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Abstract

Minimum flight times for a bimodal, nuclear powered

spacecraft are sought. A direct trajectory from Earth to Mars is

utilized. Earth escape and Mars braking is accomplished with a

high thrust, nuclear thermal propulsion unit, while the

interplanetary transit is achieved by a low thrust, electric

propulsion unit whose thrusting direction may be varied. An

existing method that maximizes circular orbit transfer is adapted

to the problem by simplifying the escape and braking conditions

and requiring the final orbit to be that of Mars thus obtaining

minimum flight times. Low thrust direction history, 0(t), excess

high thrust fue. division between the escape and braking burns,

and optimal escape injection angles are found that determine the

minimum flight time. Finally, the size of the low thrust

propulsion is also varied to find the minimum time of flight.
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CHAPTER I: THESIS OUTLINE

INTRODUCTION:

In 1989, four scientists from the Soviet Union's Kurchatov

Institute of Atomic Energy presented a report proposing the use of

bimodal nuclear power propulsion system (NPPS) for a manned

mission to Mars [1]. The paper, prepared for the Space Power

Systems Symposium in Albuquerque, New Mexico, hinted at the use of

a nuclear reactor for high thrust propulsion and electric power

generation. The report stated that the electric power generated

could, in turn, be used to power ion engines thus providing

propulsion during the transit from Earth to Mars. The report

claimed that the use of such a bimodal system would increase the

payload ratio of the Mars spacecraft.

The concept of bimodal nuclear power propulsion is by no

means new. During the 1960's, at the height of the nuclear rocket

program, several researchers noticed the obvious advantage of

utilizing the rocket reactor in a low power output mode when the

high thrusting rocket was not in use. The power created was

designated for use by the auxiliary systems supporting the

spacecraft and crew. However, the merit of creating large amounts

of electrical power for electric propulsion was not explored.

PURPOSE, METHOD, ASSUMPTIONS:

The purpose of this thesis is to explore the viability of the

bimodal nuclear power propulsion concept from an astrodynamics
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point of view. Any advantages of such a system over other

conceptual systems using only nuclear or electrical propulsion

will be sought. Such advantages may be in reduced time of flight,

increased payload ratio or added mission flexibility and

spacecraft reusability.

The basic approach will be to model the performance

of the spacecraft system using a simplified planar solar system

where Earth and Mars have circular, coplanar orbits (the higher

order effects of the other planets will be ignored). The high

thrust nuclear engine will be assumed to be impulsive and be used

for use near the planets ( Earth and Mars escape and braking)

while the electric drive will be used outside the influences of

the planets in 'interplanetary' space. The electric propulsion

device will be assumed to be of constant thrust although an

optimal thrust vectoring scheme will be sought.

The spacecraft design can be described by separate

components (e.g. payload, nuclear engine fuel, nuclear power plant

etc.) which will be varied to determine the most advantageous

proportions of each. Simplifying factors such as thrust-to-weight

capability of the nuclear rocket engine and reactor power

production efficiency will be used to allow for various types of

engines and reactors to be tested.

The exploration of the bimodal concept will proceed somewhat

from the inside out. In Chapter 3, a method of determining

optimal electric engine thrust vectoring for minimum time transfer

between circular orbits will be recreated using existing work done

1-2



by Bryson and Ho [2: p.65-69]. The method will utilize calculus of

variations and cost functions to find a set of analytical

equations to optimize this two point boundary problem. A

nuwerical program using Haming's integrator and the 'shooting

method' (a first order gradient method) will be used to determine

the actual results of this nonlinear problem. Chapter 4 will

build upon this work by adjusting the end points of the problem to

be those of the high thrust escape and braking about Earth and

Mars rebpectively. The injection angle at Earth escape will also

be varied. Finally, the spacecraft components will be normalized

and appropriate limits upon the performance factors and other

parameters will be made.

With this work, completed test cases will be run and the

results presented and interpreted. The value of the bimodal power

propulsion concept will then be discussed followed by suggestions

for follow-on research.

Before starting the solution for optimal electric thrust

vectoring, a thorough discussion of the parameters and limitations

on a typical manned Mars spacecraft will be presented. Further, a

brief explanation of the common trajectories and propulsion

techniques that have been proposed and their advantages and

disadvantages should be given. V-ise topics are covered in the

next chapter.
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CHAPTER II MANNED FLIGHT TO MARS

INTRODUCTION:

Although man has dreamt of visiting the planets of the solar

system ever since he could see them in the night sky, serious

consideration for visiting Mars did not occur until the success of

the Apollo Moon landings twenty years ago. Since that time,

extensive work on feasible mission scenarios and basic spacecraft

designs have been pursued.

Currently, a myriad of methods of manned flight to Mars

exist. Each method utilizes specific trajectories and propulsion

techniques to achieve the mission. Some examples of trajectories

are the Hohmann transfer and the opposition class transfer with

Venus fly-by. The spacecraft may be propelled by chemical,

nuclear, or electric propulsion, singularly or in some

combination. Nuclear propulsion devices and sometimes electric

propulsion devices will require a nuclear reactor power plant.

For a Mars mission, the solar flux in the latter part of the

mission is not sufficient to power an electric propulsion system,

consequently, a nuclear electric power source would be required.

The various trajectories and methods of propulsion will be

discussed separately. First, however, the effects of

interplanetary flight on a human crew (harmful radiation and

weightlessness, for example) will be addressed so that the added

manned constraints imposed upon the spacecraft design and choice
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of trajectory may be considered. The topic of this thesis will be

the transportation of a manned spacecraft to a parking orbit

around Mars; the logistics and technologies related to getting to

and exploring the planet will not be addressed.

MANNED CONSTRAINTS:

The presence of astronauts on a Mars mission adds several

constraints upon the spacecraft that could probably otherwise be

ignored. Two of the limitations imposed will only be briefly

mentioned here. Payload for life support/provisions to support

human life in his travels to and from the surface of Mars will

greatly reduce the possible automated scientific payload; indeed

the requirement that the spacecraft return at all is a great

penalty. However, the scientific advantages/disadvantages of

sending manned expeditions to Mars is beyond the scope of this

review. The other limitation to be briefly mentioned is that of

the requirement to limit the human body to only a few g's of

acceleration, thus limiting certain propulsion techniques. The

relative sizes of the propulsion systems addressed in this paper

will, however, never exceed approximately one g.

The two other limitations due to the presence of astronauts

are more severe and affect not only the design of the spacecraft

and its payload but its flight time: harmful radiations and

weightlessness. Both of these phenomena will make it desirable to

minimize the time of flight as much as possible.
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The presence of harmful radiation during a manned Mars

mission is a reality of space travel and should be examined.

Several different types of radiation detrimental to humans and

electronic components will be present from different sources.

Radiation from the Sun consists of high speed (200-400 km/sec)

subatomic particles (electrons and protons) often termed 'solar

wind'. These normally do not exist in lethal amounts in solar

space unless solar flare activity occurs. At such times the crew

will require a 'storm shelter' for protection. The solar flare

cycle is roughly every eleven years with the next maximum to occur

in 1992/3. However, the frequency and severity of these storms is

roughly predictable by solar observations of sunspot activity

which could give the astronauts up to an hour to prepare for the

high radiation influx .

The Earth is shielded from solar radiation by the Van Allen

belts which are bands of electrons and protons caught by the

magnetosphere of the Earth. While these belts do much to protect

the Earth, traversing the highly dense fields is hazardous for any

long period of time (more than a few hours).

The galaxy itself is also a source of radiation consisting of

cosmic rays. Unfortunately, little is known as to the extent of

damage caused by this radiation at this time and shielding against

it is thought to be nearly impossible. The final source of

harmful radiation could come from a nuclear powerplant and/or

propulsion unit. Nuclear reactors give off an abundance of alpha

particles, beta particles, gamma rays, X-rays, electrons,
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positrons, protons and neutrons all of which are potentially

harmful to varying degrees and must be shielded against.

Radiation damage to humans takes two forms: somatic and

genetic. Somatic radiation exposure involves the individual while

genetic effect involves descendants. Genetic effects usually

require a lower threshold than somatic. The basic damage caused

to the body by radiation is due to the ionization of the cell

molecules. This ionizing energy alters a cell's chemistry which,

in turn, impairs or destroys the function of the cell. Radiation

in DNA cells can cause mutations in later generations. Sensitive

electronics are also susceptible to this damaging ionization

energy which can cause either a soft error, (loss of digital

information), or a hard error (actual altering of electronic

hardware). (see figure 2.1)

For each of the harmful types of radiation different

techniques and materials are required to provide adequate

protection. Figure 2.2 gives some examples of the required

shielding. In some cases, such as the high energy radiation from

the Sun, only mass is important in absorbing the energy. For

nuclear reactor radiation, on the other hand, neutron attenuation

is best achieved by using lithium hydride (LiH), while gamma

radiation is best handled by a heavy metal such as tungsten. For

further discussion of the radiation effects and shielding

requirements consult Angelo and Buden [3: p. 111-131].
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The physiological effects of weightlessness also must be

considered for the Mars mission. While the initial effects of

weightlessness such as motion sickness, dehydration, and muscle

deterioration can be countered by appropriate methods, bone

deterioration seems to be an irreversible effect. Since the

weight bearing bones are no longer affected by gravity, severe

calcium loss occurs, seeming to increase linearly with time.

Predominantly lost from the arms and legs, the calcium is

discharged in the urine. Brittleness of bones and possibly kidney

stones would contribute to disable an astronaut for life.

To avert the affects of weightlessness many designers have

proposed spinning part or all of the spacecraft to create

artificial gravity. Such a requirement would not only greatly

complicate the spacecraft design but there is medical concern

about the reaction of humans to various speeds of revolution, and

the affect of the coriolis force for extended periods of time. In

addition, if the astronauts were required to transfer between the

artificial gravity conditions and those of weightlessness

periodically, motion sickness would occur regularly with unknown

results.

In summary, it is evident that substantial protection for the

crew from various forms of radiation will be required. For most

forms of radiation, it is the length of exposure that dictates the

protection required. Excepting artificial gravity, a method of

averting bone deterioration has yet to be found. In view of both
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these dangers it may be prudent to limit the mission time as much

as is possible.

TRAJECTORIES TO MARS:

A multitude of possible transfer orbits exist between Earth

and Mars. These may be easily separated into two groups by the

general path taken: direct and indirect (conjunction and

opposition). Also the way these transfer trajectories may be

propelled, by impulsive or low thrust, will affect the transfer

that may be achieved. The impulsive trajectory assumes that the

propulsion system makes instantaneous changes in velocity or AV to

instigate a change in orbit. The different types of impulsive and

low thrust trajectories will be discussed shortly.

The relative positions of Mars and Earth in the solar system

are shown in Figure 2.3. Although both planets seem to have

circular orbits about the Sun, on closer inspection it is clear

that Earth and Mars have slightly eccentric orbits. Consequently,

there exist certain launch windows when the Earth is nearest to

Mars, which enable the spacecraft to reach Mars with the least

amount of energy required. The Earth is nearest to Mars when Mars

is closest to the Sun. These close encounters occur every 15-17

years. However, if the closest proximity requirement is lifted

then launch windows (times when the transfer orbit intersects Mars

orbit when Mars is at that point) to Mars occur about every 25

months.
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The orbit of Mars is also inclined to that of the Earth.

Consequently, any spacecraft travelling between Earth and Mars

will be required to perform a plane change of 1.85. Since the

change may be performed at any point in the spacecraft's

trajectory it is assumed that it can be done with a minimum of

effort and is not usually considered for preliminary mission

studies.

The most economical impulsive trajectory of transfer was

first discovered in 1925 by the German engineer Hohmann. (see

figure 2.4) Applied to an Earth-to-Mars mission the transfer

consists of accelerating the spacecraft out of Earth's sphere of

influence to the exact velocity which will carry the spacecraft on

an elliptical orbit that just reaches the required orbit at

aphelion. At this point the spacecraft must make appropriate

accelerations to enter the sphere of Mars and park there. This

connecting of a planetary hyperbolic orbit with a solar elliptical

orbit is termed patched conics from the fact that all impulsive

orbits may be geometrically described by a conic, whether an

ellipse, parabola or hyperbola.

Using the Hohmann transfer orbit, the spacecraft arrives on

the exact point opposite the perihelion point on the other side of

the Sun. The Hohmann transfer is consequently just one specific

example of a direct or conjugate transfer trajectory and is the

lowest energy/longest flight-time of this type. The time the

spacecraft may take to directly reach Mars using a Hohmann

transfer and an impulsive propulsion device is around 300 days.

11-9



oRSIT OF MARS-

Figure 2.4 Earth-to-Mars Hohmaann Transfer C4: V.106]

11-10



Unfortunately, the spacecraft must wait at Mars about 400

days before the appropriate return Hohmann ellipse can be used to

take them home to Earth; after all, Earth must be at the

perihelion of the transfer orbit when the spacecraft arrives

there. Consequently, the total mission time would be nearly 1000

days, with about 600 of them spent in interplanetary space

transit. Such long periods in space may be detrimental for the

crew as discussed previously.

In order to decrease the stay time, the return mission may

utilize a high energy indirect or opposition class trajectory.

This orbit passes inside the orbit of the Earth and uses another

impulsive burn or a close approach to Venus to allow the

spacecraft to return to the Earth. (see figure 2.5) While this

greatly reduces the stay time to the order of weeks, it requires

much more thrusting and will pass much nearer to the Sun than a

direct transfer-thus incurring an added shielding requirement.

Consequently, a tradeoff exists between adding the provisions and

equipment needed for a year stay time or adding the extra

shielding and propulsion mass required for an indirect spacecraft.

Regardless of which type of transfer is used, direct or

indirect, one may decrease the flight time by allowing for a

greater energy allowance. For the direct case, these 'fast'

transfer orbits have an aphelion larger than Hohmann's and touch

Mars' orbit twice. This trajectory can be performed by

impulsively changing the orbit at the first Mars crossing to

affect braking into Mars' orbit.
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In general, as discussed by Xrcher and Cain [5], the

performance of the indirect/opposition class is normally marked by

shorter mission times and by relatively high energy and severe

launch date requirements. Direct/conjunction class missions, while

more economical in energy requirements is offset by lengthy total

trip times.

For spacecraft utilizing low thrust propulsion units, the

trajectory is not defined by a constant conical orbit, rather, the

low thrusting is constantly changing the energy and, therefore,

the parameters of the orbit. During transit in near planet space,

the low thrust driven spacecraft actually has an orbit described

by a spiral to affect planetary escape or braking. (see figure

2.6) However, outside the planetary effect, the thrust of the

engine is sufficient to provide a more direct trajectory due to

the reduced attraction upon the spacecraft. (see figure 2.7)

These orbits may also be 'patched' together in an optimal manner

as shown by Yoshimura [6].

It is evident that many possible combination of trajectories

exist, even combinations of the impulsive (high thrust) and

low-thrust types. The trajectory scenario that is chosen depends

on many factors-not the least of which are: launch date, allowable

transit and stay times, manned constraints, and propulsion system

capabilities.

11-13



Figure 2.6 Spiral Earth escape C6J
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Figure 2.7 Interplanetary low-thrust transfer (6)



PROPULSION SYSTEMS FOR MANNED MARS MISSIONS:

A multitude of manned missions to Mars have been envisaged in

the last thirty five years. Each plan utilizes various

trajectories and propulsion systems to fulfill mission

constraints. The main categories of feasible propulsion

technologies available to such a mission are chemical, nuclear,

and electric. While chemical propulsion is the only technique

used proficiently today, we shall see that its low specific

impulse makes it much less attractive than the use of nuclear or

electric propulsion.

In 1956, Ley and von Braun [4J proposed a manned mission to

Mars utilizing chemical propulsion and a Hohmann transfer. The

mission would use two spacecraft, one for passengers and one for

the landing craft. Only the passenger spacecraft would return to

Earth. Chemical engines using hydrazine fuel and nitric acid

oxidizer would be used. The specific impulse of such a system is

around 220 sec. The parameters and performance of this mission,

as well as the others to be discussed, are given in Figure 2.8.

Due to the low performance of the propulsion system, the mass

ratio of the spacecraft at Mars to that at the Earth parking orbit

is only 0.09. Consequently, ninety percent of the original

spacecraft was either made up of propellant or was discarded

before Mars capture. This value shows that once the mass of the

manned support systems and landers designated to reach Mars has

been decided upon, the propulsion system (discarded chemical

stages + propellant) will be about nine times this mass which

11-15



uI I

(r IlD u w D
I-az w iAJ.u

1 11-4 V-wI 0
lI JiJ IA) if) I- W- 0

*i 1 1: -4r 0 0

II-NO I I r" N IP 4 f Id W 40 -4 N co0 0

1 -4 W~) C- ( 000 4 0

U.-1 0
41 IJ 0

D I Y )a.- I

ZI ir)

li I I-J

I.J 1i 1-4 D() t4

7:l Ld a our 0
D N inJ Z0 00 0 -4.4 0 0 ZHD<)01tW)0000

NO W z-~ ~ N 0 d4 4N 0 ~o4 of H --.. W) .- f 40 'd
I u(0" D4 < ON' 1) z -s. O .0 -* 0P)L

0l Li 1 V4 I-J I-O u 4I 00
0 I1 ui uw u1

.- i I AJ-j

4 41 *.1-

0, IZl
uJ ID

o Ul I x W-H

I1 Z < " <

(1) wIZ' 0 O I C 1110 Mr itN P-4 .. 0 0
II~r-(0 'Ow~ID a*-44Co-o00co

r ~ ~ ~ ~ ~ ~ L xrc He~~c1I~-ez,*-0

L I I

o IL 1-4-4 Z** -aj'

M I ir 0 wW -1. 04 <D I

4c <' < 4 4 > a-41-4 E .. DH

4 ** .4 10Z L)C~t- ll H *.w 3 0 0 xto
C.. I I 0 0D - W 0 I- W I- X W I- yH0W-0
E CLI M1 (D~f rW E m l 4 < .' '-'I-M 0 Q
o WI1 0 Z4- (< 1 H) M<W m >-) 44x 0

U U I C w (1) w 44. ce ~ 3- -i IZI -

o01 M L4 < HI4I4m W1-c <M 00 < 1-4 )W-
C; uI ( L< -DH I0 I00-rI-i . Ir 0 o 44w Y

Z I w ULL x i z I-(fl- 0- L 0 0 I-Cl Lu w H < W
Lu 0 1 10 0 4 0 1 0 (f))I- U -J N - IL <4IL
ce 1 40 w LH_ x- X-.1 II x UJ D . H 141-4 j
D M 1 0-c <- a- 1-f>- 0 0 I- "IL J 0 - U -r<J0
CD U)o< 044 xx-w w 40W1-WZZHM4Z

IL rI0.a- )0 E- -WWE0)rEw IL I IO.AL HE IL

11-16



equates to a large launch vehicle requirement for minimal payoff.

This mission uses a Hohmann transfer and requires nearly a 1000

day mission with over 400 days of that spent in interplanetary

space under potentially harmful radiation and weightlessness.

Therefore, this mission scenario is very unattractive.

It is obvious that the payload ratio must be improved to

create a more cost effective system. To improve the useful payload

ratio while still utilizing chemical propulsion, aerobraking at

Mars' and Earth's atmospheres has been proposed. These aerobraking

maneuvers would greatly reduce the amount of propellant required

for braking at Mars and the return to Earth. Such techniques are

possible but require a much more complex spacecraft design. In

addition, the Mars aerobraking would be even more risky than the

one at Earth due to our lack of knowledge about the dynamics of

Mars' atmosphere.

For either chemically-based scenario, the possibility of

utilizing a reusable spacecraft design is almost nonexistent due

to the extremely low payload ratios. Consequently, a repeat

mission would require a entirely new spacecraft and propulsion

system, the latter part being the dominant. By increasing the

payload ratio it may be possible to reuse the spacecraft and the

propulsion system and only launch the required fuel for a new

mission.

Such an alternative to these one time manned Mars missions

would be a reusable spacecraft utilizing propulsion concepts more
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suitable to interplanetary travel. Since the required length of

flight time to Mars is on the order of hundreds of days and the

spacecraft is not required to produce a thrust to weight ratio

greater than one as are Earth launch vehicles, higher specific

impulse and lower thrust systems may be used. Two such techniques

that have been explored extensively are nuclear rocket engines and

electrical rocket drives. Appendix A contains a review of each of

these propulsion concepts.

In the early 1960's, several design studies of electrically

propelled manned Mars vehicles were completed. For example,

Stuhlinger and King [8: p. 338-343] proposed a manned Mars

spacecraft using an all electric propulsion system as described by

Figure 2.8. The concept consisted of five spacecraft, three of

which carry Mars landers, the other two carrying return fuel for

all the spacecraft. The flight times are less than that of an

impulsive Hohmann Earth-to-Mars leg of the flight, but an

opposition return is used to reduce stay times to a reasonable

length. The required fuel for the flight to Mars is only

seventeen percent of the original mass of the fueled spacecraft.

On return to Earth, the spacecraft mass would be half that of the

original and this includes the discarded Mars lander. Such final

mass ratios would allow for more reasonable Earth based launch

requirements and perhaps spacecraft reusability. Unfortunately,

the mission would be hazardous for the crew; long term effects of

400 days of weightlessness are as yet barely known, and radiation

exposure for the crew, especially during the month-long escape

from Earth through the Van Allen radiation belts would have to be
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countered by adequate shielding at a definite mass penalty.

A more recent proposal by Stuhlinger [9: p. 288-301] fitted a

nuclear powered rocket stage on the spacecraft to replace the slow

spiraling escape from Earth. The added weight penalty of the

nuclear stage is evident from the lower mass ratios in Figure 2.8,

but the long spiraling out to escape Earth and the slow passage

through the Van Allen belts would be avoided. The Nerva II first

stage would be discarded after thrusting and the trip would be

completed with electric propulsion alone. While the specific

power capability of this spacecraft is more realistic than the

previous example the reasonable final mass ratios are somewhat

misleading since the spacecraft will be returning to a high Earth

circular orbit to avoid slow passage through the Van Allen belts.

This would strand the crew until rescue from Earth or a low

orbiting space station. Reusability of the spacecraft would also

be questionable.

From these mission scenarios, some conclusions are evident:

nuclear and electric missions merit serious consideration since

they far out perform conventional chemical missions, exclusively

electric missions deliver the best payload ratios but expose the

crew to long periods of radiation and weightlessness (including

spiral transit through the Van Allen belts), and combined

nuclear/electric propelled missions avoid slow planetary

escape/arriving spirals and long term exposure to Earth's Van

Allen Belts. With these conclusions in mind, perhaps a manned

mission to Mars would be best performed by two different types of
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spacecraft. A fleet of unmanned cargo ships using only electrical

propulsion could carry all the necessary equipment and landing

craft necessary for the manned landing. In addition, the cargo

ships could even carry the return propellant necessary for the

faster travelling passenger ship. This passenger ship could use

either nuclear or nuclear/electric propulsion to propel the manned

crew to Mars as quickly as required. Thus, the threats of

radiation and weightlessness would be reduced and the payload mass

could be used to exclusively support the manned personnel for

interplanetary travel.

As mentioned in chapter 1 the purpose for this report will be

to determine in what combination nuclear and electric propulsion

would be advantageous for the passenger spacecraft, if any.
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CHAPTER III: OPTIMAL THRUST VECTORING FOR A MAXIMUM CIRCULAR

ORBIT TRANSFER

INTRODUCTION:

Given a spacecraft which utilizes a low thrust propulsion

system (i.e. ion drive) providing some constant thrust T,

operating for a given flight time, tf, it is desired to find the

optimal thrust-direction history *(t), which transfers the space

craft from an initial circular orbit, ro, to the maximum circular

orbit, rf, as defined in Figure 3.1 . This problem has been solved

in various publications, most notably by Bryson and Ho [2: p.

65-69]. The analytical formulation and its numerical solution

will be presented here for the case of transfer from Earth's solar

orbit to Mars' solar orbit since this basic exercise will be

modified in the next chapter. Later in this chapter, the adaption

of an outer loop to drive the final maximum r to be the solar

radius of Mars and, consequently, find the minimum time of flight

will be presented. Before discussion of the optimization

methodology, a brief derivation of the equations of motion will be

made.
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Figure 3.1. Definition of system paraesters (2: p.661
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EQUATIONS OF MOTION:

The two-body problem is represented by Figure 3.1 and the

nomenclature defined as follows:

r = radial distance of spacecraft from attracting center

u = radial component of velocity

v = tangential component of velocity

m = initial mass of spacecraft
o

m = fuel expulsion rate (constant)

0 = thrust direction angle

M = gravitational constant of body at attracting center

9 = angular position of spacecraft

If the theory of Lagrange's equations of motion are used:

d ( .L aL Qk k =1,2,...n
dt aqj) q

n differential equations

and L= Te- Ve p
where

Qk: nonconservative forces

qk: generalized coordinates

V : potential energy of the system
p

Te: kinetic energy of the system

L : Lagrangian of the system.
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The generalized coordinates of the polar form are chosen as r and

0. The only nonpotential force acting on the system is the space

craft's thrust which may be stated in the radial and tangential

components as

Or - T sin 0 and Qt - r T cos ,

where * is the thrusting control angle. In this case the kinetic

energy is

T 1 m)v2 + 2
Te - 2 jC 2 2

where m = instantaneous mass. By noting that v = re and u r

this may be simplified to

1 2;2 +*2.te  (m) (ru + .
The potential energy is (using Newton's inverse square law)

J,Vp - - m

where p is the gravitational coefficient of the attracting body.

The resulting Lagrangian is
L=Te - V 1 (22 2+ +

Applying Lagrange's equation to each generalized coordinate:

For q = r

d OL = Or

v2
v + __. T sin
r r2  m

For q - 6

d (aL aL OTE. ae

r + 2rzO -r Tcos .m
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0

By noting that u - , this may be transformed into
r r2

+ u V 2 cos
r m

Thus, the resulting equations of motion are

(1) -- u

2
(2) u V P + T sin 0

r r 2  m

u v T cos0
(3) V = - +r m

It should be mentioned here that an equation for the change

in 6 is not necessary since it will be assumed that the

spacecraft's departure from Earth's solar orbit will be phased

correctly so that it will arrive at the proper point in orbit to

intercept Mars in its orbit.

DERIVATION OF ANALYTICAL OPTIMIZATION EQUATIONS:

The problem will be solved using a cost function and

corresponding analytical equations for a continuous system where

functions of state variables are specified at fixed terminal time,

as described by Bryson and Ho. By following the example in Bryson

and Ho, the maximum radius orbit transfer in a given time may be

determined. By creating a simple outer loop to vary the time of

flight the aforementioned optimization may repeatedly maximize the

radius until the radius is equivalent to Mars' orbit. Although
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utilization of an outer loop to minimize time to Mars' orbit may

take slightly longer than an algorithm to directly minimize time,

the outer loop method seems to provide flexibility and better

convergence. (The direct method was attempted but had poor

convergence qualities, perhaps due to an error in application.)

The following is a summary of the equations of formulation.

The cost function may be defined as

J = E [x(tf),tf] + itL~x(t),u(t),t] dt.

0

This cost function value J is to be extremalized to solve the

problem. By adjoining the constraints

W (x(tf),tf) = 0 (w a q vector function)

and the system of differential equations

x = f[x(t),u(t),t] (with to given)

to the performance index J with Lagrange multipliers V and

)(t), the more specific cost function becomes:

t7 C [ + 0V tf+ it(L (x, u, t) + f (x,U, t) - x ]3I dt

0

For the cost function to have a stationary value (minimum or

maximum) certain necessary conditions are required. These

conditions include boundary conditions and side constraints

specific to each problem. For a thorough derivation of these

equations see Bryson and Ho [2: p.42-69]. The necessary

conditions may be summarized with the other equations as follows:
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x f(x,u,t) (n differential equations)

= - - (L (n differential equations)

ramJT =(a)Tx + T= 0 (m algebraic equations)

(initial
Xk(to) given, or Xk(to) = 0 (k = 1,...,n) boundary

conditions)

X(tf) = + V (n boundary conditions)
t~f

W [x(tf),tf] = 0 (q side conditions)

These equations and conditions will now be applied to

our specific problem. The state vector is assumed to be

r

V

X W r ' where X's are lagrange multipliers.

u
v

The equations of motion are (as defined previously)

u u

2

u=-- + a(t) sin 10
r r

uv
and v- -+ a(t) cos*.

r
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The acceleration supplied by the propulsion system is defined
T

as a(t) = . It is evident that the value of a(t) will
0

increase due to the decrease in the mass of the spacecraft as

described by the fuels mass flow rate. The Hamiltonian of the

system is defined as

H = L(x,u,t) + )T(t) f(xu,t)

Since the function to be maximized contains only end conditions,it

is assumed that L s 0 . Consequently the Haniltonian of the

system in question is
2v uv

H = Xru + X ( + a(t) sin 4) + )v(-- + a(t)cos *)
r r r

Since the final radius is to be maximized we wish to set * = r(tr)

and ,in turn since E = + W then

E = r(tf) + VI U(tf) + V2 (v(tf) -f),

where our necessary conditions requiring a maximized final

circular orbit have been applied. As such, the final radial

velocity should be zero and the tangential velocity equal to that

of a circular orbit at the maximum r(tf). The Lagrangian

differential equations defined by
T

i = -

are as follows:

r -u+ -2v uv
r 2 r r

u r vr)

V U V "r
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These are necessary conditions to find the optimum in an allowable

region. The control law is derived from

(aHT = a (T +()T
-+ -) 0.

In this system ult) the control parameter (not the radial

velocity) is merely the ion thrusting angle O(t). Applying, the

equation to our problem we get

(.u Cos 0 - Xv sin * ) a(t) = 0.

To drive this equation to zero either part of the equation may be

zero. Since our spacecraft requires thrust the second term may

not be zero, a(t) $0. Thus the first term must become zero as

xcos - v sin * = 0.u v

This is the desired control constraint. This interprets easily to

ta ( ) U - I X.U
tan(*) = or * = tan - . This function may be substituted

into the differential equations using

x
sin(O) - u

u 2+Xv2

and

cos(O) - v

u 2 
)v
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The boundary conditions of our problem consist of initial and

final conditions which have either desired values or may be varied

freely to achieve the desired optimization.

The initial conditions of the state variables r, v, and u are

chosen for an initial circular orbit. In this example the

spacecraft will be assumed to be in a circular orbit approximating

Earth's solar orbit.

The initial r, u, and v conditions are thus

r(O) = re (Earth's radial distance from Sun)

u(O) = 0 (radial component)

v(O) = (tangential component)
Jr.

Since the entire state is defined, the initial Lagrange conditions

are free to enable the optimization of the problem:

(0) - free ) (0) - free Xv (0) = free.

The final conditions Ti and T2 constrain the final orbit to be

circular:

T= U(tf) = 0,

2 - V(tf) - - 0.

r (tf)

The boundary conditions involving the Lagrange multipliers, 'k'

are defined by

X(tf) - + V T- T (n boundary conditions)
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Applying this to the problem, we find:

x (t = 13/r (f) =1 2 [r(tf)]3/2

U (t f viol

u f V2

Hence, Xr(tf) defines the third final constraint,

3 ~t) 12 = 0.3 r f 2 Er(tf] 3/2

IN SUMMARY:

STATE VECTOR DIFFERENTIAL EQUATIONS

r
u

EQUATIONS OF MOTION

r u

2

v u

- + a(t)
ru v

uv v

= - + a(t)
r

T
where a(t) - "
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LAGRANGE MULTIPLIER EQUATIONS

r r

iv = )u Lr + xv I

CONTROL LAW

tan(O) = X-Xv

INITIAL CONDITIONS

r(O) = 9 (Earth's radial distance from Sun)

u(O) = 0 (radial component)

v(0) = P (tangential component)

(0) - free x (0) - free x (0) - free
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FINAL CONDITIONS

1 (tf) = 0

V2 W v(tf) - 0,
r(tf)

Y3 = )r (tf) - 1 2 3/2 =0,
2 (r(tf)]

X (tf) = f free, )v(t) = 2  free.

NUMERICAL SOLUTION:

The equations of motion and optimization derived above are

nonlinear ordinary differential equations and consequently must be

solved numerically [10]. In this case the equations of motion

will be integrated using a fourth order predictor - corrector

method created by Haming and thus called Haming's Integrator.

This integrator uses a fourth order polynomial and four data

points to predict the next point in the integration. Although

Haming's method is very quick by other integrator standards,it

requires an initialization method to create four points at the

beginning of the integration.

By using the Haming Integrator as a fortran subroutine with

another subroutine to calculate the specific equations of motion

and an appropriate main program to control the subroutines, the

equations of motion may be integrated for a certain time period,
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t to tf* The results of the integration are unique to the

initial conditions; trajectories 'close' to this unique trajectory

are not known. Such trajectories are needed if an initial guessed

trajectory is to be used to eventually determine the optimal

trajectory.

To find these 'close' trajectories the equations of variation

are found. For the given system equations of motions,

x - f(x,t), (N differential equations)

a general nearby trajectory may be presented as

x = x + 6x.

By substituting this equation into the system equations of motion

and expanding in a Taylor's series about 6x - 0 the following

equation is evident:

.a I 6x.

These are the equations of variation. The partial derivative

if the vector f (equations of motion) with respect to t.te vector x

(state vector) will be a square matrix abbreviated A(t) - 1/ x.

Since the equations of variation are linear, the summation of any

solution functions is also a solution and a general solution may

be constructed from a fundamental set of solutions. This set may

be written in square matrix form denoted by *(t,to). This matrix
0

then satisfies

¢(tt o ) - A(t) (t,to0
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with initial conditions O(t0 t0 ) - I. (where I is the identity

matrix.) Consequently, the @ matrix (called the state transition

matrix) will propagate the initial deviation from the x°

trajectory to any time in the integration,

6x(t) - 0(t,t ) 6X(to).

Thus the N equations of variation may be integrated in

parallel with the N equations of motion so that all aspects of

trajectories 'close' to the nominal trajectory will be known. For

this problem, the state vector and differential equations have

been derived previously. Using these the A matrix is:

A(t) =

0.0 1.0 0.0 0.0 0.0 0.0

-(v/r)12p/r 3  0.0 2v/r 0.0 -QXu 2 +TF -Qu) v

uv/r 2  -v/r -u/r 0.0 -Q), X -QX' + TF
u v v

u(-2v /r 3+ -vv/r2 (2v u0 U)/r 2  0.0 v /r -2p/r 3 -uv/r 2

6P/r 4 ) +2X uv/r
3

-) v/r 0.0 Xv/r -1.0 0.0 v/r

( 2 V0uuX v )/ r Xv /r -2Wu/r 0.0 -2v/r u/r

where TF - a(t) and Q - a(t)

X' 2+ ) v 2 2+ X2) 1.5
U VU V

Now that trajectories close to the nominal are available, a

way of applying the optimizing equations is needed. In this case

the system is a two point boundary problem. The method to be used
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to solve the problem is often termed the 'shooting method.

Basically, a first guess is made and the trajectory is propagated

to the prescribed final time. At this point the error vector G is

calculated as G = (desired final state) - (actual final state) or

TG = T1 , T2 , 3  . (Which are merely the final conditions, which

we desire to be zero.) By adjusting G with the appropriate Sx(t 2 )

the condition may be driven to zero. In other words, it is

desired to adjust the final conditions so that:

G [ x(t2 ) + ax(t 2 ) I - 0.

By a simple Taylor expansion:

G[ x(t )] + --- 6x(t2 ) a 0.

By definition, the state transition matrix O(t2 ,t1 ) is the

linearization of the actual transition of the initial deviation

from the final deviation:

6x(t 2 1 -(t 2 ,t11 6x(t1)-

OG
By substitution and defining B -

G[x(t )] + B (t2 ,t1 ) 6x(t1 ) - 0,

which, in turn, may be inverted to find the linearized correction

to the initial conditions to reduce the error:

-1

6x(t 1 1 - - (B O(t2 ,t1 )) G[x(t 1.
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For this problem the error vector is G = [T1 , T2 , T 3, where

1 u(t f)

T2  -V(t) - / 0
r (tf)

T3 r f(tf2 3/2
2 [r(tf)]

Therefore, the B = 6G/6x matrix is

0.0 1.0 0.0 0.0 0.0 0.0

2-W 1.5 0.0 1.0 0.0 0.0 0.02 r

0.0 0.0 1.0 0.0

4 r 2 5  2 r1 ."

Consequently, once B and t(t2,t1 ) are determined, multiplied,

and inverted with the error vector, the improved corrections, 6,

are added to the variable initial conditions (in this case the

three initial Lagrange multipliers):

T  T XT

new initial + 6).(tl) "

(Note that the initial parameters ro, uo , and v0 are assumed for

the specified optimization and are not to be modified.)

This procedure is iterated until the error vector reaches an

acceptable minimal amount or diverges to infinity. The latter

case indicates that a better initial guess that is 'close' to the

actual optimal initial conditions is required. A flowchart

describing the method is shown in Figure 3.2.
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Figure 3.2 Flowchart of numerical procedure
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ADJUSTING FOR MINIMUM TINE OF FLIGHT:

The above procedure will maximize the final circular orbital

radius for the given time of flight tf* To adjust this to find

the minimum time to reach a certain circular orbit, in this case

Mars' solar orbit, a simple outer loop may be written using a

scalar Newton-Raphson procedure to adjust the time of flight as

(tf - tf

t *t + k k-I )(r
k r( f k - r(tf k-I - r(tf k

This method has been described by Moyer and Pinkham [11].

Initially the previous point size is assumed since the method

requires two points to function. With this modification, the

program will find the minimum time of flight transfer from Earth's

solar orbit to Mars' solar orbit (neglecting eccentricities) by

varying the constant thrust vector. This outer loop is also shown

by the flowchart in Figure 3.2.

RESULTS:

By using the same normalized spacecraft parameters assumed

in Moyer and Pinkham:

ro = 1.000 vf - .8098

rf = 1.525 uf - 0.000

P - 1.000 m0 - 1.000
o

- 1.000 m - -.07487

u - 0.000 T - .1405,0

the previous algorithm was programmed using FORTRAN.
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The results agreed very well with those given by Bryson and

Ho as shown in Figures 3.3 and 3.4. The spacecraft's thrust

vector is shown to be roughly 60 degrees for the first half of the

flight and -60 degrees for the second half of the flight. The

thrust vectoring in relation to the orbital transfer is shown in

Figure 3.5.

Now that the problem of optimal thrust vectoring has been

repeated, the previous algorithm and analytic derivation may be

modified for the flight of a bimodal nuclear propelled spacecraft

from an Earth parking orbit to a Mars parking orbit. This is the

topic of the following section.
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Figure 3.5 Thrust direction during trajectory (2: P.68]
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CHAPTER IV: TRAJECTORY OPTIMIZATION FOR A BIMODALLY PROPELLED

MANNED MARS MISSION

INTRODUCTION:

The optimization of thrust vectoring derived and completed in

the last chapter will now be modified to include the Earth escape

and the Mars capture. The Earth-to-Mars spacecraft will utilize

an impulsive thrust (instantaneous velocity change from the

nuclear rocket) for planetary escape/capture and a non-impulsive,

constant thrust (i.e. ion drive) propulsion capability for the

interplanetary transfer. The use of high thrust impulsive

propulsion will remove the long spiraling times required for escape

or capture at a planet as discussed in chapter II.

PURPOSE:

It is desired to find the minimum transfer time while

allowing for varied excess impulsive AV (i.e. excess impulsive

fuel beyond that needed for an escape from Earth and braking at

Mars.) This total impulsive Vto t is divided into a AV1 and a

V 2which represent the Earth escape required impulse and the Mars

capture impulse, respectively. To simplify this minimization, the

optimization will instead focus on maximizing the final orbital

radius and then finding the time to make this radius equivalent to

Mars' solar orbit as was done in the previous section. Once this

optimization performs correctly, the amount of low thrust

capability for the spacecraft will be varied to determine the

advantage of a bimodal nuclear power propulsion system. Before
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discussing the method of optimization, several simplifying

assumptions will be made.

ASSUMPTIONS AND NOMENCLATURE:

Several simplifying assumptions concerning the solar system

can be made. The escape from Earth's sphere of influence to

that of the Sun is assumed instantaneous. This seems reasonable

since this distance is less than one percent of the mean radial

distance from Earth to Mars. Additionally, average escape times

are less than seven days while the total mission time (one way) is

around two hundred days. Using the same reasoning, the arrival

into Mars' sphere of influence is also assumed instantaneous. The

orbits of Earth and Mars are assumed to be in the same plane and

perfectly circular. This simplifies problem setup. The intercept

of the spacecraft with Mars will be assumed. No phasing

requirements will be considered.

Certain assumptions for the vehicle must also be made. The

ion engines will operate at constant thrust and only outside of

the Earth's and Mars' spheres of influence. However, the ion

thrust will have variable vectoring or thrust angle # equivalent

tc that defined in the last chapter. Consequently, 0 (t) will be

found to optimize the system. The high thrust engines will be

assumed to provide an instantaneous (impulsive) AV. The other

parameters of the propulsion systems will be normalized in a

later section.
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PROBLEM NOMENCLATURE AND FORMULATION:

The nomenclature of the problem is as follows :

r = radial distance of spacecraft from Sun

u = radial component of velocity

v = tangential component of velocity

M = initial mass of spacecraft
o

m= ion fuel expulsion rate (constant)

0 = thrust direction angle

= gravitational constant of Sun

AVto t - total velocity change possible for the impulsive

engines

AV1 = velocity change for Earth escape

AV2 = velocity change for Mars capture
AVto t = AV + AV

A~tt 1 2

W = injection angle, defines point in parking orbit when

impulsive burn begins

SC= arc traversed during change from parking orbit to

sphere of influence

V = orbital velocity of the Earth

Vmars = orbital velocity of Mars.
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ANALYTIC FORMULATION:

The problem will be solved using a cost function and

corresponding analytical equations for a continuous system where

functions of state variables are specified at a fixed terminal

time, as described in the previous chapter. The equations of

formulation for this problem are the same as for that of the last

chapter; only the boundary conditions will be different.

These boundary conditions will now allow for a non-tangential

escape/arrival with respect to each planet. The sphere of

influence was defined by Laplace as the radial distance centered

about the smaller of two celestial objects (Earth) that divides

the regions where the body in question (i.e. spacecraft) is

assumed totally under the influence of only one of the large

bodies (the planet or the Sun). This assumption assumption of

instantaneous escape from the sphere of influence is accurate

enough for mission planning and preliminary trajectory design.

This radial distance is shown by

.mass of planet 0.4

Sphere Radius= D
[mass of Sun

where D is the distance between the planet and Sun. The sizes of

Earth's and Mars' sphere of influence are 924119 km and 577724 km

respectively. These distances account for only 1.2 % and 0.7% of

the distance between the planets.
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Normally, the escape hyperbola is 'patched' to an elliptical

transit orbit in interplanetary space. In this case the

components of velocity at the edge of the planet's sphere of

influence will be used as the initial/final conditions. These

boundary conditions have either required values or may be varied

freely to achieve the desired optimization.

INITIAL CONDITIONS:

The initial conditions of the state variables r, u, and v are

derived from the initial impulsive parameters AV1 and W as

referred to in Figure 4.1. Both of these values define the

r,u,and v parameters at the escape from the Earth, which is our

actual assumed starting point since the time for the escape from

the Earth's sphere of influence (SOI) is neglected. The

derivation of r,v,and u follows.

The radius of an orbit r is defined by

a (1-e )2
1 + e cos P

from the general equation of a conic section. Since r at the

Earths sphere of influence (let the subscript denote values at

the SOI boundary)

a (1-er = =

1 + e cos

consequently, the denominator must be zero, 1 + e cos P 0,

1
so cos - e By definition, the eccentricity is

2ee- 1I+ 2Sh

Pe
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Figure 4.1 Relation between impulsive conditions

and initial conditions
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and the specific mechanical energy and angular momentum are,

respectively:
v 2

SP- and h =r V.
2 rp p p

Where the subscript denotes the parameters of the initialp

parking orbit. The angular momentum is simplified to this form

under the assumption of a circular parking orbit and a tangential

impulsive burn.Noting that the gravitational parameter of the

Earth is 0 e, the total initial velocity of the spacecraft with a

circular parking orbit and a tangentially applied escape impulse

is

Vp = AV1 +
r
P

Where r is the initial circular parking orbit radius.p

Assuming no further thrusting after AV1 until crossing the

sphere of influence,the total energy is conserved as

S =5- ,

so 2 _ i - - = - - - _ _.
rp CD

or

V - M V - 2 -
op r

The departure angle with respect to the local horizontal is

angledep  W +

-1/2

where v -cos- ( -( 1+ _2Sh -1

and W is an input variable. The initial r, v, and u conditions
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are r(0) - r., which is approximated as the Earth's radial

distance from Sun; u(0) - vO cos(P. + V - R/2), which is the

radial component; and v(O) - v,+ vD sin(vL + W - X/2), which is

the tangential component added to the Earth's orbital velocity.

The initial Lagrange conditions are free to enable the

optimization of the problem:

)r(0) = free Xu(0) - free Xv(0) = free.

FINAL CONDITIONS:

The final conditions are also related to an impulse (AV2 ) but

there is no equivalent p . The final conditions r(tf)I u(tf), and

v(tf) define the final required AVp which will be adjusted by the

optimization to match the given AV2. The formulation from u and v

to AVp is as follows using Figure 4.2. At the boundary of Mars'

SOI the orbital velocity of Mars must be subtracted to give the

velocity with respect to Mars as

vb =r'((v msrf) 2 + u2)

As with the Earth escape, it is assumed that no propulsive

impulses will be used until the desired perimartem is reached rp.

It is also assumed that the flight may be phased so that this

perimartem will be reached. The subscript p will denote the state

at perimartem. Consequently, once again the energy of the orbit

remains constant,8p - %, so that the final velocity at perimartem

is described by

2 2 + mar*
pv b +2
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And the AVp required to brake into the circular parking orbit is

AVp sp - /Peearsa .
rp

Consequently, the final required condition, denoted by T1 is:

u +.r (vv+ 2- ._ AV +AV 0 .

ee + r r tot
p p

However, the condition may be rewritten in a more convenient form

as

TI - u2 + (v-veers) 2 + 2 P(ars + AV) 2 - 0.
rp q rp 2

This form will lend itself to greatly simplifying the final

Lagrange multiplier conditions as well as the numerical

derivations. These final Lagrange multipliers are defined by

X(tf) E + V

t-tf

And, since the radius is to be maximized in the inner loop, E -

r(t) is evident. Denoting that the differential velocity at the

final solar radius is vcirc - '/r(tf). Thus the final Lagrange

conditions are

Yrtf) - 1 + V 1 (Vf - vcirc) I-/ r(tf) 3 /2 ,

Au (tf) a 2 P, u

vftf) as 2 P, (v 'Vcirc).
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These may be combined by noting that

u 
v -

=1 = -= (vf - Vcirc)

so that I(t I -+ x(t )/2u u
r ut fu

Hence a second final condition may be defined as

T2 - Xr (t f ) - 1 - v (tf )/2 Yf ),

and the third final condition as

T 3 a ku(tf) (v(tf) -Vcirc} - Yvtf) u(tf) = O

IN SUMMARY:

STATE VECTOR DIFFERENTIAL EQUATIONS

r
uv

X L r] f wX
uI

EOUATIONS OF MOTION

r=u

v 2  X_ _ _

- +  a(t) 2 + ,v2
r r 2v

Vr X at
KVf V + v
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T
where a(t) - m o t

LAGRANGIAN EQUATIONS

2
r _ 

x -v _r u r 2  3  V _2
r r r

+U r v )

u r v rJ

CONTROL LAW

tan (€) u
V

INITIAL CONDITIONS

r(O) = r, (Earth's radial distance from Sun)

u(O) = vf cos(v f + v - X/z) (radial component)

v(O) = ve vf sin(Pf + p- W /2) (tangential component)

x (0) - free x (0) - free v (0) - free
r u v
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FINAL CONDITIONS

2 2 +  me re / more 2
( u + (vVm + 2 + V,) 0.

= T r(tf) - 1 - v(t f) /( 2 rf 31 2 )

T3 X u(t f) (v(tf) - vcirc ) - (t f 0.

NUMERICAL SOLUTION:

The equations of motion and optimization derived above will

be solved numerically by the method presented in the previous

chapter. As in that case, the solar orbit radius will be

maximized for a certain time peric', t0 to tf, and an outer loop

will adjust the final radius to that of Mars thus giving the

minimum transfer time. Since the differential equations are the

same, the equations of variation are also identical to those of

chapter 3. The A matrix is also the same A(t) - -fC/x. As is,

C

*(t,t)) = A(t) @(t,t0),

with initial conditions @(t0 t0 ) = I. (identity matrix.)

Remembering that the t matrix (called the state transition matrix)

will propagate the initial deviation from the xo0 trajectory to any

time in the integration,

6x(t) - 0(t,t 0 ) 6x(t 0 ).

Again this system is a two point boundary problem and again
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the 'shooting method' will be used. The corrected initial

condition is found by the same method as that shown in Chapter 3:

6x(t 1 ) - [(S O(t 2 ,t 1]W G.

For this problem the error vector is G - [y]T

where Y M U 2 + (v-v war 2 + 2 mr; + 0,rp ( r + AV2)-

2 - )r(t f ) - 1 - )v(tf) Arp/(2 rf 31 2 ) ,

V3 X nu(tf) (v(tf) - v )ir) - Xv (tf) u(tf) - 0.

Therefore, the B - 6G/6x matrix is

2 VdVc  2u 2 Vd 0.0 0.0 0.0

3k-I- 0.0 0.0 1.0 0.0 -Vc
4 2.5

kuV v 0.0 Vd  -u

where Vd - v(tf) - Vj/r(tf) and VC - 1/2 rfj/r(tf) 1 6 .

Again, once B and O(t2 ,t1 ) are determined, multiplied, and

inverted with the error vector, the improved corrections, & T are

added to the variable initial conditions (in this case the three

initial Lagrange multipliers).

T )67 + 6)T(tl)
now initial
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This procedure is again iterated until the error vector

reaches an acceptable minimal amount or diverges to infinity. The

latter case indicates that a better initial guess that is 'close'

to the actual optimal initial conditions in required.

ADJUSTING FOR MINIMUM TIME OF FLIGHT:

The above procedure will maximize the final orbital radius

for the given time of flight tf. To adjust this to find the

minimum time to reach a certain orbit radius, in this case Mars'

solar orbit, a simple outer loop may be written, as in the

previous section, using a scalar Newton-Raphson procedure to

adjust the time of flight as

(tf - tf)

ftfk r(t f - (trf f - r(tf )]tfk~t tf r- -tf-

k k-I

where r f r~are.

NORMALIZATION OF SPACECRAFT PARAMETERS:

To allow for ease of programming and more general results,

the physical parameters of the spacecraft will be normalized.

Defining mass ratios as the subsystem weight divided by the the

initial total spacecraft mass in low earth orbit (LEO):
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P, M L (payload mass)/ MLeo "

P MW (propulsion systems)/ MLo

PI O Mx I(ion propellant) / ML o ,

PP*S MeP (propellant for AvI / NLe o,

and P P2 MeP (propellant for AV) / M e o.

These subsystems are shown in Figure 4.3. The propulsion

systems may be further divided into the high thrust system and the

low thrust or power system:

Iw " IJWH + #juWL

where p is the reactor and controls, turbopump, piping, nozzle,

thrust structure, etc.; and P WL is the power producing equipment

excluding reactor: turbine, radiator, working fluid, piping, and

electric engines. To adjust for the fact that the power producing

system does not include the reactor (since the high thrust

required will normally define the reactor size) we define Peas the

mass ratio of reactor where P 9- p Pe, and P is the reactor mass

factor.The total mass of the required power producing system

(including reactor) is PT; where the required portion of the

required reactor is

P pwr a I PT and I - reactor specific mass.
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S high thrust propellant

7-electric engine propellant

- low thrust system

[ii $...........

high thrust systemi payload

Figure 4.3 Spacecraft subsystems
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Now assuming that the high thrust reactor may be used in a

closed loop mode and, therefore, saves the necessity of another

reactor for the power generation mode the actual power unit mass

ratio is

UVL a 'T - 'lpvwr

or

UV " gT(1-" ),
VUL *1T U 1

where Ujpr a ju a

The following summarizes the mass ratios and their related

parameters.

SUMMARY OF MASS RATIOS AND PARAMETERS:

(Note: all masses compared to the spacecraft's mass in

low Earth orbit MLeo)

PL : mass ratio of the payload

PW : mass ratio of both propulsion systems

pi : mass ratio of the electric propellant

PPI: mass ratio of the propellant for Avi

PP2: mass ratio of the propellant for Av2

PvH: mass ratio of the reactor and equipment for

high thrust operation

PvL: mass ratio of the low thrust system equipment

excluding reactor

PR :mass ratio of reactor only

p :the reactor mass factor (portion of high thrust

system that is reactor)

PT : mass ratio of the required low thrust

producing system (including reactor)
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I :reactor specific mass ratio (portion of low

thrust system that is reactor)

PRpwr: mass ratio of reactor required for low thrust

RESULTING RELATIONS:

1'A -Il + ;2 WLA- PP H

Rpwr ' T lWL M T P Rpwr P T

PRpwr P R

How efficiently the high thrust portions of the propulsion

unit perform may be measured by the high thrust/wt ratio P: which

is the amount of high thrust possible per unit weight of the

propulsion system as described by

=T/M go H = P HDOT H

The low thrust system's performance is measured by the

specific power ratio of power system a which is the reactor

output power (kWe) / (power producing mass (kg)] or a - We/ MT

where MT is the required power producing mass.

The exhaust velocities and mass flow rates of the high and

low thrust modes are also defined as VL, the exhaust velocity of
0

the low thrust engines(km/sec); mLthe mass flow rate of the low

thrust engines (kg/sec), VH. the exhaust velocity of the high

thrust engines(km/sec); and mHP the mass flow rate of the high

thrust engines (kg/sec). The mass flow rates may also be
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normalized as

LDOT m / M ,Le and PUDT =  m /  M L ot"

Finally, the time of flight will be noted by T.

We will next normalize the low thrust acceleration term to be

used in the optimization:

a(t) = T
mm 0 - ;mLt

oo

By noting that T = mLVL and dividing thru by m= Me c (mass of

space craft at escape from Earth)the term becomes

a(t) = 98/ L
1 - (L/m..C )t

Consequently, a relation between mL/m C and the normalized

spacecraft parameters defined previously is needed. The beam

power of the ion engines W bea is defined by

W .W =r N =7 [NMI/2] 2
beam generated T = 1/2 VL (").

In this case, the efficiency n will be assumed to be 100 %.

The beam power relates to the thrust by

T 2 Wbem / V L L VL'
I L ,
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thus

=2ua M

;L 
2 2

VL

Dividing thru by Mesc and realizing Me c- MLe o- MPl and then

using MLeo on the right hand side, this may be transformed into a

function of mass ratios as
;L 2a M T 2a P T
M2Vx M 2x T

e ec V2  - p
sac L L P1

Additionally, the mass ratio of the required low thrust propellant

is defined from (*) as

2a
IP V 2 T

L

According to Stuhlinger [8: p. 79], a good guess for the

optimal low thrust exhaust velocity V L is V L - , . If this
opt

assumption is used the mass ratio becomes

oil " a 2 p T.

Now the impulsive terms will be normalized. Using the

Tsiolkovskii equation,

Av / V
e M Minitial / Mfinal

the high thrust burn to escape LEO (Av1 ) and the high thrust

braking at Mars parking orbit (Av2 ) can be stated as
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Av I "V s in (M Leo/ 1] ,

and Av 2 -V In L P2
2 ML+ MV

respectively. Dividing thru the masses by MLeo we get

-- V in

and AV 2 V K In [1 ,

I JL + P V

by noting that ML+ +v + PI + 'P2 - 1.

In summary, the following equations and input variables are

required for the normalized equations:

(=L/m oo)VL
a(t) - L eg) L

L 98C

where L T 2 and pii I-j"
M 1IP 2°°€ VL P1 L

If the optimal exhaust velocity is assumed as VL - ,
opt

then p 2 p The high thrust parameters are normalized as

v , in[1 2 ],

and Av2 -V 1 In [1 - plp-ipp ]
ML + VA
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remembering that p a P + P T (1-7). Consequently, to perform the

optimization the following constants and mass rations must be

assumed: [ Pli PI', Pe a, VL , VU, p, 7, PT I x However, if

V L  -'a t-is assumed x will not be needed.
opt

LIMITS ON P L' Pp''VL f V P or#, p. ., T :

Assumed mass ratios PI PL and P :

Due to the requirement that the spacecraft be capable of

escaping Earth orbit and braking into Mars orbit, there is a

minimum and maximum amount of v I propellant mass that may be

used. The minimum AvIand v2 (for Earth escape and Mars capture,

respectively) may be determined simply by

y -V -

AVeec eac Vcirc

or Av0y /2~i-g-i-ij'F - (/2'- -l)

The same is true for a braking AVbrak e . The minimum PPis

determined easily using the Tsiolkovskii equation:

- [ 1 - *(-AV*Be/ Vi)]

assuming VR is known. Using the minimum for KP2 ,

N p2min [ N L + M [ *(AV brake /V ) ]
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the maximum P1 is found: 1

PPlI& " 1 - Pp- [PL + P [ * Ava R v I1

Propulsion unit low/high exhaust velocities VL and V.:

The exhaust velocities of the low and high thrusting modes

are technology dependent. However, some ranges of values are:

VL: System Type Exhaust Velocity (km/sec)

Ion and MFD systems : 30 to 250

Electrothermal : 4 to 20

V: Nuclear : 8to 10

For actual explanations of these systems see Appendix A.

The specific power a:

The specific power of a bimodal propulsion unit is also

technology dependent. At present a seemingly possible range is

roughly from 0.002 to 0.005 kWe/kg. In this case the the mass

includes the reactor, nozzle, thrust structure, propellant feeds,

turbomachinery, radiators, and ion engines. Again refer to

Appendix A for more information.
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Thrust-to-weight ratio of the propulsion unit :

The thrust of the propulsion system must be sufficient to

enable the spacecraft to escape Earth orbit. Additionally, the

assumption that this nuclear thrusting is effectively impulsive

(instantaneous) should be checked. This may be easily

accomplished using the equations of motion defined in Chapter 3

and adjusting them to provide the thrusting always tangential to

the initial circular parking orbit (i.e. circumferential thrust)

in an Earth centered two body problem. These equations may now be

integrated using Haming's Method also described in Section 3. The

impulsive case of the high thrust system may be found by assuming

an instantaneous Av for the initial conditions and equations of

motion. The actual performance may be found in a similar way by

assuming the appropriate a(t) and integrating the equations of

motion.

By comparing

time of flight (actual)
time of flight (impulsive)

(both to the earth's sphere of influence) to the ratio

PwHgo P Hdot

V H

which is the specific mass flow rate, we see how close the actual

thrusting compares with the impulsive thrusting. (see figures 4.4

and 4.5) The first figure clearly shows that above a value for

PwH of .2 the range of exhaust velocities for nuclear rocket

engines has little effect. The next figure shows the effect of
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VARIATION OF PROPI PATIO
______________PIR;T MIN = 2. YE-9 5 W1AtEl;CE ___

. ........

.................. . ........ . .

.. . ........ .......... . ...... ..... ..

T

O ............................. .........I........ . ...... ........ .......

PTT
0

F ... ....... .............. .. ......... ....... ..................... .......

.. .. .. . .. I. .-... . . ... k... . .. .. ... ....... . . .. ..

.. . . . . .. . . . . . . .. . .. .. * .... ..... ~

v r~e'10 .32 D iFlri .4 0 -IAT .5 * FT=T,K 3 .14

Figure 4.5 Effect of excess escape propellant ( jil) on

time-of-flight ratio verses P * 5Jw*
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excess fuel on the time of flight. It is evident that unless we

are very close to the minimum ii. the curves approach a limit.

Assuming that such excess fuel is available and allowing for an

approximate time of flight error of around five percent we shall

require that

P iiW k .5 or p k 1/ (2 P),

since an increased propulsion unit ratio will be required

depending upon the technical capabilities of the system as

described by P. Without this requirement, there are some low

PIJ, values that are not sufficient to even allow the spacecraft to

escape orbit much less permit the assumption of impulsive

thrusting. This can be explained by the velocity and gravity

losses experienced by a spacecraft during a thrusting of finite

time.

Reactor mass and specific mass factors p and 7:

These factors are also technology dependent. Depending upon

the nuclear rocket system, the portion that is reactor is from

seventy to eighty percent, p: 0.70 to 0.80. On the other hand,

the percentage of the total power producing mass that is reactor

is only from 20 to 30 percent, 7: .20 to .30. For a non-bimodal

system, i.e. separate reactors for the high thrust and power

generation systems, one may set

1-0.0 or 1WL T
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Power system mass ratio PT:

The power system mass ratio defines how much power is

generated and, in turn, the low thrust available to the

spacecraft. Since it is assumed that reactor size will be defined

by the high thrust mode, the upper limit on pT is

IA P VHN Rpwr R p 1) H_

T 1 1 VI 7 2

since *Rpwr - T . The lower limit occurs when there is no

ion drive system present: p Tk 0.0.

PARAMETERS TO VARY FOR OPTIMIZATION:

Of the multiple parameters given E p., Llpi ,VL , V, , F, P,

7, 1UT1 , only pi and pT can be freely varied without technological

improvements or change of mission. In simple terms, the variation

of Pi between the limits prescribed above will determine the

optimum amount of excess high thrust fuel (and, consequently, AV)

used either for escape from Earth or braking at Mars. The

variation of p T on the other hand, will indicate the optimum

proportion of low thrust drive and excess high thrust fuel. In

summary,

variation of p1

PPlain P1 Plmax

where I*n - •AV / VH)]
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r I.brak/v.
and Ppmx -1- - P L + 'W * b 1

variation of PT:

Vn

T I VN 1 7

These two variations will be fully explored in the next section.
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CHAPTER V: OPTIMIZATIONS AND RESULTS

INTRODUCTION:

A minimum time, direct trajectory will be found for a

spacecraft utilizing a bimodal nuclear power propulsion system as

defined previously. Several different optimizations will be

performed. First, the optimal vectoring 1(t) of the low-thrust

electric engines will be determined. Simultaneously, the excess

fuel for the nuclear engines will be divided in various portions

(p and p p2) to vary the excess escape and arrival velocities.

These two optimizations, including varying the injection angle W,

will show how best to utilize an existing normalized spacecraft

design by indicating the parameters for fastest time-of-flight.

After this trajectory/fuel division optimization is complete,

the size of the electric power generator/electric engines/electric

engine propellant, PT, will be varied. The variation of T Will

only affect the amount of excess high thrust fuel. In other

words, it will be shown to what extent the excess mass should be

used for either the low thrust system or the high thrust fuel.

Consequently, the advantage of the bimodal concept will be tested

and the sizing of the electric drive relative to the rest of the

spacecraft may be determined.

ASSUMED ORBITAL PARAMETERS:

As stated in the last chapter, the Earth and Mars will be

assumed to be in coplanar, circular orbits. Additionally, it is
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assumed that Mars will be in the correct position for the arriving

spacecraft. For this optimization, the assumed parking orbits are

500 km and 1000 km for the Earth and Mars, respectively. It will

also be assumed that these parking orbits are at the proper

inclination so as not to require the spacecraft to make a plane

change to attain the correct plane of the Earth-Mars transit.

SAMPLE VEHICLE PARAMETERS:

For the actual numerical optimization some sample vehicular

parmeters must be assumed. For a space vehicle responsible only

for carrying mission personnel (i.e.cargo for the Mars exploration

will be carried by electrically propelled vehicles) as quickly as

possible, a payload ratio of 10 percent seems reasonable. For the

nuclear and electric propulsion systems existing technologies will

be utilized. The thrust-to-weight ratio of the NERVA I nuclear

rocket engine is 2.84 while the exhaust velocity is 8.25 Km/sec.

(see figure 5.1).

Since no high power bimodal system has been designed, it

will be assumed in this initial optimization that a separate power

source shall be carried by the spacecraft to provide the electric

engines with power, i.e. WL 0JPT". In this case the SP-100

reactor will be used. For the low thrust system's combined

reactor and electric engine mass, a specific power ratio of 0.05

kWe/kg seems reasonable for existing technologies. (Note: this

specific power ratio is different than that defined in the last

chapter since, in this case, it does not include the mass of the

high thrust rocket/reactor unit.) The actual electric engines to
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Stage weights (NERVA-1 engines ), kg (lb):

Nuclear engine (includes internal shield and thrust structure) ..... ................ 11680 (25 750)

External shielding (top nuclear stage only) ........ ............................ 908 j2000)

Tank mass (dry), kg/module (Ibm/module) ..................... 7070 (15 586) [.0.064 x "Prop)
Residuals (gas and liquid), kg/engine (lb/engine) ...... ......................... 908 (2000)

Interstage structure (Mpay total) ....................................... 0.015

Nuclear engine performance:

Thrust, N (lb) .......... .......................................... 334 000 (75 000)

Specific impulse, sec ......... ................... .......................... 825

Figure 5.1 Nerva-I characteristics [13]
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be used, whether based upon electrothermal, electrostatic, or

electromagnetic acceleration; will greatly depend upon the optimal

exhaust velocity determined by the optimization and the

availability of such electric engines. However, due to the assumed

specific power and the probable time of flight (approximately 200

days), the required exhaust velocities will fall around 40 km/sec,

thus an ion electric engine system will probably be required. The

summarized assumed parameters for the problem at hand are:

MASS RATIOS:
PAYLOAD 0.100
NUCLEAR PROPULSION UNIT 0.176
POWER GENERATION UNIT 0.050
ELECTRIC PROPELLANT 0.100
HIGH THRUST FUEL (REQ'D) 0.377
HIGH THRUST FUEL (EXCESS) 0.197.

The sizing of the low thrust propulsion unit, defined by PT'

will be varied after the initial optimization of injection angle

and fuel division. As a starting point for this first

optimization a PT of 0.05 will be chosen. This results in a low

thrust fuel ratio of 0.1 ( since approximately optimal electric

exhaust velocity is assumed by the numerical optimization), and an

excess high thrust fuel ratio of 0.197 (meaning gp1+ pP2 m P1IKI +

P p2KI+ 0.197), which will allow for a substantial variation in

the excess escape and braking velocities.

OPTIMAL INJECTION ANGLE AND HIGH THRUST FUEL DIVISION:

The first optimization to be attempted will be the variation

of the Earth injection angle (W) and the variation of the high

thrust fuel (p pl) between the Earth escape burn and the Mars
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braking burn. For each specific case the program will determine

the optimum thrust vectoring history to obtain the minimum flight

time. The exact optimal combination of injection angle and fuel

division will not be determined. Rather, a general search and

three dimensional graph will be created to show the effects of the

variations.

The three dimensional plot shown in Figure 5.2 shows the

effect of variation of V and ppl. A well behaved sloping occurs

with a minimal near V = 0 and approximately half the excess fuel

going to each burn. The regions near the edges, especially near

the 90% / +30 part of the graph should be ignored since no data

was created for that region due to the non-convergence of the

program. The three dimensional graphing routine incorrectly

assumes a contour there. The topographical plot shown in Figure

5.3 allows for a better look at the optimal region which occurs at

approximatelyV - -5 and 50 % fuel usage. The minimum flight time

is approximately 110 days.

It is interesting to analyze the optimal low thrust vectoring

at different regions of the injection angle / fuel division

variation. At the minimum time of flight, the vectoring C(t)

resembles very closely the one found previously for fastest

transfer between circular orbits in chapter 3. (see figure 5.4)

This equates roughly to accelerating the vehicle half the mission

and decelerating the last half.
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C-0

0-I-

0

Figure 5.2 Three dimensional plot showing the effect of

varying injection angle and excess fuel

division on the time-of-flight

V-6



OPTIMUM PSI AND PROP-1 RATIO

30
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S1.32 rv

oo

010
0

-20

-30-
10 20 30 40 50 60 70 80 90

% excess fuel for escape burn

Figure 5.3 Topographical plot showing the effect of

varying injection angle and excess fuel

division on the time-of-flight
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OPTIMAL VECTORING

_____ ~OPTINAJ49)DWSs flJEL USED FOR ESCAPE___

T

2 4 . 0 ............H. .......... ...... ... .. ..... .................

A 4.

N 8.
G

H

0. 00 75.8 IWO. 125'.0 15i.0a 175.8
TIME-OF-FLIGH7 (DAYS)

Figure 5.4 optimal thrust vectoring for optimal fuel

division
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For the extremes of the fuel division the optimal vectoring

may show why they do not provide the minimum time of flight. For

the case where more excess fuel is used for the hyperbolic escape

from Earth, it is clear from Figures 5.5 and 5.6 that the electric

thrust system spends nearly all of the transit time decelerating

the vehicle to a speed where the high thrust engines with the

remaining fuel may give the ship sufficient braking AV. As may be

expected, Figures 5.7 and 5.8 shows that if most of the fuel is

saved for the braking into Mars orbit, the low thrust propulsion

unit must accelerate most of the distance just to arrive at Mars.

By using the optimal fuel division, up to thirty days of flight

time may be saved even though no change in either propulsion unit

is made.
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OPTIMAL SIZE OF LOW THRUST PROPULSION UNIT:

Now that the optimal region of injection angle and fuel

division has been found, the affect of the relative size of the

low thrust unit may be examined by varying PT" Using the same

assumptions as before, optimizations were repeated for 1T's

ranging from the maximum allowed by the payload ratio and minimum

high thrust fuel requirement to that of a small amount of low

thrust approaching zero. The results are shown in Figure 5.9. It

is evident that if minimum time-of-flight is required, it is best

to utilize the available mass for high thrust fuel instead of a

low thrust system. However, even as the relative size (and

effect) of the electric propulsion system vanishes, the optimal

fuel division and the injection angle remain approximately the

same. (see figures 5.10 and 5.11)
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OPTIMIZATION WITH PROJECTED TECHNOLOGIES:

The above optimization will be repeated to determine whether

performance is improved, especially when a second reactor for

power production is not required. The following parameters are

assumed: P = 3.0, a = 0.10, and p = 0.20. The payload ratio is

again p L= 0.10. Figure 5.12 shows that although overall flight

times are reduced with these parameters, the same basic trend,

that of decreased time with decreased PT , still exists. Improved

spacecraft performance due to the reuse of the nuclear rocket

reactor for large amounts of electric power generation does not

supply the large expected gain in mass ravings. This is due to

the small portion (around 20%) of the total required electric

power generation mass that consists of the reactor. Consequently,

requiring a large, low thrust unit will still envoke a large mass

penalty.
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CONCLUSIONS AND RECOMMENDATIONS:

We have seen that for the direct transfer from Earth to Mars,

the concept of bimodal power propulsion does not provide the short

times of flight that a purely nuclear, high thrust system does.

This does not, however, discount the use of the rocket reactor for

electric power generation to support auxiliary functions of the

spacecraft. It has been shown that if excess fuel is utilized in

approximately equal amounts for the escape and braking maneuvers

the minimum time of flight is found. Consequently, for a mission

scenario where the cargo is transported by an electrically

propelled vehicle, the passenger spacecraft may use nuclear

rockets to complete the transfer to Mars in as short as three

months depending upon the rocket technology and the required

payload ratio.

The reason the addition of the low thrust system was not

found to be beneficial to the minimization of time of flight may

be found by noting the real advantage of the low thrust system:

higher payload ratios at normally longer flight times. Since a

minimum flight time was sought, the low thrust engines, which

provide improved thrusting only over time, may not have had enough

time to contribute. Perhaps for longer required flight times the

combined high/low thrust system would be advantageous.

These optimizations were only completed for a simple, two

impulse direct trajectory to Mars. For a return flight that

reduces stay time an indirect trajectory taking an inherently
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longer flight time would be required. Whether this extended

flight time would allow the bimodal low thrust/ high thrust system

to give improved performance over the exclusive high thrust system

is not known and should be researched. In addition, multiple

impulse trajectories have shown improvements over that of the

standard two impulse trajectory and may warrant application of the

bimodal power propulsion system. Finally, the variation of

electric drive thrust and exhaust velocity for optimum flight time

[8: p.101-136] could have some affect on the value of the bimodal

concept.

V-21



APPENDIX A: OPERATING PRINCIPLES OF NUCLEAR BIMODAL PROPULSION

Fission Principles:

To provide thermal energy to heat propellant or to be

converted to electrical energy a nuclear reactor very simply

converts matter into energy. This occurs by the famous

mass-energy relationship

2Energy = mass * (velocity of light)

So 1 gram of matter could, in theory, be transformed into 9.0

X 1013 Joules of energy. The great amounts of energy available

are obvious. To convert this mass into energy, two general

methods may be used: fission and fusion. Fission is the process

of splitting an atom to create several atoms and energy. Fusion

is the combining of several atoms to create a new atom and energy.

At present, fission is the only method shown to be feasible

and in widespread use. After the fission nucleus absorbs the

neutron it may emit gamma rays to release the excitation energy

gained from the neutron or they may fission or split into two

lighter elements and create additional neutrons, gamma rays, and

energy (in the form of heat) as well. This process is clearly

shown in Figure A.1. The heat produced is from the original

elements binding energy and is described by the mass-energy

relationship. The normal fission product distribution is shown in

Figure A.2. Fission occurs when the excitation energy exceeds the

critical energy of an atom.
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The critical energy requ2._ed must be small since the fission

energy will be provided by a neutron having fast neutron energies

greater than 100 keV. Only atoms with atomic masses above 230

have sufficiently low critical energies. Table A.1 shows the

thresholds of such atoms called nuclides. In three cases the

critical energy is below zero. In these cases high energy

neutrons are not necessarily needed to cause fission, although if

high energy neutrons are used, fissions are much more probable and

the produced neutrons are also of high energy. The higher

probability is directly related to a higher power output of the

fission reaction.

Neutronics:

As mentioned, the fission reaction gives off more neutrons.

These neutrons may in turn create further fissions. The neutrons

given off in fission are termed prompt neutrons. The balance in

neutron production is very important since this is what regulates

power production. The production of neutrons leads to a chain

reaction which stimulates itself; by controlling the production of

neutrons the fission process can be made subcritical (the number

of fissions will decrease to zero), critical ( the number of

fissions is constant and balanced), or supercritical (the number

of fissions increases each generation).

A-3



Table A.1

Neutron fission thresholds of heavy nuclides

Target Compound Fission
Nucleus Nucleus Threshold (MeV)

Th232 Th233 1.3
U233 U234 < 0
U234 U235 0.4
U235 U236 < 0
U236 U237 0.8
U238 U239 1.2
Np237 Np238 0.4
Pu239 Pu240 < 0
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Unfortunately, neutrons are also produced from other

sources. The main sources of neutrons are the elements produced

by fission which have half lives up to one minute. Neutrons from

these sources are termed delayed neutrons since they appear long

after the fission generation that produced them. In addition,

neutrons can be produced out of sync by reflection, gamma

ray/matter interaction, back scatter, and solar flares. All of

these nonprompt neutrons, although representing less than one

percent of those produced, greatly complicate the control of the

fission process.

Neutrons have energies varying from around 0.01 eV to 2 1ev.

The probability of fission is increased with the increase of

neutron energy as shown by Figure A.3. From 1 eV to 1 keV a

resonance region occurs. Operation in such a region would be very

difficult and is, therefore, avoided. Hence, nuclear reactors are

usually termed 'thermal' (neutron energies < 1 eV) or 'fast'

(neutron energies > 100 keV). Due to the low power production of

thermal or thermionic reactors only fast nuclear reactors are

applicable to nuclear propulsion.

Fissionable materials:

All fission fuels are derived from uranium. Uranium occurs

in three natural isotopes (elements differing only in the number
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of neutrons) in the following abundances:

U2 34 : 0.0056%

U2 35  : 0.7205%

U 238  :99.2739%

Unfortunately, the only isotope that fissions significantly

235upon exposure to neutrons is U , hence expensive techniques are

required to separate the U23 5 from natural uranium.

Two other fissionable elements can be artificially produced

from more abundant naturally occurring elements. Pu2 39

(plutonium) can be created by neutron bombardment of U23 8 which is

very abundant. U233 (rarely occurring in nature) can likewise be

created by neutron bombardment of Th23 2 (thorium). Each of the

three fissionable materials has its own advantages and drawbacks.

However, U235 is the most fully developed today.

The Fission Reactor:

Many complex technologies must be utilized to contain,

control, and exploit the energy of the fission reaction. The

basic components of a space reactor are shown in Figure A.4. Each

shall be described in turn.

The heart of the reactor is the core. The core contains

the fissionable fuel in a matrix to ensure stability. As shall be

seen later, the higher the core temperature, the better the

open-loop performance. While concepts of higher temperature

liquid and gaseous cores have been explored, both are
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inappropriate for bimodal use. Only the solid core reactor would

be stable at a high temperature (approximately 2600 to 2900 K) for

open loop propellant heating and a lower temperature (1100 to 1500

K) for closed loop power generation.

The core is comprised of solid fuel and solid matrix material

intermixed. This surrounding matrix material has many important

functions: containing and support fuel at high temperatures,

protecting fuel from hydrogen attack, permiting advantageous fuel

distribution for fission, and allowing for heat transfer to

propellant/coolant without thermodynamic reaction with the fuel.

Nuclear fuel is basically a very poor structural material and

reacts easily with the preferred propellant, hydrogen. However,

the matrix material must not absorb neutrons destined for the

fuel. Four materials seem candidate to act as a matrix:

beryllium, graphite, tungsten, and refractory carbides. In the US

nuclear rocket program of the 1960's graphite was used

extensively. The matrix material is fabricated to surround

individual fuel elements via powder metallurgy. These 'islands'

or 'veins' of fission fuel which greatly enhance fuel

fissionability are shown in Figure A.5.

The fuel islands are normally not made up exclusively of the

235fissionable fuel, such as U 5 , but a compound of the fuel and one

or two other elements. This is due to the fissionable fuel low

melting point around 1400 K. Candidate fuel compounds are UC,

UC2, UO2, and UZrC. All of these compounds have melting points

above 2500 K.
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The core matrix is usually fabricated into long slender

fuel/matrix rods of hexagonal shape as seen in Figure A.6. These

rods contain passages to provide propellant heating and,

consequently, must be coated to reduce matrix corrosion with the

hydrogen. These rods are then assembled into interlocking units

consisting of 7 rods and are termed a fuel module. These modules

are in turn combined and wrapped with hoops and placed in a core

barrel or cage which structurally contains the core. Due to the

greater neutron flux near the center of the core the fuel density

is varied radially so as to produce a constant power density

profile. (see figure A.7)

Due to the fuel impurities, the core is a fragile part of the

reactor. To avoid mechanical stresses and to allow for axial

thermal expansion the core is usually only attached to a support

plate which doubles as the propellant/coolant flow intake grid.

The support plate is in turn attached to the reactor pressure

vessel, which acts as the thrust structure transferring the

kinetic energy from the nozzle to the space craft. Radial thermal

expansion is dampened by high temperature spring seals and hoop

springs.

The core must also serve as a heat transfer mechanism

allowing all four types of heat transfer (conduction, convection,

thermal radiation, and transport) to heat the propellant/coolant

and cool the core as shown in Figure A.8.
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The core must be surrounded by a material to reflect the

neutrons back into the core so as to keep the fission chain

reaction functioning. Called the reflector, this beryllium shield

is attached to the pressure vessel and needs to be only 15 to 20

cm thick to reflect 90% of the incident neutrons. The reflector

creates a back-flowing slow flux which combines with the normal,

nonreflected, fast flux as shown by Figure A.9. As discussed in

the previous section, this slow flux does complicate the core

criticality. However, the slow flux also has the benefit of

stabilizing and dampening the criticality.

The main load-bearing component of the reactor is the

pressure vessel. It must focus the load stresses between the

nozzle, reactor and the vehicle. Static, dynamic, thermal,

vibrational, and acoustic stresses must be controlled. Due to its

strength, low density, and high melting point (2000 K) titanium is

the preferred material for the pressure vessel.

Controlling the criticallity of the reactor is the function of

the control drums. These drums consist of three

different materials situated in different areas around the drum.

Each material has a different affect on the net neutron flux and

hence the decrease or increase in power production. An example

control drum cross-section is shown in Figure A.10. From the

figure it is evident that by rotating the drums the neutrons

produced in fission may either be reflected, absorbed, or both,

thereby keeping the fission chain reaction critical.
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Additionally, there is a higher absorbing material used to

shutdown the reaction. Due to the need to move the control drums

they must be arranged and operated in pairs on opposing sides of

the reactor so as not to change the inertia of the space craft.

Several pairs of control drums are usually required as shown by

Figure A.11. The drums are usually rotating by a mechanical motor

for large adjustments but with pneumatic control for small

adjustment verniering.

Often times, the control drums are unable to slow down the

fission chain reaction. In these cases neutron poisons are

injected into the reactor. These poisons are made of the same

neutron absorbers that are found in the control drums. Once the

fission reaction is brought under control the poisons may be

flushed from the reactor.

The fission reaction gives off radioactivity in the form of

neutrons, gamma rays, alpha particles, beta particles and protons.

Of these, the neutrons and gamma rays are the most penetrating and

potentially damaging to any type of matter, especially living.

(see figure A.12) Living beings and electronics suffer the

greatest from these radiations. This is because the radiations

react with matter by ionizing it, and in the process change the

matter's structure and function. Consequently, to avoid the

detrimental effects of radiation some form of shielding surronding

the reactor must be provided. The geometric coverage of the

shielding is dependent upon mission constraints. Different shield

A-15



TYPICAL RADIATION DAMAGE THRESHOLDS

10101L9
17

1001

10 2

wI's INV .m 0" I I
Ta.~1,RM~uS mfS~sr.I PISIICS ILICTRO..IC S1E

CAPACITORS LUsfs Onts rueI. CIC ITSC.IJ A

Figure A.12 Typical radiation damage thresholds

SHIELD GEOMETRIES

SHAO

PR(EFEENTIA 
FOUR -Pg

Figure A.13 Various shield design concepts

A-16



configurations are shown in Figure A.13. A 4 shield which

completely surrounds the reactor is best but is costly in mass and

impractical for the open-loop mode; the nozzle end of the reactor

cannot geometrically be closed over during operation.

The shadow shield/reactor isolation concept of spacecraft

protection is the best compromise between shield mass and crew

protection, Figure A.14. Since the radiation dosage falls off

with the square of the distance from the reactor the spacecraft

may be designed to be long and elongated so as to reduce shield

mass and increase the safe 'shadow area'. The favored shielding

materials are W (tungsten) and LiH (lithium hydride) for shielding

gamma rays and neutrons, respectively. It turns out that neutrons

are best attenuated by hydrogen and its compounds. Hence, with

the use of hydrogen as a propellant, additional shielding will

exist in the form of the propellant tankage. Gamma rays on the

other hand are very penetrating and are only attenuated by great

amounts of mass. Due to tungsten's high density, it makes for a

less voluminous gamma shield. The other forms of radiation, alpha

and beta particles, are easily attenuated by the neutron/gamma ray

shield. A simple shadow shield utilizing these materials is shown

in Figure A.15. Figure A.16 gives a general mass calculation for

a 4x shield as a function of power and radial distance.
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The requirement for shielding crew and craft from the dangers

of radiation may seem to be a distinct disadvantage for the

nuclear propulsion concept. However, outside of the Earth's

protective Van Allen belts the sun is a great source of radiation

in the form of varying high energy protons and electrons.

Consequently, some shielding would be required on any

interplanetary mission regardless of power supply. In fact, with

proper space craft design, the reactor shields may be used to

shield the crew and instruments from solar radiation in addition

to the reactor, especially during solar flare activity which

increases and decreases on an approximate eleven year cycle.

In 1970, the National Academy of Sciences recommended

exposure limits for use by NASA of 25 rem/individual/mission and

400 rem lifetime exposure. The rem is a special radiation dose

unit determined by the energy of the radiation and a quality

factor describing its penetration.

Two Modes of Operation:

The thermal energy produced by the reactor will be harnessed

in two different ways in the bimodal reactor. The open-loop will

utilize the reactor energy to heat propellant which, by expansion

through a nozzle, will be converted to kinetic energy and,

consequently, thrust. The closed-loop will use a coolant to

collect thermal energy and, in turn, create electrical energy

using familiar turbine techniques. Each mode has special

requirements of the reactor and creating a reactor that functions
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in both modes is quite a challenge.

Open-Loop Mode:

The open-loop mode uses the reactor's high thermal energy

capability to heat a propellant to be expanded. A sample

arrangement of an open-loop rocket reactor is given in Figure

A.17. The conversion of thermal energy into kinetic energy is

described by the equation:
0.5

V = ((2 k R T )/(M ( k-l ) ,

where V e exhaust velocity

k * ratio of specific heats

R * universal gas constant

T * chamber temperature

M a molecular weight of propellant gas.

Ideal, calorically perfect gases are assumed.

It is obvious the exhaust velocity may be increased (and

therefore, so may the specific impulse which is a direct

improvement in performance) by either increasing the reactor's

chamber temperature T or decreasing the molecular weight of the

propellant. By limiting ourselves to solid core reactors we have

limited ourselves to a maximum chamber temperature of less than

3000 K. However, the molecular weight may be chosen as small as

possible: H2, molecular hydrogen has a low molecular weight of 2.
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While hydrogen does give the best performance it has some

drawbacks as a propellant. Hydrogen is a somewhat reactive

chemical and care must be taken to prevent chemical corrosion with

the reactor core. Additionally, hydrogen has two storage

problems. Hydrogen's gaseous density is only around 0.016

kilograms per cubic meter so the only viable way to store it is to

cool it down to liquid form where the density is approximately 48

kilograms per cubic meter. This cryogenic state still requires

large tankage structures which bring a mass penalty of about 1.5

times the tankage mass of an equivalent LH 2 /LO2 bipropellant

chemical system. Of course these tanks could be jettisoned as the

hydrogen was used. Hydrogen must be cooled to around 20 degrees

Kelvin to reach its liquid state. Storage for the length of the

mission would be required for some of the propellant, adding the

mass penalty of adequate thermal blanketing.

Pumping of the hydrogen propellant can be achieved by means

similar to those developed for cryogenic chemical rockets.

Instead of feeding the hydrogen directly to the core, it is sent

to cool the pressure vessel and then travels through a turbine

which powers a the pump to feed the hydrogen, Figure A.18.

Piping for the hydrogen propellant must be coated to prevent

leakage due to hydrogen's small molecular size and its corrosive

nature as well as insulated to prevent boil-off. Hydrogen also

has many unique properties which makes it more difficult to pump.
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Once the hydrogen propellant has passed through the reactor

core passages and has gained its thermal energy it is mixed in a

chamber, sent through a sonic throat, and expanded through a

nozzle. Nozzle cooling is best achieved through film cooling

instead of regenerative cooling. (see figure A.19) This is caused

by the fact that the temperature limit, hence performance, is

derived from the reactor so preheating the propellant will not

have the same advantage as that in chemical propulsion.

Although conventional bell nozzles are well developed, they

have two drawbacks when used in nuclear propulsion applications.

First is the difficulty in vectoring the thrust. Due to the

extreme radiation conditions the nozzle must be rigidly attached

to the pressure vessel. Consequently, the whole pressure

vessel/reactor/nozzle unit would have to be gimbaled, which would

require prohibitive actuator loads. The only viable solution

would be secondary injection of non-core propellant into the

nozzle to create a shock wave and vector the thrust.

However, the conventional nozzle's main drawback is its

gathering affect of solar radiation, especially high energy

protons and electrons. (see figure A.20) Such incident radiation

would be sent to the core where it would greatly disturb the

fissions criticallity and complicate reactor control.

Consequently, due to the vectoring and incident radiation problems

another expansion nozzle concept is required. Fortunately, one
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has already been developed for use in chemical propulsion: the

plug nozzle.

The plug nozzle, shown in Figure A.21, would solve both the

vectoring and radiation difficulties. Vectoring is easily

achieved by sectioning the 'cowl lip' and controlling the flow in

each section to vary the over all thrust direction. The flow at

the lip is nearly sonic and expansion of the gases take place

along the plug contour just as in a conventional nozzle. The

incident solar radiation is easily reflected away from the core by

the plug contour. In fact, the presence of the plug reduces tho

loss of neutrons from the core if the top of base of the plug is

coated with reflecting material. This almost completely surrounds

the reactor in reflecting material which helps stabilize the

fission reaction.

Before analyzing methods of nuclear open-loop propulsion

control it is important to look at the equation of thrust:

F - dm/dt Ve

where F m thrust

dm/dt m mass flow rate

Ve a exhaust velocity
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It should be recalled that Ve is directly related to the

specific impulse (Isp) which is an index of propulsive

performance. Thus, thrust may be changed by varying the mass flow

rate and/or the exhaust velocity. Recalling that exhaust velocity

is a function of core temperature,
0.5

V -((2 kRT) /( M ( k- )))5,

and keeping all else constant, exhaust velocity may be increased

by increasing core temperature. Core temperature is a product of

the core's reactive level. Consequently, the exhaust velocity may

be increased by merely increasing the fissions in the reactor.

The mass flow rate is completely controlled by the pump/turbine

speed and capacity. Therefore, unlike chemical rockets where the

mixing and flow rates directly affect the chamber temperature and

hence the exhaust velocity the nuclear rocket has the exhaust

velocity and mass flow rate only indirectly coupled by the heat

transfer processes. This important realization would allow

variation of the specific impulse, perhaps increasing performance.

Such variation could be accomplished by holding the mass flow rate

constant and varying the reactor temperature. Of course each

nuclear reactor has limits (maximum and minimum) on the reactor

temperature and mass flow rate.

Due to the decoupled nature of the reactor temperature and

mass flow rate the nuclear open-loop engine may be controlled by

varying one or both parameters. A schematic of such a system is

shown in Figure A.22. Evident are the temperature/neutronics and
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pressure reading instruments which provide data feedback for the

reactor and turbopump control, respectively. The heat removed

from the reactor (sometimes called the heat generation rate dq/dt)

is given by the simple equation:

dq/dt - dw/dt Cp ( Tc - T 0

where dw/dt a propellant flow rate

Cp a propellant specific heat

Tc w temperature at core exit (chamber temperature)

To 0 temperature at core inlet

This equation finally shows the coupling of the exhaust velocity

and the mass flow rate.

Interaction between these two parameters is clearly shown

during a thrust run up in Figure A.23. As hydrogen is pumped into

the reactor the temperature falls but the neutrons are better

reflected by the control drums causing reactor supercriticallity.

To adjust for this supercritical neutron flux, the control drums

are turned to absorb these neutrons. As is normal in control

theory, overshoot and undershoot occur until the core criticality

and temperature stabilize at their desired values. Thus,

instability in the control system would have obviously tragic

results.

A final requirement of nuclear engine control is the need for

cooling the reactor down after its high temperature open-loop

thrusting. This may be accomplished by either cooling the reactor

with propellant or initiating closed-loop cooling and radiating

the waste heat. Both of these methods have disadvantages.
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Cooling the reactor with propellant is very effective but is

costly in terms of required propellant. Using the closed-loop

coolant system would require high temperature capabilities not

normally needed in the lower temperature closed-loop operation.

Closed-Loop Operation:

The reactor's closed-loop function is that of generating

electrical power. This power is for use mainly by the ion

propulsion units but may also be used by the spacecraft itself for

controls, housekeeping and life support functions.

Normal, single mode space reactors which produce only

electrical energy are similar to the open-looped ones described in

the previous section. (A sample of a closed-loop reactor is given

in Figure A.24.) However, they differ in several aspects:

1. Closed-loop reactors have much lower operating core

temperatures: around 1000 K as compared to open-loop temperatures

approaching 3000 K. This is mainly due to the material limits of

the power generating equipment.

2. Instead of propellant, coolant is cycled through the

reactor. This coolant is usually a liquid metal such as sodium

potassium (NaK) or silicon germanium (SiGe) due to its combined

thermal convection and conduction rates.
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3. The heat of the liquid metal coolant is transferred to a

secondary coolant usually through a heat exchanger. This prevents

radioactive coolant from being exposed to the power generating

apparatus. Typical secondary coolants are mercury (Hg), Xenon

(Xe), and helium (He).

4. The secondary coolant is used in an energy conversion

cycle such as the ideal Rankine cycle, the ideal Brayton cycle, or

the ideal Stirling cycle. Each cycle has its own merits and

disadvantages. Basically, heat energy is converted to kinetic

energy which is finally converted to electrical energy for use by

the spacecraft. Recalling the laws of thermodynamics some of the

heat is left over from the cycle and must be radiated into space.

With these differences in mind, some observations may be made

as to how to adapt a open-loop reactor into a bimodal reactor.

Due to the presence of the hydrogen propellant in the open-loop

cycle it is perhaps best that hydrogen also function as the

primary coolant replacing the normal liquid metal. The secondary

coolant and the energy conversion cycles could still be used but

with perhaps some modifications. The reactor's temperature and

consequently, reactivity would have to be reduced. This would

call for adjusting the reactor nucleonics from open-loop power

mode to closed-loop power mode. Such adjustments could come in

the form of more absorbing material and additional controls.

Consequently, it seems that bimodal reactor operation is possible.

However, such reactors have yet to be developed and pr-sent the

biggest challenge to the success of the bimodal nuclear propulsion
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concept. A sample schematic of a bimodal 'dual-mode' nuclear

rocket is presented in Figure A.25.

Once the electrical power is created it may be used for any

and all spacecraft requirements. However, from the propulsion

point of view, a major portion of the power will be used for the

ion engines.

The theory and performance of ion engines is quite extensive

and will only be briefly covered here. For further information

see the references in the bibliography.

The ion engine functions by 1.) ionizing a propellant and 2.)

accelerating that propellant to high velocities using an

electrical potential difference. Many ion engines have been

developed to date but few have been actually used by spacecraft.

Electrical energy is required to both ionize and accelerate

the propellant. The exhaust velocity attained by the ion engine

is a function of the potential difference (Voltage) and the ion

charge/mass ratio such that,

exhaust velocity - ( 2 * charge/mass * voltage ),

the mass flow rate is defined by

mass flow rate - mass/charge * electrical current.

Consequently, the thrust of an ion engine is

thrust = mass flow rate * exhaust velocity

thrust - ( 2 * mass/charge * current* voltage )0.5.

Unlike the thermal nuclear engine, an increase in exhaust
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velocity is usually not required due to ion engines readily

available high exhausts. Such high velocities on the order of

100000 m/sec are considerably higher than optimum for most

interplanetary missions. Consequently, it is desirable to

decrease the exhaust velocity by choosing a larger mass-to-charge

ration and, in turn, heavier propellants. Propellants are also

chosen on their ease of ionization. Sample propellants in use are

cesium (Cs), mercury (Hg), and xenon (Xe).

From mission requirements a thrust and desired exhaust

velocity may be determined. Consequently, the electrical input

power required is merely

W in voltage * current * efficiency factor +

ionization power

CONCLUSIONS:

The bimodal nuclear propulsion system is a highly complex

system relying un all engineering disciplines. And while such

bimodal systems have yet to be built the technology of nuclear

open-loop rockets, nuclear closed-loop space power, and ion

engines has been well developed. At the very least, the bimodal

system could provide electrical power to support the spacecraft

and consequently, only provide high thrust propulsion. While

other obstacles to interplanetary flight remain, such as

microgravity effects upon man and funding, the bimodal nuclear

propulsion system could provide a reliable, timely, and reusable

method for manned exploration of our solar system's planets.
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APPENDIX B: PROGRAMS

PROGRAM MINTIME
C PERFORMS INTEGRATION OF ORBIT AND DETERMINES PHI(T)
C THRUST ANGLING FUNCTION SUCH THAT FINAL CONDITIONS
C ARE SATISFIED AND TRANSFER TIME IS MINIMIZED
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMMON /HAM/ T,X(42,4),F(42,4),ERREST(42),N,H,MODE
DOUBLE PRECISION XIC(6),B(3,6),DELX(3),DTOT(3),CPRIME(3,3)
DOUBLE PRECISION DELL(3),PHIMATRIX(6,6),C(3,6),FUDGE(3)
EQUIVALENCE (DELXI DELL)

C
C READ IN INTIAL CONDITIONS

XIC(1)=1.ODO
XIC(2)sO.ODOO
XIC(3)=l.ODO
WRITE(*,*)'INPUT LAMBDA R GUESS'
READ(*,*)XIC(4)
WRITE(*,*)'INPUT LAMBDA U GUESS'
READ(*,*)XIC(5)
WRITE(*,*)'INPUT LAMBDA V GUESS'
READ(*,*)XIC(6)
WRITE(*,*)'INPUT FINAL DESIRED CIRC. ORBIT RADIUS'
READ(**)RM

C
C SPECIFY FINAL TIME

TF=3.323D+OO
TFOLD=TF-TF/1O .DO
RFOLD=RM-RM/1O .DO

C
C READ IN MAX ITERATIONS, # OF STEPS

MAXIT= 50
WRITE(*,*)'INPUT NUMBER OF STEPS'
READ(*, *)NSTEP

C
C SET UP HAMING

N= 42
T=O. ODO
MODE=1
DSTEP=NSTEP
H=TF/DSTEP

C
C LOOP ON ITERATIONS

DO 190 11=1,3
DTOT(II)-O.OOD+OO
DELX(II)-O.OOD+OO

190 DELL(II)-O.OOD+OO
C

OPEN (9,FILE - 'THEONE.OUT')
WRITE(*,*) 'FILES OPENED'
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C
C MAIN PROGRAM LOOP

DO 2000 ITER=1,100
NSTEP=1000
DSTEP=NSTEP
H=TF/DSTEP
RITE(*,*)'H= ',H
OPEN (8,FILE = 'THEONE.PRN')
WRITE(9,*) 'ITER=' ,ITER

C INITIALIZE ERROR VECTORS
DO 195 J=1,3
DELX(J)=0.OOD+00

195 DELL(J)=0.OOD+00
C
C SET UP IC'S FOR ORBIT, PHI INTEGRATION
C INITIAL X(1-3,NXT) NEVER CHANGES, CHANGE LAGRANGE FACTORS

DO 200 11=1,3
200 X(II,1)=XIC(II)

DO 205 11=1,3
X(II+3,1)=XIC(II+3)+DTOT(II)

205 WRITE(*,*)'NEW IC X( )=',II+3,X(II+3,1)
C

IF (IRESPOND.EQ.1) THEN
WRITE(*,*)'GO(1),STOP(2),OR NEVER STOP(3)
READ (*,*) IRESPOND
IF (IRESPOND.EQ.2) STOP

END IF
C INTIALIZE PHI MATRIX

DO 210 11=7,42
210 X(II,1)=0.OODO

DO 220 11=7,42,7
220 X(II,1)=1.OOD+00

C
C RESET INITIAL TIME

T=0 OODO
C
C INTEGRATE ORBIT

NXT=0
DO 225 11=4,6

225 WRITE(9,*)'X( )=',II,X(II,l)
WRITE(*,*)'GO TO HAMING 1'
MODE1l
CALL HAMING(NXT)
IF(NXT.EQ.0) THEN

WRITE(*,*) 'HAMING FAILED!'
GO TO 9999

ENDIF
C
C MAIN HAMING INTEGRATION LOOP

JJJ-10
DO 300 I=1,1000

MODE-i
CALL HAMING(NXT)
FPHI-DATAN2(X(5,NXT) ,X(6,NXT))
JJJ - JJJ + 1
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IF (JJJ.GE.1o) THEN
WRITE(8,*)T*58.132821D00,FPHI*57.2gD00
Jjr=0

END IF
300 CONTINUE

C
C ORBIT INTEGRATED

WRITE(9,*) 'ORBIT INTEGRATED'
C
C CALCULATE ERROR VECTOR

XHU=1. ODO
DELX(1)=X(2,NXT)
DELX(2)=X(3,NXT)-DSQRT(XMU/X(1,NXT))
DELX(3)=X(4,NXT)-1.ODO-X(6,NXT)*DSQRT(XMU)/

1 (2.DO*X(1,NXT)**(1.5D0))
C TRANSFORM PHI TO NORMAL 6X6

ICOUNT=0
DO 400 ICOL=1,6

ICOUNT=ICOUNT + 6
DO 400 IROW=1,6
PHIMATRIX (IROW, ICOL) =X (ICOUNT+IROW,NXT)

400 CONTINUE
WRITE(9,*)'THE PHI MATRIX'
WRITE(9,*)((PHIMATRIX(I,J),J=1,6),I=1,6)

C
C CALCULATE THE B MATRIX

DO 410 I=1,3
DO 410 J=1,6

410 B(I,J)=0.DO
B(1,2)=1.DO
B(2,1)=.5D0*DSQRT(XMU)/(X(1,NXT)**1.5D0)
B(2, 3)=1.DO
B(3,1)=1.5D0*X(6,NXT)*DSQRT(XMU)/(2.DO*(X(1,NXT)**2.5D0))
B (3, 4) =1. ODO
B(3,6)--DSQRT(XMU)/(2.D0*(X(1,NXT)**1.5D0))

C
C OUTPUT B MATRIX

WRITE(9,*)' THE B MATRIX'
WRITE(9,*)((B(I,J),J=1,6),I=1,3)

C MULITIPLY C=B*PHI
DO 460 11=1,3
DO 460 JJ=1,6

C (II ,JJ)-0.ODO
DO 450 KK-1,6
C(II,JJ)-C(II,JJ)+B(II,KK)*PHIMATRIX(KR,JJ)

450 CONTINUE
460 CONTINUE

C
WRITE(9,*)'THE C MATRIX'
WRITE(9,*)((C(I,J),J-1,6),Inl,3)

C EXTRACT CPRIME FROM C
DO 470 IROW=1,3

DO 470 ICOL-1,3
470 CPRIME(IROW,ICOL)-C(IROW,ICOL+3)
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WRITE(9,*)'THE CPRIME MATRIX'
WRITE(9,*)((CPRIME(I,J),J=1,3),I=1,3)
WRITE(*,*)'READY TO INVERT B MATRIX*

C INVERT B MATRIX INTO DELX TO OBTAIN CORRECTIONS
CALL LEQT2F(CPRIME,1,3, 3,DELXWORK,IER)

C PRINT RESULTS OF THIS ITERATION
WRITE(*,*) 'IER=' ,IER
WRITE(9,*) 'CORRECTIONS THIS ITERATION:'
WRITE(9,*)'dLR',DELX(1)
WRITE(9,*) 'dLU' ,DELX(2)
WRITE(9, *) 'dLV' ,DELX(3)
WRITE(*,*) 'dLR' ,DELL(1) ,'dLU' IDELL(2) ,'dLV' ,DELL(3)

C ADD CORRECTION TO TOTAL
DO 600 I=1,3

600 DTOT(I)=DTOT(I)-DELX(I)
CLOSE (8)
DO 700 I=1,3

700 IF(DABS(DELL(I)).GT.1.OD-6) GOTO 2000
C WRITE(*,*) 'CONVERGEDDD'

RF=X(1 ,NXT)
WRITE(*,*)'RF=',RF,'RFOLD=',RFOLD,' RM=',RM
WRITE(*,*) 'TF=' ,TF, 'TFOLD=' ,TFOLD
TFNEW=TF+ (TF-TFOLD) /(RF-RFOLD) *(RM-RF)
DELTF=TFNEW-TF
DELRM=RM-RF
WRITE(*,*) 'TFNEW=' ,TFNEW
TFOLD=TF
RFOLD=RF
TF=TFNEW

C CHCK FRIT (9,EGEC
C CHECK ,)CCKN FOR CONVERGENCE,

IF (DABS (DELRM) .GT.1.OD-4) GOTO 2000
C IT HAS CONVERGED

GOTO 5000
2000 CONTINUE

C IT DID NOT WORK
WRITE(*,*) 'NO CONVERGENCE'

STOP
C SUCCESS
5000 WRITE(*,*)'IT CONVERGED!'
9999 WRITE(*,*)'PROGRAM COMPLETE'

END

C
SUBROUTINE RHS (NXT)

C THIS CALCULATES THE EQUATIONS OF MOTION AND THE
C EQUATIONS OF VARIATION
C STATE VECTOR SPLIT OUT AS
C X(1-3,NXT); RADIAL, RADIAL VELOCITY, TANGENTIAL VELOCITY VECT

ARS I

C X(4-6,NXT); RADIAL, RADIAL VEL, TANGENTIAL VEL LAGRANGE NULT'

C X(7-42,NXT); IS THE STATE TRANSISTION MATRIX



C
IMPLICIT DOUBLE PRECISION (A-HO-Z)
COMMON /HAM/ TX(4 2 ,4),F(42,4),ERREST(42)NHODE
DOUBLE PRECISION A(6,6)
XMU=1,ODOO
TH=. 1405D0
XMO=1.ODO
XMDOT=. 07487D0

C
C THE BASIC FUNCTION OF RHS IS TO CALCULATE THE E.O.M.
C TRANSLATE Y'S INTO SYMBOLS FOR EASY PROGRAMMING

R=X(1,NXT)
U=X(2,NXT)
V=X(3,NXT)
RL=X(4,NXT)
UL=X(5,NXT)
VL=X(6,NXT)

C EVALUATE THRUST ACCELERATION TERM AND OTHER HELFUL TERMS
TA=TH/ (XMO-XMDOT*T)
SQ=DSQRT (UL*UL+VL*VL)

C EVALUATE EOM
F(1 ,NXT)=U
F (2 ,NXT) =V*V/R-XM4U/ (R*R) +TA*UL/SQ
F (3 ,NXT) =-U*V/R+TA*VL/SQ
F(4,NXT)=UL*(V*V/(R*R)-2.DO*XMU/(R*R*R))-VL*U*V/(R*R)
F (5 PNXT) =-RL+VL*V/R
F (6 INXT) =-UL*2 .DO*V/R+VL*U/R

C EVALUATE COMMON A MATRIX FACTORQ
Q=TA/ (UL*UL+VL*VL) ** (1.5D0)

C EQUATIONS OF VARIATION
C FIRST CALCULATE THE A MATRIX

A(1,1)=O.00D-OO
A(1, 2)=1.OOD+OO
A(1, 3)=O.OOD+OO
A(1,4)=O.OOD+OO
A(1,5)=O.OOD+OO
A(1,6)=O.OOD+OO
A(2,1)=-V*V/ (R*R)+2.DO*XMJ/ (R*R*R)
A(2, 2)=O.OOD+OO
A(2,3)=2.DO*V/R
A(2,4)=O.OOD+OO
A (2,*5)--Q*UL*UL+TA/SQ
A(2.6)=-Q*UL*VL
A(3,1)=U*V/ (R*R)
A(3,2)=-V/R
A(3,3)=-U/R
A(3, 4)-O.OOD+OO
A (3,5)=inQ*UL*VL
A (3,6)--nQ*VL*VL+TA/SQ
A(4,1)=UL*(-2.DO*V*V/(R*R*R)+6.DO*XMU/R**4.DO)
1 +VL*2.DO*U*V/ (R*R*R)
A(4,2)=-VL*V/ (R*R)

B-5



A(4,3)=2.DO*TJL*V/ (R*R)-VL*U/ (R*R)
A(4, 4)=0.OOD+00
A(4,5)=V*V/(R*R)-2.D0*XM4U/ (R*R*R)
A(4,6)=-U*V/ (R*R)
A(5,1)=-VL*V/ (R*R)
A(5, 2)=0.OOD+OO
A(5, 3)=VL/R
A(5,4)=-1.OOD+00
A(5,5)=0.OOD+00
A(5,6)=V/R
A(6,1)=2.DO*UL*V/(R*R) -VL*U/ (R*R)
A(6, 2)=VL/R
A(6, 3)=-2.DO*UL/R
A(6,4)=0.OOD+O
A(6, 5)=-2.DO*V/R
A(6 ,6)=U/R

C A MATRIX NOW CALCULATED
C NOW CALCULATE PHIDOT=A*PHI AND PUT INTO LAST 32 SLOTS
C OF F MATRIX
C DO LOOPS FOR ELEMENT OF PHI DOT
C ROW NUMBER LOOP

DO 800 11=1,6
C COLUMN NUMBER LOOP

DO 800 JJ=1,6
C INITIALIZE ELEMENT

IPOS=6*JJ+II
F(IPOS,NXT)=0.OOD+00

C LOOP FOR MATRIX PRODUCT A*PHI
DO 700 KK=1,6

JPOS =6*JJ+KK
C MATRIX PRODUCT
C write(*,*)'F(IPOS,NXT)',IPOS,NXT,F(IPOS,NXT)
C WRITE(*,*)'A(1I,KK)',II,KK,A(II,KK)
C WRITE(*,*)*X(JPOS,NXT)',JPOS,NXT,X(JPOS,NXT)

F(IPOS,NXT)=F(IPOS,NXT)+A(II,KK)*X(JPOSNXT)
700 CONTINUE
800 CONTINUE

C FINISHED
RETURN
END

C
C
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subroutine haming(nxt)
c
c haming is an ordinary differential equations integrator
c it is a fourth order predictor-corrector algorithm
c which means that it carries along the last four
c values of the state vector, and extrapolates these
c values to obtain the next value (the prediction part)
c and then corrects the extrapolated value to find a
c new value for the state vector.
c
c the value nxt in the call specifies which of the 4 values
c of the state vector is the "next" one.
c nxt is updated by haming automatically, and is zero on
c the first call
c
c the user supplies an external routine rhs(nxt) which
c evaluates the equations of motion
c

common /ham/ t,x(42,4),f(42,4),errest(42),n,h,mode
double precision t,x,f,errest,h,hh,xo

c
c all of the good stuff is in this common block.
c t is the independent variable ( time )
c x(6,4) is the state vector- 4 copies of it, with nxt
c pointing at the next one
c f(6,4) are the equations of motion, again four copies
c a call to rhs(nxt) updates an entry in f
c errest is an estimate of the truncation error - normally not
c used
c n is the number of equations being integrated - 6 or 42 here
c h is the time step
c mode is 0 for just EOM, 1 for both EOM and EOV
c

tol = 0.0000000001
c switch on starting algorithm or normal propagation

if(nxt) 190,10,200
c
c this is hamings starting algorithm.... a predictor - corrector
c needs 4 values of the state vector, and you only have one- the
c initial conditions.
c haming uses a Picard iteration (slow and painfull) to get the
c other three.
c if it fails, nxt will still be zero upon exit, otherwise
c nxt will be 1, and you are all set to go
c

10 xo = t
hh - h/2.0d+00
call rhs(1)
do 40 1 - 2,4
t - t + hh
do 20i 1-l,n

20 x(i,l) - x(i,l-1) + hh*f(i,l-1)
call rhs(l)
t - t + hh
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do 30 i =1,n

30 x(i,1) =x(i,l-1) + h*f(i,l)
40 call rhs(l)

jaw = -10
50 isw = 1

do 120 i = 1,n
hh = x(i,1) + h*( 9.0d+00*f(i,1) + 19.0d+00*f(i,2)
1 - 5.Od+00*fli,3) + f(i,4) )/24.0d+00
if( dabs( hh - x(i,2)) .lt. tol )go to 70
jaw = 0

70 x(i,2) = hh
hh = x(i1l) + h*( f(i,1) + 4.0d+00*f(i,2) + f(i,3))/3.0d+00
if( dabs( hh-x(i,3)) .lt. tol ) go to 90
jaw = 0

90 x(i,3) = hh
hh = x(i,1) + h*( 3.Od+00*f(i,1) + 9.Od+00*f(i,2) + 9.Od+00*f(i,3

1 + 3.Od+00*f(i,4) )/8.0d+00
if( dabs(hh-x(i,4)) Ilt. tol )go to 110
law = 0

110 x'Ci,4) = hh
120 continue

t =X0

do 130 1 = 2,4
t =t + h

130 call rhs(1)
if (jaw) 140,140,150

140 jaw = jaw + 1
if(jaw) 50,280,280

150 t = xo
jaw = 1
jaw = 1
do 160 ± 1,n

160 errest(i) =0.0

nxt = 1
go to 280

190 jaw = 2
nxt = jabs (nxt)

c
c this is harnings norm~al propagation loop-
C

200 t = t + h
npl - mod(nxt,4) + 1
go to (210,230),isw

c permute the index nxt modulo 4
210 go to (270,270,270,220) ,nxt
220 ±5w - 2
230 nm2 - mod(npl,4) + 1

nml = mod(nm2,4) + 1
npo = mod(nml,4) + 1
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C

c this is the predictor part
C

do 240 i =1,n
f(i,nm2) -x(i,npl) + 4.Od+0O*h*( 2.Od+00*f(j,flpo) - f(i,nM1)
1 + 2.od+00*f(i,nm2) ) / 3.0d+00

240 x(i,npl) =f(i,nxn2) - 0.925619835*errest(i)
C
c now the corrector - fix up the extrapolated state
c based on the better value of the equations of motion
C

call rhs(npl)
do 250 i =1,,n
x(i,npl) =( 9.Od+00*x(i,npo) - x(i,nn2) + 3.Od+00*h*( f(i,npl)

1 + 2.0d400*f(i,npo) - f(i,nml) ))/8.0d+00
errest(i) =f(i,nn2) - x(i,npl)

250 x(i,npl) =x(i,np!) + 0.0743801653 *errest(i)
go to (260,270),jsw

260 call rhs(npl)
270 nxt = npl
280 return

end
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subroutine leqt2f(a,m,n,nn,b,x,ier)
c
c gaussian elimination with maximal pivoting
c interface simulates IMSL routine
c solution of a system of linear equations for m right sides
c a: matrix of system
c m: number of rhs
c n: order of a, rows in b
c ia: row dimension of a,b
c b: right hand sides .... solution on return
c idgt: ignored here .... in imsl O=no acc test on input
c idgt= #digits ok on output in imsl
c x: in imsl, n**2 + 3*n
c ier: 129: singular matrix, O=ok
c

dimension a(nn,nn),b(nn,m),irr(50),x(1)
double precision a,b,x,anormamax,p,tol

c
c find max norm of a

anorm = O.dO
do 5 i = 1,n

do 5 j = 1,n
if(dabs(a(i,j)) .gt. anorm) anorm = dabs(a(i,j))

5 continue
c set tolerance = 2** (- number of binary digits in mantissa)

tol = l.d-12
ier = 0
id = 1
do 10 i = 1,n

irr(i) = 0
10 continue
20 ir = 1

is = 1
amax = O.dO

c find max pivot
do 60 i = l,n

if(irr(i)) 60,30,60
30 do 50 j = 1,n

p = dabs(a(i,j))
if(p-amax) 50,50,40

40 ir - i
is - j
amax = p

50 continue
60 continue

c singularity test
if(amax/anorm .gt. tol) go to 70
ier - 129
go to 120

c forward elimination
70 irr(ir) = is

do 90 i = 1,n
if(i .eq. ir) go to 90
p - a(i,is)/a(ir,is)
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do 80 j = 1,n
a(i,j) = a(i,j) - p*a(ir,j)

80 continue
a(i,is) = 0.0
do 85 j = 1,m

b(ij) = b(i,j) - p*b(irj)
85 continue
90 continue

id = id + 1
if(id .le. n) go to 20

c back substitution
do 115 j = 1,m

do 100 i = l,n
ir = irr(i)
x(ir) = b(i,j)/a(i,ir)

100 continue
do 110 i = 1,n

b(i,j) = x(i)
110 continue
115 continue
120 return

end
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PROGRAM OPTVEHICLE
C PERFORMS INTEGRATION OF ORBIT AND DETERMINES PHI(T
C THRUST ANGLING FUNCTION SUCH THAT FINAL CONDITIONS
C ARE SATISFIED AND TRANSFER TIME,
C EXCESS FUEL DIVISION AND INJECTION ANGLE ARE OPTIMIZED
C AS WELL AS ION DRIVE MASS VARIED
C PROGRAMMER: STEVE OLESON
C DATE: MAY 20, 1990
C PROGRAM ALSO CREATES DATA FOR A 3-D PLOT
C INPUTS HAVE BEEN NORMALIZED TO MASS RATIOS

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMMON X(42,4),F(42,4),T,HVE,RMDOT,XMON,MODE
DOUBLE PRECISION XIC(6),B(3,6),DELX(3),DTOT(3),CPRIME(3,3)
DOUBLE PRECISION DELL(3),PHIMAT(6,6),C(3,6)
EQUIVALENCE (DELXI DELL)
PI=3.141592654
TFMINI=100 .ODO

C FACTOR FOR CONVERTING SEC/TU'S AND KM/AU'S
SECTU= (60.DO*60.DO*24.DO*58.132821D00)
WRITE (*,*) SECTU
XKMPAU=1 .4959965DS

C INITIAL LEO PARKING ALT
RP=500 .DO
RP=RP+6378 .145D0

C MARS SOLAR POS. AND PARK ORBIT
RM=1 .523691D0
RPARK=4380 .DO/XKMPAU

C POWER UNIT SPECIFIC POWER
SPCPWM=.05D0
SPCPWR=SPCPWM/1.D3*SECTU**3.ODO/ (XKMPAU*XKMPAU)
WRITE(*,*) 'SPECIFIC PWR (AU*2/TU*3) ',SPCPWR

C NUCLEAR ENGINE PARAMETERS
VH= 8.25D0
BETA = 2.84D0
ROCRAT = 1.DO/(2.DO*BETA)
WRITE(* ,*) 'REQUIRED NUCLEAR ROCKET MASS RATIO: ',ROCRAT

C READ IN S/C MASS RATIOS
WRITE(*,*)'INPUT PAYLOAD MASS RATIO'
READ (* ,*) PAYRAT
WRITE(*,*)'INPUT DESIRED POWER GENERATION MASS RATIO'
READ(*,*)PRWRAT

C GUESS INITIAL LAGRANGE MULTIPLIERS
WRITE(*,*)'INPUT LAMBDA R GUESS'
READ(*, ')XIC (4)
WRITE(*,*)'INPUT LAMBDA U GUESS'
READ(*,*)XIC(5)
WRITE(*,*)'INPUT LAMBDA V GUESS'
READ(*,*)XIC(6)
WRITE(*,*)'INPUT FINAL TIME GUESS'
READ(*,*) TF

C FIND ION PROPULSION MASSRATIO
ELCRAT=2 .ODO*PRWRAT
WRITE(*,*) 'ION PROP MASS RATIO=' ,ELCRAT

C DETERMINE PiMIN MASS RATIO AND PiMAX MASS RATIO
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RP1MIN= (1. OD-DEXP (-3. 2D0/VH))
RP1MAX= (1 .ODO-ELCRAT- (PAYRAT+ROCRAT+PRWRAT)
* *DEXP(1.3/VH))
OPEN(7,FILE = 'NRM2FIN')
WRITE(7,*) 'MASS RATIOS:'
WRITE (7117) PAYRAT

17 FORMAT('PAYLOAD: ',1F5.4)
WRITE(7,11)ROCRAT

11 FORMAT( 'NUCLEAR PROPULSION: ',1F5.4)
WRITE (7,12) PRWRAT

12 FORMAT( 'POWER GENERATION: ',lF5.4)
WRITE(7, 13)ELCRAT

13 FORMAT('ION PROPELLANT: ',1F5.4)
WRITE(7,14)RPIMIN,RPlMAX

14 FORMAT('RP1MIN= ',1F5.4,' RP1MAX= ',1F5.4)
WRITE (7 ,15)BETA

15 FORMAT( 'BETA (THRUST/WT RATIO)=',1FB.4)
WRITE (7,16) SPCPWM

16 FORMAT(*SP. POWER ALPHA (M*M/S*S*S)=',1F1O.5)
WRITE(*,*) 'RP1MIN=' ,RP1MIN, 'RP1MAX=' IRPlMAX
IF (RP1MIN.GT.RP1MAX) STOP

10 FORMAT(1F5.4)
WRITE(*,*) 'INPUT MIN AND MAX PiRAT EXCESS PERCENTAGE'
READ(*,*)PCTMIN
READ (*, *) PCTMAX
PEX=RP1MAX-RP1MIN
WRITE(*,*)'EXCESS FUEL RATIO = ',PEX
TP1MAX=PCTMAX/1.D2*PEX + RP1MIN
TP1MIN=PCTMIN/1.D2*PEX + RP1MIN

55 WRITE(*,*)SINPUT EXCESS PERCENTATGE STEP SIZE'
READ (* ,*) PCTSTP
P1STEP=PCTSTP/1 .D2*PEX

WRITE(*,*)'INPUT LOW AND HIGH PSI VALUES (DEG)'
READ (* ,*) PSILOW, PSIHI
WRITE(*,*)'INPUT PSI STEP'
READ(*, *)PSISTP
IF(PSISTP.LT.O.DO) GOTO 9999
OPEN(2,FILE='NRM2DAT')

C OUTER LOOP TO RUN FROM PiMIN TO PiMAX
P1RAT=TP1MIN

66 WRITE(*,*) 'P1RATIO=' IPiRAT
C DETERMINE DELTAV1,DELTAV2

DELV1=VH*DLOG (1/ (1-PiRAT))
DELTA2=VH*DLOG ( (-ELCRAT-P1RAT) /(PAYRAT+ROCRAT+PRWRAT))
WRITE(*,*)'DELTA Vim' IDELVi
WRITE(*,*)'DELTA V2=',DELTA2
DELV2=DELTA2/29 .784852D0

C
C CALCULATE INITIAL STATE

XMUE=3 .986D5
ANGMOM=RP* (DELV1+DSQRT(XMUE/RP))
ENERGY=. 5D0* (DELV1+DSQRT(XMUE/RP) )**2.0DO-XMUE/RP
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XNU=DACOS(-(1.DO+2.DO*ENERGY*ANGMOM**2.DO/(XMUE*XMUE) )**(-5D0))
VINF=DSQRT( (DELV1+DSQRT(XMUE/RP) )**2.D-2D*XMUTE/RP)

C CONVERT TO HELIOCENTRIC UNITS
VINF=VINF/29 .784852D0

C DEFINE PSI SEARCH RANGE
C PSILOW=-30.DO
C PSIHI=30.DO
C
C LOOP FOR PSI SEARCH RANGE

DO 3000 PSIDEG=PSILOW,PSIHI,PSISTP
RADEG=0 .017453293D0
PSI=PSIDEG*RADEG

C FIND INITIAL STATE VECTOR
XIC(1)=1.ODO
XIC (2)=VINF*DCOS (XNU+PSI-PI/2.ODO)
XIC (3) =1.ODO+VINF*DSIN (XNU+PSI-PI/2 .ODO)

C
TFOLD=TF-TF/50 .DO
RFOLD=RM-RM/ 50. DO

C
C MAX ITERATIONS, # OF STEPS

MAXIT= 50
NSTEP=1000

C
C SET UP HAMING

N= 42
T=O.ODO
MODE=1

C
C LOOP ON ITERATIONS

DO 190 II=1,3
DTOT (II) =0. OOD+00
DELX(II)=0.OOD+00

190 DELL(II)=0.OOD+00
C
C OPEN (9,FILE = 'THREE.OUT')
C MAIN PROGRAM LOOP

DO 2000 ITER=1,25
NSTEP=1000
DSTEP=NSTEP
H=TF/DSTEP

C CALCULATE MDOT RATIO
VE=DSQRT (SPCPWR*TF)
RMDOT=2.DO*SPCPWR*PRWRAT/(VE*VE* (1.ODO-P1RAT))
OPEN (8,FILE = 'ANGLE')

C INITIALIZE ERROR VECTORS
DO 195 J=1,3
DELX(J)=0.OOD+00

195 DELL(J)0.OOD+00
C
C SET UP IC'S FOR ORBIT, PHI INTEGRATION
C INITIAL X(1-3,NXT) NEVER CHANGES, CHANGE LAGRANGE FACTORS

DO 200 11=1,3
200 X(ii,1)-XIC(II)
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DO 205 11=1,3
X(II+3,1)=XIC (II+3)+DTOT(II)

205 CONTINUE
C INTIALIZE PHI MATRIX

DO 210 11-7,42
210 X(II,1)=0.OODO

Do 220 11=7,42,7
220 X(II,1)=1.OOD+00

C
C RESET INITIAL TIME

T=0.OODO
C
C INTEGRATE ORBIT

NXT=0
C WRITE(*,*)'GO TO HAMING 1'

MODE=l
CALL HAMING(NXT)
IF(NXT.EQ.0) THEN

WRITE(*,*) 'HAMING FAILED!'
GO TO 3000

END IF
C
C MAIN HAMING INTEGRATION LOOP

JJJ=10
DO 300 I=1,1000

MODE=l
CALL HAMING(NXT)
FPHI=DATAN2(X(5,NXT) ,X(6,NXT))
JJJ = JJJ + 1
IF (JJJ.GE.10) THEN

FPHI=FPHI*57 .29577951D0
IF (FPHI.LT.0) FPHI=FPHI+360.ODO
WRITE(B,299)T*58.132821D00,FPHI,X(1,NXT)

299 FORMAT(3F12.6)
JJJ=0

END IF
300 CONTINUE

CLOSEM(
C
C ORBIT INTEGRATED
C SIMPLIFY VARIABLES

R=X (1, NXT)
U=X (2 ,NXT)
V=X (3 ,NXT)
RL=X(4,NXT)
UL=X (5, NXT)
VL-X(6,NXT)

C FIND HELPFUL FACTORS
XMUM-4.305D4/1. 3271544Dl1
XMU=1.ODO
VDIFF=V-DSQRT (XNU/R)
PE=XMUM/RPARK
VCDOT=. 50D0*DSQRT (XMU) /(R**1. 5D0)

C
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C CALCULATE ERROR VECTOR
XMU=1.ODO

DELX(l)-U*U+VDIFF*VDIFF+2.ODO*PE- (DELV2+DSQRT(PE) )**2.ODQ
DELX (2) =RL-VL*VCDOT-l. ODO
DELX (3) =UL*VDIFF-VL*U

DO 33 I=1,3
33 IF(DELX(I).GT.1.D3) G0T034

C TRANSFORM PHI TO NORMAL 6X6
ICOUNT=0
DO 400 ICOL=1,6

ICOUNT=ICOUNT + 6
DO 400 IROW=1,6
PHIMAT (IROW,ICOL)mX (ICOUNT+IROW, NXT)

400 CONTINUE
C CALCULATE THE B MATRIX

DO 410 I=1,3
DO 410 J=1,6

410 B(I,J)=0.DO
B (1,1) =2. ODO*VDIFF*VCDOT
B(1,2)=2.ODO*U
B(1,3)=2.ODO*VDIFF
B(2,1)=.75D0*VL*DSQRT(XMU) /(R**2.5D0)
B(2,4)=l.ODO
B(2,6)=-VCDOT
B(3,1)=UL*VCDOT
B(3,2)=-VL
B(3,3)=UL
B (3, 5)=VDIFF
B(3,6)=-U

C
C MULITIPLY C=B*PHI

DO 460 11=1,3
DO 460 JJ=1,6
C(II,JJ)=0.ODO
DO 450 RK=1,6
C(II,JJ)=C(II,JJ)+B(II,KK)*PHIMAT(KK,JJ)

450 CONTINUE
460 CONTINUE

C
C EXTRACT CPRIME FROM C

DO 470 IROW=1,3
DO 470 ICOL=1,3

470 CPRIME(IROW,ICOL)=C(IROW,ICOL+3)
C
C INVERT B MATRIX INTO DELX TO OBTAIN CORRECTIONS

CALL LEQT2F(CPRIME,1,3,3,DELX,WORK,IER)
C PRINT RESULTS OF THIS ITERATION
C WRITE(*,*)'IER=',IER

IF(IER.NE.129) GO TO 490
WRITE(*,*) 'SINGULAR MATRIX'

GOTO 3000
490 CONTINUE

C ADD CORRECTION TO TOTAL
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DO 600 I=1,3
600 DTOT(I)=DTOT(I)-DELX(l)

CLOSE(8)
DO 700 1=1,3

700 IF(DABS(DELL(I)).GT.1.OD-6) GOTO 2000
RF=X(1,NXT)
TFNEW=TF+ (TF-TFOLD) /(RF-RFOLD) *(RM-RF)
DELTF=TFNEW-TF
DELRM=RM-RF

C WRITE(*,*) 'TFNEW=' ,TFNEW
TFOLD=TF
RFOLD=RF
TF=TFNEW

C CHECK FOR CONVERGENCE
IF(DABS(DELRM) .GT.1.OD-6) GOTO 2000

C IT HAS CONVERGED
GOTO 5000

2000 CONTINUE
C IT DID NOT WORK
34 WRITE(*,*)'NO CONVERGENCE'

GOTO 3000
C SUCCESS
5000 CONTINUE

DO 5010 I=1,3
5010 XIC(I+3)=XIC(I+3)+DTOT(I)

PEX=RP 1MAX-RP iMIN
WRITE(2,*)1.D2* (P1RAT-RPlMIN)/PEX,PSIDEG,TFOLD*58.132821D00
WRITE(*,*)1.D2* (P1RAT-RPlMIN)/PEX,PSIDEGTFOLD*58.132821D00
TFTEST=TFOLD
IF (TFTEST.LT. TFMINI) THEN
TFMINI=TFTEST
PCTMIN=1.D2 *(P1RAT-RP1MIN) IPEX
PSIMIN=PSIDEG

END IF
WRITE(*,a) 'OVERALL MINTIME (DAYS) ',TFMINI*58.132821D00

3000 CONTINUE
P1RAT=P1RAT+P1STEP
IF(P1RAT.LE.TP1MAX) GOTO 66
WRITE(7, 5005)VE*29.78485D0

5005 FORMAT('VE:OPTIMUM (KM/S)=',F7.4)
WRITE (7,3001) TFMINI*58.132821D00

3001 FORMAT( 'OVERALL MINTIME (DAYS)=',F7.3)
WRITE (7,3002) PCTMIN

3002 FORMAT('OPTIMAL PERCENT OF EXCESS TO DV1=',F5.2)
WRITE(7, 3003) PEX

3003 FORMAT('EXCESS FUEL RATIO= ',F5.4)
WRITE (7,3004) PSIMIN

3004 FORMAT('OPTIMAL INJECTION ANGLE (DEG)=',F6.2)
WRITE(7,*) 'THE PARAMETERS OF THE MINIMUM RUN'
WRITE(7,*)'THE CONVERGED INITIAL CONDITIONS'
WRITE(7,3005) (XIC(II) ,II=1,6)

3005 FORMAT(6F10.6)
9999 WRITE(*,*)'PROGRAM COMPLETE'

END
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SUBROUTINE RHS (NXT)
C THIS CALCULATES THE EQUATIONS OF MOTION AND THE
C EQUATIONS OF VARIATION
C STATE VECTOR SPLIT OUT AS
C X(1-3,NXT); RADIAL, RADIAL VELOCITY, TANGEN~TIAL VELOCITY VECT

C X(4-6,NXT); RADIAL, RADIAL VEL, TANGENTIAL VEL LAGRANGE MULT'

C X(7-42,NXT); IS THE STATE TRANSISTION MATRIX
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMMON X(42,4),F(42,4),T,HVE,RMDOT,XMO,N,MODE
DOUBLE PRECISION A(6,6)
XMU=1.ODOO

C
C THE BASIC FUNCTION OF RHS IS TO CALCULATE THE E.O.M.
C TRANSLATE Y'S INTO SYMBOLS FOR EASY PROGRAMMING

R=X(1 ,NXT)
U=X(2,NXT)
V=X(3,NXT)
RL=X(4,NXT)
UL=X(5,NXT)
VL=X(6,NXT)

C EVALUATE THRUST ACCELERATION TERM AND OTHER HELFUL TERMS
TA=RMDOT*VE/ (1.ODO-RMDOT*T)
SQ-DSQRT (UL*UL+VL*VL)

C
C EVALUATE EOM

F (1,NXT) =U
F (2 ,NXT)=V*V/R-XMU/ (R*R) +TA*UL/SQ
F (3, NXT) =-U*V/R+TA*VL/SQ
F(4,NXT)=UL*(V*V/(R*R)-2.DO*XMU/(R*R*R) )-VL*U*V/(R*R)
F (5,NXT) =-RL+VL*V/R
F (6 ,NXT) =-UL*2 .DO*V/R+VL*U/R

C EVALUATE COMMON A MATRIX FACTOR Q
Q=TA/(UL*UL+VL*VL) ** (1.5D0)

C EQUATIONS OF VARIATION
C FIRST CALCULATE THE A MATRIX

A(1,1)=O.OOD+OO
A(1,2)=1.OOD+OO
A(1,3)=O.OOD+OO
A(1,4)=O.OOD+OO
A(1, 5)-O.OOD+OO
A(1,6)=O.OOD+OO
A(2, 1)=-V*V/ (R*R) +2.DO*XMU/ (R*R*R)
A(2,2)-O.OOD+OO
A(2, 3)-2.DO*V/R
A(2,4)-O.OOD+OO
A(2, 5)in-Q*UL*UL+TA/SQ
A(2,6)=-Q*UL*VL
A(3,1)=U*V/(R*R)
A(3,2)=-V/R
A(3,3)in-U/R
A(3,4)-O.OOD+OO
A(3, 5)in-Q*UL*VL
A (3,6)--nQ*VL*VL+TA/SQ



A(4,1)=UL*(-2.DO*V*V/(R*R*R)+6.DO*XMU/R**4.DO)
1 +VL*2.DO*U*V/ (R*R*R)
A(4, 2)=-VL*V/ (R*R)
A(4, 3)=2.DO*UL*V/ (R*R)-VL*U/ (R*R)
A(4,4)=O.OOD+0O
A(4, 5) =V*V/ (R*R) 2.D0*XMU/ (R*R*R)
A(4,6)=-U*V/ (R*R)
A(5,1)=-VL*V/ (R*R)
A(5,2)=O.OOD+0O
A(5, 3)=VL/R
A(5,4)=-1.OOD+OO
A(5, 5)=O.OOD+O0
A(5, 6)=V/R
A (6,1) =2 .DO*UL*V/ (R*R) -VL*U/ (R*R)
A(6,2)=VL/R
A(6, 3)=-2.DO*UL/R
A(6,4)=0.OOD+0
A(6, 5)=-2.DO*V/R
A(6,6)=U/R

C A MATRIX NOW CALCULATED
C NOW CALCULATE PHIDOT=A*PHI AND PUT INTO LAST 32 SLOTS
C OF F MATRIX
C DO LOOPS FOR ELEMENT OF PHI DOT
C ROW NUMBER LOOP

DO 800 I1=1,6
C COLUMN NUMBER LOOP

DO 800 JJ=1,6
C INITIALIZE ELEMENT

IPOS=6*JJ+II
F(IPOS,NXT)=0.OOD+OO

C LOOP FOR MATRIX PRODUCT A*PHI
DO 700 KK=1,6

JPOS =6*JJ+KK
F(IPOS,NXT)=F(IPOS,NXT)+A(II,KK)*X(JPOS,NXT)

700 CONTINUE
800 CONTINUE

C FINISHED
RETURN
END
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PROGRAM IMPULSE
C PERFORMS INTEGRATION OF ESCAPE ORBIT FOR
C A HIGH THRUST ENGINE
C PROGRAMMER: STEVE OLESON
C DATE: MAY 20, 1990
C INPUTS HAVE BEEN NORMALIZED TO MASS RATIOS

IMPLICIT DOUBLE PRECISION (A-HO-Z)
COMMON X(42,4),F(42,4),T,H,VERMDOT,TBURN,N,MODE
DOUBLE PRECISION XIC(3)
PI=3.141592654
OPEN(7,FILE = 'FINAL')

C FACTOR FOR CONVERTING SEC/TU'S AND KM/DU'S
KMPDU=6378 .145D0
SECPTU=806. 8118744D0
XMUE=1.DO
GO=9. 81D0

C EARTH'S SPHERE OF INFLUENCE (KM)
ESOI=924118 .5D0
ESOI=ESOI /KMPDU

C INITIAL PARKING ORBIT
RP=500.DO
RP= (RP+6378 .145D0)

C PROPULSION UNIT SPECIFIC POWER
SPCPWR=. 03D0
SPCPWR=SPCPWR/1.D3*SECPTU**3.ODO* (KMPDU*KMPDU)

C WRITE(*,*) 'SPECIFIC PWR (AU*2/TU*3) ',SPCPWR
C NUCLEAR ENGINE PARAMETERS
C READ IN S/C MASS RATIOS

WRITE(*,*)'INPUT PAYLOAD MASS RATIO'
READ(*,*)PAYRAT
WRITE(7,*) MASS RATIOS:'
WRITE(7,*) 'PAYLOAD=' ,PAYRAT
WRITE(*,*)'INPUT PROPULSION UNIT MASS RATIO'
READ (*, *) ROCRAT
WRITE(7. *) 'PROPULSION UNIT=' DROCRAT
WRITE(*,*)'INPUT NUCLEAR DRIVE EXHAUST VELOCITY (KM/S)'
READ(*, *)VHM
WRITE(*,*)'INPUT INITIAL THRUST/WT RATIO BETA
READ (* ,*)BETA
WRITE(7,*)'THRUST/WT RATIO BETA ',BETA
RMDOT=BETA*GO*ROCRAT/ (VHM*1000 .ODO)
WRITE(*,*) 'SP.MASS FLOW RATE(HIGH THRUST) (/SEC)-',RMDOT
WRITE(*,*) 'INPUT FINAL TIME GUESS (DAYS)'
READ(*,*) TF

C TRANSFORM TO CANONICAL UNITS
VH=VHM* SECPTU/KMPDU
RP=RP/KMPDU
RMDOT=RMDOT* SECPTU
TF=TF*24 .DO*60.DO*60.DO/SECPTU

C FIND ION PROPULSION MASSRLATIO
ELCRAT=2. ODO*ROCRAT
WRITE(*,*) 'ION PROP MASS RATIO-' IELCRAT

C DETERMINE PiMIN MASS RATIO AND PlMAX MASS RATIO
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RP1MIN= (1 ODO-DEXP (-3. 2D0/VHM))
RP1MAX= (1.ODO-ELCRAT- (PAYRAT+ROCRAT) *DEXP (1.3D0/VHM))
WRITE(*,*)'MASS RATIOS:'
WRITE(*,*) 'PAYLOAD: ',PAYRAT
WRITE(*,*) 'PROPULSION: ',ROCRAT
WRITE(7,*) 'ION PROPELLANT: ',ELCRAT
WRITE(*,*) 'RP1MIN=' ,RP1MIN. 'RP1MAX=' ,RP1MAX
IF(RPlMIN.GT.RP1MAX) STOP
WRITE(7,*) 'RP1MIN=' ,RP1MIN, 'RP1MAX=' IRPiMAX
WRITE(7,*) 'PROPELLANT FOR V1=' ,P1RAT
WRITE(*,*)'INPUT P1 RATIO'
READ(*,*)P1RAT
WRITE(*,*) 'TIME OF BURN OUT (MINS)=' ,TBURN*SECPTU/60.DO

C WRITE(*,*)'INPUT PlRATIO STEP SIZE'
C READ(*,*)PlSTEP

WRITE(7,*) 'BURN TIME (MIN)=' ,TBURN*SECPTU/60.DO
OPEN(2,FILE='IMPDAT')

C ...................
C OUTER LOOP TO RUN FROM PiMIN TO PiMAX

INST=1
BETSTP=1.ODO
BETMAX=10. ODO

66 WRITE (* ,*) 'BETA*ROCRAT=' ,BETA*ROCRAT
C CALCULATE NEW SPECIFIC FLOW RATE

RMDOT=BETA*GO*ROCRAT/ (VHM*1000.ODO) *SECPTU
C DETERMINE DELTAV1,DELTAV2

TBURN=Pl1RAT /RMDOT
DELV1=VHM*DLOG(1/ (1-PiRAT))
DELTA2=VHM*DLOG ((1-ELCRAT-P1RAT) /(PAYRAT+ROCRAT))
WRITE(7,*) 'IMPULSIVE DELTA VEES (KM/SEC)'
WRITE (7,*) 'DELTA V1=' ,DELV1
WRITE(7,*) 'DELTA V2=' ,DELTA2

C ASSUME INSTANTANEOUS OR ACTUAL BURN
C WRITE(*,*) 'INSTANTANEOUS BURN (1=YES)'
C READ(*,*)INST

WRITE(*.*)'DELV1 (KM/S)=',DELV1
IF(INST.EQ.1) TBURN=O.DO
IF(INST.NE.1) DELV1=O.DO
IF(INST.EQ.1) WRITE(7,*)'INSTANTANEOUS'

C FIND INITIAL STATE VECTOR
XIC (1)=RP
XIC (2)=O.ODO
XIC (3) =DSQRT (XMUE/RP) +DELV1*SECPTU/KMPDU

C
C
C MAX ITERATIONS, # OF STEPS

MAXIT= 50
NSTEP=1000000

C
C SET UP HAMING

N= 3
T=0 ODO
MODE=O

C
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C MAIN PROGRAM LOOP
NSTEP=1000000
DSTEP=NSTEP
H=TFID STEP

C CALCULATE MDOT RATIO
VE=VH

C
C SET UP IC'S FOR ORBIT, PHI INTEGRATION
C INITIAL X(1-3,NXT) NEVER CHANGES

DO 200 I1=1,3
200 X(II,1)=XIC(ii)

C
C
C RESET INITIAL TIME

T=0 OODO
C
C INTEGRATE ORBIT

NXT= 0
WRITE(*,*)'GO TO HAMING 1'

MODE=0
CALL HAMING(NXT)
IF(NXT.EQ.0) THEN

WRITE(*,*) 'HAMING FAILED!'
GO TO 9999

ENDIF
C
C MAIN HAMING INTEGRATION LOOP

JJJ=10000
DO 300 I=1,1000000

MODE=0
CALL HAMING(NXT)

JJJ = JJJ + 1
IF(X(1,NXT).GE.ESOI) GOTO 301
IF (JJJ.GE.10000) THEN

WRITE(*,*)'T (DAYS)=',T*9.33D-3,'R(KM)=',X(1,NXT)*6378.145D0
C WRITE(*,*)T*9.33D-3,X(1,NXT) *6378.145D0

JJJ=0
END IF

300 CONTINUE
C
C ORBIT INTEGRATED
301 WRITE(7,*)'THE FINAL STATE VECTOR'

WRITE(7,*)(X(I,NXT),I=1,3)
WRITE(*,*)'T (DAYS)=',T*9.33D-3,'R(KM)=',X(1,NXT)*6378.145D0

C SUCCESS
IF(INST.NE.1) GOTO 302
TIMP=T
INST-2

GOTO 66
302 WRITE(7,*)'FINAL RADIAL POSITION (KM)-',X(1,NXT)*KMPDU

IF(X(1,NXT).LT.ESOI) WRITE(7,*)'FAILED TO ESCAPE!!!'
WRITE(7,*) 'FLIGHT TIME(DAYS)=' ,T*SECPTU/60.DO/60.DO/24.DO
WRITE (2, *) T/TIMP, BETA*ROCRAT
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BETA=BETA+BETSTP
IF(BETA.LT.BETMAX)GOTO 66

9999 WRITE(*,*)'PROGPAM COMPLETE'
END

SUBROUTINE RHS(NXT)
C THIS CALCULATES THE EQUATIONS OF MOTION AND THE
C EQUATIONS OF VARIATION
C STATE VECTOR SPLIT OUT AS
C X(1-3,NXT); RADIAL, RADIAL VELOCITY, TANGENTIAL VELOCITY VECT

C
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMMON X(42,4),F(42,4),T,HVE,RMDOT,TBURN,N,MODE
XMUE=1.ODOO

C
C THE BASIC FUNCTION OF RHS IS TO CALCULATE THE E.O.M.
C TRANSLATE Y'S INTO SYMBOLS FOR EASY PROGRAMMING

R=X(1,NXT)
U=X(2,NXT)
V=X(3,NXT)

C EVALUATE THRUST ACCELERATION TERM AND OTHER HELFUL TERMS
TA=RMDOT*VE/(1.ODO-RMDOT*T)
IF(T.GT.TBURN) TA=O.ODO

C EVALUATE EOM
F(1,NXT)=U
F(2,NXT)=V*V/R-XMUE/(R*R)
F(3,NXT)=-U*V/R+TA

C FINISHED
RETURN
END
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APPENDIX C: DATA

DATA FOR SAMPLE VEHICLE OPTIMIZATIONS

MASS RATIOS:
PAYLOAD: .1000
NUCLEAR PROPULSION:.1761
POWER GENERATION: .0050
ION PROPELLANT: .0100
RPIMIN- .3215 RPIMAX- .6610
BETA (THRUST/WT RATIO)- 2.8400
SP. POWER ALPHA (M*M/S*S*S)- 0.05000
VE:OPTIMUM (KM/S)-22.3383
OVERALL MINTIME (DAYS)-115.279
OPTIMAL PERCENT OF EXCESS TO DV1-44.00
EXCESS FUEL RATIO- .3395
OPTIMAL INJECTION ANGLE (DEG)- -7.00
THE PARAMETERS OF THE MINIMUM RUN
THE CONVERGED INITIAL CONDITIONS
1.000000 0.213033 1.116638 0.711100 0.557222 -0.192002

MASS RATIOS:
PAYLOAD: .1000
NUCLEAR PROPULSION:.1761
POWER GENERATION: .0100
ION PROPELLANT: .0200
RPIMIN- .3215 RPIMAX- .6451
BETA (THRUST/WT RATIO)- 2.8400
SP. POWER ALPHA (M*M/S*S*S)- 0.05000
VE:OPTIMUM (KM/S)-22.5237
OVERALL MINTIME (DAYS)-116.648
OPTIMAL PERCENT OF EXCESS TO DV1-45.00
EXCESS FUEL RATIO- .3236
OPTIMAL INJECTION ANGLE (DEG)- -7.00
THE PARAMETERS OF THE MINIMUM RUN
THE CONVERGED INITIAL CONDITIONS
1.000000 0.204966 1.116817 0.463243 0.461015 -0.572078

MASS RATIOS:
PAYLOAD: .1000
NUCLEAR PROPULSION: .1761
POWER GENERATION: .0200
ION PROPELLANT: .0400
RPIMIN- .3215 RPIMAX- .6134
BETA (THRUST/WT RATIO)- 2.8400
SP. POWER ALPHA (M*M/S*S*S)- 0.05000
VE:OPTIMUM (KM/S)-22.7597
OVERALL MINTIME (DAYS)-119.513
OPTIMAL PERCENT OF EXCESS TO DV1-45.00
EXCESS FUEL RATIO- .2919
OPTIMAL INJECTION ANGLE (DEG)- -6.00
THE PARAMETERS OF THE MINIMUM RUN
THE CONVERGED INITIAL CONDITIONS
1.000000 0.191909 1.116856 0.867513 0.637992 0.085610
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MASS RATIOS:
PAYLOAD: .1000
NUCLEAR PROPULSION:.1761
POWER GENERATION: .0300
ION PROPELLANT: .0600
RPIMIN- .3215 RPIMAX- .5817
BETA (THRUST/WT RATIO)= 2.8400
SP. POWER ALPHA (M*M/S*S*S)- 0.05000
VE:OPTIMUM (KN/S)-23.0248
OVERALL MINTIME (DAYS)-122.608
OPTIMAL PERCENT OF EXCESS TO DV1-46.00
EXCESS FUEL RATIO- .2602
OPTIMAL INJECTION ANGLE (DEG)- -5.00
THE PARAMETERS OF THE MINIMUM RUN
THE CONVERGED INITIAL CONDITIONS
1.000000 0.174908 1.116382 1.011687 0.702748 0.330558

MASS RATIOS:
PAYLOAD: .1000
NUCLEAR PROPULSION:.1761
POWER GENERATION: .0400
ION PROPELLANT: .0800
RP1MIN- .3215 RPIMAX- .5500
BETA (THRUST/WT RATIO)- 2.8400
SP. POWER ALPHA (M*M/S*S*S)- 0.05000
VE:OPTIMUM (KM/S)-23.3499
OVERALL MINTIME (DAYS)-125.988
OPTIMAL PERCENT OF EXCESS TO DV1-48.00
EXCESS FUEL RATIO- .a285
OPTIMAL INJECTION ANGLE (DEG)- -5.00
THE PARAMETERS OF THE MINIMUM RUN
THE CONVERGED INITIAL CONDITIONS
1.000000 0.158739 1.121255 1.019420 0.701648 0.359720

MASS RATIOS:
PAYLOAD: .1000
NUCLEAR PROPULSION:.1761
POWER GENERATION: .0500
ION PROPELLANT: .1000
RPIMIN- .3215 RP1MAX- .5183
BETA (THRUST/WT RATIO)- 2.8400
SP. POWER ALPHA (M*M/S*S*S)m 0.05000
VE:OPTIMUM (KM/S)-23.6835
OVERALL MINTIME (DAYS)-129.736
OPTIMAL PERCENT OF EXCESS TO DV1-49.00
EXCESS FUEL RATIO- .1968
OPTIMAL INJECTION ANGLE (DEG)- -4.00
THE PARAMETERS OF THE MINIMUM RUN
THE CONVERGED INITIAL CONDITIONS
1.000000 0.147064 1.116908 1.085455 0.726499 0.474641
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MASS RATIOS:
PAYLOAD: .1000
NUCLEAR PROPULSION:.1761
POWER GENERATION: .0600
ION PROPELLANT: .1200
RP1MIN= .3215 RPIMAX- .4866
BETA (THRUST/WT RATIO)- 2.8400
SP. POWER ALPHA (M*M/S*S*S)- 0.05000
VE:OPTIMUM (KM/S)-24.0631
OVERALL MINTIME (DAYS)-133.994
OPTIMAL PERCENT OF EXCESS TO DV1-51.00
EXCESS FUEL RATIO- .1651
OPTIMAL INJECTION ANGLE (DEG)- -4.00
THE PARAMETERS OF THE MINIMUM RUN
THE CONVERGED INITIAL CONDITIONS
1.000000 0.127314 1.113663 1.148128 0.761763 0.599011

MASS RATIOS:
PAYLOAD: .1000
NUCLEAR PROPULSION:.1761
POWER GENERATION: .0700
ION PROPELLANT: .1400
RPIMIN- .3215 RPIMAX- .4549
BETA (THRUST/WT RATIO)- 2.8400
SP. POWER ALPHA (M*M/S*S*S)- 0.05000
VE:OPTIMUM (KM/S)-24.5100
OVERALL MINTIME (DAYS)-138.990
OPTIMAL PERCENT OF EXCESS TO DV1-53.00
EXCESS FUEL RATIO- .1334
OPTIMAL INJECTION ANGLE (DEG)- -5.00
THE PARAMETERS OF THE MINIMUM RUN
THE CONVERGED INITIAL CONDITIONS
1.000000 0.113660 1.110607 1.178269 0.773602 0.662861

MASS RATIOS:
PAYLOAD: .1000
NUCLEAR PROPULSION:.1761
POWER GENERATION: .0800
ION PROPELLANT: .1600
RPIMIN- .3215 RPIMAX- .4232
BETA (THRUST/WT RATIO)= 2.8400
SP. POWER ALPHA (M*M/S*S*S)m 0.05000
VE:OPTIMUM (KM/S)-25.0541
OVERALL MINTIME (DAYS)-145.132
OPTIMAL PERCENT OF EXCESS TO DV1-55.00
EXCESS FUEL RATIO- .1017
OPTIMAL INJECTION ANGLE (DIG)- -5.00
THE PARAMETERS OF THE MINIMUM RUN
THE CONVERGED INITIAL CONDITIONS
1.000000 0.089856 1.107842 1.223386 0.799135 0.771945
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MASS RATIOS:
PAYLOAD: .1000
NUCLEAR PROPULSION:.1761
POWER GENERATION: .0900
ION PROPELLANT: .1800
RPIMIN- .3215 RPIMAX- .3915
BETA (THRUST/WT RATIO)- 2.8400
SP. POWER ALPHA (M*M/S*S*S)- 0.05000
VE:OPTIMUM (KM/S)-25.7487
OVERALL MINTIME (DAYS)-153.242
OPTIMAL PERCENT OF EXCESS TO DVI-58.00
EXCESS FUEL RATIO- .0700
OPTIMAL INJECTION ANGLE (DEG)- -6.00
THE PARAMETERS OF THE MINIMUM RUN
THE CONVERGED INITIAL CONDITIONS
1.000000 0.068350 1.098093 1.301691 0.834731 0.936159

MASS RATIOS:
PAYLOAD: .1000
NUCLEAR PROPULSION:.1761
POWER GENERATION: .1000
ION PROPELLANT: .2000
RPIMIN- .3215 RPIMAX- .3598
BETA (THRUST/WT RATIO)- 2.8400
SP. POWER ALPHA (M*M/S*S*S)- 0.05000
VE:OPTIMUM (KM/S)-26.7634
OVERALL MINTIME (DAYS)-165.397
OPTIMAL PERCENT OF EXCESS TO DV1-60.00
EXCESS FUEL RATIO- .0383
OPTIMAL INJECTION ANGLE (DEG)- -8.00
THE PARAMETERS OF THE MINIMUM RUN
THE CONVERGED INITIAL CONDITIONS
1.000000 0.044118 1.082504 1.420957 0.876365 1.182654
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DATA FOR ADVANCED TECHNOLOGY VEHICLE OPTIMIZATIONS

MASS RATIOS:
PAYLOAD: 0.100
NUCLEAR PROPULSION: 0.166
POWER GENERATION: 0.500E-02
ION PROPELLANT: 0.102E-01
RP1MIN- 0.299 RP1MAX- 0.677
BETA (THRUST/WT RATIO)- 3.00
SP. POWER ALPHA (M*M/S*S*S)- 0.1000
OVERALL MINTIME (DAYS)- 103.740
PERCENT OF EXCESS TO DV1- 45.00
EXCESS FUEL RATIO- 0.378
INJECTION ANGLE (DEG)- -5.000
THE PARAMETERS OF THE MINIMUM RUN
THE INITIAL CONDITIONS

1.00 0.2667 1.2888
1.530 0.7848 0.8809

MASS RATIOS:
PAYLOAD: 0.100
NUCLEAR PROPULSION: 0.166
POWER GENERATION: 0.250E-01
ION PROPELLANT: 0.500E-01
RP1MIN= 0.299 RPIMAX- 0.621
BETA (THRUST/WT RATIO)- 3.000
SP. POWER ALPHA (M*M/S*S*S)- 0.1000
OVERALL MINTIME (DAYS)- 105.802
PERCENT OF EXCESS TO DV1- 45.00
EXCESS FUEL RATIO- 0.322
INJECTION ANGLE (DEG)- 0.OOOOE+00
THE PARAMETERS OF THE MINIMUM RUN
THE INITIAL CONDITIONS

1.00 0.2702 1.290
0.843 0.2946 -0.461E-01

MASS RATIOS:
PAYLOAD: 0.1000
NUCLEAR PROPULSION: 0.1666
POWER GENERATION: 0.5000E-01
ION PROPELLANT: 0.1000E-01
RPIMIN- 0.299 RPIMAX- 0.551
BETA (THRUST/WT RATIO)- 3.000
SP. POWER ALPHA (M*M/S*S*S)- 0.1000
OVERALL MINTIME (DAYS)- 108.55
PERCENT OF EXCESS TO DV1- 55.00
EXCESS FUEL RATIO- 0.252
INJECTION ANGLE (DEG)- 0.0003+00
THE PARAMETERS OF THE MINIMUM RUN
THE INITIAL CONDITIONS

1.000 0.203 1.260
0.777 0.262 -0.141
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MASS RATIOS:
PAYLOAD: 0.1000
NUCLEAR PROPULSION: 0.1666
POWER GENERATION: 0.7500E-01
ION PROPELLANT: 0.15
RP1MIN- 0.299 RPIMAX- 0.481
BETA (THRUST/WT RATIO)- 3.000
SP. POWER ALPHA (M*M/S*S*S)- 0.100
OVERALL MINTIME (DAYS)- 112.19
PERCENT OF EXCESS TO DVI- 55.00
EXCESS FUEL RATIO- 0.182
INJECTION ANGLE (DEG)- 0.OOOE+00
THE PARAMETERS OF THE MINIMUM RUN
THE INITIAL CONDITIONS

1.000 0.138 1.227
0.757 0.477 -0.822

MASS RATIOS:
PAYLOAD: 0.100
NUCLEAR PROPULSION: 0.166
POWER GENERATION: 0.100
ION PROPELLANT: 0.200
RP1MIN- 0.299 RPIMAX- 0.411
BETA (THRUST/WT RATIO)- 3.000
SP. POWER ALPHA (M*M/S*S*S)- 0.1000
OVERALL MINTIME (DAYS)- 117.66
PERCENT OF EXCESS TO DVi- 65.00
EXCESS FUEL RATIO- 0.111
INJECTION ANGLE (DEG)- -5.000
THE PARAMETERS OF THE MINIMUM RUN
THE INITIAL CONDITIONS

1.000 0.730 1.185
0.995 0.627 0.364

MASS RATIOS:
PAYLOAD: 0.100
NUCLEAR PROPULSION: 0.166
POWER GENERATION: 0.125
ION PROPELLANT: 0.250
RPIMIN- 0.299 RPIMAX- 0.340
BETA (THRUST/WT RATIO)- 3.000
SP. POWER ALPHA (M*M/S*S*S)- 0.1000
OVERALL MINTIME (DAYS)- 129.00
PERCENT OF EXCESS TO DVI- 70.00
EXCESS FUEL RATIO- 0.415E-01
INJECTION ANGLE (DEG)- -10.00
THE PARAMETERS OF THE MINIMUM RUN
THE INITIAL CONDITIONS

1.00 0.280E-01 1.112
1.228 0.769 0.807
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