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- Abstract

The purpose of this iniwestiatimn is to demonstrate the use of

boundary element techniques for the dynamic analyses of geometrically

repetitive structures using the traveling wave approach. A formulation

of the boundary element method (BEM) for 2-D isotropic materials is

developed. The BEM formulation is then used to calculate the mass and

stiffness matrices of one bay of a baseline structure. Frcm the mass

and stiffness matrices a transfer matrix is developed for the bay.

Using traveling wave theory, the transfer matrix is then used to

identify the dynamical characteristics of a multiple bay structure.

Results are compared to continuum theory. (

viii



I
DYNAMIC ST= C AL ANALYSES USING BOJNDARY EIDENT METHODS

I. Introduction

1.1i Backgroundr~

The advent of high speed computers has led to a revolution in

structural analysis methods. Complex numerical algorithms as found in

finite element codes are now routinely used in the analysis of

everything frcx coat hangers to spacecraft. As structures of interest

become larger and more complex, more accurate and efficient algorithms

are developed. Recently, there has been a great deal of interest in the

use of boundary element methods (BEM) for structural analysis. BEM

offers the advantage of reducing the computational size of the problem

ccnpared with traditional finite element methods (FEM). The application

of boundary element techniques is particularly attractive in analyzing

large repetitive truss-like structures, such as those being proposed for

orbiting space platforms. A typical large space structure will be

sensitive to wave propagation from on-board disturbances such as gyros,

actuators, docking procedures, etc. This thesis introduces the use of

boundary element theory in developing the wave propagation transfer

matrix for two-dimensional periodic structures.

1.2 Boundary Element Methods

Boundary element theory is used in many disciplines and has proved to

be an efficient and elegant method for solving many numerically

1



intensive problem. The boundary element method, just like the finite

element method, is based on the approximate solution of an equation or

set of equations describing a physical problem. Unlike FEN however, BEM

utilize functions that identically satisfy the governing equations and

only approximately satisfy the boundary conditions. In addition, only

the bourdary of the given problem needs to be discretized when using the

BEM. This greatly reduces the modeling effort and results in smaller

matrices, although the matrices are often fully populated. A further

reduction in problem size is accomplished by combining a traveling wave

approach for periodic structures with BEM.

1.3 Wave Propagation

The study of wave propagation has been pursued throughout a wide

range uf disciplines including solid state physics, fluids, power

transmission, etc. Wave propagation theory has also been shown to be a

useful tool in the area of dynamic structural analysis. Cremer and

Lielich studied flexural motion in periodic beams (1). In 1964 Heckl

defined the notion of propagation coefficients in periodically

supported, undamped grillages (2:1335-1343). More recently, von Flotow

enployed the use of wave propagation theory in developing a transfer

matrix method for analyzing periodic structures (3:509-519). The

transfer matrix method requires that only a single cell of the truss

structure be analyzed. In a related effort, Signerolli combined the use

of transfer matrices with FEN in analyzing a two-dimensional periodic

truss (4).
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1.4 Overview

This thesis demonstrates the use of BEM to develop the transfer

matrix for a two-dimensional periodic truss. Chapter 2 begins with the

developrent of the boundary element equation for a two-dimensional

isotropic material. The boundary element equation is then used to

develop the transfer matrix for a simple periodic structure in chapter

3. In Chapter 4, the transfer matrix is used in determining the -wave

propagation behavior of a baseline beam structure. The results are then

ccmpared to equivalent continuum models. Chapter 5 discusses the

conclusions and reccmTendtions.

3



II. The Boundary Element Equation

2.1 The Elastic Dynamic Equation

The governing equation for the behavior of a deformable and

continuous body can be written in index notation as

+ ini +(1)

j

where 3 is the partial derivative operator, ai1 is the stress tensor, F

is the body force vector, m is the mass density, and u is acceleration.

Another useful relationship is the stress-strain equation.

rij = 2Geij + \6ijem (2)

Where G is the shear modulus, ei is the strain tensor, 6ij is the

Kronecker delta, and X is Lame's constant. For linear isotropic material

properties, strain can be expressed as

e,= ( U1.,j + u, 1 ) (3)

where u is the displacement vector. Eqs. (2) and (3) can be combined

to give stress in terms of displacement.

a 1 = G( u., 1 + Uj i ) + 6ijukk (4)
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Eqs. (1), (2) and (3) represent 15 different equations in 15

unknowns; 6 a's, 6 e's and 3 u's. When combined, these three equations

fully describe the behavior of an elastic domain and will be used to

develop the boundary element equation (5,210-211).

To formulate the solution of the elasticity equations, Eq. (1) will

be multiplied by an arbitrary function, O , and integrated throughout

the domain. Body forces can be neglected.

f ( -m%) dn (5)

This equation is integrated by parts until all of the differentials are

on the arbitrary function, ., rather than the unknon displacements.

Use the identity

_ + 01ao11  (6)

to integrate the first term by parts

! --i - 01,o'-ij -M u. dc=0 (7)

Using the Guass-Divergence theorem, the volume integral of the first

term may be written as a surface integral.
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Jr n, ('a-1) dl? - £ @1.aj 1 + 1 Mu -) dfl =0 (8)

were n, is the direction cosine of the outward unit normal vector. Now

substitute Eq. 4 under the second integral.

frfli('-aij) dl? - £(.[Gu 1 + u,,,) + X6 juW~k] + l mu-) dfM 0 (9)

or

f j( -'i)dl - £ 1'Gu,' 1 df - f L,~u~ c d

- fukI lkd -f f 'ijm df = 0 (9a)

Next, utilize the product rule for differentiation, i.e

udv = d(uv) - vdu

Jr n,( ., dl? - £@1 2 Cu 1 1 dfl +J fn 1 u dfl

- f (0,,Gu1 )1 i df + f. (i -.1G)'ju1 df

f f(OijXwj0k dfl + f (1ji),kuk dfl - 0Ma Cjujd = 0 (10)

6



Now the volume integrals of gradients may be replaced by surface

integrals, using the Guass-Divergence Theorem.

Jr n J(@' a1 ) d l' - j£ , ,n @ G i) d l " + .G ) du i

- J n1 (0,j 1Gu1 ) dl" + f (,,jG),u j dn

- fnk(,,iXuk) dF + f(Oi\),klk dln - . d = 0 (11)

Reordering the terms and collecting under conon integral signs:

F nj(f@ ajj) - n(f ,GL ) - r (C ,Gu) - nk(Clkuk) d F

+ f(,i-jG)1 jui + (01 1jG) juj + (01 I'j)'kW dnfl O1mu dfl = 0 (12)

The indices can now be rewritten so that the unknowns, u., may be

factored out.

f r n j(,0.a j) - (n jA .G + n j~ij,iG + n i a-jj1 )ui dr'

+ f[0.G 1 + (Clj1 jG) 1j + @1 1 \j)'1 u1 - dfl - f 0m 1 dfl = 0 (13)

njaj in the first term of Eq. (13) is simply the surface traction and

can be defined as t = njo. For further simplification, the second

7



I
term under the surface integral will be defined as t*j = n1,,j.G + njij,iG

+ nij, X. so,

r (, t - *u,) dr + + ( 1 G) 1 + @1,jX),]u - &I

- f Oi a d = 0 (14)

The first domain integral of Eq. (14) is solved by setting the

assumed function terms, ccmronly called the adjoint opertator, equal to

a vector of Dirac Delta functions.

(i .,jG),j + (aj.iG),j + ( ijj), = 6(x,X)a (15)

where 6(x,xo) is the Dirac delta function and di is a unit vector.

The choice of the Dirac Delta function now allows the damain integral to

be integrated exactly. So, substituting Eq. (15) into the domain

integral and integrating gives

Juj6(xxo)ei dfl = Cu(x) (16)

where xO is the integration variable and C is a fraction dependent upon

the location of integration. If the sigularity due to the Dirac delta

8



function at x = x. is integrated about ccmpletely, C is equal to one.

For the purpose of determining the boundary displacements, the

integration will be done on a smooth boundary surface and C will be

equal to 1/2.

Making the appropriate substitution, Eq. (14) becomes

Cu~x jrO' ti - t~ju ) d - f1. n= 0 (17)

In order to evaluate the boundary integrals, i must be solved for.

This task amounts to solving Eq (15). In order to solve Eq. (15), i. is

written as Ci = Qj ,(x, xo) e. This second order tensor has the

interpretation that the individual elements of Q,, are the

displacements in the Jth direction at the point x0 due to a unit point

force acting in the Lth direction, given by 6,, applied at point x.

With this understanding, Eq. (15) can be written

(G jL) i + [(G+\ )tJ] = 6(xx)d 1&1  (18)

In 2-D, Danson has solved Eq. (18) to give (6:211-213)

1= 4 VE(I-)(( 3 - 4 V) ln 6 t + rr, )  (19)

and therefore

9



* 1

l 47(l-I)r [nkrk((1- 2 ) 6 jIl + 2rjr) - (1- 2 Y) (rn-rln)] (20)

where r is the magnitude of the vector between the point being solved

for (x) and the field point (xo), iV is Poisson's ratio and the rk's are

the direction cosines of r.

When Eqs. (19) and (20) are substituted into Eq. (17) the surface

integral can be evaluated given a suitable displacement function.

Except for the mass term, which will be handled latter, Eq (17)

represents the boundary integral formulation of the elastic-dynamic

equation.

2.2 Boundary Element Formulation

Eq. (17) can be discretized by creating boundary elements over the

structure. Each integral can be written as a sunmation of integrals

over each element:

1
Cu = -j .jdr + t + (21)

-k

For a 2-D structure each element would appear as a line. Figure 1 shows

a simple 2-D beam section paved with 16 boundary elements. By assuming

a shape function for each element, the displacement at any point on the

element can be written as a function of the nodal point values. For

10



instance, for a single element as given in Figure 2.

I-
0-----0

I I
* 0

o o

0 -

I

Fig. 1. Beam Section with 16 ElementsI

aI 0 -b

Fig. 2. Single ElementI
the displacement at any point x on the element can be written as

U(X)=UaLX + ub (22)

where L is the length of the element and u, and pb are the displacements

at the a and b nodes. Eq. (22) gives a linear relationship along the

element. Higher order elements can be used (i.e. quadratic, etc.)

depending upon the accuracy requirements. More generally, the

functional fornulation over each element may be written as

1i



U(X) =[Na ( ub) (23)

or

U(X) = [N](u} (24)

where (u) is a column vector of nodal displacements, [N] is a raw of

shape functions, and u(x) is the value of the displacement at point x on

the element. Surface tractions, t, can be approximated in a similar

manner.

With the introduction of elements and shape functions, the boundary

integral equation can now be written as a summation of integrals over

the individual elements with displacements and tractions as functions of

the nodal value vectors.

1

+ f[Nlk(ti)kC.dF] - fM:0 d (25)

rk

Since the nodal values under the integral signs are constants they can

be taken outside the integrals. In addition, if Eq. (23) is written for

each nodal point, the resulting equations can be recast in matrix form.

C(u) = [G] (t) - [S](u) - (m'} (26)

12



I
where [S] and [G] are matrices of the elemental integrals associated

with each nodal point and (m*) are terms associated with the mass

integral (yet to be determined). The elemental integrals can be

evaluated numerically using Guassian quadrature. The entire

discretization process is very similar to that used in finite element

methods and is explained in depth by Gipson (7:115-120). Eq. (26) can

be further simplified by combining [S] and C:

I*
[H](u) = [G](t} - (m) (27)

where [H] = [S] + C[I]

2.3 Treatment of the mass

Up until now the mass integral has been ignored, but this

integration must be completed in order to solve the equation for dynamic

motion. Ahmad and Banerjee have developed a method for handling the

mass term using an approximated density function and particular

integrals (8:682-694). After applying the method of particular

integrals, Eq. (27) becais

[G] (t) - [H] (u) = W([G] [Q] - [H] [D]) [K] (u) (28)

where w is a frequency term resulting frcm the assumption of sinusoidal

motion and the [Q], [D], and [K] matrices are developed fron the

particular integral method. The [G] and [H] matrices remain the same as

13



developed in section 2.2. A detailed explanation of the use of

particular integrals with the BEM is contained in Appendix A.

14



i
III. Wave Propaation

3.1 Substructure Analyses

At this point Eq. (28) could be applied to an entire structure. If

the structure is repetitive, such as a truss structure, it is possible

to analyze only one bay of the truss and still calculate the dynamical

behavior of the structure.

Figure 3 shows one bay of a two-dirensional truss structure with

two attach points on each side. The tractions and displacements

associated with each connecting point are also shown.

U11, ttl 1. 3 %, tr3

U12 , t 2 2 4 ur, t,

Figure 3 Single Bay of a Repetitive Truss

An equation relating the left and right forces and displacements can

be written in terms of a transfer matrix [T]:

(vr} = [T] (v,) (29)

15



where

(vt) = (ut3 ,Ut 4 tt 3 t14)  (30)

(Vr} = (UrlIUr2Itr1Itr2 ) (31)

The vector (v) at any junction on the truss is called the state vector

at that junction. Since each bay has the identical structural

characteristics, the transfer matrix for each bay will also be

identical. This makes it possible to describe the state at any bay

junction using only the substructure transfer matrix. For instance, the

forces and displacements at the nt bay can be written as:

{Vr}, = [T] n (vt) (32)

Thus, the state vector at any bay junction can be propagated along the

structure by use of the transfer matrix.

3.2 Transfer Matrix Derivation

The transfer matrix contains information about the mass and stiffness

of the substructure. Using the BEM described in chapter 2, the transfer

matrix for the substructure can be derived. Starting with Eq. (28):

[G](t}-(H] (u) = %2([G][Q]-[H][D])[K])(u) (28)

16



The right hand side of the Eq. (28) can be simplified into a single

matrix [m], by carrying out the appropriate multiplication and

subtraction:

[m] = w,([G] [Q]-[H] [D]) [K] (33)

Substituting Eq. (33) into Eq. (28) gives

G](t)-[H]{u) = [m](u) (34)

The [H] matrix can now be added to [m] to define a new matrix [M].

[M] = [m] + [H] (35)

Substituting Eq. (35) into Eq. (34) gives

[G](t) = [M](u) (36)

Finally, multiplying through by [M] 1 :

[R] (t) = (u) (37)

where

[R] =[M]' [G] (38)

17



[R] can be thought of as the dynamical admittance matrix equation for

the boundary nodes of the substructure.

Eq. (37) can be partitioned to separate the left connecting, right

connecting, and outer surface nodes as follows.

.R:i, :1i tL U

t :Rr :iR tr - (39)

Where to and uo represent the nodal values that do not lie on a

junction. Because there is no contact at the non-junction nodes, the

traction on those nodes is identically equal to zero. Therefore, all

outer surface terms can be eliminated from Eq. (39) to give

RtL :1 r tI U, 40.... .... I ...2 (40)

P', :] rrL Ir L ]

For simplification, Eq. (40 ) can be written as

18



A B ti 
I .. . " ... . .. =(41)

C " D t r Ur

At this point, sane care must be taken to assure canpatibility

between the sign convention of the BEM formulation and the transfer

matrix equation. Figure 4. shows the sign conventions used for each

fornulation.

UY( tt u , tt

BouxIary Element Coordinate Definitions

Uly, -tYL UYrityr

U~xL' t Urt'r
Transfer Matrix Coordinate Definitions

Fig. 4. Coordinate System Definitions

19



As shown, the sign convention of t, for the transfer matrix is opposite

to that of BEM. Therefore, the left side tractions, in Eq. (41) must be

multiplied by -1 in order to satisfy the transfer matrix sign

convention. After multiplying t, by -1 and rearranging, Eq. (41) can be

rewritten as

Fr [DB- C DB61 u. ...... ..... ... (42)

or

(Vr} = [T](v[) (43)

3.3 Eicrenvalues of the Transfer Matrix

Using the approach of Signorelli (4:23-25), wave propagation in a

repetitive structure can be represented as:

(vr = E(V[) (44)

Eq (44) shows that the state vector at the right side of the

substructure is the same as the state vector at the left multiplied by a

factor e. c will generally be complex due to the phase difference

20



between the response at each end of the substructure. If Eq (44) is

cabined with Eq (43) the following eigenvalue problem in e is formed.

([T] - [I]c) (v1 ) = 0 (45)

For any given frequency in [T], Eq. (45) will produce a set of

eigenvalues. In addition to being coplex, e will occur in e and l/c

pairs, corresponding to right and left going waves. For right going

waves, the magnitude of E will be less than 1. For left going waves,

the magnitude of e will be greater then 1. Eigenvalue magnitudes equal

to unity represent a wave mode that will propagate undiminished across

the structure. These undiminished wave modes are said to be in a pass

band. Eigenvalues with a magnitude other than 1 represent non-

propagating wave modes and are said to be in a stop band. Eigenvalue

behavior can be represented on the E plane, as shown in Figure 5.

Ime ImE ImIE
unit x
circle

x

11I< 1 1d=iI >
stop bard pass bard stop bard

Figure 5. Eigenvalues on the e Plane
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The eigenvalues of the transfer matrix can also be represented in

exponential form:

i = e (46)

Where L is the length of the bay. a is complex and can be separated

into its real and couplex parts:

a= a + bi (47)

so

6 = e6 L + ebiL (48)

or

E= eaL + ei M + ) (49)

k is a nondimensional wave number and is related to wavelength y by

k = 27r/y. e is an attenuation coefficient and describes the rate of

decay as the wave passes through a bay. Negative values of aL indicate

a left or negative going wave. The imaginary part of Eq. (49)

describes the phase relationship between the state vectors at the left

and right side of the bay.

22



I
IV. Dynamic Structural Analyses

4.1 Wave Propagation Of a Two-Dimensional Beam

A two-dimensional beam was selected as a baseline structure for

demonstrating the implementation of boundary element analysis with wave

propagation theory as discussed in chapters 1, 2, and 3. The selection

of a simple beam was based on three criteria. First, results are

easily compared to well understood continuum models. Second, a beam

model is simple to implement yet still provides verification of the

analysis procedures. Third, a beam can be thought of as a repetitive

structure if divided into several short beam elements.

Figure 6 shows a long beam divided into several sections or "bays".

Figure 6 Sectioned Beam

The properties of the beam were selected as follows:

E = 1.oxl06 psi

h = 5.0 in

.3m = .10 lb/in

t = 1.0 in

V = .2

23



where E is the modulus of elasticity, h is height, m is mass density

t is thickness and V is poisson's ratio.

A 10 inch length of beam was selected to represent one bay. The

bay was modeled with 30 linear boundary elements as shown in Figure 7.

U 0

,. T
0 0

Figure 7 Boundary Elements on Beam Section

A FORMlAN program written by Brebbia for static 2-D structural analyses

was modified to calculate the [H) and [G] matrices of Eq. (27) (9:429-

438). Additional FORTRAN code was written to inplement the particular

integral method discussed in section 2.3 (Eq. (28)). The transfer

matrix was then calculated using the procedure outlined in chapter 3.

The 6 node interface of the beam section produced a 24x24 transfer

matrix (12 displacements and 12 tractions). Thus, 24 eigenvalues could

be exb acted at any given frequency.

24



I
4. 1. 1 Eipernvalue Analysis

The eigenvalues of the transfer matrix were extracted for

frequencies from 10 to 200Hz using an EISPACK Fortran solver (10:26-27).

I At each frequency, four eigenvalues of magnitude 1.0 always appeared.

3 As discussed in section 3.3, eigenvalues of magnitude 1.0 indicate a

propagating wave mode. Since complex eigenvalues always appear in

3 conplex conjugate pairs, the four propagating eigenvalues represented

two wave modes.

I Inspection of the eigenvectors revealed that the two propagating

wave modes were a bending mode, and a cciTpression-extension mode, as

r :4ected for a beam. Figure 8 shows a dispersion curve of the phase of

3 the eigenvalue versus frequency for the bending mode. A similar plot

for the compression-extension mode is shown in Figure 9. As shown, the

I iphase angle increases with frequency. This is due to the decreasing

wavelengths.

The remaining right going wave modes exhibited stop band behavior

(J 6 < 1 ) at all frequencies. A sampling of the stop band eigenvalues

is presented in Table 1. The stop band eigenvalues represent localized

modes that quickly die out as they travel down the beam. Eigenvalues

with a magnitude much smaller than 1 represent localized behavior that

does not propagate.

Classical beam theory provides a basis for comparing the results

shown in Figures 8 and 9. For bending, simple 2-D beam theory predicts

the following behavior for a free-free beam (11:163-166).

25



BENDING MODE

80

40

60

4) 4

30

20

10 30 50 70 90 110 130 150 110 190

FREUENCY ChZ:

Figure 8 Bending Mode Dispersion Curve

COMPRESSION-EXTENSION MODE
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Figure 9 Compression-Extension Mode Dispersion Curve
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I
Table 1 Stop Band Eigenvalues for Beam Bay at 100hz

I IE I Ral (e) Imag(e) Pase (det)
.4282E+0 .4282E+0 .0 .0
.9409E-3 -.8778E-3 .3387E-3 -.2110E+2
.1026E-3 -.1026E-3 .0 .0

-. 6920E-4 -. 2352E-4 .6508E-4 -. 7013E+2
.8253E-6 .8253E-6 .0 .0
.3416E-6 -.3416E-6 .0 .0

w = (2.57r) 2 (EI/ L) (50)

where w is the frequency for one wave of a bending mode, I is the mcent

of inertia, A is the cross sectional area and L is the length. The

phase of the wave, %, at any point on the beam can be described by a

simple ratio:

= 271/L (51)

where x is the distance of the point fran the end of the beam and 27r is

simply the phase of one complete wave. Solving Eq. (50) for 1/L

1/L= ((w/(2.57r) (mA/E) 1/2 )1/2 (52)

and multiplying through by 27rx

27rx/L =27rx((w/(2.57r) 2 (mA/E) 1/2) 1/2 (53)
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gives the theoretical phase angle:

% =27rx{(w/(2.57r) 2 (mA/EI)1/2)I1/2 (54)

A similar development for the theoretical ccapression-extension phase

angle gives.

B] = (xw/7r) (m/E)' /  (55)

If the length of the beam bay is used for x in Eq. (54) and (55), a

comparison to calculated results can be made. This comparison is shown

in Figures 10 and 11. As shown in Figure 10, there is closer agreement

with bending theory at lower frequencies. As the frequency increases,

the BEK is less able to model the bending behavior. This disparity at

higher frequencies is not uncomon for discreet formulations and is

similar to results obtained by Signorelli using FEK (4:30). Some of the

disparity may be due to the use of linear elements in the formulation.

Figure 11 shows nearly perfect agreement with theory for the compression

extension mode. This should be expected, because ccpression-extension

deformations are more easily modeled with linear elements.

4.1.2 Eiaenvector Mode Shapes

For each eigenvalue, a corresponding eigenvector (V) can be

calculated and used to generate a plot of the deformed structure. Each
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eigenvector contains values of the displacements and forces on the left

hand side of the beam section:

{Vr} = (UWtr) (56)

In turn, Eq. (44) can be used to calculate the state vector on the right

hand side of the section.

(Vr) = E(Vt) (57)

The right hand side of one section now becomes the left hand side of the

adjacent section, allowing the state vector to be propagated along the

beam.

{vr)n = C(vr}, 1  (58)

were n is a bay number. Recovery of the deflections on the outer

surface of any bay is accomplished by expanding Eq. (39) to get

um = [Rt]{ttn + [R1J(tr)n (59)

By adding the real part of the deflections to the original node

locations, the mode shapes can plotted.
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I
Figure 12 shows plots of the bending mode for several frequencies.

Deflections are multiplied by an appropriate scaling factor to

3 accentuate the mode shape. In addition, the plots of Figure 12 were

generated using only the deflections of the 6 junction nodes propagated

I to the right and connected by straight lines at the outer beam surface.

3 A closer look at the bending behavior for a single bay, with outer

surface node deflections included, is shcwn in Figure 13.I
3
3 40hz Bending Mode

3
1 60hz Bending Mode

I
1 80hz Bending Mode

I

3 100hz Bending Mode

U Figure 12 Bending Modes at Selected Frequencies

I

3



Figure 13 Bending Mode For Single
Bay at 60hz

The number of bays necessary to complete one cycle of a wave depends

upon the phase angle of the eigenvalue. For instance, at 80hz the phase

angle is 48.1 degrees - requiring approximately 7.5 bays to ccmplete one

360 degree cycle.

Plots of the compression-extension mode, shown in Figure 14, are not

as dramatic as bending, due to the small phase angles and relatively

small deflections. As shown, for 200 hz the ccopression-extension mode

would require approximately 27 bays to complete a cycle.

I --- I _ I I I I I I I I I I I I r . I I I I l it I I I I I I I II I ]

Figure 14 Compression-Extension Mode at 200hz

Figure 15 demonstrates the behavior of a stop band mode at 60hz with

= .519 + 0.i. As predicted, the wave is quickly attenuated. An

additional non attenuating wave, with e = -. 92E-3 + .21E-3i is shown in

Figure 16 for one bay. This localized wave does not even have a
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I
3 noticeable effect on the right side of the bay due to the small value of

I

Figure 15 Stop Band Mode at 60hz

Figure 16 Localized Deformation at 50hz

It should be noted that any one wave mode does not represent the

total behavior of a structure. The dynamics of any particular structure

would be a time dependent linear ccnbination of all eigenvectors.

4.2 Natural Frequencies

Two methods have been proposed for using the transfer matrix to

identify natural frequencies. The first method, proposed by

Signerorelli requires calculation of a global transfer matrix [T],

(4:22). For a structure with n bays, Eq. (43) can be applied
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sequentially to each bay frcmi left to right to obtain

(v')n = [T]n(v,)1 (60)

so

[T]g = [T]n (61)

(Vr)n = [T],(v1 )I  (62)

Now, boundary conditions can be applied. For a cantilever beam, the

boundary conditions would be

(vr)n = (UO)n (63)

for no tractions on the free end. The secured end would have zero

displacements:

(VL) I = (0,t)I (64)

~34



So, after droping subscripts on the vectors, Eq. (62) becomes

(U,, 0 ) = [T]g(0,tt) (65)

[T]g can be partitioned to give

..... L ci .(66)

T4 T3 _Jg

The bottan rc of Eq. (66) gives

0 = [T3]{t} (67)

The only non-trivial way for Eq. (67) to hold true is for the

determinant of [T3] to equal zero. Therefore a plot of Det( [T3] )

versus frequency should reveal the natural frequencies. Unfortunately,

the computation of [T] n for any significant number of bays will

generally exceed the ccuputational limit of the caputer. An attempt at

cmputing det( [T3] ) for just three bays of the beam section resulted

in numerical overflow.

Von Flotow proposes a second method for determining natural

frequencies (3:516). This method uses the eigenvectors of the transfer

matrix along with the boundary conditions to calculate a scattering

matrix for each end of the structure. By using the scattering matrices
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along with the eigenvalues of the transfer matrix another determinant

problem is set up by virtue of the phase closure principle. Again, this

method proves numerically unstable for any sizeable matrices. The

application of this method on the beam section proved unsuccessful.

Although use of BEM with wave propagation theory does not easily lend

itself to identifying natural frequencies, there are time domain

techniques that can be used with wave theory to model the real-tine

behavior of structures. Von Flotow has demonstrated the successful use

of a time domain technique for the traveling wave analysis of a

structural network (3:518).
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V.

5.1 Conclusions

The purpose of this effort was to demonstrate the use of boundary

element methods in performing a wave propagation analysis on periodic

structures. The combination of these two analysis techniques may be

useful in describing the dynamic behavior of repetitive structures such

as those planned as orbiting space platforms. Past work in the area of

wave propagation in structures has been limited to using continuum or

finite element structural models.

Although limited in its scope, this effort has produced several

important results. First, a computer code was produced that fornmlates

the transfer matrix of a 2-D isotropic element using boundary element

techniques. This code can be used to find the spatial eigenvalues and

eigenvectors of a periodic structure. Second, results fran the analysis

of a baseline beam section were in close agreement with theoretical

results. The disparity of results for bending at higher frequencies was

most likely due to the use of linear elenents in the formulation of the

transfer matrix. Disagreement of data at higher frequencies is not

uncaumnn in most discreet formulations, including FEM. Third, although

BEK matrices are generally smaller then those of equivalent FEM, their

dense nature can produce problems in same numerical techniques such as

finding determinants. Finally, the demonstration of this method in 2-D

holds promise for its use in more complex structural descriptions.
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5.2 PRecnndations

The following suggestions are made for future work in this area.

(1) Investigate the use of BEM for describing the behavior of joints in

periodic structures.

(2) Develop a code for formulating the transfer matrix of a three

dimensional structure using boundary element tecbniques.

I (3) Investigate the inclusion of dapping terms in the boundary element

equation.

I (4) Ccobine BEK and FF1, where appropriate, to model large truss like

structures. For instance, FEM might best be suited to rod and beam

I elements while BEM could be used for joints and other solid body members

of the structure.

(5) Caipare the caiputational efficiency between BEN and FEM in

fonrulating the transfer matrix of different structures.

(6) Use EEM in describing nonlinear behavior such as plastic

deformation.

(7) Develop an equivalent transfer matrix description of nonsynmetric

2-D structures such as triangles.
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Appendix A: Ahroad and Banerlee's Particular Integ1rdl Method

The particular integral method uses the fact that the solution to the

elastic dynamic equations can be written as the sum of a complementary

function, u, and a particular integral, uP.. The complementary

solution satisfies

Gdii + (G +X )uCiji = 0 (68)

while the particular integral satisfies

GuP, + (G +X)ui,1 i = (69)

Eq. (69) still contains the unknown displacement field u.. But, u, can

be described using an unknown fictitious density function, f, and a

known function, C, in a manner similar to using shape functions:

u= = z ejkf'k (70)
n~l

A simple function that can be selected for C is

Cik = 6 ik(R-r) (71)
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where R is the largest distance between two points on the body and r is

the magrtude of the vector fran the field point to the source point.

Eq. (69) can now be written as

1
GLfl + (G +\ )i 1 ,j1  = TMw 2  c!jkfk (72)

u can now be chosen as any function that satisfies Eq. (72) and can be

represented as

1

= O'jkfk (73)
n~=1

were D!k is found to be

Dik = G ((9-10U)r - (1-2V)R 6-8- 1G 90(1-V) 6-8V ) 6 j 30(1-) rrkr) (74)

The surface traction, t, related to the displacement field of Eq. (74)

is defined as

1
tj = Z jkfk (75)

n=l

Q can be found using Eq. (74) along with the strain-displacement

relationships, and is given by
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I
(5V-1)r 2 IT(4-5V)r (I-2V)R

Qjk =m ( 15(1-U) - 4V'rknj + ( 15(1-V) 3-4 )ri n k
(4-5U)r (1-2U)R6k)in)(6

15(1-V') - 4 15(1V(415i-)r- 3-4' ) 6jk - 1 5 (i-v))r in i )  (76)

If Eq. (27) is now assumed to satisfy the complementary solution

[G]i(tc -[H]{u ¢} = 0 (77)

then

I
[G](t) - [H](u) = [G]t p) - [H](u P} (78)I

Substituting Eq. (73) and (75) into (78), gives

[G](t} - [H](u) = W([G][Q] - [H][D])(f) (79)

(f} can be found fran Eq. (70)

I {f~i = 61 [K](u) (80)

I
Where [K] is the inverse of the symmetric matrix formed by the function

(R-r) applied at each nodal point. Altogether, Eq. (79) becanes

[G]{t) - [H](u) = w([G][Q] - [H][D])[K](u} (81)
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Appendix B: Proqram for solution of Two Dimensional
Transfer Matrices by the Boundary Element
Method

This program reads an input file that describes the material

properties and gecmetry of the problem. Below is a listing of the input

file used for the beam section of chapter 4 along with an explanation of

the fields.

Input File Format

First line: Title of Problem

Second line: 0, (number of nodes), (number of elements), (number of
junction nodes),0, (type of problem;l=plane strain 2=plane
stress) ,O

Third line: (E*thickness), (poisson's
ratio), (p*thickness), (height), (length), (I)

Node position lines: (node number), (X coordinate), (Y
coordinate), (blank),0

Note: The junction nodes mist be numbered
consecutively starting with node 1 on the right
side and continuing on to the left side. Exterior
surfaces are numbered last.

Element connectivity lines: (element number), (node 1), (node 2)
Note: The direction from node 1 to node 2

must be counterclockwise on exterior
surfaces and clockwise on interior
surfaces.

Last line: 0,0
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Sample Init File

PECTANGLAR BOX WITh 5XIoXl DIMENSION
0,30,30,6,0,2,0
I.D+6,.2,3.2D-4,5,10,10.041667
1,0.,5.,,0
2,0.,4.,,0
3,0.,3.,,0
4,0.,2. ,,0
5,0.,i.,,0
6,0.,0.,,0
7,10.,5.,,0
8,10.,4.,,0
9,10.,3.,,0
10,10.,2.,,0
ii,i0.,I.,,0

12,10.,0.,,0
13,1.,5. ,0
14,2.,5.,#0
15,3.,5.,,0
16,4.,5.,,0
17,5.,5.,,0
18,6.,5.,,0
19,7.,5.,, 0
20,8.,5.,,0
21,9.,5.,,0
22,1.,0.,,0
23,2.,0.,,0
24,3.,0.,,0
25,4.,0.,,0
26,5.,0.,,0
27,6.,0.,,0
28,7.,0.,,0
29,8.,0.,,0
30,9.,0.,,0
1,13,1
2,14,13
3,15,14
4,16,15
5,17,16
6,18,17
7,19,18
8,20,19
9,21,20
10,7,21
11,6,22
12,22,23
13,23,24
14,24,25
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15, 25, 26
16,26,27
17,27,28

p 18,28,29
19, 29, 30
20, 30, 12
21,1,2
22,2,3
23,3,4
24,4,5
25,5,6
26,8,7
27,9,8
28,10,9
29, 11, 10
30,12,11
0,0

Proqram Listr~

C PF4GAM FOR CAfLCU=TON OF TWO~ DIMENSSIONAL
C ELASIODYNAMIC TR~ANSFER MATRIES BY 7HlE
C BOUNDARY ELEENT MffiHOD

iniplicit real*8 (A-H,0-Z)
OMMODN /FRA/ IRE, WR

*S(50,3) ,ISYM(100) ,X(100) ,Y(100) ,IFIp(100) ,AK(100,100) ,p(100),

*, PM(100, 100) , ElM(100, 100) ,'TM (100, 100)
flTOER DM
REAL*8 EJA1(100,100) , IM(100,100) ,KM4(100,100) ,WI@UPEA(2600)

* , t~um, INEu
C INPUT'

OPEN(8,FIIE=' INFUT. IN' ,SrA:S=IOLD')
OPE(9,FIE='wrOUIr.cvr' ,STMS='INEW')
IRE=8
IWR-9
Et~iN=100
IrD'r=o
CALL INR~r(NE,NN,NP, IPL,P0,NN2 ,NT,NTL,C1,C2,

*C3 ,C4 ,C5, C6, C7,C8,C9, C1O,Cli, IDSYM, XSYM, YSYM, INFB
*,OEG, A~ralenth, inert)

C CtUI MATRICES H,G,D,F AND K
CALL KMATR(NE, NN, NN2, NT,C1, C2,C3, C4,0C5, C6,C7, C8,

*C9,CIO,Cl1,PO,ISYM,XCSvj,YSYM, INFB, IFA,NIF,0,GM,RMX)
CALL MA24JT (NN2, AK, E14, £M4)
CALL MM N2, AG, TM, Th)
CALL MASUB (N2, , I3., M1, [14)
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I
3 CALL INVERT (PM, TM, NN, DN)

CALL MATEXP (NN, TM, KM)
CALL MATWl= (NN2 0M, FM, PM)
CALL FRESWP (NN2, NTL, PM, AK, AG, I), E, area, ) enth, inert

*,INC, X, Y)

4 STOP
EN1DI C

C
c
CIC

SUUINE INPUT (NE, NN, NP, IPL, PO, NN2, NT, NTL, Cl, C2,
*C3 ,C4, C5, C6, C7, C8, C9, CI0, CII, IDSYM, XSYM, YSYM, INFB
*, RO, E, 4, RMAX, AREA, LENTH, INERT)
implicit real*8 (A-H,O-Z)3 REAL*8 AREA, IENIH, INERTCOMNIW RE, W
C N /A/ D(2,2) ,XI(6,3) ,W(6,3),JIDUP(50) ,INC(50,2) ,C(50),

*S(50,3) ,ISYM(100) ,X(100),Y(100),IFIP(100),AK(100,i00) ,P(100),
*XM(100) ,AG(100,100)*, Pm(100, 100) , Dm(100, 100) , IM (100, 100)

-ACTER TIT.E*70
WRITE(IWR,l)

1 FORMAT(//////////,24X,'*** BOUNDARY ELEMENT ME*T H O D A P P L I E D T O * *',//,24X,'* P L A N E E L
*ASTOSTATI C PROBLEMS

C TITLE OF PROBLEM
READ (IRE, 2) TITLE

2 F01MT(A70)
WRITE (IWR, 2) TITLE

c IENERAL INFORMATION ABOUT THE PROBLE
RE-AD(IE, *) INF,NE, NN, NTL, NP, IPL, IDSYM
READ(IRE, *) E, PO, RO, AREA, LENTH, INERT

3 FOMAT (I1, I4,415,2F10.0)
IF(INFB.EQ.0)GO TO 60
WRITE (IWR, 61)

61 FOI4AT (//,13X,'* INFINITE BOUNDARY *')
60 WRITE (IWR, 4)NE,NN,NP, IPL, IDSYM,E, PO

4 FORMAT(//,15X, 'NO. ELE2lIS =',15,//,15X,
*'NO. NODES =',I5,//,15X, 'NO. POINTS =', 15,//,15X, 'PROBL.

TYPE =',15,//,15X,'SYMME. TYPE =',15,///,15X,'MATERIAL
*PROPZ 1, ,//, 15X, I E =', Fl0.0,3 *//,15X,'POISSON =',FI5.5,///,30X,'OOORDINAATES OF BXJNERY NODES'
*//, 12X, I'NODE'0, 14X, I'X' ,15X, I'Y', 12X, I'DOUBLE' /

NN2=NN*2

C NODES AND POINTS COORDINATES

DO5*1 N 
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READ(IRE,*) K, X(K) ,Y(K), IDUP(K), ISYM(K)
6 FO RWT(I5,2F10.0,2M5)

IF(IDUP(K) .E Q.0)GO TO 5
J=IDUP(K)
IDUP(J) =K
X(K) =X(J)
Y(K)=Y(J)

5 CONTNUE
DO 63 K=1,NN
IF(IDUP(K) .NE.0)GO TO 62
WRITE (IWR, 7) K,X(K) ,Y(K)
GO TO 63

62 WRITE (IWR, 16) K, X (K), Y (K), IDUP (K)
16 FR4AT (10X, I5,5X, F15.4, 1X, F15.4,7x, I5)
63 CONTINUE
7 FORMAT(10X,I5,5X,F15.4,1X,F15.4)

IF (NP. EQ.0)GO TO 9
WRITE (IWR, 8)

8 0O"MAT(//,30X, 'OORDINATE OF INTIRNAL S' ,//,llX, 'POINT',
*I4X, 'X' ,15X, 'Y' ,/)

K=NN+1
READ(IRE,*) (J,X(J) ,Y(J), ISYM(J) ,JJ=K,NT)

14 FOIMT (I5,2FIO.0,5X, I5)
WRITE (IWR,7) (J,X(J) ,Y(J) ,J=K,NT)

C NODES AND POINTS AT SYMME'MY LINES
9 IF(IDSYM.EQ.0)GO TO 49

WRITE (IWR, 42)
42 FO IT (//, 30X, 'BOUNEIY NODES AND INTERNAL POINTS AT SYMMETRY

* LINE',//,12X,'L. X',12X,'L. Y',/)
DO 43 K=1,NT
IF(ISYM(K).EQ.0)GO TO 43
IZZ=ISYM (K)
GO TO (44,45,46),IZZ

44 YS'M=Y (K)
WRITE(IWR,47)K

47 FO1AAT(10X,I5)
GO TO 43

45 XSYMX(K)
WRITE (IWR, 48) K

48 FOIRAT(26X, I5)
GO TO 43

46 WRITE (IWR, 50) K, K
50 FORMAT (10X, I5,1IX, I5)

43 CONTINUE
c EMEMEN' CONNECTITY

49 WRITE (IWR, 10)
10 F AT(//,30X,'EL4ENT CONNECrIVIY',//,13X,'EL',13X,'N. 1',

*12X, 'N. 2',14X, 'L',/)
DO 11 I=1,NE
READ (IRE, *)K, INC (K, 1), INC(K, 2)
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12 FURM(3I5)
II=INC (K, 1)
IF--INC (K, 2)

11 C (K) =SQU( (X (IF) -X(II) )**2+ (Y(IF) -Y(II) )**2)
WRITE (IWR, 13) (1,JINC(1,l1) , INC (1,2) , C(I) , I=1, NE)

13 FORWT(10X,5, 11X,5, 11X, 5, 5X,F15-4)
c CONSTANTS

G-E/ (2. *(1. +PO))

IF(IPL-1)40,40,41
40 PO=PO/(1.+PO)

c11=0.
41 C2=3.-4.**O

C3=1./( (.-0) *12.56637062)
C4=1.-2.*PO
C6=-2.*3
C7=1. -4*PO
C1=C3/ (2.- *GM)
C5=C1/2.

C9=FO/ (1.-bO)
C10= (2. -PO) /(1. -PO)

C BOUNI1RY VAIIh PRESCRIBED
DO 19 I=1,NN2
P(I)=0

19 IFI(I)=0
READ (MXE, *) NFIP, NDFIP

20 F01RAAT(2I5)
WRITE (IWR, 21) NFIP-r,NDFIP

21 FDFM@T(//,15X,'N0. DISPL. PRESC. ==',15,//,15X,I'NO. TRAMr FRESC.
* =,,15,///,15X, 'DISPIACEMMNS
*' ,//,12X, 'NODE' ,14X, 'U',15X, 'V',/)
IF(NFIP.EQ.0.)GO M1 22
In 23 I=1,NFIP
READ(IRE,*)K,P(2*K-1) ,P(2*K) ,IFIP(2*K-1) ,IFIP(2*K)

24 FUPMAT(15,2F10.0,MI)
IND=IFIP(2*K-1) +2*IFIP(2*K)
GO MI (25,26,27) ,IND

25 WRITE (IWR, 28) K, P(2*K-1)
28 FURW (10X,I15, 5X, F15.4)

GO TO 23
26 WRITE (IWR, 29) K, P(2*K)
29 FDRM4AT(10X,15,2J.X,F15.4)

GO MI 23
27 WRITE(IWR, 30) K,P(2*K-1) ,P(2*K)
30 FUFMT(10X,15,5X,F15.4,lX,F15.4)
23 crNT7rNUE
22 IF(NDFIP.BQ.0)GO TO 31

WRITE (IWR, 34)
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DO 32 I=1,NDF-IP
PEAD(IRE,*)K,P(2*K-1) ,P(2*K)

33 FIO1R4AT(I5,2F10.0)
32 WRITE(IWR, 30) K,P(2*K-1) ,P(2*K)

C CC4PUIE IARGEST DISTANCE BETWEEM FOINIS
31 IMAX =0.

DO 90 I=l,NM
DO 90 J=1,NN

YY=Y (I) -Y (J)
RM,--=(XX**2+YY**2)
IF (1M4A. GE. FI4AX) 1FAX=04A

90 CO~NTINUE
C INTEGRATION POlIS

XI (1,3)=-0. 932469514203152
XI (2,3)=-0. 661209386466265
XI(3, 3)=-0.238619186083197
XI (4, 3) -XI (3, 3)
XI1(5,3)=-XI(2,3)
XI (6,3)=-XI (1,3)
W(1, 3)=0. 171324492379170
W(2, 3) =0.360761573048139
W(3, 3)=0.467913934572691
W (4, 3) =W(3, 3)
W (5, 3) =W(2, 3)
W(6,3)=W(1,3)
XE (1,2)-0.861136311594053
XE (2,2)=-0. 339981043584856
XI (3, 2) -XI (2, 2)
XE (4,2)=-XE (1,2)
W(1, 2) =0.347854845137454
W(2,2)=0. 652145154862546
W (3, 2) =W(2, 2)
W (4, 2) =W(1, 2)
XE (1,1)=-0. 577350269189626
XI (2, 1)=-XI (1, 1)
W(1, 1)=1.
W(2,1)=1.
RLIURN

C
C
C
C
C
C

SUMO7 M MUM X(NE,N, N2, N,C, C2,3, C4,C5, C6,C7, C8,
*C9,C1O,C11,PO,1t6YM,XSYM,YSYM, INFB, IFA,NIF,R0,GM,RMAX)
inplicit real*8 (A-H,O-Z)
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I ~*5(50,3) ,ISYM(100) ,X(100) ,Y(100) ,IFIP(100) ,AK(100,100) ,p(100),
*XM(100) ,AG(100, 100)

REAL*8 NOR41 (100) , NOIV (100) , NOW (2)

* ,N0F#A,IRK(2)
C I1RONECKER DELTAI D(1, 1)=1.

D( 2,2) =1.
D(1, 2) =0.

D(2, 1) =0.

DO 1 J=1,NN2
AK(I,J)=0.

1 AG(I,J)=O.
C COMPUTE PARAMETES FOR SYMMERY LOOP

IFA=1-
NIF=1-
IF(ISYM.EQ. 1) IFA=-2
IF(ISYM.NE.2)GO TO 60
IFA=-3
NIF"=2

60 IF(IDSYM4.EQ.3)IFA=-4
C TEST FOR INFINITE BON1Y
c IF(INFB.BQ.o)GO TO, 90
c DO 91 I=1,NN2
c IF(I.FIP(I) .NE.O)GO M1 92
c A(I,I)=1
c GO TO 91
* 92 XM (I) -P (I)
* 91 CNTINUE
C SYI4MEM~ loop

90 DO 2 ISY=1,IFA,NIF
C OMPYIE CHANGE SIGN (3)NTRILLING PARAME ER

GO TO0 (70,71,71,73) ,ISY
71 IIS5=4-ISY

IFS=-IIS
GO M1 70

73 115=1l
IFS--2

C LOOP OVER BOUNDRY NODES
70 DO 2 I=1,NM

xs--x (I)
YS=-Y (I)
IF(ISY.BQ.2.OR. ISY.EXQ.4)YS-2.*YSYM4-YS
IF(ISY.GE. 3) XS-2 . *XSYM-XS

C GEN~ERATE MATRIX H AND G
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C NOTrE: COUJNS OF A UMA CORRESPOND TOD G ARE MULTPIED
C BY CB TO AVOID KUNDFF EIMPS IN THE SOIMrON

IF(ISY.NE.1.AND.ISYI4(I) .NE. (ISY-1) )GO TO 6

6 CALL FUNC(ICD,J,C1,C2,C3,C4,C5,C6,C7,PO,II,IF,XS,YS,ISY,HIS,
*IFS)

DO 10 K=1, 2
JJ=2* (I-1) +K
M=O
DO 10 NX=1,2
DO 10 NV=--1, 2

I=2*INC (J,NX) +NV-2
c IF(IFIP(IC) .NE.O)GO TO0 67

AK(JJ, IC) =AK(JJ, IC) +H (K,M)
c XM(JJ) =XM (JJ) 4G (K,M) *P (IC)
c GO TO68

67 AG (JJ, IC)-=AG (JJ, IC) +G (K,M)
c XM(JJ) =XM(JJ) -H (K,M) *P(IC)

C CCMWUE REIAINING CEFFICIEN~TS BY APPLYING RIGID BODY TRANSLATINS
68 GO TO (61,62,63,64),ISY
62 IF(NV-2)61,64,61
63 IF (NV-1) 61, 64, 61
64 H(K,M)=-H(K,M)

c 61 IF(IFIP(JJ+NV-K).NE.0)GO TO0 69
61 AK (JJ, JJ+NV-K) =AK (JJ, JJ+NV-K) -H (K, M)

GO TOD 10
c 69 XM (JJ) =XM (JJ) +H (K, M) *P(JJ+NV-K)

10 CONTINUE
2 COlNTINUE

c CCMUTE MASS MATRI USING PARCICUT-AR INTEMRAI
041= (9-10*FO) / (90-90*)
04= (1-2*P0) /(6-8*PO)
043=1/ (30-30*10)
C4--(5*0-1) / (15* (1-PO) )

045=-2*PO/ (3-6*10)
046=- (4-5*PO) / (15* (1-10) )
DO 300 I=1,NN
DO 305 J=1,NN
RM (1) =X (I) -X (J)

R2=SQRI'(M '(1) **2+RM (2) **2)
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DO, 310 K=1,2
DO 315 L,=1,2
fIN-2*I+K-2
JW2*J+l-2

C COMUTE D MATRIX
DK4(JII 3M) =R:* ( (afl*R2M*RX) *D (K, L) *R2**2-
*(CM3*RM(K) *FM(L) *R2) )/GA
IF(R2.I-E. .001)GO TOD 330

C CO[rE T MATRIX
TMIMJM) O* ( (C4*R2-C 5*RX) *RM(L) *N0RM(K) + (a46*R2-2*C42*RMAX)

**RM(K) *NORM(L)+( (C46*R2-2*a42*1o.) *D(K,L) -(2*24*RM(K) *R.(L) )/R2)

GO TOD 315
330 M(IM,JM) =RO ( (C{4*R2-C 5*RMAX) *R(L) *NO(I) + (CK6*R2-2*C2*R4AX)

**RM (K) *NOR(L))
315 ONTINUE
310 CONINUE
305 CONT1INUE
300 CONINUE

REIURN
END

C
C
C
C
C
C
C
C

SU~aYr[NE FNC(ICOD,JA,C1,C2,C3,C4,C5,C6,C7,PO,II,IF,XS,YS, ISY,
*Is, IFS)

C IN'TEGRAIS OVER BUNIIY E12ENflS
implicit real*8 (A-H,O-Z)
OMMON' /A/ D(2,2),XI1(6,3) W(6,3), IIP(50), INC (50,2), C(50),

*S(50,3) ,ISYM(100) ,X(100) ,Y(100) ,IFIP(100) ,AK(100,100) ,P(100),

*,FM4(100,100) ,11(100,100) ,'M(100,100)
REAL*8 N01(100) ,NO142 (100) ,NO1R4(2)
COMMO /A4/ H(3,4) ,G(3,4) ,HL(3,4) ,GL(3,4) ,NO4,NOIM4

* , N R(2)

*PLL,(2 ,2,2)

DO 5 K=1, 3
DO 5 1,-1,4
GL(KR, L) =0.
Hff(KK, L) =0.
G(KK,L)=0.

5 H (KK, L) =0.
DXY(1)=X(IF)-X(II)
DXY (2) =Y (IF) -Y (II)
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NOR!L (IF) =ENJ(1)
NORG (IF) =BN(2)

NOM~4 (II) =BN (1)

GO TOD (1, 2,2, 1), ,IOXD
C SElE= NO. OF J~rEGRAIN POIN'I

SO. 5*SQF ( 2. *XSX (II)X (IF) )**2+ (2. *YS-Y(II)-Y (IF) **2 ) /C (JA)
1 NPI=4

IF (SEL.LIE. 1. 5) NPI=6
IF(SEL.Gr. 5. 5)NPI=2
ThUNPI/2

C OCHPUYE NMICES NUMERICAUJLY
DO 50 KK=1, NPI
XMXIO.5*(.+XL(K,INP) )*DXY(1)+X(I)-X.S
YMI=0. 5* (1. +XI(KK, INP) ) *DXY (2) +Y(II).-YS
R=SQRT (XXIv**2+YMYI**2)
B (1) -0.25* (XI (IKK, INP) -1.) *C (JA)
B(2)=0.25*(XI(KK,INP)+1. )*C(JA)
ER (1) =XMXIE/R
IE (2) =YMYI/R

C COMME NA1RICES H AND G
DO 6 1=1, 2
DO 6 J=1,2

**BN(J) ))/R
6 CON71NUE

DO 7 IA=1, 2
ic=o
DO 7 IL-l1,2
DO 7 JJ=1, 2
IO=Ic+1

H(IA, IC) =H(LA, IC) +PL(IA,JJ) *B(L) *W(KK, INP)
7 ONT1INUE

C a14IUI MTRICES HL AND GL (INTERNAL SUESSES)
10 DO 11 1=1, 2

DO 11 J=I, 2
DO 11 K=1, 2

11 IL(I,J, K) =C6* (CO+(DRB(J)* (K) *DR(I) (J)/ (K*2 IJ +.*D I
111=0)DRK)/

B12-*PI*(CDR() D(I ) PO DR() D(I K ER() D(J K 452R I



3 DM 12 1=1, 2
DO 12 J=I, 2

3 D 12 IAA=1-, 2
DO 12 JAA=1, 2

GL(IL, IC) =GL(IL, IC) +B(IAA) *UIL(I,J,JAA) *W(K,flNP)
12 HL(IL,IC)=HL(IL,IC)IB(IAA) *PIJ,(I,J,JA) *W(IK,lNP)
50 CONT1INUE

GO M1 18
C COPE MAMRCES H AND G ANAICAUY (BOUNM1Y CONSRAIT EQ2.)1 2 AI.=CS*C2*C(JA)

DO 15 1=1, 2I DO 15 J=1, 4
IT--(J/2) *2+2-J

15 CONTINUE
IAA-2UIF (ICOD. EQ.3) IAA=0O
G (1, 3+IAA) =G (1, 3+ThA) +AL
G (2, 4+IAA) =G(2, 4+IAA) +AL
H (1, 2-IAA) =C3*C4* (1. +IAA)
H (2, 1-IAA) -H (1, 2-IAA)

C SME~flF TEST
18 IF(ISY.EQ.1)GO TO0 8U DO 24 I=IIS, IFS

DO 24 J=1,4
H(I,J)=-H(I,J)I 24 G(I,J)=-G(I,J)
IF(ICDD.NE.4.OR.ISY.BQ.4)G0 O 08
DO 25 J=1, 4
HL(2 ,J)=-HL(2 ,J)

25 GL(2,J)=-GL(2,J)
8 REIU1W

EN4DI C
C

C

C ADD 740 NATRICES
SUHWU'rE MkAAD(N,A1,A2 ,A3)I frplicit real*8 (A-H,O-Z)
REAI,*8 A1(100,100) ,A2 (100,100) ,A3 (100,100)
DO 10 I=1, NI DO 10 J=1, N
A3 (I,J) =Al1(I,J) +A2 (I,J)
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k C
C
C
C I4JlPPLY TIWO ATRICES

WUMNE MM=14L(N,M1,N2 ,M3)
implicit real*8 (A-H,O-Z)
RFAL*8 141(100,100) ,M2(100,100) ,M3(100,100)
DO 5 I=1, N
DO 5 J=1,N
M3 (I,J) =0.

5 CONTINUE
DO 10 I=1, N
DO 10 J=1,N
DO 10 K=1, N

10 CONTINUE
RETIURN

C 143L TIPI2 TIWO COM4P=D 1.lICES
SUHRJk~INE MAILT=(N,M.,M2 ,M3)
implicit real*8 (A-H,O-Z)
COMPE*16 14(100,100) ,12(100,100) ,M3(100,100)
DO 5 I=1,N
DO 5 J=1, N
43 (I,J)(.DO,.DO)

5 CONTINUE
DO 10 I=1,N
DO 10 J=1, N
DO 10 K--1, N
N43 (J, I) =N3 (J, I) +M4 (J, K) *M2 (K, I)

10 CilrN1LE
REIURN

C
C
C

C Formulates the (K] matrix of the particular integral method
SUBROU-MN MAEXP (N, E(1, EX2)
implicit real*8 (A-H,O-Z)
REAL*8 EX1(100,100) ,BX2(100,100) ,D(2,2)
D(1,1)=1.
D (2,2) =1.
D (1, 2) =0.
D(2,1)=0.
Do 10 I=1,N
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DO 10 J=I,N
DO 10 K=1,2
DO 10 L=1, 2
II=2*I+K-2
JJ=2*J+L-2
EX2 (II,JJ)=EX1(I,J) *D(K,L)

10 CONTINUE
RETIURN
END

C
C
C
C SUBTRACT TWO MATRICES

SUSROfINE MATSUB (N, SUB1, SUB2,SUB3)
implicit real*8 (A-H,O-Z)
DIMEN2SION SUB1(100,100) ,SUB2 (100,100) ,SUB3 (100,100)
DO 10 I=1,N
DO 10 J=1,N
SUB3 (I,J)=SUB1(I,J)-SUB2 (I,J)

10 CONINUE
REIURN
END

C
C
C
C
C

SUrfUTINE FRESWP (NN2, NTL, M1, KI, G, RD, E, AREA, MTH, INER
*,INCXOYO)

c This subprogram mltiplies the mass, [m] of Eq 33, matrix by a
c given frequency, and
c then forms the transfer
c matrix. Once the transfer matrix is formed it is input into the GO
c routines for eigenvalue and eigenvector extraction.
c

c on input:
c
c K1 is the matrix formulated in the boundary element calculations that
c imltiplies the displacement terms ( this is the H matrix)
c
c Ml is the mass matrix calculated by the particular integral
c technique.
c
c G is the matrix fonilated in the boundary elaent calculations that
c multiplies the displacement terms.
c
c RO and E are material properties. NN2 is the size of the above
c matrices.
c NTL is the number of nodes on the interface of the substructure.
c XD,YO, INC are gecmetry descriptions used for post processing
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IMPLICIT REAL*8 (A-H, O-Z)
REAL*8 Ml(100,100) ,K1(100,100) ,G(100,100) ,GG(100,100)

*,M9(100, 100) ,fl4(100, 100) ,WKAREA(2600) NM2(100, 100) ,WR(100)
*,WI(100) ,ZR(lO0,100) ,FV1(l00) ,inert,lenth,IM(l00)

*,GN(100,100) ,EIMAG(100) ,PARr5(100,100) ,PART6(100,100)
*,F'IR(50) ,FLI (50) ,FRR(50) ,FRI (50) ,XO(100) ,YO(100)
flhlEXE EZN, IV1 (100) ,N, NTIA, INDEX (100) ,INC (50, 2)
OPEI (10, FIIE= 'VECIOR.CUT , SrMUS= 'NEW')
114N=100
IDL=0
NIA-4*NML

C this loop changes the frequency term if desired
1D0 100 W=1,1
WRITE (9, 110)

110 FORMAT (///)
HERI'Z= 100.
frei=ertz* (2*3.141592654)

C
c thphi is the theoretical value of the phase angle for ccupresional-
c extentional mo~tion of a beam.
C

tbhtii=dsqrt (ro/e) *hertz*lenth*360
C
c thphi2 is the theoretical value of the phase angle for bending of a
c beam
C

thphi2=dsqrt (fre*dsqrt (ro*area/ (e* inert)))
thpri2--thpjhj2*1enth*540/ (2.5*3.141592654)
DO 20 K=1l,NN2
DO0 20 L1l,NN2
N2 (K, L) =(FIZE**2) *M (K, L)

20 CNTINUE
CAIL MkTADD(NN2 ,K1,M,M)
GALL INVERT N,2 ,2 EN)
CALL MAMUJT(NN2, M2, G, GG)

C - -

C MATPART takes the dynaical admittance matrix G and manipulates it
c into the substructure transfer matrix GG. This is done by
C paritioning
c the matrix, eliminating the interior nodes aid rearanging terms~ in
c order to seperate the left and right nodes.
C

CALL NATPAIC (GG, NTL, PARU5, PART6, NN2)
matz=1i

c: RGO calls the EISPAGK rouitine for extracting the eigerivalues and
c: eigenvctors of the transfer matrix. The EISPACK rouitines are not
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c inluded1 in this listing.

CAIL IGO (EI..,Nr4, GG,WR, WI ,1T, ZR, ZI, lV1, F'1, =)

c The rest of the FRESWP is merely manipulation of the Eigenvalues andl
c eigenvectors for output.

do 30 I=1,ntl4
einag (I) =dsqrt (wr (I) **2+wi (I) **2)

C IF(TEST.NE.O.O) TH1ENI
C TESDr=O.
C GOMD3 0
C ENDIF
C
c eimag is the magnitude of the eigenvector
C
c phee is the phiase angle

phee=datan(wi(I)/wr(I) )*(360.0/6.2831850)
TEST = WI (I)
TEMIQD=DABS (EIAG (1) -1)

C IF (EIMAG(I) .gt.1.lODO) GO 30
C IF(EIMAG(I).LTl.D-4) GOlD 30

WRITE(9,50)
50 FFOA.T(/, 2X IFREQUENCY (hertz) ', 5X, Itt C2PRPASE(deg) '5x,

*'ED FPASE(deg)')

55 FDIRT(E15.5,5X,E15.5,5X,El5.5,/)
WRITE(9,60)

60 FOFR4AT(6X'PEAL' ,13X, 'IMAGINARY' ,7X, 'EIMAG' ,1OX, 'WASE')
TEgSDW1 (I)

65 FoIRMA(E5.5,2X,E15.5,2X,E15.5,2X,E15.5,/)
ITEI' (9, 70)

70 FURMAT(1X'NODE #' ,18X, 'XDISP' ,31X, 'YDISP')
WRIrE(9,75)

75 FOR@T(16X, 'REAL,10X, IDAG,16x, 'REAL,l6X, 'IMAG)
DO 15 J=l, ntl
IX=J*2-1

IMAGX (j) -ZI(IX, I)
IMAGY ) ZI (IYII)
REAMX(J) -MR(IX, I)
REAL(J) ZM(IY, I)

10 WRIE (9, 40) J, ZR((,I) , IMAMX(J) , ZR (IY, I) , IMAGY (J)
40 fonnat(15,4X,E15.5,2x,E15.5,4x,E15.5,lx,E15.5)
15 caontinue

DO 150 J=1,2*NMh
K1@2*N1rL+J
FLR (J) -M(K, I)
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FI (J) =-ZI (K, I)

150 CONTINUE
DOl 160 K=1,NN2/2-2*NTL
K[=NTlL*2+K
IX=2*K-l
IY=2*K

IMAY (XI) =0. DO

RFAIY(K<I)=O.DO

DO) 170 J=1, 2*NTL
IMM( (1a) -FU (J) *PARU5 (IX, J) +FRI (J) *PARI'6 (IX, J) +IMAGX (1a)
fl4AGY (K)=-FLI(J) *PR5 (IY,J) +FRI (J) *PA1J6 (IY,J) +IGY (KE)
REAILX (1a) -FIR(J) *PARJT5 (IX, J) +FRR (J) *PF6 (IX, J) +PEALX (XE)
REALY (1a) =-F.R(J) *PAM5 (IY, J) +MR (J) *PAJ'6 (IY, J) +REALY (Ka)

170 CONTINUE
160 CONTINUE
c Vector is a user supplied routine for doing structure plots
C CALL VECIOR (NTL,REAILX,PEA]LY,IMGX,IMAGY,WR(I) ,WI (I), INC
C *,XO,YO,NN2/2)
30 continue
100 CONTINUE

return

en
C
C
C
C

SUJMW=N MTPART (GG, NTL, PART5, PAIRT6, NN2)
IMP~LI REAL*8 (A-H, O-Z)
DIMENSION PART1(100,100) ,PART3(100,100) ,PART4(100,100),
*A (100, 100) , B(100, 100) , C(100, 100) , D(100, 100) ,
*BINV(100,100) ,GG(100,100) ,PART5(100,100) ,PART6(100,100)

IN1TEGER DM
tE1N=100
DO 10 I=1, 2*NTL
In 10 J=1, 2*NTL
A(I,J)=GG(I,J)
kc-2*ntl+)
B (I, J) =GG (I, k)
1=2*ntl+i

D(I,J)=GG(1,k)

10 COTINUE
In 50 I=1,NN'2-4*NMh
K--4*NTII
In 50 J=1,2*NrL
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JI=2*NTL-hJ
PARI'5(I,J)=GG(K,J)
PART6 (I, J) =GG (K, JI)

50 COT1INUE
ntIL2=2*ntl
CALL IN=EI (B, BINV, NT2, EM4)
CALL MMM!JLT (NTIL2, BINV, A, PAlrE4)
CAILL ]KAMLT(NTL2 ,D, BINV, PAR~l)
CALL MATHJLT (NTL2, ,D, PARr4, PARV3)
CALL M=MUB(NT-2 ,PARf3 , C, PAR)
DOl 30 I=1,2*NTL
DOl 30 J=1, 2*Nr
GG (I, J) =PARE1 (I, J)
kc-2*ntl+j
1=2*ntl+i
GG(I,k)=PART3 (I,J)
GG(1,J)=BINV(I,J)
GG (1, k) =PARE4 (I, J)

30 CNTINUE
PXIURN
EN~D

C

SU&HXYEINE INVERT(A, Y,N, NP)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION A (100, 100) , Y(100, 100) , INDX (100)
DO 12 I=1,N

DO 11 J=1,N
Y (I, J) =0.

11 CO~NTINUE
Y (I,1I) =1.

12 CONTrINUE
CALL UJDCKP(A,N,NP,ILNDX,D)
DO, 13 J=l, N
CALL IUBKSB (A, N, NP, INDX, Y(1, J))

13 CI1WINUE
REI JRN

C
C

SUHWU IINE UJMa4P(A,N,NP,INDX, D)
IMPLICIT REA8 (A-H, O-Z)
PARAMETE (NMAX=100,TIN Y=1. OE-20)
DIMENSION A (100, 100) , INDX (100) , W(100)
D--1.
MO 12 I=1, N

AAMAX=O.
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Mn 11 J=1,N1 IF (IAB(A(I,J)).GT.AA7iX) AAMAX=DAB(A(I,J))

IF (AAMAX.EQ.O.) PAUSE 'SINGULAR MATRIX'
W (I) =1./AAMAXI12 CONTINUE
In 19 J=1, N
In 14 I=1, J-1
SUWA (I, J)
In 13 K=1, I-1
SUMt=SUM-A (I, K) *A (KJ)

13 CNTINUE
A (I, J) =SUM

14 COTINUE
AA1@AX=O.
In 16 I=J, N
SUMI=A (I, J)
In 15 K=1, J-1
SUM=SUM-A (I, K) *A (K, J)

15 CONTINUE
A(I,J) =SUM
iM--W (I) * A (SUM)
IF (IXM. GE. AANAx) TE

AAMAX=EXJM
ENDIF

16 COTINUE
IF (J. NE. IMAX) THlEN
In 17 K=1, N
IJJ MA X, K)
A (IMAX, K) =A (J, K)
A (J, K) =11)1

17 CONTINUE
D=-D
W(IMAX)=W(J)
ENDIF
INX(J) =IMAX

DIIJM=1./A(J,J)
In 18 I=;J+1, N
A(I,J)=A(I,J) *11M

18 COTNUE
ENDIF

19 CONINUE
RETURN
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I
SUMUUINE LUWBSB(A,N,NP, INDX, B)p IMPLICIT REAL*8 (A-H,O-Z)

bLDIMENSION A (100, 100) , IlDX (100) , B(100)
11=0
DO 12 I=I,N
Lt=INDX (I)
SUM=B(IL)
B (IL) =B (I)
IF (II.NE.0) THEN
DO 11 J=II, I-1
SUM=SUM-A (I,J) *B(J)

11 CONTINUE
ELSEIF (SUM.NE.0.) THEN
II=I
ENDIF
B(I) =SUM

12 CONTINUE
DO 14 I=N, 1, -1
SUM=B (I)~IF (I. LT.N) THEN

DO 13 J=I+l, N
SUI=SUM-A (I, J) *B(J)

13 CONTINUE
ENDIF
B(I) =SUM/A (I, I)

14 CONTINUE
REIURN
END
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