them to adequately

analyze. Therefore, the initial analysis was done on these 56 systems.
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The selection process involved three stages. First, the real-time

systems in the data set were identified; second, the class of systems with

the greatest number of large real-time systems was dete.mined; and third,

specific systems within the chosen class were selected.

2.1 REAL-TIME SYSTEMS IDENTIFICATION

Real-time software constantly monitors, analyzes, and responds to

external physical events in a time-critical fashion. The high-level

functions performed by real-time systems are as follows:

1. Monitor - connection of a physical event to a computer
system so that data pertaining to the physical event can be collected.

2. Analyze - portion of software that determines the next course of action
based on the data collected.

3. Respond - portion of software that executes the course of action
determined from the analysis.

Real-time systems perform one or more of these high-level functions and

must also be time critical in that the failure to monitor, analyze, and

respond in a timely manner would be disastrous.

To determine which CECOM systems were real-time systems, the func:ions

that each system performs were compared to the three high-level functions

listed above. If CECOM1 systems implemented one or more of these high-le-el

functions and the function were time-critical, the system was deemed to be a

real-time system.

TABLE 2-1 classifies the functions performed by CECOM systems according

to the high-level functions they implement. All the functions were

determined to be time-critical. A description of each function is found in

Appendix A.
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TABLE 2-1

System Functions By zhe High-Level Functions They Implement

onitr Respond

receiver direction finding transmittur
reception analysis countermeasure
target detection location antenna controller

2.2 CLASS SELECTION

After determining what CECOM systems were real-time systems, the next

step was to pick a particular class of CECOM systems to study. The

objective was to choose a class of systems that had the largest number of

large real-time systems. Because CECOM already classified systems into BFAs

and categories, the objective was to choose a BFA and category that

contained the largest number of real-time systems. TABLE 2-2 shows the

number of real-time systems in each BFA.

TABLE 2-2

Number of Real-Time Systems in Each BFA

S A Number of Real-Time Systems

IEW 14
FS 3
MC 1
COMM 5
AD 5

IEW was chosen as the BFA to be studied because it contained the most

large real-time systems. The IEW category of Communication Intelligence and

Electronic Intelligence (COMINT/ELINT) contained more real-time systems than

any other IEW category; therefore, it was selected to be studied.

,ean umm •• ,5



2.3 SYSTEM SELECTION

The last stage was to select specific systems to study that were

representative of COMINT/ELINT systems. An assumption was made that if a

method could be developed to prioritize RTE elements for large systems, the

method could be applied to smaller types of real-time systems.

Four COMINT/ELINT systems were selected to represent all COMINT/ELIN

systems: Improved Guardrail V (IGRV), Advanced Quicklook (AQL),

Communication High Accuracy Airborne Location System (CHAALS), and

Trailblazer B. Three of these systems are part of the Guardrail Common

Sensor Family, which contains the largest systems within IEW.

IGRV was 'chosen for the following reasons:

1. It is the largest system in the COMINT category.

2. It is delivered and operational.

3. It is a real-time embedded system.

4. It is a part of the Guardrail Common Sensor Family.

AQL was chosen for the following reasons:

1. It is the second largest system in the ELINT category.

2. Modifications to it are being made in Ada.

3. It is a real-time embedded system.

4. It is part of the Guardrail Common Sensor Family.

CHAALS was chosen for the following reasons:

1. It is the second largest system in the COMINT category.

2. Although not delivered, and thus not operational, its preliminary
design is in Ada Program Design Language (PDL).

3. It is a real-time embedded system.

4. It is part of the Guardrail Common Sensor Family.
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Trailblazer B was chosen for the following reasons:

1. It is the third largest system in the COMINT category.
2. It is a rmal-t.me embedded system.
3. The system is delivered and operational.

7



3.0 MAPPING SYSTEM CAPABILITIES TO ADA CONSTRUCTS

Each capability of COMINT/ELINT systems was mapped to the Ada

constructs that would be used to implement that particular capability. The

objective of this was to determine what Ada constructs would be used to

implement the selected class of real-time embedded systems. The results

were that all Ada constructs would be used in one of these systems. Also,

no Ada construct could be determined to be more important than any other Ada

construct because most constructs would be used throughout real-time

systems. Because of this, the results of this step had no significance in

the prioritization of RTE elements.

The system capabilities were mapped to both micro and macro constructs.

For clarity, a discussion of system capabilities and the definition of a

construct will be presented before the actual matrices.

3.1 SYSTEM CAPABILITIES

The system capabilities, i.e., intercept, direction finding, emitter

location, analysis, and reporting, were found to be common throughout

COMINT/ELINT systems. The way the systems specifically performed a

particular capability might be different, but the overall objective was the

same. Two systems that rely on other systems to perform one of the

capabilities. For example, CHAALS relies on IGRV to perform its

interception.

Because of the amount of effort required to perform an in-depth

analysis to obtain base line Ada constructs, one COMINT/ELINT system was

studied in detail. This analysis was performed by decomposing high-level

system capabilities into low-level system capabilities and mapping these

low-level capabilities to Ada constructs. Once the base line set of

constructs was developed for one system, it was validated by comparing to

the low-level capabilities of other systems in the same category to those of

the system studied in detail. Four COMINT/ELINT systems were used to

generate the Ada constructs. One system was used to establish the base

8



line, and the other three systems were used to validate the base line

constructs.

3.2 ADA CONSTRUCT DEFINITION

While performing a preliminary review of the systems, it became obvious

that 'construct' needed to be defined. Two definitions were appropriate:

one for a micro construct and one for a macro construct. At the micro

level, a construct was defined as an individual Ada statement. At the macro

level, a construct was defined as a set of Ada statements that performs a

well defined process. For this research, both micro and macro constructs

were studied.

3.3 ADVANTAGES AND DISADVANTAGES OF MICRO AND MACRO CONSTRUCTS

The use of either macro or micro constructs has its respective

advantages and disadvantages. The advantage of benchmarking micro

constructs is that they are specific to each individual Ada statement, and

therefore, each statement can be benchmarked. The disadvantage of

benchmarking micro constructs is that interactions of individual statements

when used for a particular application are ignored. Benchmarking only micro

constructs is unrealistic compared to how Ada code is written. The

advantage of benchmarking macro constructs is that they take into account

the blending and interaction of Ada statements. Macro constructs are

realistic to how Ada code is actually used. The disadvantage of

benchmarking macro constructs is that they are only as good as the match

between the benchmark run and the actual application code. The benchmark is

some generic code used to carry out a particular process. If the accual

application code varies from the generic code, the benchmark might not be

valid.

3.4 SYSTEM CAPABILITIES VS. ADA CONSTRUCT MATRIX

Figure 3-1 presents the mapping of the system capabilities to the base

line macro constructs. Figure 3-2 presents the mapping of system

9



capabilities to the base line micro constructs More information on how the

Ad& constructs were identified is provided in Appendix 
B.

10



i S

* ~ . S* S S* ,* S 'S
*

.S .
* K -

* K
* C S
* U S S

* K * S S
* S S *

- * u *Q .
* S * ~ S * 0 *
K S* '
- S S S S

* S SS S

* 0 
:e e ,
S SS 55

S

a S 5 5- '
* * S *S S

S .
: S S

" U C '

GD* G - 0 * 0 *,

- ,
- .

- U 5 S5 5
- U S SS S

- K *S'SS
.05 5 5 5 _

* S S S

* S S S

* S S
S S SS S

* S *

* S
* *e
* S* S ' S
* S

* S S

* - a * * S

- - S S e

e , I) t
* - * i * a

Figure 3-1.. System Capabilities Vs. Macro Construct Matrix.

11



ft ft ft
* ft ft ft ft
* = *0 .0 .0 .0* a ft ft ft

* C ft ft ft ft

m u. ft ft ft:~ :~
. ft ft

* ft ft* U ft ft ft ft* 4 ft

* 6 ft ft ft ft
* - ft ft ft ft

ft. ft ft ft.0 - * ft
.0 ft
ft ft~uu . ft ft ft

* ft ft ft ft
* . ft ft ft ft

ft ft

* u~. ft ft

* *0.
* - - ft ft ft

ft ftft * . ft ft ft ft ft
ft U - ft ft
ft q~ft ft
ft ft . ft ft ft
ft ft ft ft ft ft
ft U ft ft ft ft

ft ft ft
ft a ft
ft - ft ft ft ft ft
ft ft ft ft ft
ft - ft ft ft ft ft
ft ft .0 ~0
ft a ft
ft - ft ft ft ft ft
ft ft. ft ft ft ft ft
ft ft ft ft ft ft
ft ft ft ft ft ft
ft ft ft ft ft ft

ft ft ft ft ft
ft ft ft ft

ft ft ft ft ft ft
ft - ft ft ft ft ft
ft - ft ft ft ft ft

.0 ft9 .0
* ft ft
ft u .
ft a . ft
* ft
ft ft ft ft ft
ft ft ft ft

a

'0 ft
6
B

U ftO ftC

* 5
ft.

.0 0
* ft~a -

-@ ft

ft ft ft ft ft
ft ft ft ft
ft ft ft
ft ft ft ft

u -ft ft ft ft ft
* . . .

ft ft ft ft- ft ft~
* ft - ft ft ft ft ft
,ftft ft ft ft ft ft ft
ftd ft ft ft ft ft ft

ft ft ft ft
ft ft ft ft

ft ft ft ft ft
ft ft ft
ft 6-ft ft ft

ft0 .0 ft
ft ft ft ft

ft - ft ft ft ft ft
ft ft ft ft ft ft
ft ft ft ft ft
ft ft ft ft ft ft
ft ft ft ft ft ft

ft ft5.!: . . . ftft - 'ft ft ft ft ft ft
* - a ft ft ft ft
* 'A-ft ftc

a-ft ft ft ft ft

6 ft
.0

F

I

Figure 3-2. System C~pabi1ities Vs Micro Construct Matrix.

12



4.0 MAPPING A CONSTRUCTS TO ADA RTE ELEMENTS

Each Ada construct was mapped to the Ada RTE elements that would be

used to manage the implementation of that particular construct. A

description of each of the RTE elements is provided in Appendix C [ARTEWG

19881. The objective of this step was to determine which of the 11 RTE

elements were not important for the class of real-time embedded systems

being studied. The results were that every RTE element, except target

housekeeping, had an Ada construct directly mapped to it; therefore, it was

assumed that every RTE element was important except target housekeeping.

The next step was to determine which of the remaining 10 RTE elements were

the most important. A prioritization matrix (See Section 5.0) was

developed. The implementation of this matrix, contradicted the earlier

finding of this step that target housekeeping was not important. As a

result of the matrix implementation, target housekeeping was deemed to be

important; therefore it was considered in this study.

4.1 ADA CONSTRUCT VS. ADA RTE ELEMENTS MATRIX

The matrix that maps Ada macro constructs to the Ada RTE elements is

shown in Figure 4-1. The matrix that maps Ada micro constructs to the Ada

RTE elements is shown in Figure 4-2.

4.2 T E REASONING FOR MAPPING A PARTICULAR ADA CONSTRUCT TO A

PARTICULAR RTE ELEMENT

A discussion of each identified Ada construct and why it is mapped to

the particular RTE element is presented in the following subsections. One

element, target housekeeping, had no Ada constructs mapped to it.

4.2.1 Dynamic Memory Management

The micro construct that maps to dynamic memory management and the Ada

statement that allocates memory are indicated by the reserved word, NEW.

For deallocation, Ada performs its own 'garbage collection'. Memory can be

13



Ada macro Construct Va. Ada Runtime Envirwormnt ELensts
Mlacro Construct

Taxonomy Srack matrix Trigonometry
Mel tOX Queue Event Semaphores Push ManipuLation Funxct i ons;

Flag Pop

Dynamic 0 0
Memory

Processor 00
Management

Interrupt
Management

Time
Management

Exception
Management

Rendezvous 0 0
Managemnt

Task 00
Activities

Task 0 0
Termination

* !i0 Management

Commonly 0 0 0 0 0 0 0
Called
Sequnces

Target
ousekeepi ng

Figure 4-1. Ada Macro Constructs Vs. Ada Runcime Envirorneri
Elements.
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cleared deliberately by using unchecked deallocation. The dynamic memory

function can also raise a storage error, if a request for storage cannot be

fulfilled. The macro constructs that were mapped to the dynamic memory

function are queues and stacks. Both of these constructs dynamically

allocate or deallocate memory when they add or remove data from their

structure.

4.2.2 Processor Management

The execution and scheduling of the micro construct, task, is closely

related to the processor management function. The processor management

function implements the assignment of physical processors to tasks that are

logically executing. The micro construct, priority, is used to assist the

processor management function in determining which task is to be assigned to

the processor next. The macro constructs that were identified for processor

management are the mailbox and the semaphore. Both of these constructs

involve the use of tasks within their implementation.

4.2.3 Inter-uDt Manaement

The micro construct, interrupt, identified in Chapter 13 of the

Reference Manual for the Ada Prorramming Languare (ANSI/MIL-STD-1815A-1983],

is used for the interrupt management function. Interrupt is used to react

to asynchronous events. The address clause has been identified because it

is used toaccess a particular hardware address to initiate an interrupt.

4.4 Time Manazement

The two micro constructs used in the time management function are the

delay statement and the clock. Time management is the portion of the RTE

that supports the predefined package, Calender. The time management

function cooperates with the rendezvous management function to implement

timed entry calls and selective waits with delay alternatives.

16



4.2.5 Exception Management

The micro construct, exception, was identified for the exception

management function. Exception management implements the Ada semantics for

raising exceptions and determines if there is a matching handler for a

raised exception. The memory allocation/deallocation operation was also

identified. It is responsible for initiating a storage error exception if a

request to allocate memory cannot be performed.

4.2.6 Rendezvous Management Task Activation Task Termination

Rendezvous management, task activation, and task termination are

concerned with the micro construct, task. Rendezvous management implements

the semantics of the Ada rendezvous concept. Rendezvous management also

concerns itself with the micro construct, selection criteria, which is used

within a task. Task activation allows the dynamic creation of tasks. Task

termination includes the set of rules for completion, termination, and

abortion of tasks. The macro constructs mapped to these three elements are

the mailbox and the semaphore. These were identified because they use tasks

within their implementation. Tasks were chosen for their implementation

because of the need for concurrent processing in real-time systems.

4.2.7 Input/Output (I/O' Management Function

The micro construct identified for the I/O management function is the

address clause. The address clause is used for low-levcl I/O to communicate

wich physical devices.

&.2.8 Commonlv Called Code Seauences

Commonly called code is the catch-all for the remaining micro

constructs: procedure calls, function calls, assignment statements, and

control statements. All of the macro constructs were mapped to the commonly

called sequences because, if the constructs were included as a RTE

predefined subroutines, they would be included under this function.

17



4.2.9 Tarzet Housekeevinz Functions

No micro or macro constructs were mapped directly to the target

housekeeping functions.



5.0 STRUCTURE OF THE RTE ELEMENT PRIORITIZATION MAITRIX

The initial plan for this research called for mapping system

capabilities to the Ada constructs that would be used to implement them.

These constructs would then be mapped to the Ada RTE elements necessary to

support them. As Section 3.0 and 4.0 indicate, the diversity of Ada

statements necessary to implement particular characteristics of the class of

systems studied precluded using this approach to prioritize RTE elements. A

new strategy was devised. The requirements for the selected systems were

mapped to six basic features of real-time embedded systems. The 11 RTE

elements were then prioritized based on their importance in implementing the

six basic features. The key to this process was the use of a prioritization

matrix. The remainder of this section details the development of this

matrix and its implementation, i.e., prioritizing the RTE elements. The

columns of the matrix are the six basic features of real-time embedded

systems, and the rows are the 11 RTE elements.

5.1 THE SIX EMBEDDED COMPUTER SYSTEM (EC$) FEATURES

The Software Engineering Institute (SEI) determined that there are six

basic features of an embedded real-time system: time control, concurrent

control, I/O control, error handling, numeric computations, and internal

representation (Weiderman 1987A]. The six features were developed by SEI

from the definition, the general requirement, and the basic characteristics

of embedded computer systems.

To implement the prioritization matrix, each of the features has a

weight assigned to it. The weights represent the relative importance of an

ECS feature with respect to the class of systems being studied. Each of the

six features is given a weight, and the sum of the weights equal 100%. The

100% signifies an entire system within the class under study, and the

separate weights indicate the importance of each feature to any system in

that class of systems. The weights should not change as one moves from one

system to another, provided one looks at systems in only one class. If the

class of systems is changed, the weights will change.
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Determining the weights for the COMINT/ELINT class involved -wo steps.

The first was to understand which features were important and to begin to

quantify their importance by studying the system requirements. For this

study each requirement was mapped to the particular ECS feature to which it

pertained. This step resulted with the majority of the requirements mapped

to I/O control.

This first step gave an indication of which features were important and

a number from which the feature could be assigned a weight; however, it did

not take into account issues that effect the performance of a system. The

primary concerns with respect to system performance were concurrent control

and time control. The requirements may define the need for concurrency, but

they do not represent the solution, which is the algorithm that is used to

meet concurrency needs. Also, the requirements may define the time limits

imposed on the system, but they do not reflect the stringency of those

limits.

Step tvwo was to adjust the weights by studying the requirements and

determining their effect on the performance of the systems. Then, taking

into account the results of steps I and 2, the weights were subjectively

assigned to each ECS feature (see Table 5.1). A detailed discussion of the

distinct characteristics of COMINT/ELINT systems that lead to the assignment

of the final weights is presented in Appendix D.

Table 5-1

The Final Weights Assigned to the Features

FeaturesWeithts

Concurrent Control 20%
Time Control 20%
I/O Control 25%
Error Handling 10%
Numeric Computation l0%
Internal Representation 15%
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5.2 THE RTE ELemENTS

The rows of the prioritization matrix are the 11 RTE elements that were

obtained from the document -A Framework For Describing The Ada Runtime

Environment" (ARTEWG 19881. These RTE elements are the following:

Memory Management
Processor Management
Interrupt Management
Time Management
Exception Management
Rendezvous Management
Task Activation
Task Termination
I/O Management
Commonly Called Code Sequences
Target Housekeeping.

A detailed description of each RTE'element can be found in Appendix C.

The RTE elements make up the rows for the prioritization matrix. These

elements are assigned rates. The rates are for quantifying the effect that

an RTE element has on the performance of an ECS feature. Rating an element

against an ECS feature is independent of the class of systems of interest.

A rating scale is used to rate an element. The scale shown below was

used in this prioritization matrix. Following the scale, each

classification is defined.

Intrinsic - 9
Supportive - 5
Extrinsic - I

Intrinsic is defined as an RTE element that is foundational to the

performance of a particular feature.

Supportive is defined as an RTE element that, although not intrinsic,

has a role in the performance of a particular feature.
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Extrinsic is defined as an RTE element that has at most a minor role in

the performance of the particular feature.

Two documents were influential in the rating process: the ARTEWG

document, "A Framework for Describing Ada Runtime Environments" (ARTEWG

1988] and the SEI document, *Adafor Embedded Systems: Issues and Questions"

[Weiderman 1987A]. The rating process involved concentrating on one ECS

feature to determine whether an RTE element was intrinsic to the performance

of the feature. If it was, a '9' was entered into the square. If it was

not, the RTE element was determined to be either supportive or extrinsic. A

detailed discussion of each rating decision is presented in Appendix E.

5.3 APPLICATION OF THE RTE PRIORITIZATION MATRIX

After all the weights and rates had been determined the next step was

to multiply the weights by the rates. This step integrated all of the

components of the prioritization matrix: the ECS features, their relative

importance to the class of systems (the weight), and the RTE elements'

ratings.

The last step was to sum all the products in a given row. The result

was a prioritized list of RTE elements. The element with the highest total

for a row was the most critical element, and the element with the next

highest was the next most critical, and so on.

5.4 THE MATRIX APPLIED TO THE COMINT/ELINT CLASS

Figure 5.1 presents the prioritization matrix for COMINT/ELINT systems.
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Figure 5-1. Prioritization Matrix for COMINT/ELINT Systems.
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The following list is the prioritized list of RTE elements.

1. Memory management ......... .. 700

2. Time management .......... .. 660

3. I/O management .... ........ 40

4. Processor management ..... ... 560

5. Rendezvous management ....... 560

6. Exception management .. ..... 540

7. Interrupt management ..... ... 500

8. Task Activation .......... .. 380

9. Task Termination ........... 380

10. Target Housekeeping .......... 380

11. Commonly Called Code Sequences 280

This list of prioritized RTE elements is the driver for prioritizing groups

of benchmarks.
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6.0 PRIORIT1ZATION OF GROUPS OF BENCHLMARKS

There is a very large number of available RTE benchmarks. Most of

these benchmarks evaluate a single RTE element. Choosing which of the

available benchmarks would be the most relevant for a particular application

domain requires both prioritizing the RTE elements and mapping the existing

benchmarks to the RTE elements. Each element, therefore, has a group of

benchmarks mapped to it. Thus, it is these groups of benchmarks that have

been prioritized, not the individual benchmarks.

Section 5.0 detailed the prioritization of RTE elements for

COMINT/ELINT systems. This section provides the mapping of benchmarks to

RTE elements.

6.1 MAPPING BENCHMARKS TO RTE ELEMENTS

The majority of the benchmarks listed here came from the document
"Real-Time Performance Benchmarks for Ada" [Goel 19881. The other

benchmarks came from the Performance Issues Working Group (1988]. The Ada

Compiler Evaluation Capability (ACEC) (Leavitt 1988] benchmarks were not

included in this study because of disclosure restrictions. The format in

which the benchmarks are presented and the numbers assigned to benchmarks

were taken from their source. This has been done so that an individual can

go back to the source document to obtain more information about a specific

benchmark. The complete list of all the RTE elements and the prioritized

groups of benchmarks is found in Appendix F.

For the purpose of mapping benchmarks to the RTE elements, two elements

have been combined: task activation a&id task termination. This was done

because the benchmarks that measure these two elements are similar, and the

RTE elements have the same prioritization level.

TABLE 6-1 shows the priority order of the groups and the number of

benchmarks.
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TABLE 6-1

Priority of Benchmarks

of
XT lmnsbenchmarks

1. Memory Management 16
2. Time Management 4
3. I/O Management 1
4. Processor Management 5
5. Rendezvous Management 22
6. Exception Management 12
7. Interrupt Management 6
8. Task Activation/Termination 12
9. Target Housekeeping 0
10. Commonly Called Code Sequences 51

6.2 TYPES OF BENCHMARKS AND BENCHMARK DISTRIBUTION

To give the user a more thorough understanding of exactly what a

benchmark measures, e.g., memory space or response time, the benchmarks were

subdivided into types. It was determined that there were three types of

benchmarks: timing benchmarks, storage benchmarks, and if-and-how

benchmarks. The first two types measure the two critical resources of an

embedded system, i.e., response time and memory space. The third type, if-

and how benchmarks, address the need to determine how an RTE will respond

given a set of conditions. The benchmarks reveal choices compiler vendors

make when developing their RTE by determining if an RTE will implement a

specific feature or how an RTE implements something. For example, a

Processor Management benchmark, determine if user tasks are preemptive, will

reveal how scheduling strategies were implemented by a particular vendor.

If-and-how benchmarks will also be used to determine whether a particular

feature is provided by a vendor, e.g., determine if unchecked deallocation

is implemented.

6.2.1 Time Management Vs. Timing Benchmarks

Because of possible confusion, a distinction between time management

and timing benchmarks needs to be made. Benchmarks that measure aspects of
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time management pertain to Ada features that are time related, e.g., Measure

CLOCK function overhead, Measure CLOCK resolution. Timing benchmarks relate

to all those benchmarks that measure the length of time it takes for an

event to occur, e.g., overhead time, time to store data, etc. Thus, if one

is concerned with measuring the overall timing performance of an RTE, one

should use tim4ng benchmarks.

6.2.2 The Freauencv of Commonly Called Code Seguence Benchmarks

Commonly Called Code Sequences had the most benchmarks, 51, mapped to

it. ARTEWG describes this element as some what of a "catch-all" that

includes runtime routines in the classical sense, e.g., multi-word

arithmetic, block moves, and string operations. The types of benchmarks

included in this group were procedure and function calls, addition, and

anything that had code added (or removed, as with pragma PACK) by the

compiler. Also included in this category were "code sequences" written by

the user. While investigating the four systems, some code sequences

resurfaced, e.g., matrix manipulation, trig functions, and message passing

routines. All of these were put in the Commonly Called Code Sequences.

6.3 BENCHMARKS THAT NEED TO BE DEVELOPED

Once the benchmarks were mapped to the RTE elements, it became evident

that some elements are not adequately addressed by benchmarks. It was

determined that there is a need for additional benchmarks that evaluate some

RTE elements. In some instances this need is because of an overall lack of

benchmarks; in other instances, even with several benchmarks, others are

needed. The elements in need of additional benchmarks are I/O Management,

Processor Management, Target Housekeeping and Commonly Called Code

Sequences.

Benchmarks need to be developed for I/O Management. During the course

of the study, it was determined that for the COMINT/ELINT systems I/O is

critical to system performance. With only one benchmark, it is difficult to

determine an RTE's I/O performance.
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More benchmarks need to be developed for Processor Management.

Software developers must be able to determine courses of action taken by

tasks in order that they might develop reliable programs. More if-and-how

benchmarks would reveal to the software developer courses of actions

implemented by the RTE.

Target Housekeeping is "associated with the actions starting up and

terminating the execution environment of an Ada program" (ARTEUG 1988]. In

one of the systems studied there is a requirement for the system to be up

and running from a cold start in 10 minutes. This indicates that start up

is critical, and thus benchmarks are needed to measure this element.

Duripg the study of the four COMINT/ELINT systems, a number of
'algorithms' resurfaced. For example, each system's software solution

freq~ently used matrix manipulations, trig functions, message transmission

facilities, etc. Benchmarks for these algorithms' would be beneficial to

the individuals selecting the compiler and RTE. These additional benchmarks

would be mapped to the RTE element Commonly Called Code Sequences.
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7.0 COMPOSITE BENCHMARK

The majority of benchmarks available either test a specific element of

the RTE in isolation or exercise several elements in some unspecified

combination. What is needed is a single benchmark that tests elements of an

RTE while interacting in a manner that is consistent with their interaction

during actual system operation. Such a benchmark would evaluate an Ada RTE

by forcing the RTE to perform operations that would mirror the operations

performed by the system to be developed.

7.1 PURPOSE OF A COMPOSITE BENCHMARK

A composite benchmark is a model of the capabilities of a particular

class of systems. The purpose of a composite benchmark is to stress a

computer and its RTE to evaluate their ability to perform the capabilities

of a particular class of systems.

A composite benchmark allows a software developer to run one benchmark

that will give him a general idea of whether a particular RTE can perform

the capabilities of a given class of systems. A composite benchmark tests

each capability individually and, more importantly, the interaction among

the capabilities.

7.2 HOW TO DEVELOP A COMPOSITE BENCILAR

Developing a composite benchmark description for a particular class of

systems is not a simple task, but once developed the benchmark could be used

to aid in the selection of an RTE for any system in the given class. The

following three steps should be followed when developing composite

benchmarks:

1. Identify the common capabilities of the particular class of systems by
studying the requirements and functions of the systems within the
class.

2. Define and analyze each capability. The description should include all

functions common to the systems in the class. If a particular function
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is common to several *of the systems within the class, it should be
included in the description because the function may be performed in a
new system being developed.

3. Document the interactions and interfaces among the capabilities in a
format that facilitates computer program code development. When
writing the description, there needs to be continuous interaction
between the writer and computer programmer to ensure that the composite
benchmark will be accurate and understandable. The description writer
must have an in-depth technical knowledge of the class of systems being
studied.

7.3 COMPOSITE BENCMMARX FOR CQMINT/ELINT SYSTEMS

A description for a preliminary composite benchmark was developed in

this study for COMINT/ELINT systems. The goal has been to develop the idea

and an approach for developing a composite benchmark. Because of this, the

composite benchmark being developed is immature and needs to be addressed

more directly in the future. The preliminary composite benchmark models the

five capabilities of COMINT/ELINT systems: intercept, direction finding,

emitter location, analysis, and reporting. This description was given to

another company, TAMSCO, for code development.

It is assumed that the target audience of the composite benchmark

description is familiar with COMINT/ELINT systems. Terms that may not be

familiar to the target audience are defined.

7.4 COMPOSITE BENCHMAR.K DESCRIPTION FOR COMINT/ELINT SYSTEMS

The program performance specifications documentation and the program

design specifications documentation for the four selected COMINT/ELINT

systems (See Section 2.0) were studied to obtain the information used in the

description.
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7.4.1 The Intercept Capabilirv

The benchmark must perform automatic acquisition of unknown signals.

It will search frequency bands to find and catalog unknown signals. This

involves two different search capabilities: general search (GS) and

directed search (DS).

7.4.1.1 General Search (GS)

GS is a broad based sampling of frequency activity. It monitors a

number of frequency bands for emitter activity and reports the occurrence of

detected signals. This involves automatic environment mapping within

selected frequency bands with associated geographic areas of interest and

selected signal types. The benchmark will specify the frequency bands,

exclusion of frequencies, and signal class/type.

A GS plan will be developed. It will include a set of data parameters:

start frequency, stop frequency, frequency step size, receiver bandwidth

size, and signal class/type. The plan also includes exclusion frequencies

that are specified to inhibit the reporting of signal activity at specified

frequencies. The benchmark will step through frequencies defined in the GS

plan at a rate of at least 50 frequencies per second.

An activity table will be maintained. The GS activity table will

contain entries for the most recent CS and manual direction finding (DF)

that the system performed. The parameters stored in the activity table

inclide the time of first and last intercept and a location estimate for

each entry for which DFs have been taken. The emitter location can be

determined automatically in response to GS activity in specified frequency

bands.

7.4.1.2 Directed Search (DS)

DS is the automatic intercept of specific known signals. It involves

automatic environment sampling at discrete frequencies, and it revisits
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known emitters. The benchmark can specify a maximum of 20 frequencies for

automatic activity detection.

The DS operation will monitor a list of individual frequencies

specified in a DS plan and report newly active signals. The DS plan

consists of the following: frequencies of interest, priorities associated

with each frequency (normal, priority, monitor), the number of automatic DF

requests to be made for each frequency, and s'.mulate an operator's position

being alerted when an intercept is detected by a DS. Some frequencies will

be tagged for special handling such as increased sampling rate, prioritized

audio monitoring, prioritized audio recording, and geographic screening.

The DS plan contains at least 125 entries, including 20 priority DS entries

and two monitor DS entries.

An activity table will be maintained for each specified frequency. The

table includes an activity counter for each signal detected and the time of

the last intercept.

Each specified frequency will have an associated priority assigned to

it that is used to guarantee minimum revisit intervals. The software will

determine the best DS frequency co be examined while taking into account the

relative priorities of the frequencies. The software steps through the

frequencies in the DS plan at a minimum rate of 50 entries per second.

Monitor DS (highest priority) entries have a revisit time interval of no

more than 0.1 second. Priority DS entries have a revisit time interval of

no more than 0.5 second. Normal DS (lowest priority) entries have a revisit

time interval as determined by the number of entries in the DS plan.

Automatic signal analysis will be specified for a specific frequency and the

results screened according to signal type/modulation.

7.4.2 Direction Finding (DF)

The benchmark will make various measurements that will provide an

indication of the direction from which a frequency signal originated. The

measurement process consists of several sequentially executed tasks that
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conclude with the generation of a Line of Position (LOP). DF processing can

be either automatically initiated or manually requested. The benchmark will

accept input data from the DF related equipment and the magnetic field

converter via an analog-to-digital converter.

An LOP consists of two pieces of data: a Line of Bearing (LOB) and the

location of the receiving measurement equipment. An LOB is a line drawn

from the measurement platform location at the angle (relative to north) that

a signal rrived. When a LOB becomes referenced to a position (platform

location at the time of the bearing), it becomes an LOP. The benchmark will

compute and format an LOB message for a given DF request within 2.25 seconds

of receipt of the request. The benchmark will store the LOB data from DSs,

DFs, and-manual DFs in the DF database segmented according to frequency.

The benchmark will schedule DF commands based on the following DF

request priorities: manual DF, monitor DS, priority DS, normal DS, and GS.

A local queue of pending DF requests is maintained. The benchmark will also

allow voice and data activity related to the intercepted frequencies to be

recorded.

7.4.3 Emitter Location

The benchmark will compute the location of an emitter signal. The

benchmark will use the LOPs to compute the best estimate of the emitter

location. Upon receipt of LOPs from a DF request initiated by DS or by the

operator, the benchmark will attempt to associate the LOP set with an

existing FIX location in a file. If an association is found, the LOP set is

assigned to the corresponding FIX; otherwise, the benchmark attempts to

generate an emitter location estimate. If a reasonable emitter location

estimate cannot be determined, the LOP set remains unassigned. The

benchmark will be capable of computing and displaying a FIX from five LOPs

within 300 milliseconds. Provisions will be made for recognizing multiple

emitters sharing common frequencies.

33



7.4.4 Analysis

The benchmark will allow automatic signal analysis, or it will simulate

an operator manually requesting a signal analysis at the frequency he is

monitoring with his intercept receiver. The following signal analysis data

results are to be displayed: detected frequency, signal type or modulation,

and audio classification. The signal classification section processes

Sigaal Classification Tips (SCT) at a sustained rates of up to 20 per second

without losing data. Then the benchmark will compare the results of signal

classification to the acceptable list of types or modulations for the SCT.

7.4.5 Reportine

The benchmark will allow the simulation of an operator viewing DF data

while generating a report. The data specification parameters allow the

operator to view DF data associated with a single frequency or a frequency

range, a specific time span within which the data was collected, or a

specific geographical area. These data specification parameters are to be

included in any combination.

The benchmark will generate reports semi-automatically for transmission

by a reporting link. The software provides a means to facilitate the

generation of reports and messages via prompts and displayed templates. The

software formats the report generated into a form acceptable for

transmission over the Reporting Data Link Subsystem (RDLS).
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8.0 COMPILER AND RTE SELECTION PROCESS

The final step of this study was to determine how the benchmarks should

be used when selecting an RTE. It was determined that choosing an RTE is a

three-step process. The first step is to eliminate all RTEs that cannot

perform beyond a minimum required threshold in each area critical to system
performance. The second step is to begin with the set of RTEs that satisfy

the minimum threshold requirements and select the small set of RTEs that

performs best in the areas critical to system performance. The final step

is to compare the costs, the vendor support provided, and any ocher

mitigating circumstances for the final selection of an RTE or compiler. The

first two steps involve the use of benchmarks.

The composite benchmark is to be used to test the minimum threshold of
RTEs. This means the developer would only have to run one benchmark to
eliminate all RTEs not suitable for his particular class of system. Then

the other benchmarks would be used to test the remaining RTEs to see which
RTEs perform the best in the areas critical to system performance. Because
the RTE elements are prioritized, the critical areas and the benchmarks that

measure those areas are known.

At this time the development of the composite benchmark is still in the

preliminary phase. Until the composite benchmark matures, only the

prioritized list of groups of benchmarks can be used to test RTEs.
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9.0 SUMMARY AND CONCLUSIONS

The nbjecrive of this study was to provide software developers with

guidance in the selection of a compiler and its RTE to ensure all the timing

and storage requirements of real-time embedded systems, specifically

COMINT/ELINT systems, are met.

To provide this guidance required the identification of Ada RTE

features of interest for real-time systems. This involved two steps:

first, the Ada runtime features that are important for real-time embedded

systems were established; second, evaluation criteria to evaluate the

features were determined. To determine the important Ada runtime features,

the Ada RTE elements were prioritized. To evaluate the Ada runcime

features, current benchmarks were prioritized, and new benchmarks were

proposed.

Figure 9-1 provides the results of each step that was undertaken to

prioritize benchmarks. In the first step, COMINT/ELINT systems were chosen

to be studied, and the capabilities common to COMINT/ELINT systems were

identified. Four systems were chosen for in-depth study because they were

representative of all COMINT/ELINT systems. The second step identified what

Ada constructs would be used to implement each capability. The third step

identified which RTE element would be used to support the implementation of

each identified Ada construct. The forth step prioritized the Ada RTE

elements. The prioritization was done by applying a prioritization matrix

to the RTE elements. It is recommended that when a developer prioritizes

RTE elements and benchmarks for a particular class of systems, the developer

begin by applying the prioritization matrix. The prioritization matrix was

originally developed for COMINT/ELINT systems, but it can easily be modified

to be used with other classes of systems. The final step prioritized

benchmarks. The benchmarks mapped to a particular RTE element inherit the

priority of that element. This study also presented the idea of a composite

benchmark, which is one benchmark that will give the soft-ware developer a

general idea whether a particular RTE can perform the capabilities of a
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particular class of systems. A description for a composite benchmark was

developed fcr COMINT/ELINT systems.

Benchmarks are used to identify RTEs and compilers that are best suited

for a particular application domain by testing each candidate RTE to ensure

all system requirements can be met. The results of this study, specifically

the prioritization matrix, provide a process that a developer can use to

prioritize benchmarks. If the critical elements of an RTE and compiler are

not adequately evaluated, the selected RTE could be crippling for a real-

time embedded system.
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APPENDIX A

REAL-TIME FUNCTION DESCRI.'TIONS

This appendix contains the descriptions of the real-time functions

introduced in Section 2.0. The functions described are those in TABLE 2-1.

Also included is the list of functions from which the real-time functions

were identified.

function descriptions

real-time characteristic: monitor

receiver conversion of incoming electromagnetic waves into digital
form

reception - action of receiving electromagnetic signals

target detection - finding the presence or existence of a moving target

real-time characteristic: analyze

direction finding - process of making measurements that indicate the
direction from which a signal originated

analysis - interpretation and classification of signals

location - computing the location of a signal's origin

real-time characteristic: respond

transmitter - sending results of analysis to designated parties

countermeasure - after hostile missile detection, actions taken to
counter its original intent

antenna controller - guiding the antenna to obtain the most efficient
reception
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APPENDIX B

HOW ADA CONSTRUCTS WERE IDENTIFIED

The following is the discussion on how Ada constructs were identified.

For each system capability (intercept, direction finding, analysis, emitter

location, and reporting) the system operations that perform particular

capabilities are identified. Then, the Ada constructs that perform a

particular operation are identified along with an example of how the

construct is used.

Due to the amount of effort required for an in-depth analysis to obtain

base line Ada constructs, one IEW COMINT/ELINT system was originally

studied. These base line constructs were then validated by comparing them

to other IEW COMINT/ELINT systems.

Because of the similarities between direction finding and emitter

location, these two capabilities were combined.

C.1 Intercept

Intercept's major function is to determine signal presence.

The critical constructs used for interception are listed with

explanations of how it would be used.

Micro Constructs

address clause : used whenever an interrupt is used allocate needed
allocation : memory for incoming data to tell that a message is
interrupt : waiting to be sent and to indicate that a message is

coming from another CPU
tasks : used to continually poll the interface board

Macro Constructs

flags : indicate the following: buffer in use, buffer is full,
CPU is using another resource

queue : when intercept is detected the data is put into a
queue going to direction finding
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C.2 Direction Finding and Emitter Location

Direction Findinz (DF)

The major operations involved in DF are scheduling DF requests,

removing requests that have not been processed in a set amount of time, and

reporting the DF response to the system computer.

The critical constructs used in the DF were listed with examples of how

they would be used.

Micro Constructs

clock : for a timeout for a specific period of time
delay : used to initiate the timeout
exception : raised if audio correlation cannot be done because

access is blocked
interrupt : interrupt the audio correlator to send message to

system computer
priority : to establish priorities for direction finding requests

Macro Constructs

queue : the DF output is stored in queues how the DF requests
stacks : are stored determine if audio correlation is free
semaphore

The DF Algorithm is responsible for starting the data collection,

cycling through the data collected, accumulating the data in the case of DF

requests, and calculating the Line of Bearing (LOB).

The critical constructs used in the DF Algorithm will be listed with

examples of how it would be used.

Micro Constructs

allocation after data is determined to be valid, memory is
allocated to store the data

B-2



delay used to allow an analog device to "settle" before
taking baseline measurement

exceptions : a message is generated to indicate an error
interrupts : used to indicate the system has completed the current

command

Macro Constructs

flag : indicate a process has occurred messages sent are
queue : queued so they can be read when ready

Navization System

The Navigation System is responsible for reading navigational

information from the Inertial Navigation System (INS). This is used to

determine the emitter location.

The critical constructs used in the Navigation System were listed with

examples of how they would be used.

Micro Constructs

control state : decodes the commands and calls the appropriate
subroutine to execute the command

procedure : calling the subroutine moving date problem with
assignment : updating the system
exception

Macro Construct

event flag was identified to indicate that data has been stored
in the data buffer from the incoming serial port

C.3 Analysis

System Administrators

The System Administrators serve as the controlling CPUs. They authorize

the analysis CPUs to begin processing and control the interfaces between

computers. The System Administrators control link handling, scheduling,

directed and general search, and list handling.
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The critical constructs used in the Administrators were listed w-ch

examples of how they would be used.

Micro Constructs

For the Ground Digital Administrator every micro construct was identified

because it performs such a large variety of functions including scheduling,

controlling and memory allocation. Several examples of the micro constructs

are presented.

tasks : used for continuous looping to check the response
queue for messages received

clock : requesting status information at regular intervals
delay : reschedules itself using timeouts allocate memory for
memory alloc. : received messages interrupting the system computer
interrupt : for incoming direction finding data

Macro Constructs

mailbox : used to send messages to the system computer queue
queue : messages to be sent up the link to reserve the
semaphore : output link queue to indicate a message has been
event flag : received

Sijnal Classification and Reconition (SCAR) Analysis

The major functions involved in SCAR analysis include CPU system

initialization, SCAR analysis control, SCAR calibration calculations, SCAR

analysis calculations, SCAR discriminant calculation, and SCAR feature

vector calculations.

The critical constructs used in the SCAR Analysis will be listed with

examples of how they would be used.

Micro Constructs

assignment assign the results of mathematical calculations
interrupt SCAR CPU interrupted to receive message from the

administrator
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function : calling mathematical functions

Macro Construct

mailbox to indirectly pass messages queue SCAR requests lock
queue the database from being updated
semaphore -

SCAR Mathematical Analysis Functions

These are routines that perform mathematical functions necessary to

accomplish SCAR analysis.

Two micro constructs were identified to perform the mathematica'.

calculations: functions and the assignment s:atement.

Macro Construct

matrix
manipulation involves dividing, multiplying. adding and subtracting

matrices of data

Trigonometry
functions : solving SINE and COSINE functions

Analvsis Library Routines

The library routines consist of functions needed by many different

routines. The functions include the memory management routines, inter-CPU

message passing, a random number generator, a queue flushing routine, the

accountability number generator, a frequency offset adjuster, and directed

search entry address calculations.

The critical constructs used in the Analysis Library Routines will be

listed with examples of how they would be used.

B-5



Micro Construc;s

interrupt interrupt to receive a message raised when message
exception is having trouble being passed

Macro Constructs

queue to queue messages sent down the link used to
mailbox indirectly send messages indicate the mailbox is in
semaphore use indicate a message has been read
event flag

C.4 Reporting

Uplink Multiplexer Software

The -uplink multiplexer provides for communication. Memory space is

allocated for databases and scratch pad memory. I/O ports are initialized,

and the microprocessor instructions and memory (RAM and ROM) are verified.

The critical constructs used in the Uplink Multiplexer Software will be

listed with exarples of how they would be used.

Micro Constructs

dynamic memory : create memory space for the database if memory cannot
exception : be allocated to interrupt the Receiver Control Unit
interrupt

Macro Constructs

event flag to indicate the receipt of data how the data is stored
stack : in memory

IntercoM/Snectrum Displav (IC/SD)

The IC/SD processor is responsible for controlling the Integrated

Processing Facility Intercom System and for providing the spectrum display.
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The critical constructs used in the IC/SD were listed with examples of

how they would be used.

Micro Construct

tasks : used in a polling loop waiting for activity
procedures : calling the appropriate routine based on what was

received from the polling loop
exception : raised if there is a failure in passing data
functions : functions called for testing

Macro Construct

event flag : is used to indicate that data has been received.
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APPENDIX C

ADA RUNTIME ENVIRONMENT DEFINITION

ARTEWG defines an Ada RTE as the set of all capabilities provided by

three basic elements: predefined subroutines, abstract data structures, and

code sequences.

Predefined Subroutines

The predefined subroutines are used by the compiler generated code to

support features of the Ada language that the Ada implementor (vendor) has

chosen not to directly represent in generated code. The set of predefined

subroutines for a generated Ada program is called the Runtime System for

that particulaz program. These predefined subroutines are chosen from the

Runtime Libraries.

Abstract Data Struc&ure

-An abstract data structurg is a grouping of related data items in

memory. The items in a data structure can be processed individually,

although some operations may be performed cn the structure as a whole.

Code Seauences

Code sequences are commonly used, repetitious lines of code adopted for

reliability, interoperability, and suppression of unnecessary

Lmplementation details. Code sequences are heavily affected by the selected

definitions of predefined types and representations used for addressing

objects. Related issues for code sequences include whether there is one or

multiple areas for package (i.e., global) data, what mechanism for uplevel

referencing of objects is (e.g., static link or display) and what the

subprogram call sequences and parameter passing mechanism are determined to

be.
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The partitioning of functionalities between code sequences and runtime

subroutines presents another set of issues that must be resolved in the

runtime model. The decisions regarding this partitioning are influenced by

the capabilities and limitations of the target configuration (e.g., how much

of the tasking constructs are handled by inline code versus calls to

routines). The best decision regarding allocation to either code or runtime

routines is highly situational and must be based upon the particular target

architecture and performance goals.

The runtime model resulting from the decisions described above defines

the requirements of the design for the RTE components listed in the

taxonomy. The following taxonomy describes a list of 11 functions that can

be expected in the runtime libraries for Ada implementation.

DMcrnie Memory

The dynamic memory management function is the part of the RTE that

handles the allocation and deallocation of storage at runcime. If a request

for storage cannot be fulfilled a storage error will be raised.

Processor Management

The processor management function implements the assignment of physical

processors to tasks that are "logically executing." The processor

management function is invoked by other components of the RTE to block and

unblock tasks. It maintains a list of task priorities to determine which

task should be assigned to a processor.

Interrupt Management

The interrupt management function implements the interrupts for

asynchronous events in the underlying competing resource. It is not only

responsible for initializing the interrupt mechanism in the underlying

resource, but is also responsible for resetting the mechanism after the

interrupt has occurred.
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Time Manazement

The time management function is the portion of the RTE that supports

the predefined package, Calender. This includes the support for the clock

function and delay statement.

Exception Management

The exception management function implements the Ada semantics for

exception handling. It determines whether there is a matching handler for

the exception. If one is present it transfers control to the handler. If no

matching, handler is available it invokes the task termination function to

terminate the task at hand or to terminate the main program. Both

7redefined and user-defined Ada exceptions may be raised.

Rendezvous Manaement

The rendezvous management function implements the semantics of the Ada

rendezvous model. It monitors which tasks are blocked because they are

waiting to rendezvous with other tasks; and it determines the exact

circumstances of these wait states.

Task Activation

The Ada Language allows the dynamic creation of tasks. The task

activation function is invoked by the creator of a new task in order to

start the new tasks activation.

Task Termination

The task termination function contains the set of rules for the

completion, termination and abortion of tasks.
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I/0 Manatement:

This part of the Ada runtime environment supports input and output,

including all of the functions that support predefined packages from Chapter

14 of the Ada Reference Manual.

Commonly Called Seauences

This category is a "catch all." It includes runtime routines in the

classical sense, commonly called sequences of code.

Target Housekeeping Functions

Target Housekeeping functions are the parts of the Ada RTE that are

responsible for starting up and terminating the execution environment of an

Ada program.
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APPENDIX D

WEIGHTING OF ECS FEATURES

1/0 Control

COMINT/ELINT systems have strong dependence on input and output. The

major aspect of COHINT/ELINT systems is the interception and monitoring of

either electronic or communications signals. The systems need to enable and

disable devices, handle device interrupts, and be able to move data to and

from data registers. I/O control is the highest weighted criteria in the

decision matrix because of the number of requirements mapped to it and

because the COMINT/ELINT Systems most important capability, Intercept,

heavily involves I/0. Intercept is the most important capability since if

no signals are found and intercepted, the system is useless.

Another major part of COMINT/ELINT I/O is the communications between

CPUs. All COMINT/ELINT Systems are comprised of multiple CPUs ranging from

microprocessor chips to large main frames (Perkin Elmer). There is

extensive I/0 between the CPU's. For example, consider the following:

Three microprocessors located on an airplane interact to perform

interceptions, direction finding, and signal analysis. Then the intercepted

signal and the analysis is sent to three microprocessors on the ground

through one microprocessor dedicated for multiplex communication. On the

ground the signal is further analyzed for location and characteristics.

Then the signal is sent to a main frame computer for continued analysis by

an operator and for generation of reports. For reporting the analyzed data

to commands in the field, the information is sent back to the airplane for

dissemination. This simple explanation of a complex process of I/0 provides

an idea of how extensively I/O between CPUs is used within COMINT/ELINT

Systems.

Timinz Control

Strict timing demands must be satisfied for COMINT/ELINT systems. The

software requirements specify exactly what timing requirements must be met.
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For example, in Trailblazer B the software must be capable of computing and

displaying a FIX (location) from 5 lines of bearing within 300 milliseconds.

If this and other timing constraints are not met, valuable data is lost or

not analyzed. This valuable data cannot be recovered, but the system does

not completely fail if a timing requirement is not met. Because of this,

the timing requirements are strict but not critical. The timing control

feature is the second highest feature.

Concurrent Control

One requirement for real-time embedded computer system is parallelism.

COMINT/ELINT systems depend heavily on concurrent control. Concurrent

processing must be used to meet the strict timing requirements needed to

intercept, analyze, and disseminate COMINT/ELINT signals. Concurrent

processing dramatically increases the speed at which data can be

intercepted, analyzed and disseminated. Concurrent control allows for two

capabilities, i.e., intercept and DF, to be performed concurrently. For

example, one task can be dedicated to the interception and monitoring of

signals on a particular frequency. This task will continually monitor the

frequency without interruption, while another task can be dedicated to

determine the direction from which the signal originated. If there were no

concurrent processing the monitoring of a signal would have to be

interrupted for a period of time while the direction was being determined.

With this, naluable u.ication nr elettronic data could be lost. Another

example is one task can be dynamically created to monitor each frequency

from which a signal has been intercepted. This allows for the monitoring of

multiple frequencies. When a frequency no longer has any activity, a task

can be terminated.

Because concurrent control must be used to meet the strict timing

requirements, the weighting of th .e to features are the same.
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Internal Representation

COKINT/ELINT systems use low-level interfaces to communicate with hard

wire devices (receiver control units) which perform the actual interception

of the signals. This involves the conversion of the data signal from analog

to digital. To store incoming data, efficient data representation in terms

of the underlying computer architecture is needed. These involve the use of

tightly packed data structures, dedicated memory locations, and special-

purpose registers [Weiderman 1987A].

The highest weighted feature is I/O control. All the data that is

intercepted must be stored in an efficient manner. This involves strict

control of how and where the data is to be stored. This involves

determining the amount of memory to be allocated for a particular data

object and also the amount of memory to be allocated for a dynamically

created task.

Internal Representation is weighted higher then error handling and

numeric computations, because COMINT/ELINT systems rely heavily on I/0

control.

Error Handline -

Real-time embedded software must be reliable, where reliability is

typically measured in terms of the system's availability, the mean time

between failures, the meantime to repair and the frequency of failure. The

normal approach developers have taken in order to meet reliability

requirements is to design the Real-time system in such a manner that it can

recover from its errors. Real-time software must be able to both detect and

subsequently recover from errors fiTeLderman 1987A].

Most COMINT/ELINT system have built in test equipment (BITE). BITE

tests all the five capabilities each time before a system is activated for

actual use. BITE can also be activated at any time during actual system
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operation. Most errors should be detected before the system is in actual

use so error handling is still important but not critical.

Numeric Computations

COMINT/ELINT systems rely on complex mathematical algorithms for

analyzing, direction finding, and determining emitter location. The major

importance is the time it takes to perform the algorithms and also the

representation and implementation of the physical quantities (float point or

fixed point). Numeric computations and error handling are important

features, but for COMINT/ELINT systems they are the lowest weighted

features.
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APPENDIX E

RATING EACH RTE ELEMENT

The following is a discussion of each RTE element and its effect on the

performance of each ECS feature. This section is divided by ECS feature and

within each feature is a listing of each RTE element, its rating, and a brief

discussion of how a particular rate was chosen.
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Concurrent Control

RT lml ai Discussion

Memory Management 9 Memory management is intrinsic because of the
need to store data during context switching.
Also, there may be a need to dynamically
create tasks in real-time embedded systems.

Processor Management 9 Processor management is intrinsic because it
implements the assignment of physical
processors to task that are logically
executing when running parallel operations.

Interrupt Management 5 Interrupt management is a supportive because
if the address clause for task entries are
implemented, the interrupt management element
utilizes the rendezvous management element to
realize interrupt rendezvous [ARTWG87]. It is
not intrinsic because interrupt rendezvous do
not always have to be used.

Time Management 9 It is intrinsic because of the extensive use
of time entry calls (delay statement) in real-
time embedded systems.

Exception Management 5 A fault can be raised anytime during system
execution. It is highly recommended but not
mandatory that some type of exception
management be used.

Rendezvous Management 9 The Rendezvous of tasks is intrinsic for
concurrent concrol

Task Activation 9 Task Activation is intrinsic for concurrent
control.

Task Termination 9 Task Termination is intrinsic for concurrent
control.

I/O Management 5 1/0 Management is supportive because tasks
can, but do not have to, be used during inpu:
and output.

Commonly Called Code
Sequences (CCCS) 1 CCCS plays a minor role in concurrent control.

Target Housekeeping 1 Target Housekeeping plays a minor role in
concurrent control.
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Time Control

Memory Management 5 The time it takes to dynamically create
variables or tasks may or may not be time
critical.

Processor Management 9 The time in which a task is given sole use of
the processor (in a uniprocessor system) is
critical.

Interrupt Management 5 Interrupts from hardware timers may need to be
passed on to the time management element to
determine the length of the interrupt. This
time period may or may not be time critical.

Time Management 9 Time Management is intrinsic because of the
use of the package calendar and the delay
statement in meeting timing constraints.

Exception Management 5 A fault can be raised anytime during system
execution. It is highly recommended, but not
mandatory, that some type of exception
management be used.

Rendezvous Management 9 Time overhead to perform a rendezvous must be
considered when trying to meet strict timing
constraints.

Task Termination 5 The time it takes to terminate a task may or
may not be critical. Task termination plays a
role in time control, but it is not inherent.

Task Activation 5 The time it takes to activate a task may or
may not be critical. Task activation plays a
role in time control, but it is not inherent.

I/O Management 9 I/O in real-time embedded systems is subject
to strict timing constraints. I/0 management
is intrinsic to time control.

CCCS 1 CCCS plays a minor role in time control.

Target Housekeeping 5 The time it takes to start up and terminate a
computer system may be important for some
real-time embedded systems.
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I/O Control

RElemt Ratinz Discussion

Memory Management 9 During the input or output of data, memory is
always being allocated or deallocated.

Processor Management 5 Ada tasks can be used to monitor asynchronous
input. If they are, the processor management
element will play a role.

Interrupt Management 9 Interrupt management is intrinsic because low-
level asynchronous I/0 operations to and from
hardware devices are interrupt driven.

Exception Management 5 A fault can be raised anytime during system
execution. It is highly recommended but not
mandatory that some type of exception
management be used.

Rendezvous Management 5 Ada tasks can be used to monitor asynchronous
input. If they are, the rendezvous management
element will play a role.

Task Activation I Task activation plays a minor role in I/O
management.

Task Termination 1 Task Termination plays a minor role for I/0
management.

I/O Management 9 The I/O Management element is intrinsic for
I/O control.

CCCS 1 CCCS plays a minor role in I/0 management.

Target Housekeeping 1 Target Housekeeping plays a minor role in 1/0
control.
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Error Handling

Raing Discussion

Memory Management 5 A fault can be raised anytime during system
execution. It is highly recommended, but not
mandatory, that some type of exception
management be used.

Processor Management 5 A fault can be raised anytime during system
execution. It is highly recommended, but not
mandatory, that some type of exception
management be used.

Interrupt Management 5 A fault can be raised anytime during system
execution. It is highly recommended, but not
mandatory, that some type of exception
management be used.

Time Management 5 A fault can be raised anytime during system
execution. It is highly recommended, but not
mandatory, that some t",e of exception
management be used.

Exception Management 9 Exception management is intrinsic to the
performance of error handling in a embedded
computer system.

Rendezvous Management 5 A fault can be raised anytime during system
execution. It is highly recommended, but not
mandatory, that some type of exception
management be used.

Task Activation 5 A fault can be raised anytime during system
execution. It is highly recommended, but not
mandatory, that some type of exception
management be used.

Task Termination 5 A fault can be raised anytime during system
execution. It is highly recommended, but not
mandatory, that some type of exception
management be used.

I/0 Management 5 A fault can be raised anytime during system
execution. It is highly recommended, but not
mandatory, that some type of exception
management be used.
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CCCS 5 A fault can be raised anytime during system
execution. It is highly recommended, but not
mandatory, that some type of exception
management be used.

Target Housekeeping 5 A fault can be raised anytime during system
execution. It is highly recommended, but not
mandatory, that some type of exception
management be used.
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Numeric Computations

RTElemntsa Rating Discusio~n

Memory Management 1 Memory management plays a minor role in
numeric computations.

Processor Management 1 Processor management plays a minor little role
in numeric computations.

Interrupt Management 1 Interrupt management plays a minor role in
numeric computations.

Time Management 1 Time management plays a minor role in numeric
computations.

Exception Management 5 A fault can be raised anytime during system
execution. It is highly recommended, but not
mandatory, that some type of exception
management be used.

Rendezvous Management 1 Rendezvous management plays a minor role in
numeric computations.

Task Activation 1 Task activation plays a minor role in numeric
computations.

Task Termination 1 Task Termination plays a minor role in numeric
computations.

I/O Management 1 I/O Management plays a minor role in numeric
computations.

CCCS 9 CCCS is intrinsic, because it includes runtime
routine for multi-word arithmetic functions.

Target Housekeeping 5 Target housekeeping plays a role in numeric
computations, because initial values of
variable can be done during system

initialization.
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Internal Representation

RElement Ratina Discussion

memory Management 9 Embedded computer systems must have strong
control over dynamic storage and how variables
and tasks are represented in storage.

Processor Management 1 Processor management plays a minor role in
internal representation

Interrupt Management 1 Interrupt management plays a minor role in
internal representation.

Time Management I Time management plays a minor role in internal
representation.

Error Management 5 A fault can be raised anytime during system
execution. It is highly recommended, but not
mandatory, that some type of exception
management be used.

Rendezvous Management 1 Rendezvous management plays a minor role in
internal representation.

Task Activation 1 Task activation plays a minor role in internal
representation.

Task Termination 1 Task termination plays a minor role in
internal representation.

I/0 Management 5 I/O management plays a role in internal
representation, because how data is to be
stored after it is input may be important in a
real-time system in which storage is at a
premium.

CCCS 5 CCCS plays a role in internal representation,
because how the interim results of multi-word
arithmetic problems are stored are important
in a real-time embedded system in which
storage is at a premium.

Target Housekeeping 9 Target Housekeeping is intrinsic for internal
representation, because the declaration of
variables (which determines how :hey are to be
represented in storage) is done during system
initialization.
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APPENDIX F

PRIORITIZED BENCHMARK LIST

The following is the list of benchmarks grouped by the RTE element they

measure. The order of the groups is a result of prioritizing the RTE elements.

The benchmarks that measure the highest priority element are in the first group

and the benchmarks that measure the second highest priority element are in the

second group, and so on.

Each benchmark has a corresponding number. This number was taken directly

from a benchmark's source which allows the reader to return to the source and

obtain more information about a particular benchmark. Those benchmarks with

identifidation numbers consisting of all digits and decimal points are from EGOEL

1988]. The others, whose identification numbers start with a letter and contain

several zeros and end with a nonzero digit, are from [PIWG 1988].
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MEMORY MANAGEMENT
MEMORY

4.1.1.1 Determine if task space is deallocated on return from a procedure
(when a task that has been allocated via the new operator when
that procedure terminates).

4.1.1.7 The attributes SIZE and STORAGE-SIZE provide information about
storage assignments for task objects and types. These attributes
can also be used to specify an exact size (amount of storage) to
be associated with a task type. It is important to know how much
storage a task object is allocated. Also how is runtime storage
allocated for tasks? heap? stack?

4.3.1 Determine STORAGE ERROR threshold.

4.3.2 Determine if Garbage collection is performed on the fly.

4.3.3 Determine if Garbage collection is performed on scope exi:. In
tnis test an access type to an array of 10000 integers is declared
in a procedure called from the main program. This subprogram is
called repeatedly and if storage is not being automatically
deallocated upon scope exit, STORAGE ERROR will again be raised.
If garbage collection is implicitly called, no STORAGE-ERROR
exception will be raised.

4.1.1.2 Determine if tasks that are allocated dynamically by the execution
of a allocator do not have their space reclaimed upon termination
when access type is declared in a library unit or outermost scope.

TIME

D00000! Dynamic array allocation, use and deallocation time. Dynamic
array elaboration, 1000 integers in a procedure, get space and
free it in the procedure on each call.

D00000.2 Dynamic array elaboration and initialization time allocation,
initialization, use and deallocation 1000 integers initialized by
others equal to 1.

D000003 Dynamic record allocation, and deallocation time elaborating,
allocating and deallocating record containing a dynamic array of
1000 integers.

D000004 Dynamic record allocation, and deallocation time elaborating,
initializing by (DYNAMIC-SIZE, (others equal to 1)) record
containing a dynamic array of 1000 integers.
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3.5.4.1 Measure time for allocating storage known at compile time.

3.5.4.2 Measure Time for Allocating Variable Amount of Storage

3.5.4.3 Memory Allocation via the New Allocator

3.5.4.4 Memory Allocation via the New Allocator when there are active
tasks in the system

3.5.4.5 Determine the effect on time required for dynamic memory
allocation when memory is continuously allocated without being
freed.

IF-AND-HOW

4.3.4 Determine if Unchecked Deallocation is implemented.
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TIME MANAGEMENT

TIME

3.4.2 Measure the actual delay time vs the specified delay time.

3.9.1.1 Measure CLOCK function overhead.

3.10.1.1 Measure the overhead associated with a call to and return from the
"+" and "-w functions provided in the package CALENDAR.

IF-AND-HOW

3.9.1.2 Measure CLOCK resolution.
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I/O MANAGEMENT

IF-AND-HOW

3.13.1.1 Determine if true asynchronous I/O is implemented. Benchmark
Design: In the main procedure, three separate tasks are
activated. Task 1 is the highest priority task, task 2 is medium
priority, and task 3 is a low priority task. Task 1 makes a
request from an I/O device, then task 2 makes a request to the
same I/0 device. Both task 1 and task 2 should be suspended and
task 3 should be executing at this point.
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PROCESSOR MANAGEMENT

TIME

4.1.3.3 Determine if a low priority task activation could result in a very
long suspension of a high priority task.

IF-AND-HOW

3.4.1 Determine if user tasks are preemptive. Does a completed delay
interrupt the currently executing task to allow the schedule to
select the highest priority tasks.

4.2.1 , Determine the method of sharing the processor within each priority
to prevent starvation of any single task.

4.2.2 Does delay 0.0 simply return control to the calling task or causes
scheduling of another task.

4.1.3.1 Determine priority of tasks (and of the main program) that have no
defined priority.
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RENDEZVOUS MANAGEMENT

TIME

3.3.2.2.1 Measure time for simple rendezvous

3.3.2.2.2 Measure time for simple rendezvous. More than one entry is called
to measure rendezvous time. These entries can all be in a single
task or single entries in multiple tasks.

3.3.2.2.3 Measure the affect on the time required for a simple rendezvous,
where a procedure in the main program calls an entry in another
task with no parameters as the number of accept alternatives in
the selective wait increases. This benchmark is executed with the
following scenarios:

3.3.2.2.4 Measure the affect of guards (on accept statements) on rendezvous
time, where the main program calls an entry in another task (with
no parameters) as the number of accept alternatives in the select
statement increases. This benchmark is executed with the
following scenarios:

3.3.2.2.5 Measure the time required for a complex rendezvous, where a
procedure in the main program calls an entry in another task with
different type, number and mode of the parameter;.

3.3.2.2.6 Measure the affect on time required for a complex rendezvous,
where the main program calls an entry in another task with
different type, number and mode of the parameters as the number of.
accept alternatives in the select statement increase. The
benchmark is executed with the following scenarios:

3.3.2.2.7 Measure the cost of using the terminate option in a selec:
statement.

3.3.2.2.8 Measure the overhead due to a conditional entry call when a) the
rendezvous is completed and b) the rendezvous is not completed

3.3.2.2.9 Measure overhead due to a timed entry call;

3.3.2.2.9 Measure the affect on time required for a complex rendezvous,
where a procedure in the main program calls an entry as the number
of activated tasks in the system increases.

3.3.2.2.10 Measure rendezvous latency.

TO00001 Minimum rendezvous, entry call and return time. 1 task, I entry,
task inside procedure, no select.
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T000002 Tasking entry call and return time. 1 task active, 1 entry., task
in a package, no select.

T000003 Tasking entry call and return time. 2 tasks active, 1 entry per
task, task in a package, no select.

T000004 Tasking entry call and return time. 1 task active, 2 entries,
task in a package, using select statement.

T000005 Tasking entry call and return time 10 tasks active, 1 entry per
task, task in a package, no select.

T000006 Tasking entry call and return time. I task with 10 entries, task
in a package, one select. Compare with T000005.

IF-AND-HOW

4.1.2.1 Determine algorithm used when choosing among branches of a
selective wait statement. The implementation may make a) a random
selection, b) select entry call that arrived first, c) select the
first eligible accept alternative or d) select the task with the
highest priority making the entry cal..

4.1.2.2 Determine the order of evaluation for guard conditions in a
selective wait

4.1.2.3 Determine method used to select from delay alternatives of the
same delay in a selective wait.

4.1.2.4 When are the expressions of an open delay alternative or the entry
family index in an open accept alternative evaluated.

4.1.3.2 Determine priority of a rendezvous between two tasks without
explicit priorities.
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EXCEPTION MANAGEMENT

TIME

3.6.3.1 Measure a) timing overhead due to exceptions and b) exception
response time when exception is handled in the block statement.

3.6.3.2 Measure a) timing overhead due to exceptions and b) exception
response time when exception handled in the block statement while
additional tasks are present in the system.

3.6.3.3 Measure Exception handling time when exception is raised and
propagated one level below where it is handled.

3.6.3.4 Measure Exception handling time when exception is raised and
propagated 3 levels below where it is handled.

3.6.3.5 Measure Exception handling time when exception is raised and
propagated 4 levels below where it is handled.

3.6.3.6.1 Measure time to propagate TASKING-ERROR exception in the calling
as well the called task.

3.6.3.6.2 Measure time to propagate and handle an exception when a child
task has an error during its elaboration.

EO00001 Time to raise and handle an exception. Exception defined locally
and handled locally.

E000002 Time to raise and handle an exception. Exception is in a
procedure in a package.

E000003 Time to raise and handle an exception. Exception is in a package,
4 deep.

IF-AND-HOW

4.1.1.5 If the allocation of a task object raises the exception
STORAGE ERROR, when is the exception raised? The LRM does not
define when STORAGEERROR must be raised should a task object
exceed the storage allocation of its creator or master. The
exception must be no later than task activation: however an
implementation may choose to raise it earlier.

4.4.1 Does an implementation raise NUMERIC ERROR on an intermediate
operation when the larger expression can be correctly computed?
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INTERRUPT MANAGEMENT

TIME

3.8.3.1 Measure Interrupt Response Time

IF-AND-HOW

4.5.1.1 Determine if an interrupt entry call is implemented as a normal
Ada entry call, a timed entry call, or a conditional entry call.

4.5.1.2 Determine if an interrupt is lost when an interrupt is being
handled and another interrupt is received from the same device

4.5.1.4 Determine if an interrupt entry call invokes any scheduling
decisions

4.5.1.5 Determine if an accept statement executes at the priority of the
hardware interrupt, and if priority is reduced once a
synchronization point is reached following the completion of
accept statement.

4.5.1.6 Determine if entries can be called from application code.
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TASK ACTIVATION

TASK TERMINATION

TIME

3.3.2.1.1 Measure task activation and termination time (without the new
operator)

3.3.2.1.2 Measure activation/termination time for a) an array of tasks and

b) task object declared as part of a record

3.3.2.1.3 Measure the time to activate a task created via the new allocator

3.3.2.1.4 Measure the time to activate and terminate a task object declared
- in the declarative part of a block as the number of existing

active tasks keeps on increasing

3.3.2.1.5 Measure the time to activate and terminate a task created via the
new allocator in a block as the number of existing active tasks
keeps on increasing

CO00001 Task create and terminate measurement with one task, no entries,
when task is in a procedure using a task type in a package, no
select, no loop.

C000002 Task create and terminate measurement, with one task, no entries,
when task is in a procedure task defined and used in a procedure,
no select, no loop.

C000003 Task create and terminate measurement, with one task, no entries
when task is in declare block of main procedure, task is in the
loop.

IF-AND-HOW

4.1.1.3 Determine the order of elaboration when several tasks are
activated in parallel. When several tasks are activated in
parallel, the order of their elaboration may affect program
execution.

4.1.1.4 Deterwine if a task will continue execution following its
activation but prior to the cimpletion of activation of other
tasks declared in the same declarative part. (See the Real-time
Benchmarks paper for details)

41.1.5 What happens to tasks declared in a library package when the main
program terminates? For some real-time embedded applications, it
is desirable that such tasks do not terminate.
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4.1.1.10.1 Determine order of evaluation of tasks named in an abort
statement. An abort statement provides a convenient way to
terminate a task hierarchy. When a task, TI, aborts a task, T2,
the result T2'COMPLETED is true when evaluated by TI. Other tasks
may not immediately detect that T2'COMPLETED is true. In real-
time embedded systems, tasks may have to be aborted in a certain
sequence. The semantics of the abort statement do not guarantee
immediate completion of the named task. Completion must happen no
later than when the task reaches a synchronization point.

4.1.1.10.2 Determine when an aborted task is complete from. When a task has
been aborted, it may become completed at any point from the time
the abort statement is executed until its next synchronization
point. Depending on when an implementation actually causes the
task to complete the results of an aborted may be different.

4.1.1.10.3 What are the results if a task is aborted while updating a
variable? An implementation may defer completion of a task if it
is aborted while updating a variable, and thus prevent a variable
from being undefined. This may be crucial in the case of a common
variable.
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TARGET HOUSEKEEPING
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COMMONLY CALLED CODE SEQUENCES

MEMORY

3.12.3.1 There are several test cases that are run with the pragma OPTIMIZE
for option space. Determine the improvement in the size of the
object code when this pragma is used.

TIME

3.7.1.1 This test measures the time to perform standard boolean operations
(XOR, NOT, OR, AND) on arrays of booleans. The tests are
performed on entire arrays.

3.7.1.2 This test measures the time to perform standard boolean operations
(XOR, NOT, OR, AND) on arrays of booleans. The tests are
performed on components of arrays.

3.7.1.3 This test measure the time to perform assignment and comparison
operations on arrays of booleans.

3.7.1.4 This test measures the time to perform assignment and comparison
operations on whole records.

3.7.2.1 Measure the time to do an unchecked conversion of one integer
object to another.

3.7.2.2 Measure the time for UNCHECKED-CONVERSION to move a STRING object
to another INTEGER object.

3.7.2.3 Measure the time to do an'unchecked conversion of an array of 10
floating components into a record of 10 floating components.

3.7.3.1 Measure the time to store and extract bit fields using Boolean and
Integer record components. 12 accesses, 5 stores, 1 record copy.

3.7.3.2 Measure the time to storage and extract bit fields that are
defined by nested representation clauses using packed arrays of
Boolean and Integer record components.

3.7.3.3 Measure the time to perform a change of representation from one
record representation to another.

3.7.3.4 Measure the time to perform a change of representation from a
packed array to an unpacked array.

3.7.3.5 Measure the time to perform POS, SUCC, and FRED operations on
enumeration type with representation clause specification.
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3.10.1.2 Determine the time to convert integer to Float using Float (I) and

vice-versa using Integer (F).

3.10.2.1 Determine time required for float matrix multiplication.

3.10.2.2 Measure the time for a function that computes the inner (scaler)
product of two values of type Vector where Vector is the
following: type Real is digits... ; type Vector is array (Integer
range <>) of Real;

3.11.2.1.1 Measure the overhead and procedure call latency involved in
entering and exiting a subprogram.

3.11.2.2.1 Repeat benchmarks from above with pragma INTLINE for the called
procedure.

3.11.2.3.1 Repeat benchmarks from above with the called subprogram being part
of another package.

3.11.2.4.1 In the tests for inter- and intra-package calls, the subprograms
are part of generic packages that are instantiated.

3.12.1.1 Determine improvement in execution speed when pragma Suppress is
used for the following checks:

5.1.1.1 Measure time for a simple producer-consumer type transaction when
the main procedure calls a consumer task.

5.1.1.2 Measure time for a producer-consumer type transaction when the
consumer uses a selective wait. In this test the main task calls
a consumer task that consumes more than one type of item.

5.1.1.3 Measure time for a producer-consumer type transaction when a
producer task calls a consumer task.

5.1.2.1 In this benchmark, the producer task communicates with the
consumer task indirectly through a bounded buffer.

5.1.3.1 In this benchmark, a producer task communicates with a consumer
task indirectly through a bounded buffer with a transporter
between the buffer and consumer.

5.1.4.1 In this benchmark, a producer task communicates with a consumer
task indirectly through a bounded buffer with a transporter
between the buffer and the producer as well as between the buffer
and the consumer.

5.1.5.1 In this benchmark, a producer task communicates with a consumer
via the relay. In terms of the task communication model, this
resembles the producer-buffer-transporter-consumer paradigm, but
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in terms of performance it should resemble the producer-buffer-
consumer paradigm.

3.12.2.1 Determine the overhead due to Pragma SHARED when two tasks access
a packed array of boolean shared variable.

3.12.2.2 Determine the rendezvous time when shared variable is updated
during the rendezvous.

3.12.3.1 There are several test cases that are run with the pragma OPTIMIZE
for option time. Determine the improvement in execution time of
the object code when this pragma is used.

F000001 Time to set a boolean flag using logical equation. A local and a
global integer are compared. Compare this test with F000002.

F000002 Time to set a boolean flag using an "if" test. A local and a
global integer are compared. Compare this test with FOO0001.

LOOOO01 - Simple ufor" loop time for I in 1..100 loop time is reported for
once through loop.

L000002 Simple while" loop time while I less than or equal to 100 loop
time is reported for once through loop.

L000003 Simple Oexit" loop time loop I:-I + 1; exit when I greater than
100; end loop; time is reported for once through loop.

P000001 Procedure call and return time. Procedure 'is local, no
parameters.

PO00002 Procedure call and return time. Procedure is local, no
parameters, when procedure not inlineable.

P000003 Procedure call and return time. Procedure is in a separately
compiled package. Compare to P000002.

P000004 Procedure call and return time. Procedure is in a separately
compiled package. Pragma Inline used. Compare to P000001.

PO00005 Procedure call and return time. Procedure is in a separately
compiled package. One parameter, in INTEGER.

P000006 Procedure call and return time. Procedure is in a separately
compiled package. One parameter, on INTEGER.

P000007 Procedure call and return time. Procedure is In a separately
compiled package. One parameter, in out INTEGER.

P000010 Procedure call and return time. Compare to P000005. 10
parameters, in INTEGER.
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PO00011 Procedure call and return time. Compare to P000005 and P000010.
20 parameters, in INTEGER.

P000012 Procedure call and return time. Compare to P000010 (discrete vs.
composite parameters). 10 parameters, in MY RECORD, a three
component record.

P000013 Procedure call and return time. 20 composite "in" parameters.
The package body is compiled after the spec is used.

IF-AND- HOW

3.12.4.1 Determine if pragma CONTROLLED has any affect for a access type
object.

4.6.1 Determine order in which actual parameters to a subprogram are
evaluated?

4.6.2 Determine order in which parameters of modes out and in out are
copied back at the completion of a subprogram call.
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APPENDIX G

GLOSSARY

These definitions are being presented to facilitate the understanding of
this report.

Ada Runtime Environment - A set of all capabilities provided by three basic
elements: predefined subroutines, abstract data structures, and code
sequences [ARTEWG 1988]

Analysis the interpretation and classification of signals, also the portion of
software that determines the next course of action based on the data
collected

Direction Finding - process of making various measurements that will provide an
indication of the direction from which a signal originated [ESL Corporation
1985]

Emitter Location - the computed location of a target [ESL Corporation 1985]

Intercept determining signal presence and recording or monitoring it [ESL
Corporation 1985]

Macro Construct - set of Ada statements that perform a well-defined process

Micro Construct - individual Ada statement

Real-Time - software that constantly monitors, analyzes, and responds to external
physical events in a time-critical fashion [Mellichamp 1983]

Reporting - disseminating analyzed data (ESL Corporation 19851
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APPENDIX H

GLOSSARY OF ACRONYMS

AD - Air Defense

ANSI American National Standards Institute

AQL Advanced Quick Look

BFA - Battlefield Functional Area

CECOM - Communications and Electronics Command

CHAALS C~mmunication High Accuracy Airborne Location System

COMINT - Communications Intelligence

DoD - Department of Defense

DF - direction finding

DS - directed search

ECS - Embedded Computer System

ELINT - Electronics Intelligence

FS - Fire Support

GS - general search

IC/SD - Intercom/Spectrum Display

IEJ - Intelligence Electronic Warfare

IGRV - Improved Guardrail V

I/O - Input/Output

LOP - Line of Position

LRM - Language Reference Manual

MC - Maneuver Control

PDL - Program Design Language

RDLS - Reporting Data Link Subsystem

RTE - Run:ime Environment
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SCAR -Signal Classificationl Recognitionl

SCT -Signal Classification Tips

SEI -Software Engineering Institute
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