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S1. Scientific Work

Our research efforts are focussed on developing a systematic procedure for
transforming a set of logical conditions imposed on a mathematical optimisation model
into an integer linear programming formulation. Through reformulation of logical
forms into integer forms we support a uniform and powerful representation of a
problem, consisting of a tightly interrelated closed system of choices.

We describe a systematic approach for transforming statements in Boolean Algebra
into integer or mixed integer linear programmes. The method is particularly suitable
as a modelling technique that allows logical relationships connecting variables and
linear constraints to be modelled as integer and mixed integer programmes. We are
preparing and illustrating a few example (logic) problems processed by this method
which are set out to explain reformulation and modelling techniques. I

2. Research Plans

In order to test out our mathematical ideas we are preparing a rumber of test
models. From these we will design a syntax specification for presenting discrete
optimization models in logical forms. We will also specify the target mixed integer
programming forms which will be consistent with current CAMPS representation of
linear forms. As indicated in the last report, overall research plans have a slightly
modified goal which is to introduce a knowledge based systems shell as a vehicle for
implementing the reformulation techniques. An internal specification for capturing
this information and carrying out the analysis of bounds and generating the target
mixed integer programmes, will also be prepared. We will then decide whether to
use logic programming or one of the other knowledge reptesentation methods to
implement the system.

3. Administrative Change

Dr. C Lucas left as a full time investigator. We tried to find a part time
investigator who could wrap up the rest of this research project. As stated earlier, a
fall in the value of the dollar and Dr. Lucas's resignation has forced us to make the
best use of research funding in this way. We were in search of a person already
knowledgeable in this field of integer programming and who has sufficient enthusiasm
for this research. We have been very fortunate in finding Dr. Eleni
Hadjiconstantinou as a part time research investigator with all these attributes. She
was a part time lecturer at Brunel University until the end of last year and is
currently a full time lecturer at Imperial College, London University. She has
already made some progress in preparing a preliminary report. We have worked
together to put the project back on a reasonable time schedule.

4. Other Information

(a) We had planned to present a paper on this work at the ILas Vegas, TIMS/ORSA
meeting which was held on 7, 8, 9 May, 1990. At the last moment Dr.
Iladjiconstantinou could not travel to USA as her visa application was not made

in time to go through the normal procedures. We are planning to present this
paper at a forthcoming mini symposium APMOD9I.

(b) We are continuing with Dr. Lucas and with some support from Dr.
Hadjiconstantinou with the preparation of our book on modelling. The book
will be published by Academic Press and the support given by the US Army's
European Research Office will be acknowledged.

5. Financial Annexe

See attached.
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TRANSFORMATION OF LOGICAL EXPRESSIONS INTO A

SYSTEM OF INTEGER LINEAR CONSTRAINTS:

AN APPROACH TOWARDS AN AUTOMATIC

CONVERSION TO DISCRETE PROGRAMMING MODELS.

E. Hadjiconstantinou, Imperial College, London

G. Mitra, Brunel University, Uxbridge, London

This paper presents a systematic procedure for transforming a set of

logical conditions imposed on a model into an integer linear

' nulation. ILP supports a uniform and powerful representation of a

problem, consisting of a tightly interrelated closed system of choices,

as a system of linear constraints with an objective function. It

supports direct representation of arbitrary Boolean expressions. The

method adopted to achieve this is to introduce binary variables

(hereafter called logical variables) and re-express logical

relationships amongst constraints in terms of " simple " constraints

and logical variables i.e. generating logical constraints (a logical

constraint is a logical combination of "simple" constraints).

Propositional or Statement Calculus

3y a " statement " we define a declarative sentence. For example,

"Athens is the capital of Greece"

and

"Five is an even number"

are statements. This type of statement, about which it is possible to

say that it is either true or false but not both. is called a

proposition (for our purpose, propositions and statements are

synonymous words). A proposition can take the truth value eithei

true or false i.e. the truth value of a true proposition is TRUE

(abbreviate to T) and the truth value of a false proposition is FALSE

(abbreviate to F). No other value is permitted and the calculus of

propositions thus refers to a two-valued logic. The above two

propositions are true and false respectively.

Propositional calculus enables further propositions to be formed by
modifying a simple proposition with the word not or by connecting

propositions with the words and, or, if ... then (or implies ) and if and

only if. These five words are called propositional or logical

connectives and can be used to build compound propositions from
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given simple propositions. More generally, they can be used to
construct more complicated compound propositions from compound
propositions by applying them repeatedly. The connective structure of
a compound proposition is described in terms of its constituent
individual propositions (that is , statements which contain neither
connectives nor any other proposition as a component part). The
connectives used here are given below with their usual interpretation:

Negation: a proposition which is modified by the word "not" is
called the negation of the original proposition.

Conjunction: a compound proposition formed by inserting the
word "and" between two propositions.
Disjunction: when two propositions are combined disjunctively

by inserting the word "or" between them, the resulting compound
proposition is a d;sjunction.

There are two meanings of the "or" connective: the inclusive or
i.e. at least one disjunct is true and the exclusive or which is
true if at least one disjunct is true but not both are true. The
latter operation is also known as "non-equivalence".

Condition or implication: a compound proposition of the form
"if ... then . " the proposition immediately following "if" is the
antecedent and the proposition immediately following "then" is
the consequent. Thus, the antecedent "implies" the consequent.
Equivalence: two propositions are equivalent when they have the
same truth value i.e. a biconditional proposition is obtained from
two propositions by using the words "'f and only if".

The choice of symbols for the connectives is obtained from Boolean
Algebra and is as follows:

means "not"

means "and"

v means "inclusive or"
means "exclusive or"

"-" means "implies"

"-*" or "=" means "if and only if"

It is convenient to represent arithmetic variables by small letters x,
y, z, etc. and propositions by capital letters from the middle part of
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the alphabet "P", "0", etc. (if it is an arbitrary proposition, it is known
as a propositionai variable). Thus, P, 0, ... may be used to represent

(a) id;vidual propositional variables, e.g. "it will rain on day x"
(b) describe an action or option or yes/nc decision

e.g. "product i is manufactured",
(c) level of activity, e.g. "x=l",
(d) linear restrictions i.e. (in)equalities involving LP (or IP)

variables, e.g. " 3x + 4y < z",

(e) compound propositions.

For example, if P represents the proposition "It Is raining today", 0 the
proposition "Today is clear", R the proposition "Yesterday was cloudy"
and S the proposition "Yesterday was raining" then we have the
following compound propositions:

stands for It is not raining today"
Q v P stands for "Today is clear or today is raining"
P - R stands for " If, and only if, yesterday was cloudy today it

is raining"
(R -- P) vO stands for "Either today is clear or if yesterday was

cloudy then it is raining today"

-R.0 stands for "Yesterday was not cloudy and today is clear"

To avoid an excess of parentheses in writing compound propositions in

symbolic form, we will consider the above connectives in the
following conventional order of precidence in descending order:

negation "-"

conjunction "."
disjunction "v"
implication "-4"

equivalence " ->"

For example,

R . S -P means ( R. S) -- P; -R. 0 means (-R) . Q
Given that the individual propositions must be TRUE or FALSE the
compound propositions will be true or false depending upon the
connectives used. if the truth values of the individual propositions are
known, then the truth value of the compound proposition can be
determined in a mechanical way by means of truth tables. It is
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conventional in Boolean Algebra to equate the value F with 0 and T
with 1.
The connectives are defined in terms of the truth values of

propositions P and Q in Table 1:

P Q ~P P.0 PvQ P a P-
1 1 0 1 1 1 1

1 0 0 0 1 0 0
0 1 1 0 1 1 0

0 0 1 0 0 1 1

Several other connectives may be similarly defined for combining two
or more propositions. Table 2 contains a list of the propositional
connectives that we need for our purposes.

NO Name of Svmbd Meaning of Other common words
cofflnnective connective

2.1 negation -P not P
2 2 conjunction P . Q P and Q Both P and Q / P but Q
2.3 inclusive PvQ P or Q Either P or Q / P unle,,s Q

disjunction / at least one of P or Q

2.4 iun-equivalence P - Q P exclusive or Q Exactly one of P or Q is true

2.5 implication P -- Q it P then Q P implies Q / P is a sufficient

condition for Q
2.6 equivalence P+.-) Q P if and on!y if Q P iff Q / P is a necessary and

sufficient condition for Q
2.7 joint denial ~(P v Q) P nor Q Neither P nor Q / None of F

0 is true
2.8 non-conjunction (p. Q) P nand Q

Table 2: Propositional connectives

It is possible to define all propositional connectives in terms of a
subset of them. For example, they can all be defined in terms of the
set {.,v,-} so that a given expression car be converted into a "normal

form". Such a subset is known as a complete set of connectives.
This is accomplished by replacing a certain expression by another
"equivalent" expression involving other connectives. Two expressions

are said to be "equivalent" if and only if their thuth values are the
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same, e.g. P Q 0 is the same as -P v Q. Then we have some useful

pairs of equivalent expressions, which are sufficient for our purposes,

given in Table 3, where P, Q and R are all propositions.

3.1 --P = 1

3.2 P - Q = (-P. Q) v ( P. -Q) Exclusion

3.3 - P v Q ) = -P. -Q De Morgan's Law

3.4 P. Q -P v-Q

3.5 P__+ Q = -P v Q Implication

3.6 P-Q=(p--+ Q.Q-+ P=-P.~QvPQ

3.7 P-4 Q. R =(PQ ). ( P >R )

3.8 P--Q v R =(P-- Q) v (P--- R )

3.9 P. Q-R =( P---R ) v ( Q-- R)

3.10 P v Q-- R =(P- R ).(Q--- R)

3.11 P. ( Q v R )=(P. Q) v (P. R) Distributive Law

3.12 Pv(Q.R)=(PvQ).(PvR)

3.13 P.PvQ=P

Table 3 . Equivalent logical expressions

Connection with Boolean Algebra

Since all compound propositions may be expressed in terms of the

three connectives "-". ".", "v" ( i.e. converted into normal form) which

correspond to the three Boolean operations (negation, Boolean product

and Boolean sum, respectively) and also all axioms of Boolean algebra

are satisfied, then it is posiible to show that the algebra of

propositions is a Boolean algebra. It is then easy to apply any

theorems of the latter and methods of simplification for expressing

and manipulating logical relationships. For example, smaller complete

set of connectives can be found by writting equivalence in normal

forms which are defined below.

By De Morgan's Laws, conjunction may always be expressed in terms of

negation and disjunction P . 0 = -( -P v -0 ) - let P and 0 be simple

propositions. Therefore all conjunctions may be removed leaving an

expression entirely in - and v, so that -, v is a complete set of

Definition: A compound proposition R is said to be in a conjunctive

normal form if R has the form R 1 . R2 ... Rn where each Ri (i=1 ..., n) is

a disjunction of individual propositions or the negations of individual
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propositions eg. R = ( P v -0) . (_P v Q) whre P and Q represer. simple

propositions.

Definition: A compound proposition R is said to be in a disjunctive

normal form if R has the form R1 v R2 ... Rn where each Ri (i=1 ... , n) is

a conjunction of individual propositions or the negations of individual

propositions e.g. R = ( P . -0) v (-P . Q) where P and 0 represent simple

propositions.

Any expression can be transformed into a normal form. This is

accomplished easily by using the equivalent statements given in

Table3.

By using useful concepts and convenient methods provided by

Propositional Calculus and Boo!ean Algebra to deal with logical

relationships, our purpose is to develop an approach towards modelling

logical conditions in terms of 0-1 integer variables and (in)equalities

of Mathematical Programming (MP).

Representation of Boolean statemenis
We wish to transform an arbitrary (Boolean) statement in the

propositional calculus into a system of integer kinear constraints so

that the logical equivalence of the transformed expressions is

maintained. The resultina £,ostem of n .lparlv rit have the

same truth table as the original statement i.e. the truth or f2!sity of

the statement is represented by the satisfaction or not of the

corresponding linear equations and inequalities.

In order to explain the transforrmation prcccss and -e L - .-e '"

principles more clearly, we will distinguish the following two cases

at this stage:
(i) connecting logical variables

(ii) logically relating linear form constraints

Let Pi denote a Boolean or propositional variable which may take

values TRUE (T) or FALSE (F). Pi represents an individual proposition,

action, option or decision. Imposing logical conditions in a model

requires the introduction of a 0-1 integer variable attached to each

type of action (or option) that is envisaged. We adopt the convention

of using the Greek letter "8" for this variable, known as decision



variable. and agree that it takes the value of 1 if tre action is
realised (or the oOtion adopted) and 0 otherwise ie. define

6, 1 :f and only if proposition P, is TRUE
61 = U if and only if proposition P, is FALSE

The logical conditions linking these different actions will be written
in the form of linear constraints acting on the associated decision
variables.

Case (ii)
A "logical constraint" is defined as a logical combination of
"simple" constraints and it is formed from the following cyntax

if antecedent then consequent

where
antecedent must be a binary condition (0-1)
and

consequent can represent either a binary condition or level of actvity
or a linear form constraint.
In this case. 0-1 indicator variables (antecedent) are introduced and

linked to some of the continuous variables in the problem to
distinguish between certain states (consequent). rhe truth or fa~sity
of a linear inequality is represented by a 0-1 indicator variable 6 sucr"
that

8i = 1 if and only if the ith linear constraint is satisfied
6 i = 1 if and only if the ith linear constraint is violated

Standard transformations of logical conditions into MP
constraints
Using the conventional symbols and meaning of propositional
connectives for logical operators, given in Table 2, and the set of
equivalent statements, given in Table 3, we give below some standard
form transformations of compound propositions into linear algebraic
forms so that the two expressions are logically equivalent. We

distinguish the transformations into two groups, T1 and T2, depending
on the meaning of proposition under consideration (case (i) or (Ui)

above, respectively).

Transformations Ti are applied to propositions Pi (i=1 n) which
represent individual propositional variables. We also define 8i (i=1, n)
0-1 decision variables such that
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6 1 if and only if proposition P, is true

= 1 if and only if proposition Pi is false

1I Sacncn! ,tra.n-or cd to Cn:,,strint

Ill -t, 61 =1o

1 2 l'l H 61 + 6) >  I

1 4 Pl P ) 61 o. 5"= 1)
15 -- l'1  I'' 6 {1 = 0.,6" (

.0I 2 11) 6~
1.7 F1  -1P", 1 8" > 1

I 611'2 0 62 -0
P]1 1 , P ' 1 6_- .( .61 6 d

11 6 83 _-

I P2 1 ), 1'3 61 s 6 3, 6;< 3

1.14 P (t2 V P; 81 1 , I 4- 6
1~ I5 ~ ! P . I' ; i ± &6 2 : > 6;

Ihc -chcral hinm , f the rltit n,, I. 1, 1.4, 1.1 1 and 1 .12 Ti1\ hc tiated i

1 l0 ' P 61 6-, + 6

I P 1 2 P Pk I Pk+2 , 1 6 1 - (I 6k) Ok+! ,

1 1I) at lc,,t k ikcrnii',s ii c _ "IRIT " 61 , , k
1v2i c\icll k Aicrrnt;i\ c arc TRI "T* 61 + 6" + 6 o k

at21 ' t mui k ;llIi. .arc TRUI' 6 1 + 62 + 0n I k

Transformations T2. imposed in the form of implication constraints

are applied to a proposition P which can represent either.
some level of activity denoted by the LP continuous decision
variables x, y orz., L and U represent the finite lower and upper
bounds, respectively, on the activity, or

a linear form (in)equality denoted by L. ajxjpb where o is an
(in)equalty relation of the form "<. ,or "="; L and U
represent the finite lower and upper bounds, respectively, on
the value Ij ajx j p - b may take in an optimal solution how

these values are obtained will be discussed later in an example;
r is a small number such that r 1
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Note that all coefficients and variables in these problems will be

integers quantities and t: may be taken as 1.
We define an indicator variable . taking the value 1 or 0 to show the

truth or falsity, respectively, of the proposition P.

T2 stttcrnnt l i, rinionned to (onstraint

2.1 6 6. ,1

-~~~I , Ji i .6 i ( ii \i', > hclJJ h Ll 6

2 5 6 1 vl ', > ) -I IajXj -h L i 1-6

....0 .iI -
7 _ I .- I) 6 - 1 1 ,  hi.

V2.5 6 I -1 aj \J bt

A sequence of steps for the transformation of logical

conditions

Having represented in the previous sections, compound propositions as
(in)equalhties. we now wish to model more complicated statements by

further inequalities. As a result of the many different, but equivalent
forms any Boolean statement can take there are otter diferent ways

of generating the same or equivalent constraints.

One possible way would be to convert the desired Boolean expression
into a conjunctive normal form i.e. remove implication, move negation

inwards by applying De Morgan's laws and recursively distribute "v'
over .". This results in a conjunction of disjunctive terms, called

clauses, where negation is only applied to individual propositions.

Each ciause is then transformed into a linear constraint (of type
T1 16), resulting in a system of constraints, derived in this manner.
which have to be satisfied invoking the logical "and" operation (an
illustration of this method is presented in Example 1).

A more general and systematic procedure for converting a given logical
condition impored on a model into a set of integer linear constraints,

is described below in the form of a sequence of transformations steps.
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Step 1. Write explicitly the required condition, in words, in the form

of a Boolean statcment using known logical operators. Let S

denote the required condition.
Step 2. Define simple or individual propositions Pi which are

sufficient to describe S. Also define compound propositions
Qj in terms of Pi.

Step 3. Rewrite S in symbolic form, as a complicated compound

proposition in terms of Qj and propositional connectives. It
may be advisable to use an equivalent form of S or reduce it

to a form that represents a conjunction of compound
propositions.

Step 4. Break S, if possible, into a set of simpler compound
propositions-which are again written in terms of Qj- (ideally

as simple as the standard form propositions) to represent

certain states of the problem. It may be necessary to
simplify further scme of these propositions b y
writing them into equivalent forms using Table 3.

Step 5. Assign 8 i  0-1 decision variables to the individual
propositions Pi to represent the truth or falsity of Pi an d

define 0-1 indicator variables to relate logically the different

states.

Steo 6. Transform each compound proposition Qj into a linear
constraint using transformations TI.

Step 7. Combine the states of the problem by linking the indicator
variables to the above constraints or to the original (probably

continuous) variables of the problem in the form of

implication constraints. The latter are then transformed into
(in)equalities using transformations T2.

Illustrative Examples
To illustrate the conversion of a logical condition using the above

tranformation procedure, we present the followina examples.
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Example 1,
If 3 or more of products {1 to 5} are made, or less than 4 of

products {3 to 6, 8, 9) are made then at least 2 of products {7 to 9)

must be made unless none of products {5 to 7) are made.
This example is taken from Williams [19771.

Let the above condition be denoted by S.

Step 2.
Define the individual propositions Pi :"Product i is made" (i=1 ..., 9).

Also define compound propositions

01 " at least 3 of P1, P2 , P3 , P4 ,P5 are TRUE
Q2 " at most 3 of P3, P4 , P5 , P6 , P8 , P9 are TRUE"

Q3: "-(P5 v P6 v P7 ) "

Q4: " at least 2 of P7 , P8 , P9 are TRUE"

Write S in symbolic form: ( 01 v Q2) -Q3 -) 04

Step 4.
Break S into simpler compound propositions to represent states of the
problem: 01 v 02; 03 ; 04

Assign decision variables 8i to the propositions Pi such that

8i = 1 if and only if product i is made i.e. proposition Pi is TRUE

6i = 0 otherwise
Introduce indicator variables 6 and 6' such that

6 = 1 if and only if the proposition Q1v Q2 is FALSE

= 0 if and only if 01 or Q2 is TRUE
6'= 1 if and only if -03 is FALSE

= 0 if and only if -03 is TRUE

The T1 transformations are applied to propositions Qi in order to
convert them into linear constraints.

Using T1.19, proposition Q1 can be represented by the inequality

81 + 62 + 83 + 64 + 85 e 3

Using T1.21. proposition Q2 can be represented by the inequality

63 + 84 + 65 + 86 + 8R + 9 _ 3
Using T1.5, proposition Q3 can be represented by the inequality

(1- 85) =1, (1- 86) = 1, (1- 87) = I
Using T1.19, proposition 04 can be represented by the inequality

87 + 68 + 89- 2
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We relate logically the various states of the problem firslty by
imposing the following conditions

Q1 76 0

-42 6 =0

-Q3 -- 6 '= 0
6=0. 6'= 0 - Q4

and then converting them into linear constraints by applying the

transformations T2. Rewritting the above set of conditions, we have

6= 1 61 + 62+ 63+;64+65<_2 (1)

6= 1- 63 + 64 + 65 + 66 + 68 + 69  4 (2)

6'= 1 - 5 =0. 6 =0.7 =(0 (3)

6 =0.8'=0-)67+68+689 2 (4)

Using T2.3, U may be taken as 3 ( = 1+1+1+1+1-2). This gives the
following constraint represnetation of (1):

61 + 62 + 63 + 64 + 85 + 3 6 < 5 (5)

Using T2.5, L may be taken as -4 ( = 0+0+0+0+0+0-4). This gives the

following constraint representation of (2):

63+64+65 +6+6 +69 46 (6)

Using T1.7, we impose condition (3) by the constraints
1 -65 > 6', 1-66 !6', 1- 67 _>68' (7)

To impose condition (4), we may introduce another indicator variable

such that

8"= 1 if and only if 6 = 0 . 6' = 0
Condition (4) can then be replaced by the following conditions

6 = 0.6' = 0 -4 8"= 1 (8)

6= 1- 67 + 68 + 69 - 2 (9)

Using T1.12, condition (8) is represented by
6 +68' + 6" 1 1 (10)

and using condition T2.5 condition (9) is represented by
67 +688 +69 2" (11)

The complete IP representation of the condition S is given by the

constraints (5)-(7), (10)-(11).
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ExamDle 2 : Crossword Compilation
This problem has a logical structure; it can be formulated in terms of

Boolean Algebra and then converted into an integer programming
system of constraints. The objective is to fill in an nxn full puzzle
with complete interlocking using words from a given lexicon.

Define the following sets
I the set of rows (ie I)

M the set of columns (m E M)

J the set of letters of the alphabet (je J)

and let n = IM I I. Given also is a lexicon of n-letter words.

This example is taken from Wilson [1989).

To formulate the problem, the following set of logical conditions have

to be modeled:
C1. Each cell of the nxn matrix must be occupied by exactly one

letter of the alphabet.

C2. If cell (i, m) is occupied by letter j then at least (n-1) cells
(im'), m'# m must be occupied by letters j' J 1 and at least

(n-1) cells (i', m), i' i must be occupied by letters j"e J 2  where

J1 : set of letters which by virtue of the lexicon could appear in
cells (i, m'), m' m given that letter j appears in cell (i, m)

J2: set of letters which by virtue of the lexicon could appear in
cells (i', m), i' # i given that letter j is in cell (i, m).

To convert the above conditions into linear constraints, apply the

iransformatio procedure.

Define the individual propositions

Pimj : " Cell (i, m) is occupied by letter j " for all iE I, me M and je J
and compound propositions

QI' " at least (n-i) of Pimj, are TRUE " where m'-m, j'EJ 1

Q2: " at least (n-i) of Pi'mj" are TRUE " where i'#i, j"eJ2

Write conditions C1 and C2 in symbolic form:

C1  : Pim"A" Pim"B'"  ... Pim"Z" for all iE I and mE M

C 2 : Pimj - Q1 • 02 for all iE I and me M

Quite clearly, using 3.7 of Table 3, C2  is equivalent to the statement:
(Pimj - 01). Pimj -- Q2).
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Assign decision variables 8imj to propositions Pimj such that
8imj = 1 if and only if letter j is placed in cell (i, m)

=0 otherwise

Applying T1 transformations to propositions Q1 and Q2, we obtain the

following linear constraints.
Using T1.19, 01 can be represented by the inequality

Y- m' m, j'e J1 8im'j, >  n-1 for all i, j, m.
and Q2 can be represented by the inequality

i' i, j"e J2 8i'mj" >- n-1 for all i, j, m.

Using transformation T1.3, condition C1 can be represented by the
inequality

jeJ 8imj = 1 for all i and m (1)
Using the equivalent form of C2 , we can replace it by the imposing the
following pair of conditions:

8imj = 1 Y- Zm,m, j'eji 8im'j' n-1 for all i, j, m (2)
6 imj = 1 1 i'*i, j"-eJ2 8i'mj" n-1 for all i, j, m (3)

(2) and (3) can be converted into inequalities using transformation
T2.5. L may be taken as -(n-i) giving the following representations of

(2) and (3), respectively:

I m,#m, j'e Ji 8imj - (n-i) 8imj for all i, j, m (4)
Si'i, j"e J2 8i-mj,, (n-i) 8imj for all i, j, m (5)

Thus, condition C1 is represented by constraint (4) and condition C2 is
represented by constraints (4)-(5).


