—

) [0 FILE copy -

AD-A223 146

CECOM
CENTER FOR SOFTWARE ENGINEERING
ADVANCED SOFTWARE TECHNOLOGY

Subject: Final Report - Establish and Evaluate
| Ada Runtime Features of Interest for Real-Time
Systewms L R

A ¢ iva T

CLEARED

¥ QR OPEN PUBLICATION

SEP 20 1989 &

DECTOHATE FORT TREEDOM OF (NFURM ATIGN
AND SECURITY REVIEW 10AS 30-PA)
JEPA‘“M[NT OF DEFENSE

FAEN
-
-~

o Coz 092LA % ..
15 FEBRUARY 1989&3),14 RS

.:-e nd sals; its
I thd,

—— ~ .}

r e pdlommmt hua be@n approved |
di. e thy

FINATL, REPORT
ESTABLISH AND EVALUATE
ADA RUNTIME FEATURES OF
INTEREST FOR REAL-TIME SYSTEMS

CONTRACT NUMBER: MDA 903-87-D-0056
ITTRI PROJECT NUMBER: T06168

For
PREPARED FOR: Accession For
NTIS GRA&I
DTIC TAB
U.S. ARMY, CECOM Unannounced 0
Justificatlio
ADVANCED SOFTWARE TECHNOLOGY .
AMSEL-RD-SE-AST-SS-R By B
FT. MONMOUTH, NJ 07703-5000 | Distrivution/ __

Availability Codgs
Avalil and/or

PREPARED BY: Dist Special

1IT RESEARCH INSTITUTE Wvl
4600 FORBES BLVD.
LANHAM, MD 20706

DECEMBER 1988

EXECUTIVE SUMMARY

<"'/

- The objective of this study was to provide software developers with
guidance in the selection of Runtime Environments (RTEs) to ensure that all
timing and storage requirements of real-time embedded systems can be met.
Because there is no “'universal best’ runtime environment (RTE), the
selection of an RTE is domain specific. This study developed a step-by-step
process that a developer can use to evaluate RTEs. This process was applied
to one class of systems, Communication and Electronic Intelligence
(COMINT/ELINT) systems. -~

/,_Au,—_—~—««~_~_—~—~’~/

: A process was developed to determine which Ada runtime features were
important for real-time embedded systems. This process involved
prioritizing Ada RTE elements by the implementation of a prioritization
matrix. The prioritization matrix was demonstrated by prioritizing RTE
elcments for COMINT/ELINT systems. The prioritization matrix was designed
so it could be applied to any class of real-time embedded systems with only

slight modifications.™,

e

; The prioritized RTE elements were used to prioritize groups of
benchmarks. This provided software developers with a prioritized list of
groups of benchmarks that measure the critical areas of candidate RTEs being
considered for COMINT/ELINT systems. //—*,— o .

' ' N
The concept of a composite benchmark was developed as another means to
test candidate RTEs. Unlike most existing benchmarks, a composite benchmark
takes into account the interactions and interfaces that go on within a
system. A preliminary composite benchmark description was developed for
COMINT/ELINT systems.

When selecting an RTE, the composite benchmark would be used to test
the minimum threshold of RTEs. Then, the prioritized groups of benchmarks
would be used to test the critical RTE elements to determine which RTEs

perform best in the critical areas.

1.0

2.0

3.0

5.0

6.0

TABLE OF CONTENTS

INTRODUCTION ... iieieeneenenrecannonnnnan
1.1 BACKGROUNDccoctivuinvecnnnsnnenn
1.2 PURPOSES OF THIS STUDY
1.3 ORGANIZATION OF THIS REPORT

SELECTION PROCESS OVERVIEW
2.1 REAL-TIME SYSTEMS IDENTIFICATION
2.2 CLASS SELECTIONcivoeenvnennns
2.3 SYSTEM SELECTIONcevevencnnn

SYSTEM CAPABILITIESccovnn0uvn-
ADA CONSTRUCT DEFINITION
ADVANTAGES AND DISADVANTAGES OF MICRO
, MACRO CONSTRUCTSccneunnnn
3.4 SYSTEM CAPABILITIES VS. ADA CONSTRUCT

www
w N -

MAPPING ADA CONSTRUCTS TO RTE ELEMENTS ...

.....................

.....................

.....................

.....................

.....................

AND

4.1 ADA CONSTRUCT VS. ADA RTE ELEMENTS MATRIX
4.2 THE REASONING FOR MAPPING A PARTICULAR ADA

CONSTRUCT TO A PARTICULAR RTE ELEMENT
Dynamic Memory Management
Processor Managemerit
Interrupt Management
Time Management
Exception Management

Ll OB SR Y S
(SR SN SW AN AN L)
NV IR SN S

Task Termination

NN
O 0~

Commonly Called Code Sequences
Target Housekeeping Functions

[B R

2.

....................

.....................

.....................

Rendezvous Management Task Activation

.....................

Input/Output (I/0) Management Function

....................

.....................

STRUCTURE OF THE RTE ELEMENT PRIORITIZATION MATRIX
5.1 THE SIX EMBEDDED COMPUTER SYSTEM (ECS)

FEATURESccointtvenrnnnnnanns
THE RTE ELEMENTSccnvvunnn
APPLICATION OF THE RTE PRIORITIZATION

[VRV. NV
& W

PRIORITIZATION OF GROUPS OF BENCHMARKS ...

6.1 MAPPING BENCHMARKS TO RTE ELEMENTS ..

6.2 TYPES OF BENCHMARKS AND BENCHMARK
DISTRIBUTIONcoiiininrennnannns

MATRIX

THE MATRIX APPLIED TO THE COMINT/ELINT CLASS

6.2.1 TIME MANAGEMENT VS. TIMING BENCHMARKS
6.2.2 THE FREQUENCY OF COMMCNLY CALLED CODE

SEQUENCE BENCHMARKS
6.3 BENCHMARKS THAT NEED TO BE DEVELOPED

AL W N

o0 0o

O O

13
13

13
13
16
16
16
17

17
17
17
18

19

7.0 COMPOSITE BENCHMARKt iitntivrnnnenennenroneanannannnnnns
7.1 PURPOSE OF A COMPOSITE BENCHMARKciviiveennnnennnnn
7.2 HOW TO DEVELOP A COMPOSITE BENCHMARK............c..conuun.
7.3 COMPOSITE BENCHMARK FOR COMINT/ELINT SYSTEMS
7.4 COMPOSITE BENCHMARK DESCRIPTION FOR

COMINT /ELINT SYSTEMSiiiiiiiiiennentenenenoseannananns
7.4.1 The Intercept Capability0iiiiiinnnns.

7.4.1.1 General Searchcciviiriniiansn

7.4.1.2 Directed Searchcciiiviiinnncnnne.
7.4.2 Direction Findingot iiieinennrneaeenns
7.46.3 Emitter Locationciiveiinnvecnoncnennnnnenas
7.4.4 Analysis i ittt i i ettt e
7.4.5 RePOILTINgttt et ieanneennnenans

8.0 COMPILER AND RTE SELECTION PROCESScvvivininnennnen...

9.0 SUMMARY AND CONCLUSIONStiuinitiunennnesnrnennnnonenncnnas

APPENDIX B HOW ADA CONSTRUCTS WERE IDENTIFIEDionvvuvnennn
APPENDIX C ADA RUNTIME ENVIRONMENT DEFINITIONcccicveevn..
APPENDIX D WEIGHTING OF ECS FEATURESccvtvennnnnnanenns e
APPENDIX E RATING EACH RTE ELEMENTcci0ititiiiiinninnnnnnnenns
APPENDIX F PRIORITIZED BENCHMARK LIST0....iuititinninuinnnnnnnnn
APPENDIX G GLOSSARYiitiiivnenneseoonsonssoceneoeaceeonnonnsnns

APPENDIX H GLOSSARY OF ACRONYMSc.uieriinenoenannannnnnnnn.

i1

Figure
Figure

Figure

Figure

Figure

Figure

Figure

2-1

3-1

4-1

4-2

5-1

9.1

LIST OF FIGURES

The Classification Scheme

System Capabilities Vs. Macro Comstruct

7 b o 5 et

System Capabilities Vs, Micro Construct

21 > < S

Ada Macro Constructs Vs. Ada Runtime

Environment Elements0uiiirunennnnn.

Ada Micro Constructs Vs. Ada Runtime

Environment Elementsc.cvuvverimnnnnnnnn.

Prioritization Matrix for

COMINT/ELINT Systems e

Mapping System Capabilities to Benchmarks

114

..............

11

12

14

15

23

38

LIST OF TABLES

TABLE PAGE
TABLE 2-1 System Functions By the High-Level Functions
They Implementttt eieerrnononnennneneannns 5
TABLE 2-2 Number of Real-Time Systems in Each BFA 5
TABLE 5-1 The Final Weights Assigned to the Features 20
TABLE 6-1 Priority of Benchmarksc0iiinnriiennrennennann 26
iv

1.0 INTRODUCTION

1.1 BACKGROUND

Since the early implementation of the Ada language, Ada compilers were
required to pass a validation test. Thus, the primary goal of compiler
vendors was to have their compiler pass this validation test. This left
performance as a secondary issue. In addition, the Department of Defense
(DOD) mandates the use of Ada in the development of real-time embedded
systems. Wicth 206 validated compilers (and the list continues to grow),
software developers must be able to obtain guidance in the selection of a
compiler and its runtime environment (RTE) to ensure all the strict timing

and storage requirements of real-time embedded systems are mect.

To provide this guidance requires the identification of Ada RTE

features of interest for real-time embedded systems. This involves two

steps: first, the Ada runtime features that are important for real-time
systems need to be established; second, evaluation criteria to evaluate
these features need to be determined. To establish the important Ada

runtime features, the Ada RTE elements need to be prioritized. To evaluate
the Ada runtime features, current benchmarks must be prioritized and new

benchmarks developed.

1.2 PURPOSES OF THIS STUDY

The primary purpose of this study was to assist software developers in
selecting an RTE that meets the performance requirements of their
application. This study provides a process that a developer can use to
prioritize RTE elements for a particular application domain. The
prioritization of RTE elements provides the means to prioritize benchmarks.
Since it might not be possible for a developer to run all possible
benchmarks, a listing of prioritized groups of benchmarks allows developers

to focus on the most critical areas of a specific application domain.

In this study RTE elements were prioritized for one class of systems
supported by U.S. Army Communications-Electronics Command (CECOM) Ft.

Monmouth, NJ. That class is Communication and Electronic Intelligence

(COMINT/ELINT) sys=zems.

Most existing benchmarks test one RTE element in isolation, without
consideration of the effect of RTE elements interfacing. To measure both
the specific elements of interest in an RTE, as well as any interaction

effects, required a new type of benchmark.

One major result of this study was the formulation of a composite
benchmark that tests RTE elements and their interactions. A composite
benchmark is defined as a prototype of the capabilities of a particular
class of ‘system. The goal of a composite benchmark is to test the minimum
threshold of all candidate RTEs. This study developed preliminary guidelines
for developing a composite benchmark and a preliminary description for a
composite benchmark for COMINT/ELINT systems.

1.3 ORGANIZATION OF THIS REPORT

The organization of this report reflects the order in which the
research was done. In the first step (Section 2.0) a class of systems,
COMINT/ELINT, were chosen to be studied and the capabilities common to
COMINT/ELINT systems were identified. The second step (Section 3.0)
identified what Ada constructs would be used to implement each capability.
The third step (Section 4.0) identified which RTE element would be used to
support the implementation of each identified Ada construct. The forcth step
(Section 5.0) prioritized the Ada RTE elements by applying a prioritization
matrix to the RTE elements. The £ifth step (Section 6.0) wused the
prioritized RTE elements to prioritize groups of benchmarks. In the sixch
step (Section 7.0) the purpose of a composite benchmark, the development
process of a composite benchmark, and a preliminary description of a
composite benchmark are given. The last step (Section 8.0) recommends how

benchmarks are to be used in the RTE selection process.

2.0 SELECTION PROCESS OVERVIEW

The first step in this research was to select specific real-time
systems to study. The goal of the selection process was to identify a class
of systems supportecd by CECOM that are the most challenging to develop and
maintain and then to select representative systems from that class. The
most challenging class of systems was the class with the greatest number of
large, real-time systems. Once the class was identified, sample systems
were chosen. It would have been impractical to study all of the systems

because of the system diversity and the number of systems.

At the time the research was performed for this report, CECOM supported
140 systems. CECOM classified their systems into five Bactlefield
Functional Areas (BFA), and each BFA was divided into its own set of
categories. Individual systems were placed into categories within each

BFA. Figure 2-1 shows a diagram of the classification scheme.

Bactlefield Functional Area (BFA) _
Category

System _

Figure 2-1. The Classification Scheme.

CECOM supports the following BFAs.

Intelligence Electronic Warfare (IEW)
Fire Support (FS)

Maneuver Control (MC)

Communications (COMM)

Air Defense (AD).

W W N

The initial data set contained information on 136 systems; however,
only 56 of the systems have enough information on them to adequately
analyze. Therefore, the initial analysis was done on these 56 systems.

3

The selection process involved three stages. First, the real-time
systems in the data set were identified; second, the class of systems wi:th
the greatest number of large real-time systems was dete-mined; and third,

specific systems within the chosen class were selected.

2.1 REAL-TIME SYSTEMS IDENTIFICATION

Real-time software constantly monitors, analyzes, and responds to
external physical events in a time-critical fashion. The high-level

functions performed by real-time systems are as follows:

1. Monitor - connection of a physical event to a computer
system so that data pertaining to the physical event can be collected.

2. Analyze - portion of software that determines the next course of action
based on the data collected.

3. Respond - portion of software that executes the course of action
determined from the analysis.

Real-time systems perform one or more of these high-level functions and
must alsc be time eritical in that the failure to monitor, analyze, and

respond in a timely manner would be disastrous.

To determine which CECOM systems were real-time systems, the func:ions
that each system performs were compared to the three high-level £functions
listed above. If CECOM systems implemented one or more of cthese high-le el
functions and the function were time-critical, the system was deemed to be a

real-time system,

TABLE 2-1 classifies the functions performed by CECOM systems according
to the high-level functions they implemenc. All the functions were
determined to be time-critical. A description of each function is found in

Appendix A.

TABLE 2-1
System Functions By the High-Level Functions They Implement

¥onitor Apalyze Respond
receiver direction finding transmitter
reception analysis countermeasure
target detection location antenna controller

2.2 CLASS SELECTION

After determining what CECOM systems were real-time systems, the next
step was to pick a particular class of CECOM systems to study. The
objective was to choose a class of sysctems that had the largest number of
large real-time systems. Because CECOM already classified systems into BFAs
and categories, the objective was to choose a BFA and category that
contained the largest number of real-time systems. TABLE 2-2 shows the

number of real-time systems in each BFA.

TABLE 2-2
Number of Real-Time Systems in Each BFA

BFA e eal.- \'4

IEW 14
FS 3
MC 1
coMM 5
AD 5

IEV was chosen as the BFA to be studied because it contained the most
large real-time systems. The IEW category of Communication Intelligence and
Electronic Intelligence (COMINT/ELINT) contained more real-time systems than
any other IEW category; therefore, it was selected to be studied.

2.3 SYSTEM SELECTION

The last stage was to select specific systems to study that were
representative of COMINT/ELINT systems. An assumption was made that if a
method could be developed to prioritize RTE elements for large systems, the

method could be applied to smaller types of real-time systems.

Four COMINT/ELINT systems were selected to represent all COMINT/ELINT
systems: Improved Guardrail V (IGRV), Advanced Quicklook (AQL),
Communication High Accuracy Airborne Location System (CHAALS), and
Trailblazer B. Three of these systems are part of the Guardrail Common

Sensor Family, which contains the largest systems within IEW.
IGRV was chosen for the following reasons:
It is the largest system in the COMINT category.

It is delivered and operational,

It {s a real-time embedded system.

W -

It is a part of the Guardrail Common Sensor Family.
AQL was chosen for the following reasons:
It is the second largest system in the ELINT category.

Modificacions to it are being made in Ada.

It is a real-time embedded system.

N S

It is part of the Guardrail Common Sensor Family.

CHAALS was chosen for the following reasons:

1. It is the second largest system in the COMINT category.

2. Alcthough not del{vered, and thus not operational, its preliminary
design {s in Ada Program Design Language (PDL).

3. It is a real-time embedded systeaz.
4. It is part of the Guardrail Common Sensor Family.
6

Trailblazer B was chosen for the following reasons:

1. It is the third largest system in the COMINT category.
2. It is a real-time embedded systenm.
3. The system is delivered and operational.

3.0 MAPPING SYSTEM CAPABILITIES TO ADA CONSTRUCTS

Each capability of COMINT/ELINT systems was mapped to the Ada
constructs that would be used to implement that particular capability. The
objective of this was to determine what Ada constructs would be used to
implement the selected class of real-time embedded systems. The results
vere that all Ada constructs would be used in one of these systems. Also,
no Ada construct could be determined to be more important than any other Ada
construct because most constructs would be used throughout real-time
systems. Because of this, the results of this step had no significance in

the prioritization of RTE elements.

The system capabilities were mapped to both micro and macro constructs.
For clarity, a discussion of system capabilities and the definition of a

construct will be presented before the actual matrices.

3.1 SYSTEM CAPABILITIES

The system capabilities, i.e., intercept, direction finding, emitter
location, analysis, and reporting, were found to be common throughout
COMINT/ELINT systems. The way the systems specifically performed a
particular capability might be different, but the overall objective was the

same. Two systems that rely on other systems to perform one of the
capabilicies. For example, CHAALS relies on IGRV to perform its
interception.

Because of the amount of effort required to perform an in-depth
analysis to obtain base line Ada constructs, one COMINT/ELINT system was
studied in detail. This analysis was performed by decomposing high-level
system capabilities into low-level system capabilities and mapping these
low-level capabilicies zo Ada constructs. Once the base line set of
constructs was developed for one system, it was validated by comparing to
the low-level capabilities of other systems in the same category to those of
the system studied in dertail. Four COMINT/ELINT systems were used o

generate the Ada constructs., One system was used to establish the base

8

line, and the other three systems were used to validate the base line

constructs,

3.2 ADA CONSTRUCT DEFINITION

While performing a preliminary review of the systems, it became obvious
that ‘construct’ needed to be defined. Twn definitions were appropriate:
one for a micro construct and one for a macro comstruct. At the micro
level, a construct was defined as an individual Ada statement. At the macro
level, a construct was defined as a set of Ada statements that performs a
well defined process. For this research, both micro and macro constructs

were studied.

3.3 ADVANTAGES AND DISADVANTAGES OF MICRO AND MACRO CONSTRUCTS

The use of either macro or micro constructs has its respective
advantages and disadvantages. The advantage of benchmarking micro
constructs is that they are specific to each individual Ada statement, and
therefore, each statement can be benchmarked. The disadvantage of
benchmarking micro constructs is that interactions of individual statements
when used for a particular application are ignored. Benchmarking only micro
constructs is wunrealistic compared to how Ada code is written. The
advantage of benchmarking macro constructs is that they take into account
the blending and interaction of Ada statements. Macro constructs are
realistic to how Ada code 1is actually wused. The disadvantage of
benchmarking macro constructs is that they are only as good as the mactch
between the benchmark run and the actual application code. The benchmark is
some generic code used to carry out a particular process. If the actual
application code varies from the generic code, the benchmark might not be
valid.

3.6 SYSTEM CAPABTLITIES VS, ADA CONSTRUCT MATRIX

Figure 3-1 presents the mapping of the system capabilities to the base

line macro constructs, Figure 3-2 presents the mapping of systenm

9

capabilities to the base line micro constructs More information on how the

Ada constructs were identified is provided in Appendix B.

10

L}

0 o 6uy1soday
1] o (4] 1] o (1] s|sAjeuy
Uo}1920) 433 |W)
] 0] 0 /6ujpui 3 UojI23J)Q
0 o Wdadrsawyg

dogd 6o)4

suojiaung | uojisjndjuey ysnd s3soydowas IUIAJ ananp X09) 494
Asyawouoby sy LIPRLT] 3Ie1s $311¢1)1qude)
. 19N1ISU0) 0128
XJJIOH IONIISUCY 0IIEN “SA 83411} 11quede) wIsAs

System Capabilities Vs. Macro Construct Matrix.

Figure 3-1.

11

heeeassccrtarveacesreremAtenecesatnotonspsTeP BT at Y NemeveevmcmracmessestatteessansameaNear st aptros oot antsoc st ac oot at ot sesT

o 0]]

[T T L LT TR PR PR L L L LR L A A A A el oo

.ow

IR S P LA AR AL RER L L S L AL LA St b

o (] Q Q o o]] (4]

R T LR L TR TR L EL R RA X TS R Rttt

(4]] o

ne)) SV §01S uoy1e30)20 ny nwe LA RE S I d ARl
Wdnsewg S;8ippy SlUNMIVIS JUswUB(SSY $3(1)J0})d sU0))dION3 LO)IEI0))Y UDJINNY AIPINIY 27043 Aeyeqg
j033u0) o0

CeessesemeastacseseseetesastasstentseTanc ot RTE e sorbansssedts

cecmcavacases

[N AL

1INIIBU0Y GINN
N{IAEH 1INIISUO) OIIHN “SA 20311 1qvded washy

[L e R TR LA L DL R L A S R AR LA d it

feeesecfeetbasescasssstesastesetoatertoseroacaRs e retasons

0 sy g soday

FO PP S T L L LA T LR R R RS R EEE 2SS St bdl it

0 ° o sskyeuy

uo§yeso]
seryqoneg
I8usput g
uoy 139518

ateccemsesfraaveranane

] 8933939
)39}y
(YRR sise)
LIIRTRIL)

[T TR T P T R R RE R AL L LS L AR LA S

System Capabilities Vs. Micro Construct Matrix.

Figure 3-2.

12

4.0 MAPPING ADA CONSTRUCTS TO ADA RTE ELEMENTS

Each Ada construct was mapped to the Ada RTE elements that would be
used to manage the implementation of that particular construct. A
description of each of the RTE elements is provided in Appendix C [ARTEWG
1988]. The objective of this step was to determine which of the 11 RTE
elements were not important for the class of real-time embedded systems
being studied. The results were that every RTE element, except target
housekeeping, had an Ada construct directly mapped to it; therefore, it was
assumed that every RTE element was important except target housekeeping.

The next step was to determine which of the remaining 10 RTE elements were

the most important. A prioritization matrix (See Section 5.0) was
developed. The implementation of this macrix, contradicted the earlier
finding of cthis step that target housekeeping was not important. As a

result of the matrix implementation, target housekeeping was deemed to be

important; therefore it was considered in this study.

4.1 ADA CONSTRUCT VS, ADA RTE ELEMENTS MATRIX

The matrix that maps Ada macro constructs to the Ada RTE elements is

shown in Figure 4-1. The matrix that maps Ada micro constructs to the Ada

RTE elements is shown in Figure 4-2. -
4.2 THE REASONING FOR MAPPING A PARTICUIAR ADA CONSTRUCT TO A
PARTICULAR RTE ELEMENT

a discussion of each identified Ada construct and why it is mapped to
the particular RTE element is presented in the following subsections. One

element, target housekeeping, had no Ada constructs mapped to {ic.

4.2.1 Dvnamic Memory Management

The micro construct that maps to dynamic memory management and the Ada
statement that allocates memory are indicated by the reserved word, NEW.

For deallocation, Ada performs its own ‘garbage collection’. Memory can be

13

Ada Macro Construct Vs. Ada Runtime Environment Elements
Macro Construct
Taxonoary Scack Matrix Trigonometry
MailBox Queue Event Semsphores Push Manipulation Functions
Flag Pop
Dynamic (5] +]
Memory
Processor 0 [+}
Management
Interrupt
Management
Time
Management
Exception
Management
Rendezvous 0 ’ 0
Management
Task 0 o
Activities
Task] [+]
Termination

LEA T LI D L R R R e L R N L R Ry T LYY Y TR TR POy

1/0 Management

Commonly 0 0 0 o 0 0 0
Called

Sequences

Target

Housekeeping

LR L LR Y N R T L L T Y P Y T e Ty Y

Figure 4-1. Ada Macro Constructs Vs. Ada Runtime Environment
Elements.

14

--- A T L L L L L T T R R A R R R L R R R R LR R

eseveatsessasncacsannsranscses eeesreatscrecsceanranracscnstesscnsane 4ssesceccssscscveacanveans secrancenrsecsssccnas

inJasug

ssne))
S$30.0ppyY

1043003

VN INGg

Uo) 1830320 nes
IUIERIeNg JusmiBissy 893)Jojad SU0jIdadN] UOIIE0YIY UojIdung

A somay

[RLA] ..o.-u.n..n
rpad0id 10

....................... F L T Y D L R R R A L R R AL LR

13N1500) OIINN

$1UIWI|J JUSEUOI JAUS BB 1YY BPY “SA 1INIYSUO) 04I|W SPY

Suydasyarnon
[T 31T

uojjeuyRIe]
0 b i |

IS LIYRED
o yseg

Wwwsbeuey

Wnsbruny

syse}

weessrsaresnasantsanne sebcscecnme cacmsscsessencnanne

Ada Micro Constructs Vs. Ada Runtime Environment
15

Elements.

Figure 4-2.

cleared deliberately by using unchecked deallocation. The dynamic memory
function can also raise a storage error, if a request for storage cannot be
fulfilled. The macro constructs that were mapped to the dynamic memory
function are queues and stacks. Both of chese constructs dynamically

allocate or deallocate memory when they add or remove data from their

structure.

4.2.2 Processor Management

The execution and scheduling of the micro comstruct, task, is closely
related to the processor management function. The processor management
function implements the assignment of physical processors to tasks that are
logically executing. The micro construct, priority, is used to assist the
processor'nanagemenc funcrion in determining which task is to be assigned to
the processor next. The macro constructs that were identified for processor
management are the mailbox and the semaphore. Both of these constructs

involve the use of tasks within their implementation.

4.2.3 I.n.u.:mm.ﬁ.&nmm&

The micro construct, interrupt, identified in Chapter 13 of the
Reference Manual for the Ada Programming Language [ANSI/MIL-STD-1815A-1983],
is used for the interrupt management function. Interrupt is used to react
to asynchronous events. The address clause has been identified because it

is used to "access a particular hardware address to initiate an interrupt.
4.l jm nagem

The two micro constructs used in the time management function are the
delay statement and the clock. Time management is the portion of the RTE
that supports the predefined package, Calender. The time management
function cooperates with the rendezvous management function to implement

timed entry calls and selective waits with delay alternatives.

16

4.2.5 Exception Management

The micro construct, exception, was identified for the exception
management function. Exception management implements the Ada semantics for
raising exceptions and determines if there is a matching handler for a
raised exception. The memory allocation/deallocation operation was also
identified. It is responsible for initiating a storage error exception if a

request to allocate memory cannot be performed.

4.2.6 dezvou age k tivacio ask ination

Rendezvous management, task activation, and task termination are
concerned with the micro comstruct, task. Rendezvous management implements
the semantics of the Ada rendezvous concept. Rendezvous management also
concerns itself with the micro construct, selection criteria, which is used
within a task. Task activation allows the dynamic creation of tasks. Task
termination includes the set of rules for completion, termination, and
abortion of tasks. The macro constructs mapped to these three elements are
the mailbox and the semaphore. These were identified because they use tasks
within their implementation. Tasks were chosen for their implementation

because of the need for concurrent processing in real-time systems.

4.2.7 Input/Quctput (I/0) Management Function

The micro construct identified for the I/0 management function is the
address clause. The address clause is used for low-levcl I/O to communicate

wich physical devices.

4,2.8 Commonlv Called Code Sequences

Commonly called code 1is the catch-all for the remaining micro
constructs: procedure calls, function calls, assignment statements, and
control statements. All of the macro constructs were mapped to the commonly
called sequences because, if the constructs were included as a RTE

predefined subroutines, they would be included under this function.

17

r——————_—r

4.2.9 Iarget Housekeeping Funccions

No micro or macro constructs were manped directly to the target

housekeeping functions.

18

5.0 STRUCTURE OF THE RTE ELEMENT PRIORITIZATION MATRIX

The 1initial plan for this research called for mapping system
capabilities to the Ada constructs that would be used to implement them.
These constructs would then be mapped to the Ada RTE elements necessary to
support them. As Section 3.0 and 4.0 indicate, the diversity of Ada
statements necessary to implement particular characteristics of the class of
systems studied precluded using this approach to prioritize RTE elements. A
new strategy was devised. The requirements for the selected systems were
mapped to six basic features of real-time embedded systems. The 11 RTE
elements were then prioritized based on their importance in implementing the
six basic features. The key to this process was the use of a prioritizaction
matrix. The remainder of this section details the development of chis
matrix and its implementation, i.e., prioritizing the RTE elements. The
columns of the matrix are the six basic features of real-time embedded

systems, and the rows are the 11 RTE elements.

5.1 THE SIX EMBEDDED COMPUTER SYSTEM (ECS) FEATURES

The Software Engineering Institute (SEI) determined that there are six
basic features of an embedded real-time system: time control, concurrent
control, I/0 control, error handling, numeric computations, and internal
representation {Weiderman 1987A]. The six features were developed by SEI
from the definition, the general requirement, and the basic characteristics

of embedded computer systems.

To implement the prioritization matrix, each of the features has a
weight assigned to it. The weights represent the relative importance of an
ECS feature with respect to the class of systems being studied. Each of the
six features is given a weight, and the sum of the weights equal 100%. The
100% signifies an entire system within the class under study, and the
separate weights indicate the importance of each feature to any system in
that class of systems. The weights should not change as one moves from one
system to another, provided one looks at systems in only one class. If the

class of systems is changed, the weights will change.

19

Determining the weights for the COMINT/ELINT class involved ~=wo steps.
The first was to understand which features were important and to begin to
quantify their importance by studying the system requirements. For this
study each requirement was mapped to the particular ECS feature to which it
pertained. This step resulted with the majority of the requirements mapped

to I/0 control.

This first step gave an indication of which features were important and
a number from which the feature could be assigned a weight; however, it did
not take into account issues that effect the performance of a system. The
primary concerns with respect to system performance were concurrent conzrol
and time control. The requirements may define the need for concurrency, but
they do not represent the solution, which is the algorithm that is used to
meet concurrency needs. Also, the requirements may define the time limics
imposed on the system, but they do not reflect the stringency of those
limicts.

Step two wvas to adjust the weights by studying the requirements and
determining their effect on the performance of the systems. Then, taking
into account the results of steps 1 and 2, the weights were subjectively
assigned to each ECS fasture (see Table 5.1). A detailed discussion of the
distinct characteristics of COMINT/ELINT systems that lead to the assignment
of the final weights {s presented in Appendix D.

Table 5-1

The Final Weights Assigned to the Features
Eeagures Weights
Concurrent Control 20%

Time Control 20%
1/0 Control 25%
Error Handling 10%
Numeric Computation 10%

Internal Representation 15%

20

5.2 THE RTE ELEMENTS

The rows of the prioritization matrix are the 11 RTE elements that were
obtained from the document "A Framework For Describing The Ada Runtime
Environment” [ARTEWG 1988]. These RTE elements are the following:

Memory Management
Processor Management
Interrupt Management
Time Management
Exception Management
Rendezvous Management
Task Activation

Task Termination

1/0 Management
Commonly Called Code Sequences
Target Housekeeping.

A detailed description of each RTE element can be found in Appendix C.
The RTE elements make up the rows for the prioritization matrix. These
elements are assigned rates. The rates are for quancifying the effect that
an RTE element has on the performance of an ECS feature. Rating an element

against an ECS feature is independent of the class of systems of interest.

A rtating scale is used to rate an element. The scale shown below was
used in this prioritization matrix. Following the scale, each
classification is defined.

Intrinsic = 9
Supportive = 5
Extringsic = 1

Intrinsic is defined as an RTE element that is foundational to ;he

performance of a particular feature.

Supportive is defined as an RTE element that, although not intrimsic,

has a role in the performance of a particular feature,

21

Extrinsic is defined as an RTE element that has at most a minor role in

the performance of the particular feature.

Two documents were influential in the rating process: the ARTEWG
document, "A Framework for Describing Ada Runtime Environments" [ARTEWG
1988] and the SEI document, “Ada for VEmbe,dded Systems: lssues and Questions”
[Weiderman 1987A]. ~The rating process involved concentrating on one ECS
feature to determine whether an RTE element was intrinsic to the performance
of the feature. If it was, a '9' was entered into the square. If it was
not, the RTE element was determined to be either supportive or extrinsic. A

detailed discussion of each rating decision is presented in Appendix E.

5.3 APPLICATION OF THE RTE PRIORITIZATION MATRIX

After all the weights and rates had been determined the next step was
to mulciply the weights by the rates. This step integrated all of the
components of the prioritization matrix: the ECS features, their relative
importance to the class of systems (the weight), and the RTE elements’

ratings.

The last step was to sum all the products in a given row. The result
was a prioritized list of RTE elements. The element with the highest total
for a row was the most critical element, and the element with the next

highest was the next most critical, and so on.

5.4 THE MATRIX APPLIED TO THE COMINT/ELINT CLASS

Figure 5.1 presents the prioritization matrix for COMINT/ELINT systems.

22

U

7

m —

m << M r m

Z

W)

ECS FEATURES

CONCURRENT TIME 1/Q ERROR NUMERIC INTERNAL TCTaL
CONTROL CONTROL CONTROL HANDLING COMPUTATIONS | REPRESENTATION
WEICHTS 20 20 25 10 10 1= 100
MENMORY s s 9 s 1 S
MANAGEMENT 180 100 225 50 w0 | 128 e
BRCCISSOR . . . " ; ')
MANAGEMENT 180 180 125 %0 10 l 15 ' 50
INTERRUPT | o P 9 s))
MANAGEMENT 100 100 225 50 10 ' sco
TIME s 9 9 5 1) s
MANAGEMENT 180 180 228 50 10 18, 560
EXCETION 5 s 5 9 5 s
540
MANAGEMENT 100 100 125 90 %0 75
3
RENDEZVOUS s) . . ; . o
MANAGEMENT 180 180 125 50 10 15
TASK ,
. s s 1) 1) | 380
ACTIVATION 180 100 25 ko] 10 15 l
TASK
TERMINATION 180 /oo 25 $0 0 15
£
79 S 9 9 S 1 S | 640
MANAGEMENT 100 180 223 s0 10 75 |
ol
cooe 4 3 1 L) 9 3 { sl
SECQUENCES 20 20 28 50 %0 s |
TARCES ' s 1 L 3 e ! 182
HOUSEKEEPING, 20 100 28 0 s0 135 !

RATING SCALE

INTRINSIC 9
SUPFORTIVE S
EXTRINSIC 1

Figure 5-1. Prioritization Matrix for COMINT/ELINT Systems.

23

The following list is the prioritized list of RTE elements.

1. Memory management 700
2. Time management 660
3. I/0 management 840
4. Processor management 560
5. Rendezvous management 560
6. Exception management 540
7. Interrupt management 500
8. Task Activation 380
9. Task Termimation. 380
10. Target Housekeeping.380

-
-t

. Commonly Called Code Sequences 280

This list of prioritized RTE elements is the driver for priofitizing groups
of benchmarks.

24

6.0 PRIORITIZATION OF CROUPS OF BENCHMARKS

There is a very large number of available RTE benchmarks. Most of
these benchmarks evaluate a single RTE element. Choosing which of the
available benchmarks would be the most relevant for a particular application
domain requires both prioritizing the RTE elements and mapping the existing
benchmarks to the RTE elements. Each element, therefore, has a group of
benchmarks mapped to it. Thus, it is these groups of benchmarks that have
been prioritized, not the individual benchmarks.

Section 5.0 detailed the prioritization of RTE elements for
COMINT/ELINT systems. This section provides the mapping of benchmarks to

RTE elements.

v

6.1 MAPPING BENCHMARKS T0 RTE ELEMENTS

The majority of the benchmarks listed here came from the document
"Real-Time Performance Benchmarks for Ada” (Goel 1988]. The other
benchmarks came from the Performance Issues Working Group (1988]. The Ada
Compiler Evaluation Capability (ACEC) [Leavitt 1988] benchmarks were not
included in this study because of disclosure restrictions. The format in
which the benchmarks are presented and the numbers assigned to benchmarks
were taken from their source. This has been done so that an individual can
go back to the source document to obtain more information about a specific
benchmark. The complete list of all the RTE elements and the prioritized

groups of benchmarks is found in Appendix F.

For the purpose of mapping benchmarks to the RTE elements, two elements
have been combined: task activation and task termination. This was done
because the benchmarks that measure these two elements are similar, and the

RTE elements have the same prioritization level.

TABLE 6-1 shows the priority order of the groups and the number of
benchmarks.

25

TABLE 6-1
Priority of Benchmarks

of
RIE Elements ~ benchmarks
1. Memory Management 16
2, Time Management 4
3. I/0 Management 1
4, Processor Management 5
5. Rendezvous Management 22
6. Exception Management 12
7. Interrupt Management 6
8. Task Activation/Termination 12
9. Target Housekeeping -0
10. Commonly Called Code Sequences S1

v

6.2 IYPES OF BENCHMARKS AND BENCHMARK DISTRIBUTION

To give the user a more thorough understanding of exactly what a
benchmark measures, e.g., memory space or response time, the benchmarks were
subdivided into types. It was determined that there were three types of
benchmarks: timing benchmarks, storage benchmarks, and if-and-how
benchmarks. The first two types measure the two critical resources of an
embedded system, i.e., response time and memory space. The third type, if-
and how benchmarks, address the need to determine how an RTE will respond
given a set of conditions. The benchmarks reveal choices compiler vendors
make when developing their RTIE by determining if an RTE will implement a
specific feature or how an RTE implements something. For example, a
Processor Management benchmark, determine if user tasks are preemptive, will
reveal how scheduling stra:egies were implemented by a particular vendor.
If-and-how benchmarks will also be used to determine whether a particular
feature is provided by a vendor, e.g., determine if unchecked deallocation
is implemented.

6.2.1 TIime Management Vs, Timing Benchmarks

Because of possible confusion, a distinction between time management
and timing benchmarks needs to be made. Benchmarks that measure aspects of
26

time management pertain to Ada features that are time related, e.g., Measure
CLOCK function overhead, Measure CLOCK resolution. Timing benchmarks relate
to all those benchmarks that measure the length of time it takes for an
event to occur, e.g., overhead time, time cto store data, etc. Thus, if one
is concernmed with measuring the overall timing performance of an RTE, one

should use timing benchmarks.

6.2.2 The Frequencv of Commonly Called Code Sequence Benchmarks

Commonly Called Code Sequences had the most benchmarks, 51, mapped to

ic. ARTEWG describes this element as some what of a "catch-all" that
includes runtime <routines in the classical sense, e.g., multi-word
arithmetic, block moves, and string operations. The types of benchmarks

included ’in this group were procedure and function calls, addition, and
anything that had code added (or removed, as with pragma PACK) by the
compiler. Also included in this category were "code sequences” written by
the user. While investigating the four systems, some code sequences
resurfaced, e.g., matrix manipulation, trig functions, and message passing

routines. All of these were put in the Commonly Called Code Sequences.

6.3 BENCHMARKS THAT NEED TO BE DEVELOPED

Once the benchmarks were mapped to the RTE elements, it became evident
that some elements are not adequately addressed by benchmarks. It was
determined that there is a need for addictional benchmarks that evaluate some
RTE elements. In some instances this need is because of an overall lack of
benchmarks; in other instances, even with several benchmarks, others are
needed. The elements in. need of additional benchmarks are I/0 Management,
Processor Management, Target Housekeeping and Commonly Called Code

Sequences,

Benchmarks need to be developed for 1/0 Management. During the course
of the study, it was determined that for the COMINT/ELINT systems I/O is
critical to system performance. With only one banchmark, it is difficult to

determine an RTE’'s 1/0 performance.

27

More benchmarks need to be developed for Processor Management.
Software developers must be able to dectermine courses of action taken by
tasks in order that they might develop reliable programs. More if-and-how
benchmarks would reveal to the software developer courses of actions

implemenced by the RTE.

Target Housekeeping Is "associated with the actions starting up and
terminating the execution environment of an Ada program" [ARTEWG 1988]. 1In
one of the systems studied there is a requirement for the system to be up
and running from a cold start in 10 minutes. This indicates that start up

is critical, and thus benchmarks are needed to measure this element.

During the study of the four COMINT/ELINT systems, a number of
‘algorithms’ resurfaced. For example, each system's software solution
frequently used matrix manipulations, trig functions, message transmission
facilities, etc. Benchmarks for these ‘'algorithms’ would be beneficial to
the individuals selecting the compiler and RTE. These additional benchmarks
would be mapped to the RTE element Commonly Called Code Sequences;

28

7.0 COMPOSITE BENCHMARK

The majority of benchmarks available either test a specific element of
the RTE in isolation or exercise several elements in some unspecified
combination. What is needed is a single benchmark that tests elements of an
RTE while interacting in a manner that is consistent with their interaction
during actual system operation. Such a benchmark would evaluate an Ada RTE
by forcing the RTE to perform operations that would mirror the operations

performed by the system to be developed.

7.1 PURPOSE OF A COMPOSITE BENCHMARK

A composite benchmark is a model of the capabilities of a particular
class of systems. The purpose of a composite benchmark is to stress a
computer and its RTE to evaluate their ability to perform the capabilities

of a particular class of systeams.

A composite benchmark allows a software developer to run one benchmark
that will give him a general idea of whether a particular RTE éan perform
the capabilities of a given class of systems. A composite benchmark tests
each capability individually and, more impartantly, the interaction among

the capabilities.

7.2 HOW TQ DEVELOP & COMPOSITE BENCHMARK

Developing a composite benchmark description for a particular class of
syscems 1is not a simple task, but once developed the benchmark could be used
to aid in the selection of an RTE for any system in the given class. The
following three steps should be followed when developing composite

banchmarks:

1. Identify the common capabilities of the particular class of systems by
studying the requirements and functions of the systems within the
class.

2. Define and analyze each capability. The description should include all
functions common to the systems in the class. If a particular function

29

is common to several of the systems within the class, it should be
included in the description because the function may be performed in a
new system being developed.

3. Document the interactions and interfaces among the capabilities in a
format that facilitates computer program code development. When
writing the description, there needs to be continuous interaction
between the writer and computer programmer to ensure that the composite
benchmark will be accurate and understandable. The description writer
must have an in-depth technical knowledge of the class of systems being
studied.

7.3 M E _BENC OR_C

A description for a preliminary composite benchmark was developed in
this study for COMINT/ELINT systems. The goal has been to develop the idea
and an aﬁproach for developing a composite benchmark. Because of this, the
composite benchmark being developed is immature and needs to be addressed
more directly in the future. The preliminary composite benchmark models the
five capabilities of COMINT/ELINT systems: intercept, direction finding,
emitter location, analysis, and reporting. This descripction was given to

another company, TAMSCO, for code development.

It {s assumed that the target audience of the composite benchmark
description is familiar with COMINT/ELINT systems. Terms that may not be

familiar to the target audience are defined.

7.4 0 C X ON FOR €O / TEM

The program performance specifications documentation and the program
design specifications documentation for the four selected COMINT/ELINT
systems (See Section 2.0) were studied to obtain the information used in the

description.

30

7.4.1 TIhe Incercept Capgbility

The benchmark must perform automatic acquisition of unknown signals.
It will search frequency bands to find and catalog unknown signals. This
involves two different search capabilities: general search (GS) and

directed search (DS).
7.4.1.1 General Search (GS)

GS is a broad based sampling of frequency activity. It monitors a
number of frequency bands for emitter activity and reports the occurrence of
detected signals. This involves automatic environment mapping within
selected frequency bands with associated geographic areas of interest and
selected signal types. The benchmark will specify the frequency bands,

exclusion of frequencies, and signal class/type.

A GS plan will be developed. It will include a set of data parameters:
start frequency, stop frequency, frequency step size, receiver bandwidth
size, and signal class/type. The plan also includes exclusion frequencies
that are specified to inhibit the reporting of signal activity at specified
frequencies. The benchmark will step through frequencies defined in the GS

plan at a rate of at least 50 frequencies per second.

An activicy table will be maintained. The GS activity table will
contain entries for the most recent GS and manual direction finding (DF)
that the system performed. The parameters stored in the activity table
include the time of first and last intercept and a location estimate for
each entry for which DFs have been taken. The emitter location can be
determined automatically in response to GS activity in specified frequency

bands.
7.4.1.2 Directed Search (DS)

DS is the automatic intercept of specific known signals. It involves

automatic environment sampling at discrete frequencies, and it revisits

31

known emitters. The benchmark can specify a maximum of 20 frequencies for

automatic activity detection.

The DS operation will monitor a list of individual frequencies
specified in a DS plan and report newly active signals. The DS plan
consists of the following: frequencies of interest, priorities associated
with each frequency (normal, prioricy, monitor), the number of automatic DF
requests to be made for each frequency, and s’‘mulate an operator’s position
being alerted when an intercept is detected by a DS. Some frequencies will
be tagged for special handling such as increased sampling rate, prioritized
audio monitoring, prioritized audio recording, and geographic screening.
The DS plan contains at least 125 entries, including 20 priority DS entries

and two monitor DS entries.

An activity table will be maintained for each specified frequency. The
table includes an activity counter for each signal detected and the time of

the last intercept.

Each specified frequency will have an associated priority ;ssigned to
it that is used to guarantee minimum revisit intervals. The software will
determine the best DS frequency <o be examined while taking into account the
relative priorities of the frequencies. The software steps through the
frequencies in the DS plan at a minimum rate of 50 entries per second.
Monitor DS (highest priority) entries have a revisit time interval of no
more than 0.1 second. Priority DS entries have a revisit time interval of
no more than 0.5 second. Normal DS (lowest priority) entries have a revisic
time interval as determined by the number of entries in the DS plan.
Automatic signal analysis will be specified for a specific frequency and the

results screened according to signal type/modulation.

7.64.2 Direction Finding (DF)

The benchmark will make various measurements cthat will provide an
indi{cation of the direction from which a frequency signal originated. The

measurement process consists of several sequentially executed tasks that

32

conclude with the generation of a Line of Position (LOP). DF processing can
be either automatically initiated or manually requested. The benchmark will
accept input data from the DF related equipment and the magnectic field

converter via an analog-to-digital converter.

An LOP consists of two pieces of data: a Line of Bearing (LOB) and the
location of the receiving measurement equipment. An LOB is a line drawm
from the measurement platform location at the angle (relative to north) that
a signal ~rrived. When a LOB beccmes referenced to a position (platform
location at the time of the bearing), it becomes an LOP. The benchmark will
compute and format an LOB message for a given DF request within 2.25 seconds
of receipt of the request. The benchmark will store the LOB data from DSs,

DFs, and-manual DFs in the DF database segmented according to frequency.

The benchmark will schedule DF commands based on the following DF
request priorities: manual DF, monitor DS, priority DS, normal DS, and GS.
A local queue of pending DF requests is maintained. The benchmark will also
allow voice and data activity related to the intercepted frequencies to be

recorded.

7.4.3 Emitter Location

The benchmark will compute the location of an emitter signal. The
benchmark will use the LOPs to compute the best estimate of the emicrer
location. Upon receipt of LOPs from a DF request initiated by DS or by the
operator, the benchmark will attempt to associate the LOP set with an
existing FIX location in a file. If an association is found, the LOP set is
assigned to the corresponding FIX; otherwise, the benchmark attempts to
generate an emitter location estimate. If a reasonable emitter location
estimate cannot be determined, the LOP set remains unassigned. The
benchmark will be capable of computing and displaying a FIX from five LOPs
within 300 milliseconds. Provisions will be made for recognizing multiple

emitters sharing common frequencies.

33

7.4.4 Apalysis

The benchmark will allow automatic signal analysis, or it will simulate
an operator manually requesting a signal analysis at the frequency he is
monitoring with his intercept receiver. The following signal analysis data
results are to be displayed: detected frequency, signal type or modulation,
and audio classification. The signal classification section processes
Sigaal Classification Tips (SCT) at a sustained rates of up to 20 per second
without losing data. Then the benchmark will compare the results of signal

classification to the acceptable list of types or modulations for the SCT.

7.4.5 Reporting

The benchmark will allow the simulation of an operator viewing DF data
while generating a report. The data specification parameters allow the
operator to view DF data associated with a single frequency or a frequency
range, a specific time span within which the data was collected, or a
specific geographical area. These data specification parameters are to be

included in any combination.

The benchmark will generate reports seéi-aucamacically for transmission
by a reporting link. The software provides a means” to facilitate cthe
generation of reports and messages via prompts and displayed templates. The
software formats the report generated into a form acceptable for

transmission over the Reporting Data Link Subsystem (RDLS).

34

8.0 COMPTLER AND RTE SELECTION PROCESS

The final step of this study was to determine how the benchmarks should
be used when selecting an RTE. It was determined that choosing an RTE is a
three-step process. The first step is to eliminate all RTEs that cannot
perform beyond a minimum required threshold in each area critical to system
performance. The second step is to begin with the set of RTEs that satisfy
the minimum threshold requirements and select the small set of RTEs that
performs best in the areas critical to system performance. The final step
is to compare the costs, the vendor support provided, and any other
mitigating circumstances for the final selection of an RTE or compiler. The

first two steps involve the use of benchmarks.

The’composiCe benchmark is to be used to test the minimum threshold of
RTEs. This means the developer would only have to run one benchmark to
eliminate all RTEs not suitable for his particular class of system. Then
the other benchmarks would be used to test the remaining RTEs to see which
RTEs perform the best in the areas critical to system performance. Because
the RTE elements are prioritized, the critical areas and the benchmarks that

measixre those areas are known.

At this time the development of the composite benchmark is still in the
preliminary phase. Until cthe composite benchmark matures, only the

priorictized list of groups of benchmarks can be used to test RIEs.

35

9.0 SINMMARY AND CONCLUSIONS

The nbjective of this study was to provide software developers with
guidance in the selection of a compiler and its RTE to ensure all the timing
and storage requirements of real-time embedded systems, specifically

COMINT/ELINT systems, are met.

To provide cthis guldance required the identification of Ada RTE
features of interest for real-time systems. This involved two steps:
first, the Ada runtime features that are important for real-time embedded
systems were established; second, evaluation criteria to evaluate the
features were determined. To determine the important Ada runtime features,
the Ada RTE elements were prioritized. To evaluate the Ada runtime
features, current benchmarks were prioritized, and new benchmarks were

proposed.

Figure 9-1 provides the results of each step that was undertaken to
prioritize benchmarks. In the first step, COMINT/ELINT systems were chosen
to be studied, and the capabilities common to COMINT/ELINT.sys:ems were
identified. Four systems were chosen for in-depth study because they were
representative of all COMINT/ELINT systems.' The second step identified what
Ada constructs would be used to implement each capability. The third step
identified which RTE element would be used to support the implementation of
each identified Ada construct. The forth step prioritized the Ada RTE
elements. The prioritization was done by applying a prioritization matrix
to the RTE elements. It is recommended that when a developer prioritizes
RTE elements and benchmarks for a particular class of systems, the developer
begin by applying the prioritization matrix. The prioritization matrix was
originally developed for COMINT/ELINT systems, but it can easily be modified
to be used with other classes of systems. The final step prioritized
benchmarks. The benchmarks mapped to a particular RTE element inherit che
priority of that element. This study also presented the idea of a composite
benchmark, which is one benchmark that will give the software developer a

general idea whether a particular RTE can perform the capabilities of a

36

particular class of systems. A description for a composite benchmark was

developed fcr COMINT/ELINT systems.

Benchmarks are used to identify RTEs and compilers that are best suited
for a particular application domain by testing each candidate RTE to ensure
all system requirements can be met. The results of this study, specifically
the prioritization matrix, provide a process that a developer can use to
prioricize benchmarks. 1If the critical elements of an RTIE and compiler are
not adequately evaluated, the selected RTE could be crippling for a real-

time embedded system.

37

SIONINLIS
34002 GITIVO AINOMNOD 1)

ONIJIINISNOH L3DYVL 0

ONIJAINISNOH LIDUVL

S3IONINdIS

SNOLLONNS DML

NOILYTIAJSINYK XIdLVN

ONILNOSFY

Novis € ¥azviguvsL
2009 AITIVD AINOWNOD
SAHONJYNIS SISATYNY
NOILVNZY.LL NSV °8 OVI4 INIAT
-
E 2 ININIDVYNVN 0/1 anand
NOILYALLOY XSV '@ m 2
m xod Vi
3 NOILYNINU3L NSVL 240¥83LN1 Nowuvool
S . Q sV
INANWIOVNYN LanwyaiNt -2 | 2 ¥3LLNa
aSAVID ESIYAaY
NOILVAILOY XSV
SLNINILVLS TOMINOD
INIWIDVNVN NOLLJIIXT ‘D '
SININILYLS INIMNDISSY
ININIOVNYN SNOAZIANIY
saiL
ANINDVNYN HOSSIDONS °F Lidordd
INANIDVNYI NOILJIDXT SNOILAZIXT
LNANIDYNYA SHOAZIANSY ¥ NoivoeTIVad
ANINITVNYR AL NOLLYDOTIV ANON3N ontand o
NOWOZWIE
ININIOVNVN 0/1 'S TIVO NOLLINNY
ININIOVNYN LUNYUTING
TIVD 38nd300%4
ININIYNYN 2NIL 3 INANIOVNY HOSST20Ud NOILINNA 22012
NOLLINAS AVIIA
LNINIDYNYN ANONEN 3 ININIDVYNYN AHONIN VINZLIYD NOILITISS 1430831N1 A AUDL
nSVL
SILNAVIYD SW3LSAS
SININTIZ 204 VOY SININTIZ 314 vay S19N¥ISNOD SWILSAS
Q32ILIN0Nd 01 S1ONHISNOD VGV dVN vav aatdnaNaot QILNIE

Mapping System Capabilities to Benchmarks.

Figure 9-1.

38

0% TR TN RICE 1100804 "L100084 1100007 ‘100004 °} ‘¢’ '$ ¢ "red M : ‘10]
1000001 ‘1040081 “1S06081 TE00ENN “18ne0Rs 1T IV ‘TR CUUREIE "o 9 1000008 ‘v g igeeevd ‘o v 10esesd ‘o g ipeee0d ‘s- g iaseeed
© 1TI0000%¢ o ianderd "o Y I00000d ‘e 1 ia000sd CO £ 100004 6 1 10e0ud ‘o 1a0eesd ‘s aTemi IR CeaTiTas ‘ecaggyTes tecs
e P aETeTe teraT) e CetaTeet Y CetaTerTe T tetaTTeTy teiaaei e e aTerT)Te ettt CerwTs ‘eteTgey a8 ‘eraTyTa8 ‘ecs
CTGet 08 CeraTetTeTh CersTETE R e sTegi 08 T 0TgTeTE CeraTiTeTR CeaTeeiTTe e e arTETE CesTiTETE ‘ecsTus ‘sep s Ae s
O WTORE Corget v RE CaTeTRE ‘scegt e e 1T e ‘etagi e d ‘eger” ‘9°0)707d ‘e eTd ‘ergpiTeTd ‘egyTed ‘eryTee e
‘e 80TeE ‘e TgTe tewTd Teree ey e .
Y X -Q.’ul:. ‘eyTeTy ‘erentTy ' . . - WY R TR Y
V0P Tenei e ‘een e e TeTp ‘ergTe’p ‘eceprTep -

‘o0 TeTP CecetTye ‘e . ‘e goesew
‘O IB00M TT1TRI000N ‘O 010000 T 1TE0000Y "9 400000 ‘0 00000 " 27108004 ‘9 17080004 O 00000% T 2700080 O 1TLO000N ‘0 0000 ‘1 vee00n
'O I0000% 0 10000% "0 ETE0000Y ‘O 1TH0M00N “OTLRN00Y O 1TIONNNY ‘e 1TI0080¢ ‘OU10880¢ ‘O L 10008% 'O 1 10000Y ‘-lascev ‘0 4 6 f4°§

[AN M M I M I N M T TN T]
‘O 9perTNE ‘ecvnetTas ‘ecgesdvs ! . ‘ TE ETIN0NNN O RTI0NSNT ‘9717000000 ‘0 90eeet ‘P g 50080} "o g geeest “v') gesend
T 400008 O £Tr0000t "V 17000000 ‘o p0000) O 100000 O 27200800 ‘°1TZ00000 T 00000 TOT0T100000 0 1100000 O 07100000 o 1 100000 ‘¢ 1eeee

SRR CNATEY TS TRy Ceee

OT1O880T1S 0 001700 “E00000D "1800000 ‘100000D O 1 900000 TS 1000000 ‘O 4pe0e ‘v g geeest ‘o°1 gesees
‘SN0 ‘01700000 617100000 “0:100000 ‘T 1TE0006C 01 E0N0OL O 100000 O 1100000 O-517ESN0SE ‘S 000G ¢ 1108000 ‘€5 (0R0R® °*'(seee®

TETUY TOD0RITIS S0 eue00 i ‘e 1TINNNNP R0800IP 175 4 Y

‘2000000 ‘100000
‘e 8T vennes
ORTITI00000 TH 1T INeNRS (O 017000004 ‘006717000007 “0°04 7600007 ‘0 078 500000 O 178 100004 0101 0 10900r ‘9073 000007 ‘0" 0 0 toe0e?
*O 83717500000 "0 0TETE00007 "0 1TETE00000 ‘U 01 ETLONN0Y ‘O TR CH00N? U 1 TETE00002 ‘€01 1TE0000s "0 071 500002 0 0171 500000 ‘e 00 e00ee?
TH0TE08000 TU 1TE00002 TN S 100000 00 100000 O L1002 ‘O RTINEN0? "0 17100004 ‘ST 100007 ‘0 17100000 0°9T(00007 ‘0 5 (00087 ‘0 9 goeee?
‘O E00000 CO- 20000/ ‘0 1TE00007 T 000002 O Y 100000 O 1100002 U 5TEN0SSS "0 1TEO00BS "R R0800F ‘o 2100800 OT1 100000 "0 (peee!

® 208091 “O°HIUD ‘O gles T eu) TR ges ‘eigmy ‘eigmi O gl e yed ‘eiger e ges ‘8 4en e 1peee o 1oeney

L0000 TOGINLTUD e BT ‘O QIPETUP ‘S 1P VP ‘0 gIPL WP "o 1p) W e pe,90 v
TOREITUR ‘0°91007Wp e iaiTup ‘e giseTup ‘ucgelieTvp ‘ecgysnTwp ‘etgeeup L UL B B TT DA T MY T L S T R T i PR P ST er
VBTV 0eUTe T IPE R ORI IR TS IBETIP Y OIPITIS S 1pLTR "o aa1 0 PR ‘ergriTey ° LD) L RTINS

CONPE P COUNPIOP T IBITIP O 4 TIE o gaiInTRP ‘ecglee I ‘e-gieTpp ‘e ggqusep ‘eCQILETIP e queThp e‘agIts PR e g3ie es ‘s giepe
- AY
‘O 00 TEP e iasv)eR Te gy ey ° ' ° * TOTRO0ITIS ‘e 1TE0000% eI 100000 "o ERe0eR ‘¢ 10eEre "0° 5000 10 ‘8 yge s

SHININDIS
200D GITIVD LINOWNOD “1

ONIJAINASNON LANUVL '8

NOILVNIIU3L NSYL ¢

NOLLVAILDY NSVL '8

ININIDVNVI® LANUYILNL L

LNANIDVNVIL NOILSIIXT ‘9

LININIDVNVIY JOSSIO0U ¥

INAWNIDVNYIH SAOAZIUNDY ¥

INAWIDVNYIN 0/1 ¢

JINTWIOVNYIN ditiL "2

ININADVNYH AUONAN)

XTIV

NOILLYZILNOINE

SNUVRUINAU udziLpiontd

SINANT IS 440 vav
UKFARRE(VIEPR

Mapping System Capabilities to

~
o
e
g
i
0
g
o
)
b d
R
.rm.
]
B
~ 9
v
o
e
&
ot
e

39

10.0 BIBLIOGRAPHY

ACM Ada Letters. 1987. i W - e u
Moretonhamsted, Devon, UK.
ARTEWG. 1988. p Framework for Describing Ada Runtime Environment. SICAda.

Barnes, J.G.P. 1984. Programming in Ada. Addison-wesley Publishing Company,
Menlo Park, California.

Blackman, M. 1975. The Design of Real Time Applications. John
Wiley & Sons Ltd.

Booch, Grady. 1983. Software Engineering in Ada. The Benjamin/Cummings
Publishing Company, Inc., Menlo Park, Califormia.

Eide, Arvid, R., et al. 1979. exing Fundam d_Problem Solving.
McGraw-Hill Book Company.

ESL Corporation. 1988. Irailblagzer B SV gggg;ém Design Specification.
Sunnyvale, Califormia.

ESL Corporation. 1988. Irailblazer B SV Program Performance Specification.

Sunnyvale, California.

ESL Corporation. 1985. IGR-V Computer Software/Firmware Document. Volume 1
through Volume 7, ESL Corporation, Sumnnyvale, California.

Gehani, Narain. 1984. Ada Concurrent Programming. Prencice-Hall, Inc.,
Englewood Cliffs, New Jersey.

Goel, Arvind Kumar. 1988. Real-Time Performance Benchmarks
for Ada. Technical Management Services Corporation. Final Technical Report

to Center for Software Engineering, CECOM, December 1988.

Habermann, A. Nico, Perry, Dewayne, E. 1983. da jence
Programmexrs. Addison-Wesley Publishing Company, Menlo Park, California.
1BM Corporation. 1986. Communication High Accuracv Airborme Locationm Svscem

(CHAALS). Program Design Specification, Omego, New York.

Jones, Robert E., Rosenberg, Mark. 1983. ARTE\DECO User’'s Gujde. CECOM

Project Control & Information Center.

LABTEK Corporation. 1988. Gyidelines to Select, Use and Configure an Adg
Runtime Epvironment, Final Technical Report to Center for Software
Engineering, CECOM, December 1988.
LABTEK Corporation. 1987, Tw Te

4 1.7 v , Final Technical Report to Center

for Software Engineering, CECOM, July 1987,

40

Leavice, T., Terrell, K. Ada Compiler Evaluation Capabilitv (ACEC) Version
Rescription Document. AFWAL-TR-88-1093. Boeing Military Airplane for Air
Force Wright Aeronautical Laboratories. 1988.

Mellichamp, Duncan A. 1983. Real-Time Computing with
Applications to Data Acquisition and Control

. Van Nostrand
Reinhold Company.

Performance 1lssues Working (PIVG). 1988. Systems Designers Software:
Summary of PIVG Benchmark Results. Headquarters, Cambridge, Massachusetts.

Quirk, W. J. 1985. Verification and Vaglidation of Regl-Time
Software. Springer-Verlag, Berlin Heidleberg New York

Tokyo.
Ready, Jim, et al. 1988. Real-Time Applications wich Ada. Tutorial at the

Sixth National Conference on Ada.

, ANSI/MIL-STD-1815A-1983,
Departmer't of Defense, 17 February 1983.

Telos Federal Systems. 1986. CLCSE Weapon Systems Survev. Stewart Associates
Incorporated, Red Bank New Jersey.

UTL Corporation. 1987. Advanced Ouicklook Program Design Specification.

Dallas, Texas.

UTL Corporation. 1987. Advanced OQuicklook Program Performance Specificacion.

Dallas, Texas.

Veiderman, Nelson, et al. 1987A. Ada for Embedded Svstems: Issues and

Questions. Software Engineering Inscitute (SEI). Carnegie Mellon University.
Pittsburgh, PA. =

Weiderman, Nelson, et al. 1987B. Apnual Technjcal Report for Ada Embedded

A4 . Software Engineering Institute (SEI). Carnewmie
Mellon University. Pittsburgh, PA.

41

APPENDIX A
REAL-TIME FUNCTION DESCRIITIONS

This appendix contains the descriptions of the real-time functions
introduced in Section 2.0. The functions described are those in TABLE 2-1.
Also included is the list of functions from which the real-time functions

were identified.

function descriptions
real-time characteristic: monitor

receiver - conversion of incoming electromagnetic waves into digital
form

reception - action of receiving electromagnetic signals
target detection - finding the presence or existence of a moving target
real-time characteristic: analyze

direction finding - process of making measurements that indicate the
direction from which a signal originated

analysis - interpretation and classification of signals

location - computing the location of a signal’s origin
real-time chatac?eristic: respond

transmitter - sending results of analysis to designated parties

countermeasure - after hostile missile detection, actions taken to
counter its original intent

antenna controller - guiding the antenna to obtain the most efficient
reception

APPENDIX B
HOW ADA CONSTRUCTS WERE IDENTIFIED

The following is the discussion on how Ada constructs were identified.
For each system capability (intercept, direction finding, analysis, emitter
location, and reporting) the system operations that perform particular
capabilities are identified. Then, the Ada constructs that perform a
particular operation are identified along with an example of how the

construct is used.

Due to the amount of effort required for an in-depth analysis to obtain
base line Ada constructs, one IEW COMINT/ELINT system was originally
studied. These base line constructs were then validated by coaparing them
to ccher'IEW COMINT/ELINT systems.

Because of the similarities between direction finding and emicter

location, these two capabilities were combined.
C.1 Intercept
Intercept’s major function is to determine signal presence.

The critical constructs used for interception are 1listed with

explanations of how it would be used.

Micro Constructs

address clause : used whenever an interrupt is used allocate needed

allocation : memory for incoming data to tell that a message is

interrupt : waiting to be sent and to indicate that a message is
coming from another CPU

tasks : used to continually poll the interface board

Macro Constructs

flags : indicate the following: buffer in use, buffer is full,
CPU is using another resource
queue : when intercept is detected the data is put into a

queus going to direction finding

B-1

C.2 Direction Finding and Emitter Location

Direction Finding (DF)

The major operations involved in DF are scheduling DF requests,
removing requests that have not been processed in a set amount of time, and

reporting the DF response to the system computer.

The critical constructs used in the DF were listed with examples of how

they would be used.

Micro Constructs

clock : for a timeout for a specific period of time

delay : used to initiate the timeout

exception : raised if audio correlation cannot be done because
access is blocked

interrupt : interrupt the audio correlator to send message to
system computer

priority : to establish priorities for direction finding requests

Macro Constructs

queue : the DF output is stored {n queues how the DF requests
stacks : are stored determine if audio correlation is free
semaphore

DE algorichm

The DF Algorichm 1is responsible for starting the data collection,
cycling through the data collected, accumulating the data in the case of DF
requests, and calculating the Line of Bearing (LOB).

The critical constructs used in the DF Algorithm will be listed with
examples of how it would be used.

Micro Constructs
allocation : after data is determined to be valid, memory is

allocated to store the data

B-2

delay : used to allow an analog device to "settle"” before
taking baseline measurement

exceptions : a message is generated to indicate an error
interrupts : used to indicate the system has completed the current
command

Macro Constructs

flag : indicate a process has occurred messages sent are
queue : queued so they can be read when ready
Navigacion System

The Navigation System 1is responsible for reading mnavigational
information from the Inertial Navigation System (INS). This is used to

determine the emitter location.

The critical constructs used in the Navigation System were listed with

examples of how they would be used.

Micro Constructs

control state : decodes the commands and calls the appropriate
subroutine to execute the command

procedure : calling the subroutine moving date problem with

assignment : updating the system

exception :

Macro Construct

event flag : was identified to indicate that data‘has been stored
in the data buffer from the incoming serial port

C.3 Analysis

System Adminiscracors

The System Administrators serve as the controlling CPUs. They authorize
the analysis CPUs to begin processing and control the interfaces bectween
computers. The System Administrators control link handling, scheduling,
directed and general search, and list handling.

B-3

The critica. constructs used in the Administrators were listed with

examples of how they would be used.

Micro Constructs

For the Ground Digital Administrator every micro construct was identified
because it performs such a large variety of functions including scheduling,
controlling and memory allocation. Several examples of the micro constructs

are presented,

tasks : used for continuous looping to check the response
queue for messages received

clock : requesting status information at regular intervals

delay : reschedules itself using timeouts allocate memory for

memory alloc. : received messages interrupting the system computer

interrupt : for incoming direction finding data

Macro Constructs

mailbox : used to send messages to the system computer queue
queue : messages to be sent up the link to reserve the
semaphore : output link queue to indicate a message has been
event flag : received

Signal Classification and Recognition (SCAR) Analvsis

The major functions involved in SCAR analysis include CPU system
initcialization, SCAR analysis control, SCAR calibration calculations, SCAR
analysis calculations, SCAR discriminant calculation, and SCAR feature

vector calculations.

The critical constructs used in cthe SCAR Analysis will be listed with
examples of how they would be used.

Micro Constructs

assignment : assign the results of mathematical calculations
interrupt : SCAR CPU interrupted to receive message from the
adminiscrator
B-4

function : calling mathematical functions

Macro Construct

mailbox : to indirectly pass messages queue SCAR requests lock
queue : the database from being updated
semaphore A

c ma a

These are routines that perform mathematical functions necessary to

accomplish SCAR analysis.

Two micro constructs were identified to perform the mathematica’

calculations: functions and the assignment s:atement.

Macro Construct

matrix
manipulation : involves dividing, multiplying, adding and subtracting
matrices of data
Trigonometry _
functions : solving SINE and COSINE functions
nalv o

The library routines consist of functions needed by many different
routines. The functions include the memory management routines, inter-CPU
message passing, a random number generator, a queue flushing routine, the
accountability number generator, a frequency offset adjuster, and directed

search entry address calculations.

The critical constructs used in the Analysis Library Routines will be
listed with examples of how they would be used.

B-35

Micro Constructs

interrupt : interrupt co receive a message raised when message
exception : is having trouble being passed

Macro Constructs

queue : to queue messages sent down the link used to
mailbox : indirectly send messages indicate the mailbox is in
semaphore : use indicate a message has been read

event flag

C.4 Reporting

Uplink Multiplexex Software

The -uplink multiplexer provides for communication. Memory space is
allocated for databases and scratch pad memory. I/0 ports are initialized,

and the microprocessor instructions and memory (RAM and ROM) are verified.

The cricical constructs used in the Uplink Multiplexer Software will be
listed with exarples of how they would be used.

Micro Constructs
dynamic memory : create memory space for the database if memory cannot

exception : be allocated to interrupt the Receiver Control Unic
interrupc

Macro Constructs

event flag : to indicate the receipt of data how the data is stored
stack : in memory
Incexcom/Spectrum Displav (IC/OD)

The IC/SD processor is responsible for controlling the Integrated

Processing Facility Intercom System and for providing the spectrum display.

The critical constructs used in the IC/SD were listed with examples of

how they would be used.

Micro Construct

tasks : used in a polling loop waiting for activity

procedures : calling the appropriate routine based on what was
received from the polling loop

exception : raised if there is a failure in passing data

functions : functions called for testing

Macro Construct

event flag : is used to indicate that data has been received.

APPENDIX C
ADA RUNTIME ENVIRONMENT DEFINITION

ARTEWG defines an Ada RTE as the set of all capabilities provided by

three basic elements: predefined subroutines, abstract data structures, and

code sequences.
Bredefined Subroutines

The predefined subroutines are used by the compiler generated code to
support features of the Ada language that the Ada implementor (vendor) has
chosen not to directly represent in generated code. The set of predefined
subroutines for a generated Ada program is callea the Runtime System for
that paréicula: program. These predefined subroutines are chosen from the

Runtime Libraries.

Abstract Data Structure

-An abstract data structure is a grouping of related data items in
memory. The items in a data structure can be processed individually,

although some operations may be performed cn the structure as a whole.

Code Seguences

Code sequences are commonly used, repetitious lines of code adopted for
reliabilicy, interoperability, and suppression of unnecessary
implementation details. Code sequences are heavily affected by the selected
definitions of predefined types and representations used for addressing
objects. Related issues for code sequences include whether there is omne or
mulciple areas for package (i.e., global) data, what mechanism for uplevel
referqncing of objects is (e.g., static link or display) and what the
subptcézam call sequences and parameter passing mechanism are determined to
be.

Cc-1

The partitioning of functionalities between code sequences and runtime
subroutines presents another set of issues that must be resolved in the
runtime model. The decisions regarding this partitioning are influenced by
the capabilities and limitations of the target configuration (e.g., how much
of the ctasking constructs are handled by inline code versus calls to
routines). The best decision regarding allocation to either code or runtime
routines is highly situational and must be based upon the particular target

archictecture and performance goals.

The runtime model resulting from the decisions described above defines
the requirements of the design for the RTE components listed in the
taxonomy. The following taxonomy describes a list of 11 functions that can

be expected in the runtime libraries for Ada implementation.

Dynamic Memory

The dynamic memory management function is the part of the RTE that
handles the allocation and deallocation of storage at runcime. If a request

for storage cannot be fulfilled a storage error will be raised.

Brocessor Management

The processor management function implements the assignment of physical
processors to tasks that are “"logically executing." The processor
management function is invoked by other components of the RTE to block and
unblock tasks. It maintains a list of task priorities to determine which

task should be assigned to a processor.

Interrupc Managemenc

The interrupt management function implements the interrupcs for
asynchronous avents in the underlying competing resource. It is not only
responsible for initializing the interrupt mechanism in the underlying
resource, but is also responsible for resetting the mechanism after the

interrupt has occurred.

c-2

Iime Management

The time management function is the portion of the RTE that supports
the predefined package, Calender. This includes the support for the clock

function and delay statement.
Exception Management

The exception management function implements the Ada semantics for
exception handling. It determines whether there is a matching handler for
the exception. If one is present it transfers control to the handler. If no
matching‘handlér is available it invokes the task termination function to
terminate the task at hand or to terminate the main program. Both

nredefined and user-defined Ada exceptions may be raised.

vou

The rendezvous management function implements the semantics of the Ada
rendezvous model. It monitors which tasks are blocked because they are

waiting to rendezvous with other tasks; and it determines the exact

circumstances of these wait states.

Task Activatijon
The Ada Language allows the dynamic creation of tasks. The task

activation function is invoked by the creator of a new task in order to

start the new tasks activation.

Task Termination

The task termination function contains the set of rules £for the

compiection, termination and abortion of tasks.

c-3

1/0 Management

This part of the Ada runtime environment supports input and output,
including all of the. functions that support predefined packages from Chapter
14 of the Ada Reference Manual.

commonly Called Sequences

This category is a “catch all.” It includes runtime routines in the

classical sense, commonly called sequences of code.

Jarget Housekeeping Functions

Target Housekeeping functions are the parts of the Ada RTE that are
responsible for starting up and terminating the execution environment of an

Ada progranm.

c-4

APPENDIX D
WEIGHTING OF ECS FEATURES

1/0 Control

COMINT/ELINT systems have strong dependence on input and output. The
major aspect of COMINT/ELINT systems is the interception and monitoring of
either electronic or communications signals. The systems need to enable and
disable devices, handle device interrupts, and be able to move data to and
from data registers. 1/0 control is the highest weighted criteria in the
decision matrix because of the number of requirements mapped to it and
because the COMINT/ELINT Systems most important capability, Intercept,
heavily involves 1/0. Intercept is the most important capability since if

no signals are found and intercepted, the system is useless.

Aﬁother major part of COMINT/ELINT I/0 is the communications between
CPUs. All COMINT/ELINT Systems are comprised of multiple CPUs ranging from
microprocessor chips to large main frames (Perkin Elmer). There is
extensive I/0 between the CPU’s. For example, consider the following:
Three microprocessors located on an airplane interact to perform
interceptions, direction finding, and signal analysis. Then the intercepted
signal and the analysis is sent to three microprocessors on the ground
through one microprocessor dedicated for multiplex communication. On the
ground the signal is further analyzed for location and characteristics.
Then the signal is sent to a main frame computer for continued analysis by
an operator and for generation of reports. For reporting the analyzed data
to commands in the field, the information is sent back to the airplane for
dissemination. This simple explanation of a complex process of I/0 provides
an idea of how extensively 1/0 between CPUs is used within COMINT/ELINT

Systems.

Iiming Contyrol

Strict timing demands must be satisfied for COMINT/ELINT systems. The
software requirements specify exactly what timing requirements must be met.

D-1

For example, in Trailblazer B the software must be capable of computing and
displaying a FIX (location) from 5 lines of bearing within 300 milliseconds.
1f this and other timing constraints are not met, valuable data is lost or
not analyzed. This valuable data cannot be recovered, but the system does
not completely fail if a timing requirement is not met. Because of this,
the timing requirements are strict but not critical. The timing control

feature is the second highest feature.

Concurrent Control

One requirement for real-time embedded computer system is parallelism.
COMINT/ELINT systems depend heavily on concurrent control. Concurrent
processing must be used to meet the strict timing requirements needed to
intercept, analyze, and disseminate COMINT/ELINT signals. Concurrent
processing dramatically increases the speed at which data can be
intercepted, analyzed and disseminated. Concurrent control allows for two
capabilicies, i.e., intercept and DF, to be performed concurrently. For
example, one task can be dedicated to the interception and monitoring of
signals on a particular frequency. This task will continually monitor the
frequency without interruption, while another task <can be dedicated to
determine the direction from which the signal originacted. If there were no
concurrent processing the monitoring of a signal would have to be
interrupted for a period of time while the direction was being determined.
Wicth this, waluable cocawication nr eleztronic data could be lost. Another
example is one task can be dynamically created to monitor each frequency
from which a signal has been intercepced. This allows for the monitoring of
mulctiple frequencies. When a frequency no longer has any activity, a task

can be terminacted.

Because concurrent control must be used to meet the strict timing

requirements, the weighting of thcie to features are the same.

D-2

e ent

COMINT/ELINT systems use low-level interfaces to communicate with hard
wire devices (receiver control units) which perform the actual interception
of the signals. This involves the conversion of the data signal from analog
to digital. To store incoming data, efficient data representation in terms
of the underlying computer architecture is needed. These involve the use of
tightly packed data structures, dedicated memory locations, and special-

purpose registers [Weiderman 19874].

The highest weighted feature is I/0 control. All the data that is '
intercepted must be stored in an efficient manner. This involves strict
control of how and where the data is to be stored. This involves
determining the amount of memory to be allocated for a particular data
object and also the amount of memory to be allocated for a dynamically

created task.

Internal Representation is weighted higher then error handling and
numeric computations, because COMINT/ELINT systems rely heavily on I/0

control.
Erxor Handling -

Real-time embedded software must be reliable, where reliability is
typically measured in terms of the system’s availability, the mean cime
between failures, the meanﬁime to repair and the frequency of failure. The
normal approach developers have taken in order to meet reliabilicy
requirements is to design the Real-time system in such a manner that it can
recover from its errors. Real-time software must be able to both detect and

subsequently recover from errors [Weiderman 1987A].
Most COMINT/ELINT system have built in test equipment (BITE). BITE

tests all the five capabilities each time before a svstem is activated for

actual use. BITE can also be activated at any time during actual system

D-3

operation. Most errors should be detected before the system is in actual

use so error handling is still important but not critical.

Numexic Computations

COMINT/ELINT systems rely on complex mathematical algorithms for
analyzing, direction finding, and determining emitter location. The major
importance is the time {t takes to perform the algorithms and also the
representation and implementation of the physical quantities (float point or
fixed point). Numeric computations and error handling are important
features, but for COMINT/ELINT systems they are the lowest weighted

features.

v

D-4

APPENDIX E
RATING EACH RTE ELEMENT

The following is a discussion of each RTE element and its effect on the
performance of each ECS feature. This section is divided by ECS feature and
within each feature is a listing of each RTE element, its rating, and a brief

discussion of how a particular rate vas chosen.

E-1

RIE Element

Memory Management
Processor Management

Interrupt Management

Time Management

Exception Management

Rendezvous Management
Task Activation
Task Termination

1/0 Management

Commonly Called Code
Sequences (CCCS)

Target Housekeeping

Concurrent Control

Rating Discussjon

9

Memory management is intrinsic because of the
need to store data during context switching.
Also, there may be a need to dynamically
create tasks in real-time embedded systems.

Processor management is intrinsic because it
implements the assignment of physical
processors to task that are logically
executing when running parallel operations.

Interrupt managezent is a supportive because
if the address clause for task entries are
implemented, the interrupt management element
utilizes the rendezvous management element to
realize interrupt rendezvous [ARTWG87]. 1t is
not intrinsic because interrupt rendecvous do
not always have to be used.

It i{s intrinsic because of the extensive use
of time entry calls (delay statement) in real-
time embedded systems.

A fault can be raised anytime during system
execution. It is highly recommerided but not
mandatory that some type of exception
management be used.

The Rendezvous of tasks 1is intrinsic for
concurrent control.

Task Activation i{s intrinsic for concurrent
control.

Task Termination is intrinsic for concurrent
control. ‘

I/0 Management is supportive because tasks
¢an, but do not have to, be used during inpu:c
and output.

CCCS plays a minor role in concurrent control.

Target Housekeeping plays a minor =role in
concurrent control.

E-2

RIE Elements

Memory Management
Processor Management

Interrupt Management

Time Management

Exception Management
Rendezvous Management
Task Termination
Task Activation

I/0 Management

cces

Target Housekeeping

Time Control

Bating DRiscussion

S

The time it takeés to dynamically create
variables or tasks may or may not be time
critical. ' :

The time in which a task is given sole use of

~ the processor (in a uniprocessor system) is

critical.

Interrupts from hardware timers may need to be
passed on to the time management element to
determine the length of the interrupt. This
time period may or may not be time critical.

Time Management is intrinsic because of the
use of the package calendar and the delay
statement in meeting timing constraints.

A fault can be raised anytime during system
execution. It is highly recommended, but not
mandatory, that some type of exception
managenent be used.

Time overhead to perform a rendezvous must be
considered when trying to meet strict timing
constraints.

The time it takes to terminate a task may or
may not be critical. Task termination plays a
role in time control, but it is not inherent.

The time it takes to activate a task may or
may not be critical. Task activation plays a
role in time control, but {t is not inherent.

I/0 in real-time embedded systems is subject
to strict timing constraints. I/0 management
{s incrinsic to time control.

CCCS plays a minor role in time control.
The time it takes to start up and terminate a

computer system may be important for some
real-time embedded systems.

RIE Elementcs

Memory Management

Processor Management

Interrupt Management

Exception Management

Rendezvous Management

Task Activation
Task Termination
I/O Management

cces

Target Housekeeping

I/0 Control

Discussion

During the input or output of data, memory is
always being allocated or deallocated.

Ada tasks can be used to monitor asynchronous
input. If they are, the processor management
element will play a role.

Interrupt management is intrinsic because low-
level asynchronous I1/0 operations to and from
hardware devices are interrupt driven,

A fault can be raised anytime during syscem
execution. It is highly recommended but not
mandatory that some type of exception
management be used.

Ada tasks can be used to monitor asynchronous
input. 1If they are, the rendezvous management
element will play a role.

Task activation plays a minor role in 1/0
management.

Task Termination plays a minor role for 1I/0
management.

The 1/0 Management element is intrinsic for
I/0 control.

CCCS plays a minor role in 1/0 management.

Target Housekeeping plays a minor role in I/0
control.

E-4

Error Handling

RIE Element Racing DRiscussion

Memory Management 5 A fault can be raised anytime during system
execution. It is highly recommended, but not
mandatory, that some type of exception
management be used.

Processor Management 5 A fault can be raised anytime during system
execution. It is highly recommended, but not
mandatory, that some type of exception
management be used.

Interrupt Management 5 A fault can be raised anytime during system
execution. It is highly recommended, but not
mandatory, that some ctype of exception
management be used.

Time Management 5 A fault can be raised anytime during system
execution. It is highly recommended, but not
mandatory, that some tv-e of exception

management be ussd.

Exception Management 9 Exception management is intrinsic to the
performance of error handling in a embedded
computer system.

Rendezvous Management 5 A fault can be raised anytime during system
execution. It is highly recommended, but not
mandatory, that some type of exception
management be used.

Task Activation 5 A fault can be raised anytime during system
execution. It is highly recommended, but not
mandatory, that some type of exception
management be used.

Task Termination 5 A fault can be raised anytime during system
execution. It is highly recommended, but not
mandatory, that some type of exception
management be used.

I/0 Management 5 A fault can be raised anytime during svstem
execution. It i{s highly recommended, but not
mandatory, that some ctype of exception
management be used.

E-5

cCCs

Target Housekeeping

A fault can be raised anytime during svstem
execution. It is highly recommended, but not
mandatory, that some type of exception
management be used.

A fault can be raised anytime during system
execution. It is highly recommended, but not
mandatory, that some <type of exception
management be used.

E-6

Numeric Computations

RIE Elements Rating Discussion

Memory Management 1 Memory management plays a minor role in
nuneric computations.

Processor Management 1 Processor management plays a minor little role
in numeric computations.

Interrupt Management 1 Interrupt management plays a minor role in
numeric computations.

Time Management 1 Time management plays a minor role in numeric
computations.
Exception Management 5 A fault can be raised anytime during system

execution. It is highly recommended, but not
mandatory, that some type of exception
management be used.

v

Rendezvous Management 1 Rendezvous management plays a minor role in
numeric computations.

Task Activation 1 Task activation plays a minor role in numeric
computations. .

Task Termination 1 Task Termination plays a minor role in numeric
computations.

I/0 Management 1 I/0 Management plays a minor role in numeric

computations. _

CCCS 9 CCCS is intrinsic, because it includes runtime
routine for multi-word arithmetic functions.

Target Housekeeping 5 Target housekeeping plays a role in numeric
computations, because initial values of
variable can be done during system
initialization.

E-7

Internal Representation

RIE Elements Rating Discussion

Mémory Management 9 Embedded computer systems must have strong
control over dynamic storage and how variables
and tasks are represented in storage.

Processor Management 1 Processor management plays a minor role in
internal representation

Interrupt Management 1 Interrupt nanagement plays a minor role in
internal representation.

Time Management 1 Time management plays a minor role in incernal
representation.

Error Management] A fault can be raised anytime during svstem

’ execution. It is highly recommended, but not

mandatory, that some <type of exception
management be used,

Rendezvous Management 1 " Rendezvous management plays a minor role in
internal representation.

Task Activation 1 Task activation plays a minor role in internal
representation.
Task Termination 1 Task termination plays a minor role 1in

internal representation.

1/0 Management S I/0 management plays a role in internal
representation, because how data is to be
stored after it is input may be important in a
real-time . system in which storage is at a
premium,

cccs 5 CCCS plays a role in internal representation,
because how the interim results of multi-word
arithmetic problems are stored are important
in a real-time embadded system in which
storage is at a premium.

Target Housekeeping 9 Target Housekeeping is intrinsic for intermal
representation, because the declaration of
variables (which determines how they are to be
represented in storage) is done during system
inicialization.

E.8

APPENDIX F
PRIORITIZED BENCHMARK LIST

The following is the list of benchmarks grouped by the RTE element cthey
measure. The order of the groups is a result of prioritizing the RTE elements.
The benchmarks that measure the highest priority element are in the first group
and the benchmarks that measure the second highest priority element are in the

second group, and so on.

Each benchmark has a corresponding number. This number was taken directly
from a benchmark’'s source which allows the reader to return to the source and
obtain more information about a particular benchmark. Those benchmarks with
identifidation numbers consisting of all digits and decimal points are from [GOEL
1988]. The others, whose identification numbers start with a letter and contain

several zeros and end with a nonzero digit, are from [PIWG 1988].

4.1.1.1

4.3.1

4.1.1.2

DO00001

D000002

D000003

D0O00004

MEMORY MANAGEMENT
MEMORY

Determine if task space is deallocated on return from a procedure
(wvhen a task that has been allocated via the new operator when
that procedure terminates).

The attributes SIZE and STORAGE_SIZE provide information about

" storage assignments for task objects and types. These attributes

can also be used to specify an exact size (amount of storage) to
be associated with a task type. It is important to know how much
storage a task object is allocated. Also how is runtime storage
allocated for tasks? heap? stack?

Determine STORAGE_ERROR threshold.
Determine if Garbage collection is performed on the fly.

Determine if Garbage collection is performed on scope exi:. In
this test an access type to an array of 10000 integers is declared
in a procedure called from the main program. This subprogram is
called repeatedly and if storage is not being automatically
deallocated upon scope exit, STORAGE_ERROR will again be raised.
If garbage collection is implicitly called, no STORAGE_ERROR
exception will be raised.

Determine if tasks that are allocated dynamically by the execution
of a allocator do not have their space reclaimed upon termination
when access type is declsred in a library unit or outermost scope.

TIME

Dynamic array allocation, use and deallocation time. Dynamic
array elaboration, 1000 integers in a procedure, get space and
free it in che procedure on each call.

Dynamic array elaboration and initialization cime allocation,
initialization, use and deallocation 1000 integers initialized by
others equal to 1.

Dynamic record a&llocation, and deallocation time elaborating,
allocating and deallocating record containing a dynamic array of
1000 integers.

Dynamic record allocation, and deallocation time elaborating,
inicializing by (DYNAMIC_SIZE, (others equal to 1)) record
containing a dynamic array of 1000 integers.

F-2

3.5.
3.5.
3.5.

3.5.

3.5.

Measure time for allocating storage known at compile time.
Measure Time for Allocating Variable Amount of Storage
Memory Allocation via the New Allocator

Memory Allocation via the New Allocator when there are active
tasks in the system

Determine the effect on time required for dynamic wmemory
allocation when memory is continuously allocated without being
freed.

IF-AND-HOW

Determine if Unchecked Deallocation is implemented.

F-3

3.4.2
3.9.1.1

3.10.1.1

3.9.1.2

Measure

Measure

Measure
"+" and

Measure

TIME MANAGEMENT

TIME

the actual delay time vs the specified delay time.
CLOCK function overhead.

the overhead associated with a call to and return from the
"-" functions provided in the package CALENDAR.

IF-AND-HOW

CLOCK resolution.

F-4

3.13.1.1

1/0 MANAGEMENT

IF-AND-HOW
Determine if true asynchronous 1/0 is implemented. Benchmark
Design: In the main procedure, three separate tasks are

activated. Task 1 is the highest priority task, task 2 is medium
priority, and task 3 is a low priority task. Task 1 makes a
request from an I/0 device, then task 2 makes a request to the
same I1/0 device. Both task 1 and task 2 should be suspended and
task 3 should be executing at this point.

4.1.3.3

3.4.1

4.2.1

4.2.2

4.1.3.1

PROCESSOR MANAGEMENT
TIME

Determine if a low priority task activation could result in a very
long suspension of a high priority task.

IF-AND-HOW

Determine if user tasks are preemptive. Does a completed delay
interrupt the currently executing task to allow the schedule to
select the highest priority tasks.

Determine the method of sharing the processor within each priority
to prevent starvation of any single task.

Does delay 0.0 simply return control %o the calling task or causes
scheduling of another task.

Decermine priority of tasks (and of the main program) that have no
defined prioricy.

F.6

3.3.2.2.

T00G001

10

RENDEZVOUS MANAGEMENT

TIME

Measure time for simple rendezvous

Measure time for simple rendezvous. More than one entry is called

- to measure rendezvous time. These entries can all be in a single

task or single entries in multiple tasks.

Measure the affect on the time required for a simple rendezvous,
where a procedure in the main program calls an entry in another
task with no parameters as the number of accept alternatives in
the selective wait increases. This benchmark is executed with the
following scenarios:

Measure the affect of guards (on accept statements) on rendezvous
time, where the main program calls an entry in another task (with
no parameters) as the number of accept alternatives in the select
statement increases. This benchmark is executed with the
following scenarios:

Measure the time required for a complex rendezvous, where a
procedure in the main program calls an entry in another task with
different type, number and mode of the parameters.

Measure the affect on time required for a complex rendezvous,
where the main program calls an entry in another task with
different type, number and mode of the parameters as the number of _
accept alternatives in the select statement increase. The

benchmark is executed with the following scenarios:

Measure the cost of using the terminate option in a select
statement.

Measure the overhead due to a conditional entry call when a) the
rendezvous is completed and b) the rendezvous is not completed

Measure overhead due to a timed entry call;

Measure the affect on time required for a complex rendezvous,
where a procedure in the main program calls an entry as the number
of activated tasks in the system increases.

Measure rendezvous latency.

Minimum rendezvous, entry call and return time. 1 task, 1 entry,

task inside procedure, no select.

F-7

T000002

T000003

T000004

T000005

T000006

4.1.2.1

4.1.2.2

4.1.2.3

4.1.2.4

4.1.3.2

Tasking entry call and return time. 1 task active, 1 entryv, task
in a package, no select.

Tasking entry call and recurn time. 2 tasks active, 1 entry per
task, task in a package, no select.

Tasking encry call and return time. 1 task active, 2 entries,
task in a package, using select statement.

Tasking entry call and recurn time 10 tasks active, 1 entry per
task, task in a package, no select.

Tasking entry call and return time. 1 task with 10 entries, task
in a package, one select. Compare with T000005.

IF-AND-HOW

Determine algorithm wused when choosing among branches of a
selective wait statement. The implementation may make a) a random
selection, b) select entry call that arrived first, c) select the
first eligible accept alternative or d) select the task with the
highest prioricy making the entry cal..

Determine the order of evaluation for guard conditions in a
selective wait

Determine method used to select from delay al:ernatxves of the
same delay in a selective wait.

When are the expressions of an open delay alternative or the entry
family index in an open accept alternative evaluacted.

Determine priority of a rendezvous between two tasks without
explicit priorities.

F-8

3.6.3.6.1

3.6.3.6.2

E000001

E000002

E000003

4.1.1.5

EXCEPTION MANAGEMENT
TIME

Measure a) timing overhead due to exceptions and b) exception
response time when exception is handled in the block statement.

Measure a) timing overhead due to exceptions and b) exception
response time when exception handled in the block statement while
additional tasks are present in the system.

Measure Exception handling time when exception is raised and
propagated one level below where it is handled.

Measure Exception handling time when exception is raised and
propagated 3 levels below where it is handled.

Measure Exception handling time when exception is raised and
propagated 4 levels below where it is handled.

Measure time to propagate TASKING_ERROR exception in the calling
as well the called task.

Measure time to propagate and handle an exception when a child
task has an error during its elaboration.

Time to raise and handle an exception. Exception defined locally
and handled locally.

Time to raise and handle an exception. Exception is in a
procedure in a package. -

Time to raise and handle an exception. Exception is in a package,
4 deep.

IF-AND-HOW

If the allocation of a task object raises the exception
STORAGE_ERROR, when is the exception raised? The LRM does not
define when STORAGE_ERROR must be raised should a task object
exceed the storage allocation of its creator or master. The
exception must be no later than task activation: however an
implementation may choose to raise it earlier.

Does an implementation raise NUMERIC_ERROR on an intermediate
operation when the larger expression can be correctly computed?

F-9

3.1

1.1

1.2

1.5

.1.6

INTERRUPT MANAGEMENT
TIME
Measure Interrupt Response Time
IF-AND-HOW
Determine if an interrupt entry call is implemented as a normal

Ada entry call, a timed entry call, or a conditional entry call.

Determine if an interrupt is lost when an interrupt is being
handled and another interrupt is received from the same device

Determine if an incerrupt entry call invokes any scheduling
decisions

Determine if an accept statement executes at the priority of the
hardware interrupt, and if vpriority is reduced once a
synchronization point is reached following the completion of
accept statement,.

Determine if entries can be called from applicazion code.

F-10

3.3.2.1.1

3.3.2.1.2

3.3.2.1.3

3.3.2.1.4

3.3.2.1.5

€000001

€000002

€000003

4.1.1.3

4.1.1.4

4.1.1.5

TASK ACTIVATION

TASK TERMINATION

TIME

Measure task activation and termination time (without the new
operator)

Measure activation/termination time for a) an array of tasks and
b) task object declared as part of a record

Measure the time to activate a task created via the new allocator

Measure the time to activate and terminate a task object declared
in the declarative part of a block as the number of existing
active tasks keeps on increasing

Measure the time to activate and terminate a task created via the
new allocator in a block as the number of existing active tasks
keeps on increasing

Task create and terminate measurement with one task, no entries,
when task is in a procedure using a task type in a package, no
select, no loop.

Task create and terminate measurement, with one task, no entries,
when task is in a procedure task defined and used in a procedure,
no select, no loop.

Task create and terminate measurement, with one task, no entries
when task is in declare block of main procedure, task is in the
loop.

IF-AND-HOW

Determine the order of elaboration when several tasks are
activated in parallel. When several ctasks are activated in
parallel, the order of ctheir elaboration may affect program
execution.

Deteriuine 4if a task will continue execution following Iits
activation but prior to the cHmpletion of activation of other
tasks declared in the same declarative part. (See the Real-time
Benchmarks paper for details)

Vhat happens to tasks declared in a library package when the main
program terminates? For some real-tize embedded applications, it
is desirable that such tasks do not terminate.

F-11

4.1.1.10.1

4.1.1.10.2

4.1.1.10.3

Determine order of evaluation of tasks named in an abort
statement. An abort statement provides a convenient way to
terminate a task hierarchy. When a task, Tl, aborts a task, T2,
the result T2’COMPLETED i{s true when evaluated by Tl. Other ctasks
may not immediately detect that T2'COMPLETED is true. In real-
time embedded systems, tasks may have to be aborted in a certain
sequence. The semantics of the abort statement do not guarantee
immediate completion of the named task. Completion must happen no
later than when the task reaches a synchronization point.

Determine when an aborted task is complete from. When a task has
been aborted, it may become completed at any point from the time
the abort statement is executed until its next synchronization
point., Depending on when an implementation actually causes the
task to complete the results of an aborted may be different.

What are the results if a task is aborted while wupdating a
varizble? An implemenctation may defer completion of a task if it
is aborted while updating a variable, and thus prevent a variable
from being undefined. This may be crucial in the case of a common
variable.

F-12

TARGET HOUSEKEEPING

F-13

(V]

.12.3.1

COMMONLY CALLED CODE SEQUENCES
MEMORY

There are several test cases that are run with the pragma OPTIMIZE
for option space. Determine the improvement in the size of the
object code when this pragma is used.

TIME

This test measures the time to perform standard boolean operations
(XOR, NOT, OR, AND) on arrays of booleans. The tests are
performed on entire arrays.

This test measures the time to perform standard boolean operations
(XOR, NOT, OR, AND) on arrays of booleans. The tests are
performed on components of arrays.

This test measure the time to perform assignment and comparison
operations on arrays of booleans.

This test measures the time to perform assignment and comparison
operations on whole records.

Measure the time to do an unchecked conversion of one integer
object to another.

Measure the time for UNCHECKED CONVERSION to move a STRING object
to another INTEGER object.

Measure the time to do an unchecked conversion of an array of 10
floating components into a record of 10 floating components.

Measure the time to store and extract bit fields using Boolean and
Integer record components. 12 accesses, 5 stores, 1 record copy.

Measure the time to storage and extract bit fields that are
defined by nested representation clauses using packed arrays of
Boolean and Integer record components,

Measure the time to perform a change of representation from one
record representation to another.

Measure the time to perform a change of representation from a
packed array to an unpacked array.

Measure the time to perform POS, SUCC, and PRED operacions on
snumeration type with representation clause specification.

F-14

.10.2.1

.10.2.2

.11.2.1.1

.11.2.2.1

.11.2.3.1

.11.2.4.1

.12.1.1

.1.1.1

.1.1.2

.1.1.3

.1.2.1

.1.3.1

.1.4.1

.1.5.1

Determine the time to convert integer to Float using Float (I) and
vice-versa using Integer (F).

Determine time required for float matrix multiplication.

Measure the time for a function that computes the inner (scaler)
product of two values of type Vector where Vector is the
following: type Real is digits...; type Vector is array (Integer
range <) of Real;

Measure the overhead and procedure call latency invelved in
entering and exiting a subprogram.

Repeat benchmarks from above with pragma INLINE for the called
procedure.

Repeat benchmarks from above with the called subprogram being part
of another package.

In the tests for inter- and intra-package calls, the subprograms
are part of generic packages that are instantiated.

Determine improvement in execution speed when pragma Suppress is
used for the following checks:

Measure time for a simple producer-consumer type transaction when
the main procedure calls a consumer task.

Measure time for a producer-consumer type transaction when the
consumer uses a selective wait. In this test the main task calls
a consumer task that consumes more than one type of item.

Measure time for a producer-consumer type transaction when a
producer task calls a consumer task.

In cthis benchmark, the producer task communicates with cthe
consumer task indirectly through a bounded buffer.

In this benchmark, a producer task communicates with a consumer
task indirectly through a bounded buffer with a transporter
between the buffer and consumer.

In this benchmark, a producer task communicates with a consumer
task indirectly through a bounded buffer with a ctransporter
between the buffer and the producer as well as between the buffer
and the consumer.

In this benchmark, a producer task communicates with a consumer
via the relay. In terms of the task communication model, this
resembles the producer-buffer-transporter-consumer paradigm, but

F-15

3.12.2.1
3.12.2.2

3.12.3.1

FO00001
FO00002
1000001
1000002
1000003
000001
P000002
P000003
P000004
PO000OS
PO00006
PO000O7

P000010

v

in terms of performance it should resemble the producer-buffer-
consumer paradigm.

Determine the overhead due to Pragma SHARED when two tasks access
a packed array of boolean shared variable.

Determine the rendezvous time when shared variable is updated
during the rendezvous.

There are several test cases that are run with the pragma OPTIMIZE
for option time. Determine the improvement in execution time of
the object code when this pragma is used.

Time to set & boolean flag using logical equation. A local and a
global integer are compared. Compare this test with F000002.

Time to set a boolean flag using an "if" test. A local and a
global integer are compared. Compare this test with FOC0001.

Simple "for" loop time for I in 1..100 loop time is reported for
once through loop.

Simple "while" loop time while I less than or equal to 100 loop
time is reported for once through loop.

Simple "exit" loop time loop I:=1 + 1. exit when 1 greater than
100; end loop; time is reported for once through lpop.

Procedure call and return cime. Procedure °'is local, no
parameters.
Procedure call and return time. Procedure 1is 1local, no

parameters, when procedure not inlineable.

Procedure call and return time, Procedure is in a separately
compiled package. Compare to P000002.

Procedure call and return time. Procedure is in a separately
compiled package. Pragma Inline used. Compare to PO000OL.

Procedure call and return time. Procedure is in a separately
compiled package. One parameter, in INTEGER.

Procedure call and return time. Procadure is in a separately
compiled package. One parameter, on INTEGER.

Procedurs call and return time. Procedurs is Iin a separately
compiled package. One parameter, in out INTEGER.

Procedure call and return ctime. Compare to P00000S. 10
parameters, in INTEGER.

F-16

PO0O0011

PO00012

PO00013

3.12.4.1

4.6.1

4.6.2

Procedure call and return time. Compare to P00000S5 and P0O00010.
20 parameters, in INTEGER.

Procedure call and return time. Compare to P0O000l0 (discrete vs.
composite parameters). 10 parameters, in MY RECORD, a three
component record.

Procedure call and return time. 20 composite "in" parameters.
The package body is compiled after the spec is used.

IF-AND-HOW

Determine if pragma CONTROLLED has any affect for a access type
object.

Determine order in which actual parameters to a subprogram are
evaluated?

Determine order in which parameters of modes out and in out are
copied back at the completion of a subprogram call.

F-17

APPENDIX G
GLOSSARY
These definitions are being presented to facilitate the understanding of

this report.

Ada Runtime Environment - A set of all capabilities provided by three basic
elements: predefined subroutines, abstract data structures, and code
sequences [ARTEWG 1988]

Analysis - the interpretation and classification of signals, also the portion of
software that determines the next course of action based on the data
collected

Direction Finding - process of making various measurements that will provide an
indication of the direction from which a signal originated [ESL Corporation
1985]

Emitter Location - the computed location of a target [ESL Corporation 1985]

Intercept - determining signal presence and recording or monitoring it [ESL
Corporation 1985]

Macro Construct - set of Ada statements that perform a well-defined process
Micro Construct - individual Ada statement

Real-Time - scftware that constantly monitors, analyzes, and responds to external
physical events in & time-critical fashion [Mellichamp 1983)

Reporting - disseminating analyzed data [ESL Corporation 1985]

G-1

APPENDIX H
GLOSSARY OF ACRONYMS
AD - Air Defense
ANSI - American National Standards Institute
AQL - Advanced Quick Look
BFA - Battlefield Functional Area
CECOM - Communications and Electronics Command
CHAALS - Communication High Accuracy Airborne Location System
COMINT - Communications Intelligence
DoD - Degartment of Defense
DF - direction finding
DS - directed search
ECS - Embedded Computer System
ELINT - Electronics Intslligence
FS - Fire Support
GS - general search
IC/SD - Intercom/Spectrum Display
IEW - Intelligence Electronic Warfare
IGRV - Improved Guardrail V
I/0 - Input/Output
LOP - Line of Position
LRM - Language Reference Manual
MC - Maneuver Control
PDL - Program Design Language
RDLS - Reporting Data Link Subsystem

RTE - Runtime Environmernc

H-1

SCAR - Signal Classification Recognition
SCT - Signal Classification Tips

SEl - Software Engineering Institute

