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I. BACKGROUND

Numerous evaluations of the acoustic field radiating from a baffled
transducer have appeared in the published literature. An important feature
is that these theories are applicable for a wide range of parameters.
Approximations, such as those describing an axisymmetric sound beam in the
far field (Frauntofer zone) can substantially reduce computational cost, but
they are not necessary. Linear theory is valid when the source level is
sufficiently low. Even then, diffraction effects in the near field, which
lead to localized cancellations and reinforcements, complicate the task of
correlating near field measurements to far field propagation properties.

The situation becomes more complicated when one tries to increase the
propagation range by raising the source level. It is logical to try to ove-
rcome effects such as dissipation and scattering by generating higher level
signals. Such attempts inevitably lead to a greater rolz for nonlinear ef-
fects. One of the effects of nonlinearity is to divert energy from the
fundamental signal to higher harmonics, which is equivalent to lowering the
efficiency of the transducer. In the face of these concurrent effects it is
apparent that developing a unified theory for nonlinear effects in sound
beams is a challenging matter. However, such a theory is necessary it un-
derstanding ol the distortion phenomena is tec be enhanced. A prime example
of the earlier lack of insight is the observed differences between the dis-
tortion of the compression and rarefaction phases of a signal, which had no

analog in simpler types of acoustic waves.

A variety of approaches have been emploved to study the effects of non-
linearity in this svstem. One approach has relied on a conventional
perturbation solution of an approximate nonlinear wave equation. Such an
analvsis seems to give verv good results near the transducer face. However,
it quickly breaks down with increasing range due to assumptions that are

made in the perturbation steps.

An investigation of properties in the far field was developed based on
an approximation as a quasi-spnerical wave. Such a formulation assumes that
the wave arrives at the transition to the far field (e.g. the Ravleigh
distance) without substantial prior distortion. Hence, the spherical wave
description is inherently limited to cases where the transducer excitation
is comparitiveiy luow level. This type of analysis also leads to certain
anomalies, such as the fact that the level of distortion is dependent on the
choice for the spherical transition distance, which may be arbitrarily

chosen beyond the Rayleigh distance.




Another approach that has been widely employed is founded on a version
of Burgers’ equation that has been modified to account for spreading and
diffraction -- this is commonly referred to as the Zabolotskaya-Khokhlov
equation. After its original exposition in the Soviet literature, the first
soluvtions of the equation for harmonic excitation of the projector were ob-
tained by finite differencing the position and time variables. Those
results were difficult to obtain due to the inefficiency of the approach, sc
an alternative was developed by the Tjgttas and Hamilton based on the fact
that a harmonic input must result in a signal that is tempcrally pecriodic.
Consequently, the signal in this case may be expanded in a Fourier series
whose coefficients are position dependent. Using the method of harmonic
balance to make the solution satisfy the Z-K equation leads to coupled sets
of ordinary differential equations for the Fourier coefficients. Although
the solution could be obtained more efficiently in this manner, the basic
approach is limited by the restricted nature of its input. Extending the
procedure to treat multi-harmonic inputs would require a substantial in-
crease in the number of harmonics that would need to be retained, and the
method is completely invalid for predicting the signal generated by a tran-
sient input. Furthermore, tbe degree tc whicn the Z-K equation is suitable
for predictions of the highly diffractive field near the projector had not

been explored.

II. RESEARCH TECHNIQUE

The primarv goal of this project was to develop an overall description
of transducer radiation in which tinite amplitude effects diffraction, and
spherical spreading are treated consistently, without limitation to a
speciific spatial domain ov a specific type of input to the projector.
Initially, the mathematical tools for this work were those used to develop
the nonlinear King integral for nonlinear effects arising in the sound beam
generated by a harmonic input [J. H. Ginsberg, Journal of the Acoustical
Society of America, 76, VNo. 4 (1984) 1201-1214].~ These techniques combined
singular perturbiition theory and asvmptotic analysis of the behavior in

specific domains.

The general approach uses the King integral in linear theory, which is
a Fourier-Bessel integral transform, to develop the second order source
terms that generate nonlinearities in the response. There are two kinds of
nonlinear effects that arise at the second order. Some produce terms that
remain bounded as the signal propagates. (One such effect is associated
with the fact that the input from the transducer originates from a moving

Poundarv., ratho~ Lhane e much suppier Aescyiprion, ¢ = U.) The smaiiness



of the acoustic Mach number leads to the conclusion that these fixed mag-
nitude effects cannot account for measured levels of distortion. The other
group of nonlinear effects arise from resonance-like phencmena. These terms
lead to distortion that grows with increasing distance. Shocks ultimately
form from this effect, unless dissipation is adequate to overcome the non-
linear distortion process. It is this cumulative growth effect that needs

to be evaluated.

The growth effects in the second order terms are evaluated by using
asymptotic integraticn techniques to identify the portion of the second or-
der terms that grow most rapidly witl, increasing range. The aforementioned
breakdown of conventional (i.e. regular) perturbation solutions is avoided
by introducing coordinate transformations that essentially are based on the
recognition that cumulative growth is a singularity. The transformation is
selected such that replacing the physical position coordinates by the new

variables cancels the singular terms.

The singular perturbation scheme had earlier been successful in deriv-
ing solutions for sound beams generated by a variety of sources. The first
studies considered the case of harmonic input. The cumbersome evaluation of
coordinate transformations was replaced by a harmonic series representation,
for which the effort to evaluate each harmonic is equivalent to that re-
quired to solve the linear case [Hsu-Chiang Miao, Ph.D. thesis, Georgia
Institute of Technology, Sept. 1985]. Results derived in this manner were
shown to be accurate in comparison to experimental data from a region
several piston radii from the projector out to the Rayleigh distance and
beyornd, which generally marks the onset of farfield behavior.

Subsequent work extended the basic nonlinear King integral to non-
axisvmmetric sound beams, such as those arising when the normal velocityv on
the surface of the projector resembles an azimuthal harmonic. Another ex-
tension of the analytical technique demonstrated the suitability of the
method to treat situations where the projector is driven by two inputs at
arbitrary frequency; the parametric :rray, in which the frequencies are
relatively close, is included in that general case. In order to further
generalize these works a major effort involved evaluation of the sound beam
radiating from a baffled projector whose input is an arbitrary periodic
function. This capability would be employed to explore the implications of
an "anti-nonlinearity" concept. In it, the projector is manipulated to gen-
erate a signal that is phase-inverted from the waveform that would be
obtained at the shock formation distance from a conventional input. (This
concept will be discussed in greater detail later.)




Although the foregoing study was generally successful, it became ap-
parent that further work, Involving transient inputs to & projector, would
be too cumbersome for the pertirbation approach. It therefore was decided
to develop a time-domain numerical simulation of finite amplitude sound
beams. The physical assumptions used by Kuperman and McDonald to develop
the NPE (Nonlinear Progressive wave Equation) computer code were judged to
be suitable for sound beams, but the coordinate systems used in their for-
mulation were not suitable. Therefore, attention was devoted to modifying
MDE ro treal wave propagation in a cylindrical geometry in which the primary
propagation is axial. After the modifications were implemented, the primary
question was what is the proper way in which NPE should be initialized? In
brief, NPE requires as initial conditions a waveform occupying a specific
spatial region, which forms a window. It then uses a time marching proce-
dure that propagates this window at the overall sound speed, while the
waveform disperses within the window. Additional questions pertained to
whether one could introduce nonreflective outer boundaries for the window,
which would have permitted usage of a smaller window, and whether a new
coordinate system could be introduced, in order to allow account for the
spherical spreading of the beam without employing an excessively fine
numerical mesh transverse to the propagation direction. The general method
bv which any of the developments were validated was to consider threc cases
where results are reasonably well known: linear theory for steady-state har-
monic waveforms, linear theory for transient waveforms, and nonlinear theory

for harmonic input waveforms at moderate excitation levels.

A new line of research evolved out of two aspects of the analyses dis-
cussed above. The Fourier series representation of the nonlinear King
integral grew out of a decomposition into an angular spectrum repre-
sentation, in which each transverse wavenumber was represented by two
wavelets. Far from the axis of symmetrv, these wavelets have the appearance
of conical wavefronts that propagate inward and outward relative to the axis
of svmmetry. (Near the axis of the sound beam, the wavefronts both appear
to be locally planar and perpendicular to the axis.) In order to understand
the interaction between wavelets, it was decided to return to waveguides.
Development of a ray description of the propagation and interaction of
finite amplitude waves would substantially assist understanding of the dis-

tortion mechanisms in sound beams.

The development of a ray description was further motivated by the work
on phase-inverced nonlinear inputs. A few earlier experiments had use
reflection from a free surface to invert the projector waveform. However,
the theories uscd to support those experiments were highly approximate be-
cause little was known analytically regarding the reflection of finite
amplitude waves. It seemed logical to follow the successful study of ray




propagation in waveguides, which had considered oblique reflection from
rigid surfaces, with a study of oblique reflection and transmission from
planar interfaces between two media. Although it had initally been an-
ticipated that work in this question would be confined to fluid media, it
soon became apparent that the derived theory could be applied with equal
ease to elastic solids. The derivation of the thecry, one of whose aspects
is a modification of Snell’s law to account for the dependence of propaga-
tion speed on particle velocity, was achieved by using perturbation
techniques to identify the dominant nonlinear effects, and then using the
method of characteristics to study theose effects.

PROJECT ACHIEVEMENTS

A. Extended Analvtical Descriptions of Sound Beams

The present project began by completing the studies of nonaxisymmetric
1 and two-frequency excitations [17]. With the completion of those works.
several questions remained to be answered. The nature of the perturbation
analvsis limited the range at which the respective solutions could be ap-
plied, because shocks play an increasingly prominant role with increasing
range, especially in the absence of dissipation. Furthermore, the King in-
tegral has limited usefulness for far field evaluations, even in the linear
case. This is co because diffraction effects appear as an oscillatory in-
tegrand whose fluctuations become increasingly severe with increasing
distance, which correspondinglv requires increasingly fine resolution in any
numerical integration scheme. Thus one need was to extend the analytiral to
farcher ranges and/or higher input levels.

Parallel to this thrust was the desire to investigate a councept by
which a projector could be driven at higher input levels than that currentlv
taken as the saturation limit, which is the level at which strong shocks
form near the projector. Since shocks are rich in higher harmonics. which
do not propagate well, saturation serves as an absolute limit on the level
to which a projector may usetully be driven. The enhancement concept was
suggested by a well-known "reciprocitv" feature of finite amplitude planar
waves. Suppose the signal generated bv a harmonic input is allowed to
propagate (and distort) through a certain distance. Next consider the case
where the source generates a signal whose waveform is opposite in phase from
the received waveform in the first case. If dissipation is insignificant,
the waveform received in the second case will be identical to the harmonic

signal generated bv the projector in the first case.




The significant aspect of this phenomenon for sound beams emerges when
one considers the combination of this reciprocal behavior with the far field
tendency to undergo spherical divergence. For a specified signal level, the
rate at which distortion grows in spheciical wavec~ is significantly lower
than it is for planar waves. Thus if the tendency of an oppositely dis-
torted wave to undistort could be used to push the zone in which shocks
would form out bevond the Ravleigh distance, it was reasoned that the result
would be a substantial retardation in the the onset of significant nonlinear
distortion. This was the concept, but no prior study had addressed the
problem of determining the finite amplitude signal generated by an arbitrary
periodic input to a projector, which is the tvpe of excitation associated

with a phase-inverted distorted signal resulting from a sinusoidal input.

The project expended a major effort to extend the nonlinear King in-
tegral to treat arbitrary time-periodic projector inputs [7.101. It used
those results to assess the feasibility of using phase-inverted inputs to
extend the range of a saturation limited projector. The analysis for this
case was found to be extremely unwieldy, due to the complications inherent
to the strong interactions of harmonics in the presence of strong diffrac-
tive effects. This necessitated considering a variety of phase shifts for
the higher harmonics relative to the fundamental, rather than the simple
phase inversiou that is suggested by the theory for planar waves.
Theoretical estimates of the net gain to be derived by this concept range
from 2 to 5 dB for the signal level received at the farfield, when realistic
limitations are imposed on the projector. The uncertainty in the gain stems
from a total absence of experimental data for sound beams resulting from a
multi-harmonic input to a projector. (In the terminologv of a parametric
array. thne downshift ratio is two.) The lack of experimental data was a
serious handicap., because the theorv that has been developed seems to fail
in some respects in the limiting case of a parametric arrav, due to a sin-

gularty that arises when two primarv frequencies approach a common value.

B. Numerical Modeling of Sound Beams

As a result of the complications encountered in continued extension of
the analytical procedures, the next effort was devoted to developing an ac-
curate scheme for developing a general time domain numerical prediction of
distortion phenomena in sound beams resulting from arbitrary inputs. Such a
description could also be used for transient excitations, and it presumably
would be easier to incorporate dissipation and shock formation in a numeri-
cal prediction. This effort involved modifying the NPE computer program to
treat the axisymmetric geometry of a sound beam, and then developing a
method by whicn NPE could be driven. Numerical evaluations began with




studies of linear propagation for steady-state harmonic waves 21 ., as we

as for transient excitation in the form of a single sine pulse 26 .

The results showed that NPE can be used at much closer distances to the
source than other researchers using parabolic equations had previously
believed. The key aspect of this disclosure was that the quality of the
near field computations is highly dependent o.a the manner in which -he
moving window is initialized. The earlier analytical and numerical stud.es
of the modified Burgers’' equation for sound beams had relied on a fundamen-
tal plane wave assumption that the pressure particle velocity at the face of
the projector is proportional to the axial particle velocitvy. This assup-
tion was compared in the project studies to the result obtained when a
linear theory. either the Ravleigh or King integral, is used to initcialize
the moving window extending outward from the projector face for a few
wavelengths. The waveform predicted for various locations according o each
method of initia.ization was then compared to the integral equation predic-
tion. The results obtained by initializing the NPE window were found to be
accurate (the values were within 0.1% of those obtained from numerical
evaluarion of the integral equation) for distances as small as one tenth of
the Ravleigh distance, while the plane wave assumption produced resulcs tha:

agreed with analvsis onlv outward from the Ravleigh length.

work mnearing ~ompletion and soon to be reported 27,28 has alreadv

shown that the qualitv of NPE is equallv good for nonlinear effects. The
results have heen compared to precise experimental measurements at a wvariets
of ranges. and :transverse positions. Comparisons of its predictions with

the nonlinear King integral are equallv good.

Eavlv in the project [PE was reduced to run on desktop computers. but
the number of computations involwved in running it from the projector face
out to several multiples of the Ravleigh distance is quite substantial.
Work required to complete the Ph.D. thesis of the graduate assistant
developing NPE involves using the nonlinear King integral to initialize the
moving window., and therebv increase the efficiencv of NPE for far field
predictions. Another efficiency alreadv implemented as a project task into
NPE addresses the requirement that the transverse width of the window be
sufficiently large to consider the pressure at the edge to be zero. The
idea here is to rezone the mesh divisions of the window to extend bevond the
main lobe whenever the signal at the edges is sensed to be a significant
fraction of the overall signal. These efficiencies are especiallv ap-
propriate to performing studies of multiharmonic inputs to the projector,

because such studies require much finer divisions within the window.




C. Analvses of Reflection and Refraction of Noniinear Waves N

As the analyses aimed at generalizing the nonlinear King integral
progressed, it became apparent that one of its primary features is that it
treats the signal as a combination of wavzles propagating in varior:s direc-
tions extending over an argular spectrum of transverse wave numbers. Desire
to understand such wave interactions led to a question whether the perturba-
tion techniques could be employed to study waveforms reflected from
surfaces, which was believed to be a better understood process.

The first study of veflection effects {12,18] developed a ray descrip-
tion of the propagation of waves in a waveguide whose walls are rigid. It
was shown that large amplitude excitation of a nonplanar mode could be
modeled bv using the method ol irages to follow the ravs forming that mode.
The distortion of the signal along each ray was shown to be determined by
the =otal propagation distance from the original source. and the results
were prover to be identical to those obtained from a modal solution pre-

wiously derived in the project 17

The ahilitv to describe finite amplitude signals in terms of ravs was

Fireh 17 intended :o

er extended bv a sequence of stndies which were initial

study obligue reflection of a finite amplitude acoustic wave from a free

This question was motivated bv the observation that several pre-

wiong experiments devored to the "anri-nonlinearity" cencept had reflected
the sigsnal obliquelw from o free surface in order to invert the waveforms.

itowas found eventualiv that new techniques using the method of charicteris-

ire necessary To solve This problem.  what emerged from that analvsis

'

isinn of a nonlinear Snell's law. which was as-

2t wavetorm distorcion

The procedur - wherebr this resuls was obtained. which is equallvy ap-

plicible far reflection and transmission at planar interfices bhetween media.
is innovative The analvsis began with a conventional perrurbation analvsi
hased on the smillness of “he particle velocitw relative to the phase speed

of a4 planar wawe. This revealed that the first order signal is the linear

approximation. For waves in fluids, the process involves reflection and
transmission of planar acoustic waves, while stress waves in elastic solids
feature dilatazional and shear waves, in what is known as mode conversion.
Th: propagation angles of these waves is dictated by the linear Snell’'s law,
which is obtained bv matching the linear (constant) trace velocities along
the interface. The second order ana'wvsis revealed that the dominant non-
linear effect is the tendencv of a planar acoustic and/or dilatational wave
to form second harmonics. whereas shear waves and nonlinear interaction be-

tween incident and planar waves give rise to nonlinear effects that are much



weakey {8,13,15]. However, further analvsis of the second order signal led
to an apparent cdilemma, In that no sclution constructed in this manner could
satisfv the boundary condition. This difficulty was traced to an assumption
made at the start of the perturbation analvsis. where it was implicitlv as-

it

sumed that the directions of the nonlinear rays are the same as those of the

linearized solution.

Rather than patching the solution in an awkward procedure the
knowledge of the dominant nonlinear effects was used to formulate a new
solution using the method of characteristics. This involved recognizing
that the characteristics of planar waves in a two-dimensional svstem lie on
the surface of a cone in space-time coordinates. The apex angle of this
core must change with time, according to the parcicle speed associated with
the that cone. The specific ra. associated with the signal emanating from
the boundarwy at any instant represents the projection of a characteriscis
ontn the plane of spatial coordinates in the characteristic space. The
orientation of this rav must be chosen such that the combination of signals

emanating from the boundary satisfv in total the boundary conditions.
btained in this manner con<ists of a generalization of
ction and transmission of linear waves. The nonlinear

\
L
s taw Is similar to the linear one., except that the phase speeds are

instantaneous values of the waves arriving and departing from the inter-
ace.  Consequentlv. the transmissior and reflection angles fluctuate.
Similacly the refiectior and transmission coefficents are like those of
tinear theorw, except that thev depend on <he nonlinear transmission and
reflectinn angles. Awav from the interface, the each wave (ac ustic,

dilatational. or shear) propagates according to nonlinear theorv for planar

waves, with the distortion of the first two depending on the distance of
propagation measured along the vav.  Evaluating the waveform veceived at a
tuation is complicared, because the waves ar-

specific field poins in this sit

ovirinate from a region on the interface. and

because the roflectinn and transmission coefficients have values that depend
on these angles. with the ancles being dependent on the instantaneous phase

inotarn depend on the unknown particle velocities.

=
1

Steeds

The compliications described above were resolved bv an iterative proce-
dure, in which the ph.se of ecach tvre of wave is treated as the independent
variable.  Then the value of time corresponding to arrival of this phase at
the selected field point is determined after a convergent value for the par-
ticle welocity is obtained. This technique was used first to descrihe
reflection of a nonlinear dilatational wave at a stress free boundarv. The

resnlts showed that the reflection process lessens the severity of the non-

linear distcertion processes.  Seweral factors influence this reduction.




primarily these are (1) a decrease in the amplitude of thc uilatational wave
due to mode conversion, and (2) phase inversion, which corresponds to the
"anti-nonlinearity" concept.

At this tims, work is underway to evaluate the case of critical in-
cidence [20]. Qualitative consideration of the theory indicates that a wave
will have a dual personality, in which the portion of the phase in which the
particle velocity is negative will be reflected as a propagating planar wave
(sub-critical incidence). while the phase of positive particle velocity will
evanesce perpendicular to the interface. If this result is confirmed by the
analvsis., one can envision numerous interesting experiments that might lead
to potentiallv useful tools for detecting spatial heterogeneities in
material properties, as well as for detecting interfacial cracks in solid

media.
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Finite amplitude distortion and dispersion of a nonplanar mode

in a waveguide
J. H. Ginsberg and H. C. Miao®

School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332

(Received 1 May 1985; accepted for pubiication 22 Aprii 1»386)

The perturbation method of renormalization is used to study the effect of nonlinearity on a
hard-walled rectangular waveguide. The excitation would induce only the fundamental
nonplanar symmetric mode if the system were linear. The analysis develops a solution that
satisfies a nonlinear wave equation for the velocity potential, as well as all boundary
conditions. The response consists of a pair of oblique planar waves that interact through
second-order excitation of the true planar mode. The investigation discloses that in the high-
frequency limit the signal has a quasiplanar behavior. In contrast, for very low frequencies
exceeding the cutoff value, the oblique waves are essentially independent. The distortion is then
a result of self-refraction, in which the particle motion shifts the wave fronts and rays. The
transition between the low- and high-frequency limits is marked by the appearance of
nonlinear frequency dispersion, which produces asymmetrical distortion of the waveform.

PACS numbers: 43.25.Cb, 43.20.Mv

INTRODUCTION

Finite amplitude effects in a waveguide feature multidi-
mensional phenomena involving interacting waves. In linear
theory, a mode in a hard-walled waveguide may be con-
structed from pairs of oblique planar waves that are reflected
from the walls. The present study will employ the same type
of decomposition to show that distortion resulting from non-
linearity displays a phenomenological change as the excita-
tion frequency is increased. This transition is associated with
an anomaly contained in previous studies, which only con-
sidered the low-frequency case.

Initial explorations of finite amplitude nonplanar modes
in waveguides employed the perturbation method of multi-
ple scales in a rudimentary fashion that considered selected
aspects of wave interaction.'~* A different method of investi-
gation was developed to study waves radiating from a flat
plate.*® To a certain extent, the latter studies were academic
in nature. The systcm they treated featured a periodically
supported plate of infinite extent. They assumed periodicity
of the signal parallel to the plate, which meant that energy
was propagating inward from infinite boundaries. This ap-
parent violation of the uniqueness condition, nevertheless,
proved to be instructive, because the system could be studied
by a vaniety of analytical techniques. The perturbation meth-
ods of multiple scales and of renormalization, and the meth-
od of characteristics, mutually agreed for the case of a spa-
tially sinusoidal excitation. One significant aspect of their
result was the prediction of self-refraction, in which the
wave fronts and rays of constant phase are distorted by the
particle velocity.

Although the plate problem did not treat a physically
realizable system, the relevance of these investigations to

waveguides was recognized in a subsequent investigation.'®

°' Present address: General Motors Research Laboratories, Warren, M1
48090-9055.

The basis of that work was that there are nodal lines in ihe
plate system along which the velocity component parallel to
the surface of the plate vanishes. Such lines are perpendicu-
lar to the plate, as they are in linear theory. This observation
led to the conclusion that the infinite plate analyses had actu-
ally derived a single mode in a waveguide.

The treatment of general excitation in a waveguide per-
formed in Ref. 10, which was a straightforward extension of
the method of renormalization, disclosed a type of super-
position principle. Modes having identical phase speed were
found to form distinct groups, whose distortion in self-re
fraction was a consequence of only the particle velocity ans
ing from that group. The overall response consisted of a lin-
ear combination of the response in each group.

A similar analysis had been used to study waves radiat-
ing from cylinders.!"-™* One of those studies'® identified a
paradox associated with very long axial wavelengths. One
would expect that if the wavelength along the axis of a cylin-
der is large, so that the rate of variation in that direction 15
very gradual, then the response would approach that for the
case of a two-dimensional system, in which the axial wave-
length is actually infinite. This was found to be the case.
except that the distortion phenomena in the limit were found
to be too weak by a factor of one-half. This dilemma was
resolved by noting that distinct modes in the case of axial
variation coalesce only when the wavelength is actually infi-
nite.

These observations also apply to the investigation of
waveguides.'® For example, as the width of a waveguide is
increased, the earlier analysis predicts that the distortion of
the planar mode will be twice as strong as that of the funda-
mental symmetric (2.0) mode. Although the explanation of
coalescing effects for infinite transverse wavelength (i.e., the
planar mode) is plausible, it nevertheless is unsettling from a
physical viewpoint. Distortion arises from higher harmonic
souces that are generated by nonlinearity in the entire acous-
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tic field. Could it be that minor discrepancies between the
long and infinite wavelength cases accumulate to create the
discrepancy? Lack of experimental data prevented an earlier
response to this question, but discussions with researchers
currently involved in such activity'® sparked the present
authors’ interest in exploring these concerns.

The analysis presented herein treats an excitation of
only the (2,0) mode in a hard- walled waveguide. This limi-
tation is imposed primarily to reduce the analytical compli-
cations inherent to a more general study of multimode prop-
agation. It also facilitates isolation of physical phenomena,
such as the manner in which the nonplanar and planar
modes interact nonlinearly. It will be shown that the (2,0)
mode excites the planar mode in an insignificant fashion,
unless wL /c,>27, where L is the transverse width of the
waveguide, w is the (circular) frequency, and c, is the linear
speed of sound. The phase speed of the (2,0) mode, then,
differs slightly from that of the planar mode. This near-coin-
cidence sets up a mode interaction that is reminiscent of the
beating response exhibited by an undamped, one-degree-of-
freedom oscillator that is subjected to harmonic excitation
close to, but not at, the natural frequency.

The modal interaction leads 1o a smooth transition to
the planar mode response with increasing frequency, in the
manner one would expect. The analysis will confirm the ear-
lier theory for waveguides when wL /c, is not large. It will
also show that the transition from the earlier theory to the
high-frequency case is marked by frequency dispersion, in
which the waveforms are remarkably similar to those ob-
served in the nearfield of intense beams of sound.'®

I. FCRMULATION

A pressure excitation of the fundamental, symmetric,
two-dimensional mode in a hard-walled waveguide may be
written as

Pli=o = €puch sin(wt) cos(k, x) ,
e«l, —L/2<x<L/2, (1)

where p, is the ambient pressure, ¢, is the speed of sound at
ambient conditions, and the transverse wavenumber k, is
related to the duct width L by

k, =2#/L. (2)

The question to be addressed here is the effect of nonlinearity
associated with the finiteness of € on the waves that propa-
gate in the positive z direction as a result of this excitation.
The equations of continuity, momentum, and state may
be combined to form a single nonlinear wave equation gov-
erning the velocity potential'” under isentropic conditions,

3%
o’

_9[t.s _ 30")’ )
a:[cg,w" ”(a: + Vo v¢]+o<¢). (3)

where the nonlinearity coefficient 8, is the constant associat-
ed with the second-order term in a polynomial expansion of

the pressure perturbation p as a function of the density per-
turbation p at fixed entropy,

V4 -
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P/ (pocd) =p/po + (Bo— 1) (p/p5) + - <. 4
Because the analysis shall only address the role of quadratic
nonlinearities, Eq. (4) may also be applied to liquids by let-
ting By =1 + B/24.

The pressure is related to the potential by

P
f—ii—’i—— +2 1 Sv4-96=0. &)
o (po +p) at
From Egs. (4) and (5) p, p, and & have the same order of
magnitude, so elimination of p from these relations yields

p—~po[3—¢+~w v — —("“‘)]ww

5/
(6)

The boundary conditions for ¢ are obtained by making
the particle velocity normal to the walls vanish,

éﬁ =0 atx= + £ M
Ix
as well as by matching Eq. (6) atz =0to Eq. (1). Also, for
uniqueness, it is required that the signal consist of a wave
propagating in the positive z direction.
The initial stage of the solution technique employs a
regular perturbation expansion of the potentiai in terms of
the small parameter ¢,

¢=6¢1+€2¢2+"" (8)

Matching like powers of € in the differential equation and
boundary conditions leads to a sequence of equations in the
usual manner. The order € terms are

3’s,

v, — =0, (Sa
) 1 a2 )
acd] -0, (9b)
¢9x x= +L/2

2
% . =i%°{exp[i(wr—kxx)]

(9¢)

where c.c., in general, shall denote the complex conjugate of
all preceding terms. The order € perturbation equations are

C(Z)V2¢z - M = -59—- [—(ﬂo - 1)(8d ) + v‘ﬁl'v‘t\] ’

+exp[i(wt + &k, x) ]} +cc.,

g A
(10a)
9¢, =0, (10b)
dx £= 3 L/2
8:153, 1<a¢,)2 !
= === - =V, .V 1
gt liao [cf, ar 2 ! é'] oo (10e)

. EVALUATION OF THE POTENTIAL

It is a straightforward matter to solve Eqgs. (9) by sepa-
ration of variables, with the result that

é, = (ca/4w){exp(i(wr — k. x — k,2) ]

+exp[i(wt + k,x ~k,2)]} +cc., (i

where
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k=w/c,, 8=sin"'(k./k),

k,=kcos@=(k?—k21)V2,
Only the case of propagating, rather than evanescent, waves
is of interest, which means that k, <. This condition is
obtained whenever w exceeds the cutoff frequency for the
fundamental mode, @ > 27cy/L.

Equation (11) represents the first-order solttion as two
trains of planar waves propagating symmetrically relative to
the centerline x = 0. These waves are depicted in Fig. 1,
where ¢, and e, are the individual directions. The angle &
measures the direction in which these waves propagate, rela-
tive to the centerline. Each wave represents the reflection of
the other from the rigid wulls. Increasing either the frequen-
cy wor the width L decre2ses 8. In the limit #—0, the combi-
nation of the two trains of waves has the same phase speed as
the planar mode, and the transverse variation is much more
gradual than it is in the axial direction. Hence, the (2,0)
mode at high frequencies seems to be locally planar.

The first step in deriving @, is touse Eq. (11) to form the
inhomogeneous terms in Eq. (10a). This yields
a9,

ot?

= — (i/8)cGwB{exp[2i(wt — k x — )c,z)]
+ exp[2i(wt + k. x — k,2)}}
— (i/8)c5w By — 2(k 27k ?) Jexp[2i(wt — k,2) ]
+cc. (13)

(12)

Ve, —

The first two exponentials in Eq. (13) excite second har-
monics. Such signals propagate parallel to the two waves
forming é,, which are homogeneous solutions of the linear-
ized wave equation. The corresponding particular solution
may be obtained by the method of variation of parameters, in
which the amplitude of the homogeneous solution is consid-
ered to be an unknown function. The last inhomogeneous
term is a planar second harmonic. Such an excitation
matches the planar mode for the waveguide when k, = k.
Hence, decreasing k. brings the planar part of the excitation
into close coincidence with the planar mode for that frequen-
cy, which means that this excitation is nearly resonant at
small k. The method of variation of parameters will also
yield the solution associated with this term. Thus let

&, = u(x.2) exp(2wt) + c.c.,

u = Clz){exp[ — 2i(k.z + k,x)]
+exp| — 2i(k,z— k,x)]}
+ D(z)exp( — 2ik,z) .

(14)

It should be noted that the unknown functions C and D de-
pend on the axial distance only. The periodic nature of the
excitation eliminates dependence of these functions on 1.
Similarly, the rigid wall conditions, Eq. (10b), imposed
along x = + w/k,, could not be satisfied if C or D were
functions of x.

The result of requiring that Egs. ( 14) satisfy Eq. (13)is
a set of uncoupled differential equations for the amplitude
functions. After Eq. (12) for &, is applied, these equations
are found to be
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FIG. 1. Geometry of the oblique waves.

C* —4ik,C' = — }ifw,
D" — 4k, D’ +4K1D = — Yiw(B, — 2k2/k7),

where a prime denotes differentiation with respect to z.
The particular solutions of Egs. (15) are readily found
to be

C, = (Bw/32k,)z,
(B 2

D =_22(FP _ 2}

F 16(k§ kZ)

It is convenient to let the constant coefficients of C, ,and D,
appear explicitly in the corresponding complementary solu-
tions, which are therefore written as

C. = (Bw/32k,)[C, + C, exp(4ik,z) ],

(15)

(16)

(17)
D =~ ‘1“; -kﬁ—‘z’—?zz—)[Dl exp(4,2) + D, exp(4;2)}],

where 4, and 4, are roots of the characteristic equation
Al —4ik A, +4k1=0. (18a)
The roots are found, with the aid of Egs. (12), to be
Ay =22k, — k), A, =2k, +k). (18b)

The expressions for ¢,, obtained by substituting Eqgs.
(16) and (17) into Eqgs. (14), must satisfy the radiation
condition. In order for ¢, to represent an outgoing wave in
the z direction, it must only contain negative imaginary ex-
ponentials in the z vanable. Satisfaction of this condition i
requires that C, = D, = 0. The remaining terms yield

u =i'(i(z+ C){exp[ — 2itk,z + k,x))

324,
7 2
~2kz—k _ﬂ_(i__)
+ exp( (k,z—k.x)]} AVIrE
X [exp( — 2ik,z) + D, exp( — 2k2)] . (19)

Note that C, describes complementary solutions of the wave
equation associated with second harmonics of the oblique
waves, whereas D, is the planar eigenmode at the second
harmonic frequency.

The case k,=0 corresponds to a true planar mode,
which is governed by the Earnshaw solution for a nonlinear
planar wave. However, letting k, —0 in Eq. (19) results in
a singularity in the coefficient of the last terms.

Such behavior resembles the case of resonance in a one-
degree-of-freedom oscillator, whose equation of motion is
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X+ w'x=Fsinr. (20)

When —w, the amplitude of the particular solution for
Q3w increases, as does the portion of the complementary
solution that cancels the initial value of the particular solu-
tion. The combination of these two solutions is a temporal
beating response that rises from zero at the initial time. As
the difference between Q and w decreases further, the period
of each beat increases, until ultimately at 2 = w, only the
rising portion remains. The corresponding resonant re-
sponse is 2 harmonic, at frequency w, whose amplitude in-
creases linearly with time.

In the same manner, the singularity of Eq. (19) atk,—0
may be removed by an appropriate selection of the coeffi-
cient of the homogeneous solutions. The coefficient C, is not
used for this purpose because the singularity is associated
with the planar mode.

In order to study k,—0, the troublesome terms in Eq.
(19) are expanded in a Taylor series about &, /%,

ky=(k*—k2)\?=k—\(ki/k)+ ---,

2n
exp( — ik,z) = exp[ — itk — ik i/k)z + -]

= [1+4 (ki/2k)z+ -] exp( — ikz) .
The corresponding asymptotic form of the planar terms in
Eq. (19) is

_ ﬂ(_f_g - %)[exp( — 2ik,z) + D, exp( — 2ik2)]

. 'k2
= _l“L(&__zT (1+‘__-‘f+1)|)
16 \ k2 k- 2k

xexp,( — 2ikz) . (22)

The singularity for k, —0 is canceled if the leading term in
D, = — 1. Thuslet

D =—-1+D*, (23a)

where the coefficient D * may depend on &, in any manner

that satisfies the condition
J

2

2 Bow

.
lim D =4, (23b)

k—0 k2

where 6 is a bounded number. Similarly, the coefficient C| is
restricted to depend on &, in any manner that is not singular
as k. —0.

The second-order potential is now found from Egs. (14)
and (19) to be

&, = :i(’:) (z + C))exp(2iwt)

z

X [exp( — 2ith) + exp( — 2ithy)]

_ _‘2(1/(_3%. - %) exp(iwt) {exp[ — i(¥, + ¥)]
+(—1+D%exp[ —i(¥y + W)k /k, ]} +cc.,
(24)

where

h=kz+kx, U=kz-kx. (25)
The foregoing expression for @, satisfies the wall conditions,
Eq. (10b). At this juncture, 4, does not satisfy the boundary
condition, Eq. (10c), which specifies that there should be no
second-order contribution to the pressure at z = 0. This con-
dition could be satisfied by appropriate selection of the coef-
ficients C, and D *. However, both of these describe homo-
geneous solutions for @, and they are not singular as k, —0.
Thus they represent effects that are O(€?) at all locations. In
contrast, observable distortion phenomena are associated
with second-order terms that grow with increasing distance.
The bounded O(€?) effects might be significant, in compari-
son to the cumulative growth effects near the excitation, but
both are small in that region. The bounded effects are over-
whelmed by the growth effects with increasing distance.
Therefore, setting

C,=D*=0 (26)
leads to insignificant errors at locations where nonlinear ef-

fects are substantial. The corresponding potential function
obtained from Egs. (8), (11), and (24) is

¢
b= ezo exp(iwt) [exp( — i) +exp( —i¥,)) + € 3572 exp(2iwt) [exp( — 2iv,) + exp( — 2iY,) ]

_é:Lw_(!&__Z_) exp(2iwt) {expl — i(&, + ¥p)] ~ exp[ — iU, + Un)k /K, |} + c.c. + O(€)) .

16\k? k2

(27)

where O(€) refers to terms having that order of magnitude at all locations.

ill. EVALUATION OF THE PRESSURE

Prior formulations of nonlinear propagation using the velocity potential have generated the potential in the form of a
separation of variables solution. Specifically, the expression was a product of functions of each space variable and time. In that
situation, it was necessary to consider individually the state variables of particle velocity and pressure.

The present case is different because the potential is now represented as two planar waves, each of which is described by a

single propagation distance parameter. In general, proper behavior of the expression for pressure in a simple planar wave
ensures comparable results for the other state variables. The pressure is related to the potential function by Eq. (6). Omission
of the quadratic products in that relation ignores terms that are uniformly O(€*), which is comparable to the error in Eq. (27)
for 4. Thus
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pcs b Ot

2
r__ —iﬂ-+0(e2) = —%eicxp(iwt)[exp( — i) + exp( —ity)]) —1_16€Ji3011(<_2 exp(iwt)

2
X [exp( - 2iy,) + exp( — 2i),) ] — %ez(ﬁo:—z — 2) exp(2iwt)

X{exp[ —i(¢, + ¥,)] — exp[ — i(¥, + )k /k, |} + cc. + O(€) .

(28)

The first set of O(€) terms grows with increasing z in all cases, and the second set grows when k,/k is very small. Such
functional behavior is a result of using z and x as position variables, neither of which consistently matches the spatial scaling of
the nonlinear processes. In order to ascertain the correct spatial dependence, a near-identity transformation in the form of a
coordinate straining is employed. A different transformation is introduced for each wave variable ¢, and t,.

The presence of O(€*) terms in Eq. (28) that depend on ¢, + ¥, indicates that the waves interact. Further examination of

the form of Eq. (28) suggests the trial transformations

¥, =a, + €[F,(a,a;) expliot) + F,(a,a,) exp( —iwt)] + - j=12,

(29)

where the complex conjugate term, denoted by an overbar, is introduced in order to ensure that the transformation is real.
Substitution for ¥, and ¥, into Eq. (28), followed by expansion in Taylor series in powers of ¢, yields

P/pocs = — lei expliot) [exp( — ia,) + exp( — iay)] — J€[F, exp(2iwt — ia,) + F, exp( — ia,)

+ F, exp(2iwt — ia,) + F, exp( — ia;)] — K€ Bolk 7k, )z exp(2iwt) [exp( — 2ia,) + exp( — 2ia,)]
— 4 [Bolk?/k}) — 2] exp(2iwt){exp[ —i(a, + a;)] — exp[ —i(a, + @)k 7k, 1} +cc. + O(€) . (30)

The task now is to determine the functions F, and F,
that cancel all O(€*) second harmonic terms which grow
with increasing z. For this, the terms that dependon a, + a,
are apportioned equally between F, and F,. The appropriate
choice is found to be

iBok? . 1/, k%
F, = 'i';:i zexp( —ia;) - T(ﬁoki —2)

X[exp( ia,) exp[ ia (k l) ia k”
—lay) — —lay| = —ia—ty
’ k, k,

. 2 2 (31)
F,= —-li(;(k: Z exp( —iaﬂ—%( ok——Z)

x

X [exp( ia,) exp[ ia (k 1) ia k ”
— ) = T T
k! kl

These straining functions do not cancel all O(€?) terms
in the pressure. The remaining terms, which are created by
the complex conjugates of F, and F,, contain combinations
of the a, and a, variables. Their presence is not a problem,
because they are independent of . Their role is to cancel a
mean value of the pressure that is created by the coordinate
transformation.

It is convenient at this juncture to write the coordinate
transformations and pressure resulting from Eqgs. (28)-
(30) in real functional form. The pressure is governed by

pz =i[sin('wr—a,) + sin(wt — a,) ]
Prs 2
1 k
5057 -2)
x{2cos(a, — a;) — cos[2a, — (k /k,)(a, + a;))
—cos[2a, — (k/k,)(a, +a;) ]}, (32)
where
915 J Acoust. Soc. Am, Vol 80, No 3, September 1886

[
v, =k,z+ k x

=a, + §eBy(k */k, )z sin(wt — a,)
— ie[Bo(k*/k %) — 2] {cos(wt — ay)

— oot —a,— (k/k, — 1)(a, +a;) ]}, (33a)
v, =k,z — k, x
=a, + }eBo(k */k, )z sin(wt — a,)
— le[Bolk?/k2) — 2] {cos(wr — )
—cosf{wt —a, — (k/k, — l)(a, +a,)]}. (33b)

The foregoing relations fully define the pressure. The value
of p at specified x, z, and ¢ may be determined by solving Egs.
(33) simultaneously for the values of @, and a., and then
using those values to compute p. It should be noted that the
terms in Egs. (33) that couple @, and a, do not explicitly
grow with z. However, as k, /k—0, their magnitude in-
creases and their axial wavenumbers approach k for planar
waves. This sets up a beating interaction that has the appear-
ance of growth (see Sec. V).

IV. ASYMPTOTIC TRENDS

Equations (32) and (33) are generally valid, but exami-
nation of the behavior at limiting values of k, /k provides
important insights. For &, /k<1(wL /c,>27), the coordi-
nate transformation may be expanded in a power series in
k, /k. First, apply the identity for the cosine of a sum to the
last term in Eq. (33a).

¥ =a, +l€30£25in(wt-al) '{'5(1801(2 - 2)
2k ky

2
2

XSin[a)l —a, — —;—(-lii - 1)(:1l + a;)]

. [1 k
XSm[?(k' — l)(al +a:)] .
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Since k/k,—~1+ k2/2k?*+ ..., the leading terms in a
Taylor series expansion of Egs. (33) are

¥ ~a, + JeBokz sin(wt — a,)

+ ieBo(a, + ay)sin{wt — a;) . (35a)
When the same operations are performed on Eq. (33b), the
result is

thy~a, + {eBokz sin(wt — a;)

+ lefola, + ay)sin(wt — a;) . (35b)
According to these relations, the values of @, and «, may be
estimated as a; =, + O(ekz). Hence, the factor
€(a, + a,) may bereplaced by € (¢, + ¥,)=2¢k,z, whichis

approximately 2ekz because of the smallness of k, /k. Thus
J

2
) =.§.[sin(wt—a|)+Si"(“”"a2)]+%€J( 0%_2)

Poca

x

the coordinate transformations have the common limiting
form

¥, ~a; + JeBokz[sin(wt — a;) + sin(wt ~ a,)]

=a, + efokz sin(wt -4 ;“2)cos(“' ;az) . (36)

from which it follows that
v, — =2k x~a, —a,,
¥, + ¥, =2k, z~a, + a, + 266.kz

Xsin(a)t— d +az)cos(a' — az) .
2 2

The same analysis is now applied to Eq. (32). Series expan-
sion in powers of k, /k yields

(37)

x{2cos(a, — @) —cos[(a, —a;) — (k1/2k*) (@, + a))] —coe[(a, —a,) ~ (k1/2k%)(a, —a,) ]}

~€ sin(wt-— 4 +a:)cos(a' —az)‘
2 2

The next step is to substitute the first of Egs. (37) into
the foregoing, and to use the resulting expression for p to
eliminate a, + a, between the second of Egs. (37) and Eq.
(38). The pressure expression that is derived in this manner
is

P ~esin(wt~—k,z + Bkz d )cos(k,x) . (39)
Pt P

If k, =0, this expression reduces to the well-known so-
lution for a planar finite amplitude wave at moderate ampli-
tudes.'® For very small k_/k, the signal described by Eq.
(39) is a quasiplanar wave. The distortion is meassured by
the value of Sykzp, the change in the axial phase variable
fromits value wt — k,zin linear theory. The wave is not truly
planar because the amplitude varies with transverse position
as cos(k,x). Comparable phenomena are encountered in
the farfield of cylindrical and spherical waves, whose ampli-
tude is not uniform in the transverse direction.'"'®

Suppose that the limits of Egs. (32) and (33) for small
k,/k had been derived without considering the interaction
terms (those containing both @, and a,). The result would
have been the same, except that £, in such an expicssion
would have been replaced by | 8,. In other words, haif the
nonlinear effect when k, <k is due to interaction between
the oblique waves.

The situation for comparatively low frequencies (ex-
ceeding cutoff) can also be examined asymptotically. Sup-
pose that k, /k = O(1) (recall that k, < k for propagating
modes). In that case the interactive terms in Egs. (32) and
(33) are not asssociated with beating interactions, so they
remain O(€”) at all locations. Such effects may be ignored.
The remaining terms may be written as

P=Pi+Py P/pss =lesin(wt—a,); j=1.2,
(40a)
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(38)

where
U, =a, +Bo(k*/k)z2(p,/pocs) - (40b)

The coordinate straining for each wave p, is reminiscent
of that for a planar wave, with an important exception. The
nonlinear effect is measured by the difference between the
nonlinear and linear spatial phases, @, — ¢,. In an isolated
planar wave, this difference is proportional to the propaga-
tion distance, which would be (k,z + k,x)/k for waves
propagating in the direction of either oblique wave. Instead,
the distance parameter for each wave in Eq. (40b)isz k /k,.
It follows that although Eqgs. (39) specify a superposition of
the oblique waves, the presence of one affects the other by
altering the spatial dependence for the distortion phenome-
na.

Another viewpoint for the low-frequency (long axial
wavelength) case may be obtained from a different resolu-
tion. Define new strained coordinates 7.§ such that

ay=5§+n, ay=£—7. (41)
Return now to Egs. (32) and delete the second O(€) term in
each, because those terms are not growth effects when
k./k = O(1,. The variables a, and a, are removed from the
functional depenuence by forming the sum and difference of
those equations after substitution of Egs. (41). This yields

k.z=¢ + 1eBy(k*/k, )z sin(wt — E)cos(7) ,

k.x =n— €By(k?*/k,)z cos(wt — &)sin(n) .
The corresponding expression for pressure obtained from
Eq. (32) is

p/pucs = €sin(wt — &) cos(n) + O(€) . (43)

(42)

The significance of this representation of the signal be-
comes apparent when the particle velocity is evaluated. For
this, the oblique planar wave decomposition is useful. The
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approximation v = p/pc, is appl’ :able to weakly nonlinear,
as well as linear, planar waves. The propagation directions e,
and €, in Fig. 1 may be used in conjunction with Egs. (32)
and (41) to represent the individual contributions. Thus

v = Jcoele, sin(wt — £ — 1)

+e;sin(wt — &+ 1)) + O(€2). (44a)
The components of particle velocity are, therefore,
v, =V€ = coe(k,/k) sin(wt — &) cos(n), 44b)

v, =Vee, = —coelk, /k) cos(wt — &) sin(7) .

These expressions may be substituted into Egs. (41), with
the result that the new strained coordinates are found to be
governed by

3
k,Z = g"f ‘1430 k z.gi ’
2 Tkl ¢
1, k3 v 43
k,x=mn+ z—=.
K 7601(,1(, S

This form was derived in the earlier analysis that as-
sumed noninteracting modes.'® Constant values of £ and 7
are wave fronts and rays, respectively, for the phase of the
wave in Eq. (43). The velocity components transverse to
theselinesarev, and v, , respectively. Hence, the dependence
of the wave fronts onv,, and of the rays on v, , was ascribed to
self-refraction in the earlier work.

V. EXAMPLE

The trends identified in Sec. IV indicate that, at low
frequencies [k, = O(k)], the distortion process involves
only the harmonics of the fundamental mode for the wave-
guide. In contrast, at high frequencies (&, <k), the tendency
is to form a quasiplanar wave that propagates like the true
planar mode. Identification of these trends leaves the ques-
tions of when the transitions to each situation occur, and
what happens in the intermediate regime?

These matters may be addressed by numerical exam-
ples. Quantitative results, in general, are obtained by solving
the coupled transcendental equations (33) for the strained
coordinates a, and a,, corresponding to specified values of

=

2

x
-~ |

<o
% |
: *\
-2.00 4
0.0 0.5 1.0 1.5 2.0
wt/2"

FIG. 2. Waveform on-axis atz = 3.05 m for 140dB at the origin, L = 0.2 m,
/= 10kHz. — : interacting waves; - - - : noninteractive theory; - - - : quasi-
planar wave.
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FIG. 3. Waveform on-axis at z = 3.05 m for 140dB at the origin, L = 2.0m,
f=10kHz. —: interacting waves; - ~ —: noninteractive theory; - - -: quasi-
planar wave.

x, z, and t. These values then yield the pressure according to
Eq. (32). If desired, a waveform may be generated by incre-
menting wt through an interval 27, and that result may be
Fourier analyzed to determine the frequency response. One
simplification in performing a numerical evaluation is that,
for specified properties of the fluid, the value of p/p,c? ob-
tained from Egs. (32) and (33) depends only on the inde-
pendent variables kx, kz, and wt and on the value of AL
(because k. /k =2m/kL). For the discussion that follows,
the fluid is air (o, = 1.2kg/m>, ¢, = 343 m/s, 8, = 1.2) and
F=10kHz.

A case of comparatively low frequency is illustrated in
Fig. 2, for which L =0.20 m and € = 0.0014166, corre-
sponding to an excitation of 140 dB re: 20 «Pa at the ongin.
For comparison, the noninteractive theory, Egs. (40), and
the quasiplanar limit, Eq. (39), are also shown in Fig. 2. The
unimportance of the mixing between the oblique waves is
apparent, as is the fact that the distortion associated with the
planar theory is stronger.

Altering the frequency for the next example would
change the overall degree of nonlinearity. For example, the
distance for shock formation in the planar wave is

o= 1/(eBok) . (46)

Since the degree to which wave interaction is significant de-
pends (nondimensionaily ) only on the value of kL, the var-

wt/2n

FIG. 4 Waveform on-axis at z = 3.05 mfor 140dB at the onigin, L = 0.5 m.

/= 10kHz. — :interacting waves; - - - : noninteractive theory. - - - : quasi-
pianar wave.
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4.00

2.00

C. 00

pIogcyl/ (X 10%)

-2.00

-4.00¢
0.0

wt/2n

FIG. 5. Waveform at x =0.125 m, z = 3.05 m for 140 dB at the origin,
L =0.5m, f= 10kHz. — : interacting waves; ~ - - : noninteractive theory;
- - - : quasiplanar wave.

ious phenomena shall be explored by changing L. Thus the
next case, illustrated in Fig. 3, is for L = 2 m. with the other
parameters unchanged. The quasiplanar approximation is
now very close to the new theory.

The situation for a transitional case is shown in Fig. 4,
which corresponds to L = 0.5 m. Neither approximation is
accurate here. The difference between the axial-phase speeds
of the planar harmonic created by nonlinearity and the true
planar mode is relatively small. This leads to frequency dis-
persion in combination with the usuval amplitude dispersion
that is associated with a sawtooth waveform. The effect is
asymmetrical between compression and rarefaction; it is re-
markably similar to the nearfield distortion observed for baf-
fled transducers.'®

The relatively drastic transition from one approximate
theory to another, resulting from increasing AL by a factor of
10, has a direct explanation. The frequency dispersion phe-
nomenon is attributable to spatial beating described by the
last terms in the coordinate transformations, Egs. (33). The
trigonometric identity for the difference of cosines applied to
these terms shows that

cos{wt —a,) —cos[wt —a, ~ (k/k, — 1)(a, +a,)]
= —2an{(a, +a,)(k/k, — )] sin[wt + ia, —a,)
—Wa, +a)lk/k)];, ij=12, i=j. (47)

Lt/27

FIG. 6. Waveformatx = 0.1m.z = 3.05 mfor 140dB at theorigin, L =0 $
m, /=10 kHz. — : interacting waves; - - - - noninteractive theory; - - - :
quasiplanar wave.
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FIG. 7. Axial dependence of frequency response along ¢ = U for 140 (% at
theongmn, L =0.5m. /= 10kHz. — interacting waves; - — - poninterac-
tive theory, - - - : quasiplanar wave

The first sinusoidal factor is independent of time; it gov-
erns the wavelength of the beats. When the argument of that
sine term is very small, compared to =, the factor is well
approximately by (a, +a,)(k/k, — 1). Since a, and a,
may be approximated by &,z, small values of the aforemen-
tioned argument correspond to cumulative growth of the
frequency dispersion effect.
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i80 !
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FIG. 8. Axial dependence of frequency response along x = 0 I m for 1404B

attheorgin, L =0.5m, /= [0kHz. — interacting waves; - - - noninter-
active theory; - - - : quasiplanar wave.
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FIG 9 Transverse dependence of frequency response along z = 3.08 m for
140dBat the ongin. L = 0 Sm, /= 10 kHz. — interacung waves; - — -
noninteractive theory. - - - quasiplanar wave.

It follows that the prominence of frequency dispersion is
indicated by /[ 2k, 2(k /k, — 1) ] In contrast, the signifi-
cance of the sawtooth distortion effect is measured by the
rano of the axial distance z to the planar shock distance 0. A
compa:iison of the two nondimensional fz-tors indicates
whether traavency dispersion will be noticeable in the pres-
ence of sawtooth distortion. Thus, define a beating param-
eter B according to

z/o
7/ 2kzthk 7k, — D]
AP RN
= ieﬁl)(k:)z(l—_-*” _,k 3 d )
- (—k /k=)' -
This paramete: 15 5.08, 0.05, and 0.798 for Figs. 24, respec-
tiveiy. Cases where B 1s substantially greater than unity can
be anticipated to be well described by the earher noninterac-
tive theory for duct modes. whereas values that are much less
than unity will closely fit the planar wave approximation.

Another aspect of the distortion process is displayed in
Figs. 5 and 6, which are waveforms at off-axis locations. The
lire x/L =} 15 a node according to linear theory, as well as
the quasiplanar-nonlinear approximation. However, Fig. 5,
which corresponds to such a location, shows that only the
odd harmonics are nulled in the oblique wave theories.
Hence. the fundamental frequency of the signal at the
“nodes” is twice the excitation frequency. Note that both
oblique wave theories indicate that the tendency to form a
sawtc oth profile is still present.

The nuiling of the odd harmonics was explained in the
earlier analysis of the plate problem as being a result of self-
refraction.*® The rays in the noninteractive theory were
shown to be distorted in the direction of the transverse veloc-
ity component. This caused the nodal ray to cross the axial

B =

(48)
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line of zero-linearized pressure twice per axial wavelength
thereby setting up the sc ond harmonic signal. It is appareni
from Fig. 5 that this effect also occurs in the presence of
froquency dispersion resulting from interaction of the
vhiique waves.

A waveform for a general location appears in Fig. 6. The
even harmonics are more prominent than they were in Fig. 4
because the odd harmonics are lessened by the proximity t.
the nodal line. This effect is accompanied by amplitude dis-
persion, as evidenced by the tendency to a sawtooth profile,
and by frequency dispersion, as indicated by the asymmetry
between compression and rarefaciion.

A different perspective is offered by the amplitude and
phase distribution curves in Figs. 7-9. These curves were
obtained by Fourier series decomposition of the computer
waveforms into

p1 =zp,, sinfrw(t ~1,) —y,]:
Pofo n

Y, =0,

(49;
where 1, is the .: rivaltime of the fundamental in the interaci-
ing-oblique wave theory. The amplitudes p, are displaved
for the three nonlinear theories. However, the phase lags y .
are displayed only for the latest theory—they vanish in the
other descriptions in which the waveform distorts symmetn-
cally.

Although only three harm. “aics are displayed in Figs. 7-
9, their trends are also indicati "< of higher harmonics. The
earlier observation of the increased relative contribution of
the even harmonics in the vicinity of the “nodal” linex = £
4 1s evident in Figs. 8 and 9. In addition, Fig. 7 sk »w< tha
the phase of each harmonic tends to lag behind that of 1\
predecessor by a uniform am ount that increases as the signai
propagates. This effect was also predicted for sound
beams,” whose waveform n the nearfield s much like Fig
4.

VI. CONCLUSION

The excitation of the true planar mode. which provides a
mechanism for the interaction of the oblique waves forming
the fundamental symmetnc mode. has been shown to be sig-
nificant for large values of L. In the limit. multidimension-
ality is only manifested as sinusoidal vanation in the trans-
verse direction, much lke the direcuvity factor for
nonuniform spherical waves in the farfield.'”

In the earlier (small kL) theory, the modes are formed
from obliquely propagating waves whose interaction is only
manifested by a change in the distance parameter governing
the distortion. If each wave were truly independent, that
parameter would have been the distance over which the
wave had propagated. Instead. the distortion of the oblique
waves depends on the axial distance. That theory has been
shown here to be valid when the underlying assumption of
distinct phase speeds is valid. In that case, AL is moderately
larger than 2, so that the scales with which the signal vanes
in the transverse and axial directions are comparable. The
transition from small to large kL is predicted by the present
theory to exhibit frequency dispersion that is responsible for
distortion of the wavefor:n that is not symmetrical between
co-apression and rarefaction.
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A planar second harmonic always results from quadrat-
ic nonlinearity acting on a mode at any nonzero-transverse
wavenumber. Hence, the phenomena identified here may be
expected to occur when modes other than (2,0) are excited.
Also, itis reasonable to expect a similar coupling mechanism
to arise between nonplanar moedes in some situations. For
example, suppose two such modes are excited. If they have
disparate phase speeds, they superpose according to the non-
interactive theory.'? If the two modes have identical phase
speeds, they combine to form a nondispersive group, for
which the earlier theory is also valid. In the transitional situ-
ation, the modes interact because their phase speeds are
nearly equal, but the degree of interactior. varies spatially
because the speeds are not identical. The iiteraction in this
case may be expected to lead to frequency dispersion. Ana-
!y iical steps paralleling those employed here should be suit-
able for treating nonplanar mode interactions.
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mately one quarter the Rayleigh length. However, there was significant
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R//k Cylindrical coords (z/k, r/k)

T Time t/w
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co, f(R) exp(it) + C.C.
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Mach number at the projector face
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ANALYTICAL TECHNIQUES
Cylindrical spreading and Kutznetzov equaticn.
Not suitable for near fleld,
Rayleigh integral - Ingenito & Williams (1968},
Rogers (1970). Limited to ka = 100 & near field.

Solution not uniformly accurate as z increases.



- —

King integral: GCinsberg 1984; Miao & Ginsberg 1985.
Asymptotic analysis to identify growth effects.
Cumulative distortion phenomena carried from

projector out to far fleld.

Solution does not agree with measurements near the

projector,

Present method - numerical analysis using King
integral ~ goal is to identify cause of breakdown

in asymptotic analysis.




Nonlinear wave equation for velocity potential.
Perturbation expansion : ¢ = € ¢, *+ € ¢, + -
Hankel transform ==> Helmholtz equation in z, t &

transverse wavenumber n

n V
n
¢, = " exp(it - unz) Je(nR) dn + C.C.
n
‘0
- (n® - 1)1/2 v o= l— i R f(R) Jo(nR) dn
Yp TR ’ n o 2i . ot
0
Propagating spectrum : n < ]
Evanescent spectrum : n > 1




SECOND ORDER SOURCE TERMS

2

] 3
3t [(80'1) [‘a'%‘k] + v¢l'v®l]

Form second order terms from linear King integral.

‘72¢2 - 9-—5;—1 = {Jo(mR) Jo(nR), J,(mR) J,(nR)}
3 0
x explf21it - (um + un)z] dm dn

Form $, as a double integral over m & n.

Linear

combinations of products of Bessel functions.




MATCHED ASYMPTOTIC EXPANSION
Jo'(nR) = = J,(nR) ; J,'(nR) = J,(nR) =~ %ﬁ J, (nR)
Near axis (small nR) ==> drop products containing higher
order functions.
Off axis (large nR) ==> drop 1/nR terms.
Result: Off-axis solution for small nR identically
egquals near-axls solution.

OFF-AXIS EXPANSION DESCRIBES NEAR-AXIS REGION ALSO!




SECOND ORDER SOLUTION
Dual wavenumber spectrum

@

¢, = [A,(z) [J,(mR) Jo(nR) - J,(mR) J,(nR)]
0

+ A,(z) [Jo(mR) Je(nR) + J,(mR) J,(nR) 1}

x expl2it - (py_ + y )z] dm dn
m n
Substicute into wave equation.

Cff-axis ==> ignore 1/nR terms.

==> multiple Hankel transform.




Ordinary differential equations for A, and A,.

General form:
2 2

d®a,/dz" - 2 +u_ ) dA./dz + B8.(m, n) A, = T_.(m, n)
3 (um 11 3 BJ( ) j ; )
Solve for arbitrary m & n.
a) Complementary solution:
_ 0,2 0,2 2 _ _
Aj = aj1e + ajze i o 2(um + un)c + B 0
Find Re o, > (um + un) ==> violates radiation cond.
Set a, = 0

j2




b) Particular solution = Fj/Bj.

¢c) Total solution must satisfy b.c.

3¢,

577 ° 0 at z = 0

This yields aj1.

at z

0

w



Dual

integral transform solution:

z N
b, = jl {F1 Bl [Jo(mR) Jy(nR) - J,(mR) J,(nR))

0
N2 1
I, 5= [do(mR) Jo(nR) + J,(mR) J,(nR)1}
2
x explait - (um *+ u )zl dm dn + C.C.
ar _ _ f _ 2 . - 2 u\\1/2)7l
N,o= 1 exp1[un * W (m~ + 2mn + n ) jz !
DJ = (Un + m)2 - (m = n)z + 4
Vv V'n
T, = - 2i—== (B, = 1 - y y + nm)
J HpHm n"no



EVALUATION OF PRESSURE

Integrate numerically to find second harmonic:

802

P2/pc2 = - g T ==> cancel exp(2it) factor




Singularity at m = n: r1 & D1 + 0.

a) Prior developments evaluated this part (only)
asymptotic integration for large z.

b) Singularity is finite: I‘1/D1 -~ z as m » n.

c) Avoid m = n ==> integrrte over 0 S m, n < o

oy segmenting domain and using interior points

~
s

in a se

-~
a

Y
cr

V5]

Jse series expansions of T, % 31 around @ = n
I

[@%

ocrder to avoid loass of precision,

by




Symmetry of integrand ==> integration domain is:
0 s n << e, 0 sm sn

Three regions: m & n in propagating or evanescent range.
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1.

2.

3.

CONCLUSIONS

Nonsecular second order terms (region away from
singularity at m = n) are significant {n
near field.

Reasonable agreement between numerical integration
and experiment for axial propagation properties
near the transducer, except for
? predicted additional nulls ?

Asymptotic integration describes dominant effect

outward from the farthest anti-node.




4, Transverse pattern agrees with experiment -
a) Numerical integration near the transducer,
b) Asymptotic analysis in transition zone.

5. Numerical integratic:i is VERY INTENSIVE.

T
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P1. Nonsymmetric effect in finite amplitude sound beams radiating from
a baffled circular transducer. H. C. Miao (General Motors Research
Laboratories, Warren, M1 48090-9055) and J. H. Ginsberg (School of
Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
30338)

Prior investigations of nonlinear effects in sound beams have treated
cases where the transducer oscillates axisymmetncally. Here, an analysis
of a situation where the harmonic spatial vibration of the transducer has a
cos 8 dependence on the azimuth angle, as would be the case for a piston
that rocks about its diameter, shall be presented. The method of investiga-
tion parallels that employed earlier {H. C. Miao and J. H. Ginsberg, J.
Acoust. Soc. Am. Suppl. 178,539 (1985) ], which used the King integral
to generate nonlinear source terms. A dual asymptotic description based
on assumptions appropriate to the regions very close to, and far from, the
beam axis is obtained, and then reconciled to obtain a uniformly accurate
description. An intermediate form of the solution featuring coordinate
straining transformations is converted to a Fourier time series. The linear-
1zed signal shows nodal lines in the azimuthal direction that match those
of the transducer vibration, and it shall be shown that the higher harmon-
ics exhibit similar behavior. [ Work supported by ONR, Code 425-UA .}

J. Acoust. Soc. Am. Suppl. 1, Vol. 79, Spring 1986
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LINEAR SOLUTION
Hankel transform
transverse distance R <==> transverse wavenumber n

One dimensional wave equation for axial direction.

n Vv
n
$1in - exp(it “nZ) J,;{(nR) cos 6 dn + C.C,.
n
0
Un = (n2 - 1)1/2 ’ vn = ] R f(R) Jl(nR) dn




NONLINEAR FORMULATION
Nonlinear wave equation - exact - define E.O0.S.
Perturbatlion series for velocity potential
¢=e¢l+€¢z+-.a

Form second order terms from linear term, ¢,:

2 azo )
Ve, - -3t - {J,(nR) J,(nR), 1,'(nR) J,'(nR)}
3t .

1
cos 28

Ce I
x expl2it (u + w )z] { } dm dn




MATCHED ASYMPTOTIC EXPANSION

J,'(AR) = 1= J,(nR) = J,(nR)

Near axis (small nR) ==> J (nR) << J (nR)
v+ v

Off axis (large nR) ==> J,'{(nR) = - J,(nP;

Solve for p(z,R,#,t) in each region, then match.




RAf

OFF AXIS

Dual wavenumber 3spectrum ==> multiple Hankel transform.

i)

¢, = {a,(z) [J,(mR) J,(nR) = J,(mR) J,(nR)]

+ A,(z) [J,(mR) J,(nR) + J,(mR) J,(nR)]}
x expl2it - (um + un)z] cosze dm dn

Substitute into wave equation & ignore 1/nR terms ==>

ordinary differential equations for A, and A,.




NEAR AXIS

Form solution from two parts - R.H.S. + dual transform.

imF Fm
¢, = =TT cos?s J,(mR) J,(nR) expl[2it
n¥m

@®
- z dn
(um + un) ] dm dn + ¥, dm
0

Substitute into wave equation ==> identities yield:

2,
7%y - 25 - g (ar) 4, (nR) expl2it
3t

- 2
(um + un)z] cos?s

P
()

3
m

first integral 1s bounded as z increases.



vy

e e - ————

Introduce nR << 1 ==> Neumann—Lohmel Addition Formula
% [J,(x + y) = J.(x = y)]
= Jy(x) J,(y) = J,(x) Jy(y) = J,;(x) Jy(y) + +»-
Thus

J,{(mR) J,(nR) = [J,{(mR + nR) - J,(mR ~ nR)]

N} —

For large z and small nR:

F,(z) F,(z)
- r 1 2 - \
$2 JJ SR, (z2) J,(mR + nR) F.(z) J, (mR nR} ]
0 oy - . cos 8
x expl2it (um + un)“} i dm dn

Differential equations for Fj(z) by substitution,




vy

ASYMPTOTIC INTEGRATION - LAPLACE
The differential equations for A, &% A, off axis,
or F, & F, near the axis, are similar in form:

a2u/dz?

- 2(um + un) du/dz + Bg(m, n) U = I'(m, n)
Case (a) B # 0 ==> U = I'/B ==> no growth effect.
General situation, except for A, & F, when m = n.

Case (b) B8 + 0 ==> U » 2z r/2(um + un) =2> growth.

Case for A, & F, when m = n <==> eigensolutions.




vy

Expand around singularity: m =n - q , [q] << 1

Expand d.e. in terms of gq.

Find general solution (complemetary & particular)
for q # 0.

Find particular solution when q - 0.

Match #3 & #4 ==> coeffs of complementary solution.

Integrate over m spectrum: § << 1

@ n-¢§ [ ©
J dm = J dm + [ dgq + I dm
o] 0 )

n-4§




(a) First & third integrals give bounded solution.

(b) Portion of second integral away from q = 0 becomes
less important as z increases.

(c¢) Letting 8 » = simplifies 1ntegration & affects

subdominant terms only.

After integratlion, dominant part of ¢ consists of a

single spectrum. For z >> 1 & nR << 1 or nR »>> 1:

¢ = J (¢ &, + e26,) dn
0



EVALUATION OF PRESSURE

p ]
—— - 20 J [eP, + 52P2] dn
2 t
p C 0
OFF AXIS
Here P, ~ cos & and P, -~ cos2e
172
1 2v + 1
J,(nR) ~ (5773) {expli(nR = 2= 7n/U)]
+ exp[-i(nR - 33-; ! )]}
-1/2
Hence P = P{R , Lt - Moz * (nR - 3n/4), cos 9§}
"+" ==> axial & inward cylindrical wave ==> ng)
"-" ==> axial & outward cylindrical wave ==> Péz)




NEAR AXIS
Here P, ~ J,(nR) cos 8 and P, -~ J,(nR)2 cos 28
but
ie -ie

cos 8 = (e + e )/ 2

Hence P = P{J,(nR), exp(it - upz + i8)}

Two waves - both axial, opposing circumferentially.




RENORMALIZATION

In either region:
PEJ)

-_j) grows without bound as z increases.

P

Soluti~sn is not uniformly accurate!

Introduce a change of varlables to correct dependence,

—



OFF AXIS - different variable for 1 and 2 waves.

1
(j) inFn 1 172 _ 3
P = € *E;— >7hR exp[it - CzJ. + (inR - l'HTT)] cos 8
: 1/2
uaZ = ey D(n, z) oo {explit - oy

+ (inR - i%n)] + C.C.} cos o



o e anean e auEREEEEEEEEEAEMEEEEEEE B

NEAR AXIS - different variables for each

circumferential wave,.

(3) inF

n .
P =€ 3= J,(nR) exp(it Ly ¢ ie)

n

w,z = ¢, * E(n, z) J,(nR) {exp(it + ¢

J

+

is) + Cc.c.}




MATCH INNER & OUTER EXPANSIONS
NEAR AXIS:

Combine & simplify using ;1 - << ;1 +

t2 >
T = %(c, + £,) ==> P = P(it - ¢, cos 8)

OFF AXIS: 1/2

When nR >> 1 ==> =——0t exp(inR = i%n)
= J,;(nR) + i J,(nR)
Replace A dependence, then compare Wwith near axis

expressions.

==> define




(a) Dependence of pressure alike in both regions.
(b) The 0O(e) coefficient in coordina*e transformation is

larger by a factor of 2 near the axis.

NOTE:
nR >> 1 a=> iligﬁl 0
nR
J, (nR) 1
== 2.2 1
nR << 1 > =Ee 7 Ja(nR)
1 1
Near axis: Replace J,(nR) by 5 J, (nR) + g_igéﬂﬁ_
!
Off axis: Replace J,(nR) by J,(nR) =« i_iziﬂﬂl




RESULT

Convert to real form for n << 1:

1

> . ann
p/pct= —7——{[cos(t - Xa,) + cos(t ~ ra,)] J,(nR)
0
+ [sin(t - la,) - sin(t la,)] J,(nR)} dn
x c08 6 + linear evanescent term
AZ = aJ ZEnFn(ﬂz/X)1/2 {sin(t - )aj + n/4)

x [J,(nR) + U4 S,(nR)/nR|

x J,(nR}} cos 8

+

COSt{t = aa. + 7w/ 4)

C

DR




Y

COMPUTATIONS
Direct evaluation is very complicated.

Strained coordinate a, and a, are uncoupled:

quasi=-one-dimensional ==> Fourier-Fubini series.
EXAMPLE
Parameters by Gould et al (1965) - was axisymmetric.
2,58 MHz , a = 10.1 mm , 2, = 1475 m/s , ka = 114
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Diffraction and Nonlinear Distortion in Sound Beams

as Interacting Wave Phenomena
+ *
J. H. Ginsberg, H. C. Miao , and M. A. Foda

Acoustics and Dynamics Research Laboratory
School of Mechanical Engineering
Georgia Institute of Technology

Atlanta, Georgia 30332

Discrepancies between expeéiment and the nonlinear King integral [15]
for a finite amplitude sound beam, which are encountered in the inner
portion of the Fresnel region, are addressed by a new integral transform
solution that accounts for all contributions to second harmonic formation in
the nearfield. Although the result agrees well with experiments, it is
limited in its region of validity. A more general solution covering the
entire domain is obtained by the introduction of a coordinate straining
transformation. Crucial to that step is a new decomposition of the
nonlinear, as well as linear, signal at all locations into groups of gquasi-
conical waves that converge and diverge from the axis as they propagate away
from the projector. Nonlinear distortion in the nearfield arises from
interaction of different transverse wavenumber modes in each group, and also
from interaction between the groups. The latter effect ceases to be

significant in the farfield, whereas the self-distortion arising in either

Present address: Power Systems Research Dept., General Motors Research
Laboratories, Warren, Michigan 48090-9057.
»*

Present address: Department of Mechanical and Industrial Engineering, El-
Mansoura University, El-Mansoura, Egypt.




group grows., The earlier nonlinear King integral, which is derived as the
limiting form for long ranges of the present result, is suitable within the
Fresnel zone, provided that the distance i{s substantially larger than the
piston radius. Fourier series analysis of the long range limit leads to a

sequence of King-type integrals for each harmonic.

LIST OF SYMBOLS

A,B modal amplitudes forming the second harmonic

a radius of the projector

aj’bj Fourier coefficients for the long range approximation

co speed of sound according to linear theory

C.C. denotes the complex conjugate of all preceding terms

Dn parametric combination for the Fourier series

Fn Hankel transform of f(R)

f(R) shading function for the projector displacement

Gn Hankel transform of the pressure at the projector

H(z,n) correction function for behavior near the cutoff frequency of a
mode

JQ(X) Bessel function of order %

K dimensional axial wave number for a planar wave, -w/cO

Nj coefficients affecting A and B (J=1,2,3)

n,m transverse wave numbers

PJ amplitude of the j th harmonic according to the long range
approximation

o acoustic pressure

2



pressure of the quasi-conical waves at a specified wave number
(j=1,1I1)

amplitude of Jo(nR) + 1 J1(nR)

nondimensional distance transverse to the beam axis

mean value residuals introduced by the coordinate straining
transformations (j=I,II)

nondimesional time

undetermined fuctions for the coordinate transformations {(j=I,II)
modulus of Fn

normal displacement of the projector face

nondimensional distance along the beam axis

denotes inward and outward propagating groups of quasi-conical
waves, respectively

strained coordinates for the I and II wave groups, respectively
coefficient of nonlinearity in the pressure-density relation
compiex amplitude of the j th harmonic according to the nearfield
theory

phase of JO(nR) + 1 J1(nR)

modal phase lag at harmonic j

acoustic Mach number at the projector

change of variables for transverse wave numbers

~nase variables for group I and group II nonlinear waves

phase of Fn

axilal wave number for the propagating spectrum

complex axial wave number

phase lag of harmonic j according to the long range approsximation

density at ambient conditions

o




characteristic roots for the modal amplitudes

Aj' "BJ

21 second order potential due to field effects

22 second order potential due to nonlinear conditions at the
projector interface
nondimensional velocity potential

3 perturbation potentials (j = 1,2)

I’ wII phase variables for group 1 and group II1 linear waves

frequency (rad/sec) of the projector




INTRODUCTION

The prediction of the signal generated by a transducer in an infinite
baffle is a challenging task in the linear domain. Good approximations are
available for the Fraunhofer (farfield) region, but analytical treatments of
the nearfield, whose outer limit is characterized by the Fresnel theory of
diffraction [ 1], become progressively less accurate with decreasing range.
Comparable predictions for nonlinear effects that arise with increasing
signal levels are inherently more complicated than their linear analogs. A
variety of approaches have been developed, based on restrictions to specific
domains. A theory for second harmonic generation in the Fresnel region was
developed by Ingenito and Willlams [ 2], and extended by Rogers [ 3]. The
technique there was to use the free space Green's function to superpose the
source radiation associated with nonlinearities in the field equations.
Aside from being restricted to the Fresnel domain and high frequencies
(ka>100), the primary limitation of this formulation is that it does not
address higher harmonics and depletion in the fundamental. Consequently, it

does not provide sufficient information to predict waveforms.

A different approach was employed by Lockwood, Muir, and Blackstock
[ 4] to predict farfield distortion. That analysis, which was based on
Lockwood's treatment of spherical waves [ 5], is limited to situations where
the level at the source is not excessively high. Urder such a restriction,
it is reasonable to assume that the signal is undistorted at some transition
distance in the farfield. However, the resulting theory features some
anomolies, such as an apparent dependence of the predicted signal on the

(assumed) transition distance. Also, the absence of nearfield distortion




leads to a waveform whose shape is distorted in the same manner in the
rarefaction and compression phases. Observations of high intensity sound
beams, such as the measurements by Browning and Mellen [ 6], indicate that
the rarefaction phase tends to broaden and decrease in amplitude, while the

compression phase tends to narrow and gain amplitude.

Numerous analyses of finite amplitude effects have been based on a
Burgers-type equation that was derived by Zabolotskaya and Khokhlov [ 7] for
the nondissipative case, then modified by Kuznetsov [ 8] to account for
dissipation. A variety of techniques have been employed to solve this
equation for a CW transducer. A direct numerical simulation using finite
differences has been employed in several studies by Bakvalov and colleagues,
exemplified by References [ 9 & 10]. Recent works by Hamilton, J. N.
Tjétta, S. Tjétta and colleagues [11,12] have developed more efficient
algerithms based on temporal Fourier series whose amplitudes are position
dependent. The resulting differential equations have, for the most part,
been solved numerically, although an analytical quasilinear approximaticn

has also been discussed [13].

Several approximations must be made to derive the aforementioned
modified Burgers' equation. Most significant are the assumption that the
relationchin between particle velocity and pressure is like that for a one-
dimensional wave, and that the transverse variation is intermediate in scale
to the wavelength and the Rayleigh length, It is generally recognized that
the equation is only suitable in the vicinity of the axis of the sound beam,
30 that the governing equation is often referred to as the paraxial

parabolic equation. However, even within that limitation, there is a




troublesome aspect. In the lossless case, the nondimensional equation for
pressure depends only on the ratio of the Rayleigh length to the planar
shock formation distance. In terms of the variables to be employed here,
this ratio reduces to eBO(ka)z, where ¢ is the acoustic Mach number at the
source and BO is the coefficient of nonlinearity for the fluid. 1In order to
obtain the nondimensional form, pressure is scaled by a factor e. Hence,
the implication of this theory is that the (dimensional) pressure field will
merely be changed by a factor if the value of € is increased, while e(ka)2

is held constant. In other words, two transducers whose radii satisfy a /a1

2
= (51/52)1/2 operating at the same frequency are predicted to radiate
signals in proportion to their respective Mach numbers. This clearly cannot
be the case. For example, the number of on-axis nulls predicted by linear
theory (very small values of €) is strongly dependent on the ka value [1].
This implies that the paraxial equation, in addition to being limited to the

vicinity of the axis, should not be employed within the Fresnel diffraction

reglon.

The present analysis is descended from Ginsberg's treatment [14,15] of
a consistent nonlinear wave equation for the velocity potential. He used
the King integral [16] to generate the second corder source terms appearing
in the field equations. The hierarchy of equations were solved by
asymptzotic integration and coordinate straining transformations, based on an
assumption that the only second order effects significant to the distertion
process are those that grow with increasing distance from the transducer.
Such an assumption is fundamental to most analyses of one-dimensional waves.

Ginsterg's nonlinear King integral was analytical, in that it had quadrature




form. However, the complicated nature of the integrands necessitated

numerical evaluations of the pressure.

Discrepancies between Ginsberg's theory and experiments by Could et al
[17] were disclosed by Miao [18]. The measurements were carried out for a
high ka case (ka=114) very close to the transducer. A subsequent analysis
by Foda and Ginsberg [19] suggested the present analysis. It disclosed that
it is not appropriate in the Fresnel region to assume that all distortion is
associated with an effect that grows with increasing distance., In the
present paper we shall develop an analysis that is descriptive of the entire
field. Its predictions for the second harmonic will be seen to be in close
agreement with Gould's measurements. In addition, the investigation will
demonstrate that differences between the behavior in the Fresnel and
Fraunhoffer regions are a consequence of a variety of interacting wave
phenomena that occur everywhere in the acoustic field. An ancillary benefit
of the analysis will be a new interpretation of the King integral for linear
theory. Ginsberg's earlier results will be shown to be the long range (that
is, many wavelengths) limit of the more general theory. The present
viewpoint will lead to a Fourier series decomposition of this long range
form. That representation permits evaluations in the farther portion of the
Fresnel region, and beyond, with the same efficiency as the King integral

for the fundamental in linear theory.

I. BASIC EQUATIONS

The foundation for the formulation is the nonlinear wave equation for

the velocity potential [20], whose nondimensional form is




2 2
2y =290 3 - 1y(2¢ . 3
Ve -T2 m w % D(gg) + Vo-Ts] + 0™ (1)

<

where the nondimensional cylindrical ccordinates z and R represent,
respectively, the axial and transverse distances relative to the center of
the transducer, multiplied by the wavenumber k, and t is dimensional time

multiplied by w.

We desire to address the effect of nonlinearities at the projector-
fluid interface, as well as in the field equations. Let w(®,t) denote the
normal displacement of the projector face. As shown in Figure 1, continuity
of the partic.e velocity at the interface must be imposed at the displaced

location ¢f the grojector in the direction normal to the deformed surface.

(r\f\ Yﬁ - 3 -?-2‘ = y - —1( -al{\ 2
Cy lCos Y == = sin Y =, Weos Y, Y= tan (k=g (2

Z/K=w

We let [(R) be an amplitude shading function, possibly complex. A
general representation of monochromatic oscillation at (dimensional)
frequency w and (small) acoustic Mach number ¢ is

W o= %7 £ ¢y f(R) exp/it) + C.C,

Py

W= - 1’; e f(R) exp(it) *+ C.C. €3

I

Becauce w is O(e), the surface rotation Y may be replaced by its tangent,

For the sam: reason, Taylor series expansion allows the derivatives in Eq.




(3) to be evaluated at the undeformed location of the projector face, z = 0,

according to

2 .
cO (éﬁ + K W 3¢ 3w EEJ - W+ 0(63) (4
9z 3z 9R 3z -0

Earlier investigations expanded ¢ In a straightforward perturbaticn
series. A slight modificaticn of such an expansion leads to a sequence of
€guacions that mcre prominantly displays the role of BO in the formation of

roniinear distertion., Specifically, we let

< -
2% 0o 2, 3, PN
g = gz, v e = (5,7 + 2 ] + C(e”) ¢ 2
‘ 2 ot 2
Tre >orreszonding first and second order pertions of the wave equaticrn (')
are
- a:
™ —- ~ - Y
v a'| Z 3‘. = bona
1 3t
R 2
2 3 28,
- 5 )
T e - . = 0 i ( A
v - ~ ¥ [N ~ . ; ~ o/
Z el L ot et
at
Sunlsfving the Toundary ooindition in Zg. (5) At each perturtation ster leads
Lo
o%
.
€ = = WS ¢ an
3z - .
v =y
Z=0




‘e K — —) ( 7o)

3z at 1

Note that Eqs. (6a) and (7a) are the governing equations for linear

theory, so ¢1 is a bounded function. Consequently, any cumulative growth

effects that appear in Eq. (5) must be asssociated with ¢2. Since the

nonlinearities appear in Eq. (6b) as source terms that are proportional to

BO’

it follows that cumulative growth eflects will be proportional to 8..
J

This feature is well-documented for one-dimensional waves. The generality

of the perturbaticn treatment thus far permits us to extend this conclusion

to any nonlinear acoustic wave, not just the present one, provided that the

accustiz Mach number is a small fraction.

The first order equatisns (fa) and (7a), supplemented by the Sommerfeld

radiaticn

Tre King integral

condition, are the linear equations for an arbitrary bafffled

()|>~

The King integral provides the solution for this signal in a

u

seful for formirg the source terms in Eq. (6b). The Hankel
g

a

mplitude shading function is

~

is an inverse Hankel transform given by

exp(ic - w zY J {nRI dn £oa)
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where

i (- nz)”2 i n <1

u = (10)
(n2 - 1)1/2 ;7 n> 1

Gn = n Fn/un (11)

Note that transverse wave numbers n < 1 corrrespond to modes that are above
the cutoff frequency, and therefore propagate. In contrast, modes for n > 1

are evanescent.

Substitution of Eq. (9) into Egs. (6b) and (7b) leads to an
inhomogenecus differential equation and an inhomogeneous boundary condition.

In accord with standard procedures, we split ¢2 into two parts by defining

9, " <:>21 + ¢>22 (12)
where
. 2 3 30, °
Vo, - = 9, =8 — [—)
21 2 e 0 ot ‘Bt
36
21
— -0 (13)
< 2=0

~
anda
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2

2 3

V¢ - — =0
22 Btz 22
2 2

0% 0 K 3 ¢ k ow 3¢
22 e —pf w5 - — ) (1)

- z=0 9z ot € 9z € 3R 3z

Aside from the different form of the inhomogeneous term in the boundary
condition, Egqs. (14) are essentially the same as Eqs. (6a) and (7a). It

follows that the task of determining ¢ is quite.similar to that required

22
to obtain ¢1. The difficulty in the present case is the more complicated
form of the boundary condition, owing to Eq. (3) for w and Eq. (9) for ¢1.
Furthermore, it can be argued that the precise nature of the function f(R)
is not knewn. For example, the model of a piston transducer considers f({(R)
to be a step function, but high-frequency projectors of large diameter are
usually composed of numerous small piezoelectric elements that do not
respond ldentically, It is inappropriate to attempt to form a precise

solution satisfying an imprecise boundary condition. Accordingly, we shall

set

022 =0 (15)
Another justification for this choice comes from the recognition that

because Eqs. (14) are those for linear radiation, represents an effect

Q22
that is 0(52) at all locaticons, Other effects having this order of
magnitude, which we will evaluate later, will be seen to have negligibdle

importance.
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II. SECOND ORDER NEARFIELD SIGNAL

Qur objective here is to derive an expression for ¢21 and the
corresponding pressure, without regard for breakdown of the perturbation
hierarchy resulting from cumulative growth effects. Such a representation,
which is analogous to the one derived by Ingenito and Williams [2], may be

expected to be suitable in regions reasonably close to the projector. We

begin by substituting Eq. (9) into Eq. (6b), which leads to

2 % =
vV-e - —%.. = i8 [ f G G expl2it - (p_ + pu )z]
21 atz 21 0 o o nm n m
x JO(nR) JO(mR) dm dn + C.C. (16)

Note that we have used the symmetry of the integrand with respect to m and n

to recduce the inner integral to the finite domain 0 £ m £ n.

It does not seem possible to solve Eq. (16) in exact form, because of
the presence of a product of Bessel functions. We therefore shall develop a
matched asysmptotic expansion that compares the form of ®21 in the off-axis
region (large R) to one in the paraxial region (small R)., We begin with the

off-axis analysis, for which the asymptotic representations of the Bessel

furnictions lead to

) J

o(nR) JO(nR) - - (n2 + mZ) JO(nR) JO(nR)

Qa
o)
o
O.‘Q.
o

+ 2nm J1(nR) J1(nR)



—_
(o
[

+ 2 £) g (nR) J (nR) = 2nm J(nR) J (nR)

[o8
o
0
Q.
o)

- (n2

¢ w%) 3, (aR) J.(mR) + OC1/RD)  (17)
Because the source term in Eq. (16) contains only JO(nR) JO(mR), we form the
trial solution using sums and differences of the above products of Bessel

functions. Specifically, we try

@ n
o, = JO fo G G {a(z, n, m)[Jo(nR> Jo(mR) - 4, (nR) J](mR)]

+ B(z, n, m)[JO(nR) Jo(mR) + J, (nR) J1(mR)]} expl2it

- (un + um)z] dm dn + O(1/R2) (18)

where A and B are undetermined functions. Note that these functions are not
considered to depend on R because cumulative growth is generally anticipated
to occur with increasing distance from the boundary. Also, dependence of
these functions on R would conflict with the need to satisfy the boundary

condition (13) for arbitrary values of R.

We find that Eq. (18) satisfies Eq. (16) for all R (assuming R is

large), provided that

2 2
"o oo ' - -
A 2N1A + (N1 N2 YA 180/2 (19a)

2

"o * 2_ -
B 2N1B + (N1 N3 )B 180/2 (19b)
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where a prime denotes differentiation with respect to z, and the
coefficients Nj are functions of n and m, given by

N-un*u.N-[(n+m)2‘“]”2

(20)

We obtain the boundary conditions for A and B by requiring that Eq. (18)

satisfy the boundary condition (13), which leads to

A - N1 A=0, B'- N1 B=0 forz=20 (2m)

In addition to the foregoing, the functions A and B must be chosen such that

@21 does not represent a signal coming from the farfield toward the

projector.

Before we address the solution of Eqs. (19) subject to Egs. (21), we
shall consider the paraxial approximation. We wish to derive a solution for

¢21, valid for small R, that may be compared to the off-axis form in Eq.

(18). The usual power series expansions of Bessel functions for small
argument is unsuitable, since our objective is to identify the functional

form of ¢, Instead, we develop a representation that is derived from the
[

1

Neumann addition theorem [21],

87
P = v mR
JJ(nR + mR) kf-mJj"k<nR) J, (mR)

(@A)




J(nR - mR) = § J

3 L j+k(nR) Jk(mR) (22}

In the region where R is small, J,(nR) decreases very rapidly for increasing

J

J and fixed nR. Furthermore, J_.(nR) = (-'1)‘j Jj(nR). As a result, we find

J

that in the paraxial region,
1 I
Jo(AR) J (mR) = [Jo(nR + mR) + J(nR mR)] + O(R) (23)

We employ Eq. (23) to represent the source term in Eq. (16). A
suitable trial solution for ¢21 in the paraxial region depends on R in the

same manner, Hence, we set

® (n
+ 1
¢21 = [o [o GnGm [C(z, n, m) Jo(nR + mR) + D(z, n, m) JO(nR mR) ;

x expl2it - (un + um)z] dm dn (24)

Substitution of Eq. (24) into the paraxial approximation of Eq. (16), anc
into the boundary condition (13), leads to an important observation -- the
equations governing C and D are identical to Egs. (19) for A and B,
respectively.

Le% us compare the two forms of ¢ Eqs. (18) and (24), under the

21’

~

condition that C = A and D = B, Since the exponential factors in each
equation are the same, the two representations are identical in their
dependence on t and z. For the transverse direction, we note that when nR
and mR are small, the first two terms in a Taylor series expansions of the

coefficient of C in Eq. (24) and of the coefficient of A in Eq. (18) are
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identical. The same statement applies to the coefficients of B and D. 1In
contrast, when nR and mR are large, the asymptotic expansions of these

corresponding coefficients are not alike.

The conclusion that we derive from these considerations is that the
paraxial representation, Eq. (24), in its range of validity gives the same
solution as that which would be obtained if the off-axis solution, Eq. (18),
were applied in the paraxial region. 1In other words, the off-axis form is
actually correct for the entire field. This confirms Ginsberg's hypothesis
(14] that the physical processes causing nonlinear interactions are not
dependent on the transverse position.

Now that we have identified the dependence of ¢ on t and R, we return

21
to the evaluation of the amplitude factors A and B, which are functions of
z. Ginsberg [14] and Miao [18] performed this analysis by using asymptotic
methods to solve the differential equations (19), based on a limitation to
comparitively long ranges (large z). We shall develop a more general

solution here. Adding the complementary and particular solutions of Egs.

(19) leads to

0
A= ——F———— + A exploy,z) + A, explo,,2)
2N - N5
1 2
180
Boe —F———* B, eXp(cB1z) + A2 exp(oazz) (25)
2(N1 - N3 )




where the coefficients oAj and ij are the roc s of the respective

characteristic equations. These values are readily found to be

Al 1 2 A2 1 2

g, * N1 - N3 y Ogy = N, ¥ N3 (26)

We evaluate the constants Aj and B, by satisfying the boundary conditions,

J

Eq. (21), as well as the radiation condition for ¢ The dependence on t

21°
and z appearing in Eq. (18) is A(z) exp(it - N1z) and B(z) exp(it - N1z).

In view of Egs. (25), this means that ¢ contains terms having the

21
appearance of explit - (N1 - cAj) 2] and explit - (N1 - ch) zl. Any term
in which either the real or imaginary part of N1 - cAj or N1 - UBj is

positive will violate the condition that the signal is either an outgoing

wave, or an exponentially decaying wave. Since N, is positive as either a

3

real or imaginary number, we require that

AL =B_ =0 (27a)

The constants A1 and B1 obtained by satisfying Eg. (21) are

A, = - ———, B, = - (27v)

which, when substituted into Egqs. (25) yield

19
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0
A = [N, - N, exp[(N, - N.)z1} (28a)
2 _ 2 2 1 1 2
2(N, N, SN,
o { }

B = N, - N, exp[(N, - N_)z] (28b)

2 (8% - N32)N3 300 v

We form ¢21 by substituting these expressions into Eq. (18). Once @1

and ®21 are known, it is a simple matter to describe the corresponding

pressure signal., The pressure relation obtained from Kelvin's equation

[20), specialized to the case of an O(¢) signal, is

2
P/o0

Q2
(32

Qr
(el
rf—

(Go-Vo - (gz} Te 0(ed) (29)

Recall that we have set ®22 = 0, so °2 = @21. Therefore, the perturbation

expansion, Eg. (5), and some simple manipulations lead to

2 2
T
P72 % T 3 U3t 1352

ERCI PRI 0(ed) (30)

We now recall Eq. (9) for ®, and Eq. (18) for ¢ Their substitution into

21°
the above yields an expression for the pressure in the form of a single
integral for the O(¢) term and two double integrals for the O(ez) terms.

The result may be written as

2 1 1 . . ~
p/poco - [5 FT(z, R) exp(it) + > ‘2(2, R) exp(21t)] + C.C., + FO (31)




where F1 and F2 are the complex amplitudes of the fundamental and second

harmonic, respectively, and T. is the mean value radiation pressure. When

0

Eq. (10) is used to replace Gn' these quantities are given by

nF
l‘1 = € - exp(- unz) Jo(nR) dn (32a)
"n
0
1 2 i annFm
F2 =€ —:;;;— {[81 (A + B) + 3~ “num] JO(nR) Jo(mR)
0“0
- [81 (A -8) + nm] J, (nR) J1(mR)]} expl= (u_
+ um)2] dm dn (32b)
n
nmy _V
- _1 2 nm oo * ,
T 5 € (-1 + “n”m] Jo(nR) J (mR)

*
+ nmJ,nR) J (mR)]} expl- (un + um)z] dm dn + C.C. (32¢)

The fundamental amplitude is the linear King integral, which cannot
been evaluated in closed form. Analytical integration of F2 and rO
therefore does not seem to be feasible. However, it is possible to evaluate

the coefficients by numerical methods. An important aspect of such an

evaluation is the presence of three types of singularities.

In terms of its implications for later developments, the most important
singularity contained in Egqs. (32) occurs in the coefficient A when m = n,
In this situation, N1 and N2 both equal 2un, which causes the denominator in

Eq. (28a) to vanish. A similar sftuation arises for the function B when m =

n = 0, In which case N] and N3 both egual 2i. Neither situation is a




serious complication for a numerical integration, because both A and B have

finite limits as m * n. In the case of A, Taylor series expansion in powers

of N‘ - N2 gives
ig
0 1 _
Ae s Nl gy - Nz
1 272
1 2.2
+ g = N)%2% eene] (33)

The expansicn for B near n = m = 0 13 the same as the foregoing, except tha

N, replaces N As m + n, we find that

3 2°

i3 . is
lim _ o e lim _ o .
o A = — (1 + cuT * ) 10 B = T (1 + 2iz Yy (38)
104
n n=+90

The coefficzients A and B contain additional singularities, associated
with N2 = 0 or N3 = 0., Reference to Fgs. (20) shows that these occur in the

integration domain along m = 2 - nand m = n - 2, respectively. The rcots

and ¢ or 0., and ¢ in Eqs. (26) are equal along the respective

a1 A" B1 B2’
lines. The second homogenecus solution, which is obtained in this case by
multiplying the first solution by 2z, is needed to satisfy the bcundary

concdition. Thus, this is a finite singularity.

The third singularity that occurs in the complex coefficients rj is
asscciated with the axial wave number M Its definition in Eq. (10) shows
that Wy * 0 as n + 1, which leads to a singularity due to the presence c¢f

this parameter i{n the denominators of both of Eqs. (32). The singularity




;nay be removed by a simple change of variables. We write Eqs. (32) in the

generic forms

n

= m dm dn
r. = I l{ A.(n'm,Z'R> — =+ c.C. ] J - 092 (‘35)
J 0’0 4 “m Mn

where the A, are functions that have finite limits as n + 1 andm -+ 1. We

J

replace the wave number: n and m by new variables g and £, such that
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The first integrals for FO and r2 represents the second order effects
associated with interactions between propagating modes. Similarly, thz
third integrals arise from interactions between evanescent modes, while
interaction between propagating and evanescent modes gives rise to the
second integrals, The integration scheme we employed for each of these
double integrals is based on a nine point integration scheme for a square

segment [21], while linear interpolation was effective for the single

integral.

Well-documented experimental data describing nonlinear effects in the
nearfield is quite sparse. Gould et al [17) measured the field generated by

a piston vinrating at 2.58 MHz when c. = 1475 m/s, which corresponds to k =

0

10.99 mm—1. The geometrical radius was 10.1 mm, but subsequent analysis of
the primary frequency field caused Ingenito and Williams [2] to suggest that
a = 10,4 mm is more appropriate. The results were presented in Gould's
paper as selected traces of the amplitudes of the fundamental and second
harmonic, either along or transverse to the axis of the beam. Such traces
were obtained by photographing an oscilloscope screen, so they are difficult
to read accurately. However, traveling microscope readings of the axial
distribution of the second harmonic were reported by Ingenito and Williams

(2], while Rogers [3] gave comparable data for transverse distribution at

selected locations.

Figure 2 compares the measured axial distribution of the second
harmonic with our prediction. The projector in this case was driven at a
source pressure of 5 atmospheres, which corresponds to € = 2.&9(10_u)

2
because the source pressure equals epoco . The sound pressure level at an

ou




axial antinode would have been 237 dB//1uPa if the projector were an ideal
piston and nonlinearity had no effect. The overall agreement between theory
and experiment is quite good. It should be noted that our prediction for
the farthest dip, near the nondimensional distance z = 1400, is somewhat
less deep than that predicted by Ingenito and Williams, while the dip near z
= 600 is comparable to their prediction and the one near z = 800 is
substantially deeper. Our computations indicate that many more such dips
occur with decreasing distance from the projector, but no more occur beyond

the region cescribed by Figure 2.

No physical 2xplanation for such dips has been offered in the past. We
cannot say for certain what the mechenism is, because the second harmonic is
a field effect resulting from a three-iimensional distribution of sources.

A plausible explanation is that the ancinodes of the fundamental field,
which occupy small regions, generate the largest contribution to the
nonlinear sources. It seems logical to consider the peaks and valleys of
the second harmonic axial aistribution to arise from constructive and

destructive interference of the radiation from these local "hotspots".

Figure 3 describes the transverse distribution of the second harmonic
at 50 mm from the projector for the same parameters as Figure 2; the
measurements are taken from Rogers description of the experiment. The
dotted line for the King integral prediction of the fundamental is provided
as a reference. (The dashed curve describing the farfield approximation
concerns with developments.) The agreement between theory and experiment
for the second harmonic amplitude is quite good. The fact that the overall

level of the predicted result is somewhat lower than the measurements might

25




be attributable to the aforementioned uncertainty regarding the appropriate
value of ka. A small change in this quantity can significantly shift the
location of the maxima and minima. Another uncertainty regarding the
comparison between our prediction and the measured data is the possibility
that the projector did not act as a true piston, which is indicated by the
aforementioned correction for the active radius. We also should note that
the wire probe used for the measurements had a diameter of 28.6
nondimensional units., This limits the ability to resolve fine scale
features, due to spatial averaging of the amplitudes. This limitation,
which was noted by Gould et al, is exemplified by the transverse
distribution in Figure 4, where the axial distance z = 589 is selected to
match the axial minimum in Figure 2. As may be seen in this figure, the
probe diameter is comparable to the extent of the depressed region

surrounding the axis.

Although the theoretical development thus far 1is consistent with
experiment, the result is not sufficient. We shall next employ the
description as the foundation for an extension to larger distances from the
projector. In addition to enhancing the domain of validity, the extended

theory will be descriptive of a waveform.

III. RENORMALIZATION ANALYSIS

An important aspect of Figure 2 is the overall rise in the level of the

second harmonic with increasing axial distance. In general, such behavior

26
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arises in nondispersive media because nonlinearity provides a self-
interaction mechanism for the linearized signal. The basic concern when
growth is encountered in a regular perturbation series, such as Eq. (5), is
that the second order term might exceed the estimate of its magnitude. Such
behavior 13 known as nonuniform validity. In this section, we will derive

an expression for the pressure that behaves properly at 21! Jocations.

Fito.v, we 3hall introduce a simplification that results from inspection
of the quantitative results, In all situations of interest, e is extremely
smail, for example, € = 0.0002 for a signal whose maximum on-axis amplitude
is 240 dB//1 uPa. Also, recall that cumulative growth of the O(e2) signal

can only arise in ¢ In the present context, this is manifested by an

21
increase in the magnitude of the functions A and B with increasing z, as
exhibited in Egs. (34). The terms appearing in Egs. (32b and 32c) that do
not depend on A or B arise either from the quadratic term that was inserted
intc the perturbation series, Eq. (5), or from nonlinearities in Kelvin's
equation (29). Both effects remain bcunded for all z. It is reasonable
therefore that any term in either r2 and PO that does not originate from the

second order perturbation ¢ will be smaller than the fundamental signal by

21

a factor e.

Whern we ignore the constant magnitude 0(52) effects, the expression for

pressure obtained from Egs. (31) and (32) under this simplification is

2 1 [
p/pocO -3 € [o Gn exp(it unz) JO(nR) dan
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® n
- 216 J [ GG {aA [J.(nR) J_(mR) - J_(nR) J1(mR)]
0 ‘g M 0 0 1
+ + 1

B [Jy(nR) J (mR) + J. (nR) J,(mR)]]

x exp[2it - (un + um)z] dm dn + C.C. (38)

Note that we have returned to the use of Gn as the transform of the

transducer shading function solely as a convenience.

The first step in correcting the growth of the O(ez) terms is to write
the pressure in the form of waves in the transverse, as well, as axial
direction. Such a representation is suggested by the asymptotic expansions

27 Bessel functions for large arguments [21], which leads to

1/ \ ~
3 (nR) = (1/27mR ) 2 expli(nR - n/%)] + C.C.

T ( -
UO‘nR) JO(mR) Jx(nR) J1(mR)

/
= (1/7%0m82)" 2 explil(n + mR - w2]} + c.cC. (39)
The part listed In each function above, when combined with the exponential
terms already appearing in Eq. (38), represents a wave in the off-axis
regior that seems to propagate in the direction of decreasing R and

increasing z. Similarly, the complex conjugate part corresponds in that

region to waves that propagate in the direction of increasing R and z.

In order to highlight this wave-like feature for an arbitrary

transverse location, we rewrite Jo(nR) identically as

28




! ! .
- = - — . y
Jo(nR) = = [JO(nR) + 1J1(nR)] + C.C. = 3 Q exp(is ) + C.C (40a)
where
- i - 4
Qn cos An JO(nR) , Qn sin An Jl(nR) (40b)
Note that Qn and An are functions of R, as well as n, but such dependence is
not indicated in the notation as a matter of con-enience. Tue second
tunction in Eqs. (39) may also be expressed in terms of Qn and An, according

to

Jo(nR) JO(mR) - J1(nR) J1(mR)

[JO<nR) + 14, (nR)] [Jo<ma) + 1J,(aR)] + C.C.

) —

Q Q exp[i(An + Am)] +C.C. (uoe)

M

When we substitutc Egs. (U40) into Eqs. (38), we decompose the signal into

two parts, such that

2 [”
P/Pgey = I (py + Pyl an (u1)
where
1 n
- — - _u' N
Py m anQn exp(it Wz * iAn) {1 ie fo GQO (A exp(it
- wz 18 ) + B exp(it = uz - 1Am)] dm} + C.C. (42a)
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. n
1 . . ;
- -— - - _u
Pry m eGnQn exp(it Mz lAn) {1 ie Io GQO [A exp(it

= uz - 18 ) ¢ B oexp(it - uz s mm)] dm} + c.c. (42b)

It is important to recognize that no new approxfmrations are contained in the

foregoing expressions; they are identical to Eg. (38).

Wavefronts of constant phase for the I and II waves consist of surfaces

along which the phase functions

“’J(Z' B) =t - (u/Dz 8, J=1,1I (43)
are constant, A few such surfaces for n = 0.10 and n = 0,20 are depicted in
Figure 5. hie wavefronts for the two families of waves seem to be nearly
linear i{n z vs. R in each case, corresponding to nearly conical surfaces.
This property becomes evident when we take the gradient of the phase
functions in order to identify the rays for each wave.

CR aAn

T

VY, = - 44
3 ()

1
2

approximated as nR - n/4 for nR > 5. Hence, the above gradient is nearly

The value of An is approximately =nR for nR < 0.2, while it is well
constant in each region. As evidenced by Figure 5, the gradient changes
slowly in the transition region of intermediate nR. It is interesting to
note that the apex angles of these surfaces increase monotonically with
increasing n, until for n > 1, the wavefronts are parallel to the z axis,

and the waves evanesce {n that direction. It is also worth noting that this

wa_



interpretation of the signal as the superposition of two families of conical

waves is equally valid for the linear King integral.

We have seen that the O(ez) terms in both waves tend to grow at large
distances from the transducer, ultimately leading to nonuniform validity.
Furthermore, the growth in the second harmonic has not yet led to depletion
of the fundamental from its vaiue in linear theory. Both features result
t~om using as the independent variables, position coordinates that do not
correctly match the spatial scale of the nonlinear processes. To a first
order (linear) approximation, the zpproriate nonlinear variables match the
physical coordinates. However, the gradual nature of the nonlinearity
causes the two sets of variables to diverge over many axial wavelengtihs.
This leads to the concept of a coordinate straining transformation. The
process of deriving this transformation from the requirement that the proper

forms not display unbounded growth is renormalization [22].

Let a be a real variable for the I wave that reduces to the axial
distarce z when € » 0, and let Bn be the correspcnding variable for the II
wave, Ecnations (42) indicate that each wave at a specified wave number n
is affected by a spectrum of wavenumbers m < n associated with each wave.
This suggests that the discrepanclies between the lirear and nonlinear
position variables also depend on such a spectrum. Therefore, we seex a

coordinate transformation whose form is

z = a, + € Jo [UI(Z, n, m) Qn exp(it - Mp®o + Am)
+ wI(z, n, m) Qn exp(it - umsm - Am) + C.C.] dm (Us5a)




n )
z = Bn + € J [WII(z, n, m) Qn exp(it - Mp®o * Am)

+ U n, m) Q exp(it - u 8 =~ &)+ c.C.] dm (45b)

11(%

where the Uj and wj are undetermined at this juncture.

The task of identifying the undetermined functions is simplified by the
dependence of the I and II waves at O(e) on a single phase variable.
Consequently, the axial and transverse particle velocity compocnents and the
pressure in each wave are proportional, which means that uniform validity of
the particle velocity will be assured when pI and pII behave properly. We
use Eg. (45a) tc replace z in any term in Eqs. (Y¥42) whose phase is (t -
unz/i + An), while E3. (45b) is used when the phase is (t - unz/i - An).

The result cf expanding the substituted form of P in Taylor series in e is

n

G: PR A - + \" - T - i
€55, EApLit Moy iAn/11 eun [o [JI exp(it Mo + 1Am)

ol
-
]
={—

* *
+ WI exp(it - umem - iAm) + UI exp(- 1t - Mplo ~ iAm)

* * n
- - { - 5 i
+ wI exp(- it updo * .Am)] dm - 4ie JOGQO (A exp(it

< upan + 18) + B oexp(it - u 8 - 1Am)] dm} + c.c. (46)

*
The terms containing UI and wI correspond to second harmonics, whereas UI

*
and wI lead to terms that are independent of time. We select UI and wI to

indlividually cancel the second harmonics in the last integral, which gives

- - (4G . - (nic
UI (4 QO/un) A, wI ( lumom/“n) B (47)
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The Pr s3ignal, which consists of the terms remaining in E£¢. (k2a) when

Egs. (45) apply, is

8]
~

1
Pr = 3§ anQn exp(it Mo, iAn) + C.C. + TI (4

where TI is a mean value correction required to cancel a residual that

arises from the cocrdinate straining.

n

T 152 " G G*“ o} f‘* exnli- { + * Y o+ i (4 A D

= - —_ ) A = . A -
I * n"m~nm * F- o SRS ! n o’
u 0
n
B I )

+ exp(- + + i + 1+ C.C. 4g)
o uoa umem) i (An Am)] dm c.C (L9

The correspending coordinate transformation, E£g. (US5a), becomes
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The same analysis ylelds the rencrmalized version of p... The results
are essentially the same, aside from an interchange of 8_ and a_ and changes
m m

in the signs preceding An and Am.

(51)

eG Q exp(it - uan - iAn) + C.C. + TII

1
y nn

where the mean value correction for this wave is
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u n * % *
T - - 152 e { GG QQ {a exp{- (LB *wua) -1 (a_ -8)]
Py * nmnmn nn mm n m -

*
+ 8 expl- (8 +ua)-i (s * Am)]} dm + C.C. (52)

and the coordinate transformation is

n
z = 8 - l¢ {fo (16 _Q /3 ) (A exp(it - B, * 18)

+ 8 exp(it = ya - iAm)] dm + C.C.}

(B3]
)
—

Evaluation of the pressure requires integration of Egs. (U48) anc 7S13,
«wncse invegrands can only be evaluated when Egs. (50) and (53) have beern
sclve? for the strained coordinates. Since these ccordinate transformaticons
are tremselves integra. transforms, and they are coupled, we are unraware of
ana.ytizal grocedures by which a and Sn may be determined as functicns cf
n. Hence, it does not seem possible to solve analytically for the pressure.
Indeed, the formidable nature of these equations makes even a numerical
evaluaticon of the expressions prohibitive. Nevertheless, if such an
evaluaticon were fcertheoming, the result would be a unifermly valid

description of the signal i{n the entire domain.

IV. LONG RANGE APPROXIMATION

It 18 possible to derive simplified versions of Eqs. (48)-(52), subjeczt
to the restriction that z is large. Such expressions will permit numerical

evaluations of the signal at large distances from the transducer, The first

3y




simplication stems from the earlier observation that in the vicinity of m =
n, the function A grows with increasing z. In contrast, the function B
displays such behavior only around m = n = 0. At sufficiently large z, the

coentribution of B to the integrals becomes negligible.

The different roles of these functions has a physical basis, for which
we refer to Filgure 5. According to the coordinate transformation, A governs
the degree to which a I or II wave at wave number n interacts with a wave of
the care type at wave number m. In the same viewpoint, B describes the
degree to which there is cross—interaction between I and II waves at
artitrary m ancd n., It is logical that waves of the same type, which
proraxate in generally the same sense, interact more strongly than do waves
whos2 gropagation paths intersect obliquely in most of the field.,

Ancther si

1
Py

mplication results from the change of the axial wave number
Moy from {maginary to real with increasing n, correspcnding to the transition
from the propagating to evanescent spectrum at n = 1. Equations (48), (50),
(51, and (53) feature integrals that are either oscillatory or exponential
functions of m, degending on whether m < 1 orm > 1. If z is large (for

examp.ie, distances that are multiples of the piston radius), then the

evarescent spectrun is a negligible effect.,

Let us examine the behavior of A as given ty Eq. (28), based on m < n <
1 with n fixed and z large. Then My and Um are imaginary, as are the
cceffi~ients NJ, which are defined in Eqs. (20). When considered as a

function of m, A has a maximum at the upper limit m = n and it oscillates

with Increasing frequency as m is decreased. These are the conditicns for
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which the integrals may be evaluated asymptotically by a straightforward

modification of Laplace's method [23].

The integrals in the coordinate transformatior_ Eqs. (50) and (53),

may be written as

n
1= f A(n, m) F(n, m) dm (54)
0

We isolate the regicn around the maximum as

A

n—4
I - [ A(n, m) F{n, m) dm + f A(n, n - q) F(n, n - q) dv
‘0 0
rd . n—A
= Fin, n) J Aln, n - q) dg + ‘ A{n, m) F(n, m) dn (55)
0 0

It is important to the development that in the vicinity of m = n, the
function F varies much more slowly than does A. This allowed us to factor F
out of the integral containing m = n. Also, the original function A in this

region has been replaced by A, which denotes an asymptotic approximation of

A for large z and small q = n - m.

When the value of z is increased with A fixed, the first integral in
Eq. (55) eventually dominates the second. In addition, the first integral
will converge to a value that {3 independent of A, provided that A has been

chosen sufficiently large to include the entire contribution of A around its

(W)
[Sa)
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maximum. Letting A -~ « will not significantly alter that value. Hence, we

find that

I=F(n, n) f A(n, n - q) dq + S.D.T. (56)
0

where S.D.T. represents subdominant terms, which become unimportant at large

Z.

The limiting form of A in Eq. (33) is not adequate for A, because an
increasing number of terms is required as the value of z increases. 1In

order to obtain a suitable representaticn we rewrite Eq. (28a) as

8 N, {1 - explN, - N )z]} B
A= . 5 5 - (57)

We may replace the ccefficients NJ, which are defined in Eqs. (20), by their
Taylor series expansions in q = n - m. For this, we let An be the modulus

of the axial wave number parameter, such that

2,172
- n

Ay = owy/t - (1 ) (58)

The expansions of the Nj are then found to be

272 2,3 3
N1/i -t 01 (n - q)7] 26+ nq/xn q /2An + 0(q”)

N,/1 = L6 = (2n - 02172

3

2
- ax e na/a - g 3 0(q>) (59)
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When these expressions are substituted into Eq. (57), we find that the
magnitude of the first term is O(1/q2). In contrast, the second term is
0(1), which means that it is a subdominant effect. Consequently, we have
A BO 2 —2 2 3
A= 372.%q [1 - exp(-iq z/4) )] + s.p.T. (60)
With the aid of this approximation, the integral in Eq. (56) may be

evaluated in closed form, with the result that

8
I = F(n,n) _ (nxnz)1/2 exp(in/4) + S.D.T. (61)

41
This formula may be applied directly to Eqgs. (50) and (53), from which we
cbtain the [{ollowing long range representation of the coordinate

transformations.

1/2 .
xnz - Xnan + eBO{(nFnQn/i)(n z/xn) exp[l(t
- Aa, + )] c.c.}
Az = A8 + eB {(nF Q /1)(nz/x )72 expli(t
n nn 0 nn n
- a8, - a1+ c.c.} (62)
The asymptotic integration formula also yields a simpler representation for
the mean value residuals TI and TII' given in Eqs. (49) and (52). Applying

Eq. (61) yields

_V/2 2. *. 2 1/2
I 11~ ] B0E GnGnQn ("AnZ) (63)
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A subtle feature of the asymptotic integration is associated with the
appearance of An in the denominator of the the coordinate transformations in
Eqs. (62). Any solution technique would encounter difficulty around n = 1,
where An = 0. It also represents an anomoly, in the sense that it indicates
that the strength of the nonlinearity is greatest at n = 1, where the
propagating spectrum disappears. The resolution of this difficulty lies in
the recognition that our asymptotic representation of ; is not valid near n
= 1, because we assumed that xn is not small in order to develop the
expansions in Eqs. (59). We therefore reason that the combination

(ﬂZ/Xq)1/2 is the representation for finite An and large z of a function

H(z, n) that is finite as n » 1, In other words,

rz 1/2
H(z,n) ~ [T—) for large Anz

n
lim L
n-0 Xn H(z,n) = 0 (6d4)

Such reasoning led Ginsberg [14] to use the complementary error function to
represent H. A different form, consisting of powers of Bessel functions,

was employed by Miao [18] because of greater computational ease.

v 2v-1 2 2v-1 2]1/2

H(z,n) = (12/20)' 72 2 (1,0, 2517632 + 5. (227 /0) (65a)

where ¢ and v are empirical parameters, (Miao found ¢ = 1500 and v = 0.75

to give good agreement with earlier measurements.)

A simpler cholce is
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H(z,n) = z [w/(lnz + °,k232)]1/2

(65b)

where ¢' again is a numerical parameter. This function is appealing from a
physical viewpoint. According to Eqs. (62), the differences An(z - nan) and
An(z - Bn) are proportional to H, so the magnitude of H represents the
overall degree to which the nonlinear pressure differs from the prediction
of linear theory. In the case of Eq. (65b), H is proportional to z for A2z

<K o'k2a2, which is the growth characteristic of a planar wave. In

contrast, if z >> o'k2a2, then the nonlinear effect is proportional to 21/2.
Note that z = ka at a single transducer radius from the boundary, while the
Rayieigh distance, nondimensionalized by the scale factor k, is k2a2/2.

Hence, o' provicdes a parameter that may be adjusted to match the transition

from planar to diverging waves, We found o' = 1/2 to glve results that are

consistent with Miao's work, as well as with measurements discussed later.

V. FOURIER SERIES REPRESENTATION

A primary benefit of the present two wave representation at long ranges
i1s that it leads to a Fourier series representation; such a form eliminates
the need to solve coordinate straining transformations. The derivation is
much like the Fubini-Ghiron solution [24] for a planar wave., First, in

order to avold ambiguities, let us convert the transform Fn to polar,

Fo= Vv, exp(18 ) (66)
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If the transducer vibration is such that all points on its surface are in
phase, then the amplitude shading function f(R) and its transform Fn are
real. In that case, en = 0 if Fn > 0 and en = 1 if Fn < 0. It is also
convenient to collect se&eral parameters in a single coefficlent Dn’

according to
Dn - ZsoenVnQnH(z,n) (67)

Next, we define real variahtles £ and n to represent the phase c¢f each
omplex exponential term in the coordinate coordinate transformations, Egs.

(62). Thus,
E =t + 8 - XAa + A - m/4
n n n
n=1t+8 -~ X8 = An + /U (68)

t is useful to redefine the phase variables WI and WII for the linearized

p, and ppp waves to have in a similar form.
4 pY

Y. =t + 8 - Lz + A - 7n/b
I n n n

- - - !
WII t o+ en Anzn An + w/4 (69)

When we substitute Eqs. (66-68) into the coordinate transformations and

convert the results to real form, we obtain

¥, o= & - Dn sin g, ¥, =n- Dn sin n (70)



while Egs. (48) and (51) for the pressures reduce to

2 Wy . i
Pp =5 ¢ —;; Qn [sin & + cos £] + 'I‘I
nv
£ L (71)

Prp =73 € —7; Q [sinn+ cosn]+ T

II

It is possible to develop Fourier series for each of the trigonometric
terms appearing above. Because of the similarity of the expressions for pI
and pII’ W“e shall cocnly describe the analysis for pI. It is not difficult to
demonstrate that sin § and cos § have period 27 when considered as functions
of ¥.. Furtherrore, sin £ is an odd function of that parameter, while cos §

I

is an even function. It follows that the apppropriate Fourier series are

sin £ = le 3, sin(j¥;) , cos g = by * j§1 bj cos(j¥y) (72)
where

2 ki

aj - = Jo sin € sxn(JWI) de (73a)
1 T

bO - Io cos £ dVI (73b)
2 n

bj - Io cos € cos(JWI) d¥, (73c¢)
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We evaluate Eq. (73a) by integrating by parts, and then substituting Eq.

(70) for WI. The trigonometric identity for the product of cosines then

leads to

hid
&4 =0 Io {cos [(j - NE - Dn sin €]

+ cos [(j + 1)g - Dn sin £] dg

7 [0, (D) + 9y, (D]

(743)
The same analysis applied to Eq. (73c¢c) yields
1
- - & -J iD ) i S0 41
b =3 , (30 ) aj+1(JDn,] , J o (Tup)

An integration by parts is net required to evaluate bo in Eq. (73b). Tre
result is

by = -2 D (T¢)

0 2 “n =e

When we use EZqgs. (72) and (73) to form the first of Egs.

(71), we find
that b

0 cancels the mean value residual TI' The remaining terms are

il E L

£ Q = {{J,_,(jD ) +
An n 31 3 Jj=1 n

+ (4.

5o (90 - JJ+1(an)] cos(j¥) ]

=l

Pr = JJ+1(JDn)] sin(JWI)

A comparable series expansion of pII leads to the same result as Eq. (7%5),
except that ¥

11 replaces WI.
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The Fourier series analysis is not in its final form, because we seek a
representation that explicitly displays the time dependence. We therefore
substitute Eqs. (69) for the phase variables into £q. (75) and the
corresponding expression for pII' When we employ identities to manipulate

the sum of sines and cosines, we find that

nV ®
.——n- .1- ~ i 3 -— 3
Py * Py € An Qn J§1 3 VOS(JAn) [JJ-1(JDn) sin(3t SJ,
- ip ) if - .
Jj*1(JDn, cos(it Gj)] (76)

where 6i is a position dependent phase lag given by

(o]
[
Ca.
—~
bl
o)
t
I
[ee]
+
=
-
)
=la
—~
-3
R
-

We now recall £q. (41), subject to the restriction that only the propagating
spectrum, n < 1, need be retained. When we write the result in the form of

amplitude and phase lag for each harmonic, we obtain

> :
p/p.c. = ) P, sin {(jt - v,) (78a)
070 J:1 J J
where
(1 nVn
PJ cos vj - £ Jo 37; Qn COS(JAn) [JJ_1(an) cos dj
- Jj+1(JDn) sin 63] dn
r\ nVn
PJ sin vj = € JO ET; Qn cos(JAn) [Jj-1(JDn) sin GJ

Lba




+ Jj+1(JDn) cos Gj] dn (78b)
According to Eq. (78a), the phase lags Vj describe the signal relative

to a pure sine for each harmonic. A more significant parameter is a

relative lag, based on a time scale in which the fundamental looks like a

sine term. We obtain such quantities by shifting the time scale, such that
t' =t -y (79a)

which converts the Fourier series to
/ ,\2 T p : A [ ' 3 3
P/PySy = L P, sin (3% Vil vyt vy T gy (790)

As a closure to the derivation, we note that the linear signal may be
readily recovered f{rom these expressions by taking the limit as € » 0.
Correspondingly setting Dn = 0 leaves only the fundamental harmonic, since
only the zero order Bessel function 1s nonzero when its argument vanishes.
The result obtained in this manner is merely the linear King integral for
the pressure expressed in terms of amplitude and phase lag. Cf course, the
present result is simplified by limiting the integration to the propagating

spectrum,

A significant aspect of the similarity of Egqs. (78) to the Fubini-
Ghiron solution [26] for a planar wave is recognition of the way in which
shocks form. When the parameter Dn associated with wave number n attains a

critical value, then the corresponding mode hecomes shocked. (In the case

s




of a planar wave, Dn = | for a shock.) Since Dn is a function of position,
as well as n, modes at various wave numbers will not attain the critical
condition simultaneously. This explains why experiments, such as those
performed by Gallego-Juarez and Gaete-Gareton [25] failed to identify a

specific location at which a discontinuity occurs.

We at first endeavored to compare our predictions to Gould's
measurements [17] of transverse distribution of the second harmonic for a 5
atm source level at a range of 175 mm. (The Rayleigh length for the
experiment is 597 mm, so the location is well inside the farfield.)

However, we found that the aforementioned shock formation condition occurred
in a significant segment of the wave number spectrum, which caused our
computations to display several anomolies. We therefore display in Figure 6
the transverse distribution 200 mm from the projector for a source level of
2.5 atm. The agreement between theory and experiment is excellent. No
measurement of the fundamental at this distance appears in Gould's paper,
but the prediction for the fundamental is consistent in shape with the

measurement at 175 mm in the 5 atm case.

For comparison, Figure 6 also shows the prediction for the second
harmonic obtained from the nearfield theory in Section II. The degree to
which the lack of uniform validity in that theory causes over-prediction of
the amplitude is obvious, although the shape of the distribution predicted
by the nearfield theory is consistent with the actual result. In contrast,
the second harmonic distribution obtained from the long range approximation
is erroneous in both shape and magnitude at a location in the very

nearfield. As shown in Figure 3, applying the long range theory close to

u6
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the projector yields a prediction that is a nearfield projection of the

farfield behavior.

For further confirmation of the long range approximation, we compared
its predictions to Moffett's measurements [26] of the fundamental and second
harmeonic on axis. The projector in that experiment vibrated at 450 kHz, and
the dlameter was 102 mm; the corresponding Rayleigh length is 2.59 m.
According to linear theory, the pressure at an axial antinode in this case
would be 213.1 dB//1uPa. The results obtained from the long range
approximation, shown in Figure 7, compare favorably with Moffett's

measurements in the domain of interest.

Waveform measurements are inherently difficult to make. The close
agreement of the long range theory with a measured waveform was reported
earlier [15]. Another example is shown in Figure 8, for a later experiment
by Moffett [27], in which a 508 mm diameter projector was driven at 60 kHz,
with CO = 1473 m/s. The pressure at an axial antinode corresponding to this
waveform is 226.5 dB according to linear theory. Note that both the

measured and predicted waveforms have been shifted in time to begin close to

the origin.

The asymmetrical nature of the distortion of the waveform is intimately
related to the phase shifts that the higher harmonics experience relative to
the fundamental, apparently as the result of diffraction. Figure 9 shows
the relative phase lags vj corresponding to the amplitudes in Figure 7. It
is difficult to discern a pattern in the nearfield, primarily because of

sudden changes in the values resulting from limiting the phase angle to a

u7
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360° range. However, we can see that the phase lags grow in the nearfield
with increasing distance almost in proportion to both range and harmnnic
number. Even more interesting is the indication that the phase angles
eventually become nearly equal at a location close to the farthest antinode
for the fundamental, and then grow outward from that location, tending

toward a constant difference between successive harmoniecs.

VI. DISCUSSION AND CONCLUSIONS

We have developed a comprehensive analytical representation of the
finite amplituce TW signal radiateZ by a baffled projector undergoing
monocromatic excitation., The face velocity at the projector is restricted
to be axisymmetric, but the radial distribution is arbitrary. We obtained
three overlapping descripticns. The nearfield formulation, which is
suitable for distances that are a small fraction of the Rayleigh length, was
obtained by generating a dual Hankel transform that is excited by the linear
King integral. This formulation, whose quantitative results must be
obtained by numerical methods, is limited because {t only describes the
fundamental and second harmonic. Also, it does not treat depletion of the

fundamental signal assoclated with nonlinear generation of higher harmonics.

The second descripticn, which we refer to as the uniformly valid
solution, combines a Hankel integral transforms and coordinate straining
transformations. A decomposition of the King {ntegral into two two

famailies of quasi-conical waves was cruclal to the derivation of this form.

ug
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Although this description is suitable at any location, it is sufficiently
complicated that quantitative evaluations would require new numerical
methods and extraordinary computational expenditures. The third
description, which is the long range asymptotic approximation of the
uniformly valid solution, is the simplest of all to evaluate. It previously
had been called the nonlinear King integral, but that term is equally

applicable to the uniformly valid solution.

Both the nearfield and long range formulations can only be evaluated by
numerical methods. For a fixed location, computational times for the
nearfield formulatlion, which requires a double integration in the transverse
wave number specirum, are much larger than for the long range approximation,
Wwhich involves a single integral. However, the requirements for both
increase with increasing distance from the projector. When either the axial
or transverse distance {s many multiples of a wavelength (z or R >> 2w), the
King integral becomes a rapidly oscillating function of the transverse wave

number. Numerical analysis in such conditions requires a fine

~

a

scretlization of the continuous spectrum. One could employ the long range

[N

version to generate interface conditions that drive the solution for a
finite amplitude spherical wave with directivity [5], but that approach is
suspect when dealing with strong diffractive effects (14]. Alternatively,
the same interface prediction could be used to drive the modified Burgers
equation. The latter is a particularly attractive prospect, since it
provides a method by which shock formation, and other types of dissipation,

may be treated.
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Arbitrary perindic excitation of a baffled piston transducer leads to
harmonic and intermodulation distortion when finite amplitude effects
are considered. An analysis of the radiation signal in such a situation is
initiated by representing the linearized signal as a sum of King integrals
associated with each harmonic in the excitation. A nonuntformly accurate
eapression for the velocity potential is derived using a singular perturba-
tion procedure that identifies the dominant tendency of nonlinearity (o
generate second-order interactions. This form is obtained from an asymp-
totic integration, which leads to spectral decomposition of the signal into
groups of quasi-one-dimensional waves. The renormalization version of
the method of strained coordinates is used to obtain a umformly accurate
expression for the acoustic pressure at all locations preceding the forma-
tion of a shock. [ Work supported by the ONR, Code 1125-UA.]




FINITE AMPLITUDE ACQUSTIC WAVES GENERATED BY A BAFFLED,

MULTIHARMONIC TRANSDUCER
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INTRODUCTION

PROBLEM DEFINITION:

* FINITE AMPLITUDE SOUND BEAM

* AXISYMMETRIC, BAFFLED TRANSDUCER

* MULTIHARMONIC EXCITATION OF TRANSDUCER

SOLUTION FEATURES:

* HARMONIC AND INTERMODULATION DISTORTION
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THEORY

The perturbation series,

= cg + &£ Z’;—C(%z) 7 ¢L] +

is introduced into the nonlinear velocity potential

equation, resulting in:

FIRST ORDER D.E. (LINEAR):

I

Pa §z¢/
b - o
V // é_(l

SECOND ORDER D.E.:

2 51 ¢2 — o é¢’ :
Vﬂ':‘{?*/gos??f_

N -




e ———— —

f ()

m

FIRST ORDER BOUNDARY CONDITION:

ﬂ(K) is an amplitude shading function.

NV

c.C.




FIRST ORDER SOLUTION

SUM OF KING INTEGRALS:

¢/ = -—;il 2\//:(/\) I(w,,z\f)exp[wm(c'f~/4)z)]o/A

]

+ C.C.
i = C(-a)® o< A<
(3 -1)F 3> 1

Vn ()) is a Hankel transform of 7{; (X)




SECOND ORDER SOLUTION

,[J WM(AVE'(z‘>

+ DIF/:(R vaKf)c_/v;/)

INITIAL FORM:

[\/\%

4=

)

o DEPENDS ON o, o+
OIFF
/ ot pm DEPENDS ON o = W

Asymptotic integration for large z leads to

7§l=/£ZZ T (22 & ¢)

=y m=|

U/FF

+ /Az K¢) o2

SOLUTION IS NONUNIFORMLY VALID SINCE

My
pl=

/7
—_ s DIFF
T2 dLam <

[T R



RENORMALIZATION

EXPRESSION FOR ACOUSTIC PRESSURE IS RENORMALIZED

* PRESSURE EXPRESSION IS DECOMPOSED INTO GROUPS OF

QUASI-ONE-DIMENSIONAL WAVES

* EACH GROUP IS RENORMALIZED INDEPENDENTLY BY THE

INTRODUCTION OF STRAINED COORDINATES

RESULT IS A UNIFORMLY ACCURATE PRESSURE EXPRESSION

Yy v,
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<

= —

2

ACOUSTIC PRESSURE

p = (aocf/ L A

:Z:‘ A(WM‘)‘K){coS(o(:) + Cas(/fm— #f) + cas(‘f,;

+ ADDITIONAL TERMS FROM OTHER WAVE GROUPS }

3
!

UNSTRAINED PHASE COORDINATE FOR FIRST GROUP

X

~ %,,,h * 25/5, i/B(W~IU~/ )/K} cos (%/’: +f)

B, = yooe 2e8 Zg(um,uh, ;l,g) cos (=2 )

—————
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TWO HARMONIC EXCITATION

CASE 1 : CIRCULAR PLANE PISTON, KA = 50

= FUNDAMENTAL ONLY, SPL = 206.99 dB

——— e = FUNDAMENTAL SPL = 206.99 dB
2ND HARMONIC SPL = 206.99 dB

RELATIVE PHASE = 0

I = RELATIVE PHASE 90

—_— = RELATIVE PHASE

180

—_—— e — = RELATIVE PHASE

270

T T ———

e B
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PSTON AR=10 KA=230
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3RD HARMONIC PRESSURE  (PA)
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CASE 2 : GAUSSIAN TRANSDUCER, KA = 50

VELOCITY DISTRIBUTION ON BOUNDARY IS GIVEN BY :

f.(R) = exp [ZR-L/(KA)"]

= FUNDAMENTAL ONLY, SPL = 213.01 dB

——————— = FUNDAMENTAL SPL = 213.01 dB

2ND HARMONIC SPL = 213.01 dB

RELIATIVE PHASE = 0
R = RELATIVE PHASE = 90
—_— — = RELATIVE PHASE = 180
_——_——— = RELATIVE PHASE = 270

'y
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CONCLUSIONS

INTERACTION OF THE FUNDAMENTAL AND 2ND HARMONIC SIGNALS
REDUCES THE ENERGY IN THE FUNDAMENTAL SIGNAL IN THE

FARFIELD FOR THE CASES CONSIDERED.

INTERACTION OF THE FUNDAMENTAL AND 2ND HARMONIC SIGNALS
CREATES A 3RD HARMONIC SIGNAL WHICH IS SUBSTANTIALLY
HIGHER THAN THAT GENERATED BY HARMONIC DISTORTION OF

THE FUNDAMENTAL ALONE.




Third-order Effects in the Bopagation
of Finite Amplitude Stress Waves
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§BASIC EQUATIONS:
I. Momentum e guation

LJ:K,K + Fo f‘_‘ = ﬂ ai.,tt.
Lix 8 Lagrangian shess +ensor

XI. Constitutive e‘Buaﬁon

oU
Liv = G350,

-

<,k

U = STrain energy density function

K. Nonlinear geometrical strain-displacement

T = b (Usj+ iy, + U ; U,y )

h‘j'z Green's strain tensor



displacement :

W(a,t €)= EU, +E U + EUy +--

V(at e)=EV,+ €V, + €'Y, +-~

Stress :

N(a)t: €) = 8 N| + Ez N‘ fE’N’f-----

S(a.t,€)=€S,+ES,+ES,+

Strain:

F(0.te)=ET +E T, +EZ, 4

M(a,t,€)= €[+’ M, + €217, +-----




The sStrain energy density IS an
invariant form Junction of the

Green’s Stran Tensor

U=u(1, L.,1', 11, I, —-)

where
I|= YJZL
L= ¥

13 = r;.‘j Y:’:K Y)l!i.
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Solutions :

U. =0 ’

V,=-B,cos [ Ki(a-c.t))]

Uy = A, Sin[2 K,(a-c,t>] ;

Vz=0

VS = B3 ( Kg a)Slr‘. [K; (a-Cst):l‘

+ D (Ks@)sin[3K, (a-cst)]

-/ Ks M, 2
AI- 8 ﬁ (C’a_c;) B’

B = 4B AK M+ B KM,
3
8R C#
2B A KM, + B KM,

D =
24RCS

3 Mo=2+zu+pe¥s

5 M=a+zursp+@sesy




(,3)0+

M?ﬁu -0) *AE] 507 AE +[(3%0-v) A ] s g W v’y 31+

M [(#2-0) He]uwis G + [(#5-0) *>t Juis .aw 5 3L+
(@00 Jus™n'az £ =

( P!loa h{uwofiun Jou V UMLS Jo8Yyg

(,3)o + M?&-S * Nums?..mh.n -tysiz]+ S gd W.w -2
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The method of renormalization

Near idenf('f'g +rans-forma.‘f’ion=

Y= a-¢¢t

=P+ &Y (a, @)

V2 Wi/ be chosen So Hat ro

feca/ar Terms OCCur /)7 7”)76 5/76’4)"

Sstran expansion.
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Untformly valid approximation

2, = Ez{i-B‘zK;f[zK,Az—q':B,zK:]cos(zk,¢)} + 0 ( 54.)

P=2EB,KsSin(k¢)

+< a’xs{ﬁ,sih (K@)+ D, sin (ak,cb)}

+0(€)

where
Vy=a-Ct
= ¢+ E: tl)z (a, ¢)

' [8,-3D, + 6 Dycos (2x¢)
N e \—-—\(\/

P]nase slni-f‘t —j L amplitude

dispersion

=¢+£
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§ Conclusions

d Tmnsmitf a p]ana.r ﬂ\ea.r* waye l‘n‘f'o ‘Hoe

} elastic medium s

— 2™ order dilatational displacement

| —_ 5*d order shear d«'Sp'acemenf',

* In rao.!{f‘g, f}?e 3“’ order nonlinear
effect 1s very small.

* Overall ef{ec‘l‘ of honlinean‘fy :

amplitude dispersion and small pluse
Shift in +he wave form .
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THEORETICAL AND COMPUTATIONAL ASPECTS OF
FINITE AMPLITUDE SOUND BEAMS

Jerry H. Ginsberg

School of Mechanical Engineering
Georgia Institute of Technology
Atlanta, Georgia

ABSTRACT

The diffracted sound field radiating from a harmonically vi-
brating transducer in a baffle is known as a sound beam. In the

case of linear (i.e., infinitesimal) theory, the properties of

such a signal have been evaluated by algorithms derived from a

variety of formulations. A comparable variety of approaches have

been developed to treat the effects of nonlinearity, such as the
generation of higher harmonics, which are encountered in large
amplitude signals. In contrast to the linear case, earlier solu-
tions to the nonlinear problem have been limited to certain re-
gions, such as the near or far field, or the vicinity of the axis
cf the sound beam.

This paper beqins with a survey of the theoretical formula-
ticns and corresponding algorithms that have been used in the past.
The specific approaches consist of a quasi-planar approximation
valid near the transducer face, a nonuniform spherical wave approx-
imaticn approprilate to the far field, and a modified Burgers' egua-

the axi1s and not too close to the transducer. After these methods

a sincgular perturbation solution that seems to be
suitable for most of the domain will be described. A key

are reviewed,

feature
the evclution of the solution starting from

2f the discussion is

3 Hankel transform solution of the linear problem to its present

cirm as a Fourier series in time; the position dependent coeff:i-
i2nts of that serlies are inversions of Hankel transforms. The

the computaticnal algorichms has been altered with the
1ivances 1n the theory.

L. INTRCDUCTION

High-intensity sound beams are generated by a transducer in a
provided that the frequency is sufficiently high that the

X1al wavelength is much less than the radius of the transducer.

o

— e p——— s e i 4 o e ey
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Fig. 1. Measured nonlinear waveform (1].

In conventional one-dimensional waves, nonlinear effects are assc-

cliated with harmonic generation that distorts the waveform,
mately leading to the formation of shocks.
the fundamental frequency,

ulti-
Both effects deplete
leading to decreased intensity at a

specified range. Unlike the one-dimensional case, the signal ra-
diated by a transducer displays diffractive effects, even in the

linear regime. The interplay between diffraction and nonlineari‘y

leads to distortion phenomena that are different in the compres-

sion and rarefaction phases. This phenomenon is depicted in Fig.
1

1, which 1s taken frcm the experiments of Browning and Mellen {(lj.
A wide variety of analytical technigues, both analytical and num-

erical, have been employed in investigations whose goals range

from evaluating second harmonic amplitudes to predicting waveforsms.
The latter 1s far mecre Jdemanding, because it requires accuracy in
the predicticn cof the phase, as well as the amplitude, of the
harmonics.

II. LINEAR MODELS

The low-intensity signal radiated by a harmonically vibrating
c

transcdu

er embedded in an 1afinite planar baffle has received ex-
tensive at

ot

ention. Exact solutions for the signal at an arbitrary

availaplie in guadrature form only, but approximate
formulae are available for some resions, nctably the field far

from the transducer. The analytical difficulties are attributable

to the nifocts of diffraction. When the transducer vibrates as a

plston, the welocity discontinuity at the edge leads to spatial

fluctuat.ons 1n the signal level. At a sufficiently high frequen-

cy., Ka 2", where a 1s the piston radius and k = “/CO 1s the

i o crbrriis, B lns S adbLiAD.

P

BT o e R .

wavenumbé
whose speel
of such a :
the axis
seems to &
the wave =
propagat
An ex
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the peak

et

There a
with 1ncr
aporoxt
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z = ka®
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wavenumber for a (linear) planar wave at frequency w in a medium
whose speed of sound is Cqyr one obtains a sound beam. The strength
of such a signal is essentially confined to a region very close to
the axis of symmetry. Near the transducer, the overall wave motion
seems to be planar, with varying intensity along wavefronts. As
the wave propagates, one encounters a transition to spherical
propagation.

An exact expression is available [2] for the amplitude along
the axis of symmetry of the beam radiated by a piston. If cc, is

0
the peak velocity of the piston, then
Ipl = ZEDchisin[k(sz + aZ - z)/2]| (1)

There are nodes and anti-nodes that become increasingly separated

with increasing distance from the transducer. The last node occurs

approximately at ry = ka2/2v, where a is the piston diameter.

Spherical propagation is well-established at the Rayleigh distance,
2

z = ka“-Z.

The near field fluctuations increase with increasing
values of k, corresponding to decreasing spatial scale. The sig-
nal off-axis shows comparable behavior.

Quadrature solutions for the linearized signal of an arbitrary
axlsymmetric transducer have been derived from two viewpoints. One
may consider the moving face of the transducer to consist of a
distribution of sources, which leads to the Kirchhoff-Helmholtz
integral theorem. The method of images leads to the appropriate
Green's function for a semi-infinite half-space, which is then

scecilalized to the case where sources are distributed along the

f.ane. The result is Xnown as the Rayleigh integral [2].

-
H

ol
x4
ot
"
1

v(i) explitkr - «t)] ds (2)

[
1
La R 1]

©S

where2 ¥ oi1s tne distance from a point Y on the plane to field point

The function vii) represents the normal velocity distribution
cn the planar boundary S.

A less Obwvious treatment, attributable to King (3], regards

ot

2 1nflnite half-space to be a circular waveguide of infinite
iiameter. The eigenvalues cof such a system lie in a continuous
4m, sSc wne mcde superposition corresponds to a Hankel inte-
iral transform. Let* Vn denote the Hankel transform of the trans-
#ufer welocity distribution Vv(R). Then, the pressure is found

fTIm the inverse transform,

v— —y : TR
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® nVv

ffﬂ exp(iwt - u_kz)J,(nkR) dn (3
W n Q

0o J0 n

where (z,R}) are cylindrical coordinates, and K is the nondimen-
sional axial wavenumber,

J(l - n% /2 n<1
u_=

(4
nom? - /e no> 1

The spectrum n > 1l represents evanescent waves, whose contribut:icn
is negligible at a few multiples of the transducer radius.

The King integral is more efficient for numerical evaluation
of the near field, because it is a single integral. However, i%s
integrand oscillates rapidly as a function of n when either z or R
1s large, which raises the number of integration sub-intervals.
Also, the King integral is limited to axisymmetric situations.
The Rayleigh integral has proven to be more amenable to analytica:l
approximations in restricted regions, such as near the axis of the
socund beam, but the King integral representation, which uses separ-

able wave functions, has advantages for estimating nonlinear
effects.

=

I

(=]

. NEAR FIELD PERTURBATION ANALYSIS

The field equations emploved in analyses of finite ampliz:
effects may be formulated in terms of a velocity potential ¢.
Assumlng an lsentroplc process in an inviscid, compressible £lu:id,
spatial and temporal derivatives of Euler's equation, with the

convective nonlinearity retained, yield an exact equaticn for » :n

¢oLn
<

whish ¢ = dp.dc appears explicitly. In a linearized formulaticn,
=nis derivative 1s evaluated at the ambient conditions, so it :s
“he square of the conventional speed of sound. However, a nonlin-
2ar formulation requlres that ¢ be evaluated at the current pres-
sure. For a first approximation of nonlinear effects it is per-
missible to expand the pressure-density relation in a power series
that 1s accurate to the second order,

2" ' v 2
= 2.C — 2 - 1)1 = P (3)
e 0 OL\: ) v 3y M 0 }

where o' 1s the density perturbation. Substitution of Eg. (5) 1in-
to Kelvin's eguation yields an expression for the pressure as a
function of velocity potential,

whioo

Note
ha

[aRe St

(.II

and




(3)

wy
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2
= -p 20 L) N
P = -pg 22+ 55[[22]" - verve] (6)

which when combined with Euler's egquation leads to

2
2 37¢ - 3 2 ] .
77 - atz = 2(30 1) % Voo + 3t Vo-Vo (7)

Note that the position variables in this nonlinear wave eguation
have been nondimensionalized by the reciprocal of the axial wave
number k, and time has been scaled by the frequency.

The first consistent analysis of nonlinearity in sound beams
was performed by Ingenito and Williams {4]. They simplified Egqg.
(7) by assuming that the one-dimensional relation between pressure

and particle wvelocity holds, p = pcv, . Expansion of the potential
in a perturbation series,

= g@l + ®2¢2 (8)

led at the first order to the equations for the linear problem.
They used the Ravleigh integral for the first order term to gener-
ate a Helmholtz equation for the second harmonic, in which the
gquadratic ncnlinearity appears as inhomogeneous terms representing
a spatial distribution of sources. 1Ingenito and Williams identi-
fied the pecrtion of the second order solution that predominates in
the near field, provided ore is not very close to the transducer
and ka 1s very large. Their solution was obtained by using the
free space Green's function, thereby ignoring the portion of the
Sreen's function reguired to satisfy the boundary condition at z =

2. The solution has the form of a volume integral over the second

-

iL
1]

O

r sources, in which rational approximations were used to sim-

X

£l

¥ the Green's function contribution. Only the second harmonic

3

aiong the axis of symmetry was evaluated, but Rogers (5] made com-
parable approximations to obtain a representation of the signal
sff-axis.

The results of this formulation matched well with measurements

i a domain that is neither very close to the transducer, nor out
~nere the propagation has spherical characteristics. There are

cther limitations to the analysis, in that it describes only very

“13h frequency sound beams, and it ignores the energy depletion in
tne fundamental harmonic that accompanies the formation of higher
~armonics. The latter difficulty appears in a mathematical con-

-2t as a perturbation solution that loses validity at long ranges,
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where the smallness assumption for the perturbation correction is
violated.

IV. SPHERICAL PROPAGATION MODELS

A different approach was taken by Lockwood, Muir, and Black-
wood (6] in order to develop a model that could describe the far
field. They used an earlier solution for nonlinear spherical waves
with directivity, which is dependence of the signal level on the
polar angle. This model is limited by the assumption that the
sransducer drive level is sufficiently low to ignore distortion
out to a radial distance rq in the vicinity of the Rayleigh length.

The signal at that location may then be described by the far field
approximation,

= - o 2 sy 2 -
P = 556 kaD(®) T, sxn(krd ~t) (9)

where D(=) is the directivity factor,

2Jl(ka sin %)
P — G (19
Using the pressure at the transition distance to drive a finite

amplitude spherical wave leads to an algebraic equation for the
pra2ssure beyond the transition,

‘ .
- d r.o. < ) p ]
P = £iyegkab(d) f sinjet - k(r - rg) + :okr!ln o berd an

- ?00-

This expression may be solved numerically by the Newton-Raphson
method for the pressure at any instant and location, A closed
form Fourier series expansion of Eg. (l11) was obtained by exploit-
1ng 1ts similarity to the solution for a planar wave.

The primary difficulty with this formulation 1s the restric-
tion to signal levels that are sufficiently small t> suppress non-
linear distortion in the near field. Many applications require
consideration of substantial near field distortion. A less obvious
limitation of the theory is its prediction that higher harmonics
are 1n-phase with the primary. Thus, the assumption of spherical
propagation leads to a model that cannot reproduce the asymmetri-
cal waveform 1in Fig. 1.

—

L A 1 A A A - —

PRPPSVD- - WUV IR

V. MODIFIT

A pr
paticn for
tion is t*r
leads to
which 1s s
was devel~
and then
must make

ranical e~

:Co’v ’
al

ce ©

Cot -

ders ot v
575

where

L LS an

anitfi-ra

P ot

she ogud

shoull




on 1is

1ok~
AT
1 waves

e

ion
1 2gth.
reld

(9)

~eftri-

. . -2
where 1 = wt - kz, - = z,ro, .

Finite Amplitude Sound Beams

V. MODIFIED BURGERS' EQUATION

A prototypical model combining nonlinear distortion and dissi-
pation for planar waves is Burgers' equation. Part of its attrac-
tion is the availability of the Weiner-Hopf transformation, which
leads to analytical solutions. A comparable model for sound beams,
which is sometimes referred to as the paraxial parabclic equation,
was developed by Zabolotskaya and Khoklov [7] for the ideal case,
and then rederived by Kuznetsov [8] to include dissipation. One
must make several assumptions to obtain it from the basic hydrody-~
namical equations. The planar wave assumption is invoked, p =
Py, but more severe are the assumptions regarding the spatial
scales. Let ¢ <- 1 be the acoustic Mach number at the transducer.
The axial wavelength defines the shortest scale, which is taken as
u(l). The longest scale 1s taken as the distahce at which a planar
wave would shock; that scale 1is O(e-l). Diffraction is then as-
sumed to occur over an intermediate scale, which is considered to
pe 0(5_1/27. The corresponding dependence of the pressure is p =

K 7/
(t - z/co, :1 2z,el’zR,ez). By collecting terms having like or-

ol

ders of magnitude, onre obtains the modified Burgers' equation,
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N is the transverse Laplace operator,

1 1S an absorbtion coefficient, and is the distance at which a

d
uniform planar wave shocks.

Due to the assumption that the only O(l) scale is t - z/co,
e equation is only sultable near the beam axis. Even there, it

m

nzuld not be applied much closer to the transducer than the farth-

in
ot

artinode, because Jdiffraction effects in the true near field

[}

LoTur sver a very small scale. Less apparent is the planar wave
zs3umption, which 1s aisc impocsed cn the boundarv. Conseguently,
Liston fransducer, €or which there is a velocity discontinuity
he edae, 1S replaced by a discontinuous pressure distribution;

iifraectnion from the latvter excltation 1s significantly less than

Loz for oan T Indeed, the fundamental frequency
ctzined freom Dy. (12 does not match that obtained from E3. (1)
Lroowoe llmit oas « 0, except in the far field.
Trne Soviet analyses for a transducer vibrating harmenicaily

Tiioved the finite difference simulation described ky Bakhvalov

-

r
Uoal. (%), The domain for the difference mesh was z - 0,
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0 st - z/c0 s 21, 0 = R(1 + z2/W) = W, where W was selected to By it
make the domain extend beyond the width of the linear beam. Re- physical
sults obtained from this formulation agreed qualitatively with the same
measurements, in the sense that the asymmetrical features of the accurate,
distortion in Fig. 1 were found. However, no evaluations were dependen
performed for the parameters of prior experiments, which led t- tance, I-
conjecture that the finite difference program might suffer from The -~
instabilities. Also, the computational demands required to model sipility
the space-time grid seemed to be exceptional. solution
Another approach to solving Eg. (12) has been developed re- ple, supr
cently by Aanonsen et al. [10]. They exploited the periodicity of siightly
the signal to expand the pressure in a Fourier series whose ampli- the two .
tudes are position dependent. Substituting such an expansion leads ences wWCu
to coupled partial differential equations for the amplitudes, there- grid
by removing time from the equations to be solved. These equations The
could only be solved numerically; an implicit backward difference il T
formula was used for the axial variable. The transverse variable che sec
was modeled by central differences over a closed domain that is spectri
sufficiently large to carry the main features of the linearized terms 13

signal. In comparison to the earlier formulation of Eg. (12}, the
foregoing gained by removing the time grid, at the expense of solv- .
ing coupled partial differential equations. The computer programs
required to evaluate the signal placed severe demands on the avail-
able resources, but numerical instabilities seemed to be less of a
precblem. Results for amplitude levels seem to compare well with

far field measurements, but comparisons of waveforms with experi-

ments were not made.

VI. NONLINEAR KING INTEGRAL

Parallel to the foregoing developments, significant progress ~fea
had been made toward deriving a general appreoach for implementing :
singular perturbation theory in acoustic wave propagation. The
starting point for the approach is similar to Ingenito and Williams,
1n that one must obtain the second order potential corresponding
to the wave equation (7). Because the medium is nondispersive,

q

Aabitl cac tw o

some of the first order harmonics, which form the source terms for

the second order terms, propagate at the phase velocity of second

-

order modes. This produces secular terms in the inhomogeneous

Db

linear wave equation governing $,, much like the situation in a
nonlinear oscillator. As a result some, or all, cf the terms form-
ing b, grow with increasing propagation distance.
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By itself, such growth is not necessarily incorrect, but the
physical variables derived from the perturbation potential show
the same behavior. Such a perturbation solution is not uniformly
accurate, in that the magnitude of the perturbation correction is
dependent on the position. Indeed, at a sufficiently large dis-
tance, it would exceed the magnitude of the first order solution.

The growth effect may be explained if one considers the pos-
sibility that the independent variables chosen to represent the
solution differ slightly from the physical coordinates. For exam-
ple, suppose the wave depended on a spatial grid that was stretched
slightly from the Cartesian coordinate system. At the beginning
the two representations would appear to be alike, but the differ-
ences would grow as the distorted grid diverges from the physical
grid. This concept leads to the method of strained coordinates.

The basic solution for a sound beam was derived by Ginsberg
fl1). The analysis began by using the King integral tc genecrate
the second order source terms, which become integrals over a dual

spectrum of transverse wavenumbers. The general form of these
terms 1is

]2¢ [
2 -T2 ( - .
i, - || T(m,n) expl2iwt - (v_ + u_)z]
2 52 odo noom
J,(u_RY J,(u_R)
« 0T R0y an (13)

Jl(an) Jl(umR)

Asymptotic representations of the Bessel functions lead to expan-
sions of the signal near the axis (R << 1) and far from the axis

(R = 0(1)). The latter was shown by Miao and Ginsberg (12] to

contain the inner solution, so the discussion will focus on the
off-axis region. The smallness of 1/R there leads to a solution
for zz in the form cf two dual Hankel transforms,

wz = . Aj(z) exp[2i.t - (;n : um)z][J0<unR) JO(;mR)

JO(“nR) Jo(umR)] dm dn (14)

wiere the amplitude functions Aj(z) must satisfy the following dif-

ferential equation.

AL 2l L)AL s 3-(m,n)AJ = 7.(m,n) (15)
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3 The complementary solution for Aj contains one part that cor- GCae st
Y responds to waves propagating inward from the far field—these ignore th

must be discarded in order to satisfy the radiation condition.

¥ 1ts evane
J§ The particular solutions for the Aj are independent of z. The substantial
. solution is fully defined when the condition that there be no rnon- T in crce
i linear radiation from the boundary is satisfied. wave nume
g This seemingly simple recipe for constructing oz overlooks the integr:
§ the presence of a singularity at m = n, where 51 vanishes. In con- The aljcr
f; trast to the situation where m # n, the particular solution for Al tion rule
- when m = n is proportional to z. As 2z increases (increasing dis- dinate Trat
%f tance from the transducer), the contribution of the region arnund Raphscn 3
¥, m = n grows due to the interaction of a harmonic at a specified ccordina:
; wavenumber with its neighbors. This effect is the same as the tne nuer
z cumulative growth effect encountered in earlier studies of harmon- of point:
3 ic generation. In contrast, harmonics that correspond to substan- cer of U
5 tially different transverse wave numbers cestructively interfere. tance 13
: This process is evaluated mathematically by integrating Eg. (14) at the R
. asymptotically using Laplace's wmethod, which is a straightforward the nond
Jwi extension of the method of stationary ohase. , tions <f ¢
rri The result of this procedure is to reduce b, to a single in- i AR
; tegral. The evaluation of the pressure signal after 9y has been ; oy ocov ol
] evaluated follows comparable steps to those for simple acoustic InteIra. -
4 waves. Expressions for the second order pressure are not uniform- tion o at
\“? ly accurate, due to the growth of s Coordinate straining trans- whith 2
~, formations are needed to regularize the expansion, with the new pnase rol
%1 feature *that the transformation must depend on the transverse wave ately, =
“fj number. The resulting expression was termed the nonlinear King areatls
=}} integral, because 1t differed from the linear analog only by the [ or TCYe -
?{ replacement of the physical coordinates by their corresponding LR
7! strained coordinate. The specific result was Eaypmad o !
F o s B2 :m nVn ( ) ) d 1 1oal c:o;
"}hj P = 224Cy I :;— expliit “nt) Jplnx) dn o+ C.C. {1l6) ‘ n -
3
:451 where C.C. is used to denote the complex conjugate. The variables ' nlfue =
”:ﬁ L and 1 are strainecu coordinates whose values are ovtained by solv- ; e
',; ing the following pair of coupled transcendental equations. that to:
:’ was tnal
z = ¢+ [1meiynViH(zZ,n) explit - L &) + C.C.] Jg(na) (1) i oniv cre
R= x = [i7s2)V H(z,n) exp(it - . 1) + C.C.] J,(nx) { This nes
1

where H(z,n) represents a function that approaches (z/ui)l/z for

s large 2z, but is finite for n = 1 (un = 0).

——— ———— ..
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One simplification in evaluating Eg. (16) is the ability to
ignore the nonlinear contribution of the spectrum n > 1, due to
its evanescent nature. Nevertheless, numerical evaluations are
substantially complicated by the need to solve Egs. (17) for a and
¢{ in order to determine the value of the integrand at a specified
wave number. This complication is compounded by the dependence of
the integrand on n, which is highly oscillatory when z is large.
The algorithm that was developed used a Gauss-Chebychev integra-
tion rule to remove the l/un singularity. Evaluation of the coor-
dinate transformation was achieved by using a coupled Newton-
Raphson scheme based on an initial guess that equates the strained
coordinates to their physical counterparts. An empirical rule for

the number of integration points was found to be that the number
of points should exceed the nondimensional distance from the cen-
ter of the transducer. This is guite prohibitive, since the 2is-
tance is guite large for most situations of interest. For example,
at the Rayleigh length marking the onset of spherical propagation,
the ncondimensional value 1is (ka)2/2, where ka > 40 for most situa-
tions of interest.

An important property of the nonlinear signal is its freguen-
oy content. Evaluation of such information for the nonlinear King
ntegral was achieved by computing the signal at a selected loca~

rt

ion at man; equally spaced intervals covering cone period, after
which a discrete Fourler transform disclosed the amplitude and
phase relative to the fundamental of higher harmonics. CUnfortun-
a

tely, the need to evaluate Eg. (16) at a succession of instants

el
'y

eatly multiplied the computational time. CPU times cof 2 minutes
or more were not unusual on a CbC CYBER 785.
Tris situaction greatly improved with a recent derivation per-

irmed py Miao and Ginsberg [12). Rather than straining two phys-

i
[
r

a
O
]
L}

iinates, the analysis decomposed the wave at each wave

Timier nointo two lnteracting one-dimensional waves. The tech-
epr was the same as that by which a nonplanar

Traz o1na rectangular duct may be decomposed 1nto plarnar waves

ay
tnat seounce off the walls. The advantage of this representation

#4435 t“hat each wave 1s a function of only one phase variable, so

iy one strained cocrdinate need be introduced for each wave.
Lis onew regresentation was

-1 nv 2

1/ - oo
3 b —B s inRi ¢+ (nR)“)* 2lcos Ty o+ oces Gyl dn
> 9 n

t
-

J

(18)
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414 J.H Ginsburg

where the phase variable Ej for each wave is a strained coordinate
that is related to the phase wj of the linear signal by a single
transformation equation. These variables depend on R only through
two phase angles 4 and ¢, with the transformation equations having
the form

wj = t - unz = A= Ej - ZeuounH(z,n) cos(Ej t §) (19)

The phase of the individual waves is a periodic function of
only one transformed variable. This is analogous to the situatien
for planar waves. The resemblance suggested a Fourier-Fubini
series expansion for the contribution to the fundamental and high-
er harmonics corresponding to each transverse wave number n, In-
tegrating over the spectrum of wave numbers yielded a temporal
Fourier series for the amplitude and phase of each harmonic, whose
coefficients are King-type integrals. In other words, the new
formulation replaced a single integral, Eg. (16), whose integrand
was known implicitly through a coordinate straining, Eq. (17),
with several integrals whose integrands are known explicitly. The
galin iIn computational efficiency was found to be enormous—in most
cases CPU time was reduced by a factor of 30 or more.

The results of th.s analysis have been found to be very accu-
rate outward from the last antinode. Figure 2 compares a waveform
measured by Moffett (13] with the digitized prediction of the
theory. The propagation curve in Fig. 3, which depicts theoreti-
cal harmonic dependence on-axis, compares the prediction with

measurements made by Moffett (l4] on a prior occasion.

a2l 2
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Fig. 2. Waveform on-axis at 10 meters, ka = 64.3, source level =
2314 48B//1 uPa. , theoretical; -++++ {14].
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mes & The theoretical predictions for this series of experiments

shows an interesting trend in regard to the phase lag of the har-

accu- moni1cs relative to the fundamental. (Phase measurements were not
. eform ‘ made by Moffett.) As shown 1in Fig. 4, each harmonic tends to lag
o 8% relative to the preceding one in the region outward from the
;~‘et;- ; farthest maximum in the fundamental amplitude. In contrast, the
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narmonics are more or less in phase inward from that location.

This seems to be a consequence of the 90° shift that a linear si:z-

nal undergoes in the transition from near field to far field prop-
agation. Ancther significant feature is the rapid change in the
relative phase angles at the farthest null of the fundamental.

This 1s a

consequence of the 180° inversion the fundamental under-

jJces at a null, while the phase of the higher harmonics

"Aull"

chances

smocthly. Ncte that the ternm 1s used loosely to descrine

fundamental, because nonlinear =ffecgt

«he

the deeg d1p in

g

2em
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even though the linear signal vanishes.

Juesticns sti1ll remain. In the region wverwy
2lose wo tne transducer, for example at one zenth the Rayleiah
lenath, the sumulative srowth effects associated with secular:ity
v not oves dominate.  This was disclosed 1n a preliminary arnalys:is
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The overall signal predicted by this combined model is interfaced with
a nonlinear propagation model for spherical waves with directivity.
The transition between the models is performed at the Rayleigh length
for the second harmonic. The results indicate that a modest gain in
the level of the farfield fundamental signal is possible, depending on

the limitations of the transducer.
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FINITE AMPLITUDE PLANAR WAVE
PRE-SHOCK CONDITION

EARNSHAW SOLUTION (1859)
BOUNDARY EXCITATION: v = ec f(t) at x =0
IMPLICIT FUNCTIONAL FORM:

v(x, t) = ec f(t - x/c)

where

v }(7+1)/(7-1)

1
C-co[l+2(7 -1 <y

SMALL SIGNAL APPROXIMATION

e <<l - p= PgCoV = epOCOQf(t - x/c)

1
€ =cy, + B,v where 8, = 5(7 + 1)




ALTERNATIVE IMPLICIT FORM

P = €p,c%f(t - a/cy)

COORDINATE STRAINING TRANSFORMATION

X =a+ e fx £(t - a/cy)

SOLUTION TECHNIQUES

FUNCTIONAL INVERSION - for spatial waveforms:

Fix t. Select a value of p (i.e. f). Solve for x.

Increment p and repeat.

GRAPHICAL METHODS - follow characteristics

NUMERICAL METHODS - Newton-Raphson, etc.

SERIES EXPANSION - for harmonic f(t)

Fray, Ty .




SOLUTION OF FUBINI-GHIRON (1935)

w©
P - ep°c°2nzl pn(a) sin[n(wt - kx)] ; k = w/c,

where ¢ is the distance relative to shock formation,

o = ef kx

QUESTION

IS THERE AN ANALOG TO THE FUBINI-GHIRON SOLUTION FOR

TRANSTENT EXCITATIONS THAT ARE DEFINED IN THE FREQUENCY

DOMAIN?




FOURIER TRANSFORM VERSION OF

SMALL SIGNAL APPROXIMATION

INVERSION TO RECOVER THE INPUT:

f(t) - 5% Jm F(w) exp(-iwt) dw
-0
REPLACE £(t) IN EARNSHAW SOLUTION
P = 520C? Jm F(w) exp[-iw(t - a/c,)] dw
-0

where

X = a + Efﬂox JTmF(w) expf-i(wt - ka)] aw

vy




PHASE VARIABLE REPRESENTATION
REPRESENT F(w) IN POLAR FORM: F = %V(w) exp[if(w)]
DEFINE PHASE VARIABLES:
B@) = ot - x/cy) - B(w) i £(w) = w(t - a/cy) - 6w

COORDINATE TRANSFORMATION:

Ylw) = £(w) = 3= Bokx r V() exp[-i£(2)] dA

2xi

= §(w) = = Bokx E V(A) sin[£(0)] dx

PRESSURE INTEGRAL:

p - §p°c°2 rvm) sin(€(w)] dw
0



BASIC PROPERTIES

*
If 6*(w) corresponds to a specific ¥ (w), then
* *
1) € (w) + 2x corresponds to ¥y (w) + 2x,

* *
2) -£ (w) corresponds to -¥ (w).
FOURIER SERIES

From 1) and 2), sin(§) may be expanded in a sine series.

sin[§(w)] = ¥ a_(w) sin[nyp(w)]
n=1 n

where

"
FCRM 1: a (w) = ? j sin{€(w)] sin(ny(w)] dyv(w)
n " Jy

INTEGRATE BY PARTS & ELIMINATE ¥(w)




1. g

FORM 2: an(w) - % I cos[nf(w)

0

- ok Im V() sin[§(N)] dx] cos{¢(w)] df(w)
0

SPECIAL CASE - MONOCHROMATIC EXCITATION.
V(w) = V, 6(w - Q) ==> FUBINI SOLUTION
ARBITRARY FREQUENCY DISTRIBUTION
Cannot integrate over frequency domain because
relation between £(w) AND £(X) is not known

USE FOURIFR SERIES TO ELIMINATE £é(w) IN FORM 1.
a ) =2 [ o) + S0 T (w)]
n L ¢ w wﬂD n @
0 n=1

X sin[ny(w)] dy(w)

where

G, [¥w)] = IwV<A> a (A) sin[$(})] dx]
0

NOTE: ¢()) = iw(w) + iﬁ(w) -0

PRESSURE

P = Zp,co2 I G_[¥(w)]
n=-1

e~




ITERATIVE NUMERICAL ALGORITHM
1. DISCRETIZE FREQUENCY DOMAIN - INTEGRAL BECOMES A SUM.

2. DISCRETIZE PHASE VARIABLES OVER 0 < ¢ < «

)

Converts ¥(w) to ¢£(w

J

3. INITITIALIZE USING LINEAR THEORY: an(w) - 61n
4. FOR EACH wj:
(A) EVALUATE Gn[wz(wj)] FOR EACH £ AND EACH n BY
NUMERICAL INTEGRATION.
(B) EVALUATE NEW ITERATION FOR an(wj) 8Y NUMERICAL

INTEGRATION OVER DISURETIZED VALUES OF % (w).

5. CHECK FOR CONVERGENCE BY EXAMINING PRESSURES - RETURN
TO STEP 4 TO CONTINUE ITERATION, IF NECESSARY.
R L R S T e PR e e s o
THIS IS AN INEFFICIENT PROCEDURE.

IT IS UNNECESSARY FOR PLANAR WAVES.




GENERALIZATION FOR DISPERSIVE WAVES

FOURIER SPECTRUM OF WAVENUMBERS:

P - §£p0c02 Jm F(k) exp[ik[a(k) -'C(k)t]] dk

' WHFPE a(k) IS A STRAINED COORDINATE THAT VARIES WITH

WAVENUMBER. FOR EXAMPLE,

x =~ a(k) + Eiﬁox Im F(k,A) exp[iA[a(A) - c(A)t]] dA

NOTE: F(k,A) IS A MUTUAL INTERACTION FACTOR BETWEEN

WAVELETS AT THE RESPECTIVE WAVENUMBERS.

o
(&)

At S




RELEVANCE TO SOUND BEAM

LINEAR KING INTEGRAL:
P = €p,c,? Jm G(n) exp[i[k(n)z - wt]] Jo(nR) dn + c.c.
0
QUASI-CONICAL WAVES:

J,(nR) = %—[Jo(nR) + 1 J,(nR)] + c.c.

TWO GROUPS
P - PI+ PII
PI'II- %epoco2 Jm G(n) Q(nR) exp[i[k(n)z
0

+ A(nR) - wt]J dn + c.c.

11
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NONLINEAR ANALOG (GINSBERG, MIAO, & FODA, 1987)

Pl - %Epoco'-’ r G(n) exp[i[k(n)a‘!(n) t A(nR)
< 0

- wt]] dn + c.c.

COUPLED COORDINATE TRANSFORMATION

I th I ]
z=a (n) - € J {A(n,m) exp[i[)(m)a (m) + A(mR) - ch
0 9

+ B(n,m) exp[i[l(m)all(m) - A(mR) - wt]] + c.c.} dm

Similar form for aII(n)

NOTE: A(n,m) governs interaction WITHIN A GROUP

B(n,m) governs interaction BETWEEN CROUPS

12
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1.

CONCLUSIONS

IT IS POSSIBLE TO EVALUATE ARBITRARY PLANAR ACOUSTIC

WAVES ANALOGOUSLY TO THE FUBINI SOLUTION.

FINITE AMPLITUDE RADIATION FROM A PROJECTOR IS AN

INTERACTION PROCESS BETWEEN FINITE AMPLITUDE

DISPERSIVE WAVES OF SIMPLE TYPE.

. THE ANALOGY WITH THE FORM FOR PLANAR WAVES SUGGESTS A

METHOD FOR EVALUATING THE COORDINATE TRANSFORMATIONS

FOR A SOUND BEAM.

13
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NONDIMENSIONAL PERTURBATION WAVE EQUA;TIONS
AND ASSOCIATED BOUNDARY CONDITIONS

9%

2, _ 129791 _

Vi — kP =0

2 262¢2 a¢1 0 1

Vg, — k 572 kz[(ﬁ-l) 5 (V1 Vey))
k‘—‘L(.d/Co

e Zero particle velocity transverse to the walls
e Excitation of the fundamental symmetric(2,0)mode

DS

|
| = —eWjosin(t) cos(2nz)
.o

v=V¢ and € = O(|v]/co)



DECOMPOSITION OF THE LINEAR MODE SOLUTION

INTO A PAIR OF OBLIQUE PLANAR WAVES

Wi

b1 = — 5 cos(A122 — t) cos(27x) + (b1 )exp
12

Ao = [kz — (2#)2]1/2 for k> 2n

&, = —Aexplik(—zsinb + zcosf — t/k))
— Aexplik(zsinf + zcos 6 — t/k)] + c.c.

where .
W
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DISTORTION EFFECTS OF PLANAR WAVES REFLECTION
Xy

AR

ISP IYi4 /)t 7811 LLLLL LT LSS s s ,Z
=
Q) 4

. N . g\?
A !
‘4 :

Nonlinear self-action:

(¢2)ine ~ 163 Te/alexpli2k(z; —t/k)]
(¢2)ref ~ |f2 - 7 ar| expli2k(z2 — t/k);
Nonlinear interaction:
NSW ~ z2k cos 6—t/k)
where

zy =zsinf + zcos b, z9 = —xsinf + zcos 6



REFLECTION PROCESS

The wave reflected at B:

brr = —eAe'F-t/k) 4 €2 BS,et?k(s1—t/k 4 oo
The wave reflected at D:

, el 2t/ ke 2 e (2ot R
O = —ede K3tk L 2 BG, o2k (z2t/k)

~ /
\>/ " A4JA—*444A‘.—Z

Q

A/\/<

/""'7 ,4,,'
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/

‘ - B_2tl
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SOLUTION BEFORE RENORMALIZATION |

Sl = Sg = zsecb

o(r.z.t) = ¢rr(x,z.t) + o (z. 2. 1)

bt

=€p1(x.z.t) + €2¢,(r.z.1)
where
: M/V'].Q
Q1 = — cos{A1nz — t)cos(27x)
A12
v =1 WP
G = kA 312 zcos'2(Ajaz — t)] cos(drz)




RENORMALIZATION PROCESS

- 0drr = - Odrv =

v = - e, Uy = - £s
1 2

Near identity transformation

21 :ﬁl—l'_eslzl(ﬁl?t)? z2 =B2 + GSZZZ(/BZ’t)

Uniformly valid approximation

Trr = 2ek Al sin(kB; —t). v = 2ek Al sin(kB, — t)

where
4B )
21 = ﬁl + G'EZS]_ SlIl(k,Bl - t)
4B )
o = ﬁz + GESQ Sln(k,Bg — t)
Paradox:

Individual wave distortion is scaled by travelling distance
along propagation path of each wave(S; or S2). But mode
solution indicates that distortion only depend on axial distance
along the waveguide.

—_———




COMBINATION OF TWO SET OF NORMALIZED
| PLANAR WAVES

(1’11)1 :FII-llsinG, (’UII), Z’U]]-gl C089

(vrv-)e = =T« o sin 6, (v7v-); = G71- + €2 cos 6

vz = (v11)e + (117 )2
= 2ekAsinf[sin(kB; —t) — sin(kB; — t)]

v: = (v11): + (vrv):
= 2ek A cosOsin(kB; — t) + sin(kSB; — t)]



THERE IS NO PARADOX!

Near identity transformation of mode solution

r=oa+eX(a,f(,t), z2=0+¢eZ(a,f,t)

Coordinates transformation

zy =rsinf + zcos 6, Zzp = —zxsinf + zcos 6

-

,81=C!Si1’19+6C059, ﬁzz—asine-l.-ﬁcose

r=(1/2sin6)(z; — z2). z=(1/2cos0)(z1 + z2)

Uniformly valid particle velocity

Wi,

A12
v. = eWiasin(A;23 — t) cos(2ma) + O(€?)

v, = €(2m)

cos(A123 — t)sin(27a) + O(€7)

L v+ 1 k*
r = — 2V,
1672 /\12

1 k*
z_—_—_ﬁ_f_ .2/_+._.___zv_

4 A,




SUMMARY

e Rays behave as simple planar waves undergoing
amplitude distortion

° I_’hases of fundamental and second harmonics de-
pend on distance measured from the origin

e Distortion is proportional to total propagating
distance from source to field point

e Amplitude along the wavefronts is mot constant

but phase is comstant corresponding to each group of
rays

e The ray solution is the same as a modal descrip-

tion of the wave propagation using separation of vari-
ables technique

e The total distortion process is scaled only by the
axial distance along the waveguide

ST
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I. INTRODUCTION

Because of the presence of nonlinearity in the equations of
motion, the propagation of an initially sinusoidal, finite ampli-
tude dilatational wave in a solid is accompanied by the gener-
ation of higher-order harmonics, corresponding to waveform dis-
tortion. Even under the simplification of linear theory, the
reflection of planar stress waves at an interface is more compli-
cated than the reflection of an acoustic wave in a fluid. Multi-
ple stress and displacement conditions must be satisfied at the
reflecting boundaries. Correspondingly, incidence of either
dilatational waves or vertically polarized shear waves will
result in mode conversion between these two types of wave. For
example, P waves incident upon a stress-free boundary will re-
flect as SV waves, as well as P waves. Since such reflections
play an important role in a variety of ultrasonic testing tech-
niques, it is necessary to consider how nonlinearity affects mode
conversion.

The problem of one-dimensional finite-amplitude elastic
waves at normal incidence to a stress-free boundary was studied
by Buck and Thompson! in 1966, based on a one-dimensional equa-
tion of motion for the Lagrangian displacement. Their analysis
indicated that the amplitudes of the higher harmonics in the
reflected wave should decrease due to phase reversal in the
reflection, with the eventual result that they would vanish when
the wave returns to its source. Van Buren and Breazeale®'3
treated the reflection of finite-amplitude ultrasonic waves by
assuming there is no coupling among the harmonics.

Studies of the reflection of obliquely incident finite
amplitude waves have been limited for the most part to acoustic
waves in fluids. The first study of a two-dimensional reflection
problem was performed by Feng¢, who considered finite-amplitude
sound waves upon reflection from a rigid wall at oblique in-
cidence in the special case where the angle of incidence is 45°
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Much later, Qian% extended Feng’'s work to the arbitrary, two-
dimensional reflection problem. He found that nonlinear interac-
tion of the incident and reflected waves produces a new type of
constant magnitude second harmonic wave that propagates parallel
to the surface, which he named the Q-wave.

In this paper, we consider all possible sources of accumula-
tive effects in the propagation and reflection of nonlinear
dilatational waves in an elastic half-space. Evaluation of
nonlinear self-actions and interactions between incident and
reflected waves is the main objective of this paper. 1In addition
to nonlinear accumulative effects associated with self-action of
the P waves, other types of non-growing second order effects are
shown to occur, including the analogy of the Q-wave. ;

II. EQUATIONS OF MOTION I
In the absence of body forces, the Lagrangian equations of
motion for adiabatic dynamic deformation of an elastic solid are® I
pot - polc?2 - c?)u - p.c? u - (2 + u+ g + 2r;)
°7i,te °tp s’ m,mi °“s Ti,mm 4 4
8 3.
X(un,mun,im * ui,mun,nm) Qs A)un,nui,mm + +A"’ I

) + %(a + B)u

x(

T u + 2u u, +u, u u .
n,i n,mm m,n i,mn i,n " n,mm n,n m,mi

1
+ A(ﬁ + Bn)(um,nun,im + un,ium,mn) (1) l

where the summation convention applies. The corresponding
stress-displacement equations are

;s u 5. .
ij m,m ij

+ 8y

4 m,muj,i

+ u(ui .+ u.‘i) + (%u

Jo )
+ g(u

u
m,n m,n

u 4+ u ou 5. 4+ Fnu. u
m,nmn @,nnm ij 4 7 j,mm,i

+ (A + g)u u + (p + %q)(u

< .oou, o+ . :
mm i,j i,mji.m m,im,j

u, u_ )
imm,j
In these equations, ui are the displacement components, A and u

are Lamé coefficients, a, 8, and n are third-order elastic con-
stants, p, is the initial density, and cpand ¢  are the propaga-

tion speeds of dilatational and shear waves, respectively. The
dependent variables are expanded in perturbation series in a
small parameter ¢ that scales the overall stress level.

u, = €u + 0(e3) (3)

: + €?u,
i i1 i,

3 - 2
+ 0(ed), Lij (Lij.l + ¢ Lij.z

2
Substitution of Eqs. (3) into Eqs. (1) and (2), followed by
matching of like powers of ¢, converts the equations of motion
and stress-displacement relations to the following form.
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a2Q, 32 32Q,
ar2 (C; i c;) ax_ax, c; ax_ox_ Ki )
m i m m
aQ Q. &Q
_o 1,1 5
Tyy =2 ax_ 655 * “(axj * 3xi) *+ Gy <)

where Qi represents either first- or second-order displacements

to be determined, Tij stands for either first- or second-order

stresses, x, are the Lagrangian coordinates, and the inhomogen-

eities Ki and Gij are zero for the first order, while the second

order terms are known in terms of the first order results. The
analysis of aspecific system involves the solutioon of the per-
turbation wave equations (4) subject to a set of boundary condit-
jons obtained from an appropriate combination of Egs. (5) and
displacement conditions. '

IIT1. REFLECTION AT A STRESS-FREE BOUNDARY

Consider finite-amplitude plane harmonic P waves propagating
in the half-space z 2 0. We assume a plane strain condition with
the wave normal 2 in the xz-plane. If the wave arrives at the
stress free surface in a weakly distorted manner as a result of
nonlinearity preceding shock formation, its displacement may be
written as

u - €Al exp[ikp(l-r-cpt)] + e’AZI(l-r)expri2kp(l~r-cpt)] (e

where kp is the wavenumber of dilatational waves, and r is the

position vector measured from the source. The amplitude con-
stants are A, for first-order displacement and A, for second-

order displacement, which is determined in terms of A, by obtain-

ing a particular solution of second-order equations of motion.
The second term on the right-hand side of Eq. (6) is an accumula-
tive (growing) wave, which is generated bv the self-action of the
first-order incident wave. Let us consider a specific rayv,
originating from source A at (xA,zA), that is incident at the

origin on the plane stress-frce boundary.

(a) Linear Reflection The linearized reflection problem, which
is governed by the first order version of Eqs. (4) subject to
homogeneous boundary conditions derived from the first order form
of Eqs. (5), can be solved by using the Helmholtz resolution
theorem :to decompose the equations of motion and boundary condi-
tions into a pair of uncoupled problems?. The resulting firsc-
order solutions for stress-free conditions at z = 0 are

Incident P wave: All exp(ikp(x sind - z cosé - cpt + ¥ ] (7.a;

Reflected P wave: Blm exp[ikp(x sind + z cosd - cpt +¥)] (7.
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Reflected SV wave:
. i - }
Cl( jxn)exp[iks(x sing + z cos¢ csc + kpw/ks), (7.¢)

where matching trace velocities leads to Snell’'s law, sind/sing =
ks/kp = v, and the amplitudes of the first-order reflected P and

SV waves satisfy

El . sin2d sin2¢ - 7%cos?2¢ El - -2y sin28 cos2¢ (8)
A1 sin2d sin2¢ + v2cos5224’ A1 sin24 sin2¢ + y2cos?2¢

In the foregoing, ¥ = zAcosﬂ - xAsLnE, ks is the wavenumber of

the SV wave, and m and n are the normals to the wavefronts of the
reflected P and SV waves, respectively.

(b) Reflection of Nonlinearly Generated Harmonics Because
dilatational and shear waves are usually coupled by nonlinear
terms, the Helmholtz resolution technique is not suitable for the
evaluation of reflection coefficients for generated higher-order
harmonics. Therefore, the second-order displacement equations is
split into two parts through the substitution,

2
u, , =y V. (9
i,2 -1 i, 2
which decomposes the governing equations to
. Vo g M.
—_— 2 . 2 —— D —t -
ae? (Cp Cs) dx_8x, Cs 3dx _dx Ki_i’ 2 1.2 ac.a
m 1 o m
avm 2 avi 2 av, P
o T - - - 105
axm Sij + y(ax + 6Ki ) Gij,l on z 0 (10.b

If terms are collected in a judicious manner. one is led to a

representation in which Vi is governed by inhomogeneous equa-

tions of motion (Ki 1 = 0) and homogeneous boundary conditions.

It will display cumulatively growing terms that become signifi-
cant with increasing propagation distance. In contrast, the
inhomogeneous boundary conditions (Cij s ™ 0 onz = 0) will be

satisfied by Vi whose homogeneous equations of motion cannot

lead to secular terms in the second-order solutions. Although
such solutions might represent new types of waves, they will
always have small magnitude. It therefore is permissible to
neglect Via in an <nalysis of the dominant nonlinear effects.

Substituting the solution, Eq. (7,) into Eq. (10.a) leads to
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67vi 1 a2v a2vi 1

R . c2 S TE Y T i i
5;;_4_ (cg cs) axmaxi cs axmaxm (Az)i exp[LZkP(x siné

- z cosf - cpt + ¢¥)] + (52)i
+ ¥)] + (CZ)i exp[ist(x sing + z cosé - cst + kpw/ks)]
+ Dy 21
+ kssin¢)x + (kscos¢ - kpcos&)z - 2wt + 2kp¢])

+ (FZ)i exp(i[(kpsinﬂ + kssiné)x + (kscos¢ + kpcosd)z

- 2wt + ZkPw]) (11)

exp[ika(x sind + z cosé - cpt

exp[ika(x sinéd -cpc +¥)] + (E exp(i[(kpsind

The boundary conditions are

av av av
m, i1 .1, _ - 5
A ax'n sij + p(éT— + 3xi- ) 0 at z 0 (12>

where (AZ)i'(BZ)i'(CZ)i’(DZ)i'(EZ)i' and (F2)i are function of #.

The first two terms on the right-hand side of Eq. (11) are self-
products of first-order incident and reflected P waves, respec-
tively. They are solutions of the homogeneous wave equation, so
they are secular terms that generate cumulative giowth in the
corresponding particular solutinnc. 1n contrast, the third term
in Eq. (1l1), which zarises from nonlinear self-action of the
firsr-sivder reflected SV wave, and the last three terms, which
arise from products of two different first-order waves, are not
solutions of the homogeneous wave equation. Hence, they do not
result in accumulative waves. With these observation, it is
reasonable to assume a trial solution of Eq. (11) subject to
boundary conditions (12) as:

Incident P wave:
Azl(x sinf - z cosd + ) exp[ika(xsinﬁ - z cosf

et t ¥) ] (13.5)
Reflected P wave:

B3m exp[i2kp(x sinfd + z coséd - cpt + ¥)] o+ Bzu(x sind

+ 2z cosd + P) exp[Zikp(x sind + z cosé -Cpt + ¥)] (13 . b»
Reflected SV wave:
) . . R 12
C3( Jxn) exp(12ks(x sing + z cos¢ cst + kpw/ks)] (13.¢
Self-action of first-order SV wave:
C2 exp[ist(x sing + z cos¢é - csc + kpw/ks)] (13.a»
Interaction of first-order incident and reflected P waves:
D, exp[i2k (x sind - ¢ t + (13.e)
; expl - P ¥) ]
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Interaction of first-order incident P and reflected SV waves:
Ezexp(x{(kpsxne + kssxné)x + (kscosé - kpcosﬂ)z
- 2wt + 2kp¢]) (13.£)
Interaction between first-order reflected P and SV waves:
F2explx[(kps1n0 + kSSLn¢)x + (kscos¢ + kpcos&)z
- 2wt + 2kp¢]) (13.g)
The coefficients having subscript 2 are found by forming par-

ticular solutions of Eqs. (12). The coefficients of the cumula-
tive growth terms are

A2 - B2 - 120 + 24y + a + 65 + 24n k2 (14) )
2 2 2
Al Bl 16p0cp P

The other unknown amplitude constants B3 and C3 appearing in the

trial solution (13) are determined by satisfying two stress-free
boundary conditions. These two equations govern mode conversion
among second-order incident P, reflected P and reflected SV
waves. Note that secular terms arise only in the incident and
reflected P waves as a continuing process of nonlinear self-
action of a P waves on itself. No secular SV wave arises, which
means that shearing effects will never deviate much from their
linear representation. Expression (l3.e) is the Q-wave, which
always propagates parallel to the boundary surface.
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I. INTRCDUCTION

Nonlinear effects in acoustic waves result in harmonic
generation and depletion of the fundamental frequency level,
which is manifested in the time domain by waveform distortion
ultimately leading to the formation of shocks. Unlike one-dimen-
sional waves, the signal radiated by a transducer displays dif-
fractive effects, even in the linear regime. The interplay
between diffraction and nonlinearity leads to distortion pheno-
mena that are different in the compression and rarefaction phases
{l]. A wide variety of techniques, both analytical and nureri-
cal, have been brought to bear on this problem.

IT. LINEAR MODELS

Linear theories for the sound beam radiated by a harmoni-
cally vibrating transducer embedded in an infinite planar baffle
are well developed, although exact solutions for the signal at an
arbitrary location are available in quadrature form only. Such
solutions for an arbitrary axisymmetric transducer have been
derived from two viewpoints. One may consider the moving face of
the transducer to consist of a distribution of sources. The
Green’'s function for an infinite half-space is known from the
method of images, from which one obtains the Rayleigh integrai

A less familiar treatment is the King integral {2], which
results when one considers the fluid medium to be a circular
waveguide of infinite diameter. The eigenvalues of such a svstem
lie in a continuous spectrum, so a mode superposition corresponds
to a Hankel integral transform. Let Vn denote the Hankel trans-

form of the transducer velocity distribution v(R). Then, the
pressure is found from the inverse transform,
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nVv
P - WOCE r F“ exp[i(wt - 4 kz)] Jo(nkR) dn (1)
0 n

where (z,R) are cylindrical coordinates, and By {s the nondimen-
sional axial wavenumber, u; =1 - n?2, Numerical evaluation of

the King integral is fairly efficient for the near field. Howe-
ver, its integrand oscillates rapidly as a function of n when
either z or R is large, which requires a corresponding increase
in the required number of integration sub-intervals.

IITI. NEAR FIELD PERTURBATION ANALYSIS

A nonlinear wave equation governing the potential function ¢
associated with an acoustic fluid is

2
4 2 32¢ 3 .3 23 .
A T 505?‘5%’ P =7 Po% 5% e

where terms of O(¢3) have been neglected because of their small
magnitude in acoustic applications. Equations (2) were the basis
of the paper by Ingenito and Williams [3], which was one of the
first consistent analvses of nonlinearity in sound beams. Expan-
sion of the potential in a perturbation series,

é-c¢‘¢c7¢2+--- [

shows the first order equations to be those of the linear prob-
lem, for which the Ravleigh integral was used. This led to a
Helmholtz equation for the second harmonic, in which the quad-
ratic nonlinearity leads to inhomogeneous terms representing a
spatial distribution of sources. An evaluation of the volume
integral describing the combined efi{ect of the second order
source terms was carried out by using asymptotic reperesentations
of several functions. A key feature of that analysis was the
assumption that the signal propagates as a quasi-planar wave.
The analysis is appropriate to a high frequency case, ka > 100,
in a region that is neither very close to the transducer nor in
the far field. Only the second harmonic along the axis of sym-
metry was evaluated, but Rogers [4] made comparable approxima-
tions to obtain a representation of the signal off-axis.

The results of this formulation matched well with measure-
ments in the domain for which it was derived. However, the
solution ignores the energy depletion in the fundamental harmonic
that accompanies the formation of higher harmonies.

IV. SPHERICAL PROPAGATION MODELS
A different approach was taken by Lockwood, Muir, and

Blackstock [5] in order to develop a far field model. It was
assumed that the transducer drive level is sufficiently low to




23.0 Ginsberg: Nonlinear sound beams 189

ignore distortion out to a radial distance Ty in the vicinity o.
the Rayleigh length r, -~ ka?/2. Beyond that distance the sound

beam has the appearance of a spherical wave with directivity.
Matching the farfield solution for a finite amplitude spherical
wave to the directivity properties for a linear sound beam at the
transition distance led to the implicit representation

r
p - zpoczkaD(ﬂ);gsin[ut - kr + Bk, 1n[;—] E p—%;] )
d d o-o
where D(4) is the sound beam directivity from linear theory. A
variety of techniques are available for evaluating Eq. (&4).

The primary difficulty w.th this formulation is the restric-
tion to signal levels that are sufficiently small to suppress
nonlinear distortion in the near field. Many applications re-
quire consideration of substantial near field distortion. A le:s
obvious limitation of the theory is its prediction that higher
harmonics are in-phase with the primary, which means that it
cannot describe asymmetrical distoition of a waveform.

V. MODIFIED BURGERS' EQUATION

In regions not too close to the projector face, the press.r.
amplitude in a sound beam near its axis varies over a longe:
scale in the transverse direction than it does in the axia.
Jirection. In turn, that transverse scale is small comparec
the distance at which nonlinear features become significant
These observations correspond to the depindencv: p = p(t-z ¢

/?R, ¢z), which leaus to a modified Burgers’ equation ‘4

R 2.4 31 vs a 33 o7 /2 &2 2 .
FuC0t | Ygrae T UL T fTegys) P T Lo/
where r = wt - kz, 0 = 2/r,, 7] is the transverse Laplace opers-

tor., a ‘s an absorbtion coefficient, and ld is the distance a-

which a4 planar wave shocks

Since Eq. (5) is a parabolic differential equation. it has
many advantages for numerical treatments. Other than its limita-
tion to the paraxial region, its main restriction is that it is
not valid for very short ranges. Also, cases of CW excitation of
the transducer have thus far only been solved by finite dif-
ference techniques

Soviet analyses for a transducer vibrating harmonically have
emploved a finite difference simulation of the three independen:
variables, r, R, and o, developed by Bakhvalov et al [7!. Their
results agree qualitatively with measurements, in the sense that
the asymmetrical features of waveform distortion are obtained
However, few evaluations were performed for the parameters of
prior experiments, which led to conjecture that the formulation
might suffer from instabilities. Also, the need to implement a

v
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finite differer.ce mesh for three variables imp ses large computa-
tional demands.

Aanonsen et al [8] developed a different approach for solv-
ing Eq. (5). They exploited the periodicity of the signal to
expand the pressure ir. a Fourier series, whose amplitudes are
position dependent. Such an expansion leads to coupled partial
differential equations for the amplitudes, thereby removing time
from the equations to be solved. Altbough these equations still
mus - be solved numerically, the Fourier series approach is an
im~rovement because it does not require a finite difference gr.d
for time  Results for amplitude levels compare well wirh far
field measurements, but comparisons of waveforms with experiments
have not been presented.

V1. NONLINEAR KING INTEGRAL

An analytical treatment aimed at an overall description has
been pursued by the author, based on the the King integral repre-
sentation of a sound beam. Like Ingenito and Williams' analysis.
it uses the solution of the linear problem to generate the right
side of Eq. (2). Due to the spectral form of the linear King
integral, the > source terms have the gereral form of an integral
over two spectra of transverse wave numbers. Examination of the
paraxial region and the region far off-axis leads to a dual-
integral solution appropriate to both domains. That solution mav
be evaluated numerically to determine the second ha-monic ‘9.
but the result suffers from the same limitations as those for
Irgenite ¢nd Williams’ analysis.

Further examination of the first and second order terms
reveals that each may be decomposed into two groups of quasi-
conical wavelets. Each group exists in a spectrum of wavenum-
bers, with the conical angle of each wavelet depending on that
number. The wavelets in the two groups ire differentiated ac-
cording to whether they propagate toward cr away from the beam
axls as the; progress away from the transducer. The form of the
perturbation solution at this stage of the analvsis is

p/pcco2 - Im [pI+ pII] dn
O H

pJ e e(nV_Q “biy ) exp(wx) 1 + ¢ n[ (wJ\ + h(wJ)] dm -
n'n n n 0 glvy’ n

where J K are either I or 11. The parameters wi and wil are

phase variables for the respective wavs | wi - wt - unkz + An,
while On and 4 represent Bessel functions in polar form, Qn cos

An - J,(nkR) , Qn cos An = J,(nkR). The function g describes the

degree of nonlinear interaction between wavelets at wave numbers
m and n in the same group, while h describes the comparable
interaction between wavelets in different groups.
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It is possible to integrate Eqs. (6) numerically. Such an
evaluation reveals that the contribution of the second order
effects associated with g grows with increasing distance, which
means that the analysis is not uniformly valid. Such a situation
is not unusual for perturbation expansions. It is generally the
result of using independent variables for the formulation that do
not match the physical scales, which may be corrected by a coor-
dinate straining transformation. The transformation appropriate
to Eqs. (6) was found [10] to have the form of a Fredholm in-
tegral equation. The essential features of wavelet J at trans-
verse wave number n are given by

J . J
P - c(nVnQ“/a1yn) exp(ian)

IR B I )[A exp(ial) + B exp(ia)] + C.C.}dn (7
n n 0 QO/#m plioy piiay U !

; J
where A and B are functions of n, m, and z. The parameters a_

are strained phase variables that resemble the linear phase
variables only at very short ranges.

Quantitative evaluation of Eqs. (7) may be performed by a
fairly simple numerical procedure. As is true for linear evalua-
tions of the King integral, the computational effort grows with
increasing distance, because of the need to increase the number
of integration subintervals. For ranges comparable to the
Rayleigh length the procedure becomes prohibitive. However, i
that case the integrals may be evaluated analytically by asvmp-
totic techniques, with the eventual solution taking on the form
of a Fourier series whose coefficients are inverse Hankel trans-
forms. That representation features numerical parameters whose
value is irrelevant for long range pradictions. However, im-
proved agreement at shorter ranges requires comparison of theor-
etical predictions with experiment, which is work still in
progress.

The only limitation imposed on the integral formulation is
cthat shocks, which are analogous to the breaking of water waves
as they steepen, do not occur. The results obtained from the
nonlinear King integral display the steppening and asymmetrical
distortion features observed in the waveforms of a finite ampl{-
tude sound beam, as shown in Fig. 1. 1Its predictions for levels
of the fundamental and second harmonic are in close agreement
with measurements, as shown by Fig. 2 for the experiment per-
formed by Gould et al {11]. Data for comparison of waveforms is
sparse because gemnerating distorted low frequency waveforms
requires a large and powerful low frequency projector, while
accurate measurement of ultrasonic waveforms requires hydrophones
having a small size (preferably, the diameter should be com-
parable to a wavelength) and wide bandwidth; such work is now
underway by the author.
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REFERENCES

Buck and Thompsofx(1966)

e One-dimensional finite amplitude waves reflected
from a stress-free boundary

e higher-generated harmonics should decrease due
to phase reversal .

Van Buren and Breazeale(1968)

e Linear reflection process— No couphng among the
harmonics

Qian(1982)

¢ Finite amplitude plane sound waves upon reflec-
tion from a boundary at oblique incidence

e Self-action:
Secular 2nd order incident wave
Secular 2nd order reflected wave

¢ Nonlinear interaction:
Constant magnitude second harmonic




ASSUMPTIONS

e ADIABATIC |
o ISOTROPIC ELASTIC MATERIAL
— Geometrical nonlinearity -

¢+ NO SHOCK FORMATION ON THE WHOLE
PROCESS |

e PLANE HARMONIC EXCITATION




BASIC EQUATIONS

Momentum equation:

Lijj = Pothist

Constitutive equation:

ou «
-Pii gP’au‘J E '
Nonlinear geometrical wameht:
1 ,
Vi =gl e+ )

where

L;; = Lagrangian stress tensor
U = Strain energy density function
7i; = Green'’s strain tensor




EXPRESSION FOR STRAIN ENERGY FUNCTION
1 1
pU = '2'Csju7.'j‘7u + ‘i"ceum.’rij’m’lmn
+ high-order terms

where

Cijre = Mijbre + plbixdjr + 5{[5,'&) |

Cijtimn = @5;j6i6mn + Bl6ij(62mbitn + Sknbim)
+ 8k¢(8imbjn + binbjm + bmn(birdje + 8ibie)]
+ 316k (8embnj + btnbmj) + 8it(bkmbnj + Sknbm;)
+ 8;k(6tmbni + Stnbmi) + 8j1(8kmbai + 6knbmi)]
and
A, 4 = Lamé coeflicients

a, 3, n = third-order elastic coustants




NONLINEAR EQUATIONS OF MOTION

Poli e = po(ci - Cz)um.mi + Poca“i.mm

3
+(A+p+ g- + zﬂ)(ua.uua,in + U mUs,mn)

+ (A + g)uu,aui,m- + ‘}(0 +ﬂ)u.,-um'.“'

3 _
+ (I‘ + Zﬂ)(ua,i"a,mm + 2um,a"i,na + ui,nun,mm)

+ (8 + 3n){ttn sm,mn + tim,atnim)

STRESS-DISPLACEMENT EQUATIONS

L.‘j = Aum,m&'j + ﬂ.(u,',j + ‘Uj,i) |
a

+(éu Um.a +
2 malmn 8

Um,mUn.n )6ij
g
+ "8' (um,a Usm,a T Uym,nlin,m )6:'1'

3
+ (B + =0 (Ui,mYjm + Ym,i%mj + Yimm, ;)

4
3
+ gum,mu,-,.- + g Mimtmi + (A + g)“m.m“iu‘



PERTURBATION EQUATIONS

wi = el + SulY + 0fS)

L; =Y + €LY + o)

82Qi aZQm 2 82Ql _ )
atz - (C: CZ)azmazc € 0z,.0z., 8zm03m - K.
_3%0m, 0 Qo
T;j Aa &;; + u A(_Bz,-+ 1)+ Gi;
where

_{o, O(é€')
K"G"'"{f(uﬁ"), O(€?)




REFLECTION AT A STREE-FREE
PLANE BOUNDARY

.Stress-free

,//— Plane boundary
/
7777777 4 _ X
N ) | R,A umo.b9
r )@f N ;
“»

Planar incident P wave:

(T)ine = €Ay Lexplik,(£- 7 — c,pt))]
+ E A L(L- 7) expli2k, (£ 7 — c,t))
where

{ = 8in B¢, — cos b€,

x Plane strain condition




LINEAR BREFLECTION

) : viu - g - cf)»‘-“ ‘é."‘sm.-!

() — xu(d) (1) (%)
L' = daul) b5+ el + )
=0 on 2=0

Fi xrst~order Solntxon

(P1)iac = A;lc"r“ﬁ- 0~z cos 0-c,t+¢)

(Pl)rd = Biﬁear(-“-'l‘-kzcoCO-c".?*)

(SV1)ret = Ca(e, % i;‘),’“:(tdn ¢+2c08 g—cott /)

where o
By __Sin298in2¢_72c0;622¢
A,  sin 26sin 24 + 72 cos? 29
Ci _ 2+ sin 20 cos 2¢
A sin20sin29 + 7% cos? 29
and

sinf R,

—_—

singp  kp

= —z4stuf + z4 cos

7=




’ RE.FLECTION OF GENERATED HARMONICS

p ]
2
w’=3 v
=1

( 8%v;,

&2 Um,1 2 532 Vi1

O%1 2 2 _ 2 0% g
< ot? (cp =) Oz mOz;  * OZmOzm b
Ov,, ov; Ov; 4
LA—"—'&: "6,'1"’-#(8’"1-0- a;i’):ﬂ on 2=0
- J i
( 320.-,2 2 azvm,z 2 azviﬂ
R SRy ke il
Ovm Ov;2 Ovj
LA#6‘j+#( ax?+ a;?):—G,'j.g on z2=0
m J) i
where

= e r——— —
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SECOND-ORDER NONLINEAR EFFECTS
| - O(A):
Nomlinear self-action of (P )ipe:

(P:N)nc : A,Z(xsin& — 2c088 + ¢)e52k,(2 sin 06—z cos O—c,t+v)

!

Nounlinear self-scattering of (P )resr:

(P dpet ©  Byi(zsim € + z cos §)e2tr (7010 42 e by tiy)

Nonlinear self-scattering of (SV] )rer:

(Ss)tef : é‘ZCizk'(z sin ¢+ 2 cos p—c,t+¢ /)

where
A;  B: 122+ 24p+a+60+ 24y (5)’
Al B} 16p, R
w?
%

o



Nonlinear interaction of (P} )inc, (P1)ref:
Q-wave: D‘2 ei2kp(2sin o;c,t+i’)
phase speed = ¢,/ sin
Nonlinear interaction of (P )inc, (SV1 )ret:

| Bpeitkrlzsm041/2 (cosg/y—conlzcptty]

d P V{13in ¢ + 8in8)> +. (yces ¢ ~ cos §)?

Nonlinear interactiomn of (P} )rer, (SV1 Jret:
izeizk,{: sin 0+1/24 ‘cos ¢/ v+cos 8)z —¢,t+¢]
msind’-k s’m0)2 + (7COS¢+ C089)2

phase speed =




PROPAGATING EFFECTS

(P )ine: -Accumulative wave — become significant with
| increasing propagating distance away from
source A
(P{ )res: Accumnulative wave — become significant with
Increasing propagating distance away from
reflected point

(§5)ret: Coustant magnitude dilatational wave

Q-wave: Non-secular wave - propagatés _‘parallel to the

boundary surface
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MODE VONVERSION

Boundary effects
(Py)ine = Aplipeithols sin =2 ot 0=cyt49)
(Pzg Jref = Baﬁ;eii’b,(: sin 0+: cof O~cpt+¢)
(szs Jret = Ca‘(é'y_ X ﬁ)e"”"("i‘nﬂé’w' ¢-'C.t+¢/'r)

¢ Linear Reflection Theory
e Constant Amplitude

PP Wy



SUMMARY

oSec\dntermsuiseonlyintheincidentandM
P waves as a continuing process of nonhnear self-action
of a P wave on itself

o No secular SV waves arise — Shearmg effects will
never deviate much from their Bnear representatxon |

oQ-menshowntooccurinnoﬁdstooA

¢ Accumulative effects of reﬂeded P waves are propor-- .
tiomal to «?®

¢ Mode conversions are governed by linear reflection law
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Finite amplitude effects in a dual frequency acoustic beam

M.A. Foda® and J.H. Ginsberg

The George W. Woodruff School of Mechanical Engineering, Geargia Institute of Technology,
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When an axisymmetric, bifrequency transducer mounted in a rigid baffle is excited at acoustic
Mach numbers that are a relatively large fraction, the result is a dual frequency sound beam
that exhibits harmonic and intermodulation distortion. The present analysis of this problem
develops a perturbation solution bascG on a wave equation that consistently accounts for
nonlinearity and diffraction. The linearized problem is described by a King integral for the
sound beam at each primary frequency. Asymptotic analysis using Laplace's method of
integration is.used to find the second-order potential. The method of renormalization then
leads to a uniformly accurate expression for the acoustic pressure. A technique for
improvement in computational efficiency is developed by interfacing the King integral
predictions to a farfield model for quasispherical waves. Propagation curves for parametric
arrays obtained from the model compare favorably with experimental observations.

PACS numbers: 43.25.Lj

LIST OF SYMBOLS

a circular piston radius

o small signal speed of sound in linear theory

D, (& directivity of the spectral component hav-
ing frequency jw, + kw. at the spherical
transition

S (R) amplitude shading functions for the trans-
ducer oscillation at each primary frequen-
cy

J,(x) Bessel function of order n

m,n transverse wavenumber

P_g.P. »x outward and inward transverse-axial
waves

r range from the projector

7o the range at which spherical divergence be-
gins

V.in) Hankel transform of £, (R)

INTRODUCTION

In 1963, Westervelt' introduced the concept of a para-
metric array as a consequence of nonlinear interaction of
sound beams at closely spaced primary frequencies. Since
Westervelt's work, other theoretical models predicting the
difference frequency sound have been proposed. These mod-
els have variously employed quasiplanar and quasispherical
approximations, and a modified Burgers' equation. The ac-
curacy of each of these models depends on various assump-
tions concerning the spatial dependence of the primary
acoustic fields, the position of the observation point, and the
effect of attenuation. For a review of various models, we
refer the reader to Fenlon® and Bjorno.”

- P{r&m address. Department of Mechanical Engineening, EL-Mansoura
University, EL-Mansoura, Egypt.
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R axisymmetric cylindrical coordinates (di-
mensional values are z/k, R /k)

a;.B,.£m; strained coordinates for each primary
sound beam

B, coefficient of nonlinearity

€€, acoustic Mach number in the primary
sound beams

U, axial wavenumber

Lo density at ambient conditions

¢ velocity potential

Wy mean of the primary frequencies (rad/s)

W\,W, primary frequencies (dimensional values

are wyw,, Wow-)
w, =w, —w- difference of nondimensional primary fre-

quencies

w, =w, +w, sum of the nondimensional primary fre-
quencies

. denotes complex conjugate

The existing models are not able to explain some experi-
mental discrepancies. The primary cause for this lack of
agreement seems to be that the hypotheses on which the
analyses are based are not always met in practice. For exam-
ple, in linear theory, diffractive fluctuations in the nearfield
of a piston-generated sound beam cannot be approximated
by a plane wave, see Zemanek.* We shall see that because
existing theories have not completely described these com-
plexities in the nearfield of the primary beams, the result is
inaccuracy in their description of the nonlinear interaction

_-rimaries.

A different viewpoint of this question arises from recog-
nition that the formation of the second harmonic in a single
primary beam is a special case of harmonic generation in the
interaction of two primaries. Second-harmonic generation in
the acoustic field of a bafled transducer driven sinusoidally
at high amplitude has been analyzed by several investigators.

® 1969 Acoustical Society of Amenca 1887




Ingenito and Williams® employed a perturbation series for
the potential function, in which the leading term was de-
scribed by the Rayleigh integral. Their solution was not uni-
formly accurate from the viewpoint of perturbation theory,
corresponding to a limitation to the field close to the trans-
ducer. In addition, it is valid only for situations where the
axial wavelength is very small compared to the transducer
radivs (ka> 100, according to Ref. 5). Lockwood et al.®
neglected nearfield distortion by assuming that the acoustic
signal at the beginning of the farfield is a pure sine wave of
amplitude proportional to the small signal directivity factor
for the piston. This assumption is violated when the source
pressure level is sufficient to generate significant distortion
within the nearfield. Neglecting nearfield distortion leads to
a farfield model based on Lockwood’s analysis of nonuni-
*form spherical waves.”

One approach for remedying the foregoing limitation is
a version of Burgers’ equation that has been modified to ac-
count for variation transverse to the propagation direction;
this model was first derived by Zabolotskaya and Khokhlov*
for the nondissipative case. The most generally valid solu-
tion, which was derived by Aanonsen et al.’ and extended by
Hamilton ez al.'® has the form of a temporal Fourier series
whose coefficients are determined by numerically solving
coupled differential equation in the spatial coordinates. A
full finite difference solution in space and time apparently
was first presented by Bakvalov et al.'' It is not possible in
either approach to solve for the signal at isolated locations.
Also, the assumptions inherent to the derivation of the
Burgers’ equation cause concern regarding its suitability for
the nearfield.

Ginsberg'>'? used a perturbation apgrcalh to solve a
consistent nonlinear wave equation for the velocity poten-
tial. The linearized signal was described by the King inte-
gral. Uniformly valid expressions for the state variables were
derived by employing coordinate transformations that yield-
ed explicit formulas in the form of inversions of Hankel
transforms.

The present analysis, which is an outgrowth of Gins-
berg's work, treats the interaction of two primary beams at
arbitrary frequencies. Prior work on sound beams generated
by multiple-frequency inputs have, for the most part, consid-
ered parametric array problems, in which the two frequen-
cies are relatively close. The implementation of nonlinear
parabolic equations for such problems has been of particular
concern to J. N. Tjétta and S. Tjétta, who have used the
quasilinear approximation to evaluate the difference fre-
quency in parametric arrays.'* We shall use results for para-
metic array for comparisons with our analytical predictions,
but the parametric array is substantially less general than the
problem we treat here.

Situations involving two arbitrary frequencies were ad-
dressed in Refs. 15-16. Those investigations, which em-
ployed a quasilinear approximation, were limited to the eval-
uation of the difference and sum frequencies and the second
harmonic. In contrast, the goal of the present study is to
obtain an overall model that can be used to evaluate wave-
forms, from which the full spectrum of harmonics may be
obtained. We decided that meeting this objective with a nu-
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merical model based on Aanonsen’s temporal Fourier seriey
formulation would be difficult, due to the computational re.
quirements associated with the need to employ a dual series
when the two input frequencies do not correspond to a pure.
ly periodic input.

The present investigation employs analytical techniques
to account consistently for cumulative growth effects, as
well as diffraction. The model is derived from the nonlineas
wave equation governing the second-order velocity poten-
tial, subject to prescribed boundary conditions on the source
and the baffle. It is valid up to the shock formation distance,
hence, in both nearfield and farfield regions, subject to the
assumption that dissipation is negligible.

The derivation begins by describing each primary beam
as a King integral, which is obtained from a Hankel trans-
form in the transverse direction. Asymptotic analysis using
Laplace’s method of integration leads to the second-order
potential, which is subsequently corrected for irregularities
in the acoustic pressure through coordinate transforma.
tions. Computational difficulties inherent to the result are
addressed by interfacing the computed results to the Lock-
wood model for the farfield of a nonuniform spherical
source.

l. EQUATIONS

We formulate the problem in nondimensional cylindn-
cal coordinates (R,z), where z = 0 defines the plane occu
pied by the transducer and baffle and R = O at the center of
the transducer. Let ¢ denote the nondimensional time van-
able. The corresponding dimensional position coordinates
are (R /k, z/k) and dimensional time is ¢ /w,,, where w,, is the
mean of the primary frequencies and k = w,/c, is the wave-
number of a nominal planar wave. Under the assumptions
that the fluid is inviscid and that the particle motion is irrota-
tional, we introduce a dimensionless potential function
d(R.z,t), which is related to the particle velocity compo-
nents and the acoustic pressure by

v =C()i6‘- UR=C()‘(‘9£v p= —pnccz)d_é~ N
f 9z dR ot
Note that there are second-order terms in the last of the
foregoing, but their effect is not significant for the present
analysis.

We consider the transducer to oscillate axisymmetrical-
ly at two distinct frequencies whose dimensional values are
wyw,. The spatial shading functions £ (R) are associated
with each frequency. The corresponding boundary condi-
tion may be written as

6

=< (e, fi(R)explio 1) + € fo( R)exp(iwyt) ]
62 1=0 2

+c.c., (2)

where c.c. will generally denote the complex conjugate of all
preceding terms. It is permissible for the functions £, (R) to
be complex, corresponding to spatial phasing. We require
that these functions be bounded such that R ''* f,(R) is
piecewise continuous and absolutely integrable'’ over R > 0.
The parameters ¢, are fractions of the total acoustic Mach
number € associated with each primary.
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The nonlinear wave equation governing ¢ is obtained by
eliminating the pressure and density through path integra-
tion of the Navier-Stokes equations and of the equation of
state. The result is'®

2
v _% =28 - NP vy 4 %(w-vm +0(8Y),

at
(3)

where B, is the coefficient of nonlinearity,'® and V denotes
the gradient operator in cylindrical coordinates.

In addition to Eq. (2), we must impose the radiation
condition. Therefore, we require that the signal should be
either an outgoing wave or evanescent at large z, and that it
should decay suitably with increasing R. We expand the ve-
locity potential in a perturbation series

d=€d, + €S+ . (4)

Collecting like powers of € in Egs. (2) and (3) leads to equa-
tions governing &, and &.. The first-order equations are

s )
Ve, —_c?l_:l= X (5a)
dd, 1 ) .
- = —l€, fi(R)exp(iw 1) + €, fr(R)exp(iw:t)]
(92 z2=0 21

+ c.c. (5b)

Equations ( 5) aretheconventional ones governing linear
radiation from a baffled transducer. Nonlinear effects are
contained in the second-order, and succeeding, terms. The
second-order equation arising from Eq. (3) is

dé,

.. 9%, 4 ( )3 ]
_9% _9Y g —1)[%Y Lve,vs ] (6
= a{[(ﬂ, 5+ v8ev8, | ()

V-é:

Tjetta and Tjétta’s recent general treatment of second-order
nonlinearities™ showed that second-order terms in bound-
ary conditions do not lead to cumulatively growing terms at
that order. That observation agrees with our earlier analysis
of the total solution for the second-order potential,”' where
we showed that it is only necessary to construct the particu-
lar solution of Eq. (6). The complementary solution, which
is determined by the second-order boundary conditions.
does not grow with increasing distance from the transducer.
Since it represents a uniformly O(€”) effect, it is insignificant
in comparison to the cumulative growth effects. except in the
region very close to the transducer (two to three piston di-
ameters in the cases we considered ). Neglecting the comple-
mentary solution allows us to ignore the boundary condition
atz = 0. However, it is necessary that the eventual solution
satisfies the Sommerfeld radiation conditions at large dis-
tances from the tranducer.

Il. LINEARIZED SOLUTION

The King integral, which is essentially an inversion of
the Hankel transform, provides a formulation of the linear-
1zed problem that is amenable to the task of evaluating 4.
Hence. we let

o

(2R = f n®d, (z.n.0)J,(nR)dn + c.c. (N
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This expression satisfies Eq. (5) when

32¢, ae, N

—_— —nd, =0, 8
7 ar? e (82)
ap,

— = V,(n)expliwt) + Vi(n)expliw.t), (8b)
82 z2=0

where the coefficients ¥, (n) are the transformations of the
spatial shading functions f, (R):

€ (= .
Vi = [T RERUGRIGR, j=12 )
The solution of Egs. (8) is
iz VYV (n) .
D, (nzt) = — z 2 explic,t —u, 2), (10)
J=1 #nj
where
ul =n*— ol (11a)

The radiation condition for z— o requires that ¢, must ei-
ther vanish, or else represent a wave that propagates in the
positive z direction away from the transducer. Hence, we
select the branch cut for u, such that

i(w] —n*)'"3, 0<n<w,,
iy = (11b)

2 /3
(=)', n>w,

The result of substituting Eq. (10) into Eq. (7) is

IS (T nV () .
6, =-Y J - expliot — u, 2)J,(nR)dn
= Jo M,
+ c.C. (1)

This expression is the King integral representation corre-
sponding to two primary sound beams. It indicates that the
linear signal is a sum of two waves that do not interact.
Before we proceed to formulate the source terms driving
the second-order potential. it is convenient to change the
integration variable in Eq. (12) by replacing the transform
parameter n in each integral by nw,. This leads to
é] = _IS:‘: "z nV/(n)
Py M.,

+ ¢.C., (13)

exp{w (it —p,2) }J(w nR)dn

where V, are redefined as

6 £l
V,(")=?j Rf(R)Jo(w,nR)d(w,R), j=12
iJo
(14)
and

B [(1 -, O<nc<l,

s R is
(" =1" ns>l. ()

Il. SECOND-ORDER POTENTIAL

We use the first-order solution 8, in Eq. (13) to formu-
late the source terms driving &, in Eq. (6). Forming
quadratic products of the derivatives of &, requires that dif-
ferent symbols be used to represent the transverse wavenum-
ber in each term of the product. The resulting equation gov-
erning the second-order potential is
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2 Y ¥
Vg~ L2

ffzm. m LAV 081y 4 i Vol@n R @,mR) + nmd (@R, (0,mR)}

xexp[Ziw,t—w,(,u,,+u,,,)z]dmdn+f J 2iw3nm
0 0

Vy(n)Vy(m)
Bl

X{[ = (Bo—=1) + poptm |Jo(@nR) Iy (w,mR) + nmJ (w;nR)J, (@,mR)}

Xexp{ 2wyt — wy(u, + lm)z]dmdn + J; J; 2iw,w,0,.nm

Ve(")Vz(m)
Hubim

X{[ = (Bo= 1) + ptoptm JJo(@ nR)y(@,mR) + nmJ (0,nR)J (w,nR)}

Xexpliwt — (0, B, + w3 4y )z]dm dn +J‘ J- 2iw, w0 nm
(V] 0

Viim)Ve(m)
Batim

X{[(Bo— 1) + p.pa% VJo(@,nRYo(w;mR) + nmJ (w,nR)J, (@,;mR)}

Xexp[iwgt — (0, p, + @0 4%)z]dm dn + c.c.

The effects appearing on the right side of Eq. (16) are
sum and difference frequency interactions of the two pri-
mary frequencies. We form the solution for ¢, as a corre-
sponding superposition. Hence, let

IS T ,

= z Z ¢2m/1m,' (17)

J==
where
a é((nﬂ,&(u,)
(e, wp)
Ve, —1——
V(n)V(m)
J- J- iw,w (0, +w)nm
Bl m

X{[ = (Bo = 1) + ot }Jo(@,nR)Jo(w,;mR)
+ nmd,(w,nR)J (w,mR) }exp[i(w, + w)t

~(wp, +w,u,,)z]ldmdn +c.c. (18)
and
, a: (’w,—:u,)
Vo ____é :
J‘ V(n)V‘(m)
f v (w, —w,)nm
Hathm

)< {[ (B(‘ - l) +:unym ]',()({‘)/"R)Jl)(wl’"R)
+ amd, (,nR)J (w,mR) }exp[i(w, — @)t

— (o u, +wus)z]ldmdn +c.c. (19)

We could construct the particular solution of Eqs. (18) and
(19) for each i, j pair as the sum of two dual Hankel trans-
forms. The kernel of one transform would be
{w,n)(w;m)Jy(w,nR)Jy(w,mR) and the kernel of the sec-
ond would be (w,n)(w,m)J (w;nR)J (w,mR). However,
we shall utilize a linear combination of the these kernels,
because such a representation will ultimately decouple indi-
vidual terms forming the solution. We begin with the analy-
sis for the terms associated with a sum of the primary fre-
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(16)

r

quencies. Let

P f wnJ. w,m®,, (z,t,m,n)

X [Jol@w;nR)Jy(w,;mR)
—Ji(;aR) ]\ (w;mR) }dm dn

+f a),nf o,m®Py,(2z,t,m,n)
0 ]

X [Jolw,nR)Jy(w;mR)
+ Ji(@,nR)J (w,mR) |dm dn. (20)

The next step is to substitute Eq. (20) into Eq. (18), and
then to employ the recursion relations for Bessel functions
and their derivatives. When we match the integrands on ei-
ther side of the equality, we find
(awz, _ dd,,
az ar?
X [Jol@;nR)o(@,mR)
+ (8’¢n _ 3,
az ar?
X [Jol@;aR)Jo(@,mR) + J (w,aR)J],(w,mR)]

- (w;n + m,m)2¢2|)

—Ji(w,nR)J (@;mR)]

- (w,n — w,m):¢22)

- (%J,(w,nR)J,(a),mR)

% Jo(w,nR),(w,mR)

Ww
—-R;"J,(w,nR)Jo(w,mR))(oz, -&.,)

o) V,(m)V,(m)
T i

X [(Bo— | — phaphn )o(@;aR)]o(w,mR)
—nmJ,(w,nR)J (;mR)]

Xexp[i(w, + &)t — (@, + @,,)2] + C.C.
21

= —t(a),
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It would be a considerable simplification if the third
term in large parentheses on the left-hand side of the above
equation were not present, because like functions of R on
either side could then be matched. Since this term has an
additional factor 1/R not contained in the other terms, it is
negligible at large R. This verifies the assumption that the
function ®,, and ®,, areindependent of R, at least when R is
large. Miao?? demonstrated the validity of this hypothesis
for the entire region in the case of a single-frequency beam.
He derived independent expansions for the paraxial region
(small R) and the off-axis region (large R). He showed that
the latter, in the limit R €1, is identical to the former, so the
off-axis expansion contains the solution in the entire ficld.
Weinvoke the same argument here. Matching like functions
of R, with the 1/R terms ignored, then leads to the following
pair of differential equations for ®,, and $,,:

ao,, a CD,.
T + ¢
e — (w0 + o,m)*P,,
i V V,
= — L(a)j + (‘)I) M
2
#n#m

X(By— 1 —p,p,, —mn)exp[ilw, + @)t
— (@, +ou,)z}] +cc,

(22)
2 2
36:;22 _ a_a:%&_ (wjn —w,m)2¢zz
i V,(")V/(m)
= _?(a)j +w) —m—m—
Haldm

X(By— 1 —p,u,, —nmlexp[i(w, + w,)t
—(wp, + op,)z] +cc
Because nonlinear distortion, which is associated with
generation of harmonics, generally increases with increasing

propagation distance z, the particular solution for ¢,, and
., may be written as follows:

®, =A(zmn)exp[ilw, + w,)t

—(wpu, +w,m)z] +cc,
(23)

®.. = B(zm,n)exp[i(w, + w; )t
—(ou, + opu,)z) +cc

Substitution of Egs. (23) into Egs. (22) leads to the follow-
ing pair of uncoupled ordinary differential equations for 4
and B:

ii—Z(w + ) + (w )?
P o T Ot )~ ((wu, +wp,.
—(w,n+w,m) + (o, +w,)? 14
1 VimV,m)
= —L(a)/ I)_I.___—.
2 Habm
X(By — 1 —p,p,, +nm), (24a)
d’B dB .
F— 2((‘)//‘11 +wl#m )72—+ [(w/”n +wl.um)-
— (w0 —wm) + (0, +w,)?]|B
j vV vV,
= - L(wj +w,)—————’(”) H{m)
2 Hathm
X By =1 ~p,p, —nm). (24b)
1861 J Acoust. Soc. Am., Vol. 85, No. 5, May 1989

Cumulative growth will be manifested by increasing val-
ues of the amplitudes A and B. The particular solution for 4
or B is independent of z if the values of m and n are such that
the coefficient of the 4 or B term in Egs. (24) do not vanish.
In contrast, if either of these coefficients vanishes, the corre-
sponding particular solution for 4 or B is proportional to z.
We find with the aid of Eq. (15) that the coefficient of 4
vanishes when m = n, whereas the coefficient of B vanishes
when m = n = 0. Inspection of Eqgs. (24) reveals that, when
m = n = 0, the two equations have the same form. Thus the
importance of B is restricted to a small region in the trans-
verse wavenumber spectrum, where its behavior is no more
singular than that of the coefficient 4. Since A has a singular-
ity at every n, we, therefore shall ignore the role of B.

IV. ASYMPTOTIC INTEGRATION

We have shown that the condition where the solution of
Eq. (24a) grows with increasing z arises as /n —n, whereas
regions far from the vicinity of m = n give bounded contri-
butions. The contribution of the region around m = n may
be determined by following Laplace’s asymptotic integra-
tion method.”® We relate the wavenumber m to the other
wavenumber n by a detuning parameter g that is O(1), such
that

m=n+ g4, (25a)
where A €1 is a positive number indicating the scale of the
difference between m and n. When g, is not small, i.e., when
n is not close to unity, the Taylor series expansion for the u,,,
defined in Eq. (15) is found to be
— AL+ ).

Substitution of the above expressions for m and x,,, into Eq.

(24a) leads to
d A A dA
—2u, [(cu +w,)+w,(':7" ;‘")+0(AJ ]dz

ar
- (w,a), -q-z— + O(A“))A
2

1 4 V,(n)
= - %ﬂ()(w/ + (J),)/_(n_)_l(-f— .

B =, (1 + ngd/u? (25b)

7 (26)

When m = n, the particular solution of this equation is

Al =[BY,(mV,(n)/4u) )z (27)
The general solution for 4 when m3n is
A=A, exp(0,2) + A, exp(0,2)
—ﬂo (w, +w,) V,(m)V,(n) (28)

7a

where the coefficients o, and o, are the roots of the charac-
teristic equation governing the complementary solution:

o - Zy"[(w +m,)+m,("qA i‘%)]a
My 24

- w0, (FAY/ul) =0.

w;w,

(29)
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Solving this quadratic equation yields

2
U|=.l..__w/wl_ qz? +0(AJ),
2 (wj+w) u,

(30)
0= 2w + @)ty + O(4).
As ¢—0 (m = n), Eq. (28) must approach Eq. (27). Be-
cause d,is 0(1), and Eq. (27) has no term that varies expon-
entially in z, we set A, = 0. [It is also necessary that 4, =0
in order to satisfy the radiation condition. Otherwise, substi-
tution of Eq. (28) into Eq. (23) would lead to a term that
propagates in the negative direction.] Because o, ~¢*A?,
exp(o,z) may be replaced by the leading terms in the series.
Thus equating the limit of Eq. (20) as m—n to Eq. (27)
gives
@, A?

,i,,,[A ,(, - w_wi__)
g0 2w, + 0 )p}

i (w,+a),)V,-(n)V,(n)]

270 w,0,q° A
= [iBoV, (M) ¥V, (n)/4u) ]z 30

The value of 4, that satisfies the above equation for all values
of zis

A, = (I/D)Bo(w; + @)V, (n)V,(n)/(w,0,¢4°8%). (32)

In a strict sense, the foregoing represents the limiting behav-
ior of A, for m=n. It is possible that 4, has a different ap-
pearance for arbitrary m and n. However, we can show that
such differences are associated with the homogeneous solu-
tion for the second-order potential, which we have already
discarded.

The general solution for 4 is obtained by substituting
the above expression into Eq. (28). This gives

i V.(mV,(n)
A=— -
2 bolw, + w0) w,0,q* A’
2
x[l —-exp(——w—’ﬂ)]. (33)
2w, + w))u,

Because the contribution of the function B is negligible, we
find from Eqs. (20) and (23) that the total contribution is

- -
(a2, + av))
@, '=J. w,nJ. w,mA(z,m,n)
(] 0

Xexp[i(w, + @)t — (wp, + o, )2]

X [Jo(wjnR)Jo(wlmR)
= Ji(wnR)J (o;mR) }dm dn + c.c. (34)

We shall evaluate the inner integral in the above equa-
tion asymptotically in the region where z is large. This inte-
gration extends over 0 < m < w0, with n fixed in that range.
The major contribution to the integral stems from the vicini-
ty of m=n(q=0). Weisolate this region by selecting a small
positive number § that does not depend on m or n. Denote
the integrand in Eq. (34) by /(n,m,z,R). Then for a fixed
arbitrary value of the wavenumber n, this equation may be
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written as
- L ]
T =J; w/nj; I(n,mz,t)dm dn
+ f | I(nmgztydmdn
0 LEN.]

-» 743
+J- a),nf I(n,n+qAz,t)Adgdn.  (35)
0 8/8

The first and the second integrals above represent the contri-
bution of the regions that are not in the vicinity of m = a.
The oscillatory nature of the integrand results in bounded-
ness of these integrals, corresponding to destructive interfer-
ence between source effects associated with disparate values
of m and n. This means that the cumulative distortion only
originates from the last integral in Eq. (35). Because that is
the effect we seek, we shall neglect the first and second inte-
gral. (This idea reduces to Stokes method of stationary
phase?® for n < 1, where u, is an imaginary number.) Be-
cause & is defined as a fixed number, the dominant behavior
(leading dependence on z) will be obtained if §/A is any
value of order one or larger. Because A €1, we take & to be
infinite for convenience in evaluating the integral. Further-
more, we may replace m by n the argument of the Bessel
functions, and 4,, by u, in the exponential term in Eq. (34)
without affecting the dominant terms. We obtain the result-
ing integral from a standard tabulation,*

[ 50— exp ~ agr1dg = V. (36)
o g
Then, we find from Eq. (20) that
w, + © v ¥V (n)V,(n)
2" ’=f (lw,w:(w,w‘w,)) gL
o \2 Batin

X (m,2z)' exp[ (@, + @,) (it ~ p,2) ]
X [Jolw,nR)y(w,nR)
—~J{w,aR)J,(w;nR)]dn + SDT + c.c.,, (37)

where SDT stands for subdominant terms, which, in the
worst case, increase less rapidly with increasing z than those
listed.

We cannot deduce the second-order potential associated

with the difference frequency terms 4, ~ " directly from

Eq. (37). However, the procedure that yielded Eq. (37) is

also valid for ¢, ~“". Such an analysis leads to

¢(ml—m,) - = h(l n)ﬂ l 12 3
2 = — A - o 70),01“)4 n

X [V,(m)VP(n)/ppt) (mutz)'"?

xXexp[(@, = w)) (it —p,2)]

X [do(w;aR)Jp(w,nR)

+Ji(w;nR)J (w;nR)] + SDT +cc..  (38)
where h denotes the Heaviside step function

1, n<l,
"“'""[o, n> 1. (39)
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Several features are revealed by Egs. (40). The trans-
ducer, which is driven at frequencies @, and w,, directly gen-
erates two transverse spectra whose magnitude is O(¢), and
whose temporal frequencies are w, and w,. The O(€) terms
represent second harmonics of each wave attributable to
self-interaction, and the lowest-order combination frequen-
cies. Both effects are attributable to nonlinear interaction
between the primary beams.

The asymptotic integration was carried out under the
assumption that u, is not small. This is significant because
the truncation of the series expansion in Eq. (25), is appro-
priate only if g/u’ € 1. Only very small values of ¢ satisfy this
criterion when n — 1. Therefore, the contribution to the sec-
ond-order velocity potential from the region around n = 1 is
not well described asymptotically. One reason for our con-
cern in this regard is that u, -0 as n— 1. The expression for
the acoustic pressure derived from Eqs. (40) has g, in de-
nominator of the first-order term and u*u./? in the denomi-
nator of the second-order term. Thus the O(€”) term is more
stngular than the O(¢€) term as n— 1. Although both singu-
larities are integrable, the higher degree of singularity in the
second term will create difficulties. We shall introduce an
appropriate correction later.

V. RENORMALIZATION

‘ We obtain an expression for the acoustic pressure by
dlﬂeremiating Eqs. (40) with respect to time. Let P denote
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. (o, + 1w) a
. :\h:'}:en we employ the cxpressxons. for ¢, ' and 6= J‘ ® dn, (40a)
@, “" to form the second-order potential according to Eq. o
(17), and then combine them with the first-order potential
in Eq. (13), we obtain where
J
V.
b= — E(n—Vﬂ explw, (it — u,2) ) Jo(w\nR) + Lsz(ﬂ-)— exp[w, (it — p,2) ]J(,(wan))
B
2. 1/2 372 nsz(n) : 2 2
+ €iBy(mu, 2)' ¥ ————:—cxp[Zw,(tt —u,2)1{/3(@nR) = J i (w,nR)]
2V3 2
wy”? T (.”) exp[ 2w, (it — p,2) 1 [J§ (0,nR) — T (wsnR) ] + Qwww,) P22 T V'(:)Vz(")
ni=n Haln
xexp{w, (it —pu,2) | [Jo(onRYy(wnR) ~ J (0,nR)J (w,nR}]
n vV, (n)Ve(n
—ih(1 — n) Qw,w.w)'"? ——'(.—zuexp[wd(it = #.2) ] [Jo(@,nR)Jy(w,nR)
Haltn
+J,(a).nR)J,(w:nR)])+c.c. + SDT. (40b)

I

the contribution of a specific wavenumber 7 to the dimen-
sional acoustic pressure. We then have

p= %

41
o (41

P = pucs f Pdn,
(]

As was true for the potential function in Egs. (40), the O(€”)
terms in Pgrow as z'/? for large z. When ez'* is O( 1), these
terms, which are supposed to be a small correction, become
the order of the main term, in violation of the assumption
inherent to a perturbation expansion. A perturbation series
having this property lacks uniform validity.**

In order to determine a uniform expansion, we shall
employ the method of renormalization.?® When aR is large,
the asymptotic behavior of P has the appearance of a sum of
two interacting waves that propagate in the inward ( + R)
and in the outward ( — R) radial directions, as well as in the
axial direction. This is a consequence of the asymptotic ex-
pansion of J, (x) for large x, which is

J. (x)~4(2/mx) 2 explix — (2v + 1)7/4] + c.c.
(42)

Introducing this approximation into Eq. (41) leads to de-
composition of the off-axis signal into two waves, given by

P=P_R+R_“, (433)
where
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12
P_R~el( 2 ) iw‘,/’-’i‘—/'—gﬁ—)—exp(w,(it-—p,,z-yinR)—-il)
2\mnR 7’ 4

n

+ i&);/z "_V_Zgn_)_exp(a)z(il — .2+ inR) — IT”)]

., 2 (mu,2)'?
8, 1THA2)
R p.ur

(ia)f’znsz (n)exp[2w, (it — p,z + inR) ]

3n

+ iwy*n*Vi(n)exp[2w,(it —p,z + inR)] +1i w‘/‘_ n*V,(n)Vy(n)exp[@, (it — p,z + inR)]
2

372
—h(l —n)i } nzV,(n)Vz‘(n)exp[a)d(it—p,,z+inR)]) +cc, (43b)
2.

72
P*R~ei(-—2—) [iw{’zﬂ)—exp(w.(it-—,u,,z—inR) + il)
2\mR o 4

+ iwl? nrn Va(n)
Ha

t/2
+ €8, 2 (mu,z)
™R p.uy

exp(wz(ir —p,z—inR)y +1i %)]

(t'wf’znsz (n)exp[2w,(it — p,z — inR)]

32 ’
+ iw}*n* Vi (n)exp[ 2w, (it — p,z — inR) | + i——n*V (n)Vao(n)exp[w, (it —p,z— inR) ]

Ve

372

—ih(l —n) wd_ n:V,(n)V;(n)exp[wd(it—,u,z—inR)])+c.c. (43c)

i

A

We shall renormalize the expansions given by Egs. (43b) and (43c) independently for the off-axis region. and thex
establish the appropriate transformation for the region around the axis. We begin with the term P _ ;, which we decompose
into effects that are associated at the O(€) stage with either the sum or difference frequencies. We group one haif of each
second harmonic in Eq. (43b) with the sum frequency term, while the other half of each second harmonic is grouped with the
difference frequency. For reasons of convenience, we apportion the primary beam at frequency w. equally to the sum and
difference frequency. In contrast, for the primary beam at @, we invoke the identity exp( — i7/4) = (1 — i)/y2. By associat-
ing the imaginary part of this identity with the sum frequency group, and the real part with the difference frequency, we phase
shift the first primary beam forward and back by 7/4 relative to the second primary. (Since we have restricted @, > w., there is

no reason that the nonlinear expressions should be symmetric in w, and w,.) The two groups form the inward wave according
to

P_a=P o +P,.

(Ha)
The sum frequency group is
. by 2 \'?[ 1 , nV . .
P q~¢€ T(W) [3(0:’ "—#'fL)exp[w,(u -,z +inR)]
+ Lwé” n¥yin) exp(w:(it — .2+ inR) — i—’r-\
2 . 4/
. (TT "z) /2 .
~ €if, 2 —L——(iwf”n'Vf(n)cxp[Zw,(it — paz+inR)]
AR p.ub \2
+ L0V (n)exp[ 2w, (it — p,z + inR) |
+ —l:-a)f”n’V,(n) Vi(n)exp(w, (it —p,z + inR) ]) +c.c. (44b)
v2
and the difference frequency group is
1864 J. Acoust. Soc. Am., Vol. 85, No. 5, May 1969 M. A. Foda and J. H. Ginsberg: Finite amplitude effects 1864

Ll

e T

————— T

—_—— c———




l nV,(n) . . '
P a=€6— w2 2Vm) (it — p,z+ inR)
* 2 1rnR [\/_ La explen # ] ‘
+La)§’znzh(n)cxp(mz(it—y,,z+ inR) — 11)]
2 i, 4 ;
1/2
— i, 2_(m.2) © ( w}?n*Vi(n)exp[2w,(it — p,z + inR) ]
TR p 2

3/2

! Dd nV,(n)Viin)
2

+ 7wg/zn2V§(n)exp[Za)z(it—y,,z +inR)] = h(1 = n)

Xexp[w,(it——p,,z-i»inR)])+c.c. (44c)

In order to render the sum frequency term P*_ ; in Eq. (44b) uniformly valid, we introduce a set of coordinate transfor-
mations:

wz=a,+e'?[S, (a,.t.nP) + S {ant,nR) +c.c.], (45a)
w2z = a, + €2'*[ Sy (ant,nR) + S, (a,tnR) +cc.l. (45b)

The unknown functions S, must remove the objectionable terms causi.ig nonuniform validity in P'_ ;. We substitute Egs.
(45) into Eq. (44b), and expand the result in a Taylor series in ascending powers of €. The series expausions are truncated at

O(€), with the result that

172
P‘_R=ei( 2 ) [_{__w:/zm_exp(iwlz—p"a,+iw|nR)

2 \mnR 2 U,

] V, . .
+ = w)? nV,(n) cxp(lwﬂ — U,y + iwnR — il)
2 L, 4

12
+€2—( 2 ) [_ 1 WV (n)z" 7 expliot — u,a, + iw,aR(S,, + S +S% +5%)

~
mnR J

-~ —Z-wé’znV (myz'"? exp(lw,t—,uncz2 + iw,nR — 1—4—)(5“ +85,+8S%L+S85%)

A 2 (ru 2yt .
21ﬁ,,( 2 ) i (L WV (n)exp(2w t — 2u,a, + 2iw,nR)
mnR \..
Halh?
1 " ‘ " , . .
+ = n n*V3i(n)exp(2iwyt — 2u,a, + 2iw,nR) + —n ViViexpliot —u,a, —u,a,+iwnR || +cc.

v
(46)

The criterion fer the selection of straining functions S,/ is that they cancel the second-order growth terms in P'_ 5, which
yields

12 .z V2eo
w,z:a,—e[iﬁ(,( 2) (7H,2) {VZw,nV,(n)exp(iw,t—p,,a,+ia),nR)

mnR pout
)/2
+— nV(n)exp(lw,t—-,u,,az+lwan))+c.c.]. (47a)
“’l
172 (17, nz)
wzI=qa, — e{ﬂ(,( ) a [sznV (n)cxp(:w.x —,as+ iwnR +i -'—r-)
mnR u.ur 4
_ wl/l/ by t72
—v2—m- K ) nV.(n)exp(iw.t —p"a,+iw.nR—il)] -+-c.c.}. (47b)
W; " \H, 4
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The corresponding form of P'_ . is given by

172
Pln= E%(_'z_k) [—L“’:" VAR exptioo,t — poa, + iwnR)
mn

V2 Ba
< W, M exp(:‘w;t — p,a, + iwnR — il)l
M, 4
2 i 2 (mutn)'”?

5 PO TR S [ — V()Y tin) + oYV (m Vi) ] +cc. ($10)
n HuHa

These expressions are appropriate to the region where K is large. We obtain forms that are valid for all R by manipulating
the asymptotic expansions for the Bessel functions in Eq. (42), which shows that, when the argument x is large,

J.(x) + i, (x) = (2/mx)"? expli(x — m/4) ],

(43)
Jo(x) — iJ,(x) = (2/mx)' P exp[ — i(x — m/4)].
Therefore, Eqs (47) may be written as follows:
P’y = e—l nVy(n) exp(;w,t—u,,a, + 1'1)[Jo(wlnR) + Jy(wnR)]
2 fz'# 4
v "
] V. , ,
e’—; W, _{'_;Sl)_ exp(iwyt — p, @) [Jo{@nR) + d,((uan)A]
i (17’ :Z 172 .
+E =8, —E—)—{ — YV, () V() [J3(@,nR) + J (0 nR) ]
2 Hafin
+ 0¥ V(M V() [J3(0:nR) + T} (@nR) ] } + cc.y (493}
where a, and a, are given by
_ 5 3 nVn) 12 : . T ;
(Ulz—a|"'€ﬁo Iy 2wy ——.‘“(ﬂ'ﬂnZ) expliot —u,a, +l: [Jo(a),ﬂR) +LI,((1)|’1R)]
7T
172
+ iwf/z(—‘i)i) -E-KZ—(—H—)-(TY/J,,Z)UZ cxp(iwzt —u,a; + i—n:)[Jo(uan) + iJ(w,nR) ] + c.c.]. (49
w, #nlu: 4 J
_ 3 n¥y(n) PN : ,
wZ = a, — €8, 2iw; — (mu2)' explivyt — p,ay) [Jo(wnR) + iJ (w.nR) ]
Halin
= w, \"*nV,(n) )
- \,2wf’2(_'_) _'_._-(ﬁp:z)"‘exp(iwlt —pu,a) [Jo(w,nR) + i\ (wnR)] + c.c.]. (49¢)
@y Haldy

Analogous operations for the inwardly propagating term associated with the difference of the primary frequencies P 4 lead
to

1 Vv . : ] ’,
P 5= e_[_l—“”t nbm) EXP(WJ-#J?' + il)[fu(w.nR) +id(@nR)] + = o, n¥ein) ]
20,2 78 4 2 i,

X expliw,t — @, B, (w-nR) + i) (w:nR)]
(mut)' 7 :
4—6&————» {1’(u,"n‘V,(n)V|’(n)[Jf,(a),nR) +J1(w,nR)]
2 p.py

4 YV V() [J3(wnR) + T (0nR) [} +cc. (50a)
where the coordinate transformations are

wz=pf - GBO[\,E(U"‘/Z M"'_).( mu,z)'’ exp(iw,l — B+ %)[.I”(w,nR) + i (w,nR)]
7

nt*n

\ 172
+ ih(1 _,,)w",/f(.“)_- "_Kf_(i).(,w"z)”?
@y .“‘np:
xup(iwzt — By + 1{—)[.1(,(wan) + i, (w,nR) ] + c.c‘l‘ (50b)
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The same procedures lead to renormalized expressions for the outwardly propagating terms. We find that

P

where

P

+ R =P‘+R +Pd+Rv
the sum frequency is represented by

R 17
+R=E€E—|—
* Z[Jiw' Ka
+—l—w2 nV,(n)
2 “,
(77‘ .z)l/Z
+€1_;_ﬁo_ﬁ—.

nen
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— {iw}?n*V () V 2(n) [J3(0,nR) + J} (0,nR))

— 0} V(M) V() [Ji(w;nR) + T3 (0,nR) ]} + cec.

The corresponding coordinate transformation is

W
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Finally, we find the difference frequency effect associated with the outwardly propagating waves to be
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1 Lic eAPressIons given by kgs. (#3a), (44a), and (49)-
(53) yield a uniformly accurate expression for the acoustic
pressure. The signal is thereby formed from a superposition
of terms that appear far off axis to consist of two trains of
waves that propagate in the inward (P _ ) and outward
(P, ) transverse directions. Each wavetrain is further sub-
divided into effects associated with the formation of sum and
difference frequencies at the first stage of approximation:

P=PS_R+PJ_R+PS+R+P4_,.R~ (54)

We must note at this juncture that the coordinate trans-
formations given by the aforementioned equations describe
only one transverse wavenumber 7 in a continuous spec-
trum. Inspection of these equations shows that the O(e¢)
term, which is the term associated with the distortion, con-
tains a factor u,; /% Thus the O(¢) term tends to be very
large as n — 1. If such behavior were to be retained, we would
find that the strength of nonlinearity increases as we ap-
proach n = 1. This violates our physical intuition. Hence, we
now recall that the asymptotic development of the second-
order potential was obtained by considering u, to be sub-
stantially larger than zero. Consequently, we may regard the
coordinate transformations that have been derived as being
the asymptotic representations, for n not close to unity, of
alternative functional forms that behave properly as n— 1.

The proper straining functions S, must feature a depen-
dence on g,z that is proportional to u!’? in order to cancel
the singularity at n = 1. A variety of functions, would exhib-
it suitable behavior. Ginsberg'? employed the error function,
but we shall employ combination of Bessel functions. in ac-
cord with Miao's work.?> When u,,z is large, the following
representation is valid:

7z \!/? n'z"* ty/2 s u"zl ] ﬂ"zl 172
( ) = R [Jg,( +Ji
H, (20) o o

+0(£)«3/2'

o

where o and / are arbitrary positive parameters that can only
be obtained in the context of the present analysis by compari-
son with experimental data. {We have found o = (ka)*/3
and / = 3/4 to give good agreement.] Substitution of Eq.
(55) into the coordinate straining transformations elimi-
nates the singularities at n = 1.

(55)

VI. COMPUTATIONAL ALGORITHM

It is necessary to evaluate the pressure integrals, Egs.
(49a), (50a), (52a), and (53a), numerically. The primary
analytical task for the evaluation is the conversion of the
integral, as well as the coordinate transformations, to real
forms descriptive of the propagating spectrum (n < 1), and
the evanescent spectrum (2 > 1). It is important to note that
the singularity at n = 1 is integrable. We employ the New-
ton-Raphson technique to solve the coordinate transforma-
tions for each of the eight strained coordinates @, 8,, £, and
7, (/= 1,2) at a specific transverse wavenumber in the in-
terval 0 < n <1 and n > 1. We then obtain the contributions
of each wavenumber to the pressure integral by a Gauss—
Chebychev quadrature. The frequency content of the pres-

1868 J Acoust. Soc. Am., Vol. 85, No. 5, May 1989

sure waveform may be evaluated from a two dimensiong|
Fourier analysis®’ of a dual series in the variables 7, =
and 7, = w,. The net result is an algorithm that is relativeiy
costly for extensive computation. Nevertheless, it yields 3
prediction of the acoustic pressure that may be utilized to
generate waveforms and propagation curves of the frequen.
Cy response.

Two alternative algorithms are available for enhancing
the computational efficiency. Both approaches are based on
interfacing the analytical expressions to the farfield propaga-
tion model” for spherical waves with directivity. Suppose
that the signal at some reference distance r; and polar angle 6
is known as a two-dimensional Fourier series, which may be
written in complex form as

p(re,6,t) = poch

=

X z i D, (8)expli( jo, + kw,)t ],

j= —w k= —x
(56)
D,=D¥_;,=D}_,. (37)
Then, the signal outward from that location is
p(roe) = —l-p(,cé (51)
2 r
X z Z D/k(o)
j= —xo k= —-x
xexpli( jo, + ko) (t —a + ry) ], (58)

where a is a strained coordinate that is related to the radial
distance by

r=a+ B, In(r/r)rp(ro.). (59)

The only difference between the approaches is the manner in
which the complex amplitudes D, are determined at the
interface r = r,.

The first, which we term the nonuniform spherical
propagation (NSP) model, uses the nonuniformly valid
expression for the acoustic pressure in Eqgs. (40). That result
predicts the amplitude and phase corresponding to each pri-
mary, the second harmonic of each primary, and the sum
and difference frequencies. The computation of those re-
sponses does not feature coordinate transformations, so it is
relatively straightforward. The frequency response is com-
puted in this manner at a spherical spreading distance r,,
which is of the order of magnitude of the Rayleigh distances
associated with each primary. The signals at locations be-
yond r, are computed according to the spherical model, Egs.
(57)-(59). This means that only one nonlinear equation,
namely Eq. (58) needs to be solved for coordinate straining.

The second algorithm, which we call uniform spherical
propagation (USP), employs the nonlinear King integrals.
We find the signal at a spherical spreading distance 7, by
carrying out the full evaluation, including the coordinate
transformation. Then, we frequency analyze the signal at the
interface in order to generate the boundary condition for
nonlinear spherical wave.

In either approach, the signal at , provides the bound-
ary condition that drives the directive spherical waves.
Clearly, the first algorithm is less difficult than the second.
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However, the second algorithm is more accurate than the
first, especially if distortion is significant in the nearfield. We
shall present the results of the USP model only. The value of
ro we use is the Rayleigh distance (see Ref. 35), whose non-
dimensional value is {(ka)?.

Vii. RESULTS FOR PARAMETRIC ARRAYS

The analytical model that has been derived in this inves-
tigation is quite general. However, we are unaware of mea-
surement of the interaction of collinear beams at disparate
frequencies. Therefore, we begin with results for parametric
arrays, that is, neighboring primary frequencies. The experi-
ments for parametric arrays in water performed by Muir and
Willette,>* Eller,” and Bjorno et al.,*” along with the experi-
ment in air reported by Bennett and Blackstock"' provide
useful data for validating the analysis. Other measurements
of parametric arrays were not considered for this compari-
son for a variety of reasons, for example, some considered
saturation associated with shock formation, which is an ef-
fect not covered by the analytical model. Other experiments
used rectangular arrays. The transducer in each of the afore-
mentioned experiments was a circular piston of radius a os-
cillating with two frequencies w, and w.. This corresponds in
Eq. (2) to shading functions:

1, Rgka,
R =7, =
SR =Lt R) 0, R>ka, (60)
which lead to the following Hankel transform amplitudes:
V.(n) =€ (kas2in)J (w,nka), j=12. (61)

The comparisons we present are primarily between the mea-
surements and the present analytical model. Also, in each
case the rudimentary predictions of the Westervelt model’
are presented, along with the analytical results, if any, in the
cited reference.

InFig. 1, we compare the predicted theoretical results to
the data obtained by Muir and Willette. The measurements
describe a 64-kHz difference frequency signal that arose
from interaction of 482- and 418-kHz primary signals emit-

SPL (dB// tufa)

Ak bk, Al "

3 8710 30 50 100 200
* RANGE (m)

0.2 0s 1

FIG. 1. Axial propagation of the difference frequency f, = 482 kHz,
/:=418kHz,SL, = SL, = 207.2dB//1 4Pam,a = 38.1 mm, fresh water.
= present theory; @: measured®; - - - : Westervelt model.'
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FIG. 2. Axial propagation of the difference frequency f, = 1.46 MHz.
f:=141 MHz, SL, = SL, = 204.0 dB//1 uPa, a = 10 mm, fresh water.
— : present theory; @, A: measured in different tanks®; — - - : Westervelt
model.'

ted from a 3.81-cm radius piston operated in fresh water.
Each primary was transmitted at a source level of 207.2
dB//1 uPa m. The theoretical and experimental results
compare quite favorably.

The theoretical predictions and Eller’s experimental
propagation curve for 50-kHz difference frequency compo-
nent shown in Fig. 2 also are in good agreement. The pri-
mary frequencies are 1460 and 1410 kHz, and the source
level of each is 204.0 dB//1 uPa m. The piston radius is 1.0
cm and the medium is fresh water.

Figure 3 depicts the theoretical results for a 40-kHz dif-
ference frequency signal in measurements made by Bjorno
et al. The primary frequencies are 910 and 870 kHz emitted
from a 1.0-cm radius transducer operated in brackish water.
Each primary was transmitted at 208.0 dB//1 guPam. (We
referred to Fenlon and Mackendree®* to obtain these param-
eters.)

180

170

160 |

150

SPL (B//1ubPa)

140 b

130

0.2 04086 1 2 4 6810 20

RANGE (m)
FIG. 3. Axial propagation of the difference frequency f, = 910 kHa.
/> =870kHz, SL, = SL, = 208.0dB//1 uPa, @ = 10 mm, brackish water.

—: present theory; O: measured in a steel tank?*; O: measured in an ane-
choic tank?*; @: measured in s channel®®; - - — : Westervelt model.'
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SPL (dB//20uPe)

s

0 Ao 4 o " P "
0.1 02 ‘04 0680810 20 40 00 80

RANGE (f1.)

FIG. 4. Axial propagation of the difference frequency f, = 23.6 kHz,
f2=18.6 kHz, SL, =99.7 dB//20 4Pa m, SL, = 104.7 dB//20 yuPa m,
a = 29.2 mm, air. —: present theory; @: measured®’; - < - - numerical inte-
gration®'; —+ ~ « - «: perturbation analysis’'; — — - : Westervelt model.'

An example of the agreement between the theoretical
predictions and the experimental results for parametric ar-
rays in air is shown in Fig. 4 for Bennett and Blackstock's
data. The 5-KHz difference frequency is generated by a
2.921-cm radius piston. The primary frequencies are 23.6
and 18.6 kHz and the source levels are 99.7 dB//20 uPa m
and 104.7 dB//20 4Pa m. It is particularly noteworthy that
our model is in overall agreement with the measured fluctu-
ations in the difference frequency.

Figure S displays a waveform at the axial location

= 18.0 m for Bennett and Blackstock's data, except the
primary frequencies are 25 and 20 kHz. (Choosingw, and w,
such that they are integer multiples of w, — w-, reduces the
time interval over which the waveform is periodic.) In com-
parison to the linearized prediction, nonlinearity results in
earlier arrival of the maximum compression signals, and re-
tarded arrival of the maximum rarefraction signals. This is
consistent with past predictions and observations of mono-
chromatic waves. In addition, Fig. 5 indicates that the dis-
tortion of the waveform is largest near the envelope peaks,
but the shape near the envelope nodes is nearly unaffected.
This supports the suggestion by Moffett and Mellen®? that
the primary waveform should be modeled as a sinusoidal at

b
o
>

\//’\/\
\/\]v

1.0

o

PRESSURE (nonaim.)x104

e
o
o

o

TIME (nondim.)/2w
FIG. 5. Waveformon-axisz = 18 m. f, = 25kHz f, = 20kHz. SL, = 99.7

dB//20 uPa, SL, = 104.7 dB//20 uPa m, a = 29.2 mm, air. — : present
theory; - - - : linear theory.
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SPL (dB//20uf8)

U S T I DU S R U T S A U S U

ar a2 os 10 22 S0 100
RANGE (m)

FIG. 6. Axial propagation of the fundamentals and lowest-order harmonics
/i =305 kHz, f, =20.7 kHz, SL, = 132.8 dB//20 yuPa m, SL.=119.5
dB//20 uPam, a = 62.9 mm, air.

frequency lw, near the source that becomes “clipped” near
the envelope peaks as the wave progresses.

Theoretical predictions of propagation curves for har-
monics and combination frequencies resulting from the non-
linear mixing of two sound beams in which the primary fre-
quencies are not close to each other are shown in Figs. 6 and
7. The primary frequencies are 30.5 and 20.7 kHz, and the
corresponding peak source levels are 132.8 dB//20 uPa m
and 119.5 dB//20 uPa m. The piston radius is 62.9 mm and
is operated in air.

Figure 6 shows the fundamental and the second har-
monic of each primary, in addition to the sum and difference
frequency signals. The levels of both harmonics (61 and 41.4
kHz) and the levels of sum and difference frequencies (51.2

120

2w, +w,
2w —w,
w,+2w,

2wy—w,
1

SPL dB//20uPs)

\%

2 et bid
el o2 as v 20 0 w0

RANGE (m)

F1G. 7. Axial propagation of the higher-order harmonics for the parameters
in Fig. 6.
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and 9.8 kHz) increase in the nearfield about 6 dB for a dou-
bling of the distance. In the farfield, the levels of the harmon-
ics and the sum and difference signals decrease at greater
distance from the piston. However, these levels decrease
slightly less steeply than those of the fundamentals. The os-
cillations in the nearfield seem to be due to diffraction ef-
fects. It should be noted that the level of the sum frequency
signal is larger than the difference one because the amplitude
of each signal depends on its frequency (both amplitudes
depend quadratically on the amplitudes of the primary
waves). Figure 7 depicts the curves for the third harmonics
and the higher combination frequencies; namely, 3v,, 3w,,
|20, + @,|, and |w, + 2w,|. In the nearfield, the levels of
these curves increase approximately 12 dB for doubling of
the distance.

It should be remarked that Brinkmann™* has experi- .

mentally obtained comparable behavior for the interaction
of two primary waves emitted from a small cylinder sus-
pended at its center of gravity and excited into longitudinal
vibration with two frequencies.

Vill. CONCLUSION

Our mode! for collinear interaction of sound beams is
valid from the region quite close to the transducer out to the
farfield, provided that the location is closer to the source
than the shock formation distance. An account of the pri-
mary wave radiation including diffraction effects has been
made through the King integral. Numerical results for the
difference frequency signal in parametric arrays have been
shown to agree well with experimental data for on-axis re-
sponses. However, proper validation of the theory developed
here requires experimental data for the nonlinea: mixing of
the collinear sound beams at arbitrary frequencies and
strengths.

Note added in proof: Subsequent to the submission of
this paper, calculations by Edgerton®* revealed that, when 7,
is the Rayleigh length, the numerical solution of the coordi-
nate transformations fails to converge for the parameters
associated with the experiments of Refs. 28 and 29. We then
reexamined our calculations and found in both cases that the
present results were obtained for a nondimensional
ro=0.75/7(ka)?, which is twice the distance suggested by
Zemanek* as the transition to spherical spreading.
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Ray theory and perturbation analysis are ct;mbined to analyze the cumulative growth of
nonlinear effects resulting from excitation of a single nonplanar mode in a two-dimensional
waveguide whose walls are rigid. The first-order (linear) signal is decomposed into a pair of
obliquely propagating planar waves. The signal associated with each ray is required to satisfy
the inhomogeneous second-order wave equation. A single ray emanating from its source is
followed to its first incidence at one wall, and the reflection of such a ray is determined by

. requiring that incident and reflected rays combine to satisfy the hard-wall boundary condition.
The method of images then leads to a generalization of the result to the case of a ray that
undergoes multiple reflections. Nonuniform validity of the ray signal determined in this
manner is corrected by the method of renormalization, which leads to the conclusion that a ray
behaves like a simple nonlinear planar wave, except that the propagation distance is measured
by tracing the ray back to its source. The overall signal at a specified field point is determined
by superposing the signals associated with the two rays that intersect at.that location. The
result is shown to be in complete agreement with earlier modal analyses of the same problem,

provided that the frequency is sufficiently low to inhibit resonant energy transfer between
nearly parallel rays. Although the analysis is less direct than that used previously, it yields
physical insight into the distortion process not previously available.

PACS numbers: 43.25. — x, 43.20.Dk, 43.20.Mv

INTRODUCTION

In linear theory, a two-dimensional mode in a hard-
walled waveguide at a frequency exceeding cutoff may be
decomposed into a pair of obliquely propagating planar
waves. Nonlinearity associated with finite amplitude effects
leads to two types of harmonic generation. Each planar wave
generates a planar second harmonic that propagates jointly
with the fundamental. This leads to a resonant self-action
process, in which energy is continuously transferred from
the fundamental to higher harmonics of that planar wave.
This is the cumulative distortion effect commonly encoun-
tered in simple waves. In contrast, the interaction between
different oblique planar waves is a dispersive process, in
which the interchange between fundamental and second
harmonic is not resonant. Cumulatively growing distortion
in this case only arises at frequencies substantially above cut-
off.

Most analyses of nonlinear effects in 8 waveguide have
been founded on perturbation techniques. Nayfeh and Tsai
used the method of multiple scales to study waveguides hav-
ing rectangular' and circular’ cross sections, in the case
where the walls are acoustically treated. The wave propaga-
tion phenomena in the linearized version of such systems are
dispersive, which inhibits the type of resonant interactions
that leads to cumulatively growing distortion. Consideration
of resonant interactions was also avoided in the analysis by
Keller and Millman’® of propagation in a rigid-walled wave-
guide whose cross section is not rectangular. Their perturba.
tion technique was the method of strained parameters based
©On an expansion of the wavenumber. The method of multiple
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scales was used by Vaidya and Wang* to investigate nonlin-
ear interaction effects in a rigid-walled waveguide that is
subjected to a multiharmonic excitation. The walls in the
system they studied were rigid, corresponding in linear theo-
1y to nondispersive waves. Resonant self-action was predict-
ed by their analysis, but the complications associated with
the method of multiple scales and the multitude of interac-
tions prevented analytical solution of the partial differential
equations governing the amplitudes of the modes.

Finite amplitude propagation phenomens arising from
multimode excitation of a rigid-walled waveguide were also
studied by Ginsberg.® He employed the method of renormal-
ization to examine nonlinear self-action effects within
groups of nondispersive waves. The overall response was
shown to be a superposition of the various nondispersive
groups, each of whose distortion is governed by the signal
aasociated with that group. Hamilton and TenCate® incor-
porated the effects of thermoviscous attenuation into their
analysis of interactions for a low-frequency excitation of a
waveguide mode. That investigation evaluated the pressure
by solving numerically the differential equations governing
the amplitudes of a Fourier series expansion.

The latter two studies both avoided consideration of the
high-frequency regime, in which the pair of oblique planar
waves is nearly parallel to the axis of the waveguide. In that
situation, the transverse wavelength of a mode is much
greater than the axial wavelength, 30 the mode has a nearly
planar appearance. Significant coupling with the truly
planar mode then arises, even though the planar mode is not
directly excited. Ginsberg and Miao’ developed an analyti-
cal procedure for treating high-frequency modes by using
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the method of renormalization. They considered the case of
excitation of the (2,0) mode as a prototypical example.

An important aspect of the aforementioned investiga-
tions is that they all employed separation of variables con-
cepts in order to devzalop solutions of the perturbation partial
differential equations. One may consider them to be modal
formulations, in contrast to our solution, which is based on
evaluation of the propagation of signals along rays that re-
fiect off the rigid walls. Our solution is suggested by studies
performed by Feng"® and Qian'® of the reflection of a dis-
torted plane wave obliquely incident on the boundary of an
infinite half-space. However, those works only addressed the
mechanisms by which second harmonics are generated,
whereas the present study fully explores the distortion pro-
cess.

It is the intent of this presentation to develop the ray
approach, and to use the solution to gain additional insight
into physical phenomena. Since the earlier modal formula-
tions adequately describe the response throughout the fre-
quency spectrum, we shall avoid the complications of dissi-
pation and quasiplanar coupling phenomena by limiting the
analysis to the moderate frequency regime. Also, for the sake
of simplicity, we consider only the case of a monochromatic
excitation that excites a single mode according to linear the-
ory.

The treatment begins by decomposing the first-order
(i.e., linear) velocity potential into the pair of oblique waves,
from which the nonlinear source terms generating the sec-
ond-order signal are derived. A specific ray is then followed
from its source through its first reflection at one of the rigid
walls. The result is extended to the case of a ray that has
undergone many reflections by applying the method of im-
ages. The overall signal in the waveguide is then synthesized
by tracing the rays arriving at a specified field point back to
their respective sources.

The ray solution explains an apparent paradox in the
earlier modal analyses. Specifically, although the signal may
be decribed in terms of a pair of oblique planar waves that
propagate in both the axial and transverse directions, the
scale of the distortion process is independent of the trans-
verse position. Conversely, the earlier modal solutions pro-
vide validation for the present analysis, which indicates that
the solution is a superposition of the signal associated with
each ray. One corollary of the analysis is to prove that the
laws for linear reflection from a rigid planar surface also
apply to the nonlinear ray.

L. EVALUATION OF THE FIRST- AND SECOND-ORDER
RAYS

We consider a two-dimensional waveguide whose rigid
walls occupy the planes x = 0 and x = L, with z measuring
axial distance. Perturbational equations for the velocity po-
tential ¢ in the absence of dissipation and shocks, correct to
second order, are

$=€b+E9,+ -, n
avig, 94 _o )
0 1 a'z - L
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where € is the acoustic Mach number of the excitation, e €1,
¢o is the speed of sound in linear theory, and B, is the coeffi-
cient of nonlinearity for the fluid. The particle velocity and

pressure may be obtained from
v=V4, p= —po-%:;-f-ow’). 4)

We postulate the existence of & velocity distribution along
z = 0 that excites only nonplanar mode (m, 0). The corre-

sponding boundary condition is
%:—F e = €C, sin{w?) cos(k,.x), k, =¥. (5)
The rigid wall conditions are
oad o |
= == =0 6
ax xm0 ﬂx xm L ( )

The cutoff frequency, below which the solution for ¢,
evanesces, i8 cok,. We are concerned here only with the

propagating case, which leads to
@, = (co’k,) cos(k,z — wt) cos(k, x), (N
where

k=w/c,, k,=(k*=k2)\?, k>k,. (8)
The first-order potential may equivalently be described as
two trains of planar waves. As depicted in Fig. [, for the case
m = 2, the respective rays are parallel to the directions n,
and ny;, both of which are oriented at angle § from the axial
direction, where the propagation angle is given by

ksind=k,, kcos@=k,. )
The specific expression obtained from Eq. (7) is

¢| = F,[cos(kzl - a)t) -+ c‘)s(kz" - ﬁ)t)],

F, =co/2k cos 6,
where the distances z; and z,; are the projections in the direc-

tions of propagation of the position x relative to the origin.
Specifically,

zy=n'X=x8in6 + zcos b,

(10)

' (11)
z“ ==Il"'x== -xsmo +20089.

FIG. 1. Geometry of the pair of oblique planar waves.
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Substitution of Eq. (10) into Eq. (3) leads to

c%v%—%ji;—s — wk *F3{B,[sin(2kz; — 2wt)

+ 8in(2kzy, — 201) ]
+ 28" sin(2k,z — 201)}. (12)

In the foregoing, the last term arises from the dot product of
the ; and n, terms in Vé,. Correspondingly, the coefficient
B8’ = B, — 2 sin? §is the coefficient of nonlinearity for inter-
action of two noncollinear planar waves.'™!? This is con-
trasted by the terms in Eq. (12) associated with S, which
represent self-action of the respective rays. They arise from
dot products involving solely an n; or n,; term.

The source terms in Eq. (12) corresponding to self-ac-
tion are solutions of the homogenecous wave equation,
whereas the term arising from interaction of the intersecting
planar waves is not. As we shall see, the effect of self-action is
to produce terms in ¢, that grow in magnitude with increas-
ing z, corresponding to the familiar cumulative distortion
process. The interaction term leads to a solution for ¢, whose
overall amplitude is independent of z, sithough it has the
appearance of spatial beats.”-!? The amplitude of these beats
is singular in the high-frequency limit, for which k, — k and
6—0. Our purpose here is to gain additional understanding
of the distortion due to self-action. For that reason, we shall
not address this limiting case. Correspondingly, we denote
as O(€*), without further analysis, all second-order terms,
including ray interaction, whose magnitude does not grow
with increasing 2.

Rather than using modal procedures to evaluate the
self-action effect, the present approach will synthesize the
appropriate solution from an analysis of the reflection pro-
cess of a ray obliquely incident at one of the walls. Since the
terms that are uniformly O(€”) are to be ignored, the general
solutior. for ¢, is associated with the first two source terms in
Eq. (12). The form of the solution is

, = F[(2; + C)) cos(2kz, — 2wr)
+ (2 + G 2= —2t)] + O(). (13)

In order that Eq. (13) satisfy Eq. (12), it must be that

F, = BwkF?/4ck mB /16 cos® 6. (14)

The constants C; and C, arise from the complementary
solution. In order to determine them, consider & region near
the origin, such that a ray undergoes only one reflection at
x = 0. Such a situation appears in Fig. 2, where ray If ema-
nating from source point A is incident at point B, resulting in
the refiected ray 1. Since boundary condition (3) is satisfied
by #,, it must be that 3g,/z =0 at 2= 0. Applying this
condition to the secular portion of ray IT in Eq. (13) leads to
Zy +Cp =0atz=0,x=x,,s0 that

Cp = x, sin 6. (15)

This result is consistent with the notion that the nonlinear
effect grows with increasing distance from the source, since
itleadstog,=0atz=0.

We find from the foregoing that the incident ray is

(‘2)- = Fz(z" + Xa sin 0) “(2&]] bd 2‘1)') (16)
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FIG. 2. Reflection of a ray at a rigid wall.

Sinccazl/ax = - az“/ax, the sum (éz)u + (¢2)M given
by Eq. (13) satisfies the rigid wall condition at x =0, if
C = C,;. Hence, the reflected ray departing from point B is

(82) s = Fy(2, + x, 8in 6) cos(2kz, — 20t). (17)

The significance of these expressions lies in our ability to
generalize them. We observe in Fig. 2 that 2; and z,; are the
distances in the respective directions n; and n,, measured
from the origin, while x, sin 8 is the distance between
source point A and the origin measured along n,, . However,
X, sin §is also the distance between image point A’ and the
origin measured along n; . Furthermore, note that z, = 2z at
point B. If § denotes the position of a generic point on either
ray, and A, A’, and B denote the position of the respective
points, then Eqgs. (16) and (17) may be rewritten as

(42)ipe = Fny, - (§—A) 0“(2’@11 ‘§ — 2w1),

(#2) s = Fom;* (§ — A’) cos(2km, -§ — 201)

=F[a, (B—A)+n,-({-B))
X cos{2k [0y, B + 8, (§ — B) ] — 2w1}.

The two forms for the reflected ray lead 10 alternative
interpretations of the reflection process. In the first, the ray
&ppearn 1o emanate from the image point A’, where it is un-
distorted, while the second form corresponds to a ray ema-
pating from the reflection point B. In the latter viewpoint,
the expression for (¢,) . shows the second-order signal in
the reflected ray at point B to be equal to the signal in the ray
incident at that point. The second interpretation leads us
through mathematical induction to recognize that the char-
acterization is quite general—it does not rely on the fact that
the reflection in Fig. 2 is from the wall at x = 0. All that is
required to apply Egs. (18) to reflection from the wall at
X = L is to interchange the subscripts 1 and 11. Equally im-
portant, it follows that the results are valid even if the inci-
dent ray itself arises from a prior reflection.

We see from the foregoing that the reflection of the sec-
ond-order ray associated with the self-distortion process is
the same as the familar reflection law for a ray in linear
acoustics. This is precisely the conclusion reached earlier by
Feng®® and Qian.'® Although the second expression for
(#:)rer in Egs. (18) is more useful for qualitative under-

(18)
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standing of reflection, the first expression, which uses the
image point, wil! lead us in the next section to s construction
of the particle velocity and pressure at a specified location.

. UNIFORMLY VALID FIELD SOLUTION

In Fig. 3, we have selected a specific field point at posi-
tion x. The source points A and C are for the I and II rays
intersecting this point, and A’ and C’ are the corresponding
image points. The distances s; and s,; are the respective dis-
tances from the image points to the field point. (The fact that
$; = sy = 2/c0s § will be important later.) Combining the
term for either ray obtained from Eq. (10) with the first
expression for a reflected ray in Egs. (18) yields the poten-
tial function associated with self-action of the rays:

¢, = ‘F] m(hl -— w’) + é'zl",‘l 003(2’(21 - 2&"),

(19)

¢" = ‘F. O(S(kz" bl m’) -+ QJF,'“ cm(Zkz" - 2&)').
Sinces; — z; and 5;; — z;, are constants along the respective
rays, the particle velocity associated with each ray is

1
w= glnl

= — ekm, (F, sin ¢, + 2€F,s, sin 2¢, ) + O(&),
(20)

_ 9é,,
Yy =—"1y

azll
= — ekn,; (F, sin ¢y + 2€F5s;, sin 2y, ) + O(€2),
where the phase variables are
¥ =kz —ot, ¢, =kz,; —wt. (21)
The corresponding pressures are

A’

i 4

FIG. 3. Source and image points for the rays intersecting at a selected Beld
pownt.
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A= -Po%+0(¢1 = Pofo’; "By,

(22)

Equations (20) contain ¢’ terms that grow with increas-
ing distance, so they are not uniformly valid. We correct this
behavior by invoking the method of renormalization, which
introduces a near-identity transformation between the linear
phase variables ¢, ¥y; and nonlinear phases y,, y,. The
details of the renormalization may be found in the Appen-
dix. The result is that

v, = —ekFin siny,, vy = —e€kFin, siny,, (23)
where the transformations have implicit functional forms
given by

Y1 =X1 +Boks;v'my /o

¥u = Yu + Boksu Yy "By /co

The nonlinear phase variable corresponding to a specified
value of a linear variable may be found by numerical solution
of Egs. (24), after substitutio. of Eqs. (23). The velocity
components v, and v,, and the pressure p associated with
the cumulative nonlinear distortion process, may then be
determined by superposition of the results for the two rays.
This leads to

Uy = (v "By — vy "0y ) sin 6

4)

= — ¢kF,sin 8 (sin y; —sin y; ),
v, = (v + vy °my ) cos @
= — ¢kF, cos @ (sin y; + sin yy;),
P =poco (Vi°0y + vy o0y )
= — €pocokF, (sin x; + sin xy;). (25)

ill. VALIDATION

It is not difficult to prove that the combination of Eqgs.
(23) and (24) for either ray is identical to the Earnshaw
solution™ for the finite amplitude planar wave generated by
a low Mach number harmonic excitation. Specifically, if the
particle velocity v at position s = 0 is €c, sin(w? — §), the
Earnshaw solution for small ¢ is

v= —¢cysin[aw(s/c—1t) +6], e=co+Bw. (26)

The linear and nonlinear phase variables for the planar wave
are

V=ki—at+5 @n
and
xak(&);-mt+6=¢—££-+0(-’—vz—). (28)
¢ S L
respectively.

The second equation, which relates y and ¢, is compara-
ble to that indicated by Egs. (24) for either ray. In order to
ascertain the phase lag associated with each ray, we rewrite
Egs. (21) as

K. Shu and J. H. Ginsberg: Ray theory for finite ampiitude effects T4

snShem.




‘] =h| -—a)!—-k(:, -z|).

’u =k’“ -t - k(S“ —z“).
Inspection of Fig. 3 shows that -~the distances
5; — 2, and 5;; — 2, may be expressed in terms of the loca-
tions of the respective image points x,- and x-. Asa
quence, the phase lags are :

5 = —k(s, —2)=kx, sin0=k,x,, ‘

(29)

. (30)

6“ = —k(:" ‘_z“)E -k‘c- m8= —k_'xcv.
Geometrical analysis reveals that x,.c = 3 x,¢c + 2L,
where the integer j and the choice of sign depend solely on
the number of reflections the ray undergoes prior to its arriv-
al at the field point. Since k, L = m, the phase lags may be
equivalently written as

6 = +k.x,, 6y = k. xc. (31)
Clearly, the phase delay in each ray stems from its origina-
tion from a point that is not at the x,z origin.

We have seen that the signal along each ray behaves like
a simple planar wave, whose distortion depends on the prop-
agation distance measured obliquely along each ray. This
seems to conflict with the results of the modal analyses,
which found that the distortion process is dependent only on
the axial position. There actually is no inconsistency. In or-
der to demonstrate this, let us convert Egs. (23)-(25) to
variables associated with the x,z spatial coordinates. First,
we apply the trigonometric identities for the sum and differ-
ence of two sines to Egs. (25), and define new nonlinear
independent variables 7 and £, such that
knsin8= iy, —xu). kfcosb=}(x; +xu) +a”~32

(32)

This converts Egs. (25) to

v, = — 2¢kF, sin @ sin(k7 sin 6) cos(k§ cos 8 — wt),

(33)
P = pefov, /cos &

= — 2epLokF, cos(kn sin 8) sin(k& cos 6 — wt).
Elimination of & and F, from these expressions, by substitu-
tion of Eqgs. (9) and (10), shows these expressions to be the
same as Eqgs. (43) and (44b) in the paper by Ginsberg and
Miao,” which are the approximations for moderate frequen-
cies of the general expressions for the signal.
We obtain relations for 7 and £ by subtracting and add-
ing Egs. (24). Since 5, = 3, = 2/co0s 8, this step yields
Y% — ¥y ) = knsin @ + (Bokz/2c, c0s 6)
X (v m —vyony), (34)
(b +¢y,) = kécos 8 — wt + (Bokz/2c, cos 8)
X(vym +vyomy).
The left side of each relation may be simplified by the intro-
duction of Eqs. (9), (11), and (21), while Egs. (25) sim-
plify the right side. The result is
x =9+ [Boz/(2sin? 6 cos 8)] (v, /c,),
2= $ 4 [Bo2/(2c08’ 0)](v,/¢,).

When Eqs. (9) are used to eliminate @ from the foregoing,
the result is identical to Ginsberg and Maio's Eq. (45).

3%
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It is obvious that the magnitudes of the differences
7 — x and £ — 2, which represent the degree to which the
phases of v,, v,, and p differ from their linear analogs, are
proportional to z. This result is obtained, even though each
ray depends on both x and z, because the propagation dis-
tance of intersecting rays is identical and depends only on z;
see Fig. 3. Hence, when z is held fixed, the pair of rays inter-
secting at different x have all propagated through the same
distance, even though they originate from different sources
on z = 0. The location of the source point for each of these
rays only affects the phase lag of its signal, as shown in Eqgs.
(31). It is for this reason that the only spparent effect of
transverse position in Eqs. (33) is the sinusoidal phase factor
mirroring the excitation.

IV. DISCUSSION

We have demonstrated that finite amplitude propaga-
tion phenomena in a waveguide may be described in terms of
rays. Although the formulation is less straightforward than
the comparable analysis® using modal techniques, the result
provides physical insight not available from the earlier solu-
tions. It was shown here that two rays emanate from each
source point at the boundary where the excitation is applied.
The signal along each ray distorts in the same manner as a
conventional planar wave, with the propagation distance
measured along each ray. Reflection of a ray at a hard wall
obeys the linear rule for oblique reflection at a rigid surface:
angle of incidence equals angle of reflection, no loss in signal
strength, and no change of phase.

If the frequency of excitation is not too high, interaction
between crossing rays is insignificant in comparison to the
self-action distortion phenomena for each ray. However, at
high frequencies the near parallelism of crossing rays en-
hances their interaction. This phenomenon, which was treat-
ed by Ginsberg and Miao,” was not considered in the present
analysis. (It seems reasonable to expect that nearly parallel
rays for proximate modes in a case of multimodal excitation
will couple in the same manner.)

When interaction between rays is omitted, the signal
may be obtained by superposing the signal associated with
each ray. This explains the observation in an earlier analysis
by Ginsberg'* that shocks form along the wave fronts for
either ray. The ray picture also emphasizes the increasing
role of dissipation, which was not included in the present
work, when the frequency is allowed to approach cutoff. In
that case, the decrease in the wavenumber & is accompanied
by an increase in the angle § between the rays and the axis of
the waveguide. If one considers s fixed position, the propa-
gation distance for the rays intersecting at that position in-
creases in proportion to sec 6. This leads to an increase in the
dissipation loss factor.
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APPENDIX

The method of renormalization, described by Nayfeh,'*
is based on the notion that a weakly nonlinear process is
comparable to the linear process, except that the indepen-
dent variables correspond to a distortion of the space-time
grid that increases with increasing distance from the source.
Consider the nonuniformly valid description of ray I, as giv-
en by the first of Egs. (20). Since the second-order term is
proportional to s;, the nonlinear phase variable y, should
equal the linear variable ¢; ats; =0, and the difference
X1 — ¥; should increase in proportion to s, . Hence, we seek
a near identity transformation in the form

%=1 +6(n) (A1)
where the unspecified function G, (y;) must be selected to
cancel the nonuniformly valid term.

In order to determine G;, we substitute Eq. (A1)} into
the first of Egs. (20), and expand the result in a Taylor series
in powers of €. This gives

v, = — ekm, [ F, sin(y; + €5,G;)

+ 2eF,s; sin(2y, + 2¢s,F}) )
= — ekn, [F, siny, + €5, cos y;
X (F\G; + 4F;siny,)] + O(€). (A2)
Setting the factor containing G, to zero leads to
'l = _€h|F| Sinx,,

(A3)
¢| =x' —46,(F2,’F|) Sin,r, =Xl +Bok3|'| 'nl/CO.
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The relations for the second ray may be obtained by chang-
ing the subscripts in Egs. (A3) from I to IL
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NONLINEAR WAVE EQUATION

F_{uud case S—\O’" S/Mpl«cw!(y.'

qvip-28 ! [1 (%) 4+v4- V4] +0(5)

0¢ \
p= gy~ L+0(¢")

v=V¢
where
B, =1+ B fluids

= —— gases

Po (v ws—i(é-‘é d

L= ot

i

!

{
saen l
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PERTURBATION EXPANSION

d(z,2,t) = €9, (z,2,t) + € ¢, (z,2,t) + - -

where
€ = Acoustic Mach Number = -
O(e)
o ¢,
'V, — —
VO B
__, 99
Pr =P 5
O(e):
¢, O a¢
: V’ —_——_—— = — . _ R vi I
GV b = 5= 5(Ve - Ve ) +2(8, )5, V¢
09,
pi - _po at - £1
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PERTURBATION ANALYSIS

DIFFICULTY FOR STRAIGHTFORWARD
"PERTURBATION APPROACH:

Should not satisfy first-order boundary conditions
with first-order solution because this leads to a

situation where the second-order boundary conditions

be satisfied

MODIFIED APPROACH:

Consider the incident, reflected, and transmitted

waves at first order to be separate entities:

phase variables ¥, , 1, , ¥,

é, =sinwiy, + Rsinwy, + Tsinwy,

Boundary conditions will be satisfied by total

R




¥ 5
A AT A LA, B N 8 j - w-‘/ 8 T

Snb: _ _Sin®, __sinb: _ %

C‘: C‘x Qz ‘I

DU V. VS,




n; = sinb,i — cos b,k
n, =sinf,i + cosb k

n, = sinf,} — cos b, k




SECOND-ORDER SOLUTION

Nonlinear Self-action: Secular effect

(¢,). = F. 2, cos(2wi,)

. !k-"
(¢,). = F,R* z, cos(2wy,), F, = _ﬁ4w‘
ok
(qs?)i :Fszza COS(2W¢¢)’ Fz :_%
Nonlinear Interaction: Nonsecular effect
NSW ~ sinw(v, + v.)
where

Y, =t—i—l, 2z, =zsinf, — zcosb, %
Y, =t—§’—, z, =zsinf, — zcosb, |
w.-——t—f’—, z, = zsinf, — zcosb, s



RENORMALIZATION PROCESS - REMOVE
SECULAR TERMS

Add First- and secular second- order signals to
form velocity potential for each wave

Evaluate physical response variables

]
v =V¢, p=—po—£+0(6’)

Employ a set of strained coordinates transformation
along the direction of propagation of each
individual wave

2, =€ +e€Z (€ ,t)

Choose straining functions Z, to Cancel out the secualr
terms




Result is an Earnshaw—type solution for incident,
reflected, and transmitted waves:

Vv, = v, n, sinwVY,
v, = Ry, n, sinwV¥,

v, = Ty, n, sinwV¥,

where
1 Ll'
g =t 2
Cl+ﬁlvl
L
U o—t— z, + L,
¢ + B,
w'_—t_ 23 +L¢
Cll+ﬂllvt

. = distance between initial incident wavefront and place

of origination (known)

L. ,L, = phase lags of reflected and transmitted waves
(unknown)

R, T = reflected and transmitted coefficients
(unknown)




BOUNDARY CONDICTIONS

Continuity of normal particle velocity and

acoustic pressure across the interface z = 0

1

v =i, p =p" at z=0

Fundamental harmonic excitation at the source

v, = v, sinwt at z, = —L,

First-order terms on boundary conditions
determine secular effects

Second-order terms may be satisfied with

second-order homogeneous solution, which
are nonsecular - NEGLECT !

PP S



FINITE AMPLITUDE EFFECTS

Match Phase Variables on 2z = 0 yields

a. Finite amplitude form of Snell’s law

sin 0, sin 8, : sin 0,

cl+/Blvl’l=0 Cl+ﬂlvr|x=0 CXI+/Bllvtlx=O

b. Phase lags
L, _ L, _ L,
¢ +Bvl.e  a+Bulie i+ Buvlo

Algebraic equality gives

mcosf, — ncosf,

R =

mcosf, 4+ ncosé,
n(cosd, + cos¥,)
mcosf, + ncosé,

T =

where }

pll Cl '
= —,n
pl Cll

T







NUMERICAL EVALUATION

MT=%We

Auid] =i, B/A=50 =f =35
Suid Il = acetone, B/A=92 =5 =51
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CONCLUSIONS AND RECOMMENDATIONS

NONLINEAR INTERACTION CAN BE NEGLECTED
WHEN THE INCIDENT SIGNAL IS WEAK

NONLINEAR EFFECTS ON REFLECTION AND
TRANSMISSION ARE VERY SMALL FOR SMALL
INCIDENT ANGLES

DIFFERENT WAVELETS REFLECT AND TRANSMIT
AT DIFFERENT ANGLES WHICH HAVE PERIODIC
FLUCTUATION ABOUT LINEAR MEAN

CRITICAL INCIDENCE MAY BE TREATED BY
COMPLEX FORM OF SOLUTION

THE METHOD MAY BE EXTENDED TO ELASTIC
WAVES IN SOLIDS WHERE TRANSVERSE SHEAR
WAVES EXIST
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On supercritical incidence of a finite amplitude plane dilatational wave in
an elastic solid. Kun-Tien Shu and Jerry H. Ginsberg (School of Mechanical

Engineering, Georgia Institute of Technology, Atlanta, GA 30332)

An earlier analysis [K. T. Shu and J. H. Ginsberg, J. Acoust. Soc. Am.
"Suppl. 1, 85, EEEl (1989)) described nonlinear reflection and refraction
phenomena of a finite amplitude dilatational wave at subcritical incidence
on a plane interface between two bonded solids. The present work extends
the earlier description to cases where the angle of incidence exceeds the
critical value. The incoming wave is assumed to originate from the slower
medium, so two critical angles exist, associated with evanescence of either
the transmitted dilatational or shear wave. The finite amplitude version of
Snell’s law indicates that the dependence of the phase speed of the incident
wave on its instantaneous amplitude induces, in the case of evanescent
waves, fluctuations in the phase velocity parallel to the interface and in
the decay rate normal to the boundary. This effect mirrors the fluctuations
in the transmission and reflection angles of propagative waves. A numerical
algorithm is developed to evaluate reflected or transmitted waveforms at a
specified field point. In the special case of incidence close to a linear
critical angle, the finite amplitude Snell’'s law indicates that the
corresponding wave fluctuates between propagative and evanescent properties

within a single period. [Work supported by NSF. ]

Technical Committee: Physical Acoustics
PACS Subject Classification number(s): 43.25.Dc, 43,25.Jh
Telephone number: (404)894-3265 (J. H. Ginsberg)

Send acceptance or rejection notice to J. H. Ginsberg




ON SUPERCRITICAL INCIDENCE OF
A FINITE-AMPLITUDE PLANE DILATATIONAL WAVE
IN ELASTIC SOLIDS

Kun-Tien Shu

Jerry H. Ginsberg

The George W. Woodruff School of Mechanical Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332

[Work supported by NSF and ONR]

1. The role of nonlinearity on the supercritical incidence

2. Uniformly valid expression for evanescent waves

3. Field solution (waveform)



FORMULATIONS OF PROBLEM

Solid I:
o0*u _ (¢ -e) ou, _ o Fu K
ot? ‘ ‘" 0da,, Oa, * da. Ba,. Po
ou ou, ou, G..
= A—6.. - 2 L
T, 6,,6"+“(6,.+8a,.)+p0
Solid II:
v (¢* — ) o’ u _ o ov, K
ot? ¢ * " Oda,, Oa, * fa, da, p.
(D A S (L ) P
" Ba, # da, da, '
where
A+ 2u i
c, = ¢, =\ —
Po \/ Po
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PERTURBATION SERIES SOLUTIONS

Ray description of the reflection and refraction processes

Due to nonlinear self-action, Secularity occurs in the O(¢* )
incident, reflected and refracted P waves, but not in the
O(e€*) reflected and refracted SV waves (Ref. Lardner,
1985) |

Nonlinear interactions between individual wave trains (di-
latation and shear) are not important (exception: near
grazing incidence)

Boundary effects create secular waves that depend on dis-
tance perpendicular to the direction of wave propagation




UNIFORMLY VALID PARTICLE VELOCITY

. Figure out the linear reflection and refraction patterns

. Form particle velocities by the method of characteristics

v = —-;;eAexp[iw(t— E-LL)] + c.c.
o

where

a=c, +,(v-n) dilatational wave

c, shear wave

. Match nonlinear trace velocities along the interface to yield
finite amplitude forms of Snell’s law

. Obtain a system of equations to solve the unknowns

. Apply the algorithm that we have developed earlier to ob-
tain stress waveforms at a specific field point for the reg-
ular reflection and transmission patterns
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CRITICAL ANGLES FOR PLANE WAVES SCATTERING
AT A PLANE SOLID-SOLID INTERFACE

Dilatational wave (P) incidence

c, >c, >c 0
c, >¢c, >c 1
— ¢, >c >c, 2

Shear wave (SV) incidence

[y

c, >¢c, >c
c, >c, >c 2

c,>c >ec, 3




INCIDENT P WAVE

[A{X} = {C}

where
—siné, — cos @, sin 4, —cos ¢,
(4] = cos @, —sin ¢, cos 8, sin ¢,
T | —(+* —2sin*4,) ~vsin2¢, mn(y? —2sin’ §,) mny’ sin2¢,
sin 20, Yy cos2¢, mn sin 26, —mn~'? cos 2¢,
Adr /Ad sin 0,
_ ] AL /AL _ cos 8,
{X}= AL AL {C}= ~? — 2sin’ 6,
A, [AL sin 26,




1.0 <6, <40,.: Regular reflection and transmission case,
where both refracted P and SV waves in solid II are prop-
agating away from the interface.

2. 6,. <6, <86,.: The evanescent refracted P wave occurs

3.0, <8 < %: Both -cfracted P and SV waves are evanes-
cent

Vs,
)

d

sin 0“ X~ n[l + (»34 - :B; nT:d)

sinf,, = ny'(i+ B,

)

d




e 0,.<6. <84, : (= sinf, > 1)

set
cosf, = —i(sin’ §, — 1)'/?
N 1/2
= —3\ —sin’ 4. —1
z( s sin® 6, )
where
_ 14+ B.T; nv,,/c,
14 B/
09,c<9‘<—72£: (= sinf, >1 and sing, > 1)
setl
cosp, = —1i(sin’ ¢, — 1)'/?
2 1/3
E—i(—l—v—‘——sin’ 6. —1)
,an:
where

1
14 B.v,. e,

N,




— . k,a,+L )]
v=Ae Bt T a
. + c.C.
- a1
Sf
Y
a3

e All locations at constant a, have same phase

e Trace velocity matches that of the nonlinear incident
wave

e Decay rate depends on the phase of the incident wave
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Transmission coefficients
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CONCLUSIONS

. Nonlinearity is to cause reflected and refracted waves to
propagate in variable directions

. Evanescent waves propagate along the interface & decay
rates depend on the incident wave

. For supercritical incidence, shocks occurs in transmitted
field when it occurs on boundary in the incident wave

. For %critical incidence, the finite amplitude Snell’s law
indicates that the corresponding wave fluctuates between
propagative and evanescent properties within a single pe-
riod

. In reality, the response to an incident finite amplitude wave
will be near the response for the linear counterpart
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Modification of the NPE computer code to describe the propagation of axisym-
metric sound beams in infinite media. Gee-Pinn James Too and Jerry H.

Ginsberg (School of Mechanical Engineering, Georgia Institute of Technology,

Atlanta, GA 30332)

NPE is a norlinear progressive wave equation computer code developed by
McDonald and Kuperman [Comp. & Math. w. Appl. 11, 843-851 (1985)] to
evaluate transient propagation in acoustic waveguides. It is suitable for
two-dimensional phenomena, as well as for radial propagation of azimuthally
symmetric waves. The present study describes the modifications required to
employ NPE for the evaluation of axially propagation axisymmetric waves,
particularly those associated with sound beams radiated by a baffled piston.
In addition to implementing a formulation in which the propagation is essen-
tially parallel to the axis of a set of cylindrical coordinates, it is
necessary to account for the transverse spreading of the beam into an in-
finite medium. Another issue is the manner in which the initial waveform
input to NPE is obtained. The predictions of NPE for a linear sound beam
when the input is obtained from the King integral, which is an exact solu-
tion in quadrature form, is compared to the results obtained for a simple
input based on assumption of planar wave behavior in the vicinity of the
transducer. The results in both cases are also compared to the analytical

solution for the far-field radiation pattern.

Technical Committee: Physical Acoustics or Underwater Acoustics
Subject classification number: 43.20.Fn, 43.30.Bp
Telephone: (404) 894-3265 (J. H. Ginsberg)

Send notice to J. H. Ginsberg
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ABSTRACT

This paper describes mode conversion effects and subsequent
waveform distortion arising when a finite amplitude dilatational (P)
wave that has already experienced nonlinear distortion is obliquely in-
cident on a stress-free boundary of an isotropic elastic half-space. A
two-term perturbation expansion is first employed to identify the
dominant nonlinear effects. The understanding of wave interactions ob-
tained from the perturbation analysis is then exploited to derive a
successful solution using the method of characteristics for two-
dimensional wave. It is shown that the incident and reflected P waves
undergo nonlinear amplitude dispersion along their ray paths. The orien-
tation of the ravs for the reflected waves are time-dependent, being
governed by a modified form of Snell’'s law, in which the phase speed in-
corporates the nonlinear correction for the associated particle
velocity. The reflection coefficients are shown to resemble those of
linea - theorv, except for the dependence on the variable angles of
reflection. The nonlinear propagation and reflection laws are emploved
to determine temporal waveforms for the reflected P and SV waves. This
requires an iterati e procedure in order to trace rays arriving at a

specified field point at an arbitrary instant back to their source.
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INTRODUCTION

It is well-understood that nonlinearity has a much greater distor-
tional effect for dilatational waves in a homogeneous medium than for
shear waves. Such behavior cannot be assumed when one introduces a
boundary, such as a free surface. Because of the phenomenon of mode con-
version, a dilatational (P) wave that has already undergone significant
distortion prior to its incidence at the boundary must impart its dis-
tortion to both the reflected P and the vertically polarized shear (SV)
waves that are generated in the reflection process. The present work is
an analysis of the mechanisms governing nonlinear effects in the mode
conversion process, propagative distortion, and interaction of the inci-
dent and reflected waves. The 1incident P wave is considered to be
generated by a harmonic planar source of sufficiently broad extent and
high frequency to consider the amplitude to be constant across planar
wavefronts. This wave is assumed to have undergone significant nonlinear
distortion, limited only by the restriction that a shock has not formed
prior to its arrival at the boundary. To a certain extent, the analysis
is similar to our earlier development of a nonlinear ray description for
waves in a hard-walled waveguidel. However, the present solution is more
general due to its reliance on the method of characteristics for two-
dimensional waves. Indeed, the basic principles derived here may readily

be extended to treat sources having arbitrary time dependence.
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With the exception of a few studies of oblique reflection of shock
waves, investigation of nonlinear elastic waves reflection phenomena
prior to this work had been limited to situations in which the wave is
one-dimensional, such that the planar signal has constant phase along a
wavefront. The method of characteristics was employed by Blackstock2 to
study a finite amplitude wave propagating in a lossless, perfect gas
upon normal reflection from a rigid wall. He found that the effect of
the wall is to double the variational sound speed in comparison with the
free space case. It was shown experimentally by Breazeale and Lester3
that the phase of each generated harmonic of a finite amplitude plane
harmonic wave could be changed upon normal reflection from various types
of reflectors. The results led to some interesting phenomena. When a
distorted, but unshocked, wave is normally incident on a resilient sur-
face, the distortion of the reflected waveform continued to increase
with increasing propagation distance. In contrast, a wave reflected from
a pressure-release surface is distorted in the "wrong direction" as it
travels back toward the transducer, resulting in delayed shock forma-
tion. Analogous results were obtained by Buck and Thompsona by studving
the problem of one-dimensional finite amplitude elastic waves at normal
incidence to a stress-free boundary, based on a one-dimensional equation
of motion for the Lagrangian displacement. Their analysis indicated that
the amplitudes of the higher harmonics in the reflected wave should
decrease due to phase reversal in the reflection process, with the even-
tual result that they would vanish when the wave returns to its

originating source.

st e




Studies of the reflection of obliquely incident finite amplitude
waves have been limited for the most part to acoustic waves in fluids.
Van Buren and BreazealeS treated the reflection of finite amplitude
waves by assuming there was no coupling among the harmonics. A corollary
of such assumption is that the reflection of a distorted wave is equiv-
alent to the independent reflection of its harmonic components. Feng6
considered finite amplitude sound waves upon oblique reflection from a
rigid wall in the special case where the angle of incidence is 45°. Much
later, Qian7 extended Feng's work to arbitrary angle of incidence. He
found that nonlinear interaction of the incident and reflected waves
generates a constant magnitude second harmonic wave that propagates
parallel to the surface, which he named the Q-wave. A two-term perturba-
tion expansion method was employed by both Feng and Qian in their
papers. Since both works only addressed the mechanisms by which second
harmonics are generated, they did not fully explore the distortion

process.

Recently, Cocara58 also employed a two-term perturbation expansion
method to analyvze the reflection and refraction of finite amplitude
waves at a plane interface between two lossless fluids. Although the
nonlinear interactions between incident and reflected fields and local
nonlinear effect due to the movement of the boundary were treated in
detail, the resulting second-order solutions are not uniformly valid in
the range of the independent variables under consideration.

Specifically, the second-order solutions contain secular terms, which
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make the ratio of second-order solutions to first-order solutions un-
bounded as the independent variables tend to infinity. Cotaras also
hypothesized a finite amplitude form of Snell's law for the wave refrac-
tion in a fluid-fluid interface, according to which the trace velocities
that are matched along the boundary are formed from the nonlinear phase
velocities. One corollary of the finite amplitude form of Snell’s law is
the observaticn that a specific phase in the waveform of an incident
wave refracts at an angle that depends on the particle velocity as-

sociated with that phase.

Reid9 and Wrightlo investigated the oblique reflection of a finite
amplitude plane dilatational shock wave from the boundary of an elastic
half-space. Although there are differences in detail, both found that
the primary effect of nonlinearity on the oblique reflection process is
to modify the reflection angles and amplitudes to account for the non-
linear phase speed of the incident and reflected shock waves. Such

results are consistent with the finite amplitude version of Snell’s law.

The aim of the present study is to develop a uniformly valid pic-
ture of the manner in which nonlinearity affects the process of
reflection in lossless, isotropic elastic media. In the following sec-
tion, we shall first formulate the problem in the Lagrangian coordinates
for the displacement components. The dominant nonlinear effects are
identified in Sec. II by using a second-order perturbation expansion
method. The results are shown to lack uniform validity. Rather than per-

forming cumbersome manipulations to correct this situation, an




alternative approach based on the method of characteristics for two-
dimensional waves is developed in Sec. I1I and IV. It describes the
propagative distortion for each waves, and enables one to identify the
manner in which the incident and reflected rays are related at the
boundary. One outcome of the analysis is to prove that Cotaras’
hypothesis regarding the finite amplitude form of Snell’s law is valid
for the present problem. In Sec. V, we describe a numerical algorithm to
determine the reflected waveforms for the stress components of P and SV

waves at a specific field point, and apply it to a quantitative example.

I. EQUATIONS OF MOTION AND BOUNDARY CONDITIONS

In the absence of body forces, the Lagrangian equations of motion

for adiabatic dynamic deformation of a compressible, elastic solid arell

aTi. 62ui
momentum: 3 - py , (L
a at?
constitutive: T ow (2)

ij = Po 8(du;/da)"

du. du du, 4
n-di . e S B S
strain-displacement: Eij 2 aaj + aai + aai aaj ,

(3)
where 'I‘ij is the Piola-Kirchhoff stress tensor, Eij is the Green strain
tensor, uy i1s the particle displacement vector referred to the original

coordinates a;. Py is the mass density at the undeformed state, and W is




the strain energy density function. In these equations, a repeated sub-
script implies a summation. For isotropic materials, the strain energy
density is an invariant function of the Green strain tensor, and can
therefore be expanded in a Taylor series of the three invariants I,,1I,,
and I, of Eij' Thus W(I,,I,,I;) may then be written, correct to third

order in E,,, as
1]

Po¥ = %AI: + pl, + %ZQI: M %ﬂlllz + vl + O(I:)' (4)
where
I, =By
I = By (5)
Ly = Ei5BBig

[
In these expression, X and u are the Lame coefficients, while a, 8, and
v are the third-order elastic constants. (Our definition of the third-

order elastic constants differs from Bruger’'s, see Ref. 12.)

We first obtain an expression for the strain energy density in
terms of displacement by substiturting Eq. (3) into Eq. (4) and discard-
ing terms higher than third-order in the displacement gradient. Next, we
use this truncated strain energy to form Tij by applying Eq. (2), and
then substitute the result into the momentum equation, Eq. (l). The
result is a set of nonlinear displacement equations of motion having the

following form:

82ui 42u d2u

ac?

2 2y — o 2 1 -
d s’ Jda da. cs da da Ki/p"' (6)
m i m m




which are accompanied by a set of stress-displacement equations

aum 8u au
Tig = X 3a. 815 + M PN aa )+ Cy3/P0- (7
m J
In the foregoing
c2 = :\_LZE and c? = L' (8)
d P s o

are the velocities of planar dilatational and shear waves, respectively,
and sij is the Kronecker delta function. The terms Ki and Gij' which

represent the effects of geometric and material nonlinearities, are

given by
- g, 8
Ki A+ pt 4 )(un m n,im * 1 m n nm) + )un n i,mm

1

* (a + B)un n“m mi * A(S M 37)(um,nun,im M un.ium,mn)

ot _7)(un i n,mm + 2um,nui,mn + ui,nun.mm)' %)
A a 8 3

ij (2 um num,n T3 um,mun,n)6ij+ 4 um,mu'_j,i M uj,mum,i

8 8

* ( m n m n * um,nun,m)sij PO A)um,mui,j

+ (p + )(u ). (10)

+u .u +u, u
i,m J m m,im,] i,mm,j

Consistent with truncation of W at third-order terms, Ki and Gij are

homogeneous quadratic functions of displacement gradients.




We now consider a finite amplitude planar P wave propagating in the

a,-ay plane, obliquely incident on the boundary of an elastic half-space

1
defined by a,= 0, as shown in Fig. 1. The propagation direction of this

incoming wave is defined as

Edi - e, sin 01 - e, cos 01, (1)
where 0i is the angle of incidence measured from the a,-axis. This
planar wave is assumed to be generated by a harmonically oscillating
planar sovrce whose width is much greater than the wavelength.

Correspondingly, the particle velocity at the source is given by

€ec.n

i .
Yai T T 3 d iexp(-wt) + c.c. at n.. - r -L (12)

d ~di di’

where L is the distance between the source and origin and n

di 'r=-L

di di

defines the plane of the source. In addition, € is the acoustic Mach
number of the excitation, w is its angular frequency, and c.c. is the

complex conjugate of the preceding terms.

The stress-free condition at the boundary requires that the cor-
responding surface tractions should be equal to zero. Since we are
following a Lagrangian formulation, in which the surface tractions are
referred to the undeformed state of the boundary, the surface tractions

will vanish if the Piola-Kirchhoff stress components satisfy
3 = 0. (13)

10




I1. IDENTIFICATION OF SIGNIFICANT NONLINEAR EFFECTS

Our objective in this section is to examine the manner in which
nonlinearity introduces distortion into the incident and reflected waves
an causes them to interact. For this portion of the analysis, we employ

a straightforward perturbation series expansion of the displacements ug

and stresses Tij' Thus we write
u, = eult 4 20?4 (14)
i i i
T, = eV 4 e2r® 4 L (15)
1) 1] ij

Substitution of Eqs. (14) and (15) into Egs. (6) and (7), followed by
matching of like powers of ¢, converts the equations of motion and

stress-displacement relations to the following form.

32u§k) 82u;k) a2u§k) o
- 2 . 2 -2 —=— - -
aez (%47 %) Faga, T s dada " K /pe k= l2). (16
m i mom
S RN Efék)s + iﬁk)+ i‘iik)) + gl Kk =1,2 17
ij da_ “ij T *' 3a. 7 3a, ij /Po ¢ +2). (17
m j i

where the inhomogeneities K§k), Gi?) are zero for the first-order case.
k = 1, while the second-order terms, k = 2, are given by Eqs. (9) and

(10) with the displacement components represented as uil).

11




The first-order (linearized) system is governed by Eqs. (16) and

(17) for k = 1. Satisfying the boundary conditions at a, = 0 requires

3
the existence of both types of reflected waves, which is the phenomenon
of mode conversion13. Hence, the general solution of the 0(e¢) wave equa-

tions consists of a sum of the incident P, and reflected P and SV waves,

according to

(1) _ 1 ,,(1) (1)
= 2 (Aqi Bqi®xPUlevg;) + Ay g exp(lovy,)
(G9) -
+ Asr (Sz x gs:)exp(lwwsr)} + c.c., (18)
where A<¥), A(l), and A(l) are the amplitudes of the first-order inci-
di dr ST

dent P and reflected P and SV waves, respectively. The phase variables

wdi' wdr' and wsr are defined as
b= f, o reL) -t (19)
di ¢4 ~di = di !
- = - 7
Yar "o Carn EF kg - (20)
¥ -l(n r+L ) -t 21
st ¢ '~sr = ST ! (21)
where
- : . - : 2
Edr e, sin Gr + e, cos 0{ ; gsr e, sin ¢r + e, cos ¢r. (22)

In the above, Br and ¢r are the angles between the ay-axis and the wave

normals n, and n_, of the reflected P and SV waves, respectively, and

dr

12




T
..dr/cd and Lsr/cs are the phase lags of the reflected P and SV waves,
respectively. Note that the phase lag Ldi/cd for the incident P wave is

selected to satisfy the source condition, Eq. (12).

Snell’'s law, which equates trace velocities along the surface, is
obtained by substituting Eq. (18) into the boundary condition, Eq. (13),

and matching the phase dependence of each term on a,. This yields

ﬁr - 01, (23)
sin 4. c
' i _ 4 _ (A+2g)l/2 -5 (24)
sin ¢r cS m

Similarly, matching the phase lags of each term at the boundary leads to

Lar = Lai ¢ Lap = Lai/ & (23)

After the phases are matched, the reflection coefficients of the

F<1) F(l)

11 1 /
(linear) reflected P and SV waves, ad * Feq

may be obtained by solving

the remaining algebraic equations:

(1) . . Y 2
p(l) ) Adr ) sin 29i51n 2¢r §2cos 2¢r 2
dd (1) ~ sin 20.sin 2¢_+ 6%cos? 24 ' (26)

AL i r r
di
(L :

A 26§ sin 24 .cos 24

F(l) _ _sr i r (27)

- . I3 2 2 ]
sd Aéi) sin 29i51n 2¢r + §2cos 2¢r

13

g

PP S

— ——— 4




The foregoing fully define the O(¢) solution, so we next proceed to
an evaluation of the second-order displacements. We use Eq. (18) to form
§2) and G§§) in Eqs. (16) and (17). Using the
latter to formulate the boundary condition, Eq. (13), leads to the

the inhomogeneous terms K

analytical task of solving a pair of inhomogeneous differential equa-

(2)

tions for u subject to inhomogeneous boundary conditions. We simplify
this task by considering each inhomogeneity individually through the

decomposition,

(2) (2) (2)
U.i - ui,l + ui,2'

The first term consists of the homogeneous solution of the differencial

equations subject to inhomogeneous boundary conditions,

62u$2) 82u(2) azu§2>
i1 (c2 - ¢2?) —ml i1 0
at? d s’ da Jda, s da da ’
m i m m
(29)
auézi augzi agizf (1)
—_—ta 3 o A - . -
Y aam 6ij + u( aaj + 8ai ) Gij(g )/ e, on a, 0,

while the last term in Eq. (28) is the particular solution of the dif-

ferential equations subject to homogeneous boundary conditions,

)
a2u§2% azu(zé azuizg (1)
—_— 2 . 2) ——— 2 — ’
at? (cd cs) aamaai s aamaam Ki(B )/Po.

(30)

14




’
auézé auizg 6u§2%
A —5;*— Sij + u( aai + aai )y =0 on a, = 0.
m j i

Note that the solutions of the first set of equations are equivalent to
linear free waves, whose magnitude remain constant. Although such solu-
tions might represent new types of wave, their effects remains 0(e?) at

all locations, and hence are negligible compared to the 0(¢) solutions.

In contrast, the source terms Ki(g(l)) will be seen to resonantly excite
waves in a manner that cannot be ignored. Accordingly, we consider ugzi
= 0 and ugz) - ugz).

i, 2 i

When we substitute the 0O(e¢) solution, Eq. (18), into Egs. (30). in

order to form the source terms Ki, the resulting coupled equations

(2) (2)
3

governing u; and u are found to be

g2ul?) a2u(2) 52,(?) 52ul?) 52,02

2 . 2 - 2
(¢§ ) Gaz *5asa, " % aar  *t

3
) 2sin 8 exp(i2wy  .) + F(l)zex (12wy . )
S di dd SXPLe¥4,

atz? )

i
- - 2 M K3
&po 3 kd [A

(1
di
i

. ()2 . .
. 3
i, M, ks [Asr ] sin ér exp(12wwsr)

+ B, {exp[iw(ybd.l + wdr>] + eXP[iw(¢di - wdr)]}
+ C, {expliw(y,. + ¥_ )] + expliw(y,. - ¥_ )]
di ST di sr

+ D, {exp[iw(wdr + wsr)] + exp[iw(wdr - wsr)} + c.c., (31)

u§2) (2) (2) agu§2) a2u§2)

2 2
d%u, d%u,

+
3al da,da,

a2

at?

. 2
) s ( da? * da? )

1 3
1))2 . 1)2 i
- M, ké [Aéi)] cos 9i [exp(Lwadi) - Féd) exp(12wwdr)]

(C3 - c;) (

15




vy

i

lopo

M. k3 A(l) 2cos ¢ exp(i2wy )
3 s sr r P sr

+ B, {exp[iw(;bdi + wdr)] + exp[iw(lbdi - ¢d )]
+ G, eXP[iw(¢di + ¢sr)] + exP[iw(¢di - ¥ )]

+ Dy exp[iw(wdr + wsr)] + exp(iw(wdr - ¥ Db+ c.c., (32)

where
M 3 6u + 1 + =8 + 6 (33)
3- + ] Za 2 Y
' 1 3
My = X + 2u + B+ FIRE (34)
and B,, B,,..., D,, D, are function of Gi that will be seen to be unim-

portant. Note that Egs. (31) and (32) are obtained by using the first-

order reflection coefficient, Eq. (26).

Each source term appearing in Eqs. (31) and (32) leads to a cor-
responding particular solution that is temporally a second harmonic. The

), and

+
phase speeds of the terms whose phases are (bqi T ¥y (¥yy T V)

T Tdr
(wdr + wsr) 4o not match the phases of homogeneous solutions of the
equations, which represent freely propagating linear waves. Hence, the
corresponding particular solutions are nonsecular waves of constant
amplitude. Moreover, the particular solution for the source term whose
phase is 2wsr can also be shown to be norsecular. (This observation is
: . . . . . la
consistent with a previous analysis of a finite amplitude shear wave™ ',
which showed that secular growth of harmonics in a shear wave occurs at

the third order in a perturbation series.) These conditions are con-

trasted by the source terms with phases 2wdi and der, whose phase

16
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speeds match that of homogeneous second harmonic dilatational waves. The
method of variation of parameters reveals that the corresponding par-
ticular solutions are secular, with amplitudes that grow linearly with
propagation distance. The particular solution for the second-order dis-

placements is thereby found to be

% [ (1)] (i)(gdr- Ing. exp(i2wp, ) + NST + c.c.; (33)
where
M, k2
(2) _ _27d [,(D)
fai T T, [dzJ ' (36)
My = A+ 2 (37)

2

and NST denotes the nonsecular solutions.

Since this particular solution has no free parameters, satisfaction
of the 0(¢2?) stress-free boundary conditions requires the addition of
the complementary solution of Egs. (31) and (32). This leads us to a

paradoxical situation. First, we note that evaluating derivatives of

u$2)

up on a, = 0 results in terms whose dependence matches the phase de-

pendence of the incident and reflected P waves parallel to the boundary,

both of which are 2k sinf,a, -2k,L.. - 2wt, since §# = §,. Furthermore,
i ddi r i

because of the secular condition, the amplitude of these terms grows

linearly with distance along the boundary. Now consider the correspond-

ing homogeneous solution. Its terms must have the same phase dependence,

17
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which suggests that the homogeneous solution should consist of free
waves that propagate in the direction L and possibly n.. However,
since the homogeneous solutions have constant amplitude, they cannot

match the growing amplitude dependence created by géz) on the boundary.

A Helmholtz resolution of the second-order homogeneous solution,

() L we® L wa®; vw® oo, (38)

-~ -— - -

leads to the observation that a P wave propagating in a direction Dy

is a
dr

homogeneous solution. A comparable statement applies for an SV wave.

that depends linearly on distance measured transversely to n

Hence, it is possible to construct a homogeneous solution suitable for
satisfying the boundary conditions, according to
W

= Cl (Bdrx

[Ka

gz)gdrexp(ﬁw\bdr)

+ C,(n X
2(-vsr

[Nat

. 32)(g2x gsr)exp(12wwsr) + c.c., (39)
where C, and C, are coefficients to be determined.

We shall not proceed further with such an analysis, because the
qualitative insight provided by the forms of géz) and Béz) lead us to a

drastically simplified solution process. The key observations are:

1. Nonlinear interactions between incident and reflected waves are

negligible, because they do not lead to secular terms.
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2. P and SV waves are reflected at both the first and second
orders.

3. Secularity occurs in the second-order P waves, but not in the
second-order SV wave.

4. The fact that the second-order reflected waves contain terms
that depend on distance perpendicular to the direction of
propagation suggests that the direction in which such waves
propagate deviates by an 0(¢) amount from the directions Gr and

¢

-

III. GENERAL SOLUTIONS BY THE METHOD OF CHARACTERISTICS

The analysis in the preceding section indicates that the reflection
process generates reflected P and SV waves to accompany the incident P
wave, with each wave uncoupled from the others. This leads to an ap-
preciable simplification as the incident P, reflected P and SV waves can
be treated independently. We first consider the incident P wave. This
wave propagates at a constant angle of incidence ﬁi, but its phase speed
depends on the local wave amplitude resulting in a cumulative distortion |
of the wave profile. In view of the source boundary condition, Eq. (12),
the particle velocity in this incoming P wave may be written aslS

i
- . = 3 2 .
Ydi > eAdigdiexp(Ldei) + 0(€e?2) + ¢c.c., (4Q)

where

n,.'r + L
Dai 2 * Nyy
V.. = - -t (61)
di ey * By(Vyq Dgy)
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where ﬂd - -M,/2M, is the coefficient of nonlinearity for a plane
progressive dilatational wave and 0(e2?) represents constant magnitude
terms. Note that this wave exhibits amplitude dispersion, because its

phase speed is ey * pd(xdi. n. ).

~di

Since the reflected P wave does not interact with the other waves,

it also must propagate nonlinearly. If v c is the particle velocity in

d

this wave, then the appropriate phase speed is 4 + ﬁd(v ).

~dr’ Bdr

However, it is not necessary that n., match the direction predicted by

dr

linear theory. Furthermore, it is not even necessary that ndrbe in-

variant.

In order to understand this feature, let us view the propagation of
a dilatational signal in the characteristic space whose coordinates are
a,, a,, and t. Let Vir be the particle velocity of the signal emanating
from a point on the boundary a, = 0 at distance a, = { at time t = 7.
In order for this to be a dilatational motion, the particle velocity is

assumed to be parallel to the propagation direction, i.e. Vir

lvgIngr

The characteristic for this signal is a straight line emanating
from the boundary point (¢,0,r) in the characteristic space. As shown in
Fig. 2, the tangent of the angle x between this line and the line

through (¢,0,r) parallel to the t-axis must be the propagation speed, so

-1
X = tan “[c, + Ba(Vyp' Bgp)] (42)
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In other words, the characteristic line is a generator of a characteris-

tic cone having apex angle 2x.

The significant aspect of the foregoing lies in the fact that any
line on the characteristic cone represents a solution that satisfies the

equation of motion.16’17

The corresponding propagation direction L for
the signal appears in the characteristic space as the projection of the
characteristic line onto the a,-a; plane. Consider the signal radiating

from a, = ¢, a; = 0 at a different instant t = r’, also shown in Fig. 2.

+

dr

ar The apex

The particle velocity in this case is v in the direction n
angle of the characteristic cone will be 2x’, where x' is obtained from
Eq. (42), and the projection of the corresponding characteristic line

onto the a.-a

,-a; plane will be n' . Note that n' _ need not be the same as

dr ~-dr
Ry although they are identical for propagation of a planar wave

through a one-dimensional medium and for cases of normal incidence.

Since the incident P wave in Eq. (40) varies harmonically, we as-
sume that the reflected P wave has a comparable dependence, so we take

the following as its general solution,

i
- . = i 2
Ydr 2 (Adr gdrexp(lwwdr) + 0(e?2) + c.c., (43)

where wdr is a phase variable given by

n, r +L

~dr ~ dr
v, = - ¢, (44)
dr - eq * By(¥gp gy

21



Consistent with the discussion of the characteristic space, we see that

n

Ny RaY be a function of ¥

dr without altering the constancy of Var along

o characteristic line.

Aside from a few details, the situation for the reflected SV wave
is very much like that for dilatation. First, we recall that the in-
fluence of nonlinearity on the phase speed of shear waves 1s a third-
order effect. Hence, in our analysis this speed is constant at cg from
which it follows that the apex angle for the chafacteristic cone of the
reflected SV wave is y = tan-l(cs). Moreover, since this is a vertically

polarized shear wave, its particle velocity Ver lies in the a,-a

1-2; blane,

perpendicular to the propagation direction n, - By analogy with Egs.
(40) and (43), we therefore express the general solution for the

reflected SV wave as

i
- - = i 2
Zsr 2 eAsr(gzx Esr)exp(lwwsr) + 0(e?) + c.c., (45)

where the phase variable for this wave is

Ogr L+ Ly
v o= - t. (46)
34 c

As was true for Dy the foregoing is a general solution of the equa-

tions of motion, even if n depends on ¥ .
~SY sY
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IV. SATISFACTION OF THE BOUNDARY CONDITIONS

The expressions derived in the previous section describe the
various waves in terms of their particle velocity. These must be con-
verted to stress components relative to the a ,-a; plane before the
boundary conditions can be addressed. Consider first a planar dilata-
tional signal propagating in direction x. Iénoring constant magnitude

second-order effects, the strain-displacement relations yield

XX ax 2 ax
C a1 (%% aw)e @)
dy dx 2 \dy 98x)

where ¥ is the phase variable for the wave, while the particle velocity
is
v -k %% gy 48)
x 3t " 3% ot (

Since y = (x+cd)/(cd+ﬂdv‘) - t for a finite amplitude dilatational wave

and u, = 0(e¢), we find that |

Vx Vx ‘
E = - ——— 4+ 0(€2) = - — + 0(e2). (49)
XX cd+ﬂdvx 4

A similar analysis for a shear wave polarized in direction z and

propagating in direction x yields the shear strain l
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du
z

ax

<

N |
N

E -

P4
<z P (50)

1]

We employ Eq. (49) to describe both incident and reflected P waves,
while Eq. (50) applies to the reflected SV wave. Each of these strain

may be transformed to components relative to the a,, a, coordinate sys-

10
tem. The direction of x in each case is the corresponding propagation
direction of that wave. Once the strains are described, we derive ex-
pressions for the stress components Tij from the constitutive equation,
Eq. (2), the strain-displacement equation, Eq. (3), and the strain
energy density, Eq. (4). Note that all nonlinear terms arising in these

relations are products of spatial derivatives of displacement, so they

are negligible O(e2) effects. The results of these operation are

[(T“)di (T33)di (T13)di]
- 0. in2 . ; )
[-(A+2u sin oi) (A+2u coszﬁi) 4 sin ZGi] Vdi Edi/cd' (51)
[(Tu)dr (T33>dr (T13)dr]
- . in? - in2 - i .
F-(X2u sin or) (A+2u sin Gi) 4 sin 28 ] Ydr Edr/cd’ (52)
[(T“)sr (T33)sr (T13)sr]
= [-p sin 2¢r 4 sin 2¢r -4 cos 2¢r] Xsr-(g2x§sr)/cs. (53)

The subscripts di, dr, and sr for the stress components denote the
stresses induced by the incident P and reflected P and SV waves, respec-

tively.
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The boundary conditions require that the resultant normal and shear

stress components vanish on a; = 0, so we set

T, = (T33)di + (T33)dr + (T33)sr - 0 on a; = 0, (54)
T, = (Tls)di + (Tls)dr + (Tls)sr =0 on a; = 0. (55)
We substitute the expressions for particle velocities, Egs. («40), (43),
and (45) into Eqs. (51)-(53) to form stress components, which we then
use to form boundary condition equations (54) and (55). This yields two
equations in which the unknowns are A, , A , L., L , 4 , and ¢_. In
dr sr dr ST r r
crder that the equations be satisfied for all a, and t, the phase of

each term must be identical. Matching the a,-dependent terms yields the

finite amplitude form of Snell's law:

sin 0i sin Br sin ¢
= - . (56)
)

a1

Cd * ﬂd(ydr'gdr ¢

°a * Pa¥qs By;) a,=0 s

a,=0

The phase lags of the reflected waves relative to the incident wave can

be obtained by equating the a,-independent terms,

L.. L L

d d
i _ r - —SC (57)
°a * Pq¥a1 Bai) a0 Ca * Pal¥ar Bar’|a,-0 ‘s '
When the above are satisfied, the boundary conditions reduce to two '
simultaneous, algebraic equations. Solving these for the amplitude of !

each reflected wave in terms of Adi yields the following expressions for

25



the reflection coefficients Fdd and Fsd of the P and SV waves, respec-

tively,
i . 2 . 2
- } fQE ) sin 28i sin 2¢r € 2 sin oi)cos 2¢r (58)
dd = A . 2 '
di sin 20r sin 2¢r + (62 - 2 sin ﬁr)cos 2¢r
2 . in2 2 . in2
- } fEE ) sin 201(6 2 sin 0r) + sin 20r(6 2 sin 9r) (599
sd Ay §[sin 26_ sin 2¢_+ (62 - 2 sinZd )cos 24 ]

Nocte that these coefficients reduce to the linear forms, Egqs. (26) and
(27), when Snell’s law in Eq. (56) is linearized by ignoring the par-
ticle velocity terms, as well as when ﬂd = 0, which means the material

is a linearly elastic solid up to second order

Equations (56)-(59) fully define the reflection process. Equation
(56), which governs the directions of propagation of the reflected P and
SV waves, indicates that at a specific boundary point, the reflection
angle of each reflected wave fluctuates because of the temporal varia-
tion of the incident particle velocity. Furthermore, since Vai' Bai is
periodic, the angles for the reflected P and SV waves exhibit periodic
fluctuations about the constant values predicted by linear theory. Each
ray determined in this manner represents the locus of points at which

the particle velocity departing from the boundary at a specific instant

will be observed with increasing time.
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V. QUANTITATIVE EVALUATIONS

The preceding discussion leads to the realization that the rays for
the instantaneous signal at a specific field point r({,n) are situated
within a wedge of influence. A typical situation is depicted in Fig. 3.
According to Eq. (56), the orientation of any ray within this wedge
depends on the reflected particle velocitie;. However, the latter quan-
tities depend on the reflection coefficients, which in turn depend on
the reflection angles. Evaluating the particle velocity at r in these

circumstances is obviously not a trivial task.

Although it involves an approximation, the algorithm we have
developed greatly simplifies the computations. It is assumed in the fol-

lowing that the properties of the incident wave, as defined by ¢, Adi’

Gi, and Ldi' are specified constants. We begin by addressing the evalua-

tion procedure for the dilatational waveform at r.

1. Starting from zero, select a value of ¥, in the range 0 < ¥ _ <

dr dr
2n/w.
2. Use the linear reflection coefficients Féa), Pié) to form an
13

initial estimate of the particle velocities on the boundary.
(This is a reasonable approximation, since the O(e) deviation of
the reflection angles from their linear counterparts produces an

O(¢) error in T which feeds back into Snell’s law through Vir

dd’

as an C{e¢?) effect.) Since all rays intersecting a boundary
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point are associated with the same phase, the particle speeds at

the boundary are therefore approximated by

i X
- eAdiexp(lder) + c.c.,

Yai'Baifa,-0 T 7 2
i (D
Yar Bar|ag-0 T 7 2 Tad Aqi®XPUe¥y) +oc.c., (60)
. 1 (D .
Yor (8220g,) a0 = 2 eF oy Agpexp(iw¥y ) + c.c..

. Use Egs. (60) to evaluate 9r and ¢r from Eqs. (56), as well as

Ldr from the first of Egs. (57).

The angles Hr and ¢r found in the preceding step yield corrected

values of the reflection coefficients T, and FS according to

dd d

Eq. (58) and (59).

. Replace the linear reflection coefficients in step 2 by the

values found above and use the new estimates of particle
velocities to redo steps 3 and 4. Repeat this process until Gr
and ¢ converge.

The results of the previous steps lead through Eqs. (60) and
(52) to values of the (Ydr'gdr) and the stress components
(Tll)dr’ (T33)dr and (T13)dr' The corresponding value of t is
computed from Eq. (44) with Wdr equated to the assumed value,
If it is desired to identify the boundary position (gd,O) from

which the dilatational ray emanated, use Fig. 3 to find

€ - ¢4 =ntand (61)
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8. Increment the value of ¥ r and return to step 2.

d
This algorithm yields values of the particle velocity and stress
components of a discrete number of time instants. Note that because Wdr

depends on vdr. ndr' the time increments for this discretization are not
constant. A comparable procedure based on incrementing wsr yields the

time waveforms for particle speed and stress components in the reflected

SV wave.

The material that we choose for numerical evaluation is steel
(Hecla 37 carbon steel), which has "quasi-isotropic" elastic properties.
The material properties arelgz Py = 7.823 x 103 kg/m3, X = 11.1 x 1010
N/m?, y = 8.21 x 10'° N/m?2, a = -143.2 x 10!0 N/m?2, 8 = -112.8 x 10190
N/m?, vy = -23.6 x 1019 N/m?, so the coefficient of nonlinearity is 5d =
3.1. The reflection coefficients for the instant when the incident P
wave is in its maximum phase, which represents the maximum deviation
from linear theory, are shown in Fig. 4. Since ﬂd is a small value, the
nonlinear phenomena are not appreciable for realistic values of ¢. In
order to magnify the nonlinear effects, we consider here ¢ = 0.01 and
0.1. It is apparent that the nonlinear effect is very small unless ¢ is
large. It also can be seen that the nonlinear effect increase with in-

creasing angle of incidence.
Figures 5 and 6 show the time waveforms of stress components of the
reflected P and SV signals generated by a 2-MHz dilatational source. The

wavelength of the incident P wave is about 3 mm. The angle of incidence
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of the incoming P wave is 60 and the acoustic Mach number ¢ is 0.01.
For this calculation, the field point (£,n) = (6.6 mm, 3.8 mm) was
selected such that, measured along the linear dilatational rays (Br -
0i), the distance from the field point to the origin equals the distance
Ldi from the origin to the source. Further, Ldi is taken to be one half
of the shock formation distance for a planar P wave, Ldi - cd/(Zeﬁdw).
Hence, if the incident wave were to propagate along the ray path without

undergoing a decrease in amplitude and change of phase due to the

reflection process, it would first form a shock at the field point.

The zones of influence on the boundary for dilatation and shear
reflection of this particular case were found to be -1.20 mm < (al)d <
0.81 mm and 4 .48 mm < (al)S < 4.64 mm, respectively. These "spot sizes"
are smaller than either wavelength. It is interesting to note that the
SV wave at the field point shows mecre distortion than the P wave, even
though the SV wave propagates without amplitude dispersion. This
phenomeron arises from a combination of factors. The primary cause is
the phase reversal of the P wave upon reflection, which cause the
waveform to become like a backward sawtooth. This is similar to the ef-
fect noted by Breazeale and Lester2 for reflection at a pressure release
boundary. In addition, the incident P wave that generates the S wave
travels through a greater distance to the boundary, and therefore un-
dergoes more distortion than its counterpart that generates the
reflected P wave. A third factor influencing the level of distortion is
associated with the mode conversion process, which lowers the overall

amplitude of the P wave. In other words, the distance from the boundarwv




to the field point, which was selected to be half the shock formation

distance for the incident P wave, is much less than half the distance '
for shock formation for the reflected P wave. We may conclude from this

that mode conversion in reflection extends the distance along the ray

path of a P wave at which a shock first forms.

A comparison between the finite amplitude forms of Snell’s law and
linear forms of Snell’'s law is also depicted at Figs. 5 and 6. The lat-
ter, which includes the nonlinear self-action effects of the waves, but
considers the reflection angles to be constant, is equivalent to the ap-
proach that was developed by Van Buren and Breazeale. It is found that
the nonconstancy of the reflected angles tends to alter the mean values
of the fluctuations and makes the waveforms unsymmetrical, but the wave
profiies obtained from both theories are almost identical. Also note
that the effect of nonconstancy of the angle for the reflected P wave is
much more significant than that for the reflected SV wave, because the
reflected P waves have larger angles of reflection, resulting in a

larger zone of influence.

Propagation curves for the fundamental through third harmonic com-

ponents of the reflected P waveform, (T33)dr’ are depicted in Fig. 7,
where r is the shock formation distance of a simple planar P wave with ¢ ‘
= 0.01, and r is the distance measured from the boundary along the

linear dilatational ray path. As mentioned, the phase reversal of the P '

wave upon reflection causes a reversal in the distortion of the

reflected P waveform. Hence, the signal levels of the second and third
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harmonics decrease with increasing distance away from the reflecting
surface. However, unlike the curves obtained from the linear form of
Snell’s law, the amplitudes of the second and third harmonics obtained
from the finite amplitude form of Snell'’s law does not fully vanish at o
= 3 because of the effect of rays arriving from the different spots on
the boundary. Figure 8 shows the propagation curves for the fundamental
through third harmonic components of the reflected SV waveform, (T33)sr'
Since the reflected SV wave propagates without amplitude dispersion, the

curves obtained by both linear and finite amplitude forms of Snell’'s law

are almost identical.

VI. CONCLUSIONS

Our analysis has shown that if a P wave undergoes significant dis-
tortion prior to incidence at a free surface, the distortion is
transferred to the reflected P and SV waves. The angles of reflected
rays were proven to be governed by simple modifications of Snell’s law
that account for the particle velocity dependence of phase speed when
the trace velocities are formed. These corrections carry over into cor-
rections of the linearized relations governing the amplitude and phase
lag of the instantaneous signal associated with a ray. The primary sig-
nificance of the nonlinear Snell’'s law is that the orientation of
reflected rays fluctuates due to the oscillatory nature of the particle

velocity in the incident wave.
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The mechanism by which a reflected P wave distorts is the same as

that for the incident wave, but the effect is smaller because of the !
reduction of amplitude level due to mode conversion. Interestingly, the
reflected SV wave was shown to pick up substantial distortion, since its
phase dependence at the boundary must match that of the incident wave.
However, unlike the P wave, the SV wave propagates without additional
distortion. A primary result derived from the perturbation analysis,
which was performed as a preliminary to the method of characteristics,
is the observation that the free-field interacti&n between each type of

wave is insignificant.

The task of constructing the waveform at a specified field point is
complicated by the fact that reflected rays arrive from zones on the
boundary. These zones of influence correspond to the extrema in the
fluctuations of the reflection angles. An iterative numerical algorithm
for evaluating waveforms was employed to study harmonic generation in
the reflected signals. An earlier analysis indicated that phase rever-
sal initially causes the amplitude of the higher harmonics in the P wave
to decrease with increasing propagation distance. This was confirmed,
but the associated prediction that there is a location where all higher
harmonics vanish was shown to be incorrect due to the fluctuations in

the angle of reflection. ’

Finally, we note that the portion of the analysis using the method I

of characteristics in two dimensions is quite general. 1Its extension to

-

transient signals seems to be rather straightforward, since the main




v

elements of the analysis did not rely on any properties specific to the

sinusoidal dependence associated with the assumed excitation.
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Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

LIST OF CAPTIONS
Incident and reflected wave systems for an incident P wave.

An illustration of two characteristic cones in the

characteristic space.

Schematic diagram showing the wedges of influence for the

rays arriving at a field point.

Reflection cuvefficients for the instant when the incident P
wave is in its maximum phase. (---) linear, (---) ¢ = 0.01,

(---) ¢ =0.1.

Time waveforms of stress component in the reflected P wave

generated by a 2-MHz dilatational source at a selected field
-]

-60, ¢=001, 8, =31, L, -

point (6.6 mm, 3.8 mm): ¢ Qs

i

7.64 mm.

Time waveforms of stress component in the reflected SV wave

generated by a 2-MHz dilatational source at a selected field

- 60, =001, g, =31, L, =

point (6.6 mm, 3.8 mm): ¢ ai

i
7.64 mm.

Amplitudes of the first three harmonics of the reflected P

waveform (T33>dr generated by a 2-MHz dilatational source at
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Figure 8.

a selected field point (6.6 mm, 3.8 mm): 01 =60 , ¢ = 0.01,

ﬂd = 3.;, Ldi = 7.64 mm.

Amplitudes of the first three harmonics of the reflected SV

waveform (T r generated by a 2-MHz dilatational source at

as)s
o

a selected field point (6.6 mm, 3.8 mm): 01 = 60 , ¢ = 0.01,

By = 3.1, Ly, = 7.64 mm.
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cquation for sound waves. As a conscquence, macroscopic acoustic systems may be fabricated that simulate the salicnt
features of a quantum mechanical system, and which may be used to make much more dircct obscrvations and measurc-
ments. Contemporary problems in quantum nicchanics that have been soi=d in this manner include the behavior of
clectrons in disordercd metals and the propertics of a new state of matter calicd quasi-crystalline,

*Work supportced by NSF DMR 8701682 and the Office of Naval Rescarci.

FD2 2:35 Rellection and Refraction of Nuulincar Dilatational and Shar Yaves at a Planar Interface®

JERRY H. GINSBERG* AND K.T. SHU,* Guorge W. WoocrufJ Schoo! of h:echanica! Engineering, Georgia Institute of
Technology, Atlanta, GA 30332-0405

According to the lincar theory of clasticity, oviique incidence of either a -'Hlatational (P) wave or vertically polarized
shear (SV) wave at a planar interface between two media results in reflectio and transmission of both types of waves in
constant dircctions that are determined by Sncll’s law. When nonlincar cffc~'s in the incident wave are considered, the
phase spced is dependent on the amplitude of that phase, which undermines the matching of trace velocitics on which
Sncll’s law is bascd. The first step in the solution of this problem is to analy:s the case of reflection of a finite amplitude
P wave at the stress-frce boundary of an clastic hall-space. A straightforward perturbation analysis is used to identify
the dominant nonlincar cffects. Although such an approach ultimately encor~ters difficulty in consistently satisfving the
boundary conditions, the understanding of wave intcractions obtained from i: is exploited to derive a successful solution
using the method of characteristics for two-dimensional waves. The rays of the reflected P and SV waves are found to
be straight lincs, but the dircction of each ray is shown to be governed by th- nonlincar version of Snell’s law, in which
the trace velocitics arc formed from the nonlincar (amplitude-dependent) ph-sc speeds. The relations for the reflection
cocfficients arc found to resemblc the predictions of lincar theory, except th+ they are formed from the variable dircc-
tions of the reflected rays. One consequence of these phenomena is that the waveforms of the reflected and P and SV
waves reccived at a specified field depend on signals that arrive from zones an the boundary. The physical and mathe-
matical insight gained from the analysis lcads dircctly to a generalized soiutir - for the case of an interface between arbi-
trary clastic and/or fluid media.

*This work was supported by NSF and ONR. i
*George W. Woodruff Chair in Mechanical Systems,
* Graduate Rescarch Assistant. o l

FD3 3:10 The Laser as a Powerful Rescarch Tool in Acoﬁslics‘ .
YVES H. BERTHELOT, School of Mechanical Enginecring, Georgia Institute of Technology, Atlanta, G 30332-0405 ,

Lascr bcams can be uscd to either generate or detect sound waves without having any bulky transducer perturbing
the medium under investigation. This type of nouinvasive transduction is very attractive in many diflcrent rescarch arcas

of physics and cngincering. For instance, the lascr gencration and detection of uitrasound in solids has proven to be a I
very valuable tool in assessing the structural propertics of a sample (Nondcestructive Testing), especially when the sam-
plc is in an cnvironment unfriendly to convent’ -al techniques, ¢.g., very hot (velding industry), radicactive (nuclear in-
dustry), or simply inaccessible (aircraflt indus “=nther growing ficld in - Tich laser beams are uscd to gencerate and
detect sound waves is that of underwater acc . .Sonar engincering). Iligh-power lasers can be used to gencrate

acoustic waves in the ocean [rom an airbornc p...:7orm. These types of sources, known as thermoacoustics arrays, are

announcer 07
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STRESS WAVES

IM SOLIDS

SNELL’S LAW ( L INEAR)

—
Y\\Z 6,

/ o

dilatation

aj

Ct i
> ay
&, g”:"l
6r dl (Q “( ‘lo“l
or Qdf
Shear

~ST

e Matching trace velocities along the boundary

. =60 =60 and

sinf  sin¢

Cd Cl

e Reflection coefficients — mode conversion

I\dd

A,,  sin20sin2¢ — (c./c,)? cos® 2¢

[ s

L.,

.. sin20sin2¢ + (c,/c,)? cos* 2¢
2(c, /c,) sin 26 cos 2¢

~ A
A
~ A

.. sin20sin2¢ + (c,/c,)? cos? 2¢

—




PREVIOUS RESEARCH

Buck and Thompson (1966)
One-dimensional finite amplitude waves reflected from a
stress-free boundary

Higher order harmonics should decrease due to phase re-

versal

Van Buren and Breazeale (1968)

Linear reflection and refraction process: No coupling among
the harmonics

Qian (1982)

Finite amplitude plane waves upon oblique reflection in flu-
1ds

Self-action:

— Secular second order incident wave

— Secular second order reflected wave

Nonlinear interaction:

— Constant magnitude second harmonic



Feng (1983)
Two-dimensional reflection and refraction at a planar fluid-
fluid interface

Straightforward perturbation analysis

Cotaras (1989)

Straightforward perturbation analysis

Nonlinear interaction between the incident and reflected
waves and the local nonlinear boundary effects were inves-
tigated

Finite amplitude form of Snell’s law — matching nonlinear
trace velocities along the interface




BASIC EQUATIONS

.Momentum equation:

oT., 9’ u,

da. P o

2

Constitutive equation:

- oW
v = P58y, /da,)

Nonlinear geometrical strain-displacement:

E - 1 < ou, N du, N ou, 6uk)
Y 28a, OHa,  da, Ja,
where
u, = displacement components
a, = Lagrangian coordinates
T., = Piola-Kirchhoff stress tensor
E., = Green’s strain tensor

W = Strain energy density function




STRAIN ENERGY DENSITY FUNCTION

- Assumptions of materials:

1. Adiabatic

2. Homogeneous and Isotropic

Taylor series expansion:

1 1 1 |
V = SAIP I +—v,IP+-u, 11 I+ 0"
0.} 2.71—}—#2-}—241/,1—}-41/ +uv, I, +O(I"")

-[1 :Ena Iz =E."E"’ Iz =EijEjkEk|‘

7 ()

where

A, 4 = Lamé coeflicients i

v,,v,,V, = third-order elastic constants




PERTURBATION EQUATIONS

(2
u, =eu' +eu’ + ...

1’1” ___61-:(1.1) +€211(:) + ...

o u'*! o ulr! ot u't K"
[ _ (cz __ C2) _C’z [ — v
ot: ‘" Oa,, Oa, * da,, Oa,, 0y
au(kl au(k) au(vk) G‘kl
T =)x—=2-6. : . R
b da, "’ K da, T Oa, )+ 3
where
0 k=1
(k) (k) _ )
K ’Gu _{K‘(u“’),G_.,(u‘,”), k=2




REFLECTION OF GENERATED HARMONICS

e Superposition of two solutions: u.”’ = w' + w
(I) Particular solution for K, # 0
9 w! 9 w! o0* w'

i (A2 2 m —_—ct et =K
otz (i — )Bam Jda, “ Oa, Oa,, ‘
ow! ow  Ouw!

=4, (— L) = =0

/\Ba o TR da, T da, 0 on g

m

(IT) Complementary solution satisfying time dependent bound-
ary conditions (G,, # 0)

32 wxx 82 wn 82 wxx

or )5 ee T e aa =
aw!l awll 8wll
Z_0 ( : 3 ) = — _ =
/\Ba Oy + B + Ba. G,, on a, =0

m

(I) leads to cumulative solutions—become significant with

increasing propagation distance

(IT) produces nonsecular solutions (i.e. bounded every-

where) — NEGLECT!




SECOND ORDER NONLINEAR EFFECTS

[ exp(21%,,)
exp(2it. )
1 (2:%,,)
’ w} ) _ exp
< w, ’ explt (V.. £, )]
exp[i(V.. £ .. )]
explilths. = .. )]

Secular terms consist of second order harmonics of incident

and reflected dilatational waves
No secularity in vertically polarized shear wave

Noncollinear interaction terms are not solution of the ho-

mogeneous wave equation = not secular

Generating additional complementary solutions to satisfyv
d.e. & b.c. is complicated




e Hypothesis stated by Cotaras (1989): refraction in fluids

— Finite amplitude form of Snell’s law: Variation of reflected

o

Qo

and transmitted angles

Key observation from perturbation analysis:

. Nonlinear interactions between waves are negligible

Inhomogeneous boundary conditions are not important

P and SV waves are reflected at both the first and second
orders
Secularity occurs in the second order incident and reflected

P waves, but not in the second-order reflected SV wave




ALTERNATIVE ANALYSIS -
THE METHOD OF CHARACTERISTICS

One-Dimensional Outgoing Planar Wave

v = constant, along each characteristic

dz v+1
Z—erpy  B=T-

characterisiics




CHARACTERISTIC CONES

x =tan™ ' (c, + B, v,)




— -—yy

NONLINEAR PARTICLE VELOCITY

Individual waves:

.

1

v, = — §eAd,.nd.. exp(tw¥,,) + O(€) + c.c.
v, = — %eAd,nd, exp(tw¥,, )+ O(€) + c.c.
v, = — %eA,, (e, xn,, )exp(wV,,)+ O(€) + c.c.

Projection of characteristics at a fixed time

stress—free

}\ / surface
' 2,

ch

[ souze of

INcoent P wave




NONLINEAR PHASE VARIABLES

‘de.-: ndi'r+Ldi —¢
Cy +/Bd (vd:‘ 'nde)
g, =B Ttle
Cq +/Bd (vdr 'ndr)
\I/”:n,,-rﬁ-L,,_t
C‘

e Thurston & Shapiro (1967):

M, i ) ) :
3, = — X, = coefficient of nonlinearity for solids

M, = A+ 2u :Geometrical nonlinearity

2
M, =3M, + %‘ + S, + 6,

L, : distance between initial incident wavefront and origin

L, . L, : Phase lags of reflected dilatational and shear

waves

Py




SATISFACTION OF THE BOUNDARY CONDITIONS

1. Form stress components for each wave
Plane dilatational wave:

v, 2 ____1—)_3_ 2
E,,——m+0(€)— . +O(6)

Plane shear wave:

(R

Apply Mohr’s circle resolution into a, -a, plane

. Require resultant stress components vanish on a, = 0

(%)

4. Matching phase variables on a, = 0 yields:

a. I'inite amplitude form of Snell’s law

sin§,, sinf, sin @, ,
Cy +/de4.‘a3 - 0 Cy +13dvdr

¢,

ay=20
b. Phase lags of reflected waves relative to the incident wave

L, L, L

¢, +3,v.la, =0 ¢, + B, v,

a, =0




5. Nonlinear reflection coefficients

A,.  sin20,sin2¢, — (v* — 2sin® 6,) cos 29,

A, sin 20, sin 2¢, + (y* — 2sin® 6, ) cos 29,

A, sin26,(v —2sin’ 6, ) +sin 26, (y* — 2sin’ 6, )

A, ~[sin 26, sin2¢, + (4* — 2sin’ 6, ) cos 24, |

6. 0. ~0+0(e) & ¢, ~ ¢+ O(e)

e Nonlinear reflection coefficients ~ linear reflection coeffi-

wients 4 O(€)

e Deviation from linear angles is oscillatory

-




CONSTRUCTION OF A FIELD SOLUTION

dilatation

zone "& &y .0)

’
7

shear zone

\
X

N
’
—”‘




GENERAL RULE

. Solve the linear problem

a. Incident ray: dilatation or shear

19

Co

. Reflected rays: dilatation and shear

Transmitted rays (two media in contact): dilatation and

shear

. Special case: ideal fluids = omit shear waves

For each wave, let

V= — %GA exp{iw( 2:-1:—1; - t)} + c.c.

=c¢, +8,(v-n) dilatational wave,

= ¢, shear wave

Use Snell’s law with ¢ replaced by « to obtain reflected and

refracted angles

Use linear relation with nonlinear angles from Snell’s law

to obtain reflection and transmission coefficients

l




CLOSURE

e For engineering materials, nonlinear parameters are small,
so the response to an incident nonlinear wave will be near
the response for the linear counterpart.

e Nonlinearity causes reflected and refracted waves to prop-
agate in variable directions, as though surface was rotating

in an oscillatory manner.

¢ Phase shifting in higher harmonics of 2 waveform and sig-
nal arrival from a specific spot might lead to useful NDT
application.




MULTIDIMENSIONAL REFLECTION AND REFRACTION OF
FINITE AMPLITUDE STRESS WAVES IN ELASTIC SOLIDS

A Thesis
Presented to
The Academic Faculty
By

Kun-Tien Shu

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy

in the School of Mechanical Engineering

Gerogia Institute of Technology

March, 1990

[ A,L‘_AL__J



“iv
TABLE OF CONTENTS
Page
LIST OF FIGURES ... iiiiiiiitttieretnnneisneerenneanancennnss vii
LIST OF TABLES . iiiiittiittttitteatteaeaeeatanreaneaneeannn, X
SUMM A R Y Lttt ittt ittt tteitaetaneeraneeeanntoniaseannsrenaens xi
CHAPTER I. INTRODUCTION ...ttt iiiiiiinns 1
1.1 Introduction and Motivation ..............cciiiii.... 1
1.2 Literature Review ... ... ... it 4
1.2.1 Finite amplitude waves insolids ................... 4
1.2.2 One-dimensional reflection and refraction .......... 8
1.2.3 Two-dimensional reflection and refraction ......... 10
1.3 Scope of Present Thesis ............cciiiiiiiiiii.. 12
CYIAPTER II. FINITE AMPLITUDE ACOUSTIC WAVES IN
A FLUID WAVEGUIDE ............cciiiiiiiiinn... 15
2.1 Introduction ... e s 15
2.2 Evaluation of the First- and Second- Order Rays ........ 18
2.2.1 Basic equations and boundary conditions ......... 18
2.2.2 Expression for the first-orderray ................. 21
2.2.3 Expression for the second-order ray ............... 23
2.3 Uniformly Valid Field Solution ......................... 28
2.4 Validation ...ttt 32
2.5 SUMLMATY ot ittt ittt ter s teeaneneenanseeanssiasoneraneeess 36
CHAPTER III. PERTURBATION ANALYSIS OF A FINITE
AMPLITUDE PLANE P WAVE UPON
OBLIQUE REFLECTION FROM A PLANE
ELASTIC HALF-SPACE ...........ciiiiiieninn... 37




3.1 Introduction  ....ciiiiiriiiiiiiriiiiitanniaaaaans

3.2 Governing Equations for Finite Amplitude Waves

in an Elastic Solid .....cieviiiiiiiiiiiiiiiii
3.3 Source and Boundary Conditions ...............
3.4 Linear Reflection ........ccoveiiiiiiiiiienii.n,

3.5 Reflection of Generated Harmonics .............

CHAPTER IV. FINITE AMPLITUDE FORMS OF MODE

CONVERSION AND FIELD SOLUTION

4.1 Introduction ......ciiiiiiiiit ittt

4.2 General Solution by the Method of Characteristics

4.3 Satisfaction of the Boundary Conditions ........
4.4 Quantitative Evaluations ............... ... ...
4.5 A Quantitative Example ......... ...l

4.6 SUIMMATY ... .iterernnerrinersnsrtenoennoenssenns

CHAPTER V. REFLECTION AND REFRACTION AT A
PLANE SOLID-SOLID INTERFACE ......

5.1 Introduction......cooiiii i
5.2 General Considerations  ......ccoiiviiiiiiiL
5.3 P Wave at Sub-Critical Incidence ...............
5.4 Supercritical Incidence of the P Wave ...........

5.5 Numerical Evaluations .....c.cvveiiiiiiiinnnnnn..

6.1 Conclusions and Discussions  «....ccovvvvevnnnn...

6.2 Recommendations of Feature Work .............

........

--------

........

......

.......
.......

CHAPTER VI. CONCLUSIONS AND RECOMMENDATIONS

37

38
43
46
31
60
64

65
65
66
71
76
80
88

v

R ——




xi

SUMMARY

In small-signal (linear) theory, oblique incidence of either a plane dilatational (P)
wave or vertically polarized shear (SV) wave at a plane interface between two elastic
media results in reflection and transmission of both types of waves. The direction of
propagation of each wave is constant and is governed by Snell’s law. If the incident
wave arrives at the boundary in a distorted manner as a result of nonlinearity,
the reflection and transmission pattern becomes intricate due to coupling effects

between dilatational and shear waves.

The first stndy of this problem addresses a special case—the reflection of an initially
sinusoidal, finite amplitude plane P wave from a plane stress-free boundary of an
elastic half-space. A second-order perturbation expansion successfully discloses the
most significant nonlinear effects, but it ultimately encounters difficulty for making
the results uniformly valid. This shortcoming is corrected by an analysis using
the method of characteristics for two-dimensional waves. Allowing the incident
and reflected waves to undergo nonlinear distortion along ray paths having variable
propagation direction leads to finite amplitude forms of Snell’s law and the reflection
coefficients of the outgoing P and SV waves zt each instant. A numerical algorithm
is developed to calculate the waveforms of the reflected P and SV wave received at a
specified point. The physical and mathematical insight provided from the analysis
leads directly to a generalized solution for the case of an interface between arbitrary

elastic and/or fluid media, in which critical angles may exist.

— e ———
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NPE -- Derivation & Assumption

e mass and momentum equation

&
N
~N

- v 4 3,3;(p V;V;) (1)

D

t
o adiabatic state equation,

2
P o= cprs 5 g—gz + 000’ (2)
p

e particle velocity = in x direction

! 12 [4
V. =cp'/pg 6i,x +0 (p'",0'8), (3)

From equations(1-3), one obtains

2’

) = Vzcz( R+ 8 R2) + higher order terms, (4)
at

where R is dimensionless density : R = p’/p0




- Reference frame translating at o in x direction.

The time derivative in the moving frame is :

D a d

t = 3t * Soax (5)
Substituting eq(5) into eq(4) leads to

(D, - ¢ ax)zR - (ai + a§ + ai) ( cqt cl)z( R + B R%) (6)
1 Y 1 1 1
a. b. C. d. e.

Consider a,b,c,d,e terms are small

. 1, 02) 1. ,.2. .2.(%
DR = - ax[ ¢R + 1gc R ] - Jeq(als az)Jx R dx. (7)
f




APPLICATION FOR NPE

Three different formulations of NPE:

CASE 1: Two dimensiona] waveguide
) 1

> (x,y)

Ix‘

R = -afcr+lscr?) - Lc( a2R ax (8)
t X 1 2770 2 0 yd ’

Xg

| CASE 2: A}imuthal symmetry -- in radial propagation

' >

-]~

W T, Z)

/,——b

<

1, o2 1 (7.2
DR = - ar[ c1R+-2-Bc0R] S0 icoj 32 R dr. (9)

Y  propagate in r direction

-~




- MODIFIED VERSION OF NPE

CASE 3: Our problem ,

1

Azimuthal sysmmetry -- in axial direction

/p\ (o0, x)

ku} "~ propagate in x direction

] 2 2 X

DR = - ax[ ¢\R + Lac R ] - 3,12 4 OZ)JX R dx. (10)
Present study

¢ Homogeneous: = 0

e Linear : =0

a2 X

2) R dx. (11) l
ao X¢

DR = 2 o(aao



INITIALIZATION OF NPE

1. King integral for steady state cases

2. Rayleigh integral for steady state and

transient cases

3. Planar wave assumption:
if r <radius , p=f(t - x/c)

if r > radius , p = 0.
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G Previous result for steady state

ref: Abstract at previous meeting
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PREVIOUS CONCLUSION

1. NPE , which is a time domain formula, can be

used to study steady state signal.

2. NPE is quite accurate for linear propagation,

even in the vicinity of the projector.

3. Simple, yet accurate, initialization of moving
window for NPE may be obtained by using a

linear field theory close to the projector.

QUESTION?

How accurate is the modified version of NPE for
transient pulse(s) propagation generated

by a circular piston?




TRANSIENT RESPONSE FOR A SINE LOBE PULSE
GENERATED BY A CIRCULAR PISTON

PROCEDURE:

1. Initialize sound field -- 0 < x < 0.6 )\
-- 0<o<3a

using Rayleigh integral

P = pc Ha - o) V (t - g)

x/2 .
. kC a(a + g sin(y)) v (t --Ry 4
x J-x/2 0% + a+ 20asin(y) n! c) ¥

2

where R is (02+ a“+ 20a sin(i:))l/2




2. Propagate the sound field to a specific distance.
3. Compare to evaluation of Rayleigh integral

Note: Singularity in Rayleigh integral

at the location: 0 = a & sin(y) = -1.

Asymptotic evaluation of contribution
of singularity using
c=a(1l+e¢€),

Yy = - g + A




nondimensional pressure
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nondimensional pressure

E-3)
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0.44

0.16
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transient wave comparison
at distance about 4500 wavelength
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CONCLUSION

1. NPE is quite accurate to describe linear

transient signal generated by a circular piston.

2. From previous study, NPE can be used to describe
linear steady-state signal generated by a

circular piston.

3. Application of NPE for sound beams in presence of
nonlinear effects ( finite amplitudes ) needs to be

explored.
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Evaluation of a finite amplitude sound beam in the time
domain using a modified version of the NPE computer code

Gee-Pinn James Too and Jerry H. Ginsberg
School of Mechanical Engineering,
Georgia Institute of Technology, Atlanta, GA 30332, USA

ABSTRACT

The NPE computer code [l] generates a time domain solution of a
parabolic equation that is derived by assuming that, to a first order, the
particle velocity is in the direction in which the signal propagates. The
present work extends an earlier study [2], which modified NPE to evaluate
the linear signal generated by a piston in an infinite baffle. The present
problem, which is concerned with the effects of nonlinearity, addresses
three alternative descriptions of the input field: (1) The waveform very
close to the transducer and extending to several piston radii transversely
is calculated from the King integral for the linear problem. (2) Inside a
cylinder extending outward from the piston, the input signal is represented
as a linear planar wave, while outside that cylinder the input field is
considered to be zero. (3) Nonlinear waveforms in a region beyond the far-
thest anti-node for the fundamental is obtained from the nonlinear King
integral [3)]). Temporal waveforms are computed at nearfield and farfield
locations, and then frequency analyzed for content at the lowest three har-
monics. The results are compared to experimental data [4][7]). [Work
supported by CNR.]

INTRODUCTION

The nonlinear progressive wave equation (NPE) developed by McDonald and
Kuperman {1] was used to evaluate a time domain solution in a waveguide and
to stucdy the behavior of weak shock at a caustic. In a previous work {2], a
modified version of the NPE computer code was obtained to evaluate the
linear signal generated by a baffled piston. The purpose of the present
study i{s to explore the ability of the modified NPE to describe the
propagation of a finite amplitude sound beams. In the past year, numerical
solutions [5](6] for a finite amplitude sound beam have been obtained in a
frequency domain approach. In contrast, the present study uses a time

domain approach, for which an appropriate sound field in the nearfield is

-



input and then propagated to the farfield. In order to demonstrate this'ap-
plication, three alternative descriptions of the input field shall be
addressed. The results are discussed in detail, and compared to experiment
data in the nearfield[4] and farfield{7].

GOVERNING EQUATIONS

In the previous derivation by McDonald and Kuperman [8], the combined
mass and momentum equation, which is
822 2

- VP + aiaj(p vivj), (1)

ac2

and the adiabatic state equation,

2
1 3
P o= clpre 22 88 L 00, 2)
2 ap,z

are used as the basic equations. It is assumed in the derivation that, to a

first order, the particle velocity is in the direction in which the signal

propagates.

[ I2 !
Vi-cp/p0 5i,x+0 (p'".p'80), (3)

where 61 x is the Kronecker delta.

From equations(l-3), one obtains

2 2 2 2
—H - V¢ (R + B R") + higher order terms, (&)
t

o |

where R is defined as a dimensionless density perturbation: R = p’/pO
A reference frame moving in the propagation direction with a constant speed
¢, was introduced. The time derivative in the moving frame is

[ 8 5
e ™ ac * 0 ax )

Substituting equation(5) into equation(4) leads to

D

2 2 2 2 2 2
( ?t - c0 ax) R = (6x + ay + az) ( co+ cl) (R+ B8R, (6)
1 1 t t
b. c. d. e.

It is assumed that terms marked a,b,c,d and e are small compared to

the dominant terms. The products of these small terms in equation(6) are
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negligible. Then, equation(6) is integrated with respect to x, which gives
the NPE in three dimensions.

1, .2y 1,2 .2 (F
DR = - ax[ ¢|R + A R ] - 300yt az)Jx R dx. (7)
£

APPLICATION FOR NPE

There are two different formulations of NPE in its original development
[8], depending on the type of coordinate system to be used. One, described
by equation(8), is suitable for two-dimensional waveguide problems in
Cartesian coordinate, while the other, described by equation(9), is
suitable for problems having azimuthal symmetry with signal propagation in

radial direction r.

DR= -3 c,R + lﬁc Rv2 .1 c ) d R dx (8)
t X 1 2770 2 70 z ’
X
f
¢ R r
1 2 0 1
DtR - - ar[ clR + 2ﬁcoR ] -3 ZCOJr 6z R dr. (9)

The present study employs a modification of NPE suitable for the
evaluation of axially propagating axisymmetric waves. The modification is
obtained by changing equation(6) to cylindrical coordinates in which the
axial coordinate x is in the propagation direction, and then, dropping
products of small terms. By integrating over x, one obtains a modified ver-

sion of NPE which can be used for finite amplitude sound beams problems,

2 >'d
1 2 1 .18 3
DR = - ax[ ¢R + 38c.R ] - 5055t EZE)Jx R dx. (10)

£
In addition, the axisymmetry condition requires that dR/dc = 0 on the axis.
The moving frame used for the present study was taken to extend five
wavelengths in the axial direction and three radii in the transverse direc-
tion. Three alternative descriptions of the input fileld are used .
(1) The waveform very close to the transducer and extending to three
piston radii transversely is calculated from the King integral for the

linear problem,

1
p/poc0 -3¢ I: Gn exp(it - pnz) Jo(nR) dn + c.c., (11
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where c.c. represents complex conjugate of the previous term.

(2) Inside a cylinder extending outward from the piston, the input sig-
nal is represented as a linear planar wave, based on the assumption that
P = PpCoVy OO the face of the piston, while nutside that cylinder the in-
put field is considered to be zero.

(3) Nonlinear waveforms in a region beyond the farthest anti-node for
the fundamental are obtained from the nonlinear King integral[3].

Temporal waveforms at nearfield and farfield locations are computed
from NPE by matching the time increment to the spatial resolution in the
axial direction. The last step is to perform a frequency analysis of the

waveforms for the amplitude and phase at the lowest three harmonics.

NUMERICAL RESULTS

In this section, numerical results for harmonic generation obtained
from the modified NPE computer code for the three alternative inputs shall
be compared to experimental data in the nearfield and farfield. Figures 1-6
concern nearfield situations, for which the third of the aforementioned in-
put schemes is not applicable. The parameters for the example are ka =
180.75, an average pressure amplitude on che piston face = 100 kPa, fun-
damental frequency = 2.25 MHz, speed of sound = 1486. m/sec and piston
radius = 19 mm. These parameters are the same as those in previous experi-
ments [4]. Figures 1-3 describe the amplitude variation along the axis of
the sound beam, while, Figures 4-6 show the transverse variation at the
axial distance z = 275 mm. It can be seen that the planar wave input and
the linear King integral input both give good results, except in the region
very close to the piston. Although not shown, it was found that increasing
the distance from the transducer at which either input field is generated
increases the discrepancy with experiment, especially for higher harmonics.

Figures 7 and 8 display farfield results obtained from the second and
third input schemes. The parameters for these examples are fundamental fre-
quency = 450 kHz, piston radius = 51 mm, SPL(r.m.s)= 212.7 db//1 uPa-m and
speed of sound = 1418 m/sec. These parameters are the same as those in
previous experiments [7]. For the region around the axis, the results of
each are in close agreement with experiment. It should be noted that the
lower measured level of the second harmonic at longer ranges is consistent

with the estimate for dissipation in reference [7]
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CONCLUSION

Based on the evaluations, it is reasonable to conclude that NPE, which
is a time domain formulation, can be used to study CW signal generation.
This requires a proper initialization of the window. Due to the planar wave
assumption, which ignores diffractive effects, initialization of the window
based on this approximation causes some errors for nearfield locations.
'However, the planar wave assumption is certainly the most efficient manner
in which the input field can be generated, and it is reasonably accurate

outside the region close to the piston.
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