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I. BACKGROUND

Numerous evaluations of the acoustic field radiating from a baffled

transducer have appeared in the published literature. An important feature

is that these theories are applicable for a wide range of parameters.

Approximations, such as those describing an axisymmetric sound beam in the

far field (Fraunhofer zone) can substantially reduce computational cost, but

they are not necessary. Linear theory is valid when the source level is

sufficiently low. Even then, diffraction effects in the near field, which

lead to localized cancellations and reinforcements, complicate the task of

correlating near field measurements to far field propagation properties.

The situation becomes more complicated when one tries to increase the

propagation range by raising the source level. It is logical to try to ove-

rcome effects such as dissipation and scattering by generating higher level

signals. Such attempts inevitably lead to a greater roli fzr nonlinear ef-

fects. One of the effects of nonlinearity is to divert energy from the

fundamental signal to higher harmonics, which is equivalent to lowering the

efficiency of the transducer. In the face of these concurrent effects it is

apparent that developing a unified theory for nonlinear effects in sound

beams is a challenging matter. However, such a theory is necessary if un-

derstarding of the distortion phenomena is tc be enhanced. A prime example

of the earlier lack of insight is the observed differences between the dis-

tortion of the compression and rarefaction phases of a signal, which had no

analog in simpler types of acoustic waves.

A variety of approaches have been employed to study the effects of non-

linearity in this system. One approach has relied on a conventional

perturbation solution of an approximate nonlinear wave equation. Such an

analysis seems to give very good results near the transducer face. However,

it quickly breaks down with increasing range due to assumptions that are

made in the perturbation steps.

An investigation of properties in the far field was developed based on

an approximation as a quasi-spherical wave. Such a formulation assumes that

the wave arrives at the transition to the far fi=Id (e.g. the Rayleigh

distance) without substantial prior distortion. Hence, the spherical wave
1-criDtion is inherently limited to cases where the transducer Pxcitation

is comparitiveiy K w level. This type of analysis also leads to certain

anomalies, such as the fact that the level of distortion is dependent on the

choice for the spherical transition distance, which may be arbitrarily

chosen beyond the Rayleigh distance.



Another approach that has been widely employed is founded on a version

of Burgers' equation that has been modified to account for spreading and

diffraction -- this is commonly referred to as the Zabolotskaya-Khokhlov

equation. After its original exposition in the Soviet literature, the first

solvtions of the equation for harmonic excitation of the projector were ob-

tained by finite differencing the position and time variables, Those

results were difficult to obtain due to the inefficiency of the approach, so

an alternative was developed by the Tjgttas and Hamilton based on the fact

that a harmonic input must result in a signal that is temporally pcriodic.

Consequently, the signal in this case may be expanded in a Fourier series

whose coefficients are position dependent. Using the method of harmonic

balance to make the solution satisfy the Z-K equation leads to coupled sets

of ordinary differential equations for the Fourier coefficients. Although

the solution could be obtained more efficiently in this manner, the basic

approach is limitpd by the restricted nature of its input. Extending the

procedure to treat multi-harmonic inputs would require a substantial in-

crease in the number of harmonics that would need to be retained, and the

method is completely invalid for predicting the signal generated by a tran-

sient input. Furthermore, the degree tc which the Z-K equation is suitable

for predictions of the highly diffractive field near the projector had not

been explored.

II. RESEARCH TECHNIQUE

The primary goal of this project was to develop an overall description

of transducer radiation in which tinite amplitude effects diffraction, and

spherical spreading are treated consistently, without limitation to a

speciific spatial domain oz a specific type of input to the projector.

Initially, the mathematical tools for this work were those used to develop

the nonlinear King integral for nonlinear effects arising in the sound beam

generated by a harmonic input [J. H. Ginsberg, Journal of the Acoustical

Society of America, 76, No. 4 (1984) 1201-1214]:- These techniques combined

singular perturb;.tion theory and asymptotic analysis of the behavior in

specific domains.

The general approach uses the King integral in linear theory, which is

a Fourier-Bessel integral transform, to develop the second order source

terms that generate nonlinearities in the response. There are two kinds of

nonlinear effects that arise at the second order. Some produce terms that

remain bounded as the signal propagates. (One such effect is associated

with the fact that the input from the transducer originates from a moving

oujndqrv. rt'H.' tI1 ,L ic much sLwpier V.eSCr)piih, - .) The smaijuess
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of the acoustic Mach number leads to the conclusion that these fixed mag-

nitude effects cannot account for measured levels of distortion. The other

group of nonlinear effects arise from resonance-like phenomena. These terms

lead to distortion that grows with increasing distance. Shocks ultimately

form from this effect, unless dissipation is adequate to overcome the non-

linear distortion process. It is this cumulative growth effect that needs

to be evaluated.

The growth effects in the second order terms are evaluated by using

asymptotic integration techniques to identify the portion of the second or-

der terms that grow most rapidly witl, increasing range. The aforementioned

breakdown of conventional (i.e. regular) perturbation solutions is avoided

by introducing coordinate transformations that essentially are based on the

recognition that cumulative growth is a singularity. The transformation is

selected such that replacing the physical position coordinates by the new

variables cancels the singular terms.

The singular perturbation scheme had earlier been successful in deriv-

ing solutions for sound beams generated by a variety of sources. The first

studies considered the case of harmonic input. The cumbersome evaluation of

coordinate transformations was replaced by a harmonic series representation,

for which the effort to evaluate each harmonic is equivalent to that re-

quired to solve the linear case 'Hsu-Chiang Miao, Ph.D. thesis, Georgia

Institute of Technology, Sept. 1985>. Results derived in this manner were

shown to be accurate in comparison to experimental data from a region

several piston radii from the projector out to the Rayleigh distance and

beyond, which generally marks the onset of farfield behavior.

Subsequent work extended the basic nonlinear King integral to non-

axisvmmetric sound beams, such as those arising when the normal velocity on

the surface of the projector resembles an azimuthal harmonic. Another ex-

tension of the analytical technique demonstrated the suitability of the

method to treat situations where the projector is driven by two inputs at

arbitrary frequency; the parametric rray, in which the frequencies are

relatively close, is included in that general case. In order to further

generalize these works a major effort involved evaluation of the sound beam

radiating from a baffled projector whose input is an arbitrary periodic

function. This capability would be employed to explore the implications of

an "anti-nonlinearity" concept. In it, the projector is manipulated to gen-

erate a signal that is phase-inverted from the waveform that would be

obtained at the shock formation distance from a conventional input. (This

concept will be discussed in greater detail later.)

3
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Although the foregoing study was generally successful, it became ap-

parent that further work, involving transient inputs to a projector, would

be too cumbersome for the perturbation approach. It therefore was decided

to develop a time-domain numerical simulation of finite amplitude sound

beams. The physical assumptions used by Kuperman and McDonald to develop

the NPE (Nonlinear Progressive wave Equation) computer code were judged to

be suitable for sound beams, but the coordinate systems used in their for-

mulation were not suitable. Therefore, attention was devoted to modifying
MPE t-o treati -,ave propagation in a cylindrical geometry in which the primary

propagation is axial. After the modifications were inplemented, the primary

question was what is the proper way in which NPE should be initialized? In

brief, NPE requires as initial conditions a waveform occupying a specific

spatial region, which forms a window. It then uses a time marching proce-

dure that propagates this window at the overall sound speed, while the

waveform disperses within the window. Additional questions pertained to

whether one could introduce nonreflective outer boundaries for the window,

which would have permitted usage of a smaller window, and whether a new

coordinate system could be introduced, in order to allow account for the

spherical spreading of the beam without employing an excessively fine

numerical mesh transverse to the propagation direction. The general method

by which any of the developments were validated was to consider threc cases

where results are reasonably well known: linear theory for steady-state har-

monic waveforms, linear theory for transient waveforms, and nonlinear theory

for harmonic input waveforms at moderate excitation levels.

A new line of research evolved out of two aspects of the analyses dis-

cussed above. The Fourier series representation of the nonlinear King

integral grew out of a decomposition into an angular spectrum repre-

sentation, in which each transverse wavenumber was represented by two

wavelets. Far from the axis of symmetry, these wavelets have the appearance

of conical wavefronts that propagate inward and outward relative to the axis

of symmetry. (Near the axis of the sound beam, the wavefronts both appear

to be locally planar and perpendicular to the axis.) In order to understand

the interaction between wavelets, it was decided to return to waveguides.

Development of a ray description of the propagation and interaction of

finite amplitude waves would substantially assist understanding of the dis-

tortion mechanisms in sound beams.

The development of P ray description was further motivated by the work

on phase-inverted nonlinear inputs. A few earlier experiments had use

reflection from a free surface to invert the projector waveform. However,

the theories used to support those experiments were highly approximate be-

cause little was known analytically regarding the reflection of finite

amplitude waves. It seemed logical to follow the successful study of rav
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propagation in waveguides, which had considered oblique reflection from

rigid surfaces, with a study of oblique reflection and transmission from

planar interfaces between two media. Although it had initally been an-

tiipated that work in this question would be confined to fluid media, it

soon became apparent that the derived theory could be applied with equal

ease to elastic solids. The derivation of the theory, one of whose aspects

is a modification of Snell's law to account for the dependence of propaga-

tion speed on particle velocity, was achieved by using perturbation

techniques to identify the dominant nonlinear effects, and then using the

method of characteristics to study those effects.

PROJECT ACHIEVEMENIS

A. Extended Analytical Descriptions of Sound Beams

The present project began by completing the studies of nonaxisymmetric
r1 . and two-frequency excitations [17]. With the completion of those works.

several questions remained to be answered. The nature of the perturbation

analysis limited the range at which the respective solutions could be ap-

plied, because shocks play an increasingly prominant role with increasing

range, especially in the absence of dissipation. Furthermore, the King in-

tegral has limited usefulness for far field evaluations, even in the linear

case. This is so because diffraction effects appear as an oscillatory in-

tegrand whose fluctuations become increasingly severe with increasing

distance, which correspondingly requires increasingly fine resolution in any

numerical integration scheme. Thus one need was to extend the analvtiral to

farther ranges and/or higher input levels.

Parallel to this thrust was the desire to investigate a concept bv

which a projector could be driven at higher input levels than that currentiv

taken as the saturation limit, which is the level at which strong shocks

form near the projector. Since shocks are rich in higher harmonics, which

do not propagate well, saturation serves as an absolute limit on the level

to which a proiector may usefully be driven. The enhancement concept was

suggested by a well-known "reciprocity" feature of finite amplitude planar

waves. Suppose the signal generated by a harmonic input is allowed to

propagate (and distort) through a certain distance. Next consider the case

where the source generates a signal whose waveform is opposite in phase from

the received waveform in the first case. If dissipation is insignificant,

the waveform received in the second case will be identical to the harmonic

signal generated by the projector in the first case.
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The significant aspect of this phenomenon for sound beams emerges when

one considers the combination of this reciprocal behavior with the far field

tendency to undergo spherical divergence. For a specified signal level, the

rate at which distortion grows in spheLical wa-re- is significantly lower

than it is for planar waves. Thvs if the tendency of an oppositely dis-

torted wave to undistort could be used to push the zone in which shocks
would form out beyond the Rayleigh distance, it was reasoned that the result

would be a substantial retardation in the the onset of significant nonlinear

distortion. This was the concept, but no prior study had addressed the
problem of determining the finite amplitude signal generated by an arbitrary

periodic input to a projector, which is the type of excitation associated
with a phase-ircerted distorted signal resulting from a sinusoidal input.

The project expended a major effort to extend the nonlinear King in-

tegral to treat arbitrary time-periodic projector inputs '7,101. It used

those results to assess the feasibility of using phase-inverted inputs to

extend the range of a saturation limited projector. The analysis for this

case was found to be extremely unwieldy, due to the complications inherent

to the strong interactions of harmonics in the presence of strong diffrac-

tive effects. This necessitated considering a variety of phase shifts for

the higher harmonics relative to the fundamental, rather than the simple

phase inversioi that is suggested by the theory for planar waves.

Theoretical estimates of the net gain to be derived by this concept range

from 2 to 5 dB for the signal level received at the farfield, when realistic

limitations are imposed on the projector. The uncertainty in the gain stems

from a total absence of experimental data for sound beams resulting from a

multi-harmonic input to a projector. (In the terminology of a parametric

array, the dovnshift ratio is two.) The lack of experimental data was a

serious handicap, because the theory that has been developed seems to fail

in some respects in the limiting case of a parametric array, due to a sin-
gulartv that arises when two primary frequencies approach a common value.

B. Numerical Modelin of Sound Beams

As a result of the complications encountered in continued extension of

the analytical procedures, the next effort was devoted to developing an ac-

curate scheme for developing a general time domain numerical prediction of

distortion phenomena in sound beams resulting from arbitrary inputs. Such a

description could also be used for transient excitations, and it presumably
would be easier to incorporate dissipation and shock formation in a numeri-

cal prediction. This effort involved modifying the NPE computer program to

treat the axisvmmetric geometry of a sound beam, and then developing a
method by which NPE could be driven. Numerical evaluations began with
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studies of linear propagation for steady-state harmonic waves -21, as 'wel

as for transient excitation in the form of a single sine pulse '26'

The results showed that NPE can be used at much closer distances to the

source than other researchers using parabolic equations had previously

believed. The key aspect of this disclosure was that the quality of the

rear field computations is highly dependent o,i the manner in which -he

moving window is initialized. The earlier analytical and numerical studies

of the modified Burgers' equation for sound beams had relied on a fundamen-

tal plane wave assumption that the pressure particle velocity at the fat-e of

the projector is proportional to the axial particle velocity. This assup-

tion was compared in the project studies to the result obtained when a

linear theory, either the Rayleigh or King integral, is used to initialize

the moving window extending outward from the projector face for a few

wavelengths. The waveform predicted for various locations according to each

method of initialization was then compared to the integral equation predic-

tion. The results obtained by initializing the NPE window were found to be

accurate ( the values were within 0.I, of those obtained froi numerical

evaluation of the integral equation) for distances as small as one te:vth of

the Ra'%-leigh distance, while the plane wave assumption produced results that

agreed with analysis only outward from the Ravleigh length.

'ork nearing '-ompletion and soon to be reported 27,,8' has already

shown that the quality of NPE is equally good for nonlinear effects. The

results have been compared to precise experimental measur.remets at a 'atv

of ranges, and transverse positions. Comparisons of its predictions with

the nonlinear Kin- integral are equal'I'.' good.

Early in the project :,PE was reduced to run on desktop computers , but

tne number of c.omputattons involved in rinnIng it from the proj ector face

out to several multiples of the Rayleigh distance is quite substantial

TWork required to complete the Ph.D. thesis of the graduate assistant

developing NPE involves using the nonlinear King integral to initialize the

moving window, and thereby increase the efficiencv of NPE for far field

predictions. Another efficiency already implemented as a project task into

NPE addresses the requirement that the transverse width of the window be

sufficiently large to consider the pressure at the edge to be zero. The

idea here is to rezone the mesh divisions of the window to extend beyond the

miin lobe whenever the signal at the edges is sensed to be a significant

fraction of the overall signal. These efficiencies are especially ap-

propriate to performing studies of multiharmonic inputs to the projector,

because such studies require much finer divisions within the window.



C. Analyses of Reflection and Refraction of Noni.nea Waves

As the analyses aimed at generalizing the nonlinear King integral

progressed, it became apparent that one of its primary features is that it

treats the signal as a combination oi wavel-:s propagating in varioi,, direc-

tions extending over an angular spectrum of transverse wave numbers. Desire

to understand such wave interactions led to a question whether the perturba-

tion techniques could be employed to study waveforms reflected from

surfaces, which was believed to be a better understood process.

The first studv of reflection effect. [12,18] developed a ray descrip-

tion of the propagation of waves in a waveguide whose walls are rigid. It

was showT. that large amplitude excitation of a nonplanar mode could be

modeled by using the method oZ inages to follow the rays forming that mode.

The distortion of the signal along each ray was shown to be determined by

t~e total propag.ation distance from the original source, and the results

were proven to be identical to those obtained from a modal solution pre-

.'ilslv ori'ved in the project

.re ani it. to desc-ibe finite amplitude signals in terms of rays was
,ded by a se2'lence of studies .hi-h were initalul" intended to

rt-flectic . ( t 1 finite amplitude acoustic wa'e trom a 17-e
-t This qaestior 'as not ivat-d b the ohservat ion that several proe-

evis rents lev.ote.d to the "anti-nonlineaity" concept had reflected

the s niq.e lv from . free surface in order to invert the waveforms.

t ' as fo',r-d '. nt~ v ~'. toot new techniques asing the method of characte-is -

s '-, necesr so:-v, this problem. What emerged from that analvs s

S. was -o: t, . of a nonlinear Snel' s law, which was as-
sac: te w: .to', tv*,s or 'wvetarm di stort ion

The proc ., .whr,:- nms result- ws ohtained, which is equally ap-

p i;,v >- fre. ' t ior l l:td tr, mission ,t planar intert icos-; between media.
i nna-.'ati''a Th.-- a -nlosis heli with a crv-rt ional pei trba tion anal vsi

bast-d orl tht snl'nt- s0 Of tie par tic ,e' c i-t v c lai '.' - the phase speed

of -a -) i ar wa'. .  Th is ro'Ie aed that the first order si gna I is the linear

approx:mat ion, For -ives in fluids, the process involves reflection and
transmission of planar acoust ic waves, while stress waves in elastic solids

feature dilatat ional and ihear waves, in what is known as mode conversion.

Th.- propigation angles of these waves is dictated by the linear Snell's law,

which is obtained by matching the linear (constant) tracc velocities along

thE- interface. The -,econd order ana' -ysis revealed chat tIhe dominant non-

Iinear effect is the tendencv of a planar acoustic and/or dilatational wave

to form second harmonics whereas shear waves and nonlinear interaction be-

tween incident and planar wives giveo rise to nonlinear effects that are much



weaker [8,13,15]. However, further analysis of the second order signal led

to an apparent dilemma, in that no solution constructed in this manner could

satisfy the boundary condition. This difficulty was traced to an assumption

made at the start of the perturbation analysis, where it was implicitly as-

sumed that the directions of the nonlinear rays are the same as those of the

linearized solution.

Rather than patching thp solution in an awkward procedure the

knowledge of the dominant nonlinear effects was used to formulate a new

solution using the method of characteristics. This involved recognizing

that the characteristics of planar wavas in a two-dimensional system lie on

the surface of a cone in space-time coordinates. The apex angle of this

cor.e must change with time, according to the particle speed associated 'irh

he to)t cone. The specific ra, associated with the signal emanating from
the hourdar -at any instant represents the orojection of a characteristic-

onto to,- plrane of spatial cootdiiates in the characteristic space. The

orientation of this ray must be chosen such that the combination of signals

emattat lu from the. boundary st in totaL the boundary conditions.

soution obtained in this manner conists of a generlization of

for r - o reflection and t-ansamision of Linear waves. The nonlinear

Sae ; i S Smi lao to the 1i mer one, except that the phase speeds are

i'i-eirta..eous values of the waves arriving and departin from the inter-

co'. 0Tr seq 'oe.t. v. the transmi s ion and reflect ion angles fluctuare.

Si ta -lv th Icct on and orzansmission coefficents are like those ot
orv e:.:cep that thev depend on, th nonlinear transmission and

ref'ectinr- arc.les. Aw;av trom th- interface, the each wave (ac ustic.

ia i ona, o she, j, papagats according to nonlinear theory for planar

wh r o r of the first two depending on the distance of

I ~-a". Ealuatin, the wav form received at a

pe-- fie p o : n this si aUA Is complicated, because the w,ives ar-

-tr, a region on the interface, and
. s I[t arc ins i s (),! coe ff ic iei s have values that depend

oit. h .s l h'i .ou dependent on the instantaneous phase

St1) (s Th , i ' ed oni the unknown particle veloc tites.

Ih - comp- i'o.c: dSC-<'rod above were resolved by an iterative proce-

d ir, in whn' he phe, of -ach tv- of wave is troated as the independent

%a riabl,. The the valie of time corresponding to arrival of this phase at
the so lected f ied point is determined after a convorgent value for the par-

ticle velocty is obta I ed. This technique was used first to describe

reflection of a nonlinear dil.itational wave at a stress free boundary., the

resin ts sh )wed that h, reflect ion process lessens the sever tv of the non-

1 near d ist.r' ion proc-ss. Sev.'oaril factors inflence this reduction.
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primarily these are (i) a decrease in the amplitude of thc '..i:tational wave

due to mode conversion, and (2) phase inversion, which corresponds to the
"anti-nonlinearity" concept.

At this time, work is underway to evaluate the case of critical in-

cidence [20]. Qualitative consideration of the theory indicates that a wave

will have a dual personality, in which the portion of the phase in which the

particle velocity is negative will be reflected as a propagating planar wave

(sub-critical incidence), while the phase of positive particle velocity will

evanesce perpendicular to the interface. If this result is confirmed by the

analysis, one can envision numerous interesting experiments that might lead

to potentially useful tools for detecting spatial heterogeneities in

material properties, as well as for detecting interfacial cracks in solid
mn~dia.
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Finite amplitude distortion and dispersion of a nonplanar mode
in a waveguide
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The perturbation method of renormalization is used to study the effect of nonlinearity on a
hard-walled rectangular waveguide. The excitation would induce only the fundamental
nonplanar symmetric mode if the system were linear. The analysis develops a solution that
satisfies a nonlinear wave equation for the velocity potential, as well as all boundary
conditions. The response consists of a pair of oblique planar waves that interact through
second-order excitation of the true planar mode. The investigation discloses that in the high-
frequency limit the signal has a quasiplanar behavior. In contrast, for very low frequencies
exceeding the cutoff value, the oblique waves are essentially independent. The distortion is then
a result of self-refraction, in which the particle motion shifts the wave fronts and rays. The
transition between the low- and high-frequency limits is marked by the appearance of
nonlinear frequency dispersion, which produces asymmetrical distortion of the waveform.

PACS numbers: 43.25.Cb, 43.20.Mv

INTRODUCTION The basis of that work was that there are nodal lines in ih-

Finite amplitude effects in a waveguide feature multidi- plate system along which the velocity component parallel to

mensional phenomena involving interacting waves. In linear the surface of the plate vanishes. Such lines are perpendicu-

theory, a mode in a hard-walled waveguide may be con- lar to the plate, as they are in linear theory. This observation

structed from pairs of oblique planar waves that are reflected led to the conclusion that the infinite plate analyses had actu-

from the walls. The present study will employ the same type ally derived a single mode in a waveguide.

ofdecomposition to show that distortion resulting from non- The treatment of general excitation in a waveguide pet

linearity displays a phenomenological change as the excita- formed in Ref. 10, which was a straightforward extension of

tion frequency is increased. This transition is associated with the method of renormalization, disclosed a type of super.

an anomaly contained in previous studies, which only con- position principle. Modes having identical phase speed weie

sidered the low-frequency case. found to form distinct groups, whose distortion in self-re

Initial explorations of finite amplitude nonplanar modes fraction was a consequence of only the particle velocity ars

in waveguides employed the perturbation method of multi- ing from that group. The overall response consisted of a hn-

pie scales in a rudimentary fashion that considered selected ear combination of the response in each group.

aspects of wave interaction. "- A different method of investi- A similar analysis had been used to study waves radiat-

gation was developed to study waves radiating from a flat ing from cylinders ...-' One of those studies' identified a

plate. 9 To a certain extent, the latter studies were academic paradox associated with very long axial wavelengths. One

in nature. The systcni they treated featured a periodically would expect that if the wavelength along the axis of a cylin-

supported plate of infinite extent. They assumed periodicity der is large, so that the rate of variation in that direction is

of the signal parallel to the plate, which meant that energy very gradual, then the response would approach that for the

was propagating inward from infinite boundaries. This ap- case of a two-dimensional system, in which the axial wave-

parent violation of the uniqueness condition, nevertheless, length is actually infinite. This was found to be the case.

proved to be instructive, because the system could be studied except that the distortion phenomena in the limit were found

by a variety of analytical techniques. The perturbation meth- to be too weak by a factor of one-half. This dilemma was

ods of multiple scales and of renormalization, and the meth- resolved by noting that distinct modes in the case of axial

od of characteristics, mutually agreed for the case of a spa- variation coalesce only when the wavelength is actually infi-

tially sinusoidal excitation. One significant aspect of their nite.

result was the prediction of self-refraction, in which the These observations also apply to the investigation of

wave fronts and rays of constant phase are distorted by the waveguides. to For example, as the width of a waveguide is

particle velocity, increased, the earlier analysis predicts that the distortion of

Although the plate problem did not treat a physically the planar mode will be twice as strong as that of the funda-

realizable system, the relevance of these investigations to mental symmetric (2,0) mode. Although the explanation of

waveguides was recognized in a subsequent investigation. to coalescing effects for infinite transverse wavelength (i.e.. the
planar mode) is plausible, it nevertheless is unsettling from a

"Present address: General Motors Research Laboratories, Warren, MI physical viewpoint. Distortion arises from higher harmonic
48090-9055. souces that are generated by nonlinearity in the entire acous-
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tic field. Could it be that minor discrepancies between the p/(poco) =p/po + (flo - 1 ) (p/p ) + (4)

long and infinite wavelength cases accumulate to create the Because the analysis shall only address the role of quadratic

discrepancy? Lack of experimental data prevented an earlier nonlinearities, Eq. (4) may also be applied to liquids by let-

response to this question, but discussions with researchers ting 6= 1 + B/2A.

currently involved in such activity'" sparked the present The pressure is related to the potential by

anthors' interest in exploring these concerns. r dp 1

The analysis presented herein treats an excitation of -+ - + -Vb = 0. (5)

only the (2,0) mode in a hard-walled waveguide. This limi- Jo (Po +P) at 2

tation is imposed primarily to reduce the analytical compli- From Eqs. (4) and (5) p, p, and 6 have the same order of

cations inherent to a more general study of multimode prop- magnitude, so elimination of p from these relations yields

agation. It also facilitates isolation of physical phenomena, P r 3iV +0e
such as the manner in which the nonplanar and planar p = -poj- + -V45 - + 0(4).

modes interact nonlinearly. It will be shown that the (2,0) 
6t 2 at

mode excites the planar mode in an insignificant fashion, 
(6)

unless oL /co>21r, where L is the transverse width of the The boundary conditions for ib are obtained by making

waveguide. w is the (circular) freouency, and co is the linear the particle velocity normal to the walls vanish,

speed of sound. The phase speed of the (2,0) mode, then, a 4 at L
differs slightly from that of the planar mode. This near-coin- = a x 2-(

cidence sets up a mode interaction that is reminiscent of the

beating response exhibited by an undamped, one-degree-of- as well as by matching Eq. (6) at z = 0 to Eq. ( 1). Also, for

freedom oscillator that is subjected to harmonic excitation uniqueness, it is required that the signal consist of a wave

close to, but not at, the natural frequency. propagating in the positive z direction.

The modal interaction leads to a smooth transition to The initial stage of the solution technique employs a

the planar mode response with increasing frequency, in the regular perturbation expansion of the potenial in terms of

manner one would expect. The analysis will confirm the ear- the small parameter F,

lier theory for waveguides when wL /c, is not large. It will 46 = E + C26 2 +.. (8)

also show that the transition from the earlier theory to the Matching like powers of e in the differential equation and

high-frequency case is marked by frequency dispersion, in boundary conditions leads to a sequence of equations in the

which the waveforms are remarkably similar to those ob- usual manner. The order e terms are

served in the nearfield of intense beams of sound. 6

c.V 2 1 - a- 2  0 (9a)

I. FORMULATION a, =0, (9b)

A pressure excitation of the fundamental, symmetric, ax .2LI

two-dimensional mode in a hard-walled waveguide may be ed), [ {X (w - k. x)
written as at 1 4

p = cpo' sin(oit) cos(k.x) , + exp[i(wt + kx)} + c.c., (9c)

E<1 , - L/2<x<L/2, (1) where c.c., in general, shall denote the complex conjugate of

where po is the ambient pressure, c0 is the speed of sound at all preceding terms. The order e perturbation equations are

ambient conditions, and the transverse wavenumber k. is _2V2,6 -(/L [ I ) lV(), Vd,
related to the duct width L by at- at o at /

k = 21r/L. (2) (10a)

The question to be addressed here is the effect of nonlinearity a$b = 0, (10b)

associated with the finiteness of e on the waves that propa- ax , = L 2

gate in the positive z direction as a result of this excitation.

The equations of continuity, momentum, and state may a62  _ d . 11
be combined to form a single nonlinear wave equation gov- "2-o c2o - -v , (lOc)

erning the velocity potential
7 under isentropic conditions,

at 2  II. EVALUATION OF THE POTENTIAL

a1 (fo - + V VI + O(0) It is a straightforward matter to solve Eqs. (9) by sepa-
=t (c - kat . +ration of variables, with the result that

where the nonlinearity coefficient flp is the constant associat- 44, = (co /4a ) {exp ( i(wt - k. x - kz) J
ed with the second-order term in a polynomial expansion of + exp[i(t + kx - kz) + c.c. (11)

the pressure perturbation p as a function of the density per-

turbation p at fixed entropy, where
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2

k=w)/co, 8=sin-(k./k), (12) X

k, = k cos O-(k 2 
- k' )1/2. I

Only the case of propagating, rather than evanescent, waves T
is of interest, which means that k, <k. This condition is
obtained whenever wo exceeds the cutoff frequency for the :4.; .. z
fundamental mode, o> 21rco/L. HK

Equation ( 11) represents the first-order solt'tion as two
trains of planar waves propagating symmetrically relative to V

the centerline x = 0. These waves are depicted in Fig. 1, L 1

where e, and e2 are the individual directions. The angle 0
measures the direction in which these waves propagate, rela- FIG. 1. Geometry of the oblique waves.

tive to the centerline. Each wave represents the reflection of
the other from the rigid wells. Increasing either the frequen- C' - 4ik, C' = ie
cy w or the width L decreases 0. In the limit -0, the combi- (
nation of the two trains of waves has the same phase speed as D' - 4ik,D' + 4K, D = - iw(flo - 2k 2 /k 2) (
the planar mode, and the transverse variation is much more where a prime denotes differentiation with respect to z.
gradual than it is in the axial direction. Hence, the (2,0) The particular solutions of Eqs. (15) are readily found
mode at high frequencies seems to be locally planar. to be

The first step in deriving $2 is to use Eq. ( 11 ) to form the
inhomogeneous terms in Eq. (I0a). This yields 16= (16).3 2 (6

dt 2 16 lk.2 k 2at 2

-- (i/8)oOoeXp[2i(ot - kx - kzz)] It is convenient to let the constant coefficients of C. and D.
+ - exp 2i(/ wt + ex[ - appear explicitly in the corresponding complementary solu-
+ exp [2i(ct + kxx - kz)]) tions, which are therefore written as

- (i/4)& [flo - 2(k /k 2 ) ]exp[2i(t - kz)] C = (flow/32k,) [C, + C2 exp(4ikz)]

+c.c. (13) (17)

The first two exponentials in Eq. (13) excite second har- D, = - Dw D+
monics. Such signals propagate parallel to the two waves 16 \, k2 [D exk k)z)+D 2 exp(.=z)],
forming 6, which are homogeneous solutions of the linear- where A, and A2 are roots of the characteristic equation
ized wave equation. The corresponding particular solution
may be obtained by the method of variation of parameters, in A ?.2 - 4ik,2 .2 + 4k -0. (18a)
which the amplitude of the homogeneous solution is consid- The roots are found, with the aid of Eqs. (12), to be
ered to be an unknown function. The last irhomogeneous A, = 2i(k, - k), 2, = 2i(k, + k). (18b)
term is a planar second harmonic. Such an excitation
matches the planar mode for the waveguide when k, = k. The expressions for 42, obtained by substituting Eqs.
Hence, decreasing k, brings the planar part of the excitation (16) and (17) into Eqs. (14), must satisfy the radiation
into close coincidence with the planar mode for that frequen- condition. In order for 02 to represent an outgoing wave in
cy, which means that this excitation is nearly resonant at the z direction, it must only contain negative imaginary ex-
small k.. The method of variation of parameters will also ponentials in the z variable. Satisfaction of this condition
yield the solution associated with this term. Thus let requires that C2 = D2 = 0. The remaining terms yield

4= u(xz) exp(2iwi) + c.c. , u = -'w (z + C,){exp[ -2i(kz + kx)]
u =C(z){exp[ - 2i(k,z + k,x)] (14) 32k,

+expI -2i(kz-kx)]} +exp[ -2i(k,z--k,x)]} i, o 2

-t- ~z~cp( -2ik~) .16 k k
-, ~z~xp -2k, ).X [exp( -2ikzz) + D, exp( - 2ikz) ] . (19)

It should be noted that the unknown functions C and D de- Note that C, describes complementary solutions of the wave
pend on the axial distance only. The periodic nature of the equation associated with second harmonics of the oblique
excitation eliminates dependence of these functions on t. waves, whereas D, is the planar eigenmode at the second
Similarly, the rigid wall conditions, Eq. (10b), imposed harmonic frequency.
along x = ± ir/k., could not be satisfied if C or D were The case k,-=0 corresponds to a true planar mode,
functions of x. which is governed by the Earnshaw solution for a nonlinear

The result of requiring that Eqs. (14) satisfy Eq. (13) is planar wave. However, letting k,-0 in Eq. (19) results in
a set of uncoupled differential equations for the amplitude a singularity in the coefficient of the last terms.
functions. After Eq. ( 12) for k, is applied, these equations Such behavior resembles the case of resonance in a one-
are found to be degree-of-freedom oscillator, whose equation of motion is
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- x = Fsin ft. (20) lim - = , (23b)

When fl-wa, the amplitude of the particular solution for k, -. k 2

f1l 0 o increases, as does the portion of the complementary where 6 is a bounded number. Similarly, the coefficient C, is
solution that cancels the initial value of the particular solu- restricted to depend on k. in any manner that is not singular
tion. The combination of these two solutions is a temporal as k. -0.
beating response that rises from zero at the initial time. As The second-order potential is now found from Eqs. (14)
the difference between f and o decreases further, the period and (19) to be
of each beat increases, until ultimately at fl = w, only the
rising portion remains. The corresponding resonant re- -h2 - (z + C,)exp(2iwt)

sponse is a harmonic, at frequency o, whose amplitude in- 32k

creases linearly with time. X [exp( - 2iOb,) + exp( - 2i 2 )]
In the same manner, the singularity of Eq. (19) atk,-.O & 2)

may be removed by an appropriate selection of the coeffi- _ _)- exp(2iwt){exp[ - i(ib + 0b2))

cient of the homogeneous solutions. The coefficient C, is not k

used for this purpose because the singularity is associated + ( - I + D *)exp[ - i(Ob1 + 02)k/kz ] } + c.c.

with the planar mode. (24)

In order to study k. -0, the troublesome terms in Eq. where
(19) are expanded in a Taylor series about k./k, 1= kz + kx, ;b2 = kzz - k~x. (25)

k, (kzk 2 ) 1/2 = k - (k i/k) + . The foregoing expression for *, satisfies the wall conditions,
(21) Eq. (10b). At this juncture, 6, does not satisfy the boundary

exp( - ikz) = exp[ - i(k - k/k)z + •••condition, Eq. (10c), which specifies that there should be no

second-order contribution to the pressure at z = 0. This con-
= [1 + (ik x/2k)z + • exp( ikz) dition could be satisfied by appropriate selection of the coef-

The corresponding asymptotic form of the planar terms in ficients C, and D *. However, both of these describe homo-
Eq. (19) is geneous solutions for 42, and they are not singular as k. -0.

'co 2) ~Thus they represent effects that are O(e-) at all locations. In
16 k [ exp( - 2ik~z) + D, exp( - 2ikz)] contrast, observable distortion phenomena are associated

with second-order terms that grow with increasing distance.

iW 6, +(1 ikzD The bounded 0(e') effects might be significant. in compari-

16k ' 2k X +2Dk son to the cumulative growth effects near the excitation, but
both are small in that region. The bounded effects are over-

×exp( - 2ikz) .(22) whelmed by the growth effects with increasing distance.

The singularity for k,--.0 is canceled if the leading term in Therefore, setting
D, = - 1. Thus let C, = D* = 0 (26)

A = - I + D *, (23a) leads to insignificant errors at locations where nonlinear ef-

where the coefficient D * may depend on k. in any manner fects are substantial. The corresponding potential function
that satisfies the condition obtained from Eqs. (8), ( 11), and (24) is

4= E exp(iot) [exp( -i, ) + exp( -i 2 ) I + e- Aoo z exp(2icar) [exp( -2ib, ) + exp( -2iAb,)

4w 32k

fI ?t #,) 2 exp(2iat){exp[_i(b,+- 2)]- exp[ - i(O, + rk)k/k} + c.c. +0() (27)
16\ 1 + 02(27

where O(e2) refers to terms having that order of magnitude at all locations.

11. EVALUATION OF THE PRESSURE

Prior formulations of nonlinear propagation using the velocity potential have generated the potential in the form of a
separation of variables solution. Specifically, the expression was a product of functions of each space variable and time. In that

situation, it was necessary to consider individually the state variables of particle velocity and pressure.
The present case is different because the potential is now represented as two planar waves, each of which is described by a

single propagation distance parameter. In general, proper behavior of the expression for pressure in a simple planar wave
ensures comparable results for the other state variables. The pressure is related to the potential function by Eq. (6). Omission
of the quadratic products in that relation ignores terms that are uniformly O(c2 ), which is comparable to the error in Eq. (27)
for 4. Thus
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p0C. + OWe) = -----i Cxp(iot) [eXP( --i l) + eCxp( -- i02) ]  _1- 2,6 i ko z exp(2icot)

X [exp( -- 2i,) + exp( - 2i,) - _ 2 ox-2't

X{exp[ -i(b + 02)] - exp[ - i(# + #2)k/k,]} + cc. + O(e'). (28)

The first set of O(e') terms grows with increasing z in all cases, and the second set grows when k1 /k is very small. Such
functional behavior is a result of using z and x as position variables, neither of which consistently matches the spatial scaling of
the nonlinear processes. In order to ascertain the correct spatial dependence, a near-identity transformation in the form of a
coordinate straining is employed. A different transformation is introduced for each wave variable 1, and tk,.

The presence of 0(ce) terms in Eq. (28) that depend on 0, + 2 indicates that the waves interact. Further examination of
the form of Eq. (28) suggests the trial transformations

Oj =a, +e[ F(a,a2) exp(it) + J,(a ,a 2) exp( -it)] + ...; j=1,2, (29)
where the complex conjugate term, denoted by an overbar, is introduced in order to ensure that the transformation is real.
Substitution for 0, and 02 into Eq. (28), followed by expansion in Taylor series in powers of E, yields

p/poc = -Ji exp(iot)[exp( - ia,) + exp( - ia2 )] - e [F, exp(2iwt - ia ) +F exp( - ia,)

+ F2 exp(2iwt - ia2 ) +.TF2 exp( - ia2 )] - Aeiflo(k 2/k1 )z exp(2iwt) [exp( - 2ia,) + exp( - 2ia 2)]

-je2[f5o(k 2/k - 2]exp(2iot){exp[ - i(a + a2 )] - exp[ - i(ct + a,)k/k] + c.c. + 0(e2). (30)

The task now is to determine the functions F, and F2  ,-k~z + kx
that cancel all O(c2) second harmonic terms which grow a, + lc&(k 2/k. )z sin(wt - a,)
with increasing z. For this, the terms that depend on a, + a2
are apportioned equally between F and F,. The appropriate - Je [,6, (k 21k ) - 21 {cos ( r.t - a,)
choice is found to be -co4wt-a:- (k/k1 - l)(a 2 +a2)]}, (33a)

ifi(3k 2  1 1 2 ~ 02 -k,z -k,x
- z exp( - ia. - 0 -22)
4k, 4k J = a, + if30(k 

2 /k,)z sin(cot - a.)

X{exp(-ia.) - exp[-ia,( --_1) -i'a2 ! k X o / 2 )  2(o~o-,

_k, k, (31) -cos(a( t -a,-(k/k. - 1)(a,+a)]}. (33b)

- z exp( - ia2) - . -- 2 The foregoing relations fully define the pressure. The value4k. " ofp at specified x, z, and t may be determined by solving Eqs.

X exp(- - ik - - ia, k (33) simultaneously for the values ofa, and a., and thenp, - k, J . using those values to compute p. It should be noted that the

terms in Eqs. (33) that couple a, and a, do not explicitly
These straining functions do not cancel all O(e') terms grow with z. However, as k /k--O, their magnitude in-

in the pressure. The remaining terms, which are created by creases and their axial wavenumbers approach k for planar
the complex conjugates of F, and F2, contain combinations waves. This sets up a beating interaction that has the appear-
of the a, and a 2 variables. Their presence is not a problem, ance of growth (see Sec. V).
because they are independent of t. Their role is to cancel a
mean value of the pressure that is created by the coordinate IV. ASYMPTOTIC TRENDS
transformation. Equations (32) and (33) are generally valid, but exami-

It is convenient at this juncture to write the coordinate nation of the behavior at limiting values of k /k provides
transformations and pressure resulting from Eqs. (28)- important insights. For k./k<l(wL/co>27r), the coordi-
(30) in real functional form. The pressure is governed by nate transformation may be expanded in a power series in

k /k. First, apply the identity for the cosine of a sum to theP [sin(wr - a,) + sin(ti - a,) ] last term in Eq. (33a).
pc. 2

2_ 1 kk
" k(#o " ', a, + -; °'E-z sin(c)t-ca )+ c°

-  2

+ I 2) 2 k, k[ k R Xa- 2

X{2 cos(a,- a2 ) -cos[2a, - (k/k,)(a, +a,)] sin ta ,- (,--- a,)

-cos[2a2 -(k/k,)(a,+a)]}, (32) xsin[{(kk )(ai~a2 )].
5 s o Soc. m V o m (34)where I2 k, -I
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Since k/k,-l + k 2 /2k 2 + ., the leading terms in a the coordinate transformations have the common limiting
Taylor series expansion of Eqs. (33) are form

0,1 -a, + 1,-,o/kz sin (cat - a,) 0b, - ai + Ec'kz [ sin (wt - a) + sin (cot - a,)]

+ fr(al + a2)sin(wt -,a2) (35a) _a + E!ckzsin t- a±, +a 2 Cos (a -a., (36)
When the same operations are performed on Eq. (33b), the 2
result is from which it follows that

,b2 -a, + jeflkz sin(oat- a 2 ) 1 - 2 -2kx--a, -a 2,

+ 4E,8o(a, + a,)sin(cat - a,) (35b) b + ib 2=2kz-a,+a 2ikz

According to these relations, the values ofa, and a2 may be sin(t a +a2 a)cos(a .a,

estimated as a, = b, + O(ckz). Hence, the factor 2 J \ 2
e(a, + a 2) may be replaced by c( bi + 0b2) =2ekz, which is The same analysis is now applied to Eq. (32). Series expan-
approximately 2ekz because of the smallness of k.1k. Thus sion in powers of k, / k yields

[sin(wt/- a) + sin (tt-a)I +"' J"--- - 2pc 2 8)8p e

X{2 cos(a, -a,) -cos[(a, -a.) - (k ./2k 2 ) (a , + a,)] -co[(a, -a,) - (k /2k 2)(a,- a.)]}

-OF sin(wt- a, +ac a, - a (38)

The next step is to substitute the first of Eqs. (37) into where
the foregoing, and to use the resulting expression for p to
eliminate a, + a, between the second of Eqs. (37) and Eq. 0= a, + ,6(k 2/k )z(p,/pc,) . (40b)

(38). The pressure expression that is derived in this manner The coordinate straining for each wavep, is reminiscent
is of that for a planar wave, with an important exception. The

nonlinear effect is measured by the difference between the
- csin(wt-k z+kz P--Zcos(kx) . (39) nonlinear and linear spatial phases, a, - zb1.In an isolatedP-, P),C,1 planar wave, this difference is proportional to the propaga-

If k, O, this expression reduces to the well-known so- tion distance, which would be (kz ± kx)/k for waves
lution for a planar finite amplitude wave at moderate ampli- propagating in the direction of either oblique wave. Instead,
tudes. " For very small k.1k, the signal described by Eq. the distance parameter for each wave in Eq. (40b) is z k k,.
(39) is a quasiplanar wave. The distortion is meassured by It follows that although Eqs. (39) specify a superposition of
the value of firkzp, the change in the axial phase variable the oblique waves, the presence of one affects the other by
from its value wt - kz in linear theory. The wave is not truly altering the spatial dependenLe for the distortion phenome-
planar because the amplitude varies with transverse position na.
as cos(kx). Comparable phenomena are encountered in Another viewpoint for the low-frequency (long axial
the farfield of cylindrical and spherical waves, whose ampli- wavelength) case may be obtained from a different resolu-
tude is not uniform in the transverse direction." 1." tion. Define new strained coordinates r7, such that

Suppose that the limits ofEqs. (32) and (33) forsmall a, + 7 , a, = 7 '- . (41)
k,/k had been derived without considering the interaction
terms (those containing both a, and a,). The result would eth, bcu tose term are t grot eect wn
have been the same, except that&5o in such an expLcssion each, becaus the alterms are not growth effets when
would have been replaced by I if. In other words, half the ku c tO( d . The variables a, and a are removed from the
nonlinear effect when k, <k is due to interaction between functional depenaence by forming the sum and difference of

the oblique waves. those equations after substitution of Eqs. (41 ,. This yields
The situation for comparatively low frequencies (ex- kz = 4 + ,eo(k 2/k, )z sin(wt - &')cos(r7) (

ceeding cutoff) can also be examined asymptotically. Sup- k~x = r- cflio(k 2/k, )z cos(awt - ')sin(7) .
pose that k, k = 0(1 ) (recall that k <k for propagating The corresponding expression for pressure obtained from
modes). In that case the interactive terms in Eqs. (32) and E corrs
(33) are not asssociated with beating interactions, so they Eq. (32) is
remain O(t2) at all locations. Such effects may be ignored. p/pc = c sin (wt - 4) cos(17) + O(e l ) . (43)
The remaining terms may be written as The significance of this representation of the signal be-

P =P, +P2, P1pc.2 = je sin(wt - a,); j = 1,2, comes apparent when the particle velocity is evaluated. For
(40a) this, the oblique planar wave decomposition is useful. The
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approximation v =p/pco is appl' :able to weakly nonlinear, 2. 00

as well as linear, planar waves. The propagation directions i,
and i 2 in Fig. 1 may be used in conjunction with Eqs. (32) 1.00° /

and (41) to represent the individual contributions. Thus
,~0.00Y c0E[e, sin(wt - 77 r) ', / x

+e2 sin (wt - + 77)] + O(W). (44a) . 00xJ ,,.

The components of particle velocity are, therefore, -2. 00
0.0 0.s 5 .0 1 .5 2. C

v, = Y . e, = c (k ,/1k ) sin ( wt - ') co s ( 1) , ( 4 ) / 7

v. = v • e. = - co (k. /k) cos( wt - ) sin(7) .. t12i

These expressions may be substituted into Eqs. (41), with FIG.3. Waveformon-axisatz = 3.05 m for l4OdBat theorigin, L =2.0m,
the result that the new strained coordinates are found to be f= 10 kHz. -: interacting waves; --- : noninteractive theory; - - -: quasi.

governed by planar wave.

I k 3k~z = + -s----3z ..
2 k' co( x, z, and t. These values then yield the pressure according to

I k 3  v, (45) Eq. (32). If desired, a waveform may be generated by incre-
k,x = 77 + -o z - - menting cot through an interval 21r, and that result may be

2 kT. k c. Fourier analyzed to determine the frequency response. One

This form was derived in the earlier analysis that as- simplification in performing a numerical evaluation is that,
sumed noninteracting modes. " Constant values of " and 77 for specified properties of the fluid, the value of p/poc2 ob-
are wave fronts and rays, respectively, for the phase of the tained from Eqs. (32) and (33) depends only on the inde-
wave in Eq. (43). The velocity components transverse to pendent variables kx, kz, and ot and on the value of kL
these lip es are v, and v., respectively. Hence, the dependence (because k./k =21r/kL). For the discussion that follows,
of the wave fronts on v,, and ofthe rays on v., was ascribed to the fluid is air (po = 1.2 kg/m 3, co = 343 m/s, = 1.2) and
self-refraction in the earlier work. F = 10 kHz.

A case of comparatively low frequency is illustrated in

V. EXAMPLE Fig. 2, for which L = 0.20 m and e = 0.0014166, corre-
sponding to an excitation of 140 dB re: 20uPa at the origin.

The trends identified in Sec. IV indicate that, at low For comparison, the noninteractive theory, Eqs. (40), and
frequencies [k = 0(k) 3, the distortion process involves the quasiplanar limit, Eq. (39), are also shown in Fig. 2. The
only the harmonics of the fundamental mode for the wave- unimportance of the mixing between the oblique waves is
guide. In contrast, at high frequencies (k. <k), the tendency apparent, as is the fact that the distortion associated with the
is to form a quasiplanar wave that propagates like the true planar theory is stronger.
planar mode. Identification of these trends leaves the ques- Altering the frequency for the next example would
tions of when the transitions to each situation occur, and change the overall degree of nonlinearity. For example, the
what happens in the intermediate regime? distance for shock formation in the planar wave is

These matters may be addressed by numerical exam-
ples. Quantitative results, in general, are obtained by solving = 1/(e~ok) • (46)
the coupled transcendental equations (33) for the strained Since the degree to which wave interaction is significant de-
coordinates a, and a, corresponding to specified values of pends (nondimensionally) only on the value of kL, the var-

2.00- 2.00

01. .2.0 .0 0 .5 0 2

lna 0. , p a 0.w 00av

-1 J. co u S8e -Ht

-2. 003 -2. 00

0.0 0.5 1.0 1. 5 2.,0 0. 0 O.5 1.0 1.5 2. 0

wtl2, wt12r

FIG. 2. Waveformn on-axis at z - 3.05 in for 140 dB at the oriin, L 0.2 mn, FIG. 4. Waveform on-axis atz- 3.05 ifor140 dB attheorigin. L 0.S5m.
f = 10 kHz. -: interacting waves; - -- : noninteractive theory; ...- quasi. f- 10 kHz. -: interacting waves; - - - : noninteractive theory;. --- : quasi-
planzar wave, planar wave.

917 J Acoust Soc Am , Voi 80, No 3, September 1986 J H Ginsberg and H C Miao Finds amlitue dlistorton 9 7



4.00 1.50 _

o 2 . 0 0 p \ 1 . 0\

- O)T1.0~

O. 50 --------
o s 0

L .5 rn =- 10k z :itrcigw vs----:-nneat hoy

S-2.0 / I I

-I. 00 . -w. 90

0.0 0.5 1.0 1.5 2.0 0.0 1.0 2.0 3.0 4.0
180

FIG. 5. Waveform at x = 0.125 m,. z = 3.05 i for 140 dB at the otgin, 135
L = 0.5 re,f= 10 kIz. - interacting waves: - - -: noninteractive theory; I

- - -quasiplanar wave.

ious phenomena shall be explored by changing L. Thus the
next case, illustrated in Fig. 3, is for L 2 m. with the other 
parameters unchanged. The quasiplanar approximation is 0.0 .0o 2. i 3.0 o f t
now very close to the new theory. z metes)

The situation for a transitional case is shown in Fig. 4,

which corresponds to L 0.5 m. Neither approximation is FIG. 7. Axial dependence of frequenc response alon c = t or 140 at
theongibL =0 af= 0kHz. - teracing aes -- - nun era-

accurate here. The difference between the axial-phase speeds k:e theory; val ue quasoplanar wae
of the planar harmonic created by nonlinearty and the true
planar mode is relatively small. This leads to frequency dis-
persion in combination with the usual amplitude dispersion The first sinusoidal factor is independent of time; it go-
that is associated with a sawtooth waveform. The effect is ers the wavelength of the beats. When the argument ofthat
asymmetrical between compression and rarefaction; it is re- sine term is very small, compared to 1, the factor is well
markably similar to the nearfield distoion observed forbaf- approximately by (a -a, ) (k /k - I). Since , and 
fled transducers. may be approximated by k~z, small values of the aforemen-

The relatively drastic transition from one approximate tioned argument correspond to cumulative growth of the
theory to another, resulting from increasing kL by a factor of frequency dispersion effect.

10. has a direct explanation. The frequency dispersion phe-
nomenon is attributable to spatial beating descnibed by the
last terms in the coordinate transformations, Eqs. ( 33 ). The 50

trigonometric identity for the difference of cosines applied to - -=
these terms shows that2

cos(wat- a, ) - cos~td-a, - (k /k, - 1) (a, + -a 1 ) ]J
S2.50-

=- 2smn[(a. +ta)(k/k. - 1)] sin[wrt+-(a 1 -a,)

-0(. .-a)(k/k,)] i0j I,2 i~j. (47) .

4.O OO

0 -00-8.00 -
I a 5

C I0 \/ '.10
-.. O , io

0.C 0.5 1.0 1.5 2.0 0 10. 0 1.0 2.0 3. 0 4. 0

_t/2 z(meters)

FIG. 6. Waveform at x =0 1 m.z = 3 05 m for 14OdB at theongin, L =0 5 FIG. 8. Axial dependence offrequency response along x = 0 1 m for 140 JB
m,f= 10 kHi. - interacting waves; - - - noninteractive theory; -. - at theongin, L = 0.5 rnf= 10kHz.- interacting waves, - - - noninter-
quasiplanar wave. active theory; ... : quasiplanar wave.
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.line of zero-linearized pressure twice ocr axial wavelength
-- thereby setting up the sc:ond harmonic signal. It is apparent

1. oofrom Fig. 5 that this effect also occurs in the presence ol
.;freuency dispersion resulting from interaction of the
,"aque waves.

- . - -o- A waveform for a general location appears in Fig. 6. The~even harmonics are more prominent than they were in Fig. 4
3 because the odd harmonics are lessened by the proximity t,

0.00 the nodal line. This effect is accompanied by amplitude dis-
0.00 0.05 0. 10 0. 15 0.20 0.25 persion, as evidenced by the tendency to a sawtooth profile,

go and by frequency dispersion, as indicated by the asymmetry

between compression and rarefaction.
135 r A different perspective is offered by the amplitude and

phase distribution curves in Figs. 7-9. These curves were
90, obtained by Fourier series decomposition of the computer

S/ waveforms into

IP = p sin[nw(t--to)-av] 0,
CI Poc

C. CC 0. C5 C. !C 0. 75 C. 2C 0.25 (49)
(meters, where to is the , rival-time of the fundamental in the interact -

FIG Q Transvse dependence offrequency response along: 3.05 m for ing-oblique wave theory. The amplitudes p, are displayed
140 dB at the origin. L = 0 5 m,f= 10 kHz. - tieracting wases: -- - for the three nonlinear theories. However, the phase lags I
noninteracrise theory. - - - quasiplanar %ave. are displayed only for the latest theory-they vanish in the

other descriptions in which thL waveform distorts sy mmetri-
cally.

It follows that the prominence of frequency dispersion is Although only three ham. "aics are displayed in Figs.
indicated by /[ 2k.:z(k /k. - I ) ] In contrast, the signifi- 9, their trends are also indicati- of higher harmonics. The
cance of the sawtooth distortion effect is measured by the earlier observation of the increased relative contribution ot
rorio of the axial distaice z to the planar shock distance a-. A the even harmonics in the vicinity of the "nodal" line x = L
comparison of the !wo nondimensional f- tors indicates 4 is evident in Figs. 8 and Q. In addition, Fig 7 s-. ws that
whether tchiecy dispersion will be noticeable in the pres- the phase of each harmonic tends to lag behind that of ii,
ence of sawtooth distortion. Thus, define a beating param- predecessor by a uniform air,)unt that increases as the signai
eter B according to propagates. This effect was also predicted for sound

beams,"' whose waveform n the nearfield is much like Fig
B= 4.,'/![2kz k/k,- I)]

VI. CONCLUSION

-:,6( kz ) 1 (1 k_ /'k-) 2 (48) The excitation ofthe true planar mode. which pro, ides a
S -. k -i ) Jmechanism for the interaction of the oblique waves forming

This paramete: is 5.08. 0.05, and 0.798 for Figs. 2-4. respec- the fundamental symmetric mode, has been shown to be sig-
tjeiy. Cases where B is substantially greater than unity can nificant for large values of kL. In the limit. multidimension-
be anticipated to be well described by the earlier noninterac- ality is only manifested as sinusoidal variation in the trans-
tive theory for duct modes, whereas values that are much less verse direction, much like the directivity factor for
than unity will closely fit the planar wqve approximation. nonuniform spherical waves in the far-field. '

Another aspect of the distortion process is displayed in In the earlier (small kL) theory, the modes are formed
Figs. 5 and 6, which are waveforms at off-axis locations. The from obliquely propagating waves whose .nteraction is onis
line x/L = s a node according to linear theory, as well as manifested by a change in the distance parameter govering
the quasiplanar-nonlinear approximation. However, Fig. 5, the distortion. If each wave were truly independent, that
which corresponds to such a location, shows that only the parameter would have been the distance over which the
odd harmonics are nulled in the oblique wave theories. wave had propagated. Instead, the distortion of the oblique
Hence. the fundamental frequency of the signal at the waves depends on the axial distance. That theory has been
"nodes" is twice the excitation frequency. Note that both shown here to be valid when the underlying assumption of
oblique wave theories indicate that the tendency to form a distinct phase speeds is valid. In that case, kL is moderately
sawttjth profile is still present. larger than 21r, so that the scales with which the signal vanes

The nulling of the odd harmonics was explained in the in the transverse and axial directions are comparable. The
earlier analysis of the plate problem as being a result of self- transition from small to large kL is predicted by the present
refraction.4 The rays in the noninteractive theory were theory to exhibit frequency dispersion that is responsible for
shown to be distorted in the direvtion of the transverse veloc- distortion of the waveforn that is not symmetrical between
ity component. This caused the nodal ray to cross the axial coapression and rarefaction.
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P2. Relationship between near and farfield effects in second harmonic
geveration in the piston beam. M. A. Foda and J. H. Ginsberg (School
of Mechanical Engineering, Georgia Institute of Technology, Atlanta,

GA 30332)

An earlier analysis [J. H. Ginsberg, J. Acoust. Soc. Am. 76, 1201-

1214 (1984) ] of the infinite baffle problem for an axisymmetric harmonic

excitation derived a nonlinear King integral describing signal distortion in

sound beams. That analysis, which considered only the contribution to

the cumulative distortion process associated with secular source terms,

agreed with experiments at high frequencies at ranges beyond approxi-

mately one quarter the Rayleigh length. However, there was significant

discrepancy with measurements very close the transducer face. Such dif-

ferencm will be shown to result from neglecting nonsecular second-order

terms that do not carry into the farfield. In the present work, the nonsecu-

lax contribution to the second harmonic is evaluated as a numerical inver-

sion ofa multiple integral transform for the second-order potential. The

composite effets of secular distortion, which is calculated using the re-

normalizad King integral, and the nonsecular contribution are calculated.

The results obtained from .he analytical model compare favorably with

previoius nearfield measurements. [Work supported by ONR, Code 425-

UA.I
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R/k Cylindrical coords (z/k, r/k)

~~ Time t/wj

Boundary condition:

= - c f(R) exp(it) + C.¢
z 2i

where E = acoustic Mach number at the projector face

f R) is arbitrary



ANALYTI CAL TECHN IQU ES

1. Cylindrical spreading and Kutznetzov equaticn.

Not suitable for near field.

2. Rayleigh integral - ingenito & Williams (1968),

Rogers (1970). Limited to ka -100 &near field.

Solutiot± not uniformly accurate as z increases.



3. King integral: Ginsberg 1984; Miao & Ginsberg 1985.

Asymptotic analysis to identify growth effects.

Cimulative distortion phenomena carried from

projector out to far field.

Solution does not agree with measurements near the

projector.

4. Present method - numerical analysis using King

integral - goal is to identify cause of breakdown

in asymptotic analysis.

)1



Nonlinear wave equation for velocity potential.

Perturbation expansion : = E 1 + E 2 + "

Hankel transform ==> Helmholtz equation in z, t &

transverse wavenumber n

n Vn0 1 xpn lt z) Jo(nR) dn + C.C.

"0

U (12 i ) 1 / 2 1 2 i 0
Ln = ,n , ) = -- R f(R) Jo(nR) dn

Propagating spectrum n < I

Evanescent spectrum r: > I



SECOND ORDER SOURCE TERMS

Form second order terms from linear King integral.

V 2 a ,{J0 (mR) J,(nR), J (mR) J ,( n R )

V 2 a II 2
1 n)1 0

x exp[21t - (wm + n )z] dm dn

Form ¢ as a double integral over m & n.

Linear combinations of products of Bessel functions.



MATCHED ASYMPTOTIC EXPANSION

J,'(nR) = - J,(nR) ; J1 '(nR) = J,(nR) - J,(nR)

Near axis (small nR) ==> drop products containing higher

order functions.

Off axis (large nR) ==> drop 1/nR terms.

Result: Off-axis solution for small nR identically

equals near-axis solution.

07?-AXIS EXPANSION DESCRIBES NEAR-AXIS REGION ALSO!



SECOND ORDER SOLUTION

Dual wavenumber spectrum -=> multiple Hankel transf'orm.

02 J A,(z) [J0,(mR) J,,(nR) - J1 (mR) J,(nR)]
0

+A,(z) [,J0 (mR) J,(nR) + J,(MR) J,(nR)]}

exp[2it - (pm + I )z] dm dn

Substi.>'te into wave equation.

Cff-axis ==> ignore 1/nR terTns.



Ordinary differential equations for A, and A,.

General form:

d 2A ./dz 2- 2(u +1In ) dA.i/dz + B (m, n) A. = r.(m, n)

Solve for arbitrary m & n.

a) Complementary solution:

A.i = ajealz + a j2e 2Z ;a 2-2(i + v ) + 0=~

Find Re c, > ( j + i) = violates radiation cond.

Set a j2= 0



b) Particular solution = rI /B.2 3

c) Total solution must satisfy b.c. at z = 0

= 0 at z = 0
T z

This yields a jl.



Dual integral transform solution:

02 JJ {p E J,(mR) J,(nR) - J,(mR) J,(nR)]

N 2+ F 2 D--[J,(rR) J,(nR) + JCmR) J,(nR)]}

xexp[2it -p + I )z] dmn dn + C.C.

N 1-exp{Hi m r m + n 2
n m

D LI (n + pm)2 -(mn n) 2

v v
=-2i-- ~-1-±nn

%Wnn



EVALUATION OF PRESSURE

Integrate numerically to find second harmonic:

P /PC 2 - => cancel exp(2it) factor
2a



Singularity at m = n: r & D,- 0.

a) Prior developments evaluated this part (only) by

asymptotic integration for large z.

b) Singularity is finite: r I/D 1- z as .M n.

c) Avoid m n ==> integr te over 0 m, n. <

by segmenting domain and using interior points

na segment.

jse series expansicnc oC a r arnd 7, r, n

order to avolid loss of precision.



Symm~etry of integrand ==> integration domain is:

0 n < ~, 0 ; m n

Three regions: m & n in propagating or evanescent range.

Pool.

0\/

PI-- \ /- C



-1

L"I

0
_0

0,9 0, C~t 0

(i 0 adUIPO



0

cl El

uOO
Lnl

El c r

C4C

-Ln

CLn

0,9[ 0,0[1O'
731 *TNICNON



GD

L-nI-

< I

-jn

CTC)
Lii n

Lin

.n

3dc 'LU'PUON



0
0

'Ii 0

-0
I 0

-0

'I ~ 0
-~-0

~~-0

0

0

_ 0D

- 0D

EL N 6



S -.

'~ 0 0

0) 0

CNN

<9 [2 E
Li)

000

LI (U

09Ln

_ QwiuoN)~Rfl!IdW



CONCLUSIONS

1. Nonsecular second order terms (region away from

singularity at m - n) are significant in

near field.

2. Reasonable agreement between numerical integration

and experiment for axial propagation properties

near the transducer, except for

? predicted additional nulls ?

3. Asymptotic integration describes dominant effect

outward from the farthest anti-node.



4. Transverse pattern agrees with experiment -

a) Numerical integration near the transducer.

b) Asymptotic analysis in transition zone.

5. Numerical integratic; is VERY INTENSIVE.
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P1. Nonsymmetric effect in flnite amplitude sound beams radiating from
a baffled circular transducer. H. C. Miao (General Motors Research
Laboratories, Warren, MI 48090-9055) and J. H. Ginsberg (School of
Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
30338)

Prior investigations of nonlinear effects in sound beams have treated
cases where the transducer oscillates axisymmetrically. Here, an analysis
of a situation where the harmonic spatial vibration of the transducer has a
cos 0 dependence on the azimuth angle, as would be the case for a piston
that rocks about its diameter, shall be presented. The method of investiga-
tion parallels that employed earlier [H. C. Miao and J. H. Ginsberg, J.
Acoust. Soc. Am. Suppl. 1 78, S39 (1985) 1, which used the King integral
to generate nonlinear source terms. A dual asymptotic description based
on assumptions appropriate to the regions very close to, and far from, the
beam axis is obtained, and then reconciled to obtain a uniformly accurate
description. An intermediate form of the solution featuring coordinate
straining transformations is converted to a Fourer time series. The linear-
ized signal shows nodal lines in the azimuthal direction that match those
of the transducer vibration, and it shall be shown that the higher harmon-
ics exhibit similar behavior. [Work supported by ONR, Code 425-UA.j

j. Acoust. Soc. Am. Suppl. 1, Vol. 79, Spring 1986
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z

vz - xe ,w k w/c,

x - R cos e

wt ==> t

/) / kz, kR ==> z, R

Consider vz= c co f(H) cos e exp it + C.C.



LINEAR SOLUTION

Hankel transform

transverse distance R <--> transverse wavenumber n

One dimensional wave equation for axial direction.

Oln n exp(lt n z) J,(nR) cos 6 dn + C.C.
0

2 - 1/2
Pn (n ,V n R? f(R) J,(r2R) dn

n n



NONLINEAR FORMULATION

Nonlinear wave equation - exact - define E.O.S.

Perturbation series for velocity potential

0 - C 0 + C 02 + *'*

Form second order terms from linear term,

2 2 j 0

0

Xexp[2it - Cum + Lil 1Z dm dni



MATCHED ASYMPTOTIC EXPANSION

J,1 (nR) J3 (nR) -J 2 (nR)n R

Near axis (small nR) J=> +1 (nR) << J V(nR)

Off axis (large nR) = J '(nR) z- J2.(nFP

Solve for p(z,R,e,t) in each region, then match.



OFF AXIS

Dual wavenumber spectrum ==> multiple Hankel transform.

02 - {A,(z) [J,(mR) J1 (nR) - J 2 (mR) J 2 (nR)]

+ A 2 (z) [EJ (mR) J,(nR) + J 2 (mR) J 2 (nR)]}

x exp[2it - (pm + n )z] cos 2e dm dn

Substitute into wave equation & ignore 1/nR terms ==>

ordinary differential equations for A , and A 2 .



NEAR AXIS

Form solution from two parts - R.H.S. + dual transform.

02 f -1- cos 2 e J,(mR) J(nR) exp[2it

-( m + n )z] dm dn + J 2 dm dn

0

Substitute into wave equation ==> identities yield:

7 2 J,(mR) J,(nR) exp[2it
3t

- (Wm + In)Z] cos 20

N37: First integral is bounded as z increases.



Introduce nR << 1 -)Neumann-Lommel Addition Formula

2. [J2 (x + y) -J,.(x - y)]

-J,(x) J,(y) - J1 (x) J,(y) -J 1 (x) J3 (y)+--

Thus

J,(mR) J,(nR) [J,(mR +nR) -J,(mR - nR)]

For large z and small nR:

- JJ z) J,(mR +nR) - F4 (z) ,mR- nR.']

exp[2)i t - M + ~j Cos e
x ex, n 1Z dm dfl

Differential equations for F.(z) by substitution.



ASYMPTOTIC INTEGRATION - LAPLACE

The differential equations for A, & A2 off axis,

or F, & F2 near the axis, are similar in form:

d 2 U/dz 2  
- 2( m  + Pn ) dU/dz + 8Cm, n) U = r(m, n)

Case (a) B , 0 ==> U = r/6 ==> no growth effect.

General situation, except for A, & F, when m - n.

Case (b) B -* 0 =-> U -* z r/2(Lim  + P n ) =-> growth.

Case for A, & F, when m - n <==> eigensolutions.



1. Expand around singularity: m - n - q jqj << 1

2. Expand d.e. in terms of q.

3. Find general solution (complemetary & particular)

for q 4 0.

4. Find particular solution when q 0.

5. Match #3 & #4 =-> coeffs of complementary solution.

6. Integrate over m spectrum: 6 << 1
I n - 6 1 6

m dm f dm + dq + dm
0 0 6 n-6



(a) First & third integrals give bounded solution.

(b) Portion of second integral away from q = 0 becomes

less important as z increases.

(c) Letting 6 4 simplifies integration & affects

subdominant terms only.

After integration, dominant part of 0 consists of a

single spectrum. For z >> 1 & nR << 1 or nR >> 1:

r 2J (E 1l + E dn
0



EVALUATION OF PRESSURE

p 2

OFF AXIS

Here P, - Cos 8 and P 2 - cos 2

J (nR) 12exp[i(nR 2v + 1
v 4nn)

+ exp[-i(nR - 2v + 14 ]

Hence P = P R 1 , it - nz ± (nR - 37T/4), cos 9}

"+" := axial & inward cylindrical wave F=> p.
a3

"-"~ ==> axial & outward cylindrical wave ==> p2)".
.3



NEAR AXIS

Here P, - J,(nR) cos a and P. - J,(nR) 2 Cos 29

but

Cos ( e ie + e- -e)/

Hence P =P[Jl(nR), exp(it - wz ± io)1

Two waves - both axial, Opposing circumferentially.



RENORMALIZATION

In either region:

p i)
P 2
- j ) grows without bound as z increases.

Solution is not uniformly accurate!

Introduce a change of variables to correct dependence.



OFF AXIS - different variable for 1 and 2 waves.

( nF 1 !/2
P =n - - - x it - a + i R i i l co 6S 2Tr nR e4~t-a m -i~) o

1 1/2
za. + D(n, z) fex-m. a

(inR - ilni)] + C.C.} Cos e



NEAR AXIS - different variables for each

circumferential wave.

inF
pJ E -,,f! J,(nR) exp(it ± 4. ie)

n 3

z =z + E(n, z) J,(nR) {exp(it ± . ie) +C.C.}



MATCH INNER & OUTER EXPANSIONS

NEAR AXIS:

Combine & simplify using I - ;2 < <  1 + 2 ==> define

C 1(c, + C2) = > P = P(it - ,cos e)

OFF AXIS:
1 /2

When nR >> 1 T> exR exp(inR - i -r)

- J,(nR) + i J 2 (nR)

Replace R dependence, then compare with near axis

expressions.



(a) Dependence of pressure alike in both regions.

(b) The 0(E) coefficient in coordina*e transformation is

larger by a factor of 2 near the axis.

NOTE:

nR >> 1 -=> 1nR) 1n H

J (nR)nRInR << 1 = - - - 1 J,(nR)

Near axis: Replace J,(nR) by J,(nR) + _ _nR

Off axis: Replace J1 (nR) by J,(nR) * 4_ _Rl

nR



RESULT

Convert to real form for n << 1:

2 cnF
P/pc 2 = J -- [cos(t - Aa,) + cos(t - Aa 2 )] J,(nR)

0

+ [sin(t - xa,) - sin(t - Aa 2 )]  J2 (nR)} dn

cos 0 + linear evanescent term

z - 2EnF (nz/X) 1/2 {s n(t - +j +

x [J1 (nR) + 4 2 (nR)/nR] cos(t - AL + -T/4)

x J,(nR)} cos 6



COMPUTATIONS

Direct evaluation is very complicated.

Strained coordinate a, and a2 are uncoupled:

quasi-one-dimensional ==> Fourier-Fubini series.

EXAMPLE

Parameters ty Gould et al (1965) - was axisymmetric.

2.5M1 .a=1 I mm, c =1475 M/s ,ka = 14
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Diffraction and Nonlinear Distortion in Sound Beams

as Interacting Wave Phenomena

J. H. Ginsberg, H. C. Miao , and M. A. Foda*

Acoustics and Dynamics -Research Laboratory

School of Mechanical Engineering

Georgia Institute of Technology

Atlanta, Georgia 30332

Discrepancies betwecn experiment and the nonlinear King integral [15]

for a finite amplitude sound beam, which are encountered in the inner

portion of the Fresnel region, are addressed by a new integral transform

solution that accounts for all contributions to second harmonic formation in

the nearfield. Although the result agrees well with experiments, it is

limited in its region of validity. A more general solution covering the

entire domain is obtained by the introduction of a coordinate straining

transformation. Crucial to that step is a new decomposition of the

nonlinear, as well as linear, signal at all locations into groups of quasi-

conical waves that converge and diverge from the axis as they propagate away

from the projector. Nonlinear distortion in the nearfield arises from

interaction of different transverse wavenumber modes in each group, and also

from interaction between the groups. The latter effect ceases to be

significant in the farfield, whereas the self-distortion arising in either

Present address: Power Systems Research Dept., General Motors Research
Laboratories, Warren, Michigan 48090-9057.

Present address: Department of Mechanical and Industrial Engineering, E1-

Mansoura University, El-Mansoura, Egypt.



group grows. The earlier nonlinear King integral, which is derived as the

limiting form for long ranges of the present result, is suitable within the

Fresnel zone, provided that the distance is substantially larger than the

piston radius. Fourier series analysis of the long range limit leads to a

sequence of King-type integrals for each harmonic.

LIST OF SYMBOLS

A,B modal amplitudes forming the second harmonic

a radius of the projector

aj,b. Fourier coefficients for the long range approximation

c 0 speed of sound according to linear theory

C.C. denotes the complex conjugate of all preceding terms

D parametric combination for the Fourier seriesn

F Hankel transform of f(R)n

f(R) shading function for the projector displacement

G Hankel transform of the pressure at the projectorn

H(z,n) correction function for behavior near the cutoff frequency of a

mode

J (x) Bessel function of order Z

k dimensional axial wave number for a planar wave, -/c 0

N coefficients affecting A and B (J-1,2,3)3

n,m transverse wave numbers

P amplitude of the j th harmonic according to the long range

approximation

p acoustic pressure

2



p. pressure of the quasi-conical waves at a specified wave number

(j-III)

Qn amplitude of J (nR) + i J 1(nR)

R nondimensional distance transverse to the beam axis

T mean value residuals introduced by the coordinate straining

transformations (j-I,II)

t nondimesional time

U, W. undetermined fuctions for the coordinate transformations (j=I,II)

V modulus of F
n n

w normal displacement of the projector face

z nondimensional distance along the beam axis

I, II denotes inward and outward propagating groups of quasi-conical

waves, respectively

an , 1 n  strained coordinates for the I and II wave groups, respectively

B0  coefficient of nonlinearity in the pressure-density relation

r. complex amplitude of the j th harmonic according to the nearfield

theory

An  phase of J (nR) + i J 1(nR)

6 modal phase lag at harmonic j

Eacoustic Mach number at the projector

Ce change of variables for transverse wave numbers

n, -iase variables for group I and group II nonlinear waves

e phase of Fn n

Aaxial wave number for the propagating spectrumn

Wn complex axial wave number

V i phase lag of harmonic j according to the long range approx~mation

P0 density at ambient conditions



aAj' aBj characteristic roots for the modal amplitudes

*21 second order potential due to field effects

¢22 second order potential due to nonlinear conditions at the

projector interface

0 nondimensional velocity potential

0 1 perturbation potentials (j - 1,2)

'it IV II phase variables for group I and group Ii linear waves

wfrequency (rad/sec) of the projector



INTRODUCTION

The prediction of the signal generated by a transducer in an infinite

baffle is a challenging task in the linear domain. Good approximations are

available for the Fraunhofer (farfield) region, but analytical treatments of

the nearfield, whose outer limit is characterized by the Fresnel theory of

diffraction [ 1], become progressively less accurate with decreasing range.

Comparable predictions for nonlinear effects that arise with increasing

signal levels are inherently more complicated than their linear analogs. A

variety of approaches have been developed, based on restrictions to specific

domains. A theory for second harmonic generation in the Fresnel region was

developed by Ingenito and Williams [ 2], and extended by Rogers [ 3]. The

technique there was to use the free space Green's function to superpose the

source radiation associated with nonlinearities in the field equations.

Aside from being restricted to the Fresnel domain and high frequencies

(ka>100), the primary limitation of this formulation is that it does not

address higher harmonics and depletion in the fundamental. Consequently, it

does not provide sufficient information to predict waveforms.

A different approach was employed by Lockwood, Muir, and Blackstock

[ 4] to predict farfield distortion. That analysis, which was based on

Lockwood's treatment of spherical waves [ 5], is limited to situations where

the level at the source is not excessively high. Under such a restriction,

it is reasonable to assume that the signal is undistorted at some transition

distance in the farfield. However, the resulting theory features some

anomolies, such as an apparent dependence of the predicted signal on the

(assumed) transition distance. Also, the absence of nearfield distortion

5



leads to a waveform whose shape is distorted in the same manner in the

rarefaction and compression phases. Observations of high intensity sound

beams, such as the measurements by Browning and Mellen [ 6], indicate that

the rarefaction phase tends to broaden and decrease in amplitude, while the

compression phase tends to narrow and gain amplitude.

Numerous analyses of finite amplitude effects have been based on a

Burgers-type equation that was derived by Zabolotskaya and Khokhlov E 72 for

the nondissipative case, then modified by Kuznetsov [ 8] to account for

dissipation. A variety of techniques have been employed to solve this

equation for a CW transducer. A direct numerical simulation using finite

differences has been employed in several studies by Bakvalov and colleagues,

exemplified by References [ 9 & 10]. Recent works by Hamilton, J. N.

Tj6tta, S. Tj6tta and colleagues [11,12] have developed more efficient

algorithms based on temporal Fourier series whose amplitudes are position

dependent. The resulting differential equations have, for the most part,

been solved numerically, although an analytical quasilinear approximation

has also been discussed [13].

Several approximations must be made to derive the aforementioned

modified Burgers' equation. Mnst significant are the assumption that the

relationshin between particle velocity and pressure is like that for a one-

dimensional wave, and that the transverse variation is intermediate in scale

to the wavelength and the Rayleigh length. It is generally recognized that

the equation is only suitable in the vicinity of the axis of the sound beam,

so that the governing equation is often referred to as the paraxial

parabolic equation. However, even within that limitation, there is a

6



troublesome aspect. In the lossless case, the nondimensional equation for

pressure depends only on the ratio of the Rayleigh length to the planar

shock formation distance. In terms of the variables to be employed here,

2this ratio reduces to cB0 (ka) , where c is the acoustic Mach number at the

source and B0 is the coefficient of nonlinearity for the fluid. In ordeo to

obtain the nondimensional form, pressure is scaled by a factor c. Hence,

the implication of this theory is that the (dimensional) pressure field will

merely be changed by a factor if the value of E is increased, while e(ka)

is held constant. In other words, two transducers whose radii satisfy a2 /aI

- (E1/E2)I/2 operating at the same frequency are predicted to radiate

signals in proportion to their respective Mach numbers. This clearly cannot

be the case. For example, the number of on-axis nulls predicted by linear

theory (very small values of e) is strongly dependent on the ka value 7i].

This implies that the paraxial equation, in addition to being limited to the

vicinity of the axis, should not be employed within the Fresnel diffraction

region.

The present analysis is descended from Ginsberg's treatment [14,15] of

a consistent nonlinear wave equation for the velocity potential. He used

the King integral [16] to generate the second order source terms appearing

in the field equations. The hierarchy of equations were solved by

asymptztic integration and coordinate straining transformations, based on an

assumption that the only second order effects significant to the distortion

process are those that grow with increasing distance from the transducer.

Such an assumption is fundamental to most analyses of one-dimensional waves.

Ginsberg's nonlinear King integral was analytical, in that it had quadrature

7



form. However, the complicated nature of the integrands necessitated

numerical evaluations of the pressure.

Discrepancies between Ginsberg's theory and experiments by Gould et al

[17] were disclosed by Miao [18]. The measurements were carried out for a

high ka case (ka1 14) very close to the transducer. A subsequent analysis

by Foda and Ginsberg [19] suggested the present analysis. It disclosed that

it is not appropriate in the Fresnel region to assume that all distortion is

associated with an effect that grows with increasing distance. In the

present paper we shall develop an analysis that is descriptive of the entire

field. Its predictions for the second harmonic will be seen to be in close

agreement with Gould's measurements. In addition, the investigation will

demonstrate that differences between the behavior in the Fresnel and

Fraunhoffer regions are a consequence of a variety of interacting wave

phenomena that occur everywhere in the acoustic field. An ancillary benefit

of the analysis will be a new interpretation of the King integral for linear

theory. Ginsberg's earlier results will be shown to be the long range (that

is, many wavelengths) limit of the more general theory. The present

viewpoint will lead to a Fourier series decomposition of this long range

form. That representation permits evaluations in the farther portion of the

Fresnel region, and beyond, with the same efficiency as the King integral

for the fundamental in linear theory.

I. BASIC EQUATIONS

The foundation for the formulation is the nonlinear wave equation for

the velocity potential [20], whose nondimensional form is



2 a a ( 0  + V' 03 ( 1)
at 2 a,,0 a

where the nondimensional cylindrical ccordinates z and R represent,

respectively, the axial and transverse distances relative to the center of

the transducer, multiplied by the wavenumber k, and t is dimensional time

multiplied by w.

We desire to address the effect of nonlinearities at the projector-

fluid interface, as well as in the field equations. Let w(",t) denote the

normal displacement of the projector "ace. As shown in Figure 1, continuity

of the partice velocity at the interface must be imposed at the displaced

location cf the :rojector in the direction normal to the deformed surface.

Thus,

c ccs - sin Y - = w cos Y , Y - tan "k (2)
0 1 czz/k-w

We let f(L) be an amplitude shading function, possibly complex. A

general representation of monochromatic oscillation at (dimensional)

frequency w and (small) acoustic Mach number E is

• . T- E c f(R) expl t) - C.C.
1i 0

w - L E f(R) exp(it) + C.C. (3)Lk

Because w is 0(c), the surface rotation Y may be replaced by its tangent.

For the sam? reason, Taylor series expansion allows the derivatives in Eq.

9



(3) to be evaluated at the undeformed location of the projector face, z =0,

according to

C0 (L + k ~ 2 3- k -O~- (E3) (41)
z 3z R 3zZ zO

Earlier investigations expanded in a straightforward perturbation

series. A slight modification of such an expansion leads to a sequence of

equations that more prominantly displays the role of 0 in the format-ion of

nnin.e~r distortion. Specifically, we let

2r 2, 1 +-

600 *2

~so frs a~dseoc-n zc~ ~tions of tre wave equatio2

-a'



32 2¢I  3

2 2¢2 2 _ ( )2_ 3w 31
e T 3z at Q k- w -- z + 2 k - - _ ( 7b)

z=O 3z DR 3z

z=O

Note that Eqs. (6a) and (7a) are the governing equations for linear

theory, so 0I is a bounded function. Consequently, any cumulative growth

effects that appear in Eq. (5) must be asssociated with ¢ 2' Since the

nonlinearities appear in Eq. (6b) as source terms that are proportional to

801 it follows that cumulative growth effects will be proportional to 8_.

This feature is well-documented for one-dimensional waves. The generality

of the perturbation treatment thus far permits us to extend this conclusion

to any nonlinear acoustic wave, not just the present one, provided that the

acoustic Mach number is a small fraction.

The first order equations (6a) and (7a), supplemented by the Sommerfeld

radiation condition, are the linear equations for an arbitrary bafffled

pro'ector. The King integral proviies the solution for this signal in a

form that is useful for formirg the source terms in Eq. (6b). The Hankel

transf . f th e anclitude shading function is

Fn R f E) (nFR" dJ
'0

The King integral is an inverse anke transform gixen by

- 7 f exp(it - q . .', K ,n

I



where

1 (1I 2 1)/2-( n ; n(1

Un ( 2 W12 (10)(n 2 -1 ; n> 1

G - n F n/ n  (11)

Note that transverse wave numbers n < 1 corrrespond to modes that are above

the cutoff frequency, and therefore propagate. In contrast, modes for n > 1

are evanescent.

Substitution of Eq. (9) into Eqs. (6b) and (7b) leads to an

inhomogeneous differential equation and an inhomogeneous boundary condition.

in accord with standard procedures, we split 2 into two parts by defining

P2 ( @21 + 422 (12)

where

2 2 2
2 2 21 0 t

21t

-- 0 (13)

;z z-O

and



2 22v2€2 -- €2 -o0

22 2i22at

S a 2 2 k a 2 1  k (14

az z-O z at z2  E R az Z-

Aside from the different form of the inhomogeneous term in the boundary

condition, Eqs. (14) are essentially the same as Eqs. (6a) and (7a). It

follows that the task of determining 122 is quite-similar to that required

to obtain " The difficulty in the present case is the more complicated

form of the boundary condition, owing to Eq. (3) for w and Eq. (9) for €I"

Furthermore, it can be argued that the precise nature of the function f(R)

is not known. For example, the model of a piston transducer considers f(R)

to be a step function, but high-frequency projectors of large diameter are

usually composed of numerous small piezoelectric elements that do not

respond identically. It is inappropriate to attempt to form a precise

solution satisfying an imprecise boundary condition. Accordingly, we shall

set

P22 -0 (15)

Another justification for this choice comes from the recognition that

because Eqs. (14) are those for linear radiation, 22 represents an effect

that is 0( 2 ) at all locations. Other effects having this order of

magnitude, which we will evaluate later, will be seen to have negligible

importance.



II. SECOND ORDER NEARFIELD SIGNAL

Our objective here is to derive an expression for P21 and the

corresponding pressure, without regard for breakdown of the perturbation

hierarchy resulting from cumulative growth effects. Such a representation,

which is analogous to the one derived by Ingenito and Williams [2], may be

expected to be suitable in regions reasonably close to the projector. We

begin by substituting Eq. (9) into Eq. (6b), which leads to

V221 is G G exp[2it - (p )z ]

21 t 2 21 0 0  n m n +)z]

X J (nR) J (mR) dm dn + C.C. (16)
0 0

Note that we have used the symmetry of the integrand with respect to m and n

to reduce the inner integral to the finite domain 0 m n.

It does not seem possible to solve Eq. (16) in exact form, because of

the presence of a product of Bessel functions. We therefore shall develop a

matched asysmptotic expansion that compares the form of €21 in the off-axis

region (large R) to one in the paraxial region (small R). We begin with the

off-axis analysis, for which the asymptotic representations of the Bessel

functions lead to

(L2  d1 dL) J(nR(nR) (n2 + m 2 ) J (nR) J (nR)
dR 2 R dR 0 0 0 0

+ 2nm J (nR) J (nR)

1l1



. d)- J1(nR) J (nR) - 2nm J (nR) J (nR)

dR 2 RdR 1 1

- (n2 + m2 ) J1(nR) J 1(nR) + 0(1/R 2  (17)

Because the source term in Eq. (16) contains only J0 (nR) J0 (mR), we form the

trial solution using sums and differences of the above products of Bessel

functions. Specifically, we try

I n

021 w f 0 nm A(z, n, m)[iJ0 (nR) Jo(MR) - J 1(nR) J 1(mR)]
0 0 Az , \

+ B(z, n, m)[J 0 (nR) J0 (mR) + J1 (nR) J1(mR)]} exp[2it

- (Wn + im)Z] dm dn + O(1/R 2 ) (18)

where A and B are undetermined functions. Note that these functions are not

considered to depend on R because cumulative growth is generally anticipated

to occur with increasing distance from the boundary. Also, dependence of

these functions on R would conflict with the need to satisfy the boundary

condition (13) for arbitrary values of R.

We find that Eq. (18) satisfies Eq. (16) for all R (assuming R is

large), provided that

A" - 2N1A' + (N12 - N22)A - iS0 2 (19a)

B" - 2N B' + (N 2 _ N32)B - 180/2 (19b)

1 1 ) l~1/



where a prime denotes differentiation with respect to z, and the

coefficients N. are functions of n and m, given by
J

NI . Un 
+ P.m N 2 - [(n + m)2 - 4] I / 2

N3 - [(n - m)2 
- 14]1/2 (20)

We obtain the boundary conditions for A and B by requiring that Eq. (18)

satisfy the boundary condition (13), which leads to

A' - N1 A - 0 , B' - N B - 0 for z = 0 (21)

In addition to the foregoing, the functions A and B must be chosen such that

421 does not represent a signal coming from the farfield toward the

projector.

Before we address the solution of Eqs. (19) subject to Eqs. (21), we

shall consider the paraxial approximation. We wish to derive a solution for

V21' valid for small R, that may be compared to the off-axis form in Eq.

(18). The usual power series expansions of Bessel functions for small

argument is unsuitable, since our objective is to identify the functional

form of P21' instead, we develop a representation that is derived from the

Neumann addition theorem [21],

J (nR + m ) - J (nR) J (7R)
L _- j-k k

L ______k.



(nR - mR) - k Jj+k(nR) Jk(mR) (22)

In the region where R is small, J (nR) decreases very rapidly for increasing

j and fixed nR. Furthermore, J_j(nR) - (-)J J.(nR). As a result, we find

that in the paraxial region,

(nR) J0 (MR) - -1 [J(nR + mR) + J (nR - mR)] + O(R 4 )  (23)

We employ Eq. (23) to represent the source term in Eq. (16). A

suitable trial solution "or P21 in the paraxial region depends on R in the

same manner. Hence, we set

'21 - 0 GnGm [C(z, n, m) J (nR mR) + D(z, n, m) J (nR + mR)]

01n 0 0 0

x exp[2it - (n + 4m)z] dm dn (24)

Substitution of Eq. (24) into the paraxial approximation of Eq. (16), anc

into the boundary condition (13), leads to an important observation -- the

equations governing C and D are identical to Eqs. (19) for A and B,

respectively.

Let us compare the two forms of (21' Eqs. (18) and (24), under the

condition that C - A and D - B. Since the exponential factors in each

equation are the same, the two representations are identical in their

dependence on t and z. For the transverse direction, we note that when nR

and mR are small, the first two terms in a Taylor series expansions of the

coefficient of C in Eq. (24) and of the coefficient of A in Eq. (18) are
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identical. The same statement applies to the coefficients of B and D. In

contrast, when nR and mR are large, the asymptotic expansions of these

corresponding coefficients are not alike.

The conclusion that we derive from these considerations is that the

paraxial representation, Eq. (24), in its range of validity gives the same

solution as that which would be obtained if the off-axis solution, Eq. (18),

were applied in the paraxial region. In other words, the off-axis form is

actually correct for the entire field. This confirms Ginsberg's hypothesis

[14] that the physical processes causing nonlinear interactions are not

dependent on the transverse position.

Now that we have identified the dependence of P21 on t and R, we return

to the evaluation of the amplitude factors A and B, which are functions of

z. Ginsberg [14] and Miao [18] performed this analysis by using asymptotic

methods to solve the differential equations (19), based on a limitation to

comparitively long ranges (large z). We shall develop a more general

solution here. Adding the complementary and particular solutions of Eqs.

(19) leads to

A ( 2 2 -+A1 exp(oA z) + A exp(a Z)2(N12 _ '22 )  11A 2 °A2

1 N2

180

B - + B exp(oB1z) + A exp(oB 2 Z) (25)

2(N1 2 - N 32 ) 1 B1 2 A e



where the coefficients o A and a . are the roc s of the respectiveAj BJ

characteristic equations. These values are readily found to be

Al" N 1 N2' A2 N N2

aB1 -N - N3  a B2 N1 + N3  (26)

We evaluate the constants A and B by satisfying the boundary conditions,

Eq. (21), as well as the radiation condition for P 21 The dependence on t

and z appearing in Eq. (18) is A(z) exp(it - N z) and B(z) exp(it - N 1z).

In view of Eqs. (25), this means that 121 contains terms having the

appearance of exp'it - (N 1 - Aj ) z] and exp[it - (N - a Bj) z]. Any term

in which either the real or imaginary part of N - CAj or NI - aBj is

positive will violate the condition that the signal is either an outgoing

wave, or an exponentially decaying wave. Since N3 is positive as either a

real or imaginary number, we require that

A2 - B2 - 0 (27a)

The constants A and B obtained by satisfying Eq. (21) are

ISoN I  iSoN I

A1 2 2' 1, 2 21 (27b)
2(N12 -N 22)N 2  2(N12 -N 32)N3

which, when substituted into Eqs. (25) yield
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A 2(2 _ B2)2 JN2 -N I exp[(N - N)z]} (28a)
2(N -2 N 22)N 2 2 11 2

i6 
0

B - 2 {N -N exp[(N N )z]} (28b)
2 (N _ N 32)N 3  

3

We form 21 by substituting these expressions into Eq. (18). Once 0I

and c21 are known, it is a simple matter to describe the corresponding

pressure signal. The pressure relation obtained from Kelvin's equation

[20], specialized to the case of an 0(c) signal, is

22
P0o~ 0 t 2

Recall that we have set (D22 , so ¢2 4 21' Therefore, the perturbation

expansion, Eq. (5), and some simple manipulations lead to

2 3P1 2 a€ 2 1  1 r3 2 a2  i
P/PoC E - t- E t 2 2) +2 t

o 0 1 at2
+ ¢ ]+ O(E3 )  (30)

We now recall Eq. (9) for (I and Eq. (18) for 21" Their substitution into

the above yields an expression for the pressure in the form of a single

integral for the O(c) term and two double integrals for the O(E 2 ) terms.

The result may be written as

p/Po [I r1(z, R) exp(it) + (z, R) exp(2it)] + C.C. + O  (31)
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where rP and r2 are the complex amplitudes of the fundamental and second

harmonic, respectively, and r0 is the mean value radiation pressure. When

Eq. (10) Is used to replace G , these quantities are given by

I n~

r I1 E Fn exp(- inz) J (nR) dn (32a)
0Pn

r - 22 1 I n {[8i (A + B) - 3 - Wnml Jo(nR) Jo(mR)

0

- [Si (A - B) + nm] J (nR) J (mR)]D expE- (Pn
1 1 n

+ )z] dm dn (32b)

1 2 n nmV V
- n 1K - + j J (nR) J (mR)

0 0 nm+

+ nm J(nR) J 1 (mP)j! exp[- (wn )z] dm dn + C.C. (32c)
n m

The fundamental amplitude is the linear King integral, which cannot

been evaluated in closed form. Analytical integration of 2 and 0

therefore does not seem to be feasible. However, it is possible to evaluate

the coefficients by numerical methods. An important aspect of such an

evaluation is the presence of three types of singularities.

In terms of its implications for later developments, the most important

singularity contained in Eqs. (32) occurs in the coefficient A when m = n.

In this situation, NI and N2 both equal 2w n, which causes the denominator in

Eq. (28a) to vanish. A similar situation arises for the function B when m =

n - 0, in which case N1 and N3 both equal 2i. Neither situation is a
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serious complication for a numerical integration, because both A and B have

finite limits as m -+ n. In the case of A, Taylor series expansion in powers

of N1 - N2 gives

2i60  Ii

A - 0 1 + NIZ[l + L(N - N )z

1(, 252 1L 21 *2

+ 1 (N - ) 2 ' '2 (33)

The expansion for B near n - m = 0 is the same as the foregoing, except that

N 3 replaces N2 . As m * n, we find that

i..-) B (1 + 2iz .... (),34)
mln 2 n m-0 16

n n4O

The coefficients A and B contain additional singularities, associated

with N2 - 0 or N = 0. Reference to Fqs. (20) shows that these occur in the

integration domain along m - 2 - n and m - n - 2, respectively. The roots

CAl and aA2' or aB1 and aB2' in Eqs. (26) are equal along the respective

lines. The second homogeneous solution, which is obtained in this case by

mrultiplying the first solution by z, is needed to satisfy the boundary

condition. Thus, this is a finite singularity.

The third singularity that occurs in the complex coefficients r F is3

associated with the axial wave number Wn" Its definition in Eq. (10) shows

that Wn + 0 as n - 1, which leads to a singularity due to the presence of

this parameter in the denominators of both of Eqs. (32). The singularity
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,nay be removed by a simple change of variables. We write Eqs. (32) in the

generic forms

r1 " . A (n,z,R) dn + C.C.
0 1 1n

. - ( Ain,m,z,R) dm dn+ C.C. , J - 0,2 (55)1 0 0 i Pm tin

where the A are functions that have finite limits as n 1 1 and m 4 i. We

replace the wave numbe!- n and m by new variables € and 5, such that

n - cos C , n - i sin C n < 1

ccs C , u = sinh n > 1 (36

which convert:s Fs. (351 to

1 - A(cos ;,z,R,t) d

, l c o s h ,z ,+t C .C .

- / / A.(cos ,cos e,z,R,t) de d

i A.(,csh C,cos ez,R,t) d9 d;
0 0

+ f ' A (cosh ,ccsh ez,R,t) de dr + c.C j = 0,2 ( 7
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The first integrals for r0 and r2 represents the second order effects

associated with interactions between propagating modes. Similarly, th2

third integrals arise from interactions between evanescent modes, while

interaction between propagating and evanescent modes gives rise to the

second integrals. The integration scheme we employed for each of these

double integrals is based on a nine point integration scheme for a square

segment [21], while linear interpolation was effective for the single

integral.

Well-documented experimental data describing nonlinear effects in the

nearfield is quite sparse. Gould et al [17] measured the field generated by

a piston vibrating at 2.58 MHz when c 0  1475 m/s, which corresponds to k =

-1
10.99 mm. The geometrical radius was 10.1 mm, but subsequent analysis of

the primary frequency field caused Ingenito and Williams [2] to suggest that

a - 10.42 mm is more appropriate. The results were presented in Gould's

paper as selected traces of the amplitudes of the fundamental and second

harmonic, either along or transverse to the axis of the beam. Such traces

were obtained by photographing an oscilloscope screen, so they are difficult

to read accurately. However, traveling microscope readings of the axial

distribution of the second harmonic were reported by Ingenito and Williams

[2], while Rogers [3] gave comparable data for transverse distribution at

selected locations.

Figure 2 compares the measured axial distribution of the second

harmonic with our prediction. The projector in this case was driven at a

source pressure of 5 atmospheres, which corresponds to E - 2.49(10 - 4

2
because the source pressure equals EPo 0 0 . The sound pressure level at an
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axial antinode would have been 237 dB//lPa if the projector were an ideal

piston and nonlinearity had no effect. The overall agreement between theory

and experiment is quite good. It should be noted that our prediction for

the farthest dip, near the nondimensional distance z - 1400, is somewhat

less deep than that predicted by Ingenito and Williams, while the dip near z

- 600 is comparable to their prediction and the one near z - 800 is

substantially deeper. Our computations indicate that many more such dips

occur with decreasing distance from the projector, but no more occur beyond

the region cescribed by Figure 2.

No physical explanation for such dips has been offered in the past. We

cannot say for certain what the mechanism is, because the second harmonic is

a field effect resulting from a three-dimensional distribution of sources.

A plausibi explanation is that the aninodes of the fundamental field,

which occupy small regions, generate the largest contribution to the

nonlinear sources. It seems logical to consider the peaks and valleys of

the second harmonic axial distribution to arise from constructive and

destructive interference of the radiation from these local "hotspots".

Figure 3 describes the transverse distribution of the second harmonic

at 50 mm from the projector for the same parameters as Figure 2; the

measurements are taken from Rogers description of the experiment. The

dotted line for the King integral prediction of the fundamental is provided

as a reference. (The dashed curve describing the farfield approximation

concerns with developments.) The agreement between theory and experiment

for the second harmonic amplitude is quite good. The fact that the overall

level of the predicted result is somewhat lower than the measurements might
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be attributable to the aforementioned uncertainty regarding the appropriate

value of ka. A small change in this quantity can significantly shift the

location of the maxima and minima. Another uncertainty regarding the

comparison between our prediction and the measured data is the possibility

that the projector did not act as a true piston, which is indicated by the

aforementioned correction for the active radius. We also should note that

the wire probe used for the measurements had a diameter of 28.6

nondimensional units. This limits the ability to resolve fine scale

features, due to spatial averaging of the amplitudes. This limitation,

which was noted by Gould et al, is exemplified by the transverse

distribution in Figure 4, where the axial distance z - 589 is selected to

match the axial minimum in Figure 2. As may be seen in this figure, the

probe diameter is comparable to the extent of the depressed region

surrounding the axis.

Although the theoretical development thus far is consistent with

experiment, the result is not sufficient. We shall next employ the

description as the foundation for an extension to larger distances from the

projector. In addition to enhancing the domain of validity, the extended

theory will be descriptive of a waveform.

III. RENORMALIZATION ANALYSIS

An important aspect of Figure 2 is the overall rise in the level of the

second harmonic with increasing axial distance. In general, such behavior
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arises in nondispersive media because nonlinearity provides a self-

interaction mechanism for the linearized signal. The basic concern when

growth is encountered in a regular perturbation series, such as Eq. (5), is

that the second order term might exceed the estimate of its magnitude. Such

behavior is known as nonuniform validity. In this section, we will derive

an expression for the pressure that behaves properly at oll locations.

Fii.,, we shall introduce a simplification that results from inspection

of the quantitative results. In all situations of interest, c is extremely

small, for example, e - 0.0002 for a signal whose maximum on-axis amplitude

is 240 dB//1 wPa. Also, recall that cumulative growth of the O(E 2 ) signal

can only arise in 1. In the present context, this is manifested by an

increase in the magnitude of the functions A and B with increasing z, as

exhibited in Eqs. (34). The terms appearing in Eqs. (32b and 32c) that do

not depend on A or B arise either from the quadratic term that was inserted

into the perturbation series, Eq. (5), or from nonlinearities in Kelvin's

equation (29). Both effects remain bounded for all z. It is reasonable

therefore that any term in either r2 and r0 that does not originate from the

second order perturbation D21 will be smaller than the fundamental signal by

a factor E.

When we ignore the constant magnitude O(c 2 ) effects, the expression for,

pressure obtained from Eqs. (31) and 32) under this simplification is

p/P c 2 - 1 G exp(it - inZ) J (nR) dn

0 0
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- 2iE 2  G n G {A [J0 (nR) J (mR) - J 1(nR) J 1(mR)]
0 01

+ B [d (nR) J (mR) + J 1 (nR) J1 (mR)]}

* exp[21t - (in + Prn)z] dm dn + C.C. (38)

Note that we have returned to the use of G as the transform of then

transducer shading function solely as a convenience.

The first step in correcting the growth of the O( 2 ) terms is to write

the pressure in the form of waves in the transverse, as well, as axial

direction. Such a representation is suggested by the asymptotic expansions

ff Bessel functions for large arguments [21], which leads to

i 0nR~ I /27 n 1mR/2 exp'i(nR - /)] + C.c.

0 (nR) J (mR) - J 1(nR) J 1(mR)

- (1/1T 2 nmR 2 )1 1 2 exp{li[(n + m)R - 1T/2]} + C.C. (39)

The part listed in each function above, when combined with the exponential

terms already appearing in Eq. (38), represents a wave in the off-axis

region that seems to propagate in the direction of decreasing R and

increasing z. Similarly, the complex conjugate part corresponds in that

region to waves that propagate in the direction of Increasing R and z.

In order to highlight this wave-like feature for an arbitrary

transverse location, we rewrite J (nR) identically as
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Jo(nR) - [ (nR) + iJ1 (nR)1 + C.C. exp(iAn) + C.C. (40a)

where

Qn cos An - J (nR) , Qn sin A, - J (nR) (40b)

Note that Qn and An are functions of R, as well as n, but such dependence is

not indicated in the notation as a matter of con-enience. Tue second

lunction in Eqs. (39) may also be expressed in terms of Qn and Ano according

to

j 0(nR) J (mR) - J1(nR) J1(mR)

- 2 [Jo(nR) + i1J(nR)] [Jo(mR) + iJ(mR)] + C.C.

IQn Qm exp[i(A + Am)] iCC. (40c)

When we substitutc Eqs. (40) into Eqs. (38), we decompose the signal into

two parts, such that

p/PO0c
2 - J + pii) dn (41)
0 0

where

p I 4 cGQ exp(it - + iA) {1 - 4ic Gj Q [A exp(it

- InZ + iAm) + B exp(it - inz - IAm) ] dmI + C.C. (42a)
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p11 " - EG Q exp(it - .nz - iA ) {1 - 4i GQ [A exp(it

- nz - iA m ) + B exp(it - Pn z + i Am)] dm1 + C.C. (42b)

it is important to recognize that no new approxi'ations are contained in tne

foregoing expressions; they are identical to Eq. (38).

Wavefronts of constant phase for the I and II waves consist of surfaces

along which the phase functions

IF (z, R) - t - (Wn /i)z ± A , j iIi (43)

are constant. A few such surfaces for n - 0.10 and n = 0.20 are depicted in

Figure 5. The wavefronts for the two families of waves seem to be nearly

linear in z vs. R in each case, corresponding to nearly conical surfaces.

This property becomes evident when we take the gradient of the phase

functions in order to identify the rays for each wave.

u

V~f . _ --n eR (144)i - R -R

The value of An is approximately nR for nR < 0.2, while it is well

approximated as nR - n/4 for nR > 5. Hence, the above gradient is nearly

constant in each region. As evidenced by Figure 5, the gradient changes

slowly in the transition region of intermediate nR. It is interesting to

note that the apex angles of these surfaces increase monotonically with

increasing n, until for n > 1, the wavefronts are parallel to the z axis,

and the waves evanesce in that direction. It is also worth noting that this
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interpretation of the signal as the superposition of two families of conical

waves is equally valid for the linear King integral.

We have seen that the O(c 2 ) terms in both waves tend to grow at large

distances from the transducer, ultimately leading to nonuniform validity.

Furthermore, the growth in the second harmonic has not yet led to depletion

of the fundamental from its value in linear theory. Both features result

trom using as the independent variables, position coordinates that do not

correctly match the spatial scale of the nonlinear processes. To a first

order (linear) approximation, the approriate nonlinear variables match the

physical coordinates. However, the gradual nature of the nonlinearity

causes the two sets of variables to diverge over many axial wavelengths.

This leads to the concept of a coordinate straining transformation. The

process of deriving this transformation from the requirement that the proper

fc"ms not display unbounded growth is renormalization [22].

Let a be a real variable for the I wave that reduces to the axial
n

distance z when E - 0, and let B be the corresponding variable for the II
n

wave. Eriations (42) indicate that each wave at a specified wave number n

is affected by a spectrum of wavenumbers m < n associated with each wave.

This suggests that the discrepancies between the linear and nonlinear

position variables also depend on such a spectrum. Therefore, we seek a

coordinate transformation whose form is

z - an + E 0 [U (z, n, m) Qn exp(it - ma + A

0

+ W (z, n, m) Q exp(it - wB_ - A ) + C.C.] dm (45a)
I( n m
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z - n + E fn [Wii(z, n, m) Qn exp(it - pmam + Am)
0

+ UII(z, n, m) Qn exp(it - PmBm - A ) + C.C.] dm (45b)

where the U. and W. are undetermined at this juncture.3 2

The task of identifying the undetermined functions is simplified by the

dependence of the I and II waves at O(E) on a single phase variable.

Consequently, the axial and transverse particle velocity components and the

pressure in each wave are proportional, which means that uniform validity of

the particle velocity will be assured when p. and pII behave properly. We

use Eq. (45a) to replace z in any term in Eqs. (42) whose phase is (t -

nZ/i + On) , while Eq. (Lab) is used when the phase is (t - unZ/i - An).

The result cf expanding the suhstituted form of pI in Taylor series in E iS

P ES, e - +n)n  I JA ){ - E fn [UI exp(it - iam + iAm )

En A± r.n n n n'n 0

0

" WT exp(It - im' - la ) + UI exp(- it - am m - IAm

" WI exp(- it m + iA )] dm - 4iE GQ [A exp(it

- 'm nm + IAM) + B exp(it - B Bm - i Am)] dm} + C.C. (46)

The terms containing U and WI correspond to second harmonics, whereas UI

and W I lead to terms that are independent of time. We select UI and W. to

individually cancel the second harmonics in the last integral, which gives

U - - (4;r, / Am in n
UI  m /in ) A , WI - - (iGm Q m/Un ) B (47)
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The pI signal, which consists of the terms remaining in Eq. (42a) when

Eqs. (45) apply, is

p1 - n Q exp(lt - IIa + iA ) + C.C. + T (I F)1 4 n nnn nt

where T I is a mean value correction required to cancel a residual that

arises from the coordinate straining.

T 1E nG. 0 A exp[- (on + ' ) + i (A - A
n m nm n mm n m

+ B exp[- (n an + WM m) + i (An + A m)] dm + C.C. (19

The correspcnding coordinate transformation, Eq. (15a), becomes

fn
z - an - : i (imQ/!u) A exp(it - u a I

n mm Im m M

P exn(it - m il )] dm, C.C.} (C)mm m

The same analysis yields the renn-malized version of p.. The results

are essentially the same, aside from an interchange of B and a and changesm m

in the signs preceding An and Am

1

PI, " 4 C nQn exp(it - n~n - IAn  + C.C. + T1 1  (51)

where the mean value correction for this wave is
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- - 2 u j{ G ( nQ A*Q exp[- (w + ) i (A - A 
0 0 n m

exp[- (un Bn + .ma) - i n + A )]} dm + C.C. (52)

and the coordinate transformation is

z - n - UE { (iGm Q m/,In) [A exp(it - m + iAm),0

+ B exp(it - M Cm -i m)] dm + C.C.} 1)

Evaluation of the pressure requires integration of Eqs. (48) and '5w,

,cse :ntegrands can only be evaluated when Eqs. (50) and (53) have beern

s:ved for the strained coordinates. Since these coordinate transformations

are temselves integra± transforms, and they are coupled, we are unaware of

analvti al procedures ty which a and 3 may be determined as functions ofn n

n. Hence, it does not seem possible to solve analytically for the pressure.

Indeed, the formldable nature of these equations makes even a numerical

evaluation of the expressions prohibitive. Nevertheless, if such an

evaluation were forthcoming, the result would be a uniformly valid

description of the signal In the entire domain.

IV. LONG RANGE APPROXIMATION

It is possible to derive simplified versions of Eqs. (2)-(53), subject

to the restriction tht z is large. Such expressions will permit numerical

evaluations of the signal at large distances from the transducer. The first
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simplication stems from the earlier observation that in the vicinity of m

n, the function A grows with increasing z. In contrast, the function B

displays such behavior only around m = n = 0. At sufficiently large z, the

contribution of B to the integrals becomes negligible.

The different roles of these functions has a physical basis, for which

we refer to Figure 5. According to the coordinate transformation, A governs

the degree to which a I or II wave at wave number n interacts with a wave of

the Sare type at wave number m. In the same viewpoint, B describes tne

degree to which there is cross-interaction between I and II waves at

arbitrary m and n. It is logical that waves of the same type, which

pro;awate in generally the same sense, interact more strongly than do waves

whose ;rccagation paths intersect obliquely in most of the field.

Another simplication results from the change of the axial wave number

w from imaginarv to real wit, increasing n, corresponding to the transition

from the propagating to evanescent spectrum at n - 1. Equations (48), (50),

(51), and (53) feature integrals that are either oscillatory or exponential

functions of m, depending on whether m < 1 or m > 1. If z is large (for

example, distances that are multiples of the piston radius), then the

evanescent spectrum is a negligible effect.

Let us examine the behavior of A as given y Eq. (28), based on m < n <

I with n fixed and z large. Then pn and um are imaginary, as are the

cceffilents NJ, which are defined in Eqs. (20). When considered as a

function of m, A has a maximum at the upper limit m - n and it oscillates

with increasing frequency as m is decrea3ed. These are the conditions for
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which the integrals may be evaluated asymptotically by a straightforward

modification of Laplace's method [23].

The integrals in he coordinate transformatior_ Eqs. (50) and (53),

may be written as

I - f A(n, m) F(n, m) dm (54)
0

We isolate the region around the maximum as

I - A(n, m) F(n, m) dm + A(n, n - q) F(n, n - q) dv
"0 0

rA . 'n-A

F'n, n) J A(n, n - q) dq +  0 A(n, m) F(n, m) dm (55)

It is important to the development that in the vicinity of m - n, the

function F varies much more slowly than does A. This allowed us to factor F

out of the integral containing m - n. Also, the original function A in this

region has been replaced by A, which denotes an asymptotic approximation of

A for large z and small q - n - m.

When the value of z is increased with A fixed, the first integral in

Eq. (55) eventually dominates the second. In addition, the first integral

will converge to a value that is independent of A, provided that A has been

chosen sufficiently large to include the entire contribution of A around its



maximum. Letting A - will not significantly alter that value. Hence, we

find that

I - F(n, n) (n, n - q) dq + S.D.T. (56)
0

where S.D.T. represents subdominant terms, which become unimportant at large

z.

The limiting form of A in Eq. (33) is not adequate for A, because an

increasing number of terms is required as the value of z increases. In

order to obtain a suitable representatien we rewrite Eq. (28a) as

B N {I - exp[(N - N )zj} B
A - 2 2 2i(N + N(57)

2iN (N -N2) 1 2 2
2 1 2

We may replace the coefficients NJ, which are defined in Eqs. (20), by their

Taylor series expansions in q - n - m. For this, we let A be the modulusn

of the axial wave number parameter, such that

X - Pn /i - (1 - n2 )/2 (58)nn

The expansions of the N. are then found to beJ

N 1/i - A + [1 - (n - q)21/2 - 2A n + nq/X n - q2/2A n 3 + O(q 3

1 112 23)

N2/1 - [- (2n - 21/2 n + nq/X n - q2/4n + (59)
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When these expressions are substituted into Eq. (57), we find that the

magnitude of the first term is 0(1/q 2). In contrast, the second term is

0(I), which means that it is a subdominant effect. Consequently, we have

A 21 lne- n) S.D.T. (60)
SA - - [I - exp(-iq2z/4 n ) +SDT.(0

With the aid of this approximation, the integral in Eq. (56) may be

evaluated in closed form, with the result that

B0  1/2
I - F(n,n) -7, (Xn Z  exp(in/4) + S.D.T. (61)

This formula may be applied directly to Eqs. (50) and (53), from which we

obtain the following long range representation of the coordinate

transformations.

Xn z - An n + B 10(nFn Q n/i)(r Z/Xn ) 1/2 exp[i(t

- A a A n + C.C.}nn n

E{(nFn Q n/i)(lz/An exp[i(t

- n B - A n)] C.C.) (62)

The asymptotic integration formula also yields a simpler representation for

the mean value residuals TI and T II given in Eqs. (49) and (52). Applying

Eq. (61) yields

T T BE G * Qn2 (IA Z) /2  (63)I II nnn n
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A subtle feature of the asymptotic integration is associated with the

appearance of X in the denominator of the the coordinate transformations inn

Eqs. (62). Any solution technique would encounter difficulty around n - 1,

where X - 0. It also represents an anomoly, in the sense that it indicatesn

that the strength of the nonlinearity is greatest at n - 1, where the

propagating spectrum disappears. The resolution of this difficulty lies in

the recognition that our asymptotic representation of A is not valid near n

- 1, because we assumed that Xn is not small in order to develop the

expansions in Eqs. (59). We therefore reason that the combination

(7z/An)I12 is the representation for finite A n and large z of a function

H(z, n) that is finite as n 4 1. In other words,

1/2
H(z-,n) - for large X z

An
n

n AO X H(z,n) - 0 (64)

Such reasoning led Ginsberg [14] to use the complementary error function to

represent H. A different form, consisting of powers of Bessel functions,

was employed by Miao [18] because of greater computational ease.

H(z,n) - (7 /2o)1 2 zv [J0(X n z -/) + J1 (A z2v-1 /0)21 /2  (65a)

where a and v are empirical parameters. (Miao found a - 1500 and v - 0.75

to give good agreement with earlier measurements.)

A simpler choice is

39



H(z,n) - z [70/(0nz + o'k2a2 )]1 /2  (65b)

where a' again is a numerical parameter. This function is appealing from a

physical viewpoint. According to Eqs. (62), the differences Xn (z - n n) and

X (z - 8n ) are proportional to H, so the magnitude of H represents the

overall degree to which the nonlinear pressure differs from the prediction

of linear theory. In the case of Eq. (65b), H is proportional to z for An z

2 2
<< a'k a , which is the growth characteristic of a planar wave. In

2a2 1/2
contrast, if z >> a'k a , then the nonlinear effect is proportional to z

Note that z - ka at a single transducer radius from the boundary, while the

Rayleigh distance, nondimensionalized by the scale factor k, is k2 a 2/2.

Hence, a' provides a parameter that may be adjusted to match the transition

from planar to diverging waves. We found a' - 1/2 to give results that are

consistent with Miao's work, as well as with measurements discussed later.

V. FOURIER SERIES REPRESENTATION

A primary benefit of the present two wave representation at long ranges

is that it leads to a Fourier series representation; such a form eliminates

the need to solve coordinate straining transformations. The derivation is

much like the Fubini-Ghiron solution [24] for a planar wave. First, in

order to avoid ambiguities, let us convert the transform F to polar,
n

Fn - Vn exp(ie ) (66)
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If the transducer vibration is such that all points on its surface are in

phase, then the amplitude shading function f(R) and its transform Fn are

real. In that case, 8 - 0 if F > 0 and 6 - 7 if F < 0. It is alson n n n

convenient to collect several parameters in a single coefficient Dn,

according to

D n  2B EnVn Q nH(z,n) (67)

Next, we define real variables and r, to represent the phase of each

omplex exponential term in the coordinate coordinate transformations, Eqs.

(62). Thus,

= t + e - A + A n - /4

n = t + e - A C - A + -/4 (68)
n nn n

It is useful to redefine the phase variables TI and II for the linearized

PT and Pll waves to have in a similar form.

- t + 8 n  A n A -

YII t + en  nzn  An +TIr/4 (69)

When we substitute Eqs. (66-68) into the coordinate transformations and

convert the results to real form, we obtain

P " - Dn sin , ' I - Dn sin n (70)



while Eqs. (48) and (51) for the pressures reduce to

Svr2- nVn
P1 4 - A n [i o +T

n

P v2 - n Q [sin n + cos n] + T (71)

4 A nI

n

It is possible to develop Fourier series for each of the trigonometric

terms appearing above. Because of the similarity of the expressions for pI

and pIII we shall only describe the analysis for pI* It is not difficult to

demonstrate that sin & and cos have period 27 when considered as functions

of TI' Furthermore, sin is an odd function of that parameter, while cos

is an even function. It follows that the apppropriate Fourier series are

sin - a sin(JT I) cos - b0 + I b cos(j 1  (72)
J-1 j 0 .1

where

a. - - 0 sin sin(jY) dY, (73a)

b . 1 cos dY (73b)

b. - 2 cos c cos(J'Y) dTI  (73c)
j 0
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We evaluate Eq. (73a) by integrating by parts, and then substituting Eq.

(70) for T The trigonometric identity for the product of cosines thcn

leads to

a4 Icos EQ - I) - Dn sin 6]

+ cos [(j + )& - D sin &] d&n

j (jD n ) + (JDn) ]  (74a)
.j Ji n j+1 '"

The same analysis applied to Eq. (73c) yields

b; - -- 'J D ) - j 1 ( J D ] n0 (7Lb)

An integration by parts is not required to evaluate b0 in Eq. (73b). The

result is

b - - D n  (74c)
0 2 n

When we use Eqs. (72) and (73) to form the first of Eqs. (71), we find

that b0 cancels the mean value residual T The remaining terms are

V12 nV (

4 An I j-1 n J+1 n

+ [Jj-1 (JDn Jj1(JDn)] cos(jFI)1 (75)

A comparable series expansion of p1 I leads to the same result as Eq. (75),

except that Ti' replaces T
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The Fourier series analysis is not in its final form, because we seek a

representation that explicitly displays the time dependence. We therefore

substitute Eqs. (69) for the phase variables into Eq. (75) and the

corresponding expression for pIV" When we employ identities to manipulate

the sum of sines and cosines, we find that

nV OJ

P I 
+ P II - E: n- . cos(jA ) i sn(jt - j

X j 1

-JjI(jD nos(it - 6.)] (76)

where 6. is a position dependent phase lag given by

6.=Tj(Xz- IT T (77)

We now recall Eq. (41), subject to the restriction that only the propagating

spectrum, n < 1, need be retained. When we write the result in the form of

amplitude and phase lag for each harmonic, we obtain

2 - c P sin (jt - v.) (78a)

where

(1 nV
COS V C j0  JA Qn cs(JAn) [J J-1(JDn) cos 6

-Jj+(JD ) sin 6j] dn

(1 flVn
P sin v 0 n Q cs(JAn) [i j-1(JDn) sin 6

POj sin 3-i



+ Jj+(JD n ) cos 6.] dn (78b)

According to Eq. (78a), the phase lags v. describe the signal relative

to a pure sine for each harmonic. A more significant parameter is a

relative lag, based on a time scale in which the fundamental looks like a

sine term. We obtain such quantities by shifting the time scale, such that

t' - t - I (79a)

which converts the Fourier series to

/PO2 ,
2 L P. sin (t' - v..) , v . - j V (79b)

As a closure to the derivation, we note that the linear signal may be

readily recovered from these expressions by taking the limit a3 E 4 0.

Correspondingly setting Dn - 0 leaves only the fundamental harmonic, since

only the zero order Bessel function is nonzero when its argument vanishes.

The result obtained in this manner is merely the linear King integral for

the pressure expressed in terms of amplitude and phase lag. Of course, the

present result is simplified by limiting the integration to the propagating

spectrum.

A significant aspect of the similarity of Eqs. (78) to the Fubini-

Ghiron solution [26] for a planar wave is recognition of the way in which

shocks form. When the parameter Dn associated with wave number n attains a

critical value, then the corresponding mode hecomes shocked. (In the case
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of a planar wave, Dn - 1 for a shock.) Since Dn is a function of position,

as well as n, modes at various wave numbers will not attain the critical

condition simultaneously. This explains why experiments, such as those

performed by Gallego-Juarez and Gaete-Gareton [25] failed to identify a

specific location at which a discontinuity occurs.

We at first endeavored to compare our predictions to Gould's

measurements [17] of transverse distribution of the second harmonic for a 5

atm source level at a range of 175 mm. (The Rayleigh length for the

experiment is 597 mm, so the location is well inside the farfield.)

However, we found that the aforementioned shock formation condition occurred

in a significant segment of the wave number spectrum, which caused our

computations to display several anomolies. We therefore display in Figure 6

the transverse distribution 200 mm from the projector for a source level of

2.5 atm. The agreement between theory and experiment is excellent. No

measurement of the fundamental at this distance appears in Gould's paper,

but the prediction for the fundamental is consistent in shape with the

measurement at 175 4im in the 5 atm case.

For comparison, Figure 6 also shows the prediction for the second

harmonic obtained from the nearfield theory in Section II. The degree to

which the lack of uniform validity in that theory causes over-prediction of

the amplitude is obvious, although the shape of the distribution predicted

by the nearfield theory is consistent with the actual result. In contrast,

the second harmonic distribution obtained from the long range approximation

is erroneous in both shape and magnitude at a location in the very

nearfield. As shown in Figure 3, applying the long range theory close to
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the projector yields a prediction that is a nearfield projection of the

farfield behavior.

For further confirmation of the long range approximation, we compared

its predictions to Moffett's measurements [26] of the fundamental and second

harmonic on axis. The projector in that experiment vibrated at 450 kHz, and

the diameter was 102 mm; the corresponding Rayleigh length is 2.59 m.

According to linear theory, the pressure at an axial antinode in this case

would be 213.1 dB//IpPa. The results obtained from the long range

approximation, shown in Figure 7, compare favorably with Moffett's

measurements in the domain of interest.

Waveform measurements are inherently difficult to make. The close

agreement of the long range theory with a measured waveform was reported

earlier [15]. Another example is shown in Figure 8, for a later experiment

by Moffett [27], in which a 508 mm diameter projector was driven at 60 kHz,

with cO 0 1473 m/s. The pressure at an axial antinode corresponding to this

waveform is 226.5 dB according to linear theory. Note that both the

measured and predicted waveforms have been shifted in time to begin close to

the origin.

The asymmetrical nature of the distortion of the waveform is intimately

related to the phase shifts that the higher harmonics experience relative to

the fundamental, apparently as the result of diffraction. Figure 9 shows

the relative phase lags v' corresponding to the amplitudes in Figure 7. ItJ

is difficult to discern a pattern in the nearfield, primarily because of

sudden changes in the values resulting from limiting the phase angle to a
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3600 range. However, we can see that the phase lags grow in the nearfield

with increasing distance almost in proportion to both range and harmnnic

number. Even more interesting is the indication that the phase angles

eventually become nearly equal at a location close to the farthest antinode

for the fundamental, and then grow outward from that location, tending

toward a constant difference between successive harmonics.

VI. DISCUSSION AND CONCLUSIONS

We have developed a comprehensive analytical representation of the

finite amplitude :W signal radiated by a baffled projector undergoing

monocromatic excitation. The face velocity at the projector is restricted

to be axisymmetric, but the radial distribution is arbitrary. We obtained

three overlapping descriptions. The nearfield formulation, which is

suitable for distances that are a small fraction of the Rayleigh length, was

obtained by generating a dual Hankel transform that is excited by the linear

King integral. This formulation, whose quantitative results must be

obtained by numerical methods, is limited because it only describes the

fundamental and second harmonic. Also, it does not treat depletion of the

fundamental signal associated with nonlinear generation of higher harmonics.

The second description, which we refer to as the uniformly valid

solution, combines a Hankel integral transforms and coordinate straining

transformations. A decomposition of the King integral into two two

famailles of quasi-conical waves was crucial to the derivation of this form.
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Although this description is suitable at any location, it is sufficiently

complicated that quantitative evaluations would require new numerical

methods and extraordinary computational expenditures. The third

description, which is the long range asymptotic approximation of the

uniformly valid solution, is the simplest of all to evaluate. It previously

had been called the nonlinear King integral, but that term is equally

applicable to the uniformly valid solution.

Both the nearfield and long range formulations can only be evaluated by

numerical methods. For a fixed location, computational times for the

nearfield formulation, which requires a double integration in the transverse

wave number spectrum, are much larger than for the long range approximation,

which involves a single integral. However, the requirements for both

inorease with increasing distance from the projector. When either the axial

or transverse distance is many multiples of a wavelength (z or R >> 27), the

King integral becomes a rapidly oscillating function of the transverse wave

number. Numerical analysis in such conditions requires a fine

discretlzatlon of the continuous spectrum. One could employ the long range

version to generate interface conditions that drive the solution for a

finite amplitude spherical wave with directivity [5], but that approach is

suspect when dealing with strong diffractive effects [14]. Alternatively,

the same interface prediction could be used to drive the modified Burgers

equation. The latter is a particularly attractive prospect, since it

provides a method by which shock formation, and other types of dissipation,

may be treated.
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INTRODUCTION

PROBLEM DEFINITION:

* FINITE AMPLITUDE SOUND BEAM

* AXISYMIMETRIC, BAFFLED TRANSDUCER

* MULTIHARMONIC EXCITATION OF TRANSDUCER

SOLUTION FEATURES:

* HAPY-ONIC AND INTERMODULATION DISTORTION



THEORY

The perturbation series,

is introduced into the nonlinear velocity potential

equation, resulting in:

FIRST ORDER D.E. (LINEAR):

V7 0,

SECOND ORDER D.E.:

V4

T7,



I FIRST ORDER BOUNDARY CONDITION:

is an amplitude shading function.



FIRST ORDER SOLUTION

SUM OF KING INTEGRALS:

00

6

7 C, C.

AXIAL WAVENUMBER:

v (A is a Hankel transform of 6 ')



SECOND ORDER SOLUTION

INITIAL FORM:

" =16 o4=

I 5DEPENDS ON 6J + 6"1

DEPENDS ON - 1J

Asymptotic integration for large z leads to

SOLUTION IS NONUNIFOR11LY VALID SINCE

/ /



RENORMALIZATION

EXPRESSION FOR ACOUSTIC PRESSURE IS RENORMALIZED

* PRESSURE EXPRESSION IS DECOMPOSED INTO GROUPS OF

QUASI-ONE-DIMENSIONAL WAVES

* EACH GROUP IS RENORMALIZED INDEPENDENTLY BY THE

INTRODUCTION OF STRAINED COORDINATES

RESULT IS A UNIFORMLY ACCURATE PRESSURE EXPRESSION



ACOUSTIC PRESSURE

/

+ ADDITIONAL TERMS FROM OTHER WAVE GROUPS

S= UNSTRAINED PHASE COORDINATE FOR FIRST GROUP

,4

-f co-



TWO HARMONIC EXCITATION

CASE 1 CIRCULAR PLANE PISTON, KA = 50

= FUNDAMENTAL ONLY, SPL = 206.99 dB

= FUNDAMENTAL SPL = 206.99 dB

2ND HARMONIC SPL = 206.99 dB

RELATIVE PHASE = 0

= RELATIVE PHASE = 90

= RELATIVE PHASE = 180

= RELATIVE PHASE = 270



PISTON AR 1.0 KA=50
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LI

CqE 2 GAUSSIAN TRANSDUCER, KA = 50

VELOCITY DISTRIBUTION ON BOUNDARY IS GIVEN BY

f (R) = exp I2R-/(KA)-

= FUNDAMENTAL ONLY, SPL 213.01 dB

= FUNDAMENTAL SPL = 213.01 dB

2ND HARMONIC SPL = 213.01 dB

RELATIVE PHASE = 0

= RELATIVE PHASE = 90

= RELATIVE PHASE = 180

= RELATIVE PHASE = 270
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CONCLUSIONS

INTERACTION OF THE FUNDAMENTAL AND 2ND HARMONIC SIGNALS

REDUCES THE ENERGY IN THE FUNDAMENTAL SIGNAL IN THE

FARFIELD FOR THE CASES CONSIDERED.

* INTERACTION OF THE FUNDAMENTAL AND 2ND HARMONIC SIGNALS

CREATES A 3RD HARMONIC SIGNAL WHICH IS SUBSTANTIALLY

HIGHER THAN THAT GENERATED BY HARMONIC DISTORTION OF

THE FUNDAMENTAL ALONE.

I
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THEORETICAL AND COMPUTATIONAL ASPECTS OF

-oach to FINITE AMPLITUDE SOUND BEAMS
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ABSTRACT

The diffracted sound field radiating from a harmonically vi-

brating transducer in a baffle is known as a sound beam. In the

case of linear (i.e., infinitesimal) theory, the properties of

such a signal have been evaluated by algorithms derived from a

variety of formulations. A comparable variety of approaches have
been developed to treat the effects of nonlinearity, such as the

generation of higher harmonics, which are encountered in large

amplitude signals. In contrast to the linear case, earlier solu-

tions to the nonlinear problem have been limited to certain re-

oions, such as the near or far field, or the vicinity of the axis

cf the sound beam.

This paper begins with a survey of the theoretical formulo-
tions and corresponding algorithms that have been used in the past.

The specific approaches consist of a quasi-planar approximation

valid near the transducer face, a nonuniform spherical wave approx-

imaticn appropriate to the far field, and a modified Burgers' equa-

'ion based on a paraxial assumption appropriate in the vicinity of

the axis and not too close to the transducer. After these methods

are reviewed, a singular perturbation solution that seems to be

sa: taole for most of the domain wil be described. A key feature

: t".e discussion is the evolution of the solution starting from

:ianke. t-ansform solution of the linear problem to its present
f:rn as a Fourier series in time; the position dependent coeffi-

cients of that series are inversions of Hankel transforms. The

-.aare of the computational algorithms has been altered with the

!'ances in the theor..

• :TCDUCTION

H:gh-intensity sound beams are generated by a transducer in a

baffle, provided that the frequency is sufficiently high that the
axia: wavelength is much less than the radius of the transducer.

-- ~O IN,---
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Fig. 1. Measured nonlinear waveform [i].

in conventional one-dimensional waves, nonlinear effects are asso- There a

ciated with harmonic generation that distorts the waveform, ulti- -n Incr

mately leading to the formation of shocks. Both effects deplete aporoxi

the fundamental frequency, leading to decreased intensity at a Spheric

specified range. Unlike the one-dimensional case, the signal ra- z -

diated by a transducer displays diffractive effects, even in the

linear regime. The interplay between diffraction and nonlinearity

leads to distortion phenomena that are different in the compres- Qu

slon and rarefaction phases. This phenomenon is depicted in Fig.

1, which is taken from the experiments of Browning and Mellen [Li.

A wide variety of analytical techniques, both analytical and num-
Inte--r

erical, have been employed in investigations whose goals range
Green'

from evalu.ating second harmonic amplitudes to predicting wave ftr, s.
s spe c,- .

T.ne latter is far more demanding, because it requires accuracy in
the predicticr of the phase, as well as the amplitude, of the

harmonics.

I. LINEAR MODELS
whe ro

The 'cw- ntensitv si<,nal radiated by a harmonically vibrating. ... X. The
transducer embedded in an infinite planar baffle has received ex-', " On tn
!wnsie attention. Exact solutions for the signal at an arbitrary

lcatin are availaole in auadrature form only, but approximate
' formu-ie, are v,,LLaLe for some re,:-ions, nctabl'y the field far

diame
from tne transducer. The analytical difficulties are attributable

spect
to the effects of diffraction. When the transducer vibrates as a gral t
piston, the velocity discontinuity at the edge leads to spatial g t

ducei
fluctuations in the siqnal level. At a sufficiently high frequen-

cv, ka ', where a is the piston radius and k -/c 0 is the
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wavenumber for a (linear) planar wave at frequency w in a medium
whose speed of sound is c0 , one obtains a sound beam. The strength

of such a signal is essentially confined to a region very close to

the axis of symmetry. Near the transducer, the overall wave motion

* seems to be planar, with varying intensity along wavefronts. As

the wave propagates, one encounters a transition to spherical

propagation.

An exact expression is available [2] for the amplitude along

the axis of symmetry of the beam radiated by a piston. If cc0 is

the peak velocity of the piston, then

p= 2Eo0 coI sin [k(vz
2

+ a7 - z)/2] I (i)

are asso- There are nodes and anti-nodes that become increasingly separated

u- - with increasing distance from the transducer. The last node occurs
approximately at r0 = ka

2 /27, where a is the piston diameter.

at a Spherical propagation is well-established at the Rayleigh distance,

na r- z = ka2 2. The near field fluctuations increase with increasing
in tne values of k, corresponding to decreasing spatial scale. The sig-
ineari'ty nal off-axis shows comparable behavior.

Quadrature solutions for the linearized signal of an arbitrary
- axisymjnetric transducer have been derived from two viewpoints. One

'Ien •may consider the moving face of the transducer to consist of a

distrbution of sources, which leads to the Kirchhoff-Helmholtz

integral theorem. The method of images leads to the appropriate

anfor7s .!=n's function for a semi-infinite half-space, which is then
'seclaaized to the case where sources are distributed along the

Iiane. he result is known as the Rayleigh integral [2].f the

p x,t = - - r v(s) exp[i(kr - t)] dS (2)
2 S r

-.ere r is tne distance from a point on the plane to field point

X. The fnction v(,) represents the normal velocity distribution

:n the planar boundary S.

A less oL-ious treatment, attributable to King [3], regards

f:.e nflnite half-space to be a circular waveguide of infinite

2=a'eter. -he eigenvalues of such a system lie in a continuous
s pectrum, at te mcde superposition corresponds to a Hankel inte-

3S a
r transform. Let V denote the Hankel transform of the trans-

.-rer velocity distribution v(R). Then, the pressure is found

tne inverse transform,
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r nV
="2 n c exp(iwt - unkz)J 0 (nkR) dn0 P =c 0 0 ]0 'n

where (z,R) are cylindrical coordinates, and W is the nondimen- Wh I

sional axial wavenumber,

S( - n2 )1/ 2  n < 1-::: n =  2 1/2

(n - ) n > 1 Note

haThe spectrum n > 1 represents evanescent waves, whose contribution

is negligible at a few multiples of the transducer radius.

The King integral is more efficient for numerical evaluation

of the near field, because it is a single integral. However, its

integrand oscillates rapidly as a function of n when either z or R and
is large, which raises the number of integration sub-intervals.

Also, the King integral is limited to axisymmetric situations.* The Rayleigh integral has proven to be more amenable to analytical
approximations in restricted regions, such as near the axis of the

sound beam, but the King integral representation, which uses separ-

able wave functions, has advantaqes for estimating nonlinear The

effects. a

!I:. NEAR FIELD PERTURBATION ANALYSIS a

The field equations employed in analyses of finite amplitud- e

* effects may be formulated in terms of a velocity potential . t

Assuming an isentropic process in an inviscid, compressible fluid, an

soatial and temporal derivatives of Euler's equation, with the

convective nonlinearity retained, yield an exact equation for

wn:n c dp dL appears explicitly. In a linearized formulaticn.

tnns derivative is evaluated at the ambient conditions, so it is 4
the square of the conventional speed of sound. However, a nonln-

ear formulation requires that c be evaluated at the current pres-

sure. For a first approximation of nonlinear effects it is per-

missible to expand the pressure-density relation in a power series

*that is accurate to the second order,

2- 2  +
~~~~~p = +)~Lo a l~o +.. /o

0 ~I oL0310

where J' is the density perturbation. Substitution of Eq. (5) in-

to Kelvin's equation yields an expression for the pressure as a

function of velocity potential, ,
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= o Q[{+3} 2 -(6)(3) POV( (6)o 
+  OL

which when combined with Euler's equation leads to

2 2 ao 2+a(7
-:).L 2(3 0 - 1) 7 at -L7-V 7

at
2  0 t

(4)
Note that the position variables in this nonlinear wave equation

have been nondimensionalized by the reciprocal of the axial wave
tion

number k, and time has been scaled by the frequency.

The first consistent analysis of nonlinearity in sound beamsa tion
was performed by Ingenito and Williams [4]. They simplified Eq.'ts (7) by assuming that the one-dimensional relation between pressure

)r R
and particle velocity holds, p = Pcvz. Expansion of the potential

in a perturbation series,

:cal = 1 + ( 2 2 (8)

ar-led at the first order to the equations for the linear problem.

They used the Rayleigh integral for the first order term to gener-

ate a Helmholtz equation for the second harmonic, in which the

quadratic nonlinearity appears as inhomogeneous terms representing

a spatial distribution of sources. Ingenito and Williams identi-
fied the portion of the second order solution that predominates in

the near field, provided one is not very close to the transducer

and ka is very large. Their solution was obtained by using the
free space Green's function, thereby ignoring the portion of the

,reen's function required to satisfy the boundary condition at z =

The solution has the form of a volume integral over the second

irier sources, in which rational approximations were used to sim-

_he Green's function contribution. Only the second harmonic

s- along the axis of symmetry was evaluated, but Rogers (5] made com-
r- parable approximations to obtain a representation of the signal

.f-axis.

The results of this formulation matched well with measurements

a domain that is neither very close to the transducer, nor out
w5,were the propagation has spherical characteristics. There are

limitations to the analysis, in that it describes only very

5 in- . frequency sound beams, and it ignores the energy depletion in
3 the fundamental harmonic that accompanies the formation of higher

narmonics. The latter difficulty appears in a mathematical con-

as a perturbation solution that loses validity at long ranges,
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* where the smallness assumption for the perturbation correction is v. .ODIFI-

violated. A pr

IV. SPHERICAL PROPAGATION MODELS pation t

A different approach was taken by Lockwood, Muir, and Black- leads to

wood (61 in order to develop a model that could describe the far which is S,

field. They used an earlier solution for nonlinear spherical waves was deve>--

with directivity, which is dependence of the signal level on the and then

polar angle. This model is limited by the assumption that the .just make

. transducer drive level is sufficiently low to ignore distortion namicaL e,

out to a radial distance rd in the vicinity of the Rayleigh lenath.

The signal at that location may then be described by the far field scales. L
approximation, The ax:.

p = 20 c0 2kaD() -
a 

sin(krd - _t) (9)
r wave -

where D(-) is the directivity factor,' ~_ e 0 !-:

2J1 (ka sin ,) 10

Ka sin* er -

Using the pressure at the transition distance to drive a finite

amplitude spherical wave leads to an algebraic equation for the

pressure beiond the transition,

kaD(H) sin'wt - k(r - rd  + S0(.r

00 r d d

This expression may be solved numerically by the Newton-Raphson

methnod for the pressure at any instant and location. A closed

form Fourier series expansion of Eq. (11) was obtained by exploit-

in- its similarity to the solution for a planar wave.

The primary difficulty with this formulation is the restric-

tion to signal levels that are sufficiently small tD suppress non-

linear distortion in the near field. Many applications require at 'he

consideration of substantial near field distortion. A less obvious

limitation of the theory is its prediction that higher harmonicsj 4 t is t

are in-phase with the primary. Thus, the assumption of spherical ctained

propagation leads to a model that cannot reproduce the asymmetri- 'nth

cal waveform in Fig. 1. Th

emp >viyej

et al.
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on is V. MODIFIED BURGERS' EQUATION

A prototypical model combining nonlinear distortion and dissi-

pation for planar waves is Burgers' equation. Part of its attrac-

tion is the availability of the Weiner-Hopf transformation, which

::=k- leads to analytical solutions. A comparable model for sound beams,

ir which is sometimes referred to as the paraxial Parabclic e-uation,

1 waves was developed by Zabolots.aya and Khoklov [7] for the ideal case,

ae and then rederived by Kuznetsov [8] to include dissipation. One

must make several assumptions to obtain it from the basic hydrody-

ion namical equations. The planar wave assumption is invoked, p

I ngth. c 0v z, but more severe are the assumptions regarding the spatial

ield scales. Let c - I be the acoustic Mach number at the transducer.

The axial wavelength defines the shortest scale, which is taken as

u(1). The longest scale is taken as the distahce at which a planar
(9) wave would shock; that scale is O(c-) . Diffraction is then as-

sumed to occur over an intermediate scale, which is considered to

be 0(-'
1 / 2  

The corresponding dependence of the pressure is p =

p(t - z/c0 , 1I/2z 1,12 R,Ez). By collecting terms having like or-

ders of magnitude, one obtains the modified Burgers' equation,

2 2 3 , 2r 0  212
ec0 14 7 4,r - (p2 (12)

0 - d3

2
were = t - kz, = zr 0  t is the transverse Laplace operator,

) : is an absorbtion coefficient, and ,d is the distance at which a

;riform planar wave shocks.

Due to the assumption that the only 0(l) scale is t -zc 0 ,

the equation is only suitable near the beam axis. Even there, it

sh uld not be applied much closer to the transducer than the farth-
• ; oit-

tH- antinode, because diffraction effects in the true near field

,c=ur over a very small scale. Less apparent is the planar wave

ssntin, which is alsc imposed cn the boundary. Consequently,
n, nn-

tn transducer, for which there is a velocity discontinuitl
e

S*::e, is replaced by a discontinuous pressure distribution;

r <--=-n from the latter excitation is significantly less than
cs

cal. for an actual piston. Indeed, the fundamental frequencyScal
* 'ioe frtn. L.. (IZ does not match that obtained from Eq. (1)-etri- .etri limit as - J, except in the far field.

Tn Soviet analyses for a transducer vibrating harmonically

z.yed the finite difference simulation described by Bakhvalov

......... . The domain for the difference mesh was z - 0,
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0 1 t - z/c0 a 27, 0 a R(l + z/W) W, where W was selected to By it

make the domain extend beyond the width of the linear beam. Re- physical

sults obtained from this formulation agreed qualitatively with the same

measurements, in the sense that the asymmetrical features of the accurate,

distortion in Fig. 1 were found. However, no evaluations were dependen

performed for the parameters of prior experiments, which led t- tance, i_

conjecture that the finite difference program might suffer from The

instabilities. Also, the computational demands required to model sibility

the space-time grid seemed to be exceptional. solution

Another approach to solving Eq. (12) has been developed re- pie, sUpp

cently by Aanonsen et al. [10]. They exploited the periodicity 3f siihtl'

the signal to expand the pressure in a Fourier series whose ampli- the two

tudes are position dependent. Substituting such an expansion leads ences wc.
to coupled partial differential equations for the amplitudes, there- grid

by removing time from the equations to be solved. These equations h

I could only be solved numerically; an implicit backward difference
formula was used for the axial variable. The transverse variable the Sec

was modeled by central differences over a closed domain that is scectr'z
! sufficiently large to carry the main features of the linearized ter '3

signal. In comparison to the earlier formulation of Eq. (12), the
foregoing gained by removing the time grid, at the expense of solv-

ing coupled partial differential equations. The computer programs

required to evaluate the signal placed severe demands on the avail-
able resources, but numerical instabilities seemed to be less of a

problem. Results for amplitude levels seem to compare well with

far field measurements, but comparisons of waveforms with experi-

ments were not made.

VI. NONLINEAR KING INTEGRAL cntal

Parallel to the foregoing developments, significant progress

had been made toward derving a general approach for implementing

singular perturbation theory in acoustic wave propagation. The

starting point for the approach is similar to Ingenito and Williams,

in that one must obtain the second order potential corresponding

to the wave equation (7). Because the medium is nondispersive,

some of the first order harmonics, which form the source terms for whe re
the second order terms, propagate at the phase velocity of second
order modes. This produces secular terms in the inhomogeneous

linear wave equation governing '2' much like the situation in a

nonlinear oscillator. As a result some, or all, of the terms form-

ing 2 grow with increasing propagation distance.



Finite Amplitude Sound Beams 411

Lo By itself, such growth is not necessarily incorrect, but the

Re- physical variables derived from the perturbation potential show

Sthe same behavior. Such a perturbation solution is not uniformly

the I accurate, in that the magnitude of the perturbation correction is

ore dependent on the position. Indeed, at a sufficiently large dis-

2 :o tance, it would exceed the magnitude of the first order solution.

-rom The growth effect may be explained if one considers the pos-

model sibility that the independent variables chosen to represent the

solution differ slightly from the physical coordinates. For exam-

ci rp- ple, suppose the wave depended on a spatial grid that was stretched

city of slightly from the Cartesian coordinate system. At the beginning

mpli- the two representations would appear to be alike, but the differ-

on leads ences would grow as the distorted grid diverges from the physical

*. there- grid. This concept leads to the method of strained coordinates.

tions The basic solution for a sound beam was derived by Ginsberg

erence [111. The analysis began by using the King integral to generate

rialo the second order source terms, which become integrals over a dual

5s spectrum of transverse wavenumbers. The general form of these

i ed terms is

t2)h, te . 2

solv- 2 4 7(m,n) exp[2iwt - (Pn + )Z]2 t 2  noo0

rograms
:e aval!-J0 ( R )  

J0 (UmR)
avail 0 n 0 m dm dn (13)
of a Jl(nR ) J (PmR)

with

,xcer;.- Asymptotic representations of the Bessel functions lead to expan-

sions of the signal near the axis (R << 1) and far from the axis

(R = 0(l)). The latter was shown by Miao and Ginsberg (121 to

contain the inner solution, so the discussion will focus on the

7 ress off-axis region. The smallness of l/R there leads to a solution

-entlng for :2 in the form of two dual Hankel transforms,

-he

iliadS, 0, A (z) exp(21 t - (, )z R) J ( R)
0 j.ng n "00 nn

7--e, 0( n
R )  

J 0(mR)] dm dn (14)

s for
owere the amp!itude functions A (z) must satisfy the following dif-

ferential equation.

A -
2 n Am I A (mjnA (m,n) (15)

rrs forr-
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The complementary solution for A. contains one part that cor- c3e SI

responds to waves propagating inward from the far field-these ignore th

must be discarded in order to satisfy the radiation condition, its evane
The particular solutions for the A. are independent of z. The substantia-

solution is fully defined when the condition that there be no non- in crde

linear radiation from the boundary is satisfied, wave num

This seemingly simple recipe for constructing 2 overlooks the integr:

the presence of a qingularity at m = n, where 3l vanishes. In con- The alger

trast to the situation where m # n, the particular solution for A1  tion rule

when m = n is proportional to z. As z increases (increasing dis- Inate

tance from the transducer), the contribution of the region around Raphscn s

m = n grows due to the interaction of a harmonic at a specified ccordina,

waven,umber with its neighbors. This effect is the same as the tne nulate00
cumulative growth effect encountered in earlier studies of harmon- of poiet

ic generation. In contrast, harmonics that correspond to substan- te r of

tially different transverse wave numbers uestructively interfere. tance

This process is evaluated maLhematically by integrating Eq. (14) at the

asymptotically using Laplace' ,lethod, which is a straightforward the ThflJ

extension of the method of stationary ohase. tions -f

The result of this procedure is to reduce t2 to a single in-

tegral. The evaluation of the pressure signal after 2 has been c '-
evaluated follows comparable steps to those for simple acoustic ivte:ra.

waves. Expressions for the second order pressure are not uniform- ticna

ly accurate, due to the growth of 2' Coordinate straining trans- wh~:h a

formations are needed to regularize the expansion, with the new U: 2se re
feature that the transformation must depend on the transverse wave ate

number. The resulting expression was termed the nonlinear King reat
integral, because it differed from the linear analog only by the or 7.cr".

replacement of the physical coordinates by their corresponding -

strained coordinate. The specific result was r..
2 nVn

p 2 n*__n exp(it - .n[) J 0 (n) dn + C.C. (16)oc ni 0c

where C.C. is used to denote the complex conjugate. The variables

;- and A are strained coordinates whose values are obtained by solv-

ing the following pair of coupled transcendental equations. tat te'
was !:a

z = + [a 0 nVnH(z,n) exp(it - n') + C.C.) J 0 (nx) (17) n ' e

R = i - fi-E 0VnH(Z,n) exp(it - n, + C.C.] J (na) This ne

where H(z,n) represents a function that approaches (z/ 3)1/2 for
arelarge z, but is finite for n I (, ( n  0) .p =

lo
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One simplification in evaluating Eq. (16) is the ability to

ignore the nonlinear contribution of the spectrum n 1 1, due to

its ev~nescent nature. Nevertheless, numerical evaluations are

substantially complicated by the need to solve Eqs. (17) for a and

)n- in order to determine the value of the integrand at a specified

wave number. This complication is compounded by the dependence of

the integrand on n, which is highly oscillatory when z is large.

ron- The algorithm that was developed used a Gauss-Chebychev integra-

Dr A1  tion rule to remove the 1/u n singularity. Evaluation of the coor-

dinate transformation was achieved by using a coupled Newton-

i d Raphson scheme based on an initial guess that equates the strained

ed coordinates to their physical counterparts. An empirical rule for

the number of integration points was found to be that the number

)n- of points should exceed the nondimensional distance from the cen-

stan- ter of the transducer. This is quite prohibitive, since the diz-

tance is quite large for most situations of interest. For example,

at the Rayleigh length marking the onset of spherical propagation,
2

,ward the nondimensional value is (ka) /2, where ka > 40 for most situa-

tions of interest.

n- An important property of the nonlinear signal is its frequen-

c'enc content. Evaluation of such information for the nonlinear King

integral was achieved by computing the signal at a selected loca-

r7- Ition at man,. equally spaced intervals covering one period, after

_ jns- which a discrete Fourier transform disclosed the amplitude and

phase relative to t-he fundamental of higher harmonics. Unfortun-

ave ate', t he need to evaluate Eq. (16) at a succession of instants

n.reatly multiplied the computational time. CPU times of 2 minutes

or more were not unusual on a CDC CYBER 785.

Tnis situation greatly improved with a recent derivation per-

7-roeo cy Miao and Ginsberg 12'. Rather than straining two phys-

b-a cocralnates, the analysis decomposed the wave at each wave

into two irteracting one-dimensional waves. The tech-

:e used for that ste : was the same as that b. which a nonulanar

--2 in a rectangular duct may be decomposed into planar waves

off the walls. The advantage of this representation

' e that each wave is a function of only one phase variable, so

17. .. .. . .".ne strained coordinate need be introduced for each wave.

7new reo:resentation was

for 2 nV n 2 + ,(nR) 2]I/2Lccs cos dn

• 0 c (18)
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where the phase variable j for each wave is a strained coordinate

that is related to the phase . of the linear signal by a single

transformation equation. These variables depend on R only through

two phase angles A and 6, with the transformation equations having

the form

_ j = t - JnZ A = j - 2 :00 H(z,n) cos(& 5 :5) (19)

The phase of the individual waves is a periodic function of

only one transformed variable. This is analogous to the situaticn

for planar waves. The resemblance suggested a Fourier-Fubini

series expansion for the contribution to the fundamental and high-

er harmonics corresponding to each transvers -,,ve n,',mber n. In-

tegrating over the spectrum of wave numbers yielded a temporal

Fourier series for the amplitude and phase of each harmonic, whose

coefficients are King-type integrals. In other words, the new

formulation replaced a single integral, Eq. (16), whose integrand

was known implicitly through a coordinate straining, Eq. (17), et

with several integrals whose integrands are known explicitly. The

gain in computational efficiency was found to be enormous-in most

cases CPU time was reduced by a factor of 30 or more. c

The results of th.s analysis have been found to be very accu-

rate outward from the last antinode. Figure 2 compares a waveform

measured by Moffett [131 with the digitized prediction of the - -

theory. The propagation curve in Fig. 3, which depicts theoreti-

cal harmonic dependence on-axis, compares the prediction with

measurements made by Moffett [14] on a prior occasion.

o 2 *0-."

-. -2

•0 I 2

time (t/2r)

Fig. 2. Waveform on-axis at 10 meters, ka = 64.3, source level = Fig.
234 dB//l .Pa. - , theoretical; .... [14). the
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mos t The theoretical predictions for this series of experiments

shows an interesting trend in regard to the phase lag of the har-

accu-nncs relative to the fundamental. (Phase measurements were not

~ eform Male b, '.,i1offett.) As shown in Fig. 4, each harmonic tends to lag

reltiv totepeceding one in the region outward from the

p et:. fart!host maximum in the fundamental amplitude. In contrast, the

~CN

0 4000 8000 12000
Axial distancte (nondim.)
Axial distance (nondim.)

~vlFic;. 4. Axial variation of phase of higher harmonics relative to
,the fundamental, same Parameters as in Figr. 3.
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harmonics are more or less in phase inward from that location.

This seems to be a consea uence of the 900 shift that a linear sia-

nal undergoes in the transition from near field to far field prop-

agation. Another significant feature is the rapid change in --e

relative phase angles at the farthest null of the fundamental.

.his is a consequence of the 1801 inversion the fundamental under-

ooes at a null, while the ohase of the higher harmonics o~hano:es

soothly. Note that the term "null" is used loosely to descrie

th deep -in in nne fundamental, because nonlinear eets Seem

- eave- residual, e%,en t.nough the linear signal van-ishes.
Some -_er-ial oealn still remain. in the recion .et:.

to an transduc-r, fo)r 2xample at one tentn the 'Ravlein

ou .a-le -.rowth effects associate wit seu rtv
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The overall signal predicted by this combined model is interfaced with

a nonlinear propagation model for spherical waves with directivity.

The transition between the models is performed at the Rayleigh length

for the second harmonic. The results indicate that a modest gain in

the level of the farfield fundamental signal is possible, depending on

the limitations of the transducer.
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FINITE AMPLITUDE PLANAR WAVE

PRE- SHOCK CONDITION

EARNSHAW SOLUTION (1859)

BOUNDARY EXCITATION: v - ecof(t) at x - 0

IMPLICIT FUNCTIONAL FORM:

v(x, t) - fcof(t - x/c)

where

C- C + o - ) (Y+1)/(-y-1)

SMALL SIGNAL APPROXIMATION

f<< - p - poCov - fpoC 0
2 f(t - x/c)

C co + Oov where -0 - i ( 7 + 1)

2



ALTERNATIVE IMPLICIT FORM

p - epoc 0 2f(t - a/c0 )

COORDINATE STRAINING TRANSFORMATION

X - a + f Po0 x f(t - a/ca)

SOLUTION TECHNIQUES

i. FUNCTIONAL INVERSION - for spatial waveforms:

Fix t. Select a value of p (i.e. f). Solve for x.

Increment p and repeat.

2. GRAPHICAL METHODS - follow characteristics

3. NU -MERICAL METHODS - Newton-Raphson, etc.

4. SERIES EIXPANSION -for harmonic f(t)

3



SOLUTION OF FUBINI-GHIRON (1935)

p - EPOC 0
2 

1P p(a) sin[n(cwt - kx)] ; k - w/co
n-i

p -J (nc) ; a <Pn -na n

where a is the distance relative to shock formation,

a - co kx

QUESTION

IS THERE AN ANALOG TO THE FTBINI-GHIRON SOLUTION FOR

TRANSIENT EXCITATIONS THAT ARE DEFITNED IN THE FREQUENCY

DOMAIN?

4



FOURIER TRANSFORM VERSION OF

SMALL SIGNAL APPROXIMATION

INVFRSION TO RECOVER THE INPUT:

f(t) - F(w) exp(-iwt) d

REPLACE f(t) IN EARNSHAW SOLUTION

2 F() exp[-iw(t - a/c,)]P -2' poCo 2 fI
Go

where

x - a + - fx F(w) exp[-i(wt - ka)] dw

2x 0



PHASE VARIABLE REPRESENTATION

REPRESENT F(w) IN POLAR FORM: F - -Iv(w) exp[iO(w)]

DEFINE PHASE VARIABLES:

o(w) - W(t - x/co ) - 8(w) ; (W) - W(t - a/c o ) - o(w)

COORDINATE TRANSFORMATION:

(w) - (e) - Pokx V(A) exp[-i (A)] dA

- Rokx f V(A) sin[ (X)] dA

PRESSURE INTEGRAL:

p- 1oC o 2 V() sin[ (w)I dw

6



BASIC PROPERTIES

If (t) corresponds to a specific (w), then

1) (w) + 2x corresponds to 6 (w) + 2x,

2) - (w) corresponds to -@ (W).

FOURIER SERIES

From 1) and 2), sin(Q) may be expanded in a sine series.

sin[r(w)] - 1 a (w) sin(no(w)]n
n-i

where

FORM 1: a 2 - sin[ (w)] sin(nw(w)] dn(w)n WJ 0o

INTEGRATE BY PARTS & ELIMINATE (w)

7



FORM 2: an(w) - Cos

-Io Jkx V(A) sin[.(A)] d] cosG, l dO(w)

SPECIAL CASE - MONOCHROMATIC EXCITATION

V(W) - V O 6(w - () -> FUBINI SOLUTION

ARBITRARY FREQUENCY DISTRIBUTION

Cannot integrate over frequency domain because

relation between (w) AND (A) is not known

USE FOURIER SERIES TO ELIMINATE (w) IN FORM 1.

()() + OK [G0()]]
an( 0;A n-i

× sin~no(u))] dO(w)

where

G [#(w)]n- fV(A) an(A) sin[(A)] dA]

NOTE: O(A) - -(w) + -8(W) - (A)

PRESSURE

p -poco 2  1 G[ (w)]
n-i

8



ITERATIVE NUMERICAL ALGORITHM

1. DISCRETIZE FREQUENCY DOMAIN - INTEGRAL BECOMES A SUM.

2. DISCRETIZE PHASE VARIABLES OVER 0 < 0 <

Converts O(w) to 0I(w )

3. INITITIALIZE USING LINEAR THEORY: a (w) - 61

4. FOR EACH w.:
-J

(A) EVALUATE G n[ I ()] FOR EACH I AND EACH n BY

NUMERICAL INTEGRATION.

(B) EVALUATE NEW iTERATION FOR a (wj) BY NUMERICAL

INTEGRATION OVER DISuRETIZED VALUES OF O(w).

5. CHECK FOR CONVERGENCE BY EXAMINING PRESSURES - RETURN

TO STEP 4 TO CONTINUE ITERATION, IF NECESSARY.

THIS IS AN INEFFICIENT PROCEDURE.

IT IS UNNECESSARY FOR PLANAR WAVES.

9



GENERALIZATION FOR DISPERSIVE WAVES

FOURIER SPECTRUM OF WAVENUMBERS:

p poco 2 F(k) exp ik[ar(k) - c(k)t] dk

WPOP a(k) IS A STRAINED COORDINATE THAT VARIES WITH

WAVENUNBER. FOR EXAMPLE,

x - a(k) + 4Eo0 x F(kA) exp iA[a(A) - c(A)t] dA

NOTE: F(kA) IS A MUTUAL INTERACTION FACTOR BETWEEN

WAVELETS AT THE RESPECTIVE WAVENUMBERS.

1.Il%



RELEVANCE TO SOUND BEAM

LINEAR KING INTEGRAL:

p - f 90 C0 
2 f G(n) exp iL)A(n)z - w]IJ 0 (nR) dn + cc.

QUASI -CONICAL WAVES:

1
J,(nR) - 1 [Jo(nR) + i J,(nR)] + c.c.

-1 Q(nR) exp[iA(nR)] + c.c.

TWO GROUPS

P - pI+ pII

P - PoC02 G(n) Q(nR) exp i[(n)z

± 6(nR) - wt]J dn + c.c.

ii1



NONLINEAR ANALOG (GINSBERG, MIAO, & FODA, 1987)

P- lepO o - G(n) exp i[A(n)o (n) ± A(nR)

- wt]] dn + c.c.

COUPLED COORDINATE TRANSFORMATION

z - c (n) - f {A(n,m) exp i.(m)aI(m) - (mR) - 1Cj

+ B(n,m) exp Ii[x(m)orIi (m) - A(mR) - w)I+ C.C.}I dmi

Similar form for aII(n)

NOTE: A(n,m) governs interaction WITHIN A GROUP

B(n,m) governs interaction BETWEEN CPOUPS

12



CONCLUS IONS

1. IT IS POSSIBLE TO EVALUATE ARBITRARY PLANAR ACOUSTIC

WAVES ANALOCOUSLY TO THE FUBINI SOLUTION.

2. FINITE AMPLITUDE RADIATION FROM A PROJECTOR IS AN

INTERACTION PROCESS BETWEEN FINITE AMPLITUDE

DISPERSIVE WAVES OF SIMPLE TYPE.

3. THE ANALOGY WITH THE FORM FOR PLANAR WAVES SUGGESTS A

METHOD FOR EVALUATING THE COORDINATE TRANSFORMATIONS

FOR A SOUND BEAM.

13
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NONDIMENSIONAL PERTURBATION WAVE EQUATIONS
AND ASSOCIATED BOUNDARY CONDITIONS

v20 k1 2 2 0 1_0
- =07t-&t2

v 202 - k 20a2 2 = k 2(. - 1)0¢ V2¢1 + a Vl. O7

k = Lw'/co

" Zero particle velocity transverse to the walls

* Excitation of the fundamental symmetric(2: 0)mode

I = -EW12 sin(t) cos(27rx)

t = V0 and E = o(ji'/co)



DECOMPOSITION OF THE LINEAR MODE SOLUTION
INTO A PAIR OF OBLIQUE PLANAR WAVES

=l W12s(A2 Z-t) cos(27rx) + (0)expA12

A12 = [ .2 - (27r)2]1/ for k > 27r

- Aexp[ik(xsinO+zcosO t/k)]+c.c.

where
A-1 12 and 6= tan- 1(2)

4 A12

z



DISTORTION EFFECTS OF PLANAR WAVES REFLECTION

x
AN

N

N

.4/ "

(02 )ref i7IA I" l'exp"i)k(Z2 - t/k)1

Nonlinear interaction:

NSW~ e i2k(-- cos O-tlk)

where

z, = xsinO0+ zcos, Z2 = -XSin0+ z cosO



REFLECTION PROCESS

The wave reflected at B:

(Tj=-e i(z - tl/k ) + E2BS~e i2 k(1 ,-t/kN + C.C

The wave reflected at D:

= 'k(: 2 -t/k) ± zSe2 k(z,-/A') -HC.C.

A

C 0

.4, 43

'00, kBA



SOLUTION BEFORE RENORMALIZATION

S1 = S2 = zsecO

~(X. zt) (X q5 1 (.t) + Orv (x, Zt)

=0 E5(X. Z.t) + E c2 O (X.Z. t)

where

Pi A12 cos()A12z - t) co-s(2-7rx)

P2 -k 1 32 f A 2 t)] cos(47-rx)



RENORMALIZATION PROCESS

Vi, VIV= 12
o~z, 9Z2

Near identity transformation

Z1= 131 + 'ES, Z,(/31 t), Z = /32 + 'ES2 Z2 (032,)

Uniformly valid approximation
F, = 2EkA 1 sin(k31 - t). = 2ckA sin(k/32 - t)

where 4B
Z= -- 31 + 4-B Sl sin(k/31 - t)

kA
4BZ,- = /2 1 E - S2 sin(k0 2 - t)

kA

Paradox:

Individual wave distortion is scaled by travelling distance

along propagation path of each wave(S 1 or S 2). But mode

solution indicates that distortion only depend on axial distance

along the waveguide.



COMBINATION OF TWO SET OF NORMALIZED
PLANAR WAVES

? =.L ) 11 L sin 6, = 11  T, £Cos 0

(virv)x = iv - t sin 0, =VI) Vl. iL) Cos 0

=(1?.r)x + (t'ily>

-2ekA sin 0[sin (ko- t) -sin(k,3 2 -t)]

t7,= (7'1i)z + (vi-)z

-2ekA cos 0[sin(k/31 - t) + sin(k,32 - 0)]



THERE IS NO PARADOX!

Near identity transformation of mode solution

x= a +EX(ckft), z =8 + ez(a, ,t)

Coordinates transformation

z1 = xsin +zcos0. z 2 = -x sin 9 + z cos O

/31 =a sin G +/3 cos 0, 3 2 = -a sin 0 +/3 cos 0

x = (1/2 sin )(z, - z2 ), z = (1/2cos G)(zl + z2)

Uniformly valid particle velocity

,V = (27) A2 cos(A12/ - t) sin(27) + 0(e)

V- = 'E4'12 sin(A12f3 - t) cos(27ra) + O(E2)

x a ++1 k 4  x
16ir 2 A12

-y+l k4

z= + 4 ZV-



SUMMARY

* Rays behave as simple planar waves undergoing

amplitude distortion

* Phases of fundamental and second harmonics de-

pend on distance measured from the origin

* Distortion is proportional to total propagating

distance from source to field point

* Amplitude along the wavefronts is not constant

but phase is comstant corresponding to each group of

rays

* The ray solution is the same as a modal descrip-

tion of the wave propagation using separation of vari-

ables technique

* The total distortion process is scaled only by the

axial distance along the waveguide
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OBLIQUE REFLECTION AND MODE CONVERSION OF NONLINEAR

) t - -"" ( DILATATIONAL WAVES AT A PLANAR BOUNDARY

tO ,. USE
"o , O Kun-Tien Shu and Jerry H. Ginsberg

(3 E .i S" O School of Mechanical Engineering
O Georgia Institute of Technology

C *)O *Atlanta, Georgia 30332

I. INTRODUCTION

Because of the presence of nonlinearity in the equations of
motion, the propagation of an initially sinusoidal, finite ampli-

tude dilatational wave in a solid is accompanied by the gener-
ation of higher-order harmonics, corresponding to waveform dis-
tortion. Even under the simplification of linear theory, the

reflection of planar stress waves at an interface is more compli-
cated than the reflection of an acoustic wave in a fluid. Multi-
ple stress and displacement conditions must be satisfied at the

reflecting boundaries. Correspondingly, incidence of either
dilatational waves or vertically polarized shear waves will
result in mode conversion between these two types of wave. For

example, P waves incident upon a stress-free boundary will re-
flect as SV waves, as well as P waves. Since such reflections
play an important role in a variety of ultrasonic testing tech-

niques, it is necessary to consider how nonlinearity affects mode
conversion.

The problem of one-dimensional finite-amplitude elastic

waves at normal incidence to a stress-free boundary was studied
by Buck and ThompsonL in 1966, based on a one-dimensional equa-
tion of motion for the Lagrangian displacement. Their analysis

indicated that the amplitudes of the higher harmonics in the
reflected wave should decrease due to phase reversal in the
reflection, with the eventual result that they would vanish when'

the wave returns to its source. Van Buren and Breazeale2
'3

treated the reflection of finite-amplitude ultrasonic waves by
assuming there is no coupling among the harmonics.

Studies of the reflection of obliquely incident finite
, -. , - amplitude waves have been limited for the most part to acousticO !~waves in fluids. The first study of a two-dimensional reflection

6 01 problem was performed by Feng
4
, who considered finite-amplitude

) ( ld sound waves upon reflection from a rigid wall at oblique in-
cidence in the special case where the angle of incidence is 45

°

06 --- " J

: - : __n____________________________n_______m___llmn
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Much later, Qian
5 

extended Feng's work to the arbitrary, two-
dimensional reflection problem. He found that nonlinear interac-
tion of the incident and reflected waves produces a new type of
constant magnitude second harmonic wave that propagates parallel
to the surface, which he named the Q-wave.

In this paper, we consider all possible sources of accumula-
-- tive effects in the propagation and reflection of nonlinear

-dilatational waves in an elastic half-space. Evaluation of
O. 0 t nonlinear self-actions and interactions between incident and

* reflected waves is the main objective of this paper. In addition

C; G to nonlinear accumulative effects associated with self-action of
the P waves, other types of non-growing second order effects are
shown to occur, including the analogy of the Q-wave.

oII. EQUATIONS OF MOTION

. In the absence of body forces, the Lagrangian equations of
O- motion for adiabatic dynamic deformation of an elastic solid are

6

-p.(c
2 

- C2)u.. - p.c
2 U. + (A + 2

i'tt p s i s ,mm4 4

x(un,mun,im + ui,mun,n) + (A + 1)un,nu. + (A +4

x(u u +2u )u +
n,i nm m,n i,mn

+ 
ui,nUn,mm 4( 

+ 
O)Un,nUmmi

+ 1( + 3n)(u u . + u .u ) (1)
4 m,n nim njm m,on

where the summation convention applies. The corresponding
stress-displacement equations are

Lj - Au 6. + 1(u i.+.u. + u ++ J n.

3 mim 13 ,. (.1 2 m,nUm,n 8 m, n, j+U + 3m

u1 + f (u u + u u )6 9u4 m,m j,i 8 m,n m,n m,n n,m) ij4 Uj,mum,1

(A + )u u + (A + -P7)( u +u .
+

4 m U ,4 imj,m miUm,j
+ u. u .) (2)1,in m,3

In these equations, u. are the displacement components, X and p

are Lame coefficients, a, 6, and n are third-order elastic con-
stants, p. is the initial density, and c and c are the propaga-

p s

tion speeds of dilatational and shear waves, respectively. The
dependent variables are expanded in perturbation series in a
small parameter e that scales the overall stress level.

u ui I + e
2
ui. 2 + O(C

3
), Lij -e Lij'l +e eLij,2 + O(j

3
) (3)

* Substitution of Eqs. (3) into Eqs. (1) and (2), followed by
0 ( matching of like powers of e, converts the equations of motion

and stress-displacement relations to the following form.

C
0

L4
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a2Q i  82% a
2
Q

t2 (C
2 

- C
2
) C2- c K, (4)

p s 8X 8X s 8X 8x 1X

T % aQi G

(Q ij ax ij x. a i (5)

0 4 where Q represents either first- or second-order displacements
to be determined, T stands for either first- or second-order

ij
I_ * stresses, x, are the Lagrangian coordinates, and the inhomogen-

' eities K, and Gij are zero for the first order, while the second

(J U , order terms are known in terms of the first order results. The
-.analysis of aspecific system involves the solutioon of the per-

turbation wave equations (4) subject to a set of boundary condit-
ions obtained from an appropriate combination of Eqs. (5) and
displacement conditions.

III. REFLECTION AT A STRESS-FREE BOUNDARY

Consider finite-amplitude plane harmonic P waves propagating
in the half-space z : 0. We assume a plane strain condition with
the wave normal I in the xz-plane. If the wave arrives at the
stress free surface in a weakly distorted manner as a result of
nonlinearity preceding shock formation, its displacement may be
written as

u - cAII exp[ik (1.r-c t)] + E2A21(1.r)expri2kp (.r-c pt) ]  (b

where k is the wavenumber of dilatational waves, and r is the
p

position vector measured from the source. The amplitude con-
stants are A, for first-order displacement and A, for second-

order displacement, which is determined in terms of A, by obtain-

ing a particular solution of second-order equations of motion
The second term on the right-hand side of Eq. (6) is an accumula-
tive (growing) wave, which is generated by the self-action of the
first-order incident wave. Let us consider a specific ray,
originating from source A at (x AzA ), that is incident at the

origin on the plane scress-free boundar.

(a) Linear Reflection The linearized reflection problem, which
-is governed by the first order version of Eqs. (4) subject to

homogeneous boundary conditions derived from the first order form
of Eqs. (5), can be solved by using the Helmholtz resolution

Utheorem to decompose the equations of motion and boundary condi-
O 4 tions into a pair of uncoupled problems?. The resulting first-

g - order solutions for stress-free conditions at z - 0 are

O 4 -. +Incident P wave: A I exp~ik (x sin8 - z cosO - ct + b)] (7.a"

O " Reflected P wave: BIm exp(ikp (x sinO + z cosO " c t + o)] (7.b)

, I (
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Reflected SV wave:
CI(-Jxn)exp[iks(x sino + z coso - c t + k p /k s)] (7.c)

where matching trace velocities leads to Snell's law, sinO/sino -

ks/k - , and the amplitudes of the first-order reflected P and I
SV waves satisfy

B I sin29 sin2o - 7
2
cos

2
20 C1 -2-y sin20 cos2o

-C I 4 A sin20 sin2o + 72cos
2
20' A sin29 sin2o + y

2
cos

2
2k (8)

G U £ In the foregoing, - S# zAcos- xAsin8, ks is the wavenumber of

'the SV wave, and m and n are the normals to the wavefronts of the

i ( reflected P and SV waves, respectively.

(b) Reflection of Nonlinearly Generated Harmonics Because
dilatational and shear waves are usually coupled by nonlinear I
terms, the Helmholtz resolution technique is not suitable for the
evaluation of reflection coefficients for generated higher-order
harmonics. Therefore, the second-order displacement equations is

split into two parts through the substitution,

2

ui,2 -1 vi'l (9)

which decomposes the governing equations to

atv. (c
2  

- c
2
) M. . c -vi'v - K I - 1,2 (10.a

I
a2 p s axm ax i  s Xmam i,il

in + 2. - G on z - 0 (!O.bSax- M 6iJ + ax j a xl)- ij,2 I

if terms are collected in a judicious manner, one is led to a
representation in which v. is governed by inhomogeneous equa-

tions of motion (Ki, - 0) and homogeneous boundary conditions.

It will display cumulatively growing terms that become signifi-

cant with increasing propagation distance. In contrast, the

inhomogeneous boundary conditions (Gij 2 - 0 on z - 0) will be

satisfied by vi, 2 , whose homogeneous equations of motion cannot

lead to secular terms in the second-order solutions. Although

- -I such solutions might represent new types of waves, they will

always have small magnitude. It therefore is permissible to
| neglect vi.2 in an nalysis of the dominant nonlinear effects.

Substituting the solution, Eq. (7,) into Eq. (l0.a) leads to

, 4 4

0 - !
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a2V (C2- C2 L~d , !L ! -(A )~ exp[i 2k (x singat 2  p s ax ax. s xax pm I mm

- z coso - c pt + 0)] + (B2 )i exp[i2kp (x sing + z cosO - c pt

" , C + O
) 

+ (C2 )i exp[i2ks(x sing + z cosO - cst + k p/ks )]

O + (D2 )i exp[i2k (x sin$ -c t + 0)] + (E2) expli[(kpsinu

( I + kssino)x + (kscoso - kpcoso)z - 2wt + 2kp 1)

O ( + (F2 )i expli[(kpsinO + kssinq)x + (kscoso + kpcoso)z

S, - 2t+ 2k 01) (11)S ( P
C5 E (The boundary conditions are

* (. av 1  8vil 51
i--- 6. + I(I- i

- 
+ ) - 0 at z - 0 (12)

ax ij ax. ax.m 1

where (A 2)i,(2)i,(c2)i,(D2)i,(E2)', and (F2 )i are function of

The first two terms on the right-hand side of Eq. (11) are self-
products of first-order incident and reflected P waves, respec-
tively. They are solutions of the homogeneous wave equation, so
they are secular terms that generate cumulative g&uwth in the

corresponding particular solutinns. in contrast, the third term
in Eq. (11), which arises from nonlinear self-action of the
firsr-order reflected SV wave, and the last three terms, which
arise from products of two different first-order waves, are not
solutions of the homogeneous wave equation. Hence, they do not
result in accumulative waves. With these observation, it is
reasonable to assume a trial solution of Eq. (11) subject to
boundary conditions (12) as:

Incident P wave:

A 2(x sing - z cos8 + 0) exp[i2k (xsinO - z cos9

- c t + ) (

Reflected P wave:

B 3m exp~i2kp (x sing + z cosO - c t + O)J + B2m(x sing

+ z cosO + 0) exp[2ik (x sing + z cos8 -c pt + (13b

Reflected SV wave:

C3 (-Jxn) expti2k (x sinO + z cosO - c t + k p ,/ks)] (13.c

Self-action of first-order SV wave:

C2 exp[i2ks (x sino + z cosk - c t + k p/k)) (13.d)

O 4 ( 4 Interaction of first-order incident and reflected P waves:
D 2 exp[i2k (x sing - c t + 0)] (13.e)

P P(

0 - (
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Interaction of first-order incident P and reflected SV waves:

E2expji[(k psinO + kssino)x + (kscoSO - kpcosO)z

- 2wt + 2k p]) (13.f)

Interaction between first-order reflected P and SV waves:

F2 exp(i((k psin8 + kssinO)x + (ks cos + kp cos)z

. 2wt + 2k 101) (13.g)

The coefficients having subscript 2 are found by forming par-

ticular solutions of Eqs. (12). The coefficients of the cumula-

tive growth terms are

A2  B2
A 2 2 12A + 24u + a + 60 + 2 4

7
A2 B2 16poC 2  p1p

The other unknown amplitude constants B and C appearing in the
V3 C3
trial solution (13) are determined by satisfying two stress-free

6 boundary conditions. These two equations govern mode conversion
among second-order incident P, reflected P and reflected SV

4 waves. Note that secular terms arise only in the incident and

*reflected P waves as a continuing process of nonlinear self-

action of a P waves on itself. No secular SV wave arises, which

means that shearing effects will never deviate much from their

linear representation. Expression (13.e) is the Q-wave, which

always propagates parallel to the boundary surface.
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I. INTRODUCTION

Nonlinear effects in acoustic waves result in harmonic
generation and depletion of the fundamental frequency level,
which is manifested in the time domain by waveform distortion
ultimately leading to the formation of shocks. Unlike one-dimen-

sional waves, the signal radiated by a transducer displays dif-
fractive effects, even in the linear regime. The interplay
between diffraction and nonlinearity leads to distortion pheno-
mena that are different in the compression and rarefaction phases
[iV. A wide variety of techniques, both analytical and nureri-
cal, have been brought to bear on this problem.

II. LINEAR MODELS

Linear theories for the sound beam radiated by a harmoni-
cally vibrating transducer embedded in an infinite planar baffle
are well developed, although exact solutions for the signal at an
arbitrary location are available in quadrature form only. Such
solutions for an arbitrary axisymmetric transducer have been
derived from two viewpoints. One may consider the moving face of
the transducer to consist of a distribution of sources, The
Green's function for an infinite half-space is known from the
method of images, from which one obtains the Rayleigh integral

A less familiar treatment is the King integral j2], which
results when one considers the fluid medium to be a circular
waveguide of infinite diameter. The eigenvalues of such a system

, . lie in a continuous spectrum, so a mode superposition corresponds
0 to a Hankel integral transform. Let Vn denote the Hankel trans-

e 'form of the transducer velocity distribution v(R). Then, the

6 pressure is found from the inverse transform,

0 1: ,
r-6 ' O

O( -
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p-P0 % f 'V, exp[i(wt - pkz)] J0 (nkR) dn (i)

where (zR) are cylindrical coordinates, and n is the nondimen-o, -4n is
sional axial wavenumnber, p

2 
- 1 - n

2
. Numerical evaluation of

n
the King integral is fairly efficient for the near field. Howe-

G- 11 ver, its integrand oscillates rapidly as a function of n when
( either z or R is large, which requires a corresponding increase

i E ( in the required number of integration sub-intervals.

S ( III. NEAR FIELD PERTURBATION ANALYSIS

A nonlinear wave equation governing the potential function 0
I associated with an acoustic fluid is

C4 72b -C 22 , _-ap96 22C
0  

V -C
0  

3t
2  

-5,Ot£at
)  P -- POCO "at

3I
where terms of O(

3 
) have been neglected because of their small

magnitude in acoustic applications. Equations (2) were the basis
of the paper by Ingenito and Williams [31, which was one of the'
first consistent analyses of nonlinearity in sound beams. Expan- I
sion of the potential in a perturbation series,

shows the first order equations to be those of the linear prob-
lem, for which the Rayleigh integral was used. This led to a

Helmholtz equation for the second harmonic, in which the quad-

ratic nonlinearity leads to inhomogeneous terms representing a
spatial distribution of sources. An evaluation of the volume

integral describing the combined effect of the second order
source terms was carried out by using asymptotic reperesentations

of several functions. A key feature of that analysis was the I
assumption that the signal propagates as a quasi-planar wave.
The analysis is appropriate to a high frequency case, ka > 100.
in a region that is neither very close to the transducer nor in

the far field. Only the second harmonic along the axis of svm-
metry was evaluated, but Rogers [4] made comparable approxima-
tions to obtain a representation of the signal off-axis.

The results of this formulation matched well with measure-
ments in the domain for which it was derived. However, the I
solution ignores the energy depletion in the fundamental harmonic0 f" C Pthat accompanies the formation of higher harmonics.

(O) ( ' (1 IV. SPHERICAL PROPAGATION MODELS I
* " ( A different approach was taken by Lockwood, Muir, and

(.D ( 1 ( ( Blackstock [5) in order to develop a far field model. It was
* ( , assumed that the transducer drive level is sufficiently low to

I

I
1
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ignore distortion out to a radial distance rd in the vicinity o-

Jr- the Rayleigh length ro - ka
2
/2. Beyond that distance the sound

C) 0 C beam has the appearance of a spherical wave w.ith directivity.o "Matching the farfield solution for a finite amplitude spherical

wave to the directivity properties for a linear sound beam at the
(3 6 ( transition distance led to the implicit representation

0' -

E ( 2 rd t
p - P0cokaD(8)L-sin t - kr + Bokrd n(L S- P07o.

r d rd r d PO0Cl (
where D(O) is the sound beam directivity from linear theory. A
variety of techniques are available for evaluating Eq. (4).

The primary difficulty u.th this formulation is the restri-.-
tion to signal levels that are sufficiently small to suppress
nonlinear distortion in the near field. Many applications re-
quire consideration of substantial near field distortion. A le :E

obvious limitation of the theory is its prediction that higher
harmonics are in-phase with the primary, which means that it
cannot describe asymmetrical distoition of a waveform.

V. MODIFIED BURGERS' EQUATION

In regions not too close to the projector face. the presq_:--
amplitude in a sound beam near its axis varies over a loncet
scale in the transverse direction than it does in the axial
Jirection. In turn, that transverse scale is small compares 7-
the distance at which nonlinear features become significar.t
These observations correspond to the depcndency: p - p(t-z c

J R, ez), which leaus to a modified Burgers' equation 6

~-c0~ - -
4
ar-~ p - .si P~

where r - .t - kz, a - z/r0, 7J is the transverse Laplace ope:-i

tot. a 4s an absorbtion coefficient, and Id is the distance t

which a planar wave shocks

Since Eq. (5) is a parabolic differential equation. it ha

many advantages for numerical treatments. Other than its litrli.-- tion to the paraxial region, its main restriction is that it is

not valid for very short ranges. Also, cases of CW excita,n ot
r C the transducer have thus far only been solved by finite dif-

C ference techniques

Soviet analyses for a transducer vibrating harmonically have

employed a finite difference simulation of the three independe:-.

, 6 ( variables, r, R, and a, developed by Bakhvalov et al [71. Their

results agree qualitaLively with measurements, in the sense that
the asymmetrical features of waveform distortion are obtained

However, few evaluations were performed for the parameters of
prior experiments, which led to conjecture that the formulation

S (. might suffer from instabilities. Also, the need to implement a
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finite differeT.ce mesh for three variables imp ses large computa-
tional demands.

Aanonsen et al [8] developed a different approach for solv-
ing Eq. (5). They exploited the periodicity of the signal to
expand the pressure ir. a Fourier series, whose amplitudes are
position dependent. Such an expansion leads to coupled partial

( • f - differential equations for the amplitudes, thereby removing time
from the equations to be solved. Although these equations still
mur be solved numerically, the Fourier series approach is an
im~rovement because it does not require a finite difference gr~d

I for time Results for amplitude levels compare well wilh far
_ 4 ,field measurements, but comparisons of waveforms with experiments

, i have not been presented.

KE VI. NONLINEAR KING INTEGRAL

An analytical treatment aimed at an overall description h-s
been pursued by the author, based on the the King integral repre-
sentation of a sound beam. Like Ingenito and Williams' analysis,
it uses the solution of the linear problem to generate the right
side of Eq, (2). Due to the spectral form of the linear King
integral, the- ! source terms have the general form of an integral
over two spectra of transverse wave numbers. Examination of the
paraxial region and the region far off-axis leads to a dual-
integral solution appropriate to both domains. That solution may
be evaluated numerically to determine the second ha-monic 9'.
but the res'ilt suffers from the same limitations as chose for
Irgenito ;nd Williams' analysis.

Further examination of the first and second order terms
revealp that each may be decomposed into two groups of quasi-
cunical wavelets. Fach group exists in a spectrum of wavenum-
bers, with the conical angle of each wavelet depending on that
number. The wavelets in the two groups 3re differentiated ac-
cording to whether they propagate toward cr away from the beam
axis as the-. progress away from the transducer. The form of the

perturbation solution at this stage of the analysis is

p/rc 0 
2 _ 0 1p II 'l dn

p - E(nVnQ .4i n ) exp( )fl + e I + h(o )] dm (6
n r. n 0n

where JK are either I or 1I. The parameters 0I and 011 are
n n

( phase variables for the respective wav, -"t - pnk
z 
± n'

13n t n t'n'6 ( while 0n and An represent Bessel functions in polar form, Qn cos

An kR) - J,(nkR). The function g describes the

• " ( degree of nonlinear interaction between wavelets at wave numbers

o l m and n in the same group, while h describes the comparable
,• ( interaction between wavelets in different groups.

O0-
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It is possible to integrate Eqs. (6) numerically. Such an
evaluation reveals that the contribution of the second order
effects associated with g grows with increasing distance, which
means that the analysis is not uniformly valid. Such a situation
is not unusual for perturbation expansions. It is generally the

-0 t C result of using independent variables for the formulation that do
not match the physical scales, which may be corrected by a coor-
dinate straining transformation. The transformation appropriate

- 4 6 ' to Eqs. (6) was found [10] to have the form of a Fredholm in-
0 - tegral equation. The essential features of wavelet J at trans-
_ 4 g verse wave number n are given by

o .3
- 6 gp - C(nV Q /4ijun) exp(io)

J- aJ- 4, {(VQm/,)fA exp(ia ) + B exp(im )1 + C.C. dm (7)n n" 0 mI

where A and B are functions of n, m, and z. The parameters a

are strained phase variables that resemble the linear phase
variables only at very short ranges.

Quantitative evaluation of Eqs. (7) may be performed by a

fairly simple numerical procedure. As is true for linear evalua-
tions of the King integral, the computational effort grows with
increasing distance, because of the need to increase the ntuber
of integration subintervals. For ranges comparable to the

Rayleigh length the procedure becomes prohibitive. However, in
that case the integrals may be evaluated analytically by asy p-
totic techniques, with the eventual solution taking on the form
of a Fourier series whose coefficients are inverse Hankel trans-

forms. That representation features numerical parameters whose
value is irrelevant for long range predictions. However, im-
proved agreement at shorter ranges requires comparison of theor-
etical predictions with experiment, which is work still in
progress.

The only limitation imposed on the integral formulation is
that shocks, which are analogous to the breaking of water waves

as they steepen, do not occur. The results obtained from the
nonlinear King integral display the steppening and asymmetrical

distortion features observed in the waveforms of a finite ampli-

tude sound beam, as shown in Fig. 1. Its predictions for levels
of the fundamental and second harmonic are in close agreement
with measurements, as shown by Fig. 2 for the experiment per-
formed by Gould et al [11]. Data for comparison of waveforms is
sparse because generating distorted low frequency waveforms
requires a large and powerful low frequency projector, while
accurate measurement of ultrasonic waveforms requires hydrophones
having a small size (preferably, the diameter should be com-

C) * parable to a wavelength) and wide bandwidth: such work is now

* " 8 •underway by the author.
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O FIG. I Waveform on-axis at z - 200 mm, w - 2.58 M]-z, c 0 - 1475
nm/s, a - 10.42 mm. - nonlinear; ---- linear.
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FIG. 2 Transverse amplitude profile at z - 50 mm, w - 2.58 MHz,
co - 1475 m/s, a - 10.42 mm. - predicted fundamen-
tal; - - -predicted second harmonic; 7 measured funda-

mental [11l; o measured second harmonic [1 1
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R.EFERENCES

Buck and Thompson(1966)

0 One-dimensional finite amplitude waves
from a stress-free boundary

* higher-generated harmonics should decrease due
to phase reversal

Van Buren and Breazeale(1968)

* Linear reflection roces- No coupling among tke
harmonics

Qian(1982)

" Finite amplitude plane sound waves upon reflec-
tion from a boundary at oblique incidence

" Self-action:
Secular 2nd order incident wave
Secular 2nd order reflected wave

" Nonlinear interaction:
Constant magnitude second harmonic



ASSUMPTIONS

* ADIABATIC

• ISOTROPIC ELASTIC MATERIAL

- Geometrical nonlinearit ,

* NO SHOCK FORMATION ON THE WHOLE

PROCESS

e PLANE HARMONIC EXCITATION



BASIC EQUATIONS

Momentum oquation:

Lijj - poUii

Constitutive equation:

aU

Nonlinear gmmsoruicaI iLs- rpacement:

74 2(Vij+ vj~i + Wai k j)

where

Lj -Lagrangian stress tensor

U Strain energy density function

Green's strain tensor



EXPRESSION FOR STRAIN ENERGY FUNCTION

poV !Cj:jyj-yk + 1 CjjkLvai'7ij7k1'Ymu2
+ high-order terms

where

Cjl= )"5 sjbkt + Pl(babpf + biib6,&)

Cijklm abijbklbim + fl[bij(&"vbtu + 6&nbtm)

+ 377[bik( 6 embnj + 6 tubmj) + 6 st(&kmbnj + ' knb'mj)

+ £jk(blm45 mi + tb~irn) + tbj1(6 kmbni + 6kn,6mi)]

and
A, p _=Lai coefficients

a, ,3, 17 E third-order elastic coustants



NONLINEAR EQUATIONS OF MOTION

Poui,tt I- p0 (c, - C')1Lmorni + Poc2Ui.uis,

+ (A+ + +~)~~% + VSUmtRusIR)
4 4

+ (A+ -)us,.u,,.,. + - (, + )u.,.tt,.1 ,,4 4

+ (P + 3ii)(tu,ius,mm + 2um,niu,m.. + Us,nUn,inm)
4

+ -()3 + 31)(NUqsjm,mn +m~ ts,.&4m)

STRES S-DISPLACEMENT EQUATIONS

=i Aut,mnbj + P(uij + u,)

A 8

+ 0 u,,,,m, + um,mus,.)b,,

+~~ (M+ 7)(u, suj,u, + um,i t usmj + U,,mumj)
4

+ 0 um,m uj,i + 3 1uj,mumn,i + (A+ )Um,mUa,j
4 4 4



PERTURBATION EQUATIONS

o'o, _ c4_ o vil , + ',
+ +

,c(4-4__ -2 K

DQ + a ) +  ,

where

K,,o OWe)

f= f(u()), 0(f2)



REFLECTION AT A STREE-FREE

PLANE BOUNDARY

//*,,P/C? b Uh...- y

Planar incident P wave:

(iUi). = ,eAexp[ik,(I- - c,,t)]
+ -A (t.r-) exp[i2k (I. -F- c.,t)]

where

£= sin OF, - cos OF,,

* Plane strain condition



0.)- -,

LINEARt WLECII C~N

=0 o z=O

First-order Solution

= ~ z coo 0-c,#+*)

(SV1X.r = C,( K X X ZUZo-C4h

where
B, sin 20 sin 20 - -t2 c'0 - 2
A, sin 20 sin 20 + -2 cos 2 20

C, 2- sin 20 cos 240
A, sin 29sn 2oo+ -r2 4

mrd

silo k o

-T |i'f + -'



REFLECTION OF GENERATED HARMONICS

(2

( &i2 V,i 2 m,

( 0 2V,(, 2  2 &V2 ____I

Ox,, 1  iOx o,, .

where

Ki = K, + Ki,2  and Gij = 0 aj,1 +Gij,2

=0 0o



SECOND-ORDER NONLINEA.R EJFICTS

(P2N)j.c: A',t(x sin 0 - z Cog 8 + &),ei 2 kp (zin fl D-z cos0-c,t+V,)

Nouliner self-scattering of (P )W.:'

(P217~ B2Ai(z sin + z cm *)e'& (m si +z am -- CS+*)

Nonlinear self-scattering of (SV ),d:

(SS)reg : ( 2 e i2k.( sin 0+.- COS OCtV1

wh4e

A2 B2 12A24As+a+60+24n (2) 2

A2 B2 6p. p



Nonlinear interaction of (PF)in-, (P)w:

Q-wave: 32e i2 kr(S si -€pt+*)

phamesped = c.1/sinG

Nonlinear interaction of (PI)inc, (SIV)ag:

* ~rx i +1/2 .-(Cos 0/r.j)-c**

phase speed = vt + sin0 -+ (I"Oft #- C", o)

Nonlinear inteactics ( (P)rf, (SV )W:

e ,i2kpf sin 0+1/2+'cos 0/i'+eo, 0): -,,+I51

phase speed = .-.__,,

V/(,'t s + sin )2 + (-CoS + coS )2



PROPAGATING EFFECTS

(P2-1i C: ,Accunrl~ave wave - become significant with

creasing propagating distance'away from

soure A

(PMl : Accunmlative wave - become significant with

increasing propagating distance away from

reflected point

(SS),.(: Constant magnitude dilatational wave

Q-wave: Non-secular wave - propagates parallel to the

- surf&
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MODE VONVERSION

Boundary effects

(P2 )in A2,tpe 2k,(z sin *-z cog O-ct+#)

(P2 )ref =B 3 Aie i2kp(z $in e+z Cos Oct0

S2B),,f C3(4l X i)

*Linear Refletion Theory
*Constant Amplitude



SUMMARY

* Secular terms arise only in the Incident and r kAtd
P waves as a continuing procs of nonlinear self-action
of a P wave on itself

- No secular SV waves arise - Shearing effects will

never deviate much from their linear representation

" Q.wave is shown to occur in moWs too

" Accumulative effects of reflected P waves are propor--
SM coto an

0 Mode conversions are governed by linear reflection law
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When an axisymmetric, bifrequency transducer mounted in a rigid baffle is excited at acoustic
Mach numbers that are a relatively large fraction, the result is a dual frequency sound beam
that exhibits harmonic and intermodulation distortion. The present analysis of this problem
develops a perturbation solution bas,.d on a wave equation that consistently accounts for
nonlinearity and diffraction. The linearized problem is described by a King integral for the
sound beam at each primary frequency. Asymptotic analysis using Laplace's method of
integration is used to find the second-order potential. The method of renormalization then
leads to a uniformly accurate expression for the acoustic pressure. A technique for
improvement in computational efficiency is developed by interfacing the King integral
predictions to a farfield model for quasispherical waves. Propagation curves for parametric
arrays obtained from the model compare favorably with experimental observations.

PACS numbers: 43.25.LjI
LIST OF SYMBOLS z,R axisymmetric cylindrical coordinates (di-

mensional values are z/k, R 1k)
a circular piston radius a,,.8,,r 1  strained coordinates for each primary
CO small signal speed of sound in linear theory sound beam
D, (0) directivity of the spectral component hav- 160 coefficient of nonlinearity

ing frequency jwt + kw, at the spherical c, acoustic Mach number in the primary
transition sound beams

f, (R) amplitude shading functions for the trans- Ja axial wavenumber
ducer oscillation at each primary frequen- Po density at ambient conditions
cy 0 velocity potential I

J, (x) Bessel function of order n co mean of the primary frequencies (rad/s)
mn transverse wavenumber W1 ,W2 primary frequencies (dimensional values IP RP R outward and inward transverse-axial are 0oW, WOto,)

waves f h j = W W'- difference of nondimensional primary fre-
range from the projector quencies

rf the range at which spherical divergence be- W, =&)I + W, sum of the nondimensional primary fre-
gins quencies

V1 (n) Hankel transform off, (R) * denotes complex conjugate

INTRODUCTION The existing models are not able to explain some experi-

In 1963, Westervelt' introduced the concept of a para- mental discrepancies. The primary cause for this lack of
metric array as a consequence of nonlinear interaction of agreement seems to be that the hypotheses on which the
sound beams at closely spaced primary frequencies. Since analyses are based are not always met in practice. For exam-
Westervelt's work, other theoretical models predicting the ple, in linear theory, diffractive fluctuations in the nearfield
difference frequency sound have been proposed. These mod- of a piston-generated sound beam cannot be approximated
els have variously employed quasiplanar and quasispherical by a plane wave, see Zemanek.4 We shall see that because
approximations, and a modified Burgers' equation. The ac- existing theories have not completely described these com-
curacy of each of these models depends on various assump- plexities in the nearfield of the primary beams, the result is
tions concerning the spatial dependence of the primary inaccuracy in their description of the nonlinear interaction
acoustic fields, the position of the observation point, and the *,rimaries.
effect of attenuation. For a review of various models, we A different viewpoint of this question arises from recog-
refer the reader to Fenlon2 and Bjorno.' nition that the formation of the second harmonic in a single

primary beam is a special case of harmonic generation in the
-------- __ interaction of two primaries. Second-harmonic generation in
*'Present address. Department of Mechanical Engineering. EL-Mansoura the acoustic field of a baffled transducer driven sinusoidally

University, EL-Mansoura. Egypt at high amplitude has been analyzed by several investigators.
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Ingenito and Williams5 employed a perturbation series for merical model based on Aanonsen's temporal Fourier series
the potential function, in which the leading term was de- formulation would be difficult, due to the computational re-
scribed by the Rayleigh integral. Their solution was not uni- quirements associated with the need to employ a dual series
formly accurate from the viewpoint of perturbation theory, when the two input frequencies do not correspond to a pure.
corresponding to a limitation to the field close to the trans- ly periodic input.
ducer. In addition, it is valid only for situations where the The present investigation employs analytical techniques
axial wavelength is very small compared to the transducer to account consistently for cumulative growth effects, as
radius (ka> 100, according to Ref. 5). Lockwood et al.' well as diffraction. The model is derived from the nonlinear
neglected nearfield distortion by assuming that the acoustic wave equation governing the second-order velocity poten-

signal 3t the beginning of the farfield is a pure sine wave of tial, subject to prescribed boundary conditions on the source
amplitude proportional to the small signal directivity factor and the baffle. It is valid up to the shock formation distance,
for the piston. This assumption is violated when the source hence, in both nearfield and farfield regions, subject to the
pressure level is sufficient to generate significant distortion assumption that dissipation is negligible.
within the nearfield. Neglecting nearfield distortion leads to The derivation begins by describing each primary beam
a farfield model based on Lockwood's analysis of nonuni- as a King integral, which is obtained from a Hankel trans-

'form spherical waves.7  form in the transverse direction. Asymptotic analysis using
One approach for remedying the foregoing limitation is Laplace's method of integration leads to the second-order

a version of Burgers' equation that has been modified to ac- potential, which is subsequently corrected for irregularities
count for variation transverse to the propagation direction; in the acoustic pressure through coordinate transforma-
this model was first derived by Zabolotskaya and Khokhlov' tions. Computational difficulties inherent to the result axe

for the nondissipative case. The most generally valid solu- addressed by interfacing the computed results to the Lock-
tion, which was derived by Aanonsen et al.9 and extended by wood model for the farfield of a nonuniform spherical
Hamilton et al. , has the form of a temporal Fourier series source.
who e coefficients are determined by numerically solving
coupled differential equation in the spatial coordinates. A I. EQUATIONS
full finite difference solution in space and time apparently We formulate the problem in nondimensional cylindri-
was first presented by Bakvalov et al. " It is not possible in cal coordinates (Rz), where z = 0 defines the plane occu.
either approach to solve for the signal at isolated locations, pied by the transducer and baffle and R = 0 at the center of
Also, the assumptions inherent to the derivation of the the transducer. Let t denote the nondimensional time van
Burgers' equation cause concern regarding its suitability for able. The corresponding dimensional position coordinates
the nearfield. are (R 1k, z/k) and dimensional time is t /&,, where c,, is the

Ginsberg 2 " used a perturbation apprz:.h to solve a mean of the primary frequencies and k = cv,/c(, is the wave-
consistent nonlinear wave equation for the velocity poten- number of a nominal planar wave. Under the assumptions
tial. The linearized signal was described by the King inte- that the fluid is inviscid and that the particle motion is irrota-
gral. Uniformly valid expressions for the state variables were tional, we introduce a dimensionless potential function
derived by employing coordinate transformations that yield- 6(Rz,t), which is related to the particle velocity compo-
ed explicit formulas in the form of inversions of Hankel nents and the acoustic pressure by
transforms. v ( = c=(

The present analysis, which is an outgrowth of Gins- = '--' _-, p = -poc2

berg's work, treats the interaction of two primary beams at 39R 0

arbitrary frequencies. Prior work on sound beams generated Note that there are second-order terms in the last of the

by multiple-frequency inputs have, for the most part, consid- foregoing, but their effect is not significant for the present

ered parametric array problems, in which the two frequen- analysis.
cies are relatively close. The implementation of nonlinear We consider the transducer to oscillate axisymmetrical-

parabolic equations for such problems has been of particular ly at two distinct frequencies whose dimensional values are

concern to J. N. Tji~tta and S. Tj4tta, who have used the &),,w, The spatial shading functions f,(R) are associated

quasilinear approximation to evaluate the difference fre- with each frequency. The corresponding boundary condi-

quency in parametric arrays. " We shall use results for para- tion may be written as
metic array for comparisons with our analytical predictions, do I = fe'[I
but the parametric array is substantially less general than the d ,- [ Rx
problem we treat here.

Situations involving two arbitrary frequencies were ad- + c.C., (2)

dressed in Refs. 15-16. Those investigations, which em- where c.c. will generally denote the complex conjugate of all
ployed a quasilinear approximation, were limited to the eval- preceding terms. It is permissible for the functionsf, (R) to
uation of the difference and sum frequencies and the second be complex, corresponding to spatial phasing. We require
harmonic. In contrast, the goal of the present study is to that these functions be bounded such that R " f, (R) is
obtain an overall model that can be used to evaluate wave- piecewise continuous and absolutely integrable' over R > 0.
forms, from which the full spectrum of harmonics may be The parameters e, are fractions of the total acoustic Mach
obtained. We decided that meeting this objective with a nu- number e associated with each primary.
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The nonlinear wave equation governing 40 is obtained by This expression satisfies Eq. (5) when
eliminating the pressure and density through path integra- a __ 8 - =
tion of the Navier-Stokes equations and of the equation of in'4 = 0, ( 8a)
state. The result is' 

aZ at 2

V 1 2 = V,(n)exp(iajht) + V(n)exp(iot), (8b)0~ a~a' 200 o- 1) a t (91 + (V(A'V1) + O( 3), (Z =o

(3) where the coefficients V. (n) are the transformations of the

where fi is the coefficient of nonlinearity," and V denotes spatial shading functionsf, R):

the gradient operator in cylindrical coordinates. V (n) = -L Rf (R)J,,(nR)dR, j= 1,2. (9)
In addition to Eq. (2), we must impose the radiation 2iJf

condition. Therefore, we require that the signal should be The solution of Eqs. (8) is
either an outgoing wave or evanescent at large z, and that it 2 V (n)
should decay suitably with increasing R. We expand the ve- I (nz,t) = - exp(ict - lz), (10)
locity potential in a perturbation series j=i /i,,1

where

MN =n 2 
-

2
. (Ila)

Collecting like powers ofe in Eqs. (2) and (3) leads to equa- The radiation condition for z- ac requires that 6, must ei-
tions governing 6, and 6_. The first-order equations are ther vanish, or else represent a wave that propagates in the

V, 3-1 = 0, (5a) positive z direction away from the transducer. Hence, we
at select the branch cut for/.t such that

az, f f1 (R)exp(itot) + ef.(R)exp(i&ot)] i(wo;-n 2) 2 , 0 < n -, oj,
3Z 2i[E  " Uj/. = 1(n2_ OJ2 ),1/2, n> 60. 1lib)

+ c.c. (5b)
Equations (5)aretheconventionalonesgoverninglinear The result of substituting Eq. (10) into Eq. (7) is

radiation from a baffled transducer. Nonlinear effects are '-' r n V, (n)
contained in the second-order, and succeeding, terms. The f = J exp(ia~t
second-order equation arising from Eq. (3) is I U

+ c.c. (12)

V26, - = a_ -)(0 V6,.V6,]. (6) This expression is the King integral representation corre-
at aLt \ tI sponding to two primary sound beams. It indicates that the

Tjitta and Tjotta's recent general treatment of second-order linear signal is a sum of two waves that do not interact.
nonlinearities - ' showed that second-order terms in bound- Before we proceed to formulate the source terms drivingnoltheiie" sehowede thattal seod-re term invnin boouangd-h
ary conditions do not lead to cumulatively growing terms at the second-order potential. it is convenient to change the
that order. That observation agrees with our earlier analysis integration variable in Eq. (12) by replacing the transform
of the total solution for the second-order potential,2' where parameter n in each integral by nco.,. This leads to
we showed that it is only necessary to construct the particu- J" nl V(n)
larsolution of Eq. (6). The complementary solution, which 6 = - , exp[ow (it -!,uz) IJ(w nR)dn

- i I .
is determined by the second-order boundary conditions.
does not grow with increasing distance from the transducer. + c.c., (13)
Since it represents a uniformly O(c ) effect, it is insignificant where V, are redefined as
in comparison to the cumulative growth effects, except in the
region very close to the transducer (two to three piston di- V,(n) = . Rf 1(R)J0 (o)nR)d(o 1 R), = 1,2
ameters in the cases we considered). Neglecting the comple- 0 (14)
mentary solution allows us to ignore the boundary condition
at z = 0. However. it is necessary that the eventual solution and
satisfies the Sommerfeld radiation conditions at large dis- -(I-n-'", 0<n<1,
tances from the tranducer. "=(n-l n>l.

ill II. LINEARIZED SOLUTION III. SECOND-ORDER POTENTIAL
The King integral, which is essentially an inversion of

the Hankel transform, provides a formulation of the linear- We use the first-order solution 40 in Eq. (13) to formu-
is ized problem that is amenable to the task of evaluating .. late the source terms driving in Eq. (6). Forming
0. Hence, we let quadratic products of the derivatives of 6, requires that dif-

ferent symbols be used to represent the transverse wavenum-
6, (z,R.t) = n(S,(zn,t)J,,(nR )dn 4- c.c. (7) ber in each term of the product. The resulting equation gov-

.Jo erning the second-order potential is
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at I

2io×{[ V, (n) V,(m) Q{[ (foR- 1) + J.r.]o(as nR)J(CowmR) + nmJ(wnR)J1 (w mR)}

Xexp[2iwt-w(p., +,,)z]dmdn + f 2i nm V, (n) V2 (m)

p.,","X{[ - (flo- 1) +z.p,,, ]JO( 2nR)Jo(a 2mR) + nmJ,(a 2nR)J,(as2mR)}

Xexp[ ia 2 t - 0)2( ., +j. )z]dm dn +fo f 2iWojw,nm V (n)Vin)

XQ- (f,o- 1) +p.,]JO(wmnR)J0 (WzmR) +nmJ,(ca~nR)J,(W2nR)}

Xexp[iw,t - (owp. + w~,,)z]dm dn + f W 2ioWdnm V (n) V (M)

X {[ (o - 1) + p.up* ]Jo(as,nR)Jo(0o2mR) + nmJ,(o),nR)JI(as2mR)}

xexp[iwdt- (Wil. + C 2,p*.)z]dm dn + c.c. (16)

The effects appearing on the right -ide of Eq. (16) are quencies. Let
sum and difference frequency interactions of the two pri- 0j r'  -

mary frequencies. We form the solution for 462 as a corre- " f = a Isj comP2I(z,t,m,n)
sponding superposition. Hence, let .o

X [Jo(ajnR)Jo(wsmR)
2 2

S= a 2 , ,,(17) -Jo(wjnR)J,(wmR) ]dm an

+.-wajnfo -astmd22(z't'm'n)

where 0

, ,, ,,o, X [Jo(wnR)JoCamR)

at 2  
+ Jj(wnR)J,(wjmR) ]dm dn. (20)

iol(WIs + w,)nm V(n) V,(m) The next step is to substitute Eq. (20) into Eq. (18), and
Y P then to employ the recursion relations for Bessel functions

and their derivatives. When we match the integrands on ei-
- (fo - 1 ) -- # Jo(wnR)J (o mR) ther side of the equality, we find

+"nnJ 1 (c°,nR)J(as'mR)}exp[i(ass+as,)t ra: 2
.  a2~2, (a2'et):O,

- (w I, + wh,,, )z]dm dn + c.c. (18) oa da - (w n +

and X [Jo(a) nR)Jo(w asmR) - J, (% nR)J (amR )]

+at +(- dZ 2  -2

f l f iw (w] - w,)nm V (n) V*(m) X [J°(anR)Jo(cmR) + J,(wnR)J,(o.,mR)]

P'Juo. _( 4j,(asnR)J,(ahmR )

* {[ (flio - 1) + upti ]J,(wnR)J,,(w,mR) ( R

* nmIJa(wanR)J,(a,mR)}exp[i(as, - w,)t as? Jo(ojjnR)Ji(asmR)

- (wlj, + w,j* )zjdm dn + c.c. (19) R

We could construct the particular solution of Eqs. (18) and - J(J~nR)Jo(wimR))(4z2 -

(19) for each ij pair as the sum of two dual Hankel trans-

forms. The kernel of one transform would be =- i ) V(n)V,(m)

(wn) (w,m)J,,(wnR)J 0 (w,mR) and the kernel of the sec- 4.'.,-
ond would be (wn)(w,m)J1 (wnR)J(wmR). However, X [ (,60 - I - ,./,. )Jo(jnR)Jo(wamR)
we shall utilize a linear combination of the these kernels,
because such a representation will ultimately decouple indi- - nmJ,((ojnR)Ji(amR)]
vidual terms forming the solution. We begin with the analy- Xexp[i(a, + at)t - (WaJu + o,P., )z] + c.c.
sis for the terms associated with a sum of the primary fre- (21)
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It would be a considerable simplification if the third Cumulative growth will be manifested by increasing val-
term in large parentheses on the left-hand side of the above ues of the amplitudes A and B. The particular solution for A
equation were not present, because like functions of B on or B is independent of z if the values of m and n are such that
either side could then be matched. Since this term has an the coefficient of the A or B term in Eqs. (24) do not vanish.
additional factor 1/R not contained in the other terms, it is In contrast, if either of these coefficients vanishes, the corre-
negligible at large R. This verifies the assumption that the sponding particular solution for A or B is proportional to z.
function (2D and (D, are independent of R, at least when R is We find with the aid of Eq. (15) that the coefficient of A
large. Miao22 demonstrated the validity of this hypothesis vanishes when m = n, whereas the coefficient of B vanishes
for the entire region in the case of a single-frequency beam. when m = n = 0. Inspection of Eqs. (24) reveals that, when
He derived independent expansions for the paraxial region m = n = 0, the two equations have the same form. Thus the
(small R) and the off-axis region (large R). He showed that importance of B is restricted to a small region in the trans-
the latter, in the limit R 4 1, is identical to the former, so the verse wavenumber spectrum, where its behavior is no more
off-axis expansion contains the solution in the entire field. singular than that of the coefficient A. Since A has asingular-
We invoke the same argument here. Matching like functions ity at every n, we, therefore shall ignore the role of B.
of R, with the I/R terms ignored, then leads to the following
pair of differential equations for (D2 and 4)22: IV. ASYMPTOTIC INTEGRATION

a 2, d 2, (w n + am ) 2 4 21  We have shown that the condition where the solution of
,92 (t Eq. (24a) grows with increasing z arises as m - n, whereas

I V (n) V, (m) regions far from the vicinity of m = n give bounded contri-
2 - ~_ (+ )butions. The contribution of the region around m = n may
2 (be determined by following Laplace's asymptotic integra-

x (Bo~ - I -i.,it,. - mn)exp[i(ws + w,)t tion method.23 We relate the wavenumber m to the other

- (Wa,,, + WaP,, )z] + c.c., wavenumber n by a detuning parameter q that is 0( 1), such

a lo, a 8 L 2  ( (22) that

0 at 2 m = n + q,, (25a)

I V (n) V, (m) where A.< I is a positive number indicating the scale of the

2 ( J  difference between m and n. When It, is not small, i.e., when
n is not close to unity, the Taylor series expansion for the u,

X(t - I -p,., - n)exp[i(w1 +w a)tdefined in Eq. (15) is found to be
- (oj.P + CL,,, )z] + c.c.

Because nonlinear distortion, which is associated with I, =u,,(l + nqA/i4 - q 2 /24 + ""n . (25b)

generation of harmonics, generally increases with increasing Substitution of the above expressions form and,,, into Eq.
propagation distance z, the particular solution for 0,, and (24a)leadsto
0-. may be written as follows:

4>. I =A(z.m,n)exp[i(w) + w,2,u (w, _ nqA + O(A3) dA

- (WU, + w,m)z] + c.c., (23)

0- .=B(z,m,n)exp[i(wo + W)1 2_d -Op "

- (Wai, + c ot,,)z] + c.c. i V (n)V,(n) (26)

Substitution of Eqs. (23) into Eqs. (22) leads to the follow- - 2 ( )2
ing pair of uncoupled ordinary differential equations for A When m = n, the particular solution of this equation is
and B:

d 2A ) A A = i,,V(n)V,(n)/4y 3 ]z. (27)

di dz

- (Wan + w,m) 2 + (W, + WI,) 2 ]A The general solution for A when m # n is

_ ( + 0,) V (n)V,(m) A =A, exp (a,z) + A, exp(o-z)

×( ,- l-it,. +am), (24a) + i 1 -, (n8)
d'E 2 % ~ - (28)
dzB Wu, +oil B+ [ ( ,Ip. + 2 ,)It.2,6

dz where the coefficients a, and or, are the roots of the charac-
- (cn - w,M) 2 + (wO + a, )2 ]B teristic equation governing the complementary solution:

- I (%+d)V,(n), (rM) oa_2,u.[(w,+ W,)+o ,Caq ] 0,2 i2it U 4

X(B, --,,u, - nm). (24b) - 0Oj, (q"1/U)-- 0. (29)
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Solving this quadratic equation yields written as

1 to (o), 2A2 f 0°= 2 (toj+to,) lf 0O(A3 ), _ ' dd-,

w n2 1 .jnfI(n,m,z,t)dm dn (17)

(30) 
in i,

+ f I~n (n~mz,t)dm di,
a2 = 2(toj + ,)w.i, + O(A). + tjn n ,d n

As q-0 (m = n), Eq. (28) must approach Eq. (27). Be- - ,
causeo, is0(1), and Eq. (27) has noterm that varies expon- + J wjnfJ I(n,n + qAz,t)Adq dn. (35)
entially in z, we set A2 = 0. (It is also necessary that A, = 0 0

in order to satisfy the radiation condition. Otherwise, substi- The first and the second integrals above represent the contri-
tution of Eq. (28) into Eq. (23) would lead to a term that bution of the regions that are not in the vicinity of m = n.
propagates in the negative direction.] Because o, -q2&2, The oscillatory nature of the integrand results in bounded-
exp(oaz) may be replaced by the leading terms in the series. ness of these integrals, corresponding to destructive interfer-
Thus equating the limit of Eq. (20) as m-n to Eq. (27) ence between source effects associated with disparate values
gives of m and n. This means that the cumulative distortion only
i oq 2 '&z originates from the last integral in Eq. (35). Because that is

2 " - )I ' the effect we seek, we shall neglect the first and second inte-
2 (w° + gral. (This idea reduces to Stokes method of stationary

i + (tj + o,, Vn 1 phase23 for n < 1, where u, is an imaginary number.) Be-2 "(-)o totq 2 
&
2  'acause & is defined as a fixed number, the dominant behavior

= [loV(n)V,(n)/4pu.]z. (31) (leading dependence on z) will be obtained if 6/A is any
value of order one or larger. Because A . 1, we take 6 to be

The value of A, that satisfies the above equation for all values infinite for convenience in evaluating the integral. Further-
ofz is more, we may replace m by n the argument of the Bessel

AI = (i/2 )f 0 (wj + a,) V, (n) V, (. (32) functions, and A. byu, in the exponential term in Eq. (34)
without affecting the dominant terms. We obtain the result-

In a strict sense, the foregoing represents the limiting behav- ing integral from a standard tabulation,24

ior ofA for m=n. It is possible that A, has a different ap-
pearance for arbitrary m and n. However, we can show that f 1 - exp( - Kq ) ]dq = VIM. (36)
such differences are associated with the homogeneous solu- q"
tion for the second-order potential, which we have already Then, we find from Eq. (20) that
discarded.

The general solution for A is obtained by substituting fl 1 /,, r(I.... ,+ 2 ,V(n)V,(n) er
the above expression into Eq. (28). This gives J0 2 / W

A~~ ~ =il(a tt (n) V,(n) X (Irz) /2exp [ (w, + wl) (it -l.z)]_
A w+, iq X [J0 (wnR)Jo(wnR) cl

[ (-exp W qal 7 -J,()1 nR)J,(,lnR)]dn+SDT+c.c., (37)

-- 2(% + WA).'3 where SDT stands for subdominant terms, which, in the a,
worst case, increase less rapidly with increasing z than thoseBecause the contribution of the function B is negligible, we listed. 1find from Eqs. (20) and (23) that the total contribution is We cannot deduce the second-order potential associated c

0-., ) - " with the difference frequency terms - ' ' directly from 0
2 =J ainJ wmlA(z,m,n) Eq. (37). However, the procedure that yielded Eq. (37) is

also valid for 6,1'. Such an analysis leads to
Xexp[i(s, + ,))t - (a) p, + aP. )z] t!

x [Jo(tinR)Jo(imR) f h(I - ) , t( t hwd,, )i, n
- J|( wonR )J,( w ̂ m R )Jdm dn + .c. (34) X [ V n r n 1 .u r .Z /

We shall evaluate the inner integral in the above equa- X exp [ (w, - Wo, ) (it - 1 .,Z)

tion asymptotically in the region where z is large. This inte-
gration extends over 0 < m < a, with n fixed in that range. X [Jo(wnR)J((wnR)
The major contribution to the integral stems from the vicini- + J,(wnR)J, (w nR) ] + SDT + c.c.. (38)
ty of m = n (q = 0). W e isolate this region by selecting a small + de notes the Heav+side s cti(3
positive number 6 that does not depend on m or n. Denote
the integrand in Eq. (34) by I(in,m,z,R). Then for a fixed h( I - n) = {1, l, (39)
arbitrary value of the wavenumber n, this equation may be 10, n > 1.
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When we employ the expressions for a'n' . and d (40a)
02 - "' to form the second-order potential according to Eq. Jo
(17), and then combine them with the first-order potential
in Eq. (13), we obtain where

(D= -C (.... __n V,(n ) exp[ ,(it - I.z) ]Jo(ownR) + n V,(n.___)/ exp [ ca,(it -u IzZ)]Jo(o2nR)

+ i6o(rl.z)'1' 2 ---, (--')xP [2w,(it -/u~z) ] [Jo (w,nR) - Jd (w,nR)]

+ C /2 n2V, (n) exp[2w,(it -/.tz) ] [Jd (w2nR) -J (wnR)] + ( 2tW0 2 w, 12 n2V1 (n) V,(n)

x exp [o, (it - u, z)] [J1 (wnR)J,(onR) - J, (onR )J, (w,nR)]

- ih(1I - n) (2w PI) t n' V,(n) V(n) exp [W(i -/z.Z) ] [do(wlnR )1o(a2nR)

+ J (wnR)J, (cnR)]) + c.c. + SDT. (40b)

Several features are revealed by Eqs. (40). The trans- the contribution of a specific wavenumber n to the dimen-
ducer, which is driven at frequencies w, and w, directly gen- sional acoustic pressure. We then have
erates two transverse spectra whose magnitude is 0(c), and
whose temporal frequencies are w, and o,. The 0(e 2 ) terms 2= p-c2 Pdn, P= (41)
represent second harmonics of each wave attributable to P - 0-"P""
self-interaction, and the lowest-order combination frequen-
cies. Both effects are attributable to nonlinear interaction As was true for thepotentialfunctioninEqs. (40),the0(e 2 )
between the primary beams. terms in Pgrow as z " 2 for large z. When ez' "2 is 0( 1 ), these

The asymptotic integration was carried out under the terms, which are supposed to be a small correction, become
assumption that u, is not small. This is significant because the order of the main term, in violation of the assumption
the truncation of the series expansion in Eq. (25), is appro- inherent to a perturbation expansion. A perturbation series
pnate only if q/#: .9 1. Only very small values ofq satisfy this having this property lacks uniform validity. "'
criterion when n - 1. Therefore, the contribution to the sec- In order to determine a uniform expansion, we shall
ond-order velocity potential from the region around n = 1 is employ the method of renormalization.26 When nR is large,
not well described asymptotically. One reason for our con- the asymptotic behavior of P has the appearance of a sum of
cern in this regard is that.t, - 0 as n - 1. The expression for two interacting waves that propagate in the inward ( + R)
the acoustic pressure derived from Eqs. (40) has u,, in de- and in theoutward ( - R) radial directions, as well as in the
nominator of the first-order term and .t./z, in the denomi- axial direction. This is a consequence of the asymptotic ex-
nator of the second-order term. Thus the O(e 2) term is more pansion of J. ix) for large x, which is
singular than the 0(0) term as n- I. Although both singu-
larities are integrable, the higher degree of singularity in the J,. ix) -j(2/irx) I2 exp[ix - (2v + I ) r/4] + c.c.
second term will create difficulties. We shall introduce an (42)
appropriate correction later.

Introducing this approximation into Eq. (41) leads to de-
composition of the off-axis signal into two waves, given by

V. RENORMALIZATION P= P_ + R R, (43a)

We obtain an expression for the acoustic pressure by
differentiating Eqs. (40) with respect to time. Let P denote where
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nV,(fn x a, i -,z + inR)+ (2ex a1[~-~ziR
-2 rnR) L Jul. 4

+ iom/2 nIV(n) exp(i-i +MR) -2(it-~ -4)]

2 ( " zd ) 1/2

+ C218 -r ('U) .(iw' /n2V' (n)exp[2w,(it - ,z + inR)

3/2

W ha l _ n)iL n2tVh (n)V (n)exp[ (it-- zan +MR) +t Cfr. (43b)

ARp ,_. (C . i/rL i nVi(n > exp o, (it - ,jz- iMR ) +- -)r

2 2trnRI Ju 4)

1/22

+ c,6.__2 (r/"J) 1 ./2 2I.2(n)exp [ 2w,(it -,u.z -inR).,. -
rtnR uA: * I I

sen hallnrmoniciE( wt the sumn freqeny Erm. while)thedotherhalfeofneachlsecondtharmonicxis roego ad ihthe

difference frequency. For reasons of convenience, we apportion the primary beam at frequency ws_ equally to the sum and
difference frequency. In contrast, for the primary beam at w,, we invoke the identity exp( - ir/4) = (1 - i)/2. By associat-

ing the imaginary part of this identity with the sum frequency group, and the real part with the difference frequency, we phase
shift the first primary beam forward and back by rr/4 relative to the second primary. (Since we he arestricted d > w_, there is

no reasonh ththe nonlinear expressions should be symmetric in t and b) The two groups form the inward wave according

to

pR =p + pd.R. (44a)

The sum frequency group is t

differencerfrquency. -Incotrast, for t e par ea a , ,i - weinoke th dniy!i -ir4 ~l.B soit

p'_ p. +p (44a) -

) nV(n) exp[t- j (it-z+inR)]
2 wnR 2

+ W nV,(n) exp , (it - 4, z +iMR) - i 1r
i 2 Jul.~ z 4/J]

2 " 2 • , 2'

(e) .I---al n2V 2 (n)exp[2o a(it -juz+inR)]
rnR u.juo_ 2

+ I,: l'n 2 V'(n)exp[2wo(it- Uz+ inR)]

-LV I- a/n"V,(n) V:(n)exp[wa,(it -i ,z +inR)]' + c.c. (44b)

4 I

and the difference frequency group is
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2 irnR F L
4- 2 W2, v: exp2(it .- u~z + iMR) /2 n 2)4)1

C(iflo 2 (z)u -.( 2 W, /n 2(n)exp[2w,(it-lutz+inR)]

nnR ip.u. 2

.3/2

+ W2n (n)exp[2W2(it-tUz,+ inR)] - h(1 - n) 2- n2 V (n)V (n)
2 2

xexp[W(it-, .Z+ inR)]) +c.c. (44c)

In order to render the sum frequency term P' R in Eq. (44b) uniformly valid, we introduce a set of coordinate transfor-
mations:

w'z = a, + ez'" [S,(a,,t,n,P) + S, (a,t,n,R) + L.c.], (45a)

o),z = a, + z'1'[S.(a,,t,nR) 4-S 2,(at,n,R) + c.c.]. (45b)

The unknown functions S, must remove the objectionable terms causi.g nonuniform validity in P'_ R We substitute Eqs.
(45) into Eq. (44b), and expand the result in a Taylor series in ascending powers ofe. The series expai1sions are truncated at
O(e 2 ), with the result that

=' F exp(iet -,a a + iwnR)

2 krnR I \2

2-L) -,v -- 4)
2 win exp iw..t--m2 na iw -i + ko(S_(S 1 RS . +Si 4

-£wi2nV'( N)Z" 2 eXp~i ~ -~i, 2 -- z~ R )(- + S., + S- 2 + S!,

/ 2 

i t u a 2 4 ( ) n- 2i,6,, . ( rz)"'( 1 wLnJ2 V (n)exp(2iwt- 2,ua, + 2iwnR)

3/ L/2
+l2 n2 V2 (n) exp (2iw t - 2ma2 + 2iw)2nR) + -- n2V, Vexp(iw,tI - p.a, - pa, + io, nR -4- c.c.

(46)

The criterion fcr the selection ofstraining functions S, is that they cancel the second-order growth terms in P' _' which
yields

C
3 
a 

2  \2 (1rUz) '/ -

+ -o-- nV,(n)exp(iwt-u,,a 2 +do 2nR) +c.c. (47a)
- W; (.A12 - I I

W:, a,- #( 2 1/2 /r~)1
= 2wn V(n)exp iwt -/u.a, + iw(nR + i

f/2 /

-8/5 21O nV,(n)exp i5. , M -ay i u a + iAnR - i - + .c.. (47b)
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ti
The corresponding form of P '_ is given by

= I(_L)1/2[ W:12 -  exp(iCdw -/.tai + iwonR)P-= 2 innR] a

+ ioW2 nV 2(n) exp icogt-/ua. + io:nR - i-

2 JA 4

ifl- ( [ l 2n2 V(n) V*(n) Ik' 2 , n) V (n) + c'c.
2 irnR 'P

These expressions are appropriate to the region where A is large. We obtain forms that are valid for all R by manipulating

the asymptotic expansions for the Bessel functions in Eq. (42), which shows that, when the argument x is large,

J,(x) + iJ (x) = (2/rx) /2 exp[i(x - r/4)], (4g)

J, (x ) - UJ,(x) = (2/rrx) 112 exp[ - i(x - r/4) ]

Therefore, Eqs (47) may be written as follows:

InV,(n) exp ,wt -,cta + i-1)[Jo(w,nR) + U,(,nR)2 -" c U-- 4)

+ e J--o2 n V,(n) exp(i 2.t -I ,a 2)[Jo(ojdnR) + i,/(w2nR)]

22 I

+ w 2 n V2(n) V2(n) [J'o (w :nR) J (, nR)] + c.c., (49a

where a and a, are given by

&z a, - efi,60~4' ni) /exp ~it -,u~a, + i - .[JOwi)nR) + J, (ai~nR)]

+ ita4/2(--.2) nV 2(n) rp, z) 1/2 expi 2zt - ,a 2 -4- .7r[o(r) + iJ,(wnR)] + c.c.]. (49b

og= a2 - efo[2iw o2 nV2(1n) (rp,*z)/ exp(iwg -,u, a.)[Jo(°o2fnR) + iJ (w 2 nR)]

- V, (n) ( .z) •exp(iwt -,a) [Jo(wnR) + iJ,(cotnR)] + c.c.].

Analogous operations for the inwardly propagating term associated with the difference of the primary frequencies P'R lead

to

p = W1 -r),ep(t [.,,(,nR) + J, (LnR) +--0).

Xexp(io 2t -u,)3.) [J,,(w._nR) + iJ,(w.nR)]

4-El (nt Iz)' {V 'V ()[J(n R)J (wlR)
2 uu*p0

-W n,2 v,(n)v , ( J' (jnRJ) 4- J' (w.n R)I} + c.c.. (50a)

where the coordinate transformations are

z=0l - Coo , '11 , (n) ( ypZ) '2 + U, (wnR)

ex"Ui -f + IJi 'T4 lR

11 I2 nVin)
+ih( I - n)wa"--) ( ,uz) '

Xep(it - 0,40 + i+ )J,(o.nR)+iJ,(ow,)nR) + c.c.], (50b)
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3nV,(n) ,,,Z)11 2ex tPAfi) [JO(ownR) + U, w~nR)]

+ P~~I) '3 \ 2 nV,(n) 1Uz1/

X exp(iw~t -,upfi) [J,,(w,nR) + U,2 (w~nR ) I +i C.C.. (50c)

The same procedures lead to renormalized expressions for the outwardly propagating terms. We find that

where the sum frequency is represented by

P'. - -[ iQ~ln V,(n) x[J( n )-U(w R

+ 2 V2(n) exp(ioa2t - , 2 ) [J,(w~nR) -'I(~R
2 P,

0)5/
2 n-V2(n) VT(n) [J 2(co~nR) + J 21(oWnR)}+ c.c. (52a)

The corresponding coordinate transformation is

nV,(n) i

xePic 2 -uz I. Ego-)[J'(w n - i1 1 (,I f + c[cJ.w~R -(J5Th)R
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Iie expressions given oy Lqs. (43a), (44a), and (49)- sure waveform may be evaluated from a two dimensional
(53). yield a uniformly accurate expression for the acoustic Fourier analysis" of a dual series in the va-iables ¢,
pressure. The signal is thereby formed from a superposition and -r = wut. The net result is an algorithm that is relativety shi
of terms that appear far off axis to consist of two trains of costly for extensive computation. Nevertheless, it yields a - h,
waves that propagate in the inward (P R ) and outward prediction of the acoustic pressure that may be utilized to
(P R ) transverse directions. Each wavetrain is further sub- generate waveforms and propagation curves of the frequen.
divided into effects associated with the formation of sum and cy response.
difference frequencies at the first stage of approximation: Two alternative algorithms are available for enhancing VII

p= p +PdR +P +P R. (54) the computational efficiency. Both approaches are based oninterfacing the analytical expressions to the farfield propaga. tig
We must note at this juncture that the coordinate trans- tion model' for spherical waves with directivity. Suppose Sul

formations given by the aforementioned equations describe that the signal at some reference distance ro and polar angle 0
only one transverse wavenumber n in a continuous spec- is known as a two-dimensional Fourier series, which may be
trum. Inspection of these equations shows that the 0(e) written in complex form as
term, which is the term associated with the distortion, con-
tains a factor- ./. Thus the 0(e) term tends to be very p(ro0 ,t) = -Poco

large as n - 1. If such behavior were to be retained, we would us(
find that the strength of nonlinearity increases as we ap- X _ Dk (9)exp[i(jto -- ko),)t 1,

proach n = 1. This violates our physical intuition. Hence, we (56)
now recall that the asymptotic development of the second- D D,1
order potential was obtained by considering/z, to be sub- DJk = D (-~k = (57) fec
stantially larger than zero. Consequently, we may regard the Then, the signal outward from that location is
coordinate transformations that have been derived as being 1 _( o
the asymptotic representations, for n not close to unity, of p(r,,) = "PCo r--) cil
alternative functional forms that behave properly as n - 1.

The proper straining functions S, must feature a depen- × D,, (0)
dence onu z that is proportional to p," in order to cancel k= --

the singularity at n = 1. A variety of functions, would exhib- X exp[ i(ja , + kwo,) (t - a + ro)], (58)
it suitable behavior. Ginsberg" employed the error function,
but we shall employ combination of Bessel functions, in ac- where a is a strained coordinate that is related to the radial
cord with Miao's work.22 When u,,z is large, the following distance by
representation is valid: r = a +,60 ln(r/r 0 )rp(r,0,t). (59)

,rz )1/2 .rZ, I + 2 The only difference between the approaches is the manner in
S ' a o which the complex amplitudes D,, are determined at the

- 3/2 interface r = r.
-4-0 - (55) The first, which we term the nonuniform spherical

( a propagation (NSP) model, uses the nonuniformly valid th
where a and / are arbitrary positive parameters that can only expression for the acoustic pressure in Eqs. (40). That result
be obtained in the context of the present analysis by compari- predicts the amplitude and phase corresponding to each pri-
son with experimental data. [We have found a = (ka)/3 mary, the second harmonic of each primary, and the sum
and I = 3/4 to give good agreement. ] Substitution of Eq. and difference frequencies. The computation of those re-
(55) into the coordinate straining transformations elimi- sponses does not feature coordinate transformations, so it is
nates the singularities at n = 1. relatively straightforward. The frequency response is com-

puted in this manner at a spherical spreading distance rt,
which is of the order of magnitude of the Rayleigh distances

VI. COMPUTATIONAL ALGORITHM associated with each primary. The signals at locations be-
It is necessary to evaluate the pressure integrals, Eqs. yond r, are computed according to the spherical model, Eqs.

(49a), (50a). (52a), and (53a), numerically. The primary (57)-(59). This means that only one nonlinear equation,
analytical task for the evaluation is the conversion of the namely Eq. (58) needs tobesolved for coordinate straining.
integral, as well as the coordinate transformations, to real The second algorithm, which we call uniform spherical
forms descriptive of the propagating spectrum (n < I ), and propagation (USP), employs the nonlinear King integrals.
the evanescent spectrum (n > I ). It is important to note that We find the signal at a spherical spreading distance r, by
the singularity at n = I is integrable. We employ the New- carrying out the full evaluation, including the coordinate
ton-Raphson technique to solve the coordinate transforma- transformation. Then, we frequency analyze the signal at the
tions for each of the eight strained coordinates a,, ,, ,, and interface in order to generate the boundary condition for
71, ( j = 1,2) at a specific transverse wavenumber in the in- nonlinear spherical wave.
terval 0 < n < I and n > 1. We then obtain the contributions In either approach, the signal at r,, provides the bound-
of each wavenumber to the pressure integral by a Gauss- ary condition that drives the directive spherical waves. F1,

Chebychev quadrature. The frequency content of the pres- Clearly. the first algorithm is less difficult than the second.
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However, the second algorithm is more accurate than the 170

first, especially if distortion is significant in the nearfield. We
shall present the results of the USP model only. The value of
ro we use is the Rayleigh distance (see Ref. 35), whose non-
dimensional value is j(ka)2.

VII. RESULTS FOR PARAMETRIC ARRAYS A31

The analytical model that has been derived in this inves- 140

tigation is quite general. However, we are unaware of mea-
surement of the interaction of collinear beams at disparate
frequencies. Therefore, we begin with results for parametric 130

arrays, that is, neighboring primary frequencies. The experi-
ments for parametric arrays in water performed by Muir and 120
Willette,2' Eller,29 and Bjorno et al.,"° along with the experi- 0.1 . . . . 5

ment in air reported by Bennett and Blackstock" provide 0.t 0.2 0.5 1.0 2.0 .0 10.0

useful data for validating the analysis. Other measurements RANGE (rr

of parametric arrays were not considered for this compari- FIG. 2. Axial propagation of the difference frequency f, = 1.46 MHz.
son for a variety of reasons, for example, some considered f2 = 1.41 MHz, SL, = SL2 = 204.0 dB//l uPa, a = 10 mm. fresh water.

saturation associated with shock formation, which is an ef- -: present theory; 0, A: measured in different tanks
2
"; -- - : Westervelt

fect not covered by the analytical model. Other experiments model.'

used rectangular arrays. The transducer in each of the afore-
mentioned experiments was a circular piston of radius a os-
cillating with two frequencies w, and w.. This corresponds in ted from a 3.81-cm radius piston operated in fresh water.
Eq. (2) to shading functions: Each primary was transmitted at a source level of 207.2

1, R <ka, dB//l uiPa m. The theoretical and experimental results
f, (R) =f 2 R) = 10, R > ka, (60) compare quite favorably.

The theoretical predictions and Eller's experimental
which lead to the following Hankel transform amplitudes: propagation curve for 50-kHz difference frequency compo-

V (n) = e (ka/2in)J, (nka), j = 1,2. (61) nent shown in Fig. 2 also are in good agreement. The pri-

The comparisons we present are primarily between the mea- mary frequencies are 1460 and 1410 kHz, and the source

surements and the present analytical model. Also, in each level of each is 204.0 dB//1 iuPa m. The piston radius is 1.0

case the rudimentary predictions of the Westervelt model' cm and the medium is fresh water.

are presented, along with the analytical results, if any, in the Figure 3 depicts the theoretical results for a 40-kHz dif-

cited reference. ference frequency signal in measurements made by Bjorno

In Fig. 1, we compare the predicted theoretical results to et al. The primary frequencies are 910 and 870 kHz emitted
di the data obtained by Muir and Willette. The measurements from a 1.0-cm radius transducer operated in brackish water.

,ult describe a 64-kHz difference frequency signal that arose Each primary was transmitted at 208.0 dB//l pPa m. (We
ori- from interaction of 482- and 418-kHz primary signals emit- referred to Fenlon and Mackendree' 2 to obtain these param-

eters.)

it is 170

or 
180

IGO

rices S 170

1- 17 41E- 140 170 -1

tion,
ing. 130 1S0

120 P

130

it b 10 .. 0.2 0.4 0.6 1 2 4 6 810 20

n for 0.2 0.5 t 3 5 7 10 30 50 100 200 RANGE (in)
: RANGE (m)AN)u I- FIG. 3. Axial propagation of the difference frequency f, 910 kHz.

,a,-. FIG I. Axial propagation of the difference frequency f, = 482 kHz, f2 = 87OkHz, SL, -SL = 208.OdB//l #Pa,a = 10mm, brackish water.
Iond f, = 418 kHz. SL, = SL. = 207.2 dB//I/aPa m, a = 38.1 mm, fresh water. -: present theory; 0: measured in a steel tank24; 0: measured in an ane-
d present theory; 0: measured"; - -- : Westervelt model.' choic tank"; 0: measured in a channel'; - -- : Westervelt model.'
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socso *40

40 1 ...... .7...... . , r-d

0.1 02 0.4 0.0 0.80.2 0.5.00.0.o . 2. 410.00,0.s
RANGE (ft.) 70 " 2w2

FIG. 4. Axial propagation of the difference frequency ft 23.6 kHF G Ani
fn = 18.6 kHz, SL = 97 dB//20thPa sr , SL = 104.7 dB/20,uPa m,
a = 29.2 mm, air. -: present theory; : measureduc; .... : numerical inte- tg
gration i t differeereution anrysisha; -p-c- : Westervelt model.c

40

111 0.2 U. t.0 I.* W l0.0

An example of the agreement between the theoretical RANGE (m]

predictions and the experimental results for parametric a- FIG. 6. Axial propagation ofthe fundamentals and lowest-order harmonics vi

rays in air is shown in Fig. 4 for Bennett and Blackstock's f, = 30.5 kHzt fl = a0.7 kHz. SL, = 132.8 dB//20b/aPa Is, SL. = f19.5
data. The 5-KHz difference frequency is generated by a dB//20 Pa m, a = 629 tm, air.
2.92 -cm radius piston. The primary frequencies are 23.6
and 18.6 kHz and the source levels are 99.7 dB//20/ 1Pa m "
and 104.7 dB//20 Pa m. It is particularly noteworthy that frequency j1. near the source that becomes "clipped" near
our model is in overall agreement with the measured fluctu- the envelope peaks as the wave progresses. f

ations in the difference frequency. Theoretical predictions of propagation curves for har- m
Figure 5 displays a waveform aximumxial location monics and combination frequencies resulting from the non-

z = 18.0 m for Bennett and Blackstock's data, except the linear mixing of two sound beams in which the primary fre-

primary frequencies are 25 and 20 kHz. (Choosing o, and o2  quencies are not close to each other are shown in Figs. 6 and sh
such that they are integer multiples of ae ta reduces the 7. The primary frequencies are 30.5 and 20.7 kHz, and the
time interval over which the waveform is pelgodic.) In co- corresponding peak source levels are 132.8 dB//20 Pa m
parison to the linearized prediction, nonlinearity results in and 119.5 dB//20edPa m. The piston radius is 62.9 mm and th
earlier a val of the maximum compression signals, and re- is operated in air.r
tarded arrival of the maximum rarefraction signals. This is Figure 6 shows the fundamental and the second har-
consistent with past predictions and observations of mono- monic of each primary, in addition to the sum and difference -
chromatic waves. In addition, Fig. 5 indicates that the dis- frequency signals. The levels of both harmonics (61 and 41.4 is
tortion of the waveform is largest near the envelope peaks, kHz) and the levels of sum and difference frequencies ( 51.2
but the shape near the envelope nodes is nearly unaffected.
This supports the suggestion by Moffett and Mellen" j that re

the primary waveform should be modeled as a sinusoidal at 120

110

12008.gi0o 2w,- -w,

0.08

£ o 3wS*

so

40

0 0.2 0.4 0.6 0.8 1.0

TIME (nondim.)/211' 0.1 0.2 0.8 1,0 2o SD 10.0
RANGE tin) '1

FIG. 5 Waveformon-axisz= 18mjf = 25kHzf.j = 20kHz.SL, = 99.7

dB//20 pPa, SL, = 104.7 dB//20uP, m, a = 29.2 mm, air. -: present FIG. 7. Axial propagationofthe higher-order harmonics for the parameters
theory; - - - : linear theory. in Fig. 6.
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I

Ray theory and perturbation analysis are combined to analyze the cumulative growth of
nonlinear effects resulting from excitation ofa single nonplanar mode in a two-dimensional
waveguide whose walls are rigid. The fist-order (linear) signal is decomposed into a pair of
obliquely propagating planar waves. The signal associated with each ray is required to satisfy
the inhomogeneous second-order wave equation. A single ray emanating from its source is
followed to its imt incidence at one wall, and the reflection of such a ray is determined by
requiring that incident and reflected rays combine to satisfy the hard-wall boundary condition.
The method of images then leads to a generalization of the result to the case of ray that
undergoes multiple reflections. Nonuniform validity of the ray signal determined in this
manner is corrected by the method of rmormalization, which leads to the conclusion that a ray
behaves like a simple nonlinear planar wave, except that the propagation distance is measured
by tracing the ray back to its source. The overall signal at a specified field point is determined
by superposing the signals associated with the two rays that intersect at that location. The
result is shown to be in complete agreement with earlier modal analyses of the same problem,
provided that the frequency is sufficiently low to inhibit resonant energy transfer between
nearly parallel rays. Although the analysis is less direct than that used previously, it yields
physical insight into the distortion process not previously available.

PACS numbers: 43.25. - x, 43.20.Dk, 43.20.Mv

INTRODUCTION scales was used by Vaidya and Wang" to investigate nonlin-
ear interaction effects in a rigid-walled waveguide that is

In linear theory, a two-dimensional mode in a hard- subjected to a multiharmonic excitation. The walls in the
walled waveguide at a frequency exceeding cutoff may be system they studied were rigid, corresponding in linear theo-
decomposed into a pair of obliquely propagating planar ry to nondispersive waves. Resonant self-action was predict-
waves. Nonlinearity associated with finite amplitude effects ad by their analysis, but the complications associated with
leads to two types of harmonic generation. Each planar wave the method of multiple scales and the multitude of interac-
generates a planar second harmonic that propagates jointly tions prevented analytical solution of the partial differential
with the fundamental. This leads to a resonant self-action equations governing the amplitudes of the modes.
process, in which energy is continuously transferred from Finite amplitude propagation phenomena arising from
the fundamental to higher harmonics of that planar wave. multimode excitation of a rigid-walled waveguide were also
This is the cumulative distortion effect commonly encoun- studied by Ginsberg.' He employed the method of renormal-
tered in simple waves. In contrast, the interaction between ization to examine nonlinear self-action effects within
different oblique planar waves is a dispersive process, in groups of nondispersive waves. The overall response was
which the interchange between fundamental and second shown to be a superposition of the various nondispersive
harmonic is not resonant. Cumulatively growing distortion groups, each of whose distortion is governed by the signal
in this case only arises at frequencies substantially above cut- associated with that group. Hamilton and TenCate6 incor-
of porated the effects of thermoviscous attenuation into their

Most analyses of nonlinear effects in a waveguide have analysis of interactions for a low-frequency excitation of a
been founded on perturbation techniques. Nayfeh and Tsai waveguide mode. That investigation evaluated the pressure
used the method of multiple scales to study waveguides hay- by solving numerically the differential equations governing
ing rectangular' and circular' cross sections, in the case the amplitudes of a Fourier series expansion.
where the walls ae acoustically treated. The wave propaga- The latter two studies both avoided consideration of the
tion phenomena in the linearized version ofsuch systems are high-frequency regime, in which the pair of oblique planar
dispersive, which inhibits the type of resonant interactions waves is nearly parallel to the axis of the waveguide. In that
that leads to cumulatively growing distortion. Consideration Situation, the transverse wavelength of a mode is much
of resonant interactions was also avoided in the analysis by greater than the axial wavelength, so the mode has a nearly
Keller and Millman3 of propagation in a rigid-walled wave- planar appearance. Significant coupling with the truly
guide whose cross section is not rectangular. Their perturbs- planar mode then arises, even though the planar mode is not
tion technique was the method of strained parameters based directly excited. Ginsberg and Miao7 developed an analyti-
on an expansion of the wavenumber. The method of multiple cal procedure for treating high-frequency modes by using
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the method of renormalization. They considered the case of do V102 _ a 2-
excitation of the (2,0) mode as a prototypical example. 2

An important aspect of the aforementioned investiga- a (V#.V 1 ) + 2(Be- 1)
tions is that they all employed separation of variables con- (3)
cepts in order to devlop solutions of the perturbation partial at

diferential equations. One may consider them to be modal where c is the acoustic Mach number of the excitation, e 4 1,
formulations, in contrast to our solution, which is based on co is the speed of sound in linear theory, and 60 is the coeffi-
evaluation of the propagation of signals along rays that re- cient of nonlinearity for the fluid. The particle velocity and
flect off the rigid walls. Our solution is suggested by studies pressure may be obtained from
performed by Feng" 9 and Qian' of the reflection of a dis- T = A +0
torted plane wave obliquely incident on the boundary of an - O ' P= --Po (4)

infinite half-space. However, those works only addressed the We postulate the existence of a velocity distribution along
mechanisms by which second harmonics are generated, z - 0 that excites only nonplanar mode (m, 0). The corre-
whereas the present study fully explores the distortion pro- sponding boundary condition is

It is the intent of this presentation to develop the ray 0'0 =eCoSin(wt) cos(k~x), k= m,, .  (5)
approach, and to use the solution to gain additional insight z1 - L
into physical phenomena. Since the earlier modal formula- The rigid wall conditions are
tions adequately describe the response throughout the fre---.()
quency spectrum, we shall avoid the complications of dissi- - )
pation and quasiplanar coupling phenomena by limiting the axL -0 . 1

analysis to the moderate frequency regime. Also, for the sake The cutoff frequency, below which the solution for 01
of simplicity, we consider only the case of a monochromatic evanesces, is ck,. We are concerned here only with the

excitation that excites a single mode according to linear the- propagating case, which leads to

ory. 0 = (c0/k, ) cos(k,z - n) cos(kx), (7)
The treatment begins by decomposing the first-order where

(i.e., linear) velocity potential into the pair of oblique waves,
from which the nonlinear source terms generating the sec- kw/cX , = (k2 

- k )"2 , k>k. (8)
ond-order signal are derived. A specific ray is then followed The first-order potential may equivalently be described as
from its source through its first reflection at one of the rigid two trains of planar waves. As depicted in Fig. 1, for the case
wall& The result is extended to the case of a ray that has m = 2, the respective rays are parallel to the directions a,
undergone many reflections by applying the method of im- and nl, both of which are oriented at angle 0 from the axial
ages. The overall signal in the waveguide is then synthesized direction, where the propagation angle is given by
by tracing the rays arriving at a specified field point back to k sin 0 = k, k cos 8 -k,. (9)
their respective sources.

The ray solution explains an apparent paradox in the The specific expression obtained from Eq. (7) is
earlier modal analyses. Specifically, although the signal may =, = F (cos(kzl - wt) + cos(kzl - wt) ],
be decribed in terms of a pair of oblique planar waves that F, = co/2k cos 0, (10)
propagate in both the axial and transverse directions, the
scale of the distortion process is independent of the trans- where the distances z, and z11 are the projections in the direc-
verse position. Conversely, the earlier modal solutions pro- tions of propagation of the position x relative to the origin.
vide validation for the present analysis, which indicates that Specifically,
the solution is a superposition of the signal associated with z, a -" = x sin 0 + z cos 0,
each ray. One corollary of the analysis is to prove that the ( a x )
laws for linear reflection from a rigid planar surface also Zn =n. " = -X 5nO +zcos.
apply to the nonlinear ray.

L EVALUATION OF THE FIRST- AND SECOND-ORDER
RAYS

We consider a two-dimensional waveguide whose rigidwlls occupy the planes x =- 0 and x - L, with z measuring L-2wk

axial distance. Perturbational equations for the velocity po.-
tential 0 in the absence of dissipation and shocks, correct to
second order, are 2/k,.

0 = C0, + f202 + "" (I -
ao 2, *-- 1 - 0o, (2)

2
2 . FIG. I . GOmeft of tbe pair of oblique plma waym
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Substitution of Eq. (10) into Eq. (3) leads to X Ao

CgV2 # 2 -4 -0k 2F 0 [fsin(2kz1 -2wt) A' 9

+ sin (2kzu - 2w)]

+2. 'sin(2kz --2t). (12
In the foregoing, the last term arises from the dot product of
the,, and ,, terms in V#,. Correspondingly, the coefficient A €
P = - 2 sin2 is the oefficient ofnoninearity for inter
action of two noncollinear planar waves.'12 This is con- A
trasted by the terms in Eq. (12) associated with d 6 which xAIM, 0

represent self-action of the respective rays. They arise from
dot products involving solely an a, or m term. X

The'source terms in Eq. (12) corresponding to self-ac-
tion are solutions of the homogeneous wave equation, FIG. 2. Reactim ora my at a rigid wall.
whereas the term arising from interaction of the intersecting
planar waves is not. As we shall see, the effect ofself-action is
to produce terms in 02 that grow in magnitude with increas- Since z/x = - z /ax, thesum (02),-- + (562) given
ing z, corresponding to the familiar cumulative distortion by Eq. (13) satisfies the rigid wall condition at x = 0, if
process. The interaction term leads to a solution for 02 whose C, = C11. Hence,'the reflected ray departing from point B is
overall amplitude is independent of z, although it has the
appearance of spatial beats.7'" The amplitude of these beats () = F,(z, +XA uin0) cos(2kz, - 2it). (17)
is singular in the high-frequency limit, for which k, - k and The significance of these expressions lies in our ability to0-0. Our purpose here is to gain additional understanding generalize them. We observe in Fig. 2 that z and z:, are the
of the distortion due to self-action. For that reason, we shall distances in the respective directions as and a,, measured
not address this limiting case. Correspondingly, we denote from the origin, while XA sin 9 is the distance between
as O(e), without further analysis, all second-order terms, source point A and the origin measured along na1 . However,
including ray interaction, whose magnitude does not grow XA sin 0 is also the distance between image point A' and the
with increasing z. origin measured along a,. Furthermore, note that z, = z, at

Rather than using modal procedures to evaluate the point B. If ; denotes the position of a generic point on either
self-action effect, the present approach will synthesize the ray, and A, A', and B denote the position of the respective
appropriate solution from an analysis of the reflection pro- points, then Eqs. (16) and (17) may be rewritten as
cess of a ray obliquely incident at one of the walls. Since the (02)1 = F2n," -( - A) cos(2k, . - 2wt),
terms that are uniformly O(c) are to be ignored, the general ( = 8 A
solutior. for #2 is associated with the first two source terms ( = F2n,' ( - A') cs(2kn1  - 2t) (
Eq. (12). The form of the solution is = F2 [al (B - A) + a1 ( - )]

02 = F2 [ (z, + C, )cos(2kz, - 2wt) X cos{2k [a -B + m,(--)] - 2ot).
+ (z,, + C;: I -"", - 2.wt) 1 + 0(62). %!,) The two forms for the reflected ray lead to alternative

interpretations of the reflection process. In the first, the ray
In order that Eq. (13) satisfy Eq. (12), it must be that appears to emanate from the image point A', where it is un-

F 2 - X kP~ai& /4d, nc/ 16 cos2 9. (14) distorted, while the second form corresponds to a ray ema-
nating from the reflection point B. In the latter viewpoint,The constants C, and Cn arise from the complementary the expression for (02),., shows the second-order signal in

solution In order to determine them, consider a region near the reflected ray at point B to be equal to the signal in the ray
the origin, such that a ray undergoes only one reflection at incident at that point. The second interpretation leads us
x = 0. Such a situation appears in Fig. 2, where ray II ema- through mathematical induction to recognize that the char-
oting from source point A is incident at point B, resulting in acterization is quite general--ft does not rely on the fact thatthe rected ray I. Since boundary condition (S) is satisfied the reflection in Fig. 2 is from the wall at x . 0. All that is

by 0, it must be that A02  = 0 at z - 0. Applying this required to apply Eqs. (18) to reflection from the wall at
condition to the secular portion of ray II in Eq. (13) leads to x - L is to interchange the subscripts I and 11. Equally im-
Z n +C 0 at z = 0, x xA, so that portnt, it follows that the results are valid even if the inci-

C. = A sin 8. (15) dent ray itself arises from a prior reflection.
This result is consistent with the notion that the nonlinear We see from the foregoing that the reflection of the sec-Thiereult sowsisent with thereinin tt the oniner ond-order ray associated with the self-distortion process is
effect grows with increasing distance from the source, since the same as the familar reflection law for a ray in linear
it leads to 02~ 0AtZM 0. acoustics. This is precisely the conclusion reached earlier by

We find from the foregoing that the incident ray is Feng '
. and Qian.'° Although the econd expression for

(02). = F2 (z, . x, sin 0) cos(2kz,, - 2Lot). (16) (02),0 in Eqs. (18) is more useful for qualitative under-
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standing of reflection, the first expression, which uses the
image point, wil lead us in the next section to a construction A po W O(02) =-poCoVa .al.
of the particle velocity and pressure at a specified location. (22)

II. UNIFORMLY VALUD FIELD SOLUTION Equations (20) contain e2 terms that grow with incre-
In Fig. 3, we have selected a specific field point at posi- ing distance, so they are not uniformly valid. We correct this

tion x. The source points A and C are for the I and II rays behavior by invoking the method of renormalization, which
intersecting this point, and A' and C" are the corresponding introduces a near-identity transformation between the linear
image points. The distances s, and su are the respective dis- phase variables #1, On and nonlinear phases X1, Xn. The
tances from the image points to the field point (The fact that details of the renormalization may be found in the Appen-
s, = s, = z/cos 0 will be important later.) Combining the dix. The result is that
term for either ray obtained from Eq. (10) with the first v -- -- kFta, x sin , = -EAFll sinX., (23)
expression for a reflected ray in Eqs. (18) yields the poten- where the transformations have implicit functional forms
tial function associated with self-action of the rays: given by

E = eF, cos(kz, - wit) + eF2s, cos(2kz, - 2wt), 0 -, +,krlw, -a/ca.

(19) (24)
#1 = eFI cos(kz,, - wt) + e2 F2s, cos(2kzl -2wt). u Xu +PBksv."n/c(

Since s, - z, and sj - zj are constants along the respective The nonlinear phase variable corresponding to a specified
rays, the particle velocity associated with each ray is value of a linear variable may be found by numerical solution

o10 of Eqs. (24), after substitutioa of Eqs. (23). The velocity
= --- , components v, and v, and the pressure p associated with

°8z, the cumulative nonlinear distortion process, may then be

- - Ekn, (F, sin 0, + 2eFs, sin 20, ) + 0(W), determined by superposition of the results for the two rays.

(20) This leads to

o1 v. = (vi "h, -v *a,,) sin 0

r,, 1 - ekF, sin 0 (sinX, - sinX ,
- ekD,, (F, sin 0,1 + 2eFs,, sin 20,1) + O(e), Vs = (v"n + ',, "n,) cos 9

where the phase variables are - -kF, cos 0 (sin X, + sin X),
01 -- kzl - w~t, 011l = kz.j - w~t. (21) P = poe0 (vT1"n1 + T11 'al)

The corresponding pressures are - - epockF (sin x, + sin X,,). (25)

I1. VALIDATION

It is not difficult to prove that the combination of Eqs.
(23) and (24) for either ray is identical to the Earnshaw

A'- solution"3 for the finite amplitude planar wave generated by
a low Mach number harmonic excitation. Specifically, if the

z particle velocity v at position sr 0 is c, sin (wt - 6), the
Earnahaw solution for small e is

v= -eosin[w(s/c-t) + 1, €=co+ flo,. (26)
c z The linear and nonlinear phase variables for the planar wave

A are
" s- wt+ 6 (27)

and

Z11 - kwt #9k + 0 R,2 (28)
C, 911c C

respectively.
x The second equation, which relates X and io, is compara-

ble to that indicated by Eqs. (24) for either ray. In order to
FIG. 3. Soure ad ima pointa for the rys mumcting at •,e ' acid ascertain the phase lag associated with each ray, we rewrite
p.Eqs. (21) as
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1 =ks, -a- --k($- z ), (29) It is obvious that the magnitudes of the differences
#i =ks -wt -k(s t - z( 9 l - x and f - z, which represent the degree to which the

phases of v., vi, and p differ from their linear analogs, are
Inspection of Fig. 3 shows that - the distances proportional to z. This result is obtained, even though each
si - Z, and s. - z, may be expressed in terms of the loca- ray depends on both x and z, because the propagation dis-
itions of the respective image points XA. and xc. As a conse- tance of intersecting rays is identical and depends only on z;
quence, the phase lags are me Fig. 3. Hence, when z is held fixed, the pair of rays inter-

6j = -k(s, - z, ) = kx,. sin 0 k~xA., aecting at different x have all propagated through the same
, -k(s, - zu ) w - kxc mn -kxc. (30) distance, even though they originate from different sourceson z - 0. The location of the source point for each of these

Geometrical analysis reveals that xA,.c , xc ± jL, rays only affects the phase lag of its signal, as shown in Eqs.
where the integerj and the choice of sin depend solely on (31). It is for this reason that the only apparent effect of
the number of reflections the ray undergoes prior to its arriv- iamvere position in Eqs. (33) is the sinusoidal phase factor
al at the field point. Since k .L = m , the phase lags may be mirroring the excitation.
equivalently written as

=fi ± kxA, =: k.xc. (31)

Clearly, the phase delay in each ray stems from its origina- IV. DISCUSSION
tion from a point that is not at the xz origin. We have demonstrated that finite amplitude propaga-

We have seen that the signal along each ray behaves like tion phenomena ina waveguide may be described in terms of
a simple planar wave, whose distortion depends on the prop- rays. Although the formulation is less straightforward than
agation distance measured obliquely along each ray. This the comparable analysis using modal techniques, the result
seems to conflict with the results of the modal analyses, ph e ph ysi sig o al from the resu-
which found that the distortion process is dependent only on provides physical insight not available from the earlier solu-
the axial position. There actually is no inconsistency. In or- source point at the boundary where the excitation is applied.
der to demonstrate this, let us convert Eqs. (23)-(25) to sin a h radisoththe sammns a
variables associated with the xz spatial coordinates. First, The signalong each ray distorts in the same manner as a
we apply the trigonometric identities for the sum and differ- conventional planar wave, with the propagation distanceence of two sines to Eqs. (25), and define new nonlinear measured along each ray. Reflection of a ray at a hard wafl

obeys the linear rule for oblique reflection at a rigid surface:
independent variables -q and , such that angle of incidence equals angle of reflection, no loss in signal

kiT sin 19= (X - X,. ), kA cos t9 (XI + X. ) +al. strength, andnochangeofphase.
(32) If the frequency of excitation is not too high, interaction

This converts Eqs. (25) to between crossing rays is insignificant in comparison to the

v - 2EkF sin e sin (k1 sin 8) cos (4 cos 0 - wt), self-action distortion phenomena for each ray. However, at

(33) high frequencies the near parallelism of crossing rays en-
p = /Cos 0 hances their interaction. This phenomenon, which was treat-

ed by Ginsberg and Miao,7 was not considered in the present
= -2ep 0cokF, cos(kj sin 8) sin(kcos e - at). analysis. (It seems reasonable to expect that nearly parallel

Elimination of 8 and F, from these expressions, by substitu- rays for proximate modes in a case of multimodal excitation
tion of Eqs. (9) and (10), shows these expressions to be the will couple in the same manner.)
same as Eqs. (43) and (44b) in the paper by Ginsberg and When interaction between rays is omitted, the signal
Miao which are the approximations for moderate frequen- may be obtained by superposing the signal associated with
cies of the general expressions for the signal. each ray. This explains the observation in an earlier analysis

We obtain relations for T and t by subtracting and add- by Ginsberg" that shocks form along the wave fronts for
ing Eqs. (24). Since s = s,, = z/cos 0, this step yields either ray. The ray picture also emphasizes the increasing

g s(2 Sine k s8 + zco , othis sp yrole of dissipation, which was not included in the present

( - A ) ==k in 0 + (BoZ/2C co 0work, when the frequency is allowed to approach cutoff. In
)C(vt m " . ,1 -.u1 ), that case, the decrease in the wavenumber k is accompanied

S) cos - wt + s) (34) by an increase in the angle 0 between the rays and the axis of
the waveguide. If one considers a fixed position, the propa-

X (l "at + Tit *u). ation distance for the rays intersecting at that position in-
The left side of each relation may be simplified by the intro- creases in proportion to sec e. This leads to an increase in the
duction of Eqs. (9), (), and (21), while Eqs. (25) sim dissipation losfactor.
plify the right side. The result is

z =+ [$z,(2 sin' 19 os 8) 1 (v3/c5)) ACKNOWLEDGMENTS
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APPENDIX The relations for the second ray may be obtained by chang-

The method of renormalization, described by Nayfeh,'s ing the subscripts in Eqs. (A3) from I to IL
is based on the notion that a weakly nonlinear process is
comparable to the linear process, except that the indepen- 'A. H. Nsyfeh and M. S. Tsa, "Nonlinear acoustic prpaation in two-
dent variables correspond to a distortion of thze space-time dimenasional ducu,"J. Acoust. Soc. Am. 55, 1166-1172 (1974).

2A. I Nayfeh and M. S. Tain, "Nonlinear wave propagation acoustical-
grid that increases with increasing distance from the source. ly lined circular ducts," 1. Sound Vib. 35,77-89 (1974).
Consider the nonuniformly valid description of ray I, as giv. 'J. B. Keller and M. H. Millman,"Fmniteamplitude aound-wave propp-
en by the first of Eqs. (20). Since the second-order term is tion in a waveguide,"J. Acouat" Soc. Am. 49, 329-333 (1971).

tP. G. Vaidya and K. S. Wana, "Non-lineu propa ati o'complez sound
proportional to sz, the nonlinear phase variableds should A" in rectangular ducts, Pan I: The ,elf-e itatoe phenomenon." J.
equal the linear variable #1 ats, =0, and the difference Sound Vib. 50,29-42 (1977).
X, - *, should increase in proportion to e,. Hence, we seek 5J. H. Oinberg."Fmiut-amplitude twodimnional waves in a rectangular

Snear identity ransformation in the form du induced by arbitrary periodic ecitation," J. Accust. Soc. Am. 65,1127-1133 (1979).

A X, + aG, (x), (Al) 6M. F. Hamin and J. A. TeCate, "Finite amplitude sound near cuto' in
higher-order modes ofa rectangular duct." J. Acosts. Soc. Am. $4, 327-

where the unspecified function G, (X,) must be selected to 334 (1988).
cancel the nonunifornly valid term. 'J. H. Ginsberg and H. C. Miao, -Finite amplitude distortion and disper.

In order to determine G1, we substitute Eq. (Al) into sion of a nonplanar mode in a waveguide," J. Acoust. Soc. Am. 00, 911-
920 (1986).the fis of Eqs. (20), and expand the result in a Taylor series IS. S. Feng. Relection of finite amplitude waves,- Soy. Phys. ACOUSL 6.

in powers ofe. This gives 481-490 (1961).
OS. S. Feng. "The reflection and refracion of finite amplitude plane sound

=, eke, [F, sin(X + es, G,) wave in two dimensions," Chin. J. Acoust. 2, 293-302 (1983).
-Z.Qian, "Reflection of finite-amplitude sound waves on a plane boundary

+ 2Fs, sin ( 2X, + 2s, F,)] of half-space," Sci. Sin. 2$,492-501 (1982).
"M. F. Hamilton and D. T. Blackstock. On the coefficient of nonlinearity

--- - [ n [F. sinX. + ex, cos j6 i ino ear acoustics," J. Acoust. Soc. Am. 83, 74-77 (1988).
x (FG, + 4F2 sinX, + 0(e). (A.2) 12J. N. Tjetta and S. Tjeta. "Interactio of sound wave. : Basic equations

and plane waves," J. Acoust. Soc. Am. 82, 1425--1428 (1987).
". W. S. Rayleigh, The Theory of Sound (Dover, New York. 1945), Vol.

Setting the factor containing G, to zero leads to II, pp. 37-38.
"J. H. Ginsberg, "A re-examination of the nonlinear interaction betwe n

v, = - ek j E, sin , an acoustic fluid and a flat plate undergoing harmonic excitation," 3.
',,if , Sound Vib. 60,449-458 (1978).

(A3) "A. H. Nayfeh, Perturbaton Methods (Wiley.Interscience, New York,
=, "X, -4a,(F 21F,) sin, ,l - +, " 0 k,vl~n,/cO" 197 3), pp. 95- 98.

776 J. AcotL Soc. Am., Vol. 86. No. 2, Augus 1980 K. Shu and J. H. Ofnborg: Ray toory, for flW~e m mlude effects 776



REFRACTION AND REFLECTION
OF AN OBLIQUELY INCIDENT FINITE

AMPLITUDE PLANE P WAVE AT A
PLANE INTERFACE

Kun-Tien Shu
Jerry H. Ginsberg

School of Mechanical Engineering
Georgia Institute of Technology

Atlanta, Georgia 30332

[Work supported by NSF and ONR]

26 May 1989

Pre 3e " e c, 17 Y

5,(,-~ Ql C A



7 \IrnRI p L 4/

~~~j() 2nV,(n)exp iw~t -pa, + iw1nR - iI+ C.C.. (47b)

1885 J Acoust. Soc. Am., Vol 85, No. 5, May 1989 M. A. Foda and J. H. Ginsberg: Finite amplatude effects 1865

NONLINEAR WAVE EQUATION

2 V 2  - , a 1 (o 2 1V] + o '1)
0 t t

o v

v=V

where

BB =fluids
2A

- 2gases
2Po 2)

70-f C: 2 a



PERTURBATION EXPANSION

O(,z,t) = 60, (Xt) + eq(x,z,t) +...

where

VC Acoustic Mach Number -
Co

0(E):

-o
0 8t2

a¢,
P -P at

0(e)

2 
2  a2  a a+( -co € ~ -ct(¢ V0, + 4 2(fo-1--2'W€

a t2 a t at

P2 P0 at



PERTURBATION ANALYSIS

DIFFICULTY FOR STRAIGHTFORWARD
PERTURBATION APPROACH:

Should not satisfy first-order boundary conditions

with first-order solution because this leads to a

situation where the second-order boundary conditions

cannot be satisfied

MODIFIED APPROACH:

Consider the incident, reflected, and transmitted

waves at first order to be separate entities:

phase variables 0, , ,, V),

01 = sin wo, + R sin w4, + T sin wo,

Boundary conditions will be satisfied by total

solution
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SECOND-ORDER SOLUTION

Nonlinear Self-action: Secular effect

(02), = F, z, cos(2w,0,)

(62), = F, R2 Z2 cos(2w¢,0) F, - 34 k

/311 k 3

(2), =F 2 Tz2 Z cos(2w4,), F2 = 1

Nonlinear Interaction: Nonsecular effect

NSW - sin u)(V, +,0, )

where

Z1

0, =t - , z =xsino, -zcosO,
C,

Z2
= t- z2 = Xsin0, - zcos0,

C'!

Z3¢,=t -- I, z3 = x sin 0, - z Cos 0,
C11



RENORMALIZATION PROCESS - REMOVE
SECULAR TERMS

Add First- and secular second- order signals to
form velocity potential for each wave

Evaluate physical response variables

v = v, p =-P -o + 0 (E2)

Employ a set of strained coordinates transformation

along the direction of propagation of each

individual wave

z. = , + EZ ( 1, t)

Choose straining functions Z, to Cancel out the secualr

terms



Result is an Earnshaw-type solution for incident,

reflected, and transmitted waves:

vi -- vo n, sin wJIQ,

V, = Rvo n, sin wT,

v, = Tv0 n, sin wxP,

where

T, z, + L,

c, +±. v,

T, t--z. + L,
c, + 0. V,

t z, +L,

distance between initial incident wavefront and place

of origination (known)

L,,I LI -phase lags of reflected and transmitted waves

(unknown)

R, T reflected and transmitted coefficients

(unknown)



BOUNDARY CONDICTIONS

Continuity of normal particle velocity and

acoustic pressure across the interface z = 0

vI = pII I --,=pX! at z=0

Fundamental harmonic excitation at the source

v, =v 0 sin wt at z, =-L,

First-order terms on boundary conditions

determine secular effects

Second-order terms may be satisfied with

second-order homogeneous solution, which

are nonsecular- NEGLECT !



FINITE AMPLITUDE EFFECTS

Match Phase Variables on z = 0 yields

a. Finite amplitude form of Snell's law

sin 0, sin 0, sin Ot
c, + lv, ._-o c, + O fl, .. =o c,, + Ol,v, 0_-

b. Phase lags

L, L, L
C, C, ++ Ov.js_- C,, +,,,,v, .=o

Algebraic equality gives

R m cos9O - n cos 0,
mcos0, + ncosO,

T= n(cos 0, + cos 0, )
mcos0, + ncos0,

where

p C
p, c,
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CONCLUSIONS AND RECOMMENDATIONS

NONLINEAR INTERACTION CAN BE NEGLECTED
WHEN THE INCIDENT SIGNAL IS WEAK

NONLINEAR EFFECTS ON REFLECTION AND

TRANSMISSION ARE VERY SMALL FOR SMALL
INCIDENT ANGLES

DIFFERENT WAVELETS REFLECT AND TRANSMIT

AT DIFFERENT ANGLES WHICH HAVE PERIODIC
FLUCTUATION ABOUT LINEAR MEAN

CRITICAL INCIDENCE MAY BE TREATED BY
COMPLEX FORM OF SOLUTION

THE METHOD MAY BE EXTENDED TO ELASTIC
WAVES IN SOLIDS WHERE TRANSVERSE SHEAR
WAVES EXIST
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On supercritical incidence of a finite amplitude plane dilatational wave in

an elastic solid. Kun-Tien Shu and Jerry H. Ginsberg (School of Mechanical

Engineering, Georgia Institute of Technology, Atlanta, GA 30332)

An earlier analysis [K. T. Shu and J. H. Ginsberg, J. Acoust. Soc. Am.

Suppl. 1, 85, EEEI (1989)) described nonlinear reflection and refraction

phenomena of a finite amplitude dilatational wave at subcritical incidence

on a plane interface between two bonded solids. The present work extends

the earlier description to cases where the angle of incidence exceeds the

critical value. The incoming wave is assumed to originate from the slower

medium, so two critical angles exist, associated with evanescence of either

the transmitted dilatational or shear wave. The finite amplitude version of

Snell's law indicates that the dependence of the phase speed of the incident

wave on its instantaneous amplitude induces, in the case of evanescent

waves, fluctuations in the phase velocity parallel to the interface and in

the decay rate normal to the boundary. This effect mirrors the fluctuations

in the transmission and reflection angles of propagative waves. A numerical

algorithm is developed to evaluate reflected or transmitted waveforms at a

specified field point. In the special case of incidence close to a linear

critical angle, the finite amplitude Snell's law indicates that the

corresponding wave fluctuates between propagative and evanescent properties

within a single period. [Work supported by NSF.]

Technical Committee: Physical Acoustics

PACS Subject Classification number(s): 43.25.Dc, 43,25.Jh

Telephone number: (404)894-3265 (J. H. Ginsberg)

Send acceptance or rejection notice to J. H. Ginsberg



ON SUPERCRITICAL INCIDENCE OF

A FINITE-AMPLITUDE PLANE DILATATIONAL WAVE

IN ELASTIC SOLIDS

Kun-Tien Shu

Jerry H. Ginsberg

The George W. Woodruff School of Mechanical Engineering

Georgia Institute of Technology

Atlanta, Georgia 30332

[Work supported by NSF and ONR]

1. The role of nonlinearity on the supercritical incidence

2. Uniformly valid expression for evanescent waves

3. Field solution (waveform)



FORMULATIONS OF PROBLEM

Solid I:

a U, a U,. 2 a'u 2 i,a- aa. a a,,. a,,. A

Tj= u., 6- 8u, +au, )+G,m, = ,,+( + -"
am aa, aa, P

Solid II:

a2 u' a2 u: 2 U ' K'

at 2  (c', - .) a aa, aa,, aa.. p.

T' =, ' + P 6+,) +L,

where

Po PA

, V+2p' c, y'
Ad PO
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PERTURBATION SERIES SOLUTIONS

* Ray description of the reflection and refraction processes

e Due to nonlinear self-action, Secularity occurs in the O(C2)
incident, reflected and refracted P waves, but not in the

O(E2) reflected and refracted SV waves (Ref. Lardner,

1985)

* Nonlinear interactions between individual wave trains (di-
latation and shear) are not important (exception: near

grazing incidence)

e Boundary effects create secular waves that depend on dis-
tance perpendicular to the direction of wave propagation



UNIFORMLY VALID PARTICLE VELOCITY

1. Figure out the linear reflection and refraction patterns

2. Form particle velocities by the method of characteristics

2 n -r +L)
v - eAexp iw (-)]+C.C.

2

where

a c', + 03 (v -n) dilatational wave

c. shear wave

3. Match nonlinear trace velocities along the interface to yield
finite amplitude forms of Snell's law

4. Obtain a system of equations to solve the unknowns

5. Apply the algorithm that we have developed earlier to ob-
tain stress waveforms at a specific field point for the reg-
ular reflection and transmission patterns
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CRITICAL ANGLES FOR PLANE WAVES SCATTERING
AT A PLANE SOLID-SOLID INTERFACE

Dilatational wave (P) incidence

C" > C' > C, 0

dC > C >C c1

-~C' > C > C, 2

Shear wave (SV) incidence

C. >~ C> c I

c', > c. > c 2

c, > C > c. 3



INCIDENT P WAVE

[A]{X} = {C}

where

- sin 0, - cos &, sin , -cos g
[ cos 0, - sin cos 0, sin 0,

-A] = 2 sin" 0,,) -t sin 20, mn(" '2 - Sin2 0,) mn t'2 sin 20,

sin 20, -y cos 20, mn sin 20, -mny"'2 cos 2€,

Adf/Adl si Si. 9

A.,/Ad. I cos 0,

{X} Ads,/Ad, {C} 2 - 2sin2 O,
A., /A, sin 20,

C= _+2p AL' +o

C. I'

dc

cl-



1. 0 < . < 0,: Regular reflection and transmission case,
where both refracted P and SV waves in solid II are prop-
agating away from the interface.

2. 0,, < 0, < 0..: The evane scent refracted P wave occirs

3. P., < 0, < -: Both refracted P and SV waves are evanes-
2

cent

sinO, 0:n[ + (3, - nT,) " - ]
Cd

sin 9., Vn-'(I + , v
C'd



* ,. <6 .<6 (= sin0, >1)

set

cosO, =- i(sin' 0, - 1)1/2

---i--N2sin2 0,1
22

where

N, + ld T:d nv., cd

*9.. <9, < - (2 sin0, > 1 and sine, > 1)

set

cosq$, = -i(sin2 , - 1),/2

i( 2n sinO2 ,1

where

1
N2 + i .1i =.



ki aI+L )

v =A e3e[w(t k

+ C.C.

a 1

a 3

* All locations at constant a, have same phase

* Trace velocity matches that of the nonlinear incident

wave

• Decay rate depends on the phase of the incident wave
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CONCLUSIONS

1. Nonlinearity is to cause reflected and refracted waves to
propagate in variable directions

2. Evanescent waves propagate along the interface & decay
rates depend on the incident wave

3. For supercritical incidence, shocks occurs in transmitted
field when it occurs on boundary in the incident wave

4. For . critical incidence, the finite amplitude Snell's law
indicates that the corresponding wave fluctuates between
propagative and evanescent properties within a single pe-
riod

5. In reality, the response to an incident finite amplitude wave
will be near the response for the linear counterpart
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Modification of the NPE computer code to describe the propagation of axisym-

metric bound beams in infinite media. Gee-Pinn James Too and Jerry H.

Ginsberg (School of Mechanical Engineering, Georgia Institute of Technology,

Atlanta, GA 30332)

NPE is a norlinear progressive wave equation computer code developed by

McDonald and Kuperman [Comp. & Math. w. Appl. 11, 843-851 (1985)] to

evaluate transient propagation in acoustic waveguides. It is suitable for

two-dimensional phenomena, as well as for radial propagation of azimuthally

symmetric waves. The present study describes the modifications required to

employ NPE for the evaluation of axially propagation axisymmetric waves,

particularly those associated with sound beams radiated by a baffled piston.

In addition to implementing a formulation in which the propagation is essen-

tially parallel to the axis of a set of cylindrical coordinates, it is

necessary to account for the transverse spreading of the beam into an in-

finite medium. Another issue is the manner in which the initial waveform

input to NPE is obtained. The predictions of NPE for a linear sound beam

,,hen the input is obtained from the King integral, which is an exact solu-

tion in quadrature form, is compared to the results obtained for a simple

input based on assumption of planar wave behavior in the vicinity of the

transducer. The results in both cases are also compared to the analytical

solution for the far-field radiation pattern.

Technical Committee: Physical Acoustics or Underwater Acoustics

Subject classification number: 43.20.Fn, 43.30.Bp

Telephone: (404) 894-3265 (J. H. Ginsberg)

Send notice to J. H. Ginsberg
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ABSTRACT

This paper describes mode conversion effects and subsequent

waveform distortion arising when a finite amplitude dilatational (P)

wave that has already experienced nonlinear distortion is obliquely in-

cident on a stress-free boundary of an isotropic elastic half-space. A

two-term perturbation expansion is first employed to identify the

dominant nonlinear effects. The understanding of wave interactions ob-

tained from the perturbation analysis is then exploited to derive a

successful solution using the method of characteristics for two-

dimensional wave. It is shown that the incident and reflected P waves

undergo nonlinear amplitude dispersion along their ray paths. The orien-

tation of the rays for the reflected waves are time-dependent, being

governed by a modified form of Snell's law, in which the phase speed in-

corporates the nonlinear correction for the associated particle

velocity. The reflection coefficients are shown to resemble those of

linea- theory, except for the dependence on the variable angles of

reflection. The nonlinear propagation and reflection laws are employed

to determine temporal waveforms for the reflected P and SV waves. This

requires an iterati-e procedure in order to trace rays arriving at a

specified field point at an arbitrary instant back to their source.



INTRODUCTION

It is well-understood that nonlinearity has a much greater distor-

tional effect for dilatational waves in a homogeneous medium than for

shear waves. Such behavior cannot be assumed when one introduces a

boundary, such as a free surface. Because of the phenomenon of mode con-

version, a dilatational (P) wave that has already undergone significant

distortion prior to its incidence at the boundary must impart its dis-

tortion to both the reflected P and the vertically polarized shear (SV)

waves that are generated in the reflection process. The present work is

an analysis of the mechanisms governing nonlinear effects in the mode

conversion process, propagative distortion, and interaction of the inci-

dent and reflected waves. The incident P wave is considered to be

generated by a harmonic planar source of sufficiently broad extent and

high frequency to consider the amplitude to be constant across planar

wavefronts. This wave is assumed to have undergone significant nonlinear

distortion, limited only by the restriction that a shock has not formed

prior to its arrival at the boundary. To a certain extent, the analysis

is similar to our earlier development of a nonlinear ray description for

waves in a hard-walled waveguide . However, the present solution is more

general due to its reliance on the method of characteristics for two-

dimensional waves. Indeed, the basic principles derived here may readily

be extended to treat sources having arbitrary time dependence.

3



With the exception of a few studies of oblique reflection of shock

waves, investigation of nonlinear elastic waves reflection phenomena

prior to this work had been limited to situations in which the wave is

one-dimensional, such that the planar signal has constant phase along a

wavefront. The method of characteristics was employed by Blackstock 2 to

study a finite amplitude wave propagating in a lossless, perfect gas

upon normal reflection from a rigid wall. He found that the effect of

the wall is to double the variational sound speed in comparison with the

3free space case. It was shown experimentally by Breazeale and Lester

that the phase of each generated harmonic of a finite amplitude plane

harmonic wave could be changed upon normal reflection from various types

of reflectors. The results led to some interesting phenomena. When a

distorted, but unshocked, wave is normally incident on a resilient sur-

face, the distortion of the reflected waveform continued to increase

with increasing propagation distance. In contrast, a wave reflected from

a pressure-release surface is distorted in the "wrong direction" as it

travels back toward the transducer, resulting in delayed shock forma-

4
tion. Analogous results were obtained by Buck and Thompson by studying

the problem of one-dimensional finite amplitude elastic waves at normal

incidence to a stress-free boundary, based on a one-dimensional equation

of motion for the Lagrangian displacement. Their analysis indicated that

the amplitudes of the higher harmonics in the reflected wave should

decrease due to phase reversal in the reflection process, with the even-

tual result that they would vanish when the wave returns to its

originating source.

4



Studies of the reflection of obliquely incident finite amplitude

waves have been limited for the most part to acoustic waves in fluids.

Van Buren and Breazeale 5 treated the reflection of finite amplitude

waves by assuming there was no coupling among the harmonics. A corollary

of such assumption is that the reflection of a distorted wave is equiv-

alent to the independent reflection of its harmonic 
components. Feng6

considered finite amplitude sound waves upon oblique reflection from a

rigid wall in the special case where the angle of incidence is 45 Much

later, Qian 7 extended Feng's work to arbitrary angle of incidence. He

found that nonlinear interaction of the incident and reflected waves

generates a constant magnitude second harmonic wave that propagates

parallel to the surface, which he named the Q-wave. A two-term perturba-

tion expansion method was employed by both Feng and Qian in their

papers. Since both works only addressed the mechanisms by which second

harmonics are generated, they did not fully explore the distortion

process.

Recently, Cotaras 8 also employed a two-term perturbation expansion

method to analyze the reflection and refraction of finite amplitude

waves at a plane interface between two lossless fluids. Although the

nonlinear interactions between incident and reflected fields and local

nonlinear effect due to the movement of the boundary were treated in

detail, the resulting second-order solutions are not uniformly valid in

the range of the independent variables under consideration.

Specifically, the second-order solutions contain secular terms, which

5



make the ratio of second-order solutions to first-order solutions un-

bounded as the independent variables tend to infinity. Cotaras also

hypothesized a finite amplitude form of Snell's law for the wave refrac-

tion in a fluid-fluid interface, according to which the trace velocities

that are matched along the boundary are formed from the nonlinear phase

velocities. One corollary of the finite amplitude form of Snell's law is

the observaticn that a specific phase in the waveform of an incident

wave refracts at an angle that depends on the particle velocity as-

sociated with that phase.

Reid 9 and WrightI 0 investigated the oblique reflection of a finite

amplitude plane dilatational shock wave from the boundary of an elastic

half-space. Although there are differences in detail, both found that

the primary effect of nonlinearity on the oblique reflection process is

to modify the reflection angles and amplitudes to account for the non-

linear phase speed of the incident and reflected shock waves. Such

results are consistent with the finite amplitude version of Snell's law.

The aim of the present study is to develop a uniformly valid pic-

ture of the manner in which nonlinearity affects the process of

reflection in lossless, isotropic elastic media. In the following sec-

tion, we shall first formulate the problem in the Lagrangian coordinates

for the displacement components. The dominant nonlinear effects are

identified in Sec. II by using a second-order perturbation expansion

method. The results are shown to lack uniform validity. Rather than per-

forming cumbersome manipulations to correct this situation, an

6
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alternative approach based on the method of characteristics for two-

dimensional waves is developed in Sec. III and IV. It describes the

propagative distortion for each waves, and enables one to identify the

manner in which the incident and reflected rays are related at the

boundary. One outcome of the analysis is to prove that Cotaras'

hypothesis regarding the finite amplitude form of Snell's law is valid

for the present problem. In Sec. V, we describe a numerical algorithm to

determine the reflected waveforms for the stress components of P and SV

waves at a specific field point, and apply it to a quantitative example.

I. EQUATIONS OF MOTION AND BOUNDARY CONDITIONS

In the absence of body forces, the Lagrangian equations of motion

1i
for adiabatic dynamic deformation of a compressible, elastic solid are

aT.. a2u.
momentum: Po (i)

aa at2

constitutive: Ti Po aW (2)

i 8au a"a k

strain-displacement: E 2 (a- + au.+ - a) (3)
ij 2 a. a. a. a.

where Tij is the Piola-Kirchhoff stress tensor, Eij is the Green strain

tensor, ui is the particle displacement vector referred to the original

coordinates ai, P0 is the mass density at the undeformed state, and W is
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the strain energy density function. In these equations, a repeated sub-

script implies a summation. For isotropic materials, the strain energy

density is an invariant function of the Green strain tensor, and can

therefore be expanded in a Taylor series of the three invariants 1,, 12,

and 13 of E ij. Thus W(1 1 ,12 ,13 ) may then be written, correct to third

order in Eij, as

i W A 2 +ij 3 1 4
p0W 2I 1 2 + 741 + 4611l2 + 713 + O(I1), (4)

where

E.- E..(5
I, i

12 - EijEij (5)

13 - Eij Ejk Eki

In these expression, A and M are the Lame coefficients, while a, 6, and

y are the third-order elastic constants. (Our definition of the third-

order elastic constants differs from Bruger's, see Ref. 12.)

We first obtain an expression for the strain energy density in

terms of displacement by substituting Eq. (3) into Eq. (4) and discard-

ing terms higher than third-order in the displacement gradient. Next, we

use this truncated strain energy to form Tij by applying Eq. (2), and

then substitute the result into the momentum equation, Eq. (1). The

result is a set of nonlinear displacement equations of motion having the

following form:

a 2u. 82u 82u.
at2 -(0 0) m - C2  

1 - K./P., (6)dt2 d s aa aa. s aa aa i
m 1 m m
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which are accompanied by a set of stress-displacement equations

8u 8u. au.
T x m 6 +p( +_ ) + Gi/p (7)ij - a m ij aa a +a i

In the foregoing

C2 - A+2j4 and C2 (8)
d PO  s PO

are the velocities of planar dilatational and shear waves, respectively,

and 6.. is the Kronecker delta function. The terms K. and G.., which

represent the effects of geometric and material nonlinearities, are

given by

K. - (A + + + 3)(u u + u. u + (A + ) u.
1 Z7) n,m n,im 1,m n,nm 4 n,n i,mm

1 1
) u + (+,3-y)(u u +u .u

4 nn mmi 4 m,n nim nj m,mn

(Un, + 2u u. + u. u , (9)
n,(+ iUn,mm m,n i,mn i,n n,mm

G -(u u + u u )6 + u u. i+ 7u. u
ij 2 m,n m,n 8 m,m nn ij 4 m,m u J Jmuwi

" (UnU + u u ). + (A + 48)u u.
8 mnm,n m,n n, M 4 m,m i,j

" (U . + U .U + u u .). (10)7 (,m j'm m,i m,J i,m m,j

Consistent with truncation of W at third-order terms, K. and G. . are2. 1J

homogeneous quadratic functions of displacement gradients. j
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We now consider a finite amplitude planar P wave propagating in the

a,-a 3 plane, obliquely incident on the boundary of an elastic half-space

defined by a3 0, as shown in Fig. 1. The propagation direction of this

incoming wave is defined as

ndi - 2, sin 0i - 23 cos ai, (11)

where 8i is the angle of incidence measured from the a3 -axis. This

planar wave is assumed to be generated by a harmonically oscillating

planar sotlr,'e whose width is much greater than the wavelength.

Correspondingly, the particle velocity at the source is given by

iVdi - " - cdndiexp(-it) + c.c. at n di"r - "Ldi, (12)
Yi 2 "d-di- -di* - di

where Ldi is the distance between the source and origin and n r - -Ldi

defines the plane of the source. In addition, e is the acoustic Mach

number of the excitation, w is its angular frequency, and c.c. is the

complex conjugate of the preceding terms.

The stress-free condition at the boundary requires that the cor-

responding surface tractions should be equal to zero. Since we are

following a Lagrangian formulation, in which the surface tractions are

referred to the undeformed state of the boundary, the surface tractions

will vanish if the Piola-Kirchhoff stress components satisfy

T1 3 - T3 3 - 0 on a3 - 0. (13)
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II. IDENTIFICATION OF SIGNIFICANT NONLINEAR EFFECTS

Our objective in this section is to examine the manner in which

nonlinearity introduces distortion into the incident and reflected waves

an causes them to interact. For this portion of the analysis, we employ

a straightforward perturbation series expansion of the displacements u i

and stresses T ij. Thus we write

u. - (u
( I ) 

+ C2u + . , (14)1 i 1

T.. - (.. + f + (2) (15)
1J ( 1ij

Substitution of Eqs. (14) and (15) into Eqs. (6) and (7), followed by

matching of like powers of e, converts the equations of motion and

stress-displacement relations to the following form.

a2u.
k )  a2u

(k )  a 1(
k )

at
2 
i (c2 - c2 ) m C -c2  (k) /p (k - 1,2), (16)dt s 6a 5a. s aa aa i

m I m m

au(k )  au(k) au(k)
T(k) muk Bu __u.(k
T.. - A 6 + A( + L ) + G po (k - 1,2), (17)13 a--a ij aa i aa. 13

whee te ihomgenitis (k )  (k)
where the inhomogeneities K , G. are zero for the first-order case.ii1

k - 1, while the second-order terms, k - 2, are given by Eqs. (9) and

(10) with the displacement components represented as u 
I )

IiI



The first-order (linearized) system is governed by Eqs. (16) and

(17) for k - 1. Satisfying the boundary conditions at a3 - 0 requires

the existence of both types of reflected waves, which is the phenomenon

of mode conversion . Hence, the general solution of the 0(c) wave equa-

tions consists of a sum of the incident P, and reflected P and SV waves,

according to

u(1) - 1i 1
(1 (A n nexp(iwok (1)~nep~W

- 2 di -di di dr + dr

+ A r (e2 x nsr)exp(iwosr)) + c.c., (18)

where A (I ) A and AM are the amplitudes of the first-order inci-
di ' dr ' sr

dent P and reflected P and SV waves, respectively. The phase variables

di' 'dr' and Vr are defined as

'di - cd( di r + Ldi) - t, (19)

1

'dr -c d(dr r + Ld - t, (20)

1s - s(n r + Ls) t, (21)

sr c -sr - sr
S

where

dr - !1 sin 9r + e 3Cos 0r -sr - el sin r + e3 cos 4r. (22)

In the above, 6r and 0r are the angles between the a3 -axis and the wave

normals n dr and n of the reflected P and SV waves, respectively, and

12



dr/Cd and L sr/Cs are the phase lags of the reflected P and SV waves,

respectively. Note that the phase lag Ldi/Cd for the incident P wave is

selected to satisfy the source condition, Eq. (12).

Snell's law, which equates trace velocities along the surface, is

obtained by substituting Eq. (18) into the boundary condition, Eq. (13),

and matching the phase dependence of each term on al. This yields

9 -6r (23)

sin 0. c d A2)/
- -c ( +2%)/2 - 6. (24)

sin c A

Similarly, matching the phase lags of each term at the boundary leads to

Ldr - Ldi ; L - 6. (25)dr disr Ldi/

After the phases are matched, the reflection coefficients of the

.(I) F ( I ) myb bandb ovn
(linear) reflected P and SV waves, r d may be obtained by solvin

dd sd

the remaining algebraic equations:

A ( )  sin 2sin 2 r - 62cos2 2 r
-(1) .dr _i r r(

dd A(1) " sin 2 isin 20r + 62cos 2 2 r  (26)
di

A(1) 26 sin 29.cos 241
r(1) - sr . r (27)
sd A(1) sin 29.sin 20r + 6

2 cos 2 2 r '

di

13



The foregoing fully define the O(e) solution, so we next proceed to

an evaluation of the second-order displacements. We use Eq. (18) to form
(2) (2)

the inhomogeneous terms K 2) and ij in Eqs. (16) and (17). Using the

latter to formulate the boundary condition, Eq. (13), leads to the

analytical task of solving a pair of inhomogeneous differential equa-

tions for u (2 ) subject to inhomogeneous boundary conditions. We simplify

this task by considering each inhomogeneity individually through the

decomposition,

u(2) (2) + u(2) (28)
i i,l i,2(

The first term consists of the homogeneous solution of the differenrial

equations subject to inhomogeneous boundary conditions,

a2u(2) 82u(2 ) 2 ( 2 )

i - (C2 -C
2 ) -- -

2 
.... 2. - 0at

2  d s aa aa. s 8a dam I m m

(29)

au(2) u (2) (2)8u U.

m .6 + ) + !L-I) - - G (u (1) )/po on a3aa m ij aa ia 3a.i ij - 3 0

m J 1

while the last term in Eq. (28) is the particular solution of the dif-

ferential equations subject to homogeneous boundary conditions,

a(2) ,2(2  a=u( 2 )

8u. 2 m 2 i2()

-(C
2 

- C2) -s--C 2  
K- -K(u~l ')/p0,at2 d s ea 3a s aa 8a i -m im m

(30)

14



(2) 2) (2)
8uau: au

m + ( + ) on a0 0.aa ij #a aa. a. O 3 0
m J

Note that the solutions of the first set of equations are equivalent to

linear free waves, whose magnitude remain constant. Although such solu-

tions might represent new types of wave, their effects remains 0(f2 ) at

all locations, and hence are negligible compared to the 0(c) solutions.

In contrast, the source terms K.(u (I )) will be seen to resonantly excite1 -

waves in a manner that cannot be ignored. Accordingly, we consider u(
2 )

0 and u(2) (2)

i,2 i

When we substitute the 0(c) solution, Eq. (18), into Eqs. (30), in

order to form the source terms K. , the resulting coupled equations1

governing u(2 ) and u(2 ) are found to be

a2u(2) a2u 2 )  
a2u 2U(

2) 2U
2 )

- (c2 - c2 ) ( -aa + aa~a Cs ( 1a- + 8aa

~'1 33  3 1 12 ' 2
i Md k [ di , exp(i 2w)di) + -dd exp(i2dr

iP 3~l r sri i dd
Ms k A (1) 2  exp(i2w0_

4p o  s ( sr_ si r (2sr

+ BI {exp[iw(0di + T dr ) + exp[iw(O di - Odr)}

+ C { e x p ~ i w ( d i + s r ) + e x p [ i ( y d i - s r ) I

+ D, {exp[ij(;dr + Ost ) ] + exp[iw(Odr )sr)  + c c., (31)

______ a2U(2 ) a2u(2) a2u( 2 ) a2u( 2 )
331 3 3

a (c2 - c2 ) ( -- + 2) c (- - + - -)
at2  d s a 2 8a18a3  s a2 8a2

i M 3 k3 (i)) Cos 0 exp(i 2 wdi) r r1d exp(i2wd

4P di dd
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i2
k3 (A cos 4 exp(i2w sr

4p0 M3ks s

exp[L(d + 0 )] + exp[p,(Oi -0d

+ C3 {exp[i w(di + Osr
] + exp[i w(di - sr)d

+ D3 {exp[iW(Odr + sr ) ] + exp[iw(Odr -sr + c.c., (32)

where

1 3
M3 - 3A + 6 + Z + 2 + 6-y, (33)

M; - A + 2u + 1 + 1 7, (34)
4(34

and B1 , B3. . . . . . D1 , D 3 are function of 0. that will be seen to be unim-1

portant. Note that Eqs. (31) and (32) are obtained by using the first-

order reflection coefficient, Eq. (26).

Each source term appearing in Eqs. (31) and (32) leads to a cor-

responding particular solution that is temporally a second harmonic. The

phase speeds of the terms whose phases are (0di ± 0 dr ) ' (0di ± sr ) , and

( d p sr do not match the phases of homogeneous solutions of the

equations, which represent freely propagating linear waves. Hence, the

corresponding particular solutions are nonsecular waves of constant

amplitude. Moreover, the particular solution for the source term whose

phase is 2Vsr can also be shown to be nonsecular. (This observation is

14
consistent with a previous analysis of a finite amplitude shear wave ,

which showed that secular growth of harmonics in a shear wave occurs at

the third order in a perturbation series.) These conditions are con-

trasted by the source terms with phases 2d and 2 , whose phase
di dr'w
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speeds match that of homogeneous second harmonic dilatational waves. The

method of variation of parameters reveals that the corresponding par-

ticular solutions are secular, with amplitudes that grow linearly with

propagation distance. The particular solution for the second-order dis-

placements is thereby found to be

(2) 1 ) ( ) exp(i2d
" 2 di -d* di didi)

+ ()dr" (2) r)n exp(i 2 4 d) + NST + c.c.; (3r)
2 L ddJ )di -~dr - -dr Od

where

(2) M 3 k (1))2

di 4M2 di (36)

M- + 2p, (37)

and NST denotes the nonsecular solutions.

Since this particular solution has no free parameters, satisfaction

of the 0(C 2 ) stress-free boundary conditions requires the addition of

the complementary solution of Eqs. (31) and (32). This leads us to a

paradoxical situation. First, we note that evaluating derivatives of

(2)
H 2)on a3 - 0 results in terms whose dependence matches the phase de-

pendence of the incident and reflected P waves parallel to the boundary,

both of which are 2k dsini a -2kd L di 2wt, since 6r - 6 . Furthermore,

because of the secular condition, the amplitude of these terms grows

linearly with distance along the boundary. Now consider the correspond-

ing homogeneous solution. Its terms must have the same phase dependence,

17



which suggests that the homogeneous solution should consist of free

waves that propagate in the direction n dr, and possibly nsr However,

since the homogeneous solutions have constant amplitude, they cannot

match the growing amplitude dependence created by u (2)on the boundary.

A Helmholtz resolution of the second-order homogeneous solution,

(2) _ v$(2) + VxH (2); (2) 0, (38)

leads to the observation that a P wave propagating in a direction ndr

that depends linearly on distance measured transversely to ndr is a

homogeneous solution. A comparable statement applies for an SV wave.

Hence, it is possible to construct a homogeneous solution suitable for

satisfying the boundary conditions, according to

(2)xr e. epi

- Cl(ndrx e2)ndre p(i2wdr)

+ C 2 (nsr
x r e2 )(e2x n sr)exp(i2wis ) + c.c., (39)

where C1 and C2 are coefficients to be determined.

We shall not proceed further with such an analysis, because the

qualitative insight provided by the forms of u (2)and lead us to a
-P -H

drastically simplified solution process. The key observations are:

1. Nonlinear interactions between incident and reflected waves are

negligible, because they do not lead to secular terms.
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2. P and SV waves are reflected at both the first and second

orders.

3. Secularity occurs in the second-order P waves, but not in the

second-order SV wave.

4. The fact that the second-order reflected waves contain terms

that depend on distance perpendicular to the direction of

propagation suggests that the direction in which such waves

propagate deviates by an 0(e) amount from the directions 0 and
r

r"

III. GENERAL SOLUTIONS BY THE METHOD OF CHARACTERISTICS

The analysis in the preceding section indicates that the reflection

process generates reflected P and SV waves to accompany the incident P

wave, with each wave uncoupled from the others. This leads to an ap-

preciable simplification as the incident P, reflected P and SV waves can

be treated independently. We first consider the incident P wave. This

wave propagates at a constant angle of incidence 8., but its phase speed
1

depends on the local wave amplitude resulting in a cumulative distortion

of the wave profile. In view of the source boundary condition, Eq. (12),

15
the particle velocity in this incoming P wave may be written as

i
-di 2 di-di exp("'di

) 
+ 0(C2 ) + c.c., (40)

where

-di-E + 'di
di cd + d di ndi) -
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where Pd - M3/2M 2 is the coefficient of nonlinearity for a plane

progressive dilatational wave and 0(C2 ) represents constant magnitude

terms. Note that this wave exhibits amplitude dispersion, because its

phase speed is cd + d (Vdi• ndi) .

Since the reflected P wave does not interact with the other waves,

it also must propagate nonlinearly. If vdr is the particle velocity in

this wave, then the appropriate phase speed is cd + d(*dr ndr ) .

However, it is not necessary that ndr match the direction predicted by

linear theory. Furthermore, it is not even necessary that ndrbe in-

variant.

In order to understand this feature, let us view the propagation of

a dilatational signal in the characteristic space whose coordinates are

a,, a3, and t. Let vdr be the particle velocity of the signal emanating

from a point on the boundary a3 - 0 at distance al - [ at time t - r.

In order for this to be a dilatational motion, the particle velocity is

assumed to be parallel to the propagation direction, i.e. vdr "

IydrIndr'

The characteristic for this signal is a straight line emanating

from the boundary point ( ,O,r) in the characteristic space. As shown in

Fig. 2, the tangent of the angle X between this line and the line

through ( ,0,r) parallel to the t-axis must be the propagation speed, so

X - tan- [cd + Pd(vdr* ndr ) ]  (42)
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In other words, the characteristic line is a generator of a characteris-

tic cone having apex angle 2X.

The significant aspect of the foregoing lies in the fact that any

line on the characteristic cone represents a solution that satisfies the
equaion f moion16 17

equation of motion. 1 7 The corresponding propagation direction ndr for

the signal appears in the characteristic space as the projection of the

characteristic line onto the al-a 3 plane. Consider the signal radiating

from a1 - , a3 - 0 at a different instant t - r', also shown in Fig. 2.

The particle velocity in this case is v' in the direction n' The a
-dr -dr pe

angle of the characteristic cone will be 2 X', where X' is obtained from

Eq. (42), and the projection of the corresponding characteristic line

onto the al-a 3 plane will be ndr Note that n' need not be the same as-d -dr

Edr' although they are identical for propagation of a planar wave

through a one-dimensional medium and for cases of normal incidence.

Since the incident P wave in Eq. (40) varies harmonically, we as-

sume that the reflected P wave has a comparable dependence, so we take

the following as its general solution,

dr ""IeAdr drexp(i1Odr) + O(C2) + c.c., (43)

where dr is a phase variable given by

- dr*E +  Ldr ( 4
dr cd + d(vdr- n dr) (44)
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Consistent with the discussion of the characteristic space, we see that

ndr may be a function of "dr without altering the constancy of vdr along

.haracteristic line.

Aside from a few details, the situation for the reflected SV wave

is very much like that for dilatation. First, we recall that the in-

fluence of nonlinearity on the phase speed of shear waves is a third-

order effect. Hence, in our analysis this speed is constant at c s , from

which it follows that the apex angle for the characteristic cone of the

-I
reflected SV wave is X - tan (C s). Moreover, since this is a vertically

polarized shear wave, its particle velocity vsr lies in the al-a 3 plane,

perpendicular to the propagation direction n s" By analogy with Eqs.

(40) and (43), we therefore express the general solution for the

reflected SV wave as

i
sr " " A (eX nr)exp(iw4 r ) + 0(C 2 ) + c.c., (45)

where the phase variable for this wave is

n r + L
s sr-- t. (46)
sr c

s

As was true for ndr' the foregoing is a general solution of the equa-

tions of motion, even if n sr depends on 4 .
sr
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IV. SATISFACTION OF THE BOUNDARY CONDITIONS

The expressions derived in the previous section describe the

various waves in terms of their particle velocity. These must be con-

verted to stress components relative to the a1 -a3 plane before the

boundary conditions can be addressed. Consider first a planar dilata-

tional signal propagating in direction x. Ignoring constant magnitude

second-order effects, the strain-displacement relations yield

xx - x 21xJI
au au

- X- +  iaj')'(7

av ax 2 lax ' (47)

where is the phase variable for the wave, while the particle velocity

is

au au
v (48)x at ao at

Since € - (x+cd)/(cd+ dVx) - t for a finite amplitude dilatational wave

and u - 0(e), we find that

v vE x vx
E + 0(f 2

) - - + 0(C 2
). (49)

xx c d+6d cd
X d+ dVx cd

A similar analysis for a shear wave polarized in direction z and

propagating in direction x yields the shear strain
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au v
E 1 z 1 z(50)
xz 2 ax 2 c

S

We employ Eq. (49) to describe both incident and reflected P waves,

while Eq. (50) applies to the reflected SV wave. Each of these strain

may be transformed to components relative to the a,, a3 coordinate sys-

tem. The direction of x in each case is the corresponding propagation

direction of that wave. Once the strains are described, we derive ex-

pressions for the stress components T.. from the constitutive equation,

Eq. (2), the strain-displacement equation, Eq. (3), and the strain

energy density, Eq. (4). Note that all nonlinear terms arising in these

relations are products of spatial derivatives of displacement, so they

are negligible 0(e2) effects. The results of these operation are

[(T11)di (T33)di (T13)di]

- [-(+2p sin 2o ") -(A+2m cos 29i) ju sin 20i] Vdidi /Cd, (51)

[(Tll)dr (T33)dr (T 13)drI

- r-(A+2p sin 2 r )  -()+2p sin 2 i ) -p sin 20 v dr*ndr/Cd' (52)

[(T1I)sr (T 33)sr (T 13)sr]I

- -sin 2 0r A sin 2 r  - p cos 2r1 r sr.(e2Xnsr)/c s. (53)

The subscripts di, dr, and sr for the stress components denote the

stresses induced by the incident P and reflected P and SV waves, respec-

tively.
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The boundary conditions require that the resultant normal and shear

stress components vanish on a3 - 0, so we set

T 3 3 - (T33)d i + (T33)dr + (T33)sr - 0 on a3 - 0, (54)

T 13 - (T1S)di + (T13)dr + (T1 3 )sr - 0 on a3 - 0. (55)

We substitute the expressions for particle velocities, Eqs. (40), (43),

and (45) into Eqs. (51)-(53) to form stress components, which we then

use to form boundary condition equations (54) and (55). This yields two

equations in which the unknowns are Adr, Asr' Ldr, Lsr' 9r, and 0r" In

6rdpr that the equations be satisfied for all al and t, the phase of

each term must be identical. Matching the al-dependent terms yields the

finite amplitude form of Snell's law:

sin 9. sin 6r  sin r
- r r (56)

cd + di'ndi) a-0 cd + -d(vdrnr) a3-0 s

The phase lags of the reflected waves relative to the incident wave can

be obtained by equating the a,-independent terms,

Ldi Ldr Lsr
-__ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ r(57)

c d + d cd + 0d(vdrndr)a0 c

When the above are satisfied, the boundary conditions reduce to two

simultaneous, algebraic equations. Solving these for the amplitude of

each reflected wave in terms of Adi yields the following expressions for
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the reflection coefficients rdd and rsd of the P and SV waves, respec-

tively,

Adr sin 20i sin 24r - (62 - 2 sin2 i )cos 24r

dd Adi sin 2 r sin 24r + (62 - 2 sin 2 8r )cos 24.r

A sin 20i(62 - 2 sin 2
r ) + sin 2 r(62 - 2 sin2 0 )

r sr ir(59)
sd Adi b[sin 26r sin 24r + (62 - 2 sin 2 r )cos 24 r]

Noce that these coefficients reduce to the linear forms, Eqs. (26) and

(27), when Snell's law in Eq. (56) is linearized by ignoring the par-

ticle velocity terms, as well as when fld - 0, which means the material

18
is a linearly elastic solid up to second order

Equations (56)-(59) fully define the reflection process. Equation

(56), which governs the directions of propagation of the reflected P and

SV waves, indicates that at a specific boundary point, the reflection

angle of each reflected wave fluctuates because of the temporal varia-

tion of the incident particle velocity. Furthermore, since v n is
-di 2di I

periodic, the angles for the reflected P and SV waves exhibit periodic

fluctuations about the constant values predicted by linear theory. Each

ray determined in this manner represents the locus of points at which

the particle velocity departing from the boundary at a specific instant

will be observed with increasing time.
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V. QUANTITATIVE EVALUATIONS

The preceding discussion leads to the realization that the rays for

the instantaneous signal at a specific field point r( ,n) are situated

within a wedge of influence. A typical situation is depicted in Fig. 3.

According to Eq. (56), the orientation of any ray within this wedge

depends on the reflected particle velocities. However, the latter quan-

tities depend on the reflection coefficients, which in turn depend on

the reflection angles. Evaluating the particle velocity at r in these

circumstances is obviously not a trivial task.

Although it involves an approximation, the algorithm we have

developed greatly simplifies the computations. It is assumed in the fol-

lowing that the properties of the incident wave, as defined by , Adi,

Oi, and L di are specified constants. We begin by addressing the evalua-

tion procedure for the dilatational waveform at r.

1. Starting from zero, select a value of Tdr in the range 0 - vdr -

2. Use the linear reflection coefficients r() 5r1)sd to form an

initial estimate of the particle velocities on the boundary.

(This is a reasonable approximation, since the 0(E) deviation of

the reflection angles from their linear counterparts produces an

0(e) error in dd' which feeds back into Snell's law through dr

as an 0( 2 ) effect.) Since all rays intersecting a boundary
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point are associated with the same phase, the particle speeds at

the boundary are therefore approximated by

i
V *l 1 - - - eA .exp(icA ) + c.c.,

Ydi'2dila3-0 2 di dr

rnd aI_ - - e Er ) exp(i* ) + c.c., (60)
-dr*2dr1a 3 -0 2 dd di dr

(eXn 0 d - ' er l)Adiexp(~Ysr* 2 sr a 3-0 2 sd (iw@dr) + c.co.

3. Use Eqs. (60) to evaluate 9r and 0r from Eqs. (56), as well as

Ldr from the first of Eqs. (57).

4. The angles 0r and 0r found in the preceding step yield corrected

values of the reflection coefficients rdd and rsd according to

Eq. (58) and (59).

5. Replace the linear reflection coefficients in step 2 by the

values found above and use the new estimates of particle

velocities to redo steps 3 and 4. Repeat this process until &r

and o r converge.

6. The results of the previous steps lead through Eqs. (60) and

(52) to values of the (v drn dr) and the stress components

(T11)dr, (T33)dr and (T13)d r. The corresponding value of t is

computed from Eq. (44) with *dr equated to the assumed value.

7. If it is desired to identify the boundary position ([d,0) from

which the dilatational ray emanated, use Fig. 3 to find

-d - t7 tanO r (61)
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8. Increment the value of Tdr and return to step 2.

This algorithm yields values of the particle velocity and stress

components of a discrete number of time instants. Note that because * dr

depends on vdr *dr' the time increments for this discretization are not

constant. A comparable procedure based on incrementing Psr yields the

time waveforms for particle speed and stress components in the reflected

SV wave.

The material that we choose for numerical evaluation is steel

(Hecla 37 carbon steel), which has "quasi-isotropic" elastic properties.

19
The material properties are 1 P0 - 7.823 x 103 kg/m3 , A - 11.1 x 1010

N/m 2 , p - 8.21 x 1010 N/m 2 , a - -143.2 x 1010 N/m 2 , 6 - -112.8 x 1010

N/rm 2 , Y - -23.6 x 1010 N/m 2 , so the coefficient of nonlinearity is 0d

3.1. The reflection coefficients for the instant when the incident P

wave is in its maximum phase, which represents the maximum deviation

from linear theory, are shown in Fig. 4. Since Pd is a small value, the

nonlinear phenomena are not appreciable for realistic values of C. In

order to magnify the nonlinear effects, we consider here e - 0.01 and

0.1. It is apparent that the nonlinear effect is very small unless e is

large. It also can be seen that the nonlinear effect increase with in-

creasing angle of incidence.

Figures 5 and 6 show the time waveforms of stress components of the

reflected P and SV signals generated by a 2-MHz dilatational source. The

wavelength of the incident P wave is about 3 mm. The angle of incidence
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of the incoming P wave is 60 and the acoustic Mach number c is 0.01.

For this calculation, the field point ( ,n) - (6.6 mm, 3.8 mm) was

selected such that, measured along the linear dilatational rays (6 -
r

i), the distance from the field point to the origin equals the distance

Ldi from the origiiL to the source. Further, Ldi is taken to be one half

of the shock formation distance for a planar P wave, Ldi - Cd/(2efdw).

Hence, if the incident wave were to propagate along the ray path without

undergoing a decrease in amplitude and change of phase due to the

reflection process, it would first form a shock at the field point.

The zones of influence on the boundary for dilatation and shear

reflection of this particular case were found to be -1.20 mm : (al)d 5

0.81 mr and 4.48 mm (a,)s : 4.64 mm, respectively. These "spot sizes"

are smaller than either wavelength. It is interesting to note that the

SV wave at the field point shows more distortion than the P wave, even

though the SV wave propagates without amplitude dispersion. This

phenomeron arises from a combination of factors. The primary cause is

the phpe reversal of the P wave upon reflection, which cause the

waveform to become like a backward sawtooth. This is similar to the ef-

2
fect noted by Breazeale and Lester for reflection at a pressure release

boundary. In addition, the incident P wave that generates the S'. .,ave

travels through a greater distance to the boundary, and therefore un-

dergoes more distortion than its counterpart that generates the

reflected P wave. A third factor influencing the level of distortion is

associated with the mode conversion process, which lowers the overall

amplitude of the P wave. In other words, the distance from the boundary
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to the field point, which was selected to be half the shock formation

distance for the incident P wave, is much less than half the distance

for shock formation for the reflected P wave. We may conclude from this

that mode conversion in reflection extends the distance along the ray

path of a P wave at which a shock first forms.

A comparison between the finite amplitude forms of Snell's law and

linear forms of Snell's law is also depicted at Figs. 5 and 6. The lat-

ter, which includes the nonlinear self-action effects of the waves, but

considers the reflection angles to be constant, is equivalent to the ap-

proach that was developed by Van Buren and Breazeale. It is found that

the nonconstancy of the reflected angles tends to alter the mean values

of the fluctuations and makes the waveforms unsymmetrical, but the wave

profiles obtained from both theories are almost identical. Also note

that the effect of nonconstancy of the angle for the reflected P wave is

much more significant than that for the reflected SV wave, because the

reflected P waves have larger angles of reflection, resulting in a

larger zone of influence.

Propagation curves for the fundamental through third harmonic com-

ponents of the reflected P waveform, (T33)dr, are depicted in Fig. 7,

where r is the shock formation distance of a simple planar P wave with 6

- 0.01, and r is the distance measured from the boundary along the

near latatonal ray path. As mentioned, the phase reversal of the P

wave upon reflection causes a reversal in the distortion of the

reflected P waveform. Hence, the signal levels of the second and third
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harmonics decrease with increasing distance away from the reflecting

surface. However, unlike the curves obtained from the linear form of

Snell's law, the amplitudes of the second and third harmonics obtained

from the finite amplitude form of Snell's law does not fully vanish at c

3 because of the effect of rays arriving from the different spots on

the boundary. Figure 8 shows the propagation curves for the fundamental

through third harmonic components of the reflected SV waveform, (T3 3 )sr.

Since the reflected SV wave propagates without amplitude dispersion, the

curves obtained by both linear and finite amplitude forms of Snell's law

are almost identical.

VI. CONCLUSIONS

Our analysis has shown that if a P wave undergoes significant dis-

tortion prior to incidence at a free surface, the distortion is

transferred to the reflected P and SV waves. The angles of reflected

rays were proven to be governed by simple modifications of Snell's law

that account for the particle velocity dependence of phase speed when

the trace velocities are formed. These corrections carry over into cor-

rections of the linearized relations governing the amplitude and phase

lag of the instantaneous signal associated with a ray. The primary sig-

nificance of the nonlinear Snell's law is that the orientation of

reflected rays fluctuates due to the oscillatory nature of the particle

velocity in the incident wave.
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The mechanism by which a reflected P wave distorts is the same as

that for the incident wave, but the effect is smaller because of the

reduction of amplitude level due to mode conversion. Interestingly, the

reflected SV wave was shown to pick up substantial distortion, since its

phase dependence at the boundary must match that of the incident wave.

However, unlike the P wave, the SV wave propagates without additional

distortion. A primary result derived from the perturbation analysis,

which was performed as a preliminary to the method of characteristics,

is the observation that the free-field interaction between each type of

wave is insignificant.

The task of constructing the waveform at a specified field point is

complicated by the fact that reflected rays arrive from zones on the

boundary. These zones of influence correspond to the extrema in the

fluctuations of the reflection angles. An iterative numerical algorithm

for evaluating waveforms was employed to study harmonic generation in

the reflected signals. An earlier analysis indicated that phase rever-

sal initially causes the amplitude of the higher harmonics in the P wave

to decrease with increasing propagation distance. This was confirmed,

but the associated prediction that there is a location where all higher

harmonics vanish was shown to be incorrect due to the fluctuations in

the angle of reflection.

Finally, we note that the portion of the analysis using the method

of characteristics in two dimensions is quite general. Its extension to

transient signals seems to be rather straightforward, since the main
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elements of the analysis did not rely on any properties specific to the

sinusoidal dependence associated with the assumed excitation.
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LIST OF CAPTIONS

Figure 1. Incident and reflected wave systems for an incident P wave.

Figure 2. An illustration of two characteristic cones in the

characteristic space.

Figure 3. Schematic diagram showing the wedges of influence for the

rays arriving at a field point.

Figure 4. Reflection cuefficients for the instant when the incident P

wave is in its maximum phase. (---) linear, (---) c - 0.01,

(---) f - 0.1.

Figure 5. Time waveforms of stress component in the reflected P wave

generated by a 2-MHz dilatational source at a selected field
0

point (6.6 mm, 3.8 mm): i - 60 , - 0.01, 0d = 3.1, Ld. -

7.64 mm.

Figure 6. Time waveforms of stress component in the reflected SV wave

generated by a 2-MHz dilatational source at a selected field

point (6.6 mm, 3.8 mm): 8 i - 60 , e - 0.01, d = 3.1, Ld -

7.64 mm.

Figure 7. Amplitudes of the first three harmonics of the reflected P

waveform (T33)dr generated by a 2-MHz dilatational source at
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a selected field point (6.6 mm, 3.8 mm): 6. - 60., e - 0.01,1

6d = 3.1, Ldi - 7.64 mm.

Figure 8. Amplitudes of the first three harmonics of the reflected SV

waveform (T33)sr generated by a 2-MHz dilatational source at

a selected field point (6.6 mm, 3.8 mm): 8 - 60 - 0.01,

Od = 3.1, Ldi - 7.64 mm.
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Sessioh FD: Invited Session on Topics in Physical Acoustics
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Grand Salon B

Presiding- ROGER HANSON, Dcpartnicnt of hysis, University of Nrcr: rn Iowa, Cedar Falls, IA 50614

FD1 2:00 Classical Acoustics Solves Quantum Mechanical Puzzles*
J.D. MA YNARD, 771e Pennsylvania State University, University Park PA 1 6S02

In physics it is usually recognized that effects that arise from quantum nec:hanics, while crucial to the understanding
of physical nature, may be subtle, difficult to comprehend, and outside the realm of everyday experience. However, cur-
rent frontiers in physics involve the effccts of geometry and statistics on the wave mechanical properties of quantum sys-
tcms, and these effects are the same whether applied to quantum mechanical waves or classical waves. Indeed, the
Schr~dinger wave equation for states of constant energy in quantum mechanics is mathcmatically identical to the wave
equation for sound waves. As a consequence, macroscopic acoustic systms may be fabricated that simulate the salient
features of a quantum mechanical system, and which maybe used to make mch more direct observations and measure-
mcnts. Contemporary problems in quantum mcchnnics that have been so "ed in this manner include the behavior or
electrons in disordered metals and the properties of a new state of matter ca!icd quasi-crystallinc.

*Work supported by NSF DMR 8701682 and the Office of Naval Rcsearch.

FD2 2:35 Reflection and Refraction of Nx:,incnr Dilatational and SP -ir 'Waves at a Planar Interface"
.ERRYH. GINSBERG + AND KT. SH, # Guwg e TV WoodruffrSchoo! of L.:'chanica; Engineerin, Georgia Institute of
Technology, Atlanta, GA 30332.0405

According to the linear theory of elasticity, oAlique incidence of either a ":latationaI (P) wave or vertically polarized
shear (SV) wave at a planar interface between two media results in reflectio.: and transmission of both types of waves in
constant directions that are determined by Snell's law. When nonlinear cffc-.s in the incident wave are considered, the
phase speed is dependent on the amplitude of that phase, which undermines the matching of trace velocities on which
Sne's law is based. The first step in the solution of this problem is to annalv.- the case of reflection of a finite amplitude
P wave at the stress-free boundary of an elastic half-space. A straightforwa'rd perturbation analysis is used to identify
the dominant nonlinear effects. Although such an approach ultimately cnco"-ters difficulty in consistently satisfying "he
boundary conditions, the understanding of wave interactions obtained from i: is exploited to derive a successful solution
using the method of characteristics for two-dimensional waves. The rays of :he reflected P and SV waves are found to
be straight lines, but the direction of each ray is shown to be governed by ti: nonlinear version of Snell's law, in which
the trace velocities are formed from the nonlincar (amplitude-dependcnt) pl,-se speeds. The relations for the reflection
coefficients are found to resemble the predictions of linear theory, except tLt they are formed from the variable direc-
tions of the reflected rays. One consequence or these phenomena is that tho waveforms of the reflected and P and SV
waves received at a specified field depend on signals that arrive from zones on the boundary. The physical and mathe-
matical insight gained from the analysis leads directly 1o a generalized solut" for the case of an interface between arbi-
trary elastic and/or fluid media.

*This work was supported by NSF and ONR.
+ George W. Woodruff Chair in Mechanical Systems.

Graduate Research Assistant.

FD3 3:10 The Laser as a Powerful Research Tool in Acoustics*
YVES H. BERTHELOT, School of Mechanical Engineering, Georgia Institute o( Technology, Atlanta, GA 30332-0405

Laser beams can be used to either generate or detect sound waves without having any bulky transducer perturbing I
the medium under investigation. This type of noninvasive transduction is very attractive in many different research areas
or physics and engineering. For instance, the a:;cr generation and detection of uitrasound in solids has proven to be a
very valuable tool in assessing the structural propicrties of a sample (Nondestructive Testing), especially when the sam-
ple is in an environment unfriendly to convent -:1i techniques, e.g., very hot (velding industry), radioactive (nuclear in-
dustry), or simply inaccessible (aircraft indus-.' -, hcr growing fie!d in -'>ich laser beams are used to generate and
detect sound waves is that of underwater acc .Sonar engineering). I :igh-power lasers can be used to generate
acoustic waves in the ocean from an airborne ,..Thrm. These types of sources, known as thermoacoustics arrays, are
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5TRE-55 W4lv5 IN SOLID5

SNELL'S LAW (L I N -1')

_ Ct-m1

n \r

-did

nsr

a 3

* Matching trace velocities along the boundary

sine _ si
0, = 0, = 0 andsi0=sn

Cd C.

* Reflection coefficients - mode conversion

Ad, sin 20 sin 2 - (Cd /c. )2 cos 2 20

Ads sin 20 sin 20 + (Cd /c. )2 cos2 20

r. d A., 2(cd /c. ) sin 20 cos 20
Ad sin 20 sin 2q0 + (Cd /c. )2 cos2 20
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PREVIOUS RESEARCH

Buck and Thompson (1966)

9 One-dimensional finite amplitude waves reflected from a

stress-free boundary

* Higher order harmonics should decrease due to phase re-

versal

Van Buren and Breazeale (1968)

e Linear reflection and refraction process: No coupling among

the harmonics

Qian (1982)

9 Finite amplitude plane waves upon oblique reflection in flu-

ids

e Self-action:

- Secular second order incident wave

- Secular second order reflected wave

* Nonlinear interaction:

- Constant magnitude second harmonic



Feng (1983)

e Two-dimensional reflection and refraction at a planar fluid-

fluid interface

9 Straightforward perturbation analysis

Cotaras (1989)

e Straightforward perturbation analysis

e Nonlinear interaction between the incident and reflected

waves and the local nonlinear boundary effects were inves-
tigated

e Finite amplitude form of Snell's law - matching nonlinear

trace velocities along the interface

I
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BASIC EQUATIONS

Momentum equation:

aT, 82'u,
ai = PO (92tU

Constitutive equation:

aw
T, = Po a(u/ aa)

Nonlinear geometrical strain-displacement:

1 ( Ou, .au, 09 2 U a
2 ia, =±a, Oa, 8a,

where

U. -displacement components

a, Lagrangian coordinates

T., Piola-Kirchhoff stress tensor

E. -Green's strain tensor

W Strain energy density function



STRAIN ENERGY DENSITY FUNCTION

Assumptions of materials:

1. Adiabatic

2. Homogeneous and Isotropic

Taylor series expansion:

1 1 1 1
2 '24' 4

1 E., ; I = E. , E, .,L:E, E, E ,

where

A, _= Lame coefficients

v, , v,- third-order elastic constants
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PERTURBATION EQUATIONS

U = (- 1 + 62 U(2) -- -

T = UT. +ET ( +""

82 U (
k (92 U8 a2 U(kK _ Ik

at: 2 - a
) am 8a, aa. po

au(k) aUk 8a(k) Uk

Tuk A ,  6 + + + O+ G'

aa , ( a, 8a ,  po

where

K (kkG 1i K ( ' ' G , ( u' ) ,



REFLECTION OF GENERATED HARMONICS

e Superposition of two solutions: u"' = w + w,"

(I) Particular solution for K, : 0

at 2 3 4)amn aa, aa,, am

A w 6+ ( ) = 0 on a 3 = 0
aa . a 3  aa,

(II) Complementary solution satisfying time dependent bound-
ary conditions (G,, 5 0)

C ) 2 C 2 0at dc a : aan a a, 'aan aa,

Mw w 3A m, +/( + ) =-G,3 on a 3  0
3am, a3  a,

(I) leads to cumulative solutions-become significant with

increasing propagation distance

(II) produces nonsecular solutions (i.e. bounded every-

where) - NEGLECT!



SECOND ORDER NONLINEAR EFFECTS

exp(2iob,,)

exp(2ib,,b)

w = exp(2i.,)
w'" exp[i( ±4d,, l

exp[Zi(0 , d i . )

exp[i(Pr +db.rd)]

9 Secular terms consist of second order harmonics of incident
and reflected dilatational waves

e No secularity in vertically polarized shear wave

e Noncollinear interaction terms are not solution of the ho-

mogeneous wave equation = not secular

• Generating additional complementary solutions to satisfy
d.e. & b.c. is complicated



* Hypothesis stated by Cotaras (1989): refraction in fluids

Finite amplitude form of Snell's law: Variation of reflected

and transmitted angles

* Key observation from perturbation analysis:

1. Nonlinear interactions between waves are negligible

2. Inhomogeneous boundary conditions are not important

P and SV waves are reflected at both the first and second

orders

4. Secularity occurs in the second order incident and reflected
P waves, but not in the second-order reflected SV wave



ALTERNATIVE ANALYSIS -

THE METHOD OF CHARACTERISTICS

One-Dimensional Outgoing Planar Wave

1'constant, along each characteristic

dx _ .+ y+l
dt +v;2

p ~ o C- )y + c 0t'62

onset of sr2ccK



CHARACTERISTIC C ONES

x tan- (cd + Od Vd)

characteristic
character ~st'c

ndr

a3 
er nldr



NONLINEAR PARTICLE VELOCITY

Individual waves:

2
vd, = - - nEAdf, exp(i'd,) + (E 2 ) + c.c.

2
-, - cAd,. ndr exp(i A'd ) + 0(0 2 ) + ~c

v, _-EA, (e, x n.,)exp(iwT.,) + O(E") + c.c.

Projection of characteristics at a fixed time

stress-free
surface

a,

9rS

so'lrce cf

Inc ent P wave
a3



NONLINEAR PHASE VARIABLES

nd, r + L, t
Cd +3d (vd * .,)

,Qd nd, * r + Ldr_

Cd + Od (Vdr .nf,)

n.. -r+Lr

C,

Thurston & Shapiro (1967):

Al3
=- coefficient of nonlinearity for solids

-.1, A + 2i :Geometrical nonlinearity

vil 2
Al 3 ~ -3f +-v'+ ±6v,

4 3

L,,: distance between initial incident wavefront and origin

L, Phase lags of reflected dilatational and shear

waves



SATISFACTION OF THE BOUNDARY CONDITIONS

1. Form stress components for each wave

Plane dilatational wave:

E -_- V + o(62 = -- + o(62)
Cd +1 3 d v. Cd

Plane shear wave:

1Ou, 1v
2 8 2c.

2. Apply Mohr's circle resolution into a, -a3 plane

3. Require resultant stress components vanish on a, 0

4..Matching phase variables on a3 = 0 yields:

a. Finite amplitude form of Snell's law

sinod, sin Od. sin 0.,

Cd + 3 dvdIa 3 =0 C, + d Vd, o,- c.

b. Phase lags of reflected waves relative to the incident wave

Lc, Lr L.
c, + 3, Va,. Ia. = 0 C, +O.,vd,[ : 0 c.



5. Nonlinear reflection coefficients

Adr sin 20, sin 2, - (-y2 - 2 sin2 O cos 2,

Ad i sin 20, sin 2, + (-Y2 - 2 sin2 ,) cos 2,

Ao, sin 20,(y2 - 2 sin 2 0, ) + sin 20r, _2 - 2 sin' 0,)
A-, [sin 20, sin 20, + ('-/2 - 2 sin' 0, ) cos 26,]

6. 0, 0+o() & € 0 €+o(6)

* Nonlinear reflection coefficients m linear reflection coeffi-
cents -+ 0()

e Deviation from linear angles is oscillatory

I



CONSTRUCTION OF A FIELD SOLUTION

dilatation shear zone

zone

/O



GENERAL RULE

1. Solve the linear problem

a. Incident ray: dilatation or shear

b. Reflected rays: dilatation and shear

c. Transmitted rays (two media in contact): dilatation and

shear

d. Special case: ideal fluids =t- omit shear waves

2. For each wave, let

V - C C C.
2 A

a _ c + 3 d (v n) dilatational wave,

C. shear wave

Use Snell's law with c replaced by a to obtain reflected and

refracted angles

4. Use linear relation with nonlinear angles from Snell's law

to obtain reflection and transmission coefficients



CLOSURE

" For engineering materials, nonlinear parameters are small.

so the response to an incident nonlinear wave will be near
the response for the linear counterpart.

" Nonlinearity causes reflected and refracted waves to prop-
agate in variable directions, as though surface was rotating
in an oscillatory manner.

• Phase shifting in higher harmonics of a waveform and sig-

nal arrival from a specific spot might lead to useful NDT

application.
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SUMMARY

In small-signal (linear) theory, oblique incidence of either a plane dilatational (P)

wave or vertically polarized shear (SV) wave at a plane interface between two elastic

media results in refleciion and transmission of both types of waves. The direction of

propagation of each wave is constant and is governed by Snell's law. If the incident

wave arrives at the boundary in a distorted manner as a result of nonlinearity,

the reflection and transmission pattern becomes intricate due to coupling effects

between dilatational and shear waves.

The first st,,dy of this problem addresses a special case-the reflection of an initially

sinusoidal, finite amplitude plane P wave from a plane stress-free boundary of an

elastic half-space. A second-order perturbation expansion successfully discloses the

most significant nonlinear effects, but it ultimately encounters difficulty for making

the results uniformly valid. This shortcoming is corrected by an analysis using

the method of characteristics for two-dimensional waves. Allowing the incident

and reflected waves to undergo nonlinear distortion along ray paths having variable

propagation direction leads to finite amplitude forms of Snell's law and the reflection

coefficients of the outgoing P and SV waves zt each instant. A numerical algorithm

is developed to calculate the waveforms of the reflected P and SV wave received at a

specified point. The physical and mathematical insight provided from the analysis

leads directly to a generalized solution for the case of an interface between arbitrary

elastic and/or fluid media, in which critical angles may exist.

_ -A----
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NPE -Derivation & Assumption

*mass and momentum equation

82p .V2p + a a8 (P vV ) (1)

*adiabatic state equation,

P - 1 _I,28a2P + O(p'3) (2)
20 ap'

*particle velocity = in x direction

W1= p'C 6. +2 p ,' 3
Vi '/PO 1,x +0('I') 3

From equations(1-3), one obtains

a2R 2WV 2 c2( R + P 2 + higher order termns, (4)
a t

where R is dimensionless density : R - lp



Reference frame translating at cin x direction.

The time derivative in the moving frame is:

Dt a +ca (5)

Substituting eq(5) into eq(4) leads to

D -c a2 R (0-2+ a2 + a2) c c+ c1 )2( R + R2) (6)
T ty tz t
a. b . c. d. e.

Consider a,b,c,d,e terms are small

DtR= ax( cjR + 1 c0R2)1 o(2+ a2 )J R dx. (7)
t 2A ~ ay ZXf



APPLICATION FOR NPE

Three different formulations of NPE:

CASE 1: Two d mensional waveguide

D R =-a( c R + 1 c0 R') - o c0J R dx. (8)

CASE 2: Azimuthal symmetry -- in radial propagation

(r z)

Y propagate in r direction

2) COR I Jr a2
D tR a r( c R + ~c R) c-~j R dr. (9)



MODIFIED VERSION OF NPE

CASE 3: Our problem,

Azimuthal sysnunetry -- in axial direction

a , x)

'~propagate in x direction

DtR 8x- cjR + C R 2 ) 1 lC(a+ )J R dx. (10)

Present study

" Homogeneous: c1 = 0

" Linear : - 0

1 2 ~x
DtR i la a2) R dx. (11)

a f



INITIALIZATION OF NPE

1. King integral for steady state cases

2. Rayleigh integral for steady state and

transient cases

3. Planar wave assumption:

if r < radius , p = f( t - x/c

if r > radius , p - 0.



Previous result for steady state
ref: Abstract at previous meeting

st harmonic wor ron starts at r=0.05 m

C4.

Rayleigh integral on axis
oa 1PE result from King integral :nput

04

0.0 0.1 02 0.3 0.4 0.5 0.6 0.7
add cristce m

I



Previous result for steady state
ref: Abstract at previous meeting

1st harmonic comparison at z=-500 mm

,E

An'

(l ----- NPE result from planar wave ir-ut

0 10 20 30 4-0 50 60

transverse distance :mm



PREVIOUS CONCLUSION

1. NPE , which is a time domain formula, can be

used to study steady state signal.

2. NPE is quite accurate for linear propagation,

even in the vicinity of the projector.

3. Simple, yet accurate, initialization of moving

window for NPE may be obtained by using a

linear field theory close to the projector.

QUESTION?

How accurate is the modified version of NPE for

transient pulse(s) propagation generated

by a circular piston? !



TRANSIENT RESPONSE FOR A SINE LOBE PULSE

GENERATED BY A CIRCULAR PISTON

PROCEDURE:

1. Initialize sound field -- 0 < x < 0.6 X~

0 O<a < 3a

using Rayleigh integral

P = pc H(a - a) Vn (t - X

PC x/2 a~a +o sin(o)) - t--)dW~ f-12  a2a + a2+ 2aasin(o) Vn (t-3

where R is (a2 + a2+ 2ca sno)/



2. Propagate the sound field to a specific distance.

3. Compare to evaluation of Rayleigh integral

Note: Singularity in Rayleigh integral

at the location: a - a & sin(O) - -1.

Asymptotic evaluation of contribution

of singularity using

o a (1 + ),

+ A

2



transient wave comparison
at distance about 900 wavelength

1.00

NPE
0.72 Rayligh

0.44

0.16-

-0.12 "

-0.40
0 48 96 144 192 240

grid point (transverse direction)



transient wave comparison
at distance about 4500 wavelength

0.72

0.44

0.16

-0.12

0 60 120 IS0 240 300

grid point (transverse direction)



CONCLUSION

I. NPE is quite accurate to describe linear

transient signal generated by a circular piston.

2. From previous study, NPE can be used to describe

linear steady-state signal generated by a

circular piston.

3. Application of NPE for sound beams in presence of

nonlinear effects ( finite amplitudes ) needs to be

explored.

. . . . . . . .



Evaluation of a finite amplitude sound beam in the time
domain using a modified version of the NPE computer code

Gee-Pinn James Too and Jerry H. Ginsberg
School of Mechanical Engineering,

Georgia Institute of Technology, Atlanta, GA 30332, USA

ABSTRACT

The NPE computer code [1] generates a time domain solution of a
parabolic equation that is derived by assuming that, to a first order, the
particle velocity is in the direction in which the signal propagates. The
present work extends an earlier study [2], which modified NPE to evaluate
the linear signal generated by a piston in an infinite baffle. The present
problem, which is concerned with the effects of nonlinearity, addresses
three alternative descriptions of the input field: (1) The waveform very
close to the transducer and extending to several piston radii transversely
is calculated from the King integral for the linear problem. (2) Inside a
cylinder extending outward from the piston, the input signal is represented
as a linear planar wave, while outside that cylinder the input field is
considered to be zero. (3) Nonlinear waveforms in a region beyond the far-
thest anti-node for the fundamental is obtained from the nonlinear King
integral [3]. Temporal waveforms are computed at nearfield and farfield
locations, and then frequency analyzed for content at the lowest three har-
monics. The results are compared to experimental data [4][7]. [Work
supported by CNR.]

INTRODUCTION

The nonlinear progressive wave equation (NPE) developed by McDonald and

Kuperman [1 was used to evaluate a time domain solution in a waveguide and

to study the behavior of weak shock at a caustic. In a previous work [2), a

modified version of the NPE computer code was obtained to evaluate the

linear signal generated by a baffled piston. The purpose of the present

study is to explore the ability of the modified NPE to describe the

propagation of a finite amplitude sound beams. In the past year, numerical

solutions [5][6] for a finite amplitude sound beam have been obtained in a

frequency domain approach. In contrast, the present study uses a time

domain approach, for which an appropriate sound field in the nearfield is
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input and then propagated to the farfield. In order to demonstrate this ap-

plication, three alternative descriptions of the input field shall be

addressed. The results are discussed in detail, and compared to experiment

data in the nearfield[4] and farfield(7].

GOVERNING EQUATIONS

In the previous derivation by McDonald and Kuperman [8], the combined

mass and momentum equation, which is

a2a - V2P + a ia( p ViVj) (i)
at

and the adiabatic state equation,

P 22 1 2P + O(p3 (2)
ap,

are used as the basic equations. It is assumed in the derivation that, to a

first order, the particle velocity is in the direction in which the signal

propagates.

Vi c P'/P' 6 i'x+ 0 (p'2,p'8), (3)

where 6. is the Kronecker delta.
1,x

From equations(l-3), one obtains

--2 V c ( R + 0 R 2 ) + higher order terms, (4)
at

where R is defined as a dimensionless density perturbation: R - P'/po

A reference frame moving in the propagation direction with a constant speed

c was introduced. The time derivative in the moving frame is

a a
D - -+c- (5)

a t 0ax*

Substituting equation(5) into equation(4) leads to

2D 2 2 2 2 2D - co a)2R - (a + a + 8a) ( CO+ c ( R + P R2). (6)
t t  0 x ty tz tI  t
a. b. c. d. e.

It is assumed that terms marked a,b,c,d and e are small compared to

the dominant terms. The products of these small terms in equation(6) are
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negligible. Then, equation(6) is integrated with respect to x, which gives

the NPE in three dimensions.

DR-- cR+ P 0 2 Co(3y+ 8 )J Rd. 7
xf

APPLICATION FOR NPE

There are two different formulations of NPE in its original development

[8], depending on the type of coordinate system to be used. One, described

by equation(8), is suitable for two-dimensional waveguide problems in

Cartesian coordinate, while the other, described by equation(9), is

suitable for problems having azimuthal symmetry with signal propagation in

radial direction r.

DxR a( cR + R co aR dx. (8)

DR -a cR + !2CR 2- c R I c a R dr. (9)
t rl j8 0 R 2rJ rfz

The present study employs a modification of NPE suitable for the

evaluation of axially propagating axisymmetric waves. The modification is

obtained by changing equation(6) to cylindrical coordinates in which the

axial coordinate x is in the propagation direction, and then, dropping

products of small terms. By integrating over x, one obtains a modified ver-

sion of NPE which can be used for finite amplitude sound beams problems,

DtR "a clR + 2PcoR2) C o(a+ +--)Jx R dx. (10)

In addition, the axisymmetry condition requires that aR/a - 0 on the axis.

The moving frame used for the present study was taken to extend five

wavelengths in the axial direction and three radii in the transverse direc-

tion. Three alternative descriptions of the input field are used . I
(1) The waveform very close to the transducer and extending to three

piston radii transversely is calculated from the King integral for the

linear problem,

p/POcO - I E n exp(it - nz) Jo(nR) dn + c.c., (11)
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where c.c. represents complex conjugate of the previous term.

(2) Inside a cylinder extending outward from the piston, the input sig-

nal is represented as a linear planar wave, based on the assumption that

p - P0c0vx on the face of the piston, while outside that cylinder the in-

put field is considered to be zero.

(3) Nonlinear waveforms in a region beyond the farthest anti-node for

the fundamental are obtained from the nonlinear King integral[3].

Temporal waveforms at nearfield and farfield locations are computed

from NPE by matching the time increment to the spatial resolution in the

axial direction. The last step is to perform a frequency analysis of the

waveforms for the amplitude and phase at the lowest three harmonics.

NUMERICAL RESULTS

In this section, numerical results for harmonic generation obtained

from the modified NPE computer code for the three alternative inputs shall

be compared to experimental data in the nearfield and farfield. Figures 1-6

concern nearfield situations, for which the third of the aforementioned in-

put schemes is not applicable. The parameters for the example are ka -

180.75, an average pressure amplitude on che piston face - 100 kPa, fun-

damental frequency - 2.25 MHz, speed of sound - 1486. m/sec and piston

radius - 19 mm. These parameters are the same as those in previous experi-

ments [4]. Figures 1-3 describe the amplitude variation along the axis of

the sound beam, while, Figures 4-6 show the transverse variation at the

axial distance z - 275 mm. It can be seen that the planar wave input and

the linear King integral input both give good results, except in the region

very close to the piston. Although not shown, it was found that increasing

the distance from the transducer at which either input field is generated

increases the discrepancy with experiment, especially for higher harmonics.

Figures 7 and 8 display farfield results obtained from the second and

third input schemes. The parameters for these examples are fundamental fre-

quency - 450 kHz, piston radius - 51 mm, SPL(r.m.s)- 212.7 db//l APa-m and

speed of sound - 1418 m/sec. These parameters are the same as those in

previous experiments [7]. For the region around the axis, the results of

each are in close agreement with experiment. It should be noted that the

lower measured level of the second harmonic at longer ranges is consistent

with the estimate for dissipation in reference [7]
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CONCLUSION

Based on the evaluations, it is reasonable to conclude that NPE, which

is a time domain formulation, can be used to study CW signal generation.

This requires a proper initialization of the window. Due to the planar wave

assumption, which ignores diffractive effects, initialization of the window

based on this approximation causes some errors for nearfield locations.

However, the planar wave assumption is certainly the most efficient manner

in which the input field can be generated, and it is reasonably accurate

outside the region close to the piston.
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