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1. Scientific Work

Our research efforts are focussed on developing a systematic procedure for
transforming a set of logical conditions imposed on a mathematical optimisation model
into an integer linear programming formulation.  Through reformulation of logical
forms into integer forms we support a uniform and powerful representation of a
problem, consisting of a tightly interrelated closed system of choices.

We describe a systematic approach for transforming statements in Boolean Algebra
into integer or mixed integer linear programmes. The method is particularly suitable
as a modelling technique that allows logical relationships connecting variables and
linear constraints to be modelled as integer and mixed integer programmes. We are
preparing and illustrating a few example (logic) problems processed by this method
which are set out to explain reformulation and modelling techniques. e

2. Research Plans

In order to test out our mathematical ideas we are preparing a rumber of test
models.  From these we will design a syntax specification for presenting discrete
optimization models in Jogical forms. We will also specify the target mixed integer
programming forms which will be consistent with current CAMPS representation of
linear forms. As indicated in the last report, overall research plans have a slightly
modified goal which is to introduce a knowledge based systems shell as a wvehicle for
implementing the reformulation techniques. An internal specification for capturing
this information and carrying out the analysis of bounds and generating the target
mixed integer programmes, will also be prepared. We will then decide whether to
use logic programming or one of the other knowledge repiesentation methods to
implement the system.

3. Administrative Change

Dr. C Lucas left as a full time investigator. We tried to find a part time
investigator who could wirap up the rest of this research project. As stated earlier, a
fall in the value of the dollar and Dr. Lucas's resignation has forced us to make the
best use of research funding in this way. We were in search of a person already
knowledgeable in this field of integer programming and who has sufficient enthusiasm
for this research. We have been very fortunate in finding Dr. Eleni
Hadjiconstantinou as a part time research investigator with all these attributes. She
was a part time lecturer at Brunel University until the end of last year and is
currently a full time lecturer at Imperial College, London University. She has
already made some progress in preparing a preliminary report. We have worked
together to put the project back on a reasonable time schedule.

4.  Other Information

{a) We had planned to present a paper on this work at the Las Vegas, TIMS/ORSA
meeting which was held on 7, &, 9 May, 1990. At the last moment Dr,
Hadjiconstantinou could not travel to USA as her visa application was not made
in time to go through the normal procedures. We are planning to present this
paper at a forthcoming mini symposium APMOD91.

(b) We are continuing with Dr. lLucas and with some support from Dr.
Hadjiconstantinou with the preparation of our book on modelling. The book
will be published by Academic Press and the support given by the US Army's
FEuropean Rescarch Office will be acknowledged.

5.  Financial Annexe

attached.
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TRANSFORMATION OF LOGICAL EXPRESSIONS INTO A
SYSTEM OF INTEGER LINEAR CONSTRAINTS:
AN APPROACH TOWARDS AN AUTOMATIC
CONVERSION TO DISCRETE PROGRAMMING MODELS.

E. Hadijiconstantinou, Imperial College, London
G. Mitra, Brunel University, Uxbridge, London

This paper presents a systematic procedure for transforming a set of
logical conditions imposed on a model into an integer linear
‘o.mulation. ILP supports a uniform and powerful representation of a
problem, consisting of a tightly interrelated closed system of choices,
as a system of linear constraints with an objective function. [t
supports direct representation of arbitrary Boolean expressions. The
method adopted to achieve this is to introduce binary variables
{hereafter called logical variables) and re-express logical
relationships amongst constraints in terms of " simple " constraints
and logical variables i.e. generating logical constraints (a logical
constraint is a logical combination of "simple" constraints).

Propositional or Statement Calculus
By a " statement " we define a declarative sentence. For example,
"Athens is the capital of Greece"

and

"Five is an even number”
are statements. This type of statement, about which it is possible to
say that it is either true or false but not both. is called a
proposition (for our purpose, propositions and statements are
synonymous words). A proposition can take the truth value either
true or false i.e. the truth value of a true proposition is TRUE
(abbreviate to T) and the truth value of a false proposition is FALSE
(abbreviate to F). No other value is permitted and the calculus of
propositions thus refers to a tiwo-valued logic. The above t{wo
propositions are true and false respectively.
Propositional calculus enables further propositions to be formed by
modifying a simple proposition with the word not or by connecting
propositions with the words and, or, if ... then (or implies ) and if and
only |If. These five words are called propositional or logical
connectives and can be used to build compound propositions from



given simple propositions. More generally, they can be used to
construct more complicated compound propositions from compound
propositions by applying them repeatedly. The connective structure of
a compound proposition is described in terms of its constituent
individual propositions (that is , statements which contain neither
connectives nor any other proposition as a component part). The
connectives used here are given below with their usual interpretation:
- Negation: a proposition which is modified by the word "not" is
called the negation of the original proposition.
- Conjunction: a compound proposition formed by inserting the
word "and" between two propositions.
- Disjunction: when two propositions are combined disjunctively
by inserting the word "or" between them, the resulting compound
proposition is a disjunction.

There are two meanings of the "or" connective: the inclusive or
i.e. at least one disjunct is true and the exclusive or which is
true if at least one disjunct is true but not both are true. The
latter operation is also known as "non-equivalence”.

- Condition or implication: a compound proposition of the form
"if ... then .."; the proposition immediately following "if* is the
antecedent and the proposition immediately following "then” is
the consequent. Thus, the antecedent "implies” the consequent.

- Equivalence: two propositions are equivalent when they have the
same truth value i.e. a biconditional proposition is obtained from
two propositions by using the words "if and only if".

The choice of symbols for the connectives is obtained from Boolean
Algebra and is as follows:

"~" means "not"

means "and”
"v " means "inclusive or"
"=" means "exclusive or"
" means "implies”

H__n

" or "=" means "“if and only if"

"
-

It is convenient to represent arithmetic variables by small letters x,
¥, z, etc. and propositions by capital letters from the middle part of

-~




the alphabet "P", "Q", etc. (if it is an arbitrary proposition, it is known
as a propositionai variable). Thus, P, Q, ... may be used to represent

(a) hidividual propositional variabies, e.g. "it will rain on day x"
(b) describe an action or option or yes/nc decision
e.g. "product i is manufactured”,
(c) level of activity, e.g. "x=1",
(d) linear restrictions i.e. (in)equalities invaiving LP (or [P)
variables, e.g. " 3x + 4y < 2",
(e) compound propositions.

For example, if P represents the proposition "It is raining today", Q the
proposition "Today is clear", R the proposition "Yesterday was cloudy”
and S the proposition "Yesterday was raining" then we have the
following compound propositions:

~P stands for It is not raining today”

QvP stands for "Today is clear or today is raining”

PoR stands for " If, and only if, yesterday was cloudy today it
is raining”

(R->P)vQ stands for "Either today is clear or if yesterday was
cloudy then it is raining today”
~R.Q stands for "Yesterday was not cloudy and today is clear”

To avoid an excess of parentheses in writing compound propositions in
symbolic fcrm, we will consider the above connectives in the
following conventional order of precidence in descending order:
negation "~"
conjunction "
disjunction "v"
implication "—
equivalence " "
For example,
R.S—>Pmeans(R.S)—-P; ~R.Qmeans (~R) . Q
Given that the individual propositions must be TRUE or FALSE the
compound propositions will be true or false depending upon the
connectives used. ii the truth values of the individual propositions are
known, then the truth value of the compound proposition can be
determined in a mechanical way by means of truth tables. Itis

"




conventional in Boolean Algebra to equate the value F with 0 and 7
with 1.

The connectives are defined in terms of the truth values of
propositions P and Q in Table 1:

P Q ~P P.Q PvQ P-Q PoQ
1 1 o 1 1 1 1
1 0 0 0 1 0 0
0 1 1 0 1 1 0
0 0 1 0 0 1 1

Several other connectives may be similarly defined for combining two
or more propositions. Table 2 contains a list of the propositional
connectives that we need for our purposes.

NO Name of Symbd| Meaning of Other common words
connnective connective
2.1 | negation ~p not P
2 2 ] conjunction P.Q Pand Q Both Pand Q/P but Q
2.3 | inclusive PvQ PorQ Either Por Q/ P unless Q
disjunction / at least one of Por Q
2.4 | non-equivalence | P= Q P exclusive or Q Exactly one of P or Q is true
2.5 | implication P -Q it P then Q P implies Q / P is a sufficient
condiuon tor Q
2.6 | equivalence P Q Pifandonly it Q { Piff Q/P is a necessary and
suffictent condition for Q
2.7 | joint denial ~PvQ)| PnorQ Neither P nor Q / None of T
€ is true
2.8 { non-conjunction (P . Q) Pnand Q

Table 2: Propositional connectives

It is possible to define all propositional connectives in terms of a
subset of them. For example, they can all be defined in terms of the
set {.,v,~} so that a given expression car be converted into a "normal
torm”. Such a subset is known as a complete set of connectives.
This is accomplished by replacing a certain expression by another
“equivalent” expression involving other connectives. Two expressions
are said to be "equivalent” if and only if their thuth values are the



same, eg. P - Q is the same as ~P v Q. Then we have some useful
pairs of equivalent expressions, which are sufficient for our purposes,
given in Table 3, where P, Q and R are all propositions.

3.1 ~~P =P

3.2 P=Q=(~P.Q)v(P.~Q) Exclusion

33 ~(PvQ)=~P.~Q De Morgan's Law
34 ~(P.QY=~Pv~Q

35 P,Q=~PvQ Implication

3.6 P5Q=(P5 Q). (QsP)=~P.~QVvP.Q

3.7 P,Q.R=(P,Q).(P,R)

38 P-QvR=(P>5Q)v(P-R)

3.9 P.QuR=(P->R)V(QR)

3.10 PvQ-sR=(P5R).(QoR)

3.11 P.(QvR)=(P.Q)v(P.R) Distributive Law
3.12 Pv(Q.R)=(PvQ).(PvR)

313 P.PvQ=P

Table 3 . Equivalent logical expressions

Connection with Boolean Ailgebra

Since ail compound propositions may be expressed in terms of the
three connectives "~". ".", "v" ( i.e. converted into normal form) which
correspond to the three Boolean operations (negation, Boolean product
and Boolean sum, respectively) and also all axioms of Boolean algebra
are satisfied, then it is posiible to show that the algebra of
propositions is a Boolean algebra. it is then easy to apply any
theorems of the latter and methods of simplification for expressing
and manipulating logical relationships. For example, smaller complete
set of connectives can be found by writting equivalence in normal
forms which are defined below.

By De Morgan's Laws, conjunction may always be expressed in terms of
negation and disjunction P . Q = ~( ~P v ~Q ) - let P and Q be simple
propositions. Therefore all conjunctians may be removed leaving an
expression entirely in ~ and v, so that ~, v is a complete set of
ohisstives—. Govnwe b\

Definition: A compound proposition R is said to be in a conjunctive
normal form if R has the form Rq1 . Rs ... Ry where each Rj (i=1, ... n} is
a disjunction of individual propositions or the negations of individual

—~——



propositions eg. R = ( P v ~0) . (~P v Q) where P and Q represert simple
propositions.

Definition: A compound proposition R is said to be in a disjunctive
normal form if R has the form Ry v R2 ... Ry where each R; (=1, ..., n) is
a conjunction of individual propositions or the negations of individual
propositions eg. R =( P . ~Q) v (~P . Q) where P and Q represent simple
propositions.

Any expression can be transformed into a normal form. This is
accomplished easily by using the equivalent statements given n
Table3.

By using useful concepts and convenient methods provided by
Propositional Calculus and Boolean Algebra to deal with logical
relationships, our purpose is to develop an approach towards modelling
fogical conditions in terms of 0-1 integer variables and (in)equalities
of Mathematical Programming (MP).

Representation of Boolean statemenis

We wish to transform an arbitrary (Boolean) statement in the
propositional calculus into a system of integer linear constraints so
that the logical equivalence of the transformed expressions is
maintained. The resulting svstem of constraints clearly must have the
same truth table as the origiral statement ie. the truth or falsity of
the statement is represented by the satisfaction or not of the
corresponding linear equations and inequalities.

in order to explain the transformation prccess and the undotiying

principles more clearly, we will distinguish the following two cases
at this stage:

(i) connecting [ogical variables
(it logically relating linear form constraints
Case (i)

Let P; denote a Boolean or propositional variable which may take
values TRUE (T) or FALSE (F). P; represents an individual proposition,
action, option or decision. Imposing logical conditions in a model
requires the introduction of a 0-1 integer variable attached to each
type of action (or option) that is envisaged. We adopt the convention
of using the Greek letter "8" for this variable, known as decision




variable. and agree that it takes the value of 1 f tre action 1s
realised (or the option adopted) and 0 otherwise 1.e. define

8; = 1 and only f proposition P; is TRUE

&, = 0 1f and only If proposition P; is FALSE
The logical conditions linking these different actions will be written
in the form of linear constraints acting on the associated decision
variables.

Case (i)
A "logical constraint” is defined as a logical combination of
"simple” constraints and it is formed from the following cyntax:

if antecedent then consequent
where
antecedent must be a binary condition (0-1)

and
consequent can represent either a binary condition or leve! of activily
or a linear form constraint.
In this case. 0-1 indicator variables (antecedent) are introduced and
linked to some of the continuous variables in the problem to
distinguish between certain states (consequent). The truth or faisity
of a linear inequality is represented by a 0-1 indicator variable 8, such
that
oj
8

1 1f and only it the ith linear constraint 1s satisfied
1 if and only if the ith linear constraint is violated

1]

Standard transformations ot logical conditions into MP
constraints

Using the conventional symbols and meaning of pronositional
connectives for logical operators, given in Table 2, and the set of
equivalent statements, given in Table 3, we give below some standard
form transformations of compound propositions intu linear algebraic
forms so that the two expressions are logically equivalent. We
distinguish the transtormations into two groups, T1 and T2. depending
on the meaning of proposition under consideration (case (i) or (i)
above, respectively).

Transformations T1 are applied to propositions P (i=1 n) which
represent individual propositional variables. We also define &; (i=1, n)
0-1 decision variables such that
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1

4
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17
B
19
20

21

8
8,

8

= 1.t and only if proposition P, i1s true

= 1.f and only f proposition P; is false

Statenent s trunstorme Constraint

P 31 =0

Ppvpa 3 +6221

Py =P> 81+ 8 =1

PP d1=1Ld=1

~ Py 81=0.87=0

~Pp o Pay S +8y <1

Py s ~P> 18> 28

Py —Po 81 -0 <0

Pl e P> 61 0y =0

Py-»Pa. Py 1 € 02,07 5 83

Py Py Py 81 €07 +93

Py Pa-s Py S +02 831

PrvPy—pPy 81 €63. 8,20,

PLotPrvPy dp=1.00+033 =1

Pypvioba by Sp+dr2.dr +012 1
The general forms of the refations 1.3, 14, 111 and 1,12 may be stated s

Py Pavo Py S+ .+ 821

Pr=9r- Py B + 02w Oy =

Py oPa P Py Praa v Py -+ + (-0 + Qg+ s 8y 0

at least ko aliernatives are TRUE” Op + 0y LB,z h

“exactly koaliernatives are TRUE” 81+ 8.+ 8, =k

“atmost kalternatves are TRUE” Sp+dr .+ 8,9k

Transformations T2. imposed in the form of implication constrants.
are applied to a proposition P which can represent either.

some level of activity denoted by the LP continuous decision
vanables x, yorz.; L and U represent the finite lower and upper
bounds, respectively, on the activity, or

a linear form (in)equality denoted by by anJ‘pb where p 1S an
(in)equality relation of the form "<". "»" or "=", L and U
represent the finite lower and upper bounds. respectively, on
the value Lj ajxjp - b may take in an optimal solution - how
these values are obtained will be discussed later in an example;
€18 a small number such that ¢ < 1.

B _ohd



Note that atl coefficients and variables 1n these prcblems will be
Integers quantities and ¢ may be taken as 1.

We define an indicator variable & taking the value 1 or 0 to show the
truth or faisity, respectively, of the proposition P.

12 Statement is transtormed o Constraint

2 d=1 - x21 x20.9

22 d:—'('f’\i-(’ (SUé

RS Ny — R Vg v L <! A

23 6=1 >._J\1,\J_h Zjag N h<tl(1-9)

24 8 -0 Xiuyy>her .‘_'iaixi»b_.(Lvt)eifz

QA S:l—«.‘;lui\izh Xi;ii\i-b;L(l—S)

26 A=0-s Yy xj<hee lia;xj—hS(L#t)Sm

i AR - L'j 4y = b T23¢d=1— )_'j AN e b
e

A sequence of steps for the transformation of logical
conditions

Having represented in the previous sections. compound propositions as
(injequalities. we now wish to model more complicated statements by
further inequalties. As a result of the many different. but equivalent.
forms any Boolean statement can take there are ofter different ways
ot generating the same or equivalent constraints.

One possible way would be to convert the desired Boolean expression
nto a conjunctive normal form i.e. remove implication, move negation
inwards by applying De Morgan's laws and recursively distribute "v”
over ".".  This results in a conjunction of disjunctive terms. called
clauses. where negation 15 only applied to individual propositions.
Each c'ause is then transformed into a linear constraint (of type
T116). resulting 1n a system of constraints, derived in this manner.
which have to be satisfied invoking the logical "and" operation (an
ilustration of this method is presented in Example 1).

A more general and sysiematic procedure for converting a given logical
condition imposed on a model into a set of integer linear constrants.
is described below in the form of a sequence of transformations steps.
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Step 1. Write explicitly the required condition, in words, in the form
of a Boolean statcment using known logical operators. Let S
denote the required condition.

Step 2. Define simple or individual propositions P; which are
sufficient to describe S. Also define compound propositions
Qj in terms of Pj.

Step 3. Rewrite S in symbolic form, as a complicated compound
proposition in terms of Qj and propositional connectives. It
may be advisable to use an equivalent form of S or reduce it
to a form that represents a conjunction of compound
propositions.

Step 4. Break S, if possible. into a set of simpler compound
propositions-which are again written in terms of Oj- (ideally
as simple as the standard form propositions) to represent
certain states of the problem. It may be necessary to
simplify  further scme of these propositions by
writing them into equivalent forms using Table 3.

Step 5. Assign 3; 0-1 decision variables to the individual
propositions P; to represent the truth or falsity of Pjand
define 0-1 indicator variables to relate logically the different
states.

Step 6. Transform each compound proposition Q; into a linear
constraint using transformations T1.

Step 7. Combine the states of the problem by linking the indicator
variables to the above constraints or to the original (probably
continuous) variables of the problem in the form ot
implication constraints. The latter are then transformed into
(inYequatities using transformations T2.

Illustrative Examples
To illustrate the conversion of a logical condition using the above
tranformation procedure, we present the following examples.
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Example 1,

If 3 or more of products {1 to 5} are made, or less than 4 of
products {3 to 6, 8 9} are made then at least 2 of products {7 to 9}
must be made unless none of products {5 to 7} are made.

This example is taken from Williams [1977].

Let the above condition be denoted by S.
Step 2.
Define the individual propositions P; "Product i is made" (i=1, ..., 9).
Also define compound propositions
Qq : " atleast 3 of P4, Pp, P3, P4,Pg are TRUE "
Qo : " at most 3 of P3, P4, Pg, Pg, Pg, Pg are TRUE"
Q3: " ~(Pg v PgvPy)"
Qg4 " at least 2 of P7, Pg, Pg are TRUE"
Step 3.
Write S in symbolic form: ( Q1 v Q2) . ~Q3 — Qq
Step 4.
Break S into simpler compound propositions to represent states of the
problem: Q1 vQg; ~Q3; Q4
Step 5.
Assign decision variables §; to the propositions Pj such that
d; = 1 if and only if product i is made i.e. proposition Pj is TRUE
di = 0 otherwise
Introduce indicator variables & and &' such that
& =1 it and only if the proposition Qiv Qp is FALSE
= 0 if and only if Q1 or Q2 is TRUE
§'= 1 if and only if ~Qg is FALSE
= 0 if and only if ~Qg is TRUE
Step 6,
The T1 transformations are applied to propositions Q; in order to
convert them into linear constraints.
Using T1.19, proposition Q1 can be represented by the inequality
81 +02+83+084 +35 23
Using T1.21. proposition Q2 can be represented by the inequality
33 + 984 + 085 +8g +3g+d9 <3
Using T1.5, proposition Q3 can be represented by the inequality
(1- 85) =1, (1- 8g) = 1. (1- 891 = 1
Using 71.19, proposition Q4 can be represented by the inequality
87 +0g +6g 22




Step 7.
We relate logically the various states of the problem firsity by
imposing the following conditions
Q1 -86=0
Qo —»38=0
~Q3—~8=0
§=0.8=0-0Q4
and then converting them into linear constraints by applying the
transformations T2. Rewritting the above set of conditions, we have
8=1-5081 +82+033 +84+05<2 (1)
3=1-063+084+05+0g5+0g+89g 24 (2)
=1 85=0.85=0.87=0 (3)
§=0.8=0->5087+0g+8g22 (4)

Using 72.3, U may be taken as 3 ( = 1+1+1+1+1-2). This gives the
following constraint represnetation of (1):

831 +82 +03 +04 +05+38<5 (5)
Using T2.5, L may be taken as -4 ( = 0+0+0+0+0+0-4). This gives the
following constraint representation of (2):

83 +084 +05 + 85 +33+089g 243 (6)
Using T1.7, we impose condition (3) by the constraints
1-852 8,1-8208,1-8723% (7)

To impose condition (4)., we may introduce another indicator variable

such that
"=1ifandonlyif§=0.8=0

Condition (4) can then be replaced by the following conditions
8=0.8=0->8"=1 (8)
§"'=1-587+06g+9dg 22 (9)

Using T1.12, condition (8) is represented by
S +8 +8" 21 (10)
and using condition T2.5 condition (9) is represented by
37 +38g +dg 228" (11)

The complete IP representation of the condition S is given by the
constraints {5)-(7), (10)-(11).
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Example 2 : Crossword Compilation
This problem has a logical structure; it can be formulated in terms of
Boolean Algebra and then converted into an integer programming
system of constraints. The objective is to fill in an nxn full puzzie
with complete interlocking using words from a given lexicon.
Define the following sets

! the set of rows (ie I)

M the set of columns (me M)

J the set of letters of the alphabet (je J)
and let n =|M | =1/ | Given also is a lexicon of n-letter words.

This example is taken from Wilson [1989].

To formulate the probiem, the following set of logical conditions have
to be modeled:
C1. Each cell of the nxn matrix must be occupied by exactly one
letter of the alphabet.
C2. If cell (i, m) is occupied by letter j then at least (n-1) cells
(imY), m=z m must be occupied by letters je J1 and at least
(n-1) cells (i, m), i'#i must be occupied by letters ["e Jo  where
J1 : set of letters which by virtue of the lexicon could appear in
cells (i, m'), m'= m given that letter | appears in cell (i, m).
Jo : set of letters which by virtue of the lexicon could appear in
cells (i, m), i # i given that letter j is in cell (i, m).

To convert the above conditions into linear constraints., apply the

wransformatio procedure.

Step 2.

Define the individual propositions

Pimj © " Cell (i, m) is occupied by letter j * for all ie |, me M and je J

and compound propositions

Q1: " at least (n-1) of Pimj are TRUE " where m'zm, j'e J4

Qo2: " at least (n-1) of Pi'mj" are TRUE " where i'zi, j"eJ2

Step 3,

Write conditions Cq and C2 in symbolic form:

C1:Pim"A" = Pim"B*= ... = Pim"Z" for all ie | and me M

C2:Pimj— Q1.Q2 for all iel and me M

Quite clearly, using 3.7 of Table 3. Co is equivalent to the statement:
(Pimj = Q1) . (Pimj — Qg2).




T Te—_———eey s _—.--., T - T

-— s e e meyt WS erhw ST, e e e——

14

Step 3.
Assign decision variables 8imj to propositions Pjmj such that

dimj = 1 if and only if letter j is placed in cell (i, m)

= () otherwise

Step 6.
Applying T1 transformations to propositions Q1 and Qo, we obtain the
following linear constraints.
Using T1.19, Q4 can be represented by the inequality

L m'zm, jeJd1 dim'j 2 n-1 for all i, j, m.
and Q2 can be represented by the inequality
L iz, j"e J2 8i'mj" 2 n-1 for all i, j, m.

Step 7.
Using transformation T1.3, condition C1 can be represented by the
ineqguality
Ljed Simj =1 for all i and m (1)

Using the equivalent form of Co, we can replace it by the imposing the
following pair of conditions:

dimj = 1= X m'zm, jed1 8im'j 2 n-1 for all i, j, m (2)

dimj = 12 Z i, j'e J2 Sj'mj" 2 n-1 for all i, j, m (3)
(2) and (3) can be converted into inequalities using transformation
T2.5. L may be taken as -(n-1) giving the following representations of
(2) and (3), respectively:

L mzm, j'e 1 Simj 2 (0-1) 8imj for all i, j, m (4)

iz, j"ed2 di'mjr 2 (n-1) 3im; for all i, j, m (5)
Thus, condition C1 is represented by constraint (4) and condition Co is
represented by constraints (4)-(5).




