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In Iroduclhon

1.0 INTRODUCTION

State-of-the-art Army tactical radios, such as JTIDS (Joint Tactical Information
Distribution System), EPLRS (Enhanced Position Location Reporting System), and
SINCGARS (Single Channel Ground and Airborne Radio System), employ frequency
hopping to render their transmissions "spread spectrum" and therefore more difficult for
an opponent to intercept and to degrade through intentional electromagnetic inter-

ference (jamming). The modulation used by these communications systems to transmit
data while dwelling at a particular carrier frequency is a form of binary frequency modu-
lation (FM) known as continuous phase-shift modulation (CPSM) or minimum-shift
keying (MSK), which is a special case of continuous-phase frequency-shift keying or
CPFSK. The combination of frequency hopping and this modulation is denoted by

FH/CPFSK.

1.1 CURRENT WORK RELATED TO FH/CPFSK SYSTEMS

CPFSK is the modulation of choice for many systems, as opposed to other modula-
tions such as M-ary noncoherent frequency-shift keying (MFSK), because of its efficient
use of the available spectrum. that is. for the same data rate, the bandwidth required
by CPFSK to support the reception of the data with acceptable quality in terms of bit
error probability is relt;vplv small. Also, in thc cae of limiter-discriminator detection

of the hopped CPFSK waveform, it has been estimated that CPFSK enjoys a 4dB ad-
vantage in performance over MFSK in the presence of noise jamming [1].

In a previous report submitted to the Army Research Office [8], the authors
studied the performance of FH/CPFSK when subjected to worst-case partial-band noise
jamming. Partial-band noise jamming, as the name implies, features the placement of
the jammer's effective available power, J, in a fraction of the bandwidth, W, over which
the signal is hopping. Rather than spreading the jamming noise power over the entire

hopping bandwidth, with a noise spectral power density of

NJ !n= J/WA,, (1-1)

by concentrating the power in a smaller bandwidth "yW, where - _< 1, the spectral power
density in the jammed portions of the band is fj/7', a higher value which can be

expected to be more effective in degrading the signal. However, now the signal is not
always jammed, so that there is a tradeoff involving the choice of r which results in the

maximum (worst-case) value of the average bit error probability at the receiver.

1



Introduction

Worst-case partial-band noise jamming can be very effective in degrading the

FH/CPFSK system's performance, as illustrated in Figure 1-1, which is excerpted from

[8] for the case of a receiver using differential detection to demodulate the data. The

figure shows the bit error probability (P,), as a function of the ratio of signal bit energy

to average jamming noise spectral power density, Eb/Nj, assuming that the signal

energy-to-noise density ratio prior to the onset of jamming is Eb/Ko=l5dB (which gives

a P, 10-5), and parametric in different values of -, the jamming fraction It is clear

from the figure that if the worst-case value of -1 is always chosen, the dependence of P,

on Eb /xJ, rather than being exponential (as is approximately the case for wideband

noise), is "inverse linear," that is,

P, cK (Eb/j)- ', worst-case I used. (1-2)

Note that the concept of worst-case jamming through selection of the jamming fraction

- is a theoretical concept: whether or not it is practical to implement such worst-case

jamming1, it is of interest to calculate the worst-case performance and ways for im-

proving it.

A general model of an advanced slow-hopping FH/CPFSK communications system

is shown in Figure 1-2. The advanced features, intended to improved the system per-

formance while under jamming, include error control coding. interleaving. L hops pcr

bit diversity, and electronic count er-countermeasures (ECCM) diversity combining. In

[8], a "baseline" version of the system was evaluated. For this baseline system. at the

receiver the L analog data sample values for each bit are summed, and the bit decision

is given by the polarity of this sum. Our analysis and computations included a rigorous

treatment of background noise. intersymbol interference, and FM noise "clicks." The

evaluatio,, summarized in [15]. ctermined that linear combining or summing the

diversity components (chips) of each bit does not improve system performance in worst-

case partial-band noise jamming. This conclusion holds for both limiter-discriminator

and differential detection demodulation techniques.

1.2 RATIONALE FOR FURTHER STUDIES OF ECCM COMBINING

The diversity sum method for combining the L chips for a given FH/CPFSK bit

can be regarded as implementing a form of "soft-decision metric." Note that the

summing operation does not utilize any "side information" on whether a particular chip

has been jammed, or how strongly it was jammed. Since there is no mechanism for

excluding or otherwise treating jammed chips differently, when one or more chips is

'See, for example, [20] and [29] for discussions of jammer implementation.
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U subject to jamming, the entire sum is corrupted; this accounts for the failure of the sum

metric to provide a diversity improvement.

INow, for hopped MFSK systems, it has been shown [21] that if, instead of soft-

decision combining of the chips, we combine hard decisions on each chip, the result is3 that for high Eb/o (15dB or more) there is a diversity gain, in the sense that for a

particular J/S ratio, more than one hop per bit may yield a lower bit error probability.

The improvement is due to the hard decision's limiting a jammed chip to "one vote" in

the sum of hard decisions. Since no side information is required, this simple ECCM

scheme is very attractive to consider for FH/CPFSK also, except for the fact that

noncoherent combining losses are high for hard-decision metrics, relative to soft

decisions, in general.

In [8] it was also shown that a diversity gain would result from using a "perfect side

information" soft-decision diversity combining scheme for FH/CPFSK which includes

only unjammed chips in the diversity sum, unless all chips happen to have been

jammed. Figure 1-3 illustrates the theoretical performance of FH/CPFSK using such a

3 scheme in the absence of any thermal noise (Eb/No--c-c). The error probability under

these assumptions is such that for higher values of Eb/j,

P, N (Eb/XJ )-L; (1-3)

in the figure it is evident that the different curves for different values of L are related

3 such that there is an "optimum diversity" which is a function of Eb/XJ.

The implication of the theoretical results shown in Figure 1-3 is that it is likely

that some practical method exists for combining the analog chip samples or soft

decisions into a metric that will result in an FH/CPFSK performance in worst-case

l partial-band noise jamming that is better than the one obtained using the sum of hard

decisions. Such metrics have been found for noncoherent FH/BFSK, including a "self-

3 normalizing" technique that does not require side information [22, 23].

Based on all these previous findings, in the work summarized in this report we have

3 developed and evaluated soft-decision schemes for combining FH/CPFSK diversity

transmissions which produce a diversity improvement against worst-case partial-band

noise jamming. An analysis by Torrieri [1] suggested that a concatenation of a convolu-

tional "outer code" with hard-decision diversity combining (an "inner code") would

yield an FH/CPFSK performance that improves as L, the number of hops per bit,

increases, provided that soft decoding is used. Therefore, in this report we also include

calculations of coded performance in combination with diversity combining.

5I
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I 1.3 FH/CPFSK RECEIVER IMPLEMENTATION ISSUES

It has been maintained [5] that a loss in performance is experienced, in terms of

theoretical error probability, by using a differential detector instead of a limiter-
discriminator for reception of CPFSK, either in Gaussian noise or, when hopped, in3 worst-case partial-band noise jamming. However, this conclusion was based on

comparing the performances of the two receiver implementations (parametric in the3 modulation index and in the receiver filter's bandwidth-time product) on the basis of

the same differential delay time, one bit (or chip) period. Ekanayake [4] has shown that
the differential detector's performance can be made very competitive with that of the

limiter-discriminator by using a differential delay value less than a bit period. In this
report, we do not emphasize the improvement in differential detector performance that
can be obtained by selection of the delay, but do develop the performance of both

receiver implementations when hard or soft decision ECCM combining is used for de-U modulating multiple hops per bit transmissions.

Another implementation issue concerns the phase transients or discontinuities3 experienced by an FH/CPFSK receiver during and just following the hop transitions to

different carrier frequencies. If the signalling rate is increased slightly to allow for a3 dwell time between hops, there will be a performance degradation due to the loss of
energy per bit, assuming the same carrier power and average bit rate. Therefore. it is
important to calculate the amount of dwell time needed in order to preclude significant

transient interference effects on the initial bits or chips on each hop.

3 1.4 ORGANIZATION OF THE REPORT

The report is organized as follows: following this introductory section, which in-

cludes a summary of findings, the modelling and methodologies used in the report are
summarized in Section 2. Then, in Section 3, we summarize our studies of FH/CPFSK3 implementation issues, including hop transients.

In Section 4, the major part of our work is presented: analysis and calculations3 showing the uncoded performance of FH/CPFSK against worst-case partial-band noise
jamming when combining of the L chips transmitted per bit on different hops takes3 place according to an "automatic gain control" scheme.

In Section 5, the performance of the system using a particular error-control code in3 addition to ECCM diversity combining is evaluated through calculations.

I7I



Introduction

1.5 SUMMARY OF FINDINGS

The analysis and computations described in this report support the following con-

clusions regarding frequency-hopped CPFSK communications systems.

Regarding FH/CPFSK implementation issues (Section 3), it is shown that due to

the spectral attenuation characteristics of the receiver's IF filter, the effects of the

transient phase difference between the incoming hopping waveform and the receiver's

synthesizer are primarily confined to the time interval (0, Te+ t,+ r), referenced to the

input waveform, with t=O at the instant that the incoming signal begins to switch

frequencies and using

T, = CPFSK modulation symbol duration ; (IF bandwidth) - '

t, = synthesizer switching time

r = offset in receiver synthesizer switching time.

Therefore, a one-symbol guard time is advisable before resuming the transmission of

data. Typically, the amplitude shaping and other emissions control procedures used by

hopping radios dictate a larger off time, so that these factors determine what fraction of

the dwell time may be used to transmit data, rather than switching transient effects.

Regarding ECCM combining techniques (Section 4), for both limiter-discriminator

(LD) and differential detection (DD) types of FH/CPFSK receiver, it is shown that

* With no coding or ECCM diversity combining, the effect of worst-case partial-

band noise jamming (WCPBNJ) is to require the value of the bit-energy-to-jamming-

noise-spectral-density ratio Eb/XJ to be 43 or 44dB, rather than about 12 or 15dB in

fullband jamming for the LD and DD, respectively.

* Using the optimum value of L, the diversity or number of hops per symbol, it is

possible to achieve a 27dB gain against WCPBNJ, using either hard-decision combining

or AGC combining. Relative to the DD, the LD receiver tends to suffer a loss in per-

formance when AGC combining is used, due to the effects of FM noise clicks, but

otherwise retains its usual advantage.

* Coding alone can produce a 28 or 29dB gain against the WCPBNJ.

* Coding plus optimum diversity can provide 31-33dB gain. Soft-decision decod-

ing gives about 1.4 dB more gain than hard-decision decoding.

Several of the analytical results are new. These include the use of a truncated

Gaussian or a Gaussian-uniform mixture distribution to approximate the modulo-27r

probability distribution of the differential phase, and expressions for its characteristic

function which include the effects of FM noise clicks on the distribution.

8
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2.0 ANALYSIS MODELS AND METHODOLOGY

3 Our studies concern the jammed performance of hopped binary FM communica-

tions, particularly under the assumption of partial-band noise jamming and the use of

5 (time) diversity and various diversity combining techniques to mitigate the jamming.

In this section, we present the analysis models used to formulate measures of system per-5 formance, and outline the methodology employed in calculating the performance

measures.

1 2.1 MODELS FOR THE SYSTEM STUDIED AND ITS PARAMETERS

In the following, models for the outputs of the several system components are dis-
cussed individually.

U 2.1.1 Encoding and Transmission Schemes

Figure 2-1 gives a block diagram of the transmission scheme for the system

studied. Binary data, after error-control coding and possibly encryption, are to be trans-

mitted using slow-frequency-hopping digital FM, or CPFSK. The coded symbols are to3 be repeated on L different hops in order to increase the likelihood that some of the

symbols are free of jamming. The figure suggests one of many possible ways to accom-

3 plish this objective. According to the version shown in the figure, the coded symbols

are first read into a Q-bit shift register (Q-symbol buffer), where Q is the number of3 symbols that can be transmitted in one hop period. For example, if the channels

allotted to the system support 20kbps digital FM signalling, and the hop rate is

3 100hops/sec, then Q could be as high as 200.

When the Q symbols have all been generated at rate R, and stored in the input

buffer, they are then transferred to a second (output) buffer. The transmitter logic

reads this buffer L times at the rate LR, and this stream of data "chips" is used to
frequency-modulate the selected carrier frequency, which is changed (hopped) to a new.

pseudorandomly-selected value after Q chips have been transmitted. In this manner, L

copies of the Q-symbol sequence have been transmitted on L different, successive hops.

3 Although Figure 2-1 suggests that the Q symbols are repeated in the same order on

each hop, it is of course possible with a more sophisticated system to permute the3 symbols or otherwise scramble them so that the order of appearance of the symbols is

different on each hop.

9U
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We note that certain fundamental relationships exist among the digital rates at

various points in the transmission logic, and among the energies in the transmitted

waveform which correspond to each rate. The symbols actually transmitted are keyed

at the rate Rd which, as we have already noted, is a basic specification of the communi-

Scations channel being used for hopping. The original symbol rate is R, = Rd/L, on

account of the repetitions. Viewed another way, the energy transmitted per chip is the

3fraction 11L of the coded symbol energy. If the error control code rate is r, then the

original bit rate is

3 Rb = Rcr = rRd/L. (2-1)

For example, for Rd =20kbps, r= 1, and L =5, the equivalent coded symbol and bit

rates are R = 4kbps and Rb = 2kbps; between the coding and the repetitions, the bit

energy gets split into ten pieces in this example.

Having b:'iefly gone over the overall transmission scheme, we now discuss certain of

its aspects in greater detail.

U 2.1.1.1 Error control coding

It has been suggested in [1] that concatenation of a convolutional "outer" forward-

error-control code with an "inner" repetition code will yield an FH/CPFSK performance

in worst-case partial-band noise jamming which improves with the number of hops per

3 bit, L, when soft-decision outer decoding and hard-decision inner decoding are used.

These terms will be discussed further below; here we note the effect that use of L

3 hops/bit has on the input data rate. If the maximum channel data rate Rd is 20kbps

using CPFSK, then the maximum coded symbol rate is R,=20kbps/L and the

maximum input data rate is Rb = 20kbps- r/L. For example, with r= 1 and L = 4, the

system can accommodate a bit rate no higher than 2.5kbps. The practical effect of this

limitation is that the coding cannot be used for most voice transmissions, since the bit

rate needed to support voice data is commonly regarded to be 16kbps, although in some

situations an acceptable digital voice quality may be achieved with a significantly lower

3 data rate. Therefore, when we speak of coded results, including diversity transmissions,

necessarily we are considering data other than voice data. Encryption (scrambling) can

3 be used for voice transmissions, since the data rate is not affected; such a procedure

provides a measure of transmission security but does not offer any improvement in

3 system performance against jamming.

For this study, it is assumed that the error control code used is a convolutional

3 code with rate r=2 and constraint length 7.

11I
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2.1.1.2 Inter-hop switching time

Another practical consideration which relates to the transmission scheme is the fact

that the transmitted data rate during the hop dwell times is not Rd, as depicted in our U
simplified diagrams. Rather, Rd is the average channel data rate since usually between

hops (that is, while the synthesizer frequency is changing) the transmitter's power is B
smoothly turned off and then restored in order to avoid generating spurious harmonics

or splatter. During this interhop switching period, some buffering of the channel data 3
chips is required, since they are being produced during this period when there is no

output. It also follows that the actual transmission of the chips must be "bursted" at a 3
slightly higher rate, R' > Rd.

In our analysis, for the most part it is permissible to overlook this implementation 3
detail. However, in Section 3 we shall be studying the issues connected with the inter-

hop switching time in detail, in order to assess the effects it has on the system's

performance.

2.1.1.3 Transmitted waveform and its parameters I
The coded symbol chip stream {dk} going into the modulator in Figure 2-1 is

assumed to be representable by the bipolar data waveform

d(t) = Idkp(t-kT), dk = ±1, (2-2)

where the pulse function p(t) is assumed to be rectangular:

p(t) = u(t) -u(t-T) ! rect(t- T), (2-3) 3
with u(t) being the unit step function. The interval T is the symbol duration, so that

the data rate is Rd = 1/T. Although much attention has been given to reducing the 3
transmitted bandwidth of binary FM signals by employing non-rectangular p(t) pulse

shapes and by correlative coding or trellis coding of the data, here we will assume the

p(t) as given and will treat the dk symbol values as having been generated inde-
pendently. The resulting modulated carrier frequency is given by

Ait) = fh + fd.d(t), (2-4)

and the commonly accepted measure of relative frequency deviation is the modulation 3
index h, defined by normalizing the deviation by the data rate:

h 6= 2fd/Rd = 2fdT. (2-5) 3
The frequency modulation of the carrier frequency fh by the data waveform d(t) results

in the constant envelope signal 3
12 U



I I

Analysis Models

3 so(t) = const. x cos[wht + Om(t)], (2-6a)

where the data-modulated phase Om(t) is

O(t) = 21rfd Jt d d( ). (2-6b)

5 Some filtering of the transmitted signal may be done in order to contain the output

spectrum; however, this would introduce amplitude and phase distortion. Therefore,

only the broadest type of filtering is used on the transmitter output, such as may be

needed to reject modulation products, etc. The preferred way to control the bandwidth

of the emitted spectrum is to smooth the data waveform, as in "tamed FM" [2], in such

3 a way that the resulting intersymbol interference is predictable. In our analysis, any

effects of transmitter filtering are neglected, and for convenience all intersymbol

3 interference and signal distortion effects are considered as resulting from the receiver

processing.

3 2.1.2 Reception Scheme and Received Waveform

theFigure 2-2 provides an overview of the FH/CPFSK reception scheme. Basically,

the processes involved are the reverse of those for the transmission scheme. The

receiver must accurately synthesize local oscillator frequencies in order to dehop the

signal at the proper times, and must then be capable of sampling the demodulator

output at the end of each chip interval. These sample, QL of them for L complete

3 hops, are buffered so that the receiver logic can in some manner combine the L chips

belonging to a particular code symbol.

3 As the figure suggests, binary decisions can be made on each chip as it is received.

The resulting logic and buffering for such a "hard decision" procedure is simpler than

3 that required for a "soft decision" scheme, which involves A/D conversion of the

samples and storing the resulting QL multibit words, one per chip. With either hard or

3 soft chip processing, after diversity combining there is the option to perform binary

decoding of code symbol decisions or else soft-decision decoding using code symbol

* metrics produced by the combining.

2.1.2.1 Received signal waveform

I Waveform selection in the receiver is accomplished using a hopping local oscillator

(synthesizer), assumed to be in synchronism with the hopping pattern of the received

I signal waveform, and a bandpass filter centered at the IF (intermediate frequency) of

the receiver. Ideally, the signal portion of the IF waveform out of this bandpass filter is
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equivalent to that for a system whose carrier frequency is fixed, not hopping:3 s(t) = a(t)Acos[,QJt + ¢(t)], (2-7)

where fIF = wiF/27r is the IF center frequency and A is the received signal amplitude,

assumed constant. The amplitude modulation a(t) and the distortion of the trans-

mitted phase modulation 0,.(t) into the phase function O(t) are effects induced by the

IF filter. These quantities are given by

a(t) =u 2 (t) + v2 (t) (2-Sa)

a(t) = tan-'-u(t) (2-8b)

I where

w e eu (t) lih 0(t) sin o ,(t) (2 - 9 a )

I =a
a dv(t) -- h(t).coso(t) (2-9b)

3 are the quadrature and in-phase components, respectively, of the IF filter output. In

these expressions, (-) denotes convolution, and h0(t) is the equivalent lowpass impulse

3 response of the IF filter, that is, that filter is modelled by

h1F(t) = 2ho(t)coswFt (2-10a)

Sor, in the frequency domain.

HIF(f) = Ho(f-fJF) + Ho(f+flF). (2-10b)

I For example, if the lowpass filter has the Gaussian shape

H0(f) = e - f 2/8B'O, (2-11)

then the 3dB bandwidth B 3 is 0.9294 times the lowpass noise bandwidth B o=!\2 I"F

3For an n-pole Butterworth filter with transfer function

IH 0(f) 12 = 1 (2-12a)
I + (fI/B3 )

2 '

I the noise bandwidth is related to the 3dB bandwidth by

3BO = B 3 X (2 !-)/sin(F2 !-) (2-12b)

= 1.5708B 3 , n= 1

3 = 1.1107B 3 , n=2

= 1.0472B 3 , n=3

3 = 1.0262B 3 , n=4.
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Now since theoretically the FM signal waveform has infinite bandwidth, the IF

filtering rejects not only unwanted signals but also portions of the desired signal.
Therefore the filtering introduces distortion in the form of amplitude modulation and 3
phase distortion, as shown above. For the common modelling assumptions we are
making, in effect the distortion caused by the finite IF bandwidth represents all the

distortion suffered by the waveform-at least all distortion due to filtering-just as the

noise at IF represents all noise present.

2.1.2.2 Noise and jamming

The total IF waveform x(t) noted in Figure 2-2 is assumed to consist of the signal
term given by (2-7) plus stationary, additive Gaussian noise: x(t) = s(t) + n(t). When

partial-band noise jamming is present, covering the fraction "YW of the total hopping

bandwidth W, with 0 <-y < 1., the noise power in the IF bandwidth is modelled as

random on account of the signal's hopping around in the total bandwidth, and has a

two-valued distribution:

E{n 2(t)} = T
2  with probability 1-"i (2-12a)

= U. + Cr- C7 with probability -1. (2-12b)

Assuming both types of input noise-the combined background and receiver input
noise, represented by c,2. and the jamming noise, represented by o-2-have flat spectral

power density functions going into the IF filter, the respective noise powers are

= .OW IF (2-13a)

and CT = IN'VJF/-. (2-13b)

In (2-13b), the spectral level XNj is the average jammer noise spectral power density

referred to the total bandwidth, that is,

NJ A J/W, (2-13c)

where J is the total jammer power at the receiver location.

The signal-to-noise power ratio (SNR) at the output of the IF filter without and
with jamming are time-varying due to the amplitude distortion a(t) as a function of the

data modulation. For a(t) = 1, we define the SNR's

L A2 = I Ed rEb (2-14)PN- 2a. W \FT Ko D L Xo

and
P A-2 Ed r Eb (2-15)

W1FT Xi D DLXi1
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In (2-14) and (2-15) for convenience we use the symbol D to denote the IF filter's

bandwidth-time product:
D 4= "NTIFT. (2-16)

How the phase of the total waveform x(t) is affected by the noise can be seen by

combining signal and noise terms at the output of the IF filter to obtain

x(t) = a(t)Acos[wlFt + 0(t)] + n(t)

= [v(t)+ nc(t)]cosw/Ft - [u(t) +nI(t)]sinwlFt

= R(t)cos[KFt + s,(t)], (2-17a)

in which R(t) and 4(t) are envelope and phase of the total waveform, and we have

utilized the quadrature or Rician decomposition of bandpass noise:

n(t) = n(t)cos1.;IFt - n(t)sinwlrt. (2-171)

We may define a phase noise term by writing

tanD(t) = u(t) - n,(t) = tan[o(t) + i(t)]: (2-1S)
v(t) + nc(t)

the phase noise term thus defined is

7( tan-' tan P - tano]

= tan-IL n.v - n,u ]
12+ v 2 + n Cv + U..U

= tan'1 V ,(t) 1 (2-19)
a(t)42 + vc(t)"

in which p is the SNR. and v, and v,0 at the same time instant are the independent,

zero-mean, unit-variance Gaussian random variables given by

av,(t) = n0(t)coso(t) - n(t)sinO(t) (2-20a)

a =(t) = n,(t)sino(t) + n,(t)coso(t). (2-20b)

From observation of (2-19) we may state that for low SNR, q tends to be uniformly

distributed, since for this case r7 is approximately the random phase of the noise. For

high SNR. the distribution of q tends toward a truncated or "aliased" modulo-27r

Gaussian distribution, since tan-z :, x for z< 1. We also observe from (2-19) that this

additive phase noise is signal-dependent.
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2.1.3 Demodulator Options

Two types of FM demodulator are considered in this study: limiter-discriminator

and differential detector, as illustrated in Figure 2-3.

Essentially the limiter-discriminator extracts the instantaneous frequency deviation

from the carrier (or IF center frequency), 4(t), and is followed by an integrate-and-

dump lowpass filter. The receiver output produced is given by the differential phase

sample value at t, = kT + to

A$4'(tk) = *(tk) - 'I)tk-T). (2-21)

The differential detector's output is, when the delay r equals T,

[R(t,) R(tk- T) cos [ ;IFtk + -1(t k)] sin [,-F(tk - T)+ '10k- T)]]1owpass

= 1R(tk)R(tk-T)sin[A4(tk)+ ,1IFT]

= 1R(t,)R(tk-T)sin[A1,(tk)]. wIFT =2nir. (2-22)

Ekanayake [4] indicates that differential detector performance in terms of the proba-

bilitv of correct chip decisions can be made comparable with that of the limiter-

discriminator by choosing r <T. For r = T. it has been shown [5] that the differential

detector achieves about the same performance as the limiter-discriminator receiver

when the modulation index h < 0.5. but is degraded significantly for larger values of 11.

2.1.3.1 Differential phase in the absence of noise

The choice of the sampling time tk is based on sampling when the differential phase

in the absence of noise,
A , (t) i 6 (t) - (t -T), (2-23)

has a positive or negative peak value. In general, the best sampling time for the dis-

torted phase is different than that for the original, undistorted phase modulation.

The undistorted signal phase waveform, om(t), at the particular instant t,=k1T+-.

can be written as
o.(ti) = rh E dk + dk1c; (2-24a)

k<k 1

its differential value is
A0,m(t 1 ) = ,(t 1 ) - Om(t 1 -T)

= ,hid_ + '(djl- dkl2_)]. (2-24b)

It is evident that when successive data bit values are different (dk, : dkj_ 1 ). a maximum

is 1S1
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deflection of ±rh would be achieved the undistorted phase using a sampling time at the

end of the data symbol interval (i. e., , = T).

As shown in Appendix A, the effect of the IF filter is to produce the distorted and

delayed differential phase waveform AO(t). The delay causes the maximum deflection

of AO to occur at the sampling time offset e = T + td > T, where td is the delay, and

also causes the magnitude of the deflection to be smaller than irh. The distortion

induces a dependence of the sampled AO value on the data sequence, due to intersymbol

interference (ISI). For the cases of practical interest, only ISI from immediately

adjacent chips is significant [6].

2.1.3.2 Probability density function for the limiter-discriminator receiver output

It is assumed that the discriminator output y(t) illustrated in Figure 2-3 is the

derivative of the signal's instantaneous phase with respect to the center frequency, fiF:

y(t) = li(t)
= _dta-A a(t) sin 6 (t) + n, (t)]

R J{ (t)A a(t)[Aa(t) + n,(t)cosO(t) + n,(t)sin0(t)]

+ A (t)[nc(t)sin¢(t) - n,(t)cos0(t)]

+ nc(t)fi,(t) - fi,(t)n,(t)}. (2-25)

Because of the presence of the Gaussian noise terms, from these expressions we

recognize the fact that the discriminator output is a random variable which can take

any value on (-cc. +oo).

The receiver further integrates the discriminator output over a symbol interval to

obtain the receiver output

z(t) = d4y(t) (2-26a)

= 0(t) - O(t-T) = A,(t), (2-26b)

where AO is the total differential phase. Note that this differential phase can take

values on (-oc, + oo), as observed in [71; however, since the phases are expressible only

indirectly via the arctangent function, for example,

=t 'f tan4(t) - tan$(t-T) (-7

an- 1 + tan(t)tan (t-T)(2-27)
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U it is customary to resolve the ambiguity of this function by writing

l ¢= v, + 2 (N+-N_), (2-27b)

where the first term

3-(At)modulo27r (2-27c)

is the principal value of the arctangent, and N., and N_ are positive and negative "click

3 numbers," respectively.

Click statistics. For moderate and high values of SNR, it has been shown [8, 9]

that the distribution of the difference of click numbers, N,- N_, is well-represented by

that of the random variable N, whose absolute value is a Poisson random variable and

whose mean tends to be of the opposite sign of A0, the differential phase in the absence

of noise. That is,

Pr{IN=} n) "rexp{-Ia1l, n=0, 1, 2, (2-28a)

where

d e
o = r- d - p . (2-28b)

This click average is consistent with the fact that the mean value of the discriminator

output is [10] E{y(t)} = ¢(t)[1 -e- Pa2(t)]; (2-28c)

I exchanging the order of integration and expectation yields the following mean value for

E{z} = f .f.T- - ()epa2C)

= AO(t) + 27N,. (2-28d)

I Distribution of principal value. The probability density function for , has been

found to be [11-13]

p,(x) p,,(x; A0, r, A, U., V, XAV)

I -2- t/2 e-g(x,a)cs

1-r 2 - \2 2  d. e-xcv COS a
4,r /2d [1 -(r cos x + A sinX) cos 0]2

I x-ig(x, .) +2 U-W(rcosA+A sinAo)] (2-29a)L 1)-_r-A-_- (22a

3in which
hg(, ) = U-Vsino-Wcos(-A)cosa 

(2-29b)
)= 1 -(r cos x+ A sin x) cos a
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U = p[a 2 (t) + a2(t-T)] , (2-29c)

V = p[a2(t) - a2(t-T)] , (2-29d)

W = U-2  ' = p a(t) a(t-T) (2-29e)

r = a- E{n,(t)n,(t-T)} = a- 2E{n,(t)n,(t-T)}, (2-29f)

and A = '-2 E{n,(t)n,(t-T)} = a- 2E{n.(t)ne(t-T)}. (2-29g)

The domain over which (2-29a) is valid is usually taken to be I x-AJ <7r. The

quantities U and W can be seen as the arithmetic and geometric averages, respectively,

of the SNR's at times t and t-T. The parameters r and A are the in-phase and quadra-

ture correlation coefficients of the noise at the output of the IF filter, and are a function

of that filter, assuming a flat noise spectrum going into the filter. For example, if the

filter has a symmetric passband about the IF frequency, a result is that A = 0.

The total differential phase for the output of the limiter-discriminator receiver has

the probability density function

p(x) = exp{-loa} L4-=po,(z±2nir), (2-30)
n

where a is the click number average given in (2-28b) and the sign taken is the same as

that of Ao. Figure 2-4 illustrates the multi-model character of p14 ,(x).

When the receiver is subject to partial-band jamming with probability -, by exten-

sion (2-30) becomes, for A6> 0.

p,(z- o2 1pJ(z+2nr; Plv)
Sn.

+ e 'p,.(x+2nr; PT), (2-31)

using o0 and a, to denote the absolute values of click number averages under no

jamming and jamming conditions, respectively. The SNR in the absence of jamming.

p,, was defined in (2-14); the jammed SNR, PT, is given by

r =A 2  A2  (2-32a)

PT 2C~-2(.+)

Eb Eb

- "J (2-32b)
PIV Pi ) L E b+ - Lb
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2.1.3.3 Probability distribution for the output of a differential detector I
The output of the differential detector shown in Figure 2-3(b) is

z(t) = 1R(t)R(t-T) sin[4(t)-D(t-T)], wJFT= 2 nr. (2-33)

It was shown in [8] that the output of a differential detector at the sampling time is

equivalent to the difference between two independent, scaled noncentral chi-squared

random variables, each with two degrees of freedom. We denote this equivalence by

z _ c, x2(2; di) - c2 x2 (2; d2 ), (2-34a)

where the scale factors are 1

C1 =2 ) (2-34b)

and the noncentrality parameters are I

d2{U-rNcosAo ± j1-rWsinA~}
12 2 -r ( +-r Wsi2 A) (2-34c) I

Therefore, the characteristic function for the random variable z is 3
= (V C >12(clv; 2. dj) C x2(-c 2 v; 2, d2)

1 4V2CJ 1 j( 2 ~ 2 ex~P{ ~cd-c 2d2) -2v 2 cc 2(di +d2)I1+4c +2j(C2-C-) 1+4v2 clc 2+2jv(c,-c)

1 exp JVC-V 2D }(2-35a)

1+jvA+v2B I+jvA+v2B '

where for convenience we have defined 3
A 2(c,-c ) = a2A (2-35b) 3
B 4 4cc2 = 1(1-r 2- A2) (2-35c)

C c dl-c 2d2 = 2WsinAO (2-35d)

and D A 2c c2(dl+d 2) = 10' 4(U-rWcosAO+AWsinAO). (2-35e)

The mean value of z is easily obtained from (2-34a) and is

E{z} = ci(2+d,) - c2(2+d) 3
= 2(c,-c 2) + c1d 1-cd 2

= O2(A + WN'sinAO) (2 -36a) 3
= A'Ia(t)a(t-T)sinA6 for , 2=0. (2-36b)
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I Since we will be interested in the probability of error for various weighted combinations
of differential detector output samples, the characteristic function is a more convenient3 description of the distribution than the probability density function (PDF), for reasons
which will be shown in Section 4. For further developments of the PDF for the class of
cross-correlators to which the differential detector belongs, the reader is referred to [141.

2.1.4 Generic Chip Combining Schemes

Our analysis efforts are focused on ways to combine the L chips belonging to a par-
ticular data symbol so as to give a diversity gain, if possible, against worst-case partial-

band noise jamming. A generic formulation for the chip combining approach is to base
the symbol decision on the polarity of the decision statistic or metric

L L

zk= L = L f(Zkq), (2-37)
9=l q=1

3 where f(zkq) is some function of the qth chip belonging to the kth data symbol. For ex-

ample. if hard decisions are made on each chip, then

3 'kq = f(Zkq)-- 5 zk,>O

= 0, Zk, !5 0. (2-38)

U This nonlinear combining function is known to produce a diversity gain. In our pre-
vious study [S. 15], we investigated the combining based on f(Zkq) = Zkq, or linear
combining, and found that this method does not yield a diversity gain.

In general, in order for a diversity gain to be realized, it is necessary for the5 receiver to give a lower weight in the sum (2-37) to chips which have undergone jam-
ming as the consequence of the hop on which they were transmitted having hopped into
a portion of the band which is jammed. Thus it is required that the function (kq of the

chip decision variable zk, somehow discriminate against jammed chips. This concept
* can be expressed by

f(zkq; no jamming) > f(zk,; jamming). (2 -39a)

In principle, this requirement can be satisfied by weighting Zk, by the ratio of the un-
jammed noise power, aN, to the noise power on its hop, o, giving2=2

(k9 = a N Zkq/ a q  WqZkq (2-39b)

= Zkq, hop q not jammed (2-39c)

3 Zk2a' hop q jammed. (2-39d)

Techniques for measuring the power on the hop are discussed in [24].
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2.2 FORMULATIONS FOR THE PERFORMANCE MEASURES

In this report the performance of the system is measured in terms of the proba-
bility of a bit error for FH/CPFSK as a function of jammer power when the system is

subjected to worst-case partial-band noise jamming, with and without error-control

coding, for different diversity combining schemes and numbers of hops per transmitted I
symbol, L.

2.2.1 Uncoded Bit Error Probability

Conceptually, the probability distribution for the output of the combiner at a given I
time, z, is conditioned on the number of hops which have been jammed. Let p(z 1)

denote the PDF of z conditioned on there having been I out of L hops jammed. Then, 3
averaged over the possible jamming event (i.e., the possible values of 1), the probability

of an error in deciding on the polarity of a transmitted binary symbol is

P, = Pr{d,=0}Pr{zk>0 dk=O1 + Pr{dk=l}Pr{zk<0I dk=1}

= I[Pr{z,>01 dk=O) + Pr{z,<O dk=l}]

= Pr{zk<0I dk=1}
L 0

= Pr{l hops jammed} dz p(z 11). (2-40)

This formulation assumes that the two possible binary symbol values are equally likely.

and that the conditional probability of error is the same for both dk= 0 and dk= 1.

Assuming that a fraction -y of the available hopping channels are jammed and that the

pseudorandomly-selected hop frequencies are equally likely, the probability that I out of

L hops are jammed is

Pr{l hops jammedl = ( (--r)L-. (2-41)

Note that this expression represents the total number of jamming situations resulting in

I hops jammed, irrespective of which of the hops are jammed, or in what order. Thus

(2-39) is valid if the combiner output's probability distribution does not depend on the

order in which the hops were jammed or not jammed.

Since the chips being combined are independent by virtue of being corrupted by

noise in different frequency channels, their joint PDF is
L

P(zk1, Z 2 ... , zkL) i f7J P,(Zk,). (2-42)
q=1

For conveniencc, we may arbitrarily designate the first I samples as occurring on

jammed hops.
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For an unjammed hop the noise power on the hop is N2= , and for jamming it is
2a = 2 a , where we adopt the notation

S_ 1+T2J = 1 + / (2-43)IV a 7Eb/1Xj"

Using this notation it is convenient also to write

pq(zk,) = p(zk,; 04)

- p(zkq; uN), hop q unjammed; (2-44a)

= p(Zk,; KO2), hop q jammed. (2-44b)

This notation also allows us to rewrite (2-42) as

P(zkl, 4 2, z -, ZkL) = II p(Zk; (,2) I pq(zkq; a2). (2-45)
unjammed jammed
L-I hops I hops

The characteristic function for the combiner output is, using a similar approach to the
notation,L

noaton (v: 1) = E exp fiVZF f(Zkq)]

= [E ,jVf(Zklol]' [E~e j~f(ZkL)}J]L-

- [C (V; Ko- )]' [C((V; ,)]L -1, (2-46)

in which C(v: a'2 ) is the conditional characteristic function for Ck, =f(Zk,) when the hop

noise power is a .

If the mathematical formulation for CC(V; C 2 ) is simple, the preferred method for3 obtaining the probability of error is first to obtain

p(zl) = J0 dv e -jvC(V; 1) (2-47)

i for substitution in (2-45).

f 2.2.2 Coded Bit Error Probability

The decoding schemes we will be considering in this report include both hard-

decision decoding and soft-decision decoding. By "hard" we mean that the inputs to

the decoder are binary symbol decisions. "Soft" refers to a non-binary input to the

decoder. For the selected constraint length seven, rate one-half convolutional code, the

error probability for the decoded bits is bounded by [25]

U
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Pb = Pb(L; -y, ECCM combining scheme, decoding input)

_ 36Qo+211Q 1 2+1404Q, 4 + 11633Q16+ "' (2-48)

in which the quantities Q2, are the probabilities of decoder error in comparing the

correct path segment to a path segment that differs in 2m symbols. If the decoder is

presented with hard decisions {dk} on the transmitted code symbols {dk},-with
average error probability Pe(L)=P,(L; 7, -LEb)-the Q2m are given exactly by

Q _,n = k(2m)[Pe(L)] 2 -k [I-P,(L)]k+ 1(2 mm){[1-P(L)]Pe(L)Im  (2-49a)

(2m-l)! "-' ( M nl1(-lr )l",n (24b

(-1)! (M-1)! n=C m' n

where the form given by (2-49b) is derived in Section 4.2.1. For example,

Q2 = P(L), (2-50a)

Q4 = 3 [Pe(L)]2 -2 [P,(L)]3 , (2-50b)

Q6 = 10[Pe(L)] 3 -15[P,(L)] 4 +6[Pe(L)]5 , etc. (2-50c)

Using A = Pe(L), the polynomials used in (2-48) are

Qj0 = 126A 5 - 420A6 + 540 A 7 - 315 A8 + 70A" (2-51a)

Q12 = 462A 6-1980 A7 +3465A s-3080A±+ 1386A'0 -252A (2-51b)

Q14 = 1716A 7 - 9009A8 +20020A 9-24024A'c+ 16380A'

- 6006 A'2+ 924 A13  (2-51c)

Q16 = 6435 A -40040 A
9 + 1OS108 A"' -163800 Al + 150150 A 2

- 83160 A1 3 +25740 A,4 -3432A' 5 . (2-51d)

Instead of presenting the hard symbol decisions { dk} to the decoder, the inputs

may be a soft-decision metric such as the number of the L chip decisions { dk; q=1, 2,

...L} which are positive (or conceptually, their unthresholded sum). In that situation, it

is shown in [25] that the value of the Q2m used in (2-48) are bounded by

Q2_n <5 12{4P,(1; -L E6) [I -Pe(1; -r, I b(2-52)

in which it is emphasized that each chip represents the fraction r/L = 1/2L of the

energy of an original encoded bit.
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1 2.3 SUMMARY OF CALCULATION METHODOLOGY

In general, we have found it more convenient to use the characteristic function
method in studying sums and weighted sums of L receiver samples. In the following we
summarize how the probability of bit error may be calculated from the characteristic

i function.

2.3.1 Characteristic Function Method for Obtaining the Bit Error Probability

The cumulative probability distribution P(Z) = Pr{z < Z} for a random variable z

may be written in terms of its characteristic function C,(v) as follows [16]:

Prjz<Z} = 2 - Io-Im{Cz() ve-JZ}" (2-53)

Therefore, the bit error probability for a binary system with decision statistic z is

P, = Pr{z<O[ dk=1} = - - Im{ (v)}. (2-54)

When z is a weighted sum, that is.
L

z = wqzq, (2-535)

the probability becomes

V ( L L
Pe = (HI q.Lq)Isin(Zag[ Cq(vw,)]) (2-56)2 r VCqq q=l q=l

3 2.3.2 Characteristic Function with FM Clicks Included

In Section 2.1, a general expression for the probability density function of the differ-

ential phase sample AZ, at the output of the limiter-discriminator receiver was shown to

be a weighted sum of shifted, modulo-27r PDF's, po(.). The corresponding characteristic

i function is

= -y)e = J . dx p(Z+2nr; PN)

i -on -co0 n o
= 1~y~~ 0 1 dx e' Zp (+2n; N

7+e- 'I: Jd! PT)l n=O
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= :-2o eJV2 7 C"(V;PN)

-O 1

+ y e ,' e-jVn C'v(v; PT)" (2-57)n=0 
"

The individual characteristic functions CO(v; p) may be factored out of the sums, and

the sums completed, to yield the closed form

Ca#(v; "y) = (1--y)exp{-a0+ao e - j v 2 r }) CP(v; PN)

+ -y exp{-0 1 +01 e - 2W) CaO (; P T) (2-58a)

= (1--) e- a (1-cos27rv )- jaosin2 r v C,-(V; PN)

+ -e - a1(1 - cos2 r v ) - j a sin27rv CIP(v; PT). (2-58b)

2.3.3 Characteristic Function with Adaptive Weights

If a weight wo is given to a AP sample from an unjammed hop, and w, to one from

a jammed hop. the characteristic function for A1 becomes

C~,(vi y) = (1-1)e - °o ( 1 - co s 2 r u °ov )- jio s i n 2 r w ov C,,( Wov " PA')

+ , e - 0(1-cos 2 r u !1v)-ja 1 sin 2 r w L CO(wlv; PT). (2-59)
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3.0 FH/CPFSK IMPLEMENTATION STUDIES

In this section we consider certain aspects of the implementation of frequency-

hopped CPFSK systems. First, in Section 3.1, we discuss various issues affecting the

implementation of current frequency-hopped systems. Then, in Section 3.2, we use

models of synthesizer switching transient waveforms to analyze their effect on the

emitted signal spectrum and the de-hopped receiver IF signal during the switching

times between hops.

3.1 DISCUSSION OF IMPLEMENTATION ISSUES

The implementation issues that are the focus of the following discussions include

factors affecting the selection of a hopping rate, emissions control measures and hop

transient effects, and synchronization requirements.

3.1.1 Factors Affecting the Selection of a Hopping Rate

Certain fundamental limitations on frequency hopping rate follow from system re-
quirements. Suppose that the maximum signalling rate which can be supported by aU hopping slot or channel. in order to avoid adjacent channel interference (for example). is

R,. Also. let Rd denote the rate of the data symbols to be sent over the hopping

channel, and let
Th = Rh' = hop duration or dwell time (3-1a)

Q = RdTh = number of data symbols per hop (3-1b)

T, = portion of Th needed for overhead operations. (3-1c)

By "overhead operations" we refer to the various practical operations which must be

implemented to support the transmission of a frequency hop; these include

e retuning the transmitter and receiver synthesizers,

* controlling the fall and rise of the transmitted power between hops to

minimize spectral splatter,

e initializing the state of the receiver filters, and

* acquiring synchronization on the hop, if necessary.

During the portion of the hop interval in which the Q symbols of user data are

being transmitted, the transmitted symbol rate R, must be higher than Rd because of

the overhead operations. Thus. the actual symbol rate on the hop is

I
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R, TQ- RdTh ,Re. (3-2a)
T1,-TO Th-TO

Solving for Rh gives the inequality

Rh <Rc-Rd (3-2b)
RJT0

where RTo is the number of symbols which could have been transmitted during the

overhead time at the maximum hop channel rate.

For example, if Re= 20kbps, Rd= 16kbps, and To= 0.2 ms, the maximum hopping

rate would be 1000hops/sec; if T.= 2.Oms, the maximum hopping rate would be 100

hops/sec. Typically, the "off the air" times of tactical VHF hopping radios is on the

order to 10-207 of Th [26, 29].

If the data rate Rd is low compared to the channel rate Re, the upper limit to R,

approaches T - ', and it is possible to have the situation where the hopping rate is

greater than the data rate, commonly referred to as fast hopping.1 A fundamental lim-

itation which is not expressed by the inequality in (3-2b) is that the hopping rate must

be less than R,. since for fast hopping the hopping rate is dominant in determining the

hop bandwidth.

It has been said [28] that the SINCGARS hop rate of about 100 hops per second
"was determined by factors such as signal density, assurance of communications in a

mutual interference environment. ability to enter the net when out of synchronization.

technology and cost limitations of developing a suitable synthesizer, and reduced mean

time between failures."

On the other hand, and Italian manufacturer claims [27] that the use of a direct

sequence spread spectrum modulation on the hops, rather than the commonly used

digital FM or CPFSK, would permit higher hop burst rates (R,) without incurring

mutual interference, and also would enhance the synchronization performance, with the

result that a hopping rate four times higher than that of SINCGARS is practical. In

fact, the burst rate during the hop dwell times in the JTIDS and EPLRS systems is

5MHz, greater than the hop channel spacing of 3MHz, and both systems employ error

control coding 2 and a form of direct sequence spreading-in that they utilize MSK (digi-

tal FM with a modulation index of h=0.5, which is very similar to the bi-phase

modulation most often associated with direct sequence systems.

1Some analysts categorize hopping speed on an absolute basis, calling hopping faster than 500 hops/sec
fast hopping.
2 For Army use, neither JTIDS or EPLRS will be used for voice communications. This allows the
system designer much more freedom in selecting modulation parameters.
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3.1.2 Emissions Control and Hop Transient Effects

IAs alluded to previously, at the points in time when the hopping signal switches

from one carrier frequency to another, there is the possibility of spectral splatter if the

amplitude of the waveform is not shaped properly. It is well known that "sharp edges"

on signal pulses give them higher spectral sidelobes-and therefore higher potential for

adjacent channel interference-than do "smooth edges." For this reason, both EPLRS

[32, p. 7-4] and JTIDS [33, p. 23) implementations, for example, control the rise and fall

times of the hops. In addition, the JTIDS transmissions are subject to strict controls on

the amount of power emitted during the hop dwell time as well as the duty cycle of

transmissions. In [29], it is stated that, in order to reduce the amount of splatter into

nearby nets, it is necessary that neither the rise time or the fall time of the hop pulse be

much less than a bursted symbol time, T,= R7', thus requiring that

min (rise time, fall time) > a T , (3-3)

where the factor a is said to be typically between the values 1 and 4.

A separate concern related to emission control is the emission of RF energy in

adjacent and other hop channels due to the characteristics of the hopping waveform

during the transient period between hops. In effect, the waveform is the result of a

frequency modulation of a carrier at the center of the hopping band by a multi-level

pulse, one level per possible hop center frequency, and the spectrum of such a modula-

tion can be very wide, containing many spurious harmonics related to the frequency

switching. For this reason. VHF hopping radios using an indirect synthesizer, such as

the British JAGUAR [34., pp. 6-10. 7-7], employ a "hop mute" or power-down control

function during the time that the synthesizer circuitry indicates an "out of tune-

condition. If a direct frequency synthesizer is used, it is possible to adequately suppress

the spurious harmonics while maintaining a very small switching time [29], in which

case the controlling concept in waveshaping is the prevention of splatter.

Even with the use of waveshaping to reduce splatter, there may be undesirable

effects at the desired receiver, such as [29] ringing in the IF filter as it is started up with

the new hop input, as well as phase discontinuities arising from Doppler shifts, fre-

quency-selective fading, indeterminacy of the IF phase prior to reception of the pulse

(assuming the signal power is reduced between pulses), and imperfect synchronization in

* the receiver.

An analysis of phase transients due to hopping was presented in [30] for the case of
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a MFSK system that hops once per symbol. The transients were shown to give rise to a

spreading of signal energy so that there is a loss of energy in the transmitted symbol's

sub-band and undesired energy in the other sub-bands. For hopping systems such as

VHF tactical radios which have many symbols per hop, there is a concern that the

phase transient will degrade the first symbols on the hop-or, conversely, that if there is

a delay in transmitting symbols until the transient settles out, then an effective loss of

usable signal energy is incurred, lowering the performance of the system for a given

limit to transmitter power [1, 29].

3.1.3 Synchronization Considerations

Generally, hopping radio systems use preambles, special sequences of frequencies

and/or data, in order to establish synchronization between hopping radios. This tech-

nique assumes that a coarse synchronization has already been achieved, so that the

receiver knows what hop frequencies are upcoming but not the exact time of arrival.

due to the dependence of the time of arrival upon the relative positions of transmitter

and receiver, which may change from message to message.

The timing references in hopping radios are designed to have an accuracy which at

least guarantees that hopping by the transmitter and receiver, once synchronized, can

maintain synchronism over the duration of a typical multi-hop message. Nevertheless.

there is always some residual difference between the timing of the incoming signal and

that of the receiver, usually neglected in analyses, but sometimes modelled for the

purpose of particular studies (e.g., [31]). As mentioned above, a difference in switching

times between the incoming signal and the receiver's synthesizer can produce significant

phase discontinuities. ON,

In the following subsections, some of the hopping transient considerations we have

discussed axe given further attention in the form of detailed analysis.

3.2 ANALYSIS OF HOP TRANSIENT EFFECTS

In [30] it has been shown that the phase transient at the output of an indirect,

phase-lock-loop based synthesizer can be modelled by the waveform

0,(t) 'e-"' sin(w,. '- 2 t), C < 1, (3-4)

where w,= 27rf, is a loop resonant radial frequency, ( is a damping factor. and Af is the

desired step change in frequency. Thus, for example, we observe that in general there is
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some ringing and some overshoot in the phase output. In this section, we utilize a

simplified model for the phase transient in order to analyze the spectrum of the hopping

transmissions and the effects of phase discontinuities at the receiver IF when

transmitter and receiver are not in perfect synchronization.

3.2.1 Model for Synthesizer Transient Waveforms

For the purpose of studying the effects of the transients occurring between hops, we

neglect the data modulation and any hop amplitude control, and look very closely at

the interval between two hops, taking t =0 to be the moment at which the frequency

switching begins. Thus we write for the received signal waveform

sO(t) = Acos[or(t)] = Acos[fdt r(t)] (3-5a)

where the instantaneous frequency or phase derivative is given by

,(t)/2r = fl, t < 0 (3-5b)

= f, + 6tsign(f 2-f 1 ), 0<t<t, (3-5c)

= f 2, t > t'. (3-5d)

This formulation expresses the concept that, prior to the end of the hop, the carrier has

been settled at f1 and that beginning at t = 0 this carrier is linearly frequency-modulated

for an interval equal to t., the switching time, after which the carrier is f 2. It is

assumed in (3-5) that either the frequency rate of change 6 is given, in which case it

turns out that the switching time is the frequency-dependent quantity

t, = If2-fil/6, 6 given, (3-6a)

or the switching time t, is given, in which case the frequency rate of change must be

frequency-dependent:

6 = Ihf-f 11/t,, t, given. (3-6b)

3.2.1.1 Received and local oscillator transient phase functions

Whether 6 is specified or t. is specified, using F-=f2-ff the transient phase function

is given by (assuming 0,(0) = 0 for convenience)

er(t) = J t dub,(u)

= 2,rf t, t < 0, (3-7a)

= 2,trft + ,rFt2/t,. 0 < t < t, (3-7b)

= 27rft + 2rF(t-t,) + irFt,, t > t,. (3-7c)
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Assuming that downconversion is employed by the receiver, if the transmitter and

the receiver are in perfect synchronism the receiver synthesizer produces the local

oscillator frequency fLo= fRF + fF, where fRF and fIF are the selected (hopping) channel

carrier frequency and the fixed IF center frequency, respectively. 3 However, allowing

the receiver to be late by the time interval r, the receiver synthesizer waveform is

assumed to have the instantaneous frequency or phase derivative

bLO(t)/27r = br(t-r)/27r + f4FP (3-8)

This assumption leads to the local oscillator transient phase function (neglecting any

constant of integration which may differ from that for the received phase function)

OLO(t) = Jdu[2rfF F+ b(u-r)]

= 2 lrfFt + 0(t-7) + 2rflr, (3-9)

since r(-r) = -27rfr.

3.2.1.2 Mixer output transient phase difference

The mixer output then is, prior to the IF bandpass filter,

const. xcos[OLo(t)-Or(t)] = Acos[2rf/Ft + A0(t)] (3-10a)

where the transient phase difference A0 is

AO(t) = 0r(t-r) - 0r(t) +27rf r. (3-10b)

The form that this function takes depends on the relation between to, the synthesizer

switching time, and r, the receiver synchronization offset. For indirect synthesizers

-and indeed most synthesizers-it can be assumed that IrI < t,. In that case and in the

case of r > 0, the transient phase difference is found to be

AO(t) = 0, t<0 (3-11a)

- -rFt 2 /t,, 0<t < r (3-11b)

S-_ 7rF(2rt-r 2 )/t,, 'r <t <to (3-11c)

- -27rFr+7rF(t-r-to)2/t, t0 <t <t0+r (3-11d)

- -27rFr, t > to+ r. (3-11e)

Note that if r=O, that is, there is no synchronization error, then there is no transient

phase difference and the combination of hopping and de-hopping is indeed "transparent"I

3 Using this method it is necessary to use additional pre-filtering at RF. such as done by the Jaguar
radio [34], to prevent images of non-selected channels from appearing at the mixer output.
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as assumed by most simple analyses of hopping systems. Also, we observe that (3-11)

describes AO as a piecewise continuous function with a succession of linear, quadratic,

linear, quadratic, and linear line segments, as illustrated in Figure 3-1.

For the case that r > to > 0, the transient phase difference takes the functional form

AO(t) = 0, t<0 (3-12a)

= -rFt 2 /t, 0 < t < to (3-12b)

= -27rF(t-t 5 )-wrFt,, to < t < r (3-12c)

= -27rFr+ffF(t-r-to)2/t., r < t < r+t (3-12d)

= -27rFr, t > t°+r. (3-12e)

As illustrated in Figure 3-1, this functional form has the same structure as the one for

the case of r < t,.

A more convenient model of the transient phase difference for analytical purposes is

easily found to be

AO(t) = 0, t <0 (3-13a)

= - rFr+7rFrcos(- !,). 0 <t <tS+r (3-13b)

= -27rFr, t > t,+r. (3-13c)

Note that this shifted cosine function, like (3-11) and (3-12), also has quadratic seg-

ments at endpoints and a linear segment in the middle, to an excellent approximation.

but is continuous on the interval (0, t,+r) rather than piecewise continuous.

3.2.2 Effect of Receiver Filtering on Transients

The harmonic content of the transient phase difference can be discovered by con-

sidering expansions of the mixer output signal waveform prior to the IF bandpass filter:

s(t) = Acos[2rflFt + A0(t)]. (3-14)

If the functional form for AO(t) given by (3-11) or (3-12) is used, then the analysis

involves expansion of terms such as

cos(at2 ) = tdzcos(ax)

at J 0

a 2a( 7 (3-15)
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FIGURE 3-1 TRANSIENT PHASE DIFFERENCE MODELS
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where C(z) is the Fresnel cosine integral [17, eq. 7.3.1]. The mathematics involved is

similar to that for analysis of "chirp radar" systems 135]. Note that the harmonic
structure is not yet apparent in (3-15), but requires further development. However, if

instead of the modeL for t"e transient phase difference given by (3-11) and (3-12) we

use the shifted-cosine one given by (3-13), we have terms to evaluate such as

cos(acosbt) = J0 (a) + 2- (-1)"J 2.(a)cos(2nbt) (3-16a)

= -E/. (-1)" ,J 2n(a) Co0 (2nbt) (3-16b)
a n d _ _-

sin(acosbt) = 2Z: (-1)"J2 nl(a)cos[(2n+1)bt], (3-16b)
n0O

in which the J.(z) are the Bessel functions of integer order [17, ch. 9] and o, is Euler's3 constant, which takes the values c0=1 and f,=2 for n>O. Note that using (3-13) for

the transient phase difference will therefore give the harmonics directly.

3 Applying (3-16) to the expression for the mixer output gives the expression

s(t) = Acos( 2 ffIFt), t <0 (3-17a)U= Acos(2rfJt-7rF1)Z(-1) J2n(7rFr)cos(r--!-t

n z i r+tr ,o ((2n+1)7rt
+2Asin(2 1rfIFFt-7rfr) 1 ( - 1 ) J 2n+1( rFr)COS ( r+t,

0<t<ts+r 
(3-17b)

SA cos (27rfIFt-27rF-r), t > t, + r. (3-17c)

Since it is true that J 0(O)= 1 and Jn(0)=0 for n>0, we see that this somewhat complex

expression reduces to simply s(t) = A cos (2 7rfJFt) that is, no transient phase difference

at all, for the case of perfect synchronism (r = 0).

From (3-17) we see immediately that during the interval (0, t,+r) the mixer out-

put's energy is spread about the IF center frequency to the harmonics of
I ~fdo "6t- r) (3-18a)

The distribution of energy among these harmonics is dependent on rFr, the argument3 of the Bessel functions. Assuming a synch timing offset of about 1% of the symbol

period, Te, gives a value for r of about 0.5jusec. For a typical VHF hopping radio, the3 size of F can be from 25kHz to over 50MHz, but more likely would be from 25kHz to

around 256 x 25kHz = 6.4 MHz because the radios often are set up to hop in a sub-band,

rather than over the entire 30-88MHz VHF band. Thus the value of wFr ranges from

around 0 7r to more than 3.27r. For small values of the argument, the Bessel functions
* are well approximated by
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Jn(7rFr) ( i rFr1 (3-18b)

For large values of the argument, we have [17, eq. 9.2.1] 1
J 2 ,(rFr) 7r F cos(7rF-!' (3-18c)

d J2 +(7rFr) 4-2 T ]7sin(7rFr-!). (3-18d)

From (3-18c) and (3-18d), we observe that the harmonics for large values of rFr are of

approximately equal magnitude, which agrees with the flat spectra for chirp waveforms

shown in [35].

It is clear that the transient phase which will appear at the input to the de-

modulator will be considerably different from that at the mixer output, since the IF

bandpass filter will attenuate these harmonics to different degrees. For deriving the

effect of the IF bandpass filter on the transient phase difference when it is assumed that

a Gaussian-shaped filter is used, a detailed transient analysis is presented in Appendix I
C. The implications of that analysis are that the IF filter will indeed reject the

harmonics of f,,. Therefore in anticipation of the rejection of the harmonics, we make

use the unit step function U(t) to reformulate (3-17) as follows:

s(t) = Acos( 2 lrfIFt) . U(-t) + AJo(rFr)cos(27rfJt-?rFr) . [U(t)-U(t-t,-r)] 3
+ A cos (27rfFt -2rFr) • U(t -ts-r). (3-19)

The corresponding in-phase and quadrature components are

I(t) = A .U(-t) + AJO(7rFr)cos( rFr)' [U(t)-U(t-t-r)]

+ Acos(2 rFr) .U(t-t,-r) (3-20a)

Q(t) = AJo(rFr)sin(7rFr).[U(t)-U(t-t,-r)]

+ Asin(27rFr). U(t-to-r). (3-20b) 3
To characterize the IF filter's response to these inputs, we use the notation S(t) to

denote the equivalent lowpass filter's response to the unit step function, that is.

S(t) A tdzho(t-z) (3-21a)

= Idzh0 (z) = P[24"IW1F(t-td), (3-21b)
0

where PG(') denotes the Gaussian cumulative probability distribution function and td is

the filter delay. The quadrature components at the output of the IF filter then are
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v(t) = A.S(-t) + AJo(Fr)cos(rFr).[S(t)-S(t-t,-r)]

+ A cos (27rFr) • S(t-t.-r) (3-22a)
~and

u(t) = AJo(rFr) sin (irFr).-[S(t)-S(t-t,-r)]

+ Asin(2- 7r) .S(t-t.-r). (3-22b)

Assuming that the filter delay is approximately one symbol duration, that is, about
I 50pusec, and that the combined switching time and synch offset t.+r are much less than

this delay, say about 10,usec, the filtered transient amplitude and phase functions a,(t)

and 0,(t) at the output of the IF filter, given by

a,(t) = [u2(t)+V2(t)] 1/ 2  (3-23a)

* and

o,(t) = tan-'[u(t)/v(t)], (3-23b)

are as sketched in Figure 3-2 for the assumption of a large value of 7rFr. The cases con-

sidered in that figure are3 iFr = m, m+±, m±1, (3-24)

where m is an integer. It is evident that the transition event takes place over the time

3 interval defined by
It-td--2(t,+r)[ < 3o h =3I :T ,,(-3

assuming that WIFT, = 1, and that in general the signal is subject to an attenuation or
energy loss during this interval when the phase is switching. For this reason, it is to be

expected that the system noise at the IF filter output will largely determine the value of
phase during this transient interval. The critical case is seen to be 7rFr equal to an
integer plus 1, since for this case the signal amplitude decreases momentarily to zero
and the (modulo-2w) phase changes rapidly by ±v, even in the absence of noise. It is

highly likely that an FM noise click or rapid 27r phase shift will occur in this case also.

The conclusion to be drawn from this analysis is that the effects of the transient

I phase difference between the incoming hopping waveform and the receiver's synthesizer
are primarily confined to the interval (0, T+ts+r), referenced to the input of the3 receiver with t = 0 at the instant that the incoming signal begins to switch frequencies.

Therefore, a one-symbol guard time is advisable before resuming the transmission of
data. Typically, as has been mentioned, the amplitude shaping and other procedures

designed to control emissions dictate a larger off time, and so are the controlling factor
in the determination of what fraction of the dwell time may be used to transmit data.
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a,(t)
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o ' t\ 2td
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-27r

Key: A: Fr = integer

B: Fr = integer + 4

C: Fr = integer + -2

D: Fr = integer - 14

E: Fr = integer -

FIGURE 3-2 IF SIGNAL AMPLITUDE AND PHASE TRANSIENT WAVEFORMS
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4.0 INVESTIGATION OF ECCM COMBINING TECHNIQUES

In this section we sunrLize investigations of the effectiveness of various ad hoc

diversity combining techniques for improving the uncoded performance of FH/CPFSK

in worst-case partial-band noise jamming. Techniques used in conjunction with the

limiter-discriminator receiver are discussed in Section 4.2, and those pertaining to the

differential detector are treated in Section 4.3.

4.1 BACKGROUND: NONCOHERENT COMBINING LOSS

When the FH/CPFSK signal is accompanied by stationary Gaussian noise only

(either background noise or continuously present noise jamming), the use of multihop

per symbol diversity is not called for, except perhaps to reduce the interceptability of

the signal by spreading the signal energy in frequency. As illustrated in Figure 4-1, for

noise-only conditions the unjammed probability of bit error increases with L, the num-

ber of times the bit is split into chips which are transmitted on different hops, with the

bit recovered by examining the sign of the sum of the demodulated differential phase

samples. This loss in performance as L increases is commonly termed "noncoherent

combining loss" (NCL).

4.1.1 Diversity Sum Error without FM Noise Clicks

An understanding of the mechanisms which give rise to NCL for FH/CPFSK sys-

tems can be gained by considering a simplified analysis of differential phase combining.

If FM noise clicks are ignored, the differential phase samples for L hops/symbol

Zkq = A'(tkq), q= 1, 2, ... , L (4-1)

for the kth symbol are approximately Gaussian random variables, with identical means

= A0 and variances ar' = L/p. That is, such is the case when the symbol energy is

kept constant as L changes, so that the effective SNR when the samples are taken is

p/L. The mean value A0 is the (distorted) differential phase in the absence of noise.

Using then the approximation that the samples are Gaussian random variables, the

sum of the L differential phases is approximately Gaussian with mean LP, = LA and

variance La? = /p, denoted by
L

Zk - EZkq
q=1

: G(LAo, L 2/p) = L.G(A0, l/p). (4-2)
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Limiter-discriminator receiver:
h=0.7, WIFT=I.0, Gaussian IF filter

100 ~ Mixtre characteristic function approximation
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4-_- -----~t
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10- -i_ _ _.. ..
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-5 0 510 15 20

Eb/XO (dB)

FIGURE 4- UNJAMMED P, FOR FH/GPFSK FOR L1, 2,3,4,6
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In (4-2) we use G(u, a2) to represent a Gaussian random variable with mean p and

variance a', and in the last line of (4-2) we make use of the fact that multiplication of

such a zandom variable by a constant K gives K.G(p, a 2 ) = G(Kp, K 2 2 ).

Now, since the symbol decision is made of the basis of the sign of z&, (4-2) implies

that in the absence of FM clicks, the symbol error probability for any value of L is

approximately given by

P,(L) = Pr{zk<Ol d=1}

; Pr{L.G(Ao, 11p) < 0}

= Pr{G(Ao, lip)<0}, (4-3)

which does not depend on the value of L. That is, there is no combining loss.

4.1.2 Effects of FM Noise Clicks

However, when the clicks are included in the analysis, by raising the characteristic

function for one of the N.D samples' to the Lth power we can deduce that the sum of

the differential phase samples is conditionally Gaussian, given the value of N,. the

number of clicks. The average number of clicks in the sum is L times

aL=e-'/LjA¢j/2ir, the average number of clicks for one hop, and if N,= n, the

Gaussian variable's mean and variance are

u,, = LAo - sgn(A).21rn, o2 = L2/p. (4-4)

Thus with clicks included in the analysis, the error probability is

P!(L) (LaL)" e - LL Pr{G(Ao- 2 7-, 1/p)<01 (4-5a)

n=O n! T

n! ( L L ) e -LL 2 7r-n- p i, (4 - 5 b )

which clearly does depend on the value of L. In (4-5b), QG(') is the Gaussian comple-

mentary cumulative distribution function.

To provide a numerical example, let AO be positive. Then we have for L = 1 and

for L = 2 the following results:

Pe(1) = e-0 QG(A&O) + ale_'QG(Ao-2w)p] +

2 a l e -+ ol for high SNR; (4-6a)

1The characteristic function shown in (2-52a) may be used, with ,=O and 00=Q/.
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and Pe(2) = + .. + 2o 2e QG[(A6-w)f

2a 2e -2 2 -. 2a2 for high SNR. (4-6b)

Thus for high SNR the ratio of P,(2) to P(1) is about equal to

P,(2)/Pe(1) ;t 2a2/a = 2e' 2 . (4-6c)

Because of the amplitude distortion a(t), the SNR is less than Eb\x0; a typical value is

p = 0.7 Eb\No. For Eb\Xo = 10dB, then, (4-6c) gives a ratio of 66.2. In Figure 4-1, the

ratio of error probabilities for L=1 and L=2 when E\x0 = 10dB is 0.0133/0.0002

=66.5. This agreement confirms that the so-called noncoherent combining loss for

limiter-discriminator d&tection of CPFSK is attributable to the FM noise clicks.

When the FH/CPFSK system is subject to full-band noise jamming. the NCL

shows up as different asymptotes (minimum error) for fixed Eb\o as jamming power is

decreased. For example, in Figure 4-2 we show the effect of full-band jamming on the

error probability for an L hop/bit FH/CPFSK system with linear (sum) combining of

the differential phase chips when Eb\Ko is selected to give a 10- P, for L=1.

4.2. HARD-DECISION COMBINING RECEIVER

For the hard-decision (HD) receiver for FH/CPFSK. a polarity (±1) decision is

made as each chip is received.-equivalent to estimating the original chip sequence dkq

by dk,-and the bit or symbol decision after all L chips have been received is according

to the rule

d = sign{E dkq}. (4-7)
9=1

4.2.1 Analysis of the HD Receiver

A correct symbol decision is made if a majority of the chip decisions are correct 2 :

in the case of a tie, which is only possible if L is even-valued, a random binary decision

is made. Therefore, the probability of error for a hard decision combining receiver is

(L-1)/2

P.(L; R N , E) = (i) (1kPi)kPh-, L odd (4-8a)

(L-2)/2

= 1: (L) (1 Lp even- (4-Sb)_p~p)L2
where 

k=O

Pi __ P (1; iR ., R , I! ) (4-8c)

and where we have used the notation R.= E,/X0 and R J= EI/J.

2 Note that this rule is equivalent to using the sign of the median of the L chips, for L odd.
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I Asymptotes:
error probability for no jammingI7

I 4
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* H- 2

Mm

1 4 L=1

I U) =I (full-band jamming)

3-5. 00 E. 00 15.00 25.00 35. 00 45. 00
Eb/N., (dB)

FIGURE 4-2 EFFECT OF FULLBAND JAMMING ON L HOPS/BIT FH/CPFSK
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By reversing the order of these sums, the functional form for P,(L) can also be

written
2m+l 2I-

Pe(L) = + ( 2 r+l k(1 p)2+lk for L=2m+l (odd) (4-9a)
k=,+1 k

2mn+2 f
=V+ (2M+2" (1 p,) 2 m+ 2-k l 2m+2 p +

k=m+1 k +

for L=2m+2 (even). (4-9b)

By substituting
(2m+2) (2rnl) + (2m+1) (4-10a)

into the the equation for L even, and noting that

27+1) = 0 for k>2m+1, (4-l0b)

it is straightforward to establish that the functional form of Pe as a function of p for L

even is the same as for the next lower odd value of L. For example, functionally.

P,(2: P) = P,(1" p,) = pl. (4-11a)

P,(4; pl) = PE(3: p,) = 3p -2p , etc. (4-11b)

A general expression can be found by noting that [17, §6.6]

P,(2rn+l, Pi) (2m + 1)! Pd ( 1-),xm

(2 mn+l)! ,) (-l)' p .+n+ (4-12)r!!! E" n m+n+l
n=0

However, it should be noted that p, itself is a function of L, as stated in its definition

above. The practical application of this observation about the functional form of P, for

the HD receiver is that in programming any calculations of P,(L), we may consider only

odd values of L. The error probability for even values of L can be obtained after

computing P,(L-1) simply by replacing the ratios RN and R. with RNx(L-1)/L and

R. x (L-1)/L and then reusing the subroutine for Pe(L-1) to compute P,(L).

In [8] it was shown that a precise expression for pi is

p, = ((1 -1) F(Rv/L) +-y F(RT/L))tsI patterns (4-13a)

where for a particular ISI pattern (indexed by the parameters Ao. U, V, and XV) and
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/2 [ x.fU-Vsinx+Wcoszi
F(R)= 1- e- , rsin A ,/2 dz 1 +rcosAocosT

47r f -W2 1 +rcos AO cos z

I W n / U-Vsinz-WcosAocosz}
e0 WsinA dexp f -r X (4-13b)+ -° 47r f-,2 -rcos

An accurate approximation for modulation and receiver parameters h=0.7, WJFT=1.0.3 and a Gaussian IF filter, is the following:

2lexp{-.974717R}, R <0.5
(F(R)) ; !,.346664exp{-.705883R+.115918R-'} R>0.5.

3 Figure 4-3 shows a comparison of this approximation with the exact unjammed

error probability. Note that a linear scale is used for the SNR.

4.2.2 Results Using the HD Receiver with Diversity

3Using the approximation given above for the chip error probability as a function of

SNR, we calculated the uncoded performance of hard-decision combining of L-hop/bit

FH/CPFSK in worst-case partial-band noise jamming. The worst-case result was found

by maximizing P,(L: -) with respect to -1. the partial-band jamming fraction, for given

values of RA' and Rj.

In Figures 4-4 and 4-5. for Eb/No=2OdB, we show the worst-case P, for L=1 to 7

and for L=7 to 12, respectively. As noted above, characteristically for the hard-decision

receiver, P,(L=2m) > P(L=2m-1), that is, the error is higher for L=2 than for L=1.
higher for L=4 than for L=3, etc. This behavior is attributable to the necessity ofU making a random decision in the case of a tie when L is even-valued. Except for this
predictable variation, the trend is that the value of Ra required for a 10' uncoded bit3 error probability decreases as L increases, indicating a diversity gain.

For clarity, the error curves for only the odd values of L are plotted in Figure 4-6.3 Here the facts that there is a diversity gain and an optimum value of diversity are more

clearly observable. Not that the error curves are "inverse linear" for the given scale,3 with slopes equal to -!(L+1), revealing that the worst-case error is inversely

proportional to the (L+l)th power of the signal enery-to-jamming noise density, Rj.

I
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100

Approximation

o a * o Exact (numerical integration)
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FIGURE 4-3 EXACT AND APPROXIMATE CPFSK ERROR PROBABILITY

COMPARISON FOR LIMITER-DISCRIMINATOR DETECTION
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FH/CPFSK E6/xo=2OdB

Hard-decision combining
Worst-case partial-band noiseIh=0.7 WIFT=1.O
Gaussian IF filter

Chip BER approximation
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FIGURE 4-4 HARD-DECISION DIVERSITY PERFORMANCE FOR L=1 TO 7
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FH/CPFSK Eb/xo=2OdB

Hard-decision combining

Worst-case partial-band noise

h=0.7 WIFT=1.O
Gaussian IF filter

I M_ Chip BER approximation
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FIGURE 4-5 HARD-DECISION DIVERSITY PERFORMANCE FOR L=7 TO 12
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If Eb/X'0 is reduced (the thermal and system noise is increased relative to the signal

energy), the noncoherent combining losses (NCL) will affect the diversity gains against
the jamming. In Figure 4-7, for Eb/XO=15dB, we observe that the maximum value of

optimum diversity is L=7, for a narrow range of R. around the value R. 20dB, and in
Figure 4-8, for Eb/Jf =13dB, the highest value of diversity for which improvement is
noted is L=3. It is apparent also from Figure 4-8 that, as the thermal noise increases,
the NCL for hard-decision combining is significantly greater for even values of L than it

is for odd values.

4.3 LIMITER-DISCRIMINATOR TECHNIQUES

In this subsection we summarize our analysis and present numerical results con-

nected with studies of possible ECCM weighting schemes to enhance the performance of
a limiter-discriminator-based FH/CPFSK receiver against partial-band noise jamming.

4.3.1 Approximations to the Differential Phase PDF and CDF

Analytically it is quite convenient to utilize the probability of error expression in-
volving the characteristic function (CHF) of the diversity sum decision variable, z:

Pe= - /J-YIm{Gz(v)}. (4-15)P, (-5

The convenience associated with using this form arises from the fact that the CHF for
the sum of L independent, identically distributed random variables is simply that for

one variable, ra;sed to the Lth power:

C_(v) = [C,,(v)]L (4-16a)
L

when z L Z9. (4-16b)
q=1

A general expression for C,,(v) was given in Section 2.3, including FM noise clicks
and partial-band noise jamming. To use that expression, it is necessary to formulate

the CHF corresponding to p,(z), the probability density functicn (PDF) for a single 27r

interval of possible A$ sample values. Thus we require an expression for

C, (0) =J dz"e3 " po(z). (4-17)

Unfortunately, an exact analytical expression for this CHF cannot be found in closed
form, since p,,(z) itself, given previously in (2-29), is in integral form. Therefore we

have investigated several approximate expressions.
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FH/CPFSK Eb/Ko=15dB

Hard-decision combining
Worst-case partial-band noise
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4.3.1.1 Expansion of the CHF in terms of cumulants

The CHF for a random variable x can be expressed in terms of its moments or in

terms of its distribution's semi-invariants or cumulants. The general expression is

I C i,)=Z t m (4-18)

= exp = 0 in }(4-19)

in which the quantities I m, are the (noncentral) moments and the {c, ) are the semi-

invariants or cumulants [17]. For example, in terms of the moments, some of the

cumulants can be shown to be

,j=m 1  (4-20a)

K,= C 2 = m. - M2 (4-20b)

K3= m3 -3 mIm 2- mI (4-20c)

P-4 = M 4 -4K 1 K 3-3K -6 C2 K2- K . (4-20d)

I For the Gaussian distribution, all the cumulants higher than Cj and K2 (the mean and

variance) are zero.

Since for high SNR the PDF for the modulo-2r differential phase is approximately

Gaussian [13. 1S]. we reasoned that the CHF C,,(v) could be well-approximated by a

truncated version of (4-19),

Cvv)-- ~dexp{Z' (j) K n (4-21a)

using exact cumulant values obtained from calculations of the moments about AO:

I m, = E{( -AO)"l = f dx x"p,(x+AO), (4-21b)

I using the expression given in (2-29) for the PDF of Vp.

For zero SNR (noise only), pc.(z) is the uniform PDF, with zero-valued odd

I moments and even moments given by

m2r = r (4-22a)

which give rise to zero-valued odd cumulants (K 1 = K 3 =K 5 = 0) and

K= 1r = 3.29 (4-22b)

K4 = -1 r 4 = -13.0 (4-22c)3_6 1358. (4-22d)

It is evident from (4-22) that for sufficiently low SNR, the higher cumulants of the
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differential phase PDF do not diminish quickly enough to permit representation of the

CHF with a reasonably small number of cumulants. Therefore, this approach to ap-

proximating the CHF was abandoned.

4.3.1.2 CHF based on approximation of the PDF

For high SNR, it is well known [18] that the PDF of the modulo-27r differential
phase V is well approximated by a Gaussian PDF. In Figure 4-9, we show a direct

comparison of the exact PDF p,,,(z) with the PDF for a Gaussian random variable with
the same mean and variance. As seen in the figure, the approximation is excellent for

high SNR but for low SNR begins to depart significantly from the exact PDF, especially

for V) values near to A 7r. Moreover, the region over which the Gaussian PDF has

significant value increases with the value of the variance, whereas the exact PDF has

the finite domain Jti,-Aol <7r; therefore, use of the Gaussian characteristic function

CG(v) = d- 2,, 2 /2 (4-23)

in the error probability calculation is not expected to approximate the the system

performance faithfully for low SNR.

For this reason, we have developed an approximation to the differential phase
characteristic function starting with a "truncated Gaussian" PDF that we define by

_2 2

Ke - /2 ° °  for I <7r
PTG(0) e elsewhere. (4-24a)

The properties of this distribution are discussed in Appendix B. For example, the nor-

malization factor K in (4-24a) is given by

K- 1 = uo,,' erf (,r/,,4 ), (4-24b)

and it can be shown that, as the parameter a0 -* oo, the PDF PTG(Z) becomes a uniform

PDF on the interval (-7r, 7r). Also, the variance of the distribution 02G is related to a2

by the expression

222 2 2)].
~TG 0 or - e - / oaerf W10rco,2)4 (4-24c)

The characteristic function for the truncated Gaussian distribution may be approxi-

mated by the "mixture" characteristic function
2 2

CA,(v) - sinc(v) + (1-c)e - ° ° /2, (4-25a)
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where the mixture parameter c is SNR-dependent and is given by
2 2 -

= { e - (w/ao4)]; (4-25b)

also, sinc(v) =sin(7rv)/7rv is the CHF for the uniform distribution over the interval (-7r,

7r). The first and second terms of CM(v) correspond to low-SNR (uniform) and high-

SNR (Gaussian) versions of the differential phase CHF, that is, CM(v) may be

interpreted as

CM() = C(p).Cu(U) + [1+-e(p)].CG(v), (4-25c)

with c decreasing as the SNR, p, increases.

In effect, the use of (4-25) approximates the differential phase PDF p,(z) by a

mixture of of PDF's. Figure 4-10 illustrates the accuracy of this PDF approximation

when a2 is taken to be the inverse function of the truncated Gaussian variance a 2 given

by (4-24c). Evidently, for low SNR this value of ao' is too high, judging from the curves

in Figure 4-10 when Eb/Ko=OdB.

Taking the m;-:ture approximation concept a step further, we found by trial and

error that the differential phase PDF is well approximated by the simple, heuristic ap-

proximation based on (4-25a) with c and a0 given by

= e- 2 SNR (4-26a)

2 0'2_-r 2c/3(42bI
and aO= 1(4-26b)

The formula for o,0 is based on matching the actual variance, o2. with that of the

approximation. (1-c)a2 +,r2/3. In Figure 4-11. we observe that this simplified mixture

approximation gives a better fit to the actual PDF.

In Figure 4-12 we compare the unjammed CPFSK probability of error for L=1, as

obtained using exact and approximate PDF's, averaged over the intersymbol inter-

ference (ISI) patterns. The click average used by the approximations was estimated by

&i =-A-e' for pattern i. (4-27)

For high Eb/. 0 , when c < 1 and also a < 1, the approximations all converge to Gaussian

approximations and give the same result, as shown, which underestimates the error as if

0.15dB were added to Eb/xo. For Eb/xo<5.5dB, all o! the approximations over-

estimate the error probability; it is somewhat surprising that the use of a purely

Gaussian approximation. taking care to match only the first two cumulants of the exact

differential phase distributioi., actually results in the best fit to the exact P, curve.
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10WF T = 1 h =0.7 Gaussian IF filter
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FIGURE 4-12 COMPARISON OF EXACT AND APPROXIMATE CPFSKfl BIT ERROR PROBABILITY CALCULATIONS
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4.3.2 Adaptive Gain Control (AGC) Scheme

For the case of frequency-hopped noncoherent BFSK in partial-band noise jam-

ming, it has been shown that an "AGC" or adaptive gain control ECCM scheme is

successful in mitigating the effects of the jamming [21, 22]. Under this scheme, the

different chips constituting a transmitted symbol are weighted in inverse proportion to

the noise power on the hops on which they are individually received. Therefore,

analysis and computations were performed to evaluate the jammed performance of

FH/CPFSK when, as discussed in Section 2.1.4, the differential phase samples {z,,}

from different hops are weighted by the factors {w,}:
L

Zk = Wv'qZk,. (4-28a)
q

Instead of the weights being the inverses of noise power (a2 ) as previously discussed, in

this study they are taken to be the inverses of noise standard deviation (0-) according to

the relation

Wq = 1/17q (4-28b)

= I/a- S. hop not jammed (4-2Sc)

= 1 /0-T ,  hop jammed. (4-2Sd)

The use of u instead of a2 is reasonable in view of the fact that the variance of the

phase noise is proportional to that of the IF noise: that is, when corrupted by noise, the

differential phase samples are random variables with scale factors {a}. Normalization

by a-q then has the effect of equalizing the noise power received on each hop, thereby

reducing the tendency of the stronger noise on the jammed hops from dominating in the

sum of weighted differential phase samples.

4.3.2.1 Analysis

Without loss of generality, we can formulate the error probability for the L

hops/symbol FH/CPFSK system when an AGC scheme is used by assigning the weights

w 0= 1 to unjammed hops and w to jammed hops, where

W, = er,/' T - /'= = 1/ --. (4-29)

In Section 2.2.1. an analysis of possible jamming events made use of a conditional

characteristic function (CHF) for the sum of the samples, conditioned upon the number

of hops which have been jammed. An unconditional CHF for a weighted differential

phase sample kq,=Wzkq can be written

Cj(v: 1) = (1-))C((Ve: )+-f C((wv; KJ,). (4-30)
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IThe advantage of the unconditional form is that the CHF for the weighted sum is

simply the Lth power of the single-sample CHF (4-30), giving for the ith ISI data
pattern the error probability expression Ja special case of (2-56)]

Pi(L; r) = !-I- jC(v; /) IL sin( Larg[ C(Z,(; 7)]), (4-31)

which must be averaged over the variation in parameters due to the ISI patterns, as
discussed in Appendix A.

Now, making use of the FM click noise analysis of Section 2.3, we use (2-59) to
write (suppressing the ISI-pattern-dependent notation)

C((v; ") = (1--o)e-°°(1-cos2rv)-jaosin2rv CV; PN)

-a 1 (1-cos27rwuv)-jasin2rw1v CO(wlv; PT) (4-32)

in which the pattern-dependent CHF for the modulo-27 differential phase without clicks

is denoted by CO(v; p) when the SNR is p, and the click averages a1 and a0 are given by

(2-28) under jammed and unjammed conditions, respectively. For convenience, we
separate the signal and noise components of the differential phase:

C= AO + A17. (4-33a)

fl Then. C(; p) can be written

C,:(V: P) = dVAOCd'(V; P), (4-33b)

and we use the mixture approximation (4-25), calibrated by taking a2 to be the inverse
of the variance ao.=o, and explicitly accounting for the possibility of a nonzero phase

noise mean value p by writing

C,,(v; p) = e '{c(p).Cv( ,) + [1-c(p)].CG(CoV)1. (4-33c)

The required mean and variance may be calculated using the exact modulo-27r differ-

I ential phase probability density function p (z) given as (2-29):

aAnd= Pa,, (p) = Jdxzx p,,(z A=O) (4-34a)
and

1a2 2 a ( )= - dx(- p,,)'P (; A = 0). (4-35a)
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The analytical forms of the magnitude and phase of the CHF needed to perform

the calculation indicated in (4-31) are somewhat tedious but are straightforward to

derive. Again suppressing the notation necessary to remind us of the ISI pattern depen-

dence, the real and imaginary parts are given by

ao( cc( 00)]Re{C((L'; j)} = (1-'y)& -co2 cos [v(Ao+po,)-asin27rv]

+ - e-a(1-cs 27rwvL)cos [wiv(AO+i 1 )-rasin2rwyv]
x [(,Cu(w1V)+(1-C1)Ca(w, aoV)] (4-36a)

and

Im{C((v; 1)} = (1--1)e - cto( 1-cos27rv)sin [v(Ao,+ o)-Oosin27rv]

x [(CF()+(l-eo) CG(aov)]

+ le-l(1-cos2'wlV)sin [wiv/(A+pl)-alsin27rwv)
x [(,C u'(W'V)+(I-C') C (W, o 0), (4-36b)

in which we have used the subscripts 0 and 1 in a consistent way to denote values of the

parameters without and with jamming. respectively.

The total error probability then is. after averaging over the three ISI data patterns.

P,(L; 4) = ,P,,(L; -) + P, 2(L; f) + 2P,3 (L; -t) . (4-37)

4.3.2.2 Numerical results

In the computations of FH/CPFSK error probability for L hops per symbol and

partial-band noise jamming, the mixture approximation (4-25) based on the truncated

Gaussian distribution was utilized. Inadvertently instead of the mixture parameter c(p)

given by (4-25b), we in effect used

t t/2 (438)
- 1-CS

but this departure from the analytical procedures described previously did not have a

great influence on the result, since computations based on the simplified mixture

parameters given by (4-26) did not produce different results in the regions of the

computed curves which were of interest. 3  Files of pre-computed first and second

cumulants were used as well as pre-computed ISI parameters based on the assumption

that h = 0.7, WJFT = 1.0, and that a Gaussian-shaped IF filter is used in the receiver.

3 Further comments on this point are made below.
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In Figure 4-13, the FH/CPFSK uncoded bit error for L=l is plotted vs. EbI/JJ for
the case of Eb/. 0 =20dB and for various values of the partial-band jamming fraction, -y.
It is clear from the figure that the worst-case value of -r (in terms of maximizing the
error) is a function of Eb/XJ. The upper envelope on the overlapping curves is easily

determined to be, approximately,

max P.(1; Pe(1; -=1), Eb/j_< 1dB (4-39a)
- 0.238

Eb/ ' E6/xj > 1 dB. (4-39b)

This dependence is the well known "inverse linear" characteristic of the error perform-
ance of communications systems in worst-case partial-band noise jamming. It also can
be determined from the figure that the worst-case value of -y is approximately

7WC = '1.26 Eb/j > 1 dB. (4-39c)w =Eb/ J ,

Although not shown in Figure 4-13, there is a different asymptotic value for Pe for each
parametric curve to the left, that is, as Eb/XJ decreases (jammer power increases). The
value of the asymptote is approximately given by assuming that the error probability is
0.5 when jammed, and negligible (for the Eb/Xo=2OdB case presented) when not
jammed, giving the value -,/2 for the asymptote.

A set of L=1 curves similar to those shown in Figure 4-13 was generated for the
simplified mixture approximation to the PDF given by (4-26). The appearance of the
curves cannot be distinguished from those in Figure 4-13; examination of the computer

printout reveals that the error curves computed using the simplified mixture model give
a value for the error that is generally lower, but only to the extent that the second

significant figure is affected.

Keeping all other parameters the same, in Figure 4-14 we show the effect of
increasing the value of the diversity, L, from 1 to 2. The worst-case P.(2; -f) can be
seen to have a generally more rapid decrease with Eb/M. than was the case for L=1. In
fact, for values of Eb/N., between about 7 and 20 dB, the slope of the upper envelope of
the parametric curves in Figure 4-14 is very close to being -2, indicating a dependence
upon the inverse of (Eb/X) 2. For EbIX, greater than 20dB, for the range of P, values
shown the slope of the worst-case error is approximately -1, indicating a dependence

upon (Eb/XJ1)'.

For the curves corresponding to y values of 0.02, 0.01, and 0.005 in Figure 4-14, an
unusual dependence on Eb/X can be observed. The curves imply that there is a peak
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FH/CPFSK in partial-band noise jamming

L=1 hop per bit, E6/JVo=2OdB

AGC chip weighting, L/D detection

h=0.7, WIFT= 1.0, Gaussian IF filter
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FIGURE 4-13 PERFORMANCE OF FH/CPFSK IN PARTIAL-BAND JAMMING

FOR L=1 HOP/BIT, L/D RECEIVER, AND AGC WEIGHTING
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FH/CPFSK in partial-band noise jamming

L:=2 hops per bit, Eb/X 0 =20dB

AGC chip weighting, L/D detection
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FIGURE 4-14 PERFORMANCE OF FH/CPFSK IN PARTIAL-BAND JAMMING

FOR L=2 HOPS/BIT, L/D RECEIVER, AND AGC WEIGHTING

69



Combining Techniques

value of the error for some finite value of Eb/X,, whereas we would expect the error to

increase uniformly as the value of Eb/XJ is decreased (jammer power increased). This

behavior was checked out thoroughly, and was found to be an artifact of the computa-

tional method, which uses the trapezoidal rule for numerical integration to calculate the

error probability according to (4-31). The spacing between the samples of the inte-

grand was decreased for the purposes of checking the result for fixed "f in Figure (4-14),

and it was found that with a small enough spacing the error probability as calculated by

this integration rule does indeed behave as expected. However, the value of the result

for the portion of the curve which touches the upper envelope (worst-case error) was

found to be unaffected to any significant degree by the decrease in spacing, so the whole

set of curves was not recomputed in the interest of saving computational time.

Figures 4-15, 4-16, and 4-17 show the effect of raising the value of L to 3, 4, and 6,

respectively. In Figure 4-15, for L=3 the slope of the worst-case error probability (the

upper envelope of the parametric curves for fixed values of -), is seen to be approx-

imately -3 for Eb/NJ in the range of 10 to 20 dB. Similarly, for L=4, in Figure 4-16

the slope is about -4 for the same general range of Eb/XJ values. However, in Figure

4-17, the slope is not -6, as might be expected; it is closer to being -4. This behavior

can be explained by the fact that., even though Eb/Xo1 is very high (20dB), as the

transmitted symbols (bits if no coding is used) are subdivided increasingly finer by

making L higher the system becomes subject to significant noncoherent combining

losses.

A composite of the worst-case error performances of FH/CPFSK for different

values of L using AGC weighting is presented in Figure 4-18. In that figure we observe

that for low values of Eb/KJ (high values of jammer power), the tendency is for the

error to increase as L is increased, but for high values of Eb/XJ (low values of jammer

power), the tends to be a diversity improvement as L increases. This behavior is

reasonable in view of the fact that for strong jamming, the worst-case value of 1, the

jamming fraction, tends to be y=l, corresponding to fullband jamming, and we know

that noncoherent combining losses cause the error to increase with L for a stationary

Gaussian noise channel.

For reference, in Figure 4-18 there also is plotted a curve which corresponds to

fullband jamming and no system noise. Against this reference, we can observe the

effect of choosing the value of L which gives the lowest worst-case error probability-the

lower envelope of the curves parametric in L. From this point of view, we see that if it

were possible to use of the optimum value of diversity (which depends on Eb/XJ) the
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FH/CPFSK in partial-band noise jamming -

L=3 hops per bit, Eb/Xo=2OdB

AGC chip weighting, L/D detection1U h=0.7, WIFT=l.O, Gaussian IF filter
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FIGURE 4-15 PERFORMANCE OF FH/CPFSK IN PARTIAL-BAND JAMMING
FOR L=3 HOPS/BIT, L/D RECEIVER, AND AGC WEIGHTING
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FH/CPFSK in partial-band noise jamming n
L=4 hops per bit, Eb/X 0 =2OdB

AGC chip weighting, L/D detection

h=0.7, NVIFT--.0, Gaussian IF filter

21 1

<C:

LLI
M CD

CD 0.5

Of1

' 0.2

0.1

LnI

-5 5 5 25 35 45
Eb/.K (dB)

FIGURE 4-16 PERFORMANCE OF FH/CPFSK IN PARTIAL-BAND JAMMING

FOR L=4 HOPS/BIT. L/D RECEIVER, AND AGC WEIGHTING
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FH/CPFSK in partial-band noise jamming

L=6 hops per bit, Eb/XO=20dB

AGC chip weighting, L/D detection
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worst-case error performance of the system could be improved greatly from the situation

holding for no diversity. Instead of requiring about 44dB to produce a 10- ' error

probability.-a loss of 32dB in performance from the ideal (fullband jamming) case.

which requires about 12dB-with optimum diversity, the loss due to the worst-case

jamming can be held to less than 10dB for some value of L.

4.4 DIFFERENTIAL DETECTION RECEIVER TECHNIQUES

The differential detector implementation of the receiver for FH/CPFSK, shown in

Figure 2-3 and discussed in Section 2.1.3, is somewhat easier to analyze than the

limiter-discriminator receiver. Even though the probability density function (PDF) for

the differential detector's output is not available in closed form, its characteristic

function (CHF) is.

1 4.4.1 Characteristic Function for the Differential Detector in Jamming

It has been shown [S] that the output of the differential detector, conditioned onU the CPFSK intersymbol interference parameters, is equivalent to the difference of two

scaled. independent noncentral chi-squared random variables. Let zq, denote the qth

chip on a particular hop of an L-hop/bit FH/CPFSK transmission, given the ith inter-
symbol interference (ISI) pattern, where i may be 1, 2. or 3 (see Appendix A). We may

write the CHF for the jammed receiver as
C G') , 1 (,) + 1 (u C+ 3q(V) ,  (4-40a)

where the pattern-dependent CHF. assuming an unspecified ECCM weighting scheme

using weights w, and w, for unjammed and jammed hops, respectively, is given by

CZq (v = (I )C .( VoL,: I WNN,,, a 2

Fro (-35, he+ I C-(wy; A0. ,, L ill I T (4-40b)
From (2-35), the conditional CHF for an IF filter that is symmetric about the center

frequency (,\=0) is

C,(v; ,, . U. W , 0)= 1+ , ,2(l_,)exp {1 + 1--(l- r)

4 4  
(4-41)

Without loss of generality, we may replace z with the normalized variable.

z - (4-42

7.5I



Combining Techniques

which yields (after leaving off the prime)

C-q,(v) :(1-Y) 2exp {4'-"2'}

+ ' I ~ Jx4jVa(w 1 /w0 )-8CV2/(w 1 /wo) 2' (4-43a)
1+4Kv'(wi1 w) 1±4Kv2 (Wi/wo) 2

with

Q W,0 sin Ao,/L[ -r; (4-43b)

and
A, (Uo-rNVocosAO,)/L l-r 2 , (4-43c)

in which we have used the fact that the jammed and unjammed parameters are related

by the parameter K, defined in (2-42). in the following way:

, ' / (4-43d)

and U,, = U,,/, and W,1 - W,0/K. (4-43e)

4.4.2 AGC Weighting Scheme

4.4.2.1 Analysis

For the AGC weighting scheme. we use the weights w0=l and w1=a,/aT= K- for

the differential detector. This choice is logical in view of the fact that the differential

detector output is proportional to noise power (C2). Substitution of these weights into

(4-43) gives the CHF

Czq(V) - 4 ( exp - 2fexp 1 4 2j

__V_2__1f4jva/k/,z

+ -exp j 1+4V J exp 1+42 (4-44)

The imaginary part needed for the error probability calculation using the methodology

described in Section 2.3 is

Im{ [C, ()]'} = ICq,(,,)IL sin {Larg[C,,,()]} (4-45a)

where

I C.q,(,,) 1 = {Re[C ,(v))'+ {Im [C ,,,()]} 2 (4-45bI

and

arg C:q, L')] = tan - { (4-45c)
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I The required real and imaginary parts of the CHF are given by

U Re[C,9 (v)] = 1 '/ ( 1+) exp {+4v} Cos4.a}

ImCz,()]=1+4v-' ((1 Y) ex{ V/} 4v'

s+ yexp{ l cs4v,, l) (4-46b)
and + t 1+4L, I 1+4Vs

Using numerical integration the error probability for the ith pattern becomesIt,(: ,( ) = - (-I- m{E [x Cqiv)]L} (4-47

I and the total error probability is, after averaging over the three ISI patterns,
L:p, (L:) + Pe2(L:x1) + 2P 3(L; )i ]. (4-4S)P (L: ) = 1 - 077 -L r .q>)L( -7

I 4.4.2.2 Numerical results

3 Calculations of the differential detector error probability (4-48) were made using

numerical integration of (4-47). In Figure 4-19. the case of L= 1 (no diversity) is

presented. In this figure. P, is plotted as a function of Eb/XJ for fixed values of 1. the

partial-band jamming fraction, when Eb/Xo= 20 dB. The worst-case jamming result.
the upper envelope of the family of constant--I curves, is seen to be "inverse linear" in

U form. that is. proportional to (Et/iv )l:

maxP,(1: 0.275 x (Eb/IXJ)-' Eb/Xl>2dB (4-49a)

- P'(1: 1) Eb/xj___2dB. (4-49b)

This result is in agreement with the comparable result for equal chip weighting pre-

sented in [8], which was computed using a different program. For L= 1, of course, there

is no effect produced by using any kind of weighting, since the bit decision is based on

only one chip.

Similar results for L=1 are shown in Figures 4-20 and 4-21 for Eb/X0=l5dB and

13dB, respectively. As the value of E,/K 0 is reduced from 20dB, the asymptotic error

probability for high E,/XJ rises as shown in these two figures. The fact that the

parameters of the worst-case jamming are dependent on the value of Eb/XO (that is, on
the amount of system noise present) is often overlooked in jamming analyses. These

figures illustrate that the results can be quite sensitive to the assumed value of Eb/K,.
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FH/CPFSK in partial-band noise jamming

L=I hop per bit, Eb/Xo=2OdB

= 1 AGC chip weighting, Differential detection

h=0.7, WIFT=.0, Gaussian IF filter
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FIGURE 4-19 PERFORMANCE OF FH/CPFSK IN PARTIAL-BAND JAMMING

FOR L=1. DIFFERENTIAL DETECTION. AND AGC WEIGHTING
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I )I II

FH/CPFSK in partial-band noise jamming
L=I hop per bit, E6/Xo0=15dB

AGC chip weighting, Differential detection

h=0.7, WNIFT=1.0, Gaussian IF filter
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FH/CPFSK in partial-band noise jamming

L=I hop per bit, Eb/XO=13dB

AGC chip weighting, Differential detection

h=0.7, WIFT=1.0, Gaussian IF filter
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Results for L=2 for Eb/ O=2OdB and 15dB are presented in Figures 4-22 and

4-23, respectively. In Figure 4-22, for EbIXJ greater than about 5dB, the upper

envelope of the constant-, curves has slope equal to -2 on the scale shown, indicating

that the worst-case probability of error for L=2 using the AGC weighting is

proportional to (Eb/X J)- 2 . This result in itself establishes that the AGC technique

works in mitigating the effects of the partial-band jamming. Note, however, from what

can be observed in Figure 4-23, that as the amount of thermal or system noise in-

creases, the dependence of the worst-case error on Eb/XJ becomes more complex, since

there is a "jamming-noise-dominant region" to the left and a "thermal-noise-dominant

region" to the right.

Similar results are shown for L=3, 4, 5, and 6 in Figures 4-24 to 4-27. The fact

that the increase in diversity produces a deterioration in performance for low values of
can be observed by noting the value of the error probability at Eb/J= -5dB in

these figures; the steady increase in the error probability is understood to be the effect

of noncoherent combining losses, since for strong jamming the worst-case value of " is

-=1 (fullband jamming), corresponding to a stationary Gaussian noise channel.

The fact that the increase in diversity tends to produce an improvement in perform-

ance for high values of Eb/Xo and Eh/XJ can be observed in Figures 4-19, 4-22, and

4-24 to 4-27 by noting the worst-case (maximum) value of Eb/XJ required to produce

an error probability of 10'. As L increases to L=6, this value is seen to decrease. How-

ever, another trend observable from these figures is that the range of Eb/J. values for

which 3=1 yields the worst-case error probability tends to increase as the order of

diversity L is increased. The worst-case value of -y (among those plotted) at P,= 10'

for E 6/X 0 =20dB is seen from these figures to be 7=0.0001, 0.01, 0.1, 0.2, 0.5, and 1.0

for L= 1, 2, 3. 4, 5, and 6, respectively. Thus for L>6 the worst-cic'2 value of Eb/{j

needed to produce a 10' error will begin to increase with L.

A composite of the worst-case error probability performance for FH/CPFSK in

partial-band noise jamming using AGC weighting and differential detection is given in

Figure 4-28. We observe first that for low values of Eb/XJ (strong jamming) the error

probability increases as L increases, due to the fact that for low EbIXJ the worst-case

jamming is fullband jamming (-y=1), ad noncoherent combining losses are proportional

to L on the fullband jamming (Gaussian) channel. Next we observe that the value of

E,/Xj required to produce P,(L)=10 - tends to decrease as L is increased to the value

of 6, as previously noted, indicating a "diversity gain" is in effect. Examination of the
"under-envelope" of the fixed-L curves revealed that the best value of L-in the sense of
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FH/CPFSK in partial-band noise jamming
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FH/CPFSK in partial-band noise jamming
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FH/CPFSK in partial-band noise jamming
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FH/CPFSK in partial-band noise jamming
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FIGURE 4-26 PERFORMANCE OF FH/CPFSK IN PARTIAL-BAND JAMMING
FOR L=5. DIFFERENTIAL DETECTION, AND AGC WEIGHTING
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giving the least value of worst-case P, -is a function of Eb/KJ (or, looking at it another

way, a function of Pe). If the best value of L is always used, the performance of theIsystem against worst-case partial-band noise jamming is improved from the very poor

performance of no diversity (L=I) to within 3dB of the system's performance in full-
band (non-worst-case) jamming. Thus the use of optimum diversity is capable of

limiting to 3dB the effects of the jammer's efforts to inflict the maximum possible

disruption of the system.

It is interesting to compare the set of curves in Figure 4-28 with those for the

limiter-discriminator receiver shown previously in Figure 4-18. In doing so we first
observe from the "reference" curves in both figures that in fullband jamming the

limiter-discriminator FH/CPFSK receiver performs better than the one using differ-

ential detection, a well known result. For example, using the values of h=0.7 and
WIFT=l.0 the limiter-discriminator requires about 11.6dB to produce P, in the

I Gaussian channel, compared to 14.7dB for the differential detector. Yet, in worst-case

partial-band noise jamming with both receivers using AGC weighting and optimum

diversity, we observe that the differential detector outperforms the limiter-discriminator

by requiring a smaller value of Eb/-j to achieve the same error probability. For

example, the optimum diversity for both receivers to achieve P,=10-5 is L=6; the
differential detector requires Eb/XJj17dB to accomplish this level of pelformancc.

while the limiter-discriminator requires Eb/KJij.23 dB.

The clue to understanding the better performance of the differential detector when

diversity is employed for FH/CPFSK is to compare the variation in E6/xJ required to

achieve P =0.10 in both Figures 4-18 and 4-28 as the value of L is increased from L=1.
The curves in Figure 4-18 are spaced further apart than those in Figure 4-28; this

I demonstrates that the limiter-discriminator receiver, although it enjoys a "head start"

or advantage over the differential detector when L=I, is subject to higher noncoherent

Scombining losses (associated with FM click noise as discussed in Section 4.1) than is the

differential detector. This point is also brought out by the comparison shown in Figure

4-29, in which we have given both types of receiver the same performance (P,=10-')

for L=1 and no jamming. The asymptotic performances of the receivers for high Eb/N J
values is the performance in noise-only for the stated values of Eb/Ko. We observe in

Figure 4-29 that the larger noncoherent combining losses prevent the use of L=2 from

improving the system performance when a limiter-discriminator is employed, for this

I level of system performance without jamming; however, the differential detector, which

has smaller noncoherent combining losses, yields improvement for L as high as L=3.

I
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brought out by the comparison shown in Figure 4-29, in which we have given both I
types of receiver the same performance (P,=10- *) for L=1 and no jamming. The

asymptotic performances of the receivers for high Eb/XJ values is the performance in

noise-only for the stated values of Eb/Xo. We observe in Figure 4-29 that the larger

noncoherent combining losses prevent the use of L=2 from improving the system

performance when a limiter-discriminator is employed, for this level of system

performance without jamming; however, the differential detector, which has smaller
noncoherent combining losses, yields improvement for L as high as L=3.

The somewhat poor performance of the limiter-discriminator for L > 1 can perhaps

be improved by adjusting the receiver parameters h and WIFT. In [5], for example, it is

said that the performance of FH/CPFSK in worst-case partial-band noise jamming is

optimized for h=0.6 and WIFT=0.75. Variation in these parameters to find the best I
combination under the jamming conditions is outside the scope of the work summarized

in this report, however.

Another interesting way to look at what we observe in this comparison is that the

differential detector, whose output is proportional to sin A-, performs further processing

on the limiter-discriminator output, A: the sine function both limits the value of the
receiver output, since Isin zI < 1, and nullifies the effects of any 21r phase shifts (clicks)

superimposed on A4 due to the phase ambiguity property of the sine function:
sin (z±27r) = sin z.

4.5.1.2 Comparison of limiter-discriminator results

We now compare the uncoded receiver performances using diversity combining and I
limiter-discriminator detection shown in Figure 4-18, for AGC soft-decision combining.

and in Figure 4-6, for hard-decision combining. Both figures assume Eb/XO=2OdB. It

is apparent at once from comparing these two sets of curves that, for limiter-

discriminator detection of FH/CPFSK, the hard-decision receiver performs better than

the soft-decision receiver. For example, using the best value of L, a 10- error

probability is achieved for Eb/XJ=17dB for hard-decision combining and for

E6/xj=23dB for soft-decision combining. This is a surprising result, since soft-decision

procedures generally outperform hard-decision ones.

The reason for this surprising result is that when diversity is used, the bit or

channel symbol energy is split into L chips, with the consequence that the value of the

chip energy-to-noise-density ratio is decreased from E6/X 0 by the factor 11L. This I
decrease in signal energy per observation interval gives rise to a disproportionately
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higher risk of FM noise clicks, especially on jammed hops. Now, if soft-decision

combining is used, the sum of the differential phase samples can be "contaminated" by

the occurrence of a click on any or all of the hops from which the samples are taken.

For example, if L=2, supposing that one hop is jammed and one is not, the value of the

sum of the samples is

w,.A41+w0.A't2= AO(W,+ w0) - 27r(wN,+ woN2) + wA1 71+ w0A1 2

_ A(1 + _) 27r ( N 1 + N2 )+ ' + A, 2  (4-50)

in which A-0 is the nominal (noiseless) differential phase (assumed positive), the Arj's

are the differential phase noise samples, r is the ratio of jammed noise power to

unjammed noise power, and the N's are click numbers jamming-whose averages are ak

and ao with and without jamming, respectively. Typically, A is between 0.57r and 7r.

and a0 is very small. Thus while the AGC weighting takes cale of the phase noise, in

effect equalizing the noise for jammed and unjammed hops, it does not remove the

clicks, if and when they occur, although their contributions on jammed hops are

attenuated.

Now, when hard decisions on each hop are used, any false decision that is due to

jamming or to the occurrence of clicks (which are disproportionately more likely on

jammed hops) is automatically "contained" to one "vote" in the overall L-hop decision.

4.5.1.3 General comparison without coding

Comparing now the limiter-discriminator FH/CPFSK receiver with either hard or

soft decisions and the differential detector with soft decisions, it would appear from the

computed results that the choice of receiver among these three to mitigate the effects of

worst-case partial-band noise jamming will depend on the value of E6/XO. If there is

relatively little thermal noise (high Eb/Xo), the ECCM receiver of choice would be the

combination of hard decisions and the limiter-discriminator. If the thermal noise is

definitely not negligible (Eb/XO<20dB), the differential detector with AGC-weighted

soft decisions should be used.

4.5.2 Coded Perforinance Results and Comparisons

A number of computations were made of the performance of a coded FHI/CPFSK

system, assuming that an "outer code" is used in conjunction with an "inner code"

consisting of one ot the combinations of receiver desiga and L-hop/code symbol ECCM

combining techniques. As discussed in Section 2, the error-correcting outer code

selected for the study is a rate-, constraint length 7, convolutional code, with either
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hard or soft decoding. The comparisons to be made are among the following cases:

A. Limiter-discriminator detection with

1. Hard-decision diversity combining, hard outer decoding
2. Soft-decision AGC diversity combining, hard outer decoding

3. Hard-decision diversity combining, soft outer decoding.

B. Differential detection with

1. Hard-decision diversity combining, hard outer decoding
2. Soft-decision AGC diversity combining, hard outer decoding

3. Hard-decision diversity combining, soft outer decoding.

The methodology for calculating upper bounds on the bit error probability when
coding is used was summarized in Section 2.2.2 (pp. 27, 28). Since the rate of the

selected code is r=!, note that numerical values for these bounds as a function of Eb/X
can be thought of as being developed in two steps: (1) Find the value of the uncoded

error probability for 3dB less than Eb/X AND 3dB less for Eb/fO; and (2) map the
value of the uncoded error probability into the value for the coded error probability

bound.

For example, equations (2-48) through (2-51) imply that 10- 7, 10-6, 10- 1, 10- 4,

10- 3 , and 10- 2 hard-decision decoding error probability bounds result from code symbol
error probabilities of 0.007177, 0.01116, 0.01711, 0.02572, 0.03773, and 0.05409,

respectively. Thus if we are interested in estimating the region of Eb/XJ for which the
decoded bit error probability is between 10- 7 and 10- 2, then we may look at the curves
for the uncoded error probability and find the range of Eb/Xs for which that quantity is
between 0.0072 and 0.054; to these Eb/Xi values we then add 3dB. Applying this

technique to Figure 4-6 (page 53), we find that for Eb/X0=2OdB the uncoded error

probability is in the range of 0.007 to 0.05 for, approximately, 5.5dB <Eb/lxj <14.5.

implying that for hard-decision decoding the coded error probability will be between
10- 7 and 10-2 for Eb/XJ between 8.5dB and 17.5dB. Some approximation is involved

because the curves in Figure 4-6 are valid for Eb/Xo=2OdB, not 17dB.

While this technique is useful for estimating coded results, its primary usefulness is
for checking the results for reasonableness. In all of the coded results presented below,

the error probabilities were recalculated as functions of Eb/. J for fixed values of Eb/X0
and of -Y, the partial-band jamming fraction, and from these parametric curves the

worst-case performance was determined.
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4.5.2.1 Results for hard-decision diversity combining and hard decoding

In Figure 4-30, the worst-case partial-band noise jamming performance of

FH/CPFSK is presented as a function of Eb/.JV for Eb/Xo=2OdB, for different values of

L, the number of hops per code symbol, and for both limiter-discriminator and differ-

ential detection, assuming hard-decision diversity combining and hard decoding. Inter-

symbol interference has been accounted for in the calculations, using the parameter

values h=0.7 and W vrT=1.0, and assuming a Gaussian IF filter.

We first observe, as a check on these results, that the range of Eb/.I for which the

coded bit error probability falls between 10-7 and 10- ' is in agreement with that

predicted from the relevant uncoded results shown previously in Figure 4-6, for the

limiter-discriminator receiver. (Uncoded hard-decision combining performance results

were not computed for the differential detector.)

The coded performance of the receiver using limiter-discriminator detection is seen

to be uniformly better than that for the receiver using differential detection. While for

the unjammed Gaussian channel the limiter-discriminator is about 3.1dB better com-

pared to the differential detector (using the value of Eb/XO required to obtain a 10- '

error probability as a basis for comparison), we see from Figure 4-30 that this advan-

tage is reduced to about 1.3dB in worst-case partial-band noise jamming when coding

and diversity are employed.' This same margin is observed for no coding and no

diversity in worst-case jamming, when the BER curve-fit approximation (4-14) is used

to calculate the jammed error probability for the limiter-discriminator receiver.

For both receiver types, the optimum value of L ("optimum diversity") is seen to

depend on the value of Eb/XJ. For achieving P,=10 - 5, that value is L=3, in contrast

to the much higher value (< 11) without coding. The reason why a lower value of diver-

sity is optimum with coding than without coding, for achieving the same error proba-

bility, is that with coding the symbol error probability at the output of the diversity

combining portion of the receiver is much higher (between .007 and .05, as we have

seen) and is in the region of the curves parametric in L for which lower values of L tend

to be optimum; quite often in this region the worst-case value of y, the partial-band

jamming fraction is close to unity, therefore indicating a nearly Gaussian channel under

the noise jamming, so that an increase in L from L=1 tends incurs a noncoherent com-

bining loss in performance for a lower value of L than without coding.

4A summary comparison of Eb/X requirements to achieve Pe=10-5 with and without diversity and
coding will be given below.
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4.5.2.2 Results for soft-decision diversity combining and hard decoding I

The worst-case partial-band noise jamming coded performance of limiter-discrim-

inator and differential detection FH/CPFSK receivers is presented in Figure 4-31 for I
the case of AGC soft-decision diversity combining and hard decoding when Eb/xo=

20dB. It might have been anticipated from the relative performances of these two

receivers with AGC combining but without coding that the differential detector would

display a better performance with coding. However, the results in Figure 4-31 indicate

that the limiter-discriminator consistently achieves a better performance, although for

L > 1 its advantage is small, on the order of 1 dB or less for a given value of L.

For L=1, the advantage of the limiter-discriminator over the differential detector
at the 10' bit error probability level shown in Figure 4-31 is about 3.7dB. It should

be noted that the same quantity is about 1.4dB in Figure 4-30, or 2.3db less, even

though in principle the combining and decoding portions of the respective receivers are

identical when L=1. This difference is apparently due in part to the use of two differ-

ent approaches to calculating the probability of error at the output of the combiner

(input to the decoder). For hard-decision combining, as noted in connection with

Figure 4-30, an approximation (curve fit) was used since it was sufficient for those
calculations to utilize a BER curve for L=1. For AGC soft-decision combining, the

probability of coded symbol error was computed using a mixture approximation for the

characteristic function of the limiter-discriminator output samples. Although as shown U
in Figure 4-3 (page 50) the curve-fit approximation is very good for the Gaussian

channel-the two computational methods agree-evidently for worst-case jamming they

disagree slightly, with the difference being magnified when coding is applied.

For the optimum values of AGC diversity combining, the limiter-discriminator

receiver achieves a 10- bit error probability for about a 1.1 dB smaller value of Eb/XJ
than does the differential detection receiver.

4.5.2.3 Results for hard-decision diversity combining and soft decoding

Figure 4-32 gives the coded bit error probability for FH/CPFSK in worst-case l
partial-band noise jamming for both limiter-discriminator and differential detection

types of receiver, assuming hard-decision diversity combining, soft-decision decoding,

and Eb/NO=20dB. As in Figures 4-30 and 4-32, the limiter-discriminator is seen to

achieve a better performance consistently for the range of P, values shown. At the 10- I

level of performance, when optimum diversity is used, the limiter-discriminator's advan-

tage is about 1.5dB. 3
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In comparing coded results for L=1 shown in Figures 4-30, for hard decoding. and

4-32. for soft decoding. we note that there are differences in the values of Eb/.j

required to achieve a particular value of bit error probability, with these values being

higher for soft-decoding. This draws attention to the fact that both performances are

actually upper bounds to the probability of bit error, not the actual bit error

probability, and the two bounding techniques give rise to different numbers for the

same conditions. When, for example, L=3 is considered, it is readily apparent that the

soft decoding produces about a 1.4dB gain over the hard decoding by making use of the

3 additional information made available to it. This number is very close to the 1.5dB

gain predicted in [1].

4.5.2.4 Summary comparison of coded performance results

fl Supposing that optimum diversity is always used, a kind of lower bound (with

respect to the order of diversity) to the error probability upper bounds shown in Figures

4-30 to 4-32 can be constructed as shown in Figure 4-33. It is apparent from this

figure that the variation in the value of Eb/KJ required to obtain a bit error of 10- is

relatively slight, being within a range of about 3dB for different combinations of3 receiver type, diversity combining technique, and decoding technique.

A consistent pattern (in addition to the advantage of using limiter-discriminator

detection instead of differential detection) evident in Figure 4-33 is the following

ranking of the combinations of diversity combining and decoding techniques that were3 studied: generally for P, values of 10- 5 or less, best performance is obtained using hard-

decision combining and soft decoding. AGC soft-decision combining plus hard decoding

3 is second best, and the combination of hard-decision combining and hard decoding is

third best. Some form of soft processing therefore is advantageous.

It is interesting to note that for 10-< P,< 10', the ranking of soft decoding and

soft combining is reversed. The reason for this behavior seems to be the fact that for

these values of the error probability, the optimum diversity is L=1 for soft combining

3 and L=2 (or 3) for soft decoding. However, as noted before the relative behavior of the

two decoding error probability bounds is uncertain for L=1, and for these higher values

of P the tightness of the bounds can be expected to diminish.

A summary of Eb/.J requirements to achieve P,= 10 - when E6 /. 0 =20dB is

Sgiven in Table 4-1. For reference, the first case shown in the table is the worst-case

FH/CPFSK performance for no coding and no diversity, noting the differences obtained
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N TABLE 4-1
REQUIREMENTS FOR 10- s P, IN WORST-CASE JAMMING WHEN Eb/Xo=20dB

FH/CPFSK: h= 0.7, WJFT = 1.0, Gaussian IF filter

Limiter-discriminator Differential detector3 Case EbIXj(dB) Gain Eb/Xj(dB) Gain

Reference: no coding
no diversity 43.01 --- 44.43

U 4412 ---

No coding, optimum diversity

hard combining <16.7' (L=11) >26.3 not computed

AGC combining <22.S2 (6) >21.3 17.0 (6) 27.4

3 Coding only (L=1)
hard decoding 13.8' 29.2 15.2 29.2

U 11.52 32.6

soft decoding 15.01 28.0 16.4 2S.0

U Coding. optimum, diversity

hard comb.. hard decoding 12.3' (3) 30.7 13.7 (3) 30.73 AGC comb., hard decoding 11.02 (2) 33.1 12.1 (2) 32.3

hard comb.. soft decoding 10.91 (3) 32.1 12.4 (3) 32.0U
Notes:
Ne1. All hard-decision combining results for the limiter-discriminator were calculated
using the curve-fit approximation to the bit error probability.

2. All AGC soft-decision combining results for the limiter-discriminator were calcu-
lated using the numerical integration/characteristic function technique.

3. All differential detector results were calculated using the numerical integration/
characteristic function technique.

1
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for the limiter-discriminator for the two computational methods used. The second case
shown in the table is that of optimum diversity without coding, for which it is evident 3
that diversity alone can pruduce a gain in performance as high as 26 or 27dB, in terms

of reducing the required Eb/XJ. 3
The third case shown in Table 4-1 is that of coding alone, without the use of

diversity (i.e., L=1). Here we observe that coding alone can produce a gain of 28dB or

higher. It is somewhat surprising that the hard-decoding gains axe consistently greater
(by about 1 dB) than the soft-decoding gains in the cases studied. But on the other

hand, for coding alone there is no reason to expect a different performance with soft 3
decoding, since L=1. The 1dB difference therefore is due to. the difference in the

probability of error upper bounds used. 3
The fourth and final case shown in Table 4-1 is the combination of optimum

diversity, combining method. and decoding technique. Total coding plus diversity gains 3
of about 31-33dB are seen to be possible. We observe also that the addition of

diversity to coding provides an incremental gain in performance of about 2-4dB, 3
whereas if coding is added to diversity an improvement of about 5dB is experienced.

Thus it would appear that the more influential factor in the improvement in perform-

ance is coding, especially when it is considered how much the performance is improved

using coding alone.

3
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APPENDIX A

INTERSYMBOL INTERFERENCE ANALYSIS

We have observed that the IF bandpazs filter has the effect of distorting the data-

modulated phase waveform 0Om(t), resulting in the distorted phase waveform

0 (t) = tan-' h0(t)* sin 0rm(t) (A-i)
h0(t) * cos m(t) JA

as well as in an amplitude modulation, a(t). For most cases of practical interest, it is
sufficient to consider intersymbol interference (ISI) effects (i.e., the overlapping of filter

responses from different transmitted symbol or chip intervals) due to immediately
adjacent symbols or chips [6]. Therefore, in what follows we consider chip patterns on

the FH/CPFSK hops which are the periodic extensions of the patterns

l1l. 000 (all one's or zeros);

00, 101 (alternating one's and zeros); (A-2)

and 0110, 1001, 1100, 0011.

Te "present chip" in each of these sequences is indicated by the underlining. The

patterns in (A-2) were selected because they generate the eight possible 3-chip patterns3 in a very simple manner and can be analyzed easily.

Using the steady-state filtering approach of Tjhung and Wittke [19] and PawulaU [11, 12], we recognize that the periodic extension of the in-phase and quadrature signal

waveforms for the ith pattern yields the Fourier series

sino,(t; pattern i) = Z kcos(27rkfpt + ki) (A-3a)

and k_

cosem(t; pattern i) = 1 Oikcos(2wkfP,t + 0li), (A-3b)
k=

where fpi is the appropriate fundamental frequency. Then the responses of the IF fil-
ter's lowpass equivalent h0(t) to these series are

3 u(t; pattern i) ho(t)*sin0m(t; pattern i)

E IH 0(kfp,) akicos[2rkft + , - B(kfp,)] (A-4a)

and v(t: pattern i) 6- ho(t)*coso.(t; pattern i)

: Z IHo(kfp,)I kicos[2rkfpt +vk,-B(kfr,)]. (A-4b)I k=1
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where IH0()I is the magnitude of the lowpass filter's frequency transfer function and

B(f) is its phase delay as a function of frequency. The analysis is considerably simpli-

fied if we introduce time offsets tu and t, such that sin[O(t-tu)] and cos[O(t-tt,)] ,

respectively, are even functions. Also, we assume that the filter has a linear phase delay

characteristic, that is,

B(J) = 27rft d. (A-5)

Together, these simplifying factors allow us to rewrite (A-4a) as
u(t; pattern i) - Z IHo(kf,)I ,cos[2, kf,(t+tu+ (A-6a)

k=l

and v(t; pattern i) = yj IHo(kfp,)l kcos[2,kf(tt+ t+ td)]. (A-6b)
k=1

Patterns 111. 000. For the patterns 111 and 000, the undistorted signal is a pure

sinusoid, with

&m(t; 111) = -om(t; 000)

= , ht/T = 2,rfdt. (A-7)

Thus for these patterns sin om(t) and cosom(t) are single-term Fourier series, and their

distorted versions are

u(t: 111) = -u(t: 000) = aosin[7rh(t-td)/T] (A-Sa)

and v(t: l1l) = u(t; 000) = aocos [7rh(t- td)/T], (A-Sb)

using the parameter

ao- IHo(fd)I. (A-9)

These quantities in turn give the ISI parameters

A¢(t; 111) = -Ao(t; 000) = 7rh (A-10a)

a2 (t; l1l) = a2(t; 00) = a2  (A-10b)

and a 2 (t-T; 111) = a (t-T; OQO) = a0. (A-10c)

Note that for these patterns the parameter values are independent of the sampling time.

Patterns 010, 1Q1. For the patterns 010 and 101, the original frequency modulation

is a ±fd squarewave with period 2T, so that 0,.(t) is an even, bipolar triangular wave

with amplitude -7rh and period 2T. For pattern 010, the triangular wave's first positive

peak occurs at t = T, using the convention that the baseband data waveform is such

that d(t) = dk for (k- I)T < t < kT. We note that pattern 101 is simply the negative of

pattern 010. The functions sin0,,(t; 010) and coso,,(t; 010) therefore are even, with
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periods 2T and T, respectively. Expansion of these functions in Fourier series yields

sin0,,,(t; 010) = -sinom(t; 1Q1)
S- -4hcos (-7rh) ,Z.cos[(2k-1) -t/T] (A-lla)

k=1 (2k-1)2 -h 2

and cosOm(t; 010) = cosom(t+T; 1Q1)

= -2 -,sin (1h) 2h2 cos (2krt/T)] (A-ib)

Assuming the filter rejects harmonics with f'> l/T, we find that the signal quadrature

* components for these patterns are

u(t; 010) = -u(t; 101)

= - 4 hcOs(I7rh) IH°()I 1 cos[r(t-td)/T] (A-12a)

S= -cl cos [r(t-td)/T] (A-12b)

and v(t; 010) = v(t; 101)
-- sin (17rh)i- h IH0(1)Icos[2r(t-td)/T]

7rTh s V 2 -- h 2  OT)Id)T] (A-12c)

U = c 2 -c3cos[27r(t-td)/T]. (A-12d)

3 These quantities at the sampling time t = T + td give the ISI parameters

A6(td+T; 010) = -A.(td+T; 1Q1)

3 = 2 -tan,(C2 C,) (A-i3a)

a2(td+T; 010) = a2(td+T; 101) = c2 + (c2 -c 3 )2  (A-13b)

I and a2 (td; 010) = a (td; 101) = c1 + (C2 -c 3 )2 . (A-13c)

in which the constants are defined as

cU 4_,4h -hh)CoS(ih)iH(I)I (A-14a

I c2 - 2Isin(Irh) = sinc(1h) (A-14b)

3 and c3 4 -( 4
4 h)sin(Irh) (Ho( )1. (A-14c)

3 Distorted and undistorted phase-related waveforms for the 010 pattern are illustra-
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ted in Figure A-1.

Patterns 0110, 1Q01. For patterns 0110 and 1Q01, the original frequency, modula-

tion is a ±fd squarewave with period 4T, so that Bm..(t) for these patterns is an even.

bipolar triangular wave with amplitude 7rh and period 4T. For pattern 0110, the
triangular wave's first positive peak occurs at t =2T. Pattern 1Q01 is the negative of

pattern 0110. The functions sinom..(t; 0110) and cosem.(t; 0110) therefore are even, with
periods 4T and 2T, respectively. Their Fourier series expansions are most easily written

down as those for pattern 010, but with h replaced by 2h and with t replaced by it:

sinom(t; 0110) = -sinom(t; 1Q01)

--cos(rh) cos[(2k-1)t/2T] (A-15a)
k=I (2k-1)-4h2

and COSOm(t; 0110) = cosom(t; 1Q01)

= sin (7rh) [i -2h 2 -cos(k7rt/T 1  (A-i 5b)

Assuming the filter passes only harmonics of these Fourier series up to f I/T, we find

that the signal quadrature components for these patterns are

u(t; 0110) =-u(t; 1Q01)

= hy Sho(rh){ 142 IHo( L)I COS [7r(t-td)/2T]

+ 14h2 1 Ho(-L)J Io CO37r(t -td)/2TiI (A-16a)

=-c 4 cos[7r(t-td)/2T] - c~cos [37r(t-td)/2T] (A-16b)

and v(t; 0110) =v(t; 1Q01)

sin (irh)f 1 - 2h IH(Ll\IrS[(t-)T]

= r I1- h 2T

2h I12H(l)cos[2r(tt)/T]} (A-i6c)

=C6 - C7 COS[7r(t-td)/T] - cgcos[27r(t-td)/T]. (A-16d)

At the sampling time t=td+T, these fu.nctions give rise to the ISI parameters
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IData modulation t

Phase trajectory w1.. -^\, t

si 0 ..fl (t) a sin6= =U(t+td)

Quadrature component -t

Iv

Cos 0M (t) a coso= V(t +td)

3 In-phase component

3 Differential phase -t

I
5FIGURE A-i WNAV"EFORMIS ASSOCIATED WITH THE PATTERN 010
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AO(td+T; 0110) = -AO(td+T; 1Q01) (A-17a)

= tan-1(c C4 c5) (A-17b)

a 2(td+T; 0110) = a2(td+T; 1Q01) = (c6 + c7 -cS) 2  (A-17c)

and a2 (td; 0110) = a2 (td; 1201) (A-17d)

= (c4 +cS) 2 + (c6 -c 7 -c 8 )2  (A-17d)

in which the constants are defined as

C4 A 8h 1(h) IH0o (A-18a)
= ,r(1 4 h2)cos

C5 8h cos (rh) IHo(3)I (A-18b)= r(9_4h 2) 4T

= sin(rh) sinc(h) (A-18c)

A2
C7= 2 c6-IHo(-L)I (A-18d)

and 42 c6. IHo(4),. (A-18e)

Figure A-2 illustrates the various phase-related quantities for pattern 0110.

Patterns 1100, 0011. Since pattern 1100 and its negative, pattern OQ11, are time-

shifted versions of patterns 0110 and 1001, we can immediately write that

u(t; 1100) = -u(t; 0011) (A-19a)

= u(t + T; 0110)

= c4 sin[,r(t-td)/2T] -c 5 sin[37r(t-td)/2T] (A-19b)

and

v(t; 1100) = v(t; 0011) (A-19c)

= v(t + T; 0110)

= c6 + c7cos[,r(t-td)/T] - clcos[2r(t-td)/T]. (A-19d)

The corresponding ISI parameters at the sampling time are

AO(td+T; 1100) = -AO(td+T; OQI ) (A-20a)

= tan' (c t'c ) (A-20b)

a2 (td+T; 1100) = a2(td+T; Ol) (A-20c)

= (c4 +C5 )2 + (c6 -c 7- c) 2  (A-20d)
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Data modulation _fd L t

Phase trajectory t

sinl 0 (t)

a sin~ =u(t +td)

Quadrature component -t

I /

U cosqM(t) AcOsv(t+td)

I Differential phase __

UW /
3FIGURE A-2 WAV"EFORMNS ASSOCIATED IWITH THE PATTERN 0110
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and a2 (td; 0110) = a2 (td; 1Q01) (A-20d)

= (c 6+c 7-c 8 )2  (A-20d)

Example values of the ISI pattern waveform parameters are given in Table A-1. A

composite plot of all the differential phase waveforms AO(t) for the eight patterns is

presented in Figure A-3 for example values of the input parameters h and WIFT.

TABLE A-1

ISI PATTERN PARAMETER VALUES

Conditions: h = 2fdT = 0.7, D = WIFT = 1.0, Gaussian IF filter

CNR = carrier-to-noise power ratio

Data Patterns A6(rad.) U/CNR V/CNR W/CNR

111, 000 ±2.1991 0.6806 0.0000 0.6806

011, 100 ±1.710S 0.7784 -0.0997 0.7719

010, 101 ±1.2239 0.8696 0.0000 0.8696

110, 001 ±1.7108 0.7784 0.0997 0.7719
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Ih =2fdT =0.7, D= WFT = 1.0, Gaussian IF filter

I 7o rh 2.1991

(00-'

I +0

I 7r h = 2.1991

0.010 2.00 3.00 4.00 5.00 6.00
bit time (t/T)

111 Oil---I 110---010--

U100- - -- 000 .......

I FIGURE A-3 EXAMPLE CALCULATED DIFFEREINTIAL PHASE WVAVEFORMS



Truncated Gaussian Distribution

APPENDIX B

PROPERTIES OF THE TRUNCATED GAUSSIAN DISTRIBUTION

B.1 DEFINITION _

Let a truncated Gaussian probability density function (PDF) be defined as
- z2/2 0

,Kel j< a
PTG(X) =(B-1)

LO, otherwise.

In the text, this PDF is used as a point of departure for development of an approxima-

tion to the modulo-27r differential phase PDF p,(z), with a= r.

B.2 NORMALIZATION FACTOR

The integral of the PDF (B-1) must equal unity. Therefore we have

1 = dXpTG(X) = 2K dxe/ 2 o

= 2 K o, du e- ' , umrax a/a,.

= Kao';-r erf(a/,7o.), (B-2a)

or 1K' = o ,2_,-,erf(a/uo-). (B-2b)

Note that

limK 1 (B-2c)0 0--#C,_a

B.2 VARIANCE

Since the mean value is zero, the variance of the distribution whose PDF is given

by (B-i) is calculated as
a 2K zze/ 2 0,UTG 2K fo dxxe - ' ] 2

- a2/2aod
= 24F2Ka o fJo du 4 e- -

= 24 KU3 -t(3; a2/20o) (B-3a)

2 P(2: a2/2,o)
= erf(a/ o) (B-3b)
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Iin which -t(v; x) is the incomplete gamma function and [17]
P(V; X) A -(V:z) (B-4a)

= r(v)

3 re-r 1Fj(1; v+1; z) (B-4b)l r(L,+l)

is the cumulative probability distribution function (CDF) for a chi-squared random

variable with 2v degrees of freedom [17, chapter 26]. In (B-4b), the 1F1 function is the

confluent hypergeometric function. Now, since [17]

Ip(g: z) =p(j; X) (Bx--

U = erf(4 ) - 4ze- (B-5b)r( ,)

it follows that

P(9: a2 /23,) =erf(a/o0a) - 9-)e (B-5c)

Substituting this result in (B-3b) gives

aTG 1-e • e af2/2e (B-6)l T : 1- rf(a/loof) J

An empirical inversion of this formula which we have developed for a=,- is
r = <  (B-7a)

{ 1 1 a I(3]" "I  
23 = exp TG > 1. (B-7b)

An alternate expression to (B-6) is obtained by substituting (B-4b) into (B-3) twice.

making use of the fact that erf(4fx) = P(l: z) in the denominator, which results in

I U7TG -3 F(1;() a2  (B-Sa')
T a3 1;+ 20, 02 '

_ ___ __ ._____ '___ "_--322 1+?C+ 2.22.?.2 3
"a 5r' 7 & +"".

a2 +{1  +796-5+.}
3 ~ 2  3 3  ""

+ a2  4 8 22
{15+ T5. (B-Sb)

Solving for Oo gives the approximationI 2 aV - (B-9)
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2

this approximation is satisfactory for o >2 when a= r, or when _K> .5. For

smaller values of o, 2' we have the empirical relations given in (B-7).

B.3 CHARACTERISTIC FUNCTION

The characteristic function for the truncated Gaussian distribution is found from

TG (V) K K d 9Ve-z/ 2 0 (B-l0a)

lerf(a .- j L'0. erf( a it L'0
0 -4-2 )- / o/42-42 (B-lob)

2erf(a/ 0 ) (B1

erf(ar.04 ) (B-10c)
erf(ao,,4j2)

This exact form is not suitable for computation. Alternate forms for the characteristic

function can be developed, however. The first one makes use of the symmetry of the

integral in (B-10a) to write

CTG( K= cdxe 2 0 CosvX (B-10a)

2 K E ( _l1 \n 2n a 7X " e 212 0

, (2n)! Jo

using a power series for the cosine function. Next, making use of the fact that (2n)!

equals 22 r(n+ )n!/,'-. and transforming the integral by y= xz/2oa results in

= 0 (-1)"(v) 2, (n') 2 a 2 o -1/2 Y
C TG(v) =Ko;7'-7 E v) d y- e-

n=o n! r(!+ )

12 0 (n+!; a'/20,2) (B-l0b)

n=O

Another development from (B-10a) uses integration by parts to obtain

CTG( 2K Sinve-z2/20o + 2 f adx e- r2/20 sinVX
4ao i
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= 2Kae- a2/ 2o s in av + K7 0 - i " ,0, P(n+; a'12ao), (B-11a)

n=o

after undergoing a development similar to that used to obtain (B-10c). After noting

that
P(n+ ; x2) = P( ; x2) -e -

2 (B-1lb)k=, 2~+)< P ( ; z ) (B1b

U and substituting this bound into (B-11a), we find the bound

a2 _ (_,/20r2)f%
CTG() < 2Kaea/ 2 os aL + Kao2 P(Q; a2/2-a2)o Z 2 2)0TGV v2n=O n/!

, 22 - 2

sina (1 a) v  2 2/"=2Kae aWv + KaoFa r ~2w P(;a/2u)e

sin at' + (1 - )e-v a' (B-llc)

U where 
av

= , a -2 ea22 [erf(a/ o4 )]- . (B-11d)

This second. mixture expression for the truncated Gaussian CHF is preferred because,

using the bound as an approximation. it is readily discerned from it that the CHF has

the form

CCTG(v) . C(v; a) + (1- ).CG(v; o), (B-12)

in which C,.(v: a) is the CHF for a random variable uniformly distributed on (-a, a)

and Ca(v; o) is the CHF for a zero-mean Gaussian random variable with variance 0.

Further. the mixture parameter is seen to approach the value = 1 as o- C., that is.

I as the SNR-*O, and approaches zero as SNR--0 .

U
I
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APPENDIX C

FUNCTIONS RELATED TO THE GAUSSIAN FILTER I
In the analysis of CPFSK systems, it is con ion to assume an IF bandpass filter

with noise bandwidth WIF and a "Gaussian-shaped; spectral transfer function:

HIF(f) = Ho(f-fJF) + Ho(f+f) (C-la)

where

Ho(f) = e-' j / W IF)2/ 2 - j 2 ftd (C-lb)

C.1 FILTER IMPULSE RESPONSE

The equations above imply that the impulse response of the bandpass filter is
modelled by

hlF(t) = 2ho(t)cos(2/rfIFt). 
(C-2a)

with the "equivalent lowpass filter" impulse response being

ho(t) f Jdf H() 2 ,ft

= \XIF e-  IF(t-td)2 (C-2b)

_ -(t-t) 2/2oh (C-2c)

ch;2-'

w h e r e 00
S(2Wit q- )-. I

h = (C-2d)

This lowpass filter response is nonrealizable in that it is nonzero for t < 0. However. if

the filter phase delay td is sufficiently long, the integral over positive values of the argu-

ment is very close to unity, indicating that the filter response for t < 0 can be neglected:

f dtho(t) = QG(- 2 NN'JFtd -;-) - 1, W 1Ftd > 1 (C-3a)

where
Q(z) = dye"/2 (C-3b)

- [1-erf( )]. (C-3c)

is the complementary cumulative probability distribution function for a Gaussian ran-

dom variable and erf(.) is the error function.
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C.2 RESPONSE TO NARROWBAND WAVEFORMS 
Gaussian Fter

The response y(t) of the bandpass filter to a general narrowband waveform x(t)
with in-phase and quadrate components I(t) and Q(t),

x(t) = I(t)cosw-Ft -Q(t)sinwlFt (C-4)

using WIF = 2 7rfJF, can be developed as follows:

I y(t) = _ 0du [(u)cos wlFU- Q(u) sin wIFU] 2h 0(t-u) cos wIF(t-u)

f = . dul(u)ho(t-u)coSw!Ft + C05wF(2u-t)}

- ftccdu Q (u) ho,(t -u){IsinwjFt + sinwJF(2u-t)}

::COS IFt fdu I(u) ho(t -u) -sin wIFt J0du Q(u) ho(t -u) (C-5a)

= u(t) cos .. t -v(t)sinuwFt (C-5b)

Iwith u(t) and v(t) being the in-phase and quadrature components of the filter output,

respectively.

The same result can be obtained using the "complex envelope" notation to write

x(t) = Re{[I(t)+jQ(t)]j 'jF t} -Re{X(t)ej ' Ft } (C-6a)

y(t) = Re{[u(t)+j t)}j w t I = Re{Y(t)eJwlFt}, (C-6b)

with the understanding that the effect of the bandpass filter in terms of its equivalent

lowpass filter can be expressed by the convolution

Y(t) = du X(u)ho(t-u). (C-7)

H C.3 INTEGRALS RELATED TO FILTERING OF THE TRANSIENT PHASE

The following integrals are used in Section 3 of the text in connection with the
effect of a Gaussian IF bandpass filter on the transient phase difference due to imperfect

synchronism between transmitter and receiver hopping synthesizers. The integrals pro-

ceed from the desire to calculate

dxco~vv e (Zy) 2 /2a2(C85(tl. t 2 ; V., 0, ) (049-7r) dzcos 1Lx CB

The solution begins with a simple translation to obtain
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t - - _ x / 2 o 2
204r5(tl, t 2 ; V, a, -1) = cos2rv-J dzcos2rvz e

- sin 2 rv/ J dzsin27rvz e

= cos27rv-y a 2J' S(t1-y, t 2-- Y; v, a)

-sin27ru7y - a-2'(t1-7t, t2--Y; V, 0). (C-9)

The first integral defined in (C-9) is

Je(A, B; v, a) A (o.,47)- dxcos2rvz e / 2 0 (C-10a)

= (-1YN2rL) 2 , rBA,.,Cn~ 2

n0o (2n)! A

= 2°=o .r n+4) {1 (f+ "B 2 )-'r(n+ " A22)} -0b

in which -y(a; z) is the incomplete gamma function, a series expansion of the cosine

function was used, and the fact that (2n)! - r(n+!) n! 22/4r was also used. Now.

recognizing that [17]

-(n+ 2 <) r-- = erfz, (C-11)
r(n+!)2 < r I()-

we replace the gamma functions in (C-lOb) with their values for n= 0 to obtain the

approximation 2

s(A., B: v, a) : e-2 ( ).{erf(B/f)-erf(A/uT)}. (C-12a)

In the text, we have v = kfae, harmonics of the fundamental frequency of the transient

phase difference waveform, and 6 = Orh is given by (C-2d). Therefore, since the factor

involving the error functions in (C-12) is a most unity, the value of 5, is governed by

the exponential factor, which equals

e-2(r V o) 2= e - 7r(kfd8/W 1F) 2/2 = IHo(kfa )l. (C-12b)

The second integral defined in (C-9) is

5,(A, B; v, a) A (xdsin2 rvx e 2/2o'2  (C-13a)
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__) 1 J:(1I)"(21r) 2 n+I rBdZ2n+l e 2 /2 02

427 =(' (2n+l)! - A x e

- n! r(n+5) /2 )(n+ 1; A2/20,)

using the same analytical techniques as were used to obtain (C-10b). Recognizing that

the incomplete gamma function for integer first arguments can be expressed by [17]

y (n+l1; x2)  e n2V2

r(n+l ) 1- E < 1 -e - ', (C-14)

we replace the gamma functions in (C-13b) with their values for n=O to obtain the

U approximation

3,(A, B;vA ) f (eA 2/2, 2 _ e-B 2/2, 2 ) E (-27r 2 V2 a2)n ,(-54-2=0 r(n+§) ( -5

in which the series is the confluent hypergeometric function:

,o (2n) 2 F,(l; §; -2r2V2or )  
(C-16a)

I ,I 77r 2

= Z e ,F ( ; ; 2 7r V 01)  (C - 1 6 b )

PZ 1 )2,for vo, :> 1. (C-16c)

2(7rva 4'-7-

I Thus we have the asymptotic approximation

5. AB; , ,) zz 1 1 -A 2/20,2 _ __-6P/2o,2

51 A B i,~ 2irvao2f7 (= e )e (C-17

Clearly, the factor involving the exponentials can at most equal ±1. Therefore, the mag-

nitude of (C-17) is controlled by the first factor. Substituting for v and a, we find that

this factor equals

2 rvu2-7 = 2r25(kfe,/WIF) (C-18)

I
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