
RADC-TR-89-347
Final Technical Report

O February 1990

STHEORY OF ENDORSEMENTS AND
< REASONING WITH UNCERTAINTY
I

University of Massachusetts

Sponsored by
Defense Advanced Research Projects Agency
ARPA Order No. 5294 ELFCTE

o E

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views and conclusions contained in this document are those of the authors and should not be
Interpreted as necessarily representing the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the U.S. Government.

Rome Air Development Center
Air Force Systems Command

Griffiss Air Force Base, NY 13441-5700

(f (04 0 o9Al

6

This report has been reviewed by the RADC Public Affairs Division (PA)

and is releasable to the National Technical Information Services (NTIS) At

NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-89-347 has been reviewed and is approved for publication.

APPROVED: ,,. r.' '.

CHUTAN-CHUIAN HWONG

Project Engineer

APPROVED:

RAYMOND P. URTZ, JR.
rechnical Director

Directorate of Command & Control

FOR THE COMMIANDER:

IGOR G. PLONISCH
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC

mailing list, or if the addressee is no longer employed by your

organization, please notify RADC (COES) Griffiss AFB NY 13441-5700.

This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or

notices on a specific document require that it be returned.

_ _ _ A

THEORY OF ENDORSEMENTS AND REASONING WITH UNCERTAINTY

Paul R. Cohen
David Day
Jeff Delisio

Mike Greenberg
Thomas Gruber

David Hart
Adele Howe

Cynthia Loiselle

Contractor: University of Massachusetts
Contract Number: F30602-85-C-0014
Eftective Date of Contract: 23 January 1985
Contract Expiration Date: 30 June 1989
Short Title of Work: Theory of Endorsements and

Reasoning with Uncertainty
Program Code Number: 9E20
Period of Work Covered: Feb 86 - Feb 89

Principal Investigator: Paul R. Cohen
Phone: (413) 545-3613

RADC Project Engineer: Chuian-Chuian Hwong
Phone: (315) 330-7794

Approved for public release, distribution unlimited.

This research was supported by the Defense Advanced
Research Projects Agency of the Department of Defense
and was monitored by Chuian-Chuian Hwong, RADC (COES),
Griffiss AFB NY 13441-5700 under Contract F30602-
85-C-0014.

UNCLASSIFIED
.$ECURITY CLASSIFICATION OF THIS PAGE

Form Appoved
REPORT DOCUMENTATION PAGE OMNo.-070-018

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCIASSIFIED N/A
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAiLABILITY OF REPORT

N/A Approved for public release;
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE distribution unlimited.
N/A

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

N/A RADC-TR-89-347
6. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION(If applicable)

University of Massachusetts Rome Air Development Center (COES)
6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (Ciy, State, and ZIP Code)
Lederle Graduate Research Center
P 0 Box 571
Amherst MA 01003 Griffiss AFB NY 13441-5700

$4. NAME OF FUNDING/SPONSORING Tb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Defense Advanced (If applicble)

Research Projects Agency F30602-85-C-Q014
Bc. ADDRESS(City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK IWORK UNIT

1400 Wilson Blvd ELEMENT NO. NO. NO ACCESSION NO

Arlington VA 22209-2308 62301E E294 00 01

11. TITLE (/nclude Security CassifCation)

THEORY OF ENDORSEMENTS AND REASONING WITH UNCERTA1NTY
12. PERSONAL AUTHOR(S) Paul R. Chen, David Day, Jeff Delisio, Mike Greenberg,
Thomas Gruber. David Hart. Adele Howe. Cynthia Loiselle
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Y*e#rat h,0Dy) IS. PAGE COUNT

Final I FROM ILh Rf TO Vph 9 February 1990 257
16 SUPPLEMENTARY NOTATION

N/A
17. COSATI CODES 18. SUBJECT TERMS (Continw on re worse if necenary and identify by block number)

FIELD GROUP SUB-GROUP Knowledge acquisition Control knowledge
12 05 Plausible reasoning Knowledge systems

AI research methodology
19. ABSTRACT (Continue on reverse If neceney and identify by block number)
The general knowledge acquisition problem and the problem of acquiring strategic knowledge
from experts was addressed. An automated knowledge acquisition tool called ASK was des-
cribed and demonstrated with a human machine dialog, and the results from experiments
analyzed. The importance of the design of knowledge representations and reasoning methods
was emphasized since it plays a central role in the knowledge acquisition process.

Reasoning under uncertainty has two aspects. One is to assess the most likely states of

the world, the other is to act on those assessments. The former is often called judgement
and the latter decision-making. Judgement has been the primary focus of research on
reasoning under uncertainty in AI, while decision-making (lately these have been called
planning problems) which deals with how autonomous agents act in uncertain environments,

is Increasingly gaining more attention. An adaptive planner cal ed PLASTYC was built to
operate in a dynamic, spatially-distributed, multi-agent, / (Continued on Reverse)

20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

0- UNCLASSIFIEDIUNLIMITED. M SAME AS RPT. [3 DTIC USERS Unclassified
22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 2c. OFFICE SYMBOL

Chuian-Chuian Hwon C315 330-7794 RADC (COES)
DD Form 1473, JUN 86 Pevious edtionsreobsoeWt. $EC .,RITY CLASSIFiCATICN OF THIS PAGE

UNCLASSIFIED

UNCLASSIFIED

Block 19 continued:

ongoing, unpredictable, and real-time world simulator for controlling forest fires. The
simulator, called Phoenix, was used as a framework to discover functional relationships
between environment characteristics, autonomous agents' behaviors, and agents' designs.

A knowledge system that finds sources of funding for research proposals called GRANT was
used to study the deep structures for plausible inference rules in semantic networks.
Plausible inference rules can be automatically derived from the relations in knowledge
bases and judgements of plausibility for the conclusions of these rules predicted. But
further work is required to prove the generality of the results.

The roles of evaluation in empirical AI research are described with case studies. Five
classes of evaluation criteria appropriate for each stage in the empirical AI research
cycle are presented.

UNCLASSIFIED

Accession For
NTIS GPA&I I

DTIC T.",

D" s! -- --

Contents

1 Overview of the Research 1
1.1 Plausible inference 2
1.2 Decision-making 5
1.3 Reasoning under uncertainty viewed as control 6
1.4 Reasoning under uncertainty viewed as planning 9
1.5 Technology Transfer 13

II Control of Reasoning 14

2 Automated Knowledge Acquisition for Strategic Informa-
tion 15
2.1 Introduction 16

2.1.1 The Knowledge acquisition problem as representation
mismatch 16

2.1.2 The Problem of acquiring strategic knowledge18
2.2 Techniques for overcoming representation mismatch 21

2.2.1 Incorporating models into knowledge acquisition tools 21
2.2.2 Eliciting knowledge in operational terms23
2.2.3 Integrating mechanical generalization with interactive

knowledge elicitation 24
2.3 The ASK knowledge acquisition assistant 26

2.3.1 The knowledge acquisition dialog 26
2.3.2 The MU architecture 28
2.3.3 Strategy rules 29
2.3.4 Examples from the chest pain domain31
2.3.5 The shadowing relation among strategy rules32

2.4 A knowledge acquisition dialog with ASK 32

i

2.4.1 What the performance system already knows33
2.4.2 Running the performance system 33
2.4.3 Eliciting the user's critique 34
2.4.4 Credit assignment analysis 35
2.4.5 Eliciting justifications 35
2.4.6 Acquiring a new feature 37
2.4.7 Using the new feature in justifications 39
2.4.8 Generating and generalizing a strategy rule40
2.4.9 Verifying a rule 42
2.4.10 Acquiring tradeoffs 42

2.5 Experience using ASK 45
2.6 Analysis: scope of applicability, assumptions, and limitations 47

2.6.1 Characteristics of tasks to which ASK applies47
2.6.2 Critical assumptions 49
2.6.3 Major Limitations 52

2.7 Discussion: Key design Decisions 54
2.7.1 Formulating strategic knowledge as classification knowl-

edge 54
2.7.2 Fornmlating strategy as fine-grained reactions 55

2.8 Conclusion 56

3 A Declarative Representation of Control Knowledge 58
3.1 Introduction 58
3.2 Strategy frames: a view of control 59
3.3 Motivations 66
3.4 The McD Problem 67
3.5 Strategy Frames 69

3.5.1 State 72
3.5.2 How McD Works 74
3.5.3 Polling and ranking strategies 74
3.5.4 Executing a strategy 75
3.5.5 When strategies fail 75
3.5.6 Termination of strategies 75

3.6 Examples 77
3.7 Conclusion 84

III Complex and Dynamic Environments 86

ii

4 The Centrality of Autonomous Agents in Theories of Action
Under Uncertainty 87
4.1 Introduction 87
4.2 Selecting Actions Under Uncertainty 90

4.2.1 Internal and external action 91
4.2.2 Balancing internal and external actions 91
4.2.3 Representing the external world 91
4.2.4 Real-time constraints 92
4.2.5 Constraints between actions 92
4.2.6 Where do plans and goals come from? 93
4.2.7 Global and local evaluation of actions 93
4.2.8 Adaptation 94

4.3 An overview of the planning literature 95
4.4 Case studies in planning under uncertainty 99

4.4.1 MUM 99
4.4.2 The ASK and MU systems 100
4.4.3 PLASTYC: Planning in Real-Time, Dynamic Envi-

ronments 104
4.5 Conclusion 106

5 Trial by Fire: Understanding the Design Requirements for
Agents in Complex Environments 108
5.1 The Phoenix Research Agenda 108
5.2 The Problem 108
5.3 Environmental Constraints on Agent Design 111
5.4 The Phoenix Environment, Layers 1 and 2 114
5.5 Agent Design, Layer 3 115
5.6 The Organization of Fire-Fighting Agents in Phoenix 121
5.7 An Example 122
5.8 Current Status and Future Work 124
5.9 Conclusion 126

IV Plausible Reasoning 128

6 Beyond ISA: Structures for Plausible Inference in Semantic
Networks 129
6.1 Introduction 129
6.2 Experiment 1: Identifying Plausible Rules 130

iii

6.2.1 Background 130
6.2.2 Design 133
6.2.3 Procedure 133
6.2.4 Results 134
6.2.5 Discussion 134

6.3 Experiment 2: Plausible inference as transitivity 137
6.3.1 Design 137
6.3.2 Procedure 138

.6.3.3 Results 138
6.3.4 Discussion 139

6.4 General Discussion-Judging plausibility 142
6.5 Conclusion 145

V Methodology 146

7 Toward AI Research Methodology: Three Case Studies in
Evaluation 147
7.1 Introduction.... 147
7.2 Evaluation of an empirical AI project149
7.3 Case studies 153

7.3.1 FOLIO 153
7.3.2 GRANT 156
7.3.3 Dominic 159

7.4 Discussion 162
7.4.1 Experiment Designs 166
7.4.2 Recommendations 168

7.5 Appendix: Evaluation Criteria 171

8 Why Knowledge Systems Research Is In Trouble, And What
We Can Do About It 176
8.1 Introduction 176

8.1.1 Learning about Intelligence 178
8.1.2 Methodology 180

8.2 What Now? 182
8.3 Conclusion 189

VI References 191

iv

Chapter 1

Overview of the Research

Figure 1.1 gives an overview of the projects axd the important links between
them over the history of the Experimental Knowledge System Laboratory
(EKSL) at the University of Massachusetts. Those projects surrounded in
grey are funded by this contract and are discussed in detail in the following
chapters'. This introduction gives a historical overview of the projects and
their interconnections; it places the chapters that follow in their proper
research perspective.

1.1 Plausible inference

A premise of our work on endorsements was that degrees of belief are
ambiguous-one rarely knows what a person means by "my degree of belief
is 0.7." Around 1985, wc became concerned that endorsements in SOLOMON
were also ambiguous. Endorsements had evocative names like the-rule-
might-be-too-general but what did they really mean? The rules to assert
and modify endorsements in HMMM were one attempt to specify their se-
mantics, but we still worried a lot about the issue (although today it seems
relatively unimportant). We decided to build an endorsement-based system
in a domain where the causes of uncertainty, and thus the interpretations of
endorsements, were clear.

We selected an infoi-mation retrieval problem in which uncertainty was
due to disparities between queries and retrieved entities. The problem was
to find one or more agencies to fund a research proposal, given the topics
in the proposal and the research goals of many agencies. One's certainty
that an agency will fund a proposal is proportional to the degree of fit be-
tween the agency's goals and the researcher's topics, respectively. (Degree of
fit, or representativeness, is a well-understood interpretation of uncertainty
judgments, and is common in Ai tasks such as classification.) Thus, en-
dorsements would be interpreted as reasons to believe the degree of fit was
either high or low, and would reflect different ways that goals and topics
could fit or not fit [Cohen et al., 19851. For example, if an agency wants to
fund research on tobacco, and a researcher proposes to study nicotine, is
this a fit or not? What if the agency wants to support research on nico-
tine and the researcher proposes only to study tobacco? Intuitively, the fit
seems better in the first case: If an agency supports work on x, then it may
support work on y if y part-of x but not if y has-part x. The degree of
fit between two concepts is a function of the relationship that holds between

'The papers that these chapters are drawn from are listed in the appendix.

2

83 SO LOMON

85 GRA NT

86 CDMPLAUSIBLE86 DMmum INFERENCE

DOMINIC-11 MU

87 . BODS

88. .CD HOUSE

Figure 1.1: The projects oi the Experimental Knowledge Systems Labora-
tory at the University of Massachusetts from 1983 through 1988.

3

them in a semantic net, and endorsements simply denote these relationships
(and also chains of relationships, such as multiple steps up an isa hierarchy).

The GRANT system found funding agencies for proposals by finding
"good" chains of relationships between them in a semantic network. The
network was, in effect, a large index for funding agencies, each of which
was associated with the nodes in the network that represented its interests.
Proposals would activate nodes, and the activation would spread until it
led to agencies. Some pathways indicate that a proposal topic is a good
fit to an agency goal, others indicate the opposite. This search, which we
called constrained spreading activation, was remarkably good at finding the
most appropriate agencies: An early version of GRANT, with 50 agencies and
800 nodes in the network, had a hit rate of 80% and a false-positive rate
of 32% [Cohen et al., 1985]. Later and larger versions performed less well
[Cohen and Stanhope, 1986],[Kjeldsen and Cohen, 1987], though still better
than naive keyword methods and on par with statistical methods. (See
chapter 7 and[Cohen and Kjeldsen, 1987] for details on how we evaluated
GRANT.)

In another application of GRANT'S method of constrained spreading ac-
tivation to IR [Croft et al., 1988] we combined it with a citation based search
technique, resulting in better performance than with either technique used
seperately.

Very recently, we generalized the spreading activation method from
GRANT to a kind of plausible inference. We showed how to automatically
derive plausible inference rules from the relationships in a knowledge base,
generate thousands of inferences, and differentiate plausible conclusions from
implausible ones (see chapter 6). We generated 315 rules of inference by a
simple syntactic method, then instantiated them with concepts from the
GRANT knowledge base to generate over 3000 inferences. Human subjects
judged their plausibility. This experiment told us which rules generate plau-
sible conclusions, but not why. A second experiment strongly supported the
hypothesis that rules with transitive deep structures are generally plausi-
ble while intransitive rules are not. This result has major implications for
building large, common sense knowledge bases, because if we can gener-
ate rules of plausible inference from the relationships in a knowledge base,
and automatically predict whether humans will find their conclusions plau-
sible (as our results strongly suggest) then we can speed the construction of
knowledge bases by automatically adding hundreds of thousands of plausible
conclusions. Cynthia Loiselle is currently refining and using these methods
to build a very large knowledge base as part of her dissertation research.

4

1.2 Decision-making

During the HMMM and GRANT projects, we worked with Prof. Jack Dixon
in the Department of Mechanical Engineering on a domain-independent ar-
chitecture for mechanical design [Dixon et at., 1984. Although this system,
called DOMINIC, wasn't part of our research on uncertainty, it has strongly
influenced subsequent projects (see Fig. 1.1). DOMINIC's strategy was iter-
ative refinement, implemented as hill-climbing. States in its search space
were designs, and the operators each modified an aspect of the current
design-if this improved the design overall [Howe et al., 1986]. We came
to view decision-making in the same terms: as a constructive process in
which the decision is iteratively refined by the decision-maker. We devel-
oped a 24state search space that was sufficient to model the construc-
tion of two-alternative, multi-attribute decisions. This became the core
of a decision-support system called CDM, for constructive decision maker
[Howe and Cohen, 1987],[Howe and Cohen, 1988]. To our knowledge, CDM
is the first system to automate the process of constructing decisions, which
is typically done by human decision analysts.

CDM inherited from SOLOMON the view that representations of uncer-
tainty should guide problem-solving actions. It implemented that view as
state-space search. Every state was vector of five parameters. Depending
on its value, each parameter was a reason to either accept a decision or
acquire more evidence. Constructing a decision was just searching for a
state in which a decision could be accepted. While conceptually simple,
CDM led to three conclusions that have influenced all our subsequent work.
First, reasoning under uncertainty involves tradeoffs between certainty and
resources such as time, money, and computation: CDM'S search can be ter-
minated (and a decision taken) whenever the anticipated value of increased
certainty isn't worth the cost of evidence and processing evidence. Second,
because evidence by definition has unknown effects on one's certainty, one
cannot plan a sequence of actions in the traditional sense of projecting the
known effects of operators: Each of CDM's decision states had at least two
successors, one more certain and one less certain, respectively, and CDM did
almost no lookahead in its space of decision states. In fact, the way CDM

constructed decisions anticipated current work on reactive planning. Third,
and more generally, CDM convinced us that AI approaches to uncertainty
must have associated decision procedures, that is, mechanisms to produce,
for any decision state, one or more problem-solving actions [Cohen, 1986].

Two questions are raised by the last conclusion: First, by what standards

5

should we judge the quality of decisions? Decision theory is normative but
may require too much information to be useful in AI and is better suited
to static "one shot" decisions than ongoing problem-solving (see chapter 4
and[Cohen, 1987a] for discussions of the implications of these arguments).
We based our subsequent research on two other standards: systems should
make the same decisions as experts (see Sec. 1.3) and systems should satisfice
under resource limitations (see Sec. 1.4). The second question is, what
computational metaphors (and ultimately, implementations) do we want for
decision procedures? In CDM, we viewed decision-making in terms of search;
in subsequent work, we viewed it in terms of control and, most recently,
planning.

1.3 Reasoning under uncertainty viewed as con-
trol

Around 1986, we came to view reasoning under uncertainty- as a con-
trol problem; that is, we argued that the influence of uncertainty on
the behavior of AI systems would be felt in their control strategies
[Cohen, 19861,[Cohen, 1987b]. We surveyed the literature on control from
this perspective [Cohen, 1987a] and became convinced that some of the
most successful examples of reasoning under uncertainty (e.g., HEARSAY-

Ii, NEOMYCIN, MUM) relied on control strategies to "do the right thing" in
uncertain situations.

At the time, this view ran afoul of the dominant approaches to uncer-
tainty and knowledge-based systems, though it is now gaining momentum.
Few AI tasks are formulated to require sophisticated control strategies to
manage uncertainty [Cohen and Gruber, 1985]. Instead, they are formu-
lated categorically (ignoring uncertainty) or so that reasoning under uncer-
tpinty means little more than calculating probabilities. We believed this is
not for a lack of strategies for managing uncertainty, but for a lack of explicit
representations for these strategies. Given the representations, w e expected
that many uncertain problems could and would be solved without formulat-
ing them probabilistically. This proved correct: The last three years have
seen increasing activity in the uncertainty and planning communities to de-
velop representations for strategies; and the most recent AAAI Uncertainty
Workshop closed with near consensus that reasoning under uncertainty has a
significant control aspect. One impediment has been the prevailing view that
the power of knowledge-based systems derives from "substantive" knowledge

6

(which is usually explicit), not from how the knowledge is used. Control
is regarded as unimportant and relegated to the interpreter. In contrast,
our view is that control knowledge is part of the expertise of a domain.
It is "how to" knowledge (specifically, how to act in uncertain situations)
and should be represented explicitly for the same reasons that we represent
other kinds of domain expertise explicitly. (The ramifications of this point
are explored in three papers on knowledge engineering by Cohen and Gruber
[Gruber and Cohen, 1987b],[Gruber and Cohen, 1987a],[Gruber and Cohen, 1987c].)

About this time, we began to collaborate with an internist, Dr. Paul
Berman. He introduced a distinction between retrospective diagnosis, in
which the physician has all the potentially relevant evidence and is "looking
back" to see what it means; and prospective diagnosis, in which the physi-
cian is "looking forward," or planning, the diagnostic workup. Retrospec-
tive diagnosis systems generally do not have sophisticated control strategies.
In retrospective diagnosis, the subcomponents of control-focus of atten-
tion, control of inferences, and control of actions or questions-are either
trivial or nonexistent. To explore the view that uncertain problems can
be solved by formulating them in terms of experts' strategies, we decided
to build a prospective diagnosis system with explicit, expert strategies for
controlling questions, tests, and treatments. To explore the role of prob-
ability (if any) in the system, we provided it with crude degrees of belief
[Gruber and Cohen, 1987c],[Cohen et al., 1987c].

The MUM system (for managing uncertainty in medicine) constructed
workups for chest pain [Cohen et al., 1987a]. It was moderately successful at
resolving one of the most difficult differentials in internal medicine, atypical
angina and esophageal spasm. It produced expert workups; that is, it asked
the same questions as an expert, in the same order, for the same reasons.
It supported the conclusion that reasoning under uncertainty is a control
problem, and it provided these insights about the role of probability: First,
probabilities serve control. MUM's degrees of belief in hypotheses, the prior
probabilities of hypotheses, and the conditional probabilities given evidence
that might be collected in future, all contributed to MUM's decisions about
what to do next. Second, calculating probabilities is not itself a strategy
for solving problems under uncertainty (however much it appears to be in
retrospective diagnosis), but it does support these strategies.

While MUM was being built, we were confronted with two problems
that, ultimately, had a common solution. First, we wanted a more gen-
eral result- than MUM: we wanted an architecture that incorporated strate-
gies for prospective diagnosis. Second, we were dissatisfied that it often

7

took hours to implement simple strategies in MUM. We became influenced
by Chandrasekaran's view that tasks such as diagnosis and design could
be described at a general or "generic" level, and by Clancey's HERACLES

architecture for classification problem solving. We coined the term task-
level architecture to emphasize that these architectures were in effect virtual
machines for particular tasks, independent of how they were implemented
[Gruber and Cohen, 1987b]. An expert ought to be able to prescribe control
strategies in terms of the task, without thinking about the implementation
of these strategies. With this orientation, researchers in John McDermott's
group had been able to acquire specific strategies by asking experts to spe-
cialize a weak, general strategy for construction tasks; so we hoped we might
be able to speed the acquisition of diagnostic strategies by asking our expert
to specialize a weak strategy for prospective diagnosis. For these reasons-

the desire for a general architecture and faster knowledge acquisition-the

next step was clearly to build a task level architecture for prospective diag-
nosis.

MU is such an architecture [Cohen et al., 1987b]. It incorporates this
weak diagnostic strategy:

1. Select a focus of attention
2. Select a question to ask

3. Ask the question
4. Propagate the answer to the question through long-term memory,

changing degrees of belief in hypotheses as appropriate

5. Go to 1.
Foci of attention and questions are determined by control rules (similar

to Davis' meta-rules). The conditions of these rules contain control features,
which are the reasons an expert gives for his actions. MU supported the def-

inition, maintenance, and access to control features, and thus the definition

of control rules like this one (from [Gruber, 1988a]):

Select ?action if:
gather-evidence-for-differential is a goal, and

?hypothesis is in the-differential, and
?action potentially-confirms ?hypothesis, and

the cost of ?action < low, and

the time-required of ?action = few-minutes.

The interpretation of control features is that they define sets. The con-
ditions in control rules test membership in these sets. For example, in the

previous rule, the set of goals must include gather-evidence-for-differential;

8

?hypothesis must be in the set called the-differential; and ?action must si-
multaneously belong to three sets of actions: those that potentially confirm
?hypothesis, those whose cost is < low, and those that take a few minutes.

Using MU, Tom Gruber built a system called ASK (for acquiring strate-
gic knowledge) that acquires rules like these from experts (see section 2).
ASK acquires strategic knowledge in the context of cases, that is, it runs
MUM until the latter proposes an inappropriate action (a question, test, or
treatment), at which point it acquires rules from the expert to generate the
correct action. It also automatically generalizes the rules by simple induc-
tion techniques to other situations in which classes of actions are appropriate
and inappropriate [Gruber, 1988a],[Gruber, 1987].

MU and ASK culminate the research on control that we began with
SOLOMON. Common to these projects is the view that explicit representa-
tions of uncertain situations (called endorsements in SOLOMON and control
features in MU and ASK) affect problem-solving behavior. The value of MU
and ASK is not so much that they they reinforced this point, but that they
showed us how to build systems like MUM that act appropriately in uncer-
tain situations: One begins with a task-level architecture in which control
is determined by explicit control features. Because control features are the
reasons an expert gives for actions, they are a good medium for acquiring
expert diagnostic strategies. They not only determine control of reasoning
under uncertainty, they justify it, and thus help acquire expertise about how
to do it.

1.4 Reasoning under uncertainty viewed as plan-
ning

A disturbing aspect of MUM and MU is that control is very local: no history
or projection is used to select actions. While it appeared that Dr. Berman,
MUM's expert, planned two or three actions at a time, MUM itself simply
selected the best action given the current state as summarized by control
features. MUM was a reactive planner. Reactive planning is an extreme
response to uncertainty: its premise is that we cannot accurately project
the effects of actions in an uncertain future, but its conclusion is that we
shouldn't try. We think the premise is too categorical. Even when it's true,
the conclusion doesn't follow, because even inaccurate projections can be
useful.

The purposes of projection are to avoid pitfalls or dead-ends between

9

the current state and a search horizon, and to increase the efficiency of a
solution by finding the cheapest path between the current state and a search
horizon (chapter 4 and [Cohen and Day, 1987]). (W4hen backtracking is al-
lowed, pitfalls are just a kind of inefficiency. In the domains that interest us,
especially real-time domains as discussed below, backtracking isn't allowed).
But in domains like MUM's, reactive planning is quite adequate: few pitfalls
lurk in the workup of chest pain, and inefficiency can be avoided by con-
trol rules that prevent MUM asking questions that might initiate inefficient
sequences of questions.

In this sense, we had been lucky with MUM, but in another sense, the
domain was impeding progress. First, we wanted to build a planner that
somehow slipped between two contradictory positions: Projection is impos-
sible because the future is uncertain, yet pitfalls and inefficiencies must be
avoided by projection. Second, with ASK months from completion, we were
spending too much time learning medicine and too little time acquiring Dr.
Berman's diagnostic strategies. Our main interest was how to solve uncer-
tain problems, so we wanted to work in a game-like domain where strategy
dominates substantive knowledge. Third we had become interested in real-
time problems, and resource-limited problems in general, where we could
assess the value of evidence in terms of its cost in resources.

During the summer of 1987, we built a large simulator of forest fires (see
Fig. 1.2) and the equipment commonly used to put them out. The progress
of the fire depends on ground cover, fuel moisture, slope, wind speed and
direction, rivers, roads, and the actions of bulldozers, crews, planes and he-
licopters. The latter objects are controlled by a planner-initially a human,
but recently a hybrid reactive/projective planner called PLASTYC. David
Day has developed PLASTYC for his Ph.D. PLASTYC'S task is challenging
because:

" Knowledge of the fire is limited to what the agents in the field (crews,
bulldozers, etc.) can "see." The planner rarely, if ever, has complete.
knowledge of the extent or location of the fire (see Fig. 1.2).

" The behavior of the fire cannot be accurately predicted because some
factors that affect it (e.g., terrain, ground cover and the moisture con-
tent of the ground cover) are known only approximately. Moreover,
wind speed and direction can change unpredictably.

* The behavior of the fire-fighting agents cannot be accurately predicted.
In particular, the time required to move to a location or perform some

10

task depends on terrain and ground cover. Fire-fighting agents also
have limited autonomy (e.g., to run away from a fire) so the planner
cannot always be sure of their location.

e The simulation is real-time with respect to the fire. While fire-fighting
agents move, cut line and drop retardent, the fire keeps burning. Most
important, any time the planner devotes to deliberation is claimed as
real estate by the fire.

To plan in this environment, PLASTYC needs to balance projection and
reaction. Projection is desirable to avoid pitfalls and increase efficiency. But
it takes time, and uncertainty precludes avoiding all pitfalls, and efficient
plans are useless if no time remains to execute them. The timeliness of
reactions often makes the difference between success and failure.

PLASTYC is not complete, so our conclusions from it are primarily
methodological at this point. We are convinced (and argued at length in
chapter 4) that strategies for reasoning under uncertainty-their represen-
tation, organization, acquisition, and interpretation-should be studied in
the context of dynamic, ongoing, resource-limited environments in which the
ratio of strategies to substantive knowledge is high, and one can automati-
cally generate many test cases. Indeed, we have initiated two other projects
around environments with these characteristics: One is a process-control
problem, in which a planner must keep a simulated fast-food restaurant
from developing large shortages or surpluses, despite uncertainty about fu-
ture fluctuations in demand. This project resulted in a richer declarative
representation of control strategies than MUM's control rules (see chapter 3).
The other is a planner for market strategy, in which the environment is the
computer market (this is used by DEC; see the section on Technology Trans-
fer).

An exciting substantive conclusion of this work is that the distinction
between reactive and projective planning is eroding, and that this implies a
role for adaptation. Some features of the forest fire are rough predictors of
how the fire will evolve, so it is possible to create the illusion of projective
planning by reacting to these predictors. It seems that humans and other
animals accomplish many tasks this way, by simply reacting to configura-
tions in the environment that are associated with future outcomes. Some of
these reactions evolve, others are learned by individuals, and in MUM they
are acquired from an expert by ASK. So at this point in our research, the
big question is:

11

Ar6. L06 /41)4

~t~~l4 6

% 32.0Lm 123) 12

How do intelligent agents adapt to uncertain environments?

One of the critical issues here is the evaluation of the contribution of the
particular components of an agent to its performance. We want to know not
only how to create an agent that performs well, but also why it performs
well. Issues of evaluation are addressed in chapters 7 and 8. The forest-fire
simulator (chapter 5) provides us with a testbed for exploring these issues.
It gives us a complex, real time, environment where issues of uncertainly
can not be avoided.

Currently we are trying to make the forest-fire planner learn from its
experiences with the fire. We are looking at ephemeral adaptation or ad-
justment to fire conditions, and also at permanent changes in the knowledge
and control strategies of the planner. This work, described in prospect in
(Cohen, 1988], is thebasis of Adele Howe's PhD research.

1.5 Technology Transfer

The technology that we have developed during this contract has started
to be transfered in several ways. We are currently a likely candidate for
the AFOSR Intelligent Real Time Problem Solving Initiative; if Phoenix is
selected all of the contractors will use it.

During FY 1990 Gerald Powell from CECOM will be working with us
on learning and planning in Phoenix. Powell is a Secretary of the Army
Research and Study Fellow. This is an important opportunity to get our
technology into DoD sites. This year, we been have working with Powell on
adapting envelopes to the operational planning problem for the European
theater. Next year we will apply these ideas in a real system.

We will initiate discussion with the SIMNET community during FY
1990 about getting Phoenix agents to participate as autonomous SIMNBT
nodes. This is an excellent opportunity to test our technology in an even
more realistic environment, and provides an opportunity for considerable
savings of manpower in SIMNET exercises.

Industry relations continue to be productive. We are working with Dig-
ital Equipment Corporation on a project very similar to the SIMNET idea.
DEC is building a large, distributed simulation of the computer market, and
running it to see how the market (and DEC's position within it) evolves.
Phoenix agents will play the role of other companies, bringing out products,
marketing, and executing various strategies to test DEC's long-term plans.

13

Part II

Control of Reasoning

14

Chapter 2

Automated Knowledge
Acquisition for Strategic
Information

15

2.1 Introduction

Knowledge acquisition is the transfer and transformation of knowledge from the
forms in which it is available in the world into forms that can be used by a
knowledge system (adapted from Buchanan et al., 1983). In the context of this
article, knowledge in the world comes from people and knowledge in the system is
implemented with formal symbol structures - knowledge representations.
Knowledge acquisition is a multifaceted problem that encompasses many of the
technical problems of knowledge engineering, the enterprise of building
knowledge systems. Deciding what knowledge can be brought to bear for a
problem, how the knowledge can be used by a program, how to represent it, and
then eliciting it from people and encoding it in a knowledge base are all aspects of
the knowledge acquisition problem. The inherent difficulty of these tasks make
knowledge acquisition a fundamental obstacle to the widespread use of knowledge
system technology.

The research reported here addresses the problem of acquiring strategic
knowledge from people. In particular, the article present§ an approach by which
an interactive computer program assists with the knowledge acquisition process.
The general term automated knowledge acquisition refers to computer-mediated
elicitation and encoding of knowledge from people.

The first section of this article provides a theoretical analysis of the general
knowledge acquisition problem and introduces the problem of acquiring strategic
knowledge. Section 2.2 reviews the techniques of automated knowledge acquisition
in terms of the theoretical framework developed in the first section, and motivates
the present work. Section 2.3 describes the automated knowledge acquisition tool
called ASK. Section 2.4 demonstrates the program with a human-computer dialog.
Sections 2,5, 2.6, and 2.7 provide an analysis of the scope of applicability,
assumptions, and limitations of the system, and a discussion of key design
decisions. A concluding section summarizes the contribution of the design of
knowledge representations to the development of knowledge acquisition tools.

2.1.1 The knowledge acquisition problem as representation
mismatch

Most knowledge systems are built by knowledge engineers rather than by the
domain experts who provide the knowledge. A long-standing goal of a course of
knowledge acquisition research has been to replace the knowledge engineer with a
program that assists in the direct "transfer of expertise" from experts to knowledge
bases (Davis, 1976). Yet the problem has eluded a general solution; no existing
knowledge acquisition program can build a knowledge system directly from
experts' descriptions of what they do.

Why is knowledge acquisition difficult to automate? It seems that the
"transfer" metaphor is misleading. Clearly,, the form in which knowledge is
available from people (e.g., descriptions in natural language) is different from the
form in which knowledge is represented in knowledge systems. The difference
between the two forms of knowledge, called representation mismatch (Buchanan

16

et al., 1903), is central Lo the problem of knowledge acquisition. Because of
representation mismatch, one cannot merely transfer knowledge from human to
machine. The knowledge acquisition tool must actively elicit knowledge in a form
that can be obtained from domain experts, and map elicited knc wledge into the
executable representations of the knowledge system. The mapping is difficult to
automate because the requirements for building a working system (e.g.,
operationality, consistency) differ from tae requirements for a human expert
describing a procedure to another person. In order to automate knowledge
acquisition one must provide a method for overcoming representation mismatch.

The following discussion introduces three aspects of representation mismatch
- modeling, operationalization, and generalization - as an explanatory
framework with which to understand the problem of knowledge acquisition. The
general issues and the specific problems of acquiring strategic knowledge are
described within this framework.

Dimensions of representation mismatch

The modeling or formalization problem is a fundamental kind of representation
mismatch. A knowledge system can be thought of as a qualitative model of
systems in the world, including systems of intelligent activity (Clancey, 1987).
While the model embodied by a knowledge system is informed by the behavior of
human experts, it is not designed as a model of the experts' knowledge or their
cognitive processes (Winograd & Flores, 1986). From this point of view, knowledge
a-quisition is a creative rather than imitative activity, resulting in a computational
model that makes distinctions and abstractions not present in the initial language
of the expert. Because of the difference between descriptions of behavior and
computational models of action, the task of knowledge acquisition requires a
model-building effort beyond that of rendering the expert's utterances in formal
notation. Morik (1988) illustrates the modeling problem with the example of
building a natural language understanding system. T,, builder of such a system
does not interview experts in natural language understanding (native speakers)
but experts in modeling the formal structure and mechanisms of language
(linguists). Furthermore, the system-builder must adapt the expert's concepts (a
theory of syntax) to the needs of a computational model (a parser), and sometimes
invent new concepts (semantic networks).

The operationalization aspect of representation mismatch refers to the
difference between descriptions of what the system should accomplish, given by
domain experts, and the operational methods for achieving those objectives
required by a computer program. Two senses of operationalization have been
identified in the machine learning literature: making advice executable (Mostow,
1983) or more useful (Keller, 1988).1 Knowledge acquisition involves both kinds of
operationalization in the service of performance goals such as recommending an
effective drug therapy or designing an efficient electric motor. To make a therapy
recommendation executable, a knowledge engineer might build a interface that
justifies a recommendation and requests the results. To make the advise
"minimize cost, maximize speed" more useful, the engineer might decide to use a

1Dietterich and Bennett (1988) refer to "making goals achievable" and "making goals more useful."

17

redesign algorithm and elicit more knowledge from the expert about ways to cut
costs and fine tune performance by modifying existing designs. The methods in
which expert-supplied specifications are operationalized may require concepts and
terminology unfamiliar to the domain expert.

A third dimension of representation mismatch is generalization: the
difference between a set of specific examples of desired input/output performance
and a more concise representation that will enable a system to perform correctly
on a larger class of input situations. It is frequently observed that it is much easier
to elicit examples of expert problem solving than general rules or procedures that
cover the examples. The available form of knowledge (classified examples) needs
to be mapped into a more useful representation (general class descriptions).

Problems of modeling, operationalization, and generalization are ubiquitous
in knowledge acquisition. We will now see how they are manifest in the case of a
particular kind of knowledge, strategic knowledge.

2.1.2 The problem of acquiring strategic knowledge

Strategic knowledge

Strategic knowledge is knowledge used by an agent to decide what action to perform
next, where actions have consequences external to the agent. The more general
term control knowledge refers to knowledge used to decide what to do next. What
constitutes an action and its consequences depends on how one characterizes what
the agent can do. For knowledge systems that make recommendations to people
(e.g., "increase dosage of drug D") or control physical systems (e.g., "close valve
V"), actions have consequences that are observable in the world outside of the
agent. For problem-solving programs based on state-space search, an action may
be the firing of a rule or an operator. For such an agent, search-control knowledge
is used to choose internal actions that increase the likelihood of reaching a solution
state and improve the speed of computation. The research reported here
distinguishes knowledge for deciding among actions with consequences in the
external world because the goal is to acquire strategic knowledge from domain
experts without reference to the symbol-level organization of the knowledge
system.

For descriptive purposes, strategic knowledge is also distinguished from the
substantive knowledge of a domain, knowledge about what is believed to be true in
the world. Both substantive and strategic knowledge underlie expertise in many
domains. For example, a robot uses substantive knowledge to recognize and
interpret situations in the world (e.g., an obstacle in its path) and strategic
knowledge to decide what to do (to go around or over it). A lawyer uses substantive
knowledge to identify the relevant features of cases and strategic knowledge to
decide which case to cite in defense of an argument. A diagnostician uses
substantive knowledge to evaluate evidence pro and con hypotheses, and uses
strategic knowledge to decide among therapeutic actions. In general, substantive
knowledge is used to iaentify relevant states of the world and strategic knowledge
is used to evaluate the utility of possible actions given a state.

18

Representation mismatch for strategic knowledge

Although progress has been made in automating the acquisition of substantive
knowledge used in classification (e. g., Bareiss, 1989; Boose & Bradshaw, 1987;
Eshelman, 1988), strategic knowledge is typically imparted to systems by
knowledge engineers using implementation-level mechanisms. The difficulty of
acquiring strategic knowledge directly from experts can be seen within the
framework of the three aspects of representation mismatch introduced earlier.

First, strategic knowledge presents serious modeling problems. While
substantive knowledge might be acquired in a perspicuous form, such as rules
mapping evidence to hypotheses, strategic knowledge about choosing actions is
often represented with programming constructs, such as procedures or agenda
mechanisms. At least in principle, rules that encode substantive knowledge can
be written in a process-independent context; experts can specify how to classify
situations in the world without worrying about the mechanism by which the
specifications are interpreted. However, specifying knowledge that affects the
order and choice of actions involves building a computational model of a process.

Consider the problem of modeling the strategy of a medical workup: the
process of gathering data, assessing the results, and planning treatment for an
individual patient. Although medical diagnosis is often described as a static
classification problem (i.e. to classify given data), in medical practice evidence for a
diagnosis is gathered over time, and the actions tLhat produce evidence are chosen
strategically. In modeling the workup, requests for patient data, laboratory tests,
diagnostic procedures, and options for trial therapy are treated as actions.
Substantive knowledge is used for the classification task, identifying likely causes
for a given set of findings. In addition, strategic knowledge is used to decide what
action to take next when the data are not all in.

In the MYCIN system, much of the knowledge that determined question
ordering and decisions about laboratory tests was represented with screening
clauses, clause ordering, and "certainty factor engineering" - implementation-
level manipulations of the rules to achieve the intended strategic behavior
(Clancey, 1983a). This knowledge could not be acquired easily with the available
rule editors and debugging support tools (Buchanan and Shortliffe, 1984) because
the strategy was implicit in the engineering tricks rather than the content of the
rules. Since MYCIN, more explicit representations of strategic knowledge have
been devised, such as the control blocks of S.1 (Erman, Scott, & London, 1984) and
the high-level control languages of BB1 (Hayes-Roth, et al., 1987). Because these
advances are general-purpose languages for control, rendering strategic
knowledge in a computational model remains a programming task.

The acquisition of strategic knowledge also highlights the operationalization
aspect of representation mismatch. At the knowledge level (Newell, 1982), the
strategic knowledge of an agent may be specified as a set of behavioral goals that
the agent should attempt to achieve. While it is possible to elicit specifications of
desired behavior at the knowledge level from experts, it is far more difficult for
experts (and knowledge engineers) to specify how a knowledge system should
achieve these goals.

19

For example, during conventional knowledge acquisition for a knowledge
system called MUM (Cohen et al., 1987), knowledge engineers interviewed a
practicing physician for the purpose of modeling his diagnostic strategy for
patients reporting chest and abdominal pain. MUM's task was to generate
workups for chest pain patients, choosing one action at a time, waiting for the
outcome of previous action. When asked to describe how to choose diagnostic tests,
the expert would mention goals such as "do the cheap, quick tests first" and
"protect the patient against a dangerous disease." This is nonoperational advice.
To make it operational requires specifying how actions achieve goals (e.g., the
diagnostic and therapeutic effect of actions), how to determine the currently
relevant goals (e.g., when is a dangerous disease suspected), and how to balance
competing objectives (e.g., cost, timeliness, diagnostic power, therapeutic value).

Third, the generalization aspect of representation mismatch is exhibited by the
problem of acquiring strategic knowledge. By definition experts are good at what
they do; it does not follow that they are good at generalizing what they do. In
particular, it is much easier to elicit cases of strategic decisions - choices among
actions in specific situations - than to elicit general strategies.

For example, in the MUM domain of chest pain workups, the physician makes
a series of decisions about actions. He typically starts with a set of questions about
patient history, then performs a physical examination (in a knowledge system,
steps in the examination are also implemented as requests for data), and then
plans and executes a series of diagnostic tests and trial therapeutic actions, until
sufficient evidence for a conclusive diagnosis or recommended therapy has been
found. For MUM it was feasible to elicit example workups corresponding to actual
patients. These workups can be viewed as very specific plans. Each step in the
workup, each choice of what to ask or try next, is the result of a strategic decision.
However, generalizations about classes of strategic decisions were not present in
the original workup descriptions but developed by retrospective analysis of the
cases and follow-up consultation the expert. Within a single workup there may be
several actions chosen for the same reasons (e.g., "do the cheap, quick tests first"),
and there may be common reasons across workups (e.g., "gather enough evidence
to recommend therapy").

Although cases of specific workups can be acquired in the form of directed
graphs, they are not general enough for a knowledge system. First, they are
specific to individual patients, and workups differ over individuals. Second, these
plan-like procedures are extremely brittle; if any action can not be taken (e.g.,
because the results of a test are not available), then the procedures fail. Third,
because they only record the results of strategic decisions, workup graphs fail to
capture the underlying reasons for selecting actions in the prescribed order. This
third problem reveals a subtle form of representation mismatch: although it is
possible to elicit reasons for past strategic decisions, these reasons alone do not
constitute a generative strategy. A generative strategy plans new workups based
on the strategic knowledge that gave rise to existing workups.

The work reported in this article is motivated by the problem of acquiring
knowledge that underlies strategic decisions and putting it in operational, general
form. The next section lays out some of the techniques for addressing the problem.

2D

2.2 Techniques for overcoming representation mismatch

Interactive tools can assist with knowledge acquisition by overcoming
representation mismatch. This section reviews the techniques used by existing
knowledge acquisition tools and motivates the approach taken in ASK. The
techniques are presented in the context of the three aspects of representation
mismatch.

2.2.1 Incorporating models Into knowledge acquisition tools

Conventionally, the modeling problem for knowledge acquisition is handled by the
knowledge engineer, who is responsible for building the knowledge system. The
engineer analyzes the performance task (the problem to be solved by the knowledge
system) and designs a program for applying knowledge to perform the task. A
performance task is defined in terms of the input and output requirements of the
system and the knowledge that is available. Tasks can be described at multiple
levels of abstraction, from the lunctional specifications for a single application to
input/output requiremenras for a general class of tasks. A problem solving method
is the technique by which a knowledge system brings specific knowledge to bear on
the task. When the computational requirements and methods for a class of tasks
are well understood, a domain-independent problem-solving method can be
designed, such as heuristic classification (Chandrasekaran, 1983; Clancey, 1985).

A task-level architecture consists of a knowledge representation language (a
set of representational primitives) and a procedure implementing the problem-
solving method designed to support knowledge systems for a class of performance
tasks (Chandrasekaran, 1986; Gruber & Cohen, 1987). The procedure, which in
this article is called the method for short, is a mechanism by which knowledge
stated in the architecture's knowledge representation is applied to perform one of
the tasks in the abstract class of tasks for which the architecture is designed. The
representation and the method of a task-level architecture are tightly coupled.
Each method defines roles for knowledge: ways in which knowledge is applied by
the method (McDermott, 1988). The algorithm that implements the method in a
program operates on statements in the associated representation language. The
primitive terms in the representation correspond to the roles of knowledge. For
example, Chandrasekaran (1987) and his colleagues have built architectures for
generic tasks such as hierarchical classification and routine design. Each generic
task is described in terms of the function to be performed (an abstract description of
the performance task), a knowledge representation language (the set of primitive
terms), and a "control strategy" (the procedure that implements the method).
Chandrasekaran uses the term generic task problem solvers to refer to task-level
architectures.

Task-level architectures can facilitate knowledge acquisition. Like a virtual
machine, the architecture supports a set of method-specific representation
primitives for building a knowledge system. Much of the model-building effort can
be put into the design of the architecture, and the representational primitives can
hide the implementation details. As a consequence the architecture can reduce
representation mismatch by presenting a task-level representation language

21

comprehensible to the domain expert (Bylander and Chandrasekaran, 1987;
Gruber & Cohen, 1987; Musen, 1989).

Interactive knowledge acquisition tools can help overcome representation
mismatch by employing special techniques for eliciting and analyzing knowledge
in architecture-supported representations. Some tools help analyze the task
requirements to choose among existing methods and instantiate an architecture
with domain terminology. For example, ROGET (Bennett, 1985) offers help in
choosing among a small set of particular heuristic classification methods and
elicits domain-specific instantiations of the input, output, and intermediate
concepts for the selected method.

Other tools specialize in eliciting the knowledge for the roles required by the
problem-solving method. For example, MOLE (Eshelman, 1988) uses a
instantiation of the heuristic classification method called cover-and-differentiate.
The knowledge acquisition tool specializes in the elicitation of knowledge for roles
such as "covering knowledge" and "differentiating knowledge." Similarly, SALT
(Marcus, 1988) is based on the propose-and-revise method for constructive problem
solving, and elicits knowledge for proposing design extensions, identifying
constraints, and backtracking from violated constraints.

Tools of another category specialize in a particular formulation of knowledge,
independent of how the knowledge will be applied to particular tasks. For
example, repertory grid tools elicit knowledge in the form of a two-dimensional
matrix of weighted associations between 'elements' and "traits" (Boose and
Bradshaw, 1987; Shaw & Gaines, 1987). These tools use a task-independent
elicitation technique to help the user identify traits and elements and the strengths
of associations among them, and provides detailed analyses of the information.
The user interprets the feedback in terms of a particular task, such as a
procurement decision or an evaluation of policy alternatives.

On the other end of the spectrum are elicitation tools that are customized to the
problem-solving method and a specific task in a domain. An example is OPAL,
which acquires protocols used in the domain of cancer therapy (Musen, Fagan,
Combs, & Shortliffe, 1987:). The problem-solving method is a kind of skeletal-plan
refinement, and the performance task is to manage cancer-therapy protocols
modeled as skeletal plans. OPAL elicits knowledge from experts entirely in
domain-specific terms, and in forms that correspond to paper and pencil
representations familiar to the experts. Because the tool has almost completely
eliminated the representation mismatch due to modeling, it has been used
successfully by physicians with little experience with computation (Musen, 1989).

The acquisition of strategic knowledge, as it has been defined, is not supported
by conventional task-level architectures. In fact, all of the built-in methods of the
architectures mentioned above are implemented with procedures that themselves
encode a control strategy. To the extent that the strategy is implemented by the
method, it cannot be acquired by tools that assume the method is fixed.

However, it is possible to design an architecture for a restricted class of tasks
that require domain-specific strategic knowledge. The method for such an
architecture should define roles for strategic knowledge, just as MOLE's method
defines roles for substantive knowledge, such as knowledge for proposing

22

explanations that cover an abnormal symptom. As will be described in Section 2.3,
ASK was designed with an architecture that represents strategic knowledge as
rules that map situations to desired actions. In this architecture, strategic
knowledge is limited to three roles for associating features in the agent's current
model of the world with classes of appropriate actions. As will be discussed in
Section 2.6, the restricted roles for strategic knowledge reduces the scope of what
needs to be acquired and simplifies how elicited knowledge is operationalized and
generalized. It also limits the class of strategies that can be acquired.

2.2.2 Eliciting knowledge in operational terms

Automated knowledge acquisition tools can address the operationalization aspect
of representation mismatch by limiting what is elicited from the user to
representations of knowledge that are already machine-executable - that is, to
elicit knowledge in the form in which it will be used for performance, or in some
form that can be compiled into the runtime representation. An alternative
approach is to provide a nonoperational "mediating representation" for eliciting
the conceptual structure of a domain, and then manually building a system that
operationalizes the specifications (Johnson & Tomlinson, 1988). A rule editor is a
simple example of a tool that elicits knowledge in a form that can be directly
executed.

The technique of eliciting knowledge directly in executable form is reminiscent
of the single representation trick (Dietterich et al, 1982) in which the learning
agent is given training data in the same representation as the language used for
describing learned concepts. Using this technique in a knowledge acquisition tool
replaces the problem of making the elicited input executable (operationalization)
with the assumption that the elicitation language is representationally adequate.
A language is representationally adequate if all of the relevant domain knowledge
can be stated in the representation.

The success of tools employing this technique depends in part on whether the
elicitatior, interface can make the operational semantics of the representation
comprehensible to the user. For example, although TEIRESIAS paraphrases rules
into English, the user needs to know more than English to understand them.
TEIRESIAS depends on the assumption that the user can understand the

backward-chaining model (Davis, 1976).

Well-designed user interface techniques can help make the computational
model of the architecture comprehensible to the user. For example, the OPAL tool
facilitates the acquisition of cancer treatment protocols with a form-filling
interface, emulating paper-and-pencil forms familiar to its users (Musen et al.,
1987). Similarly, spreadsheet applications are made comprehensible by presenting
a familiar metaphor. The interface design goal is to minimi e the conceptual
distance between the user's understanding of the system's mechanism and the
system's presentation of the options afforded by the computational model
(Hutchins, Hollan, & Norman, 1986).

A tool that acquires knowledge in an executable representation can also offer
intelligent assistance by analyzing the consequences of applying the knowledge.
For example, SALT elicits fine-grained rules for repairing local constraint

23

violations in a design task. One of the consequences of using backtracking from
local constraint violations is that the user can unintentionally define cycles in the
dependency network, in which repairing one constraint violation introduces
another. SALT can analyze the elicited knowledge, identify cycles, and offer
assistance to the user in specifying different routes for backtracking (Marcus,
1987).

It is difficult to acquire strategic knowledge in executable form without forcing
the expert to understand symbol-level mechanisms such as procedures and
priority schemes. There is a tension between the requirement to provide the user
with a language that is comprehensible and yet sufficiently powerful to implement
the strategy. There are some techniques that help elicit specifications of control,
such as visual programming interfaces for building transition networks (Musen
Fagan, & Shortliffe, 1986) and graph-drawing tools for specifying decision trees
(Hannan & Politakis, 1986). However, the strategic knowledge that can generate
decisions among actions is implicit in transition networks and decision trees.

ASK's representation of strategic knowledge was designed to correspond to the
form in which experts can describe their strategic knowledge: justifications for
specific actions in specific situations. As will be explained in Section 2.3,ASK
elicits justifications for choices among actions in terms of features of strategic
situations and actions. ASK's design ensures that the features mentioned in
justifications are operational; the features are well-defined functions and relations
that hold over objects in a knowledge base representing the current state of
problem solving.

Like all tools that elicit knowledge in executable form, ASK is based on the
assumption of representational adequacy discussed above. There are two ways
this assumption can fail: the computational model is inadequate for describing the
desired strategy, or the set of terms in the existing knowledge representation is
incomplete. The former problem is a function of the architecture, as discussed
above. The problem of incomplete terms can be handled in an interactive tool if the
user is given the chance to define new terms with the representational primitives
provided by the architecture.

Since defining terms for a knowledge system is an operationalization task, it is
a challenge to provide automated assistance. A promising approach is
exemplified by PROTtGt, a tool that helps the knowledge engineer define domain-
specific instantiations of architecture-level representational primitives (Musen,
1989). PROTtGIt generates OPAL-class elicitation tools meant for the domain
expert in which the vocabulary is fixed. ASK provides a means for defining new
features in the context of eliciting justifications, as demonstrated in Section 2.4.6.
By design ASK integrates the acquisition of new features and the acquisition of
knowledge that uses the features.

2.2.3 Integrating mechanical generalization with Interactive
knowledge elicitation

Machine learning techniques are an obvious answer to the generalization aspect of
representation mismatch. There are many well-established techniques for
generalization from examples (Dietterich & Michalski, 1983). Because inductive

24

generalization is inherently underconstrained, these techniques all depend on
some kind of bias to direct the learner toward useful or relevant generalizations
(Mitchell, 1982; Utgoff, 1986). Bias can be provided to a learner by supplying a
highly constrained generalization space, defined by the language for representing
learned concepts, such as LEX's pattern-matching language (Mitchell, Utgoff, &
Banerji, 1983). Bias can also come from the choice of features in the training
examples, as in the feature vectors used by decision tree algorithms (Quinlan,
1986).

A knowledge acquisition tool can capitalize on existing generalization
techniques if they are augmented with the appropriate bias. One approach would
be to build the necessary bias into the tool. If the bias is itself important domain
knowledge, however, this approach limits the usefulness of automating the
knowledge acquisition process, since the tool would have to be modified for each
domain. Instead, a knowledge acquisition tool can provide means for the user to
contribute bias - to guide the generalization toward useful concepts. The user
can contribute bias by carefully selecting training examples (Winston, 1985), by
identifying their relevant features, and by evaluating machine-generated
generalizations. While the human provides pedagogical input and evaluation of
results, the tool can apply syntactic generalization operators and check for
consistency with a database of training cases. The resulting human-machine
synergy is a more powerful acquisition technique than either manual knowledge
engineering or traditional inductive learning.

Knowledge-based learning techniques such as explanation-based learning
(DeJong & Mooney, 1986; Mitchell, Keller, & Kedar-Cabelli, 1986) are strongly
biased by the domain theory provided by the system builder. Inserting a human in
the learning loop can help overcome the dependence of the learning technique on
the quality of the built-in knowledge. For example, in an experiment with SOAR in
the domain of algebraic simplification, a human intercedes during problem
solving to help the system learn search-control knowledge (Golding, Rosenbloom,
& Laird, 1987). When the system needs to choose among algebraic simplification
operators for a specific equation, the human recommends an operator to apply or
provides a simpler equation to solve. The system uses a domain theory of algebraic
simplification to find useful chunks that generalize the situation (the class of
equations) in which the recommended operator should be applied. In the absence
of a complete domain theory, one can imagine the human pointing out relevant
parts of the equation to chunk.

To integrate generalization techniques into a knowledge acquisition tool, the
knowledge to be acquired must be represented in such a way that syntactic
generalizations of statements in the representation correspond to semantic
generalizations in the knowledge (see Lenat & Brown, 1984). For strategic
knowledge, this means formulating the selection of actions in terms of
classification. For example, a common technique for programs that learn search-
control knowledge is to formulate the knowledge for selecting actions as pattern-
matching expressions that identify situations in which operators would be usefully
applied (Benjamin, 1987; Laird, Newell, & Rosenbloom, 1987; Minton & Carbonell,
1987; Mitchell, Utgoff, & Banerji, 1983; Silver, 1986). Because of this formulation,
syntactic generalizations of the expressions to which an operator had been applied

25

during training correspond to classes of situations where the operator might be
useful in the future.

ASK's representation of strategic knowledge is designed to exploit syntactic
generalization operators. Knowledge about what action to do next is formulated as
predicates that describe situations in which equivalence classes of actions are
useful. In the absence of a theory to infer the utility of actions, ASK acquires
strategic knowledge from people.

2.3 The ASK knowledge acquisition assistant

ASK is an interactive knowledge acquisition assistant. It acquires strategic
knowledge from the user of a knowledge system, called the performance system.
The strategic knowledge acquired by ASK is used by the performance system to
decide what action to perform on each iteration of a control cycle. With additional
strategic knowledge, the performance system should be able to make better
decisions about what to do in various situations.

The basic approach is to elicit strategic knowledge from the user in the form of
justifications for specific choices among actions, and then operationalize and
generalize the justified choices in the form of strategy rules that associate
situations with classes of appropriate actions.

This section presents an overview of the knowledge acquisition procedure, and
ther P avers in more detail the strategy rule representation and the knowledge
system architecture that supports it. Section 2.4 demonstrates ASK with examples
from a knowledge system for planning workups of chest pain.

2.3.1 The knowledge acquisition dialog

ASK orchestrates a mixed-initiative dialog with the user. The basic steps in the
knowledge acquisition dialog are shown in Figure 2.1.

26

From control cycle ----. ,----.,

qc.ooptabe?

To control cycle

r Eli c~uechosen actionsElicit critique

from expert
I

Training exampeis

,,.dthrExecxutassignment yruestrategy rules

Leamrag oplectiwe

E AcquireElicit justification new feature

Justfed exaMP5 New 6rategy rules

Formulate rules
and generalize

Figure 2.1. The ASK Knowledge Acquisition Dialog

ASK is invoked by the user of the performance system. At run time the
performance system executes a simple control loop. On each iteration the system
selects a set of recommended actions, the user picks one, and then the system
executes it. The results of the action are recorded, and then the system continues
by selecting the next set of recommended actions. If the user disagrees with the
system's recommended actions on any iteration, she can interrupt the control loop
and initiate a knowledge acquisition dialog.

The first step of the knowledge acquisition dialog is to elicit a critique from the
user. A critique is a labeling of what the system did wrong in terms of choosing
actions. The system recommends a set of actions at each iteration of the control
cycle because they are all equally appropriate in the current situation, according to
the existing strategic knowledge. The user critiques the system's choices by
selecting an action that the system should have chosen (the positive example) and
one that the system should not have chosen (the negative example). The positive
and negative examples do not have to be in the set of the system's initial choices
(which may be empty). The user also characterizes the the system's error in
recommending actions, indicating, for instance, whether the positive example is
merely preferred to the negative example or whether the negative example should
not have been considered at all.

Next, ASK performs credit assignment analysis by examining how the current
set of strategy rules matched the positive and negative examples. The output of
this analysis is a learning objective that specifies what a new strategy rule would
have to match and not match and what it should recommend in order to
accommodate the user's critique and be consistent with existing strategy rules.

27

Then ASK elicits justifications from the user. From the user's perspective,
justifications are explanations or reasons why an action should or should be
recommended, in terms of "relevant features" of the current situation. From
ASK's perspective, justifications are facts about the state of knowledge base objects
in the current working memory of the performance system; the set of justifications
corresponds to the set of features that should be mentioned in matching strategy
rules. ASK suggests an initial "seed" set of justifications, based on how existing
strategy rules fired. The user adds justifications by clicking on features of objects
displayed in windows on the screen. The justification interface allows the user to
browse through the knowledge base for relevant objects. If the set of existing
features is inadequate, the user can define new features within the justification
interface.

When the user indicates that she is finished and has specified a set of
justifications that are sufficient to distinguish the positive and negative examples,
ASK generates a new strategy rule from the justifications. The new strategy rule
is generalized by syntactic induction operators to apply to a range of situations and
an equivalence class of actions. For example, where a specific action appears in a
justification, ASK puts a variable in the corresponding clause of a strategy rule.
Similarly, if a justification mentions a specific value for a feature, ASK may build a
strategy rule clause that matches a range of values for that feature.

Finally the new rule is paraphrased and the operational effects of the new rule
are presented to the user for approval. If the user agrees that the new rule
improves the system's choices of actions, the rule is added to the strategic
knowledge base of the performance system, dnd the control cycle is continued.

Details of the knowledge acquisition dialog are demonstrated with examples in
Section 2.4. First some background on the performance system architecture and
the representation for strategic knowledge is required.

2.3.2 The MU architecture

ASK is integrated with an architecture for knowledge systems called MU (Cohen,
Greenberg, & Delisio, 1987; Gruber & Cohen, 1987). As depicted in Figure 2.2, a
performance system built in MU consists of a substantive knowledge base, typically
for heuristic classification, and a strategic knowledge base for controlling actions.
This division of knowledge is typical of architectures that support control
knowledge, such as BB1 (Hayes-Roth, 1985). MU organizes the substantive
knowledge as a symbolic inference network, where inferences are propagated from
evidence to hypotheses by local combination functions. The inference network
serves as the working memory of the system at runtime. The state of the network
is abstracted by control features, which are functions, attributes, and relations
over knowledge base objects.lz The strategic knowledge is organized in a separate
component, which examines the state of working memory via control features and
selects actions to execute. MU was designed to support a variety of experiments in
strategic reasoning, so the architecture does not include a built-in problem solving

1 Control features correspond to the metarelations in Clancey's taaks.and-metarulee representation (Clancey &

Bock, 1988).

28

method or control strategy. The strategy rule representation was developed for the
study of knowledge acquisition in ASK.

Strategic Knowledge Substantive Knowledge
Inference net

Strategy rules Control
Features I A At 41

Focus rules ,/

L4& Likj

Filter rules

0 S 0 0,
Selection rules

Chosen actions

Action Results V

Figure 2.2. The MU architecture with strategy rules for control

2.3.3 Strategy rules

Strategic knowledge acquired by ASK is represented in the form of strategy rules,
inspired by the metarules that represent diagnostic strategy in NEOMYCIN and
HERACLES (Clancey, 1988; Clancey & Bock, 1988). Strategy rules map strategic
situations to sets of recommended actions. Strategic situations are states of the
working memory of a performance system. In the MU architecture, strategic
situations are states of the inference network.

The strategy rule control cycle, shown in Figure 2.3, specifies how strategy
rules are applied in a performance system to decide among actions. At each
iteration of the control cycle, strategy rules recommend the actions that are
appropriate to perform next. There are three types of recommendations,
corresponding to three categories of strategy rules. Focus rules propose a set of
possible actions at each iteration. Filter rules prune actions that violate
constraints. Selection rules pick out subsets of the proposed and unpruned actions
that are most desirable in the current situation to form the final set of
recommended actions. One of the actions in the recommended set is chosen by the
user and executed. The effects of executing the action are then propagated
through working memory.

29

proposed actions

new state

Run filter rules filtered actions

acceptable

actions

Propagate actions not
effects of Run selection rules selected
actions

throughout recommended actions
working

memory

results

Execute action Ur cI

Figure 2.3. The Strategy Rule Control Cycle

The strategy rule control cycle corresponds to the "method" of task-level
architectures described in Section 2.2.1. It specifies how strategic knowledge is
brought to oear in the decision about what action to do next. The propose-filter-
select algorithm defines three roles for strategic knowledge: specifying the
conditions under which actions might be applicable, inappropriate, and preferable.
Its design stipulates that actions are chosen iteratively, waiting for the effects of
the execution of the previous action before making the current decision. The
algorithm also assumes that context of the decision, the strategic situation, is
defined in terms of currently available features of the state of the performance
system. Thus, strategy rules are not general-purpose control rules, useful for
writing arbitrary programs. Rather, the strategy rule control cycle supports a
style of reasoning that has been called reactive planning (Agre & Chapman, 1987;
Chapman & Agre, 1987; Firby, 1987; Kaelbling, 1987). The form of strategic
knowledge is restricted to facilitate automated knowledge acquisition. The
consequences of this design are made explicit in later sections.

The left-hand side (If part) of a strategy rule is a conjunctive expression, with
variables, that specifies a strategic situation and the set of recommended actions
for that situation. The left-hand side expression matches against the values of
control features that reflect the propeities and dynamic state of objects in working
memory, including objects that represent actions. The right-hand side (Then part)
of a strategy rule indicates whether the matching actions should be proposed,
filtered, or selected in the matching situation.

30

2.3.4 Examples from the chest pain domain

Here are some examples of strategy rules and control features from a system for
planning workups for chest pain that will be used to demonstrate ASK in
Section 2.4.

The following focus rule proposes actions that are general questions (e.g., age,
sex, etc.) when the the set of active hypotheses, called the differential, is empty.

Rule Ask-intake-questions a focus rule
"Ask general questions when at a loss."

If: (IS (differential) :EMPTY)
(IN ?ACTION (members-of general-questions))

Then: (PROPOSE ?action history-and-exam)

The strategic situation in this rule is specified by the condition that the value of the
differential object is empty. The set of recommended actions is generated by the
relation members-of applied to the object general-questions, which is a class of
actions. The right-hand side operator PROPOSE specifies that the values bound to
the variable ?ACTION should be proposed under these conditions, and that the goal
history-and-exam should be posted.

The expression (differential) refers to the set of hypotheses on the
differential. It is a control feature defined in the MU inference network as:

VALUE of DIFFERENTIAL a control feature
"The set of active hypotheses"

SET-OF ?Hypothesis IN hypotheses SUCH-THAT
trigger-level OF ?Hypothesis IS triggered AND
level-of-support OF ?Hypothesis IS-NOT disconfirmed

OR
level-of-support OF ?Hypothesis IS-AT-LEAST supported

Another focus rule, shown below, is complementary to Ask-intake-
questions. It proposes actions that potential'y provide diagnostic evidence when
the differential is not empty, and labels this state with the goal gather-evidence-
for-differential.

Propose-diagnostic-evidence a focus rule
nGather evidence for current hypotheses."

If: (IS (differential) :NONEMPTY)
(IN ?ACTION (potential-evidence differential))

Then: (PROPOSE ?ACTION gather-evidence-for-differential)

(potential-evidence differential) is a control feature that returns the set of
actions that are potentially diagnostic for hypotheses on the differential. This set is
computed dynamically by a function that calls a MU service for analyzing the
inference network (Cohen, Greenberg, & Delisio, 1987).

A very simple filter rule prevents actions from being recommended if they
have already been executed. In some domains actions may be executed repeatedly.
That is why the don't-repeat policy is encoded in the following rule instead of built
in to the basic control loop.

31

Filter-executed-actions a filter rule
"Do not repeat actions"

If: (IS (executed? ?ACTION) yes)
Then: (FILTER ?ACTION)

The following selection rule is enabled under the goal history-and-exam. It
recommends those actions that are cheap to perform and that can potentially
produce data that would trigger new hypotheses.

Select-cheap-triggering-data a selection rule
"Prefer cheap actions that might trigger hypotheses."

If: (IN history-and-exam (current-goals))
(IS (potentially-triggered-by ?ACTION) :NONEMPTY)
(< (cost ?ACTION) cheap)

Then: (SELECT ?ACTION)
Shadows: Select-triggering-data, select-free-evidence,

select -cheap-evidence

The terms current-goals, potentially-triggered-by, and cost refer to
control features. The set of actions recommended by this rule are those with some
hypotheses on their potentially-triggered-by feature and whose cost feature
is not more than cheap. The feature potentially-triggered-by is computed
from the definitions of triggering conditions for hypotheses, stated in a rule-like
form. For example, the hypothesis classic-angina is triggered when "the chief-
complaint is pain or pressure and pain-quality is vise-like and the chief-
complaint-location is substernal." This rule will recommend the action of asking
for the chief-complaint-location because it potentially triggers a hypothesis and it is
cheap.

2.3.5 The shadowing relation among strategy rules

Within each strategy rule category (focus, filter, selection), rules are matched in
an order specified by a precedence relation called shadows, which is a partial order
based on the generality of left-hand sides. If a rule succeeds (matches some
objects), then the more general rules that it shadows are pruned (prevented from
being fired). Generality is defined in terms of the features mentioned in a rule and
the range of values specified for each feature. For example, the selection rule
shown above, Select-cheap-triggering-data, shadows (takes precedence over)
more general rules mentioning the same features. It shadows the more general
rule Select-cheap-evidence, which recommends any action that is cheap. In
turn, Select -cheap-evidence shadows the rule Select-cheap-evidence
because the former matches actions with costs of cheap or free. The global effect of
a family of selection rules in which the more specific rules shadow the more
general is to choose those actions judged to be acceptable by the most cost aining
criteria. The shadows relation is a symbolic alternative to a numeric function for
combining the recommendations of each rule into a single measure of utility.
Further details can be found in (Gruber, 1989).

2.4 A knowledge acquisition dialog with ASK

In this section, ASK will be demonstrated in the context of a performance system
that generates diagnostic workups for patients reporting chest and abdominal

32

pain. The performance system is a reimplementation of the MUM knowledge
system (Cohen et al., 1987). MUM's task is called prospective diagnosis, which is to
choose diagnostic actions as a physician would, asking questions in an intelligent
order and balancing the potential costs of diagnostic tests and trial therapy with
the evidential and therapeutic benefits.

2.4.1 What the performance system already knows

In experiments with ASK, the performance system is given MUM's substantive
knowledge about the diagnosis of chest pain, implemented in the MU architecture
in an inference network. The inference network contains hypotheses, data-
gathering actions, intermediate conclusions, and combination functions that
represent inferential relations such as the evidential support for hypotheses given
patient data. MUM's original strategy was written by knowledge engineers in Lisp.
In the ASK experiments, the strategic knowledge is represented in strategy rules.

In the dialog shown here, the performance system starts with a small but
incomplete set of strategy rules, and tke user extends them to improve strategic
performance. ASK can be used without any existing strategy rules. In an separate
experiment reported in (Gruber, 1989), ASK was used to acquire a set of strategy
rules that replicates the original MUM strategy. However, since ASK makes use of
existing strategy rules and control features in acquiring new strategic knowledge,
it can be more helpful in specializing an existing strategy than in building a
strategy from scratch. Thus the dialog in this section will show ASK being used to
extend an existing set of rules that represent a general strategy for prospective
diagnosis.

2.4.2 Running the performance system

A MU performance system runs the basic control loop that was introduced in
Section 2.3.3. At each iteration, strategy rules recommend some set of actions as
candidates. From the system's point of view, these recommended actions are
equivalent. Given the current strategic knowledge, the system could select among
them arbitrarily. The user of a MU system is given the choice to "break the tie"
and pick one action to execute. In the chest pain application, executing an action
typically causes a request for data (e.g., symptoms or test results). That data is
entered into the inference network, where it may change the evidential support for
active hypotheses and trigger new hypotheses.

We begin the knowledge acquisition dialog at a point at which the user has
already run the performance system through the first several actions in a case
(namely, the cheap and easy questions about the history and the physical
examination data). At this point, the system has run out of cheap actions and the
Propose-diagnostic-evidence rule (Section 2.3.4) recommends a set of
diagnostic actions. The riser has the option to pick one of the recommended actions
for execution or to teach the system to refine its strategy.

The following menu shows the system offering a set of recommended actions
during an iteration of the control cycle of the performance system. Instead of
choosing an action, the user initiates the dialog with ASK to "teach the system to
improve its choices." (An item with a box drawn around it signifies that the user

33

has selected it with the mouse.) The user set up this diagnostic situation because it
demonstrates a weakness in the system's strategy. The system needs to be more
selective in choosing among diagnostic tests and trial therapeutic actions such as
the seven offered in the menu.

Ploase choose something to ask or perform.

BARIUM-SWALLOW
EKG

GASTROSCOPY-WITH-BIOPSY
NITROGLYCERINE-TX

STRESS-TEST
UPPER-GI-SERIES
VASODILATOR-TX

Teach the system to improve its choices.
Explain why these actions were chosen.

Help

2.4.3 Eliciting the user's critique

ASK elicits a critique from the user by presenting the list of the system's chosen
actions and asking what should have been done differently. It first asks for the
general category of error, to help determine whether the problem is with focus,
flter, or selection rules:

Please explain why you disagree with the system's choices.
BARIUM-SWALLOW

EKG
GASTROSCOPY-WITH-BIOPSY

NITROGLYCERINE-TX
STRESS-TEST

UPPER-GI-SERIES
VASODILATOR-TX

One or more of these actions are PREFERRED to the others.1
One or more of these actions should NOT have been suggested.

Some action NOT MENTIONED HERE should have been suggested.
Help

Then it asks for a positive example, an action that should have been
recommended, and a negative example, an action that should not have been
recommended. It is assumed that the user will choose a positive example that is
representative of a class of actions that should be recommended in this situation,
and a negative example that represents a class of actions to distinguish in this
situation. In the interaction shown below the user indicates that the action EKG
should have been distinguished from the action Upper-GI-series, which is a
reasonable alternative (i.e., a near miss).

34

Which action would you have chosen?

BARIUM-SWALLOW
EKG

GASTROSCOPY-WlTH-BIOPSY
NITROGLYCERINE-TX

STRESS-TEST
UPPER-GI-SERIES
VASODILATOR-TX

an action not shown here
Help

Which of the system-selected actions would you NOT have chosen?

BARIUM-SWALLOW
GASTROSCOPY-WITH-BIOPSY

NITROGLYCERINE-TX
STRESS-TEST

UPPER-GI-SERIES
VASODILATOR-TX

They are all as appropriate as STRESS-TEST.
Help

2.4.4 Credit assignment analysis

Using the information provided by the user, ASK performs a credit assignment
analysis. The credit assignment algorithm examines how existing strategy rules
matched in this situation and determines the requirements for a new rule that
would account for the critique. The algorithm makes strong use of the distinction
between focus, filter, and selection rules and the way they are applied in the
strategy rule control cycle. For example, if the positive example was not proposed
by any focus rules, the algorithm prescribes learning a focus rule that proposes it.
Alternatively, if both the positive and negative examples are recommended by
selection rules, then the algorithm prescribes learning a selection rule that
matches the positive example, fails to match the negative example, and shadows
the selection rules that recommended the negative example. In the sample
session, ASK determines that it needs to acquire a selection rule, specializing the
Propose-diagnostic-evidence rule, such that the new rule matches EKG and
does not match Upper-GI-series. The complete credit assignment algorithm can
be found in (Gruber, 1989).

2.4.5 Eliciting justifications

In the next stage of the dialog, the user provides justifications for choosing the
positive example over the negative example. Justifications are specified as
features of the current strategic situation and features of actions. In the example
session, the strategic situation is characterized by the state of hypotheses on the
differential. A feature shared by the actions recommended by the system
(including the positive and negative examples) is that they potentially provide
evidence for hypotheses on the differential. In current example, the user must
provide additional justifications that distinguish the positive example EKG from
thc negative example Upper-GI-series.

35

The user interface for asserting justifications consists of two windows
containing mouse-sensitive text. The "relevant objects window" displays the values
of features of a set of objects from the knowledge base. The "justifications window"
contains a list of justifications in the form of natural language sentences. Each
justification is a description of the value of a feature of some relevant object.

ASK initializes the relevant objects window with a set of knowledge base objects
that might be relevant to the current control decision. An object is considered
relevant if it is one of the positive or negative examples (actions), a current goal, an
instance of a class representing some aspect of the global state of the inference
network, or if it is mentioned in a strategy rule matching the positive or negative
examples. The user is provided with tools for browsing the knowledge base to find
additional relevant objects.

ASK also initializes the list of statements in the justification window with seed
justifications which represent the system's reasons for selecting the current
actions. Seed justifications are derived from the clauses of strategy rules
matching the positive and negative examples. In the windows shown below objects
and justifications have been seeded by ASK.

Objects Relevant to the Control Decision

CRmCAL-HYPOTHESES
Value: classic-angina, unstable-angina

CURRENT-GOALS
Value: gather-evidence-for-differential

DIFFERENTIAL
Potential-evidence: barium-swallow, ekg, gastroscopy-with-biopsy, nitroglycerine-tx,
Potentially-conclusive-evidence: barium-swallow, ekg, gastroscopy-with-biopsy, str
Value: classic-angina, esophagitis, esophageal-reflux, pericarditis, unstable-angina,

EKG
Applicability: APPLICABLE
Classes: diagnostic-tests.
Cost: LOW
Executed?: NO
Potentially-confirms: classic-angina, prinzmetal-angina, unstable-angina, variant-an

more below

Justifications for the Current Control Decision
GATHER-EVIDENCE-FOR-DIFFERENTIAL is in the CURRENT-GOALS.
EKG is in the POTENTIAL-EVIDENCE of DIFFERENTIAL.
UPPER-GI-SERIES is in the POTENTIAL-EVIDENCE of DIFFERENTIAL.

The user asserts a justification by selecting a feature of one of the objects
presented in the relevant objects window. When a justification is selected, ASK
paraphrases the fact in the justifications window. In the following interaction,
the user indicates that EKG should have been chosen because it has low cost.
Using the mouse, the user selects the statement "Cost: low" from the relevant
objects window, and the statement "The COST of EKG is low" shows up in the
justification window, as depicted below.

36

Objects Relevant to the Control Decision

CRmCAL-HYPOTHESES
Value: classic-angina, unstable-angina

CURRENT-GOALS
Value: gather-evidence-for-differential

DIFFERENTIAL
Potential-evidence: barium-swallow, ekg, gastroscopy-with-biopsy, nitroglycerine-tx,
Potentially-conclusive-evidence: barium-swallow, ekg, gastroscopy-with-biopsy, str
Value: classic-angina, esophagitis, esophageal-reflux, pericarditis, unstable-angina,

EKG
Applicability: APPLICABLE
Classes: diagnostic-tests.
ICost: LOW1
Executed?: NO
Potentially-confirms: classic-angina, prinzmetal-angina, unstable-angina, variant-an

more below

Justifications for the Current Control Decision

GATHER-EVIDENCE-FOR-DIFFERENTIAL is in the CURRENT-GOALS.
EKG is in the POTENTIAL-EVIDENCE of DIFFERENTIAL.
UPPER-GI-SERIES is in the POTENTIAL-EVIDENCE of DIFFERENTIAL.
The COST of EKG is low.

At this point the user could tell ASK that she was finished. If the set of
justifications satisfied the learning objective, ASK would then turn the
justifications into a new strategy rule. In this session, however, the user wishes to
add more justifications. In particular, the user wants to say that EKG is
appropriate in this situation not only because it has low cost, but also because takes
little time to perform. To be able to say this in the language of justifications, the
user needs to define a new feaure..

2.4.6 Acquiring a new feature

To define a new feature is to implement an attribute, function, or relation over
some set of objects. in the knowledge base. ASK can help the user define a new
feature. Playing the role of a knowledge engineer, ASK elicits the information
needed to implement the feature in the MU architecture. The interaction below
shows the user defining a new feature called 'time required." The user starts by
clicking on the EKG object in the relevant objects window, bringing up the
following menu:

EKG

Display unit
Remove Object

Apply an existing feature
I Define a new feature

What shall we call the new feature of EKG?

TIME-REQUIRED

After obtaining a name for the feature, ASK needs to determine its general
type. The type of a feature is a symbol-level property, dependent on the knowledge

37

base architecture. MU supports several varieties of control features, many of
which are best implemented by knowledge engineers (e.g., dynamic relations
written in Lisp). ASK knows about how features are implemented in MU and
makes it possible to acquire some of the more simple features, such as static
attributes, interactively. To help make architecture-dependent terms such as
"inferential value" concrete to the user, ASK offers instances of features types from
the current knowledge base as exemplars. In the menu below, the user indicates
that the time-required feature is an attribute of actions, analogous to the cost
feature.

What kind of feature Is TIME-REQUIRED?

Ian attribute of actions (like COST)
a class of actions (like DIAGNOSTIC-TESTS)

an object (like DIFFERENTIAL)
an inferential value computed by rules (like LEVEL-OF-SUPPORT)

a dynamic relation (like POTENTIALLY-CONFIRMS)
Help

To complete the definition of a static attribute, ASK elicits information about
the domain, data type, possible values, order, cardinality, and default value for the
feature, and constrains the user's choices whenever possible.

To which of these parent classes of EKG will Time-required apply?

Actions Data -Diagnostic-tests 1 - EKG

What possible values might Time-required take?

Yes or No (like EXECUTED? of EKG)
lone of a list of words (like COST of EKG)
a member of a KB class (like CURRENT-GOALS)

a number (like VALUE of AGE)
a duration of time (like VALUE of EPISODE-DURATION)

Help

Please enter the possible values of Time-Required.

(e.g., values for COST are: free, cheap, low, moderate, medium-high high not-insured)

IMMEDIATE FEW-MINUTES AN-HOUR FEW-HOURS A-DAY FEW-DAYS WEEKS MONTHS

Is there an ordering over the possible values for Time-required?

No
Help

Can there be more than one Time-required?
YesED
Help

38

Please choose a default value for Time-required.

immediate
few-minutes

an-hour
few-hours

a-day
few-days

weeks
months

No default is applicable

Help

Once the intensional properties of the feature are acquired, the values of the
feature applied to the elements of its domain are elicited. For static attributes, ASK
presents a table of the objects to which it applies, and the user specifies the value of
the feature for each object. In the current example, the user enters the value of the
time-required feature for all diagnostic tests, including the training examples
EKG and Upper-GI-series. The table below shows the value of time-required for
EKG, after it was entered by the user.

Time-required of Diagnostic-tests
Angiogram unknown
Barium-swallow unknown
Cardiac-enzyme unknown
Chest-xray few-hours
Cholesterol-level unknown
Echo-cardiogram unknown
EKG few-minutes
Rat-plate-of-the-abdomen unknown
Gall-bladder-series unknown

More below

2.4.7 Using the new feature In justifications

When the expert has finished defining time-required, the system can use it as any
other feature and ASK can offer it as a possible justification. The dialog now
returns to the justification interface, where the user selects the time-required as a
justification for choosing EKG over Upper-GI-series:

39

Objects Relevant to the Control Decision

CRITICAL-HYPOTHESES
Value: classic-angina, unstable-angina

CURRENT-GOALS
Value: gather-evidence-for-differential

DIFFERENTIAL
Potential-evidence: barium-swallow, ekg, gastroscopy-with-biopsy, nitroglycerine-tx,
Potentially-conclusive-evidence: barium-swallow, ekg, gastroscopy-with-biopsy, str
Value: classic-angina, esophagitis, esophageal-reflux, pericarditis, unstable-angina,

EKG
Applicability: APPLICABLE
Classes: diagnostic-tests.
Cost: LOW
Executed?: NO
Potentially-confirms: classic-angina, prinzmetal-angina, unstable-angina, variant-an
Potentially-triggered: None.
I Time-required: FEW-MINUTES
Value: unknown

more below

Justifications for the Current Control Decision

GATHER-EVIDENCE-FOR-DIFFERENTIAL is in the CURRENT-GOALS.
EKG is in the POTENTIAL-EVIDENCE of DIFFERENTIAL.
UPPER-GI-SERIES is in the POTENTIAL-EVIDENCE of DIFFERENTIAL.
The COST of EKG is low.
The TIME-REQUIRED of EKG is few-minutes.
The TIME-REQUIRED of UPPER-GI-SERIES is a-day.

At this point in the dialog, the user has indicated that the cost and time-
required of actions are factors to consider when choosing actions. The first three
justifications represent the factors that the system would consider and were
suggested by ASK The user could have removed some of the seed justifications but
did not in this case. From the combined set of justifications ASK can generate a
new strategy rule.

2.4.8 Generating and generalizing a. strategy rule

Given the user's justifications, ASK formulates a new strategy rule that accounts
for the expert's critique of the system's performance. The new rule causes the
user's preferred action to be selected on the next iteration.

The left-hand side of the new rule is constructed by transforming the list of
justifications into left-hand side clauses. The transformation from justifications to
rule clauses is fairly straightforward. The internal representation of justifications
is very similar to the clause form of strategy rules. The right-hand side
recommendation (in this case, SELECT) was decided by the credit assignment
analysis. In the current example, ASK forms the following rule:

IF (IN gather-evidence-for-differential (current-goals))
(IN ?ACTION (potential-evidence differential))
(5 (cost ?ACTION) low)
(- (time-required ?ACTION) few-minutes)

THEN (SELECT ?ACTION)

40

In the process of forming rule clauses from justifications, ASK applies
generalization operators. One operator is called turning constants to variables. In
the strategy rule above, references to EKG have been replaced with the free variable
?ACTION, which is bound at runtime by the strategy rule interpreter to each action
that has been proposed and has not been filtered. The result is that the rule
recommends the class of actions sharing the features of EKG in the justifications:
the cost and time required.

Another generalization operator is extending the reference of a feature from
an test of equality to a test over some range or set of permissible values. In the
example strategy rule, the _< operator specifies that the third clause will succeed
when the action has any value of cost equal to or less than low. ASK used a
heuristic for applying this generalization; it found another selection rule that used
< for the cost feature.

In this example, however, ASK has no a priori information to help in
extending the reference of the new feature, time-required. It asks the user for
guidance by posing hypothetical variants on the current case to obtain boundary
conditions on the acceptable range for the time-required clause in this rule. Since
ASK lacks common sense, it has to ask whether the user would still accept the
EKG if it takes no time at all:

What if the Time-required of EKG were IMMEDIATE?
Would you still choose It?

[yes
No

Help

Then ASK offers near-miss cases:

What If the Time-required of EKG were AN-HOUR?
Would you still choose It?

No
Help

What If the Time-required of EKG were FEW-HOURS?
Would you still choose It?

No
Help

What If the Time-required of EKG were A-DAY?
Would you still choose It?

Yes

Help

Given this information, ASK replaces the clause

41

(= (time-required ?ACTION) few-minutes)

with the clause

(5 (time-required ?ACTION) few-hours)

2.4.9 Verifying a rule

To evaluate the face validity of the generated rule, ASK presents a paraphrased
translation to the user for verification. It also shows the operational consequences
of the rule.

Knowledge Acquisition Dialog

I would paraphrase your advice as:
Select an action when

a current goal is gather-evidence-for-differential, and
the action is in the potential-evidence of differential, and
the cost of the action is less than or equal to low, and
the time-required of the action less than or equal to few-hours.

Considering this advice, the system would choose this action only:
EKG

Is this an improvement?

Please verify this advice. It Is based on your justifications.

I agree with this rule.
I would like to change the justifications.

Let me look at it again.
Help

This completes one session of the knowled acquisition dialog. With the new
strategy rule, the performance system now recommends only the positive
example, EKG, when the goal is to gather evidence and the actions are potentially
diagnostic. The new selection rule fails to match the negative example and the
other proposed actions, and it shadowsthe more general rule that formerly
matched all seven actions.

The next subsection demonstrates how ASK can be used to acquire tradeoffs in
a utility space. It is not essential to understanding the basic approach.

2.4.10 Acquiring tradeoffs

The strategy rule just acquired is one of a family of rules that together constitute a
strategy for selecting diagnostic actions. Selection rules can be viewed as tradeoffs
among features, and a family of selection rules represents a set of acceptable
tradeoffs. The new rule specifies that a moderate amount of time is acceptable if
the cost is low and the diagnosticity is moderate.

In terms of utility theory, the new rule occupies a region in a space with
dimensions defined by the features measuring diagnosticity, cost, and timeliness.
Points in this space can be interpreted as the values of a multiattribute utility
function (Keeney & Raiffa, 1976). The dimensions are attributes and the regions

42

represent values of equivalent utility. The shadows relation among rules
corresponds to a partial order over values of utility; some regions have higher
utility than others in the same attribute space. For example, because of the
shadows relation, the new rule takes precedence over selection rules that only
mention cost or time-required. The region corresponding to the new rule can be
interpreted as having higher utility. In other words, actions selected by the new
rule are preferred over actions that would have been selected by shadowed rules.

To illustrate how ASK can be used to acquire other tradeoffs in the same space,
this subsection sketches a second session where the user finds an exception to an
existing rule.

In this second scenario, the user runs the performance system on a case
where initial data provided evidence that the patient could have a very serious
condition which requires immediate diagnosis. In this situation, the system
suggests a set of actions that are potential evidence for hypotheses on the
differential and have low cost. However, the user indicates that the system should
ignore cost and concentrate on evidence that is potentially conclusive for
hypotheses that are critical, The relevant objects and justification windows appear
as follows:

Objects Relevant to the Control Decision
CRmCAL-HYPOTHESES

Value: classic-angina, unstable-angina.
CURRENT-GOALS

Value: gather-evidence-for-differental.
DIFFERENTIAL

Potential-evidence: gastroscopy-with-biopsy, nitroglycerin-tx, stress-test, upper-gi-
seri

Potentially-conclusive-evidence: gastrosopy-with-biopsy, stress-test, upper-gi-
series

Value: classic-angina, esophagitis, esophageal-reflux, esophageal-spasm,
unstable-a
STRESS-TEST

Applicability: applicable
Classes: diagnostic-tests.
Cost: medium

more below

Justifications for the Current Control Decision
GATHER-EVIDENCE-FOR-DIFFERENTIAL is in te CURRENT-GOALS.
NITROGLYCERINE-TX is in the POTENTIAL-EVIDENCE of DIFFERENTIAL
STRESS-TEST is in the POTENTIAL-EVIDENCE of DIFFERENTIAL.
The COST of NITROGLYCERINE-TX is low.
The COST of STRESS-TEST is medium.

The positive example is Stress-test, which was not selected by the system
because its cost was more than low. The negative example is Nitroglycerine-tx,
which was selected by the system. The justifications in the window shown above
were seeded by ASK; they correspond to the clauses of the strategy rules that picked
Nitroglycerine-tx and not Stress-test.

In the justification session, the user tells ASK to consider conclusive evidence
for critical hypotheses. The set of critical hypotheses is already represented by a

43

knowledge base object. Critical-hypotheses is defined as a set of hypotheses that are
active (and therefore on the differential) and time-critical (a feature of hypotheses).
The relationship between conclusive evidence and critical hypotheses is not
currently represented by a feature. The relationship is currently defined for the set
of hypotheses on the differential. Since the set of critical hypotheses and the
differential share the same domain, the feature implementing the potentially-
conclusive-evidence relationship can be applied to the critical-hypotheses object.
The user accomplishes by clicking on the critical-hypothesis object and performing
the operations shown in the following windows.

CRITICAL HYPOTHESES
Display unit

Remove Object
JApply an existing feature

Define a new feature

Members of the class FEATURES

ACTIVE-P
APPLICABILITY

CLASSES
COST

CRmCAUTY
DIAGNOSTIC-DATA

EXECUTED?
EXPECTED-COST

GENERALITY
LEVEL-OF-SUPPORT

NETWORK-DEPENDENTS
POTENTIAL-EVIDENCE

POTENTIALLY-CONCLUSIVE-EVIDENCE
POTENTIALLY-RULES-OUT
POTENTIALLY-TRIGGERED

TIME-CRITICAUTY
TRIGGER-LEVEL

VALUE

The feature potentially-conclusive-evidence was conveniently defined to work
for any set of hypotheses, and critical-hypotheses is a set of hypotheses. As a
result, when the user applies the feature to critical-hypotheses, the set of
potentially-conclusive evidence for critical hypotheses is immediately computed.
The newly-applied feature is displayed in the relevant objects window, and
becomes available as a justification. The updated relevant objects window shows
the value of the feature as the singleton set containing the action Stress-test. In the
window shown below the user selects this fact as a justification fc r choosing the
stress test.

44

Objects Relevant to the Control Decision

CRmCAL-HYPOTHESES
SPotentially-conclusive-evidence: STRESS-TEST.
Value: classic-angina, unstable-angina.

CURRENT-GOALS
Value: gather-evidence-for-differential.

DIFFERENTIAL
Potential-evidence: gastroscopy-with-biopsy, nitroglycerin-tx, stress-test, upper-gi-

seri
Potentially-conclusive-evidence: gastroscopy-with-biopsy, stress-test, upper-gi-

series
Value: classic-angina, esophagitis, esophageal-reflux, esophageal-.pasnm,

unstable-a
STRESS-TEST

Applicauility: applicable
Classes: diagnostic-tests.
Cost: medium

more below

Justifications for the Current Control Decision

GATHER-EVIDENCE-FOR-DIFFERENTIAL is in me Ct 'RRENT-GOALS.
NITROGLYCERINE-TX is in the POTENTIAL-EVIDENCE of DIFFERENTIAL
STRESS-TEST is in the POTENTIAL-EVIDENCE of DIFFERENTIAL.
The COST of NITROGLYCERINE-TX is low.
The COST of STRESS-TEST is medium.
STRESS- TEST is in tfe POTENTIALL Y-CONCLUSIVE-EVIDENCE of CRITICAL-
HYPOTHESES.

With this set of justifications, ASK generates the rule paraphrased to the user as
follows:

Select an action when
a current goal is gather-evidence-for-differential, and
the action is in the potential-evidence of differential, and
the action is in the potentially-confirming-evidence of critical-hypotheses, and
the cost of the action is ignored.

The final clause of the rule is a positive form of the dropping conditions
generalization operator. It specifies explicitly that the cost criterion, which was
mentioned in the system's existing rule, should be overridden by this new rule.
The ignore clauses are used in determining the shadowing relationship among
strategy rules (Section 2.3.5). This new rule will shadow the existing rule. The
operational effect is that the actions that are potentially conclusive for critical
hypotheses will be selected regardless of cost, if there are any such actions and
hypotheses; otherwise actions that provide evider-e for any active hypotheses and
have low cost will be selected.

2.5 Experience using ASK

This section reports briefly on some test sessions performed to evaluate ASK. More
detailed analysis of these experiments and the positive and negative results may be
found in (Gruber, 1989).

45

ASK has been tested for the prospective diagnosis task (Cohen, Greenberg, &
Delisio, 1987) in the domain of chest pain, which is the problem addressed by the
MUM system and used as an example performance system in this article. The
original MUM strategy, the strategic phase planner described in (Cohen et al.,
1987), was written by a knowledge engineer as a set of knowledge sources
implemented in Lisp. ASK was used by its designer to (re)acquire MUM's strategic
knowledge from scratch in the form of strategy rules.

ASK was also tested with the physician who served as the domain expert for
MUM. He was able to add domain-specific strategic knowledge to an existing
general strategy in dialogs like those demonstrated in Section 2.4. In one session,
the original domain expert taught a colleague how to use ASK. In general, this
experience suggested that the following conditions are important for success at
helping the domain expert teach a diagnostic strategy to ASK:

* The relevant control features are defined in advance (e.g., the potentially-
conclusive-evidence relation of Section 2.4.10) or are analogous to existing
features (e.g., the definition of time-required, which is analogous to cost,
can be elicited by example as shown in Section 2.4.6). When new features
have no analog, then it may require knowledge engineering skills to define
them. The problem of defining features is discussed in Section 2.6.3.

* The user understands the opportunistic control model that underlies the
strategy rule representation. If the user does not understand how the
strategic knowledge is used, he or she may not give ASK useful information
upon which to build strategy rules. For example, when the second
physician used ASK for the first time, he tried to get it to follow a procedure-
like plan: e.g., ask all the history and examination questions before
proposing any diagnostic tests. This caused ASK to construct an overly-
general strategy rule, as described in Section 2.6.3.

Some representational limitations of the strategy rule approach to control were
revealed in another experiment in which ASK was used to reimplement
NEOMYCIN's diagnostic strategy. One difference between ASK's strategy rules
and NEOMYCIN's tasks and metarules (Clancey, 1988; Clancey & Bock, 1988) is the
way in which problem-solving state is represented. In NEOMYCIN, metarules are
invoked by tasks, and tasks are invoked like subroutines with arguments. Some of
the problem solving state is represented by the calling stack for task invocation. In
addition, metarules access and set global variables. These computational
properties make certain kinds of strategic knowledge easier to represent. The task
structure serves as a natural representation for goal-directed control, and the
global variables and task arguments encourage a strategy with a persistent focus
on the "current hypothesis" and "current finding." In contrast, ASK's strategy
rules have no hierarchical calling structure and cannot set global variables. As a
consequence, it is difficult to implement a goal-directed (top-down) strategy or to
manipulate the differential as a data structure. ASK's representation and the
corresponding elicitation metaphor is more suited to acquiring an opportunistic
strategy.

In principle, one can completely reproduce the observable behavior of the
NEOMYCIN strategy using ASK, because the strategy rule language together with
MU's control features are Turing complete. In practice, knowledge engineering

46

skills were required to coerce the desired behavior from strategy rules, mainly by
defining control features. For example, the engineer using ASK had to define
special control features to correspond to NEOMYCIN's "current hypothesis" and
"pursued hypothesis" which were stated more naturally with metarules and
variables in the NEOMYCIN language. The engineering effort went into defining
sophisticated features. ASK is more helpful for building up associations between
existing features and actions in strategic decisions.

2.6 Analysis: scope of applicability, assumptions, and
limitations

Although the approach taken with ASK is independent of any domain, it
necessarily sacrifices generality for power. The ASK approach commits to a
method of applying strategic knowledge that iteratively chooses among individual
actions, employs strategy rules for the representation, and bases new knowledge
on justifications of choices of actions. As a consequence, ASK has limited scope
and requires some strong assumptions. This section will characterize the scope of
applicability of ASK in terms of properties of a class of performances tasks and will
explicate the critical assumptions and limitations that are inherent in the
approach.

2.6.1 Characteristics of tasks to which ASK applies

The problems to which ASK can be applied are those for which expert strategy is
essential to the performance task and for which the strategy rule knowledge
representation and MU architecture are adequate. This is not a circular
definition; it states that the applicability of the acquisition tool depends largely on
the adequacy of the performance representation. Representational adequacy is
judged with respect to the class of performance tasks and the problem-solving
method for which a representation is designed (see Section 2.2.1). So, ASK's
applicability will be characterized in terms of tasks for which the strategy rule
representation and the strategy rule control cycle are appropriate.

The major characteristics of tasks to which ASK would apply are as follows:

Actions can be selected one at a time (as opposed to sequences of action).

A task for which this characteristic oftn holds is reactive planning for robots,
where uncertainty about the world and real-time constraints necessitate acting
without projection. Robots controlled by reactive planners select actions on the
basis of immediate features of the environment, without projecting the
consequences of several possible sequences of actions and picking the best
sequence.

A task for which selecting actions one at a time is not appropriate is
planning a set of drugs to cover an infection. MYCIN's therapy algorithm, for
example, selects a collection of drugs to cover a set of infectious organisms using
an algorithm written in Lisp (Clancey, 1984). This task necessitates reasoning
about the collective properties of groups of drugs and organisms. Since the utility
of individual actions depends strongly on the other actions to be selected at the

47

same time, the strategy rule representation could not capture the desired drug-
selection expertise. (If every possible collection of drugs was represented as an
"superaction," then strategy rules could represent drug-selection criteria.
However, this is not feasible for large numbers of drugs, and it reduces all
strategic reasoning to a single decision.)

Actions can be related directly to the situations in which they should be
chosen.

A positive example of a task with this property is selecting legal cases for
argument, where cases are treated as actions. The merits of each case can be
represented with features that describe its individual properties and its
relationships to other cases and the current fact situation (e.g., Ashley's (1987)
dimensions). A case-selection strategy might be modeled by relating the relevant
features of legal situations to the features of cases that may be cited in the specified
situations. For instance, in a trade secrets situation one might cite cases that
make a claim about whether and how secrets were disclosed.

A negative example is the management of cancer treatment plans, the domain
of the performance system ONCOCIN (Tu et al., 1989). The strategy for cancer
treatment in ONCOCIN is represented with protocols: skeletal plans that are
instantiated with therapeutic actions for particular patients. In attempting to
model the individual treatment steps as actions in ASK, we found that the
justifications for choosing the next action in cancer protocols were often
statements of the form "because drug V is a member of the drug combination
VAM, which is the next chemotherapy to be administered to this patient according
to protocol 20-83-1" rather than "VAM is useful for small cell lung cancer because
this combination can help prevent the tumor becoming resistant." The
justifications also did not include a description of the context in which drugs V, A,
and M are competing with other possible drugs. The knowledge underlying the
recommendation of the VAM drug combination is compiled into the skeletal plan
for a protocol. In this domain it is unrealistic to expect the experts to justify
treatment plans with underlying reasons for their use, because by their very
nature protocols are experiments designed to test the effectiveness of treatment
strategies.

In general, the opportunistic style of control afforded by ASK's representation
generates plans based on underlying reasons for taking plan steps (actions), when
they are available. A memory-based planner unfolds and instantiates stored
plans, in which individual actions need no independent justification. Applications
requiring domain-specific strategic knowledge often do both styles of reasoning
about action. Within an ONCOCIN protocol, for example, actions may be modified
or dropped for reasons relating to the dynamic situation (e.g., the condition of the
patient). Strategic knowledge for modifying steps within a plan could be
formulated in strategy rules and acquired with ASK if the position of an action in a
plan were abstracted as a control feature. In ONCOCIN this knowledge is, in fact,
represented with rules that are indexed by protocols.'

'Thanks to Lawrence Fagan, Mark Musen, and Samson Tu for their help with this analysis.

48

Local action-selection criteria can avoid global pitfalls.

Computer players of adversarial games often are based on static evaluation of
position. Their strategy for selecting a next move is to choose the action that scores
best on the evaluation function. If the evaluation function can be structured as a
conjunctive expression over features, ASK could be used to acquire it. For example,
ASK can acquire the kind of strategy learned by Waterman's poker player:
mappings from descriptions of the board and the opponent to betting actions
(Waterman, 1970Y. A game-playing strategy based on mappings from features of
game situations to classes of moves will succeed if the features are usefully
predictive - if what looks good locally does not lead to global pitfalls.

A borderline negative example is chess, where strategy is often played out over
several moves and evaluation functions are prone to horizon effects. If the right
features can be found, strategy rules can map them to actions and ASK can
acquire them. If the features invented by the user lead to pitfalls, then acquiring
rules that use these features will not produce a globally optimal strategy.

In general, strategy rules support the reactive style of reasoning, where
features are immediately available. In contrast, search-based planning can
explore the outcomes of actions into the simulated future and back up the
evaluation of the utility of the results. Therefore, ASK can be useful for tasks in
which the effects of actions cannot be accurately predicted. The features acquired
by ASK combine predictions of effects and the expected utility of effects.

An optimal decision among actions Is not required or possible 1or every choice
of actions.

The chest pain application is both a positive and negative example. Most of the
evidence-gathering questions, tests, and therapies are chosen with relatively
simple measures of utility, such as qualitative measures of diagnosticity, efficacy,
and cost. In practice, the data and necessity to elicit probabilities and numeric
estimates of utility for every possible combination of actions is not present.
However, a negative example in the same domain is the last strategic decision that
is typically made (or avoided): deciding whether to perform angiography and
consequently open heart surgery. This decision has been successfully modeled
using the techniques of decision analysis (Pauker & Kassirer, 1981).

There is no reason in principle why ASK's model of selecting actions cannot be
described in terms of expected utility, nor is there any fundamental reason why a
Bayesian utility function could not be used as a feature in strategy rules. The
practical difference is in how a utility model is constructed. A set of strategy rules
form a qualitative model of the utility of actions, where the union of actions
recommended by rules are treated as equivalent. A multiattribute decision model
(Keeney & Raiffa, 1976) makes finer-grained, numeric estimates of the relative
utility of each attribute, and combines them to rank the recommended actions.

2.6.2 Critical assumptions

ASK makes progress in automating the acquisition of strategic knowledge, but
many aspects of this difficult problem are not solved. What is left for further work

49

is revealed by the assumptions that the ASK approach makes about the available
knowledge and the people that can provide it. Some key assumptions are discussed
here, and a more complete list is in (Gruber, 1989).

Requirements on the substantive knowledge

The ASK approach assumes that substantive knowledge of the performance
system: 1) is already acquired or can be acquired, 2) is correct, and 3) is sufficient
for making the distinctions necessary for the strategic knowledge.

The control features used by ASK depend on existing substantive knowledge in
the inference network of a MU performance system. For example, in diagnostic
tasks, much of the important substantive knowledge is found in combination
functions which specify how evidential support values and other inferential values
are propagated through the inference network. In the MU environment,
combination functions are acquired with a symbol-level interface - editors that
present and elicit knowledge in the same form as it is used (i.e., rules, slot values,
etc.). ASK assumes that the MU interface is adequate for acquiring substantive
knowledge.

A more serious problem is the assumption that the substantive knowledge is
correct. ASKs credit assignment algorithm determines what type of rule to
acquire and which objects the rule must match and not match. The algorithm is
based on the assumption that the features mentioned in existing strategy rules are
correct. To account for the discrepancy between system and user actions, a new
rule must match different features or different values of features than the existing
strategy rules. If the features return incorrect values for some actions, this
algorithm cannot correctly attribute the blame.

Finally, ASK assumes that the features that are already defined or are easily
defined within the existing knowledge base *are sufficient for representing the
desired strategy. The experiment in reimplementing NEOMYCIN described in
Section 2.5 was an opportunity to test this assumption. NEOMYCIN's strategy
makes heavy use of the subsumption relation among hypotheses. For example,
one metarule specifies that "If the hypothesis being focused upon has a child that
has not been pursued, then pursue that child." The CHILD metarelation assumed
by this rule is a subsumption relation among hypotheses that was not present in
the MUM knowledge base used in our experiment. It was simply not possible to
acquire this strategic knowledge without reorganizing the substantive knowledge
base (i.e., identifying abstract categories of diseases and relating them in a
hierarchy to the existing diseases).

In general, the overall effectiveness of ASK in acquiring strategic knowledge is
bounded by the difficulty of representing the relevant control features for the
domain.

Validity of expert's justifications for acquiring strategy
It was argued in Section 2.1 that the acquisition of strategic knowledge is difficult
because domain experts do not normally express their strategy in a form that is
generative, operational, and general (i.e., because of representation mismatch).

50

However, it is observed that experts can give justifications for specific strategic
decisions. The approach taken in ASK requires a strong assumption: that experts'
justifications form a valid basis for acquiring the strategic knowledge of systems.
There are several ways that this assumption might be wrong.

One way is the problem of tacit knowledge - that the knowledge we wish to
acquire from experts is not explicitly present in what they tell us. An influential
theory in cognitive science argues that the knowledge underlying expertise is often
tacit due to the process of knowledge compilation (Anderson, 1986). As experts
learn problem-solving strategies from experience in a domain, they internalize the
useful associations between situations and actions and become unaware of the
inferential steps that they may have made as novices. For example, physicians in
a educational setting may teach diagnostic strategy one way and practice it another
way. In experimental settings, when people are asked to account for their
decisions retrospectively they often refer to causal theories or judgements of
plausibility rather than the pertinent stimuli and their responses (Nisbett &
Wilson, 1977). And some writers argue that the difference between being able to
act and being able to talk about action is fundamental - that computer models of
action are essentially incapable of capturing the real basis for action (Winograd &
Flores, 1986).

If experts cannot account for their strategic decisions, ASK cannot acquire the
strategic expertise in a program. There is a difference, however, between
assuming that experts can describe their own cognitive processes and assuming
that they can justify their behiavior. ASK only depends on the latter assumption.
The assumption that experts can provide valid justifications may be reformulated
as the requirement that experts be good teachers. Remember that ASK is designed
to acquire knowledge for choosing actions that are observable, and therefore
objectively justifiable. The fact that medical school professors may not practice
what they preach does not mean that the justifications are invalid. On the
contrary, 'good teachers can account for behavior in a principled way and in
objective terms, even though their compiled expertise may not follow from their
explanations.

A second problem with the reliance on expert-supplied justifications is the
assumption that domain experts can invent useful abstractions of the domain -

the right control features. In the same way that an autonomous machine learning
program is limited by the description language provided by the program author, a
knowledge acquisition system such as ASK is dependent on the abstraction skills of
the user.1 ASK relies on the user to invent features that not only are sufficient to
distinguish actions in specific cases, but also lay out a space of relevant
generalizations. This assumption would be unfounded if the expert defined a
unique feature for every training case; the resulting strategy - a lookup table of
special cases - would be brittle. It is also possible that an expert can describe
useful features in natural language but cannot implement them.

1Geting the right primitive features has always been esmential to getting a machine learning program to find

useful generalizations. For example, Quinlan (1983) reports having spent three months devising a good set of
attributes (board position features for che) so that the learning program D3 could produce a decision tree in

seconds.

51

The validity of an assumption about the skill level of users is an empirical
question, and the answers will depend on the subjects and the tasks. ASK helps
frame the research question by distinguishing between the ability to invent the
necessary features, which is structured by the elicitation of justifications, and the
implementation of features, which is partially supported by a symbol-level
interface for defining features. If an ASK user cannot implement a feature but
knows what it should represent, she calls the knowledge engineer. The
acquisition of features (new terms) is an interesting area for further study.

2.6.3 Major limitations

Two of the fundamental limitations to the approach taken in ASK are discussed in
this section. A more complete analysis is given in (Gruber, 1989).

Reliance on knowledge engineering skills

It should be clear from the preceding discussion that ASK depends on the ability of
the user to define and implement control features. The fact that many features are
not easy to implement means that ASK is still limited by the operationalization
aspect of representation mismatch. The problem of operationalizing terms is
relevant to any learning system whose description language can be extended by the
user. Although ASK provides a helpful interface for defining new features, some
new features require programming to implement. The problem is not a matter of
learning the notation; one needs to know a lot more than the syntax of Lisp to be
able to implement control features that capture sophisticated assessments of the
state of problem solving. To implement a feature such as the potentially-
conclusive-evidence relation, one needs to understand the workings of the MU
architecture at the symbol level That is the expertise of knowledge engineers, not
domain experts.

There is a way in which ASK's elicitation technique can actually aggravate the
problem of representation mismatch. ASK is designed to present the "user
illusion" (Kay, 1984) of an interface that accepts explanations for strategic
decisions. In contrast, a symbol-level acquisition tool such as TEIRESIAS (Davis,
1976) supports a straightforward interface to rules without disguising them as
anything else. The problem with a system such as ASK that presents a knowledge-
level interface to the user but internally makes symbol-level distinctions is that the
user's model of how the system works can differ significantly from how the system
actually functions. If the user's model is inaccurate, she cannot predict what the
system will do with what is elicited. The result is a breakdown in communication
and a failure in the knowledge acquisition process.

One of the experiments in which ASK was used by physicians illustrates a case
in which the user's ignorance of the operational semantics of strategy rules
resulted in an unintended strategy. The expert wanted to teach the system to ask
all applicable questions of one class before asking any applicable questions of
another. He answered ASK's prompts in such a way that the credit assignment
algorithm determined that it needed to acquire a filter rule, when in fact a
selection rule was needed. When the expert explained (with justifications) that
questions of one type should not be selected, ASK generated a filter rule that

52

prohibited questions of that type from ever being selected, which is a gross
overgeneralization. The error was not apparent until the actions from the first
class were exhausted and the system could not suggest any more actions to
perform. To have avoided this problem, the user would have had to understand the
operational difference between filter and selection rules and the correspondence
between his answers to ASK's prompts and the type of rule being acquired.

Overgeneralization due to the lack of a training set

Although ASK uses generalization operators, it differs from most inductive
learning techniques in that it does not learn from a large training set of examples.
The user is responsible for choosing training examples that will produce useful
generalizations. Unfortunately the lack of a large training set limits the extent to
which ASK can help with the generalization problem.

It is easy to generate strategy rules with ASK that are overly general, because
of the elicitation technique. Adding justifications specializes the resulting strategy
rule; doing nothing leaves it general. Consider two strategic situations in the
medical workup. In the early phase, actions are selected for their low cost and
minimal diagnosticity. In later phases, actions that offer a potentially significant
diagnostic or therapeutic value are selected at higher cost, even if lower cost
actions are available. If the selection rules for the first phase were acquired
without any clauses identifying the strategic situation (i.e., features of the early
phase), then the rules acquired for the early phase would also match when the
later phase arose. There is no knowledge-free way for ASK to anticipate the
missing clauses that specify the context in which a rule should apply.

In practice, overgeneralizations of this type are discouraged by starting with
an initial set of strategy- rules that specify the basic strategic situations to
distinguish. These rules serve as the basis for seed justifications (Section 2.4.5)
upon which the user builds a set of justifications for a specific case. The
knowledge engineer can provide a set of very general strategy rules, anticipating
some of the situations in which domain-specific tradeoffs will arise. Then the
major role of the user is to specialize the general strategy with application-specific
strategic knowledge. OvergeneraizaLions are still likely, however, when user fails
to elaborate the features of a novel context in which a selection is made among
specific actions.

If ASK kept a library of training cases, it might be able to check newly-formed
rules for inconsistency with past training and prevent excessive
overgeneralization. Each case in a library would need the values of all relevant
features of the positive and negative examples and the features specifying the
strategic situation. When a new rule is proposed, it could be tested against the
objects in the case. If the new rule recommended a different outcome than the
stored case, and did not shadow the rule associated with the case, then the two
rules would be inconsistent. Unfortunately, keeping a library of cases is not trivial
because the space of features can grow with experience. If a new rule mentions a
new feature, it is incomparable with previous cases that did not mention the
feature, unless the feature is static (i.e., its value does not change during the
execution of the performance system). A general solution is to store a snapshot of
the entire working memory with each case, so that all possible relevant features

53

could be derived. This solution could be expensive. The whole issue of how to store
experience for future learning is an intriguing avenue for research. Some
promising approaches have been developed for case-based learning systems (e.g.,
Bareiss, 1989; Hammond, 1989).

2.7 Discussion: Key design decisions

Design decisions are often hidden sources of power in AI systems. This section
discusses a few characteristics of ASK's design as they relate to its function as an
automated knowledge acquisition tool.

The strategy rule representation supported by ASK is neither a novel way of
formulating strategy nor an ad hoc design. For the purpose of implementing
strategic knowledge, a procedural rep-esentation such as a Lisp function or an
augmented transition network would have been more flexible. The goals in
designing a representation for ASK are to be able to capture strategic knowledge in
an executable form and to be able to elicit it from experts.

Strategy rules were designed to represent mappings between states of the
inference network and equivalence classes of actions, for each of three operations:
propose, filter, and select. The declarative clausal form of strategy rules allows for
execution by conventional unification-style matching and also corresponds to the
structure of justifications. Limiting the operational effects of rules to propose,
filter, and select operations simplifies credit assignment and conflict resolution.
The result is a representation in which strategic knowledge can be acquired.

Two of the design decisions that led to this representation are critical to ASK's
techniques for automated knowledge acquisition. First, strategic knowledge has
been formulated as classification knowledge. Second, a global strategy is
represented as a family of strategy rules with fine-grained effects. The rationale
for each decision is given below.

2.7.1 Formulating strategic knowledge as classification
knowledge

Strategy rules structure knowledge about what to do next as knowledge for
classification: associations between strategic situations and classes of actions. The
following capabilities follow from this design.

The ability to use conventional machine learning techniques.

ASK can use simple syntactic induction operators for generalization (turning
constants to variables, dropping conditions, and extending reference). Whereas
the problem of learning sequences and procedures with internal state is very hard
(Dietterich & Michalski, 1986), the problem of learning classification rules is well
understood (Dietterich and Michalski, 1983). If mappings from states to actions
define the classes of state descriptions in which actions are appropriate, a learner
can generalize control knowledge by generalizing class descriptions.

54

The ability to elicit machine-understandable Information at the knowledge level.

ASK can elicit applicability conditions for control decisions in machine-
understandable terms, because the justifications from the user's point of view
correspond to clauses in the rule representation. The list of justifications can be
elicited in any order, since they are used as conjuncts in the class description.

The ability to use simple explanations for Input and output.

ASK can use simple template-based natural language generation to provide
explanations. ASK's explanations are just lists of facts relevant to the current
control decision paraphrased in English; they are essentially the same as
justifications. ASK can get away with this simple explanation technique because
every control decision is a flat match of situations and associated actions. Because
there is no implicit state, such as in an evolving control plan, the context of the
decision to choose an action is fully explained by the clauses of matching strategy
rules. The English explanation - paraphrases of instantiated clauses -

corresponds to what is happening at the symbol level.1

The use of explicit, abstract control knowledge for explanation was
developed in the work of Swartout et al. (Swartout, 1983; Neches, Swartout, &
Moore, 1985) and Clancey (Clancey, 1983a, 1983b). ASK follows the principle
arising from their work that an explanation of surface behavior should correspond
to the structure Of the system's strategy. However, in contrast to serious attempts
at knowledge system explanation, ASK's explanations do not describe the goal
structure and focusing behavior of the system because the performance
architecture does not support the corresponding control mechanisms (e.g., goal
stacks, tasks, etc.).

The Inability to acquire goal-directed plans.

As a consequence of formulating strategy as simple classification, it is awkward to
acquire goal-directed strategy with ASK. To capture the knowledge for reasoning
about action at different abstraction levels, the strategy rule representation would
have to be extended to support hierarchical planning in the sense of ABSTRIPS
(Sacerdoti, 1974). Currently, all strategy rules within each category (propose,
filter, select) are matched in parallel at each iteration. In one extension proposed
in (Gruber, 1989), the rules would be partitioned into abstraction levels; at each
level, rules would choose the subgoals for the lower abstraction level until the
subgoals at the lowest level are grounded in individual actions. It is not clear
whether the added structure would compromise the comprehensibility of the
elicitation technique; this is a question for future research.

2.7.2 Formulating strategy as fine-grained reactions

Recall the third aspect of representation mismatch: domain experts have more
difficulty devising a general procedure that accounts for their strategic expertise

'This an oversimplification. In actuality, the shadowing relations among strategy rules are not reflected in the

explanation. Not surprisingly, they are a source of confusion for users, possibly because they do not fit the simple
conceptual model of situation-action.

55

than describing what they actually do in specific cases. ASK shows that strategic
knowledge can be acquired from experts if it is elicited in the context of specific
choices among actions and then generalized. This is possible because strategy
rules model local decisions about actions that can be generalized to classes of
situations and actions. In theory, what appears to be a global strategy can emerge
from a series of local strategic decisions. For example, Chapman and Agre (1986)
propose that complex, coherent behavior arises from the continued activation of
situation-action structures without top-down control.

There is empirical support for the notion that globally coherent plans can be
acquired by eliciting the knowledge for local decisions. For example, SALT
succeeds at acquiring knowledge about how to construct globally satisfactory
solutions to a class of design problems (Marcus, 1987, 1988). SALT elicits from
designers knowledge about constraints among individual parts - information that
is relatively easy to specify - and offers help for putting the pieces together.
SALT's results are relevant to ASK because constructing a solution requires
managing the process by which parts are assembled under constraints; this is
similar to managing the selection of actions. SALT can acquire the requisite
knowledge from experts because it decomposes the larger task of assembling a
solution into small decisions about what part to add, how to (immediately) check it
for constraints, and how to recover from those violated constraints.

One can view SALT's design task and ASK's action-selection task as varieties of
planning, where configured parts and diagnostic actions correspond to plan steps.
This view reveals an important difference between the two architectures. SALT's
planning method provides for a backtracking search, whereas ASK's planning
method is purely reactive, with no projection (lookahead) and no possibility to undo
actions. This may prove to be an important variable in the question of whether
knowledge of local decisions can add up to a global strategy.

2.8 Conclusion

The immediate outcome of this research is a method for partially automating the
acquisition of strategic knowledge from experts. The issues that are raised,
however, are more significant than the ASK program itself. Strategic knowledge
was chosen for the study of knowledge acquisition because it illuminates the
problems of representation mismatch. Furthermore, an extreme solution was
selected - a declarative representation of reactive control knowledge - to test
conjectures about sources of power for knowledge acquisition. The results have
been analyzed in the preceding discussions of the scope of applicability,
assumptions, limitations, and design decisions. This section concludes with a
more general point brought out by this work and the future research it suggests.

If representation mismatch describes the problem of knowledge acquisition,
then solutions should offer some way to bridge the representational gap between
the domain expert and the implementation. This suggests that the design of
knowledge representations is central to addressing the knowledge acquisition
problem. This article has emphasized the motivations for and implications of
ASK's representation of strategic knowledge in an effort to elucidate principles of

56

design for acquisition: how to design knowledge systems to facilitate the acquisition
of the knowledge they need.

Earlier reports (Bylander & Chandrasekaran, 1987; Gruber & Cohen, 1987)
describe how knowledge representations and methods for task-level architectures
can facilitate manual knowledge acquisition (i.e., mediated by tools that are
passive). The design of representations can reduce representation mismatch from
the implementation side by providing (generic) task-level primitives which enable
experts to work directly with the knowledge base.

The ASK research illustrates how automated knowledge acquisition can help
overcome representation mismatch by eliciting knowledge in a form that is
available from experts and yet is very close to an operational, generalizable
representation. Again; the design of representations plays a central role in the
success of the knowledge acquisition process. The major contributions of ASK to
the process - active elicitation of justifications, credit assignment, and syntactic
generalization - are enabled by the declarative, role-restricted rule
representation. At the same time, the kind of strategic knowledge that can be
acquired - opportunistic and reactive rather than goal-directed and plan-driven
- is a function of what can be naturally represented in strategy rules.

A similar power/generality tradeoff can be found in most knowledge
acquisition tools. At the power end of the continuum lie OPAL-class elicitation
tools (Freiling & Alexander, 1984; Gale, 1987; Musen et al., 1987), which acquire
knowledge for representation customized to a problem-solving method and a
particular domain. OPAL employs elicitation techniques that are customized for
both the skeletal-plan refinement method used in ONCOCIN and the domain of
cancer therapy. As a result, OPAL can be used by domain experts. At the
generality end lie TEIRESIAS-class tools (Davis, 1976; Boose & Bradshaw, 1987;
Shachter & Heckerman, 1987), which acquire knowledge at the symbol-level for
formalisms that are not committed to particular tasks or domains. TEIRESIAS
makes it easy to enter and modify rules but requires the user to bridge the
representational gap from the domain- and problem-specific description to the
backward-chaining architecture. Somewhere in the middle are the MOLE-class
tools (Eshelman, 1988; Klinker, 1988; Marcus, 1988), which acquire knowledge in
representations that are method-specific and domain-independent. This article
has shown several ways in which the design of ASK trades the generality of a
representation useful for knowledge engineering for the power of a restricted
representation suitable for automated knowledge acquisition.

Further research is needed to investigate how knowledge representations and
reasoning methods can be designed to make the task of knowledge acquisition
more amerable to computer-assisted techniques for elicitation and learning.

57

Chapter 3

A Declarative
Representation of Control
Knowledge

3.1 Introduction

Control is an important problem in AL: Knowledge systems are getting
very large and difficult to control [DAR, 1987], [Erman and Lesser, 1975],
and, because efficiency is a concern in these systems, control strate-
gies must be flexible enough to balance various costs, especially
time [Lesser et al., 1988], [DAR, 1987], [Dean, 1987a], [Dean, 1987b],
[Hanks, 1987], [Herman and Albus, 1987], [Korf, 1987], rMcDermott, 1982].
Independent of efficiency concerns, we are beginning to work on tasks
such as design [Howe et a!., 1986], [Orelup, 1987], [Orelup et al., 1988], pro-
cess control [Pardee and Hayes-Roth, 1987] and knowledge-based planning
[DAR, 1987], in which "how to" knowledge is important. In these tasks,
problem solvers do not use a single, fixed strategy, but change strategies as
the situation demands, keeping "trim" to the current situation.

AI researchers are beginning to recognize control knowledge as a
kind of expertise, and are developing tools to help knowledge engi-
neers acquire it [Marcus et al., 1985], [Marcus, 1987], [Bareiss et al., 1987],
[Boose and Bradshaw, 1987], [Eshelman, 1987], [Musen et al., 1987].

Previous work by Tom Gruber in our laboratory has addressed the prob-
lem of acquiring and generalizing strategic "meta-rules" [Gruber, 1988a],
[Gruber, 1988b] similar to those discussed by Davis [Davis, 1976], and

58

Clancey [Clancey,], [Clancey, forthcoming]. Meta-rules give control a "one
step at a time" or reactive flavor that, when implemented in a medical ex-
pert system [Cohen et al., 1987a], [Cohen et al., 1987b], failed to capture
some aspects of diagnostic expertise [Cohen and Day, 19881. For example,
it was difficult to formulate meta-rules that had contingent actions on their
right-hand sides-to say "do test A and if the answer is positive do test B
otherwise do test C." The current work was initiated to develop representa-
tions for these little contingency plans, but it swiftly became an exploration
of representations for the range of knowledge one needs to control com-
plex AI systems. Throughout, we have required these representations to be
declarative, so they may be accessible to knowledge engineers, and also to
knowledge acquisition tools.

This paper presents a snapshot of our current work on control. It rep-
resents work in progress and so poses problems that it doesn't solve. As
AI researchers explore more realistic environments, we think it is essential
that they report where they are, how they got there, and where they are
going; even if they still have a long way to go [Cohen and Howe, 1988b],
[Cohen and Howe, 1988c]. In tf "s spirit, we have organized the paper into
six sections that correspond roughly to aspects of a journey:

We begin with an analysis of the control literature that led us to the idea
of strategy frames-declarative structures that represent problem-solving
strategies (Sec. 3.2). Next, we discuss the purpose of the journey, our in-
tent to empirically test some hypotheses about local and global control via
strategy frames (Sec. 3.3). In the next two sections we de,cribe F process
control task and an implementation in terms of strategy frames which, to-
gether, provide the environment for our empirical work (Secs. 3.4 and 3.5).
Preliminary results are described in Section 3.6.

3.2 Strategy frames: a view of control

Our view of control is motivated by the following observations, which are
based on analyses of the control strategies of CASNET [Weiss et al., 1977],
[Weiss et al., 1978], PIP [Pauker et al., 1976], HEARSAY-II
[Erman and Lesser, 1975], [Erman et al., 1980], MUM [Cohen et al., 1987a],
MDX [Chandrasekaran et al., 1982],
[Chandrasekaran and Mittal, 1983], NEOMYCIN [Clancey, 1986], [Clancey,],
DOMINIC and DOMINIc-If [Howe et al., 1986], [Orelup et al., 1988]:

59

Observation-1: The control strategies of many knowledge
systems can be viewed as the interaction of a small number of
simpler strategies. We call these strategy frames.

The structure of strategy frames will be discussed in Section 3.5. For
now, one can imagine them controlling inference within and between levels
of hypothesis spaces. For example, CASNET's hypothesis space had three lev-
els, for data, pathophysiological states, and disease hypotheses, respectively
(Fig. 3.1). Its control strategy can be viewed in terms of the interaction of
three strategy frames: bottom-up inference from data to pathophysiological
states, lateral inferences along causal pathways between pathophysiological
states, and bottom-up inferences between pathophysiological states and dis-
ease hypotheses. The tails and heads of the arrows in Figure 3.1 are different
regions of the hypothesis space and are the domain and range, respectively,
of strategy frames.

Observation 2: Strategy frames do not relinquish con-
trol after every inference, nor do they keep control throughout
problem-solving.

A strategy frame says, for instance, "I'm in control, and we're going
to do some bottom-up processing until it appears that some other kind
of processing would be more useful." For example, MUM was : trolled by
strategic phases that changed relatively infrequently. A control cycie in MUM
begins by looking at the state of the hypothesis space to determine whether
the applicability conditions of the current strategic phase still obtain. If
not, a new strategic phase is invoked. In either case, the next step is to
select a focus of attention, and then to select evidence for or against that
focus. The evidence is solicited and the state of the hypothesis space is
updated. Then the cycle begins again. The system can stay in a strategic
phase (i.e., under the control of a single strategy frame) for many cycles. For
example, one strategic phase-called Deal-with-Critical-Possibilities-
was active as long as critical, dangerous hypotheses (e.g., heart attack) had
some degree of support. Within this phase, MUM selected hypotheses to be
its focus of attention in order of their criticality; and it first sought low-
cost evidence against the focus of attention, but had no prohibition against
high-cost evidence pro or con the focus. Unlike other strategic phases, the
Deal-with-Critical-Possibilities strategy gave MUM's problem solving a
distinct "this is important, so hang the cost" flavor for the duration of time
that critical hypotheses were active:

60

CASNET:Three levels plus time (etiology)
Fixed, explicit search space

Verify top down
following triggering

0 Fill in causally

intermediate states.
0 Possibly verify top down

0

E Data-driven
inferences

Figure 3.1: A schematic representation of control in CASNET, showing the levels
of the hypothesis space and the strategy frames represented as vectors.

61

One is tempted to equate knowledge sources in HEAFRSAY-II with strat-
egy frames. But although the stimulus and response frames of knowledge
sources (KSs) in HEARSAY-II are analogous to the domain and range of
strategy frames, the latter take control of processing for intervals that can
involve many inferences, whereas KSs generate knowledge-source instantia-
tions (KSIs) for each possible inference and relinquish control to the sched-
uler after every inference.

In fact, the designers of many systems have found it desirable to give
them something like the functionality of strategy frames, even when they
were initially designed to have opportunistic control, or at the other extreme,
completely fixed control. HEARSAY-Il was designed to have opportunistic
control, but was later modified to have two phases-a bottom-up phase fol-
lowed by an opportunistic one. Even MYCIN, which is commonly thought
to be an exhaustive backward chaining production system, switched to lim-
ited forward chaining when it was presented with particular kinds of data
[Shortliffe, 1976].

Observation 3: Strategy frames are nested structures, in
which there are tactical instantiations of the components- of a
strategy.

All strategic phases in MUM have the same nested structure:

1. Applicability conditions

2. Criteria for selecting focus of attention

3. Criteria for selecting evidence

but they differ in how the components or slots of the strategies are instan-
tiated. For example, the criterion for selecting focus of attention in the
Discriminate-Strongest-Hypotheses strategic phase is plausibility; this
phase focuses on hypotheses that are likely given the evidence. In contrast,
the Deal-with-Critical-Possibilities phase focuses on hypotheses that are
dangerous and have some level of support; these hypotheses may actually
have a low plausibility.

A similar view is found in DOMINIC-II, a program for iterative redesign
of mechanical devices. The program has a five-step basic control cycle:

1. select an aspect of the design to improve

2. determine how much improvement is desired

62

3. select a design variable that, when changed, is expected to improve
the design

4. determine how much to change the design variable

5. decide whether or not to change the design variable

For example, DOMINIC-II may want to improve the ezpected life of pulley
system (step 1), from "short life" to "medium life" (step 2), by changing the
diameter of the drive pulley (step 3), from four to five inches (step 4). If this
change is predicted to have the desired effect, and it improves the overall
evaluation of the design, then it will be adopted. Then the redesign cycle
starts again. Roughly, redesign in DOMINIC-II is hill-climbing because each
change to a design improves its overall evaluation. But it isn't strict hill-
climbing because, depending on the tactical instantiations of the five steps
in the redesign cycle, DOMINIC-II can actually allow a design to get worse
before it gets better. For eiample, one tactical instantiation of DOMINIC-II's

basic design strategy is:

1. select an aspect of the design to improve: select the aspect that
has the largest negative effect on the overall evaluation of the design.

2. determine how much improvement is desired: require an im-
provement sufficient to ensure that the aspect no longer has a negative
effect on the overall evaluation of the design.

3. select a design variable that, when changed, is expected to
improve the design: select any design variable that has not been
changed in the last two cycles.

4. determine how much to change the design variable: change the
value of the design variable "a lot".

5. decide whether or not to change the design variable: even
if the overall quality of the design decreases, accept the change if it
improves the specific aspect of the design as desired.

DoMINIC-II monitors the current state of its design, looking for pathological
situations. When it finds one, it typically switches from one tactical instan-
tiation of the basic redesign strategy to another, more appropriate one. For
example, a common problem in hill-climbing is the mesa effect: instead of
moving steadily up a hill, a system gets trapped in a relatively fiat area,

63

making many small changes but not improving overall performance. When
DOMINIC-II detects this situation, it adopts a tactical instantiation of the
redesign strategy that makes very large changes to a design variable even if
they reduce the quality of the design. This is like taking large steps instead
of little ones to get off the plateau onto a hill-even if one lands on the
hill below one's current altitude. In a series of experiments we found that
Dominic-II, which could select among tactical instantiations, always outper-
formed an earlier system, Dominic-I, which could not 1Orelup et al., 1988].

Observation 4: The same strategy frames show up in many
knowledge systems, though parameterized differently.

In the last few years there has been a sense that many AI tasks are very
similar. This sense was given voice by Clancey's characterization of diag-
nostic reasoning [Clancey, 1984b], [Clancey, 1985], and by Chandrasekaran's
evolving taxonomy of AI tasks [Bylander and Chandrasekaran, 1987],
[Chandrasekaran, 1986], [Chandrasekaran, 1983]. It has been argued that
task-level architectures can be designed that are more general than particular
knowledge systems but less general than weak methods such as generate and
test [Gruber and Cohen, 1987b], [Gruber and Cohen, 1987a). What makes
Al tasks similar is not the facts and heuristics we use to solve them, for these
vary from one domain to another, but rather the general kinds of knowledge
they require and, most important from our perspective, how they are solved.
In our analysis of many knowledge systems, we believed we repeatedly saw
the same strategies. For example, all the diagnostic systems made some
distinction in their control strategies between data that "trigger" hypothe-
ses and those that cannot trigger hypotheses but can support previously
triggered ones. Most of these systems also made their c itrol strategies
sensitive to data that could categorically rule out hypotheses. The basic
con'rol strategy for diagnosis, though slightly different in each of the several
systems, was to first use a subset of the data to generate a small set of hy-
potheses (using all the data would create a combinatorially unmanageable
set), then to try to rule out or rule in these hypotheses, typically in an order
that reflects the importance of the hypotheses.

The advantage of identifying general strategies is that they become part
of the knowledge engineer's toolbox. We imagine providing task-level archi-
tectures complete with a variety of declarative strategy frames, each easily
parameterized for the particular application, much as knowledge-engineering
tools currently provide declarative representations to be filled with domain-
specific facts -and heuristics. Several steps have already be taken in

64

this direction [Gruber, 1988a], [Marcus et al., 1985], JBareiss et al., 1987),
[Eshelman, 1987], [Musen et al., 1987].

Observation 5: Control strategies can depend intimately
on the structure of the hypothesis space.

CASNET'S control strategy exploited causal associations among patho-
physiological states, and MDX'S strategy exploited hierarchical associations
in a taxonomy of diseases. It seems that the diversity of control strategies
depends on how many types of relations exist among objects in hypothesis
space. For example, if the only possible relation in the hypothesis space
is evidence-for, then a system is limited to blind data-directed or goal-
directed control. It can't focus on hypotheses that are causally related to
other likely hypotheses unless causal relations are explicit in the hypothesis
space. In NEOMYCIN, Clancey describes many relations that are needed to
support a wide range of diagnostic subtasks. These include binary relations
(e.g., causal and hierarchical) relations, and also unary relations or prop-
erties of the objects in hypothesis space. A similar approach was taken in
MUM and the subsequent Mu project. In Mu, one defines sets of objects
based on their relations with other objects, such as the set of all tests that
potentially-confirm any object in the differential and are inexpensive. Here,
potentially-confirm is a binary relation and object in the differential, test
and inexpensive are unary ones. Sets in MU can function either as foci of
attention or, as in this example, as sets of potential evidence.

In Pip, the relationship between control-specifically focus of attention-
and the structure of the hypothesis space is extremely tight. The hypothesis
space is a network of associated frames, most of which represent diseases.
These frames are "activated" or "illuminated" when their associated symp-
toms are found in the patient. Hypotheses become active (i.e., part of the
focus of attention) when activation spreads over relations in the hypothesis
space. For example, Pip has triggering relations between data and hypothe-
ses that make hypotheses active if the data are present. A more complex
role is played by relations such as may be caused by: If two frames are as-
sociated by this relation, and one becomes active, then the other becomes
semiactive, which means, roughly, that it will have a greater propensity to
become active as more data become available.

It is easy to see the importance of the structure of the hypothesis space
when that structure is explicit, as it is in CASNET, MDX, NEOMYCIN, and
MUM. By explicit we mean that all data, intermediate hypotheses and con-
clusions are known in advance before the system is ever run. In contrast,

65

objects in implicit hypothesis spaces are generated by search during execu-
tion. For example, in the DOMINIC systems, we do not traverse an explicit
space of thousands of designs, but rather we generate the space by itera-
tively modifying each design to produce the next. In such cases, objects in
the hypothesis space are not associated by explicit relations, as they are in
explicit hypothesis spaces. Consequently, control strategies are designed for
the implicit structure of implicit hypothesis spaces. In DOMINIC, this struc-
ture was assumed to be a hill, and so design was viewed as hill climbing.
In fact, DoMINIC-II is able to detect the local topology of the hill and, if
it is a plateau, modify its control strategy appropriately. In HEARSAY-II,
the implicit structure of the space of interpretations was assumed to contain
many constraints-often referred to as redundancy in the speech signal-so
that partial interpretations of one part of the signal could help the system
interpret other parts. Like DOMINIC-II, HEARSAY-II could detect where it
was in the space and could extend relatively certain regions into less-certain
areas. This was called island-driving.

3.3 Motivations

Although AI researchers have been building control structures and problem-
solving strategies for years, one of the basic questions about control remains
unanswered: Under what conditions can you achieve a sequence of actions
that look like they were selected by a global strategy, when in fact they were
selected by one or more local strategies? Both global and local are vague
and at best relative terms: one strategy relies on "more global" information
than another. Informally, local means based on a subset of the available
information. In terms of performance, because local strategies require less
information and less integration of information, they are valuable when the
cost of obtaining and processing relatively global information is prohibitive.
On the other hand, performance is typically better when informed by global
information. For example, imagine picking out a route across a city: a rel-
atively local strategy determines the route given the global goal and the
immediate environment, whereas a more global strategy considers the en-
vironment further away. The local strategy requires less information and
less planning, but may take us away from our goal and into "blind alleys";
the more global strategy can avoid these problems because it has access to
more global information, such as a map. In terms of this example, we want
to know under what conditions one can traverse a route that appears to be

66

guided by a map when it isn't.
Our research poses this question not in terms of actions such as travers-

ing a route, but in terms of strategies (implemented by strategy frames)
that select actions: Under what conditions can a sequence of strategies
appear to be guided by global information when, in fact, it isn't? The
question is important because AI is working in task domains that seem to
require multiple strategies (or, at least, multiple tactical instantiations of
strategies). Examples include Dominic-If and MUM (Sec. 3.2), as well as
recent work suggesting that alternative strategies should be selected by re-
source demands and availability [Lesser et al., 1988], [Garvey et al., 19871,
[Pardee and Hayes-Roth, 1987). We want to know the conditions in which
a system with multiple strategies needs global information to select them,
and, conversely, when relatively local information will suffice. Under what
conditions does the computational cost of global information outweigh the
benefit of having it? Under what conditions does relatively local selection
of strategies result in inefficiency, incoherence, or other pitfalls analogous to
"blind alleys" in the example above?

Our research is designed to explore these questions. Initially, we thought
about reimplementing some of the systems discussed earlier-CASNET, PIP,

MUM, and so on-with strategy frames. But on reflection it seemed unin-
teresting to demonstrate yet another architecture for diagnosis. Instead, we
have used strategy frames to control a system that solves a relatively new
and uncommon kind of task: Process control tasks require a system to mon-
itor and adjust to variations in an ongoing process, many or all of which are
unpredictable.

3.4 The McD Problem

McD is a simplified model of a fast-food restaurant. Orders are presented
at varying rates over time. McD tries to fill all orders as quickly as possible
without building up large surpluses of items. It does this by changing the
rates at which it produces items-by shifting employees from one activity to
another. For example, if McD has a surplus of hamburgers but a shortage
of shakes, an employee may be moved from the grill to the beverage station.

The McD problem has these characteristics:

Dynamic demands-the problem solver must respond dynamically to
changing demands; for example, changes in the rate at which orders
are placed.

67

Resource allocation-problems are solved by dynamically shifting resources
from one activity to another, thereby changing the configuration of the
problem solver; for example, by moving employees to different stations.

Tradeoffs-even if a system has the resources to handle any level of demand,
it shouldn't want them to be committed when demand is slack, since
they would be largely unproductive. There is a tradeoff between the
costs associated with the failure to meet demand and those associated
with excess supply. And this is but one of many tradeoffs that together
determine the efficiency of a system.

In McD, resources are employees and products are menu items (hamburg-
ers, fries, soda, shakes, apple pies) and service items (cashiers, clean tables,
and condiments). The number of employees is variable, but in our experi-
ments is initially seven. Employees work at stations. There are two grills
(each with space for two employees), two fryer stations (one employee tends
each), one drinks and dessert station (tended by one employee), two bus-
ing stations that clean tables and manage condiments and utensils (tended
by one employee each), and four cashier stations (each tended by one em-
ployee). Obviously, more than seven employees are needed to fully staff all
the stations in McD. Successful management of McD involves shifting em-
ployees from one station to another in response to demands. McD can also
call in additional employees and send surplus employees home.

McD is presented with blocks of orders at varying rates. A block includes
the number of people in a group, whether they require tables, and how many
of each menu item are desired.

Since cashiers take orders in McD, and the number of cashiers is limited,
some orders will not be processed immediately. Moreover, not all menu items
are available all the time, so some orders will not be filled immediately. Two
components of McD's performance are the average time waited for a cashier
and average time waited for food.

McD recognizes three special situations: Shortages, surpluses, and break-
downs. A shortage is indicated when the expected demind for an item signif-
icantly exceeds the number on hand (minor disparities between demand and
supply are ignored). Conversely, a surplus is indicated when the expected
demand is significantly less than the number on hand. (Expected demand
is just the average demand over the last few time segments.) Breakdowns
remove stations from commission until resources are allocated to fix them.
For example, one of the two grills may go down and may result in a shortage
if demand is high and it isn't fixed quickly.

68

McD has strategies for each of these situations. All involve moving people
from one station to another. A shortage of hamburgers, for example, is
handled by searching for an employee who can stop what he is doing and
move to a grill. Of course, if the capacity of the grills is exceeded (i.e., more
than four people are already working them) then McD can do nothing to
reduce the shortage. Thus, shortages of beverages and desserts cannot be
overcome unless these stations are unmanned, because each of these items
is produced at a station that has a capacity of one employee. Breakdowns
are fixed by moving an employee to the broken station to fix it. Surpluses,
conversely, are rectified by removing an employee from a station.

We must digress briefly to explain what is strategic about problem solv-
ing in McD. Colloquially, strategies select actions and remain in effect longer
than individual actions. By strategy, we mean a configuration of the prob-
lem solving system (McD) that remains in effect over many problem solving
actions. For example, McD may fill many customer orders with just two em-
ployees working at a grill, but eventually a shortage may require a change
in this configuration. Adding another person to a grill will change McD's
behavior: it may now produce a surplus of hamburgers, or experience short-
ages of other items, or the waiting period for food may decrease, or it may
increase due to a bottleneck introduced by removing the employee from his
previous station. The strategy frames described below change McD's behav-
ior by changing its configurations. A similar notion of strategy is found in,
say, DOMINIC-If (see above), where different strategies produced different
hill-climbing behaviors.

In sum, the McD problem is to dynamically monitor and alter configu-
rations, that is, allocations of resources to stations, so that shortages and
surpluses are avoided. McD detects shortages, surpluses, and breakdowns,
and selects among strategies for rectifying these situations.

3.5 Strategy Frames

Strategies are represented by strategy frames. Figure 3.2 is a strategy frame
called shuffle-resource-to-menu (shuffle for short). The figure shows an
instance of shuffle that was invoked somewhere in the middle of a run of
McD.

shuffle is invoked to fix shortages in menu items, which include shortages
of hamburgers, fries, soda, shakes, and apple pies. shuffle has an applica-
bility.slot that contains a lisp function called is-there-a-f ood-shortage,

69

Astrategg frame for ootaining resources for shortages of
menIltems*

Mouber-of: strategies
Appfimd~tyacu: is-there-a-f cod-shotage
Featuae-lst tu:
Fooust: harJXXW-~-sotage apple-gle-Shortage
btdai-teLvmncyuj: 2
Last-instaiadiw: 5
MeaRR--O-PailM4U Yes
Mop- F * a.,: Uhef- Inoroved
Ikx. a.,: resource-shuf f I
Suggestionsw:
Turiatiotu: no
Tow* tio-tactcssu: unen-restored

Figure 3.2: Strategy frame for moving resources to cover shortages of menu items.

70

which the interpreter runs to determine whether there is a shortage of any
food items. If the applicability condition is met, the interpreter adds shuf-
fle to the list of applicable strategies. Typically, this list contains several
strategies, ranked by their relevance slots. Relevance can be calculated
many ways, that is, the relevance slot can have many tactical instantiations.
But in shuffle and other strategy frames that deal with shortages, only
one tactical instantiation is currently used (others are planned but not yet
implemented). It ranks strategy frames by the number of known shortages
they can potentially fix and by the severity of those shortages. For exam-
ple, if McD is currently suffering shortages of hamburgers and fries, then
shuffle can potentially fix two problems, and so is more relevant than, say,
a strategy for correcting service item shortages if only one kind of service
item-say, tables-is in short supply.

The initial-relevance slot of a strategy frame is used to bias whether
McD attends to a situation. shuffle's initial relevance is zero, which means
that McD will not attend to it before other strategy frames with higher
initial relevance. We have used this mechanism to configure McD to attend
to shortages before surpluses and vice-versa.

Once a strategy is selected, its focus slot ranks the problems it will deal
with. The order of elements in shuffle's focus slot dictates that hamburger
shortages should be fixed before fries shortages. This order is determined
dynamically, based, in part, on the severity of the shortages.

The recipe slot of a strategy frame contains a series of actions-typically
a reallocation of resources. For example, shuffle's recipe is a lisp function
called resource-shuffle that attempts to obtain a resource from some-
where else in the system to assign to the shortage. It has two tactics for
doing this. One favors obtaining employees who are not assigned to any
station. The other looks for employees on stations that are producing sur-
pluses. In either case, if shuffle fails to get resources, it returns control to
the interpreter.

Sometimes McD's strategy is appropriate but not aggressive enough. For
example, a shortage strategy may move one employee to a new station, but
two or more employees are needed to correct the shortage in a reasonable
time. In such cases, McD may reinvoke that strategy; if shuffle moves one
employee but is ineffectual, then McD may reinvoke shuffle to move another
employee.

This raises the question of how we keep track of whether a strategy is
having the desired effect. shuffle has a measure-of-progress slot that
contains a function-currently binary-that tells the strategy whether it is

71

progressing. If the system notices no progress, or if the situation is actually
getting worse, the strategy may be reinvoked as described earlier to obtain
more resources. McD can measure progress in one of three ways, specified
in the mop-tactics slot of a strategy frame. shuffle's mop-tactics are
when-improving, which means that progress is being made so long as the
situation (in this case, a shortage) continues to improve. The measure-of-
progress slot in shuffle says that progress is, indeed, being made.

Finally, the strategy has terminating-conditions that specify when to
quit work. Tactical instantiations of this slot determine exactly when the
strategy quits. Three instantiations are

When-restored-stay in effect until the problem is solved (e.g., until there
is no more shortage).

When-improved-stay in effect until the situation improves (even if the
problem is not solved).

Time-stay in effect for N cycles.

shuffle has a when-restored termination tactic, and its termination
slot contains no, which means that the termination criterion has not been
achieved yet.

3.5.1 State

One special frame, called State, maintains a global view of McD and is
accessible to all strategies. Figure 3.3 shows the state of McD at a particular
time during a run (in this case, at time=8, as seen in the system-clock
slot).

State contains some global information that strategies may need to se-
lect appropriate tactics. Strategy frames do not maintain global views of
McD's world. They are "egocentric" in the sense that they attempt to solve
problems as well as possible, irrespective of the global ramifications. For ex-
ample, a strategy might want to allocate several people to a shortage for as
long as necessary to reduce it, irrespective of other shortages. But because
strategies compete for resources, a global State must tell strategies what
they need to know to resolve these conflicts. In particular, strategies con-
sult the resource-demand slot (Fig. 3.3), which contains the overall level
of demand for resources, when they decide which tactical instantiations to
prefer. This slot contains a recomrnended termination tactic, which may
be restore, improve, or time, as discussed above. McD determines which

72

MWauM -of:
Aclive-typou'ms u:- h&mbrgew-shartage soft-surplus

app Is-ole-shortage
ACtive-pkmu: (Carm-2 pan-6 plan-7)
Estmted-reamu-deffndw m: increasing
Featise-Ws cu:
G~a-dwnd-UWmoytu: (light 1light ftoderate)
QWbaI-mi-knvdeu: noderate
Lsten-kItevalcu: 4
Patch-Ummaj 3
R mu-alocatim-fNstory cu:

((2 'Cashier' 'Free') (5 *&a* 'GrII11))
R, m-r-demninai: inorove
R zv-dmia-tstry mu: (I restore)
ARnuuu -ffww8u: deternine-dyaniucal 1y

surp us-evolouees-r lust f ree-ereloyees-filust
FW~ -wtag-lovaj: 9
hlepon-prefwwa u: quick

6tu&Uan,-pmfwwic!%aj: surplus
Stniteff-itryou:

(I nonltor 2 svice-surplus surplus 3 listen 4
tdate-denamd 5 ...)

Stm- Ou*.~: S
tkW.s.g.e.,L,.-sv4 toyou: (1 2 1)

ULdte-eaion-voaawus muz uns

Figure 3.3: The State frame, which represents McD's global state

73

termination tactic is appropriate by considering known shortages, surpluses,
breakdowns, available resources, and rough estimates of trends in the values
of these parameters. If the demand for resources is high, then State rec-
ommends conservative termination tactics-strategies run for N time units
and then quit (the patch-time slot sets N.) Conversely, if the level is low,
then State recommends termination tactics that permit strategies to run
until they solve their problems. Intermediate levels result in tactics that
terminate strategies after some improvement.

State also maintains a list-called active-hypotheses-of problems
(i.e., surpluses, shortages, and breakdowns) and a list of active-plans,
which are the problems McD has responded to. The strategy-history is
simply a list of strategies in the order they are called, so McD can see when
strategies were last called. The list in Figure 3.3 shows that in addition to
surplus and shortage strategies, McD has strategies to listen for incoming
orders to update demand and other statistics, and to monitor measures
of progress and termination conditions.

McD maintains a projection of resource demands, called estimated-
resource-demand that contains a moving average of resource-demand.
In Figure 3.3, estimated demand is increasing. Obviously, estimated demand
can be calculated in many ways; for example, we know that demand for food
(and thus resources) increases during breakfast, lunch, and dinner hours, and
so might include the time of day in the calculation of estimated resource

demands.
The purpose of the other slots in State will be described later, when we

present examples of McD.

3.5.2 How McD Works

McD has a basic control cycle in which the interpreter first polls strategies
to find those that are applicable, then ranks the applicable strategies, and
then gives control to the top-ranked strategy. That strategy will attempt to
change McD's configuration (i.e., the allocation of resources to stations) and
will then return control to the interpreter. If the strategy succeeds-and it
may not if resources are unavailable-the new configuration will remain in
effect until the strategy terminates it. We now describe these steps in more
detail.

74

3.5.3 Polling and ranking strategies

At each cycle, the interpreter asks each strategy whether it is applicable and
thereby discovers whether McD has surpluses, shortages, or breakdowns at
any stations. A frame-like structure is created for each problem situation,
and a pointer to it is added to the active-hypotheses list in State. Some-
times, several instances of the same situation arise (e.g., several shortages),
and a strategy will be applicable to each. This and other factors are com-
bined by a function in the relevance slot of each strategy. Relevance repre-
sents the strategy's own assessment of how much it can contribute to keeping
McD running smoothly. In general, the more situations to which a strategy
applies (and the greater their severity), the higher its relevance score. The
strategy with the highest relevance is selected for execution unless another
with equal relevance was invoked less recently. Note that, except for this
last clause, the selection of strategies is based on information local to the
strategy frames. The interpreter then turns control over to the selected
strategy.

3.5.4 Executing a strategy

When a strategy gains control, it instantiates itself with tactics. The first
thing a strategy such as shuffle (Fig. 3.2) does is to determine its focus,
which in this case is a shortage of hamburgers and fries. Currently, a
shuffle can select only a single problem (e.g., hamburgers) but eventually
it will be able to address multiple problems from State's active hypothe-
ses list-if the problems are on its focus list and if State permits it the
resources. After selecting a problem, shuffle selects the most appropriate
measure of progress, and also the most appropriate terminating conditions,
given the resource-demand slot of State.

shuffle then tries to run its recipe. Since it is an instance of a menu-
item-shortage strategy, it will try to find additional resources-in this
case, an employee to move to a hamburger grill. This is also a tactical
issue. As mentioned earlier, the two tactics for finding employees are to favor
unassigned people and to favor those on stations producing surpluses. State
tells strategies which of these tactics to select; the resource-preferences
slot in Figure 3.3 says to take free employees before those on surplus stations.

75

3.5.5 When strategies fail

If a strategy like shuffle cannot find an employee, it will return control
to the interpreter without taking any action, and record its failure in the
resource-shortage-level slot of State. Another kind of failure happens
when a shortage plan successfully finds an additional employee, but cannot
use him because the station that's producing the shortage is already staffed
to capacity. Lastly, a plan can fail if it attempts to take an employee off
a station that's producing a surplus, but nobody is working at the station
(i.e., the surplus is residual).

3.5.6 Termination of strategies

Assuming shuffle succeeds, it will move an employee to a grill and mark that
employee as busy. This means that no other plan can grab that employee
until shuffle's termination condition is satisfied, at which time the employee
is marked as free. Recall that when a strategy is executed, it looks at State
to determine one of three terminating conditions: the strategy is allowed to
work until the problem is fixed, or until progress has been made, or for N
time units. One tactical issue is whether the terminating conditions of a
strategy should be set once, or whether they should be updated on every
cycle. The argument for the latter is that if resource levels were very tight
initially, but relax over time, then the strategy ought to be allowed additional
resources; and, conversely, if resources were plentiful immediately but now
are tight, the strategy ought to be allowed fewer resources. Clearly, there
are many tactical possibilities for terminating strategies, but currently, McD
allows just two:

static-t ermination-condi tions -termination conditions are set once
when the strategy is created and not changed.

dynamic-termination-conditions -termination conditions are updated
dynamically on every cycle.

These tactics are selected by the update-evaluation-measures slot of
State.

In special cases, McD needs resources more rapidly than they are pro-
vided by the mechanism just described. It then invokes a strategy called
the terminator. This strategy is always applicable, but its relevance is
related to the resource-shortage-level slot of State, so that it is selected
for execution only when this level is high. This, recall, is determined by the

76

number of shortage strategies that fail. Once invoked, the terminator will
mark resources as free even if their termination conditions have not been
met. Three tactics determine how aggressively it does this:

benign-find a resource on a station that has just a small problem (i.e., a
small surplus or shortage) and that has already made some progress
toward solving the problem.

edgy-like benign, except the problem can be moderate.

aggressive-first look for resources on stations where there has been
progress, and mark a resource at the station that has the least se-
rious problem; otherwise mark a resource at the station with the least
serious problem; but if all stations have equally serious problems, mark
the resource that has been assigned longest.

These tactics are currently selected by the resource-demand slot of
State. It takes one of three values, restore, improve, and time, depend-
ing on the degree of resource demand (res-tore is the least demand). Re-
source demand is calculated from historical, current, and anticipated aspects
of State.

3.6 Examples

In the following examples, we will show how we tuned the McD system by
adjusting the values in slots of strategy frames so it would maintain a fairly
"trim" configuration. Although this will not demonstrate the necessity of
the slots in question, it will demonstrate their sufficiency. We found that we
could quickly improve McD's performance to a point using relatively local in-
formation. However, once the system achieved a certain level of performance
it became impossible to predict whether further changes would improve or
detract from performance, which raises questions about the utility of global
information.

We evaluate McD's performance by several metrics. One is a graph,
over time, of the supply and demand for various items. Figure 3.4 shows
a graph in which McD's performance is poor: Although it doesn't have
large shortages or surpluses of food items initially, by time=20 it develops
a shortage of hamburgers, then a little later a surplus of fries. Around
time=40, McD begins to develop a massive shortage of sodas, and around
time=50 a slightly smaller shortage of hamburgers, and then a shortage of

77

0. _,, = .= . -
. _.. ,

_

CDC

. . .JP l

4D 1-_

,..~ .|°•° ,°O . 2

so o -0.e..-

U.3

I

---

Cto.

. . .. , _..

.~~~~o
Cu 3

. :

. . . .JI . . . " - " .

...

.3 C.. . . "

.
.

......................... &. .* an 0f

........ .. M ..

::: i:: : - :::__ _ _ = -
..- .. .- . I ..

Mg. -.

5-hi0 -. . • -...

U. I. ' .5, 5 , -.

•. 1,. , - =.-. .- . - s,

*Lzr 3. , C=: i o- -n:'a 5'~. .n e or
ILI

ri~~ra 3..: ~nho. initial perfor-mance of M=I)

78

fries. As these shortages develop, one can see a corresponding increase in
the length of time that customers must wait. This is due almost entirely
to waiting for food from the kitchen, although around time=65 customers
must wait a short time for cashiers.

Each movement of an employee is represented in the graph by a vertical
dotted line, grounded at a pair of characters that represent the initial and
final location of the employee. For example, shortly before time=40, McD
takes an employee from a cashier station (C) and moves it to the drinks
station (D), probably to correct the slight shortage of sodas. In fact, the
shortage disappears around time=40, and shortly thereafter McD moves the
employee from the drinks station to the list of unassigned employees (X).
This, it turns out, was a bad move, since the drinks shortage immediately
becomes very serious.

These moves are proposed by strategy frames based on relatively local
information: A frame sees a shortage, surplus, or breakdown, and proposei
itself to the interpreter. The choice by the interpreter among strategy frames
is also based on relatively local information: It selects the strategy frame
that is most relevant, that is, the one that potentially fixes the most problems
of greatest severity. It does not predict the effects of the resource allocations
suggested by each relevant strategy, and in particular does not predict the
interactions between these resource allocations and the ones that are already
in effect.

McD's performance on each run is summarized with a table of statistics
(e.g., Figure 3.5 presents the statistics that correspond with Fig. 3.4). We
record the mean surplus, shortage, and total supply of each food item, the
standard deviation, and the number of each situation. In Figure 3.5, there
are 33 situations in which we had a surplus of hamburgers, in which the
mean surplus was 30.18 with a standard deviation of 17.98. More signifi-
cant, of course, is the 65 shortage situations, in which the mean shortage
was a distressing -86.31! Overall, the mean level of supply for all 98 cases
(including shortages and surpluses) was -47.08. We have a similar pattern
of results for the other food items. A summary of these figures is found in
the row called "Totals," which contains the weighted means of surpluses,
shortages, and overall supply for all the food items. The weighting reflects
the rate at which food items can be produced and are typically consumed.
Thus, big shortages of hamburgers "count the same" as smaller shortages
of apple pies, because the latter are produced more slowly. Figure 3.5 also
includes the average wait for a cashier, and for food once an order has been
placed; these figures are 0.27 and 12.20, respectively, indicating that a cus-

79

tomer can expect to order in about one-quarter of a time unit, but wait
12 time units for food! Lastly, Figure 3.5 includes information about the
efficiency with which McD uses its employees. We record the total number
of units worked by all employees and the number of those units in which
they were productive (not idle). The ratio, or utility mean, is just the ratio
of these statistics. In this case, the employees were not particularly efficient
(71%).

McD's performance in Figure 3.4 and Figure 3.5 is pretty poor. Now we
will show how, by modifying the slot values of McD's strategy frames, we
improved performance. The previous example and all the subsequent ones
use the order set shown in Figure 3.6. It contains 100 blocks of orders. Each
block contains between zero and eight orders (distributed around a mean of
four orders), and each order includes zero to seven orders of pies, burgers,
fries, sodas, and shakes.

The performance illustrated in Figure 3.4 and Figure 3.5 is poor for
several reasons. First, the mean wait for food is over 12 units-much too
long. This is due in part to the enormous mean shortage (-53.9): McD is
out of everything most of the time, so customers have to wait. Indeed, there
are 308 shortage situations and 176 surplus situations. Our immediate goals
were to reduce these shortages and reduce the waiting time for food.

By changing the values of slots in strategy frames, we were able to affect
the following aspects of McD's behavior:

Preference among situations. McD can react more quickly to surpluses,
or more quickly to shortages, or equally to both, as determined by the
situation-preferences slot of State.

Where to get resources. McD can either favor taking resources from
stations that are producing a surplus, or it can favor taking the re-
sources from a list of free resources. In the first case, if no stations
are producing surpluses, McD will look to the free list; in the sec-
ond case, conversely, if there are no free employees, McD will look at
stations producing surpluses. This choice is dictated by the resource-
preferences slot of State.

Speed of response. McD can react quickly or slowly to situations, as
dictated by the response-preferences slot of State.

Whether to re-evaluate termination conditions. McD can allow
strategy frames to re-evaluate their terminating conditions dynanii-

80

Scale: MaT value 8 8

slewki per Order

6 5 10 15 20 25 3 35 40 45 50 55 60 65 70 75 60 05 .4 950

Ord" Snt Inr Al Fxamup,
05/06/88 11:-40:06

Figure 3.5: Statistics for Production and Utilization from the Initial

81

re-evaluate termination YES resource-p SURPLUS response-p QUICK situation-p SURPLUS

Surplus Shortage Total

+---------------+------------------------------+-------------------------------

HAMBURGERS I I I I

mean 1 30.18 1 -86.31 I -47.08 I

st. dev I 17.98 1 75.92 I 83.44 I
number I 33.00 1 65.00 I 98.00 I

+-------------------+--

FRIES I I I
mean 25.94 I -41.66 I -8.82 1

st. dev i 17.28 I 30.73 I 41.90

number i 47.00 50.00 I 98.00
--------------------- --

APPLE-PIE I I I I

mean I 9.17 I -19.63 I -5.91 I
st. dev I 4.95 i 14.99 I 18.26

number I 46.00 j 51.00 I 98.00
+------------------------------+-------------------------------+

SHAKES I I I I

mean I 7.80 I -27.55 I -11.63

st. dev I 4.71 I 20.78 .23.31

number I 41.00 53.00 I 98.00 I
--- ---------

SODA I I I I

mean I 19.11 . -154.92 I -138.94 I
st. dev I 9.96 I 120.10 i 125.04 I
number I 9.00 I 89.00 I 98.00 I

+--+-------------------------------

+-------------------+--

Totals (weighted) I I I I
mean 1 17.11 I -53.91 I -27.74 I
St. dev I 11.94 I 52.92 I 54.53 I
number I 176.00 I 308.00 I 490.00 I

-- +

Avg. Wait over all Customers: St. Deviation

Cashier Wait 0.27 1.37
Kitchen Wait 12.20 17.95

Employee Stats:

Total Productive time units 478
Total On Duty time units 678
Utility mean 0.71
Utility st. deviation 0.19

Figure 3.6: The order set used for all examples

82

cally, or it can set terminating conditions once for each strategy as it
is invoked. This is determined by the update-evaluation-measures
slot of State.

The version of McD discussed earlier was configured to respond to sur-
pluses before shortages, to get employees from surplus stations before free
employees, to respond quickly, and to re-evaluate its terminating conditions.
Since this version generates huge shortages, it makes little sense to attend to
surpluses before shortages. Thus we ran the system again with it attending
to shortages first. The results were much better: The mean surplus was 24.7,
up from 17.1; but the mean shortage was -32.2, down considerably from -
53.9; and the total mean supply was -4.9, down from -27.4. Moreover, the
cashier wait dropped from 0.27 to 0.08; and more importantly, the kitchen
wait dropped from 12.2 to 6.5. There was no improvement in the efficiency
with which McD used its resources. Clearly, attending to shortages before
surpluses improves McD's performance.

Still, it's awkward to wait 6.5 time units for one's food. We also noted
that cashier wait was almost nonexistent. If cashier wait was increased
slightly, then it might delay some orders being placed and reduce the short-
ages, and thus the kitchen wait time. In our next run we changed the appli-
cability conditions for cashier shortages and surpluses, to register a shortage
less quickly and to register a surplus more quickly. (Although these functions
are not shown in any of the Figures in this paper, they too are explicit and
easy to modify.) The net result, we hoped, would be to free up cashiers and
make them easier to reassign. At the same time, we changed the resource-
preferences slot in State so McD would look for resources on the free list
before surplus stations. The net result was to improve performance slightly.
The cashier wait increased slightly (from 0.08 to 0.42) and the kitchen wait
decreased slightly (from 6.5 to 5.8). At the same time the mean surplus
decreased a little and the mean shortage improved a little.

Beyond this, we had little success improving McD's performance. This
is a story that has repeated itself many times: We can get performance
to some reasonable level by a small number of configuration changes, all
of which rely on relatively local information. After that, improvements in
performance seem to require relatively global information that is difficult
and sonrAimes impossible to acquire. For example, we tried changing the
applicability conditions for cashier shortages, above, in the hope that, by
making it harder to get to a cashier, fewer orders would be placed, and
so the wait for food would be decreased. This argument, based on non-

83

local interactions of assignments of resources, suggests that relatively global
information could improve McD's performance; but as noted above, this
strategy had only a small effect. In fact, most of our attempts to predict
the effects of interactions of resources, and so improve overall performance,
failed. Beyond the effects of the really big changes, which can be selected
based on local information, the other effects are too susceptible to the global
interactions of many variables, and levels of shortages and surpluses, and
other dynamic factors, for us to predict them.

3.7 Conclusion

Starting from the position that complex control strategies can be viewed as
the interaction of smaller strategic units, we developed a representation for
these units and showed how their tactical instantiations could be adjusted to
tune control strategies. We showed that particular slots of strategy frames
are sufficient to control McD in a dynamic environment, but we did not
show their necessity. Nor were we able to predict the effects of changes to
all slots. Clearly then, research with strategy frames is nascent.

Future research with strategy frames will emphasize the subtle inter-
actions between how strategy frames are instantiated with tactics and the
dynamic environment in which they are used. That is, we want better pre-
dictabilify. This is essential if we are to study the tradeoffs between the
costs and benefits of relatively local and global information. Currently, we
have no reliable methods to predict the global interactions of strategies' al-
locations of resources, so we can't guess at the utility of this knowledge.
This is our priority for work in the future.

Strategy frames were motivated by the need for declarative represen-
tations of strategy, and by the observation that, in many systems, devices
with similar functionality had been implemented in an ad hoc way. Ideally,
strategy frames will become part of the AI programmer's toolbox, complete
with tactical instantiations for various tasks, and interpreters capable of dy-
namically selecting the most appropriate instantiations. Before that, there
is much work to be done: Strategy frames imply "emergent" control, that is,
control strategies that arise from interactions of individual control decisions.
In McD and in general, these decisions allocate computational and other
resources. The basic question is whether the global interactions between
these decisions must be examined before they are taken, or whether accept-
able control can be based on relatively local information. Our preliminary

84

experiments suggest that local information is sufficient to replace grossly
inefficient configurations of McD with more efficient ones, but beyond that,
performance depends on currently unpredictable, global interactions among
resource allocations. Further progress depends on making these interactions
more predictable.

85

Part III

Complex and Dynamic
Environments

86

Chapter 4

The Centrality of
Autonomous Agents in
Theories of Action Under
Uncertainty

4.1 Introduction

Reasoning under uncertainty has two aspects. One is to assess the most
likely states of the world, the other is to act on t: _ e assessments. The
former is often called judgment and the latter decis.on making. Judgment
is the primary focus of research on reasoning under uncertainty in artificial
intelligence (AI). Although many AI systems make decisions, those that
serve as examples of research on uncertainty typically do not. Instead, the
literature on uncertainty in Al is concerned almost exclusively with a single
aspect of a single generic task: combining evidence in interpretation tasks.
Expert systems for medical diagnosis serve as the canonical AI systems in
this research. Other aspects of intcrpretation tasks that do involve decisions,
such as deciding which evidence to acquire and deciding how to treat a
patient given a diagnosis, have been largely ignored. Other generic tasks and
domains, such as planning, design, robotics, and process control, have also
been neglected. But AI is increasingly concerned with decision-making in
such tasks and domains, and is much less concerned with judgment in simple
diagnosis. Thus, the research published in, say, the proceedings of the AAAI
Workshops on Uncertainty and Artificial Intelligence is largely irrelevant to

87

many current AI research problems, even though these problems involve
considerable uncertainty.1

This paper describes a class of problems that concern how agents act
in uncertain environments. Lately, these have been called planning prob-
lems and the agents planners (e.g., (McDermott, 1987], [DAR, 1987]). We
are writing this paper to urge researchers in the uncertainty community
to expand their focus to include planning problems. We advocate this
for several reasons. First, although uncertainty is the most salient char-
acteristic of planning problems, current research in the uncertainty com-
munity tells us nothing about how to design planners. Second, much of
the literature on planning comes from the logicist community in AI (e.g.,
[Georgeff and Lansky, 1987]), and so emphasizes nonmonotonic reasoning
over probabilistic approaches to uncertainty. But probabilities (if you can
get them) are better suited than assumptions to the task of selecting ac-
tions, because they can be combined with utilities (if you can get them) and
ranked.

Third, we believe that too much energy is devoted to making ever-finer
distinctions between methods for combining evidence; just as symmetric
efforts are devoted to showing that these methods in fact mathematically
subsume one another, or can be incorporated one within the other. These
debates ignore a fundamental question: for what purpose are we combining
evidence? Interpretation tasks provide the illusion of a purpose; but when a
researcher from the uncertainty community says "medical diagnosis," he or
she usually means "evidence combination" only, not planning the diagnosis,
not deciding between treatments, and not prognosis. In contrast, planning
depends on evidence combination and so provides a context for research on
judgment. Planners need to interpret data from the world well enough to
act; they need to know the likely outcomes of actions well enough to select

'For example, of 51 papers published in the Proceedings of the Third Annual Work-

shop on Uncertainty in Artificial Intelligence, roughly one-half mentioned no application
whatsoever but were clearly influenced by diagnostic expert systems, two described vi-
sion systems, and all but four of the rest described diagnostic applications, or algorithms
for learning or knowledge acquisition for diagnostic applications. The remaining four are
Tong and Appelbaum's discussion of the relationship between knowledge representation
and evidential reasoning in information retrieval tasks [Tong and Appelbaum, 1987]; Steve
Hanks' discussion of the persistence problem in planning (i.e., how does the passage of
time affect one's belief in propositions) [Hanks, 1987]; Cohen's description of a program
and an architecture for planning diagnoses [Cohen, 1987b) (see also Secs. 4.4.1, 4.4.2 of this
paper); and Wellman and Heckerman's analysis of the range of tasks facing all intelligent
agents in moderately complex environments [Wellman, 1987].

88

among the actions; they need to know the probabilities of events beyond
their control well enough to prepare for them. How well is "well enough"?
Let us not debate this in abstract interpretation tasks, but in the context
of planning tasks.

Planning is concerned with the interaction of agents and their environ-
ments. Time is an important dimension of this interaction: agents may act
or remain inactive, but time still passes. Agents are assumed to have goals,
among them, finding out about the environment, changing it in some way,
changing themselves, changing their relationships with each other and with
the environment, and so on. Agents also have plans, which for now are
just internal structures that dictate how agents respond to their environ-
ment. Plans may be reflexes, multi-action schemas, symbolic contingency
plans, and so on. Agents sense their environments. Often, many layers of
inference separate sensation from perception. Agents also adapt to their
environments.

Uncertainty is the most salient characteristic of the relationship be-
tween agents and their environments. Consider some sources of uncertainty:
Agents' knowledge about the environment may be inaccurate and incom-
plete. The space of possible'futures expands-combinatorially, so agents can-
not foresee the outcomes of more than a few actions. An agent is typically
not the only actors in environments, and the behavior of other agents may be
unpredictable. The environment itself may be unpredictable. Agents may
have limited time to reason and act; to meet deadlines they may have to rely
on heuristic, approximate, and thus uncertain methods [Lesser et al., 1988].
Time also introduces questions about persistence; for example, how does
passing time affect belief in a predicate such as "can't eat another thing"
[Hanks, 1987]?

Time is important for another reason: agents themselves persist and
may have many opportunities to achieve their goals, so the "one shot" view
of decision-making is typically not appropriate. Wellman and Heckerman
[Wellman, 1987], who introduce the term one-shot, point out that in most
situations, agents are not required to decide anything, but can instead collect
data, converse, run experiments, and so on. Decisions are rarely unrecover-
able: agents can usually recover from decisions with bad outcomes at some
cost.

Many tasks can be described in terms of agents interacting with their
environments. Those studied in AI include robot path planning, process
control, intensive care unit monitoring, learning to avoid air traffic control
mishaps, planning diagnoses, and fighting forest fires. All these tasks de-

89

0

mand judgment, that is, combining evidence to assess the current state of the
world. But they also require decisions about how to act in pursuit of goals,
in environments that are uncertain for the reasons described above. We
urge the uncertainty community to embrace these tasks because they offer
much richer opportunities to study reasoning under uncertainty-especially
decision-making-than simple interpretation tasks.

The following sections discuss planning from three perspectives. Sec-
tion 4.2 focuses on the design of planners, Section 4.3 presents an overview
of the Al planning literature in terms of these design issues, and Section 4.4
discusses planners we have built specifically to study reasoning under un-
certainty.

4.2 Selecting Actions Under Uncertainty

How do agents select actions to achieve their goals in uncer-
tain environments? AI and related fields offer a somewhat be-
wildering array of answers. Some are very general; for exam-
ple, best-first search [Barr and Feigenbaum, 1981] and decision analysis
[Winterfeldt and Edwards, 1986] dictate that agents should "do what's
best," as assessed by unspecified heuristic evaluation functions and util-
ity functions, respectively. General planning algorithms find sequences
of actions, prior to their execution, to satisfy goals and constraints (e.g.,
[Cohen and Feigenbaum, 1982]). In fact, this is a traditional view of plan-
ning; today, planning denotes several other methods, most of which as-
surne some knowledge about the environment. These include case-based
planning, where agents recall, modify, and execute plans from memory
[Hammond, 1986], [Sycara, 1987]; and reactive planning, where agents are
constructed to respond automatically to changes in the environment (see
Secs. 4.3, 4.4.1 for details). Finally, we have seen many control approaches
to selecting actions under uncertainty. Control strategies specify how pro-
grams should act. New control strategies are invented when programs do
not behave properly (e.g., they ask questions in the wrong order, or con-
sider alternatives irrespective of their prior probabilities). Sometimes, we
can pry apart control strategies from their implementations, but in general
this is difficult [Gruber and Cohen, 1987a]. We have discussed the prob-
lem of selecting actions under uncertainty from the perspective of control in
recent papers [Cohen, 1987b], [Cohen et al., 1987a], [Cohen et al., 1987b],
and surveyed the relevant literature in [Cohen, 1987a]. Here, we do not

90

discuss control except in Section 4.4.2.
In this section, we describe the issues that arise when designing au-

tonomous agents that operate in complex, real-time, dynamic environments.
These issues drive our work on reasoning under uncertainty.

4.2.1 Internal and external action

AAe the actions Laken 'V the agent internal or external? Intuitively, this is
the distinction between thinking and acting. For example, chess requires an
internal search of moves and countermoves before committing to an exter-
nal action, an irrevocable move. Similarly, planning traditionally involves
searching internally for an ordered sequence of actions that will achieve a
goal, then executing them externally. Many Al systems take no external
actions at all; for example, some natural language parsers simply take input
and process it internally. Other systems' external actions are limited to re-
questing data; for example, the MUM system (see Sec. 4.4.1) is designed to
ask medical questions in an appropriate order.

4.2.2 Balancing internal and external actions

What factors affect the balance between internal and external action?
Should we explore the space of alternative actions before committing to
one, or should we commit to the first action that seems appropriate? The
answer in general depends on the costs and benefits of searching through the
outcomes of external actions. This search is referred to in the planning lit-
erature as projection. Sometimes we cannot project, or projected outcomes
may be irrelevant, or we may lack the resources to compute them. When
projection is uninformative, we may simply execute an action to see what
happens. A related question is: when should a problem-solver anticipate
the outcomes of multiple external actions? Since actions are typically not
independent, the cost of searching the space of joint outcomes is combina-
torial in the number of actions. If, in addition, we cannot predict some of
the outcomes, then searching this space may not be worth the effort.

4.2.3 Representing the external world

How accurate is the internal representation of the external environment?
We assume that an AI program's internal representation of a chessboard is
accurate, at least with respect to the positions of pieces. Traditional planners
made similar assumptions: the environment is precisely as we represent it

91
0

and doesn't change except by our action, and our knowledge of these changes
is complete and accurate. Clearly, planning in the real world cannot proceed
on these assumptions. Much of the discussion later in this paper is about
how to plan when the internal representation of the external environment is
incomplete and inaccurate.

Uncertainty in a planner's world model comes from several sources, in-
cluding these:

" The planner may have an inaccurate or incomplete understanding of
the principles that govern the dynamic behavior of the environment.

" The planner may have inaccurate information about the current state
of the environment.

* The system may not have adequate time (or other resources) to assess
the state of the environment, the outcomes of actions, or changes in
the environment beyond its control.

4.2.4 Real-time constraints

Are real-time constraints placed on the agent by the environment? As agents
are designed to have more autonomy, we must be concerned about the time-
liness of their planning, plans, and actions. We regard real-time planning
problems as falling between the extremes of adequate time to produce a good
solution and inadequate time to produce any solution. Real-time planning is
thus concerned with tradeoffs between the quality-broadly construed-and
the time requirements of a plan. We do not regard faster computers or more
efficient planning algorithms as solutions to the real-time planning problem
in general, though they will obviously help in specific applications. The
general real-time problem starts with the premise that the available time
will at some point be inadequate. It demands that our planners adapt their
processing to produce the best possible solution in the available time. This
has been called approzimate processing because it implies that the solution
to a problem will approach but not meet all of our goals [Lesser et a!., 1988].

4.2.5 Constraints between actions

Actions are rarely independent; can dependencies between actions help select
actions? Some actions interfere, so that one prevents another or undoes the
outcome of another. Some actions are redundant, so one achieves the s.me
state or gets the same evidence as another. If the outcomes of actions

92

were certain, then redundancy might be inefficient; but we can also exploit
redundancy to make up for uncertainty about the outcomes of actions. In
addition, constraints between actions will determine the extent to which
taking one action commits the agent to a particular series of actions in the
future, and so emphasizes the importance of considering such constraints
before premature conmuittment to a single action.

4.2.6 Where do plans and goals come from?

Do actions come from internally-generated goals and plans, or are goals
and plans epiphenomena of the direct interaction of the agent with its en-
vironment? In most AI planner, goals and plans select actions. But the
environment can play the same role. Thus, an agent that has no goals or
plans but responds to its immediate environment will appear to have goals
and plans, if the environment provides regularity and continuity. From this
perspective, goals and plans are not explicit structures within the agent but
emerge from its interaction with its environment. An intermediate position
is associated with "Simon's Ant" ISimon, 1981]: the problem solver is as-
suned to have goals and plans that bias its selection of actions, but the
environment also plays a greater or lesser role.2

4.2.7 Global and loced evaluation of actions

What is the relationship between global properties of plans and local plan-
ning decisions? Plans are generated by selecting actions, so to generate
"good" plans one must somehow evaluate the potential component actions.
It is prohibitively expensive to calculate the extended ramifications of ac-
tions, so many planners base decisions about actions on their local outcomes.
But sequences of actions that look good from a local perspective are not
necessarily good plans, because they may not satisfy global criteria; for ex-
ample, an agent that always selects the cheapest applicable action will not
find the cheapest plan if that plan requires a sequence of actions ordered
by the inverse of their costs. The agent's evaluation of the local outcome of
actions, which may frequently ensure low-cost plans, does not guarantee the
lowest-cost plan in all cases.

Real-world plans must satisfy so many criteria that agents will not be
able to generate optimal plans, that is, plans in which the outcomes of all

2Simon notes that the path of an ant in a sand dune appears on a fine scale to be
almost random, since the ant must respond to random obstacles. Yet it has a general
direction dictated by where the ant wants to go.

93

actions look as good as possible from a global perspective. Plans should be
inexpensive, flexible, and likely to succeed; they should take relatively little
time to generate, require little monitoring, and so on. Since optimality is
not a realistic aim, it is neither realistic nor desirable to project the global
ramifications of actions. Nevertheless, agents can get into serious trouble
if they don't project to some depth the ramifications of some actions. In
Section 4.4.2, we discuss the characteristics of the environment that require
agents to project; and conversely, the kinds of environments in which agents
can generate good (if not optimal) plans without any projection, that is, by
evaluating only the local ramifications of outcomes of actions.

4.2.8 Adaptation

A problem solving agent must have knowledge to act in the ways advocated
in this paper. As we note in Section 4.3, general planners are weak, but
powerful planners require knowledge about their environments. This raises
three issues: what is learned, how is it learned, and what form does it take?
To plan by projection, agents must know which actions are applicable and
which outcomes are possible, given their goals and the state of the envi-
ronment; and they must evaluate those outcomes by projection. Planning
without projection also requires knowledge about the applicability of ac-
tions, but it may not require anything else. An agent may simply maintain
a list of situation-action pairs that tell it what to do in each state of the en-
vironment. In this case, the agent's actions are selected by its environment.
Such agents are adapted to their environments to the extent that they have
learned which actions are appropriate in which states of the environment.
We believe that most agents will project in some situations and simply react
in others, so both kinds of knowledge must be learned.

One advantage of reaction, as opposed to projection, is that agents can
learn how to act in the absence of explicit knowledge about the dynamics
of the environment. For example, one can learn to ride a bicycle-that is,
how to balance, steer, and so on-without knowing the physics of balancing
and propelling the bicycle. Anecdotal and scientific evidence indicates that
one should not ride a bicycle by projecting the ramifications of each tilt
and wobble. The reason we do not need to project in these situations is
that their outcomes always depend on predictable interactions of the same
factors-gravity, one's angle, velocity, and so on.3 Action sequences such

3 Paradoxically, projection should be reserved for situations where the relationships
between actions and outcomes are not completely predictable; if they were, then-they

94

as pedalling a bicycle are often called skills. In humans they tend to be
automatic, that is, to require no conscious effort.4 People work hard to
develop skills in real-time environments such as driving cars, flying jets, and
most sports, because these environments do not afford the opportunity to
think (see Sec. 4.2.4).

Although most knowledge bases are built by hand, agents in complex
environments will have to learn autonomously how to act. Even in a simple
medical domain, we found it necessary to augment standard knowledge-
acquisition mechanisms with an ability to automatically generalize the ac-
quired knowledge to a broader range of situations (see Sec. 4.4.2). AI has de-
veloped many learning mechanisms (e.g., [Michalski et al., 1986]) that may
be appropriate for agents learning how to act.

The knowledge that agents need to select actions can take many forms,
including situation-action rules, general preference rules (see Sec. 4.4.2),
contingency plans (see Sec. 4.4.2), utility functions, scripts, and so on. The
form of the knowledge depends on how it will be used, and in turn on the
demands placed on the agent by the environment. For example, we noted
above that humans adopt automatic skills in time-constrained environments;
unfortunately, skills are inflexible and difficult to interrupt. Thus, agents
must learn skills that run to completion before the environment changes in
ways that make them inapplicable.

4.3 An overview of the planning literature

AI research in planning, which has concerned itself more than any other
part of AI with the problems of selecting actions to achieve goals, can be
viewed from the perspective of these dimensions. Early on, researchers
adopted predicate calculus as a representation language for planners and
viewed planning metaphorically (and sometimes literally) as theorem prov-
ing. The initial state of the world was captured in a set of axioms, the goal
state was a theorem, and the plan was a proof that the goal state could be
reached from the initial state. This approach to planning is found in HACKERP

[Sussman, 1975], GPS [Newell and Simon, 1972], STRIPS [Fikes et al., 1972],
INTERPLAN [Tate, 1974], Waldinger's planner [Waldinger, 1977], ABSTRIPS

would eventually be learned as situation-action pairs.
"For a discussion of the distinction between automatic and controlled behavior, see

[Schneider and Shiffrin, 1984]. Computational models of these behaviors and their in-
teractions have been sugggested by Schneider [Schneider, 1985] and Day [Day, 1987b],
[Day, 1987a].

95

[Sacerdoti, 1974], NOAH [Sacerdoti, 1975] and NONLIN [Tate, 1977].
From our perspective, the most salient characteristic of these planners

was their almost complete avoidance of uncertainty (see Sec. 4.2.3). These
programs were crafted under the assumptions that they would have com-
plete, accurate knowledge about the state of the environment, and complete,
accurate knowledge about the immediate outcomes of all actions. Actions
were represented (and indexed) in terms of their immediate outcomes; for
example, in the blocks world, one of the immediate outcomes of the action
(take-off x y) is (clear-top y)-removing z from y clears off the top of y.
But although these planners knew the immediate outcomes of actions, they
were required to search combinatorial spaces of extended ramifications. For
example, an action such as (put-on red-block green-block) may achieve an
immediaLe goal, but may later impede progress toward a goal that requires
green-block to have a clear top. A better plan may involve moving green-block
first and then putting red-block on it. Early planners dealt with uncertainty
about the extended outcomes of actions by various forms of search. Some
algorithms were more efficient than others (i.e., required less backtracking).
But all assumed that, because the immediate outcomes of actions are cer-
tain, the extended ramifications could be discovered by projection, that is,
by internally simulating the actions in a plan before committing to any
external actions.

Because plannlers were amsurned to know the current state of the envi-
ronment and the outcomes of all actions, and because it was assumed that
the environment did not change except through the actions of the planner,
there was really no need to distinguish internal and external actions. Actions
could not introduce discrepancies between the projected representation of
the world and the actual world.

More recently, AI has developed planning methods thaL du net depend
so heavily on these assumptions. One approach, which modifies the earlier
planning algorithms relatively little, involves replanning when the environ-
ment turns out to be different than projected. For example, Wilkins' SIPE

planner was very much like NOAH [Sacerdoti, 1975], but when discrepan-
cies were detected between the environment and its internal representation,
SIPE would efficiently modify its plan, maintaining as much of its origi-
nal plan as possible [Wilkins, 1985]. Related replanning methods have been
developed by Broverman and Croft [Broverman and Croft, 1987].

Early planners assumed that actions were instantaneous, and that their
effects persisted until they were explicitly negated. However, actions take
time, and the states they bring about may be ephemeral. Temporal logics

96

and temporal planners address these issues (e.g., see [McDermott, 1982],
[Allen, 1984], [Dean, 1987a] for work on temporal logic, and rVere, 1(181],
'Hanks, 1987] for temporal planners).

Just as actions take time in real physical environments, planning and
replanning themselves take time (see Sec. 4.2.4). In real-time planning,
the agent must allocate a limited resource-time-to planning, replanning,
monitoring the environment, and action. Time usually has costs (e.g., in
the fire-fighting domain discussed in Sec 4.4.3, forests are consitmed while
the agent plans.) The balance between internal and external actions is
further complicated by uncertainty about the environment: to meet time
constraints, agents may begin sequences of actions before they have all the
evidence they need; but if they wait, an opportunity may be lost and the evi-
dence will be of no value. Recent work on real-time planning includes that by
Durfee [Durfee, 1987], Lesser, Durfee and Pavn [Lesser et al., 1988], Hayes-
Roth and her colleagues [Hayes-Roth et al., 1986], [Garvey et al., 1987],
[Pardee and Hayes-Roth, 1987], Korf [Korf, 1987], Dacus [Dacus, 1987],
Luhrs, . et

al. [Luhrs and Nowicki, 1987], Herman, et al. [Herman and Albus, 1987],
Daily, et al. [Daily et al., 1987], Firby and Hanks [Firby and Hanks, 1987],
Hendler and Sanborne [Hendler and Sanborn, 1987] and others.

A radically different approach challenges the distinction between plan-
ning and execution, and thus the distinction between internal and external
action (see Secs. 4.2.2, 4.2.6, 4.2.7). This view holds that, by any metric, pro-
jection in uncertain environments is inefficient: dynamic environments will
never be as they are projected to be, so projection is a waste of resources.
Projection involves selecting actions that are expected to be appropriate
at some point in the future; planning without projection involves selecting
actions based on the -trrent, immediate environment, without explicitly
considering their consequences. Reactive planners do not project, but sim-
ply react to their environments, so the distinction between planning and
execution is absent [Chapman and Agre, 1987], [Agre and Chapman, 1987],
[Brooks, 1985], [Firby, 1987].

Reactive planning raises questions about the status of goals: planners
may appear to be goal-directed when, in fact, they are simply responding to
their environments (see Sec. 4.2.6). One does not need internal structures
called goals to explain apparently intentional behavior. But we believe that
intelligent agents should reason about their goals, so some goal-directed
behavior will not be generated by reactive planning [IvcDermott, 1987],
[Dean, 1987b].

97

Reactive planners need to know how to respond to different situa-
tions. They recognize situations and respond appropriately, so to be
adapted to complex environments, reactive planners need to recognize
many situations. This requires so much knowledge that it will be im-
possible to build reactive planners for some environments; instead, reac-
tive planners must learn how to respond to situations through interac-
tions with their environments (see Sec. 4.2.8. Some AI techniques for
learning concepts have been suggested or applied to the task of learning
the situation-action contingencies required for reactive planning; these in-
clude connectionist learning [Barto et al., 1983], [Sutton and Barto, 1981],
,'Jordan, 1986,Rumelhart and Norman, 1982], knowledge acquisition and
generalization [Gruber, 1987] (see Sec. 4.4.2), chunking [Laird et al., 1986],
and production rule learning [Mitchell et al., 1983], [Anderson, 1983]).

We believe reactive planning is an extreme response to uncertainty in
the environment. We agree that the value of projection depends on the
certainty with which we can predict the outcomes of actions; but since this
is variable, and depends on many factors, we do not agree that planners
should completely forego projection. (Others have made similar observa-
tions 'Hayes-Roth, 1987], IDean, 1987b], 'Swartout, 1987].) We illustrate
this later in the context of two of our own planning systems (Sec. 4.4).

We can, in fact, project even if we do not know the precise outcomes
of actions. Decision analysis is a form of planning by projection: When
actions have uncertain outcomes, and these lead to further actions, then
a combinatorial space of actions and outcomes is quickly generated (see
Sec. 4.2.3). If one knows the probabilities that actions will lead to particular
outcomes, and also the utilities of the outcomes, then one can find the
subjective ezpected utility of actions. For example, imagine test-1 costs $10
and will accurately say whether or not a patient has disease A, but says
nothing about diseases B and C; and test-2 costs $50 and is diagnostic for
disease B but says nothing about A or C. Which diagnostic action should
we take first, test-i or test-2? Assuming A, B, and C have equal priors, it
is most efficient to do test-I first. Decision analysis will resolve the question
for the general case of unequal priors.5

But note that two assumptions are implicit in the example: the state-
ment of the problem implies that the hypotheses A, B, and C are both
mutually exclusive and exhaustive. Thus, if test-1 finds A, we need not do
test-2; and if both tests fail to find A and B, then the answer must be C.

"We are grateful to Professor Glenn Shafer for this example.

98

Mutual exclusivity is a special case of conditional probability: When we say
A and B are mutually exclusive we mean that the probability of disease B is
conditional on the outcome of test-1 (and equivalently, our belief in A), and
vice-versa. Thus, in the general case, to plan a sequence of tests to find out
which disease a patient has, we need to know the conditional probability of
each disease given each combination of outcomes of tests for these diseases.
Even if we assume the diseases are mutually exclusive and exhaustive, and
we assume that every test either confirms or disconfirms a disease (but does

not provide partial support for any disease), we are still faced with a com-
binatorial search because there are N! sequences of diagnostic actions, and
because each action can have several possible outcomes.

We are not rejecting decision analysis as a technique for planning under
uncertainty, only noting that its inherent combinatorics must be managed
carefully (e.g., Wellman has proposed some approximate forms of decision
analysis [Wellman and Heckerman, 1987]). All planning by projection gen-
erates combinatorial spaces of plans; uncertainty about outcomes simply
makes the problem worse. We expect that decision analysis can be merged
with AJ planning techniques (e.g., least commitment and hierarchical plan-
ning) to reduce the combinatorics of projection. For example, hierarchi-
cal planning reduces the combinatorics of projection by .generating plans
at successive levels of abstraction [Cohen and Feigenbaum, 1982]. Decision
analysis might be used to select actions at each level.

4.4 Case studies in planning under uncertainty

In this section we describe some of our research on planning under uncer-
tainty. We begin with MUM, a system for planning medical workups. MUM
led to a shell for building planners called MU, which in turn is the basis
of a knowledge-acquisition system called ASK. We also describe a system
called PLASTYC which, though not yet completed, highlights differences be-
tween reactive planning and planning with projection, and also illustrates
how simulators can facilitate research on planning under uncertainty.

4.4.1 MUM

The MUM system plans diagnostic
workups of chest pain [Cohen et al., 1987a]. Its goal is to ask questions,
request tests, and prescribe therapies in an efficient order. By efficient, we
mean that MUM should not take a sequence of actions (a diagnostic plan, or

99

workup) to gain evidence if another sequence would be as informative but
less expensive. Viewing this as a traditional planning problem, we would
project the outcomes of all sequences of evidence-gathering actions and se-
lect the sequence that provides us with maximum diagnosticity for minimum
cost. Planning diagnoses is then a matter of searching this space.

In Mum we assume that the space of diagnostic plans or workups is too
large to search exhaustively; that is, we will be unable to generate the most
efficient workup. We propose instead that workups are generated one ac-
tion at a time, or equivalently, that the search for diagnostic plans proceeds
incrementally, with each action being executed before the next is contem-
plated (see Sec. 4.2.7). MuM is essentially a reactive planner because it's
actions are determined largely by its environment (the state of the patient)
and its preferences. The search is guided by heuristics that we call pref-
erences. One preference is to ask cheap questions first; another is to ask
diagnostic questions first. A more specific preference resolves the conflict
that can arise between these two: if the patient is in danger and the most
diagnostic action is also the most expensive, then take that action; but if
the patient is not in danger, take the cheaper action. In the worst case, we
might require a specific preference for every situation that could arise, but
in practice wt can generate moderately efficient workups with relatively few
preferences.

MUM has two components: an interpreter, and an inference network
with nodes representing evidence-gathering actions at the bottom, interme-
diate conclusions in the middle, and diseases at the top. MUM's interpreter
selects and executes an evidence-gathering action and propagates the data
it acquires through the inference network; then, on the basis of its pref-
erences and the new state of the network, it selects and executes another
evidence-gathering action, and so on (see Fig. 4.1).

Figure 4.1: MUM Inference about here.

4.4.2 The ASK and MU systems

After building the MUM system, we abstracted its essential components and
built an architecture called MU [Cohen et al., 1987b]. Mu has been used to

100

develop other systems like MUM that generate diagnostic workups via pref-
erences. The central idea in MU is that decisions about actions are based
on many features of a situation; for example, in medicine these include the
cost, diagnosticity, risk, discomfort, and time required for a test; the num-
ber of supported disease hypotheses, the prior probabilities of these diseases,
and whether any are serious; relationships between disease hypotheses such
as causality or mutual exclusivity; relationships between actions and hy-
potheses, such as whether a test can discriminate two disease hypotheses;
and contextual information such as whether the patient is feeble or robust.6

MU allows knowledge engineers to rapidly define features and automatically
updates them.

Features characterize the states of Mu-based planners; for example, in
one state we may have a feeble patient with suggestive evidence of a dan-
gerous hypothesis and we may have available a completely diagnostic but
risky test, and another moderately diagnostic treatment that protects against
heart attack. Given this characterization of the choice between actions, Mu
requires preferences to tell it which to do. To be useful, preferences should
be general. That is, preferences should apply at many points in diagnostic
plans, and over many plans. A Ph.D. student in our laboratory has de-
veloped a technique for acquiring and then generalizing expert preferences
[Gruber, 1987]. The method, called ASK for Aquiring Strategic Knowledge,
uses a small set of preferences to generate diagnostic workups that experts
then criticize. The criticisms are used to specialize the original preferences
and to add new, specific ones that are not in the original set. These are
generalized if later criticisms suggest their applicability is too narrow.

In sum, Mu makes it easy to define and maintain the values of fea-
tures and the ASK system makes it easy to define preferences based on fea-
tures. Features and their values make up the dynamic state of the planner,
and states and preferences determine which problem-solving actions will be
taken.

The relationship between preferences and plans.

We rely on preferences to guide MUM'S planning without any projection.
Plans and preferences serve the same purpose, namely, to tell the problem
solver what to do next. But plans require projection while preferences do
not. We claim that, in MUM at least, plans and preferences are related
in such a way that sequences of actions based on preferences will appear

'MUM did not incorporate all these features.

101

to be good plans. The simplest such relationship between preferences and
plans is preferences are local applications of the evaluation criteria for plans
(see Fig. 4.2). For example, we noted earlier that if we prefer inexpensive
plans, then we can generate plans without projection by locally selecting
the cheapest applicable action (Sec. 4.2.7). This will not always find the
cheapest plan, but as a heuristic for guiding diagnostic workups, especially in
combination with other preferences, it generates acceptable workups without
the combinatorics of planning.

Figure 4.2: Plans vs. Preferences about here.

The relationship between plans -and preferences is illustrated by the
workup graph for chest pain in Figure 4.3. This is an explicit contingency
plan for the diagnosis of angina, generated by an expert internist, and full of
implicit preferences. Obviously, one can generate hundreds of other workup
graphs for chest pain by taking actions in different orders; for example, one
might generate a plan that puts angiogram before therapy. But this and
other syntactically possible workups violate expert preferences.7 By follow-
ing these preferences, one can generate a sequence of actions reactively, one
at a time, that look as if they were planned in advance (as discussed in
Sec. 4.2.6) and concur with Figure 4.3.

Figure 4.3: Workup diagram about here.

'For example, doing an angiogram before prescribing therapy violates at least four
preferences: First, therapy provides evidence about angina that is more efficient, that
is, a bit less diagnostic than an angiogram, but much, much less expensive in terms of
dollars, pain, and risk; second, therapy has few side-effect, third, it provides evidence
about the relevance of later tests, specifically evidence about whether the ngiogram is
necessary; fourth, therapy extends the time before the physician must take his or her
"final action," which is surgery. Each of these is an argument, or preference, for therapy
over an angiogram at a particular point in a workup.

102

Why we need both preferences and plans

Although MUM generates diagnostic plans from preferences alone, we be-
lieve that expert physicians plan, that is, project the outcomes of actions.
They don't plan complete diagnostic workups, but they do some limited
lookahead.8 Here are two examples of lookahead in MUM'S domain:

The Cascade Effect. Some tests lead inexorably to others that
you may want-to avoid, and so should be avoided themselves. For
example, you want to avoid a stress test if possible because unless
the patient is absolutely cleared, you're obliged to go on to the
next step, which is an angiogram. Now almost everyone has some
degree of coronary artery blockage, and nobody knows how much
is too much. So you start with a stress test that isn't conclusive,
and then you find some blockage, and then 'you're forced to do
surgery, even though the patient may not have coronary artery
disease.

Dependent tests. If test 1 is diagnostic but costs a lot, and
test 2 costs less but provides lower-quality evidence, then you
may plan to do test 2 first and only do test 1 if test 2 comes
back positive.

In both these cases, the selection (or avoidance) of an action is based on
projecting the outcomes of the actions.

These examples hint at two circumstances in which projection is desir-
able. In the cascade effect, projection detects pitfall,.-situations where an
attractive action leads later to an unattractive one. A more familiar example
of a pitfall is shown in Figure 4.4: When presented with a queen for the tak-
ing, my preferences say goahead. The pitfall is that the queen is a sacrifice
and checkmate follows. My preferences should say "Prefer piece exchanges
that end with me ahead," but this requires projection. MuM was able to
plan without projection because its search space of plans contained almost
no pitfalls; however, some diagnostic plans are more efficient than others.
Efficiency is the other reason for projection. If the order of actions affects
the efficiency of plans, as it does whenever actions are not independent (see
Sec. 4.2.5), then projection will contribute to efficiency.

'The word lookahead suggests an analogy with game-tree search, in which preferences
have the same role as static evaluation functions and projection is lookahead to some
depth horizon. The analogy suggests reactive planners are at one end of a continuum
(they evaluate actions at a horizon of one or sero) and that planners can be more or less
reactive depending on where they draw their depth horizon.

103

In the following section, we describe a planning problem in which both
pitfalls and efficiency are concerns. This problem involves real-time planning
in highly uncertain environments. We are using it to study tradeoffs between
projection and reaction.

Figure 4.4: A decision in Chess diagram about here.

4.4.3 PLASTYC: Planning in Real-Time, Dynamic Envi-
ronments

We have built a large simulation of forest fires and the equipment com-
monly used to put them out. We are building a planner called PLASTYC
that operates in this dynamic, real-time world. The planner's goal is to
manage the fire-limit the loss of human life, limit the damage to forest
and buildings, and limit the monetary costs of achieving these goals. This
task closely approximates the problems faced by a forest fire manager, but
more importantly, it is representative of a class of problems that we believe
require both traditional planning and the kind of reactive planning we used
in MUM. In this section we describe the characteristics of this class of prob-
lems and sketch the planner we are building. This work is in progress, so
the conclusions of this section are tentative.

Our simulation consists of a large geographical area ("Explorer National
Park") in which there is a considerable variety of topography and ground
cover, as well as roads, lakes, and streams. These features affect how forest
fires burn. Equally important features are wind speed and direction, both
of which can change unpredictably, and the moisture content of the ground
cover, which varies in time and geographically. To fight the fire, the simu-
lation provides bulldozers, crews, transport vehicles, planes and helicopters.
These cut fire line, move firefighters, spray water, or dump retardent.

These fire-fighting agents can be directed either by an automatic planner
or else by a human player of what is essentially a complex, real-time video
game. We have already gained considerable insight into (and respect for) the
dynamics of this mini-world by playing against the simulation--often losing
many lives and considerable real estate to a seemingly slow and containable
fire. It is difficult for a planner, human or AI program, to do very well at

104

the game (i.e., put out the fire with reasonable costs, no loss of life, etc.)
because:

* The player's knowledge of the fire is limited to what the agents in the
field can "see." Crews and bulldozers can see only short distances;
aircraft can see further. The planner rarely, if ever, has complete
knowledge of the extent or location of the fire (see Fig. 4.5).

* The behavior of the fire cannot be accurately predicted because some
factors that affect it (e.g., terrain, ground cover and the moisture con-
tent of the ground cover) are known only approximately. Moreover,
wind speed and direction can change unpredictably.

* The behavior of the fire-fighting agents cannot be accurately predicted.
In particular, the time required to move to a location or perform some
task depends on terrain and ground cover. Fire-fighting agents also
have limited autonomy to run away from a fire, so the central planner
cannot always be sure of their location.

* The simulation is real-time with respect to the fire. While fire-fighting
agents move, cut line and drop retardent, the fire keeps burning. Most
important, any time the planner devotes to deliberation is claimed as
real estate by the fire.

Figure 4.5: Fire maps figure about here.

The environment with which the planner interacts is independent, dy-
namic and probabilistic. It is independent because the planner is not the
only agent of change, dynamic because changes take place over time, and
probabilistic because the magnitude and temporal extent of changes to the
environment are unpredictable.

To plan in this environment an agent needs to know when to project
and when to plan reactively. Projection is desirable to avoid pitfalls and
to increase the efficiency of plans. But projection itself takes time, and
uncertainty precludes avoiding all pitfalls, and efficient plans are useless
if no time remains to execute them; so there will be situations when the
timeliness of reaction will make the difference between success and failure.

105

We have described the desired behavior of PLASTYC, but not how the
program will get the knowledge it needs to behave that way. We have become
adept at putting out fires in the forest fire simulation, and we will encode
this knowledge in PLASTYC. But this is slow. PLASTYC itself should acquire
and refine these skills through practice. The extent to which this can be
accomplished remains to be seen; the project is in its early stages.

4.5 Conclusion

We argued in the Introduction that we should study reasoning under un-
certainty in the context of autonomous action. In conclusion, we offer some
methodological observations. In MUM, we wanted to study problem-solving
strategies in medical diagnosis, but first we had to build an expert system,
and then we had to acquire test cases from an expert. But we wanted to
generate thousands of problems for our planner and to evaluate the planner
on objective criteria. Neither was possible in internal medicine. We needed
to challenge our planners with something like a game, but one that is played
in a complex enviionment, in real time, under significant uncertainty. PLAS-

TYC is designed to play autonomously against such a game-a simulation
of forest fires. Not only does this simulated world provide an objective and
efficient way to evaluate PLASTYC's abilities, but it will present thousands
of individual problems from which PLASTYC will begin to learn.

Our experience with PLASTYC suggests a general method for address-
ing problems in approximate reasoning. If you can build a simulator that
presents agents difficult problems in uncertain environments, and you can
build agents that solve these problems autonomously, then you will have
demonstrated unambiguous progress towards theories of action under un-
certainty.

106

d MUM INFERENCE NET I
diseases

intermediate
hypotheses

data
@ 0

MUM: Determine focus of attention then
- select an evidence-gathering action

Figui-e 4.1.

106a

subjective expected
utility judgment
based on cost, time,
risk to patient
diagnosticity, etc.

preference judgment based on
cost, time, risk to patient,
diagnosticity, etc.

Figure 4.2.

106b

0
cc0
%-2

CLC

CUU

CL

000

LL 0

U,,

0 +a

t-I 06

my move:

oEiu.j

your move:

{checkmate I

Figure 4.4.

106d

R'Ma

%%% %V$ \ Ao0-

C

'X03

4)

CYC

4)

INN

AtA

O'-I

4w-

106e

sd

IT

IS,,

1060

Chapter 5

Trial by Fire:
Understanding the Design
Requirements for Agents in
Complex Environments

107

5.1. The Phoenix Research Agenda

The Phoenix project is directed by three complementary goals. First, there are immediate
technical aims: a real-time, adaptive planner for controlling simulated forest fires,
approximate scheduling algorithms for coordinating multiple planning activiies,
knowledge representations for plans and for measuring progress toward goals, and
distributed planning algorithms. Secondly, there are motivating issues, of which the
foremost is to understand how complex environments constrain the design of intelligent
agents. We seek general rules that justify and explain why an agent should be designed
one way rather than another. The terms in these rules describe characteristics of
environments, tasks and behaviors, and the architectures of agents. Lastly, because AI is
still inventing itself, Phoenix is a commentary on the aims and methods of the field. Our
podtion is that most AI systems have been built for trivial environments that offer no
constraints on their design, and thus no opportunities to learn how environments
constrain and inform system design [Cohen, 1989a]. To afford ourselves this opportunity,
we began the Phoenix project by designing a real-time, spatially-distributed, multi-agent,
dynamic, ongoing, unpredictable environment.

In the following pages we will describe Phoenix from the perspective of our technical
aims and our motives. Section 5.2 describes the Phoenix task--controlling simulated
forest fires-and explains why we use a simulated environment instead of a real,
physical one. Section 5.3 discusses the characteristics of the forest fire environment and
the constraints they place on the design of agents. The two lowest layers of Phoenix,
described in Section 5.4, implement the simulated environment and maintain the illusion
that the forest fire and agents are acting simultaneously. Above these are two other
layers: a specific agent design (Sec. 5.5), and our organization of multiple fire-fighting
agents (Sec. 5.6). These sections describe how Phoenix agents plan in real time, bit do not
provide minute detail. Section 5.7 is an example of Phoenix agents controlling a forest
fire. Section 5.8 describes the current status of the project and our immediate goals.

5.2. The Problem

The Phoenix task is to control simulated forest fires by deploying simulated bulldozers,
crews, airplanes, and other objects. We will discuss how the simulation works in Section
5.4, concentrating here on how it appears to the viewer and the problems it poses
planners.

The Phoenix environment simulates fires in Yellowstone National Park, for which we
have constructed a representation from Defense Mapping Agency data. Figure 5.1 shows
a view of an area of the park, the grey region at the bottom of the screen is the northern tip
of Yellowstone Lake. The thick grey line that ends in the lake is the Yellowstone River.
The Grand Loop Road follows the river to the lake, where it splits. The large "B" in the
bottom left corner marks the location of the fireboss, the agent that directs all others. Two
bulldozers are shown building fireline around a fire in this figure.1

1Much available information in not diplayed in the monochrome interface to Phoenix. The color interface
display. pound cover and elevation contours, giving the user a better picture of the terrain over wtuch the fire is
spreading.

108

III II

5Bkm
I-

.&.4

' . o •- -. *%*

B. ...

/ /

Figure 5.1: A portion of Yellowstone National Park as viewed in the Phoenix simulator.

Thi is a small fration (about 7 km. by 8 km.) of the entire 75 km. square map. The northern tip of
Yellowstone Lake appears at the bottom (gray shading represents water). The Yellowstone River empties
into the lake here, as does a smaller stream called Pelican Creek (meandering line in lower right). Grand
Loop Road runs along the lake and river from south to north. East Entrance Road cuts across above the
lake from west to east The large B marks the fireboss and bulldozer base. In this frame two bulldozers
have almost surrounded a fire with fireline. The fire is burning at different intensities; the inner part
has been burning longer and is hotter (note the darker icon). The kilometer markings in the margins
show distances east and south from the northwest corner of the park.

108A

Sam 5s9a
II

+ +L.

a
Ir -

Pool WWhu-1nwnf
I Ig:-M S wfrOSi- h al 'Or $&EU *bdI i : - ISOOI-I: II'. II@WC3: OI J eo -I

Figure 5.2: Fire at 12:15 pm
The left Pane displays the red world; the right pane displays the crrent state of the world as the fireboss
'ieee * it. A fire has started and is displayed in the upper right of the real world pane. The fireboss, who

finds Ott about fIS from watChtOwer reports, doesn't know about this fire yet (see right pane).
The status bar below the two penes shows information about the running simulation. The date and time
ae i the left boz (partly obscured). All simulations start at 12.00 noon on August 1. The right bo:
displays timestamped info mation messages fron various asks.

108B

S58n

C C,- + - +

r1Il If irec"S-1 li1IC for" sCIo ..- I liSI fIrROOS-l: CIkin for Gl tU&-fjr*l.jR 04llr Olrclea

Figure 5.3: Fire t 4:05 pm

After fouir hours, two bulldozers have reached the fire arnd are beginlning3 to build fireline arouind it. The
two blldozer plan wa chosen by the fireboss based on environmental factors suc asi the siz of the fire
and the w~ind characteritics. Note that the fireboss's view of the situation is still slightly outdated. It
sees fewer of the bulrning cells and isn't aware of all fireline that ha been duig. It learnls abouit thkese
evoents from status reports sent by# agent..

108C

** ii 3 fl-ga

- I

~I.inX- +

tgll i aaI ar .ll :: 8txe1 a-l:-I flrwe

P :O t21:26n ":ooss- cKll fr atl re.| %n encircift

Figure 5.4: Fire at 8:20 Pm

After 8 hours the fire is nearly encircled. The bulldozers are close to meeting at the fire f ont. The left
pane again displays the real word4, the right pane displays Bulldozer-I's view. It knows about the part
of the fire it passed while digging line, as well as the fireline dug within its field of view (some of which
was dug by the other bulldozer).

108D

Fires spread in irregular shapes, at variable rates, determined by ground cover,
elevation, moisture content, wind speed and direction, and natural boundaries. For
example, fires spread more quickly in brush than in mature forest, are pushed in the
direction of the wind and uphill, burn dry fuel more readily, and so on. These conditions
also determine the probability that the fire will jump fireline and natural boundaries. But
for two exceptional conditions (convective and crown fires), Phoenix is an accurate
simulator of forest fires. Fire-fighting objects are also simulated accurately, for example,
bulldozers move at a mximum speed of 40 kph in transit, 5 kph travelling cross-country,
and 0.5 kph when cutting fireline. To give a sense of scale, the fire in Figure 5.1 is about
1.5 kilometers in diameter and has burned for about eight simulated hours. The fire's
history, which can be read in Figures 5.2,5. 3, and 5.4 is as follows: At noon in simulation
time (Fig. 5.2) a fire was ignited, and later detected by a watchtower (not visible in the
figures). A little later, two bulldozers started a journey from the firestation, marked by a
"B" in the southwest corner, to the rear of the fire. Because the wind was from the
southeast, the rear was southeast of the fire. At 3 p.m. (Fig. 5.3) the bulldozers arrived at
the rear and started cutting fireline. Figure 5.4 was generated at 8 p.m., simulation time.
The fire was contained a little later. This entire simulation took about 1 minute on a TI
Explorer.

Fires are fought by removing one or more of the things that keep them burning: fuel,
heat, and air. Cutting fireline removes fuel. Dropping water and flame retardant
removes heat and air, respectively. In major forest fires, controlled backfires are set to
burn areas in the path of wildfires and thus deny them fuel. Huge "project" fires, like
those in Yellowstone last summer, are managed by many geographically dispersed
firebosses and hundreds of firefighters.

The current Phoenix planner is a bit more modest. One fireboss directs a few bulldozers to
cut line near the fire boundary. We currently lack but are implementing "indirect"
attacks, which exploit natural boundaries as firebreaks (such as the river in Fig. 5.1) and
"parallel" attacks, which involve backfires. The Phoenix planner does use common fire-
fighting plans, such as the two bulldozer surround illustrated in Figures 5.2, 5.3, and 5.4.
In tis plan, two bulldozers begin at the rear of the fire and work their way around to the
front, pinching it off.

The Phoenix fireboss directs bulldozers but does not control them completely. In fact, the
fireboas gives fairly crude directions, such as "go to location xy," and individual agents
decide how to interpret and implement them. Thus, bulldozers and other agents are
semi-autonomous. Other organizational structures are enabled by increasing or
decreasing the degree of autonomy;, for example, an earlier fire planner, designed by
David Day, had a single fireboss that controlled every action of all its agents. At the other
extreme, we are working with Victor Lesser on a completely distributed version of
Phoenix, in which agents negotiate plans in the absence of a single fireboss. We can
experiment with different organizational structures because all agents have exactly the
same architecture, and so each can assume an autonomous, semi-autonomous, or
completely subservient role.

Although Phoenix agents and their environment are all parts of a large software system,
we have designed them to give the impression of independent agents "playing against"

109

simulated forest fires, much as we would play a video game. In fact, early in the project,
we built an interface to allow us, instead of an automated planner, to direct fire fighting
agents. It required us to control several agents simultaneously, and demanded
considerable foresight and planning. We found it impossible to control more than a couple
of bulldozers in real time in the vicinity of the fire, so we gave bulldozers simple reflexes,
enabling them to scurry away from encroaching fire. Since then, the basic style of
interaction between the Phoenix environment and the Phoenix planners has not changed:
One or more planners, AI or human, direct semi-autonomous agents to move around a
map, building line around continuously burning fires.

The decision to develop and test Phoenix agents in a simulated environment is, to some,
profoundly wrong. One argument is that by building the environment and the interface to
agents, we risk deferring or ignoring difficult problems. For example, if we build a
simulated agent that has a completely accurate internal map of its simulated
environment and, when it moves, its "wheels" don't slip, then all its planning and acting
can be dead-reckoning. Of course we can create trivial environments and develop
techniques that won't work in real environments, but why would we? The point of using
simulators is to create more realistic and challenging worlds, not to avoid these
challenges. In response to the criticism that simulators can never provide faithful
models of the real, physical world, we argue that the fire environment is a real-time,
spatially-distributed, ongoing, multi-actor, dynamic unpredictable world - irrespective of
whether it is an accurate model of how forest fires spread. As it happens, the fire
environment is an accurate model of forest fires, but this isn't necessary for the
environment to challenge our current planning technology. Moreover, we want to leave
open the possibility of working in simulated worlds that are unlike any physical world
that we have encountered.

The advantages of simulated environments are that they can be instrumented and
controlled, and provide variety-, all essential characteristics for experimental research.
Specifically, simulators offer these advantages:

Control Simulators are highly parameterized, so we can experiment with many
environments. For example, we can change the rate at which wind direction
shifts, or speed up the rate at which fire burns, to test the robustness of real-time
planning mechanisms. Most important, from the standpoint of our work on real-
time planning, is the fact that we can manipulate the amount of time an agent is
allowed to think, relative to the rate at which the environment changes, thus
exerting (or decreasing) the time pressure on the agent (Sec. 5.4).

Repeatability. We can guarantee identical initial conditions from one "run" to the
next; we can "play back" some histories of environmental conditions exactly, while
selectively changing others.

Replication. Simulators are portable, and so enable replications and extensions of
experiments at different laboratories. They enable direct comparisons of results,
which would otherwise depend on uncertain parallels between the environments
in which the results were collected.

Variety. Simulators allow us to create environments that don't occur naturally, or
that aren't accessible or observable.

110

Interfaces. We can construct interfaces to the simulator that allow us to defer
questions we'd have to address if our agents interacted with the physical world.,
such as the vision problem. We can also construct interfaces to show things that
aren't easily observed in the physical world; for example, we can show the
different views that agents have of the fire, their radius of view, their destinations,
the paths they are trying to follow, and so on. The Phoenix environment graphics
make it easy to see what agents are doing and why.

5.3. Environmental Constraints on Agent Design

From the preceding descriptions of the Phoenix environment and tasks, one can begin to
see the challenges they present to Phoenix agents. Our challenge, as researchers, is to
design these agents for the Phoenix environment. The relationships between agent
design, desired agent behaviors, and environment characteristics are clarified by what
we call the behavioral ecology triangle, shown in Figure 5.5.

environmental behaviors
characteristics resource management
dynamic, ongoing uncertainty managementreal time Jcooperation

unpredictable planning
varied
multiple scaies
spatial distributon agent design

(see Sec. 5)l

Figure 5.5: The behavioral ecology triangle.

The vertices of the triangle are the agent's design (i.e., internal structures and
processes), its environment, and its behavior (i.e., the problems it solves and the ways it
solves them). In this context, our tasks (and, indeed, the tasks of all AI research on
intelligent agents) are:

Environment Analysis: What characteristics of an environment most

significantly constrain agent design?

Design: What architecture will produce the desired behaviors under the
expected range of environmental conditions?

Prediction: How will a particular agent behave in particular environmental
conditions?

Explanation: WIfy does an agent behave as it does in particular environmental
conditions?

111

Generalization: Over what range of environmental conditions can we expect
particular behaviors from the agent? Over what range of problems? Over what
range of designs?

To date, the Phoenix project has concentrated on environment analysis (see below), the
design task (Secs. 5.5 and 5.6) and on building an environment in which the other tasks
can be empirically pursued. Figure 5.5 implicitly captures many hypotheses and
explanatory tasks. We can think of "anchoring" two corners and "solving for" a third; for
example, we can anchor an environment and a set of behaviors and solve for an agent
design. Or we can anchor a design and an environment and test predictions about
behavior. Another more exploratory research strategy is to anchor just one corner, such
as the environment, and look for tradeoffs in the other corners. For example, given the
Phoenix environment, how is adaptability to changing time pressures affected by the
design decision to search for plans in memory, rather than generate them from scratch?

Let us survey the characteristics of the Phoenix environment that constrain the design of
Phoenix agents, and the behaviors the agents must display to succeed at their tasks. The
fire environment is dynamic because everything changes: wind speed and direction,
humidity, fuel type, the size and intensity of the fire, the availability and position of fire-
fighting objects, the quantity and quality of information about the fire, and so on. The
environment is ongoing in the sense that there isn't a single, well-defined problem to be
solved, after which the system quits, but rather, there is a continuous flow of problems,
most of which were unanticipated. The environment is real-time in the sense that the fire
"sets the pace" to which the agent must adapt. The agent's actions, including thinking,
take time, and during that time, the environment is changing. These characteristics
require an agent to have some concept of relative or passing time. The agent must reason
about the potential effects of its actions, and particularly about how much time those
actions may require. Additionally, it must be able to perceive changes in its environment,
either directly through its own senses or indirectly through communication with other
agents.

The environment is unpredictable because fires may erupt at any time and any place,
because weather conditions can change abruptly, and because agents may encounter
unexpected terrain, or fire, or other agents as they carry out plans. An agent must
respond to unexpected outcomes of its own actions (including the actions taking more or
less time than expected) and to changes in the state of the world. This requires
interleaving planning, execution and monitoring and suggests that detailed plans of long
duration will be likely to fail before successful completion. The unpredictability of the
environment requires agents to be flexible, particularly in the way they handle temporal
resources. In fact, all resources, including time, fire fighting agents, money, fuel, and
equipment, are limited and non-renewable. Because the environment is ongoing,
decisions about resources have long-term effects that constrain later actions, and require
agents to manage their resources intelligently, with a global perspective. For this reason,
among others, Phoenix agents cannot be exclusively "reactive."

Whereas unpredictability is a characteristic of the Phoenix environment, uncertainty
arises in agents. Uncertainty is partly due to the fire continuously moving, partly because
changes in wind speed and direction are unpredictable, partly due to communication
delays between agents, and partly because individual agents have very limited views of the

112

the world. For example, to the northeast of Bulldozer 1, in the right-hand pane of Figure
5.4, there is a small black patch of fireline. This is all Bulldozer 1 knows about the location
and progress of the other bulldozer (whose actual location is shown in the left-hand pane
of Fig. 5.4), and illustrates how far Bulldozer 1 can see. It follows that Bulldozer l's
firemap, as shown in the right-hand pane, must merge what it currently sees with what
it recalls. As one would expect, the recollection is inaccurate; Bulldozer 1 think the fire
at its southern point is a few hundred meters from the fireline, because that's where it
was when Bulldozer 1 cut the fireline. In fact, the fire has spread all the way to the
fireline, as shown in the left-hand pane. As a consequence of these types of uncertainty,
agents must allot resources for information gathering. Agents must be able to integrate
and disseminate local information, and, because of their own localized views, they must
be able to communicate and coordinate with each other.

The fact that events happen at different scales in the Phoenix environment has profound
consequences for agent design. Temporal scales range from seconds to days, spatial
scales from meters to kilometers. Agents' planning activities also take place at disparate
scales; for example, a bulldozer agent must react quickly enough to follow a road without
straying due to momentary inattention, and must also plan several hours of fire-fighting
activity, and must do both within the time constraints imposed by the environment.

Given the size and variation in the world map, the degree to which the environment can
change, and the possible actions of agents, the environment can produce a large variety
of states. Consequently, an agent must know how to act in many different situations. The
ramifications for agent design depend on whether small differences in environmental
conditions can produce large differences in the utilities of plans. For example, if every fire
scenario is truly different in the sense that each requires a unique, scenario-specific plan,
then it may be pointless to provide agents with memories of previous plans. In fact, we
believe that although the fire environment presents a wide variety of states, these
differences do not require radically different plans.

The Phoenix environment is spatially distributed, and individual agents have only
limited, local knowledge of the environment. Moreover, most fires are too big for a single
agent to control; their perimeters grow much faster than a single agent can cut fireline.
These constraints dictate multi-agent, distributed solutions to planning problems. They
also expand the scope of our research from a study of agent design to a study of
organizational design. We have drawn a line, temporarily, and excluded the latter.

In sum, to perform their designated tasks, under the constraints of the Phoenix
environment, Phoenix agents must engage in particular behaviors. In gross terms, these
are resource management, uncertainty management, planning, and cooperative
problem-solving-, more specific behaviors have just been discussed. The question we
address in Sections 5.5 and 5.6 is how do ihe characteristics of the Phoenix environment,
in concert with the desired behaviors of Phoenix agents, constrain the design of the
agents? Specifically, what architecture is capable of planning in real time, responding to
events at different time scales, coordinating the efforts of several agents, collecting and
integrating data about a changing environment, and so on.

113

5.4. The Phoenix Environment, Layers 1 and 2.

To facilitate experiments, Phoenix is built in four layers. The lowest is a task coordinator
that maintains the illusion of simultaneity among many cognitive, perceptual, reflexive
and environmental processes, on a serial machine. The next layer implements the
Phoenix environment itself-the maps of Yellowstone National Park, and the simulations
of fires. The third layer contains the definitions of the components of agents--our specific
agent design. The fourth layer describes the organization of agents, their communication
and authority relationships. Layers 3 and 4 are described in later sections.

The two lowest layers in Phoenix, called the task coordinator layer and map layer
respectively, comprise the Phoenix discrete event simulator. We discuss the task
coordinator first. It is responsible for the illusion of simultaneity among the following
events and actions:

Fires: Multiple fires can burn simultaneously in Phoenix. Fires are essentially
cellular automata that spread according to local environmental conditions,
including wind speed and direction, fuel type, humidity, and terrain gradient.

Agents' physical actions: Agents move from one place to another, report what they
perceive, and cut fireline.

Agents' "internal" actions: Internal actions include sensing, planning, and reflexive
reactions to immediate environmental conditions.

These tasks are not generated at the task coordinator level of Phoenix, just scheduled on
the cpu there. Fire tasks are generated at the map layer, and agent tasks are generated at
the levels descibed in Sections 5.5 and 5.6.

Typically, the task coordinator manages the physical and internal actions of several
agents (e.g., one fireboss, four bulldozers, and a couple of watchtowers), and one or more
fires. The illusion of continuous, parallel activity on a serial machine is maintained by
segregating each process and agent activity into a separate task and executing them in
small, discrete time quanta, ensuring that no task ever gets too far ahead or behind the
others. The default setting of the synchronization quantum is five minutes, so all tasks
are kept synchronized to within five minutes of each other. The quantum can be
increased, which improves the cpu utilization of tasks and makes the testbed run faster,
but this increases the simulation-time disparity between tasks, magnifying coordination
problems such as communication and knowing the exact state of the world at a
particular time. Conversely, decreasing the quantum reduces how "out of synch"
processes can be, but increases the running time of the simulation.

The task coordinator manages two types of time: cpu time and simulation time. CPU time
refers to the length of time that processes run on a processor. Simulation time refers to
the "time of day" in the simulated environment. Within the predefined time quantum, all
simulated parallel processes begin or end at roughly the same simulation time. To exert
real-time pressure on the Phoenix planner, every cpu second of "thinking" is followed by
K simulation-time minutes of activity in the Phoenix environment. Currently K = 5, but
this parameter can be modified to experiment with how the Phoenix planner copes with
different degrees of time pressure.

114

The fire simulator resides at Phoenix's map layer- that is, the map layer generates tasks
that, when executed by the task coordinator, produce dynamic forest fires. Phoenix's
map, which represents Yellowstone National Park, is a composite of several two
dimensional structures, and stores information for each coordinate about ground-cover,
elevation, features (roads, rivers, houses, etc.), and fire-state. The fire itself is
implemented as a cellular automaton in which each cell at the boundary decides whether
to spread to its neighbors, depending on the local conditions just mentioned and global
conditions such as wind speed and direction (currently, we do not model local variations
in weather conditions). These conditions also determine the probability that the fire will
jump fireline and natural boundaries.

The Phoenix discrete event simulation is generic. It can manage any simulations that
involve maps and processes. For example, we could replace the forest fire environment
with an oil-spill environment. We could replace our map of Yellowstone with
oceanographic maps of, say, Prince William Sound. Fire processes have spatial extent,
and spread according to wind speed, direction, fuel type, terrain, and so on. They could
easily be replaced with oil-slick processes, which also have spatial extent, and spread
according to other rules. Similarly, we could replace the definitions of bulldozers and
airplanes with definitions of boats and booms.

5.5. Agent Design, Layer 3.

The third layer of Phoenix is our specific agent design, which is constrained by forest fire
environment as described in Section 5.3. For example, because events happen at two
dramatically different time. scales, we designed an agent with two parallel and nearly-
independent mechanisms for generating actions (Figure 5.6). One generates reflexive
actions very quickly-on the order of a few seconds of simulated time--and the other
generates plans that may take hours of simulated time to execute. This longer-term
planning can be computationally intensive, because it incurs a heavy time penalty for
switching contexts when interrupted. For this repsor, the ' gnitive component is
designed to do only one thing at a time (unlike sensors, effectors, or reflexes, where
multiple activities execute in parallel). Both the cognitive and reflexive component have
access to sensors, and both control effectors, as shown in Figure 5.6.

The agent interacts with its environment through its sensors and effectors, and action is
mediated by both the reflexive and the cognitive components. Sensory information may be
provided autonomously or may be requested, and sensors' sensitivity may be adjusted by
the cognitive component. Effectors produce actions in the world such as information
gathering, building fireline, and moving.

115

trigger sensors dataflow cognitive component

ger dtaf' state, ,,, / program progrm o plan' library
r memoryb

reffe~timelane cognitive
o orn o~ m~ t at af o w i m e i n e s c h e d u le r

Sp,,,ga m . communication

other agents

Figure 5.6: Phoenix agent design.

Reflexes are triggered by output of sensors. They change the programming of effectors to
prevent catastrophes, or they fine tune the operation of effectors. For example, a bulldozer
is stopped by a reflex if it is about to move into the fire, and reflexes handle the fine tuning
necessary for the bulldozer to follow a road. Reflexes are allotted almost no cpu time, and
have no memory of events, so they cannot produce coordinated sequences of actions. They
are designed for rapid, unthinking action. Although some researchers have suggested
that longer-term plans can emerge from compositions of reflexes [Agre and Chapman
1987, Brooks 1986], we do not believe that compositions of reflexes can handle temporally-
extensive plannin tasks such as resource management, or spatially-extensive tasks
such as path planning with rendezvous points for several agents. Thus, we have adopted
a design in which reflexes handle immediate tasks snd a cognitive component handles
everything else.

The cognitive component of an agent is responsible for generating and executing plans.
Instead of generating plans de novo, as clasqical hierarchical planners did, the Phoenix
cognitive component instantiates and executes stored skeletal plans. We believe this is a
good design for the forest fire environment because, first, a relatively small number of
skeletal plans is probably sufficient to cope with a wide range of fires; and, second, the
store/recompute tradeoff suggests relying on stored plans, rather than computing them,
in real-time situations. In addition to controlling sensors and effectors, the cognitive
component handles communications with other agents (including integrating sensor
reports), and it responds to flags set when reflexes execute. It also engages in a wide
range of "internal" actions, including projection (e.g., where will the fire be in 20
minutes?), plan selection and scheduling, plan monitoring, error recovery, and
replanning. Our implementations of some of these capabilities are quite rudimentary,
and leave much room for improvement, as we discuss in Section 5.8.

In overview, this is how the cognitive component works: in response to a situation such as
a new fire, an appropriate plan is retrieved from the plan library and placed on the
timeline (Fig. 5.6). State memory stores information, such as weather, resource
conditions, and sensory input, that helps the cognitive agent select appropriate plans and

116

instantiate the variables of the chosen plan for the current situation. For example, if the
fire is small and nearby, and the weather is calm, then a one-bulldozer plan will be
retrieved and instantiated with situation-specific information such as the wind speed and
the current location of the fire. The actions in a plan are eventually selected for execution
by the cognitive scheduler, described shortly. At any time during this process, sensory
data may trigger reflexive actions; for example, if the cognitive component is executing a
command to move to a destination, and a sensor reports fire ahead, then the reflexive
component will send a command to reverse direction. This happens very fast relative to
the cycle time of the cognitive component, so the reflexive component sets a flag to tell the
cognitive component what it did. When the cognitive component notices the flag, it might
modify its plan. The analogy here is to our own reflexes, which yank us away from hot
surfaces long before our cognitive apparatus becomes aware of the problem.

With this overview in mind, let us consider the operation of the cognitive component in
detail We will focus on the operation of the fireboss agent, which plans the activities of
other agents such as bulldozers and crews. Each of these, in turn, plans how to carry out
the directives of the fireboss. Because bulldozers and crews have the same architecture as
the fireboss (Fig. 5.6), they can reason in exactly the same way. In the following
discussion, we first describe planning when things go according to plan, and then
describe error handling, interruptions, and other unexpected events.

When a fire is reported, an action called "deal with fire" is retrieved from the plan library
and used to create a timeline entry, in this case-called "deal with fire 27", which is added
to the timeline (see Figure 5.7). Actions are general representations of the cognitive
activities the agent can perform, such as path planning or commiunication, and describe
applicability conditions, resource constraints and uninstantiated variables. Creating a
timeline entry instantiates an action: binding its variables and adding the temporal
constraints that relate it to other actions the agent has chosen to execute. Although
timeline entries represent actions, it is not quite accurate to say they are executed
(although we will use this terminology where the accurate description is too awkward).
In fact, when a timeline entry is created, it inherits a set of execution methods from the
action it instantiates. Each of these methods will execute the desired action; they differ
along dimensions such as the time they require and the quality of their outputs. For
example, a single action "plan a path" points to several path-planning algorithms, some
which run quickly and return adequate paths, and some that run longer but produce
shorter paths. When a timeline entry is selected for execution, the execution method
most appropriate to the current circumstances is chosen. By delaying the choice of
methods, the cognitive scheduler can reason about its own use of time, and select
execution methods that are suited to emerging time constraints.

117

step 1:

deal with fire 27

TIErLINE

Figure 5.7: Contents of fireboss's timeline after being notified of a new fire:
action to search for a plan to deal with the fire.

If there are entries on the timeline (e.g., "deal with fire 27") then the cognitive scheduler
of the Phoenix cognitive component makes three decisions:

Which action to execute next

How much time is available for its execution

What execution method should implement the action

The cognitive scheduler always selects the "next" action on the timeline to execute, but
often, several actions have this distinction and a choice must be made. Actions on the
timeline may be unordered (and thus equally entitled to "go first") for several reasons:
skeletal plans often leave actions unordered so that the cognitive scheduler has flexibility
at execution time to select the best order. Or, frequently, the agent is executing several
plans simultaneously. This happens, for example, when several fires are reported. The
planner formulates plans for each, but doesn't specify temporal constraints among
actions from different plans. In the current example, however, the only action on the
timeline is'"deal with fire 27," so the cognitive scheduler determines how much time is
available to execute it and selects an execution method. In this case, it selects a method
called find and filter plan (step 2, Fig. 5.8). Its effect, when executed, is to search the plan
library for a plan to "deal with fire 27." First it finds all plans for dealing with fires of this
type, then it filters the infeasible ones, then selects from the candidates to find the most
appropriate one, and lastly, it adds a new action to the tineline called "2 BD surround."
(This plan, illustrated in Figs. 5.2-5.4, involves sending two bulldozers to a rendezvous
point, then to the fire, after which they cut fireline in opposite directions around the fire.)

118

s e le c t ion acin

deal with fire 27

ptp 2: execution method: find and filter plan

lib rar 2 BD s m - e
TIMEUNE

Figure 5.8: The fireboss executes timeliae action, deal with fire 27, which
searches the plan library, selects the 2 BD surround plan as appropriate for

dealing with new fire, and places the new plan on the timeline.

Once again, the cognitive scheduler selects an action (the only one is "2 BD surround")
assesses how much time is available, and selects an execution method. In this case, the
method is expand plan. The result is to add a network of actions, partially ordered over
time, to the timeline (step 3, Fig. 5.9). The network starts with a placeholder action, s,
followed by two unordered actions that allocate bulldozers 1 and 2 respectively. The next
action determines the rendezvous point for the bulldozers. Then two unordered actions
bind the variables in the plan with the current wind direction and the previously-
determined rendezvous point. Space precludes showing the rest of the plan in Figure 5.9.

-- --.---- plan action:

2 BD suru hnd

stop 3: execution method: expand plan

allocate BD 1 seection action: gt wind directionS rendezvous

lib ra ryn t se le t T he "allo cae uml tDe r" an s are un rd rd, s ction:
I aloaeID2_ find rendezvous Ol

Ipoint

TIMELINE

Figure 5.9: The fi'eboss executes timeline action, 2 BD surrounud, which
expands into a network of plan steps.

The cognitive scheduler again looks at the timeline, and now must make a decision about
which action to select. The "allocate bulldozer" actions are unordered, so one must be

selected to go first. Then, as before, the cognitive scheduler assesses the available time

119

and selects an execution method. We will leave this example here, and discuss it further
in Section 5.7.

Three kinds of actions can be differentiated by their effects on the timeline when they are
executed. selection actions, like "deal with fire 27" result in a search of tha plan library,
after which a plan action such as "2 BD surround" is posted on the timeline. Plan actions
are placeholders for plans; executing them results in plan expansions being posted on the
timeline. Many of the actions in a plan are of the third type: primitive actions that result
in a computation (e.g., calculating a route), or a command to a sensor or effector. But a
plan can contain any of the three types of actions; for example, the expansion of "2 BD
surround" contains a selection action. When executed, it will result in a search of the
plan library for a plan to rendezvous the two bulldozers. Plans can also contain plan
actions, which, when executed, add subplans to the network. This is our mechanism for
representing hierarchical plans. Lastly, plans may contain just a single, primitive
action, such as finding the rendezvous point for two bulldozers.

We have discussed how actions are scheduled and executed when everything goes
according to plan, but in the Phoenix environment it rarely does. Phoenix agents have
three abilities, all rudimentary, to handle unexpected events. Reflexes, operating on a
very short time scale, can halt or modify potentially injurious actions, such as straying
into the fire. By design, reflexes do very little processing, and return very little
information. When a reflex halts a bulldozer, it simply posts a flag for the cognitive
component; it does not interrupt the cognitive component to explain what it did. The
cognitive component doesn't become aware of the change until it executes a regularly-
scheduled status-checking action. In fact, by design, nothing ever interrupts a cognitive
action. This is because the cost of saving state and switching context is prohibitive.
Instead, the reflexive component of a Phoenix agent is expected to deal with situations as
they arise. Most, like staying parallel to a moving fire, will never require the attention of
the cognitive component anyway;, but even when a serious problem comes up, the
reflexive component is designed to keep the agent functioning until the cognitive
component finishes its current task.

The second mechanism for handling unexpected situations is error recovery and
replanning. Errors are unexpected events that preclude completion of an action or a plan.
For example, bulldozers will travel to their designated destinations but fail to find a fire,
path plaining will sometimes fail to generate a path, selection actions will search the
plan library but fail to find a plan that satisfies all constraints, and so on. Currently, over
a dozen types of error can arise in Phoenix, although we don't have plans to deal with
them all yet. The error handling mechanism is to post on the timeline a "deal with error"
selection action, which, when executed, generates a plan for dealing with the error.
Currently, error recovery involves very little tinkering with the actions that are currently
on the timeline, that is, no serious replanning.

Lastly, Phoenix agents have limited abilities to monitor their own progress. This is
accomplished by generating expectations of progress, and matching to them actual
progress. In the near future, this mechanism (called envelopes, Sec. 5.8) will enable
Phoenix cognitive components to predict failures before they occur.

120

In sum, planning is accomplished by adding a selection action to the timeline to search
for a plan to address some conditions. Executing the selection action places an
appropriate plan action or primitive action on the timeline. If this new entry is a plan
action, then when it is executed, it expands into a plan by putting its sub-actions onto the
timeline with their temporal inter-relationships. If it is a primitive action, execution
instantiates the requisite variables, selects an execution method, and executes it. In
general, a cognitive agent will interleave actions from the several plans it is working on.

This style of planning is "lazy skeletal refinement"-lazy because some decisions are
deferred until execution time. Specifically, plans are not selected until selection actions
are executed, and execution methods are selected only when an action is about to execute.
This style of planing and acting is designed to be responsive to a complex dynamic world
by postponing decisions, while also grounding potential actions in a framework (a
skeletal plan) that accounts for data, temporal and resource interactions. The
combination of a reflexive and cognitive component is designed to handle time scalemismatches inherent in an environment that requires micro actions (e.g., following a
road) and contemplative processing such as route planning, which involves long search
times and integration of disparate data. We must stress, however, that Phoenix is too
early in its development to claim that our agent design is necessarily the best one for the
Phoenix environment (see Sec. 5.8).

5.6. The Organization of Fire-Fighting Agents in Phoenix

The fourth layer of the Phoenix system is the centralized, hierarchical organization of fire
fighting agents. Because all agents have the same architecture, many other
organizations of agents are possible. Our centralized model is neither robust (e.g., what
happens if the fireboss is disabled?) nor particularly sophisticated. But it is simple, a great
advantage in these initial phases of the project. One fireboss coordinates all fire fighting
agents' activities, sending action directives and receiving status reports, including fire
sightings, position updates, and actions completed. The fireboss maintains a global view
of the fire situation based on these reports, using it to choose global plans from its plan
library. It communicates the actions in these plans to its agents, which then select plans
from their own plan libraries to effect the specified actions. Once their plans are set in
motion, agents report progress to the fireboss, from which the execution of global plans is
monitored. All communication in this centralized implementation is between the fireboss
and individual agents - there is no cross-talk among the agents.

The fireboss maintains global coherence, coordinating the available fire fighting
resources to effectively control the fire. It is responsible for all the work required to
coordinate agents, such as calculating rendezvous points, deciding how to deploy
available resources, and noticing when the fire is completely encircled with fireline. The
plans in its plan library are indexed by global factors, such as the size of the fire and the
weather conditions. The actions in its plans are mostly concerned with coordinating and
directing other agents. The fireboss' state memory. records the current environmental
conditions, where agents have seen fire, what actions have been taken, what agents are
available, and how well global plans are progressing. The fireboss is currently
implemented without any sensors, effectors, or reflexes. It is a cognitive agent that relies

121

solely on communication for its knowledge of what develops in the outside world,
although it does have a map of the static features of Yellowstone.

Each of the other fire fighting agents has a local view of the environment based on its own
sensory input. They have access to maps of the static features in Yellowstone such as
ground cover, roads, ancl rivers, but only know about dynamic processes such as the fire
from what they see or are told by the fireboss. Sensors have a limited radius of view,
though agents are able to remember what has been perceived but is no longer in view.
The fireboss's global view is available to an agent only through communication. A
bulldozer is an example of an agent type. It has a movement effector that can follow roads
or travel cross-country. When it lowers its blade while moving, it digs fireline and moves
more slowly. It has a sensor that sees fire within a radius of 512 meters. Another sensor
picks up the contour of a fire (within its radius of view). When a bulldozer is building
fireline at the contour, it uses the follow-fire sensor in combination with the movement
effector (with lowered blade) and a reflexive action that helps maintain a course parallel
to the contour. As the contour changes, the contour sensor registers the change, which
triggers a reflex to adjust the movement effector's course. The bulldozer's plan library
has plans for simple bulldozer tasks such as following a given path or encircling a fire
with fireline.

Although all agents have the same architecture (i.e., timeline, cognitive scheduler, plan
library, state memory, sensors, effectors, and reflexes) they do not have the same plans,
reflexes, sensors or effectors. The difference between the fireboss and other agents lies in
their views of the world and the types of plans each knows. The lines of authority and
division of responsibilities are clear, the fireboss maintains the global picture, based on
the local views of its agents, and it executes plans whose effects are to gather information,
send directives to agents, and coordinate their activity via communications. In contrast,
the agents execute plans whose actions program sensors and effectors, which'in turn
effect physical actions in the world. In some sense the fireboss is a "meta-agent" whose
sensors and effectors are other agents.

5.7. An Example

We now return to the example that we introduced in Section 5.2 and used in Section &.5 to
illustrate cognitive scheduling. In this two bulldozer surround plan, the fireboss instructs
two bulldozers to rendezvous, then go to the fire and build fireline around it in opposite
directions. Figures 5.2, 5.3, and 5.4 show the progress of this plan. Each offers two views
of the situation. Figure 5.2 shows the real world in the left pane, and the fireboss's view
in the right pane. Note that the fireboss is not yet aware of the fire. What it knows about
new fires is based on status reports from a watchtower agent (not shown). Each
watchtower has a sensor programmed to look for new fires at regular time intervals.
When the watchtower spots this fire, it reports the location and size to the fireboss. Based
on this report and the resources available, the fireboss selects the two bulldozer surround
plan. The first plan steps allocate the bulldozers, which ensures they are not busy with
other tasks and assigns them to this plan. The next step instructs them to rendezvous so
they can follow the same route to the fire. While they rendezvous, the fireboss locates the
rear of the fire (the upwind side), and calculates a route to the fire that approaches it from

that direction. The next two steps communicate to each bulldozer instructions to follow
the given path and encircle the fire. They are given clockwise and counterclockwise
encircling directions, respectively.

After receiving its instructions, each bulldozer searches its plan library to find a plan for
following the path and encircling the fire in the given direction until it closes the fireline.
Neither bulldozer knows about the other, nor does either know the full extent or precise
location of the fire. Recall that the fireboss doesn't know exactly where the fire is, either,
so the path it supplied to the bulldozers may direct them wide of the fire, or, more often, to
a location that is burning. In this example, the path given by the fireboss ends in the fire,
so the bulldozers will follow the path until they detect it. In Figure 5.3 we see the
bulldozers starting to build line. In the fireboss view (right pane) each one appears at the
position it had reached when it made its last status report. Thus they are at slightly
different positions that are out of date with respect to their real positions in the left hand
pane.

When fire is seen, a bulldozer reflex is triggered to stop its movement effector. A cognitive
action also notes that the sensor has seen fire and reprograms the sensors and effectors
with the right combination of instructions to follow the fire in the direction specified by the
fireboss, building fireline as it goes. A message is sent to the fireboss to signal the start of
line-building. The bulldozer will continue to build line until instructed to stop by the
fireboss. In Figure 5.4 we see in the left pane that the bulldozers have almost encircled
the fire. In the right pane is the view of the bulldozer encircling in the clockwise
direction. Note that it only knows about the fire it has seen as it was building line. It is
just coming within range of the other bulldozer (see the spot of fireline to its northeast).

This simple bulldozer plan, to follow a path and encircle a fire without reference to other
bulldozers, can be used by one, two, or many bulldozers. The fireboss, with its global
view, picks points around the fire, selects any number of bulldozers, and directs each to
go to one of the points and build fireline in a specified direction. The bulldozers act only
with regard to their instructions and the local information in their field-of-view. If the
bulldozers fail to fully encircle the fire (for whatever reason), the fireboss is responsible for
noticing the failure, based on what is reported to it from watchtowers and bulldozers.

Figure 5.10 shows the state of the fireboss's timeline as the bulldozers are closing off the
fireline (see Figure 5.4). The network in the top left box is the top level of the timeline,
which contains four entries and reads from left to right. There is a startup-action and an
end-action (place-holders), and two entries with no temporal constraint between them.
The top entry is an action that executes periodically and updates state memory with new
information about the environment. The bottom entry is an action that is placed on the
fireboss's timeline automatically by the report of a new fire. It causes a plan to be selected
from the fireboss's plan library, based on the characteristics of the reported fire, and then
expanded on the timeline, as illustrated in Section 5.5. The selected plan is shown in the
top right box, and its expansion is shown in the two lower boxes (the plan unfolds left-to-
right, and is continued in the lowest box). Entries preceding the shaded one have already
been executed. These include allocating each bulldozer, instructing them to rendezvous,
calculating a route for them to take to the fire, and (in undetermined order) instructing
them to follow that route and encircle the fire.

|12

rwngbm kiIWa-thnSkt7 in fbsb-.1

Pftm U la-tu-budoar-i ndau -td-vAmsd-fkI. in Hfm-

ill -udsLO buldsft2.10 Li 3

uiu-u-ar-t - l1 uUi b-4-IUsk

,,/a "aUI. bu-i.w-t- alI int-t-

\b "MLOin-t

Figure 10: The fieboss's timeline

This figure shows the fireboss's timeline, including plan expansions, as viewed from the Phoeniz desktop
(headers for boxes name parent nodes). 7Te box at the top left is the top level of the fireboss 's timeline.
7Te darkly shaded entry here is the action to deal with a newly sighted Jime. Dark shading means an entry
is executing or has a child node that is executing. The firebase selected the two-bulldoxer-rendezvous-
and-surround-fire plan, which is shown in the top right boz The expansion of this plan is shown in
the lower boxes. It starts with the timeline entry tl..tart-plan-10.1O, reads from left to right and wraps
around into the lower box. Entries are ordered in temporal sequence; a split after an entry represents
subsequent entries with no temporal constraints between them The current entry (shaded) is executed
by periodically checking to see whether the fire is completely encircled.

124

The fireboss is currently waiting for the bulldozers to finish encircling the fire (see shaded
entry in lowest box). The execution method for this entry runs periodically, checking to
see if there is continuous fireline surrounding the fire. Once this is true, the bulldozers
will be instructed to stop building fireline. This is necessary because the fireboss
maintains the global view of the fire, and must tell the bulldozers when the fire is
surrounaed. (The bulldozers' timelines are not shown.). Once each bulldozer has been
instructed to stop building line, a plan will be selected for returning it to the bulldozer
base.

5.8. Current Status and Future Work

The Phoenix system is very much a work in progress. As is clear from the preceding
sections, several important aspects are handled in a rudimentary or preliminary way.
Currently five people are pursuing research and enhancing the system in the areas
described below:.

More sophisticated plans: We have about a dozen plans that attack fires directly,
with up to four bulldozers, building line at the fire front until the fire is encircled.
We are starting to develop indirect attack plans that incorporate natural barriers.
This requires more knowledge and coordination on the part of the fireboss; since
other agents can't see the fire unless they are close to it, the fireboss must guide
their activities when they are working at a distance. The fireboss must take
advantage of natural barriers when deciding where to build fireline, which
requires the ability to project the spread of the fire and the progress of fire fighting
agents. As we develop new and more sophisticated plans, we must also enhance
the mechanisms by which agents select plans. Currently, the keys for selecting
plans are just wind speed and the availability of fire-fighting agents; as well as
some plan-specific criteria such as whether bulldozers are nearby or distant when
the plan is selected. The keys will have to become more discriminating, and we
will probably have to develop more sophisticated plan-selection mechanisms.

Monitoring: We have designed a general monitoring mechanism called envelopes
that minimizes the cognitive resources devoted to monitoring while providing early
warning of plan failure. Envelopes incorporate expectations of how plans are to
proceed; they represent these expectations functionally. As actual progress is
reported, it is compared with these expectations, and deviations outside certain
parameterized thresholds are flagged for cognitive attention. For example, if an
agent must be at a certain place at a certain time, we can tell by projection whether
the deadline is feasible - can the agent travel the distance in the given time? By
projecting the expected time of travel (based on a parameter such as average speed
for the agent on the given terrain), we can create an envelope for the travel time,
and use it to monitor the agent's progress. The envelope also predicts the expected
arrival time, based on the recent progress of the agent. Furthermore, it predicts
the minimum speed at which the agent must travel over tlIe remaining distance to
arrive before the deadline. If this speed is at or approaching the top speed of the
agent, then the envelop signals the planner that the deadline is in jeopardy,

125

providing an early warning of failure. Currently, we have hooks for envelopes in
plans, but we do not have the mechanisms to replan when envelopes are violated.

Error recovery and replanning: These activities are implemented as cognitive
actions, just like plan selection and plan expansion. When an error is detected in a
plan, an action is posted to the timeline that inspects the error and attempts to fix
the existir. plan. Consider, for example, a failure on the part of a bulldozer Lo find
fire at the location to which it was sent. A plan we currently have to fix the error is
to travel a little further in a specified direction, looking for the fire. A really
intelligent error recovery will know when to try cheap fixes, such as modifying a
destination; and when to begin a search for a way to significantly modify a plan
(e.g., by dispatching another bulldozer); and when, as a last resort, to abandon the
current plan and begin from scratch. Error recovery and replanning will depend
sign ntly on intelligent monitoring, in fact, envelopes are designed to predict
errors before they happen, minimizing "downtime."

Cognitive scheduling: We need to enhance the scheduling abilities of the cognitive
component to make agents responsive to real-time demands in fire fighting. This
is particularly true for the fireboss in our implementation, since it is essentially a
cognitive agent. Currently, scheduling involves three actions: selecting an action
to execute, deciding how much time is available, and selecting an execution
method. But although these actions are "charged" for the time they use, they are
not themselves scheduled, nor are there multiple execution methods to implement
them. In short, the cognitive scheduler is a separate "interpreter" of the timeline.
To make the scheduling of actions completely uniform, scheduling actions must
themselves be scheduled. In addition, we must develop scheduling strategies,
along the lines suggested in Lesser, Durfee, and Pavlin's approximate processing
proposal (Lesser et aL, 19881.

Agent Architecture. To facilitate experiments with different agent designs in
different environments, we have started to build a generic agent
architecture. It is a collection of parameterizable structures that represent
the design of parts of an agent. For example, our generic action structure
includes pointers to execution methods, to envelopes, and to predicates that
are tested before the action is selected. Generic execution methods, in turn,
contain estimates of their time requirements, their prerequisites, and on.
We also have generic structures for sensors and effectors. In the near
future, we will implement generic structures for strategies, including
memory access strategies and cognitive scheduling strategies. The eventual
goal is a full generic agent architecture that makes it easy to implement
different agent designs by specifying how the agent manages its sensors
and effectors, how it manages its memory, and how it decides what to do
next.

Organization and communication: We have demonstrated one way to organize a
multi-agent planner in the Phoenix testbed, but the agent architecture certainly
supports others. Work is underway in Victor Lesser's lab to build a cooperating,
distributed planner for the Phoenix testbed. Although preliminary, this model
assumes multiple firebosses, each with spheres of influence (geographic areas
and agents) under its control, who cooperatively fight fires at their borders, loaning
resources to neighbors, or redrawing their boundaries to shift the work load in

126

times of stress. While this model is similar to the Phoenix planner in the
relationship between firebosses and agents, it adds a cooperative relationship
between firebosses.

Learning: Phoenix agents should learn to improve their performance. The
opportunities for learning are myriad: r-e can learn new reflexes, and
chain reflexes together to learn short plan fragments. We can learn new-
plans from patches to failed ones. We can learn correlations between
environmental conditions, such as changes in wind direction, and failures,
such as bulldozers becoming trapped in the fire. Currently, we are
extending the error recovery mechanisms to learn patches to failed plans.
This is one aspect of Adele Howe's dissertation work [Howe, 1989] Allen
Newell recently pointed out that "you can't program SOAR" because much
of its behavior emerges from sequences of locally-selected chunks, and there
is really no way to predict how a chunk, added by hand, will make the
system behave. We have found the same to be true of actions and reflexes in
Phoenix, and concurr with Newell that once a system attains a degree of
complexity, it must learn to improve its performance itself.

5.9. Conclusion.

The development of Phoenix has been intimately tied to our evolving ideas about AI
research methodology, and specifically to our understanding of the role of evaluation in
AI research [Cohen and Howe 1988a, 1988b] . Clearly, the evaluation of Phoenix must be
with respect to the goals of the project. Moreover, it must tell us not only whether we have
succeeded, Iut whether we are succeeding; and why, or why not. The goals of Phoenix
are, as noted in Section 5.1, of three kinds. Our technical goals are to build a real-time
planner with learning, approximate scheduling, envelopes, and the other features noted
above. Our scientific goal is to understand how environmental characteristics influence
agent design-the relationships discussed in the context of the behavioral ecology triangle
(Fig. 5.5). Lastly, we are using Phoenix as a framework in which to develop AI
methodolgy.

Progress toward each of these goals is evaluated differently. Phoenix is parameterized
and instrumented at all its layers to facilitate evaluations of specific technical
developments; for example, we can assess whether an approximate scheduling algorithm
is robust against varying time pressure because we can vary time pressure while holding
other factors constant. We can run fire scenarios in dozens of conditions, with dozens of
variations in the algorithms used by the Phoenix planner. These experiments are
scheduled to begin in the Fall of 1989. They will enable us to demonstrate the utility of our
technical solutions, explain why they are solutions, and discover the limits on their scope
[Cohen and Howe, 1988a].

But clearly, these cannot be the only aims of the experiments. While it is valuable to probe
the scope and efficacy of specific techniques, such experiments will not necessarily
address our scientific goals. We might show that a Phoenix planner works well in the
Phoenix environment, but not how the environment constrains the design of planners.
Furthermore, unless we are trying to answer specific questions of this sort, experiments
with techniques will be unguided. There are dozens of variations on the Phoenix planner,

127

and hundreds of environmental conditions in which they might be tested. To guide the
search of this space, we Will generate and test general rules that justify and explain the
design of agents. These rules will call upon functional relationships that capture
tradeoffs. For example, the well known store-recompute tradeoff lurks in the design of the
Phoenix planner: we use it to justify the decision to rely on stored plans in an
environment that everts time pressure, favoring storage over computation. Perhaps there
is a general rule here (e.g., under time pressure, rely on storage over computation), or
perhaps there are many specific variants of this rule, for environments with different
kinds of time pressures and agents with different kinds of store-recompute tradeoffs. In
any case, our scientific goal is to discover functional relationships (and to exploit those we
already kn6w, like the store-recompute tradeoff), and to embed them in rules for
designing intelligent agents. To evaluate progress, we need to measure not the
performance of the agents, but the extent to which that performance can be predicted. If
we really understand the relationships between environment characteristics, agents'
behaviors, and agents' designs, then we should be able to predict that agents with
particular designs will behave in particular ways under particular environmental
conditions.

Although we are far from this goal, it is paradigmatic of the style of Al research we
advocate. To evaluate the success of this methodological stance will take a long time, but if
it is possible, there is surely no better aim for AI than to understand-to the point of being
able to predict behavior--how to design intelligent agents in complex environments.

128

Part IV

Plausible Reasoning

Chapter 6

Beyond ISA: Structures for
Plausible Inference in
Semantic Networks

6.1 Introduction

Can cough syrup make people.drunk? Our favorite brand can, because it
contains alcohol. If you didn't already know that cough syrup is intoxicat-
ing, you could infer it from two specific propositions-cough syrup contains
alcohol and alcohol is intoxicating-and from a general plausible inference
rule:

z CONTAINS y, and
Rule 1 y CAUSES z.

X CAUSES z

Other familiar rules of plausible inference include property inheritance (e.g.,
cats have five toes, Ginger is a cat, so Ginger has five toes) and causal
abduction (e.g., fires cause smoke, so if you see smoke, look for a fire).

Rules like these have two roles that we expect to become increasingly im-
portant in coming years. First, they support gracefu degradation of perfor-
mance at the boundaries of our knowledge. A brittle knowledge system that
doesn't know explicitly whether cough syrup makes you drunk won't offer a
plausible answer-it simply won't answer the question [Lenat et al., 19861,
[Lenat and Feigenbaum, 1987], [Collins et al., 1975]. Graceful degradation
depends on general knowledge, which we formulate as as plausible inference

129

rules such as Rule 1, to make up for a lack of specific knowledge. Second, we
expect plausible inference to reduce the effort of building knowledge bases,
because knowledge engineers needn't state explicitly those propositions that
can be plausibly inferred. Property inheritance, for example, relieves us from
having to state explicitly that each member of a class has each property of
that class [Brachman and Sclhmolze, 1985]. Rules like property inheritance
and Rule 1 obviously are needed to build "mega-frame" knowledge bases
[Lenat and Feigenbaum, 1987.

Rule 1 has the same structure as property inheritance over ISA links,
and can serve the same purposes, that is, supporting. graceful degradation
and knowledge engineering. We have developed a simple method for deriving
such rules from the relations in a knowledge base, and we have shown how to
differentiate plausible ones from implausible ones based on their underlying
"deep structure."

This paper describes two empirical studies of these rules. Both
depend on a moderately large knowledge base that we developed
for the GRANT project [Cohen et al., 1985], [Cohen and Kjeldsen, 1987],
[Kjeldsen and Cohen, 1987]. The GRANT KB contains roughly 4500 nodes
linked by 9 relations and their inverses. In the first study we derived ap-
proximately 300 plausible inference rules from these relations. Then we gen-
erated over 3000 specific inferences by replacing the variables in the rules
with concepts from the GRANT KB, and presented them to human subjects
to discover which syntactically permissible rules were plausible (Sec. 6.2).
The second study tested the hypothesis that the plausibility of these rules
can be predicted by whether they obey a kind of transitivity (Sec. 6.2.5).
We will begin by describing these studies, hypotheses, and results. Then we
will discuss the role of knowledge in assesing the plausibility of inferences.

6.2 Experiment 1: Identifying Plausible Rules

In this section we describe how to use the structure of property inheritance
to produce many other plausible inference rules, and how we determined the
plausibility of these rules.

6.2.1 Background

Property inheritance over ISA links can be written

130

nl ISA n2, and
n2 R nL3
nl Rt n3

where the relation I between n 2 and n 3 is viewed as a property of n2 . For
example, if a canary is a bird and bird HAS-COMPONENT wings, then canary
HAS-COMPONENT wings (Fig. 6.1.a). Here, &. is HAS-COMPONENT and the
inherited property is "HAS-COMPONENT wings." Many plausible inference
rules have this structure, but inherit over links other than ISA. For example,
in the "cough syrzup" inference, above, cough syrup inherits the "cAusEs
intoxication" property over the CONTAINS relation:

cough syrup HAS-COMPONENT alcohol, and
alcohol CAUSES intoxication
cough syrup CAUSES intoxication

Figure 6.1.b shows two other examples. They have the same premises
but difierent conclusions. One premise is "storm HAS-COMPONENT
cloud" (and, equivalently, "cloud COMPONENT-OF Storm"); the other is
"cloud MECHANISM-OP rain"' (and, equivalently, "rain HAS-MECHANISM
cloud"). But the conclusions are "storm MECHANISM-OF rain" and "rain
COMPONENT-OF storm," respectively.

bird o wing-fJ-
canary

a. Property Inheritance over ISA links

cloud 0 rain cloud am-l6"t storm

storm" rain

b. Inferences that have the structure of property Inheritance

Figure 6.1: Inference from property inheritance and structurally-identical
rules

This illustrates that each pair of relations can produce two plausible
inference rules that have the same structure as property inheritance over
isA links. For relations Rl, it2 these rules are:

131

ni &1 n2, and
Rule 2 n2 R2 n3

nj &2 n3

and

n3 X2-INV n2, and
Rule 3 n2 11-INV nj

n3 X1-INV nl

Figure 6.1.b shows these alternatives for R1 = HAS-COMPONENT, R2 -

MECHANISM-OF, n 1 = storm, n 2 = cloud, and n 3 = rain.

Figure 6.1 introduces the notation we will use throughout. Rules are

represented as triangles formed from three concepts and three relations.

The legs of the triangle represent premises, and are always drawn as solid
lines. The hypotenuse represents the conclusion and is always drawn as a

dashed line.
Rules can be chained by letting the conclusion of one serve as a premise

for another. Figure 6.2 shows how the conclusion of a first generation infer-
ence, "storm MECHANISM-OF raim," serves as the premise of a second gener-

ation inference, which has the conclusion "storm HAS-PIODUCT runoff."

cloud .mcham- rain has-product runoff-"'~QW4--- .. prdc
storm storm

First generation Inference Second generation Inference

Figure 6.2: Second-generation inference

Since each pair of relations produces two rules, a knowledge base con-

structed from N relations will produce (N 2 + N)/2 pairs of relations (in-

cluding relations paired with themselves) and an equal number of rules.

The GIANT KB is constructed from nine relations and their inverses, so
(182 + 18)/2 = 342 were generated.

Experiment 1 had two goals. One was to generate all possible rules for

the GRANT KB and to determine which of them produce plausible conclu-

sions. The other was to find out how the plausibility of conclusions is affected

132

by chaining these rules. Applying roughly 300 rules to the GRANT KB (as
we describe below), produced 'thousands of first generation inferences and
over 200,000 second-generation inferences. We expected very few of these
to be plausible; but, if we could discover or predict the plausible ones, then
we would have a powerful method to reduce the effort of constructing large
knowledge bases.

6.2.2 Design

To determine whether the rules produce plausible conclusions, we first in-
stantiate them with specific concepts, then present them to human subjects
to judge.

We derived 315 rules from the GRANT KB.1 For each we produced 10
test items (five first generation items and five second generation items) by
the following method:

Each rule is based on two relations. For each pair, say HAS-COMPONENT
and MECHANISM-OF, we search the GRANT KB for triples of nodes nl,n 2 ,n3
that are connected by these relations (i.e., n, is connected to n2 by HAS-
COMPONENT, and n2 is connected to n3 by MECHANISM-OF).. Each triple
represents a pair of premises from which twio inferences can be drawn (see
Rules 2 and 3, above).. For instance, storm, cloud, and rain instantiate ni,
n2 , and n3, respectively in Figure 6.1".b, yielding the conclusions "storm
MECHANISM-OF rain" and "rain COMPONENT-OF storm."

Most pairs of relations in the GRANT KB yield dozens of n1 ,n2 ,n3 triples.
We randomly select five, and their conclusions, to be first generation test
items. However, we add the conclusions of all the triples to the GRANT KB.

This procedure is repeated to generate second generation test items, with
the added condition that one premise of each second generation item must
be a conclusion that was produced during the previous search (though not
necessarily the conclusion of a first generation test item).

In all, the 315 rules yield a data set of 3116 test items, of which roughly
half are first generation and half are second generation items.2

6.2.3 Procedure

Items in the data set were presented to human subjects by a computer
program. Subjects were asked first to indicate whether both premises were

'Pruning duplicates reduces the original 342 rules to 315.
2We don't have 3150 items because, for some rules, the GRANT KB yielded fewer than

five first generation instances.

133

acceptable, one or both were unacceptable, or they did not understand one
or both premises. Next, the conclusion was shown and subjects were asked
to judge whether it followed or did not follow from the premises, or else to
indicate that they did not understand the conclusion. Each item was seen by
two subjects. Following a practice session with 20 items (none of which was
in the data set), each subject judged approximately 700 items from the data
set. This took about five hours, distributed over three or four self-paced
sessions.

6.2.4 Results

Since the premises of the test items came from an existing knowledge base
we expected that most would be judged acceptable. This is in fact the
case: 82% percent of first generation premises and 63% of second generation
premises were judged to be acceptable. The following results pertain only
to those items.

Each rule is represented in the data set by fiye first generation items and
five second generation items, and each item was seen by two subjects. Thus,
10 judgments are made of the items in each generation of each rule. Two
plausibility scores for a rule, ranging from 0 to 10, are equal to the sum of
the number of items that subjects judged plausible for each generation of
each rule. The mean plausibility score, over the 315 iules, for first genera-
tion items is 4.18 (var. = 6.92), and the corresponding statistic for second
generation items is 3.17 (var. = 4.88). Both are significantly different from
chance and from each other at the p < .01 level. The fact that both are below
chance means that the preponderance of rules are not plausible. Given this,
one would expect chaining of inferences to produce increasingly-implausible
conclusions. This is supported by the evidence that second generation in-
ferences are significantly less plausible than first generation ones. Subjects
judged approximately 50% of the rules to have plausibility scores between 3
and 7 (of a possible 10); they judged the rest of the rules to be predominantly
plausible or implausible.

6.2.5 Discussion

While these results indicate that many rules generate predominantly plau-
sible conclusions, and many others are predominantly implausible, they do
not tell us how to predict which will be plausible and which will not. We
wanted to find a small set of common characteristics of rules on which to base
these predictions. Furthermore, we wanted these characteristics to depend

134

only on the relations in the rules, not on the nodes or any other exogenous
factors.

We discovered two common aspects of relations. Some relations, such
as HAS-COMPONENT have a hierarchical interpretation. Others, such as
CAUSES, can be interpreted as temporal relations. Lastly, relations such
as MECHANISM-OF can have both hierarchical and temporal interpretations:
in "n1 MECHANISM-OF n 2 ," n 2 may be a process that hierarchically sub-
sumes the mechanism nj, or nj may be an'object or process that exists
or is required prior to achieving n2 . Table 6.1 lists the deep relations that
correspond to all 18 surface relations. Each deep relation has a h (hierar-
chical) or t (temporal) interpretation, or both. Expressing rules in terms of

Surface Deep Surface Deep
relation structure relation structure

CAUSES t 6. CAUSED-BY - t

CONVOEND F T.d h HAS-POElT h

-h HASOCUS h

MECHAN41M-OF q h HAS-MECHANISM h
t t

PROD=-OF It- HAS-PRODUCT h.4P h t-h

PURPOSE-OF HAS-PURPOSE 14 t

SE14-Fh SrMdh

SUBJEC-OF 4-h.. SUBJECT --- 1
SUR.TFIE D-OF .4 h HAS-SUBIELD h

Table 6.1: Surface relations and corresponding deep relations

these deep relations reduces the set of 315 surface rules to 95 unique deep
structures.

More importantly, we identified a characteristic of deep structures, called
tranaitivty, which seemed to explain why some rules were plausible and oth-
ers implausible. Figure 6.3 shows two transitive structures and two intransi-
tive ones. The transitive deep structures represent the rules: "If n CAUSES
i 2 , and n 2 CAUSES n 3 , then ni CAUSES fn$," and "If ni COMPONENT-OF

n2, and n2 COMPONENT-OF n3, then n, COMPONENT-OF n2.n We call these
structures transitive because the premises imply an ordering between ni
and n3 that, to be preserved, requires a particular ordering between nj and

135

n3 in the conclusion (n1 to n3 in one rule and n3 to n, in the other). In
contrast, the intransitive structures do not require any ordering on nodes
in the conclusion. In one, the premises indicate no hierarchical ordering
between n, and n3, only that n2 is hierarchically-superior to both. Sim-
ilarly, in the other intransitive rule, n, and n3 are both temporally-prior
to n2, but no ordering is implied between them and, thus, required in the
conclusion.3 The mean plausibility score for transitive rules was 8.94 (out

n2 h n 3 n2 h ,n3

h .h ..
1i i3 *"' h

n2 t -n3 t .t ,t
tI

a. Example transitive b. -Example Intransitive

deep structures deep structures

Figure 6.3: Transitive and intransitive deep structures

of 20; var. = 16.83), and for intransitive rules, 5.89 (var. = 14.46). Again,
the preponderance of these rules are judged implausible, but these values
are significantly different (p < .01), and provide strong post-hoc evidence
that transitivity is a factor.

Transitivity is clear when surface relations map to deep relations whose
h and t elements point in just one direction. But the surface relations HAS-

MECHANISM and Puaposz-op have deep relations where t and h point in
opposite directions. Therefore, rules that are transitive under one interpre-
tation of these relations are necessarily intransitive under the other. For
example, the structure in Figure 6.4.& may be transitive or intransitive. We
call structures like this dmbiguous.

Although our data suggested that transitivity predicts the plausibility of
rules with unambiguous structures, the results were less clear for ambiguous
ones. All ambiguous structures have transitive interpretations, but we knew

3The term transitivity refers to the form of the deep structure, and does not imply
mathematical transitivity.

136

n 2 - h .-- '.n 2 .- ,4 -

h t h
h h

nh -:j "t nh . t

a. Consistent h b. Consistent t
Interpretation Interpretation

Figure 6.4: Ambiguous deep structures

from our data that not all the corresponding rules were plausible. We hy-
pothesized a characteristic of interpretations, called consistency, that might
discriminate plausible ambiguous rules from implausible ones. A structure
has a consistent interpretation when its deep relations all have the same
interpretation, either h or t. For example, Figure 6.4.a has a consistent
interpretation in which all its deep links can be interpreted as h. Moreover,
this h interpretation is transitive. Figure 6.4.b has a consistent t interpre-
tation, but it is intransitive; and the interpretations of the deep relations
that make Figure 6.4.b transitive are inconsistent (t, t and h).

6.3 Experiment 2: Plausible inference as transi-
tivity

At the end of Experiment 1, we had formed the hypotheses that transitiv-
ity predicts plausibility, and that consistency determines the interpretation
(transitive or intransitive) of ambiguous structures. Experiment 2 tests these
hypotheses.

6.3.1 Design

Experiment 2 focused on ten relations from Experiment 1: CAUSES,
COMPONENT-OF, MECHANISM-OP, PIODUCT-OF, PUlPOS--OF and their in-
verses. (The other relations replicate deep relations and occurred relatively
infrequently in the knowledge base.) Since each of these surface relations
has a unique corresponding deep relation, the 95 rules they generate map
to 95 different deep structures. From these, we chose 56 structures (and

137

... -- - -- r m m mm m m m

thus, rules) as a representative sample. 4 We generated 10 first generation
test items for each of the 56 rules, following the procedure described in
Experiment 1.

6.3.2 Procedure

Fourteen subjects each viewed all the test items. Items were presented as in
Experiment 1.

6.3.3 Results

Our hypothesis is that transitivity, as determined by the consistent inter-
pretation of the deep structure, predicts plausibility. Eight rules are com-
posed of surface relations that have just one deep interpretation (CAUSES,

CAUSED-BY, HAS-COMPONENT, COMPONENT-OF; see Fig. 6.5). With these
we can analyze the effects of transitivity and consistency on plausibility in
rules with single interpretations. A two-way analysis of variance found a

Transitive Intransitive

hh

-/ _
Iconslistent t/ / t / h h /

Figure 6.5: Single interpretation deep structures

significant main effect of transitivity (p < .001) and a significant transitiv-
ity x consistency interaction (p < .001), but no main effect of consistency
(p > .2), confisming that transitivity predicts the plausibility of these rules.
A graph of the means (Fig. 6.6) suggests that we cannot predict the plau-

"Rules generated from a single surface relation and its inverse always map to one tran-
sitive and two intransitive deep structures. Our sample included the transitive structure
and one of the intransitive structures (chosen randomly). Pain of non-identical relations
and their inverses form four transitive and four intransitive rules. Our sample included
two transitive and two intransitive rules from each of these sets.

138

80%-

70% consistent
60% inconsistent

o = •.............. ._ items50%

*• 40%

A- 30%
0.

20%

transitive intransitive
items items

Figure 6.6: Transitivity x consistency analysis

sibility of rules that have no consistent interpretation, because the mean
plausibility score for these rules is roughly five out of 10 (i.e., at chance)
irrespective of whether the rule is transitive. Figure 6.7 compares the mean
plausibility scores of transitive, intransitive, and inconsistent rules to chance
performance; transitive and intransitive inconsistent items are collapsed into
one category.

Analyzing all our rules in terms of these categories yields 18 that have
consistent transitive interpretations, 20 consistent intransitive rules, 8 incon-
sistent rules, and 4 rules that have both transitive and intransitive consistent
interpretations.5 The histogram for all rules (including the eight analyzed
earlier) is presented in Figure 6.8.

Although less clear-cut, Figure 6.8 echoes one of our earjer results:
transitivity predicts the plausibility of rules with consistent interpretations.
However, the mean plausibility score for inconsistent rules is higher than
chance, and the mean plausibility score of consistent intransitive rules is
much closer to chance than it was in Figure 6.7.

-6.3.4 Discussion

While the predictive power of transitivity is high for rules that have only
one interpretation, it becomes diluted in rules with multiple interpretations.
It is not surprising that rules with consistent transitive and intransitive

"Unfortunately, the test items for the other six rules shared many common premises.
This was an unavoidable consequence of our decision to generate test items randomly. Four
had consistent transitive interpretations, two had conistent intransitive interpretations.

139

"Transitive Inconsistent intransitive
rules rules rules

+30%

+20%

E w0-A- -2 +10%

CoL Chance
o (50%)

C ImCIO -10%
2 -
0

-20%

-30%

Figure 6.7: Plausibility scores for rules with single interpretations, expressed
as deviations from chance performance

interpretations have a mean plausibility score roughly halfway between the
scores for transitive and intransitive rules (Fig. 6.8). However, the mean
plausibility score of inconsistent rules, which we expected to be at chance,
was higher (61%); and the mean plausibility score of rules with consistent
intransitive interpretations, which we expected to be implausible, was not
as low as we expected (43%).

We hypothesize that both these effects are due to an unanticipated factor
that is raising the plausibility of some but not all of these rules. Whereas all
our surface rules have the same structure as property inheritance over ISA
links, some but not all of the deep structures of both the intransitive and
inconsistent rules have this form. For example, the deep structure for the
rule nj COMPONENT-Or n 2 , n2 HAS-MECHANISM n3 -- nI HAS-MECHANISM
n$ is intransitive, but its conclusion is often plansible, as illustrated in Fig-
ure 6.9. In this instantiation, battle inherits "HAS-MECHANISM weapon"
from war over a COMPONENT-OF relation. We expect rules with this struc-
ture to yield relatively high plausibility ratings even if they are intransitive,
because property inheritance is a common and powerful plausible inference
rule.

Generalized property inheritance (GPI) is a characteristic of a rule's deep
structure, comparable with transitivity:

140

Transitive Rules with Inconsistent Intransitive
rules consistent rules rules

transitive &

+ .30% intransitive
E2 interpretations

* "i +20%

+ 10%

3 * Chance
3- (50%)-

-1 0%

Figure 6.8: Plausibility scores for all rules, expressed as deviations from
chance performance

has-mechanism t
war h weapon war h .. weapon

corponr X hN -h..'''

of t ns
battle' battle "' ' t

a. Surface structure b. Deep structure

Figure 6.9: Surface and deep structures of an intransitive but plausible rule

If n1 is related to n2 by h, and n2 is related to n3 by any relation
i, then it is plausible to infer that n1 is related to n3 by i

This definition does not restrict the direction of h; it can point "up" or

"down" from nj to n2, whereas in property inheritance over ISA links, nj

must be a subclass or instance of n2, that is, ISA must point "up." We relax
this for GPI because it is often plausible to infer that a concept will have
properties of those concepts hierarchically-inferior to it.

GPI explains why some intransitive rules have higher than expected plau-
sibility scores. Since some transitive rules are also GPI, we ran a post-hoc
transitivity x GPI analysis of variance, and found main effects of transitiv-

141

ity (p < .001) and GPI (p < .05), with no interaction effect. Post-hoc tests
on the means (Newman-Keuls) found a significant difference between GPI
intransitive items and non-GPI intransitive items (p < .05), which means
that among intransitive rules, GPI differentiates two statistically-distinct
classes-relatively plausible and relatively implausible rules. After remov-
ing GPI rules, the mean plausibility score of inconsistent rules decreases
(Fig. 6.10). Therefore, GPI provides a post-hoc explanation of why intran-
sitive and inconsistent rules have higher-than-expected plausibility scores.
Among transitive items, GPI had no statistically discernible effect. And
since there was no interaction between transitivity and GPI, we regard them
as independent factors.

Transitive GPI Ruie with Inconsistent Intransitive
rules rules consistent rules rules

transitive &
+30% Intran'sitlive

interpretations

A +20%

.5o.

o +10%

V Chance
a. (50%)

-10%

Figure 6.10: Post-hoc revision of Figure 6.8, treating GPI rules separately

6.4 General Discussion-Judging plausibility

In this section we will discuss the factors that contribute to judgments of
plausility. Recall that our goal is to find plausible inference rules that sup-
port graceful degradation and help knowledge engineers. Ideally, the agent
who uses these rules should not need much knowledge to judge the plausi-
bility of their conclusions. For example, the plausibility of the conclusion of
the rule

ni CAUStS n2, and
n 3 CONTAINS n1

n3 CAUSES n2

142

seems not to depend on the objects that instantiate ni, n2, and n3. In
contrast, to judge the plausibility of a conclusion of the rule

n, CAUSES n2, and
n2

nl

we need knowledge about n, and n2 that can tell us how likely n, is given
nI2 •

Several authors have noted the tradeoff between the amount one
knows about a plausible inference and and one's confidence in its con-
clusion [Collins et at., 975], [Collins, 1978], [Baker and Burstein, 1987],
[Polya, 1954]; for example, Polya notes that "In order to judge the weight
of the evidence, you have to be familiar with the domain; in order to
judge the weight with assurance, you have to be an expert in the domain."
[Polya, 1954, p. 114].

What knowledge contributes to the plausibility of the conclusions of the
rules in Experiments 1 and 2? Said differently, what factors account for
the total variance in judgments of plausibility (T) among our subjects? We
believe T has four additive components:

* subject variance-the proportion of T due only to individual difTerences
in subjects' knowledge, experience, motivation, and so on.

item variance-the proportion of T due only to differences in the concepts
that instantiate n 1 , n 2, n3 in the rule.

between-rule variance-the proportion of T due only to differences in
the surface structures of rules.

deep structure variance-the proportion of T due only to whether deep
structures are transitive, intransitive, or GPI structures.

Ideally, deep structure variance should account for the largest component
ofT. If 100% of T was due to deep structure variance, then transitivity and
GPI would be perfect predictors of plausibility. In contrast, if a large fraction
of T is due to item variance, then one needs to know the specific instantiation
of a rule-the concepts in the test item-to predict its plausibility. Similarly,
between-rule variance represents the effect of knowing the surface structure
of test items on one's ability to predict their plausibility. Subject variance
represents the limit of our ability to predict plausibility.

143

For transitive and intransitive rules, and to a lesser extent for GPI rules,
deep structure variance accounts for a large fraction of T. For all test items
with these structural characteristics, our predictions of plausibility will be
correct for 77% of transitive items and 68% of GPI items; and our prediction
of implausibility will be correct for 62% of intransitive items. Since these
numbers are not 100%, the remaining variance in T must be due to the rule,
item, and subject factors.

We estimated between-rule variance as follows: We ran three one-way
analyses of variance, by rule, for transitive, intransitive, and GPI rules. This
allowed us to make a rough estimate of the proportion of the variance in
each of these categories due to rule (as suggested by (Hays, 1973, p. 485]).
Between-rule variance is 16% for transitive rules, 27% for intransitive rules,
and 52% for GPI rules. That is, if a rule is transitive, then knowing which
rule it is provides little additional information about the plausibility of items.
However, this knowledge accounts for much of the variance in plausibility
scores of intransitive and GPI items.

Given that we know the specific rule, how much of the remaining variance
(the within-rule variance) is due to the individual item and how much is due
to subject differences? When the within-rule variance is low, all the items in
the rule received approximately the same plausibility score. Therefore, if you
know that an item is an instantiation of one of these rules, knowing which
instantiation it is does not help you predict its plausibility: Most of the
within-rule variance is due to subject,. But when the within-rule variance
is not low, it may be due either to item, subjects, or a combination of both.
One way a rule can have a high within-rule variance is if the plausibility
scores of the items fall at both extremes of the scale. For example, if half the
items were judged plausible by all subjects and the other half were judged
implausible by all subjects, then none of the variance is due to subjects
and all is due to items. On the other hand, if many items received split
plausibility scores (i.e., half the subjects found them plausible, the other
half did not) then much or all of the remaining variance is due to subjects.
Thus, we can use the number of split plausibility scores as a rough estimate
of the variance due to subjects.

Twenty-two of our 50 rules had low within-rule variance. (The distribu-
tion of within-rule variances was skewed low, but ranged from 0 to 19 with a
mean of 6.5; a variance < 5.0 was "low.") For these rules, subject differences
seem to contribute more to the within-rule variance than do item differences.
That is, knowing the instantiation of these rules does not improve our pre-
dictions of their plausibility over the prediction we can make from structure

144

and rule knowledge. The remaining 28 ruLes have split plausibility scores on
one or more items. Nine of them have two or fewer split plausibility scores,
indicating that little of the variance is due to subjects. Knowing the in-
stantiation of these rules woud improve our predictions of their plausibility
over the predictions we can make from structure and rule knowledge. The
remaining 19 rules all have between 3 and 6 split plausibility scores, which
suggests that more of their variance is due to subject differences.

6.5 Conclusion

This paper suggests that we can automatically derive plausible inference
rules from the relations in knowledge bases and predict judgments of plausi-
bility for the conclusions of these rules. Two structural factors (transitivity
or GPI) correctly predict plausibility 77% and 68% of the time. No knowl-
edge is required to apply these criteria. Greater accuracy requires more
knowledge, particularly knowledge about the specific rules and the concepts
that instantiate them; but because we ,uld not accurately estimate the
contribution of individual differences among our subjects to T, we do not
know the limit on the accuracy of our predictions.

Our experiments relied on the GRANT KB, which was built for a different
purpose. Although our results are limited to this knowledge base, we believe
they are more general, because the surface relations in the GRANT KB are
common, and because h and t are general semantic components, and because
transitivity and GPI are common structural characteristics. But further
work is required to prove the generality of our results.

Our goal was to develop methods to support graceful degradation and
knowledge engineering. Clearly, these purposes are not met if plausible
inference rules require masses of knowledge to judge their conclusions. We
are very encouraged by the relatively high accuracy of criteria that require
no knowledge, and by the fact that our accuracy is higher for plausible rules
than for implausible ones.

145

Part V

Methodology

146

Chapter 7

Toward AI Research
Methodology: Three Case
Studies in Evaluation

7.1 Introduction

Evaluation means making observations of all aspects of one's research, ahd
perhaps making some judgments of merit based on those observations, and
reporting both to the research community. In AI, ealuation should not be
limited to observing and judging only how our systems perform. It is a vital
part of all the stages of research that lead up to performance evaluation and
that follow it. For example, the information retrieval system we will discuss
in Section 7.3.2 performed well in comparison with traditional statistical
systems; but after analyzing its behavior we could see plenty of room for
improvement-many simple modifications that we expected would improve
performance. This observation is not a performance measure, but tells us
informally about the current state of a program, whether its performance
is likely to improve or has reached a limit, how easy it is to modify, and so
on. These observations are in some respects more important than simple
performance measures because they tell us how research should proceed.
Evaluations should provide ongoing guidance at all stages of the research
cycle.

So ideally, evaluation should be a mechanism by which AI progresses
both within and across individual research projects. It should be something
we do as individuals to help our own research and, more importantly, on.

147

behaH of the field. We must observe and report our research carefully be-
cause our colleagues cannot. In other empirical fields, evaluation includes
describing experiment designs, results and analyses. But this is difficult in
Al because experiments often involve uncontrolled interactions of knowl-
edge representations, inference methods, algorithms, and the user; and re-
searchers typically do not have access to run-time data and programs, at
various stages of development, from other laboratories.

Consequently, individual AI researchers have an unprecedented respon-
sibility to observe, assess, evaluate, and communicate their results. Many
do. But if a researcher doesn't tell us, for example, that a program was
tuned to perform well on a particular data set, then we will never know.
Tuning programs is not necessarily bad; in fact, it is a good empirical way
to discover the best possible performance of a program (see Sec. 7.4.1). We
are being pragmatic, not moralistic, when we use the terms "good" and
"bad": It doesn't help AI if, for sound experimental reasons, one tunes a
system, but then allows the research community to believe it will perform in
general as well as it performs in the best cases. The community also needs
to know the number of cases on which one's system has run, how much help
it got from the user, the size of the system, how difficult it was to scale up,
and so on. These general assessments, as well as the specific ones discussed
in Section 7.2 and the Appendix, are owed by individual researchers to the
field.

Evaluation is not standard practice in part because we don't have formal
research methods, standard experiment designs, and analytic tools. Where
will they come from? The fundamental challenge is that we must develop
them ourselves. We must refine existing, rudimentary evaluation practices
and develop new ones. But they must be appropriate to empirical AI; we are
better off without them if they impede progress.1 We advocate evaluation
not out of envy for "real science," but because we believe AI needs evaluation
to move forward. Thus, as a field, we are not obliged to adopt "scientific"
evaluation criteria (see Sec. 7.4), but should design our own.
- We approach the topic of evaluation from the perspective of AI re-

searchers. Our evaluation criteria and methods are designed for empirical Al
research (see (Buchanan, 19871, [Newell and Simon, 1976], [Langley, 1987]

'For example, Cognitive Science and related areas have been accused of overemphasis-

ing rigorous, reductionist methodology. Newell expresses this view in a paper called "You
can't play 20 questions with nature and win" [NeweU, 1973]; and Neisser relates a similar
concern for the "ecological validity," or validity outside the laboratory environment, of
psychology research in his book Cognition and Reality [Neisser, 1976].

148

for complementary discussions). The purpose of empirical AI is to tell
us about the behavior of AI systems-the interactions of knowledge rep-
resentations, inference methods, algorithms and other components of sys-
tems that we could not anticipate from purely theoretical AL. We differen-
tiate empirical AI from applied Al: Though both involve building systems,
the goal of empirical AI is to develop and systematically experiment with
new methods; in contrast, applied AI relies on methods we already under-
stand and rarely contributes new ones (see (Geissman and Schultz, 1988],
[Gaschnig et at., 1983], [Rothenberg et aL., 1987] for discussions of evaluat-
ing applied systems).

This paper is offered as a first step in what we hope will- become a
discourse on evaluation in empirical AL. Section 2 describes a multistage
model of empirical AI research and the roles of evaluation at each stage.
Section 3 presents three case studies of evaluation. Section 4 discusses the
relationship between evaluation and progress in empirical AI, contrasting
it with other behavioral sciences. The Appendix presents five classes of
evaluation criteria-a checklist for researchers.

7.2 Evaluation of an empirical AI project

Empirical AI research can be viewed as a cyclic, multistage process. 2 The
process is cyclic because analysis of our programs invariably suggests new
problems (as illustrated by the arc from the last stage in Fig. 7.1 back to
the first); and because evaluation at every stage can cause the researcher
to reformulate or refine results from previous stages. For example, when
designing a method for solving a problem (stage 2, Fig. 7.1), we often find.
that the problem is ambiguous, overambitious, or underspecified and must
be refined (stage 1, Fig. 7.1).

The model of empirical AI research in Figure 7.1 is idealized because
not all research includes all these stages, and, more importantly, researchers
don't evaluate their work at each stage. In this section we will discuss the
advantages of evaluation at all stages of one's research, that is, we will show
why it is worth following this idealized model. Toward this goal, we also
suggest specific evaluation criteria for each stage of the model in Tables
7.1-7.5 of section 7.5.

2Buchanan [Buchanan, 1987) describes a similar model.

149

Stage 1: Refining a topic to a task Empirical AI begins when re-
searchers find particular topics fascinating. The first stage of the research
cycle involves simultaneously refining the research topic to a task and iden-
tifying a view. A task is something we will want a computer to do, and a
view is a "pre-design," a rough idea about how to do it. This stage takes
a lot of effort; researchers don't simply say, iOk, we are fascinated by dis-
covery, so let's try mathematical discovery as a task and heuristic search as
a view" [Lenat, 1976]. The process is iterative and directed by evaluations
(as are all other stages in Fig. 7.1): Is the task significant, tractable, and
representative of the phenomena we want to study? Is the view completely
novel or adapted from a different task? Is it appropriate to this task? Is our
goal to explore the efficacy of an extant view for a new task, or to explore
a new view of an extant task? We call the latter "reformulaton"-looking
at a well-known task in a new way. Reformulations can be major (e.g.,
view problem solving in terms of domain-specific knowledge instead of weak
methods) or more modest (e.g., view uncertainty as a problem to be solved
instead of a phenomenon to be measured).

Evaluations during this stage direct one's own research, and also provide
the AI community with carefully justified tasks, views, and reformulations.
The evaluation criteria in Table 7.1 of the Appendix address two basic ques-
tions: can you justify the research task to yourself and to the community,
and do you understand what will be required to solve it?

Stage 2: Design the method At the next stage, one's view is refined
to a method. The word "method" implies a single algorithm, such as A*
[Barr and Feigenbam, 1981] or candidate elimination [Mitchell, 1977], or
Waltz filtering [Waltz, 1975]. But frequently, the method for a task com-
bines several algorithms and assorted knowledge structures. For example,
the island driving method in Hearsay-fl required many knowledge sources,
data-driven and opportunistic control, and a novel communication structure
(Erman et aL, 1980]. Although this complexity strains the word method, we
will maintain it to remind us that we don't jump immediately into building
programs, but first decide how we want to solve tasks.

150

Sta re 1:

Refining the topic evaluation
to a task and view (See Table 1)

Stage 2:

Design the method evaluation
k4 (See Table 2)

Stage 3: yTe s

Design and build evaluation
a program (See Table 3)

Sta e 4: "
Design experiments fl evlUation

_ _ (See Table 4)

Stae 5:

Arnalyzevaluation
jexperiment results (See Table 5)

Figure 7.1: Cycle of Empiricel AI Research

150a

Designing a method is an iterative process guided by evaluation: what is
the scope of the method, what are its underlying assumptions, does it rely
on other methods, is it an improvement over existing technologies? How ef-
ficient is the method? How brittle is it? Are limitations inherent, or can the
method be extended? Our field has few formal criteria for evaluating meth-
ods, yet the method is often the general contribution to the field. Table 7.2
in the Appendix presents criteria that assess how well you understand your
method-its strengths and limitations.

In many cases, the method cannot be evaluated until it is implemented in
a program. But let us first consider two cases in which programming is not
necessary for evaluation. First, some methods can be evaluated analytically
without programming (e.g., A* search, candidate elimination). The purpose
of these evaluations is to tell the research community about the scope, ef-
ficiency, limitations, and other aspects of the methods. Second, a method
may already be so well understood that neither implementing it nor evalu-
ating it will tell us anything we do not already know. Now, in both cases,
exploratory programming may help us refine the method we want to solve
the task, but we distinguish this role of programming-refining a method-
from programming for the purpose of experimenting with and evaluating a
method. Unfortunately, exploratory programming drifts easily into building
systems, and we begin to focus on solving the task, and forget that, from
the standpoint of empirical AI research, the purpose of building systems is
to tell us something about our methods that we don't already know and
can't learn by analysis. We build too many systems and evaluate too few.

Stage 3: Design and build a program If the method requires pro-
gramming not merely to implement it, but to understand whether and why
it works, then we move on to the third stage in Figure 7.1. Here, the method
becomes a design and then a program. Although in practice this stage may
be indistinguishable from exploratory programming in the previous stage,
its purpose is different. Consequently, the evaluations we do at this stage
are different. Evaluation, at this stage, mostly involves checking that your
program implements as much of the method as you wished to test, and that
its demonstration of interesting behavior is transparent (these two checks
are operationalized in the criteria in Table 7.3 in the Appendix). Unlike the
earlier evaluations of tasks, views, and methods, evaluation at this stage is
primarily for the individual researcher, not for the community at large. Its
purpose is to direct the implementation of the method in a program that
can be evaluated.

151

Stage 4: Design experiments The fourth stage of the research cycle
is to design experiments with the newly-implemented system. These ex-
periments help assess the utility, generality and efficiency of the methods
and their implementations. Criteria for evaluating experiments (as opposed
to their outcomes) focus on whether test cases will be informative, that is,
whether they span the range of abilities claimed for the method, whether
sufficient numbers of test cases will be run, and whether the performance
measures and standards are appropriate (the full set is presented in Table 7.4
in the Appendix). In practice, stages 3 and 4 are interleaved: one doesn't
implement programs before thinking about experiments. Section 7.3.1 il-
lustrates the pitfalls of designing a program without considering the ex-
periments. The purpose of these evaluations is to convince the individual
researcher and the research community that experiments are sound-that
they demonstrate what they purport to.

Stage 5: Analyze experiment results The method has been imple-
mented in a fully-instrumented program, the experiments are well designed,
and now we can ask whether the system works and why it works. How
does it compare to its performance standard? Did it perform differently
than expected? Is it efficient? What are its performance limitations? What
happens if we change the control strategy, or try a new set of test cases, or
remove some of its knowledge? What if we manipulate several of these fac-
tors at once? After all, the point of building the program was to find out how
the complex interactions of components of our method affect performance
in many different conditions. Many research computer programs disappear
shortly after they are written; their legacy is not their binary representation,
but rather the new knowledge they reveal. The results of experiments and
generalizations based on those results are the primary contribution of the
research project to the community (the criteria for this stage are summa-
rized in Table 7.5 in the Appendix). So the purposes of evaluation at this
stage are to convince the research community of the viability, performance
and scope of one's methods, and to suggest further research.

In sum, evaluations at each stage in Figure 7.1 tell us whether to proceed
to the next stage, repeat the current stage or return to a previous stage; and
at most stages they also provide the research community with information
about what we are doing and why. Evaluation informs our research by
telling us, as soon as possible, that we have refined a fascinating topic to
an intractable task, that our ingenious view of the task is too ambiguous
to turn into a design, that our design doesn't address the most interesting

152

aspects of the task, or that our implementation-though faithful to the
design-simply doesn't work. If we complete one cycle of research, we need
evaluation criteria to direct the next one. And if we are able, in the course
of several cycles, to understand our task, then we need evaluation criteria
to tell us how to refine the original topic to another, related one.

7.3 Case studies

This section illustrates the research cycle and the role of evaluation in the
context of three case studies. Our first case study illustrates problems with
evaluating knowledge-based. systems, specifically a portfolio management
expert system called FOLIO [Cohen and Lieberman, 1983]. When we devel-
oped FOLIO, we didn't think through the details of the evaluations, so when
we finished we discovered we couldn't do any convincing evaluations. The
second case study focuses on the relationship between evaluation and the
evolution of the GIANT system, specifically how our evaluations changed as
we scaled up GIANT's knowledge base. Third, we examine the cyclic nature
of the research model presented in Section 7.2. We describe how the results
of analyzing Dominic, a mechanical engineering design system, led to more
powerful versions of the system.

7.3.1 FOLIO

As an exercise in evaluation, FOLIO was only marginally successful. In
prospect, we learned that unless one evaluates a research project at all
stages, one may end up with a system that cannot be evaluated. Ironically,
FOLIO seemed promising because we believed that portfolio performance was
an objective evaluation criterion. What we failed to consider was that the
performance of the portfolio was not what we should have been measuring-
the appropriate criterion was whether the client's goals had been satisfied,
and there was no objective measure of that criterion.

Investors often engage investment advisors or portfolio managers to help
t~hem manage their capital. FOLIO was an expert system that advised clients
on asaet allocaion problems, in which clients' investable capital is divided
among several funds [Cohen and Lieberman, 1983]. For example, the assets
of an elderly, retired individual might be allocated primarily to bonds and,
in a lesser part, to blue-chip stocks. The proportion of the client's assets in
each fund depends on many factors, some of which are provided by the client
(e.g., risk tolerance, age, health, desired standard of living) and some of

153

which are inferred (e.g., whether the client needs a hedge against inflation).
To solve asset allocations problems, POLIO divides clients' capital among
several funds in such a way as to satisfy their stated and inferred goals and
needs, and maximize after-tax income.

POLIO's task was first to collect data from a client and infer how much
the client cared about each of fourteen goals, and then to use the desirability
of these goals to determine the proportion of assets allocated to each of nine
funds. We began to view the problem in two distinct ways: inferring the
client's goals seemed like a standard classification task [Clancey, 1984b], for
which we might use conventional expert systems methods; but constructing
the portfolio to best achieve the client's goals seemed like an optimization
problem. In fact, neither view is sufficient alone, so we adopted a hybrid
view in which goals are inferred from client data, and then are passed to an
optimization program that constructs the portfolio. We refined this view to
a specific method: First, client data drive a rule-based expert systerLL to infer
goals and needs. These are represented on the right-hand sides of the rules
as components of an objective function and linear constraints for a goal-
programming algorithm [Hillier and Lieberman, 1980]. Then the algorithm
produces a portfolio. In short, the expert system configures an optimization
program, which produces a portfolio.

We attempted to evaluate POLIO's performance by what we call the CC'
script: one set of cases, C, is used to develop the program, typically to a
high level of performance, and another set, C', is used to test whether that
level can be achieved in novel cases. The CC' script requires a measure
and a standard, both of which proved problematic in POLIO. The obvious
approach is to have the expert and POLIO both produce portfolios for the N
cases in C', then generate three measures:

Hit rate: the number of identical portfolios divided by N

Miss rate: the number of portfolios generated by the expert but not by
POLIO, divided by N

False-positive rate: the number of portfolios generated by POLIO but not
by the expert, divided by N.

This approach, in which the expert's solutions are the standard of com-
parison, works well when problems have only one correct solution. But
in asset allocation problems, many portfolios may satisfy the client's goals
equally well. In fact, POLIO and the expert never produced identical port-
folios. In such cases, measures that depend on identity (e.g., hit rate) are

154

inapplicable unless the expert can somehow be coerced into generating all
acceptable solutions to each problem. Even this will not work unless there
is some way to tell that all solutions have been generated (see Sec. 7.3.2 for
a variant on CC' that addresses this problem). So to evaluate POLIO, we
could really only ask the expert whether the system's portfolios were ac-
ceptable. This is a much weaker evaluation criterion than having the expert
generate portfolios independently, because the expert may allow himself to
be convinced that POLIO's recommendations are acceptable (the variant on
CC' discussed in Sec. 7.3.2 also controls for this problem).

This raises the question of when expert judgments are appropriate stan-
dards of comparison for expert systems. Portfolio managers are notoriously
inconsistent, raising the possibility that one's "expert" isn't really, and per-
haps shouldn't be the standard of comparison. 3 One approach here is to
have several standards of comparison. For example, the MYCIN system was
evaluated against ten judges: five nationally-known experts, and five with
varying levels of medical training [Shortliffe, 1976]. The non-expert judges
were, in effect, a control condition to show that MYCIN is an expert system,
that is, a system that solves problems that only experts can solve correctly.
We tried this kind of group evaluation with other portfolio managers, but
we could get no consensus about FOLIO's recommendations.

Before leaving POLIO, let us corsider what purposes its evaluation should
have served. The research community doesn't care about the performance
of yet another expert system: the community needs to know why a system
works or doesn't, especially a system like POLIO that merges AI and Opera-
tions Research (OR) techniques. Its evaluation should have pointed out the
advantages, disadvantages, and impediments in developing hybrid AI/OR
systems. These assessments are not performance evaluations so much as
comments on the viability of a new technology. We made some observa-
tions of this kind, but never thought to report them, because at the time
we thought evaluation was limited to performance. For example, POLIO'S
goal-programming algorithm often produced portfolios that, though optimal,

were judged "extreme" by the expert. Where the expert would have mixed
lialf a dozen funds to achieve a "balanced" effect, POLIO would recommend,
say, 60% extremely conservative bonds and 40% extremely risky stocks.
Extreme solutions are characteristic of many optimization techniques, and
may present impediments to hybrid AI/OR systems. We also observed that
FOLIO's rule-based component was very hard to debug, because it was de-

3 This question should not imply a lack of confidence in FOLIO's consulting expert, who
has been highly regarded by his colleagues and clients for mazV years.

155

signed to configure the objective function and linear constraints of the goal-
programming algorithm, which was itself a black box. Thus, given a bad
portfolio, it was virtually impossible to tell which rules ought to be changed.
Quantitative performance evaluations are certainly important, but in FOLIO
they were difficult to obtain and believe. We failed to realize that, ulti-
mately, the more qualitative assessments are more informative and valuable
to the research community.

7.3.2 GRANT

GRANT finds sources of research funding given research proposals
[Cohen et al., 1985]. The principal difference between GRANT and most
other Information Retrieval (IR) programs is that its retrieval algorithm
finds funding agencies based on semantic matches between research propos-
als and the agencies' research interests. For example, if a research proposal
mentions hemoglobin, GRANT will find agencies that support research on
blood, even if they don't specifically mention hemoglobin in their state-
ments of interest. This semantic match is judged potentially productive
because hemoglobin is a component of blood, and agencies that support
research on substances or phenomena often support research on their com-
ponents.

GRANT performs a common MR task-a researcher describes his or her
interests and GRANT suggests potential sources of funding-but it is based
on an unusual view. The view is that funding agencies will be indexed
by nodes in a large semantic network, so that researchers don't have to
use the exact words an agency uses in its statement of interest, but can use
semantically-related words. The agency may say "blood" and the researcher
"hemoglobin," but they will be matched up anyway. The problem with this
view is that chains of semantic relations can be found between any pair of
nodes in GRANT's network, so it is possible to link a proposal that men-
tions blood with an agency that mentions, say, air, because blood is part
of the respiratory system, which processes air. The view we finally adopted
in GRANT is called constrained spreading activation: a proposal activates
nodes in a semantic network, and activation spreads through the network
only on particular paths, until it activates nodes associated with agencies.
The specific method uses an agenda of active nodes and rules to prune
spreading activation. For example, one rule says that you cannot spread
activation first over a component-of relation (e.g., from hemoglobin to
blood), then over a has-component relation (e.g., from blood to leuco-

156

cyte), because if a researcher wants to study one specific component of a
substance (hemoglobin), he or she prcrbably does not want to study some
other component of that substance (leucocytes).

We have evaluated GRANT extensively at all stages of its development,
focusing specifically on the constrained spreading activation method. Perfor-
mance evaluations were based on a variant of the CC' script (see Sec. 7.3.1).
Instead of having the expert and GRANT solve a common set of problems, we
had the expert judge the performance of a "dumb" version of GRANT, then
used these judgments to generate performance measures for a "smart" ver-
sion. The dumb version spreads activation to all nodes that can be reached
by following up to four relations from each of the original proposal nodes.
We call this the dumb set. The smart version constrains this activation,
and so finds a subset of the dumb set, called the smart set. The expert
judged whether each of the agencies in the dumb set were appropriate or
inappropriate. Since the dumb set is a superset of the smart set, the expert's
judgments were the basis of the following measures on the smart set:

Recall: number of agencies judged good by the expert and GRANT, divided
by the number of agencies judged good by the expert (also called hit
rate).

Fallout: number of agencies judged good by Gi.ANT and bad by the expert,
divided by the number of agencies judged good by GRANT (also called
false-positive rate).

These measures were adopted from the EEL literature [Rijsbergen, 19791.
When possible, comparison studies should use as measures the established
performance norms of the domain.

The smart/dumb approach is a good control for a problem we mentioned
earler, that when experts judge the performance of an expert system they
may feel biased to accept marginal answers. This is especially problematic
when the expert can construct a plausible explanation on behalf of the sys-
t-er; for example, in both POLIO and GRANT the expert could say "yes, I
can see a reason for selecting this fund (or agency) and since the system has
a reason, I won't criticize it." In fact, the "reason" was usually illusory, a
reflection of the expert's own post-hoc explanation and justification of poor
performance. In such cases, comparison studies of performance must have
a control condition-a set of test items that are expected to be wrong. In
GRANT the control condition was the dumb set minus the smart set.

157

In the early days of the GRANT project, we were very encouraged by
high performance. In a network of about 2000 nodes and 50 agenzies we
had roughly an 80% recall and a 32% fallout rate. This is much better
performance than ordinary keyword search, which may have a fallout rate
as high as 90%. 4

More recently, the numbers are much less gratifying. When we increased
the size of the network to 4500 nodes and 700 agencies, the performance
dropped to 67% recall and 71% fallout. In [Cohen and Kjeldsen, 1987] we
reported on several experiments to discover why performance dropped. Per-
haps the most surprising result was that just three rules for constraining
spreading activation accounted for 85% of the agencies the expert said were
good and 42% of the agencies he said were bad. Clearly, these rules need
to be replaced by others that apply in fewer cases but with more discrimi-
natory power. When we tried this, in a very brief experiment, we improved
performance slightly.

The GIANT project shows that evaluation is more than just proving your
system works. Otherwise, we could have quit GIANT after we built our first,
small, high-performance system. Why not quit there? Because we need to
know whether our methods are equally effective when our systems are scaled
up, and whether limitations on their performance are fundamental.

The first reason is important because almost all empirical Al systems
are small. We rarely acknowledge this, so we can be misled by apparently
glorious, very small results. For example, working in our lab last year a de-
cision analyst and a plant pathologist set out to compare decision analysis
with a standard expert systems approach to diagnosing root diseases. This
brief empirical study lasted just four days. The first three were spent inter-
viewing the plant pathologist to structure the decision analysis and acquire
the required probabilities and utilities. We capitalized on this problem-
structuring phase on the fourth day and, in a couple of hours, built an
expert system with slightly greater functionality than the decision-analytic
system. Later, the decision analy st and the plant pathologist published their
conclusion, that decision analysis is a viable approach to building expert sys-
tems [Henrion and Cooley, 1987]. They acknowledged that the study was
too small to say anything conclusive. The dissenters in the lab argued that
building decision analyses is an impossibly slow process because the time

"For example, the keyword system used by the Office of Research Affairs at the Uni-
versity of Massachusetts, for whom we built GLurr, finds roughly 200 agencies for each
search, of which only 5 or 10 are worthwhile. GRANT, in the early days, would find about
15 agencies of which at most 5 were not worthwhile.

158

required to get probabilities from experts increases combinatorial2y. Who
was right? We will never know, because the expert system that duplicated
the decision analysis contained only nine rules. One cannot draw any con-
clusions about the relative merits of two technologies when the systems are
so small.

Often, a technique that works on a small problem will not work on
a larger one. AI has a responsibility to at least consider the question of
whether techniques will scale up. It isn't necessary to build a system that
is 500% bigger, as we did in GIANT, if one can address the question analyt-
ically. For example, we know from the mathematics of decision theory that
the number of probabilities required from an expert will increase combina-
torially unless the decision analyst structures the problem very carefully.
Thus we can say analytically that scaling up depends on the skill of the
decision analyst. In either case, empirically or analytically, we must address
the question.

The second reason to continue a project after it has succeeded is to find
and explain the limitations of a method. Had we quit the GILANT project
when it had an 80% recall and a 32% fallout rate, we would never have known
whether these rates are inherent, or could be improved, and if the latter,
at what cost. Whenever one invents a new technique, such as constrained
spreading activation, one must find its bounds. Where does it break, and
why? It is not sufficient to demonstrate that it works-that is only half the
story. Unfortunately, Al researchers rarely do the other half.

7.3.3 Dominic

Dominic is a long-term research project to investigate automated, domain.
independent mechanical engineering design. It is based on the view of design
as iterative redesign (Dixon et al., 1984].5 In iterative redesign, a rough ini-
tial design is gradually improved by making small changes to the design
and evaluating the effect of those changes. The method based on this view
involves a four-step cycle. The first step is to suggest relatively small design
changes that are intended to improve one facet of performance; the second
is to predict the effects of those changes on overall performance; the third is
to modify or replace the proposed changes; and the fourth is to implement
those changes that are predicted to improve performance. This iterative

"Jack Dixon, a professor of mechanical engineering at University of Massachusett%, is
the principal investigator. We participated in the development of Dominic-I and Domi-
neering. Jack Dixon and Mark Orelup have continued the project.

159

cycle produces hill-climbing search tailored to problems in which the exact
shape of the hill is unknown and the cost of taking a step may be high. The
hill is described by design variables and design goals. At each step, the value
of a design variable is changed to produce a favorable change in the perfor-
mance on a particular design goal. The levels of performance on individual
design goals are combined into an overall evaluation of the design, which is
the height of the hill at that position.

Dominic's iterative redesign method divides the design process into a
series of small decisions: which design goal to work on, which design variable
to change for that goal, which new value to pick for the design variable,
whether to modify, accept or reject the proposed change, and when to stop.
To make these decisions, Dominic-I, the first program to result from the
project, relied on two kinds of knowledge [Howe et al., 1986]. The first,
called the dependency order list assigns precedence to design variables. The
second, called the dependency table, relates changes in design goal values to
changes in design variable values. Many cells in the dependency table are
empty or approximate initially, but Dominic can update them as it runs.

Dominic-I performed adequately in two, domains compared with the de-
signs of students, experts, and problem-specific programs. It was always
better than the students, usually better than the experts and sometimes
better than the problem-specific program..

But Dominic-I's principle contribution was less its performance than its
utility as an experimental environment for testing our ideas about control
in iterative redesign. In Dominic we followed closely the research cycle pre-
sented in Section 7.2. Thus, the next phase of the project, given the working
program, was to design, run, and analyze experiments on the effects of con-
trol on performance. This involved instrumenting the program and adding
explicit mechanisms to allow us to easily reconfigure the program with alter-
nate control strategies. We ran experiments on 125 different configurations
and analyzed their effects on Dominic-I's performance, which was evaluated
on the quality of its designs, the time required to find the best design, the
number of implemented design changes that decreased performance (instead
of improving it as expected), and other measures related to output results
and search efficiency. The analyses of these results suggested improvements
in Dominic that led directly to two other programs in the Dominic family:
Domineering and Dominic-II.

In Domineering, we adopted the view that if Dominic could design ar-
tifacts that performed to problem specifications, then it should be able to
design itself to perform well in specific domains. Domineering was built

160

to learn the best configuration of Dominic-I for particular design domains
[Howe, 1986'. In effect, Domineering is Dominic-I applied to itself. Do-
minic is used to design the best configuration of Dominic. The method
required is nearly identical to Dominic-I except that the alternate control
strategies mentioned above provided the design variables, the performance
criteria provided the goals, and Domineering could call Dominic-I to imple-
ment and evaluate changes. Domineering would configure Dominic-I, run it
on a problem from the domain in question, observe its behavior on the per-
formance criteria, and redesign Dominic-I's configuration based on learned
relations in the dependency table. Domineering did produce configurations
of Dominic-I that performed better, but it required tremendous amounts
of processing. This precluded analyses as detailed as those undertaken for
Dominic-I. Even so, the program was clearly an evolutionary dead-end: it
couldn't give us a better Dominic except by enormous effort. But because
Domineering demonstrated the efficacy of configuring Dominic for particular
problems, it suggested a less radical approach with similar benefits.

Evaluations of Dominic-I and Domineering convinced us that Dominic's
configuration-its control strategies--strongly affected its performance. In
terms of the research model discussed earlier (Fig. 7.1), we had completed
the last stage and were poised to begin the cycle anew. For Orelup and
Dixon, who continued the project, Dominic-lI [Orelup, 1987 became the
focus of the new cycle through the model. Its task was more ambitious: it
monitored its own performance and dynamically modifi.ed its control strat-
egy to maintain high levels of performance. The view of design as iterative
redesign was refined and elaborated; Orelup and Dixon identified six patho-
logical behaviors that arose in Dominic-I, and six control strategies to apply
individually and in sequence to fix the problems. To specify a method, these
pathologies were operationally defined and two algorithms were developed:
The first detected the pathologies in Dominic-II's design behavior, and the
second determined which of the six strategies to apply to correct the prob-
lems. At this point, the Dominic-II project was at the end of the second
stage of the new cycle. Clearly, it engendered a set of hypotheses about the
efficacy of dynamic control that could not be tested except by implementing
them in a program. Dominic-I was modified accordingly. So Orelup and
Dixon tested the system on 27 cases in five domains (hydraulic cylinders,
I-beams, post and beams, V-belts, and solar heating systems). All the cases
were presented to both Dominic-I and Dominic-II. This comparative exper-
iment design demonstrated that, in Dominic, dynamic control significantly
improves performance: In all design domains, Dominic-II generated more

161

designs, often of better quality and in fewer iterations, than Dominic-I.
The Dominic project illustrates the iterative nature of empirical AI re-

search and the importance of evaluation. Evaluations tell us that Dominic-
H was a significant improvement over Dominic-I; but more importantly,
Dominic-II probably could not have been designed without the information
provided by evaluations of Dominic-I and Domineering.

7.4 Discussion

We think of progress in Al, and thus the purpose of evaluation, in terms of
continuity, replication, and generalization. Continuity within a laboratory,
as we saw in the Dominic project, means that evaluations of each research
project motivate the next. Continuity from one laboratory to another often
begins by replicating results from the original laboratory (i.e., solving the
same problem or one with similar characteristics). The pragmatic reason
for this is probably that each empirical Al project has a large software base
that, if not copied directly from another laboratory, must be reimplemented.
Its fortuitous methodological consequence is that slightly different problems
are solved in slightly different ways, making replication and generalization
possible.

Consider this hypothetical case of replication and generalization:

One laboratory builds a system to diagnose electrical faults;
then another builds a similar system for diagnosing chest pain.
Evaluations of the first system show that its control strategy,
which depends on a causal model of the behaviur of electrical
circuits, fails when faults can have many causes. The problem is
addressed in the second system by providing probabilistic rank-
ings of, in this case, causes of chest pain. Eventually, a visiting
Bayesian formulates the control strategy in terms of a decision
analysis.

Although we can all think of examples of this kind of progress in empirical
AI, we shouldn't delude ourselves that it emerges from a rigorous method-
ology as it does in other sciences. Where other sciences have standard ex-
perimental methods and analytic techniques, we have faith-often ground-
less and misleading-that building programs will somehow be informative.
Where other sciences expect specific aspects of research to be presented (e.g.,
hypotheses, related research, experimental methods, analyses and results),
empirical AI has no comparable standards.

162

Empirical AI suffers by comparison with established sciences because
its experimental methods are tacit; because its general cycle of research,
described above, is misperceived as "just building programs" and thus is
confused with applied AI; and because the methods and statistical analysis
techniques that have become associated with "the scientific method" are
largely inapplicable. Although empirical AI is a behavioral science that, like
psychology, economics, and sociology, is concerned with thought and action
in intelligent agents, the established experimental methods of these fields
are inappropriate. Unless we understand why this is, and its implications
for replication and generalization, we run the risk of self-defeating "science
envy"-the sense that we are just a bunch of ingenious programmers, not
real scientists-when we should be refining and inventing methods that are
appropriate to empirical AL.

The following excerpt highlights differences between experimental meth-
ods in the established behavioral sciences and empirical AL. Fortuituously,
the excerpted research draws on several fields, including physiological, ab-
normal, and developmental psychology6 Hereafter, we refer to the excerpt
as the autism article.

We wanted to determine whether a specific relationship ex-
ists between language ability and pattern of hemispheric spe-
cialization in autism ... Averaged cortical evoked responses to
speech and nonspeech stimuli were recorded from the left and
right hemispheres of.autistic children and age-matched normal
children. The evoked-response protocol was designed to be sim-
ilar to that used by Molfese (1975) with normal infants. ... To
assess whether the autistic and normal groups differed in their
mean amplitudes of the N1 and P2 components, a multivariate
approach to repeated-measures analysis of variance was used.
... The MANOVA ... yielded a significant overall effect, F(4,29)
= 3.57, p < .02. [Dawson et al., 1986]

- Although it is difficult to tell exactly what is going on here (since we
extracted very small parts of the article), one can see fragments of an estab-
lished format for journal articles, established experimental methods (the ref-
erence to Molfese's procedure) and established statistical analysis techniques

6Our own experimental methods are, of course, impeccable: We obtained the first sen-
tences of this selection by opening a random volume of the journal Cognitive Development
to a random page.

163

(the MANOVA). The experiment design incorporates the fundamental idea
of a control condition (age-matched normal children). More fundamental
still, and implicit in the statistical analysis, is the idea that hypotheses
about causal relations (e.g., between language ability and pattern of her-
spheric specialization in autism) are accepted if evidence for them could not
have come about by chance; and that accepting them is actually an induc-
tive generalization from a sample (e.g., autistic children) to the population
from which the sample was drawn.

All this methodology is in service of a larger goal, in this case to find
out about hemispheric specialization and the language abilities of autistic
children. A closer look shows that the purpose of the research is just to
demonstrate that a relationship ezists between hemispheric specialization
and language in autistic kids. Whereas this article-and much research in
the behavioral sciences-is concerned with teasing apart the components
of behavior and their causal interrelationships, empirical AI is concerned
with putting all those components together to produce behavior. This fun-
damental contrast is echoed in completely different styles of experimental
research.

In the behavioral sciences, the basic question is "Why- do organisms (or
organizations) perform this way?" It is answered by two very general meth-
ods. One involves a broad search for factors that influence behavior, and
is facilitated by statistical "discovery" techniques such as factor analysis,
multidimensional scaling, and cluster analysis. The more common approach
is called statistical hypothesis testing. The idea is to isolate a very small
number of causal hypotheses in an experimental condition (typically less
than three), and demonstrate performance differences between this condi-
tion and its corresponding control condition. Statistical hypothesis testing
should not be confused with simply collecting descriptive statistics. It is ac-
tually a form of inductive inference. For example, the autism article set up
a comparison between autistic and age-matched normal children (the exper-
imental and control groups, respectively), measured differences in the mean
amplitudes of Ni and P2 components (the dependent variable), and found
by a MANOVA procedure a significant difference at the p < .02 level. "Sig-
nificant" means that the difference was extremely unlikely-a probability of
less than 2%-to have happened by chance. Since the result was obtained
from a statistical and presumably representative sample, one can then in-
ductively generalize the result to the population; in this case, to autistic
children.

In empirical AI the basic question is "What knowledge, algorithms, rep-

164

resentations, ... , and control strategies do we need to make an organism (or
organization) perform this way?" The basic method, as we noted earlier, is
an evolutionary cycle of tasks, views, and implementations. We demonstrate
empirically that interactions of particular components will yield particular
kinds of behavior. Our task is not to find out how the average human organ-
ism (or organization) works; but rather, to build artificial systems that work
in particular ways. Because we are not trying to reduce complex phenomena
to their causal antecedents, we do not need to run large groups of subjects
in experimental and control conditions, testing hypotheses that differences
between the conditions are due to chance.

This comparison is not intended to imply that all behavioral sciences be-
sides empirical Al are entirely reductionistic. An obvious counterexample is
the work of Jean Piaget, whose structuralist psychology (or, as he preferred,
"genetic epistemology") has much in common with AI (e.g., [Boden, 1979]
Ch. 7). Piaget's early work with his own children asks essentially the same
question as we ask in empirical AL: "If I was designing an organism to be-
have this way, what internal structures would it need, and how would they
develop?" Nor do we mean to imply that statistical discovery and hypoth-
esis testing have no place in, say, Piaget's work or in empirical AL. Indeed,
thousands of experiments have been run to find out how Piaget's "design
for a child" performs in different conditions; and in empirical AI we would
expect statistical hypothesis testing to help us tease apart the complex and
unanticipated interactions of components of our systems. But we are saying
that the experimental designs and analytic techniques that are associated
with the behavioral sciences are fundamentally reductionistic, and so are not
much use unless one's goal is to identify the components (and to a limited
extent, their interactions) of complex behavior.

But since AI systems are unique artifacts, and we rarely run statistical
experiments on them, how general can our empirical conclusions be? When
one tests hypotheses by comparing, say, groups of undergraduates, one can
be reasonably sure that the results will hold for the population at large. Can
we ever be convinced that the results of an experiment on an individual Al
system are general to other system ? The criterion for accepting a result
in statistical hypothesis testing is that it almost certainly did not occur by
chance. Do we have a criterion as convincing as this in AI?

To answer these questions, note that statistical experiments yield an in-
ductive form of generality; an effect demonstrated in 100 undergraduates
occurs in all undergraduates. Another kind of generality has been called
ezpLanation-based [Mitchell et al., 1986] or dedutctive [Kemeny, 1959]. We

165

believe the sun will rise not because it always has, but because we can ex-
plain or deduce that it will from an underlying theory. The most convincing
generalizations in AI are of this kind. For example, most AI researchers be-
lieve that data-interpretation tasks such as vision and speech understanding
require large amounts of world knowledge. We believe this is a general result
because it can be explained or deduced from an underlying theory; in this
case, search. Unconstrained data-driven interpretation generates intractable
search sparei, and any constraints on the process reflect world knowledge,
therefore world knowledge is required for interpretation tasks. Inductive
arguments are helpful, too. We have many examples of the importance of
world knowledge in vision, speech understanding, human perception, psy-
cholinguistics, and so on. But the point is that hypotheses in AI can be
generalized deductively via underlying theories. We do not require induc-
tive or statistical generalization.

In sum, the purpose of evaluation is to promote continuity, replication,
and generalization in empirical AL. We discussed how evaluation drives the
five stages of the basic research cycle, that is, how it produces continuity
within a single research project. Unfortunately, we have only tacit, informal
evaluation methods to promote continuity, replication, and generalization
across research projects. It is essential to recognize and standardize these
methods, because those of the established behavioral sciences are not ap-
propriate.

7.4.1 Experiment Designs

In the previous sections we described the empirical AI research cycle and
evaluation criteria-the components of a skeleton of a methodology. Al-
though the last three stages.of the cycle advocate the design and analysis
of experiments, they don't tell us how to do them. AI is evolving stylized
experiment "schemas" that, if they could be standardized, could guide re-
searchers' experimental work and provide a shorthand for discussing results.
We briefly describe five such schemas:

Comparison studies. The basic form of a comparison study is that we
select one or more mearsres of a program's performance, then both
the program and a standard solve a set of problems, and finally the so-
lutions are compared on the measures. For example, we may compare
the average number of subgoal violations generated by one planning
program on a set ot problems (the measure) with the same measure on
another extant program (the standard). Typically, the programs will

166

implement different methods, or they could be different configurations
of a single program. The comparison of Dominic-I and Dominic-If
(Sec. 7.3.3) illustrates this kind of study.

Variations on the basic form depend on what you want to demon-
strate. For example, if you want to measure whether the program's
performance is cosentual, you may compare the program to a panel of
human experts. You may also include novices-an interesting control
condition to ensure that successful performance requires expertise.7

Sometimes the performance of a program can be compared with ob-
jective, recognized standards. Normative theories, such as probability
theory, provide one kind of standard; for example, some researchers
argue that because human experts are incapable of integrating proba-
bilistic information consistently, their performance should not set stan-
dards. Another kind of standard is provided by real or simulated
worlds; we might evaluate a complex planner by seeing whether it
generates plans that succeed in the world. All these examples suggest
that our measures and standards depend heavily on what we want to
demonstrate and, ultimately, on our research goals.

A related scheme, though not strictly a comparison study, has humans
judging or scoring the program's performance. This happens when we
need to measure whether programs get the "right" solution, but the
test problems have so many acceptable solutions that a program and
a standard cannot be expected to generate the same ones. FOLIO and
GRANT (Sections 7.3.1 and 7.3.2, respectively) provide examples of this
kind of study.

Ablation and substitution studies. We can evaluate the contribution
of individual components to the performance of complex systems by re-
moving or replacing those components. Removing components (called
"ablation" [Newell, 1975]) is informative in systems that can solve
problems without them. For example, one configuration of Dominic-I
had no dependency order list to tell it which design variables to change
first. It takes little insight to predict that this will have some effect;
the goal is to find out whether performance on all types of problems

is equally affected by the presence of the dependency order list, and
if not, what interactions between it and the problem type explain the
variance.

?Shortliffe ran a panel of experts and novices in his studies of MYCIN [Shortliffe, 19761.

167

Many AI systems are so brittle that they collapse when components
are removed. In these cases we might substitute "dumb" components
for those we hope to show are "smart"; for example, we might substi-
tute an exhaustive control strategy for a sophisticated opportunistic
one. Dominic-I required a dependency table to predict the effects
of changing design variables, but in one experiment we substituted
coarser values to assess the effects of their accuracy.

Tuning studies. By tuning a system to perform as well as possible on a
set of test data, we can learn how much performance can be improved,
how difficult it is to achieve, and whether the resulting system can still
solve other test cases. From a research perspective, it seems waste-
ful and potentially misleading tc tune systems just to increase their
performance, without addressing these questions.

Limitation studies. By testing a program at its known limits, we can
better understand its behavior in adverse conditions. We can push a
pro'am to its limits by providing imperfect data (rearranged, noisy,
incomplete, or incorrect), restricted resources (computation time or
available knowledge), and perverse test cases.

Inductive studies. One way to support claims of generality is to solve
"new and different" problems. If we claim that Dominic is general,
then we may want to run problem in many areas of mechanical
design-pulley systems, I-beams, extrusions, and so on. Even if we
don't claim a program is general, we must at least test it on problems
other than those we used to develop it.

Which of these, if any, are appropriate for any given project will depend
on the project and its research goals. Inductive studies may be too diffi-
cult for systems that require a tremendous amount of domain knowledge or
knowledge that is difficult to obtain. Moreover, because these schemas were
culled from experiments on self-contained expert systems, issues common
to other types of knowledge-based systems have not been addressed. For
example, systems that interact with other systems (e.g., humans in mixed-
initiative dialog and programs in distributed processing) add another level
of complexity to evaluating and understanding their performance. Clearly,
design schemas must be developed to respond to the special needs of specific
areas of AL.

168

7.4.2 Recommendations

We begin with a now-familiar theme: Al researchers must evaluate their
work more thoroughly and report both the results and how they were ob-
tained. The latter will add to a common stock of evaluation techniques and
will eventually flesh out the methodological skeleton.

At the same time, AI journals and conferences must welcome papers that
discuss, in more detail and with more background than we can offer here,
aspects of our evolving methodology. In particular, we hope to see more
systematic, exhaustive analyses of schemas for comparison studies and the
other schemas discussed above, and others we haven't yet considered. We
also need further discussion of what it means for results to be general. This
might build on the inductive/deductive distinction outlined earlier. But in
any case, our field must consider how to justify the claim that projects in
different labs, task domains, and programming environments demonstrate
the same thing. We also need to see critical assessments of the methodologi-
cal role of programs. Our impression is that researchers rarely glean enough
from their programs to justify the effort of building them. Even if they do,
the effort cannot be justified unless results are communicated to the research
community. And the role of programs is just part of a broader debate on the
empirical AI research cycle, which requires considerable elaboration beyond
the sketch in Section 7.2. These are just a few of the methodological issues
that ought to be discussed in print.

Having raised the issue of what gets published, let us consider some un-
common but important kinds of papers. AI systems take so long to build
that we are surprised to see so few reports of experiments with extant sys-
tems. A good model of this kind of work is a book on experiments with
MYCIN, edited by Buchanan and Shortliffe [Buchanan and Shortliffe, 1984].
We also hope to see more papers on negative results-algorithms that don't
work in particular cases, systems that perform less well as they become more
knowledgeable, cases where scaling up causes problems. When, at a recent
conference, we discussed the reasons that GRANT performed less well when
it was scaled up, someone in the audience remarked how refreshing it was to
see some "dirty laundry".8 An odd phrase, dirty laundry, suggesting that
there is something nasty about negative results. When did you last read an
AI paper that said something didn't work?

Researchers will not document the limitations of their methods unless

'The Third Annual IEEE Conference on Artificial Intelligence Applications. Orlando,
FL. February, 1987

169

reviewers, program committees, and editors endorse papers on negative re-
suits, as we believe they must. These groups are also responsible for scru-
tinizing positive results. One recommendation is that if a paper doesn't
answer a satisfactory number of the questions in Tables 1-5 in the Ap-
pendix, or comparable questions that are better suited to the subject of the
paper, then it should be rejected. We would hope that program committees
and editors would publish the criteria by which they evaluate papers, and
that they would be more informative than the halfdozen buzzwords one
often sees-original, thorough, thoughtful, well-written, and so on9 . An-
other recommendation, more appropriate.to journals than conferences, is
that reviewers should provide detailed feedback on why papers are rejected
or conditionally accepted, so that authors can run the recommended ex-
periments and resubmit their papers. Thus, the primary responsibilities
of reviewers and editors are to encourage discussions of evaluation criteria,
publish them, insist the criteria are met, and provide guidance when they
are not.

Our final Tecommendation is that we should keep the purposes of evalua-
tion firmly in mind and not let it become an end in itself. In many disciplines
you can't publish "just ideas." But even when your idea is distilled to an
experimental hypothesis, and an enormous experiment is run, and profound
results are obtained, your paper can still be rejected-for petty methodolog-
ical infractions. This isn't what we want for empirical AL. The purpose of
evaluation is not to hold the field back, but to propel it forward.

'Lately, the machine learning community has mentioned evaluation criteria explicitly
in Calls for Papers, and Langley has advocated evaluation in his editorials [Langley, 1987].

170

7.5 Appendix: Evaluation Criteria

The following tables summarize the evaluation criteria appropriate for each
stage in the empirical AI research cycle.

1. Is the task significant? Why?

(a) If the problem has been previously defined, how is your reformulation an
improvement?

2. Is your research likely to contribute meaningfully to the problem? Is the task
tractable?

3. As the task becomes more specifically defined for your research, is it still represen-
tative of a class of tasks?

4. Have any interesting aspects been abstracted away or simplified?

(a) If the problem has been previously defined, have any aspects extant in the
earlier definition been abstracted out or simplified?

5. What are the subgoals of the research? What key research tasks will be/have been
addressed and solved as part of the project?

6. How do you know when you have successfully demonstrated a solution to the task?
Is the task one in which a solution can be demonstrated?

Table 7.1: Criteria for evaluating research problems

171

1. How is the method an improvement -over existing technologies?

(a) Does it account for more situations? (input)

(b) Does it produce a wider variety of desired behaviors? (output)

(c) Is the method expected to be more efficient? (space, solution time, develop-

ment time, etc.)

(d) Does it hold more promise for further development? (for example, due to the
opening up of a new paradigm)

2. Is there a recognized metric for evaluating the performance of your method? (e.g.,
normative, cognitively valid, etc.)

3. Does it rely on other methods? (Does it require input in a particular form or pre-
processed? Does it require access to a certain type of knowledge base or routines?)

4. What are the underlying assumptions? (known limitations, scope of expected
input, scope of desired output, expected performance criteria, etc.)

5. What is the scope of the method?

(a) How extendible is it? Will it easily scale up to a larger knowledge base?

(b) Does it address exactly the task? portions of the task? a class of tasks?

(c) Could it, or parts of it, be applied to other problems?

(d) Does it transfer to more complicated problems? (perhaps more knowledge
intensive or more/less constrained or with more complex interactions)

6. When it cannot provide a good solution, does it do nothing or does it provide bad
solutions or does it provide the best solution given the available resources?

7. How well is the method understood?

(a) Why does it work?

(b) Under what circumstances, won't it work?

(c) Are the limitations of the method inherent or simply not yet addressed?

(d) Have the design decisions been justified?

8. What is the relationship between the problem and the method? Why does it work
for this task?

Table 7.2: Criteria (or evaluating methods

172

1. How demonstrative is the program?

(;) Can we evaluate its external behavior?

(b) How transparent is it? Can we evaluate its internal behavior?

(c) Can the class of capabilities necessary for the task be demonstrated by a
well-defined set of test cases?

(d) How many test cases does it demonstrate?

2. Is it specially tuned for a particular example?

3. How well does the program implement the method?

(a) Can you determine the program's limitations?

(b) Have parts been left out or kludged? Why and to what effect?

(c) Has implementation forced a more detailed definition or even re-evaluation of
the method? How was that accomplished?

4. Is the program's performance predictable?

Table 7.3: Criteria for evaluating method implementation

173

1. How many examples can be demonstrated?

(a) Are they qualitatively different?

(b) Do these examples illustrate all the capabilities that are claimed? Do they
illustrate limitations?

(c) Is the number of examples sufficient to justify the inductive generalizations?

2. Should program performance be compared to some standard? its tuned perfor-
mance? other programs? people (cognitive validity)? experts and novices (expert
performance)? normative behavior? outcomes? (either from the real world or from
simulations)

3. What are the criteria for good performance? Who defines the criteria?

4. If the program purports to be general (domain-independent),

(a) Can it be tested on several domains?

(b) Are the domains qualitatively different?

(c) Do they represent the class of domains?

(d) Sh6uld performance in the initial domain be compared to performance in
other domains? (Do you expect that the program is tuned to perform best in
domain(s) used for debugging?)

(e) Is the set of domains sufficient to justify inductive generalization?

5. If a series of related programs is being evaluated,

(a) Can you determine how differences in the programs are manifested as differ-
ences in behavior?

(b) If the method was implemented differently in each program in the series, how
were these differences related to the generalizations?

(c) Were difficulties encountered in implementing the method in other programs?

Table 7.4: Criteria for evaluating experiment design

174

1. How did program performance compare to its selected standard? (e.g., other pro-
grams, people, normative behavior, etc.)

2. Is the program's performance different from predictions of how the method should
perform?

3. How efficient is the program? time/space? knowledge requirements?

4. Did the program demonstrate good performance?

5. Did you learn what you wanted from the program and experiments?

6. Is it easy for the intended users to understand?

7. Can you define the program's performance limitations?

8. Do you understand why the program works or doesn't work?

(a) What is the impact of changing the program even slightly?

(b) Does it perform as expected on examples not used for debugging?

(c) Can the effect of different control strategies be determined?

(d) How does the program respond if input is rearranged, more noisy, or missing?

(e) What is the relationship between characteristics of the test problems and
performanci (either external or internal if program traces are available?)

(f) Can the understanding of this program be generalized to the method? to
characteristics of the method? to a larger class of tasks?

Table 7.5: Criteria for evaluating what the experiments told us

175

Chapter 8

Why Knowledge Systems
Research Is In Trouble, And
What We Can Do About It

8.1 Introduction

I was recently reminded of Allen Newell's paper You Can't Play 20 Questiont
With Nature and Win. Newell wrote it in his role as discussant at a Carnegie
Symposium, and addressed it to the cognitive psychology community. The
following paragraph appears early in his comments:

I was going to draw a line on the blackboard and, picking
one of the speakers of the day at random, note on the line when
he got his PhD and the current time (in mid-career). Then,
taking his iotal production of papers like those in the present
symposium, I was going to compute a rate of productivity of
such excellent work. Moving, finally, to the date of my chosen
target's retirement, I was going to compute the total future addi-
tion of such papers to the (putative) end of this man's scientific
career. Then I was going to pose, in my role as a discussant, a
question: Suppose you had all these additional papers ... where
will psychology then be? Will we have achieved a science of man
adequate in power and commensurate with his complexity. And
if so, how will this have happened via these papers I have just
granted you? Or will we be asking for yet another quota of
papers in the next dollop of time.

176

- Allen Newell, You Can't Play 20 Questions With Nature
and Win. In W.G. Chase (Ed.) Vis.l Information Processtng.

When I read Newell's paper for the first time, I was an interdisciplinary
graduate student in psychology and AI. The attitude toward psychology
in the Stanford Heuristic Programming Project convinced me that a truly
interdisciplinary thesis wasn't possible, and Newell's paper was an impor-
taht reason that I chose to work in AI and not psychology. I have always
been strongly influenced by the questions Newell asks in the quote above,
and lately I have started to think they apply to AI as well; and if not to
AI in general, certainly to expert systems. Add up all the papers on ex-
pert systems in IJCAI, AAAI, and AI Magazine over the last five years,
and what have we got? What can we expect in 1995? When Newell asks
whether psychology will ever add up to a "science of man," he assumes
a common purpose among psychologists. Whether or not this is realistic
in psychology, it certainly doesn't characterize expert systems research. I
can't see any common scientific purpose there, which is one reason I think
expert systems research isn't adding up to a science of anything. Newell asks
whether individual papers, each excellent and methologically sound, add up
to a science. I don't think we have more than a handful of excellent and
methodologically sound papers, period. These two issues-scientific pur-
pose and methodology-are at the heart of my dissatisfaction with expert
systems.

The following two subsections are about these issues. Let me preface
them by characterizing my biases. First, when I talk about research in ex-
pert systems or knowledge systems, I am referring to a range of component
technologies, including knowledge representation, learning, oitology, case-
based reasoning, generic tasks, and control. It is easy to criticize hack work
in expert systems, and my comments can certainly be interpreted this way
(i.e., as criticisms of the other guys), but I direct them primarily to my
colleagues in the research community. Second, I view expert systems as a
vehicle for Artificial Intelligence research, not as an engineering subdisci-
plune. Irrespective of the value of expert systems in the marketplace, they
are worthless to me unless they tell me something about intelligence. Third,
I think of intelligence primarily in terms of behavior-what an agent thinks
or does-and secondarily in terms of structures-what the agent knows, or
how it is represented. With these biases, which I think are pretty com-
mon, let me now say why expert systems research has become intellectually
unsatisfying.

177

8.1.1 Learning about Intelligence

I am not learning much about intelligence, artificial or otherwise, from the
knowledge systems literature. One reason is that we have come to equate
intelligence with knowledge, which is static, instead of with dynamic behav-
ior. This is seen most dearly in the disregard for control in the knowledge'
systems community, although the consequences aren't felt until someone
tries to acquire and reason with knowledge about how experts (and expert
systems) should behave. For example, when Clancey tried to represent di-
agnostic strategies for the purpose of tutoring, he discovered (as we did later
in our MUM project [Cohen et al., 1987a]) that the only ways to specify the
behavior of knowledge systems were brutish chaining, meta-rules, bizarre
hacks, or lisp programming [Clancey, 1986]. If you are looking for tools to
describe behavior, the knowledge system literature offers little besides re-
assurance that simple control strategies are sufficient. Sufficient for what?
Certainly not for modelling the complex behavior that Barbara Hayes-Roth
observed in human errand planning [Hayes-Roth and Hayes-Roth, 19791; or
that Ed Durfee requires for simple cooperative, distributed problem solv-
ing [Durfee and Lesser, 1987]; or for the simple meta-planning we require
to prune the search space in mechanical design [Orelup et al., 1988]; or for
real-time planning against simulated forest fires (see below).

Research on reasoning under uncertainty is another, personally frustrat-
ing, maniestation of the emphasis on knowledge and structure over behav-
ior and dynamics. It offers more and more refined ways to calculate degrees
of belief, but relatively little work on how problem solvers plan, decide,
and act in uncertain environments [Cohen and Day, 1988], [Cohen, 1987a].
Once again, intelligence is equated with what you know (more precisely, with
maintaining degrees of belief in propositions), not with how you behave.

The uncertainty community evidently feels it is subcontracting to the
knowledge systems community. They are the folks who provide the calculus.
Judging by the preambles of papers I have recently reviewed, a lot of people
think this way. "Knowledge systems need my innovation in " You can
fill in the dots with uncertainty calculus, explanation mechanism, learning
mechanism, reason maintenance system, and so on. The knowledge systems
literature, and Al in general, is busily producing component technologies.
But it is difficult to learn much about intelligence from a bunch of component
technologies. They don't add up to a theory of anything, any more than
the unremitting tide of psychology papers add up to "a science of man."
(There are also mundane, pragmatic reasons to worry about the component
technology approach to knowledge systems, as I'll discuss later.)

178

Another reason that knowledge systems tell me little about intelligence is
that they have trivial environments. In the days before knowledge systems,
we believed that intelligent behavior emerges from the interaction between
the structure of an agent and its environment. That's what Simon's Ant was
all about. This view has a simple but important, implication: Any study of
intelligence that ignores the environment is underconstrained. This gives
rise to the queasy feeling that I expect you have, from time to time, .when
you review papers: -Why did the author do things this apparently arbitrary
way? Here's an example, drawn almost at random, from a batch of IJCAI
papers I just reviewed:

The strategic planner is goal-oriented, the tactical planner is
resource oriented, and the reflexive planner is event (signal-) ori-
ented. A mobile agent must incorporate all three types of plan-
ners. ... There are two principal techniques to implement [the
tactical] planner: opportunistic and least-commitment planning.
In our approach, we prefer the opportunistic planning technique.

Note the imperative-a mobile agent must incorporate all three types
of planners-and the arbitrary preference for opportunistic planning. What
aspects of the task environment engender the imperative and justify the
preference? If you design a knowledge system without first considering how
its environment constrains the design, your design will be arbitrary.

Unfortunately, most knowledge systems are intentionally isolated from
their environments, and thus have underconstrained and arbitrary designs.
Environments are typically a couple of dozen categorical propositions: the
patient has a temperature, the organism is aerobic, a blip was reported at
latitude x and longitude y. Few knowledge systems are designed for dynamic,
uncertain, or multi-actor environments; and fewer still can manage real-time
constraints. Rick Hayes-Roth went so far as to advise British companies, in
a Pergamon report, to "Seek problems that experts can solve via telephone
communication." [Hayes-Roth, 1984]. That is, build knowledge systems
that don't need to know much about the external environment. This attitude
ruined planning research, where for years the best systems were built for
environments that simply don't exist: environments in which the planner is
the only agent, in which actions are instantaneous, and their effects persist
indefinitely; environments in which the state of the world and the effects of
all actions are known or accurately predictable. NOAH's environment was
quasi-static, and contained three unambiguously-labelled blocks and a table
top. Why did we regard NOAH as the apex of planning research for so many
years?

179

Many of these arguments are summarized in Figure G.1, which is a
crude history of how AI has characterized intelligence. Initially, intelligence
was viewed as the behavior that emerged from the interaction between au-
tonomous agents and their environments. But knowledge systems later be-
came isolated from their environments, behavior was de-emphasized, and
research on complete, autonomous agents was replaced by work on compo-
nent technologies. Answers mattered; the process of deriving them did not.
The majority of tasks were "one-shot," meaning that we would solve the
problem now, once and for all, and not monitor or revise the solution in
future. One-shot problems denied us the opportunity to study behavior in
ongoing environments; for example, instead of building expert systems to
"wait and see" how a patient's condition develops, we built systems to give
the best possible recommendation now, even if the data were poor.1 Again,
this is seen clearly in the uncertainty literature, where virtually all the re-
search !oncerns what to do with the evidence you already have, and none
concerns how to get evidence, corroborate it, hedge against future outcomes,
or other strategies for coping with ongoing, uncertain environments.

More recently, there has been a renaissance of old ideas about intelli-
gence. A few projects are beginning to acknowledge the role of the environ-
ment. The planning literature has been reinvigorated by ideas about situ-
ated action [Georgeff and Lansky, 1987]. Major DARPA-sponsored efforts,
such as Pilot's Associate and the Autonomous Land Vehicle, are forcing us
to contend with dynamism, real time, and multiple actors. But in the fol-
lowing section, I will ask whether we have the methodology to capitalize on
this positive change in emphasis, or whether we will end up doing the same
kind of inconclusive, "look ma, no hands" research in yet another set of task
domains.

8.1.2 Methodology

One methodological problem for knowledge systems research is that the
ratio of science to engineering is too low. Back in the old days, it took
many years to build an expert system, but one at least had the chance of
discovering something. Today, knowledge systems are bigger, and still take
years to build, but they are rarely built to discover anything. One has to
work very hard to get a system that does ... pretty much what one expects

'You might object that sometimes we can't afford to wait and see. I agree that we
need to build systems that reason about what they afford (e.g., following Lesser's idea of
approximate processing (Lesser et aL, 1988]). This is precisely the kind of reasoning that
has been absent from knowledge systems until recently.

180

it to do. One can't dismiss this as applying only to hack applications; with
few exceptions, none of us are discovering enough to warrant the engineering
effort of our projects.

Knowledge systems are built as demonstrations, not as experiments. Re-
searchers rarely say what they intend to learn by doing their work, or what
they actually learned by doing it. More often, proposals and papers assert
that "We need X, and here's how we expect to provide X, and (later), here's
a demonstration of X." Lenat and Feigenbaum put it this way:

If one builds programs that cannot possibly surprise him/her,
then one is using the computer either (a) as an engineer-
ing workhorse, or (b) as a fancy sort of word processor
(to help articulate one's hypothesis), or, at worst, (c) as
a (self-) deceptive device masquerading as an experiment.
[Lenat and Feigenbaum, 1987]

Their alternative, the empirical inquiry hypothesis, says what we should
be doing although not how to do it:

The most profitable way to investigate AI is to embody our
hypotheses in programs, and gather data by running the pro-
grams. ... Progress depends on the experiments being able to
falsify our hypotheses; i.e., these programs must be capable of
behavior not expected by the experimenter.

What hypotheses? The general form of a hypothesis in knowledge sys-
tems research is "X is sufficient to produce Y"; for example, a rule-based
representation df expert knowledge and a backward chaining interpreter are
sufficient to produce therapy recommendations at an expert level. Given
the emphasis on component technology, mentioned earlier, most hypotheses
are more specific; for example, the Dempster-Shafer method is sufficient to
combine evidence in MYCIN. But unlike hypothetico-deductive science, we
never show the necessity of one hypothesis by rejecting a mutually exclu-
sive one. Our principle mode is to accept the null hypothesis, to accrue
demonstrations of sufficiency.

It doesn't have to be this way, and the few counterexamples suggest our
science would be more productive if we tried more often to show that mecha-
nisms don't work. I think the best results of Lenat's work with EURISKO and
AM emerged from his failed attempts to apply AM'S techniques to heuristics
themselves. The failure, and the ensuing enquiry, led to this remarkable
conclusion:

181

It was orily because of the intimate relationship between
Lisp and Mathematics that the mutation operators (loop un-
widing, recursion elimination, composition, argument elimina-
tion, function substitution, etc.) turned out to yield a high
"hit rate" of viable, useful new math concepts when applied to
previously-known, useful math concepts-concepts represented
as Lisp functions. But no such deep relationship existed between
Lisp and Heuretics, and when the basic automatic programming
(mutations) operators were applied to viable, useful heuristics,
they almost always produced useless (often worse than useless)
new heuristic rules. [Lenat and Brown, 1984]

This is one of the few strong results of knowledge systems research, one
of the few papers I would cite if asked what we have learned by building all
these systems.

There are really two, interrelated methodological issues here. One is how
we select research problems, the other is what we do with them. We are
very good at selecting new research problems because we are very poor at
studying them. Instead of trying to find out why something works or doesn't
work, as Lenat and Brown did, we are content to show merely that something
works. Once we have demonstrated sufficiency, we move on to another
problem. I call this the strip mining heuristic: Once you have grabbed the
gold near the surface, move on. The gold nearest the surface is by convention
demonstrations of sufficiency. Knowledge systems research trashes the space
of questions about intelligence in much the way that slash-and-burn cultures
trash the rain forest. Both make very inefficient use of resources and impress
upon me a horror of waste. Even when the resources are used well and we
get all we can out of each project, as in Buchanan and Shortliffe's superb
collection of papers on MYCIN [Buchanan and Shortliffe, 1984], most of our
work is still demonstrations of sufficiency.

With Adele Howe, I have started to outline methods for getting results
out of knowledge systems [Cohen and Howe, 1988b],
[Cohen and Howe, 1988c], and I know that other areas of AI are engaged
in similar efforts [Langley, 1987]. All this work is pretty preliminary, and
it needs to be done whether one works with knowledge systems or in some
other area of AL. I still spend a lot of time wondering how to do research
instead of doing it. But this is preferable to messing around with expert
systems as we have in the past.

182

8.2 What Now?

In the previous section I raised two issues, scientific purpose and methodol-
ogy, that cause me (and I believe others) to be dissatisfied with knowledge
systems research. In this section I describe a problem that, I believe, fo-
cusses my research on the right scientific issues, and the methodology that
I think is appropriate to study it.

We have built a large simulation of forest fires and the equipment com-
monly used to put them out. We are building a planner called PHOENIX
that operates in this dynamic, real-time world. The planner's goal is to
manage the fire-limit the loss of human life, limit the damage to forest
and buildings, and limit the monetary costs of achieving these goals. Our
simulation consists of a large geographical area ("Explorer National Park")
in which there is a considerable variety of topography and ground cover, as
well as roads, lakes, and streams. These features affect how forest fires burn.
Equally important features are wind speed and direction, both of which can
change unpredictably; and the moisture content of the ground cover, which
varies in time and geographically. To fight the fire, the simulation provides
bulldozers, crews, transport vehicles, planes and helicopters. These cut fire
line, move firefighters, spray water, or dump retardent.

Originaly, these fire-fighting agents were directed by a human player in
what was essentially a complex, real-time video game. We gained consider-
able insight into (and respect for) the dynamics of this mini-world by playing
against the simulation--often losing many lives and considerable real estate
to a seemingly slow and containable fire. It is difficult for a planner, hu-
man or AI program, to do very well at the game (i.e., put out the fire with
reasonable costs, no loss of life, etc.) because:

* The simulation is real-time with respect to the fire. While fire-fighting
agents move, cut line and drop retardent, the fire keeps burning. Any
time the planner devotes to deliberation is claimed as real estate by
the fire.

* - The player's knowledge of the fire is limited to what the agents in th.e
field can "see." Crews and bulldozers can see only short distances;
watchtowers and aircraft can see further. The planner rarely, if ever,
has complete k..owledge of the extent or lccation of the fire. This is
evident in Figure 8.2, which shows in the right panel the world as it
"really is," and in the left panel the world as seen by a watchtower-
the spindly icon a little north of the center of the panel. (The figure

183

also shows roads, houses, and a lake in the southeast. This is a small
fraction of Explorer National Park. Normally, the display is in color.)

* The behavior of the fire cannot be accurately predicted because some
factors that affect it, terrain, ground cover and the moisture content
of the ground cover, are known only approximately. Moreover, wind
speed and direction can change unpredictably.

* The behavior of the fire-fighting agents cannot be accurately predicted.
In particular, the time required to move to a location or perform some
task depends on terrain and ground cover. Fire-fighting agents also
have varying degrees of autonomy, so the central planner cannot always
be sure of their location.

These are some of the specifics of the fire environment, and the diffi-
cult technical problems they raise for the PHOENIX planner. More generally,
they exemplify the kind of environment we should be studying in knowl-
edge systems research if we want to learn about intelligent behavior. Two
salient characteristics of the fire environment are uncertainty and real-time
dynamics, described above. Others are that the environment is ongoing (as
opposed to one-shot), so the emphasis is on controlling a process through
one's behavior, as opposed to solving a problem through inference. The en-
vironment supports multiple agencies, such as wind, rain, and the fire itself;
and it supports multiple actors which need to be coordinated to get a global
view of the situation and to control it. The environment also has several
measures of success (or failure). Most importantly, it doesn't have just one
"right answer," but requires a planner to evaluate tradeoffs between plans,
even during execution.

Given this focus, how should we proceed? We have three goals, related
to the problems we discussed earlier:

* Work in complex environments, in which behavior matters.

" Justify design decisions by reference to aspects of the environment,
instead of accepting the first sufficient design.

" Design and build complete, autonomous agents, and de-emphasize
component technologies.

I am hedging my bets with respect to these goals by working simulta-
neously within two methodological frameworks. The first, which guides the
development of PHOENIX, is a top down design effort in which we identify

184

the abilities that we beileve a pla-ner will need to excel in the fire domain.
We designed the domain itself to ensure that providing these abilities would
solve open technical problems in AI (specifically, problems in real-time plan-
ning and distributed AI). As predicted by the empirical inquiry hypothesis,
we are discovering unexpected behaviors. One surprise is that purely reac-
tive behavior is sufficient to put out some fires. But to follow through on
the goals, above, we need to explain this result by reference to aspects of
the environment. For example, one reason that reactive planning works is
that the fires are typically convex, so it is rare for reactive bulldozers to
get trapped in "pockets" of fire (but see Figure 8.3) for a counterexample.)
Note also that we can't explain getting trapped (or avoiding it) by reference
to any single component of the bulldozer's architecture. Getting trapped
is a function of the bulldozer's radius of view, the frequency with which it
updates its view, and its set of reactions. We can't explain performance in
terms of a single component, nor can we improve performance by developing
component technologies in isolation.

I call PHOENIX a top-down design effort because it is driven by a longish
list of design goals. Eventually, PHOENIX will handle multiple fires, and
coordinate multiple fire-fighting objects. It will monitor the progress of
plans in real-time, and modify plans to give the best performance for the
available resources. Where do these goals come from? One source is the
judgment that the PHOENIX planner will need these skills to put out fires;
the other is the recognition that these. are open technical problems in AL.
Now, ordinarily, a researcher is congratulated for finding a task, like fire-
fighting, that requires methods which Al hasn't yet developed. Fire-fighting
is a good task because, apparently, we will need to advance the state of the
art to do it right. But in the context of my previous comments, I think we
should be a bit suspicious. Are these design goals really mandated by the
environment? I believe that these skills will enable a planner to put out fires
(i.e., will enable a demonstration of sufficiency), but are they necessary? Do
we need to modify plans during execution, or is this just a bit of technical
showmanship? The trouble with top-down research is that this question
ix often very difficult to answer. For this reason, I have recently started
another project with the same methodological goals-to work in complex
environments, eschew component technology, and justify design decisions in
terms of structure and dynamics of the environment-but with a different
methodology.

We can approach intelligence from the bottom up by starting with simple
structures, extending them only to provide adaptability in environments, but

185

making the environments increasingly complex, and the required- behaviors
increasingly sophisticated. Bottom-up work is rare in AI, but is typified
by Brooks' approach to robotics [Brooks, 1986] and Braitenberg's Vehicles
[Braitenberg, 1984]. Bottom-up research is applied in the sense that all
our technology must be immediately useful, that is, must have "adaptive
significance" to the automata for which it is developed. We don't introduce
technology for its own sake, but only to make our automata more capable
in increasingly complex environments. Progress is driven by primarily by
environments.

Perhaps the most important aspect of bottom-up research is that it un-
covers unintended, emergent behavior. By emergent I mean behavior that
is due to interactions between the agent and its environment, or within
the agent. Our recent work suggests that unintended, emergent behavior is
common in agents that interact with even simple environments over time.
Moreover, this behavior has assymetric consequences for the bottom-up and
top-down research strategies. For bottom-up research, every emergent be-
havior is an opportunity to expand the repertoire of behaviors; that is, many
emergent behaviors are serendipitous. For top-down research, unintended,
emergent behavior is rarely- serendipitous. It usually messes up the design.
This suggests that if we are trying to design agents to interact with ongoing,
dynamic environments, it may be more efficient to design them bottom-up
than top-down. For example, imagine I wanted an automaton to learn how
to find its way downhill from any point in a landscape to the lowest acces-
sible plateau, and to stay on the plateau thereafter. A top-down approach
might involve three components-one to get the automaton onto a plateau
(presumably using what it had previously learned), one to learn from the
urrent problem, and one more to keep the automaton on the plateau once

it gets there. In fact, a recent bottom-up approach to this problem found
that the third component is unnecessary: in learning how to go downhill,
the automaton learns not to go uphill, and so by the time it reaches the
plateau it aleady knows enough to avoid moving off the plateau.

The bottom-up project, which we call Pm, is. in its early stages. Even-
tually, we hope to have autonomous agerts capable of putting out fires in
Explorer National Park, but the methodology calls for approaching this goal
incrementally, so now we are working with simple automata in simple envi-
ronments. For example, Figure 8.4 shows a "beach" over which a version of
Simon's ant perambulates.

Recall that one of my three methodological goals is to build complete
automata. We don't really know the minimum set of skills an automaton

186

needs, but I settled on these four as a first cut:

1. Automata should perceive their environments. Roughly, this means
at least that they construct internal representations of some or all of
their environments.

2. Automata have internal state. In some cases, internal state will be no
more than the internal representation of the environment. In others, it
will include "forces" like "hunger." In more sophisticated automata,
internal state might result from processing information beyond per-
ceptual processing. Internal state (including perceptions) determines
how automata behave.

3. Automata act. This may be definitional, since the state of an object
that doesn't act is determined exclusively by its environment, so that
object isn't autonomous.

4. Automata learn.

Since the inception of the project, we have designed a dozen automata
for the environment in Figure 8.4, and for related environments that present
more difficult learning and performance problems. We have observed au-
tomata getting stuck in corners; getting trapped on plateaus, exhibiting
"superstitious" behavior on downhill trajectories, decreasing their rate of
learning, and cycling and other repetitive behaviors. These were all un-
intended behaviors. There was no way to predict them by looking at. the
automaton's code, nor were they intended by the programmer. They are
emergent behaviors in this sense: None can be explained by a single aspect
of the automaton's design. Take susperstitious behavior as an example.
When an automaton moves downhill, it remembers the context in which it
started the move, and the move itself, and increases the score of that move
in that context. Furthermore, it always selects the move with the highest
score. This means that the first positively-scored move will have a higher
score than any other, and will always be selected in that context. Moreover,
because of the way the environment is constructed, and because of the way
contexts are constructed to access moves in memory, a move that led down-
hill in a context will typically lead downhill the next time the context is
encountered, so the move will typically have its score increased each time it
is repeated. Note that to explain a single observed behavior, I have had to
discuss the agent's learning mechanism, the structure of the environment,
how memories are accessed, and how moves are selected. For brevity, I left

187

out the influence of the perceptual system, but it too plays a role in the
emergent behavior.

These behaviors aren't necessarily desirable, but after years of AI pro-
grams that do exactly what's expected, any surprises are refreshing. More
to the point, the desirability of emergent behaviors depends on the environ-
ment; superstitious behavior on downhill trajectories is only a problem if
the environment demands that automata find the fastest possible path down
a hill.

For each automaton, in each environment, we ask some or all of these
questions:

1. What is the minimum structure necessary to achieve a level of adap-
tation for an automaton in an environment?

2. How robust is the automaton to ranges of environmental conditions?

3. Could the amount of learning necessary to achieve adaptation be re-
duced by making another evolutionary step? What other aspects of
the interaction between environment and automaton seem to require
a more sophisticated automaton?

4. As much as possible (given emergent behavior, interactions, and non-
determinism) explain why the agent behaves as it does in particular
environments. This is especially important for emergent (unexpected)
behaviors. Why does the ant describe a sawtooth? Why does it get
stuck in comers? Are these behaviors adaptive, given one's definition
of adaptive?

5. Are there parallels between the design of one's automaton and biolog-
ical systems? There needn't be, and we'd be fools to reject designs
because they couldn't occur in organic systems, but if the parallels are
there, I'd like to know about them.

To date, the PM project has not achieved any major results, but we have
discovered some minor ones. For example, an automaton with a relatively
poor ability to discriminate contexts can actually outperform automata with
greater acuity. This is because an inability to distinguish contexts is de facto
generalization over contexts, so automata that can't distinguish specific situ-
ations in effect learn classes. A simple example is the "beach" in Figure 8.4.
All our automata learn which of eight neighboring cells to visit from any
given cell, and all construct a context for a move from the altitude val-
ues of the eight neighboring cells. But the original automata discriminated

188

Paul R. Cohen

Motivations

intelligence = f(architecture, knowledge, control, complex environment)

Ongoing, dynamic, real-timeuncertain environments.

Examples:
subsumption architecture, partial
global planning, ALV, Pilot's
Associate, World Modellers...

Knowledge Systems:
* solve one problem at a time Intelligence = Knowledge
instead of building a complete * Oneshot problems
intelligedt agent * Low bandwidth-to external

environment
* emphasis is on getting Absurd assumptions:
the "right answer" * The world doesn't change unless
because environments
aren't ongoing My representation of the world

will remain valid throughout
problem solving* The ramifications of actions are

" ., predictable

Simon's Ant:
Intelligence = f (simple structure, complex environment)
Human Problem Solving, GPS

Figure 8. 1

188a

contexts by the actual altitude values, while later automata simply asked
whether neighboring cells were "up" or "down" from the current cell. The

latter case is de facto generalization over contexts. Moreover, it is a good
generalization, because the automata are punished or rewarded not for mov-
ing to particular altitudes, but for moving up or down. Now, in the long
run, the automaton that can discriminate more contexts will outperform
the one that discriminates fewer; but it takes a lot longer to learn all the
detailed contexts. You can have performance at one level quickly, or you
can wait longer and get higher performance. The choice is determined by
the environment, as all design decisions should be.

8.3 Conclusion

I started this paper with Newell's provocative questions to the psychology
community, and I want to end it by reviewing his recommendations. I
found it remarkable that his questions were so pertinent t6 AI,'and equally
remarkable that his advice to the psychology community is so pertinent to
us. Here is what Newell recommends:

The first recommendation is to construct complete processing
models, instead of partial ones as we do now The second ... is
to accept a single complex task and do all of it. (Newell, 1973]

Newell's paper was written 15 years ago, when psychology seemed stuck
and Al seemed to offer an alternative. Today, knowledge systems research
seems stuck because we haven't built complete processing models, but have
focussed on component technologies; and because we haven't accepted com-
plex tasks, but have stayed within trivial environments. If we are to fare
better than cognitive psychology, it's time to follow Newell's advice.

188b

CC

a

C

uj LN %dC C

Cb W

6 c

ca CY
i. C

040

40.4

C6

+ QI

-0 -a j -I

6..

18 9a

--J~ ~ ~ ~li a a s o @ I 1I if lif 11 1 if I! i I"I I'll Is 1,; it' IN 1, I
*.. ..i 'i' i'. ..I .I. i~ lifl f11 1 1 1 1 1 1 1 1 1 1 1 1 I fi 11 11 H1 1

FI'i..i'.i*.i.'i..i..i..iif if 111111IHIiiI1111111 11 11 11~''l.~l*~'li I it tit it 1t 11 11 1111 lii 11 11 1 1 11 1111 111111 11

1111 11 11 11 11 11 11 111 11 H til1i1 11 1111

selsoloooslas of11A11 11U 11 11 111 1liii 111111 Ux i It ItE t iIltl 11111 it 11 1 1 11 11 11if X it11111 11 11
*i'i~s..lele1.a..isl 4 i IL. 11 11111111 i I if lil il.J i

11 11111 A 11e Ii i it.t i 11 it

44111111 Ut I-ll!I it 1 liit~l ItI
E ~..ie~imie.I.l,,lts I 411 it it 411 411J~i~J 4 1111111

A A A -I..i..1.I'.i.'I. d 1I HII 'IL I 4 11 11 11 ii 11,11 11 lii 11iii
or 111 1 ItIt i 1I ;i t 11 11~

* i.I*si*'i.g1 I 1 1411 41 1 ii 11A11 11 if ii it 1i

Ill liii l ~If tIf 1114* ll UltI z A if ifi'i 11 11 1111 1 11 411f11 11 II 1 11if11 11

i.ialooio..i' l 4114 4 11 11I'll 4111 1 1 11 1111 11 I ittitI

1 1161161114i.8114 A+is I' little11 1 l ii i t il it T~l it

V~~~~~~ 1Il I 111 ltI I ItIIt 11 I it Iii

161081Is I I 'l II 1 l 11111111 li NN I

I ~

189b

a

'ter

ZQ..~ 4w

.31...

Kt__

....... ----

:AUA

. NWi~

.......

,4: Sft

CO

4.S4~do
- q

A* .1 0-

~.. 'l4

a .1 t

Vflt. ..
O

Part VI

References

191

Appendix A

Paper References

All of these chapters were written with DARPA support. Additional support
is credited below. Most of the chapters in this report have been drawn from
published papers and technical reports. The references are:

Chapter 2 - [Gruber, 1989]. This work was supported in part by ONR University
Research Initiative contract N00014-86-K-0764.

Chapter 3 - [Cohen et aL, 1988]. This work was supported in part by ONR con-
tract AFOSR 4331690-01.

Chapter 4 - [Cohen and Day, 1988]. This work was supported in part by ONR
University Research Initiative contract N00014-86-K-0764 and Naval
Underwater Research Systems Center contract N66604-6288-1301

Chapter 5 - [Cohen et at., 1989]. This work was supported in part by ONR Uni-
versity Research Initiative contract N00014-86-K-0764, and Office of
Naval Research contract N00014-87-K-0238.

Chapter 6 - [Cohen and Loiselle, 1988]. This work was supported in part by ONR
University Research Initiative contract N00014-86-K-0764 and by a gift
from Tektronix.

Chapter 7 - [Cohen and Howe, 1988a). This work was supported in part by ONR
contract AFOSR 4331690-01 and by ONR University Research Initia-
tive contract N00014-86-K-0764.

192

Bibliography

[Agre and Chapman, 1987] Philip E. Are and David Chapman. Pengi: An
implementation of a theory of activity. In Proceedings of the Sizth Na-
tional Conference on Artificial Intelligence, pages 268-272, Seattle, Wash-
ington, 1987. American Association for Artificial Intelligence.

[Allen, 1984] James F. Allen. Towards a general theory of action and time.
Artificial Intelligence, 23(2):123-154, 1984.

[Anderson, 1983] John R. Anderson. The Architecture of Cognition. Har-

vard University Press, Cambridge, MA, 1983.

[Anderson, 1986] Charles W. Anderson. Learning and problem solving with
multilayer connectionist systems. Technical Report COINS 86-50, Uni-
versity of Massachusetts, 1986. Ph.D. Thesis.

[Ashley, 1987] Kevin D. Ashley. Modelling Legal Argument: Reasoning with
Cases and Hypotheticals. Doctoral disssertation, Department of Com-
puter and Information Science, University of Massachusetts, Amherst,
Massachusetts, 1987.

[Baker and Burstein, 1987] Michelle Baker and Mark H. Burstein. Imple-
menting a model of human plausible reasoning. In Proceedings of the
Tenth International Joint Conference on Artificial Intelligence, pages
185-188, Milan, Italy, 1987.

[Bareiss et aL, 1987] E. R. Bareiss, B. W. Porter, and C. C. Wier. Protos:
An exemplar-based learning apprentice. In Proceedings of the Second
AAAI Knowledge Acquisition for Knowledge-based Systems Workshop,
Banff, Canada, October 1987. To appear in the International Journal
of Man-Machine Studies.

193

[Bareiss, 1989] E.. R. Bareiss. Ezemplar-based Knowledge Acquisition: A
Unified Approach to Concept Representation, Classification, and Learn-
ing. Academic Press, New York, 1989. Based on doctoral dissertation,
Department of Computer Science, University of Texas, Austin.

[Barr and Feigenbaum, 1981] Avron Barr and Edward A. Feigenbaum, ed-
itors. The Handbook of Artficial Intelligence, volume I. William Kauf-
mann, Inc., Los Altos, CA, 1981.

[Barto et al., 1983] Andrew G. Barto, Richard S. Sutton, and Charles W.
Anderson. Neuronlike adaptive elements that can solve difficult learning
control problems. IEEE Transactions on Systems, Man and Cybernetics,
SMC-13(5), September 1983.

[Benjamin, 1987] D. Paul Benjamin. Learning strategies by reasoning about
rules. In Proceedings of the Tenth International Joint Conference on Ar-
tificial Intelligence, pages 256-259, Milan, Italy, 1987.

[Bennett, 1985] J-. S. Bennett. Roget: A knowledge-based consultant for
acquiring the conceptual structure of a diagnostic system. In Journal of
Automated Reasoning, volume 1, pages 49-74, 1985.

[Boden, 1979] Margaret A. Boden. Jean Piaget. Penguin Books, New York,
1979.

[Boose and Bradshaw, 1987] J.H. Boose and J.M. Bradshaw. Expertise
transfer and complex problems: Using aquinas as a knowledge acquisi-
tion workbench for expert sytems. International Journal of Man-Machine
Studies, 26(1):21-25, January 1987.

[Brachman and Schmolze, 1985] R.J. Brachman and J.G. Scbznolze. An
overview of the KL-ONE knowledge representation system. Cognitive
Science, 9(2), March 1985.

[Braitenberg, 1984] Va.entino Braitenberg. Vehicles: Eiperiments in Syn-
thetic Psychology. MIT P-ess, 1984.

[Brooks, 1985] Rodney A. Brooks. A robust layered control sysem for a
mobile robot. A.l. Memo 864, Massachusetts Institute of Technology,
1985.

[Brooks, 1986] Rodney A. Brooks. A robust layered control system for a
mobile robot. IEEE Journal of Robotics and Automation, RA-2(1), March
1986.

194

[Broverman and Croft, 1987 Carol A. Broverman and W. Bruce Croft.
Reasoning about exceptions during plan execution. In Proceedings of
the Sixth National Conference on Artificial Intelligence, pages 190-195,
Seattle, Washington, 1987.

[Buchanan and Shortliffe, 1984] B. G. Buchanan and E. H. Shortliffe. Rule-
Based Expert Systems: The MYCIN Experiments of the Stanford Heuris-
-tic Programming Project Addison-Wesley, Reading, MA, 1984.

[Buchanan et aL., 1983] B.G. Buchanan, D.K. Barstow, R. Bechtel, J.. Ben-
nett, W. Clancy, C. Kulikowski, T. Mitchell, and D. A. Waterman. Con-
tructing an expert system. In F. Hayes-Roth, D. A. Waterman, and D. B.
Lenat, editors, Building Expert Systems. Addison-Wesley, Reading, MA,
1983.

[Buchanan, 1987] Bruce Buchanan. Artificial intelligence as an experimen-
tal science. Technical Report KSL 87-03, Knowledge Systems Laboratory,
Stanford University, January 1987.

[Bylander and Chandrasekaran, 1987] T. Bylander and B. Chandrasekaran.
Generic tasks in knowledge-based reasoning: The 'right' level of abstrac-
tion for knowledge acquisition. International Journal of Man-Machine
Studies, 26(2):231-244, 1987.

[Chandrasekaran and Mittal, 1983] B. Chandrasekaran and S. ittal. Con-
ceptual representation of medical knowledge for diagnosis by computer:
MDX and related systems. In M. Yovits, editor, Advances in Computers,
pages 217-293. Academic Press, New York, 1983.

[Chandrasekaran et al., 1982] B. Chandrasekaran, S. ittal, and J. W.
Smith. Reasoning with uncertain knowledge: the MDX approach. In
Proceedings of the Congress of American Medical Informatics Associa-
tion, pages 335-339, San Francisco, 1982.

[Chandrasekaran, 19831 B. Chandrasekaran. Towards a taxonomy of prob-lem solving types. Al Magazine, 4(1):9-17, 1983.

[Chandrasekaran, 1986] B. Chandrasekaran. Generic tasks in knowledge-
based reasoning: High-level building blocks for expert system design.
IEEE Expert, 1(3):23-30, Fall 1986.

[Chandrasekaran, 1987] B. Chandrasekaran. Towards a functional architec-
ture for intelligence based on generic information processing tasks. In

195

Proceedings of the Tenth International Joint Conference on Artificial In-
telligence, pages 1183-1192, 1987.

[Chapman and Agre, 1987] David Chapman and Philip E. Agre. Abstract
reasoning as emergent from concrete activity. In M. P. Georgeff and A. L.
Lansky, editors, Reasoning About Actions and Plans, Proceedings of the
1986 Workshop at Timberline, Oregon, pages 411-424, 1987.

[Clancey,] WilLiam J. Clancey. Acquiring, representing, and evaluating a
competence model of diagnosis. KSL Memo 84-2, Stanford University,
February'1984. To appear in Chi, Glaser, and Farr (Eds.), Contributions
to the Nature of Expertise, in preparation.

[Clancey and Bock, 1988] William J. Clancey and Conrad Bock. Represent-
ing control knowledge as abstract tasks and metarules. In L. Bolc and
M. J. Coombs, editors, Expert System Applications, pages 1-78. Springer-
Verlag, New York, 1988. Previous version: report KSL-85-16, Stanford
University.

[Clancey, 1983a] William 3. Clancey. The advantages of abstract control
knowledge in expert system design. In Proceedings of the Third National
Conference on Artificial Intelligence, pages 74-78, Washington, D.C., Au-
gust 1983.

[Clancey, 1983b] William I. Clancey. Th. epistemiology of a rule-based ex-
pert system: A framework for explanation. Artificial Intelligence, 20:215-
251, 1983.

[Clancey, 1984a] W. J. Clancey. Details of the revised therapy algorithm.
In B. G. Buchanan & E. H. Shortliffe, editor, Rule-Based Ezpert Systems:
The MYCIN Experiments of the Stanford Heuristic Programming Project.
Addison-Wesley, Reading MA, 1984.

[Clancey, 194b] William . Clancey. Classification problem solving. In
Proceedings of the Fourth National Conference on Artificial Intelligence,
page 49, 1984.

[Clancey, 1985] William . Clancey. Heuristic classification. Artificial In-
telligence, 27:289-350, 1985.

[Clancey, 1986] William J. Clancey. From GUIDON to NEOMYCIN and
HERACLES in twenty short lessons. A" Magazine, 7(3):40-60, 1986.

196

[Clancey, 1987] William J. Clancey. Viewing knowledge bases as qualitative
models. Technical Report KSL-86-27, Computer Science Department,
Stanford University, 1987. To appear in IEEE Expert, 1988.

[Clancey, 1988] W. J. Clancey. Acquiring, representing, and evaluating a
competence model of diagnosis. In Chi, Glaser, and Farr, editors, Con-
tributions to the Nature of Ezpertise. Lawrence Erlbaum, Hillsdale N.J.,
1988. previously published as KSL Memo 84-2, Standford University,
February, 1984.

[Clancey, forthcoming] William 3. Clancey. Representing control knowledge
as abstract tasks and metarules. In M. Coombs and L. Bolc, editors,
Computer Ezpert Systems. Springer-Verlag, forthcoming. Also KSL 85-
16, Stanford University.

[Cohen and Day, 1987] Paul R. Cohen and David S. Day. Planning in com-
plex real-world time-dependent domains. In Proceedings of the DARPA
Knowledge-Based Planning Workshop, Austin, Texas, December 1987.

[Cohen and Day, 1988] Paul R. Cohen and David S. Day. The centrality of
autonomoils agents in theories of action under uncertainty. Eksl technical
report, University of- Massachusetts,. January 1988. To appear in the
International Journal for Approximate Reasoning.

[Cohen and Feigenbaum, 1982] Paul R. Cohen and Edward Feigenbaum.
The Handbook of Artificial Intelligence, Volume III. William Kaufmann,
Inc., Los Altos, CA, 1982.

[Cohen and Gruber, 1985] Paul R. Cohen and Thomas 1R. Gruber. Reason-
ing about uncertainty: A knowledge representation perspective. Perga-
mon Infotech State of the Art Report, 1985. Also, COINS Technical Re-
port 85-24, Department of Computer and Information Science, University
of Massachusetts.

[Cohen and Howe, 1988a] Paul Cohen and Adele E. Howe. Toward AI re-
search methodology: Three case studies in evaluation. Technical Report
COINS 88-31, Department of Computer and Information Science, Univer-
sity of Massachusetts, Amherst, Massachusetts, 1988. To appear in IEEE
Transactions on Systems, Man & Cybernetics.

[Cohen and Howe, 1988b] Paul R. Cohen and Adele E. Howe. How evalua-
tion guides AI research. AI Magazine, a(4):35-43, 1988.

197

[Cohen and Howe, 1988c] Paul R. Cohen and Adele E. Howe. Is there a
method to our madness?: Case studies in evaluation. EKSL technical
report, University of Massachusetts, 1988. To appear in IEEE Systems,
Man, and Cybernetics.

[Cohen and Kjeldsen, 1987] Paul R.. Cohen and Rick Kjeldsen. Informa-
tion retrieval by constrained spreading activation in semantic networks.
Information Processing and Management, 23(4):255-268, 1987.

[Cohen and Lieberman, 1983] Paul R.. Cohen and Mark D. Lieberman. Fo-
lio: An expert assistant for portfolio managers. In Proceedings of
the Third National Conference on Artificial Intelligence, pages 212-215,
Washington, D.C., 1983.

[Cohen and Loiselle, 1988] Par! R.. Cohen and Cynthia L. Loiselle. Beyond
ISA: Structures for plausible inference in semantic networks. In Proceed-
ings of the Seventh National Conference on Artificial Intelligence, Saint.
Paul, Minnesota, 1988.

[Cohen and Stanhope, 1986] Paul B.. Cohen and Philip Stanhope. Finding
research funds with the grant system. In Proceedings of the Sixth Interna-
tional Workshop on Ezpert Systems and Their Applications, 1986. April
28-30, 1986, Avignon, France.

[Cohen et al., 1985] Paul R.. Cohen, Alvah Davis, David S. Day, Michael
Greenberg, tick Kjeldsen, Sue Lander, and Cindy Loiselle. Representa-
tiveness and uncertainty in classification systems. Al Magazine, 6(3y:136-
149, Fall 1985.

[Cohen et al., 1987a] Paul B. Cohen, David S. Day, Jeff Delisio, Michael
Greenberg, Rick Kjeldsen, Dan Suthers, and Paul Berman. Management
of uncertainty in medicine. International Journal of Approxraate Rea-
soning, 1(1):103-116, 1987.

[Cohen et aL, 198Tb] Paul B.. Cohen, Michael Greenberg, and Jeff Delisio.
mu: A development environment for prospective reasoning systems. In
Proceedings of the Sizth National Conference on Artificial Intelligence,
pages 783-788, Seattle, Washington, July 1987.

[Cohen et al., 1987c] Paul B.. Cohen, Glenn Shafer, and Prakash P. Shenoy.
Modifiable combining functions. Al EDAM, 1(1):47-85, 1987.

198

[Cohen et al., 1988] Paul 1R. Cohen, Jefferson L. DeLisio, and David Hart.
A declarative representation of control knowledge. IEEE Transactions on
Systems, Man and Cybernetics, 1988.

[Cohen et at., 19891 P. 1R. Cohen, Michael L. Greenberg, David M. Hart,
and Adele E. Howe. Trial by fire: Understanding the design requirements
for agents in complex environments. Technical report, Coins Dept., Uni-
versity of Masschusetts, 1989. TB. 89-61.

[Cohen, 1986] Paul B.. Cohen. Managing uncertainty. In The Third Confer-
ence on Artificial Intelligence Applications, Orlando, Florida, February,
1987 1986. Department of. Computer and Information Science, University
of Massachusetts.

[Cohen, 1987a] Paul B.. Cohen. The control of reasoning under uncertainty:
A discussion of some programs. The Knowledge Engineering Review, 2(1),
March 1987.

[Cohen, 1987b] Paul B.. Cohen. Steps toward programs that manage uncer-
tainty. In Third Workshop on Uncertainty in Artificial Intelligence, pages
372-379. American Association for Artificial Intelligence, July 1987.

[Cohen, 19881 Paul B.. Cohen. An adaptive planner for real-time, uncertain
environments. Technical report, Department of Computer and Informa-
tion Science, 1988. Unpublished proposal.

[Cohen, 1989] P R. Cohen. Why knowledge systems research is in trouble
and what we can do about it. Technical report, COINS Dept., University
of Massachusetts, 1989.

[Collins et al., 1975] A. Collins, E. Warnock, N. Aiello, and M. Miller. Rea-
soning from incomplete knowledge. In D. G. Bobrow and A. Collins, edi-
tors, Representation and Understanding, pages 383-415. Academic Press,
New York, 1975.

[Colins, 1978] A. Collins. Fragments of a theory of human plausible rea-
soning. In D. Waltz, editor, Theoretical Isues in Natural Language Pro-
cessing. University of Illinois, Urbana, IL, 1978.

[Croft et al., 1988] W. Bruce Croft, T. J. Lucia, and P. B.. Cohen. Retriev-
ing documents by plausible inference: A preliminary study. Technical
report, University of Massachusetts, Department of Computer and Infor-
mation Science, Amherst, MA. 01003, 1988. COINS Technical Report
88-16.

199

[Dacus, 19871 Jim 1R. Dacus. Knowledge-based planning in advanced tac-
tical aircraft. In Proceedings of the DARPA Knowledge-Based Planning
Workshop, Austin, Texas, December 1987.

[Daily et al., 19871 M. Daily, J. Harris, D. Deirsey, K. Olin, D. Pay-
ton, K Reiser, J. Rosenblatt, D. Tseng, and V. Wong. Autonomous
cross-country navigation with the ALV. In Proceedings of the DARPA
Knowledge-Based Planning Workshop, Austin, Texas, December 1987.

[DAB., 1987] DARPA. Knowledge-Based Planning Workshop, Austin,
Texas, July 1987.

[Davis, 1976] Randall Davis. Applications of meta-level knowledge to the
construction, maintenance, and use of large knowledge bases. PhD thesis,
Computer Science Department, Stanford University, 1976. Reprinted in
R. Davis and D. B. Lenat (Eds.), Knowledge-Based Systems in Artificial
Intelligence, New York: McGraw-Hill, 1982.

[Davis, 1982] R. Davis. Applications of meta-level knowledge to the con-
struction, maintenance, and use of large knowledge bases. In R. Davis
and D. B. Lenat, editors, Knowledge-Based Systems in Artificial Intelli-
gence. McGraw-Hill, New York, 1982. Doctoral dissertation, Co .mputer
Science Department, Stanford University.

[Dawson et aL, 1986] Geraldine Dawson, Charles Finley, Sheila Phillips,
and Larry Galpert. Hemispheric specialization and the language abili-
ties of autistic children. Child Development, 57(6):1442-1444, Decemb-r
1986.

[Day, 1987a] David S. Day. JANUS: An architecture for integrating auto-
matic and controlled problem solving. In Proceedings of the Ninth An-
nual Conference of the Cognitive Science Society, pages 655-662, Seattle,
Washington, 1987.

[Day, 1987b] David S. Day. Towards integrating automatic arid controlled
problem solving. In Proceedings of the First International Conference on
Neural Networks. Institute of Electronic and Electrical Engineers, 1987.

[Dean, 1987a] Thomas Dean. Large-scale temporal data bases for planning
in complex domains. In Proceedings of the Tenth International Joint Con-
ference on Artificial Intelligence, Milan, Italy, 1987.

200

[Dean, 198Th] Thomas Dean. Planning, execution and control. In Proceed-
ings of the DARPA Knowledge-Based Planning Workshop, Austin, Texas',
December 1987.

[DeJong and Mooney, 1986] Gerald
DeJong and Raymond Mooney. Explanation-based learning: 'An alter-
native view. Machine Learning, 1(2), 1986.

[Dietterich and Michalski, 1983] T. G. Dietterich and R.S. Michalski. A
comparative review of selected methods for learning from examples. In
R.S. Michalski, J.G. Carbonell, and T.M. Mitchell, editors, Machine
Learning: An Artificial Intelligence Approach, pages 41-81. Tioga Press,
Palo Alto, CA, 1983.

[Dietterich and Michalski, 1986] T. G. Dietterich and R. S. Michalski.
Learning to predict sequences. In R.S. Michalski, J.G. Carbonell, and
T.M. Mitchell, editors, Machine Learning: An Artificial Intelligence Ap-
proach, Volume II, volume 2, pages 63-106. Morgan Kaufmann Publish-
ers, Inc., Los Altos, CA, 1986.

[Dietterich, 19821 T." G. Dietterich. Learning and inductive inference. In
Paul R,. Cohen and Edward Feigenbaum, editors, The Handbook of Arti-
ficial Intelligence, Volume III. William Kaufmann, Inc., 1982.

(Dixon et al., 1984] J.1L Dixon, M.K. Simmons, and P.R. Cohen. An archi-
tecture for application of artificial intelligence to design. In Proceedings
of ACM/IEEE 21st Design Automation Conference, Albuquerque, NM,
1984.

[Durfee and Lesser, 1987] E.'H. Durfee and V. R.. Lesser. Incremental plan-
ning to control a time-constrained, blackboard-based planner. IEEE
Transactions on Aerospace and Electronic Systems, 1987. To appear.

[Durfee, 1987] Edmund H. Durfee. A unified approach to dynamic coordi-
nation: Planning actions and interactions in a distributed problem solving
network. Ph.d. dissertation, University of Massachusetts, Amherst, Mas-
sachusetts, September 1987.

[E. L. Hutchins and Norman, 1986] J. D. Hollan E. L. Hutchins and D. A.
Norman. Direct minipulation interfaces. In D. A. Norman and S. W.
Draper, editors, User Centered System Design. Lawrence Erlbaum Asso-
ciates, Hillsdale, N. J., 1986.

201

[Erman and Lesser, 1975] L. Erman and V.R.. Lesser. A multi-level orga-
nization for problem solving using ranny diverse, cooperating sources of
knowledge. In Proceedings of the Fourth International Joint Conference
on Artificial Intelligence, Stanford, California, 1975.

[Erman et at., 19801 L. D. Erman, F. Hayes-Roth, V. R. Lesser, and D. R.
Reddy. The HEARSAY-fl speech understanding system: Integrating
knowledge to resolve uncertainty. Computing Surveys, 12:213-253, 1980.

[Erman et al., 1984] Lee D. Erman, A. Carlisle Scott, and Phillip London.
Separating and integrating control in a rule-based tool. In Proceedings
of the IEEE Workshop on Principles of Knowledge-base Systems, pages
37-43, Denver, Colorado, December 1984.

[Eshelman, 1987] L. Eshelman. MOLE: A knowledge acquisition tool that
buries certainty factors. In Proceedings of the Second AAAI Knowledge
Acquisition for Knowledge-based Systems Workshop, Banff, Canada, Oc-
tober 1987. To appear in the International Journal of Man-Machine Stud.
ies.

[Eshelman, 1988] L. Eshelman. Mole: A knowledge- aquisition tool for
cover-and differentiate systems. In S. Marcus, editor, Automating
Knowledge Acquisition for Ezpert System.. Kluwer Academic Publishers,
Boston, MA, 1988.

(Fikes et al., 1972] R. Fikes, P. Hart, and N. Nilsson. Learning and execut-
ing generalized robot plans. Artificial Intelligence, 3(4):251-288, 1972.

[Firby and Hanks, 1987] R. James Firby and Steve Hanks. A simulator for
mobile robot planning. In Proceedings of the DARPA Knowledge-Based
Planning Workshop, Austin, Texas, December 1987.

[Firby, 1987] R. James Firby. An investigation into reactive planning in
complex domains. In Proceedings of the Sizth National Conference on
Artificial Intelligence, pages 202-206, Seattle, Washington, 1987.

[Freiling and Alexander, 1984] M. J. Freiling and J. H. Alexander. Dia-
grams and grammars: Tools for mass producing expert systems. In Pro-
ceedings on the First Conference on Artificial Intelligence Applications,
pages 537-543, Denver, Colorado, 1984. IEEE Computer Society Press.

[Gale, 1987] W. A. Gale. Knowledge-based knowledge acquisition for a sta-
tistical consulting system. International Journal of Man-Machine Studies,
13:81-116, 1987.

202

[Garvey et a., 1987] Alan Garvey, Craig Cornelius, and Barbara Hayes-
Roth. Computational costs versus benefits of control reasoning. In Pro-
ceedings of the Sizth National Conference on Artificial Intelligence, pages
110-115, Seattle, Washington, 1987.

[Gaschnig et al., 1983] John Gaschnig, Philip Klahr, Harry Pople, Ed-
ward H. Shortliffe, and Allan Terry. Evaluation of expert systems: Is-
sues and case studies. In F. Hayes-Roth, D. A. Waterman, and Dou-
glas B. Lenat, editors, Building Expert Systems, chapter 8, pages 241-280.
Addison-Wesley, 1983.

[Geissman and Schultz, 1988] James 1R. Geissman and Roger D. Schultz.
Verification and validation. AI Ezpert, 3(2):26-33, February 1988.

[Georgeff and Lansky, 1987] Michael P. Georgeff and Amy L. Lansky, edi-
tors. The 1986 Workshop on Reasoning about Actions and Plans, Tim-
berline, Oregon, 1987.

[Golding et al., 1987] Andrew Golding, Paul S. R1osenbloom, and John E.
Laird. Learning general search control from outside guidance. In Proceed-
in,,.. of the Tenth International Joint Conference on A rtificial Intelligence,
pages 334-337, Milan, Italy, 1987.

[Gruber and Cohen, 1987a] Thomas BR. Gruber and Paul B.. Cohen. De-
sip for acquisition: principles of knowledge system design to facilitate
knowledge acquisition. International Journal of Man-Machine Studies,
26(2):143-159, 1987.

[Gruber and Cohen, 1987b] Thomas B.. Gruber and Paul 1R. Cohen.- Knowl-
edge engineering tools at the architecture level. In Proceedings of the
Tenth International Joint Conference on Artificial Intelligence, pages
100-103, Milan, Italy, 1987.

[Gruber and Cohen, 1987c] Thomas 1R. Gruber and Paul B.. Cohen. Prin-
ciples of design for knowledge acquisition. In Proceedings of the Third
IEEE Artificial Intelligence Applications Conference, Orlando, Florida,
February 1987, 1987.

[Gruber, 1987] Thomas R. Gruber. Acquiring strategic knowledge from ex-
perts. In Proceedings of the Second AAAI Knowledge Acquisition for
Knowledge-based Systems Workshop, Banff, Canada, October 1987. To
appear in the International Journal of Studies.

203

[Gruber, 1988a] Thomas R. Gruber. Acquiring strategic knowledge from
experts. International Journal of Man-Machine Studies, 1988. Forth-
coming.

[Gruber, 1988b] Thomas R. Gruber. A method for acquiring strategic
knowledge. Technical report, Department of Computer and Information
Science, University of Massachusetts, Amherst, Massachusetts, 1988.

[Gruber, 1989 Thomas R. Gruber. The Acquisition of Strategic Knowledge.
Academic Press, Boston, 1989. based on -doctoral diisertation, Depart-
ment of Computer and Information Science, University of Massachusetts.

[Hammond, 1986] Kristian Hammond. The use of remindings in planning.
In Proceedings of the Cognitive Science Society, 1986.

[Hammond, 1989] K. J. Hammond. Cased-Based Planning: Viewing Plan-
ning as a Memory Task. Academic Press, Boston, 1989. Based on doc-
toral dissertation, Computer Science Department, Yale University.

[Hanks, 1987] Steve Hanks. Temporal reasoning about uncertain worlds. In
Third Workshop on Uncertainty in Artificial Intelligence, pages 114-122.
American Association for Artificial Intelligence, July 1987.

[Hannan and Politakis, i985] J. Hannan and P. Politakis. Essa: An ap-
proach to acquiring decision rules for diagnostic expert systems. In Pro-
ceedings of the Second Conference on Artificial Intelligence Applications,
pages 520-525, 1985.

[Hayes-Roth and Hakes-Roth, 1979] Barbara Hayes-Roth and Frederick
Hayes-Roth. A cognitive model of planning. Cognitive Science, 3:275-
310, 1979.

[Hayes-Roth et at., 1986] B. Hayes-Roth, A. Garvey, M.V. Johnson, and
M. Hewett. A layered environment for reasoning about action. Technical
Report KSL 86-38, Computer Science Department, Stanford University,
April 1988.

[Hayes-Roth et al., 1987] Barbara Hayes-Roth, Alan Garvey, M.Vaughan
Johnson, and Michael Hewett. A modular and layered environment for
reasoning about action. Technical Report KSL 86-38, Computer Science
Department, Stanford University, April 1987.

204

[Hayes-Roth, 1984] F. Hayes-Roth. Knowledge-based expert systems-the
state of the art in the us. Pergamon Infotech State of the Art Report,
1984.

[Hayes-Roth, 1985] B. Hayes-Roth. A blackboard architecture for control.
Artificial Intelligence, 26:251-321, 1985.

[Hayes-Roth, 1987] Barbara Hayes-Roth. Dynamic control planning in
adaptive intelligent systems. In Proceedings of the DARPA Knotledge-
Based Planning Workshop, Austin, Texas, December 1987.

[Hays, 1973] Willim L. Hays. Statistics for the Social Sciences. Holt, Rine-
hart, and Winston, second edition, 1973.

[Hendler and Sanborn, 1987] James A. Hendler and James C. Sanborn. A
model of reaction for planning in dynamic environments. In Proceedings
of the DARPA Knowledge-Based Planning Workshop, Austin, Texas, De-
cember 1987.

[Henrion and Cooley, 1987] M. Henrion and D. 1R. Cooley. An experimental
comparison of knowledge engineering for expert systems and for decision
analysis. In Proceedings of the Sizth National Conference on Artificial
Intelligence, Seattle, Washington, 1987.

[Herman and Albus, 1987] Martin Herman and James S, Albus. Real-time
hierarchical planning for multiple mobile robots. In Proceedings of the
DARPA Knowledge-Based Planning Workshop, Austin, Texas, December
1987.

[Hillier and Lieberman, 1980] F.S. Hillier and G.J. Lieberman. Introduction
to Operations Research. Holden-Day, Inc., San Francisco, CA, 1980.

[Howe and Cohen, 1987] Adele E. Howe and Paul R. Cohen. A typology for
constructing decisions. In Proceedings of the Sizth Annual IEEE Confer-
ence on Computers and Communication, Scottsdale, AZ, February 1987.

[Howe and Cohen, 1988] Adele E. Howe and Paul BR. Cohen. Steps toward
automating decision-making. Under review, Cognitive Science, 1988.

[Howe et al., 1986] A. Howe, J.R. Dixon, P.R. Cohen, and M.K. Simmons.
Dominic: A domain-independent program for mechanical engineering
design. International Journal for Artificial Intelligence in Engineering,
1(1):23-29, July 1986.

205

[Howe, 1986' Adele Howe. Learning to design mechanical engineering prob-
lems, 1986. EKSL Working Paper 86-01, University of Massachusetts.

,'Johnson and Tomlinson, 1988] N. E. Johnson and C. M. Tomlinson.
Knowledge representation for knowledge elicitation. In Proceedings of the
third AAAI Knowledge Acquisition for Knowledge-based Systems Work-
shop, Banff, Canada, November 1988. Calgary, Alberta: SB.DG PubLca-
tions, Department of Computer Science, University of Calgary.

LJordan, 19861 Michael I. Jordan. Attractor dynamics and parallelism in a
connectionist sequential machine. In Proceedings of the Cognitive Science
Society, 1986.

[Kaelbling, 1987] Leslie Pack Kaelbling. An architecture for intelligent re-
active systems. In M. P. Georgeff and A. L. Lansky, editors, Reasoning
About Actions and Plans, Proceedings of the 1986 Workshop at Timber-
line, Oregon, pages 411-424, 1987.

[Kay, 1984] A. Kay. Computer software. Scientific American, 251(3):52-59,
September 1984.

[Keeney and H.Raiffe, 1976] BR. L. Keeney and H.Raiffe. Decisions with
Multiple Objectives: Preferences and Value Tradeoffs. John Wiley and
Sons, 1976.

[Keller, 1988] Richard M. Keller. Defining operationality for explanation-
based learning. Artificial Intelligence, 35(2):227-241, 1988.

[Kemeny, 1959] John G. Kemeny. A Philosopher Looks at Science. Van
Nostrand Reinhold Co., New York, 1959.

[Kjeldsen and Cohen, 1987] Rick Kjeldsen and Paul R.. Cohen. The evolu-
tion and performance of the GRANT system. IEEE Ezpert, 2(2):73-79,
Spring 1987.

[Klinker, 1988] G. Klinker. Knack: Sample-driven knowledge acquisition
for reporting systems. In Automating Knowledge Acquisition for Ezpert
Systems. Kluwer Academic, Boston, 1988.

[Korf, 1987] Richard Korf. Real-time heuristic search: First results. In
Proceedings of the Sitth National Conference on Artificial Intelligence,
pages 133-138, Seattle, Washington, 1987.

206

[Laird et al., 1986] John E. Laird, Paul S. Rosenbloom, and Allen Newell.
Chunking in SOAR: The anatomy of a general learning mechanism. Ma-
chine Learning, 1:11-46, 1986.

[Laird et al., 1987] John E. Laird, Allen Newell, and Paul S. Rosenbloom.
SOAR: An architecture for general intelligence. Artificial Intelligence,
33,1-64, 1987.

[Langley, 1987] Pat Langley. Research papers in machine learning. Machine
Learning, 2(3):195-198, November 1987.

[Lenat and Brown, 1984] Douglas B. Lenat and John Seeley Brown. Why
AM and EUtISKO appear to work. Artificial Intelligence, 23(3), 1984.

[Lenat and Feigenbaum, 1987) D. B. Lenat and E. Feigenbaum. On the
thresholds of knowledge. In Proceedings of the Tenth International Joint
Conference on Artificial Intelligence, pages 1173-1182, Milan, Italy, 1987.

[Lenat et al., 1986] D. B. Lenat, M. Prakash, and M. Shepherd. CYC: Using
common sense knowledge to overcome brittleness and knowledge acquisi-
tion bottlenecks. AI Magazine, 6(4):65-85, Winter 1986.

[Lenat, 1976] D.B. Lenat. AM: .An Artificial Intelligence Approach to Dis-
covery in Mathematics as Heuristic Search. PhD thesis, Department of
Computer Science report STA.N-CS-76-570, Stanford University, 1976.
Doctoral Dissertation.

[Lesser et al., 1988] Victor R. Lesser, Edmund H. Durfee, and Jasmina
Pavlin. Approximate processing in real-time problem solving. AI Maga-
zine, pages 49-61, Spring 1988.

[Lu.hrs and Nowicki, 1987) Richard A. Luhrs and Anthony R. Nowicki.
Real-time dynamic planning for autonomous vehicles. In Proceedings of
the DARPA Knowledge-Based Planning Workshop, Austin, Texas, De-
cember 1987.

(M. A. Musen and Shortliffe, 1986] L. M. ragen M. A. Musen and E. H.
Shortliffe. Graphical specification of procedural knowledge for an expert
system. In Proceedings of the1986 IEEE Computer Society Workshop on
Visual Languages, pages 167-178, Dallas, Texas, 1986.

207

[Marcus et al., 1985] S. Marcus, J. McDermott, and T. Wang. Knowledge
acquisition for constructive systems. In Proceedings of the Ninth Inter-
national Joint Conference on Artificial Intelligence, pages 637-639, Los
Angeles, CA, August 1985.

[Marcus, 1987] Sandra Marcus. Taking backtracking with a grain of SALT.

International Journal of Man-Machine Studies, 26(4):383-398, 1987.

[Marcus, 1988] S. Marcus. Salt: A knowledge acquisition tool for propose-
and-refine systems. In S. Marcus, editor, Automating Knowlege Acquisi-
tion for Expert Systems. Kluwer Academic, Boston, 1988.

[McDermott, 1982] Drew McDermott. A temporal logic for reasoning about
processes and plans. Cognitive Science, 6:101-155, 1982.

[McDermott, 1987] Drew V. McDermott. DARPA-sponsered planning re-
search: Report and prospectus. YALE/CSD/RR 522, Yale University,
Department of Computer Science, March 1987.

[McDermott, 1988] J. McDermott. Preliminary steps toward a taxonomy of
problem-solving methods. In S. Marcus, editor, Automating Knowledge
Acqigistion for Expert Systems. Kluwer Academic, 1988.

[Michalski et al., 1986] B.. S. Michalski, J. G. Carbonell, and T. M. Mitchell.
Machine Learning: An Artificial Intelligence Approach, volume H. Mor-
gan Kaufinann Publishers, Inc., Los Altos, CA, 1986.

[Minton and Carbonell, 1987] Steven Minton and Jaime G. Carbonell.
Strategies for learning search control ruies: An erplanation-based ap-
proach. In Proceedings of the Tenth International Joint Conference on
Artificial Intelligence, pages 228-235, Milan, Italy, 1987.

[Mitchell et al., 1983) T. M. Mitchell, P. E. Utgoff, and . B. Banerji.
Learning by experimentation: Acquiring and refining problem-solving
heuristics. In R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, ed-
itors, Machine Learning: An Artificial Intelligence Approach, Volume I.
Morgan Kaufnann Publishers, Inc., Los Altos, CA, 1983.

[Mitchell et al., 1985] T.M. Mitchell, S. Mahadevan, and L. Steinberg.
LEAP: A learning apprentice for vlsi design. In Proceedings of the Ninth
International Joint Conference on Artificial Intelligence, 1985.

208

[Mitchell et al., 1986] T. M. Mitchell, R. M. Keller, and S. T. Kedar-Cabelli.
Explanation-based generalization: A unifying view. Machine Learning,
1(1):46-80, 1986.

[Mitchell, 1977] T. M. Mitchell. Version spaces: A candidate elimination
approach to rule learning. In Proceedings of the Fifth International Joint
Conference on Artificial Intelligence, pages 305-310, Tiblisi, Georgia,
USSR, 1977.

(Mitchell, 1982] Tom M. Mitchell. Generalization as search. Artificial In-
telligence, 18:203-226, 1982.

(Morik, in press] Katharin Morik. Sloppy modeling. In Katharina Mbrik,
editor, Knowledge Representation and Organization in Machine Learning.
Springer-Verlag, Berlin, in press.

(Mostow, 19831 D. Jack Mostow. Machine transformation of advice into a
heuristic search procedure. In R.S. Michalski, J.G. Carbonell, and T. M.
itchell, editors, Machine Learning: An Artificial Intelligence Approach,

pages 243-306. Tioga Press, Palo Alto, CA, 1983.

[Musen et a., 1987] Mark A. Musen, Lawrence M. Fagan, D. M. Combs,
and Edward H. Shortliffe. Use of a domain, model to drive an interactive
knowledge editing tooL International Journal of Man-Machine Studies,
26(1):105-121, 1987.

[Musen, 1989] M. A. Musen. Automated Generation of Model-based
Knowledge-Acquisition Tools. Pitman, London, 1989. Based on doctoral
dissertation, Computer Science Department, Stanford University.

[Neches et al., 1985] R. Neches, W.R. Swartout, and J. Moore. Enhanced
maintenance and explanation of expert systems through explicit mod-
els of their development. Transactions on Software Engineering, SE-
11(11):1337-1351, 1985.

[Neisser, 1976] Ulric Neisser. Cognition and Reality. Freeman Press, San
Francisco, 1976.

[Newell and Simon, 1972] A. Newell and H.A. Simon. Human Problem Solv-
ing. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1972.

[Newell and Simon, 1976] Allen Newell and Herbert A. Simon. Computer
science as empirical inquiry: Symbols and search. Communication of the
ACM, 19(3):113-126, March 1976.

209

[Newell, 1973] A. Newell. You can't play 20 questions with nature and win.
In W. G. Chase, editor, Visual Information Processig, pages 283-308.
Academic Press, NY, 1973.

[Newell, 1975] A. Newell. A tutorial on speech understanding systems. In
D. R. Reddy, editor, Speech Recognition: Invited Papers Presented at the
1974 IEEE Symposium, pages 3-54. Academic Press, New York, 1975.

[Newell, 1982].A. Newell. The knowledge level. Artificial Intelligence,
18:87-127, 1982.

[Nisbett and Wilson, 1977] R.E. Nisbett and T.D. Wilson. Telling more
than we can know: Verbal reports on mental processes. Psychological
Review, 84:231-259, 1977.

[Orelup et aL, 1988] Mark E. Orelup, John R. Dixon, Paul R. Cohen, and
Melvin K. Simmons. Dominic ii: Meta-level control in iterative redesign.
In AAAI88, pages 25-30, 1988.

[Orelup, 1987] Mark Ferral Orelup. Meta-control in domain-independent
design by iterative redesign. Master's thesis, Mechanical Engineering De-
partment, University of Massachusetts, September 1987.

(P I Cohen and Howe, 1989] D. Hart P R. Cohen, M. L. Greenberg and
A. E. Howe. An introduction to phoenix, the eksl fire-fighting system.
-Technical report, COINS Dept., University of Massachusetts, 1989.

[Pardee and Hayes-Roth, 1987] William J. Pardee and Barbara Hayes-
Roth. Intelligent real time control of material. processing. Technical
report, Rockwell International, Science Center, Palo Alto Laboratory,
February 1987.

[Pauker and Kassirer, 1981] S. G. Pauker and Jerome P. Kassirer. Clinical
decision analysis by personal computer. Archives of Internal Medicine,
141:1831-1837, 1981.

[Pauker et aL, 1976] S.G. Pauker, A. Gorry, J.P. Kassirer, and W.B.
Schwartz. Towards the simulation of clinical cognition: Taking a present
illness by computer. American Journal of Medicine, 60:981-996, 1976.

[Polya, 1954] G. Polya. Patterns of Plausible Inference. Princeton Univer-
sity Press, Princeton, New Jersey, 1954.

210

[Quinlan, 1986] J. Ross Quinlan. Induction of decision trees. Machine
Learning, 1(1):81-106, 1986.

[Rijsbergen, 1979] C. J. Van Rijsbergen. Information Retrieval. Butter-
worths, London, second edition, 1979.

[Rothenberg et al., 1987] Jeff Rothenberg, Jody Paul, Iris Kameny,
James B.. Kipps, and Marcy Swenson. Evaluating expert system tools:
A framework and methodology. Technical Report R-3542-DARPA, Rand
Corporation, July 1987.

[Rumeihart and Norman, 1982] D.E. Rumelhart and D.A. Norman. Simu-
lating a skilled typist: A study of skilled cognitive-motor performance.
Cognitive Science, 6:1-36, 1982.

[Sacerdoti, 1974] E. D. Sacerdoti. Planning in a hierarchy of abstraction
spaces. Artificial Intelligence, 5(2):115-135, September 1974.

[Sacerdoti, 1975] E.D. Sacerdoti. A' Structure for Plans and Behatior.
American Elsevier: New York, NY, 1975.

[Schneider and Shilfrin, 1984] Schneider and Shiffrin. Controlled and auto-
matic human information processing: I. detection, search and attention.
Psychological Review, 1984.

[Schneider, 1985] Walter Schneider. Toward a model of attention and the
development of automatic processing. In Posner and Marin, editors, At-
tention and Performance XI. Lawrence Erlbaum Associates, Hillsdale,
NJ, 1985.

[Shachter and Heckerman, 1987] BR. D. Shachter and D. E. Heckerman.
Thinking backward for knowledge acquisition. AI Magazine, 8(3):55-61,
1987.

[Shaw and Gaines, 1987] M. Shaw and B. Gaines. Techniques for knowledge
acquisition and transfer. International Journal of Man-Machine Studies,
27(1), 1987.

[Shortliffe, 1976] E. Shortliffe. Computer-Based Medical Consultations:
MYCIN. American Elsevier- New York, NY, 1976.

[Silver, 1986] Bernard Silver. Meta-level Inference: Representing and
Learning Control Information in Artificial Intelligence. North-Holland,
New York, 1986.

211

[Simon, 1981] H. A. Simon. The Sciences of the ArtificiaL The MIT Press,
Cambridge, MA, 1981.

[Sussman, 1975] G. J. Sussman. A Computer Model of Skill Acquisition.
American Elsevier, New York, NY, 1975.

[Sutton and Barto, 1981] Richard S. Sutton and Andrew G. Barto. Toward
a modem theory of adaptive networks: Expectation and prediction. Psy-
chological Review, 88(2):135-170, 1981.

[Swartout, 1983] W. Swartout. XPLAIN: A system for creating and- ex-
plaining expert consulting systems. Artificial Intelligence, 11:115-144,
1983.

[Swartout, 1987] William Swartout. Summary report on DARPA Santa
Cruz workshop on planning. In Proceedings of the DARPA Knowledge-
Based Planning Workshop, Austin, Texas, December 1987.

[Sycara, 1987] Katia Sycara. Planning for negotiation: A case-based ap-
proach. In Proceedings of the DARPA Knowledge-Based Planning Work-
shop, Austin, Texas, December 1987.

[Tate, 1974] Austin Tate. INTERPLAN: A plan generation system that can.
deal with interactions between goals. Machine Intelligence Research Unit
Memo MIP-1-109, University of Edinburgh, Edinburgh, December 1974.

[Tate, 1977] A. Tate. Generating project networks. In Proceedings of the
Fifth International Joint Conference on Artificial Intelligence, pages 888-
893, Tiblisi, Georgia, USSR, 1977.

[Tong and Appelbaum, 1987] Richard M. Tong and Lee A. Appelbaum.
Problem structure and evidential reasoning. In Third Workshop on Un-
certainty in Artifical Intelligence, pages 313-319. American Association
for Artificial Intelligence, July 1987.

[Tu et al., 1989] S. W. Tu, M. G. Kahn, M. G. Musen, M. A. Ferguson,
E. H. Shortliffe, and L. M. Fagen. Episodic monitoring of time-oriented
data for heuristic skeletal-plan refinement. Communications of the A CM,
1989. in press.

[Utgoff, 1986] Paul Utgoff. Machine Learning of Inductive Bias. Kluwer
Academic, Norwell, MA, 1986.

212

[Vere, 1981] Stephen Vere. Planning in time: Windows and durations for ac-
tivites and goals. Technical report, Jet Propulsion Laboratory, Pasadena,
California, 1981.

[Waldinger, 1977] Richard Waldinger. Achieving several goals simultane-
ously. In E. W. Elcock and D. Michie, editors, Machine Intelligence,
Volume 8. Halstead/Wiley, New York, NY, 1977.

[Waltz, 1975] D. Waltz. Generating semantic descriptions from drawings of
scenes with shadows: In P. Winston, editor, The Psychology of Computer
Vision, pages 19-92. McGraw-Hill, New York, 1975.

[Waterman, 19701 D. A. Waterman. Generalization learning techniques for
automating the learning of heuristics. Artificial Intelligence, 1:121-170,
1970.

[Weiss et al., 1977] S. Weiss, C. Kulikowski, and A. Safir. A model-based
consultation system for the long-term management of glaucoma. In Pro-
ceedings IJCAI 5, pages 826-832, 1977.

[Weiss et al., 1978] S.M. Weiss, C.A. Kulikowski, S. Amarel, and A. Safir.
A model-based method for computer-aided medical decision-making. A r-
tificial Intelligence, 11:145-172, 1978.

[Wellman and Heckerman, 1987] Michael P. Wellman and'David E. Hecker-
man. The role of calculi in uncertain reasoning. In Third Workshop on
Uncertainty in Artificial Intelligence, pages 321-331. American Associa-
tion for Artificial Intelligence, July 1987.

[Wellman, 1987] Michael P. Wellman. Qualitative probabilistic networks
for planning under uncerainty. In John F. Lemmer, editor, Uncertainty
in Artificial Intelligence. 1987.

[Wilkins, 1985] David E. Wilkins. Recovering from execution errors in
SIPE. Technical report, SRI International, 1985. Technical Note No. 346,
Artificial Intelligence Center, Computer Science and Technology Center.

[Wmograd and Flores, 1987] Terry Winograd and Fernando Flores. Under-
standing computers and cognition. Addison-Wesley, Reading, MA, 1987.

[Winston, 1975] P.H. Winston, editor. The Psychology of Computer Vision.
McGraw Hill: New York, NY, 1975.

213

[Winterfeldt and Edwards, 1986] Detlof Von Winterfeldt and Ward Ed-
wards. Decision Analysi and Behav oral Research. Cambridge University
Press, Cambridge, 1986.

214

DISTRIBUTION LIST

addresses number
of copies

RADC/COES 5

ATTN: Chuian-Chuian Hwong
Griffiss AFB NY 13441-5700

Lederte Graduate Research Center 5

University of Massachusetts
P.O. Box 571
Amherst MA 01003

RADCIDOVL I

Technical Library
Griffiss AFS NY 13441-5700

Administrator 5

Defense Technical Info Center
DTIC-FDA
Cameron Station Building 5
ALexandria VA 22304-6145

Defense Advanced Research Projects 2
Agency

1400 WiLson Blvd
Arlington Vk 22209-2308

AFCSA/SAAI I

ATTN: Miss Griffin
10363 Pentagon
4ashington DC 20330-5425

HO USAFISCTT 1

Pentagon
Washington DC 20330-5190

SAF/AQSC
Pentagon 4D-267
Washington DC 20330-1000

DL-1

Director. Information Systems
OASD (C31)
Room 3E187
Pentagon
Washington DC 20301-3040

Navat Warfare Assessment Center
GIDEP Operations Center
ATTN: Mr. E. Richards

Code 30G1
Corona CA 91720

HQ AFSC/XTKT
Andrews AFS DC 20334-5000

HQ AFSCIXTS
Andrews AFS MD 20334-5000

HQ AFSC/XRK
Andrews AFS MD 20334-5000

HQ SACISCPT
OFFUTT AFS.NE 68113-5001

DTESA/ROE
ATTN: Mr. Larry GoMcManus
Kirttand AF8 NM 87117-5000

HQ TACIDRIY
ATTN: Mr. Westerman
Langtey AFS VA 23665-5001

HQ TAC/DOA

Langtey AF8 VA 23665-5001

DL-2

HQ TAC/DRCA

LangLey AFS VA 23665-5001

ASD/AFALC/AXAE
ATTN: W. H. Oungey
Wright-Patterson AFB O 45433-6533

WRDC/AAAI
Wright-Patterson AFB OH 45433-6533

AFIT/ILDEE
BuiLding 640. Area 8
Wright-Patterson AFB OH 45433-6583

WRDC/,4LTE
Wright-Patterson AFS OH 45433

WqDC/FIES/SURVIAC
Wright-Patterson AFB O 45433

AAMRL/HE
Wright-Patterson AFB OH 45433-6573

2750 A8W/SSLT
-uiLding 262
Post 11S
Wright-Patterson AFS O 45433

AFHRL/OTS 1
Wittiams AF9 AZ 35240-6457

DL-3

AUL/LSE
MaxwetL AFB AL 36112-5564

NQ Air Force SPACECORIXPYSI
ATTN: Dr. WitLLam R. Matoush
Peterson AF8 CO 80914-5001

Defense Communications Engr Center
Technical Library
1860 WIehLe Avenue
Reston VA 22090-5500

C3 Division DeveLopment Center 2
Marine Corps
DeveLopment & Education Command
Code DIOA
Quantico VA 22134-5080

US Army Strategic Defense Command
DASD-H-MPL
PO Box 1500
HuntsvitLe AL 35807-3801

Commanding Officer
Naval Avionics Center
Library
D/765
Indianapotis IN 46219-2189

Commanding Officer
Naval Ocean Systems Center
TechnicaL Library
Code 96429
San Diego CA 92152-5000

Comanding Officer
Naval Weapons Center
Technical Library
Code 3433
China Lake CA 93555-6001

Superint endent
Naval Post Graduate School
Code 1424
Monterey CA 93943-5000

DL-4

Commanding Officer 2
Naval Research Laboratory
Code 2627
Washington DC 20375-5000

Space & Naval Warfare Systems COMI
PMW 153-3DP
ATTN: R, Savarese
Washington DC 20363-5100

Commanding Officer 2
US Army MissiLe Command
Redstone Scientific Info Center
AMSMI-RD-CS-R (Documents)
Redstone Arsenal AL 35898-5241

Advisory Group on Electron Devices 2
Technical Info Coordinator
ATTN: Mr. John Hammond
201 Varick Street - Suite 1140
New York NY 10014

Los Alamos Scientific Laboratory
Report Librarian
ATTN: Mr. Dan Baca
PO Box 1663, MS-P364
Los Atamos NM 37545

Rand Corporation
Technical Library
ATTN: Ms.. Doris Helfer
PO Box 2138
Santa Monica CA 90406-2138

USAG
ASH-PCA-CRT
Ft. Huachuca AZ 85613-6000

I139 EIG/EIET
ATTN: Mr. Kenneth W. Irby
Keester AFB MS 39534-6343

JTFPO-TD
Director of Advanced Technology
ATTN: Dr. Raymond F. Freeman
1500 PLanning Research Drive
4cLean VA 22102

DL-5

HO ESC/CWPP 1
San Antonio TX 78243-5000

AFEWCIESRI " 3
San Antonio TX 78243-5000

485 EIG/EIR I
ATTN: M Craft
Griffiss AFB NY 13441-6348

ESDIXTP 1
Hanscom AF3 MA 01731-5000

ESD/ICP I
Hanscom AFB MA 01731-5000

ESDIAVSE 2
BuiLding 1704
Hanscom AF8 MA 01731-5000

HO ESD SYS-2 1
Hanscom AFB MA 01731-5000

Director
NSA/CSS
T513/TDL
ATTN: Mr. David Marjarum
Fort George G. Meade MD 20755-6000

Director
NSA/CSS
W166
Fort George G. Meade MD 20755-6000

DL-6

Director
NSA/CSS
R24
Fort George G. Meade MD 20755-6000

Director
NSAICSS
R21
9300 Savage Road
Fort George G. Meade MD 20755-6000

Director
NSA/CSS
DEFSMAC
ATTN: Mr. James E. HitLman
Fort George 6. Meade MD 20755-6000

Director
NSA/CSS
R5
Fort George G. Meade MD 20755-6000

Director
NSA/CSS
R8
Fort George G. Meade MO 20755-6000

Director
NSA/CSS
S21..
Fort George G. Meade MD 20755-6000

Di rector
NSA/CSS
W07

Fort George G. Meade MD 20755-6000

Director
NSA/CSS
w3
Fort George G. Meade MD 20755-6000

Director 2
NSA/CSS
R523
Fort George G. Meade MD 20755-6003

DL-7

AFHRL/LqG
ATTN: Mr. 4. Young
WPAFO OH 45433-6503

AAMRL/HEA
ATTN: Dr. 8. Tsou
WPAF8 O 45433-6503

AAMRLIHED
ATTN: Maj M.R. McFarren
WPAF8 OH 45433-65J3

WRDCIKTD
ATTN: Dr. D. Hopper
WPAFB OH 45433-6503

AFrTIENG
ATTN: Maj P. Auburn
WPAF8 OH 45433-6053

CEETL-GL-VT
ATTN: Mr. T. Jorgensen

Ft BeLvoir VA 22060-5546

Renssetaer PoLytechnic Institute
ATTN: Dr. David Musser

Computer Science Dept
Troy NY 12180-3590

University of Texas at Austin
Dept of Computer Science
TayLor HaLL 2.124
Austin TX 78712-1188

Weapons Laboratory
WL-ICD
ATTN: E. Carmona
Kirtland AF3 NM 8717-6008

DL-8

MISSION

Of
Rome Air Development Center

RADC plans and executes research, development, test and
selected acquisition programs in support of Command, Control,
Communications and Intelligence (C31) activities. Technical and
engineering support within areas of competence is provided to
ESD Program Offices (POs) and other ESD elements to
perform effective acquisition of C3I systems. The areas of
technical competence include communications, command and
control, battle management information processing, surveillance
sensors, intelligence data collection and handling, solid state
sciences, electromagnetics, and propagation, and electronic
reliability / maintainability and compatibility.

