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The purpose of this irmwvestigation is to demonstrate the use of
boundary element techniques for the dynamic analyses of geometrically
repetitive structures using the traveling wave approach. A formulation
of the boundary element method (BEM) for 2-D isotropic materials is
developed. The BEM formulation is then used to calculate the mass and
stiffness matrices of one bay of a baseline structure. From the mass
and stiffness matrices a transfer matrix is developed for the bay.
Using traveling wave theory, the transfer matrix is then used to
identify the dynamical characteristics of a multiple bay structure.

Results are compared to continuum theory. /
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DYNAMIC STRUCTURAL ANALYSES USING BOUNDARY ELEMENT METHODS

I. Introduction

1.1 Background

The advent of high speed computers has led to a revolution in
structural analysis methods. Complex numerical algorithms as found in
finite element codes are now routinely used in the analysis of
everything from coat hangers to spacecraft. As structures of interest
become larger and more complex, more accurate and efficient algorithms
are developed. Recently, there has been a great deal of interest in the
use of boundary element methods (BEM) for structural analysis. BEM
offers the advantage of reducing the computational size of the problem
campared with traditional finite element methods (FEM). The application
of boundary element techniques is particularly attractive in analyzing
large repetitive truss-like structures, such as those being proposed for
orbiting space platforms. A typical large space structure will be
sensitive to wave propagation from on-board disturbances such as gyros,
actuators, docking procedures, etc. This thesis introduces the use of
boundary element theory in developing the wave propagation transfer

matrix for two-dimensional periodic structures.

1.2 Boundary Element Methods
Boundary element theory is used in many disciplines and has proved to

be an efficient and elegant method for solving many numerically




intensive problems. The boundary element method, just like the finite
element method, is based on the approximate solution of an equation or
set of equations describing a physical problem. Unlike FEM however, BEM
utilize functions that identically satisfy the governing equations and
only approximately satisfy the boundary conditions. In addition, only
the boundary of the given problem needs to be discretized when using the
BEM. This greatly reduces the modeling effort and results in smaller
matrices, although the matrices are often fully populated. A further
reduction in problem size is accomplished by combining a traveling wave

approach for periodic structures with BEM.

1.3 Wave Propagation

The study of wave propagation has been pursued throughout a wide
range of disciplines including solid state physics, fluids, power
transmission, etc. Wave propagation theory has also been shown to be a
useful tool in the area of dynamic structural analysis. Cremer and
Lielich studied flexural motion in periodic beams (1). In 1964 Heckl
defined the notion of propagation coefficients in periodically
supported, undamped grillages (2:1335-1343). More recently, von Flotow
employed the use of wave propagation theory in developing a transfer
matrix method for analyzing periodic structures (3:509-519). The
transfer matrix method requires that only a single cell of the truss
structure be analyzed. In a related effort, Signerolli cambined the use
of transfer matrices with FEM in analyzing a two—dimensional periodic
truss (4).




1.4 Overview

This thesis demonstrates the use of BEM to develop the transfer
matrix for a two-dimensional periodic truss. Chapter 2 begins with the
development of the boundary element equation for a two—dimensional
isotropic material. The boundary element equation is then used to
develop the transfer matrix for a simple periodic structure in chapter
3. In Chapter 4, the transfer matrix is used in determining the wave
propagation behavior of a baseline beam structure. The results are then
compared to equivalent continuum models. Chapter 5 discusses the
conclusions and recommendations.
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II. The Element tion

2.1 The Elastic Dynamic Equation
The governing equation for the behavior of a deformable and

continuous body can be written in index notation as

g{li + F; = my (1)
where 3is the partial derivative operator, o;; is the stress tensor, F;
is the body force vector, m is the mass density, and {; is acceleration.
Another useful relationship is the stress-strain equation.

0;; = 2Ge;; + X&ijem (2)

Where G is the shear modulus, e;; is the strain tensor, 8 is the
Kronecker delta, and A is Iame's constant. For linear isotropic material

properties, strain can be expressed as

e; = 5( 4,y + ;) (3)

where u; is the displacement vector. Egs. (2) and (3) can be combined

to give stress in terms of displacement.

O = G Wy, + U ) + Mu (4)




Egs. (1), (2) and (3) represent 15 different equations in 15
unknowns; 6 o's, 6 e's and 3 u's. When combined, these three equations
fully describe the behavior of an elastic damain and will be used to
develop the boundary element equation (5,210-211).

To formulate the solution of the elasticity equations, Eq. (1) will
be multiplied by an arbitrary function, ;, and integrated throughout
the domain. Body forces can be neglected.

fﬁi( g—;‘(ii-nﬂi;)dﬂ=° (5)

This equation is integrated by parts until all of the differentials are
on the arbitrary function, §;, rather than the unknown displacements.

Use the identity

3 (a
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Using the Guass-Divergence theorem, the volume integral of the first

term may be written as a surface integral.




.fr n(qo;) dr - L (4 0;; + Qmiy) an =0 (8)

were n; is the direction cosine of the outward unit normal vector. Now

substitute Eq. 4 under the second integral.

j‘rnj(f%oij) dr - L {m,j[G(uﬁ',j + ujli) + >\6ijuk'k] + ﬁ\mLH} di =0 (9)
or

Ln,-(ﬁ,-oi,-) a - L ;G ; o - _‘.ﬂ G;,;Ga;,;

- [adune - [omya=o (92)
a Iy}

Next, utilize the product rule for differentiation, i.e
wv = d(uv) - vdu

fr n;(Qo;;) ar - ‘L(l‘g'j&g)’j an + j‘n(ﬁﬁ'jG)'jui dn
- f (4 ;Gy) ; a1 + j‘ (G ;6) ;u; dn
19} fl

- fapwie s f@an s - [ om0 (10)




Now the volume integrals of gradients may be replaced by surface

integrals, using the Guass-Divergence Theorem.
L n,(40;;) dr - ij(ﬁi,jcq.) ar +L(%G)Jq dan
- j ni(ﬁ‘-'jGuj) ar + f (1.’:1i’jG)'iuj dan
r 1Y)

- faepw o s f @ - o a-o ()

Reordering the terms and collecting under common integral signs:

j.r n(Q0;;) = (Y 6w) - n(4 Gw) - n (G py) O

+ [ m+ @0+ @M - fam @=o (12)

The indices can now be rewritten so that the unknowns, u,, may be

factored out.
jr n(4o;;) - (MG 6+ ng; G+ rg.ﬁj’jk)u’. dar

+ j';[;(%c)"' + (4,6 ; + (O M)y Ao - j‘nﬁimfg an =0 (13)

no;. in the first term of Eq. (13) is simply the surface traction and

can be defined as t; = n0;;. For further simplification, the second




term under the surface integral will be defined as t"i =nQ G+ ng G

+ qﬁj'jk. So,
.‘.1" QL - t*i‘ﬁ)dr * j.n[(ﬁi,jc),j + (ﬁj.iG).i + (ﬁ’.'jX)'i]u,. a

-fﬁ,.mi;.dn=o (14)
0

The first domain integral of Eq. (14) is solved by setting the
assumed function terms, commonly called the adjoint opertator, egqual to

a vector of Dirac Delta functions.

(ﬁile)'j + (ﬁj’iG),j + (ﬁj,jx),i = s(x’xo)éi (15)

where é(x,x) is the Dirac delta function and é; is a unit vector.

The choice of the Dirac Delta function now allows the domain integral to
be integrated exactly. So, substituting Eq. (15) into the domain
integral and integrating gives

Int.g.S(x,xo)éi al = Qu(x) (16)

where % is the integration variable and C is a fraction dependent upon

the location of integration. If the sigularity due to the Dirac delta




function at x = x, is integrated about completely, C is equal to one.
For the purpose of determining the boundary displacements, the
integration will be done on a smooth boundary surface and C will be
equal to 1/2.

Making the appropriate substitution, Eq. (14) becomes

apg + @t - tuyar - j ami, an = 0 (17)
r a

In ordef to evaluate the boundary integrals, 1, must be solved for.
This task amounts to solving Eq (15). In order to solve Eq. (15), G is
written as ﬁj = ﬁjl(x,xo)él. This second order tensor has the
interpretation that the individual elements of 4, are the
displacements in the Jth direction at the point x, due to a unit point
force acting in the Lth direction, given by &, applied at point x.

With this understanding, Eq. (15) can be written
(GY;) 5 + LG Y] 55 = 8(%,%)&8 (18)

In 2-D, Danson has solved Eq. (18) to give (6:211-213)

4,(x,%) = z;E;(lZl;){(B—w)ln%_ §, + rry) (19)




t'jl == 4"(}__1/)3_- (nr { (1-21/)61-{ + 2rjrl} - (1-2V) (rjnl_r[nj)] (20)

where r is the magnitude of the vector between the point being solved
for (x) and the field point (%), V is Poisson's ratio and the r,'s are
the direction cosines of r.

When Egs. (19) and (20) are substituted into Eq. (17) the surface
integral can be evaluated given a suitable displacement function.
Except for the mass term, which will be handled latter, Eq (17)
represents the boundary integral formulation of the elastic—dynamic

equation.

2.2 Boundary Element Formulation
Eq. (17) can be discretized by creating boundary elements over the
structure. Each integral can be written as a summation of integrals

over each element:

1

Z[—jfgt,.dr+ j't*‘.u,. d1"]+j‘f1im['1idn (21)
k=1 I, T, Y

Cu

For a 2-D structure each element would appear as a line. Figure 1 shows
a simple 2-D beam section paved with 16 boundary elements. By assuming
a shape function for each element, the displacement at any point on the

element can be written as a function of the nodal point values. For

10




instance, for a single element as given in Figure 2.

Q
G
ﬁ

0—0—0—0—0

0—O0—0—0—0

Fant )
N/ N \J

Fig. 1. Beam Section with 16 Elements

aOo—0b

Fig. 2. Single Element
the displacement at any point x on the element can be written as

u(x) =uaL;x +ub)i(‘ (22)

where L is the length of the element and u, and u, are the displacements
at the a and b nodes. Eq. (22) gives a linear relationship along the
element. Higher order elements can be used (i.e. quadratic, etc)

deperding upon the accuracy requirements. More generally, the
functional formilation over each element may be written as

11




u(x) = [ N, N J{ v, 4 )} (23)
or

u(x) = [N]{u} (24)

where (u)} is a colum vector of nodal displacements, [N] is a row of
shape functions, and u(x) is the value of the displacement at point x on
the element. Surface tractions, t, can be approximated in a similar
manner.

With the introduction of elements and shape functions, the boundary
integral equation can now be written as a summation of integrals over
the individual elements with displacements and tractions as functions of

the nodal value vectors.

1
ca= 5o e a
Fk

k=1
¥ f NI (E)8 ar ] - f miG, dn (25)
T, a

Since the nodal values under the integral signs are constants they can
be taken ocutside the integrals. 1In addition, if Eq. (23) is written for

each nodal point, the resulting equations can be recast in matrix form.

C{u} = [G){t} - [S]{u} =~ (m) (26)

12




where [S] and [G] are matrices of the elemental integrals associated
with each nodal point and {m} are terms associated with the mass
integral (yet to be determined). The elemental integrals can be
evaluated numerically using Guassian quadrature. The entire
discretization process is very similar to that used in finite element
methods and is explained in depth by Gipson (7:115-120). Eq. (26) can
be further simplified by combining [S] and C:

[H]{(u) = [G](t) - {m) (27)
where [H] = [S] + C[I]

2.3 Treatment of the mass

Up until now the mass integral has been ignored, but this
integration must be completed in order to solve the equation for dynamic
motion. Ahmad and Banerjee have developed a method for handling the
mass term using an approximated density function and particular
integrals (8:682-694). After applying the method of particular
integrals, Eq. (27) becomes

[G}{t) - [HI{w) = w([G][Q] - [H][D]) [K](u) (28)

where w is a frequency temm resulting from the assumption of sinusoidal
motion and the [Q], [D], and (K] matrices are developed from the

particular integral method. The [G] and [H] matrices remain the same as

13




developed in section 2.2. A detailed explanation of the use of

particular integrals with the BEM is contained in Appendix A.

14
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III. _Wave Propagation

3.1 Substructure Analyses
At this point Eq. (28) could be applied to an entire structure. If
the structure is repetitive, such as a truss structure, it is possible
to analyze only one bay of the truss and still calculate the dynamical
behavior of the structure.
Figure 3 shows one bay of a two-dimensional truss structure with
two attach points on each side. The tractions and displacements

associated with each connecting point are also shown.

u,, t, 1 3 uy, ty

Upr £, 2 4 Uy, ty

Figure 3 Single Bay of a Repetitive Truss

An equation relating the left and right forces and displacements can

be written in terms of a transfer matrix [T]:

(v} = [TV} (29)

15




i} = {0z, ts gyl (30)

Vel = (Wb, b, t) (31)

The vector (v} at any junction on the truss is called the state vector
at that junction. Since each bay has the identical structural
characteristics, the transfer matrix for each bay will also be
identical. This makes it possible to describe the state at any bay
junction using only the substructure transfer matrix. For instance, the

forces and displacements at the n™ bay can be written as:

v}, = [TI"(V, )4 (32)

Thus, the state vector at any bay junction can be propagated along the

structure by use of the transfer matrix.

3.2 Transfer Matrix Derivation

The transfer matrix contains information about the mass arnd stiffness
of the substructure. Using the BEM described in chapter 2, the transfer

matrix for the substructure can be derived. Starting with Eq. (28):

[G]{t}-[H](u) = W ([G)[Q]~[H](D)) [K]) (u) (28)

16




The right hand side of the Eq. (28) can be simplified into a single

matrix [m], by carrying out the appropriate multiplication and

subtraction:

(m] = wA([G][Q]-[H][D]) [K]

Substituting Eq. (33) into Eq. (28) gives

[GI{t}-[H]{u} = [m]{u)

The [H] matrix can now be added to [m] to define a new matrix [M].

(M] = [m] + [H]

substituting Eq. (35) into Eq. (34) gives

(GI{t) = M]{u)

Finally, multiplying through by [M]':

(R]{t} = {u}

(R) =(M)"'(G)

17
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(34)

(35)

(36)

(37)

(38)




[R] can be thought of as the dynamical admittance matrix equation for
the bourdary nodes of the substructure.

Eq. (37) can be partitioned to separate the left connecting, right
connecting, and outer surface nodes as follows.

R [

R‘ll ':Rtr ERlo tl v

R R, R, | |t | = , (39)
iol 'ERor éRoo_J ;to ] _uo_J

Where t  and u, represent the nodal values that do not lie on a
junction. Because there is no contact at the non-junction nodes, the
traction on those nodes is identically equal to zero. Therefore, all

outer surface terms can be eliminated from Eq. (39) to give

F_ : I ] [ T

Ril ’:er tl ul

= (40)
_Iirl ‘:R-rJ fr_ _ur_

For simplification, Eq. (40 ) can be written as

18




][] [ ]
A . B t, u,
= (41)
L_C- : D_ _tl__ _ur_‘

At this point, some care must be taken to assure campatibility
between the sign convention of the BEM formulation and the transfer

matrix equation. Figure 4. shows the sign conventions used for each

formulation.
Yir Ty Yer Gy
u. Uer &
Bourdary Element Coordinate Definitions
YW =ty Yer By
U =Yy ., Y

Transfer Matrix Coordinate Definitions

Fig. 4. Coordinate System Definitions

19




As shown, the sign convention of t, for the transfer matrix is opposite
to that of BEM. Therefore, the left side tractions, in Eq. (41) must be
multiplied by -1 in order to satisfy the transfer matrix sign
convention. After multiplying t, by -1 and rearranging, Eq. (41) can be

rewritten as

u. pg'-c ! pB'a u,
A s S (42)

t B' < B'c t,

or

v.} = [TI{v} (43)

3.3 Eigenvalues of the Transfer Matrix
Using the approach of Signorelli (4:23-25), wave propagation in a

repetitive structure can be represented as:

v.) = €{v) (44)

Eq (44) shows that the state vector at the right side of the

substructure is the same as the state vector at the left multiplied by a

factor €. € will generally be complex due to the phase difference




between the response at each end of the substructure. If Eq (44) is

canbined with Eq (43) the following eigenvalue problem in € is formed.
([T] - [T]e){v;} =0 (45)

For any given frequency in [T], Ed4. (45) will produce a set of
eigenvalues. In addition to being complex, € will cccur in € and 1/€
pairs, corresponding to right and left going waves. For right going
waves, the magnifude of € will be less than 1. For left going waves,
the magnitude of € will be greater then 1. Eigenvalue magnitudes equal
to unity represent a wave mode that will propagate undiminished across
the structure. These undiminished wave modes are said to be in a pass
band. Eigenvalues with a magnitude other than 1 represent non-
propagating wave modes and are said to be in a stop bard. Eigenvalue

behavior can be represented on the € plane, as shown in Figure 5.

Ime Ime Ime
unit X
circle

N
N N

le] <1 le] =1 le] > 1
stop band pass band stop band

Figure 5. Eigenvalues on the € Plane
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The eigenvalues of the transfer matrix can also be represented in

exponential form:

€E=e (46)

Where L is the length of the bay. a is camplex and can be separated
into its real and complex parts:

a=a+bi (47)

€ =¢e* + Mt (48)

or

€ =et 4+ MM (49)
k is a nondimensional wave number and is related to wavelength y by

k = 2r/y. € is an attermuation coefficient and describes the rate of
decay as the wave passes through a bay. Negative values of al. indicate
a left or negative going wave. The imaginary part of Eq. (49)
describes the phase relationship between the state vectors at the left
and right side of the bay.

22




IV. Dynamic Structural Analyses

4.1 Wave Propagation Of a Two-Dimensional Beam

A two—dimensional beam was selected as a baseline structure for
demonstrating the implementation of boundary element analysis with wave
propagation theory as discussed in chapters 1, 2, ard 3. The selection
of a simple beam was based on three criteria. First, results are
easily campared to well understood continuum models. Second, a beam
model is simple to implement yet still provides verification of the
analysis procedures. Third, a beam can be thought of as a repetitive
structure if divided into several short beam elements.

Figure 6 shows a long beam divided into several sections or "bays".

Figure 6 Sectioned Beam

The properties of the beam were selected as follows:

1.0x10° psi

m
I

h = 5.0 in
m = .10 lb/in’
t = 1.0 in

V=.2

23




where E is the modulus of elasticity, h is height, m is mass density
t is thickness and V is poisson's ratio.
A 10 inch length of beam was selected to represent one bay. The

bay was modeled with 30 linear boundary elements as shown in Figure 7.

o—0—O0—O0—0—0—0—0—0—0—90
o o
@ @
@ o
o o
o—0—0—0—O0—0—0—0—0—0—0

Figure 7 Bourdary Elements on Beam Section

A FORTRAN program written by Brebbia for static 2-D structural analyses
was modified to calculate the [H] and [G] matrices of Eg. (27) (9:429-
438). Additional FORTRAN code was written to implement the particular
integral method discussed in section 2.3 (Eq. (28)). The transfer
matrix was then calculated using the procedure outlined in chapter 3.
The 6 node interface of the beam section produced a 24x24 transfer

matrix (12 displacements and 12 tractions). Thus, 24 eigenvalues could

be ext:iacted at any given frequency.




4.1.1 Eigenvalue Analysis
The eigenvalues of the transfer matrix were extracted for

frequencies fram 10 to 200Hz using an EISPACK Fortran solver (10:26-27).
At each frequency, four eigernvalues of magnitude 1.0 always appeared.
As discussed in section 3.3, eigenvalues of magnitude 1.0 indicate a
propagating wave mode. Since complex eigenvalues always appear in
camplex conjugate pairs, the four propagating eigenvalues represented
two wave modes.

Inspection of the eigenvectors revealed that the two propagating
wave modes were a bending mode, and a compression-extension mode, as
expected for a beam. Figure 8 shows a dispexsion. curve of the phase of
the eigenvalue versus frequency for the bending mode. A similar plot
for the campression-extension mode is shown in Figure 9. As shown, the
phase angle increases with frequency. This is due to the decreasing
wavelengths.

The remaining right going wave modes exhibited stop band behavior
(le] <1 ) at all frequencies. A sampling of the stop band eigenvalues
is presented in Table 1. The stop band eigenvalues represent localized
modes that quickly die ocut as they travel down the beam. Eigenvalues
with a magnitude much smaller than 1 represent localized behavior that
does not propagate.

Classical beam theory provides a basis for camparing the results
shown in Figures 8 and 9. For bending, simple 2-D beam theory predicts

the following behavior for a free—-free beam (11:163-166).
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Table 1 Stop Band Eigenvalues for Beam Bay at 100hz

L€l Real (€) Imag(e) Phase(deq)

.4282E+0 .4282E+0 .0 .0

.9409E-3 -.8778E-3 .3387E-3 -.2110E+2

.1026E-3 -.1026E-3 .0 .0
-.6920E~4 ~.2352E-4 .6508E—4 ~.7013E+2

.8253E-6 .8253E-6 .0 .0

.3416E-6 -.3416E-6 .0 .0

w = (2.57)%(ETl/mal") 2 (50)

where w is the frequency for one wave of a bending mode, I is the moment

of inertia, A is the cross sectional area and L is the length. The

phase of the wave, 8, at any point on the beam can be described by a

simple ratio:

B, = 2mx/L (51)

where x is the distance of the point from the end of the beam and 27 is

simply the phase of one camplete wave. Solving Eq. (50) for 1/L

/L = {(w/(2.5m)%(ma/ET) %) (52)

and multiplying through by 2wx

2mx/L =2mx( (w/ (2.57)% (ma/ET) 22 (53)




gives the theoretical phase angle:

8, =2mx{ (w/ (2.5m) (mb/ET) )1 (54)

A similar development for the theoretical compression-extension phase

angle gives.

B, = (xw/m) (n/E)" (55)

If the length of the beam bay is used for x in Eqg. (54) and (55), a
camparison to calculated results can be made. This comparison is shown
in Figures 10 and 11. As shown in Figure 10, there is closer agreement
with bending theory at lower frequencies. As the frequency increases,
the BEM is less able to model the bending behavior. This disparity at
higher frequencies is not uncommon for discreet formulations ard is
similar to results obtained by Signorelli using FEM (4:30). Same of the
disparity may be due to the use of linear elements in the formulation.
Figure 11 shows nearly perfect agreement with theory for the campression
extension mode. This should be expected, because campression-extension

deformations are more easily modeled with linear elements.

4.1.2 Eigenvector Mode Shapes

For each eigenvalue, a corresponding eigenvector (V) can be

calculated and used to generate a plot of the deformed structure. Each
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eigenvector contains values of the displacements and forces on the left

hand side of the beam section:

v,) = (u,t,) (56)

In turn, Eq. (44) can be used to calculate the state vector on the right

hand side of the section.

{v.} = €{v} (57)
The right hand side of one section now becomes the left hand side of the

adjacent section, allowing the state vector to be propagated along the
beam.

{(Veda = €V 3 (58)

were n is a bay number. Recovery of the deflections on the outer

surface of any bay is accomplished by expanding Eq. (39) to get

u, = [RJ{t ), + [R.I{t}, (59)

By adding the real part of the deflections to the original node

locations, the mode shapes can plotted.
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Figure 12 shows plots of the bending mode for several frequencies.
Deflections are multiplied by an appropriate scaling factor to
accentuate the mode shape. In addition, the plots of Figure 12 were
generated using only the deflections of the 6 junction nodes propagated
to the right and connected by straight lines at the outer beam surface.
A closer look at the bending behavior for a single bay, with outer

surface node deflections included, is shown in Figure 13.

e R R S R o sS

40hz Bending Mode

T T T Ny T T T

60hz Bending Mode

S S s

80hz Bending Mode

B RS S e N N S S

100hz Bending Mode

Figure 12 Bending Modes at Selected Frequencies
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Figure 13 Bending Mode For Single
Bay at 60hz

The number of bays necessary to complete one cycle of a wave deperds
upon the phase angle of the eigenvalue. For instance, at 80hz the phase
angle is 48.1 degrees - requiring approximately 7.5 &ﬂm'uncaqﬂetecme
360 degree cycle.

Plots of the campression-extension mode, shown in Figure 14, are not
as dramatic as bending, due to the small phase angles ard relatively
small deflections. As shown, for 200 hz the compression-extension mode

would require approximately 27 bays to camplete a cycle.

C L T T 1 17T T T T 17T 17 T T T T [ TTTTTT T T T T]

Figure 14 Compression-Extension Mode at 200hz

Figure 15 demonstrates the behavior of a stop band mode at 60hz with
€ = .519 + 0.i. As predicted, the wave is quickly attenuated. An
additional non atteruating wave, with € = -.92E-3 + .21E-3i is shown in

Figure 16 for one bay. This localized wave does not even have a
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noticeable effect on the right side of the bay due to the small value of

le].

%EIIIIIIITIIIIIIIIIII]II[III]

Figure 15 Stop Band Mode at 60hz

N

L////__f

Figure 16 Localized Deformation at 50hz

It should be noted that any one wave mode does not represent the
total behavior of a structure. The dynamics of any particular structure

would be a time dependent linear cambination of all eigenvectors.

4.2 Natural Frequencies
Two methods have been proposed for using the transfer matrix to

identify natural frequencies. The first method, proposed by
Signerorelli requires calculation of a glcbal transfer matrix [T],

(4:22). For a structure with n bays, Eq. (43) can be applied




sequentially to each bay from left to right to cbtain

(v.}, = [TI"(v ) (60)

[T), = (T]° (61)

(V) = [T14tv, )y (62)

Now, boundary conditions can be applied. For a cantilever beam, the

boundary conditions would be

(Ve ), = (1,0}, (63)

for no tractions on the free end. The secured end would have zero

displacements:

{(vihy = (0, }4 (64)
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So, after droping subscripts on the vectors, Eq. (62) becomes

(u.,0) = [T]4{0,t) (65)

[(T], can be partitioned to give

u T, \ T 0
el = U (66)
0 T, . Ts t,

g

The bottom row of Eq. (66) gives

0 = [T5){t} (67)

The only non-trivial way for Eq. (67) to hold true is for the
determinant of [T;] to equal zero. Therefore a plot of Det( [T3] )
versus frequency should reveal the natural frequencies. Unfortunately,
the computation of [T]" for any significant mumber of bays will
generally exceed the camputational limit of the computer. An attempt at
camputing det( [T;] ) for just three bays of the beam section resulted
in numerical overflow.

Von Flotow proposes a second method for determining natural
frequencies (3:516). This method uses the eigenvectors of the transfer
matrix along with the boundary conditions to calculate a scattering

matrix for each end of the structure. By using the scattering matrices
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along with the eigenvalues of the transfer matrix another determinant
problen is set up by virtue of the phase closure principle. Again, this
method proves numerically unstable for any sizeable matrices. The
application of this method on the beam section proved unsuccessful.
Although use of BEM with wave propagation theory does not easily lend
itself to identifying natural frequencies, there are time damain
techniques that can be used with wave theory to model the real-time
behavior of structures. Von Flotow has demonstrated the successful use

of a time domain technique for the traveling wave analysis of a

structural network (3:518).




5.1 Conclusions

The purpose of this effort was to demonstrate the use of boundary
element methods in performing a wave propagation analysis on periodic
structures. The combination of these two analysis techniques may be
useful in describing the dynamic behavior of repetitive structures such
as those planned as orbiting space platforms. Past work in the area of
wave propagation in structures has been limited to using contimmm or
finite element structural models.

Although limited in its scope, this effort has produced several
important results. First, a computer code was produced that formulates
the transfer matrix of a 2-D isotropic element using boundary element
techniques. This code can be used to find the spatial eigenvalues and
eigenvectors of a periodic structure. Second, results from the analysis
of a baseline beam section were in close agreement with theoretical
results. The disparity of results for bending at higher frequencies was
most likely due to the use of linear elements in the formulation of the
transfer matrix. Disagreement of data at higher frequencies is not
uncammon in most discreet formulations, including FEM. Third, although
BEM matrices are generally smaller then those of equivalent FEM, their
dense nature can produce problems in some mumerical techniques such as
finding determinants. Finally, the demonstration of this method in 2-D

holds promise for its use in more camplex structural descriptions.
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5.2 Recommendations

The following suggestions are made for future work in this area.

(1) Investigate the use of BEM for describing the behavior of joints in

periodic structures.

(2) Develop a code for formulating the transfer matrix of a three

dimensional structure using boundary element techniques.

-(3) Investigate the inclusion of damping terms in the boundary element

equation.

(4) Combine BEM and FEM, where appropriate, to model large truss like
structures. For instance, FEM might best be suited to rod and beam
elements while BEM could be used for joints and other solid body members

of the structure.

(5) Compare the computational efficiency between BEM and FEM in

formulating the transfer matrix of different structures.

(6) Use BEM in describing nonlinear behavior such as plastic

deformation.

(7) Develop an equivalent transfer matrix description of nonsymmetric
2-D structures such as triangles.
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Appendix A: Ahmad and Banerjee's Particular Inteqral Method

The particular integral method uses the fact that the solution to the
elastic dynamic eguations can be written as the sum of a complementary
function, u%;, and a particular integral, ;. The camplementary
solution satisfies

Q.

jrii + (G N ), =0 (68)
while the particular integral satisfies

G,

jrii

+ (G M)W, = iy (69)

]

Eg. (69) still contains the unknown displacement field u;,. But, y; can
be described using an unknown fictitious density function, f, and a

known function, C, in a manner similar to using shape functions:

1
y; = = Cf (70)
=1

A simple function that can be selected for C is

Cik = Six(R-1) (71)
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where R is the largest distance between two points on the body ard r is
the magnitude of the vector from the field point to the source point.

Eq. (69) can now be written as

1
GP,; + (G4 )P, = my YW (72)
=1

W; can now be chosen as any function that satisfies Eq. (72) and can be

represented as

@ = ¥ Of (73)
=1

wereDjkisfcmnitobe

mf |, (9-10)r  (1-2J)R 1
Dy = "¢ {Coo@a-1) ~ " 6-8y )83 = 30(1-v) Tint) (74)

The surface traction, t%;, related to the displacement field of Eg. (74)
is defined as

1
tpj = Z d‘jkfnk (75)
=1

Q can be fourd using Eq. (74) along with the strain-displacement
relationships, and is given by
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_ (sy=1)r _  2UR (4-SU)r _ (1-20)R
Q= M (( 15(1~V) 3-4lz>rk“j * C 1s5(27) 34y )T
(4-5))r _ (1-2I)R 1
{03501y - T3car M8k T 15(1-p) )T

If Egq. (27) is now assumed to satisfy the complementary solution

[G]{t°) =[HI(v") =0

[G1{t} - [HI(u) = [C){tP) - [H]{W}
Substituting Eq. (73) and (75) into (78), gives
[GI{t} - [H]{(w) = W([G][Q] - [H][D])(f)
{f} can be found from Eq. (70)

() = &;Klu),

(76)

(77)

(78)

(79)

(80)

Where [K] is the inverse of the symmetric matrix formed by the function

(R-r) applied at each nodal point. Altogether, Eq. (79) becames

[GI{t} - [H]{w) = W([G][Q] - [H]{D])[K](u)
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Appendix B: Program for solution of Two Dimensional

Transfer Matrices the Element
Method

This program reads an input file that describes the material
properties and geometry of the problem. Below is a listing of the input
file used for the beam section of chapter 4 along with an explanation of

the fields.

Input File Format

First line: Title of Problem

Second line: 0, (number of nodes), (number of elements), (muber of
junction nodes),0, (type of problem;l=plane strain 2=plane
stress),0

Third line: (E*thickness), (poisson's
ratio), (p*thickness), (height), (length), (I)

Node position lines: (node mumber), (X coordinate), (Y
coordinate) , (blank), 0
Note: The junction nodes must be numbered
consecutively starting with node 1 on the right
side and contimuing on to the left side. Exterior
surfaces are numbered last.

Element connectivity lines: (element number), (node 1), (node 2)
Note: The direction from node 1 to node 2
mst be counterclockwise on exterior
surfaces and clockwise on interior
surfaces.

last line: 0,0
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Sample Input File

RECTANGULAR BOX WITH 5X10X1 DIMENSION
0,30,30,6,0,2,0
1.D+6,.2,3.2D-4,5,10,10.041667
1,0.,5.,,0
2,0.,4.,,0
3,0.,3.,,0
4,0.,2.,,0
5,0.,1.,,0
6,0.,0.,,0
7,10.,5.,,0
8,10.,4.,,0
9,10.,3.,,0
10,10.,2.,,0
11,10.,1.,,0
12,10.,0.,,0
13,1.,5.,,0
14,2.,5.,,0
15,3.,5.,,0
16,4.,5.,,0
17,5.,5.,,0
18,6.,5.,,0
19,7.,5.,,0
20,8.,5.,,0
21,9.,5.,,0
22,1.,0.,,0
23,2.,0.,,0
24,3.,0.,,0
25,4.,0.,,0
26,5.,0.,,0
27,6.,0.,,0
28,7.,0.,,0
29,8.,0.,,0
30,9.,0.,,0

11,6,22
12,22,23
13,23,24
14,24,25
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| 15,25,26
16,26,27
17,27,28
18,28,29
19,29,30
20,30,12

30,12,11
0,0

Program Listing

PROGRAM FOR CALCUIATION OF TWO DIMENSIONAL

ELASTODYNAMIC TRANSFER MATRICES BY THE

BOUNDARY ELEMENT METHOD

implicit real*s(A-H,0-Z)

COMMON /RW/ IRE,IWR

COMMON /A/ D(2,2),XI(6,3),W(6,3),IDUP(50) ,INC(50,2),C(50),
*S(50,3) , ISYM(100) ,X(100) ,Y¥(100) , IFIP(100) ,AK(100,100) ,P(100),
*XM(100) ,AG(100,100)
*,PM(100,100) ,[M(100,100) ,T™M(100, 100)

INTEGER DMN

REAL*8 M1 (100,100) ,TM1(100,100) ,KM(100,100) , WKAREA (2600)
* , LENTH, INERT
c INFUT
OPEN(8, FILE='INPUT.IN',STATUS="'0LD")
OPEN (9, FILE="'OUTPUT.OUT" , STATUS="'NEW')

naao

IRE-8

IWR=9

[IMN=100

IDGT=0

CALL INPUT(NE,NN,NP,IPL,PO,NN2,NT,NTL,C1,C2,
*C3,C4,C5,C6,C7,C8,09,C10,C11, IDSYM, XSYM, YSYM, INFB
*,RO,E,GM,RMAX,area, lenth, inert)

C COMPUTE MATRICES H,G,D,F AND K
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sReNeNe RS

CALL INVERT (PM,TM,NN,[MN)

CALL MATEXP (NN, TM, KM)

CALL MATMULT (NN2,[M,KM, PM)

CALL FRESWP(NN2,NTL, PM,2K,AG, RO, E,area,lenth, inert
*,INC, X, Y)

4 STOP

61
60

END

SUBROUTINE INPUT(NE,NN,NP, IPL, FO,NN2,NT,NTL,C1,C2,
*C3,C4,C5,C6,C7,C8,C9,C10,C11, IDSYM, XSYM, YSYM, INFB
*,RO,E,GM, RMAX, ARFA, LENTH , INERT)

implicit real*s(A-H,0~Z)

REAL*8 ARFA, LENTH, INERT

COMMON /RW/ IRE,IWR

COMMON /A/ D(2,2),X1(6,3) ,W(6,3) ,IDUP(50) , INC(50,2) ,C(50),
*S(50,3),ISYM(100) ,X(100) ,¥(100) , IFIP(100) ,AK(100,100) ,P(100),
*XM(100) ,AG(100, 100) :

*,PM(100,100) ,[M(100,100) ,TM(100, 100)

CHARACTER TITLE*70

WRITE (TWR, 1)

FORMAT(//////////,24X,'* * * BOUNDARY ELEMENT ME
*THOD APPLIED TO ***',//,24X,'* **PLANE EL
*ASTOSTATIC PROBLEMS * k xV ///)

TITLE OF PROBLEM

READ (IRE, 2) TITLE

FORMAT (A70)

WRITE (IWR, 2) TITLE

GENERAL INFORMATION ABOUT THE PROBLEM

READ(IRE, *) INFB, NE, NN, NTL, NP, IPL, IDSYM

READ(IRE, *)E, PO, RO, AREA, LENTH, INERT

FORMAT(I1,14,4I5,2F10.0)

IF (INFB.EQ.0)GO TO 60

WRITE (IWR, 61)

FORMAT (//,13X, '* INFINITE BOUNDARY *')

WRITE (IWR, 4)NE, NN, NP, IPL, IDSYM, E, FO

FORMAT(//,15X, 'NO. ELEMENTS =',I5,//,15X,

*'NO. NODES =',15,//,15X,'NO.  POINTS =',I5,//,15X, ' PROBL.
* TYPE =',15,//,15X,'SYMME. TYPE =',15,///,15X, "MATERTAL
*PROPERTIES', //,15X, 'E =',F10.0,

*//,15X, 'POISSON =',F15.5,///,30X, 'COORDINATES OF BOUNDRY NODES',
*//,12X, '"NODE', 14X, 'X', 15X, 'Y', 12X, 'DOUBLE', /)

NN2=NN#*2

NT=NN+NP

NODES AND POINTS COORDINATES

DO 5 I=1,NN
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62
16
63

o]

14

42

44
47
45
48
46
50
43

49
10

READ(IRE, *)K,X(K) , Y(K) , IDUP(K) , ISYM(K)
FORMAT(I5, 2F10.0, 2I5)

IF (IDUP(K) .EQ.0)GO TO 5

J=IDUP(K)

IDUP(J)=K

X(K)=X(J)

Y (K)=Y (J)

CONTINUE

DO 63 K=1,NN

IF(IDUP(K) .NE.0)GO TO 62
WRITE (IWR, 7) K, X (K) , Y (K)

GO TO 63

WRITE (IWR, 16) K, X(K) , Y (K) , IDUP(K)
FORMAT (10X, IS, 5X,F15.4,1X,F15.4, 7%, I5)
CONTINUE

FORMAT (10X, IS, 5X,F15.4,1X,F15.4)

IF (NP.EQ.0)GO TO 9

WRITE (IWR, 8)

FORMAT(//, 30X, 'COORDINATES OF INTERNAL POINTS',//,11X, 'FOINT',
*14X, 'X', 15X, 'Y",/)

K=NN+1

READ(IRE, *) (J,X(J),Y(J) ,ISYM(J) ,JI=K,NT)
FORMAT (IS5, 2F10.0, 5X, I5)

WRITE (IWR, 7) (J,X(J) , Y (J) ,J=K,NT)

NODES AND FOINTS AT SYMMETRY LINES

IF (IDSYM.BQ.0)GO TO 49

WRITE (IWR, 42)

FORMAT(//, 30X, "BOUNDRY NODES AND INTERNAL POINTS AT SYMMETRY
* LINE',//,12X,'L. X',12X,'L. Y',/)

DO 43 K=1,NT

IF(ISYM(K) .EQ.0)GO TO 43

1ZZ=ISYM(K)

GO TO (44,45,46),1Z2

YSYM=Y (K)

WRITE (IWR, 47) K

FORMAT (10X, I5)

GO TO 43

XSYM=X (K)

WRITE (IWR, 48) K

FORMAT (26X, I5)

GO TO 43

WRITE (IWR, 50) K, K
FORMAT (10X, IS, 11X, I5)

CONTINUE

ELEMENT CONNECTIVITY

WRITE (IWR, 10)

FORMAT(//,30X, 'ELEMENT CONNECTIVITY',//,13X,'EL',13X,'N. 1',
*12X, 'N. 2',14X,'L',/)

DO 11 I=1,NE

READ(IRE, *)K, INC(K, 1) , INC(K, 2)
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12 FORMAT(3IS)
II=INC(K, 1)
IF=INC(K, 2)
11 C(K)=SQRT( (X(IF)-X(II))**2+(Y(IF)-Y(II))**2)
WRITE(IWR, 13) (I, INC(I,1) ,INC(I,2),C(I) ,I=1,NE)
13 FORVAT(10X,I5,11X,15,11X,15,5X,F15.4)
c CONSTANTS
@Q4=E/ (2.*(1.+F0))
C11=FO
IF(IPL-1)40,40,41
40 PO=FO/(1.+FO)
C11=0.
41 C2=3.-4.*FO
C3=1./((1.-PO) *12.56637062)
C4=1.-2.*FO
C6=2 . *C3*GM
=1.-4*PO
C1=C3/ (2. *GM)
c5=C1/2.
C8=2.*@Y/ (1.~FO)
C9=PO/ (1.-FO)
C10=(2.-P0)/ (1.~FO)
c BOUNIRY VAIUES PRESCRIBED
DO 19 I=1,NN2
P(I)=0
19 IFTP(I)=0
READ(IRE, *)NFIP, NDFIP
20 FORMAT(2I5)
WRITE (IWR, 21) NFIP, NDFIP
21 FORMAT(//,15X,'NO. DISPL. PRESC. =',I5,//,15X,'NO. TRACT. PRESC.
* =' 15,///,15X, ' DISPLACEMENTS
*',//,12X, '"NODE' 14X, 'U', 15X, 'V', /)
IF (NFIP.EQ.0.)GO TO 22
DO 23 I=1,NFIP
READ(IRE, *)K, P(2*%K-1) , P(2*K) , IFIP(2*K-1) , IFIP(2*K)
24 FORMAT(IS,2F10.0,21I5)
IND=IFIP(2*K-1)+2*IFIP(2*K)
GO TO (25,26,27),IND
25 WRITE (IWR,28)K,P(2*K-1)
28 FORMAT(10X,I5,5X,F15.4)
GO TO 23
26 WRITE(IWR,29)K,P(2*K)
29 FORMAT(10X,I5,21X,F15.4)
GO TO 23
27 WRITE(IWR,30)K,P(2*K-1) , P(2*K)
30 FORMAT(10X,I5,5X,F15.4,1X,F15.4)
23 CONTINUE
22 IF(NDFIP.EQ.0)GO TO 31
WRTTE (IWR, 34)
34 FORMAT(//,15X, "TRACTIONS',//,12X, 'NODE',13X, 'PX'14X, 'PY', /)
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DO 32 I=1,NDFIP
READ(IRE, *)K,P(2*K-1) ,P(2*K)
33 FORMAT(IS,2F10.0)
32 WRITE(IWR,30)K,P(2*K-1) ,P(2*K)
C COMPUTE IARGEST DISTANCE BEIWEEN POINTS
31 RMAX =0.
DO 90 I=1,NN
DO 90 J=1,NN
XX=X(I)-X(J)
YY=Y(I)-Y(J)
RMA=SQRT (XX**2+YY*#*2)
IF(RMA.GE.RMAX) RMAX=RMA
90 CONTINUE
C INTEGRATION POINTS
XTI (1,3)=0.932469514203152
XI(2,3)=0.661209386466265
XTI (3,3)=—0.238619186083197
XI(4,3)=X1(3,3)
X1(5,3)=-XI(2,3)
X1(6,3)=-XI(1,3)
W(1,3)=0.171324492379170
W(2,3)=0.360761573048139
W(3,3)=0.467913934572691
W(4,3)=W(3,3)
W(5,3)=W(2,3)
W(6,3)=W(1,3)
XI(1,2)=0.861136311594053
XI(2,2)=-0.339981043584856
XT(3,2)=-XI(2,2)
XT(4,2)=XI(1,2)
W(1,2)=0.347854845137454
W(2,2)=0.652145154862546
W(3,2)=W(2,2)
W(4,2)=W(1,2)
XT(1,1)=-0.577350269189626
XI(2,1)=XI(1,1)
W(1,1)=1.
w(2,1)=1.
RETURN
END

oo NeNeNeRe X2

SUBRCUTINE MATRX(NE,NN,NN2,NT,C1,C2,C3,C4,05,C6,C7,C8,
*C9,C10,C11, PO, IDSYM, XSYM, YSYM, INFB, IFA, NIF, RO, GM, RMAX)
implicit real*8(a-H,0-2)
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O aoaaaaoaaoaaan

60

92

91

90

71

73

70

CMMON /3/ D(2,2),XI(6,3),W(6,3),IDUP(50) , INC(50,2),C(50),
*S(50,3) , ISYM(100) ,X(100) ,Y(100) , IFIP(100) ,AK(100,100) ,P(100),
*XM(100) ,AG(100, 100)

*,PM(100,100) ,DM(100,100) , TM(100, 100)
REAL*8 NORM1 (100) , NORM2 (100) , NORM(2)
COMMON /A4/ H(3,4),G(3,4),HL(3,4),GL(3,4) ,NORML, NORD

* NORM, RM(2)

KRONECKER DELTA

D(1,1)=1.

D(2,2)=1.

D(1,2)=0.

D(2,1)=0.

CLEAR ARRAYS

DO 1 I=1,NN2

XM(I)=0.

DO 1 J=1,NN2

AK(I,J)=0.

AG(I,J3)=0.

COMPUTE PARAMETERS FOR SYMMETRY LOOP
IFA=1

NIF=1

IF (IDSYM.EQ.1) IFA=2

IF (IDSYM.NE.2)GO TO 60
IFA=3

NIF=2

IF (IDSYM. EQ. 3) TFA=4

TEST FOR INFINITE BOUNDRY
IF(INFB.EQ.0)GO TO 90

DO 91 I=1,NN2

IF (IFIP(I) .NE.0)GO TO 92
A(I,I)=1

GO TO 91

XM(I)=-P(I)

CONTINUE

SYMMETRY LOOP

DO 2 ISY=1,IFA,NIF
COMPUTE CHANGE SIGN CONTROLLING PARAMETERS
GO TO (70,71,71,73),ISY
1IS=4-1ISY

IFS=IIS

GO TO 70

IIS=1

IFS=2

LOOP OVER BOUNLRY NODES
Do 2 I=1,NN

XS=X(I)

YS=Y (I)
IF(ISY.EQ.2.0R.ISY.FQ.4) YS=2.*YSYM-YS
IF (ISY.GE. 3) XS=2 . *XSYM-XS
GENERATE MATRIX H AND G
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NOTE: OOLUMNS OF A THAT CORRESPOND TO G ARE MULTIPIED
BY C8 TO AVOID ROUNDOFF ERRORS IN THE SOLUTION
DO 10 J=1,NE
II=INC(J,1)
IF=INC(J,2)
I00D=1
IF(ISY.NE.1.AND.ISYM(I) .NE. (ISY-1))GO TO 6
IF(I.BEQ.II.OR.I.BQ.IDUP(II))ICOD=2
IF(I.EQ.IF.OR.I.BQ.IDUP(IF))ICOD=3
6 CALL FUNc(ICoD,J,Cl,c2,C3,C4,C5,C6,C7,F0,1I1,IF,XS,YS,ISY,IIS,
*IFS)
DO 10 K=1,2
JJ=2* (I-1)+K
M=0
DO 10 NX=1,2
DO 10 Nv=1,2
MM+
IC=2*INC(J ,NX) +NV-2
IF (IFIP(IC) .NE.0)GO TO 67
AK(JJT,IC)=AK(JJT, IC)+H(K,M)
XM(JT)=XM(IT)+G (K, M) *P(IC)
GO TO 68
67 AG(JJ,IC)=AG(JT,IC)+G(K,M)
XM(IT)=XM(JIT) -H(K,M) *P(IC)
OCMPUTE REMAINING OOFFFICIENTS BY APPLYING RIGID BODY TRANSIATIONS
68 GO TO (61,62,63,64),ISY
62 IF(NV-2)61,64,61
63 IF(NV-1)61,64,61
64 H(K,M)=-H(K,M)
61 IF(IFIP(JJ+NV-K).NE.0)GO TO 69
61 AK(JJ,JI+NV-K)=AK(JJT,JT+NV-K) -H (K, M)
GO TO 10
69 XM(JJ)=XM(JJ)+H (K,M) *P (JT+NV-K)
10 CONTINUE
2 CONTINUE
COMPUTE MASS MATRIX USING PARTICULAR INTEGRALS
QM1=(9-10*F0) / (90-90*FO)
QM2=(1-2*FO) / (6~8*FO)
Q3=1/ (30-30*FO)
CM4=(5*FO-1) / (15* (1~-FO) )
QM5=2*P0/ (3-6*F0)
QM6=(4-5*F0) / (15%* (1-FO) )
DO 300 I=1,NN
DO 305 J=1,NN
RM(1)=X(I)=X(J)
RM(2)=Y(I)-Y(J)
NORM (1) =NORML1 (I)
NORM (2) =NORM2 (I)
R2=SQRT (RM(1) **2+RM (2) **2)
PM(I,J)=(RMAX-R2)
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DO 310 K=1,2
DO 315 I-1,2
IM=2*T+K-2
IM=2*T+1~2
OOMPUTE D MATRIX
DM(IM, JM) =RO* ( (QM1*R2~CM2*RMAX) #D (K, L) *R2*%2—
* (OB*RM(K) *RM(L) *R2) ) /M
IF(R2.1E..001)GO TO 330
OOMPUTE T MATRIX
TM(IM,JM) =RO* ( (M4 *R2-CM5*RMAX) *RM (L) *NORM (K) + (M6 *R2-2*CM2 *RMAX)
**RM(K) *NORM(L) + ( (CM6*R2-2*QM2*10. ) *D(K, L) - (2*CM3*RM(K) *RM(L) ) /R2)
** (RM(K) *NORM (K) +RM (L) *NORM(L) ) )
GO TO 315
330 TM(IM,JM)=RO* ( (CM4*R2-CM5*RMAX) *RM(L) *NORM (K) + ((M6*R2~2*CM2 *RMAX)
**RM(K) *NORM(L) )
315 CONTINUE
310 CONTINUE
305 CONTINUE
300 CONTINUE
RETURN
END

SUBROUTINE FUNC(ICOD,JA,Cl,C2,C3,C4,C5,C6,C7,F0,1I,IF,XS,YS,ISY,
*IIS, IFS)

INTEGRALS OVER BOUNLRY ELEMENTS

implicit real*8(A-H,0-2)

OOMMON /A/ D(2,2),XI(6,3),W(6,3),IDUP(50),INC(50,2),C(50),
*S(50,3) , ISYM(100) ,X(100) ,Y(100) ,IFIP(100) ,AK(100,100) ,P(100),
*XM(100) ,AG(100,100)

*, PM(100,100) ,DM(100,160) , TM(100, 100)

REAL#8 NORML (100) ,NORM2 (100) , NORM(2)

COMMON /A4/ H(3,4),G(3,4) ,HL(3,4),GL(3,4) ,NORML, NORM2
*, NORM, RM(2)

DIMENSION DXY(2),BN(2),B(2),DR(2),UL(2,2),PL(2,2),ULL(2,2,2),
*PLL(2,2,2)

DO 5 KK=1,3

DO 5 I~1,4

GL(KK,L)=0.

HL(KK, L)=0.

G(KK,L)=0.

5 H(KK,L)=0.
DXY (1) =X (IF)-X(II)
DXY (2)=Y (IF) ~Y(II)
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BN(1)=DXY(2) /C(JA)
BN (2)=-DXY (1) /C(JA)

NORML (IF)=BN(1)

NORM2 (IF)=EN(2)

NORML (IT)=BN(1)

NORM2 (IT)=BN(2)

GO TO (1,2,2,1),I00D

SELECT NO. OF INTEGRATION POINTS
SEL=0.5*SORT ( (2. *XS=X (II) -X(IF) ) #*2+ (2. *YS-Y (II)~Y (IF) ) ¥*2) /C(JA)
NPI=4

IF (SEL.LE.1.5)NPI=6

IF(SEL.GT.5.5) NPI=2

INP=NPI/2

OOMPUTE MATRICES NUMERICALIY

DO 50 KK=1,NPI

XMXT=0.5* (1.+XI (KK, INP) ) *DXY (1) +X (L) -XS
YMYT=0.5% (1.+XI (KK, INP) ) *DXY (2) +¥ (IT) -YS
R=SQRT (XMXT**2+YMYT**2)

B(1)=-0.25* (XI (KK, INP) -1. ) *C(JA)
B(2)=0.25% (XI (KK, INP)+1. ) *C(JA)

DR (1) =XMXI/R

DR(2)=YMYI/R

DRON=TR (1) *BN (1) +DR(2) *BN(2)

COMPUTE MATRICES H AND G

DO 6 I=1,2

DO 6 J=1,2

UL(I,J)=—C1* (C2*DLOG(R) *D(I,J) -DR(I) *DR(J) )
PL(I,J)=-C3%( (C4*D(I,J)+2.*DR(I)*DR(J) ) *DRDN+C4* (DR (J) *EN (I) -IR
**BN(J)))/R

CONTINUE

DO 7 Ia=1,2

1C=0

DO 7 1I-1,2

DO 7 JJ=1,2

IC=ICH1

G(LA, IC)=G(IA, IC) +UL(LA,JJ) *B(LL) *W (KK, INP)
H(LA, IC)=H(LA, IC)+PL(IA,JJ) *B(LL) *W(KK, INP)
CONTINUE

CCMPUTE MATRICES HL AND GL (INTERNAL STRESSES)

DO 11 I=1,2

DO 11 J=I,2

DO 11 K=1,2

ULL(I,J,K)=C3* (C4* (DR(J) *D(K, I) +DR(I) *D(K,J) ~DR (K) *D(I,J)+2. *IR(I)
*) *DR(J) *DR(K) ) /R

B1=2. *[RIN* (C4*IR (K) *D(I,J) +PO* (TR(J) *D(I,K) +DR(I) *D(J, K) -4 . *DR(I)
*) *IR(J) *DR(K) )

B2=2. *PO* (BN (I) *DR(J) *DR (K)+BN (J) *DR (I) *IR (K) )

B3=CA* (2. *BN(K) *DR(I) *DR (J) +BN (J) *D(I,K) +BN(I) *D(J, K) )
PLL(I,J,K)=C6* (B1+B2+B3-C7*EN (K) *D(I,J) ) /R**2

IL=0

52




eNoNeRe Ko Ko

12
50

15

18

24

DO 12 I=1,2

Do 12 J=I,2

II~TI+1

IC=0

DO 12 IAA=1,2

DO 12 JAA=1,2

IC=IC+1
GL(IL,IC)=GL(IL,IC)+B(IAA)*ULL(I,J,JAA)*W (KK, INP)
HL(IL, IC)=HL(IL,IC)+B(IAA) *PLL(I,J,JAA) *W (KK, INP)
CONTINUE

GO TO 18

OCMPUTE MATRICES H AND G ANALYTTCALLY (BOUNDRY CONSTRAINT EQ.)
AL=C5*C2*C(JA)

AA=AL* (0.5-DIOG(C(JA)))

DO 15 I=1,2

DO 15 J=1,4

IT=(J/2) *2+2-J
G(I,J)=C5*DXY (I) *DXY (IT) /C(JA)
IF(IT.EQ.I)G(I,J)=G(I,J)+AA
CONTINUE

IAA=-2

IF (ICOD.EQ. 3) IAA=0
G(1,3+IAA)=G(1,3+IAA)+AL
G(2,4+IAA)=G(2,4+IAA)+AL
H(1,2-TAA)=C3*C4* (1.+IAA)
H(2,1-IAA)=-H(1,2-IAA)

SYMMETRY TEST

IF(ISY.FQ.1)GO TO 8

DO 24 I=IIS,IFS

DO 24 J=1,4

H(I,J)=-H(I,J)

G(I,J3)=G(I,J)
IF(ICOD.NE.4.0R.ISY.EQ.4)GO TO 8
DO 25 J=1,4

HL(2,J)=-HL(2,J)
GL(2,J)=-GL(2,J)

RETURN

END

ADD TWO MATRICES

SUBROUTINE MATADD(N,Al,A2,A3)

implicit real*8(A-H,0-2)

REAL#8 A1(100,100),A2(100,100),A3(100,100)
DO 10 I=1,N

DO 10 J=1,N

A3(I,J)=A1(I,J)+A2(I,J)
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MULTIPLY TWO MATRICES
SUBROUTINE MATMULT (N,M1,M2,M3)
implicit real*s(A-H,0-2)

REAL*8 M1 (100,100) ,M2(100,100) ,M3 (100, 100)
DO 5 I=1,N

DO 5 J=1,N

M3(I,J)=0.

CONTINUE

DO 10 I=1,N

DO 10 J=1,N

DO 10 K=1,N

M3 (J,I)=M3(J,I)+ML(J,K) *M2 (K, I)
CONTINUE

RETURN

END

MULTIPLY TWO COMPLEX MATRICES
SUEROUTINE MATMULTT (N,M1,M2,M3)
implicit real*s(A-H,0-Z)
OOMPLEX*16 M1 (100,100) ,M2(100,100) ,M3 (100, 100)
DO 5 I=1,N

DO 5 J=1,N

M3(I,J)=(0.D0,0.D0)

CONTINUE

DO 10 I=1,N

DO 10 J=1,N

DO 10 K=1,N
M3(J,I)=M3(J,I)+M1(J,K) *M2 (K, I)
CONTINUE

RETURN
END

Formulates the [K] matrix of the particular integral method
SUBROUTINE MATEXP(N,EX1,EX2)

implicit real*s(A-H,0-2)

REAL#8 EX1(100,100),EX2(100,100),D(2,2)

D(1,1)=1.

D(2,2)=1.

D(1,2)=0.

D(2,1)=0.

DO 10 I=1,N
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DO 10 J=1,N

DO 10 K=1,2

DO 10 I-1,2

IT=2%T+K-2

JT=2*T+L~2

EX2 (II,J3)=EX1(I,J)*D(K,L)
10 CONTINUE

RETURN

END

oNo NN

SUBTRACT TWO MATRICES

SUEROUTINE MATSUB(N, SUB1, SUB2, SUB3)

implicit real*s(A-H,0-2)

DIMENSION SUB1(100,100) ,SUB2 (100,100) ,SUB3 (100,100)
DO 10 I=1,N

DO 10 J=1,N

SUB3(I,J)=SUB1(I,J)-SUB2(I,J)

CONTINUE

)
o

RETURN
END

oNoNo NP NP

SUBROUTINE FRESWP(NN2,NTL,M1,K1,G,RO,E,AREA,LENTH, INERT

*, INC, X0, YO)

This subprogram multiplies the mass, [m] of Eq 33, matrix by a
given frequency, and

then forms the transfer

matrix. Once the transfer matrix is formed it is input into the RGO
routines for eigenvalue and eigenvector extraction.

On input:

Kl is the matrix formulated in the boundary element calculations that
multiplies the displacement terms ( this is the H matrix )

Ml is the mass matrix calculated by the particular integral
technique.

G is the matrix formulated in the boundary element calculations that
multiplies the displacement terms.

RO and E are material properties. NN2 is the size of the above
matrices.

NTL is the number of nodes on the interface of the substructure.
X0, YO, INC are geametry descriptions used for post processing

ooQaoaQaanoaQaaaoaaa0aQaaoa00000Q0n0
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IMPLICIT REAL#*8(A-H,O-Z)
REAL#8 M1(100,100),K1(100,100),G(100,100),GG(100,100)
* MM(100,100) ,IM(100,100) ,WKAREA (2600) ,M2 (100,100) ,WR(100)
*,WI (100) ,ZR(100,100) ,FV1(100), inert,lenth, IMAGX (100)
*,21(100,100) , IMAGY (100) , REALX (100) , REALY (100) ,G1(100,100)
*,GN(100,100) , EIMAG (100) , PARTS (100, 100) , PART6 (100, 100)
*,FIR(50) ,FLI (50) ,FRR(50) , FRI (50) ,X0(100) , Y0 (100)
INTEGER [MN,IV1(100),N,NTL4,INDEX(100),INC(50,2)
OPEN(10,FILE='VECTOR.COUT"',STATUS='NEW')
DMN=100
IDGT=0
NTLA=4*NTL
Cc this loop changes the fregquency term if desired
DO 100 N=1,1
WRITE(9,110)
110 FORMAT(////)
HERTZ= 100.
fre=hertz* (2%3.141592654)

thphi is the theoretical value of the phase angle for compresional-
extentional motion of a beam.

thphi=dsqrt (ro/e) *hertz*lenth*360

thphi2 is the theoretical value of the phase angle for bending of a
beam

aaaaQ
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thphi2=dsqrt (fre*dsqrt (ro*area/ (e*inert)))
thphi2=thphi2*lenth*540/ (2.5%3.141592654)
DO 20 K=1,NN2
DO 20 I~1,NN2
M2 (K, L)=(FRE**2) *M1 (K, L)
20 CONTINUE
CALL MATADD(NN2,K1,M2,MM)
CALL INVERT(MM,M2,NN2,[MN)
CALL MATMULT (NN2,M2,G,GG)

MATPART takes the dynamical admittance matrix G and manipulates it
into the substructure transfer matrix GG. This is done by
paritioning

the matrix, eliminating the interior nodes and rearanging terms in
order to seperate the left and right nodes.

aaaaoaaon Q

CALL MATPART (GG, NTL, PARTS, PART6, NN2)
matz=1
Chikkddhhkdddhdddddddkiedhdkikidkihiididihkikikik
Cc RGO calls the EISPACK routine for extracting the eigenvalues and
c eigenvectors of the transfer matrix. The EISPACK routines are not
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c included in this listing.
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50

55

60

65

70

75

10
40
15

CALL RGO(DMN,NTIL4,GG,WR,WI,MATZ, ZR, ZI, IV1, FV1, IERR)

The rest of the FRESWP is merely manipulation of the Eigenvalues and
eigenvectors for output.
do 30 I=1,ntl4
eimag (I)=dsqrt (wr(I)**2+wi (I)**2)

IF(TEST.NE.0.0) THEN

TEST=0.

GOTO 30

ENDIF

eimag is the magnitude of the eigenvector
phee is the phase argle

phee=datan (wi (I)/wr (I))*(360.0/6.2831850)
TEST = WI(I)
TESTMAG=DABS (EIMAG (I) -1)
IF (EIMAG(I).gt.1.10D0) GOTO 30
IF (EIMAG(I) .IT.1.D-4) GOTO 30
WRITE(9,50)
FORMAT (/, 2X ' FREQUENCY (hertz) ', 5X, 'COMPR PHASE(deg) ', 5x,
*'BEND PHASE(deg) ')
WRITE(9,55)hertz, thphi, thphi2
FORMAT (E15.5,5X,E15.5,5X,E15.5, /)
WRITE (9, 60)
FORMAT (6X'REAL', 13X, ' IMAGINARY ', 7X, 'EIMAG', 10X, 'PHASE')
TEST=WI (I)
WRITE (9, 65)WR(I) ,WI(I),EIMAG(I),PHEE
FORMAT (E15.5, 2X,E15.5,2X,E15.5, 2X,E15.5, /)
WRITE(S,70)
FORMAT (1X'NODE #',18X, 'XDISP', 31X, 'YDISP')
WRITE(9,75)
FORMAT (16X, 'REAL', 10X, 'IMAG',16x, 'REAL', 16X, ' IMAG')
DO 15 J=1,ntl
IX=J%2-1
IY=J%*2
IMAGX (3)=21(IX, I)
IMAGY (§)=2I(IY,I)
REALX (J)=ZR(IX, I)
REALY (J)=ZR(IY,I)
WRITE(9,40)J,2ZR(IX,I), IMAGX(J) ,ZR(IY, I) , IMAGY (J)
format (I5,4X,E15.5,2x%,E15.5,4%,E15.5,1%,E15.5)
contirue
DO 150 J=1,2*NTL
K=2*NTLHJ
FIR(J)=ZR(K, I)
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FLI(J)=2I(K,I)
FRR(J)=ZR (K, I) *WR(I)-2I (K, I)*WI (I)
FRI (J)=ZR(K, I) *WI (I)+ZI (K, I)*WR(I)
150 QONTINUE
DO 160 K=1,NN2/2-2*NTL
KI=NTL*2+K
IX=2*K-1
Iy=2*K
IMAGX (KI)=0.DO
IMAGY (KI)=0.DO0
REALX (KI)=0.D0
REALY (KT )=0.D0
DO 170 J=1,2*NTL
IMAGX (KT ) =—FLI (J) *PARTS (IX,J)+FRI (J) *PART6 (IX,J) +IMAGX (KI)
IMAGY (KI)=-FLI (J) *PARTS (IY,J)+FRI (J) *PART6 (IY,J) +IMAGY (KI)
REALX (KI)=—FLR (J) *PARTS (IX,J)+FRR (J) *PART6 (IX,J) +REALX (KI)
REALY (KT ) =—~FLR (J) *PARTS (IY,J)+FRR(J) *PART6 (IY,J) +REALY (KI)
170 COONTINUE
160 COONTINUE .
c Vector is a user supplied routine for doing structure plots
C CALL VECTOR (NTL,REALX,REALY, IMAGX, IMAGY,WR(I),WI(I),INC
o *,X0,YO,NN2/2)
30 contimue
100 CONTINUE
return
end

noOnOan

SUBROUTINE MATPART (GG, NTL, PARTS, PART6,NN2)

IMPLICIT REAL*8(A-H,0~2)

DIMENSION PART1(100,100),PART3(100,100),PART4(100,100),
*A(100,100) ,B(100,100) ,C(100,100) ,D(100,100),
*BINV(100,100) ,GG(100,100) , PARTS (100,100) , PART6 (100, 100)

INTEGER IMN

IMN=100

DO 10 I=1,2*NTL

DO 10 J=1,2*NTL

A(I,J)=GG(I,J)

k=2*nt1+j

B(I,J)=GG(I, k)

1=2*ntl+i

C(1,3)=GG(1,J)

D(I,J3)=GG(1,k)

10 CONTINUE

DO 50 I=1,NN2-4*NTL

K=4*NTL+1

DO 50 J=1,2*NTL
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JI=2*NTL+HT

PARTS (I,J)=GG(K,J)

PARTS6 (I,J)=GG(K,JI)

QONTINUE

ntl2=2#*ntl

CALL INVERT(B,BINV,NTL2,MN)
CALL MATMULT (NTL2,BINV,A, PART4)
CALL MATMULT (NTL2,D, BINV, PART1)
CALL MATMULT (NTL2,D, PART4, PART3)
CALL MATSUB (NTL2, PART3,C, PART3)
DO 30 I=1,2*NTL

DO 30 J=1,2*NTL
GG(I,J)=PART1(I,J)

k=2*ntl+j

1=2%ntl+i

GG(I,k)=PART3(I,J)
GG(1,J)=BINV(I,J)
GG(1,K)=PART4(I,J)

CONTINUE

RETURN

END

SUBROUTINE INVERT(A,Y,N,NP)
IMPLICIT REAL#8(A-H,O-Z)
DIMENSION A(100,100),Y(100,100),INDX(100)
DO 12 I=1,N

DO 11 J=1,N

¥(I,J)=0.

CONTINUE
Y(I,I)=1.
CONTINUE
CALL IUDCMP(A,N,NP, INDX, D)
DO 13 J=1,N
CAILL IUBKSB(A,N,NP,INDX,Y(1,J))
CONTINUE
RETURN
END

SUBROUTINE LUDCMP(A,N,NP, INDX, D)
IMPLICIT REAIL*8(A-H,0-2)

PARAMETER (NMAX=100,TINY=1.0E-20)
DIMENSION A(100,100),INDX(100) ,VV(100)
D=1.

DO 12 I=1,N

AAMAX=0.
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DO 11 J=1,N

IF (DABS(A(I,J)).GT.AAMAX) AAMAX=DABS(A(I,J))
CONTINUE

IF (AAMAX.FQ.0.) PAUSE 'SINGULAR MATRIX'
VV(I)=1./AAMAX

CONTINUE

DO 19 J=1,N

DO 14 I=1,J-1

SUM=A(I,J)

DO 13 K=1,I-1

SUM=SUM-A (T, K) *A (K, J)

CONTINUE

A(I,J)=SUM
CONTINUE

AAMAX=0.

DO 16 I=J,N
SUM=A(I,J)

DO 15 K=1,J-1
SUM=SUM-A (I, K) *A (K, J)
CONTINUE
A(I,J)=SUM
DUM=VV () *DABS (SUM)
IF (DUM.GE.AAMAX) THEN
TMAX=I

AAMAX=DUM

ENDIF

CONTINUE
IF(J.NE.IMAX) THEN
DO 17 K=1,N

DUM=A (IMAX, K)
A(IMAX,K)=A(J,K)
A(J,K)=DUM
CONTINUE

D=-D

VWV (IMAX) =WV (J)
ENDIF

INDX (J) =IMAX
IF(A(J,J).EQ.0.) A(J,J)=TINY
IF(J.NE.N) THEN
DUM=1./A(J,J)

DO 18 I=J+1,N
A(I,J)=A(I,J)*DUM
CONTINUE

ENDIF

CONTINUE

RETURN

END
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SUBROUTINE IUBKSB(A,N,NP,INDX, B)
IMPLICIT REAL*8(A-H,O-2)
DIMENSION A(100,100) , INDX(100) ,B(100)
1I=0

DO 12 I=1,N

LI~INDX (I)

SUM=B(LL)

B(LL)=B(I)

IF (II.NE.O) THEN

DO 11 J=IT,I-1

SUM=SUM-A(I,J) *B(J)

CONTINUE

ELSEIF (SUM.NE.O.) THEN
II=I

ENDIF

B(I)=SUM

CONTINUE

DO 14 I=N,1,-1
SUM=B(I)

IF(I.IT.N) THEN

DO 13 J=I+1,N
SUM=SUM-A (I,J) *B(J)
CONTINUE

ENDIF
B(I)=SUM/A(I,I)
CONTINUE

RETURN

END
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